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Existence of a twist angle intrinsic to the reference orbit
in circular accelerators

Stefania Petracca*
University of Sannio, Benevento, and INFN Salerno, Italy

Kohji Hirata*
Sokendai, Graduate University for Advanced Studies, Hayama, Japan

(Received 31 October 2000; published 27 December 2000)

In a circular accelerator, a horizontal-vertical coupling can occur as a purely geometrical effe
the absence of any coupling device (skew-quadrupole magnets, etc.). The coupling between ho
and vertical coordinates (and momenta) is represented by a rotation [SO(2)]. The rotation an
called the twist angle. It comes from the geometry of the reference orbit, and is related to the po
nonintegrability of parallel transport on it. We give an analytic expression of the twist and discuss
simple dynamical consequences of the twist on betatron tune.

PACS numbers: 29.20.–c, 29.27.–a
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I. INTRODUCTION

In particle accelerators, the betatron coordinates are
fined with respect to the reference orbit. The refere
orbit closes after one turn, but the betatron coordinate
not necessarily come back to the original values after
turn: the horizontal (x) and vertical (y) axes can be ro
tated by an angleF (twist angle), which is unique an
intrinsic to a given configuration of the reference orb
This effect, related to the anholonomy (nonintegrabili
of the (local) coordinate systems set up along nonpla
closed (Jordan) curves, has been well known since Ga
Its relevance in physics has been stressed by severa
thors (e.g., Pancharatnam, Berry, and Hannay; see [1])
is related to the fact that all physical quantities obey
(tensor) parallel transport law. Its possible relevance
connection with accelerators has been recently pointed
[2,3]. In this paper, we will discuss its (linear) effect o
the betatron oscillations. Preliminary results were given
Refs. [4,5].

The paper is organized as follows. In Sec. II, we defi
the twist angle; in Sec. III, we give a formula for com
puting the twist angle; in Sec. IV, we study one possi
dynamical consequence. Conclusions follow under Sec
In the Appendix we rephrase the concept in terms of
Frenet-Serret (FS) triad.

Throughout the paper we assume, for simplicity, that
reference orbit is composed of smoothly joining planar
cular arcs (corresponding to bending magnets) and stra
segments.

*Also at High Energy Research Organization (KEK), Tsuku
Japan.
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II. A GLOBAL COORDINATE SYSTEM BASED ON
PARALLEL TRANSPORT

Let the reference orbit be described byr�s�, wheres is
the arc length. Let̂ez�s� � �r�s��j �r�s�j be the unit tangent
vector, and

V � êz 3 �̂ez . (2.1)

At some point in the ring, e.g.,s � 0, we define two
(unit) vectorsêx�0� andêy�0� perpendicular tôez�0� such
that ���êx�0�, êy�0�, êz�0���� form a right-handed orthonorma
basis. We can then parallel transportêx�s� andêy�s� along
the reference orbit. The parallel transport equations a1

[6]
�̂ei � V 3 êi, i � x, y,z , (2.2)

with initial conditions ats � 0. We can introduce the
(local, principal) curvature radiirx and ry in V �
2êy�rx 1 êx�ry, to put Eq. (2.2) in the form0
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êy

êz
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CA . (2.3)

Integration of (2.3) gives

���êx�s�, êy�s�, êz�s����t � F�s, 0� ���êx�0�, êy�0�, êz�0����t ,
(2.4)

where

F�s, 0� � �T�
Z s

0
expA�rx�s�, ry�s�� ds , (2.5)

where �T� stands for the time ordered product and A
is the matrix in Eq. (2.3). Equation (2.4) defines the
coordinate system for all s [ �0, C�, where C is the ring

1Under parallel transport all three (unit) vectors rotate by the
same angle j �Vjds around the axis �V�j �Vj, after moving from s
to s 1 ds along the orbit.
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FIG. 1. (Color) The parallel transport and the twist. The point
s � 0 is indicated by a full circle. The magnets (arcs) are num-
bered. Magnet #6 corresponds to a long planar arc. The unit
vectors êx (dotted arrow) and êy (solid arrow) are defined arbi-
trarily at s � 01, and parallel transported along the reference
orbit shown. As they get back to s � 02 after a complete turn,
they are tilted by an angle F � p�2 in the example.

circumference. Since the orbit should be smooth, we have
êz�C� � êz�0�, which implies

F�C, 0� �

0
B@ cosF sinF 0

2 sinF cosF 0
0 0 1

1
CA . (2.6)

Equation (2.6) defines the twist angle F. Now, F�C, 0�
can be expressed as

F�C, 0� � fnfn21 · · · f2f1 , (2.7)

where fi accounts for the effect of the ith magnet along
the reference orbit

fi � exp�A�ri
x , ri

y�li � , (2.8)

with li being the length of the reference orbit through it.
In Fig. 1 we show a pictorial example of parallel trans-

port along a closed orbit and the related twist angle.

III. THE TWIST ANGLE AS AN EFFECT OF
NONINTEGRABILITY

The existence of the twist angle is related to the well-
known fact that a vector which is parallel transported2

along a closed curve laid on a two-dimensional curved
(i.e., nonapplicable3) surface acquires a net rotation (while
preserving its length) with respect to its initial orienta-
tion. Conversely, in the simplest case of a planar circular
trajectory, where rx � R and ry � `, from Eqs. (2.7)
and (2.8) we get cos�F� � 1, and the twist angle is 0.

The simplest example of a 2D surface which cannot be
applied onto a plane is a sphere. The function components
of êz�s� are the coordinates of a point on the unit sphere,
and this defines a map from the reference orbit to a unit-

2The scalar product � �a, �b� between vectors, and hence the vec-
tor length � �a, �a�, are preserved [7] upon parallel transport of

�a, �b, and so is the angle � �a, �b��
q

� �a, �a� � �b, �b�.
3Applicable surfaces can be deformed continuously into a

plane, without cuts or overlaps.
124003-2
P

12

3

4

5

6
R

Q

S

Φ

FIG. 2. (Color) The geodesic curve G described by êz on the
unit-radius sphere S2 corresponding to Fig. 1. The unit vector
êx is displayed at each point on G. At s � 01, êz is at P in the
figure, and êx (the dotted arrow) lies along the equator. Entering
magnet #1, êz moves to Q, and êx is parallel transported. The
same happens moving through magnets #2 and #3. Then êz
comes back to P. In going through magnets #4 and #5 from
P to S, êz makes a round-trip (null contribution to F). The
same happens going through magnet #6, along the equator (2p
contribution to F). On returning to P, êx is tilted by F � p�2.
The solid angle is p�2 1 2p [� F, mod�2p�].

radius spherical surface S2, tracing a closed curve G on
it; see Fig. 2, which corresponds to the configuration in
Fig. 1. From Eq. (2.1) it is seen that G is (piecewise)
geodesic on S2.

At each point on G, we can attach the corresponding unit
vector êx�s�, lying on its tangent plane.4 The twist angle
F is then the angle between û�01� and û�02�, after one
turn of the reference orbit.

Let f�s� be the angle between êx�s� and the local tan-
gent vector of G. The angle f�s� is constant along each
geodesic. At each corner on G (labeled by Q, R, etc. in
Fig. 2), f undergoes an abrupt change, f ! f 2 ai �
f 2 p 1 bi , where ai (bi) is the exterior (interior)
angle of the corner. After a complete turn, the tangent
vector of G has undergone a 2p rotation. Hence5

F � 2p 2
X

i

ai � �solid angle subtended by G� .

(3.1)

Equation (3.1) is the well-known Gauss-Bonnet theorem
[7]. The twist angle reflects the nonintegrability of the

4The same procedure applies to êy�s�.
5In Eq. (3.1) the solid angle is oriented, and F is defined as

mod�2p�.
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transport of êx along G and is an example of the holonomy
group on S2. Note once more that F does not depend on
the choice of the coordinate frame. It is an intrinsic, i.e.,
physical, object. It is easily seen that F does not change
when we start from a point different from s � 0.

An additional rotation 2F should therefore be applied
somewhere in the ring in order to make the one turn matrix
F�C, 0� an identity.

IV. DYNAMICAL EFFECT OF THE TWIST ANGLE

When a nonzero twist angle F exists, the �x, y� coordi-
nates should be adjusted, e.g., at s � 0,µ

x
y

∂
01

�

µ
cosF sinF

2 sinF cosF

∂ µ
x
y

∂
02

. (4.1)

This should be taken into account, no matter what dynam-
ics are concerned, including linear and nonlinear betatron
oscillations, polarizations, coherent dynamics, etc. As an
example, we focus here on the simplest case of linear be-
tatron oscillations.

We assume that the bending and quadrupole magnets are
chosen in such a way that the r’s are either horizontal or
vertical with respect to ���êx�s�, êy�s����, so that the transfer
matrix is always piecewise diagonal. The one turn matrix
thus acquires the form

M � R diag�mx , my� , (4.2)

where R is the rotation in Eq. (4.1), and the m’s are 2 3 2
symplectic matrices.

As an example, let us assume

mx,y �

µ
cos�2pnx,y� bx,y sin�2pnx,y�

2b21
x,y sin�2pnx,y� cos�2pnx,y�

∂

(4.3)

as a generalization of the Möbius ring [8], which corre-
sponds to F � p�2. By standard techniques [9], one can

FIG. 3. (Color) The unstable region in the �nx , ny� plane, for
F � 0.04p , bx � 0.33 m, by � 0.01 m. The vertical axis is
x � �growth rate 2 1�.
124003-3
calculate the eigenvalues of M. The largest of these is
the so-called growth rate, and is an obvious measure of
stability.

The unstable region in the �nx , ny� plane is shown in
Fig. 3, for F � 0.04p, bx � 0.33 m, and by � 0.01 m.
It is seen that, perhaps surprisingly, a small twist angle F

produces a large unstable region, as seen from the quantity
x � �growth rate 2 1�

Note that the instability pattern is left unchanged when
we make the transformations �nx , ny� ! �nx 1 1�2, ny 1

1�2� or F ! F 1 p.

V. CONCLUSIONS

In this paper we pointed out the presence of an intrin-
sic SO(2) rotation associated with the configuration of the
reference orbit. The twist angle F is unique for a given
reference orbit and is a physical object, which should be
included in the tracking.

We have discussed the simplest dynamical effect of
the twist angle. Further study will clarify its effects on
nonlinear dynamics, polarization (spin), coherent instabili-
ties, etc.
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APPENDIX: THE FRENET-SERRET TRIAD

The main point of this paper has been to elucidate that
to any nonplanar (simple, smooth) fiducial orbit it is pos-
sible to associate in an unique way an angle F of en-
tirely geometric origin. This can be computed in either
of the following ways: (1) as the net rotation undergone
by any (transverse) vector parallel transported through one
complete revolution along the orbit or (2) as the algebraic
sum of all jump rotations undergone by the Frenet-Serret
(transverse) vectors in passing through the closed orbit
inflection and deflection points.

In this Appendix we show how F emerges from the
Frenet-Serret triad.

To any curve L of class Cm (m $ 2) parametrically
represented by �r � �r0�s�, s being the arc length measured
from some origin on L, we can attach a local FS triad,

t̂ �
d �r0

ds
, n̂ �

d2 �r0

ds2

Ç
d2 �r0

ds2

Ç21

, b̂ � t̂ 3 n̂ .

(A1)

The unit vectors �n, �b, �t have the following meaning: �t is the
local tangent, �n is the normal oriented toward the center
of curvature, and �b is the binormal; �n and �t define the
124003-3
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local (osculating) curve plane.6 The FS does not transport
continuously. If the osculating planes of two arcs joining at
P are not parallel, it exhibits [3] an abrupt rotation across
P. Even in smooth curves (t̂ continuous) the transverse
vector pair (n̂, b̂) may exhibit abrupt discontinuities across
inflection and deflection points. Across an inflection point,
say at s � 0 (t̂ being continuous), one has

n̂�01� � 2n̂�02�, b̂�01� � 2b̂�02� , (A2)

whereas across a deflection point, where two arcs join
smoothly while their osculating planes make an angle d,
one has

µ
n̂
b̂

∂
s�01

�

µ
cosd sind

2 sind cosd

∂ µ
n̂
b̂

∂
s�02

. (A3)

The FS triad is thus transported along the ring using only
the following simple rules: (i) moving the FS triad along
a plane (torsion-free) circular arc of radius R and length
s � Ru produces a u rotation around the (local) b̂ vector,
(ii) moving the FS triad across an inflection point produces
a p rotation along the (local) t̂ vector, (iii) moving the FS
triad across a deflection point where the osculating plane
jumps by an angle d produces a rotation given by (A3)
along the (local) t̂ vector, (iv) moving the FS triad along a
straight section does not produce any change. Note that t̂
is continuous along the closed orbit and coincides with êz .

Summing up all jump rotations of the FS triads along a
(simple, smooth) nonplanar closed curve, representing the
reference orbit, gives, in general, a result different from 0
[mod�2p�].

This is exemplified in Fig. 4, where the orbit features
one inflection and five deflections. Letting di be the angle
between arcs i and i 1 1, Eq. (A3) should be applied with

6On a straight line, the FS triad is not unique, so that we define
it by parallel transport from the preceding arc.
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FIG. 4. The Frenet-Serret vector n̂ for the same example as in
Fig. 1. Arc inflection (deflection) points are highlighted.

d � di to describe the jump of the pair �n̂, b̂� between
s � s2

i and s � s1
i . For the special case of Fig. 1, we

have

�d1, . . . , d6� � �p�2, p�2, 2p�2, p, 2p�2,p�2� .
(A4)

It is easily seen that di is the same as the exterior angle ai

mentioned in Sec. III.
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