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Ideal magnetohydrodynamics (MHD) equilibria are subjected to two kind of instabilities,
i.e., current-driven instabilities and pressure-driven instabilities. In three-dimensional (3-D)
configurations with vacuum magnetic flux surfaces, the equilibria can be obtained without
net toroidal current, where the current-driven instabilities become unimportant and only the
pressure-driven instabilities need to be intensively studied. The pressure-driven modes consists
of interchange modes and ballooning modes, and impose MHD stability £ limits. Interchange
modes are basically driven by average unfavorable magnetic curvature. Thus these modes
localize on'inode rational magnetic field lines and are almost constant along these lines.  On
the other hand, ballooning modes are basically driven by local unfavorable magnetic curvature,
so that they localize on unfavorable magnetic curvature region and change along the magnetic
field line. Ballooning modes are considered to be more stringent than interchange modes,
whose properties have not been clarified in 3-D configurations. To study the properties of
ballooning modes, one can proceed in two different ways, namely, local mode analysis and
global mode analysis. In axisymmetric systems, the global modes can be constructed easily .
from the results of the local modes analysis. But this is not the case in non-axisymmetric
systems, namely, 3-D systems. In fully 3-D systems, we can only make some conjectures for
'global modes from the properties of the local modes.

Through the local mode analysis of ballooning modes in an L = 2/M = 10 planar axis
heliotron system with an inherently large Shafranov shift(where L and M are the polarity
and toroidal field period of the helical coils, respectively), it has been demonstrated that [N.
Nakajima, Phys. Plasmas 3, 4545 and 4556(1996)]:

e The local magnetic shear (which is a stabilizing term for high-mode-number ballooning
modes) is related to helicity of the helical coils in the considered vacuum configuration.
Its change due to a large Shafranov shift is essentially axisymmetric, i.e., related to
toroidicity. This change leads to the disappearance of the (integrated) local magnetic
shear on the outer side of torus, even in the region with a stellarator-like global magnetic

shear, leading to the destabilization of the high-mode-number ballooning modes.

e The local magnetic curvature (which constructs a potentially destabilizing term for high-
mode-number ballooning modes together with the pressure gradient) consists of parts due

to both toroidicity and helicity of the helical coils, which determines the 3-D properties

of the high-mode-number ballooning modes.
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In general 3-D MHD equilibria, the eigenvalues w? for high-mode-number ballooning modes
are functions of the labels of the flux surface v, the magnetic field line «, and the radial wave
number ;: w? = w?(¢¥,0, ). Since w? has no a-dependence in axisymmetric systems, the
stronger the a-dependence of w? is (mainly coming from the helicity part of the local magnetic
curvature), the more significant the 3-D properties of w? are. The topological properties of the
unstable eigenvalues w?(< 0) in (¢, 0y, ) space for the L = 2/M = 10 planar axis heliotron

system are shown that [N. Nakajima, Phys. Plasmas 3, 4556 (1996)]:

e In Mercier unstable equilibria, there coexist two types of topological level surfaces for w?
in (1,0, @) space. One is a tokamak-like topologically cylindrical level surface with the
axis in « direction, The other is a topologically spheroidal level surface inherent to 3-D
systems. The topologically spheroidal level surfaces are surrounded by the topologica.lly
cylindrical level surfaces. From their relative positional relation, it is clear that modes
with spheroidal level surfaces have larger growth rates than those with cylindrical level

surfaces.

e In Mercier stable equilibria, only a topologically spheroidal level surface exists. In con-
trast to Mercier unstable equilibria, this spheroidal level surfaces are surrounded by the

level surfaces of stable Toroidicity-induced Alfvén Eigenmodes (TAE).

From these results it is conjectured that the global structure of pressure-driven modes has the
following properties [N. Nakajima, Phys. Plasmas 3, 4556 (1996)]:

e Global modes that correspond to modes in the local mode analysis with a topologi-
cally cylindrical level surface will be poloidal localized tokamalk-like ballooning modes

or interchange modes. Effects of the toroidal mode coupling on these modes are weak.

e Global modes that correspond to modes in the local mode analysis with a topologically
spheroidal level surface will be ballooning modes inherent to 3-D systems, with ‘quite
high poloidal and toroidal mode numbers and localized in both the poloidal and toroidal
directions. These modes become to be localized within each toroidal field period of the

helical coils, as their typicalitoroidal mode numbers become higher.

e In Mercier unstable equilibria, where both topologically cylindrical and spheroidal level
surface coexist, tokamak-like ballooning modes or interchange modes appear when their
typical toroidal mode numbers are relatively small. As the typical toroidal mode numbers
become larger, ballooning modes inherent to 3-D systems appear with larger growth

rates.
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e In Mercier stable equilibria, where only a topologically spheroidal level surface exists,

only ballooning modes inherent to 3-D systems appear.

The purposes of the work are to prove the above conjecture from local mode analysis and
to clarify the inherent properties of pressure-driven modes through a global mode analysis
in the L = 2/M = 10 planar axis heliotron system with an inherently large Shafranov shift
[J. Chen, N. Nakajima, and M. Okamoto, Global mode analysis of ideal MHD modes in a
heliotron /torsatron system: I. Mercier-unstable equilibria]. |

First the Mercier-unstable equilibria are categorized into two types, namely, toroidicity-
dominant Mercier-unstable equilibria and helicity-dominant Mercier-unstable equilibria.- This
categorization is motivated by the conjecture that tokamak-like ballooning modes or inter-
change modes exist for relatively small toroidal mode numbers, and is related to the local
properties of Mercier-unstable equilibria brought by Shafranov shift. The properties of the
vacuum configuration are understood as a straight helical configuration toroidally bended.
Since the aspect ratio is relatively large: Ro/a = 7 ~ 8 [ here Ry and a are the major and
minor radii, respectively ], the global and local properties of the vacuum configuration are
mainly determined by helicity of the helical coils. The properties of the finite-§ equilibria
are basically understood as a modification of the vacuum configuration by an essentially ax-
isymmetric and inherently large Shafranov shift. As the Shafranov shift becomes larger, the
stabilizing term due to the local magnetic shear is more reduced. The toroidicity-dominant
Mercier-unstable equilibria are characterized by properties that it is easy for the local magnetic
shear to vanish on the outer side of torus, which is brought by a relatively large Shafranov
shift. In these equilibria, it is relatively easy for ballooning modes to be destabilized. The
helicity-dominant Mercier-unstable equilibria are characterized by properties that it is hard
for the local magnetic shear to vanish on the outer side of torus, which is brought by a rel-
atively small Shafranov shift. In these equilibria, it is relatively hard for ballooning modes
to be destabilized. Note that, in both types of equilibria, the Shafranov shift locally reduces
(enhances) the unfavorable normal magnetic curvature on the outside (inside) of torus, which
is another local property due to Shafranov shift.

On the basis of these considerations, the following two types of Mercier-unstable equilibria
have been adopted. The toroidicity-dominant Mercier-unstable equilibrium is created with a
peaked pressure profile P = Py(1 — ¢n)? and fy = 5.9%, under the flux conserving condition,
i.e., with a specified profile for the rotational transform. The helicity-dominant Mercier-
unstable equilibrium is created with a broad pressure profile P = Py(1 —¢%)? and fy = 4.0%,
under the currentless condition.

The global mode analysis are done by CAS3D2MN, a version of CAS3D: Code for Analysis
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of the MHD Stability of 3-D equilibrium [C. Schwab, Phys. Fluids B 5, 3195 (1993)]. CAS3D
have been designed to analyze the global ideal MHD modes of 3-D equilibria based on a formu-
lation of the ideal MHD energy principle with incompressibility in Boozer coordinate system
and the application of Ritz-Galerkin method. In CAS3D2MN, a phase-factor transformation
was used in order to save memory and flops.

The inverse iteration with spectral shift is an essential concept in the solution of eigenprob-
lems. It is very efficient if the spectral shift is given to be very close to the desired eigenvalue
and the initial vector is chosen to be dominant along the corresponding eigenvector. It is
demonstrated in our simulation that convergence will occur after only 3 or 4 steps if the spec-
tral shift itself is a good approximation of the desired eigenvalue and the initial vector has
dominant component along the corresponding eigenvector. The problem left to be done is how
to guess the spectral shift and give a good initial vector. The spectral shift was calculated by
matrix transformation in CAS3D2MN. Since the bandwidth will be destroyed by matrix trans-
formation the resultant memory and flops will be O(n?) and O(n?), respectively. It is shown
in our work that the use of matrix transformation is unsuitable, not only because it becomes
very expensive in the sense of flops and storage if the matrix order extends beyond 10, 000 but
also the problem size we can deal with is limited by the available computer resources. Here
this problem is solved by using the Lanczos algorithm with no re-orthogonalization which
keeps the matrix bandwidth from begin to end. The arithmetic operation mainly come from
the matrix-vector multiplies and only 3 recently created Lanczos vectors need to be stored.
The resultant memory and flops can be controlled to O(n) and O(n?) order. This iteration
process is accelerated by an shift-and-invert technique. In the new version CAS3D2MNv1, an
efficient initial vector generation is also introduced [J. Chen, N. Nakajima, and M. Okamoto,
Comput. Phys. Commun., 113, 1 (1998)].

Since the local magnetic curvature due to helicity has the same period M in the toroidal
direction as the toroidal field period of the equilibria, the characteristics of the pressure-driven
modes in such Mercier-unstable equilibria dramatically change according to how much the
local magnetic shear is reduced (whether the equilibrium is toroidicity-dominant or helicity-
dominant) and also according to the relative magnitude of the typical toroidal mode numbers
n of the perturbations compared with the toroidal field period M of the equilibria.

In the toroidicity-dominant Mercier-unstable equilibria, the pressure-driven modes change
from interchange modes with negligible toroidal mode coupling for low toroidal mode numbers
n < M, to tokamak-like poloidally localized ballooning modes with weak toroidal mode cou-
pling for moderate toroidal mode numbers n ~ M, and finally to both poloidally and toroidally
localized ballooning modes purely inherent to three-dimensional systems with strong poloidal

and toroidal mode couplings for fairly high toroidal mode numbers n > M. Strong toroidal
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mode coupling, in cooperation with the poloidal mode coupling, makes the perturbation lo-
calize to flux tubes.

In the helicity-dominant Mercier-unstable equilibria, the pressure-driven modes change
from interchange modes, with negligible toroidal mode coupling for n < M or with weak
toroidal mode coupling for n ~ M, directly to poloidally and toroidally localized ballooning
modes purely inherent to three-dimensional systems with strong poloidal and toroidal mode
couplings for n > M.

In the Mercier-unstable equilibria, interchange modes with low toroidal mode numbers
n < M, experiencing the unfavorable magnetic curvature with its local structure averaged out,
occur for both toroidicity-dominant and helicity-dominant equilibria. For fairly high toroidal
mode numbers n > M, the perturbations can feel the fine local structure of the magnetic
curvature due to helicity and also the local magnetic shear is reduced more or less in both types
of equilibria, and consequently poloidally and toroidally localized ballooning modes inherent
to 3-D systems are destabilized for both toroidicity-dominant and helicity-dominant Mercier-
unstable equilibria. The situation for moderate toroidal mode numbers n ~ M is different. The
local magnetic shear is more reduced in toroidicity-dominant Mercier-unstable equilibria than
in helicity-dominant Mercier-unstable equilibria, and also the modes with moderate toroidal
mode numbers n ~ M can not feel the local structure of the normal magnetic curvature due
to helicity effectively. Thus, tokamak-like poloidally localized ballooning modes with a weak
toroidal mode coupling can be easily destabilized for toroidicity-dominant Mercier-unstable
equilibria, and interchange modes, driven by the average unfavorable magnetic curvature and
not experiencing the effect of toroidal mode coupling, can be destabilized for helicity-dominant
Mercier-unstable equilibria. Since the normal magnetic curvature becomes more unfavorable
on the inner side than on the outer side of the torus by the Shafranov shift, the interchange
modes are localized on the inner side of the torus for both types of equilibria. This type of
interchange mode is anti-ballooning with respect to the poloidal mode coupling.

In both types of Mercier-unstable equilibria, the pressure-driven modes, i.e., ballooning
modes and interchange modes, become more unstable and more localized both on flux tubes
and in the radial direction, and have stronger toroidal mode coupling through the normal
magnetic curvature due to helicity, as the typical toroidal mode numbers increase. All of these
properties of the pressure-driven modes in two types of Mercier-unstable equilibria are quite

consistent with the conjecture from local mode analysis.
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