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Summary 

The main aim of this study is to design an accurate attitude determination and control 
system for the nanosatellites with magnetic sensors and actuators. This aim is achieved by 
discussing different estimation algorithms, integrating them and finally proposing an 
overall attitude determination scheme. The given methods might be regarded both as 
separate solutions for different practical issues or a part of a whole attitude determination 
and control system for a nanosatellite. 

As a consequence of the progress in the miniaturization and the increase in the capability of 
the electronic devices, performing space missions with smaller satellites has become 
possible. The number of researches on such satellites is increasing day by day because of 
their advantages such as low investment and operational costs, enabling COTS (commercial 
of the shell) technology in space and short system development periods. Despite these facts 
discussions on small satellite attitude control is far from being concluded. Conceptual 
design limitations like the size and weight are the main reasons for the complexity of the 
problem yet such limitations are also what make the problem more interesting. The primary 
target of the researchers working on this issue is to design an attitude determination and 
control system, which can provide the same accuracy with the system for larger competitors, 
but remain within the design limitations. 

Magnetic sensors and actuators are popular attitude determination and control hardware for 
the nanosatellites since they are lighter, smaller and more economical compared to the 
others. On the other hand, they are regarded as coarse sensors and actuators and the 
accuracy that they can provide is limited because of the practical issues such as magnetic 
bias, residual magnetic moment and inherent complexity of the magnetic control. This 
study proposes new methods to overcome these limitations. In this context some of the sub-
issues that are addressed are the on-orbit real time calibration of the magnetometers, 
adaptive tuning of the Kalman filter algorithm to increase the attitude estimation 
performance, robust estimation algorithm against sensor faults and estimation of the 
residual magnetic moments.   

The main contribution of this study is to examine several basic practical problems met for 
the attitude determination and control of a nanosatellite with magnetic sensors and actuators, 
and give a whole attitude determination algorithm, which is composed of adaptive filters, 
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for solving these problems and increasing the attitude determination and control system 
performance. An approach based on the adaptation of the Unscented Kalman Filter, the 
estimation algorithm used as a part of the attitude determination procedure, is followed. 
The practical problems are solved stage by stage by using new techniques for the filter 
adaptation and then these filters are integrated in order to propose an overall attitude 
determination method. At the end a novel attitude determination scheme for nanosatellites 
with magnetic sensing and actuation is presented. Moreover the different estimation 
algorithms given in this paper have significance in terms of the estimation theory. The 
Robust Unscented Kalman Filter against sensor malfunctions and the Kalman filter 
adaptation technique used in case of unexpected instantaneous changes in the estimated 
parameter are newly proposed methods and can be applied for different problems.  

Throughout the study, the theory is supported by simulation results. First, each problem is 
examined individually and then it is demonstrated how the proposed solution technique can 
be integrated with the main idea: attitude determination and control for nanosatellite with 
magnetic sensors and actuators. The results show that the accuracy for a simple 
nanosatellite attitude determination and control system can be increased satisfactorily. The 
key findings presented in this study are published (or submitted) as international papers. 
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1. Introduction 

1.1. Background and Motivation 

Since the world’s first Earth orbiting artificial satellite, Sputnik I, was launched on 4 
October 1957, mankind has always been working to reach the better in space missions. 
Progress in the miniaturization and the increase in the capability of the electronic devices 
are leading us towards a new era where performing complex space missions with small 
satellites will be possible. 

The nanosatellite term refers to the satellites with mass less than 10kg (Fig. 1.1). The main 
motivation behind the nanosatellite missions is the significant cost decrease which is the 
direct result of reduced mass and complexity. Enabling COTS (commercial of the shell) 
technology in space and short system development periods are other advantages of 
nanosatellites. Since the investment cost is not high the developer may take the risk of 
using self-developed hardware or software for the mission and the satellite can be 
developed from scratch in a considerably shorter time than bigger satellites. Moreover the 
nanosatellite missions are generally single-aimed, so the satellite is not complex and the 
mission failure risk is lower than usual (Rendleman 2009).  

 

Figure 1.1: GeneSat-1 of NASA: A nanosatellite mission example (Image Credit: 
NASA/Ames). 
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Although there are numerous researches on nanosatellites and this number is increasing day 
by day, the investigations are still far from being concluded. In this sense maybe the most 
important topic for researchers to deepen their investigations is the attitude determination 
and control of these satellites. According to (Bouwmeester and Guo 2010) despite the 
advanced technology for other subsystems, the attitude determination and control system 
(ADCS) and the subsystems that rely on the ADCS accuracy are underdeveloped for 
nanosatellites. It is added that the bottleneck for nanosatellites remains the attitude control 
performance especially in terms of dynamic control and control accuracies. The main 
reason underlying this problem is the mass, size and power restrictions. Unlike the big 
satellites high accuracy high-tech attitude sensors and actuators such as star-trackers and 
reaction wheels cannot be easily used for nanosatellite missions since they are heavy, big 
and do consume high power. The attitude must be determined and controlled precisely by 
using coarse sensors and actuators which are smaller and lighter (Soken et al. 2010). In this 
context the possible candidate for attitude sensing is economic, light and small 
magnetometers (Table 1.1) whereas the control might be performed by magnetic torque 
rods (magnetorquers). The primary problem is how to get high ADCS performance by 
using only magnetometers and magnetorquers.  

The typical attitude determination accuracy for sole magnetometer based methods is 1-2deg 
(Bak 1999). The dominating error sources are the magnetic field uncertainty and bias in the 
measurements which is caused by several reasons such as magnetic charging during the 
launch and electrical charge on the other subsystems. Sun sensors are usually used for 
aiding the magnetometer measurements but in this case the attitude determination accuracy 
significantly degrades during the eclipse when the sun sensors are not usable. In this sense 
another candidate for using together with magnetometers is the gyros since they are also 
light and small instruments, especially after the recent developments ended up with MEMS 
(Microelectromechanical systems) gyros (Table 1.1). Magnetometer is preferred as the 
attitude sensor for almost 30% of all nanosatellite missions by 2010 while this number is 
around 12% for gyros (Bouwmeester and Guo 2010).   

As for the attitude control, the magnetic control is the most popular method for the 
nanosatellites either as passive control with magnets or active control with magnetorquers. 
The magnetorquers are lightweight and energy-efficient (Table 1.1). Besides they do not 
have any mechanical part so they are more reliable compared to the reaction wheels and 
control moment gyroscopes. However the control accuracy is limited for these actuators 
because of the inherent complexity of the problem and pointing accuracy higher than 1deg. 
(1deg ) is not possible using only magnetic actuators in practice. The spacecraft should be 
magnetically clean also for satisfying high pointing precision with the magnetorquers. 
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Table 1.1: Typical magnetometer, MEMS gyro and magnetorquer examples for 
nanosatellite applications. 

     

Honeywell HMC 1001 
Magnetometer1 

Silicon Sensing Systems 
MEMS Gyro CRH012 

Magnetorquer3 

Mass 0.14gr 30gr 15gr 
Size 1.7mm   11.2mm 7.3mm 35mm 35mm 25mm ⌀6mm45mm 
Power 50mW < 250mW 23mW 

 

The main motivation of this study is to provide an accurate attitude determination method 
for the case that nanosatellite has magnetometers and gyros as the attitude sensors, and 
magnetorquers as the actuators. The aimed attitude determination and control accuracies are 
0.1 and 1 deg, respectively. This is challenging because the attitude determination accuracy 
that can be satisfied by the regular algorithms for a nanosatellite carrying magnetometers 
and gyros is usually around 1deg (Vinther et al. 2011). Moreover although the angular rates 
can be controlled accurately by pure magnetic control approach the accuracy for the 
attitude itself cannot be reduced below few degrees and usually the yaw angle estimation is 
worse than the others (Wisniewski 2012). Mainly there are two reasons for such poor 
ADCS accuracy when the magnetometer, gyros and magnetorquers are used: 

- Inherent complexity of the problem: Magnetometers are not accurate sensors due to 
the factors such as the disturbance fields caused by the spacecraft electronics, 
modeling errors in the Earth’s geomagnetic field and the external disturbances like 
ionospheric currents. For increasing attitude determination performance an accurate 
in-flight calibration of the magnetometers is necessary (Bak 1999). Moreover 
attitude control by using only magnetorquers is significantly challenging since at 
any instant the satellite is controllable in two-axes that are perpendicular to the 
magnetic field vector (Wisniewski 1996).  For three axis controllability the 
spacecraft must experience the variation of the magnetic field along the orbit.  

                                                            
1 Source: Datasheet for Honeywell HMC1001/1002 and HMC1021/1022; 
http://www.alldatasheet.com/datasheet-pdf/pdf/167569/HONEYWELL/HMC1021.html. 
2 Source: Website of Silicon Sensing Systems Japan; http://www.sssj.co.jp/en/products/gyro/crh01.html. 
3 Source: Candini et al. 2012. 
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- The size of the spacecraft: Because of the spacecraft’s compactness, the interaction 
between the subsystems is higher than the larger spacecrafts and that affects the 
magnetic cleanliness of the satellite which is a necessity for accurate attitude 
estimation and control with magnetic sensors and actuators. Besides the attitude 
hardware is more vulnerable against external disturbances because of the same 
reason. As for the control accuracy any disturbance source will make achieving 
higher accuracy more challenging so a magnetically clean satellite is a preliminary 
necessity.  

Therefore for an accurate ADCS by using magnetometers, gyros and magnetorquers these 
issues should be analyzed carefully and appropriate solution techniques should be given.  
This thesis contributes to the literature within this context. Different than the existing 
studies we address the problems such as in-orbit estimation of magnetometer biases and 
residual magnetic moment and try to increase the system accuracy by using more powerful 
estimation algorithms, which are proposed by the authors. First of all each problem is 
addressed individually and possible solution methods, which are mostly based on the 
adaptation of the attitude estimator algorithms, are given. Then these solution techniques 
are integrated in order to propose an overall attitude determination scheme for the satellite. 
The theory is supported by the demonstrations and performance analysis for the proposed 
attitude determination method. Details for the contribution are given in Section 1.3 after 
reviewing the current literature in Section 1.2. 

1.2. Literature Survey 

The attitude determination and control for nanosatellites is a widely discussed topic in the 
literature. In general scope, the solutions that have been proposed in order to increase the 
ADCS system efficiency might be considered in two categories. The first category includes 
the design solutions that cover the selection of the appropriate sensors, forming the layout 
of the subsystems in an optimal way (Han et al. 2012) and designing a completely new 
sensor or actuator (Candini et al. 2012). On the other hand, the algorithmic solutions which 
investigate the possible algorithm based techniques to solve a specific problem (Reijneveld 
and Choukroun 2012; Pong et al. 2012; Vinther et al. 2011) fall in the second category. The 
solutions in the latter category mainly aim at proposing a new method for nanosatellite 
implementations such that the system performance can be increased even using the existing 
hardware and usually they focus on a specific problem such as onboard sensor calibration, 
robustness of the ADCS algorithm against the external/internal disturbances etc. The 
studies presented in this thesis may be regarded as a part of this second category. 
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In this thesis the main aim is to increase the ADCS performance of a nanosatellite that 
carries magnetometer, gyros and magnetorquers onboard as the attitude hardware. As 
aforementioned this aim is accomplished by solving several interconnected practical 
problems.  

In a broad perspective the attitude determination problems are related to magnetic 
disturbance compensation which is needed in order to guarantee the magnetic cleanness of 
the spacecraft. Our first problem is finding an accurate estimation algorithm for the in-orbit 
and real time estimation of the magnetometer biases and that is an obligation as 
aforementioned. This is a recent topic for nanosatellite applications and since the 
magnetometers are popular sensors for this type of satellites there are many documented 
studies especially on magnetometer calibration.   In (Inamori et al. 2009) the magnetometer 
biases are estimated as a part of the magnetic disturbance compensation for a nanosatellite. 
The Unscented Kalman Filter (UKF) is used as the estimator algorithm. Han et al. (2012) 
proposes both pre-launch on ground and post-launch in-orbit magnetometer calibration 
schemes for Chinese ZDPS-1A nanosatellite. In (Soken and Hajiyev 2012) along with the 
magnetometer biases the scale factors are also considered and a UKF based reconfigurable 
attitude estimation and magnetometer calibration method is presented. Lastly Vinther et al. 
(2011) investigates the effects of magnetometer and gyro calibration on the attitude 
accuracy and gives a simultaneous estimation algorithm using the full-order UKF.  

The biggest difficulty that arises in case of in-orbit real time sensor bias estimation is 
tuning the estimator. This provides a basis for the second problem which is the 
determination of the process noise covariance for the UKF when the sensor biases or scale 
factors are included in the state vector. For the case where the UKF is used for estimating 
only the attitude and gyro biases as a reduced-order filter the process noise covariance 
matrix can be approximated analytically (Crassidis and Markley 2003) likewise the general 
case (Farrenkopf 1978; Fosbury 2011). But this method fails if the magnetometer biases are 
also estimated as a part of the state vector. One possible solution technique is to use an 
adaptive algorithm to tune the UKF as discussed in this thesis. The adaptation of the UKF 
is also a necessity for building a filter which is robust against any kind of sensor 
malfunctions. Since the spacecraft is vulnerable against external disturbances there is a high 
risk for the magnetometer measurements to be affected and give faulty outputs for a period 
of time. Unless the filter is built robust against that kind of malfunctions, they will 
deteriorate the estimation performance significantly. That will be the third problem 
examined in this study.   

In literature there are several methods to adapt the linear Kalman filter (KF). 
Unquestionably, the pioneering methods in this area have been proposed by Mehra (Mehra 
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1970; Mehra 1972). Specifically the covariance matching technique discussed in (Mehra 
1972) may be considered as the fundamental of the algorithms proposed in this thesis. The 
main drawback of these studies, and as well their successors that examine the adaptation of 
the KF (Geng and Wang 2008; Kim et al. 2006; Odelson et al. 2006; Dunik et al. 2009), 
they are generally appropriate for discrete-time linear systems and cannot be used as a 
method for the adaptation of the UKF without any correction or modification. 

In this sense, researches on the Adaptive Unscented Kalman Filter (AUKF), which can be 
used for nonlinear systems, should be examined. In (Han et al. 2009), two distinct methods 
are described as the AUKF algorithms. In the first method, the MIT rule is used to derive 
the adaptive law and a cost function is defined in order to minimize the difference between 
the filter computed covariance and the actual innovation covariance. The algorithm is used 
for the Q-adaptation (process noise covariance adaptation), which is required for tuning the 
filter against uncertainties. It is stated that a similar approach may be pursued for the R-
adaptation (measurement noise covariance adaptation), which is necessary for building a 
filter robust against sensor malfunctions. As a deficiency, the presented algorithm requires 
calculation of the partial derivatives and that introduces a relatively large computational 
burden as it is also stated by the authors themselves. In the second method, two UKFs are 
run in parallel as master and slave filters. Its computational demand is lower than the first 
method but as it is known (Vinther et al. 2011), despite being free of the Jacobian 
calculations, the computational burden of the UKF is not very low because of the sigma 
point calculations. Therefore, using two UKF algorithms in a parallel manner still increases 
the required computation burden significantly. Hence the main problem for both of the 
methods presented in (Han et al. 2009) is high computational load. Nonetheless in (Liu and 
Lu 2009; Shi et al. 2009) Saga-Husa noise statistics estimator is integrated with the UKF in 
order to build an AUKF. Although it may give satisfactory results for the target tracking 
problem, this method has an unstability issue; when the noise covariance loses its semi-
positive definiteness, the filter diverges.  

In (Cao and Tian 2009) an adaptive UKF algorithm is proposed to improve the estimation 
of error covariance matrices. By introducing measurement innovation into the estimation of 
error covariance matrices, the proposed algorithm can compute the Kalman gain adaptively 
and make the innovation series of the future measurement uncorrelated. However, the 
presented AUKF algorithm is valid, if only the model of dynamics is nonlinear, but the 
model of measurements is linear. In (Song and He 2009) a slave UKF is proposed to 
estimate the covariance of system noise online. An AUKF is developed and applied to 
nonlinear joint estimation of both time-varying states and modeling errors for helicopter. 
The filter is composed of parallel master and slave UKFs. While the master UKF estimates 
the states or parameters, the slave filter estimates the diagonal elements of the noise 
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covariance matrix for the master UKF. Such a mechanism improves the adaptive ability of 
the UKF and enlarges its application scope but as the second method given in (Han et al. 
2009) it is complex and requires high computational load.   

The UKF may be also built adaptively by using fuzzy logic based techniques. In (Jwo and 
Tseng 2009) Fuzzy Logic Adaptive System (FLAS) aids the interacting multiple models 
and by switching between filters suitable value for the process noise covariance can be 
determined. As a disadvantage such method also requires more than one filter running 
simultaneously. In (Jwo and Chung 2010) a sensor fusion method based on the combination 
of adaptive UKF and fuzzy logic adaptive system for the ultra-tightly coupled GPS/INS 
integrated navigation is presented. Through the use of fuzzy logic, the FLAS has been 
incorporated into the AUKF as a mechanism for timely detecting the dynamical changes 
and implementing the on-line tuning of the factors in the weighted covariance matrices by 
monitoring the innovation information so as to maintain good estimation accuracy and 
tracking capability. Although it is possible to get satisfactory results for some specific cases, 
the essences of these kinds of fuzzy methods are human experience and heuristic 
information; in out of experience cases they may not work. 

Another practical problem, which should be solved by the UKF adaptation, is the Residual 
Magnetic Moment (RMM) estimation for nanosatellites and this is the fourth issue 
discussed in this thesis.  

Generally, the RMM is the main attitude disturbance source for the low earth orbit (LEO) 
nanosatellites (Sakai et al. 2006b). Other disturbances such as the gravity gradient, sun 
pressure, aerodynamic drag have relatively less effect because of the small size of the 
satellite and can be minimized during the design process (Inamori et al. 2009). However, 
the magnetic disturbance is mainly caused by the onboard electric current loop, small 
permanent magnet in some devices or some special material on the satellite, and does not 
strongly depend on the satellite size (Sakai et al. 2008). Hence, the RMM must be 
compensated in-orbit with an active control strategy.  

The effects of the RMM on the attitude determination and control accuracy for small 
satellites and the necessity for its compensation are well discussed in (Sakai et al. 2008; 
Inamori et al. 2009; Steyn and Hashida 2001; Suehiro 2010; Hosonuma et al. 2012). The 
orthodox way to cancel out the disturbance caused by the RMM is to use a feedback 
controller but the efficiency of the method depends on several conditions such as the sensor 
noise, computational performance or plant model accuracy (Sakai et al. 2008). Another 
method is to use a feedforward cancellation technique and when this technique is used the 
performance depends on the accuracy of the RMM estimation. 
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In (Sakai et al. 2006b; Sakai et al. 2008), an observer is proposed to estimate the RMM 
whereas in (Steyn and Hashida 2001; Hosonuma et al. 2012) the RMM is estimated using 
the Extended Kalman Filter (EKF). In (Inamori et al. 2009), as well as the EKF, an UKF is 
designed for the RMM estimation and the estimation accuracies of these two different KFs 
are compared. In these studies, the RMM components are considered to be constant in time. 
However, in practice, these parameters may change with sudden shifts because of the 
instantaneous variations in the onboard electrical current. Such instantaneous variations in 
the current may be caused by switching on/off of the onboard electronic devices or going 
into/out of eclipse. In such cases, the KF cannot catch the new value of the parameter 
quickly if it is designed with a small process noise covariance in order to increase steady 
state estimation accuracy. The main issue is, especially if we use the feedforward 
cancellation technique for the RMM compensation, then, as discussed, the estimation 
accuracy is essential and so the KF must be designed with small process noise covariance. 
In other words, the inherent tracking capacity of the KF that can be provided by choosing a 
high process noise covariance must be sacrificed in order to increase the overall system 
performance. Therefore, if we want to design a KF with good tracking capability, as well as 
the high steady state accuracy, then the filter should be adaptively designed such that it 
gives both good estimation results when there is no change in the parameter and good 
tracking performance when the parameter is changed.  

Change detection and the KF adaptation in case of abrupt changes in the estimated 
parameters is a common issue in many fields from automotive to computer systems 
(Gustafsson 2000; Hartikainen and Ekelin 2006) and there are several documented methods 
investigating this topic. In general, these methods may be categorized in two: the methods 
that use one KF and detect the change by applying a whiteness test on the innovation vector 
of the filter and methods that use a bank of filters with different statistical information for 
changes with different characteristics (such as shifts with different magnitudes) (Gustafsson 
2000). An example for the latter method is the use of two different KFs where one of them 
is designed with low process noise covariance for steady state accuracy and the other one is 
with a high process noise covariance for agility in case of change. In general the multiple 
model based approach with several KFs running parallel gives better results compared to 
the single filter based adaptive recursive estimation algorithms. However in return for the 
increasing accuracy, the algorithm becomes more complex and so the computational load 
increases as well. Besides, as a prerequisite for designing the filters the characteristics of 
the changes (e.g. the magnitude of different shifts) must be known (Hartikainen and Ekelin 
2006).  

A simple technique for change detection is to apply a whiteness test on the innovation 
vector of the KF in order to check whether a change in the system occurred. A well known 
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test is the Cumulative Sum (CUSUM) test in which the filter innovations are transformed 
into distance measures with different characteristics corresponding to the desired design 
properties and the test built upon these distance measures (Gustafsson 2000; Page 1954; 
Basseville and Nikiforov 1993). The next step after the change detection is to perform a 
correction (or adaptation) on the filter statistics in order to adapt the filter to the changing 
conditions and get better tracking capability. The easiest and most straightforward method 
is to restart the filter (Gustafsson 1996) after each change detection which basically 
increases the estimation covariance to get better tracking. Another way of adaptation is to 
increase the estimation covariance of the related state for one time step or a period of time 
by multiplying with a factor (Stenlund and Gustafsson 2002). Nonetheless, it is also 
possible to perform similar adaptation by multiplying the process noise covariance matrix 
with the scale factor instead of the estimation covariance of the KF (Gustafsson 2000; 
Gustafsson 1996). The main disadvantage of all these adaptation techniques is being 
heuristic; the adaptation is based on the designer’s experiences. As in the first adaptation 
method, if the filter is restarted after each change detection then the magnitude of the 
change does not have any significance on the performed adaptation and after some certain 
changes the KF may give a bad transient behavior (Gustafsson 1996). On the other hand, 
when the estimation covariance or the process noise covariance matrix is multiplied with a 
scale factor after the change is detected, the scale factor must be selected carefully such that 
it represents the required response of the filter for all possible changes. However, as it is 
extensively discussed in (Hartikainen and Ekelin 2006) such selection is not possible and 
the KF response is very sensitive to the value of the scale factor. Besides, if the scale factor 
is applied for a period instead of just one time step (periodic correction instead of 
momentarily correction) then determination of the adaptation period appears as another 
problem. Therefore, the main drawback of the existing single KF based change detection 
and adaptation algorithms is the necessity to know the characteristics of the change (e.g. the 
magnitude of the shift) a priorily in order to obtain a precise scale factor for correction and 
achieve successful adaptation as a result; none of them may perform well under 
circumstances other than they are designed for. 

1.3. Contribution of the Thesis 

In general this thesis proposes a simple yet accurate attitude determination method for 
increasing the ADCS performance of nanosatellites with magnetic sensors and actuators. In 
order to achieve that first we increase the accuracy of the magnetometer outputs by 
proposing an appropriate in-orbit calibration algorithm. The tuning problem for the filter 
that is used for calibration as well as the attitude estimation is overrun by the adaptive 
Kalman filtering approach. The same filter is made robust against faults in the 
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measurements. That is a necessity in the severe space environment especially for 
nanosatellites which are highly vulnerable against the internal and external disturbances. As 
the next step, the RMM is estimated to cancel out the effects of the magnetic disturbance 
and assure the magnetic cleanliness of the satellite for the attitude control purpose. The 
instantaneous changes in the RMM are regarded and the estimator UKF is adapted as it 
gives accurate estimations at any case. In the final section, which may be regarded as the 
core of this study, the given UKF adaptation techniques are integrated and an overall 
attitude determination scheme is introduced. The scheme is demonstrated for the attitude 
determination of the nanosatellite and its performance is analyzed by comparisons with the 
existing algorithms. Moreover, in the appendix a brief discussion about possible novel 
methodologies for pure magnetic attitude controller, which can work independently from 
the orbital periodicity of the geomagnetic field, is given.  

The main contributions of this thesis can be listed as: 

 In Section 4.3 a magnetometer and gyro bias estimation algorithm is presented. The 
UKF, a rather novel Kalman filter, which does not have so many implementation 
examples for the bias estimation in literature, is used as a part of the estimation 
system. Differently from the existing studies both magnetometer and gyro biases are 
estimated simultaneously as well as the attitude parameters by using a gyro-based 
model. The results were presented in (Soken and Sakai 2011). 
 

 A novel adaptive scaling method for the process noise covariance of the UKF is 
given in Section 5.1.1. The adaptation is performed using a single adaptive factor 
calculated in the base of the residual sequence and the process noise covariance 
matrix tuned dynamically via multiplication with this factor. It is demonstrated that 
the given AUKF algorithm provides more accurate attitude estimation results than 
the regular UKF. The results were presented in (Soken and Sakai 2012a). 
 

 In Section 5.1.2 an adaptive method for tuning the process noise covariance matrix 
of the UKF is proposed for the general case. This filter algorithm is also called as 
the AUKF. The method is based on Maybecks’s maximum likelihood estimator 
(Maybeck 1982), which has been already investigated for several different problems. 
Firstly it is shown that the adaptation method can be generalized for the nonlinear 
systems so it holds true for a nonlinear problem where the UKF is used as the 
attitude estimator. Then the method is tested in various scenarios for the attitude and 
sensor bias estimation and the results are compared with the filter where analytically 
approximated process noise covariance matrix (Farrenkopf 1978) is used. The 
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results were presented in (Soken and Sakai 2012b) and published in (Soken and 
Sakai 2012c). 
 

 A Robust Unscented Kalman Filter (RUKF) algorithm is proposed for the case of 
magnetometer faults in Section 5.2. With simulations it is demonstrated that the 
regular UKF fails about giving accurate attitude estimation results if the 
magnetometer output is faulty whereas the RUKF ensures estimation accuracy for 
any case.  The applied adaptation scheme is similar to the one given in (Soken and 
Hajiyev 2010). However, in this study the attitude estimation problem is generalized 
and instead of the Euler angles the quaternions are used as the attitude 
representation method. Besides, the robust Kalman filters are examined for different 
measurement system failure cases. The results for the adaptation using single scale 
factor were published as a part of (Soken et al. 2013a).  
 

 In Section 5.2.2 the UKF is built robust against measurement malfunctions using 
multiple scale factors. The key findings for the adaptation with multiple scale 
factors were presented in (Soken et al. 2012a) and published in (Soken et al 2012b). 
Comparison of the single and multiple scale factor based adaptation schemes was 
given in (Soken et al. 2013a). 
 

 An in-orbit RMM estimation method for small satellite applications is discussed in 
Chapter 6. Unlike the existing studies in the literature, the unexpected abrupt 
changes in the RMM are also considered. The adaptation method that tunes the 
covariance of the UKF regarding the magnitude of the change is a novel approach. 
The specific results for the UKF were presented in (Soken and Sakai 2013). The 
version generalized for all KF applications was published in (Soken et al. 2013b).  
 

 In Chapter 7, the proposed UKF algorithms are integrated to build an overall 
attitude estimation scheme for the nanosatellite. The given integration method and 
so the overall scheme is tested via demonstrations and its performance is 
comprehensively analyzed by comparisons with the exiting methods.  The proposed 
scheme is a new one that can be used for estimating all the necessary parameters for 
attitude determination and control of a nanosatellite with magnetic sensors and 
actuators.  
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1.4. Thesis Overview 

The thesis aims at proposing an attitude determination method for increasing the ADCS 
performance of nanosatellites with magnetic sensors and actuators. The first two chapters 
constitute the preliminary basis for the next chapters by introducing the motion model for 
the satellite and the models for the attitude sensors. The rest of the study may be divided 
into two: the first part which examines several practical problems for the attitude 
determination and control of the nanosatellite and the second part which presents the 
overall attitude determination algorithm. The details are given below chapter by chapter: 

 Chapter 2: Satellite Mathematical Model 
 

This chapter first gives the definition of the coordinate systems used throughout the 
thesis. After a brief description for the quaternions for attitude parameterization, 
the mathematical model for the satellite’s motion is presented.    
 

 Chapter 3: Sensor Model 
 

This chapter presents the models of the sensors that are used for getting attitude 
information. The Earth magnetic field model is presented as a part of the 
discussions for the magnetometer model. The magnetometer and gyro models are 
given for the common case that we regard the sensor biases. 

 

 Chapter 4: Sensor Bias Estimation 
 

In this chapter an UKF based magnetometer and gyro bias estimation algorithm is 
presented as a part of the attitude determination procedure for a nanosatellite, 
which has three magnetometers and three gyros as measurement sensors. 
Differently from the existing studies both the magnetometer and gyro biases are 
estimated as well as the attitude parameters. As a basis for building the bias 
estimation algorithm, first the UKF and its implementation method for attitude 
estimation are given. A comparison for the dynamics-based and gyro-based 
estimation models is also included. The effects of magnetometer bias estimation on 
the attitude determination accuracy are discussed.  
 

 Chapter 5: Adaptation Methods for the UKF 
 

This chapter presents the adaptation methods for a UKF used for nanosatellite 
attitude estimation. Mainly two different problems met in practice are examined. In 
the first part, an adaptive method for tuning the process noise covariance matrix of 
the UKF is given and the AUKF algorithm is tested in various scenarios for the 
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attitude and sensor bias estimation. Both scaling and estimation techniques for the 
process noise covariance adaptation are discussed. In the second part, a Robust 
Kalman Filtering method against the measurement faults is proposed. The 
adaptation is performed following both single and multiple scale factor based 
schemes and the results are applied for the UKF in order to build a RUKF. The 
RUKF is tested for the attitude estimation of the nanosatellite and the results are 
compared with the regular UKF for various measurement faults. 
 

 Chapter 6: The Residual Magnetic Moment Estimation 
 

In this chapter a method for in-orbit estimation of time-varying RMM is presented. 
First the deteriorating effects of the sudden RMM changes on the estimation 
accuracy are examined. Then a new method for change detection and Kalman Filter 
adaptation is presented. By using this simple approach, the covariance of the 
Kalman filter is adapted to get better tracking in case of unexpected abrupt changes 
in the RMM without sacrificing the estimation accuracy. The results are applied for 
the nanosatellite attitude estimation problem. 
 

 Chapter 7: Demonstration of the Proposed Attitude Determination Scheme 
 

In this chapter, first a possible integration scheme for the estimation algorithms, 
which were discussed in the previous chapters, is proposed. As a consequence, an 
overall attitude determination algorithm for a nanosatellite carrying magnetometers, 
gyros and magnetorquers as the attitude hardware is given. Then this scheme is 
tested by demonstrations for the ADCS of the nanosatellite. The results are 
evaluated regarding the main aim of the thesis and analyzed via comparisons with 
the existing methods. 
 

 Chapter 8: Conclusion and Recommendations 
 

In this chapter the concluding remarks and recommendations for the future work 
are given. 
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2. Satellite Mathematical Model 

2.1. Coordinate Systems 

The coordinate systems used in this thesis are the satellite body frame, which matches with 
the principal axes of inertia of the satellite, orbit reference frame and inertial reference 
frame which is Earth centered. The definitions of these coordinate systems are given below. 

Earth Centered Inertial Frame: The origin of the frame is located at the centre of the Earth. 
The z axis shows the geographic North Pole while the x axis is directed toward the Vernal 
Equinox  (  - the point where the Sun crosses the celestial Equator in March on its way 

from south to north). The y axis completes the coordinate system as the cross product of z 
and x axes (Fig. 2.1a).  

Orbit Reference Frame: The origin of the frame is at the mass centre of the spacecraft. The 
z axis is in nadir direction (towards the centre of the Earth) and the y axis is tangential to 
the orbit (aligns with velocity vector of the spacecraft in case of circular orbit). The x axis 
completes to the orthogonal right hand system (Fig. 2.1b). 

Satellite Body Frame: The origin of the frame is located at the centre of mass of the 
satellite. The axes are directed towards the principal inertial axes of the spacecraft. Three 
parameters named as Euler angles set the condition of the body frame related to the orbital 
coordinate system. When the direction cosine matrix is identity matrix the satellite body 
frame matches with the orbital frame (Fig. 2.1c).  
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Figure 2.1: Coordinate systems. 

2.2. Quaternions for Attitude Representation 

The quaternion attitude representation is a technique based on the idea that a transformation 
from one coordinate frame to another may be performed by a single rotation about a vector 
e   defined with respect to the reference frame. The quaternion, denoted here by the symbol 
q , is a four element vector, the elements of which are functions of the vector e  and 

magnitude of the rotation, Φ : 

                                                            1 1 sin
2

q e


                                              (2.1) 

                                                            2 2

Φ
sin

2
q e                                               (2.2) 

                                                            3 3

Φ
sin

2
q e                                               (2.3) 
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                                                             4

Φ
cos

2
q                                                 (2.4) 

Here 1 2 3, , e e e  are the components of the vector e .  The vector which shall be transformed is 

rotated around e  with an angle of  Φ . As a result, by the use of quaternions a transfer from 
reference frame to body frame can be denoted by a single rotation around a vector defined 
in the reference frame.  

A quaternion with components 1q , 2q , 3q   and 4q  may also be expressed as a four 

parameter complex number with a real component 4q  and three imaginary components, 1q , 

2 q  and 3q  as follows: 

                                              4 1 2 3q iq jq kq   q   ,                                        (2.5) 

where , , i j k  are hyper-imaginary numbers with the characteristics of; 

                                              2 2 2 1i j k                                                  (2.6) 

                                                     ij ji k                                                    (2.7) 

                                                   jk kj i                                                    (2.8) 

                                         ki ik j                                                   (2.9) 

Also, the  redundancy of the quaternions must be noted as; 

                                 2 2 2 2
1 2 3 4 1q q q q                                           (2.10) 

2.2.1. Vector Transformation by Quaternions 

A vector quantity defined in the body axes, Br  may be expressed in the reference axes as Rr  

using the quaternions directly. First define a quaternion, q
Br , in which the complex 

components are set equal to the components of Br , and with a zero scalar component, that 

is, if: 

B ix jy kz  r                                               (2.11) 

0q
B ix jy kz   r                                           (2.12)  

This is expressed in the reference axes as q
Rr  using: 

* q q
R Br q r q                                                                         (2.13) 

where   *
4 1 2 3q iq jq kq   q  is the complex conjugate of q . 
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Hence, 
q

Rr =    4 1 2 3 4 1 2 3 0  q iq jq kq ix jy kz q iq jq kq          

       2 2 2 2
4 1 2 3 1 2 4 3 1 3 4 20 2 2q q q q x q q q q y q q q q z i          

       2 2 2 2
1 2 4 3 4 1 2 3 2 3 4 12 2q q q q x q q q q y q q q q z j         

      2 2 2 2
1 3 4 2 2 3 4 1 4 1 2 32 2q q q q x q q q q y q q q q z k                   (2.14) 

Alternatively,  q
Rr may be expressed in matrix form as follows: 

q q
R BAr r  ,                                                      (2.15) 

where 
0 0

0
A

A

 
 
 

 ,  0  q
R Br r  and 

2 2 2 2
1 2 3 4 1 2 3 4 1 3 2 4

2 2 2 2
1 2 3 4 1 2 3 4 2 3 1 4

2 2 2 2
1 3 2 4 2 3 1 4 1 2 3 4

2( ) 2( )

2( ) 2( ) .

2( ) 2( )

q q q q q q q q q q q q

A q q q q q q q q q q q q

q q q q q q q q q q q q

     
        
       

            (2.16) 

which is equivalent to writing: 

R BAr r .                                                      (2.17) 

Here A  is the same direction cosine matrix that is used for transformation from body to 
reference frame. 

2.2.2. Propagation of Quaternions by Time 

While defining the kinematic equations of motion with quaternions, time dependence of 
them must be used and that can be derived from the product relation (Wertz 1988). 

Multiplication of quaternion is performed in a way not too different from complex number 
multiplications. However the order of the process is important. By using the characteristic 
of hyper-imaginary numbers; 

   4 1 2 3 4 1 2 3 I I III I Iq iq jq kq q iq jq kq       q qq ,                        (2.18) 

 1 1 2 2 3 3 4 4 1 4 2 3 3 2 4 1( )I I I III I I I Iq q q q q q q q i q q q q q q q q        q  

                                       1 3 2 4 3 1 4 2 1 2 2 1 3 4 4 3)( ( )I I I I I I I Ij q q q q q q q q k q q q q q q q q       .   (2.19) 
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If it is written in matrix form, 

                   

14 3 2 11

23 4 1 22

32 1 4 33

41 2 3 44

I I I III

I I I III

I I I III

I I I III

qq q q qq

qq q q qq

qq q q qq

qq q q qq

     
        
    
    
          

 .                              (2.20)                

Now assume that, q and  IIq  correspond to the orientation of the body at t   and t t ,  

respectively. Also Iq  is for the representation of position at t t  in a relative way to the 

position that has been occupied at  t ,   

                                                            1 1

Φ
sin

2
Iq e


 ,                                                (2.21) 

                                                            2 2

Φ
 sin

2
Iq e


 ,                                                (2.22) 

                                                            3 3

Φ
sin

2
Iq e


 ,                                               (2.23) 

                                                             4

Φ
cos

2
Iq


 .                                                (2.24) 

When the necessary multiplication is done it is obvious that  

   

3 2 1

3 1 2

2 1 3

1 2 3

0

0

0
Φ Φ

cos si
2 2

0

n

e e e

e e e

e e e

e e e

t t I t

  
           





    

q q  .                 (2.25) 

where 1 2 3, , e e e  are the components of rotation axis unit vector and I  is the 4 4  identity 

matrix. After that by small angle approximation,                                  

   
Φ

1
2

cos


 ,                                               (2.26) 

                                  
Φ 1

2 2 BRsin t 


.                                          (2.27) 

It is possible to show that  
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                  

0

0

0

0

1
Δ

2

r q p

r p q

q
t t

p r

p q r

I t t

  
  
          





   

q q .                        (2.28) 

here  , ,p q r  are components of  BR  and they indicate angular velocity of the rigid body 

with respect to the reference frame. Hence if a skew-symmetric matrix is defined as       

                               

0

0

0

0

 Ω BR

r q p

r p q

q p r

p q r

 
 
 
 






  

 .                                   (2.29) 

equation becomes                     

                            1
ΩΔ

2
t t I t t     

 
q q .                                   (2.30) 

Finally it is known that  

                       
         1

Ω
Δ 2 BR

d t t t t
t

dt t

  
 

q q q
q .                        (2.31) 

2.2.3. Euler Angles – Quaternions Relationship  

In order to understand the physical meaning of the quaternions more easily they can be 
related with the Euler angles. The formula for obtaining quaternion vector by the use of the 
Euler angles is given as,  

1

2

3

4

sin cos cos cos sin sin
2 2 2 2 2 2

cos sin cos sin cos sin
2 2 2 2 2 2

cos cos sin sin
2 2 2 2

q

q

q

q

     

     

   

                      
           

                          
             

                  
        

sin cos
2 2

cos cos cos sin sin sin
2 2 2 2 2 2

 

     

 
 
 
 
 
 
    
    

    
                        

            

  .               (2.32) 
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Here  is the roll angle about x axis,   is the pitch angle about y axis and   is the yaw 

angle about z axis. Note that the Euler angles that we get as a result are for 3-2-1 sequence 
(Wertz 1988). 

On the other hand, the equations for finding the Euler angles using the quaternions are  

                                     2 2
4 1 2 3 1 2atan 2 2( ),1 2( )q q q q q q        ,                           (2.33) 

     4 2 3 1arcsin 2( )q q q q   ,                                   (2.34) 

                                2 2
4 3 1 2 2 3atan 2 2( ),1 2( )q q q q q q        ,                            (2.35) 

where  arcsin  is the arcsine function and  atan 2  is the arctangent function with two 

arguments, which is used to generate all the rotations (not just the rotations between / 2  
and / 2 ) and defined as, 

 

arctan 0

arctan 0, 0

arctan 0, 0atan 2( , )

0, 0
2

0, 0
2

0, 0

y
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x

y
y x

x

y
y xy x x

y x

y x

undefined y x









      
       

 
         

   


   

  

.                               (2.36) 

2.3. Equations of Motion 

2.3.1. Satellite Dynamics 

The fundamental equation of the satellite dynamics relates the time derivative of the 
angular momentum vector with the overall torque affecting the satellite (Wertz 1988), 

  BI
BI

dd
- = J

dt dt
 

L
N L

 ,                                  (2.37)    
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BI= JL   ,                                               (2.38) 

where L  is the angular momentum vector, N is the torque vector, BI is the angular 

velocity vector of the body frame with respect to the inertial frame and J is the moment of 

inertia matrix. When the vectors of L  and BI  are parallel, as the rotation is about the 

principal axis of the satellite, then the moment of inertia matrix is formed of principal 
moments of inertia as  

0 0

0 0

0 0

x

y

z

J

J J

J

 
   
  

.                                           (2.39) 

Note that, this condition is an obligation for the rotation without nutation (Wertz 1988).  

By the use of (2.37) and (2.38), the dynamic equation of the satellite can be derived:  

             1BI
BI BIJ J

dt
    N

   .                                    (2.40) 

The torque vector N can be defined as the sum of the disturbance torques and control 
torque acting on the satellites as, 

d cN = N N .                                              (2.41) 

Here cN is the control torque and for a satellite with pure magnetic controllers 

c c N M B   ,                                              (2.42) 

where cM is the magnetic dipole moment of the magnetorquers and B is the Earth’s 

magnetic field vector measured in the body frame. Furthermore, concerning the equation 

(2.41), dN  is the vector of disturbance torque affecting the satellite which can be given as a 

sum of 
              d gg ad sp md   N N N N N  .                                 (2.43) 

Here ggN  is the gravity gradient torque, adN is the aerodynamic disturbance torque, spN  is 

the solar pressure disturbance torque and  mdN  is the residual magnetic torque which is 

caused by the interaction of the satellite’s residual dipole and the Earth’s magnetic field.  
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As discussed in the introduction, for a LEO nanosatellite the main attitude disturbance 

source is mdN . Other disturbances such as the gravity gradient, sun pressure, aerodynamic 

drag have relatively less effect because of the small size of the satellite and can be 
minimized during the design process. Hence they are negligible. On the other hand to 
increase the overall ADCS performance of a satellite with magnetic sensing and actuation 

the RMM terms must be estimated. Similarly with the magnetic control torque, mdN  is 

defined as, 

 md r N M B ,                                                    (2.44) 

where, 
x y z

T

r r r rM M M   M  is the RMM vector. In this study, the RMM terms are 

modeled as constant but with unexpected abrupt changes as discussed in the introduction. 
Assuming the RMM as piecewise constant is valid in general since the high frequency 
time-varying components of the RMM are negligibly small compared to the constant 
components and magnitude of the changes caused by instantaneous variations in the 
onboard electrical current (Suehiro 2010). High frequency time-variation in the RMM 
should be suppressed in the design process of the satellite (Hosonuma et al. 2012).  Hence, 
the general model for the RMM is 

0r M ;                                                       (2.45) 

with the hypothesis that 

          

0 0 1

1 1 2( )r

orb

t t t

t t t
t

t t t 

 
  


  

M

M
M =

M

 
 .                                            (2.46) 

Here jt  are the unknown time instances that a change occurs within one orbit period orbt , 

jM  are constant RMM vectors and 1j j jM   M M are the magnitude of the changes 

in the RMM that occur at jt  for 1...j  . 

 

 



24 
 

2.3.2. Satellite Kinematics 

Kinematics equation of motion of the satellite is based on the time derivation of the 
quaternions and same as (2.31), 

1
( ) ( ( )) ( )

2 BRt t t q ω q  .                                           (2.47)     

Here q  is the quaternion vector formed of four attitude parameters,  1 2 3 4 ,
T

q q q qq  

and ( )BR  is the skew symmetric given with (2.29). 

On the other hand, in order to define the satellite kinematics using the body angular rate 

vector with respect to the inertial axis frame, BI , we need to first relate BI and BR .  

Assuming the satellite’s orbit is circular, 

 00 0 .
T

BR BI A                                              (2.48) 

Here 0  denotes the angular velocity of the orbit with respect to the inertial frame, found as 

 1/23
0 0/ r  -  is the the Earth Gravitational constant and 0r   is the distance between the 

center of mass of the Earth and satellite. A is the attitude matrix which is related to the 
quaternions by (2.16). 

Consequently, the kinematics equation of motion of the satellite can be given using the 
body angular rates with respect to the inertial frame as (Sekhavat et al. 2007) 

1 4 3 2 0 3

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 x y zq t t q t t q t t q t t q t         ,                   (2.49) 

2 3 4 1 0 4

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 x y zq t t q t t q t t q t t q t         ,                  (2.50) 

3 2 1 4 0 1

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 x y zq t t q t t q t t q t t q t          ,                  (2.51) 

4 1 2 3 0 2

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 x y zq t t q t t q t t q t t q t           .                (2.52) 
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3. Sensor Models 

In this chapter, measurement sensor models for the nanosatellite attitude estimation 
procedure are presented.  

Performing measurements with magnetometers and gyros and so having the magnetic field 
and an inertial sensor as the attitude estimation reference source have various advantages 
and drawbacks. Table 3.1 summarizes these characteristics (Wertz 1988; Bak 1999): 

Table 3.1: Characteristics of the attitude estimation reference sources. 

Reference Performance     Advantages    Disadvantages 

Magnetic Field 
(Magnetometers) 

Accuracy of 
0.5 deg- 

5 deg 
 

-Economical. 
-Low power. 
-Always available for 
LEO spacecrafts. 
 

-Poor accuracy. 
-Good only for near Earth 
satellites. 
-Limited by modeling 
accuracy. 
-Orbit and attitude are 
strongly coupled. 
-Spacecraft must be 
magnetically clean (or in 
flight calibration must be 
done). 
-Sensitive to biases.  
 

Inertial Space 
(Gyros) 

Drift rate of 
0.001deg/h -

1deg/h 

-No need for external 
sensors. 
-Orbit independent. 
-High accuracy for 
limited time intervals. 
-Easily done onboard. 
 

-Senses only  
orientation rate. 
-No absolute 
measurement. 
-Subject to drift. 
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3.1. The Magnetometer Model 

Magnetometer is a favorite sensor type for the attitude estimation especially in nanosatellite 
applications. The model for the magnetometer measurements is given by, 

 
 
 

 
 
 

1

2 1

3

,

,

,

x

y m

z

B t B t

B t A B t

B t B t


   
        
      

q

q b

q

,                                    (3.1) 

where  1B t ,  2B t and  3B t  represent the Earth magnetic field vector components in the 

orbit frame as a function of time and can be modeled as (Sekhavat et al. 2007), 

                   1 0 03
0

cos cos sin sin cos cos sin sin sine
e e

M
B t t i i t t t

r
           ,    (3.2) 

           2 3
0

cos cos sin sin cos ,e
e

M
B t i i t

r
                                     (3.3) 

                   3 0 03
0

2
sin cos sin sin cos cos 2cos sin sine

e e

M
B t t i i t t t

r
           . (3.4) 

Here, 157.943 10 .eM Wb m   is the magnetic dipole moment of the Earth; 
14 3 23.98601 10 /m s    is the Earth Gravitational constant, i is the orbit inclination, 

57.29 10 /e rad s    is the spin rate of the Earth; 11.7    is the magnetic dipole tilt; 

and 0r  is the distance between the centre of mass of the satellite and the Earth.  

Therefore,  ,xB tq ,  ,yB tq  and  ,zB tq  show the measured Earth magnetic field vector 

components in body frame as a function of time and varying quaternion vector. 

Furthermore, mb  is the magnetometer bias vector as 
x y z

T

m m m mb b b   b  and modeled as 

piecewise constant in time, 

          0m b  .                                                      (3.5) 

Lastly, concerning the equation (3.1), 1  is the zero mean Gaussian white noise with the 

characteristic of  

2
1 1 3 3

T
k j x m kjE I       .                                          (3.6) 
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3 3xI is the identity matrix with the dimension of  3 3  , m is the standard deviation of each 

magnetometer error and kj  is the Kronecker symbol. 

3.2. The Gyro Model 

Widely used model for the gyro measurements is as follows. 

2BI BI g   b  ,                                        (3.7) 

where, BI  is the measured angular rates of the satellite, gb  is the gyro bias vector as 

x y z

T

g g g gb b b   b  and 2  is the zero mean Gaussian white noise with the characteristic 

of 

 2
2 2 3 3

T
k j x kjE I        .                                      (3.8) 

Here,  is the standard deviation of each gyro random error. Nevertheless, characteristic of 

gyro bias is given as,  

3g b  ,                                                  (3.9) 

where 3 is also the zero mean Gaussian white noise with the characteristic of 

2
3 3 3 3

T
k j x u kjE I       .                                      (3.10) 

Here, u  is the standard deviation of gyro biases. 
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4. Sensor Bias Estimation 

As aforementioned magnetometers are not accurate sensors because of the factors such as 
the disturbance fields caused by the spacecraft electronics, modeling errors in the Earth’s 
geomagnetic field and the external disturbances such as ionospheric currents. For 
increasing attitude determination performance an accurate in-orbit calibration of the 
magnetometers is necessary as the preliminary step. This chapter investigates the UKF 
based magnetometer bias estimation procedure. 

4.1. Unscented Kalman Filter for Attitude Estimation 

Kalman filter plays an important role in the attitude estimation procedure of the spacecrafts. 
Regarding  the  obstacles  met during the development process of the attitude estimation 
systems, various types of KFs have been developed. One of these difficulties is the inherent 
nonlinear dynamics and kinematics of the satellites similarly to the many real world 
systems. The EKF was proposed so as to overcome this problem and since then it has been 
used instead of the linear KF for estimating the attitude of the satellite (Markley et al. 
2005). 

Even though still being a popular method as a spacecraft attitude estimator, the EKF has 
some disadvantages, especially in case of high nonlinearity, which appears to be a common 
problem in the attitude determination applications. Generally this is caused by the 
mandatory linearization phase of the EKF procedure and so the Jacobians derived with that 
purpose.  For most of the applications, generation of the Jacobians is difficult, time 
consuming and prone to human errors (Julier et al. 1995). Nonetheless, the linearization 
brings about an unstable filter performance when the time step intervals for the update are 
not sufficiently small and as a result the filter diverges (Julier et al 2000). Per contra, small 
time step intervals increase the computational burden because of the larger number of 
Jacobian calculations. These facts show that the EKF may be efficient only if the system is 
almost linear on the timescale of update intervals.  

The UKF algorithm is a considerably new filtering method which has many advantages 
over the well known EKF. The essence of the UKF is the fact that; the approximation of a 
nonlinear distribution is easier than the approximation of a nonlinear function or 
transformation (Julier et al 2000). The UKF introduces sigma points to catch higher order 
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statistic of the system and avoid the linearization step of the EKF. As a result it satisfies 
both better estimation accuracy and convergence characteristic (Soken and Hajiyev 2012). 
Moreover, the UKF is more robust against the initial attitude estimation errors than the 
EKF (Crassidis and Markley 2003). 

4.1.1. The Unscented Kalman Filter 

In order to utilize the Kalman filter for nonlinear systems without any linearization step, the 
unscented transformation, and so the UKF is one of the techniques. The UKF uses the 
unscented transform, a deterministic sampling technique, to determine a minimal set of 
sample points (or sigma points) from the a priori mean and covariance of the states. Then, 
these sigma points go through nonlinear transformation. The posterior mean and the 
covariance are obtained from these transformed sigma points (Julier et al. 1995; Crassidis 
and Markley 2003).  

The UKF is derived for discrete-time nonlinear equations, so the system model is given by; 

1 ( , )k k kf k  x x w ,                                            (4.1) 

( , )k k kh k y x v .                                              (4.2) 

Here kx is the state vector and ky  is the measurement vector. Moreover kw  and kv are the 

process and measurement error noises, which are assumed to be Gaussian white noise 

processes with the covariances of   Q k
 
and  R k respectively. 

The UKF procedure begins with the determination of 2 1n  sigma points with a mean of 

 x̂ k k  and a covariance of  P k k . For an n dimensional state vector, these sigma points 

are obtained by  

     0 ˆk k k kx x  ,                                    (4.3)  

        ˆ
l

l
k k k k n P k k  x x             1l n  .                      (4.4) 

           ˆ
l n

l
k k k k n P k k   x x             1l n  .                     (4.5) 
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where,  0 k kx ,  l k kx and  l n k kx  are sigma points, n  is the state number, and  is 

the scaling parameter which is used for fine tuning.     
l

n P k k  corresponds to the 

thl  column of the indicated matrix.  

The next step of the UKF procedure is evaluating the transformed set of sigma points for 
each of the points by,   

   1 ,l lk k f k k k    x x           0 2l n  .                      (4.6)   

Thereafter, these transformed values are utilized for gaining the predicted mean and 
covariance (Crassidis and Markley 2003; Soken and Hajiyev 2012). 

     
2

0
1

1 1
ˆ 1 1 1

2

n

l
l

k k k k k k
n


 

 
       

x x x ,                        (4.7) 

          0 0

1
ˆ ˆ1 1 1 1 1

T
P k k k k k k k k k k

n



             

x x x x  

         
2

1

1
ˆ ˆ1 1 1 1

2

n T

l l
l

k k k k k k k k Q k


              
 x x x x .    (4.8) 

Here,  ˆ 1k kx is the predicted mean and  1P k k is the predicted covariance. Note that 

the process noise covariance,  Q k , might be added to the filtering process before and/or 

after the propagation. We preferred to include after the propagation as given with (4.8). 

Otherwise it would be added to  P k k in (4.4) and (4.5). Furthermore, the predicted 

observation vector is,  

     
2

0
1

1 1
ˆ 1 1 1

2

n

l
l

k k k k k k
n


 

 
       

y y y ,                        (4.9) 

where, 

      1 1 ,l lk k h k k k    y x        0 2l n  .                         (4.10) 

After that, the observation covariance matrix is determined as, 

          0 0

1
ˆ ˆ1 1 1 1 1

T

yyP k k k k k k k k k k
n




             
y y y y  

       
2

1

1
ˆ ˆ1 1 1 1

2

n T

l l
l

k k k k k k k k


              
 y y y y ,      (4.11) 
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where the innovation covariance is 

        1 1 1vv yyP k k P k k R k     .                              (4.12) 

Here  1R k  is the measurement noise covariance matrix. Conversely, the cross 

correlation matrix can be obtained as, 

          0 0

1
ˆ ˆ1 1 1 1 1

T

xyP k k k k k k k k k k
n




             
x x y y  

       
2

1

1
ˆ ˆ1 1 1 1

2

n T

l l
l

k k k k k k k k


              
 x x y y  .         (4.13) 

The following part is the update phase of the UKF algorithm. In that phase, first by using 

the measurements,  1y k  , an innovation sequence is found as  

         ˆ1 1 1 ,k k k k    e y y                              (4.14) 

and then the Kalman gain is computed by, 

       11 1 1 .xy vvK k P k k P k k                                   (4.15) 

Finally, the updated states and covariance matrix are determined, 

       ˆ ˆ1 1 1 1 1 ,k k k k K k k      x x e                        (4.16) 

          1 1 1 1 1 1 .T
vvP k k P k k K k P k k K k                    (4.17) 

Here,  ˆ 1 1k k x is the estimated state vector and  1 1P k k  is the estimated 

covariance matrix. 

4.1.2. The UKF with Attitude Error Representation 

In case of quaternion utilization for the kinematic modeling of the satellite’s motion, the 
UKF in standard format cannot be implemented straightforwardly. The reason of such 

drawback is the constraint of quaternion unity given by 1T q q . If the kinematics equations 

(2.49-2.52) are used in the filter directly, than there is no guarantee that the predicted 
quaternion mean will satisfy this constraint since the prediction is performed using the 
averaged sum of the quaternions (4.7). 
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One of the methods to solve this issue is to enforce quaternion unity constraint as a dummy 
measurement into the measurement output (Sekhavat et al. 2007). Basic of the method is to 
augment the measurement output with the known algebraic constraint, 

( , ) 0x t                                                         (4.18) 

for a nonlinear system given as 

( , )x f x t ,                                                       (4.19) 

( , )y h x t .                                                       (4.20) 

Hence, the augmented measurement output becomes  

( , )

( , )A

h x t
y

x t
 

  
 

.                                                       (4.21) 

However when we use this method for the bias estimation, it does not work well for large 
bias updates. 

On the other hand, another documented method to overcome the quaternion unity problem 
is to use an unconstrained three component vector in order to represent an attitude-error 
quaternion instead of using all four components of the quaternion vector. The details of this 
method can be found in (Crassidis and Markley 2003). In this section the method is 
summarized briefly and it is described how this method is used for the attitude and sensor 
bias estimation. 

First let us define the basics. We may rewrite the quaternion vector by 4

TT q   q g , so 

 1 2 3

T
= q q qg . Then for ( ) q matrix shown as; 

 4 3 3( ) =
T

q I   
   

g
q

g
,                                       (4.22)    

the quaternion multiplication can be denoted with 

   ( )   q q q q q  .                                    (4.23) 

Here  g is the cross product matrix as, 
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 
3 2

3 1

2 1

0

0

0

g g

g g

g g

 
    
  

g .                                       (4.24) 

The second step is to represent the local error-quaternion that will be used in the UKF 

formulations. If we denote the local-error quaternion as 4

TT q     q g  then it is 

possible to represent it by using a vector of generalized Rodrigues parameters: 

 4/ ( )f a q   p g .                                       (4.25) 

Here a is a parameter from 0 to1 and f is the scale factor. When 0a   and 1f   then (4.25) 

gives the Gibbs vector and when 1a   and 1f   then (4.25) gives the standard vector of 

modified Rodrigues parameters. In (Crassidis and Markley 2003) - as well in this paper -   f  
is chosen as 2( 1)f a  . The inverse transformation from  p to  q is given by 

2 22 2

4 22

(1 )a f f a
q

f

 




   




p p

p
,                           (4.26) 

1
4( )f a q   g p .                                     (4.27) 

Now we can introduce the procedure for the UKF with attitude error representation. First 
let us define the following state vector: 

   0

ˆ ( )
ˆ

ˆ( )

k k
k k k k

k k

 
   

  

p
x x


.                                       (4.28) 

ˆ ( )k k p is the three-dimensional attitude representation and comes from (4.25). Besides 

ˆ( )k k is bias part of the state vector consists of the gyro and magnetometer biases. Hence 

the vector for the sigma points can be partitioned into two parts: 

   
 

p
l

l

l

k k
k k

k k





 
  
  

x
x

x
                 0 2l n  .                            (4.29) 

where  p
l k kx is the attitude error part and  l k kx is the bias part which may be also 

shown in two parts for gyro biases,  g
l k kx , and magnetometer biases,  m

l k kx , as 
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     
TT Tg m

l l lk k k k k k   
 

x x x . The sigma points in (4.29) can be called as error 

sigma points which correspond to the sigma points calculated for error quaternions. We 
need to calculate the full sigma points that correspond to the full state with four quaternion 
terms and 6 bias terms in order to propagate the model. Therefore, 

0ˆ ˆ( ) ( )k k k kq q ,                                              (4.30) 

ˆ ˆ ˆ( ) ( ) ( )k k k k k k l lq q q
              

1 2l n  .                          (4.31) 

where 4
ˆ ˆ ˆ( ) ( ) ( )

l

TT
l lk k k k q k k     q g is represented by (4.26-4.27): 

    
   

 

2 22 2

4 22

(1 )
ˆ ( )

l

p p
l l

p
l

a k k f f a k k
q k k

f k k

 




   




x x

x
    1 2l n  .         (4.32) 

 1
4

ˆ ˆ( ) ( )
l

p
l lk k f a q k k k k     g x            1 2l n  .                 (4.33) 

(4.30) requires that  0
p k kx be zero and this is due to the reset of the attitude error to zero 

after each estimation step. 

Next, the quaternions are propagated using the kinematic model (2.49-2.52) so we have 

ˆ ( 1 )l k kq  as the propagated quaternions for 0 2 .l n   Note that the angular velocity 

terms used in (2.49-2.52)  are the angular velocities estimated at the previous step as: 

   ˆ
l

g
BI BI lk k k k  x                   0 2 .l n                            (4.34) 

As a result, now we have the propagated full sigma points. The propagated error sigma 
points must be calculated to continue the filtering process. So as to do that, we use the 
representation in (4.25); 

 0 1p k k   0x                                              (4.35) 

   
 4

ˆ 1
1

ˆ 1
l

lp
l

k k
k k f

a q k k
 




 
 

g
x          1 2l n                            (4.36) 

where  
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4ˆ ˆ( 1 ) ( 1 )
l

TT
l k k q k k     g

 
1

0
ˆ ˆ ˆ( 1 ) ( 1 ) ( 1 )l lk k k k k k


       q q q       0 18.l  

      
   (4.37) 

Note that 0ˆ ( 1 )k k q is the identity quaternion. Moreover we get the propagated sigma 

points for biases  1l k k x , by (3.5) for the magnetometer biases and (3.9) for the gyro 

biases. Now using the propagated error sigma points  1l k kx , it is possible to calculate 

the predicted mean and covariance (4.7, 4.8). 

Next step is to calculate the predicted observation vector by using the propagated full sigma 
points (4.9, 4.10). Then the observation covariance, innovation covariance and cross 
correlation matrices can be computed using (4.11-4.13). After calculating the innovation 
series and the Kalman gain (4.14, 4.15), the state vector and the covariance can be updated 

by the use of (4.16, 4.17) with   ˆˆ ˆ1 1 ( 1 1) ( 1 1)
T

T Tk k k k k k        x p  as the 

result for the state update.  

Now we have the updated state vector for error quaternions and we need to update the full 
quaternion vector by 

0ˆ ˆ ˆ( 1 1) ( 1 1) ( 1 ),k k k k k k      q q q
                                   

(4.38) 

where 4
ˆ ˆ ˆ( 1 1) ( 1 1) ( 1 1)

TTk k k k q k k          q g is represented by (4.26, 4.27): 

    

2 22 2

4 22

ˆ ˆ( 1 1) (1 ) ( 1 1)
ˆ ( 1 1)

ˆ ( 1 1)

a k k f f a k k
q k k

f k k

 




       
  

  

p p

p
,     (4.39) 

1
4

ˆ ˆˆ( 1 1) ( 1 1) ( 1 1)k k f a q k k k k            g p .               (4.40) 

4.2. Dynamics-Based and Gyro-Based Models 

The algorithm that is given in the previous section is for the case that we use a gyro-based 
model for the UKF (or a reduced-order filter). In other words, we only need the kinematics 
knowledge of the process in order to propagate the states and the dynamics given with 
(2.40) is not necessary. That has certain advantages such as (Fosbury 2011): 
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- Since the quaternion propagation can be performed using a discrete matrix and a 
closed-from solution to the state transition matrix has been developed for use in 
state-error propagation, the computational load for this method is low. 

- There is no need to know the moments of inertia of the satellite accurately. 
- It is not necessary to build a realistic model for the disturbance torques such as 

gravity-gradient, sun pressure etc.  

On the other hand, in this method we do not use the gyro output as measurements but 
instead use them when updating the angular velocity information by the estimated gyro 
biases as given with (4.34). If we had known the dynamics perfectly then including the 
gyro outputs in the measurement vector would provide better estimation accuracy. In this 

case the body angular rate vector, BI , would be also included in the state vector and 

estimated throughout the filtering procedure by using the full-order UKF. For the scenario, 
where in-orbit calibration for the gyros and magnetometers is performed, that would 
increase the computational load of the UKF. Hence it is more advantageous to use a gyro-
based model rather than the dynamics-based model when the gyro and magnetometer biases 
are estimated and specifically if the uncertainty in the dynamics caused by inaccurate 
moment of inertia or torque information is high.   

4.3. In-Orbit Gyro and Magnetometer Bias Estimation 

4.3.1. Gyro and Magnetometer Bias Estimation via the UKF 

In this section we present the results of the given method for in-orbit gyro and 
magnetometer bias estimation. The UKF based estimation algorithm presented in the 
previous sections of this chapter is used.  

The state vector is composed by the attitude quaternions, gyro biases and magnetometer 
biases as, 

TT T T
g m  x = q b b   .                                          (4.41) 

Besides, we use the output of three axis magnetometer as the measurements, 

T

x y zH H H  y =   .                                      (4.42) 

The simulations are realized for 20000 seconds with a sampling time of 10sec.t     
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Nonetheless the orbit of the satellite is assumed as circular. The inclination for the 

satellite’s orbit is 31i    and the distance between the centre of the masses of the Earth and 

satellite is 0 7450r km . 

For the magnetometer measurements, the sensor noise is characterized by zero mean 

Gaussian white noise with a standard deviation of 300m nT    and the constant 

magnetometer bias terms are accepted as   40.14 0.019 0.37 10 .
T

mb nT    

Moreover, the gyro random error is taken as 31 10 [deg/ ]h
  , whereas the standard 

deviation of the gyro biases is 3 32 10 [deg/ ].u h    

As the filter parameters,  is selected as 2    where 2( 1)f a  and 1a  . Initial 

attitude errors for the filter are set to 30, 25 and 25 deg for pitch, yaw and roll axes 
respectively. The initial estimation values for the gyro and magnetometer biases are taken 
as 0. Besides, the initial value of the covariance matrix is 

7 7 7 3 3 3
0 0.5 0.5 0.5 10 10 10 10 10 10P diag          where  diag   refers to 

diagonal matrix.  

Last but not least, the value of the process noise covariance matrix for the UKF is set to, 

   
   

 

3 3 3 3 3 3

3 3 3 3 3 3

3 3 3 3 3 3

1 5 1 15 0

1 15 1 12 0

0 0 1 15

E I E I

Q E I E I

E I

  

  

  

   
     
  

 .                      (4.43) 

The necessity for in-orbit real time magnetometer calibration is already discussed. Yet in 
order to show the effects of magnetometer bias estimation on the nanosatellite attitude 
determination accuracy, same simulation scenario is repeated with a filter which does not 
estimate the magnetometer biases. Apparently, in this case the state vector is, 

TT T
g  x = q b .                                                   (4.44) 

For this second UKF the scaling parameter is selected as 1  . The initial value of the 

covariance matrix is taken as 5 5 5
0 0.5 0.5 0.5 10 10 10P diag         while the 

initial attitude and gyro bias errors are same as the first filter. The process noise covariance 
matrix is tuned as  
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  3 3 3 3

3 3 3 3

1 10 (1 18)

(1 18) (1 15)

E I E I
Q

E I E I
 

 

    
     

 .                                (4.45) 

4.3.2. Simulation Results 

At first we test the given in-orbit attitude and sensor bias estimation algorithm. In Fig.4.1 
the attitude estimation error for the pitch angle is given. Obviously the attitude can be 
accurately estimated using the presented algorithm and the attitude estimation error settles 
to an error less than 1deg . Results for the roll and yaw angle estimations are similar. 

 

Figure 4.1: Pitch angle estimation error of the UKF used for attitude, gyro and 
magnetometer bias estimation. 

The results for the gyro and magnetometer bias estimation prove that the filter is working 
properly   for  sensor   calibration    (Fig.4.2 and  Fig.4.3).  However   the  accuracy  of   the  
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Figure 4.2: Estimation of the bias for the gyro aligned in the x axis by the UKF used for 
attitude, gyro and magnetometer bias estimation. 

 

Figure 4.3: Estimation of the bias for the magnetometer aligned in the x axis by the UKF 
used for attitude, gyro and magnetometer bias estimation. 
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estimation for both of the parameters is not so high. This issue is related to the difficult 
tuning procedure of the UKF and will be extensively discussed in the next chapter, where 
an AUKF algorithm is proposed to solve the problem.  

On the other hand, as expected, estimating the magnetometer biases for the case that bias 
exists in the measurements significantly increases the attitude estimation accuracy. In Fig. 
4.4 the attitude estimation results for the UKFs with and without bias estimation are 
compared. As seen the UKF, which disregards the magnetometer biases and does not 
estimate them, provides relatively worse attitude estimation accuracy. Moreover the gyro 
bias estimation results via the UKF without magnetometer bias estimation are alike in the 
sense of accuracy (Fig. 4.5).  

As a consequence, these results underline the importance of in-orbit magnetometer bias 
estimation for the nanosatellites. If we want to increase the attitude estimation accuracy for 
a nanosatellite carrying magnetometers and gyros as the attitude sensors, in-orbit 
calibration of the magnetometers is a requirement.    

 

Figure 4.4: Pitch angle estimation error of the UKFs with and without magnetometer bias 
estimation when magnetometer bias exists in the measurements: UKFwb is the filter that 

estimates the magnetometer biases and UKFwob is the filter that disregards them.  
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Figure 4.5: Estimation of the bias for the gyro aligned in the y axis by the UKF without 
magnetometer bias estimation when magnetometer bias exists in the measurements. 
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5. Adaptation Methods for the UKF 

In this chapter we examine two different adaptation methods for the UKF: adaptation 
against process noise uncertainties and adaptation against the measurement faults.  

The main motivation behind the adaptation against the process noise uncertainties is to find 
a proper tuning method for the process noise covariance of the UKF algorithm which is 
used for the attitude estimation and in-flight sensor calibration. As stated in the previous 
chapter while presenting the results for the gyro and magnetometer bias estimation, if the 
UKF is not tuned properly than it is not possible to increase the accuracy of the estimations. 
The trial and error method is always a candidate for finding the good process noise 
covariance matrix that makes estimation results more precise but especially for high-
dimensional states this is a time-consuming and difficult process. Hence, we propose an 
AUKF method which tunes the process noise covariance dynamically throughout the 
estimations and ensures that we find the process noise covariance terms near optimality. In 
order to achieve that we first compare the estimation of the AUKF algorithm with the UKF 
that works with the analytically approximated process noise covariance for the case that 
such approximation is possible.  

Nevertheless, for nanosatellites the interaction between the subsystems and the risk of 
being affected from the external disturbances are high because of the compact size of the 
spacecraft. That increases the possibility of giving faulty measurements for the 
magnetometers. Such faulty measurements affect the stability and accuracy of the estimator 
even when they last for few samples. The proposed RUKF algorithm is a favorable method 
to avoid such failures. 

5.1. Adaptation against Process Noise Uncertainties 

Similarly with all Kalman filtering applications, determining the process noise covariance 
matrix of the UKF is a challenging process especially for estimation problems with a high-
dimensional state vector where states like sensor biases or system parameters are included. 
If the a priori statistics selected as a constant do not match with the real values, then the 
filter characteristics such as the accuracy or convergence speed may be affected and even a 
serious mismatch may cause the filter to fail in practice (Dunik et al. 2009). The designer 
has always chance to tune the process noise covariance by trial-error method but this is a 
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time consuming process and obtaining the optimal values is not guaranteed.  

When the UKF is used for estimating only the attitude and gyro biases as a reduced-order 
filter then there is an analytical approximation for the process noise covariance matrix 
which holds true (Crassidis and Markley 2003). On the other hand, our aim is to find a 
proper tuning algorithm when we use the UKF also for magnetometer bias estimation. A 
general approach suggests that when we estimate the magnetometer biases, the bias terms 
can be treated and propagated as a constant in time as presented previously. Then the 
process noise covariance matrix must be also built regarding this fact. In this case, the 
analytical approximation for the process noise covariance matrix suggests that the elements 
of the matrix that corresponds to the magnetometer bias states should be taken as zero. 
Since the estimated state is constant in time this approximation is true in theory as it is 
shown for the estimation of the gyro scale factors in literature (Fosbury 2011). However, in 
practice, mainly because of the computational errors and assumptions/approximations for 
the models built for the filter, this method fails and the UKF cannot provide accurate 
estimates and usually diverges in time. 
 
In this section we propose two AUKF algorithms for tuning the process noise covariance 
matrix of the UKF. The first one uses a single scale factor to perform the tuning. The 
second one directly estimates the process noise covariance matrix.  

5.1.1. Process Noise Covariance Scaling 

This section presents the novel residual based adaptation scheme for the UKF. As 
mentioned the UKF works well as long as the a priori selected constant terms for the 
process noise covariance matrix, Q(k) , match with the real values. However this is usually 

not a very easy process especially in practice and a challenging tuning procedure should be 
followed to get the best estimation characteristics for all of the parameters.         

The method proposed in this section is based on a residual based adaptation scheme that is 
applied on the process noise covariance matrix as a correction. First, let us rewrite (4.8) as; 

    *1 1 ( )P k k P k k Q k    .                                    (5.1) 

So  * 1P k k  is the predicted covariance without the additive process noise covariance. In 

order to adapt the covariance an adaptive factor is put into the procedure; 

   *1 1 ( ) ( )P k k P k k k Q k     .                                (5.2)
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where ( )k is the adaptive factor calculated based on the residual for the state vector 

estimation. The residual,   1k e , and its covariance matrix,  1eP k  , may be defined as 

(Mohamed and Schwarz 1999); 

     ˆ1 1 1 1 ,k k k k     e y y                                      (5.3) 

           1 1 ( 1 1) 1 1 ( 1 1)T
eP k R k H k k P k k H k k                     

(5.4) 

Here, ( 1 1)H k k   is the measurement matrix and  ˆ 1 1k k y  is the estimated 

observation vector; the derivation procedure of them will be discussed shortly. 

Now let us define the real residual error of the filter as    1 1
T

tr k k   e e   and the 

theoretical error obtained as a result of a priori information as 

   1 ( 1 1) 1 1 ( 1 1)Ttr R k H k k P k k H k k          .   Here  tr  is the trace of the 

related matrix. When the a priori selected ( )Q k matrix matches with the real value then the 

difference between these two error terms shall not be high and in general case the real error 
should not exceed the theoretical one. Hence in order to calculate the adaptive factor we 
can use the equality condition for these two terms: 

   1 1
T

tr k k    e e   .                 

   1 ( 1 1) 1 1 ( 1 1)Ttr R k tr H k k P k k H k k                 (5.5) 

If we replace  1 1P k k  with its definition from (4.17), then; 

     1 1 1
T

tr k k tr R k       e e     

        ( 1 1) 1 1 1 1 ( 1 1)
T T

vvtr H k k P k k K k P k k K k H k k                     (5.6) 

After that we shall put (5.2) into (5.6) and; 

       *1 1 1 ( 1 1) 1 ( 1 1)
T Ttr k k tr R k tr H k k P k k H k k                 e e                

( ) ( 1 1) ( ) ( 1 1)Tk tr H k k Q k H k k         

     ( 1 1) 1 1 1 ( 1 1)
T T

vvtr H k k K k P k k K k H k k                  (5.7) 
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Finally if the knowledge of         1 1 1 1
T T

tr k k k k      e e e e    is taken into 

consideration then the adaptive factor can be found as (note that discretization indices are 
not written for the sake of readability), 

  * T T T T
vv

T

tr R tr HP H tr HKP K H

tr HQH

         
  

e e 
                           (5.8) 

Hence by following a simple procedure, where the process noise covariance matrix is 
multiplied with the adaptive factor, it is possible to adapt the UKF to get better estimation 
accuracy and convergence characteristics. We call this algorithm as the AUKF with 
covariance scaling. 

Now we describe how to calculate the measurement matrix, ( 1 1)H k k  , and the 

estimated observation vector,  ˆ 1 1k k y . A well known way is to follow a similar 

procedure with the EKF and compute the Jacobian matrix constituted of partial derivatives. 
However if we regard that the filter will be run adaptively for the whole process that brings 
about a high computational burden and also it may be considered as against the Jacobian 
free nature of the UKF. A Jacobian free and simpler method is proposed in this section. 

From the UKF theory we know that the cross correlation matrix for the innovation 
sequence (4.13) can be also written by (Julier et al. 1996), 

                    T
xyP k +1 k = P k +1 k H(k +1 k ) .                                 (5.9) 

Here ( 1 )H k k is also the measurement matrix but formed of predicted states, not the 

estimated states, since the innovation sequence is the point at issue. Nonetheless, if an 
analogical method is followed for the residual sequence, the measurement matrix formed of 

estimated states, ( 1 1)H k k  , can be computed by 

    1
( 1 1) 1 1 1 1

T

xyH k k P k k P k k


                                 (5.10) 

where  1 1xyP k k   is the cross correlation matrix for the residual sequence. In order to 

calculate this matrix and also the estimated observation vector (  ˆ 1 1k k y ) we must 

repeat the sigma point calculation procedure with the estimated states, up to the propagation 
(4.28-4.33). Therefore, we now have sigma points for the estimated states, as well as the 
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sigma points for the full quaternion vector ˆ ( 1 1)lq k k    (note that they will be also used 

for the next estimation step, so basically this is not an extra calculation): 

   
 

1 1
1 1

1 1

p
l

l

l

k k
k k

k k





  
    

   

x
x

x
                 0 2l n  .            (5.11) 

   
ˆ ( 1 1)

1 1
1 1

lf
l

l

q k k
k k

x k k

  
       

x                  0 2l n  .           (5.12) 

 1 1l k k x is the sigma points vector for error states and  1 1f
l k k x is the sigma 

points vector for full states. Next we calculate the estimated observation vector by using the 
non-propagated full sigma points:  

   1 1 1 1 , ,f
l lk k h k k k      y x           0 18l    .                (5.13)

 

     
2

0
1

1 1
ˆ 1 1 1 1 1 1 .

2

n

l
l

k k k k k k
n


 

           
y y y            (5.14) 

Finally, the cross correlation matrix for the residual sequence can be obtained as, 

 1 1xyP k k            

       
2

1

1 1
ˆ ˆ1 1 1 1 1 1 1 1

2

n T

l l
l

k k k k k k k k
n  

                  
 x x y y      (5.15) 

Figure 5.1 presents the overall estimation scheme for the AUKF with process noise 
covariance scaling. 

5.1.2. Simulation Results for Process Noise Covariance Scaling 

The simulations for investigating the attitude estimation and sensor calibration performance 
of the UKF are performed. The scenario and the simulation parameters are same as it is 
presented in Section 4.3. As the only difference we run the simulations for a shorter time, 
which is 4000sec. 

Fig. 5.2 gives the norm of the attitude estimation errors (NAEE) for the Euler angles, which 
is formed by taking the norm of the difference between the true attitude and estimated 

attitude as    
22 2ˆˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )NAEE k k k k k k k              .               



48 
 

 

Figure 5.1: The overall estimation scheme for the AUKF with process noise covariance 
scaling. 
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The same simulation is repeated with the regular UKF in order to compare the results. As 
seen, the estimations by both of the filters converge to the actual value. However the AUKF 
overcomes the conventional UKF algorithm in the sense of accuracy and the convergence 
speed. The norm of the attitude error for the AUKF converges to a value below 1 deg at 
about 700th second. On the contrary, it takes 1700 seconds for the conventional UKF to 
converge to the same value. Moreover, further investigations show that through the end of 
the simulation, the attitude error for the AUKF settles to a value at about 0.005deg while 
the error for the UKF remains at about 0.02deg.  

 

Figure 5.2: Norm of the attitude estimation errors for the conventional UKF (dashed line)                           
and the AUKF with covariance scaling (solid line) in case of attitude, gyro bias and 

magnetometer bias estimation. 

Therefore the proposed AUKF with process noise scaling gives reasonable results for the 
attitude estimation and in-orbit gyro and magnetometer calibration scenario. Nevertheless, 
our further investigations showed that this method has an unstability issue. The initial 
process noise covariance matrix, which is used for initializing the algorithm, should be 
selected carefully; otherwise there is a risk for the filter not to converge to the actual values. 
Besides since the analytical approximation for the process noise covariance matrix makes 
the filter give almost optimal estimation results, we desire the process noise covariance of 
the AUKF to converge to the similar values when such approximation is possible (such as 
the case that we estimate only attitude and gyro biases). However when the AUKF with 
process noise covariance scaling is used for just the attitude and gyro bias estimation the 
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converged values for the process noise terms are not similar with the values found by the 
analytical approximation and what is more important the AUKF gives worse estimation 
results than the regular UKF with the analytically approximated Q. So the algorithm is 
working well for a scenario that we estimate attitude, gyro bias and magnetometer biases 
but it cannot be generalized for all the cases. The main reason of this issue is scaling the 
covariance matrix using only single factor.  

Suppose that for getting accurate estimation results the process noise covariance should be 
tuned such that the ratio of /q gbQ Q  is a certain constant like /q gbQ Q C , where qQ and 

gbQ  are the process noise covariance values for the attitude and gyro bias parameters, 

respectively and C is a constant. If these two values are initially tuned and the AUKF is 

started with a different ratio ( /q gbQ Q C ) then it is not possible to change that and scale 

qQ and gbQ  at different levels by using just a single scaling factor. Hence the performance 

of the AUKF still depends on mostly the initial tuning for the process noise covariance 
matrix. 

As a consequence, an algorithm which directly estimates the process noise covariance 
terms rather than scaling by a single factor might be more feasible for increasing the 
estimation accuracy and easing the filter tuning procedure. Such algorithm will be 
presented in the next sections of this chapter.  

5.1.3. Process Noise Covariance Estimation 

A. Process Noise Covariance Estimation for the UKF 

Adaptive estimation of the process noise covariance for the UKF is performed on the basis 
of a maximum likelihood estimator, which is well discussed in (Maybeck 1982; Mohamed 
and Schwarz 1999; Lee and Alfriend 2004) for different problems such as integrated 
navigation, orbit estimation etc. On the other hand, as discussed in these studies, the 
method must be modified (like diagonalization of the process noise covariance matrix) in 
accordance with the type of the problem.  

The adaptive Kalman filtering problem deals with satisfying the necessary condition for the 
following equation (Maybeck 1982),  

   
0

1
1 1 1( ) ( )
( ) 1 ( ) ( ) 1 0

( 1) ( 1)

k
Te e

e e e
j j

C j C j
tr C j k C j C j k

k k 


  



   
          

 e e  ,       (5.16) 
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where ( 1)k  is the adaptive parameters, ( )tr   is the trace operator, 0j   is 0 2j k MV  

for a MV size of moving window,  1k e  is the innovation sequence and eC  is the 

innovation covariance which may be written for the UKF as 

 ( 1) ( 1) 1e yyC k R k P k k      .                                 (5.17) 

Here  1R k   and  1yyP k k are the measurement noise and observation covariance 

matrices, respectively.  Nonetheless the basic equation used for the process noise 
covariance adaptation is given as 

     
0

1
1 1 1( ) ( ) ( ) 1 1 ( ) ( ) 0

k
T T

e e e
j j

tr H j C j C j k k C j H j


  



      e e  .           (5.18) 

( 1 )H k k  is the measurement matrix and     1
( 1 ) 1 1

T

xyH k k P k k P k k


     for the 

UKF, where  1xyP k k  is the cross correlation matrix and   1P k k  is the predicted 

covariance matrix. We need to show (5.18) holds true for the UKF and it can be derived 
from (5.16) using the UKF equations. First let us rewrite the (5.17) in the light of 
formulations from  (Julier et al. 1996), 

    1( 1) ( 1) 1 ( 1 ) 1T
e xy xyC k R k P k k P k k P k k         .                  (5.19) 

Then the derivative of the innovation covariance with respect to the adaptive factors 
becomes 

 
   1 1( 1) ( 1) ( 1)

1 ( 1 ) ( 1 ) 1
( 1) ( 1) ( 1)

Te
xy xy

C k R k Q k
P k k P k k P k k P k k

k k k  
      

     
     

.    (5.20) 

Here, while taking the derivative, we assume that  1xyP k k and  1P k k  are not a 

function of ( 1)k  , where  1P k k  is the propagated covariance without the additive 

noise as    1 1 ( 1)P k k P k k Q k     . Then regarding the equality of 

   1 1 ( 1 )T
xyP k k P k k H k k    ,                                    (5.21) 

(5.20) can be rewritten as 
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( 1) ( 1) ( 1)
( 1 ) ( 1 )

( 1) ( 1) ( 1)
TeC k R k Q k

H k k H k k
k k k  

     
   

     
   .                (5.22) 

If we replace (5.22) in (5.16) we get, 

   
0

1
1 1 1 ( ) ( 1)
( ) ( ) 1 1 ( ) ( ) ( ) 0

( 1) ( 1)

k
T T

e e e
j j

R j Q j
tr C j C j k k C j H j H j

k k 


  



                    
 e e .       (5.23) 

Finally if we consider that the measurement noise covariance R  is completely known and 

independent of  and take i iiQ  , then the (5.23) reduces to the same equation as (5.18). 

After that, next step is to use this basic equation (5.18) in order to find out a definition for 
the covariance matrix of the system noise. This procedure is same as it is presented in 
(Maybeck 1982; Mohamed and Schwarz 1999) and not repeated here for the brevity. 

Consequently, the estimation of the  Q k can be written as, 

     ( 1) ( 1) 1 1 1TQ k k P k k P k k Q k           x x ,                (5.24) 

where  Q k is the current process noise covariance and ( 1)k x is the state residual 

defined as the difference between the estimated and predicted state as 

   ˆ ˆ( 1) 1 1 - 1k k k k k     x x x   .                                  (5.25) 

Furthermore, as known, the attitude estimator is sensitive against any kind of variations in 
the process noise covariance matrix. Therefore directly forcing the estimated process noise 
covariance matrix into the estimator at the next step may cause stability issues especially if 
the initial process noise covariance matrix is not appropriately selected. One possible 

method is to consider the Q within a low pass filter such as  

      1 (1 )Q k Q Q k     .                                        (5.26) 

Here   is the scale factor which may be determined by the trial-error method.   This idea 

has other examples in the literature (Lee and Alfriend 2004) and yields to more stable 
estimation characteristic for the attitude estimator.  

B. Process Noise Covariance for the Attitude Estimator 

In (Crassidis and Markley 2003) the analytical approximation for the process noise 
covariance matrix, which is used for the UKF based attitude estimator, is given as 
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2 2 3 2 2
3 3 3 3

2 2 2
3 3 3 3

1 1
( ) ( )

3 2
1

( ) ( )
2

v u u

u u

t t I t I
Q

t I t I

  

 

 

 
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  .                          (5.27) 

Here t  is the sampling time. 

In this sense, if we include also the magnetometer biases into the state vector then 
according to the theory, the 9 9 process noise covariance matrix must be (Fosbury 2011): 
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.                         (5.28) 

However as aforementioned, this approximation fails in practice for an UKF that is used for 
the attitude, gyro bias and magnetometer bias estimation. Hence we use the adaptive 
estimation algorithm for the noise covariance given by (5.24-5.26).  

The process noise covariance matrix estimated by (5.26) is a non-diagonal matrix because 
of the state residual term. So specifically for the attitude estimation problem we modify it 
such that it fits in the form given as 

3 3 _ 3 3

_ 3 3 3 3
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q gb gb

Q I Q I
Q

Q I Q I
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 
  
 

   ,                                      (5.29) 

when the attitude and gyro biases are estimated and a form given as 
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_ 3 3 3 3 3 3

3 3 3 3 3 3

0

0

0 0

q q gb

q gb gb

mb

Q I Q I

Q Q I Q I

Q I

  

  

  

 
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  ,                                (5.30) 

when the attitude, gyro bias and magnetometer bias are estimated. Here qQ , gbQ and mbQ

are the terms of the process noise covariance matrix which correspond to the attitude 
quaternion, gyro bias and magnetometer bias respectively and _q gbQ are the terms for the 

noise covariance in between the quaternion and gyro bias states. 
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5.1.4. Simulation Results for Process Noise Covariance Estimation 

In this section, the proposed AUKF algorithm with process noise covariance estimation is 
tested via simulations for the nanosatellite model. Two scenarios have been taken into 
consideration: In the first one, only the attitude and gyro bias terms are estimated and in the 
second one, the magnetometer biases are also included into the estimated state vector. The 
main aim of realizing the first scenario is to test the converged values of the process noise 
covariance in a case that we have its analytical approximation. In this sense same scenarios 
are also performed with the regular UKF algorithm which uses the analytically 
approximated process noise covariance matrix. For the specific gyro characteristics the 
analytically approximated process noise covariance matrix becomes 

  3 3 3 3

3 3 3 3

8.46 14 (1.305 21)

(1.305 21) (2.61 20)

E I E I
Q

E I E I
 

 

    
     

    ,                          (5.31) 
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   
     
      

,                     (5.32) 

for two different scenarios, respectively. 

The simulation parameters such as the initial attitude errors and orbital parameters for the 
spacecraft are same as they are given in Section 4.3. For the low-pass filtering given with 
(5.26)   is taken as 0.01   in both scenarios.  

A. When the AUKF is used for Attitude and Gyro Bias Estimation 

In this scenario two different UKFs are examined for the attitude and gyro bias estimation. 
The first one uses the analytically approximated covariance matrix (5.31) and labeled as 
UKFa in the graphs. The second one is the AUKF that tunes the covariance matrix by the 
use of the proposed process noise covariance estimation algorithm.  

Fig. 5.3 gives the Euclidean norm for the attitude estimation errors in terms of the Euler 
angles. The mean of 10 different runs for each filter is plotted in the figure. It is clear that 
the AUKF and the UKF with the analytically approximated covariance show similar 
performance. Nonetheless, if we examine the converged values for the elements of the 
adaptively estimated process noise covariance matrix (5.33) we see that the difference 
between these values and the analytically calculated values is not high (comparing matrices 
given with 5.31 and 5.33). We think that such difference (especially for non-diagonal 
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terms) might be caused by the computational errors and yet the matrix given with (5.31) is 
an approximation found under some assumptions, not an exact equivalent. Moreover, 
regarding the simulation results we can state that a difference in such order does not have a 
significant effect on the accuracy of the estimation and the performance of two filters are at 
the same level. 

 

Figure 5.3: Norm of the attitude estimation errors for the UKFa and AUKF in case where 
attitude and gyro biases are estimated.  
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Fig. 5.4 gives the Euclidean norm of the gyro bias estimation errors. The results for the 
estimation of the gyro biases are similar and it shows that the AUKF with process noise 
covariance estimation performs well in a similar manner with the UKFa. As a result we may 
state that the AUKF approach for tuning the process noise covariance provides similar 
results with an UKF that is analytically tuned. That shows us the method works well and it 
tunes the terms of the process noise covariance matrix such that the filter gives estimates 
close to the optimal accuracy. 
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Figure 5.4: Norm of the gyro bias estimation errors for the UKFa and AUKF in case where 
attitude and gyro biases are estimated.  

B. When the AUKF is used for Attitude, Gyro Bias and Magnetometer Bias Estimation 

In this scenario initially two different UKFs are examined for the attitude, gyro bias and 
magnetometer bias estimation. The first one uses the analytically approximated covariance 
matrix such as (5.32) and labelled as UKFa in the graphs.  The second one is the AUKF that 
tunes the covariance matrix by the use of the proposed covariance estimation algorithm.  

Fig. 5.5 and 5.6 give the norm of the attitude and gyro bias estimation errors respectively. 
The mean of 10 different runs for each filter are presented.  As seen, this time the AUKF 
gives better estimation results than the UKF with the analytically approximated process 
noise covariance matrix and actually the results obtained by UKFa are far from being 
accurate. As discussed the main reason for such estimation characteristics is assuming that 
the process noise covariance for the magnetometer biases is zero. That means we have 
perfect initial guess for the magnetometer biases and the filter shall trust the propagation 
model more than the incoming measurements. The magnetometer bias estimation results 
also support this statement and clearly show that the UKFa is incapable of estimating these 
parameters (Fig. 5.7). 
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Figure 5.5: Norm of the attitude estimation errors for the UKFa and AUKF in case where 
attitude, gyro biases and magnetometer biases are estimated. 

 

Figure 5.6: Norm of the gyro bias estimation errors for the UKFa and AUKF in case where 
attitude, gyro biases and magnetometer biases are estimated. 
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Figure 5.7: Norm of the magnetometer bias estimation errors for the UKFa and AUKF in 
case where attitude, gyro biases and magnetometer biases are estimated. 

The converged values for the terms of the Q matrix (5.34) shows us the values that 
correspond to the attitude and gyro bias states differ from the first scenario’s results and the 
analytically approximated values. Besides, obviously the elements that correspond to the 
magnetometer biases are not zero in contrast with the analytical approximation. 
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For the second scenario we run additional simulations assuming that we have the perfect 
initial guess for the magnetometer biases. In other words, the initial error for the 
magnetometer bias estimations was taken as zero in the filter algorithm while the initial 
attitude error kept as similar with the first case. As Fig.5.8 shows even in this case the 
UKFa estimations do not converge to the real values. The results for the attitude and gyro 
bias estimation are similar. Further investigations show that the UKFa may perform well 
only if we have the perfect initial guess for all the estimated parameters (such as zero initial 
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attitude, gyro and magnetometer bias error). However this is simply contradictory with the 
nature of the filtering concept since we use the UKF to estimate the parameters for which 
we usually have poor a priory knowledge, specifically the parameters like sensor bias.  

 

Figure 5.8: Norm of the magnetometer bias estimation errors for the UKFa and AUKF in 
case where attitude, gyro biases and magnetometer biases are estimated (zero initial error 

for magnetometer biases). 

Now we already proved that the analytical approximation for calculating the process noise 
covariance is not usable when we perform in-orbit magnetometer calibration. On the other 
hand our intention was to find a proper algorithm where the Q is tuned automatically in 
order to provide more accurate results than a filter tuned by the trial-error method. As a 
result the overall system performance for the UKF used for attitude estimation and in-orbit 
gyro and magnetometer estimation would increase. Hence we need to compare the results 
of the AUKF with the results of the UKF, which were presented in Section 4.3. 

In Fig. 5.9 the pitch angle estimation errors for these two filters are given. As seen the 
accuracy for the attitude estimation is significantly increased when the AUKF algorithm is 
used. That is an outcome of running the filter with the proper process noise covariance 
matrix. This is also clear in the results for magnetometer bias estimation (Fig. 5.10). As a 
matter of fact the main reason for the better attitude estimation accuracy is the increase in 
the magnetometer bias estimation performance when the AUKF is used. Moreover there is 
a visible improvement in the convergence speed of the filter.   
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Figure 5.9: Pitch angle estimation error for attitude, gyro and magnetometer bias estimation 
scenario. Results for the UKF tuned by trial and error method are given with red line and 

the results for the AUKF are given with black line. 

In conclusion, although analytical approximation for the process noise covariance matrix 
gives sufficiently accurate estimation results for the case we use the UKF for estimation of 
attitude and gyro biases, such method fails when we include terms constant in time into the 
state vector, such as magnetometer biases. On the other hand, it is always possible to tune 
the filter by trial-error method but it is a time consuming and difficult process. The 
proposed adaptive tuning method and so the AUKF algorithm is considerably simpler. If 
we compare the AUKF with the filter that uses analytically approximated covariance, when 
such approximation is possible (as in the first scenario), we see that both filters give similar 
results. Therefore we may state that the given adaptation method is an easy way of tuning 
the filter especially in the absence of any analytical approximation for the calculation of Q 
matrix and by using the AUKF it is possible to get accurate estimation results close to the 
optimality. 
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Figure 5.10: Estimation of the bias for the magnetometer aligned in the x axis for attitude, 
gyro and magnetometer bias estimation scenario. Results for the UKF tuned by trial and 

error method are given with black line and the results for the AUKF are given with red line. 

5.2. Robust UKF against Measurement Malfunctions 

For nanosatellite missions the interaction between the subsystems is higher than usual 
because of the compactness of the satellite. Besides, the external disturbances such as the 
ionospheric currents have noteworthy effects on the spacecraft. These facts may cause the 
magnetometers to give faulty measurements. Such faulty measurements affect the stability 
and accuracy of the UKF even when they last for few samples. 

The UKF work accurately when there is no fault in the measurement system. On the 
contrary, in case of a fault such as abnormal measurements, step-like changes or sudden 
shifts in the measurement channel etc. the filter deteriorates and the estimation outputs 
become faulty. 
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Therefore, a robust algorithm must be introduced such that the filter is insensitive to the 
measurements in case of malfunctions and the estimation process is corrected without 
affecting the remaining good estimation behavior.   

The robustness of the filter is secured by scaling the measurement noise covariance matrix 
in case of fault. In this sense two different approaches may be used: Scaling by a single 
scale factor or scaling by a scale matrix built of multiple scale factors. In general, despite its 
relative simplicity, using single scale factor is not a healthy procedure since the filter 
should be insensitive just to the measurements of the faulty sensor, not to the all sensors 
including the ones working properly (Soken and Hajiyev 2010). In contrast a matrix built of 
multiple scale factors might be preferred since in this method the relevant terms of the 
measurement noise covariance are fixed, individually.  

The robust algorithm affects characteristic of the filter only when the condition of the 
measurement system does not correspond to the model used in the synthesis of the filter. 
Otherwise the UKF work with the regular algorithm.  

The essence of the adaptation procedure against the measurement malfunctions is to 
compare the real and theoretical values of the innovation covariance matrix. When there is 
a sensor fault in the system, the real error will exceed the theoretical one. In this case we 
may ensure the robustness of the filter against the sensor fault by adapting the R matrix, 
which is a diagonal matrix, formed of the measurement process noise covariances. The 
adaptation procedure basically aims at finding an appropriate multiplier for the R, such that 
the real and theoretical values of the innovation covariance match. As discussed, this 
multiplier might be either as a single factor or a matrix formed of multiple factors. In case 
we use a single factor, matching the real and theoretical values of the innovation covariance 
means that we basically increase all the terms of the R matrix and impose to the UKF that 
the measurements are faulty. However we do not isolate which sensor is malfunctioning. 
On the contrary when we use multiple scale factors we correct the necessary term of the R 
matrix (the term which corresponds to the sensor with the faulty measurement). In other 
word we make the UKF disregard just the measurements of the faulty sensor.  

5.2.1. Adaptation Using Single Scale Factor 

As stated the essence of the adaptation is the covariance matching. For single scale factor 
approach we match the trace of the covariances such that 

         1 1 1 1T
yy str e k e k tr P k k S k R k            ,                     (5.35) 
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where  1yyP k k is the observation covariance,   1R k  is the measurement noise 

covariance and  sS k is the introduced single scale factor. We may rewrite the equation as 

         1 1 1 1T
yy str e k e k tr P k k S k tr R k             .               (5.36) 

Then, regarding         1 1 1 1T Ttr e k e k e k e k         the single scale factor can be 

obtained  
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                             (5.37) 

The scale factor affects the Kalman gain as; 

         
1

1 1 1 1xy yy sK k P k k P k k S k R k


        .                     (5.38) 

Here  1K k  is the Kalman gain and  1xyP k k is the cross correlation matrix. 

In case of sensor fault the scalar scale factor will take a larger value and that will increase 
all terms of the innovation covariance. Eventually the Kalman gain will decrease and the 
measurements will be disregarded in the state update process (or taken into consideration 
with lesser weight than the regular case). In such approach the information about the faulty 
sensor isolation does not have any significance; all of the current information from the 
measurements is left out and the UKF relies mostly on the propagation information during 
the estimation.   

5.2.2. Adaptation Using Multiple Scale Factors 

Firstly, we add a matrix built of multiple scale factors,  mS k , into the algorithm in order 

to tune the measurement noise covariance matrix and match the real and theoretical 
innovation covariances, 

         
1

1
1 1 1 1 .

k
T

yy m
j k

j j P k k S k R k
   

      e e                  (5.39) 

Here,  is the width of the moving window. Left hand side of the equation represents the 

real innovation covariance while the right hand side stands for the theoretical innovation 
covariance. Then, if we re-arrange the equation, it is clear that we can get the scale matrix 
by, 
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In case of a measurement fault for one of the sensors then the corresponding term of the 
scale matrix will be a relatively larger term and that will increase the measurement noise 
covariance of this sensor in the R matrix. Eventually this faulty measurement will be 
disregarded (or regarded with a lower gain) by the filter. On the other hand, the scale matrix 
affects the estimation procedure only when the measurements are faulty. Otherwise, in case 

of normal operation, the scale matrix will be a unit matrix as  m z zS k I  , where z is the 

size of the innovation vector.  

Nonetheless, as  is a limited number because of the number of the measurements and the 

computations performed with the computer implies errors such as the approximation and 

round off errors;   mS k matrix  that is calculated by the use of (5.40) may not be diagonal 

and may have diagonal elements which are “negative” or lesser than “one”.  mS k matrix 

should be diagonal because only its diagonal terms have significance on the adaptation 
since each diagonal term corresponds to the noise covariance of each measurement (for the 

adaptation procedure  mS k  matrix is multiplied with the diagonal R matrix). Besides the 

measurement noise covariance matrix must be positive definite (that is why the multiplier 

 mS k  matrix cannot have negative terms) and also any term of this matrix cannot decrease 

in time for this specific problem since there is no possibility for increasing the performance 

of the onboard sensor (that is why the multiplier  mS k  matrix cannot have terms less than 

one). 

Therefore, in order to avoid such situations, composing the scale matrix by the following 
rule is suggested: 

 1 2, , , zS diag s s s                                                 (5.41) 

 max 1, 1,i iis S i z   .                                           (5.42)  

Here, iiS  represents the ith diagonal element of the matrix  mS k . Apart from that point, if 

the measurements are faulty,  S k will change and so affect the Kalman gain as; 

         
1

1 1 1 1xy yyK k P k k P k k S k R k
        .                     (5.43) 
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In case of any kind of malfunction, the element(s) of the scale matrix, which corresponds to 
the faulty component(s) of the innovation vector, increases and so the terms in the related 
column(s) of the Kalman gain decreases. As a consequence, the effect of the faulty 
innovation term on the state update process reduces and accurate estimation results can be 
obtained even in case of measurement malfunctions. 

5.2.3. Fault Detection Procedure 

As aforementioned, we use the RUKF only in case of the fault and in all other cases, the 
filter run following its regular algorithms. The fault detection is realized via a kind of 
statistical information. In order to achieve that, following two hypotheses may be proposed: 

 o ; the system is normally operating 

 1 ; there is a malfunction in the estimation system. 

Then we may introduce the following statistical functions for the RUKF  

       
1

( ) 1 1 1 1 ,T
yyk k P k k R k k


       e e                    (5.44) 

This function has 2 distribution with z degree of freedom, where z  is the dimension of the 

innovation vector. 

If the level of significance, ,  is selected as, 

 2 2
, ;zP               0 1  ,                                   (5.45) 

the threshold value, 2
,z  

can be determined. Hence, when the hypothesis 1  is correct, the 

statistical value of ( )k  will be greater than the threshold value 2
,s , i.e.: 

  2
0 ,: sk                k  

                  2
1 ,: sk                  k   .                                       (5.46) 

5.2.4. Simulation Results 

A series of simulations were performed in order to test and compare the proposed RUKF 
algorithms.  For just this simulation case in order to understand the affects of using single 
or multiple scale factors it is assumed that the sensors are fully calibrated. After deciding 
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the proper adaptation method the results will be applied to the UKF for attitude estimation 
and sensor calibration, which has been discussed so far. 

The simulations are performed for 7000seconds for the nanosatellite for which the orbital 
parameters and the sensor characteristics were given before in Section 4.3. 

The initial attitude errors in the simulations are set to 50 degrees for all three axes. Besides, 
the initial value of the covariance matrix is taken as 

4 4 4
0 0.5 0.5 0.5 10 10 10P diag       while the process noise covariance matrix is 

selected as 7 7 7 12 12 1210 10 10 10 10 10Q diag          . For the RUKF with multiple 

scale factors the size of the moving window is taken as 30  .  

Nonetheless, for the fault detection procedure, 2
,z  is taken as 7.81 and this value comes 

from chi-square distribution when the degree of freedom is 3 and the reliability level is 
95%.  

Three different scenarios are taken into consideration for simulating the fault in the 
measurements; the continuous bias, fault of zero output and measurement-noise increment. 
For each scenario a series of simulations are run by the RUKF and as well the conventional 
UKF algorithm. 

A. Continuous Bias Failure 

In this scenario, a constant value is added to the measurements of the magnetometer aligned 
in the x axis between the 3000th and 3200th seconds for a period of 200 seconds such that; 

                                   , , 20000x xB t B t nT q q       3000 3200sect   .  

The constant term, selected as 20000nT , almost doubles the magnetometer output. 

In Fig.5.11 the attitude estimation error of the UKF and RUKF are given for the pitch angle. 
The RUKF that uses single scale factor is plotted with dotted line and labeled as RUKFs 
while the RUKF with multiple scale factors is plotted with dashed line and labeled as 
RUKFm. Apparently, in case of fault the estimation accuracy for the conventional UKF 
algorithm deteriorates. The RUKF with single scale factor lessens the effect of the fault but 
still the filter is not fully recovered and after the measurement fault ends at 3200th sec. the 
RUKFs estimations show a fluctuating behavior. Because the RUKFs disregards the 
measurements of all three magnetometers as it increases all terms of the R matrix via 
multiplication with a single large scale factor (see Fig.5.12 for the variation of the single 
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scale factor). Instead of isolating the faulty sensor and leaving out just its measurements, 
the RUKFs considers all of the measurements as faulty and throughout this period it mostly 
relies on the propagation values. In this case especially for a filter with relatively higher 
process noise covariance, Q, the estimation errors accumulate and the filter starts to diverge 
from the actual values. The Table 5.1, which  gives the  absolute values of error at 3050th 
and 3150th seconds, supports this interpretation. Clearly the estimation error for the RUKFs 
at the 3150th sec is higher than the one at the 3050th sec. Hence the single scale factor 
approach may be useful only for faults which lasts a short period. On the contrary the 
RUKF with the multiple scale factors does not have such limitation and keeps its estimation 
accuracy without being affected from the fault. An examination on the scale matrix at an 
instant between the 3000th and 3200th seconds of the simulation shows that the algorithm 

works properly; (4427 1 1.59).S diag  Since the fault is in the measurements of the 

magnetometer aligned in the x axis, the correction must be applied to the first term of the R 
matrix as in this case. The large first diagonal term of the scale matrix decreases the terms 
in the first column of the Kalman gain and so the faulty innovation term (the first term of 
the innovation vector) is disregarded in the state update process. 

 

Figure 5.11: Pitch angle estimation error for the UKF and RUKF in case of continuous bias. 
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Figure 5.12: Variation of the single scale factor for the RUKF in case of continuous bias. 

Table 5.1: Absolute estimation errors in case of continuous bias: Regular UKF, RUKF with 
single scale factor (SSF) and RUKF with multiple scale factor (MSF). 

 
 
 
Parameter 

Abs. Err. Values 
for Regular UKF 

Abs. Err. Values 
for RUKF with SSF

Abs. Err. Values 
for RUKF with 

MSF 
3050 s. 3150 s. 3050 s. 3150 s. 3050 s. 3150 s. 

(deg)  10,580 10,835 0,1901 0,4936 0,0207 0,0430 

(deg)  0,6945 5,1327 0,1116 1,8268 0,0033 0,0178 

(deg)  0,6131 0,8453 0,0862 2,6225 0,0041 0,0030 

B. Measurement Noise Increment Failure 

In this scenario, the measurement noise of the magnetometer aligned in x axis is multiplied 
with a constant between the 3000th and 3200th seconds for a period of 200 seconds. In fault 

case the standard deviation of this magnetometer becomes 300 100 .
x

f
m nT  

 

In Fig.5.13, the estimation results for the UKF and RUKF are given. As can be observed, 
again the UKF fails about giving accurate estimation results in case of fault and the noisy 
measurements make the estimations deteriorate for a longer period than the fault itself. For 
this simulation case it takes 3000 seconds for the filter to satisfy accuracy less than 0.1 deg. 
after the fault removes. On the other hand in case of measurement noise increment both 
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approaches for robust Kalman filtering that are scaling with single and multiple factors give 
accurate estimation results. Unlike the first fault case this time single scale factor works 
properly because of the fault’s characteristic. Since the noise in the measurements is 
random, the filter does not work continuously with the robust algorithm for the whole 200 
seconds. Moreover the scale factor may take values that are closer to one when the robust 
algorithm is running. In other words the filter tunes itself depending on the magnitude of 
the noise and does not disregard the measurements for the whole fault period; it only does 
when the 2

,z threshold is exceeded and the magnitude of the noise is high such that the 

scale factor takes large values. Variation of the single scale factor confirms that (Fig. 5.14). 
Hence specifically for this fault scenario the RUKFs and RUKFm do not have any 
significant difference in the sense of estimation accuracy (Table 5.2).  

 

 

Figure 5.13: Pitch angle estimation error for the UKF and RUKF in case of measurement 
noise increment. 
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Figure 5.14: Variation of the single scale factor for the RUKF in case of measurement noise 
increment. 

Table 5.2: Absolute estimation errors in case of measurement noise increment: Regular 
UKF, RUKF with single scale factor (SSF) and RUKF with multiple scale factor (MSF). 

 
 
 
Parameter 

Abs. Err. Values 
for Regular UKF

Abs. Err. Values 
for RUKF with 

SSF 

Abs. Err. Values 
for RUKF with 

MSF 
3050 s. 3150 s. 3050 s. 3150 s. 3050 s. 3150 s. 

(deg)  3,4186 4,3199 0,0010 0,0242 0,0269 0,0412 

(deg)  0,2853 1,3830 0,0134 0,0048 0,0062 0,0174 

(deg)  0,9533 0,9003 0,0026 0,0049 0,0017 0,0015 

 

C. Zero Output Failure 

The third failure case, which is fault of zero output, is simulated by simply making the 
measurement output of one of the magnetometers zero so it measures 0nT for 200 seconds 
between the 3000th and 3200th seconds.  In order to test the algorithm this time the fault is 
implemented to the magnetometer aligned in the z axis:    

  1, 0z zB t  q           3000 3200sect   . 
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In Fig.5.15 the estimation results for the UKF and RUKF are given. Obviously, same as the 
first simulation scenario, the UKF cannot achieve accurate estimation whereas the RUKF 
with the single scale factor can overcome the fault only for a short period. Because of 
taking none of the measurements into consideration the RUKFs estimations get worse when 
the robust algorithm runs longer than 50 seconds. The single scale factor behaves in a 
similar manner with its trend for the continuous bias fault scenario (Fig. 5.16). Moreover, 
the results show us when the filter is not robust, the zero output failure has a high detractive 
impact on the estimation accuracy that lasts for a very long period. Even though the filter’s 
response may vary when it is designed with different parameters (such as the Q matrix) 
simulations show that a fault may affect the filter for a longer period than its length. 
Therefore if the magnetometer measures 0 even for just few seconds, it is not possible to 
compensate that with a filter other than the robust ones. In this sense the estimation results 
for the RUKFm clearly signify the importance of using the proposed algorithm. The RUKFm 
is not affected from the fault and can perform accurate estimation even when the fault lasts 
long, by simply disregarding the measurements of the faulty magnetometer and working on 
the basis of the measurements from two properly operating magnetometers (Table 5.3 may 
be seen for further examination).  The sample for the multiple scale factors in case of fault 
validates that the RUKFm disregards the measurements of the magnetometer aligned in the 

z axis as it supposed to be (1.44 1 4024).S diag    

 

Figure 5.15: Pitch angle estimation error for the UKF and RUKF in case of zero output 
failure. 
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Figure 5.16: Variation of the single scale factor for the RUKF in case of zero output failure. 

Table 5.3: Absolute estimation errors in case of zero output failure: Regular UKF, RUKF 
with single scale factor (SSF) and RUKF with multiple scale factor (MSF). 

 
 
 

Parameter 

Abs. Err. Values 
for Regular 

UKF 

Abs. Err. 
Values for 

RUKF with SSF 

Abs. Err. Values 
for RUKF with 

MSF 
3050 s. 3150 s. 3050 s. 3150 s. 3050 s. 3150 s. 

(deg)  9,7561 42,492 0,0321 0,2176 0,0892 0,0567 

(deg)  7,0059 8,1779 0,0293 0,3733 0,0521 0,0576 

(deg)  9,6897 41,673 0,0114 0,1908 0,0163 0,0191 

 

In conclusion the simulation results show that the RUKF performs well when a specific 
measurement fault is the point at issue. On the other hand, the conventional UKF fails at 
giving accurate estimation results for the period of the fault and as well for some additional 
time that passes before the filter converges again. When two proposed methods for the 
adaptation, the RUKF with single scale factor and RUKF with multiple scale factors, are 
compared, obviously the latter one gives better estimation results under all conditions. 
Hence we will use the RUKFm algorithm when the overall attitude estimation scheme is 
built for the nanosatellite in Chapter 7.   
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6. The Residual Magnetic Moment Estimation 

The RMM is the main disturbance source for nanosatellites and has a high deteriorating 
effect on the ADCS accuracy as discussed in (Sakai et al. 2008; Inamori et al. 2009; Steyn 
and Hashida 2001; Suehiro 2010; Hosonuma et al. 2012). In order to increase the accuracy 
of the magnetorquers based attitude control method first we need to cancel out the 
disturbance caused by the RMM. An efficient way of doing so is to use a feedforward 
cancellation technique, and when this technique is used, the performance depends on the 
accuracy of the RMM estimation. Hence for all the mission phases, as a prerequisite for 
accurate attitude control, the RMM must be estimated precisely. 

In literature there are various recent dated researches discussing about the RMM estimation 
(Sakai et al. 2008; Inamori et al. 2009). As a drawback the RMM components are 
considered to be constant in time. However, in practice, these parameters may change with 
sudden shifts because of the instantaneous variations in the onboard electrical current. Such 
instantaneous variations in the current may be caused by switching on/off of the onboard 
electronic devices or going into/out of eclipse. In such cases, the UKF (or observer in 
general) cannot catch the new value of the parameter quickly if it is designed with a small 
process noise covariance in order to increase steady state estimation accuracy. The main 
issue is, especially if we use the feedforward cancellation technique for the RMM 
compensation, then, as discussed, the estimation accuracy is essential and so the UKF must 
be designed with small process noise covariance. In other words, the inherent tracking 
capacity of the UKF that can be provided by choosing a high process noise covariance must 
be sacrificed in order to increase the overall system performance. Therefore, if we want to 
design an UKF with good tracking capability, as well as the high steady state accuracy, 
then the filter should be adaptively designed such that it gives both good estimation results 
when there is no change in the parameter and good tracking performance when the 
parameter is changed.  

In this chapter we present an in-orbit RMM estimation method for the nanosatellite. Unlike 
the existing studies in the literature, unexpected abrupt changes in the RMM are also 
considered. Regarding the fact that the change in the RMM is unexpected and the amount 
of the shift cannot be predicted, we propose a novel adaptation method which is applied on 
the estimation covariance. Sudden shifts in the mean of the RMM terms are detected by a 
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low pass filter applied to the normalized innovation of the UKF. Then a weighting function 
is calculated regarding the amount of the shift and the estimation covariance is scaled for 
the next step using this function. Compared to the standard methods that reinitialize the 
filter or increase the process noise covariance intuitively after each change detection, the 
proposed method does not need any a priori information about the magnitude of the shift 
and assures both accurate estimation and good tracking performance for shifts with 
different magnitudes. Besides it is simple without any excessive extra computational load. 

6.1. In-Orbit Estimation of Time-Varying RMM 

For the specific problem, the estimated state vector is composed of the body angular rates 
with respect to the inertial frame and RMM terms as given with 

BI 
 
 


x =

M
 .                                                      (6.1) 

For RMM estimation we use a second UKF other than the reduced-order UKF that is run 
for attitude, gyro bias and magnetometer bias estimation. The integration scheme for these 
two filters will be given in Chapter 7. 

The nonlinear process model is obtained by discrete-time integration of  

   1BI
c r BI BIJ J

dt
      N M B

   ,                            (6.2)       

and (2.45). The (6.2) is the rewritten form of (2.40) for the case where the disturbance 
torques other than the RMM are negligible. Note that the magnetometers that are carried 
onboard directly supply the B  information, and now we assume that the magnetometers 
are calibrated using the technique proposed previously. Besides the body angular rates with 

respect to the inertial frame, BI , are measured using the onboard gyros, which are also in-

flight calibrated with the UKF algorithm discussed in the previous chapters. 

Nevertheless, since the onboard gyros directly supply BI information, the measurement 

model may be represented with linear equation as 

   3 3 3 30k k kI   y x v                                            (6.3) 

where 3 3I   and 3 30  are 3 3 identity and null matrices, respectively.  
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For the magnetometer measurements, which provide B  information for dynamic modeling, 
the sensor noise is characterized by zero mean Gaussian white noise with a standard 

deviation of 300m nT  ; whereas, the gyro random error assumed as 

31 10 [deg/ ]h
   (these values are same as the sensor values presented in Section 4.3). 

In the first scenario, where the RMM terms are constant and there is no abrupt change in 

time, the real RMM terms are   20.1, 0.02, 0.05M Am   and the process noise 

covariance matrix of the second UKF is selected as 

  3 3 3 3

3 3 3 3

1 20 0

0 (1 10)
x x

x x

E I
Q

E I

  
   

.                                        (6.4) 

In Fig.6.1 the estimation result for the RMM in the x axis is presented. In the top plot, the 
UKF estimation is given together with the actual value of the estimated parameter and in 
the lower plot the estimation error is shown. As seen the UKF accurately estimates the 
RMM terms. In order to make a better understanding of the performance the Root Mean 
Squared Error (RMSE) for the RMM terms of the state vector ( ( )jx k  such that 4...6j  ) is 

calculated in between the 300th and 500th seconds (for 2000 samples since 0.1sec.t  ):  

5000 2

3001

1
ˆ( ) ( )

2000j j j
k

RMSE x k x k


   
                

4...6j  ,                     (6.5) 

where ( )jx k and ˆ ( )jx k  are the real and estimated values of the jth state. As a result the 

RMSE is 4 22.626 10 Am , 4 22.584 10 Am and 4 22.673 10 Am , respectively for xM , 

yM  and zM estimations. That means the RMM estimation is accurate enough regarding the 

overall attitude control requirements and the magnetic disturbance can be compensated 
efficiently with a feed forward cancellation technique.   

In the second scenario, this time the instantaneous change is realized as the change in the 
RMM terms at the 2000th second such that   

 
 

2

2

0.1 0.02 0.05 2000sec

0.25 0.1 0.15 2000sec

T

T

Am t

Am t

   
 

M                                   (6.6) 
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Figure 6.1: Estimation of the RMM in x axis. 

and the same scenario is repeated for two different process noise levels, high and low, in 
order to clearly demonstrate the effect of the process noise covariance on the trade-off 
between the steady state accuracy and tracking capability of the filter. For low noise level, 
the Q matrix is selected the same as in (6.4). For high noise, the Q matrix is chosen as 

   
  3 3 3 3

3 3 3 3

1 20 0

0 (1 6)
x x

x x

E I
Q

E I

  
   

   .                                     (6.7) 

The Fig. 6.2 presents the estimation results of the RMM in x axis for these two different 
noise levels. Obviously, the UKF tuned with low process noise has a poor tracking 
capability when the estimated parameter is changed and it takes almost one third of the 
orbital period (the orbital period of the satellite for the performed simulation is 6400sec.) 

for the filter to converge again to the required estimation accuracy (accepted as 20.001Am
for the RMM estimation). Further examinations show that such change in the estimated 
RMM terms also causes deterioration of the angular rate estimations (Fig.6.3).  Conversely, 
the UKF with high noise is more agile to catch the new values of the RMM terms but 
performs noisy estimations with low accuracy during the steady-state regime. Table 6.1 
shows the absolute estimation error of the filters for three different sampling times.    
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Figure 6.2: Estimation of the RMM in x axis in case of sudden change for two different 
process noise levels. 

 

 

Figure 6.3: Estimation of the angular rate about x axis by the UKF with low process noise 
in case of sudden change. 

 

 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0.998

0.999

1

1.001

1.002

x 10
-3

W
x(

ra
d/

s)

Wx Estimation

 

 Kalman Estimation

Actual Value

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

-2

0

2

x 10
-7

er
ro

r 
(r

ad
/s

)

time(sec)



78 
 

Table 6.1: Absolute values of error for the RMM estimation in case of sudden change. 

 Absolute Values of Estimation Error for the RMM Estimation 

UKF with Low Noise UKF with High Noise 

1000th sec. 2500th sec. 4000th sec. 1000th  sec. 2500thsec. 4000th sec.

xM ( 2Am ) 0.000020 0.061680 0.002544 0.007702 0.002422 0.002908 

yM ( 2Am ) 0.000482 0.025425 0.000085 0.006528 0.003433 0.011384 

zM ( 2Am ) 0.000567 0.016087 0.004357 0.000547 0.036143 0.013680 

 
The table more clearly represents the fact that although the UKF with high process noise 
can agilely catch the new value of the RMM terms after the sudden change, the steady state 
accuracy of the estimation is not high enough for satisfying good attitude control 
performance.   

The investigations in this section signify that if there is a necessity for both highly accurate 
RMM estimations during the steady state and good tracking speed when the states change 
suddenly, the KF must be built adaptively such that the filter parameters are tuned with 
respect to the requirements at that moment. The simplest method for achieving this is to use 
a change detector first for detecting the abrupt changes in the states and then increase the 
process noise covariance or estimation covariance of the filter in order to speed up the 
tracking process. The next section introduces the novel method for change detection and 
KF adaptation, which we propose as an advanced approach for solving this problem.   

6.2. Change Detection and UKF Adaptation 

The existing methods used for augmenting the tracking capability of a filter, which is 
fundamentally designed with low Q values for steady state accuracy, are only concerned 
with the change time (or alarm time) for starting the  adaptation of the filter. These methods 
disregard the magnitude of the change or assume that it is known a priorily (Basseville and 
Nikiforov 1993).  Hence, the performed adaptation is specific for just a single magnitude 
and cannot be generalized. The value of the Q or P matrices selected after the change 

detection ( alarmQ and alarmP ) works well for this specific condition but fails to provide the 

required performance when a change with a different magnitude occurs. This failure might 
be either as being late for tracking the new value of the state or showing unnecessary 

fluctuations because of the overestimated alarmQ and alarmP values (Q and P matrices 

increased to a unnecessarily high level) (Hartikainen and Ekelin 2006).  
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In this section, first we present the change detection method used for sensing the abrupt 
changes in the estimated RMM terms. Then the novel procedure for the adaptation of the 
UKF is proposed and the performance of the method is examined by comparing with the 
existing techniques.   

6.2.1. Change Detection 

The essence of change detection for the KF in general is to apply a low-pass filter to the 
normalized innovation sequence of the filter. For vector valued measurements (or 
innovation sequence) the sum of the normalized innovation sequence is used (Gustafsson 
2000). The sum of the normalized innovation sequence for the UKF is 

         1/21
ˆ( 1) 1 1 1 1

in n yy

i

Z k P k k R k k k k
n


       1 y y .            (6.8) 

Here in is the size of the innovation vector and 
in1 is unit vector with in unit elements, by 

which the sum of the elements of the normalized innovation sequence is taken.  

One of the well known change detectors (or stopping rules) is the CUSUM test (Page 1954), 
which should be used as a two-sided algorithm in order to detect both the increase and 
decrease in the mean of the estimated parameter. In other words, two statistical parameters 
should be checked simultaneously for detecting the changes in both directions. Another 
approach is to use the Geometric Moving Average (GMA) (Roberts 1959) which is simpler 
as a result of being one-sided. In this study, we preferred to implement the GMA test for 
change detection because of this simplicity and also its quicker response to the adaptation 
which will be shown with the numerical example. The GMA test is defined as;    

( 1) ( ) (1 ) ( 1)ng k g k Z k                  
( 1)

( 1)

g k
alarm if

g k




 
   

  .             (6.9) 

Here,   is the forgetting factor used for tuning the low-pass effect, ( 1)g k  is the GMA 

parameter to be tested for the change detection, where (0) 0g  , and  is the threshold 

value. The value of   must be determined carefully since a high value will make the 

detector insensitive against changes with small magnitude, whereas a small value will 
increase the chance of false alarms. In Fig. 6.4 the variation of the GMA in case of a 
change in the estimated RMM terms is given. The figure shows how the GMA behaves for 
the UKF with low process noise (6.4) as in the second scenario presented in the previous 
section. The forgetting factor is taken as 0.997  , which means the current observations 
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are weighted less and the low-pass effect is high. For this scenario,  might be selected as 

0.2   which is small enough to detect changes with small magnitude and sufficiently 

away from the highest value that GMA takes during the steady-state regime such that the 
false alarm chance is reduced.    

 

Figure 6.4: Variation of the GMA in case of change in the estimated RMM terms (change 
at 2000th second). 

The next step after the change detection is to adapt the UKF appropriately such that the 
filter agilely catches the new values of the estimated states with similar performance for 
every different change conditions. This will be also the main contribution of the chapter in 
the sense of change detection and adaptation. 

6.2.2. The Adaptation of the UKF 

The proposed adaptation method for the KF is based on the idea of increasing the 
estimation covariance of the filter after detecting the change. Instead of a correction on the 
process noise covariance, we preferred this method because of the known upper limit for 
the increase in the estimation covariance. In case of a change, the estimation covariance can 
be increased upmost to its initial value, which is basically similar to reinitializing the filter.  
Unlike the existing methods, the level of increase is not same for all change conditions and 
it is determined regarding the magnitude of the shift in the estimated RMM terms.  

The adaptation is carried out such that the new value of the estimated covariance after the 
change detection is 
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         01 1 1 ( 1) 1 ( ) 1 ( 1)P k k k I K k H k P k k k P            ,        (6.10) 

where  1K k  is the optimal Kalman gain, 0P  is the initial value of the covariance matrix 

and ( 1)k  is the weighting function which takes a value from 0 to 1. For this problem the 

weighting function is selected as  

 
1 2

( 1) exp /k t t          .                                     (6.11) 

Here  is the tuning parameter selected intuitively regarding the general trend of the GMA 

function and 
1

t and 
2

t are the time steps that the GMA exceeds the thresholds of 1 and 2 , 

respectively. Note that 
1 2

t t  and 1 might be selected as 1  where   is the threshold 

that the adaptation is started as introduced via (6.9).   

When the magnitude of the shift is large the GMA follows a steeper trend while exceeding 
the threshold and so the 

1 2
t t  difference takes a small value. Consequently, the ( 1)k 

becomes closer to its upmost limit, 1, and the 0P  is weighted more for the adaptation. On 

the contrary,  if the magnitude of the shift is smaller, then the GMA acts slower and the 

time difference between the instants that the GMA exceeds successive thresholds  of 2  

and 1  becomes large (
1 2

t t  takes a large value). Therefore the weighting function 

( 1)k  approaches to 0 and the P  matrix increases slightly with a smaller impact from the 

0P .   

Fig. 6.5 gives the overall estimation scheme for the RMM by the UKF including the change 
detection and adaptation procedures. Note that in case we use the UKF (6.10) differs as 

 1 1P k k       

          01 ( 1) 1 1 1 1 ( 1)T
vvk P k k K k P k k K k k P             .     (6.12) 
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Figure 6.5: The RMM estimation scheme in case of sudden change. 

Remark on Stability. In the essence, the applied adaptation procedure is not different from 
restarting the KF when a change detected (Gustafsson 1996; Stendlund and Gustafsson 
2001). Here, the key point is not to start the filter again with the initial covariance but to use 
a covariance value that is calculated regarding the magnitude of the change.  

In this sense, a similar approach with the one of Kalman filter may be followed to check 
whether the stability of the KF is affected as a result of the applied adaptation method. 
From (Hajiyev and Caliskan 2003) it is known that the following characteristic polynomial 
of the system can be used for stability analyses of a Kalman filter: 

Characteristic polynomial =   ( ) 1 ( ) ( )zI F k K k H k F k     .                     (6.13) 

where z denotes the usual z-transform variable and ( )F k is the systems dynamics matrix 

which is a Jacobian matrix for nonlinear case.    
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The roots of this polynomial provide information about the filter stability. If all the roots lie 
inside the unit circle in the z-plane, the filter is stable; conversely, if any root lies on or 
outside the unit circle, the filter is unstable. As a matter of terminology, the roots of the 
characteristic polynomial are the same as the eigenvalues of 

 ( ) 1 ( ) ( )F k K k H k F k    .                                        (6.14) 

Regarding this fact and evaluating the stability of the KF within one step, it is clear that the 
stability of the filter will be affected only if there is a modification on the Kalman gain such 

that the process or measurement noise covariances (  Q k
 
and  R k respectively) are 

adapted. For all other cases the stability will be assured if the regular KF without any 
modification is stable.  

Furthermore the stability of the UKF may be examined as a special case. As discussed in 
(Dymirkovsky et al. 2012; Xiong et al. 2009) the stability of the UKF strictly depends on 
the positive-definiteness of the process and measurement noise covariance matrices; as long 
as this certain condition is satisfied, the estimation error of the UKF remains bounded even 
for large initial estimation errors. Therefore the proposed adaptation method does not have 
a detractive effect on the stability of the UKF used for the RMM estimation. If the abrupt 
changes of the RMM do not happen so often, there is no problem with the convergence as 
the original estimator is stable.  

Remark on Determination of the Tuning Parameters and Thresholds. There are four 
parameters to be determined for the proposed change detection and KF adaptation 
algorithm:  , the forgetting factor for the GMA test; , the tuning parameter for the 

weighting function; and the thresholds of 1  and 2 , which determine the 
1

t and 
2

t  time 

steps used as an input to the weighting function.  Besides since 1  , 1  is also the 

threshold that the adaptation is started. 

The forgetting factor,  , is the first parameter to be tuned. It determines the low-pass 
filtering effect and 0 1   . A value closer to 1 means higher low-pass effect and 

selecting 0  means tresholding the normalized innovation sequence, ( 1)nZ k  , directly, 

which is also one option (Gustafsson 2000). The forgetting factor should be chosen 
regarding the characteristics of the KF. Especially the level of the measurement noise 

covariance,  R k , has a remarkable effect on the normalized innovation output of the filter.  

If the measurement noise is smaller (such that we have more accurate sensors) than the 
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low-pass filtering effect must be increased with a   closer to 1 to get a smoother GMA 
parameter.  

Then as the next step, the thresholds of 1  and 2  should be selected regarding the design 

criteria of  1 2  . Since 1  is also the threshold where the adaptation is started it must be 

determined carefully. It must be small enough to detect changes with small magnitude and 
sufficiently away from the highest value that GMA takes during the steady-state regime 
such that the false alarm chance is reduced. Suppose that for a fixed   value, we have 
smaller measurement noise. In this case the GMA output will be more noisy so the 

threshold of 1  should be selected as a higher value. On the other hand, selection of 2
does not need to be so precise; it only affects the level of the tuning parameter . In this 

sense 2 10.75   is a good candidate. 

Lastly, the tuning parameter for the weighting function,  , must be  selected regarding the 

trend of the GMA for a KF without adaptation and the values of 
1

t and 
2

t . For a change 

with the possible highest magnitude the   should be selected such that the ( 1)k 

approaches to 1.    

6.3. Simulation Results 

The proposed change detection and adaptation algorithm is tested for the UKF based RMM 
estimation. Two different change conditions are investigated. The first change, which is 
imposed to the RMM terms at the 2000th second, is relatively larger in magnitude while the 
second change at the 7000th second is smaller. The real values for the RMM terms change 
as 

 
 
 

2

2

2

0.1 0.02 0.05 2000sec

0.25 0.1 0.15 2000sec 7000sec

0.2 0.07 0.10 7000sec

T

T

T

Am t

Am t

Am t

  
   


 

M       .                 (6.15)  

The process noise covariance matrix of the UKF is as given with (6.4). For the change 

detection and UKF adaptation algorithm the thresholds are selected as 1 0.2   and 

2 0.15  , while the tuning parameter   is taken as 40  . As mentioned the selection for 

the  depends on the selected values for 1 , 2  and the characteristics of the UKF.  

The same simulation scenario is repeated with an UKF without change detection and 

adaptation, as well with an UKF which is reinitialized with 0P  after each change detection.  



85 
 

In Fig. 6.6, the estimation results for the RMM in the x axis is given. As seen the regular 
UKF algorithm without adaptation is slow about catching the new values especially when 
the change is large in magnitude (as at 2000th sec.). On the other hand, when we integrate a 
change detector into the algorithm and perform an adaptation on the UKF after each change 
detection, the UKF speeds up remarkably. However, if we perform the adaptation 
regardless the magnitude of the shift, as performed with the UKF reinitialized after each 
change detection, then specifically for small shifts we may meet with undesirable 
fluctuations until the  estimations are attenuated to the accurate steady state values (see 
zoomed subfigure a of Fig.6.6). The proposed adaptation algorithm takes the magnitude of 
the shift into consideration when deciding the value of the filter covariance for the next step 
after detecting the change. Therefore, as well as increasing the filter’s agility for catching 
the new value, it prevents from the undesirable fluctuations as a result of increasing the 
covariance accordingly for that magnitude of shift. Similar results are obtained for the 
estimation of other RMM terms (Fig. 6.7 and Fig. 6.8).     

 

Figure 6.6: Estimation of the RMM in x axis in case of sudden change: The UKF without 
change detection and adaptation is referred as “w/o adaptation”;  the UKF, which is 

reinitialized after each change detection, is named as “reint”; and the proposed estimation 
algorithm is shown as “adaptive”. 
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Figure 6.7: Estimation of the RMM in y axis in case of sudden change: The UKF without 
change detection and adaptation is referred as “w/o adaptation”;  the UKF, which is 

reinitialized after each change detection, is named as “reint”; and the proposed estimation 
algorithm is shown as “adaptive”. 

 
As a further examination on the proposed algorithm, we checked the alarm time, 

1 2
t t 

difference, which is important for reflecting the magnitude of the detected change into the 
adaptation algorithm, and the value of the weighting function for  the changes at 2000th and 
7000th seconds (Table 6.2). As seen, for the change with relatively larger magnitude 

1 2
t t 

takes a smaller value that increases the value of the weighting function and vice versa for 
the change with smaller magnitude. Nonetheless, as expected the alarm time is later for 
lesser changes.  
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Figure 6.8: Estimation of the RMM in z axis in case of sudden change: The UKF without 
change detection and adaptation is referred as “w/o adaptation”;  the UKF, which is 

reinitialized after each change detection, is named as “reint”; and the proposed estimation 
algorithm is shown as “adaptive”. 

Table 6.2: Alarm time and the adaptation values for the proposed UKF adaptation 
algorithm. 

 Change at 
2000th sec. 

Change at 
7000th sec. 

Alarm time 2032.4 sec. 7085.6 sec. 

 
1 2

t t   36 142 

  0.4066 0.0287 

 
In Fig. 6.9, the variation of the GMA for the proposed algorithm is shown together with the 
GMA for the regular UKF without adaptation. As aforementioned the GMA has a quick 
response to the adaptation and immediately after the adaptation begins it goes down below 
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the threshold. That indicates the adaptation on the filter covariance (6.12) is performed only 
for few steps and then the filter works with the regular covariance update procedure. 

 

Figure 6.9: Variation of the GMA in case of change in the estimated RMM terms: The 
GMA for the regular UKF and UKF with the proposed change detection and adaptation 

procedure. 

As a result the proposed change detection and KF adaptation procedure works well. By 
applying this algorithm on the UKF for the RMM estimation problem the agility of the 
UKF for catching the new values of the changed parameters can be increased remarkably, 
whereas the filter is originally designed for steady state accuracy with low process noise 
covariance. We preferred to apply the adaptation on the filter covariance matrix but similar 
procedure may be followed for an adaptation of the Q. But in this case the determination of 
the upper bound for the Q , which we select as 0P  for the covariance adaptation, is seen as 

an empirical problem.  
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7. Demonstration of the Proposed Attitude 
Determination Scheme  

In this chapter the proposed estimation algorithms are integrated in order to get a full 
attitude estimation scheme for the nanosatellite. First by using a unique integration 
technique, the AUKF and RUKF algorithms are integrated for building a Robust Adaptive 
Unscented Kalman Filter (RAUKF), which is both adaptively tuned and robust against 
measurement malfunctions. Then this filter is integrated with the UKF based RMM 
estimator and a two-stage filtering algorithm that estimates the attitude, attitude rate, 
magnetometer & gyro biases and RMM is obtained.   

The proposed overall estimation scheme is demonstrated for nanosatellite attitude 
estimation. The effects of each discussed method, such as the Q adaptation, are clearly 
shown. The performance of the overall scheme is analyzed regarding the goals set initially 
and comparing with the existing methods.   

7.1. Integration of the Filters 

7.1.1. The RAUKF Algorithm 

The AUKF and RUKF algorithms presented in Chapter 5 are solutions for different 
problems but the main intention for building the algorithms was same: increasing the 
attitude determination accuracy of the nanosatellite. The AUKF is used as a tuning 
algorithm for the process noise covariance of the filter in order to ease the difficult tuning 
procedure and make the filter more efficient in the sense of estimation accuracy. On the 
other hand the RUKF is a filter which is adapted as a measure against the possible 
measurement faults in the harsh space environment. In this section we integrate these two 
filters. The new filter is named as the RAUKF. 

The given AUKF algorithm applies the adaptation on the Q matrix while the RUKF scales 
the R matrix against the measurement malfunctions. The integration of these two adaptation 
techniques is an open topic and there are numerous researches in the literature (Hajiyev and 
Soken 2013; Almagbile et al. 2010). Indeed there is no any stable integration method when 
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both the R and Q matrices are estimated based on the innovation covariance (Almagbile et 
al. 2010). On the other hand the Q estimation method presented in this thesis is based on 
the residual covariance and the adaptation method for the R matrix is an innovation 
covariance based scaling method, not the direct estimation of the matrix itself. Hence these 
two methods can be run at the same time. Fig. 7.1 shows the integration method with the 
key steps of the RAUKF. 

 

Figure 7.1: The proposed RAUKF. 
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Nonetheless, there are two important points which should be regarded while designing the 
RAUKF: 

- The R scaling is performed only when a fault is detected in the measurements as 
given in 5.2.3. In all other cases the filter runs with the regular algorithm only with 
the Q estimation (when there is no fault the algorithm is same as the AUKF with 
process noise covariance estimation). 

- The scale factor for the AUKF in (5.26) should be selected carefully. If more 
aggressive adaptation is performed (such that 1  ) the stability of the RAUKF 

might be affected in case of a measurement fault when both R and Q adaptations are 
necessary.  

7.1.2. Integration of the RAUKF with the RMM Estimator 

The RAUKF algorithm presented in the previous section estimates the attitude, gyro bias 
and magnetometer bias for the nanosatellite. As stated in the Chapter 6, while discussing 
the RMM estimation scheme, the UKF used for the RMM estimation takes the already 
calibrated magnetometer and gyro measurements as inputs. The calibrated magnetometer 
measurements supply the B information for the propagation model (6.2) and the calibrated 
gyro measurements are used as the measurements (6.3). In other words, the calibrated gyro 
and magnetometer measurements are prerequisite for running the second UKF and 
estimating the RMM accurately. Hence these two filters, the RAUKF and UKF for the 
RMM estimation should be serially run as proposed in Fig. 7.2. 

Here, the RAUKF, which is the first filter, uses the magnetometer and gyro measurements, 

mesB and mes respectively. As discussed, this filter estimates the attitude q̂ , gyro biases 

ˆ
gyrob  and magnetometer biases ˆ

magb . Then these estimated bias terms are used for 

calibrating the sensors and so correcting the measurements as ˆ
mes magB b and ˆ

mes gyro b . 

These corrected measurements are the inputs for the second filter that mainly estimates the 

RMM ( M̂ ). In addition to the RMM terms the attitude rates, ̂ , are also estimated by the 
second UKF (estimating the attitude rate is necessary as an essence of the filtering 
algorithm since we use the spacecraft dynamics as the propagation model and the 
measurement inputs are the gyro measurements). The estimated RMM terms are then used 
for cancelling out the magnetic disturbance torque either by a feedforward or feed-back 
cancellation technique. The disturbance torque is counteracted with the torque produced by 
the magnetorquers. The integration of the RAUKF and the UKF based RMM estimator 
forms the overall attitude estimation scheme for the nanosatellite.  
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Figure 7.2: Integration of the RAUKF with the RMM estimator: The overall attitude 
estimation scheme. 

7.2. Overall Attitude Estimation Scheme 

7.2.1. Demonstration of the Overall Attitude Estimation Scheme  

In order to test the overall attitude estimation scheme, a series of simulations were 
performed. First we showed the effects of the Q adaptation by comparing a regular UKF 
with the RAUKF. In other words, the overall attitude estimation scheme is run using both 
the RAUKF and regular UKF as the first filter. Then the results for the UKF and RAUKF 
are compared in case of measurement malfunction to clarify the necessity of the R 
adaptation. The advantages of using the RAUKF for the first stage of the filtering algorithm 
is clearly shown by the discussing the estimation results of the both first and second filters. 
In the end, an abrupt instantaneous change is simulated for the real RMM terms to be 
estimated and the RMM estimation results by the second filter are given comparing the 
cases with and without the P adaptation (6.12). 
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For robust filtering (R adaptation) the adaptation via multiple scale factors (5.40) is 
preferred since the previous investigations showed that it gives better estimation results 
under all conditions. For the Q adaptation process, noise covariance estimation method is 
used (5.24-5.26).  

The reduced order RAUKF is run for estimating the attitude, gyro bias and sensor biases 
and the UKF with the P adaptation is run for the RMM and attitude rate estimation. The 
simulations are performed for a hypothetical nanosatellite. The satellite is assumed to be a  
3U cubesat with dimensions of 10cm×10cm×30cm, an approximate mass of 3kg and an 

approximate inertia matrix of  2(0.055 0.055 0.017) . .J diag kg m  A real mission 

example for a similar 3U nanosatellite might be seen in (Reijneveld and Choukroun 2012). 

Nonetheless the orbit of the satellite is assumed as circular. The inclination for the 

satellite’s orbit is 31i    and the distance between the centre of the masses of the Earth and 

satellite is 0 7450r km . 

For the magnetometer measurements, the sensor noise is characterized by zero mean 

Gaussian white noise with a standard deviation of 300m nT   (Sakai et al. 2011) and the 

constant magnetometer bias terms are accepted as   40.14 0.019 0.37 10
T

mb nT  , 

which is reasonable when compared to the values in (Sakai et al. 2011; Han et al. 2012). 

Moreover, the gyro random error is taken as 2.47[ / ]arcsec s  , whereas the standard 

deviation of the gyro biases is 4 36.36 10 [ / ]u arcsec s   (Sakai et al. 2006a). 

As the filter parameters for the RAUKF,  is selected as 2    where 2( 1)f a   and 

1a  . For the second UKF that is used for the RMM estimation  is 3   . Initial attitude 
errors are set to 30, 25 and 25 deg for pitch, yaw and roll axes respectively. The initial 
estimation values for the gyro and magnetometer biases, attitude rate and RMM are all 
taken as 0. Besides, the initial value of the covariance matrix is 

7 7 7 3 3 3
0 0.1 0.1 0.1 10 10 10 10 10 10P diag           for the first filter and 

6 6 6
0 10 10 10 0.01 0.01 0.01P diag       for the second filter. For the RAUKF the 

initial the value of the process noise covariance matrix is, 

   
   

 

3 7
3 3 3 3 3 3

7 10
3 3 3 3 3 3

12
3 3 3 3 3 3
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1.5 10 1 10 0

0 0 1 10

I I

Q I I

I

 
  

 
  


  

   
 
    
 
  

 .                      (7.1) 
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For the RMM estimator UKF the Q is fixed as, 

 
 

5
3 3 3 3

7
3 3 3 3

1 10 0

0 1 10

I
Q

I


 


 

 
 
  

.                                          (7.2) 

Moreover, for the RAUKF’s fault detection procedure, 2
,z  is taken as 7.81 and this value 

comes from chi-square distribution when the degree of freedom is 3 and the reliability level 
is 95%.  

We tested the RAUKF for the continuous bias failure. Hence a constant value is added to 
the measurements of the magnetometer aligned in the x axis between the 30000th and 
30200th seconds for a period of 200 seconds such that; 

                                    , , 20000x xB t B t nT q q        30000 30200sect    

A deviation in the bias with this amount is reasonable when the values given in (Sakai et al. 
2011) are taken into consideration.  

For testing the second UKF with the adaptation against the sudden changes, the change is 
realized in the RMM terms at the 30000th second such that   

5 5 5 2

5 5 5 2

2 10 1 10 1 10 3000sec

3 10 2 10 2 10 3000sec

T

T

Am t

Am t

  

  

         
       

M  .                    (7.3) 

A. Effects of the Q Adaptation 

In Fig. 7.3 the pitch angle estimation results that we get in case we use the regular UKF or 
the proposed RAUKF at the first stage (as the first filter) of the overall scheme are given in 
the same plot. As clearly seen, especially from the zoomed subplot, the results obtained by 
the RAUKF are far more accurate. As discussed in the previous chapters, this is mainly 
because of the nearly optimal values of the Q matrix for the RAUKF that we cannot easily 
obtain by the trial-error method.  
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Figure 7.3: Estimation of the pitch angle via the RAUKF (red line) and UKF (black line) as 
a part of the overall estimation scheme. 

In Fig. 7.4 the estimation result for the RMM in the z axis is given. The RMM output of the 
second filter is plotted again in case we use a regular UKF or RAUKF at the first stage of 
the overall scheme.  Apparently, and as expected, the performance of the first filter affects 
the second filter’s estimation accuracy. When we use the RAUKF, which means a better 
estimation performance as shown with Fig. 7.3, the RMM terms can be estimated more 
accurately by the second filter. Besides, in this case the second filter has better convergence 
characteristic. The second filter for the RMM estimation is dependent to the magnetometer 
and gyro bias information from the first filter (RAUKF) and its performance is highly 
affected from the accuracy of the RAUKF. Unless the estimations for magnetometer and 
gyro biases converge to the real values, the second filter cannot give good estimation 
results. The precision of the gyro bias estimations is specifically important for the second 
filter since it uses the gyro outputs as the measurements. 

The estimation results obtained for the other parameters such as the magnetometer biases 
are similar and the estimation scheme built with the RAUKF gives better estimation results. 
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Figure 7.4: Estimation of the RMM term in z axis via the RAUKF (red line) and AUKF 
(black line) as a part of the overall estimation scheme.  

B. Effects of the R Adaptation 

The same scenario is repeated by considering a sensor malfunction in between 30000th and 
30200th seconds this time. Fig. 7.5 gives the pitch angle estimation result comparing the 
cases that the first filter is the RAUKF or just the regular UKF. As expected the UKF 
estimations deteriorates in case of measurement fault and it takes an additional 1000 
seconds for the filter to converge again and satisfy estimation results with error less than 
0.1deg.  

If we examine the results for the RMM estimation (Fig. 7.6) we see that any malfunction in 
the magnetometer measurements and so deterioration in the estimation of the first stage 
highly affects the performance of the second filter and the RMM estimation. This is also 
because the second filter considers additional bias in the magnetometer measurements as a 

variation in the RMM. Since ˆ
mes magB b is an input to the second filter, which is used within 

the propagation model, an abrupt change in the measurements, mesB ,  is sensed by the 

second UKF as a variation in the RMM terms. As given with (2.44) the magnetic 
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disturbance torque is formulated as md r N M B . For this specific simulation example the 

additional bias in the xB is considered by the second filter as a change in the yM  and zM

terms because of the cross product and its detractive effect is clear in Fig. 7.6. On the other 
hand, when the first filter is robust against measurement malfunctions it senses any abrupt 
variation in the measurements and by counteracting the fault for the estimation procedure it 
also prevents the second filter from any kind of error. 

 

Figure 7.5: Estimation of the roll angle via the RAUKF (red line) and UKF (black line) as a 
part of the overall estimation scheme in case of measurement malfunction. 
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Figure 7.6: Estimation of the RMM term in y axis via the RAUKF (red line) and AUKF 
(black line) as a part of the overall estimation scheme in case of measurement malfunction. 

C. Effects of the P Adaptation 

In this last part basically the outputs of the second filter are tested against instantaneous 
changes in the estimated RMM parameters. At 30000th second the abrupt change is 
simulated as given with (7.3) and the second filter is run both with and without P 
adaptation. As expected the UKF with the proposed P adaptation procedure quickly catches 
the new value of the RMM term while it takes more than 5000 seconds for the regular filter 
without adaptation to converge and satisfy the desired estimation accuracy (Fig.7.7). 
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Figure 7.7: Estimation of the RMM term in y axis via the UKF with P adaptation (red line) 
and UKF without P adaptation (black line) as a part of the overall estimation scheme in 
case of instantaneous change in the estimated RMM parameters (figure is zoomed to the 

estimations in between 30000th and 35000th seconds). 

7.2.2. Performance Comparison 

Another essential evaluation for the overall scheme is examining the accuracy of the 
attitude estimations. By using the proposed method it is possible to determine the attitude 
of the nanosatellite with an accuracy higher than 0.01deg , which is much better than the 

goal set as 0.1deg initially. That shows us it is possible to increase the attitude 
determination accuracy of a nanosatellite, which has magnetometers, gyros and 
magnetorquers onboard, to a level at around 0.01deg when the magnetometers and gyros 

are in-orbit calibrated, the estimator is adaptively tuned and robust against measurement 
faults.   

Furthermore, the proposed overall attitude estimation scheme provides RMM estimation 
with an absolute error less than %10 of the magnitude of the actual values and that is 
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sufficient for feedforward cancellation technique which will be used as a part of the attitude 
control algorithm.  

The only drawback of the proposed algorithm is the increased computational load when 
compared with the classical methods such as estimating only the attitude and gyro biases by 
the EKF. In Table 7.1 a stage by stage evolution for the computational load of the proposed 
algorithms is given. The main increment is caused by using the UKF instead of the EKF 
and that increases the load 2.82 times. In this specific case we think the main reason for 
such increase is the transformations between the full and error attitude representations and 
necessity for applying these transformations to all sigma points. On the other hand, if we 
had preferred using the EKF we would not be able to achieve high accuracy and there will 
be possibility for filter to not converge to the real values even for a simple problem as 
discussed in (Crassidis and Markley 2003). When the overall scheme is compared with the 
UKF based algorithm for estimating just the attitude and the gyro biases, the computational 
load is almost doubled. However, this is normal if we regard that there are two filters 
running serially for the overall scheme.  

Table 7.1: Comparison of the computational load of proposed algorithms with the EKF. (*) 
Here EKF is built as the Multiplicative Extended Kalman Filter which uses quaternions for 

the attitude representation.   

 The Algorithm Computational load (EKF(*)=100) 
The regular UKF algorithm for 
attitude and gyro bias estimation 

282 

The regular UKF algorithm for 
attitude, gyro bias and 
magnetometer bias estimation 

398 

The AUKF algorithm for attitude, 
gyro bias and magnetometer bias 
estimation 

459 

The RAUKF algorithm for 
attitude, gyro bias and 
magnetometer bias estimation 

470 

The overall attitude estimation 
scheme 

566 

 

In summary the overall attitude estimation scheme increases the accuracy of the attitude 
determination procedure significantly but sacrifices the computational performance. A 
tradeoff between them might be done by the designer regarding the mission requirements.    
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8. Conclusion and Recommendations 

The main results of the thesis are summarized in the chapter and recommendations for the 
future work are given. 
 
The primary aim of this thesis was to propose an accurate attitude determination and 
control method for nanosatellites with magnetic sensors and actuators. In this context 
several practical problems that appear when the magnetometers and magnetorquers are 
used as the attitude hardware are addressed and possible solution techniques were proposed. 
These are: 
  

 In-orbit calibration of the magnetometers and gyros by using a single UKF 
algorithm was realized. This is a practical calibration method, and the 
magnetometers are efficiently calibrated without concerning about the on-
ground calibration procedure. 

 

 Two techniques were proposed for process noise covariance adaptation of the 
UKF and by using the appropriate one the UKF which is used for attitude 
estimation and in-orbit sensor calibration was adapted. It was shown that the 
estimation and calibration performance was remarkably improved. Such 
method might be useful both for actual implementation onboard or to determine 
the optimal Q values for the UKF by tests before using in the real time 
application. 

 

 Single and multiple scale factor based adaptation techniques were examined for 
building an UKF robust against the measurement malfunction. The proposed 
algorithms were tested for the attitude estimation of the nanosatellite and the 
results were compared for various measurement failure cases. 

 

 An estimation algorithm for the RMM was given regarding the sudden changes 
in the estimated parameters. A novel method for change detection and KF 
adaptation was proposed. Simulation results showed that the presented 
algorithm works properly for the RMM estimation in case of sudden changes. 
Using this algorithm we guaranteed that the filter has both good steady-state 
accuracy and tracking capability. 
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 An overall attitude estimation method for the nanosatellite carrying 
magnetometers, gyros and magnetorquers was presented and tested. The 
performance of the overall attitude estimation scheme is evaluated by 
demonstrations for a hypothetical nanosatellite. 

Possible further discussions on these topics may be: 

 Possible methods for reducing the computational load of the overall attitude 
estimation algorithm might be searched. 
 

 The change detection method for the RMM estimation should be tested for false 
alarms. 
 

 The KF adaptation method given for the RMM estimation is based on 
multiplication of the filter covariance with a scalar determined by the weighting 
function. Using a matrix instead of the scalar might be better especially if the 
change in all of the estimated parameters is not in the same magnitude. 

 

 The proposed overall attitude determination method for nanosatellites might be 
tested with applications.    
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Appendix A: Attitude Control of the Magnetically 
Actuated Nanosatellite 

In this thesis we discussed several issues regarding the design of an attitude determination 
scheme for a nanosatellite with magnetic sensors and actuators. Undoubtedly, attitude 
control for such satellites is also an important problem which should be solved for 
proposing a complete attitude determination and control method. On the other hand, 
attitude control by means of solely magnetic actuators (i.e. magnetorquers) forms a 
standalone issue because of its complexity, so we believe it should be considered as a part 
of another study. In this appendix, we review the pure magnetic attitude control problem by 
referring to well known studies and summarize our recent work which might be a candidate 
for solving the problem by an approach different than the ones in the literature. 

A.1. A Review for the Attitude Control by Magnetic Actuation 

One of the main issues for increasing the ADCS performance of a nanosatellite with 
magnetic sensor and actuator is the accuracy and applicability of the method used for pure 
magnetic attitude control. Pure magnetic attitude control refers pointing the satellite using 
only magnetorquers as the actuators. Using magnetic coils for the attitude control purpose 
is not a new topic and the first investigations go back to 1960s. Nonetheless, since the 
feasibility of the periodic control techniques for the magnetic attitude control was proved 
(Wisniewski 1996), it has been more and more popular because of its advantages for small 
satellite applications. A comprehensive survey for magnetic attitude control can be found in 
(Silani and Lovera 2005). There are also more recent studies which propose different 
approaches to the problem (Reyhanoglu and Drakunov 2008; Sofyali and Jafarov 2012). 
The main drawback of all researches on the pure magnetic attitude control is the 
dependency to the orbital periodic variation of the Earth’s magnetic field. This is because 
of the inherent constraint of the problem: the applied control torque must lie in the plane 
orthogonal to the magnetic field vector as given in Fig. A1. In figure, B is the magnetic 
field vector of the Earth, reqN is the required torque for attitude control purpose and magN is 

the applicable magnetic control torque which is orthogonal to the vector B . For defining 
the problem explicitly, we may rewrite Eq.2.42 as 
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Figure A.1: Limitations of the magnetic attitude control. 
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Here, for ( )B b matrix  ( ) 2rank B b  . So, the satellite is instantaneously underactuated and 

we cannot apply a control torque about all three axes in an independent manner. Full 
controllability is only guaranteed if the spacecraft experiences a variation in the direction of 
the magnetic field along each orbit such that (Silani and Lovera 2005), 

3
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( ( ))col
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Here, T is the orbital period of the satellite. Hence, three axis stabilization is possible only 
if the orbit of the satellite experiences a variation of the magnetic field which is sufficient 
for stabilizability. This condition strictly depends on the inclination of the orbit; the 
controllability tends to increase with the orbit inclination and the satellite with solely 
magnetic actuators is almost uncontrollable in equatorial orbits.  

A.2. Discussion on the Recent Studies 

Our recent study on this problem is to search for a method to control the attitude of the 
satellite by means of solely magnetorquers without any dependence to the orbital 
periodicity of the Earth’s magnetic field. In this sense an analogy with a satellite with two 
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control inputs about two axes (e.g. a satellite with two thrusters) might be useful. In this 
case the satellite dynamic equations are written as 

,y zx x
y z

x x

J Jd T

dt J J

  
 

  
 

                                        (A.4) 

,y yz x
z x

y y

d TJ J

dt J J


 

 
   
 

                                       (A.5) 

x yz
x y

z

J Jd

dt J

  
 

  
 

                                           (A.6) 

Obviously this system is an underactuated system and there is no torque input for 

controlling the angular velocity around the z axis, z . However, some researchers show 

that using only two control torques, three-dimensional angular velocities and/or attitude of 
a satellite can be controlled and in order to achieve that, non-integrable constraints should 
be utilized (Yoshimura et al. 2011; Crouch 1984). A system with non-integrable constraints 
is called nonholonomic and states of such system can be controlled even if the number of 
the actuators is less than the number of generalized coordinates. A car with its limited 
configuration for parallel parking (i.e. parallel parking problem) is a good example for 
nonholonomic systems and has been widely discussed for path planning issues (LaValle 
2006).  

Before designing the controller for the underactuated satellite system (A.4-A.6) it must be 
proven that the system is controllable. Such examination is covered by the studies on 
nonlinear controllability and as the first step the system should be expressed in the control-
affine form: 

0
1

( ) ( )
m

i i
i

x g x u g x


  .                                            (A.7) 

Here, 0g  is the drift vector (dynamics), ig  are the control vector fields and iu  are the 

control inputs such that  i=1…m. 

Then, as discussed in (Crouch 1984) the geometric control theory can be applied to the 
spacecraft’s dynamic model and the controllability can be analyzed using the Lie algebra 

and concept of Lie brackets. Assuming 1g  and 2g are two control vector fields, the standard 

definition of the Lie bracket is 
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Basically if the new vector fields (e.g. 3 ng g ) calculated by Lie bracketing the others  

produces motion in all directions of the state space that is not accessible with the existing 
control inputs (Lie algebra rank condition is satisfied) that means the system is controllable. 
For the example of satellite with two thrusters such analyses might be seen in details in 
(Crouch 1984; Wang et al. 2013). 

After showing that the system is controllable the controller can be designed. Nonetheless, 
the closed loop control of nonholonomic systems is very difficult, especially because of 
fundamental restrictions that prohibit the existence of smooth feedback controllers which 
asymptotically stabilize a point (Brockett 1983; Murray and Sastry 1993). A nonholonomic 
system can be stabilized only by means of smooth time-varying or discontinuous (e.g. 
sliding-mode) feedback control laws.  Same methodology should be followed for a satellite 
with two control inputs as extensively discussed in the literature (Morin and Samson 1997; 
Wang et al. 2013; Yoshimura et al. 2011).  

The controller design procedure for a satellite with solely magnetic actuators might be 
similar when we want to control the satellite without any dependence to the orbital 
variation of the Earth’s magnetic field. In (Bhat 2005) a controllability analysis using the 
Lie brackets is performed but assuming that the spacecraft experiences a variation of the 
magnetic field along the orbit. For our case such analysis must be performed assuming that 
the magnetic field in the orbit coordinate system is constant and in the body coordinates the 
terms of B depends only on the attitude of the spacecraft such that B = B(q) . In this case 

the control vector fields will be, 
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z y
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                   (A.9) 

Here CxM , CyM and CzM are magnetic control inputs (magnetic dipole for each torquer) and  

1g , 2g   and 3g  are control vector fields.  

Specifically for pure magnetic control, the problem arises from the linear dependence of 

three vector fields 1g , 2g  and 3g , which is not in question for a satellite with two thrusters. 

Because  ( ) 2rank B b   and it means that we cannot use all three of the control vector 
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fields to derive another level of Lie bracket and gain dimension in terms of control. Two 
main ideas to proceed are: 

- Start derivation for an underactuated system such that we have two magnetic 
torquers. Neglect the torquer in one direction. 

- Perform coordinate transformation to some axis team where one of the control terms 
is always parallel to the magnetic field vector so does not produce any torque. A 
similar problem is investigated in (Wang et al. 1998) for an isoinertial satellite 
( x y zJ J J  ). In this case the spacecraft dynamics and kinematics must be 

represented in this new coordinate system. 

In summary, the problem of attitude control by means of solely magnetorquers without any 
dependence to the orbital periodicity of the Earth’s magnetic field is analogous to the 
attitude control by two thrusters since both systems are instantaneously underactuated. 
Therefore a similar methodology might be followed for first proving the controllability of 
the system and then designing the controller. On the other hand, for pure magnetic control, 
a modification such as the coordinate transformation might be necessary. 
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