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Gaussian approximation of the bunch lengthening in electron storage rings
with a typical wake function
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The validity of the Gaussian approximation of the distribution function in the study of the equilibrium
bunch length in electron storage rings is considered with specific reference to the inductive wake. The
Gaussian approximation can be used to describe not only localized wakes, but also uniformly distributed
wakes, for which the longitudinal profiles at equilibrium are ruled by the potential-well-distortion
(Haissinski) equation. Comparison of Gaussian approximation based results with those obtained from
Haissinski equation shows good qualitative agreement in their common range of validity, while shedding
light on the nature of the unstable regimes.
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I. INTRODUCTION

The wake force describes space-charge and image inter-
actions which affect the particles distribution in a bunched
beam [1]. At low current, the longitudinal equilibrium
distributions can be obtained in analytic form by solving
the potential-well-distortion (PWD) equation named after
Haissinski [2]. The Haissinski equation is a complicated
nonlinear integral equation. A linear stability analysis
around the static solutions gives the threshold for turbulent
bunch lengthening. Obviously, this tells nothing about the
nature of the unstable regimes.

On the other hand it is more realistic, especially for large
machines, to consider the many sources of wake forces
along the ring as localized, as usually assumed in multi-
particle-tracking (MPT) codes. One of the authors intro-
duced an analytic model for describing localized (time-
dependent) wake forces [3] . The main simplifying as-
sumption is that if the initial distribution function in syn-
chrotron phase space is Gaussian, it can still be
approximated by a Gaussian after the action of the wake
force, represented by a ‘‘kick.’’ The distribution function
can be accordingly parametrized by its first and second
order moments only, describing the beam envelope in
synchrotron phase space. The evolution of these moments
from turn to turn is obtained by applying a (nonlinear)
mapping at each turn. Remarkably, even in cases when the
actual longitudinal distribution is not unimodal, the
Gaussian approximation proved to be not only capable of
capturing the physics of the problem (e.g., multistable
regimes, bifurcations, etc.) but also of predicting accu-
rately the relevant critical parameter values, by comparison
with MPT based results [4].

The localized-wake assumption can be suitably ex-
tended so as to model the uniformly distributed wake
case, to which Haissinski equation applies. To do so one
introduces Ns localized (equally spaced) kicks with (equal)
strengths / N�1

s , and eventually lets Ns ! 1.
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This allows us to make a direct comparison between the
Haissinski and Gaussian approximation approaches—with
the added value that this latter provides insight into the
nature of the unstable regimes.

For a constant wake function (capacitive beam coupling
impedance), a solution of the Haissinski equation always
exists [5]. On the other hand, the Gaussian approximation
approach reveals the possible coexistence of multistable
states in a cusp-catastrophe scenario [6], for certain values
of the relevant machine parameters, in close agreement
with MPT based simulations. Similarly, for a � wake
function (resistive beam coupling impedance) a solution
of the Haissinski equation always exists [7], and the
Gaussian approximation (map) approach discloses multi-
stable states in some regions of parameter space [8].

In this paper the Gaussian approximation (map) and
Haissinski (equation) approach will be compared and con-
trasted for the specific case of a �0 wake function (inductive
beam coupling impedance). For a �0 wake function a
solution of Haissinski equation is known to exist only
below a certain current-threshold [9]. On the other hand,
it has been recently shown [10] that after a suitable physi-
cally motivated regularization of the singularity, a solution
of the Haissinski equation with �0 wake function always
exists too.

The paper is accordingly laid out as follows. In Sec. II
we introduce the moment mapping, specialized to the
inductive (�0) wake case. In Sec. III we discuss
Haissinski equation for the same wake. In Sec. IV we
compare the two approaches. In Sec. V we introduce the
regularized inductive wake function. Conclusions follow
under Sec. VI.

II. THE GAUSSIAN APPROXIMATION

The longitudinal beam dynamics in electron storage
rings can be described by single-particle stochastic
(Langevin) equations of motion [3] in the canonical vari-
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FIG. 1. Gaussian approximation with �0 wake. Nature of the
solutions in parameter subspace fb; Tg with �s � 0:085. Light
gray: period-1; dark-gray: period-2 or higher; medium-gray:
chaotic.
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ables:

x1 �
longitudinal displacement

natural bunch length
;

x2 �
relative energy spread
natural energy spread

:

(2.1)

Integrating the Langevin equations over one turn, one
obtains the following stochastic mapping:�

x1
x2

�
0

� U
�

x1
�x2 � r̂

���������������
1��2

p
�
	x1


�
; (2.2)

where ~X0 � 	x01; x
0
2
 is ~X � 	x1; x2
 after one turn. Here U

is the rotation matrix:

U �

�
cos sin
� sin cos

�
; (2.3)

 � 2��s, �s being the synchrotron tune, � �
exp	�2=T
, T the synchrotron damping time measured in
units of the revolution period, and r̂ a Gaussian random
variable with hr̂i � 0 and hr̂2i � 1. The wake force (inte-
grated over one turn) is represented by


	x1
 �
Z 1

0
�	x� u
 ~W	u
du; (2.4)

where �	x
 is the charge density normalized to one, and

~W	x
 �
q2N
�E

W	x
; (2.5)

W	x
 being the (monopole) longitudinal wake function
[volt=coulomb], N the total number of particles in the
bunch and �E the nominal (absolute) energy spread.
Note that in Eq. (2.2) synchrotron oscillations have been
linearized, and radiation is localized at one point of the ring
[11]. It is also understood that WL is such that multiturn
effect can be neglected. The above stochastic mapping is
equivalent to an infinite hierarchy of deterministic maps in
the moments of the distribution function  	 ~x
, i.e.,

�x i � hxii; �ij � h	xi � �xj
	xj � �xj
i; etc:; (2.6)

where hi indicates average over all particles. We now
make the main assumption that the distribution function
in phase space can be approximated by a Gaussian, even in
the presence of a wake force,

 	x1; x2
 �
exp

�
� 1

2

P2
i;j �

�1
ij 	xi � �xi
	xj � �xj


�

2�
�����������������
det��ij�

q ; (2.7)

and use (2.7) to compute the averages in (2.6). See Secs. 5.3
and 5.4 in [3] for a discussion of the physical implications
and limitations of the Gaussian approximation.

For the special case of the �0 wake function, of interest
here,

~W	x
 � �b�0	x
 (2.8)
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(purely inductive beam coupling impedance), we can split
the maps for the second order moments into three parts,
representing the effect of radiation, wake force, and syn-
chrotron oscillation, respectively, as follows:

�0
11 � �11; �0

12 � ��12;

�0
22 � �2�22 � 	1��2
 	radiation
;

(2.9)

�0
11 � �11; �0

12 � �12 �
b

4
�����������
��11

p ;

�0
22 � �22 �

b�12

2�11
�����������
��11

p �
b2

6�2
11�

���
3

p 	wake force
;

(2.10)

�0
ij �

X2
h;k�1

Uih�hkU
t
kj; 	synchrotron oscillation
;

(2.11)

where U is the rotation matrix (2.3) and Ut its transpose.
The stability and nature of the solutions of the resulting
product map depends on the values of the synchrotron tune
�s, the damping time (measured in number of turns) T, and
the strength of the wake force, represented by b.

We explored systematically a wide range of (meaning-
ful) parameters values [12], and found stable solution of
period one and higher, in agreement with previous findings
in [8], but also finely cascaded bifurcations and chaos for
some parameters values. As an illustration, in Fig. 1 the
pertinent regions of a 	b; T
 parameter space subset are
shown for �s � 0:085. The existence and size of the cha-
otic region turns out to be weakly dependent on the value of
�s. As b decreases through negative values, the map ex-
hibits a bifurcation-cascade route to chaos. This is illus-
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FIG. 2. Gaussian approximation with �0 wake. �ij versus b < 0 for T � 200, �s � 0:085, and NS � 1.
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trated in Fig. 2, where the second order moments �ij are
displayed as functions of b, for T � 200 and �s � 0:085.
III. THE HAISSINSKI EQUATION

Let us introduce the synchrotron variables

 � 	E� Es
=Es; ! � !s#=$� ; (3.1)

where E is the energy of the single-particle, the suffix
s indicates the synchronous particle with the nominal
energy Es, !s is the synchrotron angular frequency, # �
	z� zs
=&c is the time displacement with respect to the
synchronous particle, & is the relativistic factor, c is the
light velocity in vacuum, $ is the momentum compaction
factor, and � is the relative energy spread. The static
solution of the Fokker-Planck equation for the phase space
particle distribution can be written:

 	 ; !
 � �	!
 exp


�

 2

2�2
 

�
: (3.2)

The (dimensionless) longitudinal density �	!
 in Eq. (3.2)
is a solution of the Haissinski equation [13],

�	!
 � A exp


�
!2

2
�

Z �1

!
V	!0
d!0

�
; (3.3)

where A is a normalization constant such that:
Z �1

�1
�	!
d! � 1; (3.4)

and

V	!
 �
Z �1

!
�	!0
w	!0 � !
d!0; (3.5)

with

w	!
 �
q2N

2��s�E
W	!
: (3.6)

W	!
 being the (monopole) longitudinal wake function
[volt/Coulomb]. Letting
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w	!
 � 2S�0	!
; (3.7)

Eq. (3.3) becomes

�0	!

�	!


� �!� S�0; (3.8)

whose solution is

log�	!
 � S�	!
 � �
!2

2
� logA; (3.9)

where A is an arbitrary constant whose value is chosen so
as to cope with (3.4). The solution of Eq. (3.9) can be
written explicitly in terms of the Lambert W function [14],
defined by the series expansion:

WL	z
 �
X1
n�0

	�n
n�1

n!
zn; jzj< exp	�1
 (3.10)

and is

�	!
 � �
WL��AS exp	�!

2=2
�
S

: (3.11)

It is well known [9,10] that for S � 0 a solution of (3.3)
satisfying Eq. (3.4) always exists. On the other hand, if

S > S� � 1:550 61 (3.12)

no value of A can satisfy the normalization condition (3.4),
and no stable solution of Haissinski equation does accord-
ingly exists [15].
IV. COMPARISON

The localized-wake assumption on which the Gaussian
approximation is based can be extended to model the
uniformly distributed wake case to which Haissinski equa-
tion applies, so as to make a comparison possible. This is
obtained by making the following substitutions in the map:

�s ���! �s=Ns; T ���! TNs; b ���! b=Ns; (4.1)

where the superperiodicity index Ns is eventually let grow
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FIG. 3. Gaussian approximation with �0 wake. �ij versus b < 0 for T � 200, �s � 0:085 and Ns � 150.
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to infinity, thus distributing the wake force among an
increasing number of (equally spaced) kicks along the ring.

It is interesting to compare Fig. 3, where Ns � 150, to
Fig. 2, where Ns � 1. A cascaded bifurcation route to
chaos is again observed, except that here the instability
sets in at a much smaller value of �b. For sufficiently large
Ns, the threshold b� corresponds precisely to the threshold
S� above which the solution of the Haissinski equation
does not exist. Indeed, S and b are more or less obviously
related by b � /S, where the constant / � �4��s. This is
most readily seen by assuming a �0 longitudinal wake with
strength W0 first in (3.6), so as to obtain from (3.7)

S � W0
q2N

4��s�E
; (4.2)

and then in (2.5), so as to obtain from (2.8)
FIG. 4. Gaussian approximation with �0 wake. The ratio
b�=/S� versus Ns for T � 200, �s � 0:085 (dots) and �s �
0:2 (crosses).
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b � �
q2N
�E

W0; (4.3)
and finally eliminating W0 between (4.2) and (4.3). In
Fig. 4 the ratio b�=/S� is plotted as a function of the
superperiodicity Ns, for two different values of �s. As Ns
is increased, the ratio gets closer and closer to unity.

On the other hand, for b > 0 (S < 0), a solution of
Haissinski equation always exists, and agrees fairly well
with the solutions obtained from the Gaussian approxima-
tion for Ns � 1. This is illustrated in Fig. 5 where �11 is
plotted vs b > 0, for different values ofNs. AsNs increases
the curves become more and more closely spaced.
FIG. 5. Gaussian approximation with �0 wake. �11 versus b >
0 for various Ns, with T � 30 and �s � 0:085. The curve
derived from Haissinski equation is indistinguishable from those
with Ns � 100.
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FIG. 6. Gaussian approximation with physically regularized �0

wake, Eq. (5.1). �11 vs b < 0 for a � 0:1 (dotted line), a � 0:05
(dashed line), a � 0:01 (solid line), with T � 200, �s � 0:085,
and Ns � 150.
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Eventually �11 converges to the bunch length (rms spread)
of the Haissinski equation solution [16].

V. REGULARIZED WAKE

The wake function �0 was regularized in [10] on the
basis of a simple but sound physical argument by replacing
Eq. (2.8) with

~W reg	x
 � �b lim
a!0�

�	x
 � �	x� a

a

; (5.1)

where a is a positive parameter, so as to satisfy the cau-
sality condition whereby each particle is influenced only
by those which precede it, but not by those which follow. It
was shown in [10] that using the above regularized induc-
tive wake, the Haissinski equation has a solution for any
value of S.

The mapping for the wake force obtained using (5.1) in
place of (2.8) reads

�0
11 � �11; �0

12 � �12 �
b exp	�a2=4�11


4
�����������
��11

p ;

�0
22 � �22 �

b�12 exp	�a
2=4�11


2
�����������
��11

p
�11

�
b2�1� exp	�a2=4�11
�

2

4a2�11�

�
b2�1� exp	�a2=�11
 � 2 exp	�a2=3�11
�

2
���
3

p
a2�11�

:

(5.2)

We explored a wide range of parameter values and found
that using the physically regularized inductive wake (5.1)
the Gaussian approach also yields regular (nonchaotic)
solutions (both for Ns � 1 and Ns � 1) for any value of
b. As an illustration, in Fig. 6 we display �11 vs b for T �
200, �s � 0:085, and Ns � 150, for several values of a. It
is seen that the physical regularization of the �0 wake
suppresses the instabilities.

VI. CONCLUSIONS

Previous comparisons between the Gaussian approxima-
tion and the Haissinski equation for the special relevant
cases of constant and � wake functions, corresponding to
capacitive and resistive beam coupling impedances, re-
spectively, show that the two approaches agree quite well
in their common range of validity, under the superperio-
dicity approximation for a continuously distributed wake.

Here we investigated in some detail the Gaussian ap-
proximation for a �0 wake function (purely inductive beam
coupling impedance). We found that for b > 0 in (2.8) the
Gaussian approximation yields stable periodic solutions
for any Ns � 1 [8]. For b < 0 the Gaussian approximation
yields stable solutions, for any Ns � 1, for b above a
critical value b�, which depends on Ns. Below this critical
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value, a cascaded bifurcation route to chaos shows up. By
suitably increasing Ns, the critical value b� converges
rather rapidly to a value which corresponds exactly to the
critical value of S beyond which the Haissinski equation
has no solution. For a physically regularized (causal) �0

wake function, on the other hand, for which the existence
of solutions of Haissinski equation (stable longitudinal
profiles) is guaranteed for any current, the Gaussian ap-
proximation also yields stable solutions, for any Ns � 1,
throughout the parameter space.

It should be emphasized that while the Haissinski equa-
tion can merely yield the stable solutions, or predict their
nonexistence, the Gaussian approximation provides signif-
icantly deeper physical insight, by revealing the nature of
the instabilities (e.g., multistable regimes, period-doubling
bifurcations, and chaos), as well as the parameter space
regions where they occur—a very important issue in beam
dynamics analysis. On the basis of available results, we
suggest that the Gaussian approximation may provide a
reliable analytic framework to gain insight into the beam
dynamics, aside of massive numerical simulations based
on MPT codes [17].

In this connection we note that a superposition $�0	x
 �
&�	x
 � 1 could be used to model a wide class of wake
functions (including the broadband resonant case).
Unfortunately, in view of the nonlinearity of the
Gaussian approximation approach, no straightforward con-
clusions can be drawn from the above summarized results
for this more general case. Further quantitative investiga-
tion is accordingly in order.
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