Gyrokinetic Analysis of
Ion Temperature Gradient Modes

in Helical Systems

—ANYANRICEIIZAF VEERET— FOD v/ OEB OB

28 #®

Tohru Kuroda

BEMRKERKE BHWHEARE ZRSEFEER
Department of Fusion Science
School of Mathematical and Physical Science
The Graduate University for Advanced Studies
ER+=F=A

March, 2000




Abstract

The ion temperature gradient (ITG) mode is one of drift wave instabilities, which is con-
sidered to cause the anomalous transport of the ion thermal energy in high temperature
plasmas. The purpose of this thesis is to clarify effects of magnetic configurations on the
ITG mode based on the gyrokinetic model. The gyrokinetic equation for ions is used to
consider kinetic effects such as finite gyroradii and wave-pariticle interactions. Also, the
assumption of adiabatic electrons and the quasineutrality condition are used to obtain the
dispersion relation. Phase mixing due to V B-curvature drift motion is investigated in detail
in the local approximation. Effects of magnetic configuration on nonlocal mode structure
are studied in straight and toroidal helical systems.

In the local approximation, initial value problem of the ITG mode is solved. Due to the
toroidal magnetic drift, the Laplace-transformed density and potential perturbations have a
branch cut as well as poles on the complex-frequency plane. The inverse Laplace transform
shows that the temporal evolution of the density and potential perturbations consists of the
normal modes and the continuum mode, which correspond to contributions from the poles
and the branch cut, respectively. The normal modes have exponential time dependence
with the eigenfrequencies determined by the dispersion relation while the continuum mode
shows power-law decay oscillation. For the stable case, the long-time asymptotic behavior
of the potential and density perturbations is dominated by the continuum mode which

decays slower than the normal modes.



Next, poloidal localization of the mode structure is studied by means of the ballooning
representation. In the first place, the straight helical system is considered in order to focus
on the helical ripples’ effects. The magnetic shear is assumed to be negative and the poloidal
period number L is taken as L = 2. Then, the helical ripples with a larger toroidal period
number M reduce the growth rate of the ITG mode. This stabilizing eftfect is understood
based on the structure of the eigenfunction along the field line as follows. As M increases,
the connection length between the good and bad curvature regions becomes shorter and
the eigenfunction enters the good curvature region, which leads to the stabilization. For
large M (M ~ 10), unstable ITG modes are driven only by the very large temperature
gradients.

Finally, toroidal helical systems are considered, in which toroidicity and helical ripples
exist simultaneously. Equilibrium plasma parameters are chosen in reference to the LHD
experimental result{L = 2, M = 10). Because of the toroidal destabilization, the critical
temperature gradient in which ITG mode becomes unstable is smaller than for the straight
helical system. Numerical results suggest the existence of unstable ITG modes in LHD.
The good curvature region is generated even in the outer torus region due to the helical
ripples, which results in the reduction of growth rate compared to the tokamak cases
without helical ripples. Also, dependences of the I'TG mode properties on various plasma
equilibrium parameters such as the helical ripple intensity, safety factor, magnetic shear,

ballooning angle, poloidal wavenumber, temperature and density gradients are investigated.
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Chapter 1

Introduction

Magnetic Plasma Confinement is one of the means to realize controlled nuclear fusion.
Macroscopic behaviors of a plasma in a magnetic toroid are well described by the magne-
tohydrodynamics (MHD) [1]. The MHD theory is extensively utilized to design favorable
magnetic configurations, in which stable plasma equilibria are sustained. Even if a plasma
is MHD-stable (or macroscopically stable), plasma particles and heat leak out in diffusive
process, which is a subject of transport theories. The classical and neoclassical transport
theories (2, 3, 4, 5] are a well-established framework which explains particles’ scattering
processes due to the Coulomb collisions. However, particle and heat fluxes observed in
fusion plasma experiments are significantly larger than those predicted by the collisional
(classical and neoclassical) transport theories and are called the anomalous transport [6].
The anomalous transport is generally believed to result from fluctuations (or turbulence)
driven by various microinstabilities, which exist in inhomogeneous plasmas. The ion tem-
perature gradient (ITG) mode is one of drift wave instabilities [7], on which many works
have been done as a cause of the anomalous ion heat transport in high temperature core

regions of tokamak plasmas [8].

It is well-known that there are two branches of the ITG mode: the slab ITG mode and

the toroidal ITG mode [9]. Simple derivation of the dispersion relation for the slab and
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toroidal ITG modes can be done by the fiuid description, which is valid for waves with
long wavelengths and higher phase velocities than the particles’ thermal velocity. Then,
the slab I'TG mode arises as the drift-acoustic wave branch and its growth rate is roughly
given by Ymar = (kﬁcfw,.p,-)” 3, where k| is the parallel wavenumber, C; = (T./ m;)/? is the
sound velocity and w.,; = (kyc/e;Bn;)(dp;/dz) is the ion pressure gradient drift frequency.

The toroidal ITG mode is driven by the ion V B-curvature drift motion combined with the

ion temperature gradient, and its growth rate is written as Ymqz = \/w.p,-wp,-/(l + k2 p2),
where wp;, = (2k,cT})/(e;BR) is the ion toroidal drift frequency. Because of its larger

growth rate, most recent studies are concerned with the toroidal ITG mode.

Recently, the Large Helical Device (LHD) (10, 11, 12, 13, 14] of National Institute for
Fusion Science succeeded in generation of the high ion temperature T; > 3 keV by means
of neutral beam injection [15]. Observed ion temperature profiles are steeper than density
profiles. Thus, the ITG modes are expected to become unstable and drive the anomalous

transport in helical systems as well.

The purpose of this thesis is to investigate the linear properties of the ITG mode in
toroidal systems including helical devices. In order to accurately estimate the ITG mode
properties (the real frequency, growth rate and mode structure), we need to take account
of kinetic effects such as finite gyroradii and wave-particle interactions. For that purpose,
we describe the ion dynamics based on the gyrokinetic equation in which the magnetic

configuration effects are included through the ion V B-curvature drift velocity.

This thesis is organized as follows. In Chapter 2, the initial value problem of the toroidal
ion temperature gradient mode is studied based on the Laplace transform of the 1on gyroki-
netic equation and the electron Boltzmann relation with the charge neutrality condition.
Due to the toroidal magnetic drift, the Laplace-transformed density and potential pertur-
bations have a branch cut as well as poles on the complex-frequency plane. The inverse
Laplace transform shows that the temporal evolution of the density and potential per-

turbations consists of the normal modes and the continuum mode, which correspond to
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contributions from the poles and the branch cut, respectively. The normal modes have
exponential time dependence with the eigenfrequencies determined by the dispersion rela-
tion while the continuum mode shows power-law decay oscillation. For the stable case, the
long-time asymptotic behavior of the potential and density perturbations is dominated by
the continuum mode which decays slower than the normal modes.

In Chapter 3, ion temperature gradient (I'TG) modes in helical systems are studied.
The gyrokinetic equation for ions, the adiabatic assumption for electrons, and the charge
neutrality condition are used with the ballooning representation to derive a kinetic integral
equation, which is solved numerically to obtain the linear growth rate, the real frequency,
and the eigenfunction of the I'TG modes. Using a simple helical field model, cases with
L =2and 2 < M < 10 are investigated where L. and M are the poloidal and toroidal
polarity numbers characterizing the helical field ripple, respectively. The effects of the
toroidal polarity number M on the dispersion relation and the mode structure of the ITG
modes are clarified.

In Chapter 4, linear properties of 1on temperature gradient {ITG) modes in helical sys-
tems are studied. The real frequency, growth rate, and eigenfunction are obtained for
both stable and unstable cases by solving a kinetic integral equation with proper analytic
continuation performed in the complex frequency plane. Based on the model magnetic con-
figuration for toroidal helical systems like the Large Helical Device (LHD), dependences
of the ITG mode properties on various plasma equilibrium parameters are investigated.
Particularly, relative effects of V B-curvature drifts driven by the toroidicity and by the
helical ripples are examined in order to compare the ITG modes in helical systems with
those in tokamaks.

Finally, the main results obtained in this thesis are summarized in Chapter 5.




Chapter 2

Local Analysis of ITG Modes

2.1 Introduction

Many works have been done on the ion temperature gradient mode (ITG mode) [8, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25] because it is considered as the most likely instability to
cause the anomalous ion thermal transport observed in high ion temperature plasmas. It
is well-known that there are two branches of the ITG mode: the slab ITG mode and the
toroidal ITG mode [9]. Because of its larger growth rate, in the present study as in most
recent works, we are concerned with the toroidal ITG mode which is driven by the ion

temperature gradient combined with the toroidal magnetic V B-curvature drift.

The kinetic dispersion relation for the toroidal ITG mode including effects of the finite
gyroradius and the toroidal resonance are derived by using the gyrokinetic equation [26, 27]
for ions and the Boltzmann distribution for electrons with the charge neutrality condition.
Due to the quadratic form of the parallel and perpendicular velocities in the V B-curvature
drift, the toroidal resonance has qualitatively different characteristics from the parallel drift
resonance in the slab case. Thus, when we define the dispersion function on the complex-
frequency w-plane for the toroidal ITG mode, its analytic continuation requires a branch

cut on the Im(w) < 0 plane [28, 29]. We need to take account of this property caused
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by the toroidal resonance in order to obtain the complex eigenfrequencies especially with
negative imaginary parts (or negative growth rates) from the dispersion relation [29]. These
eigenfrequencies w determine the temporal behavior of the normal modes as & exp(—iwt).
However, as shown by Kim et al. [29], the ballistic response in the presence of the toroidal
resonance shows a slow power-law decay rather than the exponential decay of stable normal
modes. Therefore, description of the toroidal I'TG mode only by the normal modes seems
to be incomplete especially for stable systems. The power-law decay oscillation may be
called continuum modes which are required for the complete representation of the initial

value problem.

In this chapter, we direct our attention to rigorous description of temporal evolution of
the toroidal ITG mode including both exponential and power-law dependence. For that
purpose, the initial value problem of the toroidal ITG mode is explicitly formulated based
on the Laplace transform with respect to time. We also use the local approximation to
consider the stability for the Fourier component with specified parallel and perpendicular
wavenumbers. We treat appropriately a Landau contour and a branch cut for analytic
continuation on the complex w-plane by following Kim et al. [29]. Then, we show that
the density and potential perturbations of the toroidal ITG mode contain two different
types of temporal behavior: the normal modes and the continuum mode which correspond
to contributions from the poles and the branch cut of the Laplace-transformed potential
function on the complex w-plane, respectively. The continuum mode is shown to decay by
power law like the ballistic response and dominates the asymptotic behavior of the toroidal

ITG mode for the stable case.

This work is organized as follows. In § 2.2, the ion gyrokinetic equation and its Laplace
transform are presented. The ballistic response is derived from the propagator in the
gyrokinetic equation, and the density perturbation decay due to the phase mixing by the
parallel and toroidal drift is shown. In § 2.3, the toroidal ITG mode is formulated as

an initial value problem. Analytic continuation on the complex-frequency plane for the




case with the toroidal magnetic drift is reviewed. Temporal evolution of the density and
potential perturbations of the toroidal ITG mode is shown to consist of the normal modes
and the continuum mode. In § 2.4, the dispersion relation and the initial value problem of
the ITG mode are numerically solved to show the behavior_ of the normal and continuum

modes in some examples. Finally, conclusions are given in § 2.5. These works are published

in [30].

2.2 JIon Gyrokinetic Equation

2.2.1 Laplace transform of the gyrokinetic equation

The ion distribution function in the {#,v) phase space is divided into the equilibrium
and perturbation parts as f; = ngFay + 4f; where ng is the equilibrium density, Fyy =

3/2y72 exp(—v?vi,) is the Maxwellian distribution function, and vr; = (27;/m;)"/? is the

.
thermal velocity for the ions with the mass m;, the temperature T}, and the electric charge

e. In the magnetic field B, the perturbation part § f; with the perpendicular wavenumber

vector k; is written as

5fl-=—%?n0FM+he‘iki‘p (2.1)

where ¢ represents the electrostatic potential, p = b x v/Q; (b = B/B) denotes the ion
gyroradius vector, and ; = eB/(mjc) is the lon gyrofrequency. Here, the first and second
terms in the right-hand side of eq. (2.1) represents the adiabatic and nonadiabatic parts,
respectively. The velocity vector v is written as v = v b+ v (e; cos€ + ezsinf) where £
is the gyrophase and (e;, ez, b) are the unit vectors which forms a right-hand orthogonal
system at each point. The ion nonadiabatic distribution function h is independent of
the gyrophase and is described in the linear, collisionless, and electrostatic case by the

gyrokinetic equation [26, 27] as

a . . a .
(E + iwp + 1k||v||) h= (a + 1w..T) %ﬁ Jolk1p) noFas (2.2)




where Jp is the Bessel function of order zero, wp = &p(vi/2 + vjf)/v%; is the jon VB-
curvature drift frequency, and w,r = w1l + 7:{(v/vr;)* — 3/2}]. The characteristic ion

Yw,. is the ion

V B-curvature drift frequency is given by wp = 2e,w.; where w,; = —7.
diamagnetic drift frequency and ¢, = L,/ R is the ratio of the equilibrium density gradient
scale length L, = ~(dInng/dr)~! to the magnetic curvature radius R. Here r. = T, /T is
the ratio between the electron and ion temperatures, w., = ckgT./(eBL,) is the electron
diamagnetic drift frequency, and kg is the poloidal wavenumber. The ratio of the ion tem-
perature gradient to the density gradient is given by 7; = dInT;/dlnng. In the gyrokinetic
equation eq. (2.2), we have used the local kinetic approximation to replace the parallel drift
operator v b-V with ikjv) in terms of the parallel wavenumber k). Here we assume that the
perturbation is localized in the bad curvature region of the magnetic confinement system
and, in the case of tokamaks, the V B-curvature drift frequency wp = 2¢,w,; corresponds
to the value at the outermost point of the magnetic field line on the toroidal surface. Using
this local approximation for the toroidal system with a large aspect ratio, the perpendicular

wavenumber is approximately given by the poloidal wavenumber as k) ~ k;.

In order to treat the initial value problem, it is convenient to introduce the Laplace

transform
hw)= [ di h{t)e™! 2.3
(@) = [ de hit)e (23
and rewrite eq. (2.2) as
W—w.ar €P ,(5f,-(t=0)eikl‘P)
_ e 9.
h(w) o—wn ko T, JonoFyp + 1 p—— (2.4)

where (- - -} denotes the gyrophase average.

2.2.2 Ballistic response

Here we consider the ballistic response to the initial perturbation in the presence of the
toroidal resonance, which is determined by the propagator in the left-hand side of the

gyrokinetic equation eq. (2.2). The same problem was already treated by Kim et al. {29].
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although it is reviewed here for comparison to the full initial value problem of the toroidal
ITG mode shown later. Let us put ¢ = 0 to neglect the right-hand side of the gyrokinetic
equation eq. (2.2). Then, from the inverse Laplace transform of eq. (2.4) or directly from

eq. (2.2) with ¢ = 0, we obtain

. [ dw h(t =0)eiet
h(t) = —
(®) 1/6‘271’ w——wp—k“v“

h(t = 0) exp[ —i(wD + k”U“) t ] (25)

The ion density perturbation is given by

ni(t) = ] P Jo(kLp) h(t)

_ /. fd3 kJ.P t—U) —iwt
W —wp— k"v”

- f v Jo(kLp) h(t = 0) exp[—i(wp + kyvy)t].

(2.6)
We find in the next section how to take the contours ¢ and L in eqs. (2.5) and (2.6).
Here, we assume the initial condition to be given by

where C), is a constant. The above form is taken in order to simplify comparison to the
case of the initial value problem including self-consistent potential fluctuations considered
in the next section. Then we obtain from egs. (2.6) and (2.7},

on(t) _ Tolbi/(1 + iwpt/2)] exp|— ”vT,ti’/4(1 + idpt)]
5”(0) - Fo(bi) (1 + let/Q)( + 1th)1/2

(2.8)

where b; = k2 p%./2, pk. = v3./Q% = 2¢m,T:/(e2B?), To(b;) = Io(b;) exp(—b;), and I is
the modified Bessel function of order zero. In the limit of k£, p7; & +0, we have Iy, — 1

and eq. (2.8) reduces to the result obtained by Kim et al. [29]. The temporal dependence
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of the density perturbation dn(t) divides into two limiting cases as

'3

exp(—k“%%-t?/ﬁl)

1

for |wpt] <1

2 exp [—kﬁv%i/(“w%)] eXp [ikﬁ”%it/(‘l@b)]
Fo(b)(idpt)3/?

| for |wptf > 1.

For |&pt| < 1, the density perturbation decays exponentially due to the phase mixing
by the parallel drift provided |kyvril > 20p|. On the other hand, for |&pt| > 1, the
phase mixing is dominated by the toroidal magnetic V B-curvature drift and the density

3/2

perturbation decays according to the power law o 7>/ with oscillation at the frequency

wyr = —kifvg,;/(40p) which we call the branch frequency.

2.3 Time Evolution of the Toroidal ITG Mode

2.3.1 Formulation of the toroidal ITG mode as an initial value
problem

In order to describe the toroidal ITG mode as an initial value problem, we use the Laplace-
transformed ion gyrokinetic equation eq. (2.4). Furthermore, assuming the electron density

perturbation én. to satisfy the Boltzmann relation

dn. e

o - T (2.10)
and using the charge neutrality condition

dn, = on, (2.11)
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we obtain

edlw) _ I(w)
i Toy (2.12)

where

= /dfiv 1Jo(kLp)(no~'dfi(t = 0) elkLip )

W —wn — k"U”

- o [ op, W —wer) S (ki) Fu
Dw) = 147, fd L — o (2.14)

(2.13)

The dispersion relation for the toroidal ITG mode with k = kjb+k_ is given by D(w) = 0.
The time evolution of the electrostatic potential is given by the inverse Laplace transform
of ¢(w) in eq. (2.12) as
o) = [ 2 glw) e (215)
S JLow '
where L is a contour which lies above all of the singular points of ¢(w) on the complex w

plane. Also, substituting eq. (2.12) into eq. (2.4) and taking its inverse Laplace transform,

we can obtain the time evolution of the nonadiabatic distribution function h(t).

2.3.2 Analytic continuation on the complex-frequency plane

In order to obtain ¢(w) for any complex-valued frequency w, we need to evaluate analytical
continuation of the functions I{w) and D(w) accurately. For that purpose, we follow Kim

et al. [29] and consider the velocity-space integral in the form of

P() = [~ duy [ vidv, g, vy, vs) (2.16)

w+av; 2+ bvuz — oy
where a, b, and ¢ are assumed to be real constants. The functions D(w) and I{w) both
contain the same form of functions as P{w). Also assuming a and b to be positive, we

transform the velocity-space variables as
v = Vav, vy = Vb (v” - %) (2.17)

and
v = (vl 4 (y)? p=yfY (2.18)
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w; v

oo 0
E 0)! | E U'r
i' : r — E e
m : v (_0{)1.’2
:bram:h
Jcut
Fig. 1(a) Fig. 1(b)

Figure 2.1: Motions of the complex frequency w' = w — ¢?/4b on
the complex w'-plane (a) and the corresponding pole (—uw')!/2 with
Re(—w')/? > 0 in the complex v"-plane (b). When ' moves from
w! = Im(w') > 0 to w! < 0 across the w}-axis with w, = Re(w') < 0,
the pole (—w’)!/? with Re(—w')}/? > 0 crosses the v/-axis with
v = Re(v') > 0. A branch cut is taken from w’ = 0 along the

wi-axis with w} < 0 as shown by a dashed line in (a).

Then, the function P(w) is rewritten as

Iy i
where we have defined ' = w—c?/4band G(w,v’, ) = glw, (v, p), v (v, )] with yy(v', )
and v, (v, u) given by the relations in eqgs. (2.17) and (2.18). Apparently, the integrand has
two poles v' = £(—w')/? on the complex v'-plane. When w’ moves from w} = Im(w') > 0
to w| < 0 across the w/-axis with w/ = Re(w') < 0, one of these poles (—w')!/? with
Re(—w')'/? > 0 crosses the v/-axis with v, = Re(v') > 0, which corresponds to the occur-
rence of resonant particles. These motions of w' and a corresponding pole {—w')!/? with
Re(—w')2 > 0 on the complex v'-plane are shown in Figs. 2.1 (a) and (b), respectively.
This crossing requires the residue of the integrand at the pole to be included in P(w) for
its analytic continuation as shown in Fig. 2.1 (b).

On the other hand, when w’ moves from w! > 0 to w! < 0 across the w/-axis with w] > 0,
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the two poles neither cross the v/-axis nor make any residue’s contributions to P(w). Then,
we make a branch cut from ' = 0 along the wi-axis with w! < 0 as shown in Fig. 2.1 (a)

and write P(w) as

Po(w) in I, II, and IV
P(w) = (2.20)

Po(w) + Ap(w) in III

where I-IV represent the regions on the complex w’-plane shown by Fig. 2.1 (a) and Po(w)
denotes the contribution from the straight integration contour, which is given by eq. (2.19)
with the v'-integration along the v’-axis with v/ > 0. The residue’s contribution Ap(w) is

written as
( 1/2

Ap(w) = —wi

/ dy Glw, v’ = (—")Y?, ). (2.21)

The condition w’ = 0 gives w = ¢? /4b = wy, which is calied the branch frequency. In the

limit of w — w;,, we obtain from egs. (2.19)-(2.21)

Po(w) = P(wy,) = fj d,u/ dv'Glw, V', 1) (2.22)
Wy — w)M?
Ap(w) ~ —7r1( bra\/_ / dp Glw,v' =0, 4. (2.23)

2.3.3 Normal modes and a continuum mode

For analytic continuation of ¢{w) given by eq. (2.12), we need to take account of the
poles defined by D(w) = 0 and the branch cut growing from the branch frequency wy,.
Comparing eqs. (2.13) and (2.14) with eq. (2.16), we obtain 2¢ = b = —dp/vy; and
¢ = kj where &p = 2epw.i < 0 is assumed. Then, the branch frequency is written as
=c?/4b = -kIUTt /(4&p). For evaluating the inverse Laplace transform eq. (2.12), we
take the integration contour L as shown in Fig. 2.2.
For t > 0, ¢(t) is written as the sum of the contributions from the poles (normal modes)

and the branch cut:
B(t) = ¢p(t) + dur(t) (2.24)
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normal mode

v
>
~

v

branch cut

Figure 2.2: The integration contour L on the complex w-plane
for evaluating the inverse Laplace transform eq. (2.12). Dominant

contributions to the integral are made by poles and a branch cut.

where the poles’ (or normal modes’) contribution is given by

e(,ﬁp w" —lw t
= — (2.25)
Xn: D) (@n)
and the contribution from the branch cut is written as
edpe(t) d_we—iwt ( lo+ A Iy )
T; o, 2w Do+Ap Do
L 0 dw; | DeA;— IAp
= e """"t/ —e“"t[ 9 ] . 2.26
—oo 2T Do(Do + Ap) wEwp,iw; ( )

The normal-mode frequencies w, in eq. (2.25) are determined by D(w,) = 0. In eq. (2.26),
the branch cut Cj, is taken as the straight line path from wy — ioc to wy — 10 and the
functions Dg(w), Ip(w), Ap(w), and Aj(w) are defined in the same way as FPy(w) and Ap(w)
in egs. (2.20) and (2.21). Thus Ap(w) and Aj(w) represent contributions from the resonant

pole in the velocity space shown by Fig. 2.1 (b) and are written as

_ 1/2
Ay = 471'2% [ dp [ (5fi(t =0)elksP )] (2.27)
v'=y
and
AWy — W 1/2 !
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1/2 and we have transformed the velocity variables as in

respectively, where v = (wy, — w)
egs. (2.1-75 and (2.18).

As shown in egs. (2.22) and (2.23) in the limit of w — wy,, we have Do(w) — D(ws,),
Ip(w) = D(ws,), Ap(w) ~ Cplwy, —w)"/?, and Aj(w) =~ Cr(wy, — w)'/? where Cp and C;
are constants. Then, from eq. (2.26), we obtain the asymptotic behavior of the branch cut

contribution to the potential as

edyr (1) ~ -3/ 2gmiwprt e/t l Cr__ CD[(%'Z] (2.29)
T; 4y/m | Dlwer)  {D(ws)}
for ¢ 3» —1/&p, where
8n? ol kv
C; = Wﬂo (5fl(t =0,v; = O,U” = —m 3
8rl/2] kﬁv%{ 3
= — r — Wai 1 v - 5
o = g e {4n (G -3
kivi.
[k
exp (_E) | (2.30)

Noting that én; = én. = npe¢p/T, and comparing eq. (2.29) with eq. (2.9), we see that, for
the initial value problem of the toroidal ITG mode, the potential and density perturbations
derived from the branch cut integration show the same form of asymptotic behavior
t3/2e~iwert 45 the the density perturbation for the ballistic mode without interaction with
the potential. [If we put Do(w) = 1 with Ap = 0 in eq. (2.26), the ballistic mode case in
eq. (2.6) is reproduced.]

Now we find from egs. (2.24), (2.25), and (2.29) that the long-time asymptotic behavior
of the potential and density perturbations for the toroidal ITG mode is determined by
the normal mode with the largest positive growth rate for the unstable case while it is
dominated by the continuum mode for the stable case in which all normal modes decay
faster than the continuum mode.

It should be remarked here that there is some arbitrariness about how to make a branch
cut from the branch frequency. Different branch cuts make differences in definitions of ¢,(¢)

and ¢y, (t) because of changes in complex-frequency regions where analytic continuation of
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D(w) and I{w) is defined. However, it is obvious that the total perturbation ¢(t) =
&,(t) + ¢oe(t) and its asymptotic behavior given by eq. (2.29) for the stable case should be

independent of the way to make a branch.

2.4 Numerical examples

2.4.1 Dispersion relation

Following the prescription given in the previous section, we can calculate the dispersion
function [ w) analytically continued on the whole complex w-plane. Here the dispersion
relation }w) = 0 is numerically solved to obtain the eigenfrequency w, = w, + i of the
normal mode. Figure 2.3 shows the resultant normalized growth rate L,v/vr; and real
frequency L,w,/vr; of the toroidal ITG mode as a function of the normalized poloidal
~ wavenumber kgpr; for 7. = 1, ¢, = 0.25, n; = 2.5, and kR = 1/3, 1/2, 1. We can see
that, owing to the proper analytic continuation, the growth rate and real frequency are
smoothly continued info the stable regions where the growth rate is negative. The stable
regions are found for both small and large poloidal wavenumbers. Also, the growth rate
decreases with the parallel wavenumber increased. For all curves shown in Fig. 2.3, the real
frequency is smaller than the ’branch frequency so that the toroidal resonance is essential
to the dispersion relation. The growth rate and real frequency for the nonresonant mode

are not shown in Fig. 2.3.

Figure 2.4 shows the normalized growth rate L,v/vr; (top) and real frequency Lyw,/vr;
(bottom) of the toroidal ITG mode as a function of 5; for 7, = 1, kgpy; = 0.75, kR =1/2,
and €, = 0.1, 0.25, 0.4. We can see that the growth rate increases with increasing n; and
that the real frequency has the negative sign corresponding to the ion diamagnetic rotation
for larger values of 7. Since we are able to calculate negative growth rates, we can clearly

identify the critical n; value which is shown in Fig. 2.4 to increase with increasing ¢,,.
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ks pr,

Figure 2.3: The normalized growth rate L,v/vy; (top) and real fre-
quency L,w,/vr; (bottom) of the toroidal ITG mode as a function
of the normalized poloidal wavenumber kgpr; for 7. = 1, ¢, = 0.25,

n; = 2.5, and kR = 1/3,1/2, 1.
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i
Figure 2.4: The normalized growth rate L,vy/vr; (top) and real
frequency L,w,/vr; (bottom) of the toroidal ITG mode as a func-
tion of n; for 7, = 1, kgpr; = 0.75, kR = 1/2, and ¢,, = 0.1, 0.25,

0.4.
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2.4.2 Solution of the initial value problem

Here let us consider an example of the initial value problem in which the initial perturbation
is proportional to Maxwellian. Then, we use the same initial condition for the nonadiabatic
distribution as in eq. (2.7) to obtain a compact expression for the gyrophase-averaged initial

distribution function in eq. (2.13) as
(8fit=0) " RePy = ) Jo(kip) Far dn(t =0) (2.31)

with

Cp= -7+ (1+7)/To(bi) (2.32)

where eqs. (2.1}, (2.10) and (2.11) are used. We have Cy — 1 in the small gyroradius
limit &, pr; — +0. The density and potential perturbation at { > 0 are given by using
eqs. (2.13), (2.14), (2.24)-(2.28), and the initial condition eq. (2.31).

Figure 2.5 shows time evolution of the toroidal ITG mode for the stable case where
. =1, ¢ = 0.25, 5, = 2.5, kyR = 0.5, and kgpp; = 0.28. In this case, the eigenfrequency
of the normal mode and the branch frequency are given by L,w,/vr; = 0.024 —0.0191 and
Lowy, /v7; = 0.056. The potential amplitudes of the normal mode ¢,(t) (a solid curve) and
the continuum mode ¢, () (a dotted curve) are shown in Fig. 2.5 (a). The total potential
d(t) = ¢p(t) + Pur(t) is shown in Fig. 2.5 (b). The asymptotic behavior is well described by
the analytical result given by eq. (2.29) which is shown by the dashed line in Fig. 2.5 (b).
The cosine of the phase of the potential ¢(¢} is given in Fig. 2.5 (¢) which clearly shows
the change from the normal mode frequency to the branch frequency. Note that Figs. 2.5
(a)—(c) also show the behavior of the density perturbation because én. = dn; = noed/T..

We find from these figures that, for the stable case, the temporal behavior of the ITG
mode is described by the exponential dependence of the normal mode only near the initial
time although the long-time asymptotic behavior is dominantly determined by the power-

law decay of the continuum mode.
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Figure 2.5: Time evolution of the toroidal ITG mode for the stable
case where 7, = 1, ¢, = 0.25, n; = 2.5, kR = 0.5, and kpp7; = 0.28.
{(a) The potential amplitudes of the normal mode ¢,(¢) (a solid
curve) and the continuum mode @, (t) (a dotted curve). (b) The
total potential ¢(t) = @,(f) + ¢4 (t) normalized by the initial value
@(t = 0). (c) The cosine of the phase of the potential ¢(¢). Here the
eigenfrequency of the normal mode and the branch frequency are
given by L,w,/vr; = 0.024 — 0.019i and L,w;. /vy, = 0.056. The
dashed line in (b) represents the analytical result given by eq. (2.29)

for the asymptotic limit.
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Generally, the number of the normal modes for given parameters is more than one. Fig-
ures 2.3 and 2.4 show the growth rate and real frequency for the most unstable (or the least
stable) normal mode. For the parameters used in Fig. 2.5, there exist an infinite number
of stable normal modes with eigenfrequencies L,w,/vr; = 0.024 —0.019i, -0.073 - 0.1031,
—0.463 — 0.5651, - --. However only the least stable normal mode is used in Fig. 2.5 since
the results in Fig. 2.5 change little even if other rapidly decaying normal modes are added.
Although the numerical time range may seem to be too long for collisionless assumption to
be valid, it is much shorter than ion collision time (103L,,/vr; ~ 1073 sec « 73; ~ 107 %sec)

for typical reactor parameters with T ~ 10 keV,n ~ 10®*m~3 L, ~ Im.

2.5 Conclusions

In this chapter, temporal evolution of the toroidal ITG mode has been studied by solving the
initial value problem of the ion gyrokinetic equation combined with the electron Boltzmann

relation and the charge neutrality condition.

For the toroidal ITG mode, temporal dependence of the density and potential perturba-
tions is described by two types of behavior. One is well-known normal modes which change
exponentially in time. Their frequencies and growth rates are determined by the disper-
sion relation and correspond to the poles of the Laplace-transformed potential function on
the complex. frequency plane. The other type is a continuum mode which is given by the
integration of the Laplace-transformed potential function along a branch cut. Occurrence
of the branch cut is due to the quadratic velocity dependence of the toroidal V B-curvature
drift. The long-time asymptotic behavior of the continuum mode is characterized by os-

3/2

cillation at the branch frequency and power law decay o ¢7°/“. This behavior is the same

as that of the ballistic response obtained by the propagator of the gyrokinetic equation

without taking account of interaction with the potential.

If the normal mode analysis shows the system to be unstable, the long-time behavior
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is dominantly described by the normal mode with the largest growth rate. On the other
hand, when the system is stable, only the normal modes are not enough for describing the
temporal evolution of the toroidal ITG mode. In the stable case, the system is eventually
dominated by the continuum mode since all the normal modes decay more rapidly.

In the future, we consider the fields associated with the test gyrokinetic particle. The
noise associated with an ensemble of statistical independent dressed test gyrokinetic par-

ticles may be of importance for computer simulations of ITG turbulence.
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Chapter 3

ITG Modes in Straight Helical

Systems

3.1 Introduction

For toroidal systems such as tokamaks and stellarators, the properties of the ITG modes
are significantly affected by the magnetic field geometry through the VB and curvature
drift motion of particles. For tokamaks, the magnetic field strength is given by the large-
aspect-ratio approximation as B/By = 1 — ¢, cos § where § is the poloidal angle and ¢, =
r/R is the inverse aspect ratio representing the toroidicity where r and R denote the
minor and ma.jof radii, respectively. Many studies have been done on the ITG modes
in tokamaks (8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. In this case, the ITG modes are
confined mostly in the outside of the torus, —7/2 < # < 7/2, which corresponds to the
bad curvature region.

For helical systems, the magnetic field strength is approximately given by
B/By=1—€cos8 — ¢, cos(L — M(), (3.1)

where ( is the toroidal angle and the term with €, o< v¥ in the right-hand side represents

the helical ripple with the poloidal and toroidal polarity numbers denoted by L and M,
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respectively. For example, we have L = 2 and M = 10 for LHD [13] and L = 2 and
M = 8 for Compact Helical System (CHS) [31]. Since the helical magnetic ripple affects
the particles’ drift motion, the properties of the ITG modes stability in helical systems can
be different from those in tokamaks [32].

In this chapter, we investigate the properties of the ITG modes for the helical systems
with L = 2 and 2 €< M < 10 which are compared to the tokamak case. Especially, the

effects of the toroidal polarity number M on the dispersion relation and the mode structure

of the ITG modes are studied. This work is published in [33].

3.2 Kinetic ITG Mode Equation for Helical Systems

Here we consider a high-temperature collisionless plasma and assume that, in the presence
of the electrostatic perturbation ¢, the perturbed electron density is described by the adi-
abatic (or Boltzmann) response én. = (e¢¢/T.)ng. The perturbed ion distribution function
is written as 8f; = —(ed/T:)noFu + h exp(—i k, - p) where Fjy = =320l exp(—v?/vk;)
is the Maxwellian distribution function, vr; = (27;/m;)"/? is the thermal velocity for the
ions with the mass m; and the temperature T;, p = b x v/§}; (b = B/B) is the ion gyro-
radius vector, and §; = eB/(mc) is the ion gyrofrequency. The non-adiabatic part of the

distribution function k is determined by the linear gyrokinetic equation

(w —wp + i’U”b . V) h = (w - w,.T) %J@(klp)ngFM. (32)

Here w is the frequency of the perturbation, wp = k; - vp is the ion VB-curvature drift
frequency, Jo is the Bessel function of order zero, and w,r = wa[l+n:{(v/v7:)*—3/2}] where
n; = dInT;/dlung is the ratio of the ion temperature gradient to the density gradient,
W = =77 w,. is the ion diamagnetic drift frequency, 7, = T./T; is the ratio between
the electron and ion temperatures, w.. = cksT./(eBL,) is the electron diamagnetic drift
frequency, L, = —(dlnny/dr)~! is the density gradient scale length, and k4 is the poloidal

wavenumber.
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We use the ballooning representation [34, 35] and write the perpendicular wavenumber
vector as k; = ko(Va + 0, Vq) where ¢ is the safety factor, @ = { — ¢@ is the label for
magnetic field line, and k, = —n represents the toroidal mode number, which is related to
the poloidal wavenumber as ks = ng/r. In the present work, we assume that §; = 0. We
consider a large aspect-ratio and low [ toroidal system and use Eq. (3.1) to give the ion

V B-curvature drift frequency as

wp = 2(Ln/r)wulvj + v [2)/v3; [e{cos @ + §0sin b}

+ Lep{cos(L8 — M) + §0sin(LO — M) H (3.3)

where § = (r/q)dq/dr is the shear parameter.

Neglecting the trapped ions, integrating the gyrokinetic equation (3.2) along the field
line with the boundary conditions A(# — +oc) = 0, and substituting it into the charge
neutrality condition e¢/T. = dn./no = dn;/no = —ed/T; + [ d°vJo(kLp)h, we obtain the

integral equation which 1s written as

T. +oo dk'
14+ = ' -
(1+ 7)o = [ TRk K)6K) (3.4
with
K(k, k&) = — d T o= (b—k')2 /40
l/ w +a)\/x
w 3 ,(k k’) 2 k2 4+ k72
Xl L A Py S wrp) ( 51 + ).
ok, L

mt’o)] To(ky, k) (3.5)

where I; = L;(k K, /[(1 4+ a)7.]) ( = 0,1) are the modified Bessel functions of j-th order,
A = (weeT)?(S€n/q)? [ Tea, 6 = k/3ko, ¢ = Kk'[3ke, TolkL, k) = Lo(k k' [[(1 + a)7e]), k3 =
k2 4+ k* K2 = k3 + k%, and
a = 1-i2L,/r)T w0t/ (0 —0)
X (& [(§ + 1){sin® — sin8') — 5(6 cos @ — & cos §')]
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+(Len/(L — Mq)) [{3/(L — Mq) + 1}
x {sin((L — Mq)0 — Ma) —sin((L — Mq)§' — Ma))}
—5{0cos((L — Mg)0 — Ma) — & cos((L — Mq)¢' — Ma))}]).

(3.6)

Here the wavenumber variables ks, , and k' are normalized by p; (p, = y/2T./m./$;) and
e, o ¥ is used. The integral equation (3.4) with the boundary conditions ¢(8 — +oo) =0
determines the complex-valued eigenfrequency and eigenfunction of the ITG mode for the
helical system. If we put €5 = 0, the integral ITG mode equation (3.4) with Egs. (3.5) and

(3.6) reduces to the one given by Dong, et al. for the tokamak case [16].

3.3 Numerical Results

Here we numerically solve the integral equation (3.4) with the boundary conditions ¢(6 —
+00) = 0 to obtain the growth rate, the real frequency, and the eigenfunction of the ITG
mode for the L = 2 helical systems with various M numbers. Since we are concerned with
the effects of the helical ripple, we neglect the toroidicity by putting ¢; = 0 (straight helical
system) for simplicity. Typical parameters used here are ¢ = 2, kgpp; = 0.75, T;/T. = 1,
L./Ro =0.2, Lyer/r = 0.2, and § = —1 (negative shear). We also treat a single field line
labelled by a = 0.

Figure 3.1 shows the normalized real frequency w,/w.. and growth rate w;/w.. of the
ITG mode as a function of M for #; = 3,4,6,8. Other parameters used here are the same
as mentioned above. The real frequencies obtained here are all negative, which corresponds
to the ion diamagnetic rotation. The growth rate decreases with increasing M.

Corresponding to the cases for M = 2,3,4,5,8,10 in Fig. 3.2, the profiles of the eigen-
function ¢ and the helical drift frequency o cos[(L — M¢q)f] + $8sin[(L — Mq)#] in the
covering space (#-space) are plotted in Fig. 3.2. The regions where the helical drift fre-

quency is positive (negative} corresponds to bad (good) curvature. As M increases, the
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Figure 3.1: The normalized (a) real frequency w,/w.. and (b)
growth rate w;/w,, of the ITG mode as a function of M for var-
ious 7;’s. Here q = 2, kgpp; = 0.75, T;/T. = 1, L,/Ry = 0.2,

Loen/r=0.2,¢,=10,and § = —-1.
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eigenfunction ¢ becomes more rippled in the covering space and has a larger amplitude in
the good curvature region, which is related to the reduction of the growth rate for larger
M.

In the cases with large M like M = 8 (CHS) and M = 10 (LHD), a positive growth
rate for the ITG mode cannot be found for n;, < 4, with the other parameters as given
above. Unstable ITG modes are found for M = 8 and 10 with the very large temperature
gradient (or very small density gradient) 7; = 6,8 and they have more negative frequencies

and more rippled eigenfunctions as shown in Figs. 3.1 and 3.2.

3.4 Conclusions

In this chapter, the ITG mode equation was numerically solved for a straight helical
system with the poloidal period number L = 2, and the effects of the toroidal period
number M on the dispersion relation and the mode structure of the ['TG mode were studied.
Field ripple with larger M reduces the growth rate of the I'TG mode. This stabilizing
effect is understood based on the structure of the eigenfunction along the field line as
follows. As M increases, the connection length between the good and bad curvature regions
becomes shorter and the eigenfunction enters the good curvature region, which leads to the
stabilization. The stabilization by the short connection length is consistent with local
kinetic limit. Then, significantly large temperature gradients are necessary to destabilize
the ITG modes in straight helical systems with large M(~ 10).

The next chapter shows how the ITG mode characters are changed by the combination

of toroidicity and helical ripples.
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Figure 3.2: The profiles of the eigenfunction ¢ and the helical drift
frequency o cos[(L — Mq)8] + $0sin[(L — Mq)#] in the covering
space (0-space) for M = 2,3,4,5,8,10. Other parameters are the

same as in Fig. 3.1.
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Chapter 4

ITG Modes in Toroidal Helical

Systems

4.1 Introduction

In helical systems such as LHD, the drift motions are driven not only by the toroidicity
but also by the helicity (helical ripples). The magnetic field strength for the large aspect
ratio helical system is given by (3.1). For tokamaks (e;, = 0), the ITG mode is localized
like a Gaussian function in the outer region of the torus —=w/2 < 8 < m/2, which is
called the bad curvature region since the ion drift motions in this region destabilize the
ITG mode. This local destabilization is brought by the toroidicity. For helical systems
(ex # 0), the equilibrium depends not only on # but also on (, and the distribution of
bad curvature regions becomes more complicated due to the helicity combined with the
toroidicity. Another important feature of the helical systems is the negative magnetic
shear in contrast with the positive magnetic shear of the conventional tokamaks. These

characteristics are expected to bring about different effects on the I'TG mode.

In this chapter, in order to take account of kinetic effects such as wave-particle inter-

actions and finite ion gyroradius, we use the ion gyrokinetic equation [26, 27] to obtain
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the dispersion relation and the mode structure of the linear electrostatic ITG mode in the
LHD-like helical system, which is compared with the tokamak ITG mode. Recently, similar
gyrokinetic analyses have been done on the ITG mode in the helias configuration [32] and
in the quasi-axisymmetric stellarators [36]. Here, assuming the low 3(= the ratio of the
plasma pressure to the magnetic pressure) large aspect ratio toroidal plasma with a circular
cross section of the flux surface, we clarify the effects of the ion V B-curvature drift motion
in the helical system with the model magnetic field given by eq. (3.1).

The rest of this chapter is organized as follows. In § 4.2, the dispersion relation of the
linear ITG mode in the helical system is derived as a kinetic integral equation from the ion
gyrokinetic equation, the adiabatic electron assumption, and the quasineutrality condition.
In § 4.3, results from numerical solutions of the integral equation are presented to show
dependences of the ITG mode properties on various plasma equilibrium parameters such
as the helical ripple intensity, safety factor, magnetic shear, ballooning angie, poloidal
wavenumber, temperature and density gradients. In § 4.4, conclusions are given. These

works are to be published in [37].

4.2 Dispersion Relation

As seen in § 3.2, the kinetic integral equation to give the dispersion relation of the ITG
mode in the helical system is derived from the electron adiabatic response én. = e¢/T.
and the collisionless linear gyrokinetic equation for ions (3.2), and the quasineutrality. In
the present work, following Dong et al. [16] and Romanelli [21], effects of the magnetic
configuration are taken into account only through the ion VB-curvature drift motion.
Trapped particle effects are neglected here since mainly the passing ions drive the ITG
modes. We consider a large aspect ratio and low 3 toroidal system, for which the magnetic

field strength is given by eq. (3.1). Then, the ion V B-curvature drift frequency is given by

wp = 2(Lnfr)w.i( v +v1/2)/vE
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x | €{cosf + 3(8 — 0;)sin b}

+ Lep{cos(LO — M) + 5(0 — 6, )sin(L0 — M()} |, (4.1)

which reduces to (3.3) for the case of 8§, = 0. Here, the ballooning representation [34, 35] is
used. The perpendicular wavenumber vector is written as k; = k,(Va+8,Vyq), q(r) is the
safety factor, o = ( — ¢f is the label of the magnetic field line, and k, = —n represents the
toroidal mode number, which is related to the poloidal wavenumber as ks = ng/r. Using
the independent variables {q, a, @) as the spatial coordinates, (3.2) becomes the ordinary
differential equation with respect to 6.

Integrating the gyrokinetic equation (3.2) along the field line with the boundary con-
ditions A(# — Zoo) = 0, and substituting it into the quasineutrality condition én; =

~(ed/Ti)no + [ Pody(kp)h = n. = (ed/T.)ng, we obtain the integral equation,

T. voo dk
(1+7) etwik = [ Kk K)o, k) (4.2)
with

\/ie—lw‘r C—(k—k')2/4)\

Va(l +a)vx

0
K(k k') = —i / weedr

w 3 nlk-kK)? 2
8 [w.f*Jrl_fz"'Jr i T (i+a)
k3 4+ k72 kik, I ,
(1 To2(l+a)r.  (14a)rl Fo(k., k), (43)

where I; = I;(k, kK, /(1 + a)7.)) (1 = 0,1) are the modified Bessel functions of j-th order,
A = (weeT)?(3€:/9)?/7ea, €, = LR, k = $ko(0 — Ok), k' = 3ko(0" — 0k), Tolky, k) =
To{ kK /[(1 + a)m] ) expl —(K + K2)/2m(1 +a) ], K3 = K} + k%, K = k + K, and

¢ = 1=i2(Lo /1) weer /(6 6)
x ( e[ (3 + 1)(sin 0 — sin8') — 3{(6 — ;) cos & — (&' — B1) cos &'} |
+ (Lea(L— Moy | {52 - Mgy +1}
x {sin( (L — Mq)0 — Ma ) —sin( (L ~ Mq)¢' — Ma )}
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—é{(ﬁ—ak)cos( (L—Mq)— Ma)
—(8' = 8,) cos( (L — Mq)¥ — Ma )} ] ) .

(4.4)

Here, the wavenumber variables kg, k, and &' are normalized by p;' (p, = \/2T./mi/S%)

L is used.

and ep(r) o< r

The integral equation (4.2) with the boundary conditions ¢(§ — +o00) = 0 determines the
complex-valued eigenfrequency and eigenfunction of the TG mode for the helical system.
If we put ¢, = 0, the integral ITG mode equation (4.2) with egs. (4.3) and (4.4) reduces to
the one given by Dong, et al for the tokamak case [16]. Compared to the tokamak case,

the dispersion relation for the helical system depends on additional parameters e;/e;, L,

M, and a, Then, the eigenfrequency is written as
w=w(q,5 0, a, ks €, Te,€n/€, L, M). (4.5)

In the next section, eq. (4.2) is numerically solved to investigate dependences of the ITG
mode real frequency, growth rate, and structure on these parameters. Qur numerical code
can calculate both positive and negative growth rates with proper analytic continuation of
the dispersion relation in the complex frequency plane [29, 30, 38]. Detailed procedures for

the analytic continuation are shown in [38].

4.3 Numerical Results

In this section, we numerically solve the integral equation (4.2) with the boundary con-
ditions ¢(# — oo} = 0 to obtain the real frequency, growth rate, and eigenfunction of
the ITG mode for the helical system with L = 2 and M = 10 (corresponding to the LHD
case). As the standard parameters for the numerical calculation, we use L = 2, M = 10,
enfee =1,¢g=2,§=-1, . =1, =3,¢, =03, 0, =0, a =0, and kgpy; = 0.65.

Here, p7i = vri/S is the ion thermal gyroradius. These parameters are such that they
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correspond to those at the magnetic surface r/a = 0.6 of the typical NBl-heated hydrogen
plasma in LHD [15] with B = 2.75T, T; = T, = 1.6keV, n = 0.7 x 10"®*m~3, R = 3.6m,
a = 0.6m, L, = 1lm and Lyp; = 0.36m. The field line « = 0 passes through the point
where magnetic ﬁeid strength B has its smallest value on the magnetic flux surface. Also,
6 = 0 is the poloidal angle where the radial wavenumber k, vanishes since k, = $kp(6—8y).
Therefore, the IT'G mode is considered to become the most unstable for @« = 0 and 8, = 0.
As seen later, the growth rate has a peak around the poloidal wavenumber kgpr; = 0.65.
Then, using the LHD parameters shown above, we obtain the electron diamagnetic fre-
quency w,. = 1.8 x 10%sec™! and the poloidal wavelength A\ = 27 /ky = 2.0 x 10~%m for

kng,' = 0.65.

Here, we write the nondimensional factor, which represents the poloidal structure of the

V B-curvature drift frequency, as

G(8) = cos8—3(0—0)sind
—(eh/q)L[cos((L—-Mq)G—Ma)

—3(0 — 0;) sin ((L — Mq)o - Ma) ] , (4.6)

which we call a curvature factor hereafter. It should be noted that, for k; > 0, the sign of
G(6) is opposite to that of wp in eq. (4.1) because L,w,; < 0. For G(8) > 0, the poloidal
ion V B-curvature drift motion is in the same direction as the ion diamagnetic rotation
at the poloidal angle #. Such poloidal region is called a bad curvature region because the
destabilization of the modes occurs there. On the other hand, in the good curvature region
(G(8) < 0), the ion magnetic drift is in the direction of the electron diamagnetic direction,
and the modes are stabilized. For the helical system with ¢,/¢; ~ 1 and L « Mg, the

connection length between adjacent good and curvature regions is roughly given by Rg/M.

In the following subsections, we investigate dependences of the I'TG mode properties on

the equilibrium parameters in the regions around the standard parameters.
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4.3.1 Helical ripple effects

Effects of the parameter ¢;/¢; on the normalized real frequency w,/w.. [wr = Re(w)], the
normalized growth rate vy/w,.. [y = Im(w)], and the eigenfunction ¢(8) = ¢, + i¢; are
shown in Figs. 4.1 and 4.2. The parameters used here are the same as the standard ones
(see the first paragraph of this section) except for €x/¢;. The case of 1; = 4 is also plotted
in Fig. 4.1. No helical ripple case ¢;/¢; = 0 corresponds to the negative shear tokamak.
With increasing €3 /¢;, the fine spatial structure of helical ripples appears and the connection
length between adjacent good and bad curvature regions becomes shorter as seen from G(8)
in Fig. 4.2. The large helical ripples can produce the good curvature region even in the
outside of the torus. Then, the eigenfunction enters not only the bad curvature region but
also the good curvature region. That results in the monotonic decrease of the growth rate v
with increasing ¢,/¢,. On the other hand, the real frequency is weakly dependent on ¢ /e,
and keeps the negative sign, which implies the wave propagation in the ion diamagnetic
direction.
Using the ballooning transform [34],
+00
$(r,0,0) = 3 ¢(0+2mj)exp[—in{¢ — q(r)(8 + 275 - i)}, (4.7)
j=—oo

we obtain the three dimensional distribution of the electrostatic potential ¢(r,8,() from
the one dimensional eigenfunction ¢(8). In eq. (4.7), the radial dependence of ¢(r,8,() are
considered only through ¢(r) ~ ¢(r,) 4+ (3¢/r)(r — r,) where r, denotes the radial position
of a given magnetic surface. Thus, the three dimensional structure given by eq. (4.7) is
valid only in the neighborhood of the magnetic surface r = r,. The potential distribution
#(r,8,¢) in the region (1.8 < ¢ < 2.2, 0 < ¢ € 27/5) around the ¢ = 2 surface, which
corresponds to Fig. 4.2 (b-1) (the case of the standard parameters), is shown in Fig. 4.3,
where the toroidal mode number is determined from ks = ng/r = 0.65p7; as n = 56.

We can see the poloidal localization of the mode structure accompanied with its radial

extension.
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Figure 4.1: Normalized real frequency w,/w,. (top) and growth
rate v/w,, (bottom) as a function of ¢/¢, for L = 2, M = 10,

q= 2, § = —1, 9;, = 0, o = 0, = 3, 4, €, = 0.3, and kng,' = (.69.
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Figure 4.2: Eigenfunction ¢(8) = ¢,.+i¢; and curvature factor G(8)
for ey /e = 0 (a-1,2), ex/e: = 1 (b-1,2), and €, /¢, = 2 (c-1,2). Here,
# = 0 and & = +7 correspond to the outermost and innermost
points on the toroidal magnetic surface, respectively. The other
parameters are L = 2, M =10, ¢ =2,8 = -1,8, =0, a = 0,

= 3, € — 03, and kng,' = {.65.
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Figure 4.3: The three dimensional distribution of the real part

of the potential function ¢(r,0,¢) in the region (1.8 < ¢ < 2.2,
0 < ¢ < 27/5) around the ¢ = 2 surface. The potential values are

shown by colors. The same parameters as in Fig. 2 (b-1) are used.
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4.3.2 Effects of the safety factor g

Figure 4.4 shows the normalized real frequency and growth rate as a function of the safety
factor g (the rotational transform is given by ¢ = ¢7!). The parameters used here are the
same as the standard ones (see the first paragraph of this section) except for ¢q. Also, the
negative shear tokamak case with the same parameters except for ¢;/¢; = 0 is plotted in
Fig. 4.4. The growth rate for the helical case (ex/€; = 1) is smaller than for the tokamak case
due to the stabilization effect of the helical ripples as explained in the previous subsection.
We can see that the real frequency is weakly dependent on ¢ although the growth rate
becomes smaller for smaller ¢ (larger ¢) for both the tokamak and the helical cases. As
seen in Fig. 4.2, for both cases, the width of the eigenfunction along the field line scales
by the connection length Rg between the inside and outside of the torus. Therefore, the
effective parallel wavelength kll_l ~ Rq and the parallel phase velocity w/k) of the mode
are reduced when g decreases. Then, the Landau damping becomes stronger, which is

considered a stabilization mechanism for smaller q.

4.3.3 Effects of the magnetic shear s

Figure 4.5 shows the normalized real frequency and growth rate as a function of the mag-
netic shear parameter §. The parameters used here are the same as the standard ones (see
the first paragraph of this section) except for §. The negative shear tokamak case with
the same parameters except for €;/¢; = 0 is plotted in Fig. 4.5. It should be noted that
the validity of the ballooning representation is lost in the limit § — 0 although the real
frequency and growth rate for § = 0 are plotted in Fig. 4.5. We see that, for both tokamak
and helical cases, the growth rate has a peak at §, ~ 0.5 in the positive shear region. As
|$— §,| increases, the growth rate monotonically decreases, and the growth rate for negative
shear 5§ < ( is smaller than for positive shear § > 0 with the same |5|. The same tendency

has been observed in the works on negative shear tokamaks [18, 39]. The real frequency
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Figure 4.4: Normalized real frequency w,/w.. (top) and growth
rate v/w,. (bottom) as a function of the safety factor ¢ for L = 2,
M=10,5= -1, /e =1,0,=0,a =0, =3, ¢, =03,
and kgpr; = 0.65. The negative shear tokamak case with the same

parameters except for €, /¢; = 0 is plotted by the dotted line.
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for § > 0 takes more negative values than for § < 0. Figure 4.6 shows the eigenfunction
#(0) = ¢, + i¢; and the curvature factor G(#) for both tokamak and helical cases with
§=1,0.5—1. It is understood from Fig. 4.6 that the reduction of the growth rate for the

negative shear case is due to the reduction of the bad curvature region in the torus outside.

4.3.4 Effects of the ballooning angle 8,

Since k, = 8kg(6 — 8y), 0, represents the poloidal angle, at which the radial wavenumber
k, vanishes and accordingly the finite gyroradius stabilization effect is weakest. Thus, the
mode tends to be poloidally localized around 8 = 6;. Also, when we consider a rotating
plasma, it is important to take account of §;-dependence [6, 40, 41, 42]. Figure 4.7 shows
the normalized real frequency and growth rate as a function of §;. The parameters used
here are the same as the standard ones (see the first paragraph of this section) except
for 8,. The negative shear tokamak case with €,/¢; = 0 is also plotted in Fig. 4.7. It is
seen in Fig. 4.7 that the real frequency is a slightly decreasing function of 6k, which is a
contrast to the case of the positive shear tokamak [38]. The growth rate of the helical ITG
mode is always smaller than that of the corresponding tokamak ITG mode. They are both
significantly reduced for 8, — 7/2 when the toroidal destabilization does not work well
at the poloidal angle of the mode localization. For the parameters used here, the helical
ITG mode structure has a similar width along the field line to that of the tokamak ITG
mode, and therefore the poloidal mode shift due to the #¢-variation affects the stability

more effectively than the a-variation as shown in the next subsection.

4.3.5 Effects of the field line label o

The non-axisymmetry of the helical system causes the a-dependence of the linear mode
properties, We vary a within a toroidal period —7/M < a < #/M (M = 10). Figure 4.8
shows the normalized real frequency and growth rate as a function of a. The parameters

used here are the same as the standard ones (see the first paragraph of this section) except
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Figure 4.5: Normalized real frequency w,/w.. (top) and growth
rate y/w.. (bottom) as a function of the magnetic shear parameter
Sfor L=2, M=10,g=2, ¢4/, = 1,8, =0, a =0, n; = 3,
€, = 0.3, and kgpr; = 0.65. The negative shear tokamak case with
the same parameters except for €;/€; = 0 is plotted by the dotted

line.
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Figure 4.6: Eigenfunction ¢(8) = ¢, + i¢; and curvature factor
G(9) for the tokamak cases €¢;/¢; = 0 with 3 =1 (a-1, 2}, § = 0.5
(b-1,2), § = —1 (c-1, 2), and for the helical cases e/¢, = 1 with
§=1(d1, 2), 3 =05 (el, 2), § = —1 (e-1, 2). The other
parameters used here are L =2, M =10,¢ =2, 0y =0, a = 0,

= 3, €, = 0.3, and kepT,‘ = (.65.
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for . We find that there is little dependence of the real frequency and growth rate on
a. The curvature factor G(6) is shown for a« = 0,7/20, and 7/10 in Fig. 4.9. The weak
a-dependence shown in Fig. 4.8 is interpreted as follows. In our model of the magnetic
field strength, eq. (3.1), variation of « is reflected in the helical ripple phase shift. Since
the ITG mode for the standard parameters extends in the whole region of the torus outside
(—m/2 < 8 < 7/2) like for the tokamak case, the small helical phase shift (< 2x /M) caused
by varying « changes little the average effect of the helical ripples on the mode stability
as expected from Fig. 4.9. However, we should note that our magnetic field model is valid
only for low 3 values and that high 3 effects such as the Shafranov shift are not treated in

it. If these high § effects are included, larger a-dependence may occur.

4.3.6 Dependence on the poloidal wavenumber

Figure 4.10 shows the normalized real frequency w,kgpri/w.. and the normalized growth
rate ykgpri/wae of the helical ITG 'mode as a function of the normalized poloidal wavenum-
ber kypri. Here, we employ w,.(kspr;)™! as the normalization unit for the frequency in
order to remove the wavenumber dependence from the unit. For the LHD case mentioned
earlier, we obtain w..(kspr;) ™' = 2.77 x 10°sec™". The parameters used here are the same
as the standard ones (see the first paragraph of this section) except for kgpr;. With in-
creasing kgpT;, the real frequency keeps its negative sign (the jon diamagnetic rotation)
and its absolute value increases monotonically. We find the lower and upper boundaries in
the poloidal wavenumber region for unstable modes ( > 0). The maximum of the growth
rate is given around kepp; ~ 0.65, and this is why this poloidal wavenumber is taken as
the standard one for the calculations in the previous subsections. The stable modes, which
exist in the low and high poloidal wave;lumber regions, are considered to play the role of

the energy sink, which is necessary for the nonlinear saturation of the ITG modes.
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Figure 4.9: Curvature factor G(0) for a = 0 (a), o = 7/20 (b),

and a = w/10 (c). For these values of a, the phases of G(# =
0) are different although the connection lengths between adjacent
good and bad curvature regions are almost the same. The other

parameters used hereare L. =2, M =10, e4/e, =1, ¢ =2, § = —1,

0, =0,a=0,n =3, ¢ =0.3, and kepr; = 0.65.
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Figure 4.10:  Normalized real frequency kgpriw,/w. (top) and
growth rate kyp7;y/w.. (bottom) as a function of the normalized
poloidal wavenumber kgpr; for L = 2, M = 10, ¢ = 2, § = -1,
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Figure 4.11: Normalized real frequency w,/w.. (top) and growth
rate v/w,. (bottom) as a function of ; for L =2, M = 10, ¢ = 2,

§=-1,/e=1,0,=0,a=0,¢, =023, and kgpr; = 0.65.

4.3.7 Temperature gradient effects

Figure 4.11 shows the normalized real frequency w, fw.. and growth rate v/w,. as a function
of n;. The parameters used here are the same as the standard ones (see the first paragraph
of this section) except for n;. As 7; increases, both the growth rate and the absolute
value of the real frequency increase monotonically. Since our numerical code can calculate
both positive and negative growth rates by proper analytic continuation of the dispersion

relation, we can clearly identify the critical 7; value ;. for which the growth rate vanishes.
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4.3.8 Density gradient effects

Let us recall that the parameter ¢, = L,/ R = —no/(R dng/dr) is inversely proportional to
the density gradient. Thus, we investigate the density gradient dependence of the ITG mode
properties by varying ¢,. Hollow density profiles are often observed in helical systems [14].
Then, there exists a core plasma region, in which dn/dr > 0 and accordingly €, < 0. Here,
both cases with positive and negative ¢, are considered. Since the density gradient also
appears in the definition of 7, = L,/L;, we impose the constraint #;/e, = R/Ly; = 10
to fix the temperature gradient. This constraint n;/¢, = R/Lz; = 10 is chosen since it is
given for the case of the standard parameters. The parameters used here are the same as
the standard ones (see the first paragraph of this section) except for ¢, and 7;. The density
gradient effects are shown in Fig. 4.12, where the normalized real frequency w,/(wse€n)
and the normalized growth rate v/{w..€,) are shown as a function of ¢,. Here, we employ
the new normalization unit w,€, in order to remove the density gradient dependence from
the unit. We should note that the ¢, variation from ¢, = +0 (=0) to ¢, = +o0 (—00)
corresponds to the density gradient variation from dng/dr = —oc (400) to dno/dr = —0
(+0). The growth rate has a peak at the negative density gradient with ¢, = 0.2. For
more flattened negative density gradient (e, > 0.2), the growth rate becomes smaller.
Furthermore, increasing the density gradient from dng/dr = 40 to 400, the growth rate
continues to decrease. Similar ¢,-dependence of the real frequency is found although it has
no peak in the region ¢, > 0. The hollow density profile is considered to be more stable

against the ITG mode than the normal profile with the same temperature gradient.

4.4 Conclusions

In this chapter, we have investigated the linear ITG modes in helical systems. Using the
ion gyrokinetic equation, the adiabatic electron assumption, and the quasineutrality condi-

tion, the ITG mode dispersion relation is derived as an integral equation, where effects of
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Figure 4.12:  Normalized real frequency w,/(w..€,) (top) and
growth rate y/{w.c€,) (bottom) as a function of €, under the con-
straint n;/¢, = —[T;7'dT;/dr]R = 10 for L = 2, M = 10, q = 2,
§=-1, /e =1,0,=0, a =0, and kppy; = 0.65. The negative
shear tokamak case with the same parameters except for ¢,/¢, = 0
is plotted by the dotted line. Here, the €, variation from ¢, = +0
(—0) to €, = 400 (—o0) corresponds to the density gradient varia-

tion from dng/dr = —oo (+00) to dng/dr = —0 (40).
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toroidal and helical magnetic ripples are taken into account through the ion V B-curvature
drift frequency. By numerically solving the integral equation with the proper analytic con-
tinuation performed, the real frequency, growth rate, and eigenfunction are obtained for
both stable and unstable cases. The numerical results have shown dependences of these
linear ITG mode properties on various parameters including the helical ripple intensity,
safety factor, magnetic shear, ballooning angle, poloidal wavenumber, temperature and
density gradients. Typical parameter values used here are given by considering the LHD
experiment. Also, the characteristics of the ITG mode in the helical system are compared
with those for the tokamak case with the same parameters except for no helical ripples.

Due to the helical ripples, the connection lengths between adjacent good and bad curva-
ture regions are reduced, and the good curvature regions also appear even in the outside
of the torus. Then, the ITG modes for the case of finite helical ripples are more stable
than for the corresponding tokamak case. The eigenfunctions for the helical case spread
in the whole torus outside region like those for the tokamak case, although the former are
rippled by the helical magnetic structure. For both tokamak and helical cases, the negative
magnetic shear reduces the bad curvature region and accordingly the growth rate.

The field line label effects are not so obvious as the stabilizing effects of varying the
ballooning angle parameter. Stronger dependence on the field line label may happen if we
consider other effects such as the Shafranov shift which are not included in our magnetic
field model here. In order to treat this problem more accurately, more detailed magnetic
field model should be used. Also, effects of nonadiabatic electrons, trapped ions, collisions,
impurities, and sheared radial electric fields, which are not treated in this work, remain as

future problems.
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Chapter 5

Conclusions

In this thesis, gyrokinetic analysis have been done on the ion temperature gradient (ITG)

modes in toroidal systems. Results obtained in this thesis are summarized as follows.

It is found in the local approximation that, for the toroidal ITG mede, temporal de-
pendence of the density and potential perturbations is described by two types of behavior.
One is well-known normal modes which change exponentially in time. Their frequencies
and growth rates are determined by the dispersion relation and correspond to the poles of
the Laplace-transformed potential function on the complex frequency plane. The other is
a continuum mode which is given by the integration of the Laplace-transformed potential
function along a branch cut. Occurrence of the branch cut is due to the quadratic velocityl
dependence of the toroidal V B-curvature drift. The long-time asymptotic behavior of the
continuum mode is characterized by oscillation at the branch frequency and power law
decay o t~*/2. This behavior is the same as that of the ballistic response obtained by
the propagator of the gyrokinetic equation without taking account of interaction with the

potential.

If the normal mode analysis shows the system to be unstable, the long-time behavior
is dominantly described by the normal mode with the largest growth rate. On the other

hand, when the system is stable, only the normal modes are not enough for describing the
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temporal evolution of the toroidal ITG mode. In the stable case, the system is eventually

dominated by the continuum mode since all the normal modes decay more rapidly.

We have also investigated the linear ITG modes in straight and toroidal helical systems.
Using the ion gyrokinetic equation, the adiabatic electron assumption, and the quasineu-
trality condition, the ITG mode dispersion relation is derived as an integral equation,
where effects of toroidicity and helical magnetic ripples are taken into account through the
ion V B-curvature drift frequency. By numerically solving the integral equation with the
proper analytic continuation performed, the real frequency, growth rate, and eigenfunction

are obtained for both stable and unstable cases.

For a straight helical system with the poloidal polarity number L = 2, the effects of the
toroidal polarity number M on the dispersion relation and the mode structure of the ITG
mode were studied. Field ripple with larger M reduces the growth rate of the ITG mode.
This stabilizing effect is understood based on the structure of the eigenfunction along the
field line as follows. As M increases, the connection length between the good and bad
curvature regions becomes shorter and the eigenfunction enters the good curvature region,

which leads to the stabilization.

The numerical results for the case of toroidal helical systems have shown dependences
of these linear ITG mode properties on various parameters including the helical ripple
intensity, safety factor, magnetic shear, ballooning angle, poloidal wavenumber, temper-
ature and density gradients. Because of the toroidal destabilization, the critical tem-
perature gradient in which ITG mode becomes unstable is smaller than for the straight
helical system. Typical parameter values used here are given by considering the LHD
experiment. Numerical results suggest the existence of unstable ITG modes in LHD
(g = 2.0 cm,w, ~ —0.97 x 10° [sec]™',y ~ 0.33 x 10° [sec]™'). From the mixing length
argument, the diffusion coefficient is estimated by D ~ v/kZ ~ 0.35[m*sec™!] for the LHD

parameters used here.

Also, the characteristics of the ITG mode in the helical system are compared with those
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for the tokamak case with the same parameters except for no helical ripples. Due to the
helical ripples, the connection lengths between adjacent good and bad curvature regions
are reduced, and the good curvature regions also appear even in the outside of the torus.
Then, the ITG modes for the case of finite helical ripples are more stable than for the
corresponding tokamak case. The eigenfunctions for the helical case spread in the whole
torus outside region like those for the tokamak case, although the former are rippled by
the helical magnetic structure. For both tokamak and helical cases, the negative magnetic
shear reduces the bad curvature region and accordingly the growth rate.

The field line label effects are not so obvious as the stabilizing effects of varying the
ballooning angle parameter. Stronger dependence on the field line label may happen if we
consider other effects such as the Shafranov shift which are not included in our magnetic
field model here. In order to treat this problem more accurately, more detailed magnetic
field model should be used. Also, effects of nonadiabatic electrons, trapped ions, collisions,
impurities, and sheared electric fields, which are not treated in this work, remain as future
problems. However, we believe that the results obtained here give the basics of further

studies on microinstabilities in helical systems.
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