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ONE-DIMENSIONAL
RIGID GAUSSIAN MODEL
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A simple one-dimensional model of the beam-beam interaction (sheet-sheet interaction) and its rigid-Gaussian
approximation for the coherent barycentre motion are studied in order to examine the usefulness of the rigid­
Gaussian approximation. Effects of primordial separation between beams are studied in detail. The spontaneous
beam separation for the integer resonance can be embedded in a cusp catastrophe structure as a special case. A
new technique is introduced to the calculation of the beam-beam force for the multiparticle tracking, without
relying on the Gaussian approximation. The rigid-Gaussian approximation is shown to be reliable enough for
evaluating closed-orbit effects, except for some extremely exceptional cases.
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INTRODUCTION

When two beams collide in a storage ring, they affect each other through the beam-beam
force. 1 This effect has been studied for many years. Among many approaches, the so­
called coherent approach2,3, forms one of the dominant streams. Particularly important
issue there is the coherent barycentre motions, where the most natural tool is the rigid
Gaussian model4 (RGM): the distribution function is assumed to be a Gaussian with fixed
variances. It gave fairly accurate estimate of the beam-beam modes,5,6,7 unexpected
instability structure of the two-ring colliders with different circumferences8 and many
other practically useful predictions.9,10,1l In these cases, since beams are supposed to
collide head-on, the analysis. could be concentrated on the linear stability of the nominal
or unperturbed closed orbit, using the linear approximation of the beam-beam force. (A
violation of the linear stability causes the spontaneous beam separation (8B8).4) For more
general cases, we should note that the use of the linearized treatment is not justified, at
least automatically.

At present, many future projects, such as Band ¢ factories,12,13,14,15,16,17 are employing
two-ring scheme. In two-ring colliders, it seems difficult to make bunches collide always
exactly head-on. When the collision has an offset, i.e., primordial beam separation, the
linear analysis of the beam-beam force at the nominal orbit is no longer reliable in
evaluating the instability threshold. The beam-beam kick depends on the offset but
the offset is affected by the beam-beam force. Also, many projects are ready to have
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many bunches in each beam. We thus should study not only the collision at the central
collision point but also at the peripheral collision points. 18,19,20 Through the latter effect,
all bunches are coupled.

To study these problems, with the limited ability of the present-day computers, the
nonlinear RGM seems to be the unique tool. The multiparticle tracking, though more
reliable, seems impossible from computation time point of view. The RGM is tractable.
The question is whether it is reliable or not. In other words, we should find to what
extent it is reliable. Some of immediate shortcomings are;

1. Fundamental assumption is that the whole bunch keeps its union. If it is split into
some clusters, the failure of RGM is evident.

2. The possible modification of beam sizes are overlooked. This may affect the linear
part of the force and the threshold of linear instabilities. The beam size effect itself is
overlooked also: the RGM may predict that the whole bunch is caught by a nonlinear
resonance, even if the resonance is too small to keep the whole bunch.

3. We should ignore the coupling between higher order modes: there is no hope to include
the tune shift factor,21,22 for example.

In this paper, in order to study the reliability of RGM, we examine a simplified
beam-beam interaction, where the multiparticle tracking can be performed relatively easy
without recourse to the Gaussian approximation in calculating the beam-beam force. This
is an abstraction from, but not identical with, the vertical interaction of very flat beams.
We study this simplified interaction and apply the rigid-Gaussian approximation to this
case. This is simple enough to permit us some analytical investigations but not too simple
to lose the physical significance. Since the main target of the (nonlinear) rigid-Gaussian
approximation is the closed orbit effect, we study it in detail (some partial results have
already been published elsewhere,19,23,24) and will examine some calculation techniques
used within the RGM scheme. We will compare the Gaussian approximation with more
reliable multiparticle tracking results for some cases. For simplicity, we assume only
one interaction point (IP) and one bunch in each beam. More general cases, however,
can be studied by a straightforward extension.

In the next section, we define the one-dimensional RGM, called RGM1. Then in
section 3, we study its behaviours in terms of the closed orbits formation in the presence
of primordial offset. A comparison with the multiparticle tracking will be done in section
4. Section 5 will be devoted to discussion, summary and conclusion.

2 RGM1: ONE-DIMENSIONAL RIGID GUASSINA MODEL

In RGM, we are interested in the barycentre variables z± ~ (z) ± only and ignore the
possible effects of the beam-beam interaction on beam sizes or beam distributions. Here
z stands for either horizontal (x) or vertical (y) coordinates and ( )± refers to the average
over the e± bunch. The rms beam sizes are
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In RGM, however, the effective beam sizes
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are more relevant. In this connection, we introduce the coherent beam-beam parameter

(1)

(2)

Note the difference from the incoherent beam-beam parameter~. When two colliding
bunches have the same rms beam sizes, we have * :=: == ~/2.

Let us assume that the beams are quite flat

and consider the vertical motion only. That is, we assume the horizontal beam-beam
effect weak enough. If we assume that x± == 0 and that y << ~x, we can get, as the
beam-beam kick,

8- 1 _ N=r-re y!2; f (Y+ - y- + Do)
Y± - =f l'± ~x er h~y .

Here N± is the number of particles in e± bunch, r the relativistic Lorentz factor and
Do the nominal (i.e. without beam-beam effect) difference between closed orbits of both
beams at the IP. We call Do the primordial beam separation. This model is called the
one-dimensional rigid Gaussian model (RGM1). If the separation y+ - y- + Do becomes
so large that it is comparable to ~x, the force should begin to decrease. Such a case is
not considered here. The corresponding incoherent force will be discussed in Sect.5.

We parametrize variables as

j3± -I

P - y y±
± - E '

y

where j3y is the nominal vertical betatron function at the IP. In these variables, the
dynamics is as follows:
At the IP, (Beam-Beam Kick) we have

where

F(x) = (27r)3/2erf ( ~) .

(3)

(4)

* Note that we include the effect of the beam sizes on the beam-beam interaction5 but not vice versa. In
RGM, the fundamental assumption is that bunches move rigidly with their Gaussian distribution kept fixed. A
direct consequence is that the transverse kick for the barycenter is different from a kick for a particle situating
at the place of the barycenter.
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During the arc , we have

where V± is defined by
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(5)

V± == ( CO~J-L±
- slnJ-L±

sinJ-L± ).
cosJ-L±

Here J-L == 21rv and A± == exp(-1 /T±): T± being the vertical damping time measured by
the revolution time. These two mappings are applied in alternation. Since A± is usually
very close to unity, this will be omitted in expressing the closed orbits. The case ~ == 0
was studied in Ref. 4.

3 CLOSED ORDBIS IN RGMI

The vector
_ A A A A t

W == (Y+,P+, Y_,P_)

is expected to fall into an equilibrium eventually due to the radiation damping, as long
as it starts already close to the equilibrium value. This is the closed orbit, which we are
interested in here. Exceptions arise in the following cases:

1. When the closed orbit is unstable. This corresponds to the linear instabilities.4 Ac­
cording to Ref. 4, we classify cases with ~ == 0 as follows:

half-integer resonance It occurs when v+,:S1/2+integer or v_,:S1/2+integer. When
it occurs, the system falls into the period-two closed orbit, that is, the orbit at the
IP takes two values alternatively every tum with finite separation between beams.

sum resonance It occurs when v+ + v_ ,:Sinteger. When it occurs, the steady state is
a limit cycle and the behaviour is multi-periodic. (This can be read from Fig. 3.1).

integer resonance It occurs when v+,:S integer or v_,:S integer. When it occurs, the
system can have two different closed orbits: one of them is chosen spontaneously.

All of these are spontaneous breaking of the symmetry and give sudden changes.

2. Or, when the stability region in W space is too small. This corresponds to nonlinear
resonances, close to the closed orbit. W is attracted to one of them.

We will mainly discuss the linear resonance of the closed orbit with ~ i= 0 and discuss
the latter a little in section 4.4.

3.1 Real Separation and Betatron Amplitudes

The closed orbit at the IP_ (i.e. just before the beam-beam kick), if it exists, is the
solution of

W == V(W + F),
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F-==

The solution is expressed as

It gives

o
-3+F(Y+ - Y- +~)

o
+3_F(Y+ - Y- +~)

W = 1 ~VF.

1 ~ M± A A

=fT'::± cot -2-F (Y+ - Y- + ~),

1 A A

±T3 ±F(Y+ - Y- + ~).

(6)

Thus, the real beam separation (in unit of ~y), S -== Y+ - Y- +~, is determined by the
following consistency equation

(7)

where
-2Y

G(Y) -== --------
~ M+ ~ M-
.::+ cot -2- + .::- cot -2-

The solution is illustrated in Fig. 1.
From Eq. (7) and Fig.l, it can be observed that, as long as the closed orbit exists,

~ ~ M+ ~ M- >0lor .::+ cot -2- + .::- cot -2- < .

In case where 3+ -== 3_, this condition is equivalent to t

(8)

A numerical example of the solution of Eq. (7) can be obtained easily. Here, instead,
we track W starting from a point nearby the solution and apply Eq. (3) and Eq. (5)
alternately in order to check the stability of the solution altogether. The results are
shown in Fig.3.!, where S is given as a function of v+ but with v_ being fixed. We
track Wand plot S for last 20 turns. From the figure, we see three exceptional peaks,
which correspond to the half integer (v+~0.5), the sum (v+;S0.8) and the integer (v+~I)

resonances. Otherwise, the solution is identical with that of Eq. (7). We will discuss
them in section 3.2. The symbol ~ indicates that the instability occurs just below the
resonant tune.

t In the present context, the integer part of the tune is irrelevant so that, for example, this equation should
be understood as [v+ +v_] > 0 for the upper case and < 1 for the lower case, where [ ] is the noninteger part.
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FIGURE 1: The real separation S (indicated by a solid arrow) at the IP. The nominal one (~) is shown by
the dotted arrow. The curve is the function F, Eq. (4), and the 0 indicates the solution of Eq. (7). Similar
graph for a different set of parameters can be found in Fig. 3.2.
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FIGURE 2: The v+ dependence of the separation Sat the IP. Parameters are v_ = 0.2, T± = 500, B± = 0.03
and ~ = 1. Both graphs are results of tracking and are identical except for the vertical scales.
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FIGURE 3: The 3 dependence of the luminosity reduction factor R(S). (3+ = 3_ is assumed). Tunes
(v+ = v -) are written on the corresponding lines. Parameters are T± = 500 and ~ = 1.

The separation S perturbs the luminosity. In this connection, it is convenient to
introduce the luminosity reduction factor R by

(9)

Here ( )av is the average over many turns. In the presence of the separation S, the
luminosity L is reduced as

L(S) = L(O)R(S).

The beam-beam force depends on the real separation at the IP. The real separation, on
the other hand, depends on the beam-beam force. In Fig. 3.1, we show R as a function
of 3. The decrease (v < 0.5) and increase (v > 0.5) of the separation S for increasing
3 are clearly seen. For v < 0.5, the separation increases suddenly at some value of
3. This increase corresponds to a peak in Fig. 3.1. For v > 0.5, however, no sudden
change is observed: the separation increases monotonically as 3 increases.

Let us tum to the closed orbit amplitude in the arc A±. The closed orbits in the arc,
or its amplitude, depends also on the beam-beam force. From Eqs.(6) and (7), we obtain
the betatron amplitude in the arc,

A VA 2 A 2 .::.± I"" IA± = Y±+P± = F(Y+-Y_+~) .
21 sin f.t

2
± I

(10)

Here the argument of F is the solution of Eq. (7). We show A as a function of tune
(similar to Fig. 3.1) in Fig. 3.1.

The instability structure is the same as the case of the separation S. A graph (similar
to Fig. 3.1) of A as a function of 3 is shown in Fig. 3.1.
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FIGURE 4: The 1/+ dependence of Ii+. Parameters are 1/_ = 0.2, T± = 500, 3± = 0.03 and ~ = 1.
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FIGURE 5: The 3 dependence of the amplitude in the arc Ii . Parameters are the same as those used in
Fig. 3.1.

Contrary to the case of the real separation, S, the amplitude A increases monotonically
as 3 increases. There exists a sudden increase of A at a certain value of 3 whenever
v < 0.5. For the reasonable value of 3 and v, F in Eq. (10) does not largely depend on
3, we can say that A± is almost proportional to 3±.

Thus, we have seen that the real separation S and the betatron amplitudes A are
the solutions of Eqs.(7) and (10), respectively except in the cases of resonances. The
separation S affects the luminosity directly. The betatron amplitude A in the arc may
also have serious effects: the emittance, chromaticity etc may change according to the
current, in addition to the lifetime and background issues. From Figs.3.1 and 3.1, we
can make the following comment: if the nominal separation at the IP is unavoidable,
v+ should be chosen around 0.2 to 0.3, because the reduction of the luminosity can be
improved and the closed orbits in the arc is suppressed. This, of course, applies to
the case with v_ == 0.2. A consideration on nonlinear resonances is also needed. The
important thing here, however, is that the luminosity reduction is not the only criterion
in choosing the tunes.
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FIGURE 6: Nontrivial period-one fixed points near the integer resonance, where the closed orbit solution is
not unique. (a) Three solutions of Eq. (7). Two of them a and c are stable. (b) The corresponding phase space
(without damping) of (1\ - y- ,p+ - P-) with several different initial conditions and with T = 00. Two
elliptic fixed points (centers of circles) correspond to a and c in (a) and the hyperbolic fixed point to b.

3.2 Catastrophe Structure of Instability

Here we discuss the exceptional cases, represented by the three peaks in Figs. 3.1 and
3.1. These cases occur when the solution of Eq. (7) is either unstable or bi-stable. The
peaks seem to correspond to half-integer, sum and integer resonances, which were found4

by a linear analysis with ~ == o.
The qualitative behaviour of beams at the half-integer and the sum resonances seem

to be identical between cases of ~ == 0 and ~ i O. In these two cases, the solution of
Eq. (6) exists uniquely but becomes unstable when the resonance condition is satisfied.

In the integer resonance case, there is a qualitative difference. The situation changes
drastically. As clear from Fig. 3.1, there is no sudden change of the separation but it
increases gradually. Seemingly, this is nothing but the COD behaviour under a dipole
perturbation. Where has the SBS (Spontaneous Beam Separation) gone? In this case,
contrary to the other cases, it can be shown that the solution of Eq. (6) is stable but not
unique. See Fig. 3.2.

In the left figure, the point a corresponds to the line in Fig.3.I. There are two other
intersections, band c. It can be shown that b is unstable, while c is stable. In the right
figure, a Poincare surface plot is shown for the case corresponding to the left figure.
Two clusters of circles are seen, the centres of which correspond to a and c. Thus there
are two stable period-one closed orbits. The system chooses one of them according to
the initial conditions.

The stability situation is illustrated in Fig.3.2. For the integer resonance case, the total
structure is that of the cusp catastrophe,25 where ~ == 0 is the special case. Imagine the
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FIGURE 7: A schematic stability diagram for the case where v is a little smaller than an integer. The dotted
lines correspond to the unstable solution. The horizontal axis is either v or 3 and the vertical S .The arrow
shows the jump when the system is moving from right to left (3 or v are decreasing). For D #- 0, the lines
extending to 3 = °(A and A') are called the natural branches and the others (C and C') the unnatural
branches.

system is on the line C in Fig. 3.2 and :=: or v decreases. When the system reaches at the
edge, it should jump into the other branch. This jump is illustrated in the figure. After
that, if ~ changes its sign, artificially or accidentally, the system should jump again to
the original branch. Thus, with ~ and :=: or v, we can play with this type of sudden
jumps with hysteresis. The lines represented by A or A' are called the natural branches
and the other, C or C', the unnatural branches. In Figs. 3.1 and 3.1, only the natural
branch appears because we started tracking near it.

This structure can be seen also in a multiparticle tracking, see section 4.2

4 THE MULTIPARTICLE TRACKING

Here, we discuss the reliability of the RGM.
Instead of Eq. (2), which deals with the coherent kick, we study an incoherent force

(11)

where (JjG is the nominal beam size and TJ is the nominal incoherent beam-beam param­
eter:

(12)

and

E(y) = { ~1 y>O
y < 0 . (13)
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Here p is the vertical distribution of particles and is not assumed to be a Gaussian.
Thanks to the one-dimensional nature of the force, in the multiparticle tracking, there

is no need to rely on the Gaussian approximation to calculate the beam-beam kick. To
obtain the kick applied to an e+ particle, we count the number of e - particles which
are above that e+ particle. This is applicable to any distribution. The importance to
calculate the force without relying on Gaussian approximation was stressed by many
authors. For round-beam, though one-dimensional, or for more general two- and three­
dimensional distributions, the calculation is much more complicated and needs more
careful treatments.26,27

This model is the incoherent version of the RGMI, studied in previous sections. We
have integrated over the horizontal direction assuming that the horizontal distributions
are Gaussian. Thus the kick Eq. (11) can be called sheet-sheet force+. The process
during the arc is according to the symmetric radiation.28 The basis of the RGMI, Eq. (2),
is obtained from Eq. (11) by the averaging

assuming that both of p+ and p_ are Gaussians. Thus the RGM is doubly based on the
Gaussian approximation.

4.1 Union of a Bunch

The largest possible shortcoming of the RGM may be that it should be erroneous if a
single bunch is split into two or more clusters in the phase space. The first necessary
condition of using the RGM is that the whole bunch should keep its union. In fact, it
is quite easy, in the multiparticle tracking, to get an equilibrium distribution where one
beam is split into two clusters. See Fig. 4.1, where the phase spaces of e+ and e­

bunches are shown separately. Here we use

The figure corresponds to the case where Do == 0 and to the weak-strong situation, that
is when 3+ « 3_ or 3+ » 3_.

The result shown in Fig. 4.1 is quite natural. In the weak-strong situation, the strong
beam is not affected at all. Correspondingly, the particles in the weak-beam are little
correlated to each other. Thus, whenever there are several stable fixed points, each
particle chooses one of them depending only on the initial conditions. The equilibrium

:I: To avoid misunderstanding, some comments seem useful; Because of the averaging over horizontal di­
rection, the incoherent tune shift for a particle (sheet) is not rJ but 8v ~ rJ / -12. If the bunch is a Gaussian,
Eq. (11) is reduced to
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FIGURE 8: A multiparticle tracking result. The equilibrium phase space distribution for
(3+,3_)=(0.055,0.005), v± = 0.95, TE = 100 and Do = O. Left:(Y+,P+). Right:(Y-,P_).
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distribution seems unique: between stable fixed points, the transition probabilities from
one to another should balance.

In the strong-strong situation, that is, when 3+ ~ 3_, we have a different picture. See
Fig. 4.1. Each bunch is concentrated in its phase space. If we increase 3_ from the
state such as that in Fig. 4.1, the system changes to that in Fig. 4.1 at certain point. We
thus may conclude that in the strong-strong situation, i.e. when 3+ ~ 3_, the bunches
behave in the coherent manner and the unity of the bunch is kept§, as Fig. 4.1, so that the
RGM should work well. Finally, note that when a bunch is split into clusters, the usual
technique of the multiparticle tracking, i.e., calculating rms beam sizes and evaluating
the beam-beam force using them, cannot be applied.

4.2 Catastrophe

Let us examine the catastrophe structure considered in section 3.2. In Fig. 4.2, we
compare the multiparticle tracking results with the prediction of RGM1 for ~ == 1
(Do == ~y). The figure shows that the agreement is excellent. The small disagreement
may come from the change of the beam sizes in the multiparticle tracking and a possible
deviation from the Gaussian distribution, which are ignored in RGMI. (In the figure, we
showed the simulation estimates of real ~ as error bars. Any significant deviations of ~
from its nominal value was not observed.

One remarkable thing is that the transition from the unnatural branch to the natural
branch occurs at a little larger value of 3. The reason is clear. As can be seen from
Fig. 3.2, the stable region of the unnatural branch in the phase space, (the left circle in
the right figure of Fig. 3.2), is quite small for the parameters close to the critical value.
If the stable region is too small, it cannot hold the bunch.

4.3 Beam Size Increase

Another possible source of shortcomings is that the beam size can change before reaching
the dipole instability threshold. This can enhance ~ so that reduce 3. If this effect is too
strong, it is possible that the dipole instability cannot happen. This problem was already
discussed in Ref. 4

§ For the completeness of the statement, we should add more. In the multiparticle tracking, for unrealistically
large value of 3, it is possible to get a state like Fig. 4.1 for the case with 3+ = 3_. An example is as
follows. From the parameters used in Fig. 4.1, we increase 3_ gradually. When it reaches 0.06, we see that
the e+ bunch is still split. It is so even when 3- is increased a little more. Thus, for 3+ = 3_ = 0.06, four
different states are stable:

1. e+ is split and e - is concentrated.

2. e+ is concentrated and e- is split.

3. both are concentrated and the real separation is positive.

4. both are concentrated and the real separation is negative.

The reason of stability for the first case is that the e+ bunch is split so largely that there is a enough space in
between for the whole e- bunch to lie, where e- bunch does not feel any force. By controlling 3± and Do,
we can move from one to another. There is a hysteresis structure in this case. Such cases, however, can occur
only in very exceptional and unrealistic cases. We can avoid such cases easily~
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FIGURE 10: A comparison between the multiparticle tracking results and the RGM 1. The horizontal axis is
2+ = 2_ and the vertical S = :f\ - Y- + ~, the real separation. Parameters are v± = 0.95, TE = 100 and
~ = 1. The solid lines represent the results of RGM1. The x's are the multiparticle tracking results for the
real separation and the error bars represent the calculated ~.

A comparison is made between the multiparticle tracking and the RGM1 in Fig. 4.3.
In the RGM1, the beam sizes are kept fixed. In the multiparticle tracking, the beam size
increases a little, below the dipole instability (SBS) threshold. This is not too strong to
suppress the SBS completely and solely shift its threshold a little upwards.

The same observations were obtained for other types of linear singularity. The half­
integer resonance gives the similar graph as Fig. 4.3 and the sum-resonance gives won­
dering closed orbits, as shown in Fig. 4 of Ref. 4. The linear resonance, once it occurs,
make beams separate and the beam size effect becomes less important so that the RGM
becomes more reliable.

For tunes a little above the half-integer and integer resonances, i.e. O;Sv or O.S;Sv,
however, the linear threshold is higher. In this case, at such high value of 3, (for
example, when v ~ 0.2, 3 should be larger than 0.1 to reach the threshold), the blowup
of the beam sizes are more remarkable below the linear threshold and can affeGt the
dipole instability. For such a case, however, the RGM is of less practical importance. In
that region, the flip-flop phenomenon29,3o and other beam size effects, for example that
reported in Ref. 27 may be more important.

Finally, it is interesting to see the luminosity reduction factor R as a function of tunes.
We show it in Fig. 4.3, where the multiparticle tracking results (x) are compared with
the closed orbit solution in RGM 1 (line) for the case with the primordial separation and
asymmetry between tunes. Parameters are identical with those of Fig. 3.1 except that the
damping time (T) is made a little more realistic. In the multiparticle tracking, the factor
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Parameters are v± = 0.8, TE = 500 and ~ = O.

is calculated by a multi-tum average

R=( (14)

Apart from nonlinear resonances, the results of the multiparticle tracking are well
understood by the closed orbit of RGM1. In the multiparticle tracking, the R exceeds
1 for v+~O. This is due to the beam size reduction, which is a combined effect of
the 'dynamic beta effect'31 and the 'dynamic emittance effect' .28 The reduction of R at
the nonlinear resonances comes mainly from the beam size increase, and little from the
dipole separation. In the bottom of the half-integer resonance, the discrepancy between
two results comes from the beam-size increase. It is interesting to see that the beam size
increase happening in the multiparticle tracking helps the luminosity. In Eq. (14), the
beam sizes appearing in the square roots reduce R but those in the exponent helps it.

4.4 Nonlinear Resonances

It may be worth mentioning that, also in the tracking in RGM1, we can reproduce several
dips in multiparticle tracking results shown in Fig. 4.3. See Fig. 4.4. The similarity
between two results are remarkable. We need a care, however, that the dips in the
multiparticle tracking are mainly due to the beam size blowup while those in RGM1 are
due to the trapping of barycentres by resonances. In addition, the positions of dips are
slightly different.
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FIGURE 14: A multiparticle tracking prediction of the equilibrium beam distribution of both bunches. Param­
eters are: v+ == 0.32 and others are the same as Fig. 4.4.

In RGM 1, we start tracking with W deviating a little from the closed orbit. Even if
the closed orbit is stable against an infinitesimal deviation from it, there can be other
stable points near it: that is, the nonlinear resonances. The latters can trap W.

The trapping may imply an existence of a resonance near the closed orbit, which, in
multiparticle tracking, may influence the beam distribution. We examine one of the dips
shown in Fig. 4.4. In Fig. 4.4, the multiparticle tracking result of the equilibrium phase
spaces (at a given instant) corresponding to the dip at v+ == 0.32 is shown. We see the
clustering of bunch distribution into three pieces. The figures appear to be a 3-rd order
version of Fig. 4.1. In Fig. 4.4, the RGM1 results are given: we track 10 particles which
are distributed initially around the closed orbit within a box

and

We track them for 600 turns and plot last 100 turns. In multiparticle tracking, the
clustering occurs again, while in RGM1 barycentres are trapped by 3-rd order resonance.
Note the difference between two figures. The former is a single shot picture and the
latter multi-tum picture. Tunes are slightly different also.

In multiparticle tracking, the resonances can hold the bunch only if they are large
enough, whereas in RGM1, even a tiny resonance can catch the barycentres. See Fig.2a
in Ref.4. In both cases, the multiparticle tracking would predict coherent barycentre
motions and/or the beam size effect. Thus, it seems that the tracking in RGM1 is useful
also in finding possible nonlinear resonances which may influence the luminosity. Of
course, a care should be taken in interpreting the results.

Although this discussion is not conclusive, this opens a possibility that the usefulness
of RGM is more than we expected. More work is necessary to lead a firm conclusion.
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are: 1/+ = 0.305 and the others are the same as Fig. 4.4.

5 DISCUSSION

Based on the arguments given thus far, we discuss several issues.

5.1 Comparison with Linear Approximation

In conventional machines, the nominal separation can be regarded quite small or quite
large, The latter is the case when the electric separator is working. In both cases, we
do not need to consider the closed orbit change and we can analyze the stability of the
beams in terms of the linearized beam-beam force relying on the eigenvalue analysis.9

In the case of two-ring colliders with many bunches, it is difficult to make beams collide
always exactly head-on. In particular, the peripheral collisions have always the offset.
Here, we will discuss a relation between linearized and nonlinear treatments with the
presence of the nominal (primordial) closed orbit at the IP.

In linear analysis, we linearize Eq. (3) as

(15)

where F / is the derivative given by

F'(t1) = exp (_ ~2) . (16)
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TABLE 1: Comparison of thresholdvalue of S between linear and nonlinear (RGMl) treatments. Since, for
v > 0.5, there does not seem any clear threshold, the comparison is done only for v < 0.5. Parameters are
the same as those used in Fig. 3.1.

v linear (~ == 0) linear (~ == 1) nonlinear(~ == 1)
0.05 0.502 0.828 0.50
0.15 0.156 0.258 0.158
0.25 0.080 0.131 0.088
0.35 0.041 0.067 0.054
0.45 0.013 0.021 0.02

This corresponds to the reduction factor of Montague32 and will be called effective tune
shift factor. In this approximation, all we have to do is to replace 3 as

3 ---+ F'(~)3. (17)

In Tab. 5.1, we compare the results of the linear approximation using Eq. (17) and
the original RGMl, as shown in Fig. 3.1. For RGMl, threshold means the value of 3
where the sudden increase of, the separation occurs, whereas for the linearized model,
the threshold is the 3 which satisfies

....., 1
~ == - cot(rrv).

41r

The comparison is made only for v < 0.5, because there is nothing to compare for
v > 0.5. The qualitative disagreement is clear for the latter case. We assume 3+ == 3_
and v+ == v_ here. We also showed the threshold for ~ == 0 for comparison. It can be
said that the linear approximation overestimates the threshold in particular for small value
of v. From Fig. 3.1, this result can be understood as the effect of the deformation of the
closed orbit. For v > 0.5, the linear approximation fails even qualitatively. The linear
approximation is based on an assumption that the separation does not change until the
linear instability threshold is exceeded. Thus we conclude that the linear approximation
around the nominal closed orbit is erroneous unless the nominal separation is quite small
or quite large.

5.2 Comparison with the Subtraction Scheme

Some authors 18,20 studied the same effect employing a different assumption that the
closed orbit effects can be corrected by other means. In order to separate the closed orbit
effects, they used, instead of Eq. (3),

(18)

We call it the subtraction scheme.
The luminosity reduction factor R of RGMI and that of subtraction scheme are com­

pared in Fig. 5.2 as a function of 3.
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There is a remarkable difference. In the subtraction scheme, the closed orbits are held
fixed and change only through the linear instabilities like SBS. The latter is a sudden
jump. In Fig. 5.2, the prediction of the subtracted scheme is that R is constant for small
values of S and begins to decrease rapidly when S exceeds some value.

The subtracted scheme can apply when and only when C.O.D. can always be corrected
accurately and immediately before the next collision takes place. Otherwise, it gives too
optimistic predictions.

5.3 Problems in Future Colliders

The high luminosity e+e- colliders in near future 12,13,14,15,16,17 are thought to have two
rings and contain many bunches in each ring. The bunch spacing SB is much smaller
than the conventional machines, such as TRISTAN and LEP. Several new effects are
foreseen:

1. two-ring operation makes it difficult to control bunches in such a way that they always
collide exactly head-on.

2. many-bunch operation makes it difficult to arrange number of particles in each bunch
almost exactly the same.

3. small value of SB leads peripheral collisions: bunches can interact with each other not
only at the IP but also at points SB xinteger/2 distant from the IP. The latter points are
called the peripheral collision points (PCP's).

As we have studied above, the item-l leads additional closed orbit effect at the IP and at
the arc. Because of item-2, these closed orbits differ from bunch to bunch. The former
effect can be corrected but the latter effect makes it difficult to control the horizontal­
vertical coupling and the vertical emittance. The item-3 does further: all bunches become
coupled by it and closed orbits structure becomes much more complicated. In order to
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(19)

avoid too large effects at PCP's, the design orbits for both beams should be arranged in
such a way that they are well separated at all PCP's. One possibility is that the beams
cross each other at the IP with a small crossing angle. When the angle is too large, the
synchro-betatron resonance33 may become too serious. When it is too small, on the other
hand, the peripheral collisions perturb beams too much.

5.4 Extension to Two and Three Dimensions

The ROMI cannot be applied when the vertical separation is comparable to the horizontal
beam sizes nor when the horizontal separation is not ignorable at PCP's, for example. It
is, however, quite straightforward to extend RGMI to the two-dimensional model, that
is RGM2. Historically, RGM2 appeared5 before RGMI. This was, however, not studied
in detail with its full nonlinear nature. In order to evaluate the effects of collisions at
PCP, a computer code BCD (Beam-beam Closed Orbit)24 was made. BCD tracks many
bunches on the basis of the RGM2.

In RGM2, we replace Eq. (2) by

s:-I . s:-I N~ref(- - DO - - DO",,)
VY±+lvX±~=f-- x+-x_+ x,Y+-Y-+ y;LJx,LJy,

r±

where f(x, y; ax, ay) is34

(20)

Here w is the complex error function.
When studying the future colliders with PCP's, the multiparticle tracking seems almost

impossible. The RGM2 may be the only tool.
Some preliminary results of BCD were reported in Ref. 19 and Ref. 24. Following

observations have been obtained:

1. When crossing angle is large enough, the effect of the peripheral collisions can be
understood as a perturbation to the effects from the IP. In this case, the consideration
given in this paper is almost enough to predict the beam behaviours. The most dan­
gerous effect is that the closed orbits in the arc may differ from bunch to bunch. This
comes from the possible variation in the number of particles in each bunch. It may
happen then that each bunch has different vertical emittance.

2. When crossing angle is too small, and when 3's are not quite small, chaotic motion
appears. The behaviour of the beams is no longer predictable even qualitatively. Once
it occurs, it seems almost impossible to correct these 'closed orbits'.
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To distinguish the two cases, we need BCD. More detailed report will be published
elsewhere.

The bunches can be deflected also in the energy direction, in particular when there is a
crossing angle. An incoherent beam-beam mapping for this case is available.35 Inclusion
of this effect may be useful for a more detailed study.

5.5 Summary and Conclusions

The linear and nonlinear rigid-Gaussian models have been used widely. The model
consists of representing the distribution function 1/J by barycentre variables. This approx­
imation is evidently quite crude. This approximation has several obvious shortcomings.
This simplification, however, is almost inevitable in discussing the multiple interactions
(peripheral collisions) in multi-bunch colliders. We thus have studied how serious the
shortcomings are by examining the one-dimensional beam-beam (sheet-sheet) interaction
and a corresponding nonlinear rigid Gaussian model (RGMI).

It was shown that the RGMI may be qualitatively erroneous in some cases;

1. The weak-strong case, that is, when 3+ >> 3_ or the opposite hold,

2. When 3's are within a region where the beam distribution is largely affected by the
beam-beam interaction.

Such cases, however, can be avoided rather easily. The use of the rigid Gaussian
approximation was justified, to some extent, for evaluating the closed orbit effects of
the beam-beam interaction for reasonable ring parameters, if it is used carefully.

Other issues pointed out in this paper are;

1. With primordial and spontaneous beam separations, the linearized treatments may be
dangerously optimistic. The nonlinear RGMI is more reliable.

2. The beam-beam interaction modifies the original closed orbits both at the interaction
point and at the arc. The amount of the modification depends on the bunch current.
The beam separation at the IP is not the only thing to worry about.

3. The case without the primordial beam separation can be embedded in more general
cases as a special and singular case. Near the integer resonance, the general case has
the structure of the cusp catastrophe.

4. Stability of the closed orbit is not sufficient. We should look for possible nonlinear
resonances near the closed orbit. This can be done by tracking in RGMI.

The RGMI is a simplification of more realistic two-dimensional model (RGM2). For
quantitative and detailed investigation, RGM2 should be used. But RGM 1 is still useful
in understanding general and qualitative features.

In conclusion, the rigid-Gaussian approximation provides us useful insights of the
beam-beam barycentre effects.

After submitting this paper, a paper36 came to the author which discusses the closed­
orbit problem based on the rigid-Gaussian model.
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