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Abstract

Ideal magnetohydrodynamics (MHD) equilibria are subjected to two kind of instabilities,
L.e., current-driven instabilities and pressure-driven instabilities. In three-dimensional (3-
D) configurations with vacuum magnetic flux surfaces | the equilibria can be obtained
without net toroidal current, where the current-driven instabilitics become unimportant
and only the pressure-driven instabilities need to be intensively studied. The pressure-
driven modes cousists of interchange modes and ballooning modes, and impose MHD
stability 7 limits. [J.P. Freidberg, [deal Magnetohydrodynamics, Plenum Press, New York,
1987]. Interchange modes are basically driven by average unfavorable magnetic curvature.
Thus these modes localize on mode rational magnetic field lines and are almost constant
along these lines B - V& “ 22 0. On the other hand, ballooning modes are basically driven
by locally unfavorable magnetic curvature, so that they localize on unfavorable magnetic
curvature region and change along the magnetic field line B - V€Y # 0. Ballooning modes
arc considered to be more stringent than interchange modes, whose properties have not
yet been clarified in 3-D configurations. To study the propertics of ballooning modes, one
can proceed in two different ways, namely, local mode analysis and global mode analysis.
In axisymmetric systems, the global modes can be construeted easily from the resalts of
the local modes analysis. But this is not the case in non-axisymmetric systems, namely,
3-D systems. In fully 3-D systems, we can only make some conjectures for global modes
from the properties of the local modes.

Through the local mode analysis of ballooning modes in an L = 2/M = 10 planar axis
heliotron system with an inherently large Shafranov shift(where L and M are the polarity
and toroidal ficld period of the helical coils, respectively), it has been demonstrated that

[N. Nakajima, Phys. Plasmas 3, 4545 and 4556(1996)]:

¢ The local magnetic shear (which is a stabilizing term for high-mode-number bal-

looning modes) is related to helicity of the helical coils in the considered vacuum



configuration. Its change due to a large Shafranov shift is essentially axisymmetric,
i.e.. related to toroidicity. This change leads to the disappearance of the (integrated)
local magnetic shear on the outer side of torus, even in the region with a stellarator-
like global magnetic shear, leading to the destabilization of the high-mode-number

ballooning modes.

e The local magnetic curvature (which constructs a potentially destabilizing term for
high-mode-number ballooning modes together with the pressure gradient) consists

of parts due to both toroidicity and helicity of the helical coils, which determines

the 3-D properties of the high-mode-number ballooning modes.

In general 3-D MHD equilibria, the eigenvalues w? for high-mode-number ballooning
modes are functions of the labels of the flux surface ¢, the magnetic field line a, and the
radial wave number 8 w? = w2(¥, B, a). Since w? has no a-dependence in axisymmetric
systems, the stronger the a-dependence of w? is (mainly coming from the helicity part
of the local magnetic curvature), the more significant the 3-D propertics of w® are. The
topological propertics of the unstable cigenvalues w?(< 0) in (¥, 8,.a) space for the L =
2/M = 10 planar axis heliotron system are shown that [N. Nakajima, Phys. Plasmas 3,
4556 (1996)):

¢ In Mercier unstable equilibria, there coexist two types of topological level surfaces
for w? in (¥, 0, o) space. One is a tokamak-like cylindrical level surface with the
axis in a direction, the other is a spheroidal level surface inherent to 3-D systems.
The spheroidal level surfaces are surrounded by the cylindrical level surfaces. From
their relative positional relation, it is clear that modes with spheroidal level surfaces

have larger growth rates than those with cylindrical level surfaces.

e In Mercier stable equilibria, only a topologically spheroidal level surface exists. In
contrast to Mercier nnstable equilibria, this spheroidal level surfaces are surrounded

by the level surfaces of stable Toroidicity-induced Alfvén Eigenmodes (TAE).

From these results it is conjectured that the global structure of pressure-driven modes

has the following properties [N. Nakajima, Phys. Plasmas 3, 4556 (1996)):

¢ Global modes that correspond to modes in the local mode analysis with a eylindrical
level surface will be poloidal localized tokamak-like ballooning modes or interchange

modes. Effects of the toroidal mode coupling on these modes are weak.
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¢ Global modes that correspond to modes in the local mode analysis with a spheroidal
level surface will be ballooning modes inherent to 3-D systems, with quite high
poloidal and toroidal mode numbers and localized in both the poloidal and roroidal
directions. These modes become to be localized within cach toroidal field period of

the helical coils, as their typical toroidal mode numbers become higher.

e In Mereier unstable equilibria, where both cylindrical and spheroidal level surface
coexist, tokamak-like ballooning modes or interchange modes appear when their
typical toroidal mode numbers are relatively small. As the typical toroidal mode
numbers become larger, ballooning modes inherent to 3-D systems appear with

Jarger growth rates.

o In Mercier stable equilibria, where only a spheroidal level surface exists, ouly bal-

looning modes inherent to 3-D systenis appear.

The purposes of the work are to confirm the above conjecture and to clarify the inherent
properties of pressure-driven modes through a global mode analysis in the L = 2/M = 10
planar axis heliotron system with an inherently large Shafranov shift [J. Chen, N. Naka-
jima, and M. Okamoto, Global mode analysis of ideal MTHD modes in a heliotron/torsatron
systeni: I Mercier-unstable equilibrial.

First the Mercier-unstable equilibria are categorized into two types, namely, toroidicity-
dominant Mereier-unstable equilibria and helicity-dominant Mercier-unstable equilibria.
This categorization is motivated by the conjecture that tokamak-like hallooning modes or
interchange modes exist for relatively small toroidal mode numbers. and is related to the
local propertics of Mercier-unstable equilibria brought by Shafranov shift. The properties
of the vacuum configuration are understood as a straight helical configuration toroidally
bended. Since the aspect ratio is relatively large: Rgfa = 7 ~ 8 [ here Ry and a are
the major and minor radii, respectively |, the global and local properties of the vacuum
configuration are mainly determined by helicity of the helical coils. The propertics of the
finite- 7 equilibria are basically understood as a modification of the vacuum configuration
by an essentially axisymmetric and inherently large Shafranov shift. As the Shafranov
shift becomes larger, the stabilizing term due to the local magnetic shiear is more reduced.
The toroidicity-dominant Mercier-unstable equilibria are characterized hy properties that
it is casy for the local magnetic shear to vanish on the outer side of torus, which is

brouglht by a relatively large Shafranov shift. [n these equilibria, it is relatively casy for
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balloouing modes to he destabilized. The helicity-dominant Mercier-unstable equilibria
arc characterized by propertics that it is hard for the local magnetic shear to vanish on
the outer side of torus, which is brought by a relatively small Shafranov shift. In these
cquilibria, it is relatively hard for ballooning modes to be destabilized. Note that, in both
types of equilibria, the Shafranov shift locally reduces (enbanees) the unfavorable normal
magnetic curvature on the outside (inside) of torus, which is another local property due
to Shafranov shift.

Omn the basis of these considerations, the following two types of Mercier-unstable
equilibria have been adopted.  The toroidicity-dominant Mercier-unstable equilibrium
is created with a peaked pressure profile P = Py(1 = ¢'x)? and /y = 5.9%, under the
flux conscrving condition, i.c., with a specified profile for the rotational transform. The
helicity-dominant Mercier-unstable equilibrium is created with a broad pressure profile
P = Py(1 — ¢%)? and Jy = 4.0%, under the currentless condition.

The global mode analysis are done by CAS3D2MN, a version of CAS3D: Code for
Analysis of the MHD Stability of 3-D equilibrium [C. Schwab, Phys. Fluids B 5, 3195
(1993)]. CAS3D have been designed to analyze the global ideal MHD modes of 3-D
cquilibria based on a fornmlation of the ideal MHD encrgy principle with incompressibility
and fixed boundary in Boozer coordinate system and the application of Ritz-Galerkin
method. In CAS3D2MN, a phase-factor transformation was used in order to save memory
and fAops.

The inverse iteration with speetral shift is an essential concept in the solution of
cigenproblems. It is very officient if the speetral shift is given to be very close to the
desired eigenvalue and the initial vector is chosen to be dominant along the corresponding
cigenvector. It is demonstrated in our simulation that convergence will occur after only
3 or 4 steps if the speetral shift itself is a good approximation of the desired cigenvalue
and the initial vector has dominant component along the corresponding cigenveetor. The
left problem is how to guess the spectral shift and give a good initial vector. The spectral
shift was calculated by matrix transformation in CAS3D2MN. Since the bandwidth will
be destroyed by matrix transformation, the resultant memory and flops will be O(n?)
and O(n?), respectively, It is shown that the use of matrix transformation is unsuitable,
not only because it becomes very expensive in the sense of flops and storage but also the
problem size we ean deal with is limited by the available computer resourees. Here this

roblem is solved by using the Lanezos algorithm with no re-orthogonalization which keeps
f [=] o
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the matrix bandwidth from begin to end. The arithmetic operation mainly come from the
matrix-vector multiplics and only 3 recently created Lanczos vectors need to be stored.
The resultant memory and flops ean be controlled to O(n) and O(n?) order. This iteration
process is aceelerated by an shift-and-invert technique. In the new version CAS3D2MNv],
an efficient initial vector generation is also introduced [J. Chen, N. Nakajima, and M.
Okamoto, Comput. Phys. Commun., 113, 1 (1998)).

Since the local magnetic curvature due to helicity has the same period M in the
toroidal direction as the toroidal field period of the equilibria, the characteristics of the
pressurc-driven modes in such Mercier-unstable equilibria dramatically change according
to how much the local magnetic shear is reduced (whether the equilibrinm is toroidicity-
dominant or helicity-dominant ) and also according to the relative magnitude of the typical
toroidal mode numbers n of the perturbations compared with the toroidal ficld period M
of the equilibria.

In the toroidicity-dominant Mercier-unstable equilibria, the pressure-driven modes
change from interchange modes with negligible toroidal mode coupling for low toroidal
mode numbers n < M, to tokamak-like poloidally localized ballooning modes with weak
toroidal mode coupling for moderate toroidal mode numbers n ~ Af, and finally 1o both
poloidally and toroidally localized ballooning modes purely inherent to 3-D systems with
strong poloidal and toroidal mode couplings for fairly high toroidal mode numbers n 3> M.
Strong toroidal mode coupling, in cooperation with the poloidal mode coupling. makes
the perturbation localize to flux tubes.

In the helicity-dominant Mercier-unstable equilibria, the pressure-driven modes change
from interchange modes, with negligible toroidal mode coupling for n < M or with weak
toroidal mode coupling for n ~ A/, directly to poloidally and toroidally localized bal-
looning modes purcly inherent to 3-D systems with strong poloidal and toroidal mode
couplings for n > M.

In the Mercier-unstable equilibria, interchange modes with low toroidal mode nnmbers
n < M, experiencing the unfavorable magnetic curvature with its local structure averaged
out, occur for both toroidicity-dominant and helicity-dominant equilibria. For fairly high
toroidal mode numbers n 3> M, the perturbations can feel the fine local structure of the
magnetic curvature due to helicity and also the local magnetic shear is reduced more or less
in both types of eguilibria, and consequently poloidally and toroidally localized ballooning

modes inherent to 3-D systems are destabilized for both toroidicity-dominant and helicity-



dominant Mercier-unstable equilibria. The situation for moderate toroidal mode numbers
n o~ M is different. The local magnetic shear is more reduced in toroidicity-dominant
Mercier-unstable equilibria than in helicity-dominant Mereier-unstable equilibria, and also
the modes with moderate toroidal mode numbers 7~ M can not effectively feel the local
structure of the normal maguetic curvature due to helicity. Thus, tokamak-like poloidally
localized ballooning modes with a weak toroidal mode conupling can be easily destabilized
for toroidicity-dominant Mercier-unstable equilibria, and interchange modes, driven by the
average unfavorable magnetic curvature and not experiencing the effect of toroidal mode
coupling, can be destabilized for helicity-dominant Mercier-unstable equilibria. Sinee the
normal magnetic curvature becomes more unfavorable on the inner side than on the outer
sicle of the torus by the Shafranov shift, the interchange modes are localized on the inner
side of the torus for both types of equilibria. This type of interchanges mode is anti-
ballooning with respect to the poloidal mode coupling.

In hoth types of Mercier-unstable equilibria, the pressure-driven modes, i.e., ballooning
modes and interchange modes, become more unstable and more localized both on flux
tubes and in the radial direction, and have stronger toroidal mode coupling through the
normal maguetic curvature due to helicity, as the typical toroidal mode numbers increase.
Thus, we can expect that ballooning modes localized in one toroidal field period, as
suggested in [N. Nakajima, Phys. Plasmas 3, 4556 (1996)], may occur with very narrower
radial extent and larger growth rates, as the typical toroidal mode numbers become larger
and larger. All of these properties of the pressure-driven modes in two types of Mereier-
unstable equilibria are quite consistent with the conjecture from local mode analysis.
These properties are independent of the mode family. (J. Chen, N. Nakajima, and M.
Okamoto, Global mode analysis of ideal MHD modes in a heliotron/torsatron system: [

Mercier-unstable equilibria)
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Chapter 1

Introduction

The Magnetohydrodynamic (MHD) stability analysis is formulated first as an initial value
problem (p% = F(£)). Here pis the mass density, F' is called the foree operator, and €
stands for the plasma displacement from an equilibrium state (Jg, B, po). Jo. By. and py
are the current density, magnetic field, and pressure profile, respectively. The initial value
approach has the advantage of directly determining the actual time evolution of a given
initial perturbation. It is also uscful in the numerical formulation of the full nonlinear
problem. The drawback is that it often contains mnch more information than is required
to determine stability, leading to that numerical caleulations are usually very expensive.

A more efficient way to study the lincar stability is to reformulate the initial value
problem as a normal mode problem by assuming a time dependence of the form &(r,t) =
E(r)exp( —iwt), where w is a frequency or a growth rate of the normal mode. The resulting
system has the form of three coupled homogencous partial differential equations, with
cigenvalue w? (—w?p€ = F(&)). F posscsses an important mathematical property, namely,
self-adjointness. This leads to the conclusion that w* is purely real and the discrete normal
modes are orthogonal to each other. Therefore, w? > 0 indicates a purely oscillation, and
w? < 0 indicates an exponential growth or damping.

The most powerful and intuitive way to determine plasma stability is known as the
energy principle introduced by Bernstein et al. [1]. The physical basis for this principle
is the exact, nonlincar conservation of energy in ideal MHD. Stability is tested by exam-
ining the sign of potential eneray, §W° (81V(£°,€) = —% [& - F(&)dr) for all allowable
displacements, £ The system is said to be stable if and only if 818 = 0. The most

unstable trial function that minimize §W is given by £ satisfying the incompressibility



condition: V-£ =10,

According to average free energy, the various MHD instabilities that can occur can be
divided into two classes, namely, the current-driven instabilities and the pressure-driven
instabilities. The former are driven by currents flowing parallel to the equilibrium mag-
netic field, and the latter are driven by currents flowing perpendicular to this ficld. The
pressure-driven modes can exist even if no net parallel eurrents are present in the plasma.
In the meantime, in three-dimensional (3-D) configurations with vacuum magnetic fux
surfaces, the equilibria can be obtained without net toroidal current, where the current-
driven instabilitics become unimportant and only the pressure-driven instabilitics need
to be intensively studied. Substantial progresses have already been made in this aspect
[2]-[12], and several codes appeared [13], [14], [15], [16], [17].

The pressure-driven modes consists of interchange modes and ballooning modes, and
impose MHD stability  limits [18]. As a general feature, interchange modes are driven by
the average unfavorable magnetic curvature with local structure averaged out and thus,
they are essentially constant along a mode rational magnetic field line: B - V€ = 0. They
are not scnsitive to the change of local magnetic curvature from favorable to unfavorable
region, or vice versa. These modes occur in 1-D, 2-D, and 3-D equilibria. However,
ballooning modes are basically driven by the locally unfavorable magnetic curvature and
hence they change along such a line: B - V& # 0. They are localized in a region where
local magnetic curvature is unfavorable. These modes occur only in 2-D and 3-D equilibria.

Interchange modes are very similar in nature to the Rayleigh-Taylor instability [19].
The interchange perturbation can lead to instability depending upon the relative sign of
the magnetic field line curvature with respect to the pressure gradient. If the field lines
are concave toward the plasma their tension tends to make them shorten and collapse
inward. The plasma pressure, on the other hand, has a nature tendeney to expand
outward. In such cases a perturbation that "interchange” two flux tubes at different radii
leads to a system with lower potential encrgy and hence instability. When the ficld lines
are convex to the plasma, the system is stable to interchange perturbations. From this
desceription it follows that the interchange stabilitics represent plasma perturbations which
are nearly constant along a field line (i.e., vo line bending). Also, interchange modes have
a tendeney that the growth rates beecome larger as the perpendicular wave number, ie.,
Eyfky < 1,k a > 1, where & and b constitute the two components of wave number

k parallel and perpendicular to the magnetic field line, respectively. a is the minor
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rading. Thus, if interchange modes are stable in the limit of the infinity perpendicular
wave number, then interchange modes with any wave number are stable. These two facts
leads to the stabilizing criterion (local mode analysis of interchange modes), which is
expressed only by the equilibrinm quantities. As such a criterion, Suydam criterion was
first derived by Suydam [20] in 1-D system as carly as in 1938, under the assumption that
the displacement is a highly localized function of radins in the evaluation of 8117, This
criterion was generalized to 2-D axisymmetric toroidal configuration by Mercier [21] in
1960, and to 3-D non-axisymmetric configuration in [22]. There is an overall review in
[23].

Ballooning modes can be destabilized in a system even when the interchange modes
are stable. Thus, the former are usually considered to be more stringent than the later.
In multi-dimensional geometrics the curvature of the magnetic ficld line often alternates
between regions of favorable and unfavorable curvature. Thus, a perturbation that is not
constant, but varies slowly along a field line in such a way that the mode is concentrated
in the unfavorable curvature region, can lead to more unstable situations than the simple
interchange perturbations. In effect, ballooning nature of the perturbation in the unfa-
vorable curvature region inercases the pressure-driven destabilizing contribution to 611,
The local magnetic shear can be helpful in stabilizing ballooning modes through the field
line bending. If the localization is not too severe, the accompanying increase in stability
from the line bending cannot compensate this destabilizing effect. As well as interchange
mades, the most unstable modes occur in the liunit of the infinity perpendicular wave
number, Ay /k, < 1 and kya > 1. however, their amplitudes changes along the maguetie
field line. By exploiting such short perpendicular wavelength nature of the instabilities,
the stability of ballooning modes can be investigated by the ballooning equation (local
mode analysis of ballooning modes) [23].

To study the properties of ballooning modes, one can proceed in two different ways,
namely, local mode analysis mentioned above and global mode analysis. In axisymmetric
systems, the global modes can be constructed easily from the results of the local modes
analysis [23]. But this is not the case in non-axisymmetric systems, namely, 3-D systems.
In fully 3-D systems, we can only make some conjectures for global modes from the
propertics of the local modes analysis.

3-D non-axisynunetric configurations are very complicate and three different magnetic

topologies have been suggested: the stellarator. the heliotron, and the torsatron [18]. Here
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we only consider an L = 2/ = 10 planar axis heliotron system with an inherently large
Shafranov shift, where £ and M are the polarity and toroidal field period of the helical
coils. In this system, two helical coils have same divection of current flow, and make ten
toroidal ficld period of equilibria. [24].

The cquilibria in such a 3-D configurations have been explicitly categorized into
strongly Mercier-unstable equilibria and slightly Mercier-unstable equilibria or completely
Mercier-stable equilibria according to the Mercier eriterion Dy [11],[12]. Through the lo-
cal mode analysis of hallooning modes for finite-7 MHD equilibria in this system, it has

been shown that:

1. The local magnetic shear (which makes a stabilizing term for high-mode-number

ballooning modes) is related to helicity of the helical coils in the considered vac-

num configuration. Its change due to a large Shafranov shift is essentially axisym-
metrie, i.e., related to toroidicity. This change leads to the disappearance of the
(integrated) local magnetic shear on the outer side of the torus, even in the re-
gion with a stellarator-like global magnetic shear, resulting in the destabilization of

high-mode-number ballooning modes. [11]

2. The local normal magnetic curvature (which constructs a potentially destabilizing
term for high-mode-number ballooning modes together with the pressure gradient)

consists of parts due to both toroidicity and helicity of the helical coils, which

determines the 3-D properties of the high-mode-number ballooning modes.[12]

In 3-D finite-3 MHD equilibria, the eigenvalues w? for high-mode-number ballooning
modes are functions of the labels of the flux surface 4, and the magnetie field line a, and
the radial wave number 8, from eikonal representation: w? = w?(3). 85, a). Note that w?
has no a-dependence in axisymmetrie systems. Therefore, the stronger the a-dependence
of w? is (mainly coming from the helicity part of the local magnetic curvature), the
more significant the 3-D propertics of w2 are. The topological properties of the unstable
cigenvalues w?(< 0) in (¢, Oy, a) space in the L = 2/Af = 10 planar axis heliotron system

with an inherently large Shafranov shift are shown that [12]:

¢ In Mercier unstable equilibria, there coexist two types of topological level surfaces
for w? in (i, 8;, a) space. One is a tokamak-like eylindrical level surface with the

axis in a direction, the other is a spheroidal level surface inherent to 3-D systems.
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The spheroidal level surfaces are surrounded by the eylindrical level surfaces. From
this relative positional relation, it is clear that modes with spheroidal level surfaces

have larger growth rates than those with cylindrical level surfaces.

e In Mercier stable equilibria, only a topologically spheroidal level surface exists.
In contrast to Mereier unstable equilibria, these spheroidal level surfaces are sur-

rounded by the level surfaces of stable Toroidicity-induced Alfvén Eigenmodes (TAE).

From the results of local mode analysis, it has been conjectured in this system that

(12]

¢ Global modes that correspond to modes in the local mode analysis with a eylin-
drical level surface will be poloidally localized tokamak-like ballooning modes or

interchange modes. Effects of the toroidal mode coupling on these modes are weak.

e Global modes that correspond to modes in the local mode analysis with a spheroidal
level surface will be ballooning modes inherent to 3-D systems, with quite high
poloidal and toroidal mode numbers and localized in both the poloidal and toroidal
directions. These modes become to be loealized within cach toroidal field period of

the helical coils, as their typical toroidal mode numbers become higher.

e In Morcier unstable cquilibria, where both cylindrical and spheroidal level surface
coexist, poloidally localized tokamak-like ballooning modes or interchange modes
appear when their typical toroidal mode nmmbers are relatively small. As the typical
toroidal mode numbers become larger, ballooning modes inherent to 3-D systems
appear with larger growth rates and localized in both the poloidal and toroidal
dircctions, which lcads to modes localized within cach toroidal field period of the

helical coils.

o In Mercier stable equilibria, where only a spheroidal level surface exists, only bal-
looning modes inherent to 3-D systems appear with quite high poloidal and toroidal
mode numbers and localized in both the poloidal and toroidal dircetions. These
modes become to be localized within each toroidal ficld period of the helical coils,

as their typical toroidal mode numbers become higher.

The purposes of the work are to confirm the above conjecture and to clarify the

inherent propertics of pressure-driven modes through a global mode analysis of the ideal
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MHD modes inan L = 2/M = 10 planar axis heliotron system with an inherently large
Shafranov shift.

The global mode analysis are done by CAS3D2MN, a version of CAS3D: Code for Anal-
ysis of the MHD modes in 3-D equilibrium [17]. CAS3D have been designed to analyze
the global ideal MHD stability of 3-D equilibria based on a formulation of the ideal MHD
energy prineiple in Boozer coordinate system [25] and the application of Ritz-Galerkin
method [26]. It deals with the full 3-D problem under the assumption of incompressibility
and fixed boundary, and does not use cither the stellarator expansion [27] or averaging
method [28]. Tn CAS3D2MN, a phase-factor transformation [26] was used in order to save
memory and flops.

The critical part in CAS3D2MN is thought to be a part solving the eigenproblem of a
large but sparse, real synunetric band matrix which is usually indefinite. Eigenproblems
continue to be an important and highly relevant arca of rescarch in numerieal lincar
algebra. By the effort of many well-known people, a sophisticated toolbox of algorithms,
together with analysis, became available. The eigenproblem in this work is roughly divided
into two parts, namely, to obtain the approximate eigenvalue, and to obtain the exact
cigenvalue and cigenfunction by the inverse iteration. The approximate cigenvalue is used
as the initial spectral shift of the inverse iteration.

The inverse iteration [29] with spectral shift is an essential concept in the solution of
cigenproblems. It is very efficient if the spectral shift is given to be very close to our desired
cigenvalue and the starting vector is chosen to be dominant along the corresponding
cigenvector. The convergence are quadratic or even cubic (in the diagonalizable case)
[30]. The spectral shift was caleulated by matrix transformation in CAS3D2MN. Since
the bandwidth will be destroyed by matrix transformation, the resultant memory and
flops will be O(n?) and O(n?), respectively.

With large problems coming into the picture, it soon became clear that the matrix
transforming techniques could not solve these problems with reasonable computing re-
sources, and, as an alternative, iterative methods were investigated. Here the Lanczos
algorithim with no re-orthogonalization is introduced, which keeps the matrix bandwidth
from begin to end [32]. Lanczos and Arnoldi started the rescarch on modern iteration
methods [33] [34] in the early 1950s. After a period of little interest in these methods,
mainly because of poor understanding of their numerical properties, Paige [35] [36] showed

the potential of the Lanezos method. This marked the start of an entire new area of re-
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search. In these methods, the given large problem is reduced to a much smaller problem.
This smaller problem can then be solved by the standard techniques for dense matrices.
The arithmetic operation mainly come from the matrix-vector multiplies and only 3 re-
cently created Lanczos vectors need to be stored. The resultant memory and flops can
be controlled to O(n) and O(n?) order. This process is accelerated by shift-and-invert
technique. An efficient starting vector gencrator is also adopted.

CAS3D2MN is used to analyze the global modes in Mercier-unstable equilibria of
L = 2/M = 10 planar axis heliotron system.

The Mercier-unstable equilibria are categorized into two types, viz., toroidicity-dominant
Mercier-unstable equilibria and helicity-dominant Mercier-unstable equilibria. This cate-
gorization comes from the change of local propertics of Mercier-unstable equilibria brought
by an essentially axisymmetric, inherently large Shafranovy shift. The toroidicity-dominaut
Mercier-unstable equilibria are less Mercier unstable than helicity-dominant Mercier-
unstable equilibria.

Perturbations with long wavelength mainly utilize the average unfavorable magnetic
curvature and perturbations with short wavelength can effectively utilize the local unfa-
vorable magnetic enrvature. The 3-D equilibria considered here have toroidal field period
M, and this is what mainly determines the toroidal period of the local magnetic curva-
ture due to helicity. Considering that perturbations with long wavelength mainly utilize
the average unfavorable magnetic curvature and perturbations with short wavelength can
effectively utilize the local unfavorable magnetic curvature, we investigate the inherent
propertics of pressure-driven modes by changing relative magnitude of the typical toroidal
maode number of the perturbation, n, as compared to the toroidal period of the local mag-
netie curvature due to heliciey, A namely, n < M. n~ M, and n > M.

This thesis is organized as follows. In chapter 2, we review the energy principle in
general configuration, particular we will concentrate on an intuitive form, which clearly
shows the role playved by different physical mechanisms. In chapter 3, the results from
local mode analysis will be reviewed in an L = 2/M = 10 planar axis heliotron system
with an inherently large Shafranov shift in detail. Code CAS3D and CAS3D2MN are
the basis of this work and we will review them in chapter 4. Some techniques which are
important in the present global mode analysis, such as the selection of Fourier modes of
cquilibria, the construction of Fourier modes of perturbation, and radial resolution, cte.,

will be diseussed in detail. In chapter 5, we introduce an cfficient cigensolver, the Lanczos
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recursion, which is an iterative subspace method [39]. The main results of global mode
analysis is given in chapter 6. According to the characteristics of equilibria, the Mercier-
unstable cquilibria are categorized into toroidicity-dominant Mercier-unstable equilibria
and helicity-dominant Mereier-unstable equilibria. Then, the global mode analysis are
carricd out for the toroidicity-dominant Mercier-unstable equilibria and helicity-dominant
Mercier-unstable equilibria. Finally we summarize the main results obtained in this work
in the chapter 7.

We use the standard notation to distinguish scalars (lower- or upper-case italic letters)

and vectors {lower- or upper-case bold letters), such as

d a B B
(B-V)B =B (Bb)=bs—+n

except in chapter 5, where the upper-case bold letters are used to denote matrices, such

gl = va"q. Al = oy lAq]l,



Chapter 2

The Energy Principle

The two most important and interesting concepts in ideal MHD studies are equilibrium

and its stability [18]. The equilibrium given by

Jy x By = Vpy
VxBy=Jy (2.1]
vBu={]

in a static system deseribes a multi-dimensional system which poses completely foree
balance: radial force and for toroidal force balance. Whether this system is linearly stable
or not is judged by an energy prineiple [1] based upon the lineralization of the ideal MHD
model [18]:

E+vxB=0 (&2)

_9B
at

VxB=J

V-B=10

VxE=

In these cquations, the electromagnetic variables are electrie field E, the magnetic field



B, and the current density J. The fluid variables are the mass density p. the fluid velocity
v, and the pressure p. Also, v = g is the ratio of specific heats and % = % +v-Vis
the convective derivative.

The physical basis for the Encrgy Principle is the fact that energy is exactly conserved
in the ideal MHD model. As a conscquence, the extremum corresponding to the most
negative eigenvalue for w? ' actually represents a minimum in potential energy 617, This
in turn implics that the gquestion of stability or instability can be determined by analyzing
ounly the sign of W (€°, £). Specifically, the Energy Principle states that an equilibrium

given by ( 2.1) is lincarly stable if and only if [40]

ST (E°,€) >0 (2.3)

for all allowable displacements § (i.c., € bounded in cnergy and satisfying appropriate
boundary conditions); that is, if the minimum of the potential encrgy is positive for all
displacements, the system is stable. If it is negative for any displacement, the system is
unstable. Here

W ,8) = ~5 [ € F@)dr (2.4)

with F(&) a sclf-adjoint operator
F(§)=(VxB)xQ+(VxQ)x B+V(€-Vp+pV-&) (2.5)

where @ = V x (§ x B) is the perturbed magnetic field, and the third term represents
the perturbed pressure. Here all perturbed guantities have been expressed in terns of €
and the zero subseript has been dropped from all equilibrinm quantities for convenience,

Separating £ as £ and £|‘|, we can rearrange the first term and the the first part in

the third term as

£ -[(VxB)xQ+V(¢-Vp) =

. B (2.6)
£1-[(VxB)xQ+ V(£ Vp) +§i5 - [(V x B) x Q + V(¢ - Vp)].
Since
B - (VxB)xQ =BxJ-Q=-Vp-Q=-Vp-Vx(£x B)
=—{6xB)-VxVp+V-(Vpx (€ x B)) (27)

= -V.((¢-Vp)B) (Vp-B=0)
= -B-V(-Vp) (V-B=0),

W? (—whpf = F(£)). Fis given by (2.3)
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the last term in ( 2.6) is dropped. Considering the fixed boundary problem only, the basic

form ( 2.4) can be expressed as
.o . !
=3 [ﬂf‘?' [|QJE ~ €I xQ+ V& + (£ - V)V 51] (2.8)

B
where £ -Vp=£&, - Vp+ EEE -Vp=£&,-Vp.

Define b = — to be the local unit vector tangential to the magnetic field line, and
K = b Vb to be the local magnetic curvature. By carcfully rearranging the terms in the

integrand of { 2.8)

QI =1Q .1 +[Qyf*

£ - IJxQ=J (. xb)-Q, + Q€ -J . xb
¥ =b><?p

* B

G =H:VRIE X B

=b.[(B-V)§, —(£,.-V)B-BV-{,]
=[(B-V)(&,-b)—¢&,-((B-V)b)]-b-[VB-£&, —&, x(VxB)|-B(V-£,)
=-B¢, - (b-Vb)—(b-VB)- &, +b-£, xJ-B(V-£,)

=-B(V-£, +25L-u}+é£,w

(2.9)
expression { 2.8) can be casted into an intuitive form
SWp= g [dr| Q.7 + BYV-€, 426 k> + V€]
shear Alfvén mode Fast mode Slow mode
—2(&, - Vp)(k - €1) —J(€L x8)-Q, ]
pressure-driven term current-driven term
(2.10)

The terms in the above equation have the following physical interpretation. The |Q 2
term represents the energy required to bend magnetic field lines. It is the dominant
potential encrgy coutribution to the shear Alfvén wave. The sceond term corresponds to
the energy necessary to compress the magnetic field and describes the major potential
energy contribution to the compressional Alfvén wave. The yp|V - €] term represents
the energy required to compress the plasma. It is the main source of potential energy for

the sound wave. Each of the contributions just described is stabilizing. The remaining
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two terms can be positive or negative and thus can drive instabilities. The first of this
is proportional to Vp ~ J,; x B while the second is proportional to Jy. Thus, cither
perpendicular or parallel currents represent potential sources of instabilities. The former
type are referred to pressure-driven instabilitics and the latter referred to eurrent-driven
instabilitics.

Here it is useful to understand the meaning of the net toroidal current. From ( 2.1),

we have
V:-J=0 (2.11)
andd J.B BxV
. x Vp
g o= —B + -
B? B? (2.12)
EJ"b'l“JJ,.
Then
J B
?L[HE B)=-V-J, (2.13)

and we can get a magnetic differential equation for the parallel current

J-B

B-V( )=-V.J,. (2.14)

since V- B = 0. J - B consists of two components, i.e.,

BE
J-B= J- B + —(J . B).
( Ps {B‘*}< ) (2.15)
Pfirseh-Sehluter eurrent net toroidal current

(J-B)pg x j—f and this term is zero when averaged on the flux surface: ((J-B)pg) = 0.
Here ¢ is the flux surface label. The second term on the right-hand-side of ( 2.15) is an
average on the flux swrface. According to this term being zero or not, an equilibrinm ean
be said to be with or without net toroidal current.

The pressure-driven modes can be destabilized even if there is no net parallel current.
Morcover, In 3-D configurations with vacuum magnetic flux surfaces, the equilibria can be
obtained without net toroidal current. Therefore, the current-driven instabilities hecome
unimportant and only the pressure-driven instabilities need to be intensively studied.

Finally we give a form first introduced by Bernstein et. el [1] and to be used in
CAS3D [17].

W p = %fr.!;r'[Q +n €T xnl+4p|V-€F ~2J xn-(B-Vn)(n-£) (2.16)

12



where no= Vp/[Vp] is the unit vector normal to the equilibrinm magnetic surfaces.

The encrgy principle forms the basis of lincar stability analysis of ideal MHD[15] [13]
[14] [17] [16]. In this work, CAS3D will be used with the application of ¥ - €. We will
give a brief review of CAS3D and its version CAS3D2MN in chapter 4.
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Chapter 3

Review of Local Mode Analysis

3.1 Ballooning equation and the Mercier criterion

Modes with infinity wavenumber (k] — oc) and happening to be localized along the
field lines, have the largest growth rates. Analysis of this type of modes can be done using
cikonal approximation and then solving the resultant ballooning equation,

The high-mode-munber ballooning equation can be obtained from the intuitive form

{ 2.10) using an cikonal representation for € :

g =X €% (3.1)

S is called the eikonal. Here it represents the rapid perpendicular motion. The envelop,
X | which determines the parallel structure, is assumed to vary "slowly”™ on the equilib-

rinm length scale: [aVX (|/]X 1| ~ 1, where a represents the minor radius. By definition,
B.-VS=10. (3.2)

This leads to the natural definition of the perpendicular wavenumber as
k; =VS. (3.3)

s

The assnmption |k, | — oc implies that the variation of § is rapid: [aVS| > L

By assuming that a physically acceptable function, S, can be found to satisfy |k, | —

20 and B - V8 =0, the intuitive form of 6We ( 2.10) can be reformed as
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bwf=§f¢r (IVx(XixB)* + Bk, X, +V-X 426 X,

shear Alfvén mode Fast mode
—2(X - VPNXy k) = J(XLxb)-Vx (X xB)| (G4
pressure-driven mode current-driven mode

The plasma compressibility term is not included and the only explicit appearance of S
(i.c., k1) occurs in the magnetic compression term. Considering the limit [k | — > and

expanding X ; as

XL=XL0+X_1‘|+"' {35}

with [ X of/| X 0 ~ T e obtain the cnergy principle of the incompressible high-
3 B

mode-number ballooning mode(23]

A , 2 .
SWp = 5]d;-[|kL[?Ib~ Vo - Bi{b xky-Vp)(bxky - !\'.”‘I}Fz] (3.6)

where X 9 = Yb x ky and @ = Y B. ( 3.6) exhibits the competition between the
stahilizing effect of the field line bending, representing by |k, |%, and the destabilizing
effect of the pressure gradient when the magnetic eurvature is unfavorable. In the limit of
|k | — 20, the unstable modes do not involve any compression of the maguetic field, and
the kink term makes no contribution to stability. This will become more clear in chaptoer
G.

Ouly considering the perturbation perpendicular to the magnetic field line [23], the

kinetic energy can be obtained in the same way.

K =1LfplePdr =3 [p|X|Pdr = L [ p|Y]?|b x K, [2dr

(3.7)
k 2
= 3 1ol .
Then the Euler equation can be obtained throngh the variational principle
oW
: = —. 38
W' = (3.8)



Lotting & — & 4+ 60 and w? — w? 4 w2, and setting dw? — 0 in ( 3.6) and ( 3.7), the

corresponding vector form is an ordinary differential equation in the parallel direction

L
2

B-v[ =

2
B- Wm] + ‘E’;—guﬂkﬁ@ + 550 x by - Vp)bx Ky - K)® =0, (3.9)

which is called the ballooning equation. This is an cigenvalue problem. TPhysical re-
quirements (periodicity) restriet the allowed solutions of w? and corresponding normal
modes.
The Mercier eriterion can be given as a function of normalized toroidal flux @ [12]
{*I}E 1y oF B " ' [J - B)psx
Dy= — =pV][-{=—s)V —
M 4 P [ {Iv{D}"IE}E + i { lv(DTF }]
. I BYay B*
(12 ( PSN
{fi' :' H qu‘}TFB? }{Iv(p_rig}
(J - B)psy B? 1
mifee g, bl ).
|V Vo2 ' B
Here (f) = (d/dV) [ fdr (flux surface average) where V' is the volume inside a flux surface.

(3.10)

Prime indicates the derivative 1 = (d/d®+) where @4 is related to the toroidal flux inside
the fux surface. (J - B)pgy represents the Plirsch-Sehluter current divided by p' and is
given by
. . B?

(- Blrsy =-BxVor-Viy,  B-Viy=l-gm (1)
Mereier stability corresponds to satisfving the condition Dy > 0. The first term on the
right-hand side of ( 3.10) represents the stabilizing effect of global magnetic shear. The
last term is destabilizing, due to the Pfirsch-Schluter current (geodesic curvature) and the
diamagnetic current. only the sccond term can change sign, depending on the average

magnetic well index V" and the global magnetic shear ¢/,

3.2 Local mode analysis in in heliotron system

In the following analysis, it will be convenient to introduce the Boozer coordinate system
(¢+,8,¢) [25], with ¥ the flux sarface label, #, and ¢ the poloidal and toroidal angle-like
variables, respectively, The origin for the poloidal angle 8 is on the outer side of the torus

and the origin for the toroidal angle is on the vertically clongated poloidal cross section.
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Here 4 is defined as ¢ = @,/(27) with @, the toroidal flux inside a flux surface. In such

a casc, the covering space (i, 1, a) can be given as

n=#, —-o¢ << 4o

(3.12)
a=(=0/, 0<a<2n/M

where a labels the magnetic field line on the flux surface v, and ¢ is the global rotational
transform.

k; can be expressed as:
k= kVa+ik,Vyq

(3.13)
= ka(Va+60,Vq)
as 1
where 8, = k, [k, is the radial wave number, &, = %ﬂg and &, = mf:‘-q_’ and g = o

Iu the covering space, the high-mode-number ballooning equation ( 3.9) can be written

[|.l., |2 J +ﬂ?(< >) |k |2

2 J++I _dP
E 2 ﬁdt" [

as

o (3.14)

— kg Sdr;] =0
where |k |* has a form

[V

kil* =
eal? = g

2 . U]
(Iﬁtﬁﬂ) . [f .§r¢'u”. (3.15)

! = wr, is the cigenfrequency normalized by the Alfvén time 7,4, which is given hy
; 2
T4 = pn/(27ed®r[dV) " (3.16)

2w.J is the poloidal current outside a flux surface and 277 is the toroidal eurrent inside.
The local magnetic shear § is decomposed into the global magnetic shear s and the

oscillatory part § as

21*,.,/_

f=—F -3 . Vxs=s5+3§ (3.17)
with ) Vi x B
- i?'ﬂ;‘l’F 1
_ 2y de
&= F di,:'lJ! (3}.8}
5 = 19 a QLfff,I.,u.g—frh»}
e ac o0 NGLE
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The covariant metrics are given by

=D
AP =TT (3.19)
Qy¢ = Oyr - O,

n

The magnetic curvature & is also decomposed into the normal magnetic curvature w

and the peodesic mapnetic curvature s, as
&

Vo
K=b:Vb=ux E—E_J-i-hgﬂ (3.20)
in which 5 = 4 25

m_ dUK-VY 2y o
TN T BN Y (“ 2 ) |

: 3.21)
v | (1 (
Ky = ks = 5B x ViV ().

The integrated local magnetic shear along a magnetic field line [ §dy contributes to the
first stability of high-mode-number ballooning modes as stabilizing term, and also does
to their second stability together with the geodesie curvature £,. The unfavorable normal
magnctic curvature " contributes to the first stability of high-mode-number ballooning
modes as destabilizing term. It was found from local mode analysis in the L = 2/M = 10

planar axis heliotron system with an inherently large Shafranov shift that

¢ The local magnetic shear (which is a stabilizing term for high-mode-number bal-
looning modes) is related to helicity of the helical coils in the considered vacuum
configuration. Its change due to a large Shafranov shift is cssentially axisymmetric,
i.e., related to toroidicity. This change leads to the disappearance of the (integrated)
local magnetic shear on the outer side of torus, even in the region with a stellarator-
like global magnetic shear, leading to the destabilization of the high-mode-number

ballooning modes. [11]

¢ The local magnetic curvature (which constructs a potentially destabilizing term for
high-mode-number ballooning modes together with the pressure gradient) consists

of parts due to both toroidicity and helicity of the helical coils, which determines

the 3-D propertics of the high-mode-number ballooning modes. [12]

As a result of these two effects brought by a large Shafranov shift, It was shown [12]

that
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¢ In Mercier unstable equilibria, the high-mode-number ballooning modes are unsta-
ble, and are destabilized before the stabilizing effects within a single poloidal period

along a field line are much suppressed by the Shafranov shift.

¢ In Mercier stable equilibria, the high-mode-number ballooning modes are unstable,
and are destabilized after the stabilizing effects within a single poloidal period along

a field line are much suppressed by the Shafranov shift.

In 3-D MHD equilibria, the cigenvalues w? for high-mode-number ballooning modes
are functions in the (17, 8y, a) space: w® = w2, 6, ). Since w? has no a-dependence in
axisymmetric systems, the stronger the a-dependence of w? is (mainly coming from the
helicity part of the local magnetic curvature), the more significant the 3-D properties of
w? are. The topological properties of the unstable cigenvalues w?(< 0) in (1, 8y, a) space

in such planar axis system are shown in [12] that:

e Iu Mercier unstable equilibria, there coexist two types of topological level surfaces
for w? in (4", 8k, ) space. One is a tokamak-like cylindrical level surface with the
axis in a direction, The other is a spheroidal level surface inherent to 3-D systems.
The spheroidal level surfaces are surrounded by the evlindrical level surfaces. From
this relative positional relation, it is clear that modes with spheroidal level surfaces

have larger growth rates than those with eylindrical level surfaces.

e In Mercier stable equilibria, only a topologically spheroidal level surface exists. In
contrast to Mercier unstable equilibria, this spheroidal level surfaces are surrounded

by the level surfaces of stable Toroidicity-induced Alfvén Eigenmodes (TAE).

These are schematically shown in Figure 3.1
From the results of local mode analysis in an L = 2/M = 10 planar axis heliotron

system with an inherently large Shafranov shift, it has been conjectured in [12] that

¢ Global modes that correspond to modes in the local mode analysis with a cylin-
drical level surface will be poloidally localized tokamak-like ballooning modes or

interchange modes. Effects of the toroidal mode coupling on these modes are weak.

¢ Global modes that correspond to modes in the local mode analysis with a spheroidal

level surface will be ballooning modes inherent to 3-D systems, with guite high
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poloidal and toroidal mode numbers and localized in both the poloidal and toroidal
dircctions. These modes become to be localized within cach toroidal ficld period of

the helical coils, as their typical toroidal mode numbers become higher.

In Mercier unstable equilibria, where both eylindrical and spheroidal level surface
coexist, poloidally localized tokamak-like ballooning modes or interchange modes
appear when their typical toroidal mode numbers are relatively small. As the typical
toroidal mode numbers become larger, ballooning modes inherent to 3-D systems
appear with larger growth rates and localized in both the poloidal and toroidal
dircetions, which leads to modes localized within each toroidal field period of the

helical coils.

In Mercier stable equilibria, where only a spheroidal level surface exists, only bal-
looning modes inherent to 3-D systems appear with guite high poloidal and toroidal
mode numbers and localized in both the poloidal and toroidal directions. These
modes become to be localized within cach toroidal field period of the helical coils,

as their typical toroidal mode numbers become higher.
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Chapter 4

CAS3D and CAS3D2MN

CAS3D [17] has been designed to investigate the global ideal MHD stability in fully 3-
D configurations under the assnmptions of incompressibility and fixed boundary. It was
written through the formation of the energy prineiple ( 2.8) in Boozer coordinates (4,8, ()
[25] and the application of Ritz-Galerkin method. The energy principle is reduced to an

cigenvalue problem of a large sparse, real symmetric band matrix.

4.1 Mode family

The perturbation can be divided into different independent mode familics. In an topo-
logical torus with M toroidal ficld periods there are 14 [AM/2] mode familics. All of the
clements in one mode families belong to one type of perturbation. The mode family has
basic index Ny, which changes from 0 to [Af/2] and are used to label the mode family. In

the same mode family two toroidal mode nnmbers n' and n? satisfy an equivalent relation

mod{ M) (4.1)

n' +n?=
Here 5, is the toroidal Fourier index of an equilibrium. By the introduction of this concept,
the work in global mode analysis is greatly reduced sinee only 1+ [M/2] of perturbations
need to be investigated. For the configuration considered here, M = 10. Then there are

six mode families and N, will be 0,1,2,3,4, and 5.
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4.2 CAS3D and the energy principle

In CAS3D, (¢, 8.¢) is used in a left-hand manner. Considering the toroidal field period
being M, this triplets describes one field period of the toroidal domain D = [0, 1] x [[0, 1] x
[0,1]. The Jacobian is given by /g~ = Vi - V8 x V(. In the Boozer coordinate system

(4,8, ¢) the ficld line is straight. The co- and contra- variant representation of B are

F F;

B = - —l'r;’ == _Pf'.g
Vi Vi (4.2)
= JVC+ IV + gV

where Fr = Fr(y®) is the toroidal flux and I = I(y*) the toroidal current. Fp = Fp(y?)
is the poloidal finx and J = J(¢) the poloidal current in one field period. The primes
represents differentiation with respect to flux surface label 1. 3= ;i}{:,-",ﬁ,r;] satisfies the

following inhomogencous magnetic differential equation
VIB- V3 =p(/5-V") (4.3)

which is related to Jy x J - B. [ V'(y)dy) gives the volume of one field period.

In (¢, 8, ) coordinate system, the form ( 2.16) is expressed as

I .
W= [ [ [HICF - A Vs +9p(V - €7). (4.4)
Here
_ Jx Vg, i
C_VX(EXBH—]W-H £ - Vi
and

A =21V Y (J x Vi) - (B - V)V

Compressive term enters the integral in two ways, one via the fluid compression, that is
the V - £ and thus proportional to vp, whereas the other is closely connected to the field
line compression term, which equals the component of C parallel to the magnetic field

within a factor of B. Both contributions have a stabilizing effect. Furthermore, C can be

decomposed in W Y h an E directions, i.e
PO Wyl Twwip > M O
Vi ZVih x B . B
C=C +C? + = 4.5
el T owE TO B G
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with

CI=ﬁB'E¢I:
, |V J -
C2= i}:;_l_ (,/_B Vi) — +IFFEY +|? |2v"(_'5L |‘G’ i?‘f’rﬂ ?é)

€3 = ﬂ—\fﬁ [Ing = Jno+ (FrJ + FI)E% + (TFp + JFEY - p' /ge¥ + 3B - VE¥]

| me vy o HPVE VA" = a0ty
JIA = FiJ' 4+ FAI' — Fitfc - Fifg + S -v'\a,+ VBV 20
(4.6)

( 4.6) is called C-version in CAS3D. Although CAS3D applies the C-version to calcu-
late the potential energy, the intuitive form called T-version in CAS3D can be casily

constructed through some arrangements.

J-B
B|V |

T2 =(C% = BQ-B-¢- Vil

T' = (CY2 +(C? + £¥) = B7%|Q x B,

Fg. . J-B . ;
%= —T%DE”E +—p B - V(") = —2(£ - Vpl(k - £1),
J-B Fpe' J-B
T = B.-Vn- :{? £42) - 7 B V), (4.7)
J-B
= ‘}_ﬁ*Q; - B x &,
=J(§1 xb)-Q,.

D=y [ya/B? - 5, - B-X(JFh+IF}) + JiB - V(3B | FR.

Then we have

W = % [[ [+t + 1041 (48)

which corresponds to the intuitive form ( 2.10).

4.3 CAS3D2MN and phase factor transformation

Phase factor transformation was introduced in CAS3ID2MN in order to save memory and
flops. This technigue was widely used since it is particularly efficient when a perturbation

with large toroidal mode number (n 3 M) is studied,
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Suppose Mp and Np are poloidal and toroidal mode numbers of a chosen phase factor,
the Fourier modes for a perturbation (m, n) was ercated by coupling the sclected Fourier
modes (m,,n,) from the equilibrium Fourier subset with the phase factor (Mp. Np) in

the following manner

m= Mp+m.,n=Np+n,,

or (4.9)

m=Mp—m.,n=Np—n,.
If an cquilibrinm Fourier subset consists of ."l-ffq Fourier modes and A/, (M, < _ug})
Fourier modes are selected from this subset, the resultant number of Fourier modes for a
perturbation is given by My, = 2 x AL, — 1. Here all of the equilibrium quantitics were
Fourier analyzoed in both the poloidal and toroidal direction in Boozer coordinate systems.
The two Mercier-unstable equilibria, §1 and 82, to be applied in this work are discussed
in detail in Appendix A,

The Fourier mode of the perturbation (m,n) intersects ¢ profile in the way of %
Both the number of equilibrium Fourier modes and the phase factor (Mp, Np) are care-
fully chosen in order to create an cfficient resonant modes around (M, ¥;). That the
perturbation belongs to which mode family is determined by the toroidal index Ny of the
phase factor. All of the perturbations to be considered in this work are given in Appendix
B.

Due to the above counsiderations, the displacements are Fourier decomposed in the

following manner.

€Y = X cos2n(Mp# — 52¢) + X°sin 2r(Mpd — Xe()
n =Y sin2a(Mpd — JEC) + Y cos 2r(Mpf — 3£()

A and Y* are even, and X” and Y are odd functions with respect to variables (1,8, ().

(4.10)

They arce Fourier decomposed in terms of the equilibrium Fourier modes (m,, n,).

X¢ = T Xi(¥y)cos[m(i)8 — n(i)(]
Ve = TYP(0w) sinfm(i)0 — ne(i)] (*:i1)
i=1,2,:0, My
The energy prineiple is still expressed by ( 2.16). But the expression of coefficients in
C-version and T-version should be changed correspondingly.
By means of Fourier decomposition in the angle-like coordinate 8 and ¢. and a simple

finite clement method in the radial direction, the kinetic energy corresponds to a sym-
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metrie positive matrix and the potential corresponds to a symmetric hand matrix. The

energy prineiple is related to its cigenvalue problein, which is the topic of next chapter.



Chapter 5

Lanczos Eigensolver

5.1 Introduction

One of the important part in the global mode analysis is related to the solution of the

following genceralized eigenproblem
Pz = MKz (5.1)

where P and K, arising from Ritz-Galerkin methods, corresponds to potential and kinetic
energy, respectively. Both of them are symmetric matrices. Furthermore, K is positive

definite. By non-physical normalization, problem ( 5.1) can be converted into
Az = Az (5.2)

In this work, A is a large but sparse, rcal symmetric matrix with order n and half
bandwidth &, b < n. In this chapter, we use upper-case bold letters to denote the
matrices, and integer n their orders. The lower-case bold letters are still used to denote
the vectors.

The set (A, &) is called the eigenelement of A, Usually A is indefinite. In fusion re-
scarch and here too, one is mainly interested in the negative end of spectrum, particularly
the smallest one (Amin). Amin < 0 indicates that an equilibrium is unstable to a given
perturbation. The perturbation is given by the corresponding cigenvector which can bhe

an interchange or a ballooning mode in our case.
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In CAS3D the following inverse iteration (see [29])

7ol Y -3 e
Solve (A = ewshift I)z* = ¢!
x*t = z"';"l]z’"[lg (53}

: T :
:ﬂl = 1:“‘ A.T.'{

endd

has been applicd to caleulate the smallest cigenvalue and its corresponding cigenvector, in
which the spectral shift ewshi ft in Eq.( 5.3) is given by the Givens QR iteration algorithm
(for CAS3D):

cwshift = A (from Givens QR iteration) (5.4)

But this kind of matrix transformation is not suitable for eigenproblems of very large but

sparse matrices in the following three aspects:

e the given matrix will be modified during the computation and fill-ins arc inevitably

brought in. So the sparsity will be destroyed,

o O(n?) flops are needed to run because of application of the orthogonal similarity

transformation,
e O(n?) words must. be specified for storage.

which greatly limit the size of problemns we can handle. As well known, Stability analysis
in 3-D systems is time and memory consuming. Specially storage requircment is much
more stringent. For example for a work set with 1840 radial meshes and 793 Fourier
modes, a minimum of 16GB is necessary before the solution of eigenproblem starts. In
such a case, the application of orthogonal similarity transformation, such as EISPACIK
[37] or LAPACIK (38] routines, will obviously fail. Whether the flops and storage can
be controlled or not becomes eritical in this work. Thercfore, it is natural to consider

Lanczos recursion with no re-orthogonalization which supersedes the above softwares:

o The given matrix A cnters the recursion only through the matrix-vector multiplics

Aq and its sparsity will not be modified during the caleulation,

¢ For a sparse matrix, flops required to generate the Lanczos matrices using the recur-

sion with no re-orthogonalization is O(n?), and storage requirements is just O(n).
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The increase in memory can be controlled naturally in a neglected order. Tt is just
the above advantage that makes the Lancrzos algorithm with no re-orthogonalization be
particularly suitable for and extensively applicd.

In ideal MHD range, the cigenvalues are real. They can be separated into positive and
negative parts. The positive one refer to three branches of waves: the fast magnetosonic
waves, the shear Alfvén waves, and the slow magnetosonic waves, respectively. With the
application of the incompressibility condition V - £ = 0, the slow branch is dropped. By
the normalization of kinetic energy in ( 5.2), the resultant spectrum has quite different
orders of maguitude. The negative part, what we are interested in, remains very small
(usually ~ 107%). But the positive part is enlarged considerably (as large as ~ 10°). One
example is given in Figure 5.1 and Figure 5.2, The overall spectrum, given in Figure 5.1,
is calculated by LAPACIK, where the number of the Fourier modes Af,, and the number
of the radial meshes Ng are 35 and 120, respectively. The eigenvalues have been scaled
by the function sinh™'(az) with a = 10% in Figure 5.2. Obviously, it is the large positive
cigenvalucs are dominant rather than the small negative onecs. To compute the smallest
one which lies in the negative part, application of a shift and invert strategy is preferred
to make the negative part dominant in the spectrum. A shift is chosen to transform the
matrix into a positive defiuite one in order to construct an efficient Cholesky factorization
in invert Lanczos recursion. Therefore, memory can be expected not to increase, but

convergence be sped up.

5.2 Lanczos Algorithm with no re-orthogonalization

The Lanczos recursion is a method for replacing the eigenproblem of a given symmetric
matrix A by eigenproblems on a series of much simpler Lanczos tridiagonal matrices, given
by T',,. Subscts of cigenvalues of these tridiagonal matrices are sclected as approximate
eigenvalues of the original matrix A. Their approximation acenracy depends on the
magnitude of the last component of the corresponding eigenvectors of T, as long as the
cigenvalues being considered are isolated eigenvalues of the associated Lanczos matrix.
For the considered real, symmetrie matrix A with order n, the Lanczos matrices can
be given by the following recursion, which is highly recommended by Paige [35] due to

finite computer precision. Define 3 = 0 and gy = 0, and choose g, as a raudom vector
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with |jg,|| = 1. Then for i = 1,2,...,m define Lanczos vectors g, and scalars a; and ;4

by
g = Aq,-jq,_,
a = qlq
q = 9 - qQiq; (5:5)
Bigr = gl

9iv1 = QJI{".J,I."'.I
The a;q; and the J;g;_, are, respectively, projection of Ag; onto g, and ¢, _,.
For cach m, the corresponding Lanczos matrix T, is defined as a real symunetrie and

tridiagonal matrix

ayp
fa an
T, = . o . {56}
(s FR rgm
ﬁ:m Crm
In compact form
AQJH =5 QIHTM + 3l'ff+=q"|.+]e?; {:LTII

where Q.. = [q,. 92, ..., a,,] and €T, =(0,...,0,1). Thus, given a real symmetric matrix
A and a starting vector g, the Lanczos recursion generates a family of real symmetric
tridiagonal matrices related to A and to g, through ( 5.5). Problem ( 5.2) is equivalent
to solve

T,.y=ny (5.8)

where the set (g, y) corresponds to the cigenpair of the Lanczos matrix T,. Clearly only
¢ memory for generating the matrix-vector multiplies Ag;
o memory for only two Lanczos vectors g, and g,_, of length »
e spacce for the tridiagonal Lanczos matrix T, (a;, 3i41) itself

should be specified, since g;_, can be overwritten by g. Usually no extra memory will be
needed in Ag; caleulation except space for A itself. The increase in memory results from
4 vectors: q;, q,_y, o, and B. a = {o;}, B = {#i+1}. This will be a neglected quantity

when m is much smaller than n. Arvithmetic operations mainly come from caleulating Ag,.
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Since the ratio of zero entries to non-zero entries is smaller than (26 4+ 1)/n (at present
~ 0(107?)) for the matrices resulting from the present caleulations, these matrices are
very sparse. Therefore, the operation counts just grow as the square of n.

For any real symmetric matrix A, our implementation of the above recursion is based

upon the following fact called Lanczos Phenomenon:

When m becomes large enough, every distinet cigenvalue of A

can be approximated by an eigenvalue of T',,,.

and the identification test:

the convergence of the cigenvalues of the

Lanezos matrices as the size m is increased.

We choose the necessary number of Lanczos steps m automatically. Suppose p and p”
are the smallest cigenvalues of sueeessive Lanczos matrices T andd T (0" # m" ) I
the difference |pf — | between pf and g is smaller than the given convergence tolerance,
we then set = ¢/ = p”,m = m” and compute the magnitude of mith component y(m)

of i's eigenvector y ( of T, ). This is according to Paige [1980] [31]).

For a given m and for any isolated cigenvalue g of the Lanczos

matrix T,,, there exists an cigenvalue A of A such that

[A = gt < 2.5]| 31 y(m)|(1 + 2¢0) + 26, || A||m'/?) (5.9)

where € and €; are related to machine precision e, and satisfy 4m(3¢p + ¢,) < 1. The
term €, = |d,+1y(m)| plays the key role in estimating the convergence of computed
cigenvalue . That is, if the last component y(m) is very small, eigenvalue g will be a
good approximation of cigenvalue A of A.

We use inverse iteration ( 5.3) to compute y(m) of corresponding Lanczos matrix

T... In our expericnces, p is as accurate as what have been computed by EISPACK
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or LAPACK subroutine (Givens QR itetation algorithm), At cach iteration ounly the
incremental scalars a;, %4 have to be generated. The Lanczos recursion with no re-

orthogonalization can be given as:

o step 1. Specify an initial Lanczos step m <€ n, increase step & > 0, and convergence
tolerances CONTOL1 and CONTOL2.

e step 2. Putting m = m + k, generate the real symmetrie tridiagonal matrix T, by

recursion { 5.5) and keep q,, and g, ., for next iteration.
o step 3. Compute the smallest cigenvalue g of the Lanczos matrix 17,

e step 4. Seleet g which appears in successive T, by  CONTOL1 and compute its

convergence by inverse iteration method ( 5.3).

e step 5. If convergence is observed by CONTOL2, accept g as the approximation of

Amin Of the given matrix A and terminate. Otherwise, go to step 2 to enlarge T,

In the present work, the matrix A is indefinite. Its spectrum has quite different orders
of magnitude corresponding to positive or negative part. As shown in Figure 5.1, A is rich
in positive eigenvalues with magnitude as large as ~ 10% On the other end of spectrum,
i.e., the negative part what we are interested in, the number is few and their magnitudes
are as small as ~ 1073, They are undominant in the spectrum. Moreover, these matrices
have gap stiffness behaving like what Cullum and Willoughby called the worst case [32].
For these reasons, the smallest cigenvalue converges very slowly by recursion ( 5.5). But
this process can be accelerated significantly by shift-and-invert strategy which is the topic

of the next section.

5.3 Shift-and-invert Lanczos algorithm

Since the smallest cigenvalue lies in the negative end of spectrum which is dominated by
positive part, it will be preferred to apply the Lanczos recursion ( 5.5) to A™'. With this
transformation, the desired part of spectrum becomes dominant. The Lanczos recursion
is expected to be accelerated in the sense that the size of the Lanczos matrix required to

obtain the smallest cigenvalue is much smaller.
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Similarly to section 5.3, main arithmetic operations come from A™'q. The cfficient
calculation of A™'g becomes important concerning flops and storage. In order to save

flops and storage, an SHIFT is carefully chosen to shift A to be positive definite
C=(A+SHIFT I)/S50 (5.10)

where S0 is used to scale the given matrix A in order to avoid overflow. Sparsity of C
is the same as that of A. The calculation of A™'q is transformed to the caleulation of

C~'q which can be efficiently done by sparse Cholesky factorization
C=U"U (5.11)

Here € is overwritten with upper triangular matrix U which has the same upper band-
width as C. Consequently, no extra memory will be increased compared with Ag multi-
plies. Morcover, flops is kept to be a minimum. Then for any given vector g, the vector
p = C~'q can be cvaluated cfficiently by solving sequentially two triangular systems of
equations

U'Up=gq: UTp = q, Up=p (9.12)

The shift-and-invert Lanczos algorithm can be formed as follows:

C = UTU( Cholesky factorization of C)

P=4q;

p=U"p

p=U"'p

q=p—5iq;, (5.13)
o =qlq

q=q- &,

Biv1 = |lqll

Gix1 = qf Jis
Compared with ( 5.5), only space for one more veetor p with length n, 5 vectors in total,
is increased in the above recursion. Although ecach step using C ™' is more expensive than
a corresponding step using A, the large decrease in the number of Lanczos steps required
and the fact that the factors arce also sparse, yield overall large gains in flops and storage.
CAS3D2MN with ( 5.13) is denoted by CAS3D2MNv1 [39] for convenicnee,
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Suppose (. y) is an cigenpair of T, i.e. Ty = py. then
“[{A + SHI'FT IJIS[}]-Ime s "[me” - Iii‘m-}‘ly{]‘n‘}l (514}

and the cigenvalue A of A can be evaluated as

Az =Xz == [(A+SHIFT IN/S0|"'e = [(A+ SHIFT)/S0] 'z (5.15)
50
(\+SHIFT)/S0=p~! (5.16)
that is
A=50/u—-SHIFT (5.17)

5.4 Efficiency of the Lanczos eigensolver

The original Lanczos recursion given by ( 5.5) and the shift-and-invert Lanczos recursion
given by ( 5.13) both have been applied to solve the cigenvalue problem resulting from the
ideal MHD stability analysis in a 3-D MHD cquilibrium. In order to clarify the properties
of the matrix in { 5.2), we begin with the definition of gap stiffuess and matrix stiffncss
[32]. These gnantitics show how the convergence of Lanczos recursion are affected by the
speetrum distribution.

Definition. For a rcal symmetric matrix A with distinct eigenvalues Ay, > Ay, > - >

Ak, define the minimal gap g; for cach ecigenvalue A, 1 < j < 5 as follows:

o = (A, = A)
95 = (Maaz — M) (5.18)
g; = min[Ar, = Myprr My — Al forj=2,...5 -1

The overall gap stiffucess is defined by
S,(A) = max i/ HEr'i“ 9, (5.19)
and the matrix stiffness by
5(A)= max Mﬂfﬂgin Y (5.20)

As the gap stiffness increases, the degree of difficulty in computing the desired part of

spectrum with small gaps increases. The gap stiffness corresponding to Figure 5.2 s
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shown in Figure 5.3. From these figures we can see that the type of matrix in CASID2MN
has very bad stiffness. Its cigenvalues range from 10° to 1077 orders with positive ones
dominant. The smallest cigenvalue, what we are interested in, lies in the negative part
of spectrun. The negative eigenvalues are small in number as well as quantity. It is
undominant. This is the reason why Lanczos recursion given by Eq.( 5.5) does not work
well. In the parameters used in Figure 5.1 ~ 5.3, it has taken us as much as 2n steps to
obtain the negative cigenvalues and 11n steps to obtain the smallest one, where n is the
matrix order. Here A = —2.14952x 1073, A0, = 6.47634 x 10°, S(A) = 3.01292 x 10°,
S,(A) = B.70109 x 107, and n = 8435. Recursion ( 5.5) is sped up significantly by
introducing a shift-and-invert strategy given in ( 5.13). In the same case, it takes only
20 steps to get Ao although S{A) is in O(10'%) order at this time. Thus, it is the
location of desired eigenvalues in the spectrum, the local separation of eigenvalues, and
primally the overall gap stiffuess of matrix A which determine the convergence of the
desired cigenvalues as the size m of T, is increased.

As what we expected, an inerease in memory is kept to be 5 veetors in ( 5.13), leading
to a neglected quantity in a work sct.

Table 5.1 gives the increase in memory in a work sct from matrix ereation (memoryl)
ta eigenvalue calenlation by ( 5.13) (memory2). It is shown that only a small gquantity of

memory, at most 1.5%, is increased. From this aspect of view, ( 5.13) is also efficient.

Table 5.1 increase in memory by ( 5.13)

Order (n)  bandwidth () memoryl (bytes) memory2 (bytes)  inercase rate
72631 453 411811830 417842920 1.5%
490091 1113 4718272264 4756377880 0.8%
738955 1473 9116965656 9175310824 {}.E}'}‘Er—
956175 2013 15807398584 15887217912 0.5%

The comparison of the shift-and-invert Lanezos recursion { 5.13) with EISPACK and
LAPACK routines is given in Table 5.2 for calculating the smallest cigenvalue, which is
negative here. Only the number of Fourier modes M,,; and the number of the radial meshes
Ny are changed, as shown in the first column in Table 1, which leads to the variation
of the matrix order n and half bandwidth b. The SHIFT in Eq.( 5.10) is chosen to be
0.01. From the second column to the sixth column, the smallest eigenvalue, matrix order,

memory!, CPU time, and speedup rate of recursion ( 5.13) compared to EISPACK are

"The storage requirement is mainly determined by matrix order and handwidth. Storage size for
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shown. The name of algorithms is marked at the right end of the Table, for which the data
in the same row have been obtained. From the table we can see that LAPACK subroutine
has relatively smaller storage requirement but more CPU time compared with EISPACK.
For { 5.13), usually 15 ~ 20 Lanczos steps are enough. That is, the extreme eigenvalue
of Lanczos tridiagonal matrix T, with order 15 ~ 20 is a good approximation of A's
smallest cigenvalue. Its storage requirement is much smaller compared with EISPACK
and LAPACK, and 50 ~ 100 times of speedup are achieved easily. In the final part of the
table where Ng is increased to 300 and Af, to 201, EISPACK and LAPACK both have
failed to caleulate A, in 10 hours, but for recursion ( 5.13) only 903sce are sufficient.
From this point, the shift-and-invert strategy is a quite efficient tool for the solution of

very large scale eigenproblem.

Table 5.2(Mp. Np) = (8, -5), SHIFT = 0.01

(Ns. M) Amin{x107%) Orvder  memory (MB)  CPU(sec) Sp  Algorithm
(120,35) -2.14952 8435 35 170.38 EISPACK
8435 18 367.39 LATACK

20 11 3.14 54.25 { 5.13)

(180, 35) -L.97220 12635 04 374.52 EISPACK
12635 25 985.76 LAPACK

30 15 526 71.20 (5.13)

(180, 59) -2.20349 21299 81 2068.69 EISPACK
21299 G3 2688.61 LAPACK

20 34 16.76  123.50 [ 5.13)

(300,201) | -2.90651 120801 . i EISPACK
120801 - - LATPACK

20 567 902.52 - ( 5.13)

- means CPU times exceeds 10 hours. Note that the data given in Table 5.2 are obtained
on the general SX-4 with peak performance 2GF in the National Institute for Fusion

Seience.

EISPACK is an approximate value but there is only a little difference.
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5.5 Inverse iteration

Here we briefly explain the properties of inverse iteration given by ( 5.3). Inverse iteration
is an essential concept and also an efficient algorithm in the solution of cigenproblems.
Usually it is applied with an application of spectral shift. If the spectral shift is given to
be very close to a desired cigenvalue and a starting veetor is generated to have dominant
component along the corresponding eigenvector, the iteration will converge very quickly.
Shown in the following table is an example of the convergence rate of { 5.3) in the process

of global mode analysis.

Talbile 5.3 The cffect of initial vector
cewshift = -1.19357454E-02

iteration steps  A* 0 o
'+ 1.98488076E-01 ~1.19357391.E-02
1A' | 3.59349633E-03 | -1.19357428E-02
2 A% | 7.04385068E-04 | -1.19357428E-02
3 A% | -3.80683468E-04
4 A" | -1.30524650E-03
5 A% | -2.52578250E-03
6 A% | -3.000997STE-03
7 AT | -4.98182517E-03
8 A% | -5.58911537E-03
9 A" | -5.8053018TE-03
10 A" | -6.05553769E-03

The result in the first column is obtained by the application of a constant starting vector

|
Tyi=—t=1,++
0, H1 1

it} (5.21)

@y = {rg, :

where n = 793629 is the order of given matrix. There is a stationary point at —8.19558028E —
03 which corresponds to the third smallest cigenvalue Az. The second and first ones are
As = —1.00485652E — 02 and A, = —1.11935745E — 02, respectively, which are relatively
far from Ag. Clearly @y is a bad choice of starting vector, leading to a slow convergence to
the stationary point Az, and be difficult to converge to A;. In contrast, another starting
vector, generated by

@y = random(n) (5.22)
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which is uniformally distributed in (=1, 1) vegion, works. It needs only 3 times to converge
to Ay. This results from the characteristics of pressure-driven modes, which will hecome
clear in the next chapter.

The most safety way is to generate a starting vector randomly and then discard un-
desired cigenvector components from this starting vector using some filtering techniques.

In fact, equally important is how to give a spectral shift to let it approximate our
desired cigenvalue. Suppose ewshift is a good approximation to the smallest eigenvaloe
of A, Apmin, namely, 30 < 8§ < 1 3 |ewshift — Ai,| < 8, then the sequence A¥ generated
by the reeursion ( 5.3) has following properties

o if limgooe AF = Xuin, then
)Lﬂ“i-] — 'lTrlr.lT
————

}Lk = }. rmin

with v constant.

e When A is normal,
NeH = X
TR

=

with v coustant.

Note that a matrix is said to be normal if it can commute with its conjugate transpose
A" X, differs from A in (5.4) which is approximately computed by Givens QR

iteration algorithm.



Chapter 6

Global Mode Analysis

6.1 Introduction

In this chapter we investigate the global properties of pressure-driven modes in the
L = 2/M = 10 heliotron system with an essentially axisymmetric, and inherently large
Shafranov shift, and prove the conjectures [12] reviewed in chapter 3. with the application
of CASID2MNv L.

Since the properties of the finite- 7 equilibria are basically understood as a modification
of the vacuum configuration by the large Shafranov shift, the local and global properties
of these equilibria change considerably according to the magnitude of Shafranov shift.
Associated with the propertics of pressure-driven modes discussed in chapter 1 and 3,
some local and global properties of equilibria are investigated. As global propertics, the

following surface quantitics are ermined.

¢ the global rotational transform ¢,

2t de
o the global magnetic shear s = i el

¢ dy’

that measures the averaged magnetic well

i

o the quantity V

[here a prime denotes the derivative ' = dfdiy, and V" < 0 means an average

favorable magnetic well].

¢ the Mercier eriterion parameter Dy [Day > 0 means Mercier stable] (see ( 3.10)),



where 7 is the label of the flux surface and is defined as ¢ = @, /(27) with ®, the toroidal
flux inside a flux surface, and ¢y = ¢/ Uedge 15 the normalized toroidal flux. On the other

hand, as local quantitics, the following local quantitics arc erimined.
o the local magnetic shear § (see ( 3.17)),
o the normal magnetic curvature " (see ( 3.20)).

Pressure-driven modes with long wavelengths - e.g., long wavelength interchange modes
- experience the magnetic curvature with its local variation averaged out. As the wave
length becomes shorter, pressure-driven modes begin to feel the local structure of the
magnetic curvature. Since the 3-D equilibria considered here have toroidal field period
M, the local magnetic curvature due to helicity also has the toroidal period M. Therefore,
we investigate the inherent properties of pressure-driven modes by changing the relative
magnitude of their typical toroidal mode number n, as compared to the toroidal period
of the local magnetic curvature due to helicity, M: namely, n < M, n ~ M, and n > M.

The present chapter is organized as follows. In section 2, the local and global charac-
teristics are given for the Mercier-unstable in the L = 2/M = 10 planar axis heliotron sys-
tem. The Mercier-unstable equilibria are categorized into two types, namely, toroidicity-
dominant Mercier-unstable equilibria and helicity-dominant Mercier-unstable equilibria,
according to the degree of reduction of the local magnetic shear on the outer side of torus
by Shafranov shift. The global mode analysis is described in section 3 for toroidicity-
dominant Mereier-unstable equilibria; in section 4 for helicity-dominant Mereier-unstable

equilibria.

6.2 Characteristics of MHD equilibria

As the vacuum configuration, we use an L = 2/M = 10 planar axis heliotron configuration
like that for the Large Helical Devices (LHD)[24]. This configuration is exactly the same
as that used in Refs. [11] and [12].

The propertics of the vacuum configuration can be understood as a straight helical
configuration toroidally bended. Since the aspect ratio is relatively large: Ryfa =7 ~ 8
[here Ry and @ are the major and minor radii, respectively], the global and local properties

of the vacuum configuration are mainly determined by helicity of helical coils. As global
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properties, surface quantitics are drawn in Figure 6.1 (dash-dotted line) as funcrions of
the normalized radial coordinate ry = 'y, The stellarator-like global magnetic shear
s and the average unfavorable magnetic curvature (magnetic hill): V" > 0 are shown in
the whole plasma region, just as in a corresponding straight helical system.

As well as the global properties, the local gquantities associated with high-mode-number
ballooning modes analysis (local mode analysis) are strongly related to helicity in the vac-
uum configuration. Shown in Figure 6.2 are their equally spaced (3, {) meshes and the
corresponding contours for the local magnetic shear § and for the normal magnetic curva-
ture multiplied by the Jacobian /g&"; these are shown both on vertically and horizontally
clongated poloidal cross sections for the vacuum configuration. It is shown in Figure 6.2
that the local properties of the local magnetic shear and the normal magnetic curvature
mainly come from helicity in the vacuum configuration. The effect of toroidicity is more
apparent in the normal magnetic curvature /gx" than in local magnetic shear 5. On
horizontally clongated poloidal eross section, the locally unfavorable magnetic curvature
due to helicity is superposed on that due to toroidicity on the outer side of torus, and
henee the normal magnetic curvature on the outer side of torus is more unfavorable than
that on the inner side of torus. In contrast, on vertically clongated poloidal cross section,
the locally favorable magnetic curvature due to helicity cancels the locally unfavorable
magnetic curvature due to toroidicity, leading to locally favorable magnetic curvature
even on the outer side of torus.

An MHD equilibrium can be completely determined by specifying pressure profile,
current condition, and boundary condition. Here the 3-D finite 3 equilibria are caleulated
with the Variational Moment Equilibrinm Code (VMEC) under the condition of a fixed
boundary. The boundary is determined from the outermost flux surface of the vacuum
magnetic ficld, which has nearly concentrie circular magnetic flux surfaces when averaged
in the toroidal direction.

The propertics of the finite- 3 equilibria are understood as a modification of the vacuum
configuration by an essentially axisymmetric and inherently large Shafranov shift. The
essential structure of the Shafranov shift is understood by a model equation. With the

use of the stellarator expansion under high-7 ordering, namely

B~ O(e), e = af Ro. (6.1)
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The Shafranov shift A can be expressed as [11]
dA Ry dj

P EE”U{” (6.2)
where r is the radial coordinate, 7 = 2pg/ Hg._ and By is the magnetic ficld strength at
R=R,.

From equation { 6.2), it is found that peaked pressure profile with net toroidal toroidal
current or peaked pressure profile decreasing the rotational transform ¢ create a large
Shafranov shift. In contrast, for the same beta value gy at the magnetic axis, broad
pressure profiles with no net toroidal current or broad pressure profiles with a net toroidal
current decreasing the rotational transform ¢ create a small Shafranov shift. Since the
properties of the vacuum configuration is mainly determined by helicity as shown in Figure
6.2 and since the Shafranov shift is essentially axisymmetric, the larger the Shafranov shift
becomes, the more significant the effects due to toroidicity become, compared with helicity.

Such a Shafranov shift changes the local and global properties of equilibria, namely,
e the reduction of the local magnetic shear on the outer side of torus (local property).

¢ the formation of the average favorable normal magnetie curvature near the magnetic

axis (global property).

The former is unfavorable to ballooning modes through the reduction of the stabilizing
effects and the latter is favorable to interchange modes through the Mercier criterion Dy,
According to the reduction of the local magnetic shear and the formation magnitude of
the average favorable normal magnetic curvature brought by the Shafranov shift, the 3-D
MHD Mercier-unstable equilibria can be categorized into toroidicity-dominant Mercier-
unstable equilibria and helicity-dominant Mercier-unstable equilibria. The toroidicity-
dominant Mercier-unstable equilibria have a relatively large Shafranov shift, These equi-
libria are characterized by the local propertics that the (integrated) local magnetic shear
is much reduced by the Shafranov shift, leading to the situation that ballooning modes
would be easy to destabilize. In contrast, the helicity-dominant Mercier-unstable equi-
libria have a relatively small Shafranov shift. These equilibria are characterized by local
properties that the (integrated) local magnetic shear is less reduced by the Shafranov
shift, leading to ballooning modes to be hard to destabilize.

On the basis of the above considerations, the following two types of Mercicr-unstable

equilibria are introduced in order to examine the competitive or synergetic cffects of
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toroidicity and helicity on the pressure-driven modes. One is toroidicity-dominant Mercier-
unstable equilibria, and the other is helicity-dominant Mercier-unstable equilibria. The
toroidicity-dominant Mercier-unstable equilibrium is ereated with a peaked pressure pro-
file

p(tx) = po(l = ¥y)’ (6.3)

under the flux conserving condition, i.c., with a specified profile of rotational transform +.
fo = 5.9%. The helicity-dominant Mercier-unstable equilibrinm is created with a broad
pressure profile

p(iw) = po(l = %) (6.4)

under the currentless condition. 3 = 4.0%. Note that this equilibrium is exactly the
same as used in reference [12].

Surface guantities are shown in Figure 6.1 in functions of ry: (a) for toroidicity-
dominant Mercier-unstable equilibrium, (b) for helicity-dominant Mercier-unstable equi-
librium. Shown in Figure 6.1(a) and (b) in dash lines are two auxiliary equilibria with
respeet to the study of the corresponding of helicity-dominant and toroidicity-dominant
Mereier-unstable equilibria. Clearly the helicity-dominant Mercier-nnstable equilibrium
is more Moercier unstable than the toroidicity-dominant one.

Shown in Figures 6.3 and 6.4 are the samce local quantitics (given in Figure 6.2 for
vacuum) for the toroidicity-dominant Mercier-unstable equilibrium and helicity-dominant
Mercier-unstable equilibrium. The effect of the introduction of the large Shafranov shift
can be clearly understood with a comparison of Figure 6.2 (vacuum) with Figures 6.3 ~
6.4 (finite- 7 equilibria). A comparison of Figures 6.2(b), 6.3(h), and 6.4(b) indicates that
the local magnetic shear, which is the stabilizing term of high-mode-number ballooning
modes, is significantly reduced on the outer side of the torus, especially at the horizon-
tally elongated poloidal cross section, as the Shafranov shift increases. Morcover, it is
understood from a comparison of Figures 6.2(c), 6.3(¢), and 6.4(c¢) that the locally unfa-
vorable magnetic curvature at the horizontally clongated poloidal cross section becomes
strouger on the inner side of the torus than that on the outer side of the torus, The reason
is as follows. In this horizontally elongated poloidal cross section, the normal magnetic
curvature #" is approximated as

- _ VOB

B2 3_U (6.5)

42



At the considered J-value, the diamagnetic offeet is so weak that the distribution of the
magnetic field strength hardly changes. However, the change in the distribution of flux
surfaces due to the Shafranov shift is quite large as shown in Figures 6.3(a), 6.4(a). The
interval of fAux surfaces on the inner side of the torus is wider than that on the outer side
of the torus. Therefore, the locally unfavorable magunetic curvature at the horizontally
clongated poloidal cross section becomes strouger on the inner side of the torus than that
on the outer side of the torus.

As 7 increasces, the toroidicity-dominant Mercier-unstable equilibria ereated by peaked
pressure profiles with no net toroidal current have a second stahility region with respect
to interchange modes. The reason is that the average magnetic curvature due to the
Shafranov shift is favorable in the region where the maximum pressure gradient of peaked
pressure profiles exists (sce figure 6.1(a)). In contrast, helicity-dominant Mercier-unstable
equilibria created by broad pressure profiles with no net toroidal current do not have
second stability against interchange modes, because the maximum pressure gradient still
exists in an average unfavorable magnetic curvature region (sce figure 6.1(b}). Thus,
the toroidicity-dominant equilibria are more Mercier stable than the helicity-dominant

cquilibria.

6.3 Global mode analysis in toroidicity-dominant

Mercier-unstable equilibria

The typical phase factors (Mp, Np) are chosen to be (5, 3) for low toroidal mode numbers
n < M, (19,11}, (23,13), (28,16), and (38,22) for moderate toroidal mode numbers
n ~ M, and (114,66), (133,77), (152,88), and (171,99) for fairly high toroidal mode
numbers n » M. The Fourier modes and their number are carefully chosen from 81,
the Fourier space of toroidicity-dominant equilibrium given in Appendix A, to span an
Fourier subset of perturbation which centers at the corresponding phase factor and create
the efficient resonant modes.

For low toroidal mode numbers n < Af, interchange modes occur, which feel the av-
crage magnetic curvature with its local variation averaged out. One with phase factor

(Mp,Np) = (5,3) is shown is Figure 6.5, where the perturbation is given by P1 in Ap-
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pendix B, The radial distribution of the Fourier components of the normal displacements
£ - Vi is shown in Figure 6.5(a). Three resonant mode structures with n = 3 are visible,
whereas the amplitudes of other modes with different toroidal mode numbers are quite
small, and hence the toroidal mode coupling is negligible. Since the Mercier level in this
toroidicity-dominant equilibrium is relatively low as shown in Figure 6.1(a), the domi-
nant mode with {(m,n) = (5,3) is quite localized radially around the resonant surface
with ¢+ = 3/5 in the Mereier unstable region with Dy < 0, together with two small reso-
nant structures with + = 3/6 and ¢+ = 3/4, both of which are slightly outside the Mercier

unstable region. The corresponding coutours of the perturbed pressure
m==Vp-§ (6.6)

on both vertically and horizontally clongated poloidal cross sections are shown in Figure
6.5(h) and (¢). Comparison of the dircetion between magnetic field lines and constant
level surfaces of ( 6.6) shows that the amplitude of the perturbation is almost constant
along a magnetic field line. From these properties, it is concluded that this perturbation
is an interchange mode almost free from the toroidal mode coupling. These interchange
structure more radially extend on the inner side of torns than on the outer side of torus.
The mode structure of the interchange modes will be discussed in detail in the next
section.

For moderate toroidal mode numbers n ~ A, the modes begin to foel the local strue-
ture of the magnetic curvature due to helicity. Since the Shafranov shift strongly reduces
the stabilizing cffects due to the local magnetic shear on the outer side of torus in the
toroidicity-dominant Mercier-unstable equilibrium as shown in Figure 6.3(b), tokamak-
like poloidally localized ballooning modes with weak toroidal mode coupling occur. One
with phase factor (Mp, Np) = (38,22) is shown in Figure 6.6, where the perturbation is
given hy P3 in Appendix B. The typical toroidal mode numbers are still so small that
the pressure-driven modes can not effectively feel the local structure of the magnetic cur-
vature due to helicity, and hence the toroidal mode coupling is weak. Three groups of
Fourier modes for the normal displacement £ - Vi with different toroidal mode numbers
are visible, namely, n = 22, n = 32, and n = 42. This fact results from the weak toroidal
mode coupling in 3-D equilibria, as shown in Figure 6.6(a), where the most dominant
toroidal mode number is 32, Each group, however, consists of many Fourier modes with

different poloidal mode nmnbers caused by the poloidal mode coupling, and the Fourier
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modes existing in the region with a finite global magnetic shear (ry > 0.55) have the
largest amplitude around the resonant flux surface satisfying ¢+ = n/m. Thus, the struc-
ture of cach group duc to the poloidal mode coupling is quite similar to that of ballooning
modes in tokamak plasma. The Fourier modes have the finite amplitude in the region
where the rotational transform monotonically inereases in the radial direction (ry > 0.4),
as shown in Figure 6.1(a), so that the group of Fourier modes with higher toroidal mode
number appear in the outer flux surfaces. The most dominant group of the Fourier modes
with n = 32 exists around the Mercier-unstable region, and other two groups with n = 22
and n = 42 extend from the Mercier-unstable region into the Mercier-stable region. The
group with n = 22 extends into a considerably weak magnetic shear region (ry ~ 0.45),
where the high-mode-number ballooning formalism breaks down, and slightly off-resonant
modes without the resonant surface have the finite amplitude there. Note that among the
three groups of Fourier modes with different toroidal mode numbers, neighboring groups
have opposite phase: e.g., between n = 22 and n = 32, and between n = 32 and n = 42.
The relation between this relative phase difference and the position of the origin of the
toroidal angle, which is located where the poloidal eross seetion is vertically elongated,
indicates a weak localization of the mode in the toroidal direction. A comparison of Fig-
ures 6.6(b} and (c) shows that on the outer side of the torus, the radial extension of the
perturbed pressure ( 6.6) is larger on the horizontally clongated poloidal cross section with
locally unfavorable magnetic curvature at the outside of the torus, than on the vertically
clongated poloidal cross section with locally favorable magnetic curvature at the outside
of the torus. On the vertically elongated poloidal cross section, the perturbed pressure
on the outer side of torus changes phase in the radial direction.

The influence of the mode family is considered for moderate toroidal mode numbers
n ~ M, All of the parameters are fixed except for the phase factor, as is shown in the
Appendix B. One with phase factor (Mp, Np) = (19, 11) is shown in Figure 6.7, where the
perturbation is given by P4 in Appendix B. This mode belongs to Ny = 1 mode family.
The three visible groups have toroidal mode number n = 11, 21, and 31. The group with
toroidal mode number n = 21 is the most dominant one and extends around the Mercier-
unstable region. Similarly to the tokamak-like ballooning modes given in Figure 6.6, the
group with toroidal mode number n = 11 extends into the weak magnetic shear region. In
the other two mode families, namely, Ny = 3 and N; = 4, tokamak-like ballooning modes

with phase factors (Mp, Np) = (23,13), and (Mp, Np) = (28,16) arc shown in Figures
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6.8 and 6.9, where the perturbation are given by P and PG in Appendix B, respectively.
From the four tokamak-like ballooning modes shown from 6.6 to 6.9, it is understood that
the growth rate becomes larger as the toroidal mode number increases.

For fairly high toroidal mode numbers n 2 M, the modes can casily distinguish the
local fine structure of the magnetic curvature duce to helicity. This results in the appear-
ance of ballooning modes inherent to 3-D systems, which have so strong poloidal and
toroidal mode coupling as to localize highly in both the poloidal and toroidal directions,
One is shown in Figure 6.10 with phase factor (Mp, Np) = (171, 99), where the perturba-
tion is given by P7 in Appendix B. There are six groups of Fourier modes with different
toroidal mode numbers for £ V4 through the strong toroidal mode conpling. The different
toroidal mode numbers are shown in Figure 6.10(a), namely, n = 69,79, 89,99, 109,119,
and 129. All groups exist around Mercier-unstable region, where the rotational transform
¢ monotonically increases in the radial direction. The groups of Fourier modes with higher
toroidal mode numbers exist in the region with higher rotational transform, aned neigh-
boring groups of Fourier modes have opposite phase to each other, just as in the case of
tokamak-like ballooning modes. This relative phase difference of the neighboring groups
leads to the clear localization of the perturbed pressure ( 6.6) in the toroidal direetion,
as shown in Figures 6.10(c¢) and 6.10(cd). On the outer side of the torus, the perturbed
pressure, which localized on the horizontally clongated poloidal cross section with the
locally unfavorable magnetic curvature at the outside of torus, almost disappears on the
vertically clongated poloidal cross section with the locally favorable magnetic curvature
at the outside of torus. Moreover, the strong toroidal mode coupling causes a type of
localization that is different from the kind only due to poloidal mode coupling. This phe-
nomenon becomes quite clear in Figure 6.10(b), which shows the corresponding coutours
of the perturbed pressure on the (#,¢) plane with one period in the poloidal direction
and one-tenth of a period (one field period) in the toroidal direction at ry = 0.710, where
¢ = 0.57 and the Fourier mode with n = 99 has its maximum amplitude, as indicated
in Figure 6.10(a). In Figure 6.10(b). it can be seen that regions where the perturbed
pressure has large amplitude (indicated by dark diagonal stripes) alternate with regions
of quite small amplitude (denoted by white diagonal stripes). Judging from the value of
the rotational transform on this flux surface, namely, + - 0.57, we conclude that these
high-amplitude and low-amplitude stripes are aligned along magnetic field lines, and that

the strong the toroidal mode coupling in addition to the poloidal mode coupling makes
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the perturbation be localized on the selected flux tubes. The small amplitude regions,
i.c., white diagonal stripes, also show that, as well as in the poloidal dircetion, there is
a region with rather low amplitude in the toroidal direction on the outer side of torus,
around the vertically elongated poloidal cross section, namely, at § ~ 0 and { ~ 0 (since
the origins for the poloidal and toroidal angles exist on the outer side of torus and on the
vertically elongated poloidal cross section, respectively). In the case of a tokamak, these
low-amplitude regions occur due only to the poloidal mode coupling, and consequently
their widths are very narrow. The ballooning modes that are inherent to 3-D systems still
have fairly extended structures in the toroidal direction, as shown in Figure 6.10.
Independent of the mode family, ballooning modes inherent to 3-D systems occur for
fairly high toroidal mode numbers n 3 M. Ounes with phase factors (Mp, Np) = (114, 66),
(Mp,Np) = (133,77), and (Mp, Np) = (152,88) are shown in Figurces 6.11, 6.12, and 6.13,
respectively. The perturbations are given in P8, P9, and P10 in Appendix B, and they
belong to Ny = 4, Ny = 3, and Ny = 2 mode familics. They have strong poloidal
and toroidal mode couplings, and they localize in the radial direction. Here all of the
paramcters are the same excepts the phase factors as given in Appendix B. From Figures
6.10 to 6.13, the growth rate, the poloidal and toroidal mode couplings, and the radial
localization becomes larger or stronger, as the toroidal mode number increases.
Independent of the value for the typical toroidal mode numbers and the mode fami-
lics, unstable modes are radially localized near the Mercier-unstable region. As the typical
toroidal mode numbers inerease, the radial intervals, in which modes are localized, become
more and more narrow, the modes become more and more unstable, and also the toroidal
mode coupling becomes stronger and stronger through the utilization of the normal mag-
netic curvature due to helicity. Therefore, it is expected that more unstable ballooning
modes localized in one toroidal ficld period, which are conjectured in the local mode anal-
ysis [12], may oceur in quite narrow radial intervals as the typical toroidal mode numbers

become increasingly larger.



6.4 Global mode analysis in helicity-dominant Mercier-

unstable equilibria

The typical phase factors (Mp, Np) are chosen to be (7, 4) for low toroidal inode nmmbers
n < M, (19,11), (23,13), (28,16), and (38,22) for moderate toroidal mode numbers
n ~ M, and (114,66), (133,77), (152,88), and (171,99) for fairly high toroidal mode
munbers n 32 M. The Fourier modes and their number are carefully chosen from S2, the
Fourier space of helicity-dominant equilibrium given in Appendix A, to span an Fourier
subsct of perturbation which centers at the corresponding phase factor and create the
efficient resonant modes.

For low toroidal mode numbers n < M, interchange modes occur just as in the case
of toroidicity-dominant Mercier-unstable equilibria, which feel the average magnetic cur-
vature, One of them is shown 1s Figure 6.14 with phase factor (Mp, Np) = (7, 4), where
the perturbation is given by 72 in Appendix B. The radial distribution of the Fourier
components of the normal displacements £ - Vi) is shown in Figure 6.14(a) (where the
origin of the poloidal angle is on the outer side of the torus) and (b) (where the origin of
the poloidal angle is on the inner side of the torus), where three resonant wode strnctures
with n = 4 are visible. The amplitudes of other modes with different toroidal mode num-
bers are quite small. This equilibrium is strongly Mercier-unstable as shown in Figure
6.1(b), hence the interchange mode has a fairly radially extended structure around the
mode rational surfaces with ¢+ = 4/7,4/6, and 4/5, all of which are inside the Mercier
unstable region with Dy, < 0. The contours of the perturbed pressure ( 6.6) shown in
Figure 6.14(c) and (d) indicate that the interchange modes with n < M have a large radial
extension on the inner side of torus and change phase in the radial direction on the outer
side of torus. This is because the normal magnetic curvature is more unfavorable on the
inner side of torus than that on the outer side of torus as shown in Figure 6.4(¢) and also
consistent with the results in [43] and [44). These properties are more easily understood
from Figure 6.14(h), where the Fourier modes of the the normal displacements £ - Vi
arc displayed with the origin of the poloidal angle shifted from the outer side of torus
to the inner side of torus, so that the Fourier modes with an odd poloidal mode number
change their signs. In this case, the Fourier modes with (m,n) = (7.4) and (m,n) = (5,4)

change their signs. The mode structure is similar to that of a ballooning mode except
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that cach Fourier mode has both positive and negative parts, which means that this type
of interchange modes have a tendeney to localize (or to extend radially) on the inner side
of torus and to change phase in the radial direction on the outer side of torus through
poloidal mode coupling. In other words, this type of interchange modes is anti-ballooning
with respect to the poloidal mode coupling,.

For moderate toroidal mode numbers n ~ M, Figure 6.15 shows that interchange
modes still oceur, in which the phase factor is (Mp. Np) = (38,22) and the perturbation
is still given by P3. Here, tokamak-like poloidally localized ballooning modes do not
appear in the helicity-dominant Mercier-unstable equilibria, in contrast with the case for
the toroidicity-dominant Mercier-unstable equilibrinm. The reason of this is due to the
fact that the reduction of stabilizing term of ballooning modes by the Shafranov shift
is not cnough for tokamak-like poloidally localized ballooning modes to be destabilized
as shown in Figure 6.4(b). Thus interchange modes driven by the averase unfavorable
magnetic curvature are destabilized. The toroidal mode coupling of interchange modes
becomes stronger as the toroidal mode number increases, as shown in Figure 6.15(a) (
where the origin of the poloidal angle is on the outer side of the torus ) and (b) (where the
origin of the poloidal angle is on the inuer side of the torus ), where two groups of Fourier
modes with n = 22, and n = 32 are dominant. Compared with interchange modes with
n < M shown in Figure 6.14, the interchange modes with n ~ M also have a tendeney to
be radially extended on the inner side of torus and to change phase in the radial direction
on the outer side of torus due to poloidal mode coupling, as shown in Figures 6.15(c) and
6.15(d}. Morcover, the weak toroidal mode coupling, in cooperation with the poloidal
mode coupling, causes a bumpy-like localization of the perturbed pressure in the poloidal
direction, which is more clearly seen on the inner side of the torus in Figures 6.15(¢) and
(d).

Independent of the mode family, interchange modes still occur for moderate toroidal
mode numbers n ~ Af. For the same perturbations used in the toroidicity-dominant
Mereier-unstable equilibria, these interchange modes are shown from Figures 6.16 to 6.18.
Clearly, as the toroidal mode number inereases, the growth rate, the toroidal mode cou-
pling, and the radial localization becomes larger or stronger.

For fairly high toroidal mode numbers n 3> A/, just as in the toroidicity-dominant
Mercier-unstable equilibrium, the modes can distinguish the fine local structure of the

magnetic curvature duce to helicity. This results in ballooning modes inherent to 3-D
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systoms just as for the toroidicity-dominant Mercier-unstable equilibrivm shown in Figures
6.10 ~ 6.12, which have strong poloidal and also toroidal mode coupling and localize in
both the poloidal and toroidal direction. On case with phase factor (Mp, Np) = (171,99)
is shown in Figure 6.19, where the perturbation is still given by P7. The dominant
toroidal mode numbers of the Fourier modes of § - Vi are shown in Figure 6.19(a),
namely, n = 89,909,109, 119,129, 139, and 149. One more group exists in this equilibrium
than in the toroidicity-dominant Mercier-unstable one. The most dominant toroidal mode
mumber of this ballooning mode is n = 119.

Ballooning modes inherent to 3-D systems occur independent of the mode family. For
the same perturbations used in the toroidicity-dominant Mercier-unstable equilibria, these
ballooning modes inherent to 3-D systems are shown from Figures 6.20 w 0.22. Similarly,
as the toroidal mode number increases, the growth rate, the toroidal mode coupling, and
the radial localization becomes larger or stronger.

Just as for toroidicity-dominant equilibria, unstable modes radially localize around
the Mercier-unstable region independent of their typical toroidal mode numbers and mode
familics. As the typical toroidal mode numbers inerease, the modes become more unstable
and more radially localized, and have a stronger toroidal mode coupling through the
normal magnetic curvature due to helicity, Compared to the interchange modes with low
toroidal mode numbers shown in Figure 6.14, interchange modes with moderate toroidal
mode numbers (shown in Figures 6.15 ~ 6.18) and ballooning maocdes with tairly high
toroidal mode numbers (shown in Figures 6.19 ~ 6.22) are significantly localized in the

radial direetion.



The typical contribution from T-version are given in figure 6.23, in which the com-
petition between the stabilizing effect from field line bending (curve 1 T') and the
destabilizing effect from pressure-driven term (curve 3: T7) is clearly demonstrated. Fig-
ure 6.23(a) shows the contributions from interchange modes with toroidal mode nmmber
n < M. The contributions from tokamak-like ballooning mode with toroidal mode num-
ber i~ M are shown in Figure 6.23(h), from ballooning mode inherent to 3-D systems
with toroidal mode number n > M in Figure 6.23(c). T is contributed by Shear Alfvén
mode which is a stabilizing term and is independent of £ even when by > k). The Shear
Alfvén wave is purely transverse. This cause the magnetic field lines to bend. The Shear
Alfvén wave deseribes a basic oscillation between perpendicular plasma kinetic energy
and perpendicular "line bending” magnetic energy; i.e., a balance between inertial and
ficld line tension. T2 (curve 2) represents the stabilizing contribution from field line com-
pression. This term is nearly invisible since it is always minimized by the most unstable
mode. T? (curve 3) makes a contribution the destabilization of pressure-driven modes
when the magnetic curvature is unfavorable. T (curve 4) represents kink contribution.
As the toroidal mode number increases, this contribution becomes smaller and smaller.
This fact complies with the local mode analysis since there is no kink contribution for
high-mode-number ballooning modes.

All of the cigenvalues for pressure-driven modes shown from figures 6.5 to 6.22 are given
in the left (right) column of Table 6.1 for the toroidicity-dominant (helicity-dominant)
Mercier-unstable equilibrium. Clearly in both types of equilibria, as the dominant toroidal
mode number increases, the absolute magnitude of corresponding cigenvalues becomes
large.

In vrder to investigate those results in Sections 6.3 and 6.4 more carefully, two different
anxiliary equilibria were introduced, ereated by changing only the boundary shape of the
original equilibria. One is a toroidicity-dominant equilibrinm and the other is a helicity-
dominant equilibrium. Both auxiliary equilibria have quite similar local structures of the
local magnetic shear and the normal maguetic curvature to those in the original equilib-
ria, and arc more Mercier unstable than the original equilibria, as shown in Figure 6.1
by the dashed curves. In spite of difference of the violated level of the Mercier crite-
rion, namely, the magnitude of negative Dy, those two toroidicity-dominant equilibria
and the two helicity-dominant equilibria produced gualitatively the same results, respec-

tively. Therefore, thought to be quite reasonable are the categorization of the equilibria



into toroidicity-dominant and helicity-dominant Mercier-unstable equilibria according to
the degree of the reduction of the local magnetic shear by the Shafranov shift, and the
resultant behavior of the pressure-driven modes in the both types of Mercier-unstable

equilibria.

Table 6.1 The properties of w?

toroidicity-dominant helicity-dominant
(Mp, Np) w? (Mp, Np) w? =
(5,3) —4.99 x 1075 (7,4) ~3.07x 1073
(19,11) —7.04 x 1071 (19,11) ~5.21 x 1073
(23,13) -9.19 x 10~ (23,13) -5.25 % 10~
(28,16) -1.26 % 107* (28, 16) 531 x 1073
(38,22) ~1.89 x 1073 (38,22) ~5.26 % 1073
{114, 66) —-5.05 x 1073 (114, 66) —6.16 x 1073
(133,77) ~5.51 x 1073 (133,77) —6.45 x 1073
(152, 88) ~5.89 x 1073 (152, 88) —6.68 x 107*
(171,99) —6.22 % 1072 (171,99) ~6.88 x 1077




Chapter 7

Conclusions

By means of global mode analysis of ideal MHD modes for equilibria in fully 3-D systems
in a planar axis L = 2/M = 10 heliotron system with an inherently large Shafranov shift,
the conjecture from local mode analysis [12] for Mercier-unstable cquilibria has been
investigated and the properties of pressure-driven modes, namely, interchange modes and
ballooning modes, inherent to such 3-D systems have been clarified.

From the view point of numerical procedure, an efficient ecigensolver has been in-
troduced. With the application of Lanczos recursion with no re-orthogonalization, the
memory increasces is controlled to a neglected order. With the application of an shift-and-
invert technigue, the convergence of the Lanczos recursion is aceelerated considerably. In
a word, the Lanczos algorithm is shown to be efficient and reliable in solving eigenprob-
lem arising from ideal MHD stability analysis. A good starting vector in inverse iteration
has been introduced to comply with the characteristics of pressure-driven modes in 3-D
configurations.

From the view point of the ideal MHD stability, a vacuum configuration of a planar
axis L = 2/M = 10 heliotron system is helicity dominant, which comes from the helical
coils. Both the local magnetic magnetic shear and normal magnetic curvature are mainly
determined by helicity. The characteristics of the finite-J equilibria in such systems are
determined by an essentially axisymmetrie, inherently large Shafranov shift. The change
in the local structures of the local magnetic magnetic shear (integrated along the magnetic
field line) and the normal magnetic curvature brought by the Shafranov shift is related to
toroidicity. The Shafranov shift reduces the (integrated) local magnetic magnetic shear

on the outside of torus, leading to the reduction of the field line bending stabilizing cffect
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on ballooning modes, On the other hand, the Shafranov shift enhances (reduces) the local
unfavorable magnetic curvature on the inner (outer) side of torus.

According to the degree of the reduction of the local magnetic magnetic shear by
Shafranov shift, the Mercier-unstable equilibria in a planar axis L = 2/M = 10 he-
liotron system has been categorized into two types, namely, toroidicity-dominant Mercier-
unstable equilibria and helicity-dominant Mereier-unstable equilibria. The toroidicity-
dominant Mercier-unstable equilibria are characterized by the properties that the local
magnetic shear is fairly reduced by the Shafranov shift, so that ballooning modes are
casily destabilized. These equilibria are created with a peaked pressure profile cither with
zero net toroidal current or with net toroidal current such that the rotational transform
decreases slightly. The helicity-dominant Mercier-unstable equilibria are characterized
by the propertics that the local magnetic magnetic shear is less reduced by the Shafra-
nov shift, so that ballooning modes are hardly destabilized. These equilibria are created
with a broad pressure profile cither with zero net toroidal current or with net toroidal
current such that the rotational transform increases slightly. The toroidicity-dominant
Mercier-unstable equilibria tend to be more Mereier stable than the helicity-dominant
Mercier-unstable equilibria for the same J value at the magnetic axis, because the av-
erage magnetic curvature due to Shafranov shift is favorable (unfavorable) in the region
where the pressure gradient is large, for the former (latter) equilibria.

Since the local magnetic curvature due to helicity has the same period M in the
toroidal direction as the toroidal field period of the equilibria, the characteristics of the
pressure-driven modes in such Mereier-unstable equilibria dramatically change according
to how much the local magnetie magnetic shear is reduced and also according to the
relative magnitude of the typical toroidal mode numbers n of the perturbations compared
with the toroidal ficld period A of the equilibria.

In the toroidicity-dominant Mercier-unstable equilibria, the pressure-driven modes
change from interchange modes for low toroidal mode numbers n < M| to tokamak-like
poloidally localized ballooning modes with weak toroidal mode coupling for moderate
toroidal mode numbers n ~ M, and finally to both poloidally and toroidally localized
ballooning modes purely inherent to 3-D systems with strong poloidal and toroidal cou-
plings for fairly high toroidal mode numbers n > M. Strong toroidal mode coupling, in
cooperation with poloidal mode coupling, makes the perturbation localize to flux tubes.

In the helicity-dominant Mercier-unstable equilibria | the pressure-driven modes change
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from interchange modes localized on the inner side of torus for n < M or n ~ AL directly
to poloidally and toroidally localized ballooning modes purcly inherent to 3-D systems
with strong poloidal and toroidal couplings for fairly high toroidal mode numbers n 3 A
Since the normal magnetic curvature is more unfavorable on the inner side of torus than
on the outer side of torus, the interchange modes are localized on the inner side of torus
for n < M or n ~ M. This type of interchange modes is anti-ballooning with respect to
the poloidal mode coupling.

Since the equilibria considered here are Mercier-unstable, interchange modes with low
toroidal mode numbers n < M, experiencing unfavorable magnetic curvature with its local
structure averaged out, oceur for both toroidicity-dominant Mercier-unstable equilibria
and helicity-dominant Mercier-unstable equilibria. For fairly high toroidal mode numbers
n > M, the perturbations can feel fine local structure of the maguetic curvature and also
the local magnetic magnetic shear is reduced more or less in both types of equilibria, and
consequently poloidally and toroidally localized ballooning modes inherent to 3-D systeins
are destabilized for both toroidicity-dominant and helicity-dominant equilibria. The sit-
uation for moderate toroidal mode numbers n ~ AM is different for toroidicity-dominant
and helicity-dominant equilibria.  The local magnetic magnetic shear is more reduced
in toroidicity-dominant Mercier-unstable equilibria than in helicity-dominant Mereier-
unstable equilibria, and also the modes with moderate toroidal mode numboers n ~ Af can
not feel the local structure of the normal magnetic curvature effectively. Thus tokamak-
like poloidally localized ballooning modes with weak toroidal mode coupling can he easily
destabilized in toroidicity-dominant equilibria; and interchange modes, driven by the av-
erage unfavorable magnetic curvature and not experiencing the affect of toroidal mode
coupling, can be destabilized for helicity-dominant Mercier-unstable equilibria.

All of these properties of the pressure-driven modes in Mercier-unstable equilibria are
common for different mode familics and are quite consistent with conjecture from local

mode analysis given in [12].
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Appendix A

Fourier space of equilibria

The 3-D finite- 3 equilibria are calculated with VMEC under the fixed boundary condition.
All of the guantitics arc expressed in terins of the Fourier decomposition in both the
poloidal and toroidal directions. In order to be able to reconstruet the MHD equilibria
in the Boozer coordinate system (', 8, () from VMEC coordinates, the accuracy of the
corresponding mapping (from VMEC coordinates to Boozer coordinates) is estimated
from the relative crrors in B and R due to the transformation at the grid points. The
maximuni relative errors in B and R for the toroidicity-dominant eqnilibrium are 1 x 1078
and 3 x 1077, respectively.  For the helicity-dominant equilibrium, the corresponding
relative errors are 7x 1077 and 1 x 1077, Let m, and n, be the poloidal and toroidal mode
indices of the equilibria in the Boozer eoordinates, respectively, then the total number of
Fourier modes, i.c., {m,n.) in an equilibrivm will be given by _-UET =(m, +1) x (n. +
1) + m, % n.. Note that the number of poloidal modes is important for equilibria with
a large Shafranov shift, and that this number inereases as the Shafranov shift becomes
larger. The Fourier spaces of the two types of Mercier-unstable equilibria, introduced in

chapter 6, are given as §1 and 52
Fourier space of toroidicity-dominant Mercier-unstable equilibrium

S1 = {{mc.n:) : m, € [0,30], n. € [-10, 10], .Uﬂ‘, = 641} (A.1)
Fouricr space of helicity-dominant Mercier-unstable equilibrium

S2 = {{m,.n.): m, € [0,30],n, € [-10, 10], .-"»f:}q = 641) (A.2)



Appendix B

Fourier subset of perturbations

The Fourier subsets of perturbations are created by the given phase factors (AMp, Np)

aud M, sclected Fourier modes (m,,n.) from the equilibrinm Fourier spaces §1 or 82

according to the mode family requirement satisfying ( 4.9). The total number of Fourier

modes in a perturbation will be given by A, = 2 x AL, — 1. For different phase factors

and different equilibrium Fourier modes, perturbations will be different. A perturbation,

to which mode family it belongs, is determined by the relation of the toroidal index Np

and the toroidal period of equilibrinm magnetic field. Sinee the configuration considered

here has M = 10 toroidal field period, the basic indices of the mode families are Ny =

0,1,2,3,4,5.

In this work, the following ten perturbations are investigatod.
Pl = {(Mp,Np)=( 5, 3),M,, = 76, M, = 151, N; = 3}
P2 = ((Mp Np)=( 7, 4), M, = 62,0, =123, N; = 4}
P3 = {(Mp, Np) = ( 38,22), M, = 186, M, =371, N; =2}
P4 = {(Mp,Np) =( 19,11), M., = 186, M, = 3TL, Ny = 1}
P5 = {(Mp,Np) = ( 23,13), M., = 186, M, = 371, N; = 3}
P6 = {(Mp,Np) = ( 28,16), M., = 186, M, = 371, N; = 4}
PT={(Mp.Np) = (171,99), M, = 336, M, = 671, Ny = 1}
P8 = {(Mp, Np) = (114, 66), M., = 336, \f,, = 671, Ny = 4}
P9 = {(Mp, Np) = (133,77), M, = 336, M, = 671, N; = 3}

ar

(B.1)

(B.2)
(B.3)
(B4)
(B.5)
(B.6)
(B.7)
(B.3)

(B.9)



P10 = {(Mp, Np) = (152,88), M, = 336, M, = 671,.V; = 2} (B.10)

In the toreidicity-dominant Mereier-unstable equilibrium, the toroidal mode nnmbers
are chosen to satisfy n < M, n ~ M, and n > M. For n < M order, the phase factor (5, 3)
is used. The resultant perturbation is P1, shown in Figure B.1. For n ~ M order, the
phasc factors (38, 22), (19, 11), (23, 13), and (28, 16) are used. The resultant perturbations
are P3, P4, P35, and PG, shown in Figures B.3, B.4, B.5, and B.6. For n > Af order, the
phasc factors (133, 77), (114, 66), and (152, 88) arc used. The resultant perturbations are
P7, P8, and P9, shown in Figures B.7, B.§, and B.9. Correspondingly, 76, 186, and 336
Fourier modes are sclected from S1 to centering these parameters, respectively.

In the helicity-dominant Mercier-unstable equilibrinm, the toroidal mode numbers are
chosen to satisfy n < M, n ~ M, and n > M. For n < M ovder, the phase factor
(7,4) is used. The resultant perturbation is P2 shown in Figure B.2. For n ~ M
and n 3> M orders, we use the same perturbations in the toroidicity-dominant Mercier-
unstable equilibria in order to intensively study the inherent properties of pressure-driven
modes in the 3-D Mercier-unstable equilibria. For n ~ Af order, P3, P4, 75, and P6 are

used. For n 2 AM order, P7, P38, and P9 arc used.
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(a) (b)

Figure 3.1 Schematic pictures of the topological level surfaces
for unstable eigenvalues w?(< 0) in (1. 8, o) space

{a) a Mercier-unstable 3-D equilibrinm,
(b) a Mercier-stable 3-D equilibrium,
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Figure 5.1 Ideal MHD Spectrum in 3-D ideal MHD equilibrium ob-
tained by CAS3D2MN. The perturbation belongs to the Ny = 5 mode
family with the phase factor (Mp, Np) = (8,5). Ns = 120, M,, = 18,
M, = 35. The smallest and the largest eigenvalues are A,,,;, = —2.14952x
1073 and A, = 6.47634 x 105, respectively. The matrix stiffness S(A),
i.e., Amin/Amas is in O(10%) order. The positive part is dominant.
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Figure 5.2 Spectrum given in Figure 5.1 is scaled by sinh™'(al)
with a = 10°. sinh™'(a)) passes origin and is symmetric about ori-
gin (> 0,=0,<0for A > 0,=0,< 0). There are 8435 eigenvalues and
only 7 are negative, leading to that the negative part, what we concern,
is undominant.
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Figure 5.3 Gap stiffuess for spectrum given in Figure 5.1, where
Gmin = 4.07164 x 107%, g, = 3.54277 x 10%, and S,(A) = 8.70109 x 10°,
Lanczos steps m required by recursion (5.7) to calculate A,,;, is 11n.



(a)

(b)

Figure 6.1 Surface quantities

(a) toroidicity-dominant Mercier-unstable equilibrium,
(b) helicity-dominant Mercier-unstable equilibrium.
dine

Global rotational transform ¢, global magnetic shear s = Em, average magnetic curvature

(average magne tic well or hill) index V", and Mercier criterion parameter Dyy. all as functions
of the normalized minor radius ry = y. For both equilibria, quantities corresponding to the
vacuum configuration are drawn by dashed-and-dotted curves. Quantities drawn by dashed curves
correspond to the modified equilibria mentioned in chapter 6.
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Figure 6.2 Local quantities for the vacuum configuration

{a) Equally spaced (b, #) mesh,

{b) contours of the local wagnctic shear 3,

() coutours of the normal maguetic curvature multiplicd by the Jacobian. /gs®.
on the vertically (1st colimn) and horizontally (2ued colummn) clongated poloidal cross sections.
Thin (thick) curves in the contours of § indicate the negative (positive) vegions. Thin and thick
curves in the contours of /Gr" indicate the locally unfavorable (favorable) regions. The normal
wagnetic curvature is wore nufavorable on the outside of the torus than on the inside of the torus.



Figure 6.3 Local quantities for the toroidicity-dominant Mercier-unstable
equilibrium with a relatively large Shafranov shift

Same gquantitics as in the vacuum coufiguration are drawn for the TDMULHD equilibrvium. For
each graph, the sane contour level as one i Figure 6.2 is used.  Cowpared with the vacuum
configuration (Figure 6.2}, the local magnetic shear § is strongly veduced on the outer side of the
torus. especially at the horizoutally (2nd eolnum) elongated poloidal cross section. Note that the
Shafranov shift wakes the nornal magnetic envvature to be more nufavorable on the inside of the

torus than ou the outside of the touas.



Figure 6.4 Local quantities for the helicity-dominant Mercier-unstable
equilibrium with a relatively large Shafranov shift

Same quantitics as in the vacuwmn configuration are dvawn for the HDMULID equilibrivan. For
each graph. the same coutour level as one in Figure 6.2 is used. Compared with TDMULHD
equilibrium shown in Figure 6.3, the reduction of the local magnetic shear & ou the outer side of
the torus is weaker. Just as in TDMULHD, the normal maguetic curvature is morve unfavorable on
the inside of the torus than on the outside of the torus. brought by the Shafranov shift.
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Figure 6.5. Interchange mode

Me= 5, N,= 3, M,= 76, M
w’ = -4.9905E-5

(a) rodial prefile of the Fourier component of the normal dispolcement

with the origin of poloidal angle on the outer side of torus
{b) contour of perturbed pressure on the herizonlolly elongoted poloidal cross section
{c) contour of perturbed pressure on the verlically elongated poloidel cross section



Figure 6.6 Tokamak-like ballooning mode

M.= 38, N,= 22, M_=186, M,=371, N,= 660
w? = —1.8895E-3

{a) radiol profile of the Fourier component of the normal dispolcerment

with the origin of poloidal angle on the ouler side of torus
(o) conlour of perturbed pressure on the horizontally elongoted poloidal cross section
{e) conlowr of perturbed pressure on the vertically elongoted poloidal cross section
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Figure 6.7 Tokamak-like ballooning mode

Me= 19, Nyo= 11, M,=186, M,=371, N= 660

=]

w' = —7.0367£-4

(a} radial profile of the Fourier component of Lhe normal dispalcement

with the origin of poleidal angle on the outer side of torus
(b) contour of perlurbed pressure on the horizontaily elongoted poloidal cross section
(c} contour ol perturbed pressure on lhe verlicolly elongated poloidel cross section
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Figure 6.8 Tokamak-like ballooning mode

Mi= 23, M= 13, M =186 M,=371, N.= 660
w’ = —9.1904E-4

(o) radial profite of the Fourier component of the normai dispalcement

with the arigin of poloidal angle on the outer side of lorus
{b) contour of perturbed pressure on the horizontally elongated poloidal cross section
() conteur of perturbed pressure on lhe vertically elongated poloidal cross section



(b) (c)

Figure 6.9 Tokamak-like ballooning mode

Me= 28, N,= 16, M,=186, M, =371, N,= 660
w' = —1.2638E-3

{¢) rodigl profile of the Fourier compeonent of the normal dispalcement

with the origin of poloidal angle on the outer side of lorus
{b) contour of perlurbed pressure on the harizontolly elongated peloidol cross secticn
(c) contour of perturbed pressure on the verlicolly elongoted poloidal ¢ross seclhion
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Figure 6.10 Ballooning mode inherent to 3-D systems
M.=171, N.= 99, M,=336, M, =671, N,= 960
' = -6.2171E-3

(o) rodial profile of the Fourier component of the normal dispalcement
with the origin of poloidal angle on the ouler side of torus
(b) contour of perturbed pressure on the (¥, ) plane ot r, = 0.710
(e} contour of perlurbed pressure on the vertically elongated poloidol cross section

(d} contour of perlurbed pressure on the horizomally elongated poloidal cross seclion
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Figure 6.11 Ballooning mode inherent to 3-D systems

M,=114, N,= 66, M,=336, M,=671, N,= 960
W = —5.0501F -3
(a) radial profile of the Fourier component of the normal dispalcement
with the origin of poloidal cngle on the ouler side of lorus
(b) contour of perlurbed pressure on the (9, ¢) plone of r, = 0,699
(c) contour of perlurbed pressure on the verlically elongated poloidol cross section

{d) contour of perlurbed pressure on the horizoniolly elongated polodal cross section
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Figure 6.12 Ballooning mode inherent to 3-D systems
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{o) rodiol profile of the Fourier component of the normal dispaicement
wilh the arigin of poleida! angle on the outer side of torus
(8} conlour of periurbed pressure on the (8, ¢} plone ot r, = 0.701
(c) contour of perturbed pressure on the verlically elongated poloidcl cross section

{d) contour of perturbed pressure on the horizontally elongaled polcidal cross section
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Figure 6.13 Ballooning mode inherent to 3-D systems

—?32 N.= 88, M,=336, M,=671, N,= 960
w = —-5.8910E-3

{(a) radial profile of lhe Fourier component of the normal dispalcement
with the origin of poloidal angle on lhe outer side of lorus
(b) contour of perturbed pressure on the (4, ¢) plone ot r, = 0.699
(c) contour of perturbed pressure on the verlically elongoted poloidcl cross section

{d) contour of perturbed pressure on the horizontally elongated poloidal cross section
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Figure 6.14 Interchange mode
Me= 7, Ny= 4, M_= 62, M,=123, N,= 300
w? = =3.0704E-3

(o} rodiol profile of the Fourier componenl of the normal dispalcement
with the origin of poloidol angle on the outer side of torus
(b) some quontity, with the origin of poloidal angle on the inner side of torus

{c} contour of perturbed pressure con lhe vertically elongaled poloidal cross seclion

(d) contour of perturbed pressure on the horizontolly elongoled poloidal cross seclion
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Figure 6.15 Interchange mode

Mo= 38, N,= 22, M_=186, M, =371, N,= 660
W = —5.2634E—3

(o) rodial profite of the Fourier component of the normal dispalcement
with the origin of poloidol ongle on the outer side of lorus
(b} same guantity, with the origin of poloidal angle on the inner side of torus
(¢) contour of perturbed pressure on the verlicoily elongoted peloidal cross section

{d) contour of perturbed pressure on the horizontally elongated poloidal cross section
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Figure 6.16 Interchange mode

M= 19, N,= 11, M_=186, M, =371, N,= 660
z e
W = omB2092E-3

(o) radial profile of the Fourier companent of the normal dispalcement
with the origin of poloido!l ongle on the outer side of lorus
{b) same quentity, with the origin of poloidal gngle on the inner side of torus

{¢) contour of perturbed pressure on the vertically elongated poloidal cross section

{d) contour of perturbed pressure on the horizontally elongated poloidal cross section



Figure 6.17 Interchange mode

M= 23, N,= 13, M,=186, M,=371, N,= 660

[l

w = —52529F-3

(a) radial profile of the Fourier component of the normal dispaicement
with the origin of pgloida! angle on the outer side of torus
{b) same guantity, with the origin of poloidal ongle on the inner side of lorus
(e) contour of perlurbed pressure on the verlically elongoted poloidal cross seclion

{d) contour of perturbed pressure on the horizontaily elongaoled poloidal cross seclion



Figure 6.18 Interchange mode

M= 28, N,= 16, M,=186, M, =371, N,= 660
w' = —5.3064E-3

{a} rodial profile of the Fourier component of lhe normal dispolcement
with the origin ¢f poleidal gngle on the auter side of lorus
(b} same quantity, with the origin of poloidal angle on the inner side of torus
{c) contour of perfurbed pressure on the verticolly elongated poloidal cross section
(d)} contour of perturbed pressure on the horizontally elongoted poloidal cross section
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Figure 6.19 Ballooning mode inherent to 3-D systems

Mp=171, No= 99, M_=336, M,=671, N,=1380
w? = —6.8826F-3

(a) radia! profile of lhe Fourier component of the normal dispalcemeant
wilh the origin of poloidal angle on the outer side of torus
(b) contour of perturbed pressure on the (¥, ¢) plaone at r, = 0.812
{c)} contour of perturbed pressure on the vertically elongoted poloidol cross section

{d) contour of perturbed pressure on the horizontally elongoted poloidal cross section
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Figure 6.20 Ballooning mode inherent to 3-D systems

M.=114, N,= 66, M_=336, M,=671, N.=1380
w = —6.1566E-3
(o} radial profile of the Fourier component af the normal dispalcement
with the origin of poloidal angle on the outer side of lorus
(b) contour of perturbed pressure on the (¥, ¢) plone at r, = 0.802
{c) contour of perturbed pressure on the wertically clongated poloidal cross section
{d) contour of perturbed pressure on the horizontally elongoted poloidal cross section
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Figure 6.21 Ballooning mode inherent to 3-D systems

Me=133, N,= 77, M,=336, M,=671, N,=1380
W = —6.4494E-3

(o) rodial profile of the Fourier component of the normol dispaolcement
with lhe origin of poloidal angle on the outer side of torus
(b} contour of perturbed pressure on the (¥, &) plone ot r, = 0.B12
{c) conltour of perturbed pressure on the verticolly elongated poloidal cross section

(d) contour of perlurbed pressure on the harizontally elongoted poloidal cross secton
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Figure 6.22 Ballooning mode inherent to 3-D systems

M.=152, N,= 88, M,=336, M, =671, N,=1380
w = —6.6775E-3

{a) rodiel profile of the Fourier component of the norma! dispalcement
with the origin of poloidal angle on the ouler side of torus
(b) contour of perturbed pressure on the (4, ¢) pione al r, = 0.814
{c} contour of perturbed pressure on the vertically elongoted poloidal cross section

(d} contour of perturbed pressure on the harizontally elongoled poloidol cross section
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Figure 6.23 Contributions to the energy integral from

(a) an interchange mode with low toroidal mode number n < M,
(b) a tokamak-like ballooning mode with moderate toroidal mode number n ~ M,
(c) a ballooning mode inherent to 3-D systems with fairly high toroidal mode number n > M.
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Mp=114, No= 66, M_=336, M, =671



++4+++++++++4++t++++4+++++ 4+t 4+ 4+ ++ 41

SHE T S o S I T T T I I A T e i e ol o o

N, L A i S S S o R S i T S i S o i B O O L o
S S S S I R T i o o G o o o S S i i

I S T T R S R N S T S ol I T S S I S A R R o o
001+ +++4+++ ++4 1+++++++++++++++++14~
R o i S S T A R S S I T O S S S o S S o S R S

g ol i S R R o S o R o R R o e e e e e S
I O o e o o o o o R i i i i o i i SR o o o R e e s

S T N SO S S U S N R N R S S S S S o e S
-|-1++|+++++-;+-|-+4|++1|-+-||-++++++1L+--

= m'%,ﬂ 10.0 20.0 30.0

(a)

FHFAAA FEEAFE AR AR FHRRR R FEE R R R

bbb b AR S HHEEEE e HHHHH
et b A R
Im"ﬂ‘ i+ HEHEE SRR e o b A A HH_
B i h A LA a e R e S R AR AR R N
o I L O e
R b R A R B
FHH-HAH A e e A B
Sﬂ‘n -u-l—.l-r-l-l -t | e A A A - H—
it B b b

AHHEH H R e e
100.0 120.0 - 140.0 160.0

(b)

Figure B.9  Perturbation P9
Fourier modes of  (a) Equilibrium; (b) Perturbation
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Figure B.10  Perturbation P10
Fourier modes of  (a) Equilibrium: (b) Perturbation

M,=152, N,= 88, M, =336, M,=671



