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Abstract

It is well known that relaxation phenomena which take place in thermonuclear plasma
have great influence on the confinement in not only that it is usually harmful to sustain-
ment of configuration, but sometimes that the confinement is improved to much better
state by relaxation. The Taylor’s theory[J.B. Taylor, Rev. Mod. Phys. 58, 741 (1986)] is
one of the most successful and useful theory describing relaxation phenomena, in which
the total magnetic energy is minimized under the constraint that the total magnetic helic-
ity is conserved. However, it is not sufficient to be applied for real fusion plasma because
it ignores the existence of plasma pressure. On the other hand, the achievable plasma
beta value in experiments has been increasing in recent years. In particular, the spherical
tokamak concept is attracting a great deal of attention because it has excellent properties
in the confinement and the stability at high 3, and the engineering economy. Therefore,
a generalized theory on relaxation phenomena including the effect of plasma pressure is
needed. In this thesis, we shall try to reveal the dynamics of pressure-driven relaxation
phenomena observed in spherical tokamak plasma, which is so-called IRE(Internal Re-
connection Event), by means of a numerical simulation. IRE is observed as a rapid fall in
the soft X-ray signal and an increase in the net toroidal current, together with a drastic
deformation in overall shape. However, the physical mechanism of IRE had not been clar-
ified at all until this study was carried out. The simulation results are full of suggestion
for both improving the confinement of spherical tokamak plasma and understanding the
general nature of the pressure-driven relaxation phenomena.

The simulation is based on a nonlinear three-dimensional magnetohydrodynamic equa-
tions. It is executed in a full toroidal spherical tokamak geometry including an open
external magnetic field region, so that the dynamical behavior of an IRE, such as a large
distortion in overall shape, can be properly treated. The spontaneous time development of
tiny perturbations applied on an initial unstable equilibrium is pursued by a high-accuracy
scheme.

The simulation results successfully reproduce the key features of IRE in good agree-
ment with experimental observations. The dominant linear eigenmodes for an initial
condition including a ¢ = 1 rational surface are found to be a combination of several low-
n modes. Especially, the m = 2/n = 2 and the m = 1/n = 1 pressure-driven interchange
modes grow simultaneously with almost the same large growth rate. As a result of the
nonlinear development of such low-n modes, which induce an elliptically elongating and
shifting convection flow in the poloidal cross section, a pressure bulge appears on the sur-
face of the torus in a toroidally localized region, where the radial positive displacements
of each mode are aligned to each other. The localized deformation generates a current
sheet structure near the separatrix, which induces magnetic reconnection between the
internal and external magnetic fields. The reconnected field line links the core region at
high pressure and the peripheral region at low pressure, so that a large pressure gradient
is formed along the reconnected field line. The confined plasma is rapidly expelled out of
the torus due to the flows induced by the pressure gradient. The expelled plasma extends
in the periphery, forming a characteristic helically twisted conical layers at the top and




the bottom of the torus, which is in good agreement with experimental results observed
by using a CCD camera. On the other hand, the plasma pressure at the center of the
torus falls into about 40% of that at the initial state in a short time scale of several tens
of Alfven transit time, which also agrees well with experiments. After releasing a part
of heat energy out of the separatrix, the system is once stabilized with respect to ideal
modes. However, another kind of an instability, which has a nature of a resistive mode,
is excited. This instability includes an m = 2/n = 1 component dominantly, and can
be destructive compared to the original ideal modes. Due to the growth of this insta-
bility, the overall shape of the torus is largely distorted, which agrees with experimental
observations, such as the tilting and the axis-asymmetric elongation of the torus.

More detailed analyses of the simulation results show several interesting dynamics
on pressure-driven relaxation phenomena, such as an almost parallel magnetic reconnec-
tion, formation of a tunnel-like convective loss channel due to the magnetic reconnection
between the internal and the external fields, and spontaneous phase alignment among
multiple modes on weakly nonlinear development of pressure-driven instability.
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Chapter 1

Introduction

1.1 Relaxation phenomenon in plasma

This thesis deals with relaxation phenomena in plasma. A relaxation in plasma is de-
fined as an energy transition from a certain state to another lower or more stable energy
state. Relaxation phenomena are often observed in various kinds of thermonuclear or
space plasma. We should carefully treat the relaxation phenomena when we consider a
magnetically confinement fusion plasma, partly because the plasma should be confined at
as stable state as possible, and partly because the spontaneous transition among different
states should be controlled as preferable. Therefore, it has been needed that relaxation
phenomena in plasma are well understood systematically about the conditions and the
physical mechanisms of the occurrences, the aspects of the time development, and the
properties of the resultant relaxed state.

Over the past few decades numerous studies dealing with relaxation phenomena in
plasma have been made. In the article published in 1974[1, 2], Taylor proposed a re-
laxed state, which is now so-called the Taylor’s force-free configuration. In his theory, a
minimum energy state that is expressed as

VxB = )B (1.1)

is derived under an assumption of a conservation in the total magnetic helicity. The
equilibria of RFP or spheromak can be successfully explained by this relaxed state.

On the other hand, his theory has an insufficient point in that it ignores the effect
of plasma pressure, though there must be a pressure gradient in real plasma. In recent
years, several attempts have been made to construct a theory dealing with the relaxation in
plasma with finite pressure. Zhu et al.[3] studied a self-organization process in plasma with
finite pressure by means of a three-dimensional magnetohydrodynamic(MHD) simulation.
They showed that a non-Taylor relaxed state, which is expressed as an MHD equilibrium,

Vp = jxB, (1.2)

is formed as the result of self-organization in finite pressure plasma. Experimentally, a
formation of a field-reversed configuration(FRC) by means of a counter-helicity merging
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of two spheromaks is studied in TS-3 device[4]. Since there is only the poloidal magnetic
field and the toroidal current in the finally formed FRC with finite pressure, this relaxation
process cannot be explained by the Taylor’s theory. A two-dimensional MHD simulation
is executed to explain this relaxation process[5]. In Ref.[5], it is shown that the thermal
energy which is generated by the release of the magnetic energy due to the driven magnetic
reconnection between two spheromaks is transported by the poloidal plasma flow induced
by the reconnection, so that an FRC with finite pressure gradient is formed.

However, the general treatment for finite pressure relaxation has not been well un-
derstood yet. In recent years there has been renewal of interest in high-8 plasma in
thermonuclear fusion research to realize efficient fusion compared to the conventional vast
experimental devices. In such high-3 plasma, plasma pressure plays an important role on
relaxation events such as sawteeth and disruptions. Therefore, it has become an urgent
research topic to understand the relaxation in finite pressure plasma.

1.2 Spherical tokamak

1.2.1 Spherical tokamak configuration

As a concrete example of high § plasma, in which the effect of the pressure plays an
important role on its dynamics, we focus on the spherical tokamak (ST) plasma [6, 7, 8].
The ST concept has been recently attracting a great deal of attention in the nuclear fusion
community, because it has promising properties in the stability, the confinement, the
compactness, and so on. The ST is called by several different names at present situation,
such as “low aspect ratio tokamak (LART)” and “spherical torus”, or sometimes it is
nicknamed “fat tokamak”. Though the definition of ST configuration has not been settled

yet, there is a common perception that the tokamak which has a smaller aspect ratio
(A= ma,jor ra,di.us(R)

~ minor radius(a)
from conventional tokamaks. Here, it should be noted that the ST is usually in vertically
elongated shape and its magnetic axis is largely shifted out, therefore, the minor radius
cannot be uniquely defined. Usually, it is measured as a half width of the outermost
surface on the midplane of the torus . Especially, the ST of much smaller aspect ratio
(A < 1.5), which has several unique properties in the equilibrium, is sometimes called the
“ultra low aspect ratio tokamak (ULART)”.

Figure 1.1 shows the image of the overall shape of a ST plasma which is taken by
a charge coupled device (CCD) camera in Small Tight Aspect Ratio Tokamak(START)
at Culham[9]. The brighter region on the image corresponds to colder plasma near the
outermost surface. As one can see from Fig.1.1, the overall shape of ST looks like an
almost spherical one due to the smallness of the aspect ratio, which is where it gets its
name spherical tokamak from. The dark part at the center of the picture is a so-called
“centerpost” made of a conductor rod, which forms a part of the boundary of a toroidal
confinement system. Thus, the ST device is composed by a cylindrical chamber with a
center conducting rod. In other words, one can regard the ST as a compromise between
tokamak and compact tori. It is a quite simple machine configuration compared to large
aspect devices such as a conventional tokamak, in which bulky poloidal coils link the torus

) than approximately 2 should be considered as an ST separately



shaped chamber.

Figure 1.1: Picture of overall shape of START plasma by courtesy of Dr. A. Sykes and
Dr. M. Gryaznevich.

In general, the ST equilibrium has a large toroidicity due to the smallness of the aspect
ratio, so that it tends to have a strong stability and good confinement. Shown in Fig.1.2 is
a typical trace of the magnetic field line on the ¢ = 7 rational surface. It should be noted
that the field line traces more turns in the inner (good curvature) part than in the outer
(bad curvature) part because of its strong toroidicity. Therefore the curvature tends to
be good in average along the magnetic field line compared to the conventional tokamak
configuration where the field line traces almost uniformly in both the inner and the outer
region.

In following subsections, the review of ST research and the basic properties of ST
plasma are described.

1.2.2 Historical review of spherical tokamak experiments

The ST research of today is based on the conceptional design by Peng et. al [6, 10, 11].
They obtained an equilibrium of a low aspect ratio tokamak with a large natural elongation
and a strong paramagnetism. They pointed out that the equilibrium has a promising
properties in that the large plasma current and a high beta value are available with small
toroidal magnetic field compared to conventional tokamaks with an assumption that the
confinement of ST plasma obeys the Troyon’s scaling law[12].

Such features of ST plasma are confirmed experimentally first in Hidelberg by Bruhns
et al[13]. They showed that a spheromak with an axial conductor forms a spherical
tokamak configuration, which is globally stable without any additional stabilization. In
particular, the tilt instability is found to be suppressed in such configuration.

An intensive ST experiment has begun since 1991 at Culham. The experiment is
named Small Tight Aspect Ratio Tokamak(START)[14]. The START experiment had
taken the lead in the ST research of the world until its shutdown in 1998. The be-
havior of ST plasma is investigated in detail, and showed an excellent stability and
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Figure 1.2: Typical magnetic field line trace in ST configuration on the ¢ = 7 rational
surface. It can be seen that the field line trace turns once in the outer region and six
times in the inner region in toroidal direction while it go round in the poloidal direction.

confinement(7, 14]. It was also observed that the ST is free from a current-terminating dis-
ruption, and that the edge configuration forms a natural exhaust system. These features
were recognized to be preferable for confinement. In the first stage of the START experi-
ment, the property of plasma had been increased up to the electron temperature of ~500
eV and the plasma current of ~150 kA with a natural and a double-null divertors[15].
Furthermore, the MHD activity in START plasma is studied in Ref.[15] in detail. A re-
laxation phenomenon termed Internal Reconnection Event(IRE) had been recognized in
this period. The detail of the IRE will be described in the next section. It was also found
in Ref.[15] that the density limit for the ST operation lies near that of the conventional
tokamak, and is limited by the existence of IRE, not a hard disruption like conventional
tokamak.

In 1996, a neutral beam injector(NBI) was settled on START experiment for an ad-
ditional heating[16, 17]. It had led to significant improvements in plasma performance.
The beta value had been increased up to ~50% at the center and ~10% in volume aver-
age. The scaling law for the energy confinement of ST plasma had been explored in wide
range, and found that it is as good as or better than the H-mode scalings from conven-
tional tokamak. The normalized beta value[12] was estimated by Bx ~ 3.5 at this period.
The disruption immunity and the existence of IRE was confirmed to occur at such high
beta regime. By developing the performance of plasma, the volume-averaged beta value
had reached 30% in 1998[18, 19]. The properties at such high-beta regime was intensively
studied, and found that the normalized beta exceeds 4. Besides, the MHD behavior at
an IRE is studied by using charge coupled device(CCD) cameras[19].

Further enhancement in the plasma performance had been done until the shutdown of
START experiments at 1999[20, 21, 22]. The volume-averaged beta value had exceed 40%




at the final stage of START experiments. The confinement property of such high-beta
regime showed that the normalized beta By ~ 5. On the other hand, a current-terminating
disruption came to be observed after a divertor coil was installed near the plasma [21, 9].
In such enhanced plasma heated by NBI, several energetic particle-driven instabilities
such as chirping, fishbone, and other Alfvénic modes were also observed(21, 23]. These
results in START experiment are reviewed in Refs.[24, 25].

Other smaller experiments were carried out in CDX-U[26, 27, 28] at Princeton, HIT|[29,
30, 31), HIT-1I[32, 33] at Washington, TST, TST-M[34, 35, 36, 37] at Tokyo, TS-3[4, 38,
39] at Tokyo, HIST[40] at Himeji, NUCTE-ST[41] at Nihon Univ., and Rotamak-ST[42] at
Australia focusing on each interest. In CDX-U, an ST of I, ~100kA is formed by using a
non-inductive current drive concept. The MHD activities are observed in detail. It should
be noted that the IRE is also observed in CDX-U. Another scheme for the current drive
using a so-called coaxial helicity injection is studied in HIT and HIT-II. They observed
that an ST plasma of I, ~250kA is formed in HIT experiment. The TS-3 ST plasma, on
the other hand, makes use of a merging technique to form a ST configuration. In TST
and TST-M, detailed measurements on plasma fluctuations were done.

In 1999, couple of large ST experiments have completed their construction. NSTX at
Princeton[43, 44] has achieved the plasma current of I, >1MA in 1999. Another large
device MAST at Culham [24, 45] has begun its operation, aiming at an 1 mega-ampere
plasma current. These large ST plasmas are formed at larger vertical elongation and safety
factor than the previous devices. Other middle-sized ST plasmas are under planning at
Pegasus in Wisconsin[46], and Globus-M in Russia[47].

1.2.3 Properties of spherical tokamak plasma

According to the first conceptual design for ST experiment by Peng et. al[6], the ST
equilibria are characterized by

e high toroidal beta(8; > 0.2),

low poloidal beta(s, < 0.3),

large natural elongation(x ~ 2),

large plasma current,
e strong paramagnetism,

e strong magnetic helical pitch.

These features such as a large elongation and magnetic shear lead the increase in the
MHD stability, and imply that a compact, high beta plasma is available with low magnetic
field. They showed that an ST equilibrium with beta value above 20% can be obtained
under an assumption that the Troyon’s scaling law is applicable at low aspect ratio.

More quantitative analysis of the stability of ST plasma for ideal modes is carried out
by Carreras et al.[48] by using an linear stability code such as ERATO[49] and PEST2[50].
They found that the Troyon’s scaling law is a good extrapolation at low aspect ratio(A <
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2.5). Namely, the critical beta value is found to be higher than the Troyon’s scaling
parameter,

I,[MA]

Berit = ﬁNW,

(1.3)

where the normalized beta value Sy ~ 3.5. They obtained such scaling extrapola-
tion without full optimization of equilibria. They also showed by means of a nonlinear
simulation that the stability for resistive tearing modes is also increased in ST equilibria.

More accurate calculation for the MHD stability in ST plasma is carried out by Menard
et al.[51].They explored the ideal MHD stability limits by numerically optimizing the
equilibria for several distinct regimes of operation. And they found a stable equilibrium
at 3 = 45% with A = 1.4 and k = 3.0.

Yamada et al. [52] studied the effect of the external toroidal field current (I;¢), which is
to be applied on the center post, on the stabilization of the global tilt/shift modes. They
showed that only a small I;; of about 10% of the plasma current is needed to stabilize
such modes. This result was in good agreement with the observation in TS-3 experiment.

Such properties of ST plasma on the equilibrium and the stability are proved in num-
bers of experimental results as described in the previous subsection.

1.3 Relaxatioin phenomena in spherical tokamak

As described in Sec.1.2.2, there was no experimental evidence of current-terminating
disruptions in the early ST experiments. Such disruption immunity proved an advantage
of ST plasma. In absence of such dangerous disruption, a more moderate, recuperative
MHD activity was observed. This phenomenon is called the Internal Reconnection Event
(IRE). IRE is peculiar relaxation phenomenon to ST plasma. In the recent experiments,
other relaxation phenomena that are commonly observed in other configurations such as
conventional tokamaks are also observed. In this section, these relaxation phenomena in
ST plasma are reviewed.

1.3.1 The Internal Reconnection Event

In the early experiments in START device[15, 16}, a relaxation phenomenon termed
IRE(Internal Reconnection Event) was often observed. The IRE can be observed as a
series of positive spikes in the plasma current trace. Similar spikes in H, and CIII signals,
and rapid drops in the soft X-ray(SXR) and the line integrated electron density signals
were often accompanied to the current spikes[9]. The IRE is also observed in CDX-U|[28].
However, the physical mechanisms for the occurrences of IREs have not been clarified
enough yet.

The advanced diagnostics in ST experiments has provided a lot of clues for under-
standing the characteristic features of IREs. The plasma current trace for a typical shot
in the early START experiment is shown in Fig.1.3 together with the corresponding line-
integrated density trace[9]. It can be clearly seen in Fig.1.3(a) that there are six spikes



after ¢ = 29 msec. Each of them is referred to an IRE. The duration time of each spike
is around 200usec. It should be noted that the IRE occurs repeatedly like this shot in
most case. At the moment the current increases, on the other hand, the line-integrated
density falls rapidly as shown in Fig.1.3(b). The time scale of the density fall seems to
be shorter than that of the current spike. The fallen density ramps up to the former
level during the intermissions of IREs. The behavior of the density trace is so similar to
sawteeth that it can be difficult in some cases to distinguish an IRE from a sawtooth.
IREs are differentiated from sawteeth in that the current increase in sawteeth is much
small compared to that in IREs, and that the sawteeth repeat in almost regular intervals
while IREs appear irregularly.
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Figure 1.3: Experimental results in START by courtesy of Dr. A. Sykes and Dr. M.
Gryaznevich. The time development of (a) the plasma current and (b) the line-integrated
density is drawn for a typical discharge(#25868).

As for each individual IRE, the temporal change in the observed quantities is shown
in Fig.1.4 for a typical shot in START experiment with an IRE (#36546, START)(9] for
example. IRE usually proceeds in three stages as indicated in Fig.1.4 with I, II, and III,
respectively. The first stage is the precursory thermal quench phase. In this stage, the
growth of low-n activities and accompanying rapid fall in the SXR and the [ ndl signals
are observed. There is only a little change in the other signals in this stage. The second
stage is accompanied by profile redistribution. The plasma current increases in a short
time scale of around 50usec. The last stage is referred to the post-IRE mode evolution
and current quench. The increased current in the former stage gradually decreases to
some level, and the CIII signal, which roughly corresponds to the increase of the inpurity
in the edge region, decreases. As described in the next subsection, this stage sometimes
end in hard disruption in more recent experiments in START.

The temporal change in the radial electron temperature and density profiles can be
measured by using Thomson scattering diagnostics. The experimental results of the time
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Figure 1.4: Experimental results in START by courtesy of Dr. A. Sykes and Dr. M.
Gryaznevich. The time development of (a) the plasma current, (b) the soft X-ray signal
at R=34.6cm (close to the magnetic axis), (c) the line-integrated density, and (d) the
CIII emission are drawn for a typical IRE (#36546). The distinguishable three stages
numbered I, II, and III are specified in (a). Stage I often proceeds in more two steps (IA,
IB).
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development in the temperature and density profiles, which are obtained in START[16, 9]
shows that the central values of these quantities fall in a short time scale of around 100
usec when an IRE occurs. The profiles become somewhat broaden after the collapse in
the central value.

Another unique characteristic of IREs is a large distortion in the overall shape of the
torus. In START, some charge coupled devise(CCD) cameras monitor the whole torus.
Figure 1.1 is the typical snapshot at a steady state. While the IREs or the disruptions
occur, a large helical low-n distortion is often observed in CCD images[18, 19, 9]. Shown
in Fig.1.5 is the example of such distortion. A large helical twist at the core plasma region
and a vertical extension of the visible light toward the top and the bottom boundary of
the chamber can be seen. The properties of such distortion will be described in Sec.4.1.2
in detail comparing with our simulation results.

Figure 1.5: Large distortion accompanying with an IRE observed by CCD camera. (Cour-
tesy of Dr. A. Sykes and Dr. M. Gryaznevich)

The occurrence of IRE needs to be carefully considered when we aim to improve the
confinement of STs. As we can see from Fig.1.3(a), once IRE occurs the confinement
seems to become unstable compared to the former steady state, so that the second IRE
soon occurs, even if the plasma current looks as if it recovers to some level after the first
IRE occurs. The plasma current also degrades itself to some extent, and the stored energy
is lost typically in 30~40% every time IRE occurs [21, 9]. On the other hand, the strong
resilience of IRE implies the existence of an excellent potential for self-organization in ST
plasma. If we can make use of it, or at least if we can control it as it would not end in
disruption, it will be a great help in improving the confinement of ST plasma.

There is only a few theoretical attempts about the IRE. A model for describing IREs
has been developed by R. J. Buttery et al. In Ref.[21, 53], they reconstructed equilib-
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rium using a free-boundary Grad-Shafranov code with the experimental data obtained in
START. By comparing the pre- and the post-IRE states, they found out a conservation
constraint in “modified helicity”. Scanning in various aspect ratios and falls in 3, using
this constraint, they successfully explained the distinctive features of IRE such as disrup-
tion immunity at low aspect ratio. However, there is no previous work that treats the
dynamics during an IRE.

Thus, the characteristic features of IRE are summarized as follows.

e rapid fall in the density and the temperature at the core
e rapid increase in the plasma current and the edge activity

e a large axis-asymmetric deformation in overall shape

large scale (low wavenumber) precursor

strong resilience after the collapse

1.3.2 Disruptions and fast ion driven modes

In the early operation in START(16], and also other small STs such as CDX-U [28], no
rapid current-terminating disruptions were observed except for tiny ones that occur as
the last of sequential IREs. However, in more recent operations in START[19, 21} with
higher-/3 and lower safety factor, the discharges end in terminating disruptions. The cause
for the appearance of disruption is now thought to be related the machine configuration.
After the installation of the divertor coils closer to the plasma in 1996, the frequency
of the occurrence of disruptions is increased [21, 9]. The CCD images at the disruption
phase shows that the plasma is elongated so that the edge of the plasma contacts the
divertor coils. The prior stage to the disruption, on the other hand, is observed to be
almost the same as IREs.

The NBI operation in START has made an opportunity for experimental study on
the physics of energetic ion in ST plasma. Several energetic particle-driven instabilities
such as the chirping modes, fishbones, and some other fixed-frequency modes in Alfvén
frequency range have been found[21], and are discussed[23, 54].

1.4 Purpose of this study

The main purpose of this study is to reveal the physical mechanism of the IRE by means
of a numerical simulation. Namely, we aim to explain the scenario of an IRE with a
spontaneous time development of plasma from the beginning to the end continuously
and self-consistently. This should be placed upon the first attempt to understand the
relaxation process in finite pressure plasma. The dynamics of the high-3 plasma on the
relaxation event which will be revealed by this study must have a lot of information for
exploring the relaxation theory to the finite pressure regime. This study will intermediate
between the phenomenology and the unsolved theory related to the finite pressure relax-
ation in plasma. For that purpose it is necessary to reproduce the nature of relaxation
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phenomena as it is by the simulation. The numbers of experimental observation will help
us to examine the accordance of the simulation results with real phenomena.

Bearing in mind the above objective, most of this study is devoted to reproduce the
IRE by the simulation. Since the mechanism of IRE is not understood at all, we firstly
aim to understand the outline of the phenomenon by using as simple model as possible.
Thus, we carry out a magnetohydrodynamic (MHD) simulation in a three-dimensional
full toroidal geometry to investigate the characteristic feature of IRE which is considered
to be governed by large scale activities. The simulation results are immediately compared
with the experimental results, and the discrepancy between them are fed back to the
modelings. Repeating such investigations many times, we can improve the modelings and
can reproduce the phenomenon appropriately.

After that, or in the process of the modelings, the detail of the dynamics will be
revealed by analyzing the reproduced phenomenon carefully. The dynamics which appears
in an IRE has a lot of interest in general physics such as magnetic reconnection process
under a finite pressure. The results which are described in this thesis have been obtained
by such a trial-and-error approach. Furthermore, we can obtain some suggestions for
suppressing the occurrence of IRE in experiments from the result. It will improve the
confinement of the plasma in ST experiments.

Thus, this study has several meanings in addition to an exploration into the general-
ization of relaxation theory to finite pressure regime. Firstly, it will help us to know how
the occurrence of IRE is suppressed in experiments. It is directly related to the realiza-
tion of nuclear fusion. Secondly, it is a challenge to such kind of approach with highly
sophisticated numerical computations for investigating the large scale dynamics observed
in real fusion experiment. And finally, each individual processes included in an IRE is full
of physical interest.

In following chapters, the simulation model and results are described as a unified
scenario for an IRE by summarizing the modelings. Some pieces of consideration are
described in Chap.4. And finally, the summary of this study and some remarks are
described in the last chapter.
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Chapter 2

Simulation model

2.1 Simulation geometry

As described in Chap.1, an IRE is accompanied by a large distortion in overall shape.
The distortion extends to the vacuum region, where the plasma does not exist before the
IRE occurs. To consider such dynamics of IRE in simulation, it is necessary to treat
self-consistently over the whole region where the torus itself and the peripheral region are
included. The distortion usually appears as a non-axisymmetric one. Therefore, a full
three-dimensional computation geometry is needed to reproduce the distortion properly.
We adopt such a simulation system as shown in Fig. 2.1. A three-dimensional full-toroidal
cylindrical coordinate (r,6,z) is used. The region where the simulation is performed
includes both the core ST plasma and the peripheral magnetic field. The peripheral
region is not modelled as a vacuum but is filled with low pressure plasma. The plasma
can freely extend into the peripheral region as a result of time development. A conductor
rod is placed on the center of the cylinder. Since the plasma motion that is propagated
by the Alfven wave is disturbed at the top and the bottom boundary, the simulation
result is more sensitive to the conditions of these boundaries than the inner and the outer
boundaries. Therefore, we leave a sufficient margin in the vertical direction from the core
plasma in order to avoid the disturbance from the reflection at the top and the bottom
boundaries.

2.2 Basic equations

2.2.1 MHD equations

The basic equations to be solved in the simulation are the standard set of compressive
MHD equations as follows.

% = V() (2.1)

%(pv) = —V-(pvv) —Vp+j x B+ pu(Viv + %V(V +v)) (2.2)

15



25 1.00 1.75

r

L N[Z%1875

/ 10
perfect ©

conducting wall

- -1.875

)

Figure 2.1: Schematics of simulation geometry.

0B
== = _ 2.
5 Vx E (2.3)
0 :
b_zz = -V (pv)- (v=1)(V-v+nj*+ ) (2.4)
j = VxB (2.5)
E = —vxB+nj (2.6)
® = 2pu(eijei; — %(V -v)?) (2.7)

1 0v; | Ov;
& = 305z, " 2,
The independent variables to be solved are the density p, the flow velocity v, the
intensity of magnetic field B, and the plasma pressure p. The fluid is considered to be a
single fluid. Equation (2.1)-(2.4) are the equation of continuity, the equation of motion,
the equation of induction (Faraday’s law), and the equation of pressure, respectively.
In Eq. (2.2), j is the current density given by the Ampére’s law which is expressed as
Eq. (2.5). p is the viscosity, which is assumed to be a uniform constant. In Eq. (2.3), E
is the electric field calculated from the Ohm’s law, which is expressed as Eq. (2.6). Since
the resistivity 7 is included in Eq. (2.6), the effect of resistive diffusion is solved in this
simulation. Here, 7 is assumed to be a uniform constant everywhere in the simulation
region. Adding the time evolution of pressure solved in Eq. (2.4), the equations are closed.
The first term of the right hand side of Eq. (2.4) represents the convection, and all of the
heating terms are included in the second term. The heating term consists of adiabatic
compression (pV - v), the Ohmic heating(nj*), and the viscous heating(®). The viscous
heating is represented as Eq. (2.7) using with the rate of strain tensor defined as Eq. (2.8).
It should be noted that the local conservation of energy is kept everywhere.

(2.8)

16



2.2.2 Normalization

In this simulation, the MHD equations are solved in a normalized form like (2.1)-(2.8).
The proportional factor of current to rotation of magnetic field appearing in the Ampére’s
law is chosen to be unity, as represented in (2.5). The magnetic field is normalized by
the value at the magnetic axis in the initial equilibrium(By). Since pressure has the
same order as that of the energy density, that is, square of magnetic field, pressure is
automatically normalized by scaling magnetic field, or,

p = B (2.9)

The spacial scale is normalized by the major radius of the geometric center of the
simulation region(see Fig. 2.1). The mass density is assumed to be uniformly py = 1
everywhere in the simulation region. The normalization for velocity is given as the Alfvén
velocity at the magnetic axis

By
Vo \/p_o Bo (210)
Therefore, the time scale is normalized by the Alfvén transit time at the magnetic axis
for the length of the major radius of the geometric center.
Thus, we can compare the simulation results with real experiments, by scaling the spa-
cial dimension, the density, and the magnetic field. For example, the plasma parameters
of a typical NBI shot of START plasma in 1996 are as follows[17]. '

e toroidal magnetic field at the geometric center ~ 0.2 (T)
e major radius ~ 0.34 (m)
e line averaged density ~ 4 x 10'%(m~3)

e volume averaged total beta Sr ~ 10%

By using these parameters, we can estimate the normalization of the time scale for this
shot as 1(74) ~ 0.5(usec) .

2.3 Numerical scheme

Egs. (2.1)-(2.8) are solved numerically. In this section, the outline of numerical scheme
is described. This is based on the finite difference method and an explicit time integra-
tion. Such a scheme is simple compared to other method such as the spectral method.
Especially, it is suitable for a large scale computing by using a super computer. The com-
putation can be executed at an extremely high speed up to 13 GFLOPS on NEC/SX-4
super computer. It takes only about 30 hours to simulate through the whole process. It
is important to try the simulation many times in various situations to explore unknown
phenomena. The highly efficient computing enables such a trial-and-error approach.
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2.3.1 Fourth order finite difference and Runge-Kutta method

We solve (2.1)-(2.8) by using the finite difference method. All the quantities in (2.1)-(2.8)
are defined at finite discrete points forming a so-called numerical grid. In this simulation,
the numerical grid is composed in regular intervals in each r, #, and z direction. The
number of the grid points should be large enough to obtain appropriate accuracy. The
question whether the numerical solution of the equation approaches the real solution
when the grid number is increased is called a convergence problem. When one executes a
simulation, the convergence check is important to make sure the reliability of the solution.
Here, we use (N;, Ny, N,) = (128,64,128) as the number of numerical grid. It is large
enough to treat at least large scale dynamics, and the solution is converged. The detailed
convergence analysis is described in Appendix. The step size dr , R60 , and dz is scaled
to be 4mm, 33mm, and 10mm, respectively, for the START operation parameter. It is
quite reasonable resolution.

To obtain as higher accuracy as possible with reasonable memory size, it is effective to
raise the order of the finite difference approximation. We use a forth order finite difference
approximation in this simulation. A first spatial derivative of a variable f at a discrete
point is represented in the fourth-order central difference form by

0 1
é . Toga\firr +8fir1 = 8fis + fiva), (2.11)

=x;

where ¢ is the index of the numerical grid for the spatial coordinate x, and dz is its
interval. The numerical error due to the finite difference approximation is of the order
of (6z)* at most. As we can see from (2.11), the estimation at the grid point ¢ needs
the information at two neighbors in both directions(i — 2 ~ i + 2). Therefore, another
treatment is necessary near the boundaries. There are two approaches for it. First one
is to represent the derivatives by using the one-side difference form. The fourth order
forward difference, for example, is represented by

1

= _126$ (_3fz'+4 + 16fi+3 - 36f1;+2 —+ 48fi+1 — 25fl), (212)

of
oz

T=z;

However, it has been found that the resultant numerical error tends to become large with
this method. Therefore, we adopt another approach, which makes use of a lower order
approximation near the boundaries. Namely, at the grid points next to the boundary, a
second order central difference,

of

1
or = %(fi+l - fi—1)7 (213)

r=x;

is used, and, at the boundary, a first order difference,

of

oz = %,E'(fﬂl - fi)s (2.14)

T=T;
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is used. Such treatment of reducing the order of the difference approximation near the
boundary has a stabilizing effect for the solution, in particular, when there is a reflection
of short-wavelength wave at the boundary wall.

Thus, all the derivatives in the right hand side of (2.1)-(2.4) are represented in the
finite difference form by using (2.11), (2.13)-(2.14). The partial differential equations
(2.1)-(2.4) are now treated as ordinary differential equations in respect to ¢ by estimating
the right hand side at each time.

The time integration is calculated explicitly by using fourth-order Runge-Kutta method.
Now we denotes the set of the independent variables (p, v, B, p) by the vector y, and the
sum of the right hand side of (2.1)-(2.4) by the vector g. A fourth-order Runge-Kutta
method for (2.1)-(2.4) is represented by

g = gy %(k1 + ks + 2ks + ka) (2.15)
ki = dtg(y") (2.16)
ka = dtg (y" + %) (2.17)
ks = dtg (y" + %) (2.18)
ke = 0tg(y" + ks), (2.19)

where n and 4t is the time index and the time interval, respectively. The numerical error
for this scheme is of the order of (4t)° at most. Combining (2.1)-(2.8) and (2.15)-(2.19),
we can solve the MHD equations numerically.

2.3.2 Numerical stability

The time interval ¢ should be carefully selected as it does not break the numerical stability
condition. The numerical stability for this scheme is estimated by following discussion[55].
Now, we consider the propagation of a Fourier component of a plane wave

f(z,t) = foexp (iwz — ikt). (2.20)

(2.20) is the exact solution of the wave equation

of _ _kof
o~ wox (221)

with a periodic boundary condition. The right hand side of (2.21) for the solution (2.20)
is represented with the finite difference approximation (2.11) by

Bf t=4tn Lok
32 = # f (6x3,dtn), (2.22)

z=0zj
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where

Pok = to (% sin 46 — % sin 29) (2.23)
a = wit/kéz (2.24)
6 = kéz/2. (2.25)

Substituting (2.22) for (2.15)-(2.19), we obtain the Fourier transformation G, for each
one step of time integration as

f(0zg,6t(n+1)) = Guif (dzjF,0tn) (2.26)
G - 1 + + )uZJ,k + y‘f},k +.u3),k (2 27)
wk = M,k 2 6 Yl .

On the other hand, the exact solution (2.20) gives the wave function at ¢t = ¢ + 6t as

f(0zj,0t(n+1)) = f(dzj,dtn)exp(—2iab). (2.28)

Comparing (2.26), (2.28), we obtain the amplification factor 9wk for a time step as

9ok = Gurexp(2iah). (2.29)

Figure 2.2 shows the absolute value and the argument of g, x. To obtain a numerically
stable solution, it is necessary to solve the equation under the condition that the amplifi-
cation factor |g, x| is always less than unity, and it is preferable that |g, x| and arg g,  is
close to 1 and 0, respectively. It can be seen in Fig.2.2 that this condition is satisfied in
wide range of a. Especially, it has an excellent property for large wavelength (small % ,
6) components, which is thought to play an important role for the relaxation phenomena
in ST plasma.

The value of 6t used in the simulation should be carefully selected to satisfy the
stability condition described above. However, too small value of §t cause an undesirable
accumulation of numerical error. Therefore, we should choose as large value as possible
for t, unless the stability condition is broken. Thus, we set the time interval to be a ~ 1
for w/k ~ v4, where vy is the Alfvén velocity (v4 = B?). This condition is examined
at the most severe grid, that is, at the inner most boundary. The time interval is reset
at each time step of Runge-Kutta integration. Furthermore, the time step is reduced
not to change the values of each variable so much in one time step, while the system
evolves nonlinearly. Normally, the time step is about 4 x 107374, and is reduced into a
few percents at the minimum.
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Figure 2.2: The amplification factor of the simulation scheme. (a) The absolute value and
(b) the argument of g, s is plotted.

2.4 Initial condition

2.4.1 Numerical solution of ST equilibrium

The initial condition for the simulation is given as an equilibrium obtained by solving
the Grad-Shafranov equation numerically. The Grad-Shafranov equation for cylindrical
geometry is expressed by

dP _dF

AT = —TZE—FE, (2.30)
2
A o= 010, 0

"o Gar) T oz

where ¥ is a stream function for the poloidal magnetic field. The poloidal magnetic flux
is equivalent to 27¥. The poloidal magnetic field is given by

19Y
1907
B, = o (2.32)

In (2.30), two free functions p(¥) and F(¥) are included. p(¥) is the plasma pressure
given as a magnetic flux surface quantity. F'(¥) is the poloidal current function, which is
related to the toroidal magnetic field by

By = —1F(u) (2.33)



It is necessary to assume these functions to solve (2.30). In this simulation, we assume a
simple polynomial form as follows.

p(¥) = po¥y (2.34)
F(¥) = Fo(¥5+ Fo) (2.35)

where ¥, is the normalized poloidal flux: ¥, = 1 at the magnetic axis and ¥, = 0 at
plasma-vacuum boundary. We control each parameter iteratively to obtain a reasonable
equilibrium in terms of the beta value, the shape of the poloidal cross section, the safety
factor, and so on. '

By solving (2.30) numerically on the poloidal cross section, we obtain ¥(r, 2) at equi-
librium state. The two-dimensional magnetic field (Bgs(r, 2)) and the pressure (pgs(r, 2))
at equilibrium state are derived by substituting the solution ¥(r, z) for (2.31)-(2.34).

2.4.2 Initialization for the nonlinear simulation

The nonlinear simulation is executed in a full toroidal three-dimensional geometry as
described in Sec. 2.1. The two-dimensional equilibrium which is obtained by the procedure
described in the previous subsection is converted into the three-dimensional field quantities
as follows. The magnetic field and pressure is extended into axis-symmetric variables from
the two-dimensional equilibrium.

B(r,0,2) = Bgs(r,?) (2.36)
p(r70’z) = pGS(raz)+pvac (237)

Here, we suppose that the outside region of the separatrix is filled with uniform low
pressure plasma. One can see from (2.2) that the motion of plasma is affected by the
gradient of the pressure, so that the equilibrium condition is not broken even if the
uniform pressure p,q. is biased all over the simulation region. If this treatment is not
applied, the calculation cannot be continued into a highly nonlinear regime. Thus, we
add 10% of the maximum pressure as py,.. The mass density is assumed to be uniformly
p(r,0,z) =1 at initial state.

If the equilibrium is unstable, tiny perturbation such as numerical error between the
real equilibrium and the initial condition grow spontaneously. We will focus on such
spontaneous development of MHD instability. However, such unexpected perturbation is
not preferable to know the nature of the instability. To avoid the misleading from the
unexpected perturbation, we start the nonlinear simulation from an artificially perturbed
equilibrium. The amplitude of the perturbation added here should be small enough not
to distort the configuration, and large enough to conceal the unexpected perturbation.
The perturbation is composed to include any toroidal and poloidal wave numbers as

Nmaz

vi(r,0,2) = ) Ain(r, 2) sin{nf + Cu(r, 2)}. (2.38)

n=1

(i=r0,2)
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The toroidal wave number n is explicitly included in (2.38). The maximum toroidal mode
number n,,,; included in the perturbation is set to be 16, which is enough to cover the
toroidal mode numbers concerned in the simulation. The poloidal mode number, on the
other hand, is difficult to be defined in a rectangular numerical mesh. Therefore, we
use quasi-random numbers for the amplitude A, , at each mesh point on a poloidal cross
section. The total amplitude for each poloidal wave number is approximately the same.
Moreover, the toroidal phase (, is also generated by quasi-random numbers to prevent any
artificial correlation among each toroidal wavenumber. Here, A;, and ¢, are distributed
in the range of

-5x107°< A;, <5x107° (2.39)
0< ¢ <2m. (2.40)

By these treatment, the artificial perturbation includes any toroidal and poloidal wavenum-
bers at the same amplitude independently each other. It should be noted that the toroidal
phase (, is also independent among each mode. This fact will take on importance when we
consider the interaction among the linear eigenmodes, which will be discussed in Sec.4.3.

2.5 Boundary condition

There are three kinds of boundary in the simulation region:
e inner boundary(r = rm,) (center rod),
e outer boundary(r = Tpaz),
® top (2 = 2Zmaz) and bottom (z = z,;,) boundaries.

In the real experiments, the center rod is made of metal, and is thought to play an
important role for stabilizing of the ST equilibrium[52]. Therefore, it is preferable for
us to treat the inner boundary as a perfect conducting wall to realize such effects in our
simulation. The boundary condition for a perfect conductor is represented by

B, = const. (2.41)

In the simulation, we can introduce this condition by forcing (2.41) on the relevant com-
ponent of the magnetic field at the innermost mesh for each time step.

The other boundaries should be also properly modeled to reproduce the real situation
in the experiment keeping any physical validity. In the real experiments, the plasma close
to boundary is at low pressure and is governed by several complicated processes such as
the recombination, the secondary electron, the reflected backward flow of plasma, and
the impurity. Therefore, the dynamics in the periphery of the boundaries has not been
clarified yet. In fact, a slight much care at the boundary, especially at the divertor, can
make the property of bulk plasma much better. The effect of boundary condition can be
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important also in the simulation. In particular, since the information is transmitted fast
along the magnetic field, the effect of the top and bottom boundaries, where the magnetic
field lines are passing through, tend to be significant on the simulation results. On the
other hand, the outer boundary does not affect the results so much.

Here, we assume again the perfect conducting wall as the boundary condition for all
the outer, the top, and the bottom boundaries. Since the real boundaries in experiments
are usually made of metal, the most reasonable condition for boundaries is the perfect
conducting wall, if the complicated effect described above and the finite size of numerical
mesh are ignored. Ideally, such effect, that is, the rapid loss of plasma by recombination
on the wall, or cooling by heat conduction, should be modeled properly. However, we
adopt a simple model here as a principal approach. In addition, simpler model is better
for treating complicated phenomena in our experience.

To check the effect of the top and the bottom boundaries, we executed simulation in
other geometry where the boundaries are located further. The detail will be described in
Appendix.

24



Chapter 3

Simulation result

3.1 Overview of simulation results

The simulation results that are executed under the condition described in the previous
chapter show that the perturbations introduced on the initial equilibria grow sponta-
neously. That is because the initial equilibria are unstable ones. In this chapter, the
details of the simulation results are described. Before going into the main argument, the
outline of the simulation results are described in this section.

The initial equilibria that are maintained by the balance of the pressure gradient
and the Lorentz force sometimes become unstable under certain conditions. A tiny per-
turbation introduced on such unstable equilibria can grow its amplitude with a specific
eigenfunction. In the early stage of the growth, the perturbations grow exponentially
with such eigenfunction, but the amplitude is still small enough not to affect the overall
configuration so much. This stage of the growth may be called the ‘linear stage’, which
is described in Sec.3.2. The eigenfunction consists of multiple mode components. Espe-
cially, low-n ones have larger growth rate and amplitude. These mode components grow
independently each other. However, in the latter stage of the growth, the amplitude of
each mode becomes large enough to cause an interaction among the modes. The time
development after that may be called the ‘nonlinear stage’, which is described in Sec.3.3.

In the early nonlinear stage, many higher modes break into a rapid growth by nonlinear
couplings between the low-n modes. The amplitude of the displacement reaches visible
scale, and the growth is saturated because of the change in the overall configuration. The
most remarkable change in the overall shape is the appearance of a localized pressure
bulge, and the subsequent occurrence of a magnetic reconnection between the internal
and the external magnetic field. The plasma pressure confined inside the separatrix is
expelled out through the reconnection, and the structure is destroyed. The expelled
plasma pressure forms a characteristic conical shape at the top and the bottom of the
torus.

After dissipating the fine structures, a more stable axisymmetric configuration appears
again. This configuration is unstable to resistive modes, so that perturbation can grow
with the large resistivity. This stage may be called the ‘second step’ of the growth. Sec.3.4
is spent on describing the second step growth.

The parameters used in the simulation is listed in Table 3.1. The main result is
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Table 3.1: Parameters used in the simulation.

A B C D E F
A L5 1.5 T 1 1 1
K 1.9 2.1 1 i i i
Bo 0.44 0.41 1 1 i T
<fB>] 0.081 0.083 1 1 1 t
Br 012  0.13 t 1 1 1
Q 0.91 1.06 ] 1 ] t
g |4x107* 1 1x107* 1x10°3 1 1

n 1x107% ¢ 1 T 4x107% 2x10°°

1: same as A

included in case A. In the following subsections, therefore, the detail of the simulation
result for case A is described. Comparison with other parameters of case B is described
in Sec.4.2. Cases C - F are used to investigate the dependence on the dissipation terms
such as the viscosity and the resistivity. The analysis for them is described in Sec.3.2.

Figure 3.1: Radial profiles of the pressure, the toroidal current, and the safety factor in
the initial equilibrium for case A,C,D,E, and F.

The radial profiles of the pressure, the toroidal current, and the safety factor (g value)
of the initial equilibria are shown in Fig.3.1. All of them are in a kind of bell shape, not
flat, and not hollow. The safety factor can be estimated by tracing the magnetic field line
and using the following relation[56]:

1By g di,
= o }{TQB,,’ (3:1)

where the line integral corresponds to one poloidal circuit, and B, equals to the poloidal
magnetic field. It should be noted that the central safety factor is slightly smaller than
unity for case A, and greater for case B. Therefore, the ¢ = 1 rational surface is included
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for case A, and excluded for case B. Thus, we can investigate the role of the ¢ = 1
surface in the relaxation phenomenon. These parameters correspond to the experimental
operation regime in START.

3.2 Linear instability

3.2.1 Linear growth of instability

The tiny perturbations which are added to the initial equilibrium grow spontaneously due
to the instability. Shown in Fig.3.2 is the time development of total magnetic energy for
each toroidal Fourier component(n). It can be seen that multiple number of components
grow exponentially during ¢t = 30 — 12074 (74 is the Alfvén transit time that is introduced
in Sec.2.2.2). We call hereafter this period the ‘linear stage’. In the linear stage, the
amplitude of the perturbation is so small that the mode components grow independently
of each other. Incidentally, before ¢ = 3074 the magnetic energy for each mode decreases
from 1072 to some extent. The reason is that any toroidal and poloidal components are
included in the initial condition, and the stable ones are damped.

—
ol
T

Magnetic Energy

1077 ——n=5 ]

e n=6-8 |

0 50 100 150 200 250 300
Time (TA)

Figure 3.2: Time development of the total magnetic energy for each toroidal Fourier
components.

As we can see from Fig.3.2, low-n modes have large amplitude and growth rate. To
make a quantitative discussion, we estimate the growth rate for each mode (vy,) from the
data in Fig.3.2 by

A(InE,,)

27



Figure 3.3 shows the growth rate for each mode defined by (3.2). For case A, it can be
seen that the n = 2 mode has the largest growth rate, and that the » = 1 mode has the
second largest one, which is close to that of the n = 2 mode. As for other higher modes,
the lower-n modes have larger growth rate than the higher-n modes, but not so large as
the n = 2 and the n = 1 modes. Moreover, the n < 7 modes are well damped. This fact
makes sure of the numerical validity. Thus, the nonlinear behavior described in Sec.3.3 is
determined by lower-n modes, especially, almost only the n = 2 and the n = 1 modes.

1 '.,#--A — +,_,’-"""* . .
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Figure 3.3: Growth rate of the linear eigenmodes for cases A, C, and D.

On the other hand, for case C, in which the viscosity is smaller than that for case A,
the damping by the viscosity does not become effective, so that the growth rate for each
mode is larger than that for case A. Especially, n > 8 modes have pretty large growth
rate. Such high-n activity cannot be treated properly in our simulation which use a finite
difference scheme in a discrete numerical grid system because of lack of numerical grid.
Besides, experimentally, the low-n activity is thought to play more important role in the
relaxation phenomena in ST. Therefore, our simulation should also focus on such low-n
activity. The viscosity should be set to be large well enough to damp the high-n modes.
Too large viscosity, such as case D, however, will cause an undesirable damping and
saturation of growth. Thus, we use an appropriate value for the viscosity of u = 4 x 10~*
for case A.

3.2.2 Mode structure

In this section, we discuss the detail of the mode structure of the linear instability. Shown
in Fig.3.4 is the poloidal structure of the fluctuation component in the pressure[(a),(b)]
and the flow[(c),(d)] for the n =1 [(a),(c)] and the n = 2 [(b),(d)] modes. The solid and
the dotted contour in Figs.3.4(a) and (b) denote the positive and the negative perturbation
in pressure, respectively. It can be seen from Figs.3.4(a) and (b) that the main poloidal
component for the n = 1 mode is m = 1(m is poloidal mode number). For n = 2 mode,
the most dominant poloidal component is the m = 2 one in the inner region and tiny
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m = 3 perturbation can be seen in the outer region. On Figs.3.4(a) and (b), the position
of the ¢ = 1 rational surface and the separatrix are specified with broken line. It can be
seen that both of the main m = 2/n = 2 and the m = 1/n = 1 modes are resonant to
the ¢ = 1 surface. Moreover, it should be noted that the perturbation is not localized in
the poloidal direction. In other words, the amplitude of the perturbation in pressure is
almost the same in the good and the bad curvature regions. Shown in Figs.3.4(c) and (d)
is the poloidal flow pattern represented with arrows corresponding to the poloidal velocity.
It can be seen that there are m pairs of vortices in a poloidal cross section. With this
visualization, only the most dominant mode, that is, m/n = 2/2 and 1/1 component can
be seen. It should be pointed out that these poloidal flow pattern will cause a deformation
if the amplitude become larger; the m = 2 flow will make the poloidal cross section more
elliptic, and the m = 1 flow will shift the center of the poloidal structure away.
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Figure 3.4: Poloidal mode structures of the linear eigenmodes. Perturbation components
in (a) pressure for the n = 1 mode, (b) pressure for the n = 2 mode, (c) poloidal flow
for the n = 1 mode, and (d) poloidal flow for the n = 2 mode. Solid and dotted lines
denote the positive and the negative perturbations in the contour maps. The broken lines
indicates the location of the separatrix and the ¢ = 1 rational surface.

The three-dimensional structure of these modes is shown in Fig.3.5 with an iso-surface
plot of the fluctuation component in pressure for the n = 1[(a)] and the n = 2[(b)] modes.
It can be seen that there are n pairs of positive and negative fluctuation. The region where
the pressure fluctuation becomes positive corresponds to the region where the plasma flow
is gathered. It should be pointed out that there is no specific relationship in the structure
between the n = 1 and the n = 2 modes. It is reasonable that they can glow independently
each other because the system is axisymmetric, and because there is no relation between
modes in the initial perturbation. This fact becomes important when we discuss about
the nonlinear growth, which is described in Sec.3.3.
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Figure 3.5: Three-dimensional mode structure of (a)n = 1 and (b)n = 2 component for
the linear eigenmodes. Dark and light gray surface denote the positive and the negative
perturbation in pressure. The semitransparent surface is the iso-contour surface of total
pressure. ’

3.2.3 Identification of modes

As described in the previous subsection, low-n modes that correspond to those observed
in experiment preceding to relaxation phenomena. It is worth considering the identity of
such low-n instability. There are several ways to classify the instability.

First of all, we consider whether these modes are the ideal mode or the resistive one.
In order to distinguish the resistive mode from the ideal mode, it is sufficient to see how
the growth will change when the resistivity 7 is increased. Shown in Fig.3.6 is the growth
rate for each toroidal mode for case A, E, and F. The only difference among these case is
the value of 7. It can be clearly seen that the growth rate for the higher-n (n > 4) modes
is sensitive to the change in the resistivity. The growth rate for these modes are larger
for larger resistivity. Therefore, it can be said that these modes have a nature of resistive
mode. On the other hand, the changes in the growth rate for the low-n modes such as
the n = 2 and the n = 1 modes, which are our interest, are much smaller than those in
the higher-n modes. Thus, we can conclude that the low-n modes are the ideal modes.

Let us consider the driving source of the instability. It is useful for this purpose to
make use of the energy principle[57] in order to estimate the change in the potential energy
due to the displacement caused by the growth of the instability. The most illuminating
expression for the energy principle is the form first derived by Greene and Johnson[58].
The change in the volume integrated potential energy (W) for given displacement £ is
written by
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where the superscripts 0 and 1 refers to the value at the equilibrium and the perturbation
component, respectively, and the subscripts L and || denotes the perpendicular and the
parallel component to the equilibrium magnetic field, respectively. k is the magnetic field
curvature defined by k = b- Vb, where b is the unit vector along the magnetic field. The
volume integral is done over the region where it is filled with plasma. In this simulation,
however, the plasma and the vacuum region are continuously faced each other, and it is
difficult to specify the boundary between them. For simplicity, we estimate the potential
energy integral (3.3) by integrating over whole volume in the simulation region. This
treatment is justified by the fact that the displacement is seen only inside the separatrix
in the linear stage. (3.3) is an illuminating form to understand the driving source of the
instability when £ is substituted by the eigenfunction that is obtained in the simulation
result. Negative change in the potential energy integral means a destabilizing effect of the
displacement. The first three terms appearing in the right hand side of (3.3) corresponds
to the change in the potential energy of the Alfvén wave, the fast magnetoacoustic wave,
and the acoustic wave. In other words, these terms refer to the required energy for bending
the magnetic field, compressing the magnetic field, and compressing the plasma pressure,
respectively. These terms are positive definite, so that they have a stabilizing effect. Only
the last two terms can be negative. The fourth term, in which the equilibrium current is
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Table 3.2: Estimation of the change in total potential energy by using the energy principle.
All the terms are normalized by the absolute value of the kink term for each mode.

term n=1 n=2
kink -1 -1
interchange -6.6 -15.3
Alfvén 5.0 11.3
fast magneto acoustic 0.7 0.8
acoustic 0.4 1.2
total -14  -3.0

included, is related to the current-driven instability, which is so-called kink mode. The
last term is based on the pressure gradient, and is related the pressure-driven instability,
such as the interchange and the ballooning modes. By comparing the value of the current-
driven and the pressure-driven terms in (3.3), we can classify the instability into the two
categories. The estimation for the n = 1 and the n = 2 mode in the simulation result is
listed in Table 3.2. '
Here, we derive the displacement vector for each mode from the simulation result as
&n = Un/7n, where 7, is the growth rate defined by (3.2). Both the current-driven and
the pressure-driven terms come out to be negative for both the n = 1 and the n = 2
modes. Therefore, the instability is driven by the combination of the effect of both the
current and the pressure gradient. Furthermore, it can be seen that the pressure-driven
term is much larger than the current-driven term for both the n = 1 and the n = 2 modes.
Therefore, we can conclude that the instability has a nature of the pressure-driven modes
both for n = 1 and the n = 2 modes. Incidentally, the fact that the sum of all terms
is really negative for both the n = 1 and the n = 2 modes means that these modes are
ideally unstable. It supports the conclusion that these modes are ideal mode.

Thus, we find these modes are categorized into an ideal pressure-driven mode. The
last question about the linear instability is whether they are the interchange mode or the
ballooning mode. The difference of the interchange mode and the ballooning mode is the
existence of the parallel component to the magnetic field in the displacement vector. When
§ is perfectly perpendicular to the magnetic field, the instability is categorized into the
interchange mode, and it may be called ballooning mode for any other cases. However, it
is rare to see an interchange mode in such a strict sense in magnetically confined plasma.
If the displacement is almost perpendicular to the magnetic field, we should recognize
it as an interchange mode. Therefore, it is meaningful to discuss about the supporting
evidence for these modes rather than to estimate the exact value of € - B. The most’
noticeable supporting evidence of the ballooning mode is that the mode structure of the
ballooning modes tend to be localized in poloidal cross section, because the growth of
the mode is affected by the magnetic field curvature. Namely, it is localized in so-called
‘bad curvature region’, which correspond to the outer region of the torus. Another nature
of the ballooning mode is the accompaniment of multiple poloidal modes. In contrast,
the structure of the interchange mode extends equally along the magnetic field. The
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interchange mode grows as forming a flute along magnetic field. We can see from Fig.3.4
that these modes have the nature of the interchange mode in that the poloidal mode
patterns is uniformly distributed in the poloidal cross section. It will be confirmed well
when we see the nonlinear development in the next section, where the displacement forms
a flute along magnetic field.

Furthermore, if the eigenmode is an interchange mode, the Mercier criterion[59] must
be broken at the unstable region. The Mercier criterion for interchange stability in the
torus configuration with arbitrary aspect ratios is given by[60]

Dy < 1/4, (3.4)
where
Du = 5 (%) + ()~ () () (33)
2B2 aq
A = F(p'F 7 31/1) (3.6)
27r %Jd
(Q) = 2,.- rzB;'p]dX (37)

Here, we use a flux coordinate (¢, x) represented by the Jacobian J, where 1 and x cor-
respond to the flux and the poloidal angle components, respectively. The prime denotes
d/dy and F = rBy. The safety factor is calculated by using § = JBy/r as ¢ = 027' gdx/2m.
B, and &, indicates the poloidal magnetic field density and the normal curvature, respec-
tively. Shown in Fig.3.7 is the plot of D), for the initial equilibrium of this simulation. It
can be seen that the Mercier criterion is broken at the inner region including the ¢ = 1
rational surface(p ~ 0.1). It should be also noted that at the ¢ = 2 rational surface
(¥ ~ 0.6) the criterion is satisfied, so that the absence of ¢ = 2 mode excitation in the
simulation result can be explained.

Thus, we have found that the eigenmode of the linear instability on which we are
focusing is categorized into an ideal pressure-driven interchange mode.

3.3 Nonlinear dynamics on relaxation phenomena

In this section, we investigate the dynamical behavior of ST plasma in the nonlinear
stage[61, 62, 63, 64].
3.3.1 Weakly nonlinear development of low-n interchange mode

As we can see from Fig.3.2, the instability keeps growing linearly with the growth rates
and the mode structures fixed as described in the previous section. The first sign of
the nonlinearity appears as an abrupt change in the growth rate for the intermediate n
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Figure 3.7: Estimation of interchange stability by Mercier criterion. Djs < 1/4 is needed
for interchange stability.

modes. As shown in Fig. 3.2, the growth rate of the n = 4 mode suddenly increases at
t = 13074. It implies the appearance of the higher harmonics for the n = 2 mode and
the nonlinear couplings between the n = 1 and the n = 3 modes. Since amplitude of the
n = 1 and the n = 2 modes are almost the same at that time, both of them can be the
cause of the increase of the growth rate in the beginning of the nonlinear stage. As for
other intermediate or higher » modes, similar excitement of higher nonlinear modes can
be seen in Fig.3.2. After t = 16074, many higher nonlinear modes appear successively at
large growth rate.

Figure 3.8 shows the magnetic energy spectrum at ¢t =(a)120, (b)165, and (c)18574.
It can be seen that a disordered spectrum in the linear stage reflecting the independency
among linear modes gradually changes into an ordered spectrum. At ¢ = 16574[see
Fig.3.8(b)], the higher harmonics of the n = 2 mode, such asn = 4, 6, - - - components, have
larger amplitude than the neighboring odd n components. At t = 18574[see Fig.3.8(b)],
the higher n components are well developed and the spectrum tends to be in line for higher
n region. Such a cascade phenomena in the wavenumber space is generally observed in
nonlinear system, These phenomena are usually related to a highly complicated mixing
among modes. In this simulation, however, the resultant change in real space in the
succeeding highly nonlinear stage is surprisingly simple, namely, a single large bulge of
the plasma pressure appears in the subsequent stage, which is described in the next
subsection. This is caused by the existence of a specific relation among the phases of
these modes. Such analysis for the phases is discussed in Sec.4.3.

We can also pick another suggestive feature up from Fig.3.2 in the early nonlinear
stage, that is, a slowing down of the growth of n = 3 mode at around ¢t = 15074 before the
successive excitation of higher nonlinear modes. Such a slowing down of the second or the
third dominant modes is often observed in our simulation for other parameters, and similar
behavior is also seen in another paper[65], which is concerned with a weakly nonlinear
theory on the growth of Rayleigh-Taylor instability. Though the detailed analysis for this
phenomenon has not been completed in this thesis, there are two possible explanation
for this phenomenon. First one is the energy transportation in wavenumber space from
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Figure 3.8: Temporal change in the energy spectrum. Time equals to (a)120, (b) 165,
(¢)185 74, respectively.

lower modes to higher modes due to the cascade. Another one is a premature saturation of
weaker modes. As described in Sec.4.3, a test simulation run with an artificial suppression
of the n = 1 mode shows that the growth of the n = 1 mode and its higher harmonics reach
the saturation at much lower level, and an early slowing down of the growth is observed.
It implies that the growth of weaker modes are inhibited when the most dominant mode
becomes at large amplitude so that it affects the growth of other modes. It may be likened
to a natural selection. However, more detailed analysis for this phenomenon is beyond
our scope in this thesis.

A

Figure 3.9: Change in the poloidal pressure profile at the weakly nonlinear stage. The
net pressure is represented by color for four different toroidal angles perpendicular each
other at t = 1807,4.

Finally, at the end of the weakly nonlinear stage at around ¢ = 19074, the growth of



the dominant n = 2 and the n = 1 modes is saturated. The pressure profile on poloidal
cross section for four toroidal angle perpendicular to each other at ¢ = 1807, is shown in
Fig.3.9. An elliptical deformation due to the m = 2/n = 2 mode and a shift of the center
of profile due to the m = 1/n = 1 mode are clearly seen.

Though the magnetic energy for each mode is saturated at some level, the system goes
into more dynamical regime, which may be called the ’highly nonlinear stage’.

3.3.2 Collapse and localized deformation

(a) (b) (c) (d) (e)

000P@

Figure 3.10: Time development of the pressure profile in the early nonlinear stage (a)t=0,
(b)165, (c)180, (d))190, and (e)195 T4.

As the perturbation grows, the amplitude of the displacement becomes so large that
a noticeable deformation appears in the global shape. Figure 3.10 shows the temporal
change in the net pressure profile on a poloidal cross section. The displacement becomes
a visible scale at t = 16574 [see Fig. 3.10(b)]. The pressure profile is elliptically elongated
in the poloidal cross section reflecting the convection motion of the m = 2/n = 2 mode,
as is described in the previous subsection. As time passes, the peak of the pressure profile
is gradually shifted away because of the convection motion of the m = 1/n = 1 mode
[see Fig. 3.10(c)]. At around ¢ = 1907, [Fig. 3.10(d)], the displacement reaches near the
separatrix. It is worthy of notice that although in the linear stage the instabilities have
the nature of the internal modes as an interchange mode, they grow so much that even
the outermost surface of the torus is deformed like an external mode in the nonlinear
stage . Simultaneously, the plasma pressure at the core region is transported from the
core to the edge by such development of the convection motions.

Figure 3.11 shows the time development of radial profile of (a) the plasma pressure
and (b) the toroidal current on the midplane. It can be seen that the central pressure
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Figure 3.11: Temporal change in the radial (a)pressure and (b) toroidal current profiles
on the midplane.

falls in several tens of 74, and the radial pressure profile changes from a bell-shaped one
to a trapezoidal one. It should be noted that the current profile, on the other hand, is
largely waving at around ¢ = 19574.

As time goes further, the deformation due to the development of the instability forms
a large bulge near the outermost surface at ¢ = 19574[see Fig. 3.10(e)]. Shown in Fig.3.12
is the three-dimensional view of the deformation of plasma at ¢ = 19574. The surface
is an iso-contour of plasma pressure at a level near the outermost surface(p = 0.05).
The structure of the surrounding magnetic field is plotted together in Fig.3.12 by picking
typical external field lines up. It can be clearly seen that a pressure bulge is formed in
a narrow region of the torus which exists helically from the top down to the bottom of
the torus. This bulge is formed along the external magnetic field as it pushes aside the
neighboring external field lines. This deformation reminds us that the instability mode
is an interchange mode. The displacement of an interchange mode grows perpendicular
to magnetic field. It has a physical meanings that the interchange of plasma pressure is
done without bending of the magnetic field. Therefore, the displacement of interchange
mode extends uniformly along magnetic field.

Furthermore, it is worthy of notice that the deformation appears only one side of the
torus. There is no visible deformation in the opposite side. It is mysterious, considering
that the most dominant mode in the linear stage is not the n = 1 mode but the n = 2
mode, and that a lot of modes exist at this time as described in previous subsection. The
reason why the number of the ridge of the deformation is reduced in the nonlinear stage
is found to be the specific relation in the phase of modes each other.

Figure 3.13 shows a top view of a three-dimensional iso-contour surface of pressure
for each mode at t = 19574. The net pressure is shown together with a semi-transparent
iso-contour surface. The localized deformation exists at the upper right of each picture.
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Figure 3.12: A localized deformation which appears at ¢t = 19574. (a) and (b) are viewed
from the different angles of 180 degs. apart each other in toroidal direction. The iso-
pressure surface (p = 0.05) and the surrounding external magnetic field lines are plotted.

The positive and the negative perturbation component is indicated with dark and light
gray surface, respectively. There are n pairs of the positive and the negative perturbation
in each picture. It is clearly seen that one of the positive perturbation is aligned to
the direction of the localized deformation for each mode. This is the direct cause for
the formation of localized bulge. On the other hand, the opposite side of the localized
deformation, the positive perturbation of even n modes and the negative one of odd n
modes are aligned, so that the displacement is canceled out. The detailed discussion for
the alignment in phases among modes is given in Sec.4.3.

3.3.3 Magnetic reconnection between internal and external fields

Due to the deformation of the surface, a large topological change in the configuration,
namely, the magnetic reconnection, is induced on the surface of the torus. Both the inside
and the outside of the separatrix are filled with plasma embedded in the magnetic field.
As the localized deformation grows, the internal plasma is carried and pushed against the
external magnetic field. If the magnetic field is sheared near the separatrix, a situation
for causing a magnetic reconnection will be formed.

Shown in Fig. 3.14 are the magnetic field lines traced from a fixed point on the top
conducting wall boundary at different time . The field line is traced numerically with
high accuracy based on a fourth order interpolation of the magnetic field and a sixth
order Runge-Kutta integration scheme. A field line outside the separatrix never passes
through the separatrix at ¢t = 0 [see Fig. 3.14(a)] because the initial equilibrium assumes
the nested surfaces inside the torus. On the other hand, the field line traced at t = 20074
[see Fig. 3.14(b)] penetrates into the inner region of the torus passing through around the
localized deformation. It proves that a magnetic reconnection actually occurs between
the internal and the external magnetic field.
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Figure 3.13: Three-dimensional structure related to the localized deformation at ¢ =
19574. The perturbation component in pressure for (a)n = 1, (b)n = 2, (c)n = 3, and

(d)n = 4 Fourier components are plotted together with a semi-transparent iso-surface of
the net pressure.
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Figure 3.14: Magnetic reconnection between the internal and the external field. An
identical magnetic field line and an iso-pressure surface near the separatrix is drawn for
(a)t = 0 and (b)t = 20074. The magnetic field line is traced from a fixed point on the
top boundary, and connects directly into the torus at ¢t = 20074.

Figure 3.15: Schematic figure to explain the possible mechanism of the magnetic recon-
nection.
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Let us consider the mechanism of this magnetic reconnection process. Figure 3.15 is a
schematic diagram explaining this process. A pair of field lines relevant to the magnetic
reconnection is drawn with solid and dashed lines together with an iso-contour surface
of pressure. They are almost parallel but not perfectly to each other, and they lie on
the opposite sides of the outermost surface [see Fig. 3.15(a)]. One is the line inside the
torus (solid line) and the other is the open field line in the external region (dashed line).
The internal field lines are moved by the convective flow and pushed against the external
field just outside the pressure bulge. It enhances the formation of current sheet in a
local region where the anti-parallel magnetic field is forced to be close to each other.
Thus, the anti-parallel fractions of the magnetic fields are driven to be reconnected [see
Fig. 3.15(b)] by enhancing a local current sheet[66]. Once the reconnection occurs, a part
of field lines in the torus is directly connected with the external field lines so that a large
pressure imbalance appears along the reconnected field lines. As we can see from the
parallel component to the magnetic field of (2.2), the pressure gradient along magnetic
field causes a generation of plasma flow along magnetic field. In this case, a pair of strong
plasma flow from the inside toward the outside will be formed as indicated with fat arrows
in Fig. 3.15(c). One bunch of flow goes upward, and the other goes downward, so that
they cross each other in the localized bulge. The plasma pressure will be rapidly expelled
out of the torus by such outward flow. This process is to be likened to put a hole on
the surface of a rubber ball which contains air with high pressure. The reconnected field
lines, on the other hand, are somewhat bent just after the reconnection occurs, and are
to be stretched by releasing the magnetic tension. It enhances the relevant field lines to
be distant further each other.

On the basis of this preliminary consideration, we examine the simulation result in
detail. Figure 3.16 shows the three-dimensional structure of the vector field of the plasma
flow and the magnetic field lines. The magnetic field lines are drawn with thick lines, and
are colored in green to red in proportion to the local value of the plasma pressure (red
refers to the higher pressure). The field lines passing the localized deformation emerges
out of the torus and directly links to the external region. The pressure on them is definitely
higher than that on the other field lines which exist entirely on the external region. It
implies that the plasma pressure actually flows out of the torus along the reconnected
field lines. The flow field is colored in red and blue depending on the sign of the toroidal
component of the velocity, and the length of each line is in proportion to the absolute
value of the flow. It is clearly seen that a pair of strong plasma flow is formed toward the
top and the bottom of the torus originated from the inside of the torus. Interestingly, it is
possible to go against the flow up to deep inside the torus. They are formed to cross each
other at the localized deformation. These structures agree with the schematic picture -
shown in Fig. 3.15(c).

The magnetic reconnection process described above is a unique one in that (1) the
relevant magnetic field lines are almost parallel, (2) the pressure on the magnetic field
line to be reconnected is largely different from that on the field line, and (3) therefore,
the dynamics of the system posterior to the reconnection is governed by the generated
pressure gradient along the magnetic field. '
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Figure 3.16: Three-dimensional structure of plasma pressure, flow and the magnetic field
at t = 20074 in the simulation result. The semitransparent surface indicates the iso-
contour of plasma pressure(p = 0.05), the thick lines are the arbitrary traces of magnetic
field lines, and the thin lines represents the plasma flows. The direction of the flow are
represented by the variation of the color on the lines [from the blue (red) to the white].
The difference between the blue and the red is the sign of toroidal component of the fluid
velocity. The magnetic field lines are colored in green to red corresponding to the local
value of the pressure. (Red denotes higher region)



3.3.4 Convective loss of heat energy

The magnetic reconnection process described above has important meaning in the whole
relaxation process in two points. One is that the topological structure of the torus is
changed by the reconnection. The reconnection between the internal and the external
magnetic field makes the definition of the inside and the outside of the torus obscure,
and succeeding time development of the system becomes complicated. The other point
is that the reconnected field line works as a channel for a convective loss of heat energy
from the core region to the periphery[67]. Of course, both points are closely related, and
become important simultaneously. In this subsection, we investigate the subsequent time
development and the resultant loss of energy.

The outward plasma flow induced by the magnetic reconnection described in the pre-
vious subsection extends into a characteristic shape in the peripheral region of the torus.
Shown in Fig.3.17 is the temporal change in the overall shape represented by an iso-contour
of plasma pressure together with the surrounding magnetic field lines. The plasma pres-
sure forms a pair of conical thin layers at the top and the bottom of the torus at ¢ = 25074
as shown in Fig.3.17(c). The conical structure is originated from the localized deformation
that is described in Sec.3.3.2. The resultant overall shape is a helically twisted one, and
the plasma extends near the top boundary of the simulation region down to the vicinity
of the bottom boundary. It can be seen as the overall shape of the torus is elongated
vertically. The temporal change in the poloidal profile of plasma pressure at this stage
is shown in Fig.3.18 as the continuation of Fig.3.10. It can be seen that the expelled
plasma forms several thin layers surrounding the center rod at ¢ = 25074 [Fig.3.18(b)].
The layers looks somewhat spread radially forming a vertically opened conical shape at
the top and the bottom of the torus. We can see from Figs.3.17 and 3.18 at a glance that
a considerable amount of plasma is lost from the core region. It should be noted that the
core plasma at high pressure still remains at the center of the distorted torus, in spite of
the massive expulsion of the plasma.

Figure 3.17: Nonlinear time development of the three-dimensional structures of the plasma
pressure represented by iso-pressure surfaces and the surrounding magnetic field lines. The
time equals to (a)0, (b)195, and (¢)250 74.
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Figure 3.18: Sequel of Fig.3.10 at (a)t=215 and (b)250 74.

To examine the plasma loss process in more detail, we trace the motion of fluid particle
of plasma. The trace is done by following scheme. First of all the start point to be traced
is specified at ¢ = 0. The motion of fluid particle is calculated by integrating the fluid
velocity in time. Therefore, the velocity must be given at any time and position. The
best way to do this is to solve the motion of fluid particle simultaneously with the main
simulation. However, for simplicity, we aim to obtain a rough estimation for the motion
of fluid particle by using the data saved at every 574. The field data of velocity are
interpolated in space and time by using a fourth order interpolation scheme. Thus, the
time integration is calculated with the interpolated data by a fourth order Runge-Kutta
method. Figure 3.19 shows the snapshots for the result of such traces of fluid particles.
At t = 0 [Fig.3.19(a)] the test particles are placed inside the separatrix at regular interval
in r, 6, and z direction. As the instability grows, the test particles begin to rotate mainly
in toroidal direction[Fig.3.19(b)]. The particles are colored in red and blue depending on
the sign of vg. The snapshots are represented with a finite ‘exposure’ time, that is, more
active particles are drawn with longer streak lines. (However, each line is approximated
by a straight line.) At ¢ = 17574, a strong plasma flow rounding near the center of the
torus appears in visible bunch of lines[Fig.3.19(c)] . This flow makes the localized bulge
at t = 19074[Fig.3.19(d)]. After around this time, part of particles are expelled out of the
torus, rounding fast around the torus[Fig.3.19(e)]. Thus, we find that the plasma placed
inside the torus is actually lost in part.

Furthermore, let us focus on the motion of each particle. Typical streak lines traced
from ¢t = 0 up to t = 2507, are shown in Fig.3.20. Two traces are drawn in each figure.
It is found that the streak lines are classified roughly into three types, though the border
for each type is not so clear, and there are some particles that cannot be included in these
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Figure 3.19: Snapshots of the tracing of the test fluid particles. Time equals to (a)0,
(b)70, (c)175, (d)190, and (e)205 74. Red and blue indicate the toroidal direction of the

flow. 45



types. The first one is fully confined particle, as is shown in Fig.3.20(a). The particles of
this type rotate toroidally with smaller radius, which corresponds to the vicinity of the
center of convection motion of linear instability modes, that is, near the ¢ = 1 surface.
The toroidal velocity is so large that the particles rotate toroidally several turns until
t = 25074. For the second type, on the other hand, the particles rotate poloidally with
large radius, as shown in Fig.3.20(b). The toroidal velocity is rather small for this type.
The large poloidal rotation motion is related with the formation of the localized bulge.
After the reconnection between the internal and the external magnetic field occurs, the
particles are expelled continuously out of the torus. The third type is the most interesting
one. This type is a compromise between the first and the second ones. The particles are
confined in the beginning, rotating with smaller radius as those of the first type [see
Fig.3.20(c)]. However, they are suddenly brought out of the torus through the localized
deformation. The particles are carried in large velocity and almost straight, once they
are switched into the path to be lost. This kind of motion implies that a channel for a
convective loss of plasma actually opens.

Figure 3.20: Typical streak lines of fluid particles. Three types are found. (a) Confined,
(b) To be lost, forming a bulge, and (c¢) Forced to be lost by an opening of a loss channel
induced by the magnetic reconnection between the internal and the external magnetic
field. Red and blue indicate the toroidal direction of the flow.

The convective loss channel is definitely shown in Fig.3.21 by using the simulation
result at £ = 195. This is a similar picture to Fig.3.16 but is modified in several points to
visualize the convective loss channel more clearly. In order to see the internal structure
of plasma flow, a part of the iso-contour surface of pressure is cut away and one of the
bunches of the flow, which goes upward in Fig.3.16, is removed. The poloidal pressure
profile is drown on the right poloidal cross section with colored contour. Each of the flow
vectors are also colored to indicate the local pressure in correspondent color with that
used in the contour. The magnetic field near the bunch of the flow is almost parallel to the
bunch. A typical field line is drawn on the figure with a thick dark-blue line. Figure 3.21
includes much fruitful information illuminating the convective loss process. Firstly, the
bunch of the flow is formed continuously from the depth of the torus to the bottom wall.
This can be a direct evidence of the existence of convective loss channel. It can be seen
that there is a marvelous agreement between the bunch of the flow and the magnetic field
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line, and that the pressure is definitely increasing as it rises up to the source region. These
facts support our prediction that a strong flow is to be formed by the pressure imbalance
along the reconnected magnetic field line. The velocity on the bunches of plasma flow
reaches up to about 0.1v, (v4 is the Alfven velocity normalized at the magnetic axis at
E=0).

Figure 3.21: The internal structure of outward flow which is induced by the magnetic
reconnection. Strong plasma flow (indicated by fine lines) arises from the deep inside of
the torus along the reconnected field lines (indicated by thick lines). A pressure gradient
is shown clearly by the color that corresponds to the local value of pressure.

The loss of heat energy caused by such mechanism based on a strong parallel flow is
much rapid compared to any other cross-field transport process, and enhances the collapse
of structure in the core region. However, it should be noted that the plasma flow never
passes the right center of the torus, and the flow keeping its laminar structure for a long
while. In other words, this type of energy loss is characterized by an effective expulsion
of heat energy from the edge region of the torus. Consequently, as we can see from
Fig.3.18(b), the configuration at the center region is not completely destroyed by this
process.
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3.4 Multi-step relaxation

3.4.1 Cessation and re-heating

The numerical calculation is sound enough to solve highly complicated nonlinear dynamics
of plasma which is described in the previous sections. The simulation can be executed in
only a single run from the beginning up to ¢ = 21074. Namely, all of the key processes
such as the linear growth of low-n interchange instability, the formation of the localized
pressure bulge, the magnetic reconnection between the internal and the external magnetic
field, and the generation of strong outward plasma flow, can be reproduced consistently
in a single simulation run. However, after the plasma is expelled out of the separatrix,
the plasma pressure extends quickly in several thin layers near the central rod, where
the toroidal magnetic field is strong due to the large toroidicity. Therefore, the torus
is vertically elongated, and the mass density is relatively decreased. It causes a local
increase of Alfven velocity, and makes the execution of simulation run difficult. A slight
difficulty can be overcome for instance by shortening the time interval of the integration.
For all the effort, the execution get into fatal problem at around ¢t = 21074. As a result,
a fatal density and pressure hole is formed in the inner region, and the simulation is
terminated. However, the overall structure actually remains at that time. Especially, the
large scale behavior in the core region is still full of interest, partly because the convective
loss channel does not penetrates the real core region of the torus, as described in the
previous section. Therefore, it is meaningful to continue the simulation somehow. Such a
pressure hole must be an artificial error, because a kind of restoring force and probably a
kind of dissipation, which decelerate the expansion of the plasma, will work on the local
hole of the pressure in the real system. The most straightforward way to overcome this
difficulty is to increase the spatial resolution of numerical grid to solve the real forces more
precisely. However, it seems to be a wasteful approach for our interest of the large scale
behavior of plasma. Accordingly, we give up solving the fine structure in a simulation
run. We try to continue the simulation by diminishing the short wave-length components
artificially. Here, we apply a low pass filter on each variable to remove such insignificant
fine structure. This treatment is not only for convenience of numerical calculation, but
also for modeling of anomalous enhancement of dissipation for small-scale component
due to the increase in the fluctuation of field quantities in a reasonable spatial resolution
of numerical grid. The low pass filter used in the simulation is based on compensated
binomial average in space[68]. This filtering is done by replacing each variable X; with

> WX +X;+ WX,
Xj = 1+2W ’ (38)

where W is the weighting factor for filtering. If W > 1, the scheme becomes a simple
two-point average, which can strongly suppress the fine structure. However, it is not
suitable for our present objective, because it smooths the large scale structure out beyond
the permissible range. A binomial (W = 3) filter compensated by W = —1 filtering gives
one of the best solution for the present problem. The response of the filtering for the
Fourier transformation of X with wavenumber k can be expressed by
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FlX] = SO)F (X4, (3.9)
1+ 2W cos

S = T oW ,0 = kAz. (3.10)
Shown in Fig.3.22 is the trace of S(#) for three kinds of low pass filter. It can be seen
that the compensated binomial scheme can effectively diminish the large wavenumber
component without spoiling the large scale behavior. We apply this filtering to all the
variables when the gradient of at least one of the variables exceeds a certain level in
somewhere in the simulation region. The filtering is applied at ¢ = 200 — 34574 in
advance of the appearance of irregular structure, though the problem does not become
severe till ¢ = 21074 without filtering. The results after ¢ = 2007, which was described

in the previous sections in this thesis is that with such artificial filtering.

compensated
binomial

Figure 3.22: Response function for the low-pass filtering scheme.

Under such treatment, the simulation can be continued after the expulsion of plasma.
Shown in Figs.3.23 and 3.24 are the sequels up to ¢ = 34574 to Figs.3.18 and 3.17,
respectively. It can be seen that the active deformation ceases after t = 25074, and an
almost axisymmetric torus-shaped configuration appears again at ¢t = 34574. Figure 3.25
shows the time development of the total kinetic energy of plasma. The total kinetic energy
falls into about 5% of that at the most active stage of around ¢ ~ 20074. The sequel to
Fig.3.11 is shown in Fig.3.26. The central pressure falls more due to the expulsion of
plasma till ¢ = 29074. As the expulsion ceases and the torus appears again, the central
pressure is increased again up to t = 45074 because of both the viscous and the Ohmic
heating and the adiabatic compression.

With the appearance of the torus, the magnetic flux surface, which was once destroyed
at the active stage, is reconstructed again, as shown in Fig.3.27 with a series of punctual
plots of magnetic field lines. It can be seen that the magnetic flux surface disappears when
the magnetic reconnection between the internal and the external magnetic field occurs
at around ¢ = 20074, and the punctual plot becomes chaotic from the edge to the core
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(a) (b)

Figure 3.23: Sequel of Fig.3.18. Time equals to (a)290, and (b)345 74.

Figure 3.24: Sequel of Fig.3.17. Time equals to (a)290, and (b)345 74. Only pressure is
plotted.
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[see Figs.3.27(d)-(f)]. The mapping of field lines extends to the peripheral region near
the center rod, corresponding to the appearance of characteristic conical shape, which is
described in Sec.3.3.4. At t = 29074, the magnetic flux surface is completely destroyed
[see Fig.3.27(f)]. At t = 34574 [see Fig.3.27(g)], however, magnetic flux surface appears
again in the core region [see Fig.3.27(g)].

—
T

05 10 15 05 1.0 15 0.5 1:0 1.5

Figure 3.27: Punctual plots of field lines at time equal to (a)0, (b)165, (c)185, (d)200,
(€)250, (£)290, and (g) 345 74.

The comparison of the radial profiles between ones before and after the relaxation is
shown in Fig.3.28. It can be seen that both the pressure [see Fig.3.28(a)] and the current
[see Fig.3.28(b)] profiles are somewhat broaden after the relaxation. It should be also
noted that the maximum pressure falls into about 50% compared to the initial value after
the relaxation. On the other hand, the peak value of the toroidal current is not changed
almost at all. It means that the intensity of poloidal magnetic field does not change so
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much. Shown in Fig.3.28(c) is the change in the radial safety factor (¢) profile. In general,
it is difficult to measure the g-value of asymmetric configuration, even the definition of
g-value is obscure. However, in this case at ¢ = 34574, there is a clear magnetic flux
surface structure, so that at least a rough estimation for g-value is available by tracing
the magnetic field lines. The safety factor is estimated as the separation in toroidal angle
while the field line trace goes round once in the poloidal direction. The broken line on
Fig.3.28(c) is obtained in such way. (Therefore, it cannot be calculated with sufficient
accuracy near the magnetic axis.) It should be noted that the central safety factor rises
up to about 1.2 after the relaxation. Even if we take account of the lack of accuracy
near the magnetic axis, it is undoubted that the central ¢g-value exceeds unity after the
relaxation. Namely, the ¢ = 1 surface diminishes at that time. This change is explained
by the reduction of the Shafranov shift due to the decrease in the § value. Namely, the
toroidal magnetic field at inner region is larger because of the effect of toroidicity, on the
other hand, the poloidal field is not so changed by the relaxation as described above. This
will cause an increase of the safety factor.
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Figure 3.28: Change in radial profiles of (a)pressure, (b)current, and (c)safety factor on
the midplane. The broken line and the solid line [the cross markers in (c)] correspond to
t = 0 and t = 34074, respectively.

The system is ideally stabilized in this state for the modes which are linearly unstable
in the initial equilibrium, partly because of the change in the profile of the torus, especially
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the change in the safety factor profile as is stated above, and partly because of the decrease
in the @ value due to the expulsion of the heat energy.

3.4.2 Behavior of resistive instability

The model of the anomalous enhancement of dissipation due to the activation of short-
wavelength fluctuations, which is introduced in the previous subsection, is an inconsistent
assumption in a sense until the increase of other dissipation terms such as resistivity
and viscosity is included. In particular, the increase in the resistivity can destabilize the
system with some resistive modes. We should take account of the effect of resistivity due
to the existence of the fluctuation and the decrease of the temperature.

Kinetic energy (log scale)

400 450 500 550 600
Time (¢,)

Figure 3.29: Time development of total kinetic energy for the second stage. The result of
calculations with three different values for the resistivity term, are plotted.

Shown in Fig.3.29 is the time development of the total kinetic energy for three cases,
where the viscosity u = 4 x 1072 and the resistivity n equals to 1 x 1075, 8 x 107%, and
2 x 1074, It can be seen that the kinetic energy grows for larger resistivity, and is damped
for smaller resistivity. It means that the system is unstable for resistive modes, though it
is stable for ideal modes.

The same plot as Fig.3.2, that is, the time development of the total magnetic energy
for each toroidal Fourier mode at this stage is shown in Fig.3.30 for the n = 2 x 10~*
case. A dominant growth in n = 1 mode can be seen. To make sure the mode structure
for the resistive mode, the three-dimensional and poloidal mode structure at ¢t = 41074
are visualized in Fig.3.31 and Fig.3.32, corresponding to Fig.3.5 and Fig.3.4, respectively.
The n # 0 component is shown in each figure. It can be seen that the n # 0 perturbation
is composed by almost only 7 = 1 mode. And it should be noted that the » = 1 mode has
another helicity than that of the linear m = 1/n = 1 mode. This can be easily recognized
by comparing Fig.3.31 with Fig.3.5(a), where the toroidal pitch of the resistive mode is
larger than that of the m = 1/n = 1 mode. Fig.3.32 shows that the m = 2 component is
included as the most dominant poloidal component in the » = 1 mode, and the m = 3
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Figure 3.30: Same as Fig.3.2 but for the second growth with n = 2 x 1074

Figure 3.31: Three-dimensional structure of the eigenmode of the second stage. The n # 0
component at ¢t = 4107, is plotted.
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Figure 3.32: Same as Fig.3.4 but for the second stage. The n # 0 component at t = 4107,
is plotted.

component exists in the outer region with smaller amplitude. In Fig.3.32, the location of
the ¢ = 2 rational surface is specified with a dashed line. This is a rough trace of magnetic
field line which has a helicity of ¢ = 2, namely, which comes back to the initial point of
the trace after passing around the torus twice in toroidal direction and once in poloidal
direction. The field line tracing is done at the most silent stage at ¢ = 34574. It can be
seen that the m = 2/n = 1 component is resonant to the ¢ = 2 rational surface. Such
a resonance to the rational flux surface is a general nature of a resistive mode. The tiny
discrepancy in the inner region may be due to the error on the field line trace and the
difference of the relevant time between that when the field line is traced and that when
mode structures are estimated.

Further time development of this m = 2/n = 1 resistive mode gives a large deformation
of the overall shape again. Figure 3.33 shows the overall shape of the torus at t = 50074
with an iso-contour surface of pressure cut in half at two poloidal cross sections. The only
difference between Figs.3.33(a) and (b) is the toroidal angle of the view, which is perpen-
dicular to each other. The m = 2 displacement corresponds to an elliptical elongation in
a poloidal cross section, and the direction of the elongation varies in toroidal direction
with the toroidal mode number. In this case, the direction of poloidal elongation becomes
just perpendicular in the toroidally opposite side. Therefore, if the elliptical elongation
appears vertically in a poloidal cross section, the opposite side is elongated horizontally
as is shown in Fig.3.33(a). Namely, the deformation becomes fully asymmetric. On the
other hand, if a poloidal cross section is elongated obliquely in about §, the opposite side
is elongated just parallel to it, but in the opposite direction. That is, the overall shape
looks tilted, as is shown in Fig.3.33(b). Such large axis-asymmetric deformation is the
characteristic feature of this instability.
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(b)

Figure 3.33: Time development in pressure profile in the second stage.

Furthermore, the ultimate of the growth of this instability is a vague spread of the
plasma into whole the simulation region, namely, a full destruction of the configuration.
Thus, it can be said that the resistive stage is destructive or dangerous compared to the
ideal stage described in Sec.3.3.
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Chapter 4

Discussion

4.1 Comparison with experiments

In this section, we compare the simulation results with the experimental observations
of IREs. As described in Sec.1.2.2, the characteristic features of IRE is summarized as
follows:

e a rapid collapse of the density and the temperature profile

e low-n activities precursory of the thermal quench

a large deformation of the overall shape
e a rapid increase in the net toroidal current just posterior to the thermal quench

e a strong resilience in both the plasma pressure and the toroidal current

We have executed a simulation for the case where the low-n modes grow dominantly on
their linear growth as described in Chap.3. In the weakly nonlinear stage, the perturbation
of the instability becomes a visible scale. The structure of the perturbation retains the
low-n natures, especially, a large pressure bulge is formed as a superposition of several
modes. The amplitude of such activities is so large that they would be observed also in
real experiments as some low-n activities.

4.1.1 Time development of observable quantities

Let us consider in more detail about the comparison with experimental observations.
Figure 4.1 shows a comparison in the temporal change in the radial pressure profile.
Shown in Fig.4.1(a) is the simulation result of the time development of the radial pressure
profile on the midplane in a fixed poloidal cross section. The result of the resistive stage
for n = 2 x 10~ is plotted continuously together in Fig.4.1. It can be seen from Fig.4.1(a)
that the pressure profile suddenly collapses at around ¢ = 20074, while there is no visible
change in the prior time development. Furthermore, the pressure profile is broadened
while it falls rapidly (¢ = 200 — 3007,4), since the pressure falls mainly in the central
region and the pressure is transported to the edge region by the convection motion. The
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increase of the pressure at the outside of the separatrix can be seen in Fig.4.1(a) because
of the expulsion through the magnetic reconnection, as described in Sec.3.3. The central
pressure can be seen to recover to some level after the rapid fall (¢ = 300 — 4807,4).

() B ———

180

Figure 4.1: Comparison between (a)simulation and (b)experiment in the temporal change
in the radial (a) pressure and (b) density and temperature profiles. [(b): reprint from

'Fig.10 of Ref.[16].]

Such features in Fig.4.1(a) are in good agreement with experimental observation that
is reported in Ref.[16]. Shown in Fig.4.1(b) is the reprint from Fig.10 of Ref.[16], in
which the temporal change in the radial profiles of the electron density and the electron
temperature measured in START by using Thomson Scattering is plotted. The plasma
pressure in the MHD simulation is expressed by the sum of the ion and the electron
pressure that is modeled as a product of the density and the temperature. Therefore,
the behavior of the pressure in the MHD simulation can be compared roughly with these
experimental observations. The rapid fall in the central pressure, the broadening of the
radial profiles, and the immediate reheating after the collapsing phase in the central region
are in good agreement between the simulation and the experiment.

As for the time scale of the process, the temporal resolution is not sufficient with
above observations, in which the electron temperature falls in one or two steps of the
plots. Thus, we compare it using another experimental observation. Figure 4.2 shows the
comparison in the time development of the observable quantities. Shown in Fig.4.2(a)
is the simulation result of the maximum value in the pressure of all over the simulation
region. It can be seen that the maximum pressure decreases in a short time scale of
around 10074. According to the normalization for START operating parameter that is
described in Sec.2.2.2, the time scale of 10074 corresponds to about 50usec with START
operation parameter. This is comparable to the experimental observation in START as
shown in Fig.4.2(b). Shown in Fig.4.2(c) is the experimental result of a soft X-ray (SXR)
measurements at R = 34.6 cm[9]. The SXR signal includes the information of electron
temperature in the core region. Therefore, it can be compared with the simulation results
in Fig.4.2(a). It can be seen from Fig.4.2(c) that the SXR signal falls in about 150usec.
This time scale is in accordance with the simulation result by factor 3. It is a fairly good
agreement. '
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Figure 4.2: Comparison with experiments in the time scale of the process. (a) Maximum
pressure in the simulation result. (b) Net toroidal current in the simulation result. (c)
Experimental data of SXR measurement. (d) Experimental observation of plasma current.

As described in Sec.1.2.2, the thermal quench in an IRE usually proceeds in two step:
the first slow phase and the second fast phase. It really agrees with our simulation results.
The central pressure falls for the first step by the convection motion of the instability.
Namely, both the shifting motion of the bulk plasma and the rapid loss of plasma due to
the magnetic reconnection cause a decrease of the pressure in the core region. And when
we consider the second step of the simulation that is described in Sec.3.4, the decrease of
the pressure occurs in two steps. It is in good agreement with experiments, in which the
thermal quench usually occur in two-step, as described in Chap.2.

Thus, now it can be concluded that the rapid fall in the density and the temperature
profiles observed in the experiment is explained by the nonlinear development of low-n
interchange instability

As for the rapid increase in the net toroidal current which is observed in the experi-
ments, a direct comparison between the simulation and the experiment is not available,
because the simulation cannot be continued to the stage in which the current increases.
As is shown in Fig.4.2(d), the net toroidal current increases just after the thermal quench
phase in the experiment. The change in the current is not so large during the SXR drop.
Since the simulation result mainly corresponds to the SXR drop, the remarkable change
in the net toroidal current is not observed in the simulation as shown in Fig.4.2(c). How-
ever, it should be noted that the net toroidal current does not change so much in good
agreement with the experiments, in spite of the violent perturbation in its profile during
the thermal quench as shown in Fig.3.11(b). .

4.1.2 Deformation of the overall shape

In this subsection, we focus on the change in the overall shape of the torus. The simulation
result shows some characteristic global deformation of the torus, such as an appearance
of the toroidally localized bulge of the plasma pressure on the outermost surface, an
appearance of the characteristic conical shape at the top and the bottom of the torus
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after the magnetic reconnection between the internal and the external field occurs, and
some axis-asymmetric deformation due to the development of the resistive m = 2/n =1
mode instability. These observation can be compared with the numbers of experimental
result of the measurement in START using a charge coupled device (CCD) camera[9].
Shown in Fig.4.3 are the typical snapshots taken by the CCD cameras in the START
experiment([9]. Figure 4.3(a) is the images of START plasma taken at a stable state[9].
The picture is taken by a wide-angle lens, so that the whole of the center rod and the
peripheral constructions are taken on the image. The plasma looks almost axisymmetric
spherical shape. It should be noted that the brighter region corresponds to the lower
temperature region on the images. Therefore, the plasma appears on the images as a thin
red shell at low temperature region. _

Figures 4.3(b)-(g) are the snapshots of START plasma which are taken at the moment
when an IRE occurs. Only Fig. 4.3(b) is taken by a monochromatic CCD camera which
has a higher time resolution of about 30usec, and the other pictures are taken by a color
CCD camera which has a relatively poor time resolution of about 100usec. It can be
seen in Fig.4.3(b) that there is a bright helical structure which extends on the surface of
the torus from the top to the bottom, surrounding behind the center rod. It should be
noted that the bright region is localized in only a narrow region. According to Ref.[9],
similar structure is often observed in START when IRE occurs. Shown in Fig.4.4 is a
series of snapshots taken by the same CCD camera at every 222usec while an IRE occurs.
It can be seen that the helical structure appears only in the beginning of the IRE at
t = 44.000msec [see Fig.4.4(b)]. This structure agrees with the localized pressure bulge
that appears at around ¢ = 20074 in the simulation result. In the simulation, such a
localized pressure bulge appears only in a narrow region on the surface of the plasma, and
it keeps the structure for only several tens of 74 in the beginning of the nonlinear stage.
Therefore, it can be said that the bright helical structure in Fig.4.3(b) and the localized
deformation in the simulation result are in good agreement both in the temporal and the
spatial scale.

In the color images shown in Figs.4.3(c) and (d), the overall shape of the torus is
largely deformed. The bright region can be seen to extend to the top and the bottom
boundaries of the chamber along the center rod. It can be seen that the bright region
expands wider at the top and the bottom than at the center, so that the bright region
looks like a pair of cones. Especially, it can be clearly seen in Fig.4.3(c) that the cones
consist of several thin layers. These structures seem to correspond to the characteristic
conical structure which appears in our simulation result after the magnetic reconnection
between the internal and the external magnetic field occurs. Since the time resolution
of the color CCD camera is relatively poor (~ 100usec), instantaneous structures may
be smoothed out or accumulated in time on the images. As for this structure in the
simulation result, the expelled plasma extends along the stiff external magnetic field, so
that it holds the characteristic conical structure for a pretty long duration of around
15074 since ¢t = 20074 under an assumption that there is not any cooling mechanism on
the boundary walls. Thus, it is reasonable that the conical structure can be captured on
the color CCD camera images in spite of its poorer time resolution. Furthermore, some
spiral bright part can be seen in the middle of Figs.4.3 (c) and (d). In Fig.4.3(d), it
clusters slightly below the center of the torus. Such structures are also observed in the
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Figure 4.3: Images taken by CCD camera }1_5 START experiment by courtesy of Dr. A.
Sykes and Dr. M. Gryaznevich. .



Figure 4.4: Sequencial images taken by a high time-resolution CCD camera.

simulation result. Namely, as a part of the plasma is expelled out of the torus through
the magnetic reconnection, the core plasma gradually shrinks to some extent. Although
the most noticeable deformation is the single localized bulge, the activity of the most
dominant n = 2 modes still remains in the core plasma at that time, and it appears out
when the plasma shrinks. Namely, similar helical structure is formed in the opposite side
of the torus, so that the overall shape of the core plasma is deformed into a complicated
helical structure like Fig.3.24. However, an iso-surface plot is inconvenient to be compared
with the experimental observations of CCD camera images, because the surface screens
out the opposite side of the torus by itself, and because it has only the information of the
plasma exactly at the threshold level. A possible solution for this problem is to make use
of the so-called volume rendering technique, which is represented by a line integral of the
stimulation from the plasma to the view point. Shown in Fig.4.5 are those representations.
The stimulation from the plasma is assumed to be much for colder plasma than for hotter
plasma, so that the brighter region on the image roughly corresponds to the region where
it is denser with low temperature plasma. The view point is set to be at the far infinite.
Though the physical meaning of this representation is not so clear, it is useful to derive
the global structure of the plasma, which can be compared with the CCD camera images.

Figure 4.5(a) is thus created with the simulation data at ¢ = 25074. The characteristic
conical shape at the top and the bottom is clearly shown in the figure. Besides, some
bright parts can be seen in spiral shape at the middle of the image. Thus, there are fairly
good agreement between Figs.4.3(c)-(d) and Fig.4.5(a).

Figures 4.3(e)-(g) are taken by the color CCD camera at slightly later stage of IREs for
different shots. These images can be considered to capture the same phenomenon viewed
from different angles perpendicular to each other. It can be seen in Figs.4.3(e) and (f) that
the shape of the poloidal cross section on both side is different each other, namely, the
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Figure 4.5: Simulation result corresponding to CCD camera images drawn by volume
rendering scheme. (a) t = 25074, (b),(c) t = 47074. The difference between (b) and (c)
is the view angle.

torus suffers an axis-asymmetrical deformation. In Fig.4.3(e), the poloidal cross section
on the right hand side of the image is fatter (more horizontally elongated) than that on
the left hand side. On the other hand, in Fig.4.3(f), the right poloidal cross section is
thinner (vertically elongated) than the left one. These horizontal and vertical elongations
are considered to show the existence of the m = 2/n = 1 mode activity. Namely, the
asymmetric deformation captured in Fig.4.3(e) corresponds to those shown in Fig.3.33(a).
They are in good agreement in the structure. And Fig.4.3(f) can be considered to capture
the same deformation just from the opposite direction. On the other hand, Fig.4.3(g)
shows a largely tilting deformation, which agrees well with the deformation shown in
Fig.3.33(b). Therefore, this image is considered to capture the same phenomenon viewed
from the direction perpendicular to that of Figs.4.3(e) and (f). Figures 4.5(b) and (c) are
the same plot as (a) but for the data at ¢ = 47074. They are in good agreement with
Figs.4.3(e)-(g).

Thus, there are several pieces of excellent agreement in the observations of overall
shape of the plasma between the simulation and the experiment.

4.2 Dependency on parameters

The linear instability described in Sec.3.2 is quite sensitive to the profiles of the initial
equilibria. Especially the existence of the ¢ = 1 surface causes the growth of the low
n modes resonant to it such as m = 1/n = 1 and m = 2/n = 2. Here we examine
the effect of the ¢ = 1 rational surface on the nonlinear development. We have executed
another simulation run, which we call hereafter case B, starting from an equilibrium where
go = 1.06, and other parameters are almost the same as those described in Sec.3, which
is called case A.

The linear instability for case B is dominated by higher n modes than case A, such
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as m = 12/n = 8. These modes are identified as the ballooning modes by following the
same procedure as described in Sec.3.2. The figures corresponding to Fig. 3.3 and Fig. 3.4
for case B are shown in Fig. 4.6 and Fig.4.7, respectively. It can be seen in Fig. 4.6 that
the peak of the growth rate for each mode appears at n = 8. It is noted that the higher
n modes than n = 8 mode are well damped, so that the numerical validity is ensured
also for this case. As seen in Fig. 4.7, the poloidal mode structure for n = 8 mode shows
a poloidally localized activities in the bad curvature region. The growth rate of those
unstable modes for case B, on the other hand, is much smaller than that of the dominant

modes for case A.
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Figure 4.6: Same as Fig.3.3 but for case B.
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Figure 4.7: Same as Fig.3.4 but for n = 8 mode in case B.

It is worthy of notice that the nonlinear development for case B shows a quite similar



behavior to that for case A. Namely, the localized deformation also appears in case B in
the early nonlinear stage. In case B, however, the localized deformation consists of several
small bulges, not a single one, as shown in Fig. 4.8. The occurrence of the alignment of the
phases among the toroidal modes which is described in Sec.3.3 is difficult to be recognized
clearly in case B because of the small discrepancy in phases among the modes due to the
high-n nature.

Figure 4.8: Same as Fig.3.12 but for case B,

The development after that resembles to that for case A. Namely, the magnetic re-
connection between the internal and the external field occurs at a couple of large bulges,
and the characteristic conical shape also appears at the top and the bottom of the torus
as shown in Fig. 4.9. After expelling part of plasma pressure out of the separatrix, the
system becomes ideally stable. The instability for the resistive modes is similar to case
A, that is, the m = 2/n = 1 distortion grows when we put a larger resistivity.

Hence, it is concluded that there is no significant difference in the nonlinear develop-
ment between the cases A and B, except for the number of localized deformation. That
is to say, an IRE can occur under such condition where g is greater than unity.

4.3 Spontaneous phase alignment among modes

The appearance of the localized pressure bulge described in Sec.3.3 is one of key mech-
anisms of this phenomenon in that it causes the collapse in pressure profile and the
expulsion of the heat energy through the magnetic reconnection which is induced on it. It
is the alignment of the phase among toroidal modes that directly causes the occurrence of
the localized deformation[69]. Though the toroidal phases of n = 2 and the n = 1 modes
are almost aligned each other in the simulation results described in Sec.3.3, there really
be an arbitrariness in toroidal phases in there linear growth, because the system is fully
axisymmetric. The toroidal phase must be determined only by the initial tiny perturba-
tion. Therefore, it is necessary for us to check the dependency for initial perturbation
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Figure 4.9: Same as Figs.3.17 and 3.24 but for case B.
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patterns in order to make sure the scenario described above. Especially, we consider in
this section whether the localized deformation appears or not when the toroidal phases
are not aligned among the dominant modes in the linear stage.

To begin with, we execute another simulation run to check the role of the n = 1
mode in the nonlinear stage. This run is realized by artificially suppressing the growth
of the n = 1 mode. The suppression is realized by setting the amplitude of the initial
perturbation of the n = 1 mode much smaller than the n = 2 mode. Figure 4.10(a)
shows the result for this case with an iso-contour plot of the pressure at the moment
the bulge-like deformation appears. It can be seen that two bulges originated from the
n = 2 mode are formed. It proves the necessity of the accompanying n = 1 mode for
the production of the single localized deformation. Besides, in this case, the n = 1 mode
also grows with the same growth rate as case A in the beginning of the linear stage, as
shown in Fig.4.10(b). However, the growth reaches much lower saturation level than case

A, because of the change in the global configuration caused by the growth of the n = 2
mode.

(a). P

Magnetic Energy (a.u.)
o o o

ct

Figure 4.10: (a) Simultaneous appearance of two localized deformations in the simulation

result where the n = 1 activities are artificially. suppressed. (b) Same as Fig.3.2 but for
this case.

The phase-alignment mechanism among the excited modes, as is observed in Fig. 3.13,
is an universal nature in the development of this phenomenon. Namely, the phases are
spontaneously aligned to particular modes as a result of nonlinear interaction among
them. In order to confirm the nature of the spontaneous phase alignment, we execute a
simulation, in which the toroidal phase of the n = 1 mode is initially shifted from that
of n = 2. Figure 4.11 is a top view of the torus and shows the time development of the
fluctuations in the pressure on the midplane for n = 1 and n = 2. It is observed that
the n = 2 mode never changes the direction, while the n = 1 mode is eventually split in
two[Fig.4.11(d)], and the outer one spontaneously rotates till it is aligned to the n = 2
mode [Figs.4.11(g) and (j)].

Thus, it is proved that the localized deformation always appears in spite of the initial
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Figure 4.11: Spontaneous phase alignment between n = 1 and n = 2 modes. The temporal
change in the fluctuation in pressure on the midplane for the n = 1 (left panels) and the
n = 2 (center panels) are drawn by colored shades. Corresponding change in overall shape
is drawn in right panels by the top view of an iso-contour surface of the net pressure. The
n = 1 component gradually rotates until it is aligned with n = 2 mode. The localized
deformation appears at the top in the panel.

69



discrepancy among the phases.

4.4 On the parallel heat transport

As described in previous parts of this thesis, a key mechanism of this phenomenon is the
strong plasma pressure flow streaming from the core region to the outside of the separatrix.
The plasma flow is induced by a pressure imbalance along the reconnected magnetic field
line that links the core and the peripheral region. Therefore, the plasma flow is governed
mainly by the physics parallel to the magnetic field. In this simulation, it is the pressure
gradient that causes the appearance of the plasma flow. However, the physics parallel to
the magnetic field will be more complicated in real plasma due to numbers of transport
mechanisms such as the rapid electron heat conduction. The simple MHD model that
we use in this simulation does not carefully take account of such effect of the transport.
The pressure is defined by a simple product of density and temperature. The dynamics
along the magnetic field is determined only by the force due to the pressure gradient. The
individual behavior for each electron and ion fluid cannot be separated by this model. It
is one of the limitations of the MHD closure at present situation that the detail of such
effect cannot be taken account in a self-consistent manner. However, it is necessary for
us to estimate the effect of such transport phenomenon on the simulation result when
we compare it with experimental observations. To examine the effect of such transport
phenomenon by simulation with some modified model is a difficult problem, because the
electron heat transport is so rapid that the equations become highly stiff. Here, let us
consider it inductively from the simulation result.

The electron-electron collision time(7.e) is about 1.6usec (3.374) for the typical exper-
imental plasma in START (n ~ 4 x 10'**[m~3],a ~ 0.28[m], T ~ 250[eV], B ~ 0.4[T], R ~
0.34[m]). Thus, the effect of the electron-electron collision cannot be ignored. On the
other hand, the electron-ion collision time(7,;) is approximately 6 x 10374, so that the
thermal relaxation between the electron and the ion fluids does not complete within the
time scale of the whole process of this simulation. Therefore, we have to discuss here the
electron and the ion transport separately. Furthermore, for highly magnetized plasma, like
that in this simulation, the temperature will not be isotropic. To estimate the effect of
the transport under such condition , the Braginskii’s theory[70] is the most reliable one
for such collisional plasma.

There are some possible problems we should reconsider when we take account of the
effect of heat conduction. Here we discuss them one by one as follows.

e Both the parallel and the perpendicular conduction can affect the linear mode struc-
ture of the growth of the instability.

The main simulation result that is described in Chap.3 shows that the most domi-
nant linear instability mode is the low n interchange mode. The displacement due
to the interchange mode occurs only perpendicular to the magnetic field as a nature
of the interchange mode. Therefore, the parallel heat conduction will make only a
little contribution to the linear growth of the instability. On the other hand, the
perpendicular heat conduction can affect the linear instability if the heat conduc-
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tion occurs fast enough. The characteristic time scale of the perpendicular heat
conduction can be estimated by

T, = nLQ/m_, (41)

where n, L, and x, are the number density, the characteristic spatial scale, and the
perpendicular thermal conductivity, respectively. The characteristic spatial scale for
such perpendicular heat conduction may be the scale of the minor radius a. Using
the Braginskii’s formulation[70], we can estimate the time scale by

T1; = 3 x 10%74(for ion), (4.2)

Tie = 6 x 10874 (for electron). (4.3)

Thus, the time scale of the perpendicular heat conduction is much longer than that
of the whole process of this simulation both for the ion and the electron. Therefore,
it can be said that the effect of the perpendicular thermal conduction on the linear
instability is negligible. ’

The localized pressure bulge cannot appear because the displacement can become
dull due to the perpendicular heat conduction so that the localized pressure bulge
cannot appear.

The parallel heat conduction can be ignored in this problem for the same reason as
the previous problem. In the nonlinear stage, the temperature gradient exists mainly
in the localized pressure bulge. Using the same formulation as the previous problem
but with the spatial scale of the localized bulge, which may be at least several
percent of the minor radius, one can estimate the effect of the heat conduction on
the formation of the bulge. The absolute value of the time scale will be still small
for this estimation. Thus, the effect of the heat conduction on the weakly nonlinear
stage can be neglected.

The energy transport after the magnetic reconnection occurs can be dominated not
by the plasma flow but by the parallel heat conduction.

In this simulation, a unique mechanism was found. Namely, a large pressure gradient
is formed along a reconnected magnetic field line. In general, the parallel heat
conductivity is much larger than the perpendicular one in magnetized plasma. The
characteristic time scale of the parallel heat conduction for this case is estimated by

N = nR2//~;||. (4.4)

Here, we assume the spacial scale of the temperature gradient is characterized by
the major radius. Then, we can estimate as,
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mi = 5 x 107%74(for ion), (4.5)
Tle = 1% 107374(for electron). (4.6)

Thus, it can be said that the parallel heat transport occurs much faster than the
characteristic MHD time scale. Therefore, the energy loss by the thermal conduc-
tion can actually take place in this process. However, the difference between the
convective and the conductive loss of the energy is not an essential matter on the
whole relaxation process. The heat energy is rapidly expelled out of the torus from
the core region in both loss mechanisms. The succeeding process, such as the for-
mation of the conical structure at the top and the bottom, will not vary from the
result described in Chap.3 if the heat transport is taken into account.

e Since the pressure gradient is immediately removed by the parallel heat conduction,
the plasma flow cannot be induced.

The thermal conduction is a process that the imbalance in the temperature is re-
laxed by collisions of plasma particles. Therefore, the spacial distribution of the
temperature will surely flatten by the thermal conduction in a short time scale.
However, the imbalance in the pressure can still remain because of the existence of
the density gradient. The spatial distribution of the density is determined mainly
by the motion of the massive ion, which is characterized by the MHD time scale.
Therefore, the plasma flow along the magnetic field will be induced in spite of the
rapid parallel heat transport.

It is difficult to examine the above discussion by executing the simulation in practice

including such transport effect, partly because the stiffness of the equations with rapid
heat transport. A self-consistent analysis with transport effect is the future work.
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Chapter 5

Concluding remarks

5.1 Summary

As a first attempt at the generalization of relaxation theory to the finite pressure regime,
the physical mechanism of the relaxation phenomenon in ST plasma is investigated by
means of numerical simulation. This is the first large scale nonlinear simulation that is
applied to ST plasma. The major discoveries of this study are summarized as follows.

e In an instable ST equilibrium with the parameters of < 8 >~ 8% , qo ~ 1, pressure
driven instability grows dominantly. In particular, for the case ¢y < 1, low-n modes
which are resonant to the ¢ = 1 rational surface such as m/n = 2/2 and 1/1 modes
grow with large growth rate.

e In the result of the nonlinear time development of low-n interchange modes, the
pressure profile collapses in a short time scale, and the heat energy is rapidly trans-
ported from the central region to the edge region of the torus.

e At the weakly nonlinear stage of the growth, the toroidal phases among multiple
modes are aligned each other, so that they act additionally to create a toroidally
localized pressure bulge on the surface of the torus.

¢ A magnetic reconnection is induced at the localized bulge between the internal and
the external magnetic field. This magnetic reconnection is characterized by following
points.

— The reconnection occurs between almost parallel magnetic fields.

— There is large difference in the pressure on the field lines to be reconnected, so
that a large pressure gradient is formed along a filed line by the reconnection.

— A strong plasma flow is induced along the magnetic field through the recon-
nection.

e Part of plasma confined in the torus is lost out of the separatrix by the strong plasma
flow, which is induced by the reconnection, so that a pair of characteristic structures
which consists of thin conical layers, are formed at the top and the bottom of the
torus by the expelled plasma flow. It is a newly discovered type of convective loss.
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e The configuration is not perfectly destroyed by the event, and the following time
development in the large scale behavior shows the stabilization and the recovery to
an axisymmetric torus configuration.

e Another instable mode can be excited with an enhancement of the resistivity. The
nonlinear development of this mode shows a m = 2/n = 1 deformation and a quite
destructive behavior.

e These nonlinear behavior appears both for the gy < 1 and the ¢y > 1 cases.

The simulation results are intensively compared with experimental observations. It
shows excellent agreement for several points in both temporal and spatial scale.

In conclusion, the physical mechanism of the IRE in ST plasma has been revealed
from the onset of the growth of the instability to the collapse of the pressure profile.

5.2 Future work

As an extension of the present simulation study, the mechanism of the later stage of an
IRE, that is, the resiliency accompanying the increase in the total current, still remains
to be accounted for. This should be firstly elucidated. Besides, in our simulation, a
considerable amount of heat energy is left at the core region even at the posterior state
after the expulsion of the heat energy due to the magnetic reconnection. One of the key
point of the resiliency is whether the left heat energy is to be restored to a free energy
of the system or not. The highly twisted structure which appears just after the collapse
implies that the magnetic energy is supersaturated around the torus. If the excessive
magnetic energy can be transformed into the heat energy in a desirable way, that is, into
a free energy, then the event will recur. It has been revealed by this simulation that
there is a tendency to recover the torus when the fine structure disappears immediately
by an anomalous enhancement of the dissipation. Therefore, it may be important to treat
the exclusion mechanism for small scale structure appropriately. Furthermore, to reveal
the mechanisms of resiliency will be related to the destabilization of the system at the
beginning, which is assumed beforehand in the present simulation.

Another interest is to be directed to the next generation of ST experiments, such as
MAST[24, 45] and NSTX][43, 44], which are starting their operation, and other larger
devices in the planning stage[71]. Their equilibrium configurations are designed to have
much larger elongation and the central safety factor (x ~ 10 , go ~ 4). The dynamical
behavior will be quite different with that in the present STs. It will provide interesting
materials when we compare the results.

As for the generalization of relaxation theory, fragmentary knowledge has been de-
rived by this study. For example, the magnetic reconnection is an important element for
relaxation in this event. However, it has rather a secondary meaning as a kind of trigger
of relaxation. The posterior stage to the reconnection is governed by the global config-
uration, in particular, the pressure gradient parallel to the magnetic field. The system
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tends to quickly follow the global magnetic structure. Such is in contrast to the Taylor
type relaxation, in which the magnetic reconnection plays a central role in the whole re-
laxation process by discriminating the progress of the dissipation between the energy and
the helicity. Furthermore, as shown in other work|[5], a large scale advection in the system
determines the process. Therefore, the generalization of the relaxation theory must be
done by introducing some global parameters. Though the completion of the generalization
needs much information and is beyond our subject at the present situation, these result
from our study will develop the argument further.
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Appendix A

Numerical convergence test on the
simulation

As we can see in the simulation results described in Chap.3, the whole process is governed
by activities which have the large spacial scale. In particular, the n = 1 and the n = 2
modes play important roles. Therefore, it is necessary to check the convergence properties
to the numerical mesh and the time step, or to the boundary condition at least for low-n
modes.

Mesh and time step convergence can be examined by comparing results computed
with various mesh numbers and time steps. We have executed such runs with the same
parameter as stated in the body of the text for five different cases listed in Table.A.1,
where the mesh number and the time step are halved compared to the original case.

The growth rates of the linear eigenmode that are obtained by executing the nonlinear
simulation for these case are shown in Fig.A.1. We can see from Fig.A.1 that there is no
significant change among these cases for low-n modes.

In addition, the nonlinear time development is checked for case A. The result of the
temporal change in the three-dimensional pressure profile is shown in Fig.A.2. It is shown
that quite similar behavior to that for the original case, such as the formation of the
localized bulge, reconnection, and the conical shape, as well as the time scale of the
development of the process.

Table A.1: Parameters for the convergence test runs.

case number of mesh al
N, X Ng x N,
O 128 x64 x 128 1 (main result)
A 128 x 32 x 128 1
B 64 x 64 x 128 1
C 128 x 64 x 64 1
D 128 x 64 x 128 0.5

Lo : ratio of characteristic speed of mesh (dz/6t) to the Alfven speed
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In conclusion, the mesh size and the time step used in the simulation are appropriate

for the present problem.
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Figure A.1: Comparison in the linear growth rate among cases with different grid numbers

and time steps.

Figure A.2: Simulation results in the nonlinear stage for case A. Similar structures to
Fig.3.17 appears in this calculation.

Since the magnetic field line penetrates the top and the bottom boundary, the plasma
extends to there at large fluid velocity on the nonlinear stage as described in Chap.3.
Therefore, the dependence on boundary conditions for the top and the bottom boundary
should be carefully examined.

Figure A.3 shows the time development of the poloidal pressure profile in the simu-
lation result which is executed in a geometry with a dimension doubled in z direction.
As we can see from Fig.A.3, the plasma extends almost within 2 £+ 1.8, so that we can
conclude the system dimension is sufficient in the original simulation run.
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Figure A.3: Simulation results corresponding to Figs.3.10, 3.18, and 3.23 executed in a
vertically longer geometry.




