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Abstract

Online social network services has become one of the most influential and key
source of service providing, information/knowledge sharing and many other In-
ternet based activities. The rapid growth of social networks shows the increasing
popularity of these services among the users. The growth of social networks oc-
curs as a result of adding new users and new links between users. The emergence
of new links has primacy in the study of social network evolution. Thus, pre-
dicting/recommending future links in social networks has attracted a great deal of
attention. Link prediction has many applications and, it offers many benefits to
the users of social networking services such as providing fast and accurate rec-
ommendations or suggestions to the users. However, highly structured massive
real-world networks involving heterogeneous entities with complex associations
have added new challenges to link prediction research due to different factors such
as sparsity, complexity, size, time-dependent nature of the networks.

There have been numerous attempts to address the problem of link predic-
tion through diverse approaches. Most common way is to measure the close-
ness/similarity of nodes to each other in terms of different social aspects. These
similarities change over time due to highly dynamic behavior of social networks.
The existing static similarity measures have not been able to cope with rapidly
evolving social networks thus, are not sufficient for accurate link prediction. In
order to alleviate this problem, we contributed by introducing two novel time-
aware features, 1) Time score which is capable of dealing with temporality of
common neighbors and, 2) 7_Flow computes information flow between nodes by
considering link activeness which vary over time. We used the latest timestamps
of interactions/links to compute them. The novel features used in conjunction with
supervised machine learning method for link prediction. Both methods tested on
real world social networks namely, facebook friendship network data and coau-
thorship data extracted from ePrint archives. The results revealed a significant
improvement in link prediction accuracy for both features comparing with the ex-

isting features.
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Chapter 1
Introduction

Summary: This chapter briefly discuss about social networks and link prediction.
Section 1.1 presents the general definition of social networks and their aspects.
Link prediction is an inseparable part of social networks. Section 1.2 discuss an
overview of link prediction in social networks and the benefit of link prediction.

In the following sections we presented our motivation behind this research work.

1.1 Social networks

A social network™ is a structure consist of entities which can be individuals, groups
or organizations, and the relations or associations among them. With the emer-
gence of the Internet, the online social networks have been gained increasing
popularity. Online social networks has become one of the most influential and
key source of service providing, information/knowledge sharing and many other
Internet based activities. Social networks are composed of users (nodes) and asso-
ciations (edges) among them. The users can be individuals, groups, organizations,
etc. Users join a social network, publish their own content, profile and create links
to other users in the network by making “friendships”. The lexical meaning of a
“friendship” depends on the network. It can be a ordinary friendship, scientific

collaboration, business relationship, etc. The growth of social networks occurs as

* In this thesis we used “network” and “graph” to refer the same entity while “vertices” and
“nodes” also the same. The terms “links” and “edges” interchangeably used to refer the associa-
tions or relationships between nodes.



a result of adding new users and adding new links.

Social networks serve a range of benefits to its users:

Support for organizing & sharing contents to make friendships: Most social
networking services provide platforms for users to create, share and organize their
own profiles. These services has become extremely popular due to availability of
user oriented, enhanced methods to interact with other users. Social networking
sites such as facebook (over 1 billion users), Twitter* (over 200 million users),
are examples of wildly popular networks used to share and organize the contents,
finding friends. Social networks such as Flickr®, YouTubel, are examples for so-
cial networks for sharing multimedia content such as photos, videos.

Support for sharing knowledge, learning & collaboration: Social networks en-
hance informal learning and support social connections within users or organiza-
tions for sharing their profiles for academic and business purposes. The users of
such service can find the suitable candidates who match the personal or organiza-
tional interests. LinkedIn!, a social network made up over 200 million profession-
als is an example for academic as well as business oriented social networks.
Support for communication: E-mail networks are an example of communication
social networks. The modern e-mail system has integrated state-of-art commu-
nication technologies such as dialing, chatting, video conferencing in order to
empower the users. It has permitted complex heterogeneous social connections
between users.

Modern multi-relational, heterogeneous social networks has been analyzed us-
ing different approaches such as graph theory, graph mining [98]. Social Network
Analysis (SNA) is the study of relations between individuals including the anal-
ysis of social structures, social position, role analysis, and many others. Nor-
mally, the relationship between individuals, e.g., kinship, friends, neighbors, etc.
are presented as a network. Traditional social science involves the circulation of
questionnaires, asking respondents to detail their interaction with others. Then a
network can be constructed based on the response, with nodes representing indi-
viduals and edges the interaction between them. This type of data collection con-

fines traditional SNA to a limited scale, typically at most hundreds of actors in one

T www.facebook.com # www.twitter.com ¥ www.flickr.com 1 www.youtube.com
I www.linkedin.com
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Figure 1.1: Example of a social network depicting the structure of links between
nodes A through F. It has links both bi-directional and one-directional

study. With the prosperity of Internet, many social networking and social media
sites are emerging, and people can easily connect to each other in the cyber space.
This also facilitates SNA to a much larger scale — millions of users or even more
in a network; Examples include email communication networks, instant messen-
ger networks, mobile call networks, friendship networks. Other forms of complex
network, like coauthorship or citation networks, biological networks, metabolic
pathways, genetic regulatory networks, food web and neural networks, are also
examine and demonstrate similar patterns. These large scale networks of various
entities yield patterns that are normally not observed in small networks. In addi-
tion, they also pose computational challenges as well as new tasks and problems
for the SNA.

An example of a social network has shown in Figure 1.1. Node A to F de-
note users and edges represent the relationships between them. Nodes and edges
are associated with attributes such as age, gender, time of link creation, etc. In
this Figure, edges have direction, bi-directional and one-directional, but node at-
tributes are not shown. Extreme popularity and rapid growth of these online social
networks has opened a unique opportunity to study and understand the dynamics
of the evolution of such networks. On the other hand, the availability social net-
work data and the analytical methods developed on them has made it easy and in-
teresting to do research on social networks. This ability of data has also broadened

the variety of disciplines contributing to the advance of social network research.



Social network analysis has different perspectives such as sociological, busi-
ness, theoretical, etc. The research in this thesis mainly focused the evolution of
social networks. Past research have been extensively studied the growth, shrink
and other characteristics of modern social networks [16]. Although those research
have done tremendous effort to develop methods to understand the dynamics of
the social networks, identifying the mechanisms by which they evolve is a funda-
mental question that is still not well understood, and it forms the motivation for
our work here. We specially investigated the time-related mechanisms in order
to predict the future potential links of a given network. To best of our knowl-
edge, correlations between link evolution and temporal behavior of nodes/links

still largely open for research.

1.2 Link prediction

Link prediction is the most fundamental problem that attempts to infer which new
links are likely to occur in the near future based on the topological,node and edge
properties in a given network [52]. That is, if we are presented with a snapshot
of a network at the current time, the goal is predicting links that will occur in the
next time step. As part of the recent surge of research on large, complex social
networks and their properties, a considerable amount of attention has been devoted
to the computational analysis of social network evolution. In social networks
nodes represent people or other entities embedded in a social context, and whose
edges represent interaction, collaboration, or influence between entities.

Link prediction problem has interpreted and defined in many ways. We discuss
few of them briefly. A detailed discussion of related work presented in Chapter 2.
In data mining perspective, link prediction problem as a link mining task because
many real-world networks composed of variety of entity types linked via multiple
types of relations. An emerging challenge for link mining is the problem of mining
richly linked datasets to explore the knowledge behind the links or relationships.
This knowledge provide additional advantage that can be helpful for many data
mining tasks. Yet multi-relational data violates the traditional assumption of in-
dependent, identically distributed data instances that provides the basis for many

statistical machine learning algorithms. Therefore, new approaches are needed
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that can exploit the dependencies across the attribute and link structure [27]. Link
prediction can be divided in to two cases: (1) predicting entirely new links which
means those links are never appeared in the network. New links emerge in be-
tween existing nodes as well as by adding new nodes. Predicting links added by
latter case is extremely hard problem. Thus, most of the research has been at-
tempting to find methods to predict links among the existing nodes. (2) predicting
repeating links, that is, some links are not visible in the network during the ob-
served period of time but they appeared either before or after the observed prod of
time [102]. However, if time is a part of the predictive model, then repeating link
prediction refer to the same task which is to predict the evolution of a network in
terms of new edges that will be added in the future. According to the probabilistic
perspective, Link prediction is an estimate of the likelihood or probability of the
future occurrence of a link in a network or estimating the probability of whole
network taking a particular form by adding set of new links. In both cases the
complex dependencies among the links are required to address using probabilistic

and statistical models [25].

Past research have been introduced lots of algorithms and methods to solve
the long-standing problem of link prediction. Those worthy research have proved
that link prediction has many applications and, it offers many benefits to the users
of social networking services. Individual users of these services can find their
friends, colleagues, or people whom they wish to meet efficiently and accurately
[26]. For example, online social networking services such as facebook, linkedin
could use link prediction to provide fast, accurate service and precise recommen-
dations or suggestions to their users. Organizations such as security agencies and
business organizations can find more accurate information regarding unseen rela-
tionships among people or organizations and operate accordingly. Link prediction
in scientific collaboration networks has been a fundamental research area. Many
researchers have addressed this problem with different approaches because of its
utmost importance for the development of research. The effective systems en-
able researchers to find experts, other individuals in the same research field and
research organizations in a more productive manner [84, 88]. The evolution of bi-
ological networks such as gene networks, protein-protein networks also have stud-

ied as link prediction task [40, 39]. This has been a great privilege to researchers
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who are working in field of bioinformatics because biological networks are not
easy to observe and understand the microscopic and macroscopic properties of
evolution. Once the properties are revealed it can be used to predict the missing
links, which is referred as the network completion problem [42]. In network com-
pletion problem knowledge extracted from an observed part of a network is use
to estimate the unseen parts of the network. Link evolution and group or cluster
formation are correlated. They can’t be considered as independent mechanisms.
Therefore, combined approaches of graph clustering and link prediction meth-
ods have been used for community detection and proved their consistent accuracy
and effectiveness over the graph clustering methods itself [99]. Predicting links
among the documents such as research publications, web documents, are also a
part of link prediction research. Although the domain is different from the tra-
ditional social network the methods and technology used for link prediction are
similar. Some research have devised models to predict the document connectiv-
ity using semantic information of the documents. Link prediction approaches has
been used in other domains such as email anomaly detection, collaborative filter-
ing, and health-care. Application of link prediction methods have shown highly
productive results in those domains.

Highly structured massive real-world networks involving heterogeneous enti-
ties with complex associations have added new challenges to link prediction re-
search [25]. Besides that, the dynamic behavior of social networks has added an
immense challenge to the ink prediction research. Thus, we set our goal to make
use of the knowledge extracted from dynamic/temporal behavior of networks to

formalize methods which leads to accurate link predictions.

1.3 Motivation

Vast majority of past link prediction research have been used static features or
attributes of nodes, links and topological features to predict the future links. Only
few research have been considered the temporal behavior of nodes and links. Al-
though most of the static features provide a worthy knowledge about general so-
cial phenomenon which could use to predict the potential links, temporal features

have huge impact on link evolution. The static features assume that they never
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changes over time which is not true every time. It is worthwhile to study how to
use the knowledge gained from temporal behavior of nodes and links to predict
future potential links. Hence we set the goal of this thesis to study and under-
stand temporal behavior of node and links and how it can be used to predict future
link evolution. To this end, we investigated the factors which make nodes and
links to become strong/active periodically. Stronger/active links and nodes have
greater influence over link evolution than weaker links and nodes. We found that
temporality can be caused by various factors depending on the nature of the net-
work. We focused on finding factors which are common across most networks.
Our studies revealed that timestamps of links or interactions provide the essen-
tial knowledge of temporal behavior. Further, timestamps of links/interactions are
useful to study the temporality in most online social networks. With this back
ground knowledge we focused on finding new methods, which incorporate the
temporality using timestamps, for predicting future links in social networks. To
our knowledge, this scenario has not been discussed sufficiently in the context of
link prediction. The main contribution of this piece of study is determining the
impact of the relationship between the time stamps of the interactions and the link
strength for future links. To this end, we introduce two time-aware features which
are significantly improved the link prediction accuracy in rapidly changing social

networks.

1.4 Organization of the thesis

The remainder of this thesis is organized as follows.

Chapter 2: Related work discuss the past research related to the research pre-
sented in this thesis. The discussion begins with the introduction of link predic-
tion problem and how it has been addressed by various approaches. We conclude
this chapter by summarizing common disadvantages which drew us towards the
presented research.

Chapter 3: Machine learning for link prediction starts with the discussion of
methods which have been used for link prediction. It particularly focused on ma-
chine learning methods used in the past research. We describe the key aspects of

supervised and unsupervised learning methods with reasoning why we selected
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supervised learning method in this research.
Chapter 4: Time score introduce a novel time-aware feature defined on common
neighbors. We have shown the effectiveness of Time score in link prediction with
experimental evaluation using real world data.
Chapter 5: T_Flow algorithm presents a novel extension of a random walk algo-
rithm, PropFlow [57], which have used for link prediction. The novelty of T_Flow
algorithm is that it is sensitive to the dynamic behavior of links. The experimental
results confirms that 7_Flow outperform the previous algorithm. Besides that, we
argue that this method is applicable to any flow-based algorithm.
Chapter 6: Conclusion and Future works summarize and discuss the contribu-
tions of this research work. It also discuss the limitations of the features intro-
duced in this research work, and and future directions of our research.

The sole purpose of this thesis is to provide in detail description of the time-
aware features we invented in our research to the research community who are
interested in using them. The novel methods introduced here is generally applica-

ble to any sort of social network.



Chapter 2

Related work

Summary: Link prediction for social network data is a fundamental data mining
task in various application domains, including social network analysis, informa-
tion retrieval, recommendation systems, record linkage, marketing and bioinfor-
matics. Link prediction research has been attracted great deal of attention with
the surge of online social networking services. In this chapter, we review some
of the state-of-the-art link prediction research focused on social networks. We
summarized recent progress about link prediction algorithms, emphasizing the
contributions from different perspectives and approaches, such as graph theoretic
approaches, probabilistic approaches, similarity-based approaches, ect. Those
methodsjalgorithms have been used to extract knowledge regarding the evolution
mechanisms of social networks which then can be used to infer the future poten-
tial links. Finally, we outline the incompetency of handling the dynamic/temporal

behavior of networks by many prediction methods discussed in this chapter.

2.1 Graph theoretic approaches

Graph theory or network theory is a mathematical approach to study and model
the structure of graphs or networks. In the mathematical literature, network is a
collection of nodes joined by links. Mathematical models has been extensively
used in link prediction research to foresee the future form of a current network.

Graph theory has been built upon structural patterns of networks which is referred

9



as graph topology. Topological properties such as clustering coefficient, short-
est paths, average path length, betweenness centrality, closeness centrality, degree
distribution, etc. of a network can be used to derive the principles of network evo-
lution models. The descriptions of some fundamental topological features men-

tioned above is as follows:

o Clustering coefficient C is defined as:

_ 3= number of triangles in the network

= 2.1
Number of connect triples of vertices @D

e Shortest paths is a fundamental concept in graph theory is the geodesic
distance or shortest path of edges that links two given vertices. There may
not be a unique geodesic distance between two vertices. A node pair can

have two or more shortest paths.

e Average path length is one of the three most robust measures of network
topology, along with its clustering coeflicient and its degree distribution.
Consider an unweighted graph G with n nodes. Let d(i, j) denotes the short-
est path between nodes i and j. If i # j then the average path length [; is
defined as;

1 -
lo= s ZJ} d(i. j) (22)

e Betweenness centrality quantifies the number of shortest paths pass through

a node.

e Closeness centrality can be regarded as a measure of how much a node close
to the other nodes in a network. Let G be a graph and i, j € G are nodes.
Let d,(i, j) be the shortest path between them. The Closeness centrality C,

of i defined as; |

Co=———=
ZjEG ds(l’ ])

(2.3)

e Degree distribution is the probability distribution of these degrees over the

whole network.
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Except the above topological features, there are various structural features have
been introduced in the past research. Most of them are variants or extensions of
the fundamental topological features. Newman et. al. have extensively studied the
social network evolution using scientific collaboration networks [78]. They pro-
posed models to incorporate topological patterns such as clustering coefficient to
the random graph models to make robust graph generation models which are used
to study the evolution of modern social networks [80]. The results of such inves-
tigations show that evolution of most scientific collaboration networks obey the
above mentioned principle graph theories [77]. Further, they devised a method to
construct weighted graphs using coauthorships. The weights used as the strength
of collaborative links. These new methods lead to build more robust yet compli-

cated models for network evolution.

Recently, after a surge in interest in network structure among researchers as a
result of research on the Internet and the online social networks, another branch
of research has investigated the statistical properties of networks and methods for
modeling networks either analytically or numerically. One important and funda-
mental result that has emerged from these studies concerns the numbers of links
that nodes have to other nodes, their so-called “degrees”. It has been found that
in many networks, the distribution of node degree is highly skewed, with a small
number of nodes having an unusually large number of links [79]. Empirical stud-
ies have proposed number of random graph models based on degree distribution.
Erdos and Reényi model is, arguably the most famous one of them. This random
graph model is simple to define. One takes some number N of nodes or vertices
and places links or edges between them, such that each pair of vertices i, j has a
connecting edge with independent probability p. Consider a node i in a random
graph with n number of nodes. It is connected with equal probability p with each
of the n — 1 other vertices in the graph, and hence the probability p, that i has

degree exactly k is given by the binomial distribution:

-1
pe = (” L )pk (1=py 24)

However, as a model of a real-world network, it has some serious shortcomings.

Perhaps the most serious is its degree distribution, which is quite unlike those

11



seen in most real-world networks due to the independence assumption is not true

in general.

The well-known Barabsi-Albert model [6], which is based on preferential at-
tachment, is an algorithm for generating random scale-free networks using a pref-
erential attachment mechanism. Scale-free networks are widely observed in natu-
ral and human-made systems, including the Internet, the world wide web, citation
networks, and some social networks. In the Barabsi-Albert model, new links are
attached to nodes using a probability distribution weighted by node degree, result-
ing in linear preferential attachment. New nodes are added to the network one at
a time. Each new node is connected to existing nodes with a probability that is
proportional to the number of links that the existing nodes already have. Formally,

the probability p; that the new node is connected to node i is:

ik

Di (2.5)
where k; is the degree of node i and the sum is made over degree of all pre-
existing nodes j (i.e. the denominator results in the current number of edges in the
network). Higher degree tend to quickly accumulate even more links, while nodes
with only a few links or lower degree are unlikely to be chosen as the destination
for a new link. The new nodes have a “preference” to attach themselves to the

already heavily linked or higher degree nodes.

Another model introduced by Clauset et. al. based on power-law distribution
[17]. This model is widely used to model scale-free networks. A power law is
a type of probability distribution if the frequency (with which an event occurs)
varies as a power of some attribute of that event (e.g. its size), the frequency
is said to follow a power law. In the context of networks, the frequency is the
number of nodes and the attribute is the degree of the nodes. The frequency of
nodes decrease according to the power law as node degree increases. A scale-free
network is one with a power-law degree distribution. Scale-free networks are a
type of network characterized by the presence of large hubs, that is, there exist

few nodes which are highly connected. For an undirected network, we can just
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Figure 2.1: Power-law degree distribution of facebook

write the degree distribution as;
Pdeg(k) o k77 (26)

where y is some exponent. This form of Pg,(k) decays slowly as the degree k
increases, increasing the likelihood of finding a node with a very large degree.
Figure 2.1 shows the degree distribution of facebook which as an example of
power-law distributions in the modern social networks.

The most of graph theoretic approaches have been tried to model the graph
evolution mechanism at macroscopic level. In contrast, some other methods such
as probabilistic and similarity based methods have been introduced to model the
network evolution at microscopic level. We discuss those methods in the follow-

ing sections.

2.2 Probabilistic approaches

In principle, probabilistic approaches try to estimate the likelihood of potential
links. The potential links with higher probabilities are more likely to happen than
the links with lower probabilities. In contrast, the models such as exponential
random graphs are used to estimate probabilistic models for the whole network.

Thus, the probabilistic approaches can be put into two groups which models esti-

13



mate probabilities of individual potential links and models estimate probabilities
of potential structures of a current network. Besides that, we have to note that
the probabilistic methods are mostly based on the graph theoretical approaches
described in the proceeding section.

In recent years, there has been growing interest in exponential random graph
models for social networks, commonly called the P* class of models. The ex-
ponential random graph models(ERGMs) [87] are a popular approach to estimate
probabilistic models for a whole network using global features of a network, nodes
and edges. These models have been built upon statistical models which allow to
inference about whether certain network substructures, often represented in the
model by one or a small number of parameters, are more commonly observed in
the network than might be expected by chance. We can then develop hypotheses
about the social processes that might produce these structural properties. Expo-
nential random graph models is an attempt to build plausible models for networks
by overcoming limitations of early graph theoretic approaches. The general form

of the exponential random graph model for an observed graph Y is:
1
P,(Y = y) = zexp| EA] Naga(®)) @.7)

where (1) P.(Y = y) is the probability of Y taking the form y, (2) 4 is the param-
eter corresponding to the configuration A such as triangle, connected triple, etc.
(n4 1s non-zero only if all pairs of variables in A are assumed to be conditionally
dependent given the rest of the graph), (3) ga(y) = [, ca ¥i; 1s the network statis-
tic corresponding to configuration A; g4(y) = 1 if the configuration is observed in
the network y, and is O otherwise. y;; is a random variable denote the existence
of link between node i and j, (4) k is a normalizing quantity which ensures that
Equation 2.7 is a proper probability distribution. In general, exponential random
graph models are a good solution for study the evolution of small-world networks
which have small number of nodes and links. For complex and large networks
ERGMs are not the best models, and applying for large networks will have to pay
high cost for computing.

Recent link prediction research focused mostly on temporal and local patterns

of networks. It has been shown that temporal and local patterns has significant
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impact on link evolution. In the recent probabilistic approaches, local probabilis-
tic methods have been largely introduced and gained increasing popularity due
to their flexibility and effectiveness. Wang et. al. proposed a local probabilistic
model using probabilistic graph models to estimate the cooccurrence probability
of two nodes who resides within a local proximity to each other [104]. Specifi-
cally, they have used Markov Random Fields (MRF) to model the local neighbor-
hood of a node. The local proximity is defined on the path length. There are two
main stages in their approach to use graphical models in this context: (a) First,
given the candidate link (say between nodes x and y ) whose probability is to be
estimated, identifying the central neighborhood set (say w, x, y, z), which are the
nodes that are deemed germane to the estimation procedure. The identification
of the central neighborhood set is governed by the local topology of the social
network as viewed from the perspective of the two nodes whose link probability
is to be estimated. (b) once the central neighborhood set (w, x, y, z) is identified
and learn a maximum entropy Markov random field model that estimates the joint
probability of the nodes comprising the central neighborhood set, i.e., p(w, x, y, z).
In this context one can leverage the fact that most networks such as coauthorships
are computed from an event log (an event corresponding to a publication). Multi-
way statistics (e.g. non-derivable frequent itemsets whose elements are drawn
from (w, x, y, 7)) on these event logs can be used to constrain and learn the model
parameters efficiently . The resulting model can then be used to estimate the
link probability between x and y which is henceforth denote as the cooccurrence
probability. The experimental results have shown that this cooccurrence feature
is quite effective for link prediction on coauthorship networks. When used in
combination with existing topological and semantic features in conjunction with
supervised learning methods, the resulting classification performance shows con-

siderable improvements.

Tylenda et. al. investigated the value of incorporating the history information
available on the interactions (or links) of the current social network state [102].
In particular, this work is an extension of the local probabilistic model proposed
by Wang et al. [104], which described above incorporating time awareness. In
this work, they have investigated the impact of considering the temporal evolu-

tion of social networks explicitly in link prediction tasks, and make following
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contributions: (a) developed graph-based link prediction techniques that incorpo-
rate the temporal information contained in evolving social networks. The edge
weights possibly derived from temporal features were incorporated into the state-
of-the-art link prediction methods, such as the Adamic/Adar and rooted PageRank
based techniques. Their results unequivocally show that timestamps of past inter-
actions significantly improve the prediction accuracy of new and recurrent links
over rather sophisticated methods proposed recently. One interesting point of this
work is they assumed weight of a link in a network is a strictly increasing func-
tion of the time of its creation. The oldest and the latest link are assigned weights
Wpin and w,,,, respectively. Note that w,,;, > 0 and w,x > Wy, - In the experi-
ments they have used three functions. If ¢ denotes the time of a link normalized
in such way that the beginning of the data set corresponds to 0.0 and the end to
1.0, then the weighting functions are scaled and shifted variants of exp(3t), t and
/. The experimental results showed that time of interactions between entities is
a dominant feature for ranking neighboring nodes based on their probability of
future interaction with the central node. The time-aware methods introduced in
this work is used to rank the top k candidates which are likely linked with a given
node V. The possible candidates are selected from a local neighborhood of node
v. This unsupervised ranking method shows impressive results compared to the
other unsupervised ranking methods such as Adamic/Ader, common neighbors,

Jaccard’s coefficient and rooted pagerank.

Kashima et. al. introduces a new approach to the problem of link prediction
for network structured domains, such as the Web, social networks, and biological
networks [39]. Their approach is based on the topological features of network
structures, not on the node features. They have presented a novel parameter-
ized probabilistic model of network evolution and derive an efficient incremental
learning algorithm for such models, which is then used to predict links among
the nodes. This method computes the probability of creating an edge from one
node to another over time by assuming that state of an edge at time 7 + 1 depends
on the state #, which is somewhat similar to markov assumption. In this model,
probabilistic flips of the existence of edges are modeled by a certain “copy-and-
paste” mechanism between the edges. This link prediction algorithm is derived

by assuming that the network structure is in a stationary state of the network. This
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allows one to formalize the inference of the stationary state as a transduction prob-
lem, and propose an Expectation-Maximization (EM)-based transduction method.
The algorithm embodies a maximum likelihood estimation procedure using expo-
nentiated gradient ascent. The basic idea behind this model is as follows; if you
have a friend who has a strong influence on you, your association will be highly
affected by the friend’s association. Also, if a gene is duplicated in the course of
genetic evolution, the copied gene will have similar characteristics to the original
one. Assume that node k has a strong influence on node i, and there is an edge
between node k and node j. Following the above hypothesis, there will likely be
an edge between node i and node j. Similarly, if there are no edges between k
and j, there will likely be no edge between i and j. In other words, node k can
copy-and-paste one of its edge labels to i and j. An edge label ¢(i, j) indicates the
probability that an edge exists between any pair of nodes. In particular, ¢(i, j) = 1
if an edge exists between nodes i and j, and ¢(i, j) = O if an edge does not exist
between nodes i and j. Note that ¢ is symmetric. This method has been tested on
biological networks. The experimental results show a promising improvements in

link prediction.

In some cases, the structural information of networks is completely missing
or partly available while the node information available. Thus, link prediction
task becomes more challenging because the topological features are no longer
available. Leroy et.al. has proposed a two-phase method based on bootstrap prob-
abilistic graph as a solution to the above problem [46]. In the first phase, this
approach build a bootstrap probabilistic graph where its edges have probabilities
which is computed using group memberships of nodes. In the second phase, the
graph based features of probabilistic bootstrap graph is used to derive new prob-
abilities of edges which is regarded as the final outcome. This method has been
tested on Flickr data set. The idea behind this method is as follows: We are given
a set U of users and a multiset G of groups of users. We denote the set of groups
to which a user u belongs to, m(u) = {g € Glu € g,¢g C U}, as his/her membership
set. Now the task is to reconstruct the links of a social graph N = (U, A), where
the nodes are the users and the arcs A € U X U represent a (one-way) relation
between two users. Reconstructing the social network N means to predict which

of the links in U X U actually exist in A, or in other terms, to build a function
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f:UxU — 0,1. Proposed solution is a two-phase method based on the boot-
strap probabilistic graph for cold start link prediction. During the first phase, we
predict the existence of links based only on the group membership information.
The output of the first phase is the bootstrap probabilistic graph, i.e., a directed
probabilistic graph BPG = (U, E, p,), where E C U X U , and every link (u#,v) € E
is labeled with a probability p;(u,v) > O representing the confidence (or uncer-
tainty) about the link’s existence, i.e., p; : U X U — [0, 1]. In particular, after
the first phase, we have p;(u,v) = 0 and p,(v,u) = O for every user pair (u,v),
where m(u) N m(v) = . This is because if two users have no groups in common, a
prediction cannot be made about the existence of a link between them. Moreover,
we have p;(u,v) > 0 for every user pair (u, v) such that m(u) N m(v) = (this will
also hold for the reverse arc (v, u)). Links with null probabilities do not exist in
BPG. The second phase takes as input the bootstrap probabilistic graph BPG,
and it refines the probability distribution p; into a new probability distribution p,
, by means of graph based features. Therefore, the output of the second phase is
a probabilistic graph PG = (U, E, p,). After the second phase, some links that
previously had p;(u,v) = 0 can now possibly have a non-null score, p,(u,v) > 0,
thus extending the overall recall of the method .

Popescul et. al. used statistical relational learning method to predict citations
in the domain of scientific publications [85]. Link prediction models in this do-
main can be used as citation recommender services. This service can potentially
be deployed to recommend citations to users who provide the abstract, names of
the authors and possibly a partial reference list of a paper in progress. This method
composed of two main processes: generation of feature candidates from relational
data and their selection with statistical model selection criteria. In addition to pre-
diction, the learned features have an explanatory power, providing insights into
the nature of the citation graph structure. A statistical relational model for a given
database shows not only the correlations between attributes of each table, but also
dependencies among attributes of different tables. For example, publication data

can be put in a relational database tables using schema:

Citation(from:Document, to:Document),
Author (doc:Document, auth:Person),

PublishedIn(doc:Document, vn:Venue).

18



So, the learner has to learn a model from the relational data using relational alge-
bra which is used for relational feature generation.

Krzysztof et. al. proposed a predictive model of structural changes in elemen-
tary subgraphs of social network based on mixture of Markov Chains [37]. The
model is trained and verified on a dataset from a large corporate social network
analyzed in short, one day-long time windows, and reveals distinctive patterns of
evolution of connections on the level of local network topology. They claimed that
the network investigated in such short timescales is highly dynamic and therefore
immune to classic methods of link prediction and structural analysis, and show
that in the case of complex networks, the dynamic subgraph mining may lead to
better prediction accuracy . This research has been suggested that the accurate
predictions for fast-changing social networks observed in short periods of time
require the analysis of dependencies and correlations of the activity of the nodes
which may be described in terms of temporal patterns of changes in local net-
work topology. Therefore, they analyzed them from the level of the simplest of
these patterns - the connections between triples of nodes. There are 64 different
connection patterns in a directed network of labeled nodes has been identified in
this analysis. A model based on mixture of markov chains has been used with
expectation-maximization algorithm, and tested on real world network data. The
results have shown that it is possible to predict the evolution of the links in node
triads of fast-changing social network with a good accuracy.

Maximum likelihood methods also a popular probabilistic/statical method for
modeling network evolution. Using a methodology based on the maximum likeli-
hood principle, Leskovec et. al. investigated a wide variety of network formation
strategies, and show that edge locality plays a critical role in evolution of net-
works. Their findings supplement earlier network models based on the inherently
non-local preferential attachment. Leskovec et. al. presented a detailed study of
network evolution by analyzing four large online social networks namely, deli-
cious*, flickr, answers’, and LinkedIn, with full temporal information about node
and edge arrivals [47]. For the first time at such a large scale, they have studied the
individual node arrival and edge creation processes that collectively lead to macro-

scopic properties of networks. Based on their observations, they have develop a

* delicious.com | www.answers.com
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complete model of network evolution, where nodes arrive at a pre-specified rate
and select their lifetimes. Each node then independently initiates edges according
to a “gap” process, selecting a destination for each edge according to a simple
triangle-closing model free of any parameters. The authors have shown analyti-
cally that the combination of the gap distribution with the node lifetime leads to
a power law out-degree distribution that accurately reflects the true network in all
four cases. Finally, they have given model parameter settings that allow automatic
evolution and generation of realistic synthetic networks of arbitrary scale.

The probabilistic methods discussed above have not been able to cover all the
aspects of node similarities. Hence, some research has been done to explore other

similarity measures which can effectively improve the link prediction accuracy.

2.3 Similarity based approaches

The prominent characteristic of similarity based methods is that they measure the
similarity/dissimilarity of node pairs to assign a score or weight to them. More
similar node pairs get higher scores or weights and are more likely to link in the
future. Another characteristic of similarity base approaches is that they have used
a set of similarity measures rather than isolated similarity measure. This is quite
advantageous when supervised learning methods used for link prediction. There
has been number of similarity measures have been introduced for link prediction.
In general, the similarity based methods are adapted from techniques used in graph
theory and in social-network analysis; in a number of cases, these techniques were
not designed to measure node-to-node similarity and hence need to be modified
for this purpose.

Link prediction in coauthorship networks has been a major focus of link pre-
diction research. Consider a coauthorship network among scientists. There are
many reasons exogenous to the network why two scientists who have never written
an article together will do so in the next few years: For example, they may happen
to become geographically close when one of them changes institutions. Such col-
laborations can be hard to predict. But one also senses that a large number of new
collaborations are hinted at by the topology of the network: Two scientists who

are “close” in the network will have colleagues in common and will travel in sim-
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ilar circles, conferences; this social proximity suggests that they themselves are
more likely to collaborate in the near future. Liben et. al. have done lot of work
to make this intuitive notion precise and to understand which measures of “prox-
imity” in a network lead to the most accurate link predictions [52]. They found
that a number of proximity measures lead to predictions that outperform chance
by factors of 40% to 50%, indicating that the network topology does indeed con-
tain latent information from which to infer future interactions. Moreover, certain
fairly subtle measures—involving infinite sums over paths in the network—often
outperform more direct measures such as shortest-path distances and numbers of
shared neighbors. Their similarity methods consist of neighborhood based meth-
ods, path based methods and some high level approaches. Neighborhood methods
includes Common neighbors, Jaccard’s coefficient, Adamic/Adar and Preferential
attachment while the path based methods includes Katz index, Hitting time, Page
rank, SimRank . Besides the above methods the authors have used some other high
level methods such as Low-rank approximation, Unseen bigrams and Clustering.
Most of the above methods are summarized in Table 2.1. For a node x, let I'(x)
denote the set of neighbors of x in the given coauthorship network G ,;.,. These
methods have been extensively used with other link prediction research which we
discuss in this section. Link prediction performances of the methods shown in
Table 2.1 have been tested using coauthorship networks extracted from publica-
tions of five ares of the physics e-Print archivest. Although the results show that
most of the above methods outperforms the random predictors, there is no method
generally perform better on every coauthorship networks. It implies that different
method(s) works better on different data sets.

For predicting coauthorships, semantic descriptions of authors or researchers
might be very helpful for predicting links or collaborations in coauthorship net-
works. If one knew to what extent each researcher is an expert in each field, one
could potentially use this knowledge to find researchers with compatible expertise
and suggest collaborations. However, semantic descriptions are often unavailable
due to lack of supporting vocabulary. Therefore, structural attributes from the
graph of past collaborations/coauthorships can be used to train a set of predictors

using supervised learning algorithms. These predictors can then be used to pre-

¥ www.arxiv.org

21



Table 2.1: A list of similarity based methods

Method

Formula

Adamic/Adar

1
220 ) TogF @)

Common neighbors IT(x) Nyl
: : TN

Jaccard’s coefficient UGl

Preferential attachment IXE3NND]

Katzﬁ

Y21 B paths' | where |paths',|

length exactly / from x to y

weighted: | pathsiyl = number of collaborations
between x, y

unweighted: |pathsiy| = 1 iff x and y collabo-
rate

= paths of

Hitting time

Hitting time: stationary-normed
Commute time

Commute time: stationary-normed

-H,,
-H,, .y,

_(ny + Hl/x)

—(Hyy.mty + Hyy.my)

where H,, = expected time for random walk
from x to reach y

m, = stationary-distribution weight of y (propor-

tion of time the random walk is at node y)

otherwise

Rooted PageRank, Stationary distribution weight of y under the
following random walk: with probability «,
jump to x. With probability (1 — @), go to a
random neighbor of current node.
. 1 if x=y
SlmRank7 { Zael"x Zbel"z/ score(a,b)

Y- I'xIy
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dict future links between existing nodes in the graph. Based on this idea, Pavlov
et. al. proposed a supervised learning framework for link prediction in coauthor-
ship networks [84]. In this method, the authors have used many neighborhood
based and path based similarity measures , which they termed as features. Once
the features are calculated for each node pair, the node pairs are represented by a
feature vector which is used as a predictor. The definition of a predictor is very
similar to what is known in the machine learning community as a classifier. The
results confirm that the appearance of new collaborations is dependent on past net-
work structure and that supervised learning methods can exploit this dependence
to make predictions with reasonable accuracy. Since the method itself relies solely
on structural attributes of the underlying network and on general supervised learn-
ing algorithms, it can be easily extendable to any kinds of networks in which link
prediction is desirable. Later, the link prediction in coauthorship networks was
improved by introducing some semantic similarity features such as as keyword
match count for paper topics and abstracts. The previous approach, only based
on structural features implies that researchers are more likely to collaborate with
people of there entourage. However, it happens that communities based on the
same topic are not related at all, or by very few links, because of the real distance
between the people or because of a non-existing partnership between the scientific
institutions. In these many cases, having the structure of the graph is not enough
to predict the best partner in a specific domain. Therefore, some research focused
on combining the structural and non-structural attributes to resolve the problem
of link prediction: the most obvious idea for linking researchers is to compare
the topics, keywords and abstracts of their research papers. Thus, by counting the
number of words in common between all the topics, keywords and abstracts of
their previous papers, one can have a new feature based on the semantic and not
on the network structure [88, 107]. The authors have conducted experiments on
coauthorship networks combining machine learning methods and new features to
test the link prediction accuracy The experimental shows that the introduction of

semantic features have significantly improved the prediction accuracy.

In the domain of scientific collaborations, citations depict the similarity or re-
latedness of papers. Hence, the citation networks have most of the characteristics

present in the social networks, and number of link prediction research has been
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done on citation networks using semantic similarity methods. Shibata et. al. pro-
posed models to predict the existence of citations among papers by formulating
link predictions for five large-scale datasets of citation networks [96]. A super-
vised machine learning model, support vector machine (SVM), has been applied
with structural as well as semantic similarity features. Three features in particular,
link-based Jaccard coefficient , difference in betweenness centrality , and cosine
similarity of term frequency-inverse document frequency vectors, largely affect
the predictions of citations. The results also indicate that different models are re-
quired for different types of research areas-research fields with a single issue or
research fields with multiple issues. In the case of research fields with multiple
issues, there are barriers among research fields because the results indicate that pa-
pers tend to be cited in each research field locally. Therefore, one must consider
the typology of targeted research areas when building models for link prediction

in citation networks.

Modern social networking services provide users with options that enable
them to share the contents in natural ways. Web 2.0 applications have attracted
a considerable amount of attention because their open-ended nature allows users
to create lightweight semantic scaffolding to organize and share content. For ex-
ample, in facebook some one can express the feelings in terms of liking, tagging,
commenting, chatting, following, posting, etc. Thus, the necessity of understand-
ing and find similarities of the semantic meanings behind the expressions has be-
come a major topic in link prediction research. Some of the recent research has
been focused methods such as natural language processing, content analysis, sen-
timent analysis, etc. to make accurate predictions on link evolution. To date, the
interplay of the social and semantic components of social media has been only
partially explored. Schifanella et. al. focused on Flickr and Last.fm, two social
media systems in which one can relate the tagging activity of the users with an
explicit representation of their social network [91]. The authors have shown that a
substantial level of local lexical and topical alignment is observable among users
who lie close to each other in the social network. The null model introduced here
preserves user activity while removing local correlations, allowing us to disen-
tangle the actual local alignment between users from statistical effects due to the

assortative mixing of user activity and centrality in the social network. The null
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model has been built in following manner: (1) keep the social network unchanged;

(1) built the global list of tags with their multiplicity, i.e. each tag appears the total

number of times it has been used; (3) for each user with n, tags t,, 1, ..., ,,, , with
respective frequencies fi, f2,..., f,, » We extract n, distinct tags at random from
the global list of tags and assign them to user u with frequencies fi, f>,..., f,,

This guarantees that the number of distinct tags and the total number of tag
assignments for each user is the same as in the original data, and that the distri-
bution of frequencies of tags is left unchanged. This analysis suggests that users
with similar topical interests are more likely to be friends, and therefore semantic
similarity measures among users based solely on their annotation metadata should
be predictive of social links. The hypothesis was tested on the Last.fm data set,
confirming that the social network constructed from semantic similarity captures
actual friendship more accurately than Last.fm’s suggestions based on listening

patterns. The main contributions of this analysis are:

e Show that strong correlations exist across several measures of user activ-
ity, and characterize the mixing patterns that involve user activity and user

centrality in the social network.

e Developed sound measures of tag overlap, and introduce appropriate null
models to disentangle the actual local alignment between users from statis-
tical effects due to the mixing properties of user activity and centrality in the
social network. These measures were applied to the Flickr and Last.fm data
sets. The resulting analysis shows that, despite neither Flickr nor Last.fm
support globally-shared tag vocabularies, a substantial level of local lexical
(shared tags) and topical (shared groups) alignment is observable among
users who are close to each other in the social network. Also, it has found
that some observables are more adequate than others to measure lexical and
topical alignment, in the sense that they are less sensitive to purely statistical

effects.

e Inquired if the observed correlations between annotation metadata and so-
cial proximity allow to use semantic similarity between user annotations as
statistical predictors of friendship links. The evaluation of number of se-

mantic similarity measures from the literature, based on Last.fm metadata
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resulted that when consider the annotations of the most active users, almost
all of the semantic similarity measures considered outperform the neighbor
suggestions from the Last.fm system at predicting actual friendship rela-
tions. Scalable semantic similarity measures such as Maximum Information
Path, proposed by some of the authors, are among those achieving the best

predictive performance.

The results shows that using any of the tested social similarity measures were able
to improve on the accuracy of the social link predictions provided by Last.fm, and
the improvements were especially significant for users who are active taggers.
Aiello et. al. further extended the above research by studying the homophily
in three systems,namely Last.fm®, Flickr.com and aNobii!, that combine tagging
social media with online social networks [3]. They found a substantial level of
topical similarity among users who are close to each other in the social network.
Those recent research reveal that the relationships or links are formed according
to the social science phenomenon, and semantic similarities play a vital for link
formation in modern online social networks.

The problem of link prediction actually consists of a family of prediction prob-
lems. So far, the previous literature on link prediction is restricted to link predic-
tion within the same network.The similarity measures are not limited to the node
and edges in one network. Similarities exist between different social networks.
Those similarities can be effectively used for link prediction across multiple so-
cial network, which is referred as heterogeneous link prediction. This is a new
dimension of link prediction. With the surge of social networks it is difficult to
investigate each and every network. Instead of that, one can use the knowledge
extracted from similar social networks to study the evolution of the other net-
work. This technology is called transfer learning. This is an emerging trend in
link prediction research. Ahmad et. al. proposed a new problem, inter-network
link prediction (INLP), which is the problem of predicting the formation of links
across networks 1.e., given networks G and G, the task is to use information from
G, to make predictions about G, and vice versa [2]. Link prediction techniques
exploit various techniques like the attributes of the nodes, topological features of

the graph or aggregate features of the nodes to make predictions about the links.
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The performance of some of these techniques can be enhanced by adding domain
knowledge to these techniques. An often neglected source of domain knowledge
is social science theories which link back to network processes that may be going
on in various social networks. It has shown that the insights from theories of social
communication can be effectively use to enhance the internetwork link prediction
task. Many of these theories propose the existence of “Structural Signatures” (ex-
pected subgraphs) which are likely to be present in certain types of networks. The
main idea structural signatures is to identify a set of substructures or subgraphs
which are likely to be present in certain types of graphs which are known to be
generated by certain social processes. In other words, If we see some transforma-
tion between two types subgraphs occurring in sufficiently large number of cases,
as compared to such a transformation occurring in purely random graphs, then we
can predict that this link is likely to form. It may be happen according to a particu-
lar social phenomenon such as theory of homophily, theory of social balance, etc.
Since this scenario can be expected to happen across any social network, we can
use the knowledge extracted from one network to predict links in other networks

where the structural or node level information is not available.

Many important real-world systems, modeled naturally as complex networks,
have heterogeneous interactions and complicated dependency structures. Link
prediction in such networks must model the influences between heterogeneous
relationships and distinguish the formation mechanisms of each link type, a task
which is beyond the simple topological features commonly used to score potential
links. Davis et. al. introduced a novel probabilistically weighted extension of the
Adamic/Adar measure called multi-relational link prediction (MRLP) for hetero-
geneous information networks, which has used to demonstrate the potential ben-
efits of diverse evidence, particularly in cases where homogeneous relationships
are very sparse [21]. The authors also have exposed some fundamental flaws of
traditional unsupervised link prediction. They have presented supervised learning
approaches for link prediction in multi-relational networks, and demonstrate that
a supervised approach to link prediction can enhance performance. The trends
and tradeoffs of supervised and unsupervised link prediction in a multi-relational
setting has been discussed with the evidence of results on three diverse, real-world

heterogeneous information networks. In this research, they have considered the

27



Given

Obsesrved

P(Edge(s,t)=Type 1) = 75 Type 1
754400

Figure 2.2: Example: calculating the probabilistic weights for MRLP

type dependency between different type links for link evolution. This approach
somewhat similar to frequent pattern mining. This method mainly estimate the
probabilities of different triads form by different combinations of link types in a
given graph as shown in Figure 2.2. It assumes the observed patterns match with
given the pattern for potential absent of target link. The most important compo-
nent of the MRLP method is an appropriate weighting scheme for different edge
type combinations. The weights are determined by counting the occurrence of
each unique 3-node substructure in the network. The weighted triads is used to

define a score for node pair (s, #) as shown in Equation 2.8

score,(s,t) = Z w, (2.8)

neN;NN;

This score has been used as a feature for supervised learning methods to learn a
model which is used to predict future potential links as well as their types.

The availability of data such as individual mobility or geographical location
allow to discover novel similarity measures and hence, can improve the prediction
accuracy. The recent development of technologies to capture the geographical
location based data have open a new way to develop more sophisticated features
such as geographical distance, visiting co-location, location similarity, etc. Num-

ber of link prediction research work have been make use of these features for loca-
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tion based link prediction. Even though human movement and mobility patterns
have a high degree of freedom and variation, they also exhibit structural patterns
due to geographic and social constraints. Using cell phone location data, as well
as data from two online location-based social networks, Cho et. al. aimed to un-
derstand what basic laws govern human motion and dynamics. They have found
that humans experience a combination of periodic movement that is geographi-
cally limited and seemingly random jumps correlated with their social networks.
Short-ranged travel is periodic both spatially and temporally and not effected by
the social network structure, while long-distance travel is more influenced by so-
cial network ties. Further analysis show that social relationships can explain about
10% to 30% of all human movement, while periodic behavior explains 50% to
70%. Based on these findings, they have develop a model of human mobility that
combines periodic short range movements with travel due to the social network
structure. The experimental results show that new model reliably predicts the lo-
cations and dynamics of future human movement and gives an order of magnitude
better performance than present models of human mobility [15].

Except the link prediction approaches presented in the current section and
the proceeding sections, following section presents some of the approaches which
have used algebraic methods such as matrix alignment, weighted path based meth-

ods such as random walks, etc.

2.4 Other approaches

Except similarity based methods and probabilistic methods, the literature provides
numerous diverse approaches stemming from different theoretical backgrounds.
Some typical examples are frequent pattern mining, random walk, propagation
methods, etc. We discuss some of them in this section.

Lin et. al. proposed a unsupervised link discovery method based on rarity
analysis [58]. In this paper they focused on discovering “interesting” paths and
nodes from data that can be represented as sets of entities connected by a set of
binary relations. In other words, each object in the data set is treated as a separate
entity and there are different types of binary relations connecting these entities.

This kind of data can naturally be represented by a labeled graph where nodes
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stand for entities and links for binary relations. For example, social network data
or Web pages with proper classification on hyperlinks can be represented in this
way. A key assumption of this work is that the data employs a rich vocabulary of
relations where different link types represent different semantic relationships. For
example, we could have different links representing that X wrote a letter to Y or
that X is the brother of Y. Therefore, different graphs with identical structure will
usually have very different meanings depending on the types of links involved.
Given these assumptions, we can define the following three classes of novel link
discovery problems addressed by in this approach: of multi-relational data . Novel
path discovery: given an arbitrary pair of entities in a graph, find the most inter-
esting or novel paths between them. Novel loop discovery: given an arbitrary
entity in a graph, find the most interesting or novel loops starting and ending at it.
Significant node discovery: given an arbitrary entity in a graph, find other entities
that are most significantly connected to it. For example, given some person A, find
the set of people that A is most significantly connected to A. In order to address
the above problems various notions of rarity have been used to measure the “inter-
estingness” of paths between nodes. To deal with novel path discovery problems,
rarity analysis is important as it carries the information of interestingness. That
is, an event that occurs infrequently compared to other events has the potential to
be interesting and, thus, worth to consider it for predicting links. This approach
has been used as unsupervised method to discover the different types of links in

bibliography data sets.

Kashima et. al introduced a semi-supervised algorithm called “link propaga-
tion” [40]. This is similar to label propagation principle, that is, if two nodes have
similar to each other they are likely to have the same label. Likewise, if two node
pairs are similar to each other they are likely to have the same type of link. In this
paper, they have applied label propagation method to pairs of nodes with multiple
link types (i.e. (node, node, type)-triplets) and predict the relationships among the
nodes. Since it need a triplet-wise similarity matrix to apply the label propagation
idea to triplets, the Kronecker product and the Kronecker sum of the element-wise
similarity matrices has used. To solve the resultant system of linear equations, the
conjugate gradient method is has used. Since naive application of the conjugate

gradient method causes serious scalability problems, they have used an acceler-
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ation technique called “vec-trick” and its generalized versions for tensors, which

significantly reduces the computation time and space requirements.

The information propagation in social networks has been a fundamental factor
for link evolution. Particularly, it is important for evolution of social networks
devoted for information exchange/sharing such as Twitter. Cha et. al. carried out
an experimental analysis emphasizing the importance of information propagation
for social network evolution using Twitter social network [10]. In this paper, they
have collected and analyze large-scale traces of information dissemination in the
Flickr social network. Their analysis is based on crawls of the favorite markings
of 2.5 million users on 11 million photos. They showed empirical evidence that
(a) social links are the dominant method of information propagation, account-
ing for more than 50% of the spread of favorite-marked pictures; (b) information
spreading is limited to individuals who are within close proximity of the upload-
ers; and (c) spreading takes a long time at each hop. As a result, one can conclude
that content popularity is often localized in the network and popularity of pictures
steadily increases over many years. While the popularity pattern observed is nat-
ural for many personal photos, this analysis claimed similar trends for popular
photos with hundreds of fans. The findings of this work differ from the common
expectations about the quick and wide spread of word-of-mouth effect, and they

need to be investigated thoroughly.

Random walk based approaches for link prediction are quite common and pop-
ular in the recent past. It has been widely use by recent research works. Backstrom
et. al. introduced supervised random walk method combining topological features
and node/edge level features for link prediction [5]. This supervised random walk
method combines the network structure with the characteristics (attributes, fea-
tures) of nodes and edges of the network into a unified link prediction algorithm.
In this method, random walker learns how to bias a PageRank-like random walk
on the network so that it visits given nodes (i.e., positive training examples) more
often than the others. it achieves this by using node and edge features to learn edge
strengths (i.e., random walk transition probabilities) such that the random walk on
a such weighted network is more likely to visit “positive” than “negative” nodes.
In the context of link prediction, positive nodes are nodes to which new edges will

be created in the future, and negative are all other nodes. The supervised learn-
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ing task has formulated as if we are given a source node s and training examples
about which nodes s will create links to in the future. The goal is to then learn a
function that assigns a strength (i.e., random walk transition probability) to each
edge so that when computing the random walk scores in such a weighted network
nodes to which s creates new links have higher scores to s than nodes to which s
does not create links. To achieve this goal, the proposed page rank-like random
walk method has used an optimization method to learn edge strengths to bias the
random walk. One important point of this research is it has accounted the link
age for determining the link strength. The authors have introduced a new feature
(T — t)? , where T is the current time, and ¢ is the link creation time. The pa-
rameter was set to different values 8 = 0.1, 0.3, 0.5, and tested the link prediction
performance of the proposed algorithm. This has shown a considerable impact for
the performance and indicates the importance of time-related features which can

capture the knowledge of temporal behavior of link strength.

Lichtenwalter et. al introduced a new unsupervised prediction method on
networks, PropFlow, which corresponds to the probability that a restricted ran-
dom walk starting at a node v; ends at a node v; in [ steps or fewer using link
weights as transition probabilities [57]. The restrictions are that the walk ter-
minates upon reaching v;, the destination node, or upon revisiting any node in-
cluding , v;, the starting node. The walk selects links based on their weights.
This produces a score s;; that can serve as an estimation of the likelihood of new
links. PropFlow is somewhat similar to Rooted PageRank, but it is a more local-
ized measure of propagation, and is insensitive to topological noise far from the
source node. Unlike Rooted PageRank, the computation of PropFlow does not
require walk restarts or convergence but simply employs a modified breadth-first
search restricted to height /. It is thus much faster to compute. It may be used
on weighted, unweighted, directed, or undirected networks. In the phone net-
work, PropFlow outperforms baseline unsupervised methods such as by > 15%
AUC on average. It outperforms Rooted PageRank by more than 8.75% AUC.
The performances of this algorithm has been tested om two data sets; a phone
network data set and a coauthorship data set. The baseline methods are com-
mon neighbors, Adamic/Adar, Jaccard’s coefficient, preferential attachment, and

the unweighted Katz measure with 8 = 0.005. Although PropFlow may be used
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in any network, PropFlow has special intuitive significance as a link predictor
in networks where some resource such as information flows, propagates, or cas-
cades. In transportation networks, when a resource frequently travels from one
node through neighbors to another, there is often some cost for the intermediaries.
When the expected cost inherent in traveling through intermediaries overcomes
the cost of establishing a new link, one can expect formation of that particular
link. In transmission networks, the measure represents the link-weighted prob-
ability that a randomly outward-propagated transmission sent by one node will
reach another. In coauthorship network PropFlow doesn’t show significant effect
for link prediction according to the experimental evaluation of PropFlow both as

an individual predictor and as a feature in our supervised classification framework.

One of the challenging task in link prediction research is to determine which
subset of attributes are important to establish the links observed in a network. It is
very important for accurate link prediction. A link between two persons or entities
may also be determined by examining their existing ties (e.g. do they have com-
mon friends or what kind of common interests they share?). Indeed, what may be
appropriate for one data set may not be for another. Scripps et. al. presented a
flexible framework that allows us to identify the relevant attributes or topological
features that are most well-aligned with the link structure [92]. This work in-
troduced a new discriminative learning technique for link prediction based on the
matrix alignment approach. The algorithm automatically determines the most pre-
dictive features of the link structure by aligning the adjacency matrix of a network
with weighted similarity matrices computed from node attributes and neighbor-
hood topological features. If we are given an adjacency matrix A = (d;j)nm Of a
network and data matrix X = (a;)nxs»> Where each x; represents the k™ attribute
value of node i. In an ideal network, one can imagine perfect alignment between
the links and the attributes - that is where Vi, j : sim(x;, x;) = a;; . However, in
most networks, such perfect alignment will not exist. The proposed matrix align-
ment framework uses a set of weights to determine the important attributes for es-
tablishing links between nodes. More specifically, goal is to learn a set of weights
@ = {wy, ..., w,} that minimizes the objective function L =|| A—XWXT ||%, where
the diagonal elements of W correspond to @. Intuitively, the objective function

aims to learn a set of weights that maximizes the degree of alignment between the
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link structure and attribute similarity. To avoid overfitting, a regularization tech-
nique has been employed by adding a penalty term A || W — I ||3. to the objective

function, where / is the identity matrix:
L=|A-XWX" |7 +A| W -1} (2.9)

This will coerce the weight vector w to ones for high values of A, which is equiv-
alent to assigning equal importance to all the attributes. Experimental results on a

variety of network data have demonstrated the effectiveness of this approach.

In online social networks, where the notion of “friendship” is broader than
what would generally be considered in sociological studies, the friendship links
are denser but the links contain noisier information (i.e., some weaker relation-
ships). However, the networks also contain additional transactional events among
entities (e.g., commenting, chatting, tagging, liking, etc.) that can be used to infer
the true underlying social network. To this end, Kahanda et. al. introduced a
supervised learning approach to predict link strength from transactional informa-
tion [38]. It is formulated this as a link prediction task and compare the utility
of attribute-based, topological, and transactional features. The novelty of this ap-
proach is the use of transactional features. This has prime importance because the
emerging online social networks are multi-relational. Therefore, it is worthwhile
to study the effectiveness of transactions happens via each type of relation. Trans-
actional features consider the transactional information between users (i.e., wall
postings, picture postings, linking and group membership, etc.). These features
only consider single edges in the transactional graphs; they do not consider the
larger relational context of those transactions. For example, one feature counts
the number of posts from node v; on node v;’s wall; another counts the number
of photos posted by node v; and tagged as containing node vi . However, the
features do not consider the other transactional activity of nodes v; and v;. This
approach has been evaluated on public data from the Purdue facebook network
and shows that it can accurately predict strong relationships. Moreover, it em-
phasis that transactional-network features are the most influential features for this
task.

One of the most commonly used and successful recommendation algorithms
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is collaborative filtering, which explores the correlations within user-item interac-
tions to infer user interests and preferences. However, the recommendation quality
of collaborative filtering approaches is greatly limited by the data sparsity prob-
lem. To alleviate this problem, Huang et.al have introduced an extension of graph-
based algorithms by representing user-item interactions as graphs and employing
link prediction approaches proposed in the recent network modeling literature for
making collaborative filtering recommendations [33]. They have adapted a wide
range of linkage measures for making recommendations. The preliminary exper-
imental results based on a book recommendation dataset show that some of these
measures achieved significantly better performance than standard collaborative
filtering algorithms. In many security informatics applications, it is important to
monitor traffic over various communication channels and efficiently identify those
communications that are unusual for further investigation. Huang et. al. inves-
tigated such anomaly detection problems using a graph-theoretic link prediction
approach [35]. Data from the publicly-available Enron email corpus were used to
validate the proposed approach. An underlying assumption of biomedical infor-
matics is that decisions can be more informed when professionals are assisted by
analytical systems. For this purpose, Johnson et. al. proposed ALIVE, a multi-
relational link prediction and visualization environment for the health-care domain
[36]. ALIVE combines novel link prediction methods with a simple user inter-
face and intuitive visualization of data to enhance the decision-making process
for health-care professionals. It also includes a novel link prediction algorithm,
MRPF, which outperforms many comparable algorithms on multiple networks in
the biomedical domain.

The features and methods introduced in the proceeding section have used quite
often with learning methods for link prediction. The use of learning methods in
conjunction with probabilistic, similarity or any other features, has shown im-
mense predictive power. Thus, it is worthwhile to review some machine learning

methods used for link prediction.
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Chapter 3
Machine learning for link prediction

Summary: Machine learning methods have been extensively used in link predic-
tion research. It has shown that machine learning methods are extremely reliable
and easy to use tool for the binary classification task of existence or non-existence
of links using set of features. The present chapter starts with our problem def-
inition and the following sections discuss supervised and unsupervised learning
methods, and their usage for link prediction. In our approach, we used supervised
learning method for link prediction. Further, we presented the set of features we

used in our experiments combining supervised machine learning methods.

3.1 Problem definition

We consider the classical problem of link prediction where we are given a snap-
shot of a social network at time #, and we seek to accurately predict the edges that
will be added to the network during the interval from time ¢ to a given future time
t + 1. More concretely, we are given a large network, say facebook, at time ¢ and
for each user we would like to predict what new edges (friendships) that user will
create between ¢ and some future time ¢ + 1 . In that case, we focused on active-
ness of nodes/links. Activeness of nodes/links has strong correlation with new link
formation. We learned that timestamps of links or interactions are strongly corre-
lated with the activeness of nodes/links. Thus, we determine to make use of them

to build novel features which can effectively treat the activeness of node/links.
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Our problem definition is as follows: Suppose we are given a network G at time
T with set of nodes V = {v1,02,03,...,0;,...,0,} and set of links E = {e;;/i, j € V}
with the most recent timestamps tg = {t;;/i,j € V A e;; € E} of the links or inter-
actions occurred via the existing links. Our goal is to predict the potential links
of G at time T + 1 using existing features, and timestamps which is correlated
with the temporality. We tested link prediction performance of novel features in
conjunction with supervised machine learning method which is described in the

following sections.

3.2 Machine learning methods

Machine learning algorithms are described as either “supervised” or “unsuper-
vised”. The distinction between two methods drawn from how the learning method
classifies data. Both supervised and unsupervised learning methods have been
used in previous studies with different frameworks for link prediction. There are
pros and cons in both supervised and unsupervised methods but supervised meth-
ods has been showed better performances than the unsupervised methods [61].
However, machine learning methods remain immense challenge due to the com-
plexity and size of the networks as well as the temporal behaviors the networks.
We now discuss the usage of supervised and unsupervised learning methods for

link perdition.

3.2.1 Unsupervised learning for link prediction

Unsupervised learning methods used to learn models from unlabeled data. They
are not provided with classes in advance. In fact, the basic task of unsupervised
learning is to learn class labels automatically. In order to develop class labels,
similarities or distance between data points are taken in to account by the unsuper-
vised learning algorithms. Similar data is grouped in to “clusters” and labeled as
a class. However, number of clusters may have to determined beforehand which
is a difficult and arbitrary decision to make. In the context of link prediction it
looks much simpler than the complex clustering problem because link prediction

problem is basically a binary classification task. The main task is to find an effec-
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tive unsupervised method to classify the instances in a way that either existence
or non-existence of a link.

Almost every features which describe the similarity between node pairs can
be used as unsupervised methods for link prediction. Most unsupervised methods
either generate scores based on node neighborhoods or path information to assign
scores to potential links [57]. It can be number of common neighbors, number of
shortest paths, Jaccard’s coeflicient etc. Most of the link prediction research have
used the unsupervised methods as the base lines methods for comparison. The
classification task in link prediction is to determine whether a link will appear or
not. Thus, a threshold is set for the scores where the links having scores higher
than the threshold are classified as potential links while others are not. In general,
this binary classification task is not been well achieved by unsupervised methods
and hence these methods are not popular in link prediction research. However,
Link prediction research based on local proximity or neighborhood also have ef-
fectively used unsupervised methods. In that case the task is to rank a limited
number of candidate nodes within a local neighborhood, mostly 2-hops, and se-
lect the top k candidates as the future potential nodes to make links [102]. Lin et.
al. proposed an unsupervised method for link prediction in multi-relational data
[58]. In multi-relational environment each link has a class label such as coau-
thored, cited, published, etc. The task is to predict potential links with its classes.
So, the unsupervised methods has become handy in this problem setting. The
amount of research used only unsupervised methods is proportionately low. Most
of the link prediction research rely on supervised methods rather than unsuper-
vised methods because the limited applicability of unsupervised methods. Next

section presents a discussion of supervised learning methods for link prediction.

3.2.2 Supervised learning for link prediction

Supervised classification is one of the tasks most frequently carried out by so
called Intelligent Systems. Thus, a large number of techniques have been devel-
oped based on Artificial Intelligence (Logic-based techniques, Perceptron-based
techniques) and Statistics (Bayesian Networks, Instance-based techniques). The

goal of supervised learning is to build a concise model of the distribution of class
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labels in terms of predictor features. The resulting classifier is then used to assign
class labels to the testing instances where the values of the predictor features are
known, but the value of the class label is unknown [44].

In supervised algorithms, the classes are predetermined and the examples are
labeled with the corresponding classes. These classes can be a finite set. The
supervised machine learner’s task is to search for patterns and construct mathe-
matical models. These models then are evaluated on the basis of their predictive
capacity in relation to measures of variance in the data itself. The available meth-
ods such as decision tree induction, naive Bayes, support vector machine [19],
logistic regression, etc. are examples of supervised learning techniques.

Unlike unsupervised methods, supervised methods has been atop among the
link prediction methods. Some of the past research has developed supervised
algorithms-particularly for link prediction. Doppa et. al. proposed a learning al-
gorithm for link prediction based on chance constraints [23]. The accuracy of cur-
rent prediction methods is quite low due to the extreme class skew and the large
number of potential links. Hence they proposed learning algorithms based on
chance constrained programs and show that they exhibit all the properties needed
for a good link predictor, namely, they allow preferential bias to positive or neg-
ative class; handle skewness in the data; and scale to large networks. Their ex-
perimental results on three real world domains coauthorship networks, biological
networks and citation networks show significant performance improvement over
base line algorithms. Backstrom et. al. introduced a supervised random walk
algorithm for link prediction [5]. Random walker use edge strengths as transi-
tion probabilities. Edge strengths are learned using page rank scores of nodes
and gradient based optimization technique. Lu et. al. proposed a novel and gen-
eral framework for supervised link prediction. Their model can effectively and
efficiently learn the network dynamics from a time series of network snapshots,
and therefore improve the link prediction accuracy. In addition, multiple graphs
over the same set of vertices but from different sources can be naturally incorpo-
rated into this framework. They have performed extensive set of experiments on
real world data sets. The experimental results confirm that prediction accuracy is
improved using supervision and multiple sources of information [61].

The prominent feature of supervised learning is feature construction and col-
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lective classification using a learned model. Once the features are computed for
a particular node pair, we obtain a vector of values referred to as a feature vec-
tor, which may be correlated with the future possible link between that node pair.
We train the learning system with the set of feature vectors computed for training
data. Then the model is used to predict the future links [84]. The training fea-
ture vectors, are labeled with a binary label which denotes the node pair is linked
or not. The feature vectors are composed of existing features such a number of
Adamic/Adar similarity measure, common neighbors, Jaccard’s coefficient, pref-
erential attachment as well as novel time-aware features introduced in this thesis.
we have discussed the existing features in detail in Section 3.4 and we discuss the
novel features in Chapter 4 and Chapter 5.

Most of the previous studies have used decision tree supervised learning method
for link prediction, and has shown its consistency as a binary classification method.
Hence, we adopt the same strategy by using decision tree supervised learning
method in our experiments. In the following section we discuss the overview of
decision tree algorithm with J48 implementation of decision tree algorithm which

we used in our experimental evaluation.

3.3 Decision tree method

Information produced by data mining techniques can be represented in many dif-
ferent ways. Decision tree structures are a common way to organize classification
schemes. In classifying tasks, decision trees visualize what steps are taken to ar-
rive at a classification. Every decision tree begins with what is termed a root node,
considered to be the “parent” of every other node. Each node in the tree evaluates
an attribute in the data and determines which path it should follow. Typically, the
decision test is based on comparing a value against some constant. Classification
using a decision tree is performed by routing from the root node until arriving at
a leaf node. The illustration in Figure 3.1 provided here is a canonical example
in data mining, involving the decision to play or not play based on climate condi-
tions. In this case, outlook is in the position of the root node. The degrees of the
node are attribute values. In this example, the child nodes are tests of humidity and

windy, leading to the leaf nodes which are the actual classifications. This example
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Dependent variable: PLAY

Play 9
Don't play 5

Outlook

Play 4 Play 3
Don't play 3 Don't play 0 Don't play 2
Humjdity? Windy?
<=70 >70 True alse
Play 2 Play 0 Play 0 Play 3
Don't play 0 Don't play 3 Don't play 2 Don't play 0

Figure 3.1: Example of a decision tree

also includes the corresponding data, also referred to as instances. In our example,
there are 9 “play” days and 5 “no play” days. Decision trees can represent diverse
types of data. The simplest and most familiar is numerical data. It is often desir-
able to organize nominal data as well. Nominal quantities are formally described
by a discrete set of symbols. For example, weather can be described in either nu-
meric or nominal fashion. We can quantify the temperature by saying that it is 11
degrees Celsius or 52 degrees Fahrenheit. We could also say that it is cold, cool,
mild, warm or hot. The former is an example of numeric data, and the latter is a
type of nominal data. More accurately, the example of cold, cool, mild, warm and
hot is a special type of nominal data, described as ordinal data. Ordinal data has an
implicit assumption of ordered relationships between the values. Continuing with
the weather example, we could also have a purely nominal description like sunny,
overcast and rainy. These values have no relationships or distance measures. The
type of data organized by a tree is important for understanding how the tree works
at the node level. Recalling that each node is effectively a test, numeric data is
often evaluated in terms of simple mathematical inequality. For example, numeric
weather data could be tested by finding if it is greater than 10 degrees Fahrenheit.
Nominal data is tested in Boolean fashion; in other words, whether or not it has
a particular value. The illustration shows both types of tests. In the weather ex-

ample, outlook is a nominal data type. The test simply asks which attribute value
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is represented and routes accordingly. The humidity node reflects numeric tests,
with an inequality of less than or equal to 70, or greater than 70. Decision tree
induction algorithms function recursively. First, an attribute must be selected as
the root node. In order to create the most efficient (i.e, smallest) tree, the root node
must effectively split the data. Each split attempts to pare down a set of instances
(the actual data) until they all have the same classification. The best split is the
one that provides what is termed the most information gain. Information in this
context comes from the concept of entropy from information theory, as developed
by Claude Shannon. Although “information” has many contexts, it has a very
specific mathematical meaning relating to certainty in decision making. Ideally,
each split in the decision tree should bring us closer to a classification. One way
to conceptualize this is to see each step along the tree as removing randomness
or entropy. Information, expressed as a mathematical quantity, reflects this. For
example, consider a very simple classification problem that requires creating a
decision tree to decide yes or no based on some data. This is exactly the scenario
visualized in the decision tree. Each attributes values will have a certain number
of yes or no classifications. If there are equal numbers of “yes”’s and “no’’s, then
there is a great deal of entropy in that value. In this situation, information reaches
a maximum. Conversely, if there are only “yes”s or only “no”s the information
is also zero. The entropy is low, and the attribute value is very useful for making
a decision. The formula for calculating intermediate entropy values is as follows

for a random variable with m outcomes {1, ..., m};
Info = - Z pilogapi (3.1
i=1

We can break this down. Consider trying to calculate the information gain for
three variables for one attribute. The attribute as a whole has a total of nine “yes”s
and five “no”’s. The first variable has two “yes”s and three “no”’s. The second has
four yeses and zero “no’’s. The final has three “yes”s and two “no”s. Our first
step is to calculate the information for each of the variables. Starting with the first,
our formula leads us to info([2, 3]) being equal to —(2/5 log 2/5) — (3/5 log 3/5).
This comes to 0.971 bits. Our second variable is easy to calculate. It only has

“yes’”s, so it has a value of O bits. The final variable is just the reverse of the first
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and the value is also 0.971 bits. Having found the information for the variables,
we need to calculate the information for the attribute as a whole: 9 yeses and 5
no’s. The calculation is info([9,5]) = —(9/14 log 9/14) — (5/14 log 5/14). This
comes to 0.940 bits. In decision tree induction, our objective is to find the overall
information gain. This is found by averaging the information value of the attribute
values. In our case, this is equivalent to finding the information of all the attributes
together. We would use the formula info([2, 3], [4,0],[3,2]) = (5/14) 0.971 +
(4/14) 0+(5/14)0.971. This comes to 0.6931 bits. The final step is to calculate the
overall information gain. Information gain is found by subtracting the information
value average by the raw total information of the attribute. Mathematically, we

would calculate information gain as follows;

Gain = info([9,5]) —info([2,3],[4,01,[3,2]) = 0.940 - 0.693 = 0.247 (3.2)

The decision tree induction algorithm will compute this sum for every attribute,
and select the one with the highest information gain as the root node, and continue
the calculation recursively until the data is completely classified. This approach
is one of the fundamental techniques used for decision tree induction. It has a
number of possible shortcomings. One common issue arises when an attribute
has a large number of uniquely identifying values. An example of this could be
social security numbers, or other types of personal identification numbers. In
this case, there is an artificially high decision-value to the information, the ID
classifies each and every person, and distorts the algorithm by overfitting the data.
One solution is to use an information gain ratio that biases attributes with large

numbers of distinct values [29].

Decision trees are a classic way to represent information from a machine learn-
ing algorithm, and offer a fast and powerful way to express structures in data. One
of the questions that arises in a decision tree algorithm is the optimal size of the
final tree. A tree that is too large risks overfitting the training data and poorly
generalizing to new samples. A common strategy is to grow the tree until each
node contains a small number of instances then use pruning to remove nodes that
do not provide additional information. The J48 algorithm Weka [24] project gives
several options related to tree pruning. J48 is a version of an earlier algorithm
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developed by J. Ross Quinlan [86], the very popular C4.5. It is important to un-
derstand the variety of options available when using this algorithm, as they can
make a significant difference in the quality of results. In many cases, the default
settings will prove adequate, but in others, each choice may require some consid-
eration. Many algorithms attempt to “prune”, or simplify, their results. Pruning
produces fewer, more easily interpreted results. More importantly, pruning can be
used as a tool to correct for potential overfitting. The basic algorithm described
above recursively classifies until each leaf is pure, meaning that the data has been
categorized as close to perfectly as possible. This process ensures maximum ac-
curacy on the training data, but it may create excessive rules that only describe
particular idiosyncrasies of that data. When tested on new data, the rules may be
less effective. Pruning always reduces the accuracy of a model on training data.
This is because pruning employs various means to relax the specificity of the de-
cision tree, hopefully improving its performance on test data. The overall concept
is to gradually generalize a decision tree until it gains a balance of flexibility and

accuracy.

J48 employs two pruning methods. The first is known as subtree replacement.
This means that nodes in a decision tree may be replaced with a leaf, basically
reducing the number of tests along a certain path. This process starts from the
leaves of the fully formed tree, and works backwards toward the root. The second
type of pruning used in J48 is termed subtree raising. In this case, a node may
be moved upwards towards the root of the tree, replacing other nodes along the
way. Subtree raising often has a negligible effect on decision tree models. There
is often no clear way to predict the utility of the option, though it may be advis-
able to try turning it off if the induction process is taking a long time. This is due
to the fact that subtree raising can be somewhat computationally complex. Error
rates are used to make actual decisions about which parts of the tree to replace
or raise. There are multiple ways to do this. The simplest is to reserve a portion
of the training data to test on the decision tree. The reserved portion can then be
used as test data for the decision tree, helping to overcome potential overfitting.
This approach is known as reduced-error pruning. Though the method is straight-
forward, it also reduces the overall amount of data available for training the model.

For particularly small datasets, it may be advisable to avoid using reduced error
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pruning. Other error rate methods statistically analyze the training data and esti-
mate the amount of error inherent in it. The mathematics are somewhat complex,
but this approach seeks to forecast the natural variance of the data, and to account
for that variance in the decision tree. This approach requires a confidence thresh-
old, which by default is set to 25 percent. This option is important for determining
how specific or general the model should be. If the training data is expected to
conform fairly closely to the data we would like to test the model on, this figure
can be lowered. The reverse is true if the model performs poorly on new data; try

decreasing the rate in order to produce a more pruned (i.e, more generalized)tree.

There are several other options that determine the specificity of the model.
The minimum number of instances per leaf is one powerful option. This allows
you to dictate the lowest number of instances that can constitute a leaf. The higher
the number, the more general the tree. Lowering the number will produce more
specific trees, as the leaves become more granular. The binary split option is used
with numerical data. If turned on, this option will take any numeric attribute and
split it into two ranges using an inequality. This greatly limits the number of
possible decision points. Rather than allowing for multiple splits based on nu-
meric ranges, this option effectively treats the data as a nominal value. Turning
this encourages more generalized trees. There is also an option available for us-
ing Laplace smoothing for predicted probabilities. Laplace smoothing is used to
prevent probabilities from ever being calculated as zero. This is mainly to avoid
possible complications that can arise from zero probabilities. The most basic pa-
rameter is the tree pruning option. If we decide to employ tree pruning, we will
need to consider the options above. Note that depending on how the training and
test data have been defined that the performance of an unpruned tree may super-
ficially appear better than a pruned one. As described above, this can be a result
of overfitting. It is important to experiment with models by intelligently adjusting
these parameters. Often, only repeated experiments and familiarity with the data

will tease out the best set of options [106].
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Figure 3.2: Example of a social network

3.4 Features used for link prediction

In this section, we introduce the set of baseline features we used in this research
work. This set of features has been consistently used by the previous research
and have proven their eminence in social network analysis. In our experiments,
we referred follow set of features as baseline (BC) combination. Let i, j and k are
nodes, and I'(7), I'(j) and I'(k)denote the sets of neighbors of i, j and k respectively.
We have shown the definitions of the baseline features below and demonstrated
their computations using the example social network shown in Figure 3.2.

Adamic/Adar[1] measure indicates if a node pair has a common neighbor which
is not common to several other nodes, then the similarity of that particular node
pair is higher than the node pairs having neighbors that are common to several
other nodes. This measure assigns higher weights to common neighbors that are

not common to several other nodes.

1
Z log|l'(k)| G-

ker'() NT()

We can compute Adamic/Adar measure for the nodes i and j in Figure 3.2. They

have two common neighbors ¢; and c¢;. Node c¢; has four neighbors whereas ¢,
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has two neighbors.

1

Adamic/Adarij = m + Toa 2
09 o9

=4.983 (3.4)

Common neighbors is one of the simplest similarity measure which counts the

number of common neighbors of a node pair.
TG (T (3.5)
Nodes i and j in Figure 3.2 have two common neighbors ¢; and c¢;,. Thus;
Common neighbors;; = 2 (3.6)

Jaccard’s coefficient[62] is a commonly used similarity metric in information re-
trieval. In social network analysis it is the normalized measure of common neigh-

bors.

ISOIARYY)]
L@ UL

In Figure 3.2 node i has four neighbors {x, y, c¢1,c;}. Node j has three neighbors

(3.7)

{z, c1, c2}. The nodes ¢, and ¢, are common for both i and j. We can compute;

2
Jaccard's coef ficient;; = ypi 0.286 (3.8)

Preferential attachment indicates that new links are more likely to be formed with
nodes of higher degree, or nodes that are popular in the network. This has received
considerable attention as a model of the growth of networks. The basic premise
is that the probability that a new edge has node i as an endpoint is proportional
to |['i|, the current number of neighbors of i. on the basis of empirical evidence,
Newman and Barabsi et. al. further proposed that the probability of link between

nodes i and j, is correlated with the product of the number of their degrees [79].

IC@OITC)I 3.9)
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The degree of nodes i and j is 4 and 3 respectively. Thus;
Preferential attachment;; = 4 3 = 12 (3.10)

The above features have been predominantly used with supervised learning and
unsupervised methods for link prediction across many kinds of social networks,
and has shown there consistency. However, these methods are static methods
which means that none of them considered the dynamic behavior of the links or
node. The activeness of nodes vary over time hence, the effectiveness of above
features vary over time. For example, the influence of common neighbors is not
static over the time. So, by just taking number of common neighbors between a
node pair may draw into a miscalculation of similarity between the nodes unless
if the activeness is considered. Thus, we determined to develop new time-aware
features which can overcome the drawbacks of the baseline features explained
here. In the next chapters, we have discussed the new time-aware feature we

introduced in this research.
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Chapter 4
Time score

Summary: In this chapter, we introduce a novel time-aware feature, referred to
as Time score, that captures the important aspects of time stamps of interactions
and the temporality of link strengths of common neighbors. We also analyze the
effectiveness of Time score with different parameter settings for different network
data sets. The results of the analysis revealed that the Time score was sensi-
tive to different networks and different time measures. We applied Time score to
two social network data sets, namely, facebook friendship network data set and a
coauthorship network data set. The results revealed a significant improvement in

predicting future links.

4.1 Neighborhood-based features and time-awareness

Social networks are dynamic. They evolve rapidly over time by adding new nodes
and new links. Appearance of new links indicate new interactions between nodes
in the network. The frequency of interactions and time it happen has strong cor-
relation with link strength/activeness. Therefore, is worthwhile to investigate the
how link strength/activeness change over time in social networks. To this end,
Burt et. al. has done as extensive analysis of decay of social links. They have
used several data sets representing different social networks such as family re-
lations, work/job related, etc. the study has reported some impressive findings

regarding the decay of link strengths. In this work, the tendency for relationships
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to weaken and disappear is referred as decay, and functions describe the rate of
decay over time referred as decaying functions [7]. The summary of the findings

is:

1. The strength of social links depends on social scientific aspects such as

homophily, social status/popularity, etc.

2. Long term relationships have slower decay as they are well established
links.

3. Decay has pattern over time similar to the population ecology “liability of
newness”. In other words, people tends to have connections with newly
emerging persons in terms of social aspects. Thus, Decay is a power func-
tion of time in which the probability of decay decreases with link age and
node age. However, notice that there is no specific form for decaying func-
tions, and has to design and estimate parameters according to the facts used

to determine the link strengths.

Above implications tells us the use of static features for link prediction is not
enough to make accurate predictions due to rapid changes happen in the networks.
Particularly, the links become active for a certain time and then fade away. The
active links more influential than the weaker or inactive links. However, in static
methods assumes that activeness® of links, and hence the activeness of nodes,
doesn’t change over time. It leads to inaccurate results. Thus, most of the recent
research focused on developing time-aware link prediction methods in evolving
social networks which can improve the link prediction accuracy as well as over-
come the lapses of the static methods.

Tylenda et. al. proposed a time-aware method extending the local probabilis-
tic model for link prediction by [104]. In this work, they have followed similar
approach to Burt et. al. by assuming the link strength is a power function of time
to assign weights for the links. The oldest and the latest link are assigned weights
Wpin and w,,,, respectively. Note that w,,;, > 0 and w4 > Wy, .- In the experi-
ments they have used three functions. If # denotes the time of a link normalized in

such way that the beginning of the data set corresponds to 0.0 and the end to 1.0,

* We used terms “activeness” and “strength” to refer the same intuitive meaning.
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then the weighting functions are scaled and shifted variants of exp(3t), t and Vt
[102]. However, is bit ambiguous to use a normalized time because the elapsed
time with the current time is a critical factor for estimating the link strength. In
another research by Backstrom et. al. introduced a new feature (T — r)? for as-
signing weight for links. 7 is the current time, and ¢ is the link creation time. The
parameter was set to different values g = 0.1,0.3, 0.5, and tested the link predic-
tion performance of a supervised random walk algorithm [5]. In this case also, the
authors have assumed the link strength is a power function of time.

Above mentioned research works are few examples for recent attempts to
introduce time-aware methods for link prediction along with some of the well-
known features in Chapter 3, Section 3.4. All of these features defined on com-
mon neighbors except preferential attachment. The eminence of common neigh-
bors in the realm of social network analysis have been largely discussed and, has
introduced many features based on them in the past research. However, the tem-
porality of common neighbors were discussed in a fairly small number of them. It
has resulted the common neighbors based features less competent. Thus, we study
the correlation between temporality of common neighbors and link evolution and,
contributed by introducing a new time-aware feature which is referred as Time
score, computes a score for common neighbors in terms of link strength and link
weights. The link strength is determined by elapsed time from the current time

and differences of the most recent timestamps of the interactions or links.

4.2 Time score

Most of the recent link prediction research are being focused on temporal and
local patterns of the networks. Number of research works have been introduced
time-related features and methods to deal with temporal behavior of node and
links. Those features or methods have been defined using social scientific aspects
such as decay of relationships or social links over time. This phenomenon has
been studied extensively in the empirical studies, and revealed that the decay of
social links is a power function of time. The strength/activeness of social links
associated with various factors depending on the network. In most cases, link

strength/activeness is strongly correlated with time-related factors but in some
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others are not. However, generally, strength of social links strongly correlated
with time-related factors. A simplest yet vital factor is link age. Link age can be
interpreted in two ways: (1) elapsed time since the creation of link (2) elapsed
time since the last interaction/transaction’, with respect to the current time. Ac-
cording to our perception, the second factor is strongly correlated with link ac-
tiveness. Interactions keep relationships alive and active. Interactions between
nodes are very important for link evolution. If transactions or interactions happen
frequently and recently the links become active and strong. Active links has an
utmost importance for link evolution. Thus, we started from this point and intro-
duced a robust feature to incorporate the effectiveness of common neighbors and
their temporality using the activeness of links. In the context of social networks,
the effectiveness of the common neighbors depends not only on the cooccurrence
frequency, or number of common neighbors, but also on how long the neighbors
have been in contact. The time stamps of the interactions are useful in finding
such information. This information provides a far better view of the importance
of common neighbors than considering only the number of common neighbors.

To this end, we designed a new feature based on the following concepts.

1. If a node pair interacted with each other recently with respect to the current
time, then the link between them becomes active. This scenario is illumi-
nated in our approach as the decay of a link activeness as a power function

of elapsed time since the last interaction with respect to the current time.

2. If anode interacted with its neighbors within a closer proximity of time, the
neighbors are more likely to become linked. This scenario is illuminated in
our approach as influence of a common neighbor decays as a power function

of time difference between latest interaction with its neighbors.

Compiling the above considerations, we introduced a new feature, Time score(TS)
which can treat the temporal behavior of common neighbors [68]. We use the
new feature in conjunction with supervised machine learning methods in order to
predict links in network data sets. Time score for the node pair a and b that has n

common neighbors is defined as follows:

¥ We used terms interaction and transaction interchangeably with the same meaning
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4.1

This concept is illustrated in Fig. 4.1. Nodes a and b have common neighbor c.
Here, ¢, is the most recent time stamp of the interactions between a and ¢, and ¢, is
the most recent time stamp of the interactions between b and c. In addition, H,, is

the harmonic mean of the cooccurrence frequencies of a and b with the common

neighbor c. In Equation 4.1, the term (1 — a)*

1
\lln—[zn|+l

decaying factor and (1 —a)* is a decaying function (0 < @ < 1). Decaying function

derived from the first assumption
and the term derived from the second assumption. Here, « is called the
describes the rate of decay of link activeness over time. k is the difference between
current time 7. and the most recent timestamp from ¢, and #,, and k is defined as
follows:

k=t.—max(t, 1) 4.2)

The number of interactions or cooccurrences, referred to as link weight, of a node
pair is also important in determining the link strength. Therefore, we used the

harmonic mean of the link values of each node in a node pair with their common

* In our journal paper, we used parameter 8 which is equal to (1 — @)
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neighbor. The harmonic mean, H,,, of numbers xi, ..., x; is defined as follows:

H, = — (4.3)

1
1

.=
M-

1

Typically, the harmonic mean is appropriate for situations in which an average of
rates is desired. In Equation 4.3, x; (i = 1, ..., j) denote the rates. In the present
case, j = 2 because we used the link values of each node in a node pair with their

common neighbors as the rates.

In Equation 4.1, the term (1 — @)* increases as k, decreases. We assume that
there is a certain decay in the influence of common neighbors with respect the
current time. The decaying factor represents the decay, which has to be determine
for a given network. The other assumption is that the decay @ = O only if the
common neighbors interact with their sharing nodes at the current time. There-
fore, no need to test the equation for @ = 0 because the decay doesn’t count when

t1, = b, = t.. At this point Equation 4.1 reduces to the summation of harmonic

means of weights of links between common neighbors and its sharing nodes. In
the other term, we use the reciprocal of |¢;, —#,, |+ 1, where #,, and t,, are the time
stamps of the most recent interactions of the node pair with the common neighbor.
This term becomes larger when the difference between #,, and #,, becomes larger.
The meaning of this term is if common neighbors interacted with their common
neighbors within a closer proximity of time the influence of common neighbors
increase. The addition of one in the term is in order to avoid the Time score from

becoming infinite when the two time stamps are equal.

Compiling all, the new feature 7ime score can be used as a feature, which is
used for predicting future possible links. In order to show how to calculate Time
score, let us assume that two authors, a and b, have common neighbor author c. If
a and c¢ published two papers in 2005 and 2006 and authors b and ¢ published one
paper in 2008, then the harmonic mean of two publications and one publication is
obtained as follows:

1
H, = ———— =1.3333 4.4)

G+

=
——



If the current year is assumed to be 2011, then the Time score for a future possible

link between a and b can be calculated as follows:

13333+ 0.5°
T b) = ~ 0. 4.
S(a.5) (|2008—2006|+1 0.05555 *3)

In this case, k = 2011-2008 = 3, because the latest time stamp is 2008, and the
current year is 2011. The number of common neighbors, n, is 1, and we assume
that @ = 0.5.

4.3 Experimental setting

In this section we discuss the experiments carried out to test the effectiveness of
Time score for link prediction. In order to test the effectiveness of Time score, we
performed two experiments using two real-world social network data sets. First
experiment tested the link prediction performance of Time score by varying
from 0.1 to 0.9 [69]. The purpose of this experiment was to provide guidelines
for choosing values of the decaying factor a, particularly for different time units
k and different data. The second experiment, the link prediction performances of

Time score compared using two feature combinations.
1. Baseline combination (BC) which includes only the existing features

2. Time score combination (TSC) which includes Time score and the existing

features

we used the a values corresponding to the highest F-measure for each data set
in the first experiment to compute Zime score. Table 4.1 lists the details of the
features used in each combination. The real-world networks we used for our ex-
periments are very sparse, and so the rate of positive examples is very low. On
average, the percentages of positive examples in the facebook data and the coau-
thorship data were 0.05% and 0.08%, respectively. In order to solve this problem,
we used SMOT oversampling algorithm with default parameters [12]. After over-
sampling, the percentages of positive examples in the facebook data and the coau-

thorship data were 0.3% and 0.5%, respectively. In the experiments, we used J48
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Table 4.1: Features used in Time score combination and baseline combination

Feature Formula Baseline Time score
combination(BC) combination(TSC)

Adamic/Adar 2okel(i) () 10g|1r(k)|
Common neighbors TG N TG

s : TG N T
Jaccard s'coeﬂiment FOUTO
Preferential attachment  [['(D)||]T°())|

Hmn(l_a)k’l
2in I, 12, 1+ 1

SSRNENEN

SUENENENEN

Time score

weka implementation [24] of C4.5 decision tree algorithm [86] as our supervised
learning method. We tested the effectiveness of 7_Flow algorithm for a data set
extracted from facebook social network and coauthorship data sets extracted from

e-print archive®.

4.4 Experiment using facebook data

The first data set was facebook friendship network data from [103], which were
collected from the regional facebook network of New Orleans. The facebook
data was collected for 60,290 users who are connected by 1,545,686 links. We
extracted a snapshot of the data from October 2007 to January 2009. Table 4.2
shows the statistics of the facebook network data sets used in the experiments. We
created twelve network data sets from the extracted snapshot in order to use with
supervised machine learning method. Supervised machine learning algorithms
required training data to train the learner. Therefore, we used user interactions
(wall postings) within three consecutive months to predict the links of the follow-
ing month because social networks such as facebook show drastic changes within
short periods of time. For example, to predict the links that emerged during Jan-
uary 2009, we trained the decision tree algorithm using the data from September
2008 to December 2008. Features were computed using the network data from

September 2008 to November 2008, and the links that emerged during December

§ http://arxiv.org/
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2008 were considered to be the positive examples for training data. The trained
model was applied for the test data features computed for the data from October
2008 to December 2008 in order to predict the links that emerged during January
20009.

At first, we analyzed the link prediction performance of Time score by vary-
ing o from 0.1 to 0.9. We analyzed the precision, recall, and F-measure of the
predictions for facebook data set by varying « between 0.1 and 0.9. The pur-
pose of this analysis is to provide a guideline for selecting the model parameter
« according to the unit of k. The range of k depends on the time unit. For the
facebook data, we used days as the time unit. Time stamps of the links are cre-
ated using the time stamps of the wall postings. Timestamp of a link represents
the day of the most recent wall posting between two users. Since, we used user
interactions (wall postings) within three consecutive months to predict the links
of the following month, the approximate range of k for the facebook data is O to
90 days. The time stamp for the interaction between a pair of users represents the
day of the most recent wall posting between them. Number of the wall postings
between users is considered to be the link wights. Figure 4.2 shows the variation
of average precision, recall, and F-measure for each a value for facebook data.
The average precision, recall, and F-measure increase as @ increases. A notable
increase occurs at @ = 0.1. We conducted a Grubbs’ test to determine the signif-
icance of the difference between the F-measure at @ = 0.1 and the F-measures at
a = 0.2 to 0.9. The results of the Grubbs’ test indicate that @ = 0.1 is an outlier
with a significance level of 5%. This indicates that the performance of the Time
score at & = 0.1 is significantly higher than for other a values and is thus a good
parameter for facebook data. Thus, we used Time score at @« = 0.1 to compare
with baseline combination.

In our second experiment, we compared the link prediction performances of
Time score using Baseline combination (BC) and Time score combination (TSC).
The performance metrics for facebook data are compared in Figure 4.3. They
show a notable improvement for Time score combination, as compared to the
Baseline combination. On average, the use of Time score increased the precision,
recall, and F-measure by 4%, 3%, and 7%, respectively.

According to the wall post data shown in Figure 4.4, and as stated in [103],
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Table 4.2: Statistics of the facebook data

Prediction month Training data Test data

Nodes Edges | Nodes Edges
2008 Feb 13,733 | 50,248 | 13,732 | 47,986
2008 Mar 13,732 | 47,986 | 13,998 | 48,238
2008 Apr 13,998 | 48,238 | 14,762 | 50,732
2008 May 14,762 | 50,732 | 15,705 | 56,014
2008 Jun 15,705 | 56,014 | 16,381 | 58,546
2008 Jul 16,381 | 58,546 | 17,268 | 60,718
2008 Aug 17,268 | 60,718 | 18,339 | 63,392
2008 Sep 18,339 | 63,392 | 20,476 | 71,792
2008 Oct 20,476 | 71,792 | 22,732 | 80,848
2008 Nov 22,732 | 80,848 | 25,427 | 92,990
2008 Dec 25,427 | 92,990 | 28,370 | 106,106
2009 Jan 28,370 | 106,106 | 31,832 | 123,650

the number of wall posts increases rapidly from July 2008 to January 2009. This
makes the network more active, and most of the existing links become stronger.
The stronger links have a greater influence on future link evolution. Therefore,
the use of Time score is more effective and yields better results. This observation
further indicates that Time score is more sensitive to the temporal behavior of user
interactions. However, in February 2008 and June 2008, there is a decrease in the
number of wall posts. Thus, the network becomes less active, and the strengths
of the links do not exhibit temporal variations in behavior in the network during
this period. Therefore, the performance metrics exhibit slightly lower values for
Time score combination than for Baseline combination. Except for the results
of February 2008 and June 2008, the t-test at the 5% significance level indicates
significant improvements. Therefore, we can conclude that Time score is more
effective for rapidly evolving networks.

In the facebook friendship network, the friends of a user can view the wall
posts of that user if the user shares the wall posts with his/her friends. Thus,
users who have that particular user as a common neighbor, while having no other
relationship, can become friends through each other’s postings. Burst of wall

postings indicates that more people are interacting with each other and become
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Precision, Recall and F-measure curves for Facebook data

Precision =r=r=i=
Recall mmmun
el F-measure

Damping factor o

Figure 4.2: Variation of performance metrics with « for facebook data

friends. Therefore, recent interactions happen in closer proximity of time have
a greater influence on link evolution. Besides the factors we investigated in our
experiments, the link evolution could be depend on other temporal factors such as
duration of data collection and geographical region of the network. In particular,
the facebook network exhibits different patterns depending on the time, the major
events that occur during the period of data collection, and the geographical region

of the network. Such kind of factors are to be explored in our future works.

4.5 Experiment using coauthorship data

The second data set is a coauthorship data set extracted from 66,791 publications
on condensed matter physics from 1997 to 2005 in the cond-mat archive'. This
data set contains data for 79,208 authors who are connected by 641,796 links.
Table 5.4 shows the statistics of the coauthorship network data sets used in the
experiments. We used data for three consecutive years to predict the links of
following year. For example, in order to predict the set of links that emerged
in 2010, features for the training set were calculated using the coauthorship data
from 2006 to 2008, and links that emerged in the year 2009 were considered to be
positive examples for training data.

At first, we analyzed the link prediction performance of 7Time score by vary-

1 http://arxiv.org/archive/cond-mat/
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Number of wall posts per month in Facebook data

100000

50000 -

User Interactions(Wall Posts)

0

Wall Posts —+—

QY Y Y Y

17 17 17 1) O
(2 (2 (2 (2 Q
% 2, P %y,

o o &

£
% %

B
2
%,

QY Y 2
%, "%, "%y
% %

% B B 9
Month

Figure 4.4: Variation of the number of wall posts in facebook data

Table 4.3: Statistics of coauthorship data

Prediction year Training data Test data

Nodes Edges | Nodes Edges
2001 23,411 | 135,798 | 27,349 | 167,180
2002 27,349 | 167,180 | 31,662 | 209,632
2003 31,662 | 209,632 | 34,860 | 237,346
2004 34,860 | 237,346 | 38,039 | 266,236
2005 38,039 | 266,236 | 41,213 | 288,796

ing a from 0.1 to 0.9. We analyzed the precision, recall, and F-measure of the
predictions for coauthorship data set by varying « between 0.1 and 0.9. The pur-
pose of this analysis is to provide a guideline for selecting the model parameter
a according to the unit of k. The range of k depends on the time unit. For the
coauthorship data, we used years as the time unit. Thus, the unit of k is years. The
time stamp for the interaction between a pair of authors represents the most recent
year of publication of the coauthored paper. Figure 4.5 shows the variation of
average precision, recall, and F-measure for each « for coauthorship data. Better
performance is obtained for lower « values, as indicated by the slight decrease in

performance when « is greater than 0.5. We can see a clear peak of performance

at @ = 0.8. Hence, we used the parameter values @ = 0.8 in this experiment.
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Precision, Recall and F-measure curves for coauthorship data
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Figure 4.5: Variation of performance metrics with a for coauthorship data

In our second experiment, we compared the link prediction performances of
Time score using Baseline combination (BC) and Time score combination (TSC).
The performance metrics of this experiment are compared in Fig. 4.6. The im-
provements in precision, recall, and F-measure indicate the impact of Time score
for link prediction in the coauthorship network that evolves primarily over recent
collaborations. In the graph comparing precision, with the exception of 2001, the
results obtained using 7Time score combination are better than the results obtained
using Baseline combination. All three performance metrics indicate significant
improvements according to the t-test at the 5% significance level. The average
improvements in precision, recall, and F-measure are 14%, 11%, and 13%, re-

spectively.

4.6 Discussion

In this research, we introduced an effective novel time-aware feature ,7Time score,
defined on common neighbors. We tested it with two real-world data sets in order
to clarify its effectiveness. The results show that Time score is significantly effec-
tive in rapidly changing networks. We used timestamps of the interactions/links
to compute Time score. Unit of the time depends on the network and the nature of

the interactions we considered. Therefore, the unit of k in Time score formula can
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be years, days, or hours, depending on the data set. We need to set @ according to
the unit of & in order assign higher scores to interactions that have occurred more
recently. When k increases, (1 — a)* decreases. For higher values of k and higher
values of a, the term (1 — a)* is approximately 0. For example, when k = 10
and @ = 0.5, (1 — a)* is approximately 0.00098. In order to obtain a meaning-
ful value for (1 — @)* when k has a wide range, it is better to use a lower a. In
a network such as facebook, interactions that occurred ten days ago have more
effect on future link evolution than interactions that occurred ten years ago in the
coauthorship network. Therefore, lower a values are better when k has a wide
range.

The range of k is small (0 < k < 2) for the coauthorship data because we used
the data of three consecutive years to predict links in the following year. The term
(1 — @)* can take a higher value, even for higher a. Since the range of k is small
for coauthorship data, the term (1 — a)* takes closer values for lower @ values, and
Time score becomes less effective for the learning algorithm. Therefore, higher «

values are more appropriate for computing 7ime score when k has a small range.

4.7 Conclusion

The past research has been introduced many neighbor-base features for link pre-
diction. However, majority of them are static which means that they are unable
cope with the rapidly changing nature of the neighbors. Hence, we introduced a
significantly effective time-aware feature, Time score, for link prediction in rapidly
changing social networks. The prominent feature of 7ime score is it incorporates
relationship between the temporal behavior of link activeness and the time stamps
of interactions/links for link evolution, which has not previously been discussed
sufficiently. We examined link prediction performances of 7ime score using super-
vised machine learning methods. We tested it on two real-world data sets namely,
facebook and coauthorship network data sets. The significant improvements of
the experimental results verify the effectiveness of Time score for link prediction

in highly dynamic social networks.
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Chapter 5
T_Flow algorithm

Summary: This chapter presents a novel algorithm for compute information flow
via active links. Information flow heavily depends on link activeness. Links be-
come active if interactions happen frequently and recently with respect to the
current time. Time stamps of interactions or links provide vital information for
determining the activeness of the links. Thus, we introduced a novel algorithm,
referred to as T_Flow, that captures the important aspects of information flow
via active links in social networks. Once we computed information flow using
T _Flow, it is used as a feature with machine learning methods for link prediction.
We tested T_Flow with two social network data sets, namely, a data set extracted
from facebook friendship network and a coauthorship network data set extracted
from ePrint archives. We compare the link prediction performances of T_Flow
with the previous version PropFlow. The results of T_Flow algorithm revealed a
notable improvement in link prediction for facebook data and significant improve-
ment in link prediction for coauthorship data. Further, we compared T_Flow with

Time score in terms of recall.

5.1 Information flow for link prediction

Social networks are of interest to researchers in part because they are thought to
mediate the flow of information in communities and organizations. Information

flow or information propagation in social networks has been explored many re-
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searchers [10]. Particularly, the information flow is highly correlated with the link
evolution. Kossinets et. al. carried out a study for two-years period to under-
stand the temporal dynamics of communication using on-line data, including e-
mail communication among the faculty and staff of a large university [43]. They
formulated a temporal notion of “distance” in the underlying social network by
measuring the minimum time required for information to spread from one node to
another concept that draws on the notion of vector-clocks from the study of dis-
tributed computing systems. They reported that such temporal measures provide
structural insights that are not apparent from analyses of the pure social network
topology. In particular, they have defined the network backbone to be the subgraph
consisting of edges on which information has the potential to flow the quickest.
they found the backbone is a sparse graph with a concentration of both highly em-
bedded edges and long-range bridges, which sheds new light on the relationship

between link strength and connectivity in social networks.

In the previous chapter, we introduced a novel feature called Time score de-
fined based on link activeness, which showed an impressive link prediction perfor-
mances. The fundamental assumption here is if the interactions happen frequently
and recently the links become active and influence other nodes to become linked.
However, Time score is limited to common neighbors. Then how do we extend
this idea to any node pair for link prediction?. Therefore, we investigated the
possible ways to extending the idea of Time score to a any node pair. We identi-
fied one possible way to integrate the idea of 7ime score to compute information
flow between any node pair. In other words, if information flow between nodes
happens regularly the links become active and it influence the evolution of new
links. We learnt that timestamps provide the all necessary information in deter-
mining the activeness of links. Some of the recent link prediction research have
introduced supervised/unsupervised random walk algorithms to compute informa-
tion flow in social networks. Backstrom et. al. introduced a supervised random
walk algorithm which use edge strengths as transition probabilities [5]. The edges
strengths are learnt using network structure, node and edge attributes. Lichtenwal-
ter et. al. introduced a random walk based algorithm called PropFlow to compute
information flow [57]. PropFlow algorithm uses link weights are the transition

probabilities. The common idea of both approaches is if a node pair has higher
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transition probability, more information flow happens between the node pair and
they are is more likely to get linked in the future. Although these methods effec-
tively combine node and edge level attributes as well as network structure, link
activeness still a missing part of these methods. We therefore, introduced 7"_Flow
algorithm which computes the information flow between any pair of nodes in a
social network by considering the link activeness [71]. Once we compute it, we
used it as a feature for link prediction using supervised machine learning methods.
T_Flow algorithm is an extension of the PropFlow algorithm. In the next section

we discuss PropFlow algorithm in detail.

5.1.1 PropFlow algorithm

Information flow between nodes is a vital factor for link evolution in social net-
works and it depends very much on link attributes such as link weights and active-
ness. The PropFlow algorithm computes information flow based on random walk
method which select its path based on link weights. This method is somewhat
similar to rooted page rank, but restricted to local neighborhood of a node. Unlike
rooted page rank, the random walker doesn’t need to restart or convergence and
use modified breadth first search restricted to depth /. The random walker starts
from a particular node and reach the desired node in [ steps or fewer. Revisiting
any node including starting node is not allowed for the random walker. PropFlow
algorithm computes the information flow called PropFlow for a pair of nodes i
and j based on the random walks between them. The Equation 5.1 shows how
to compute PropFlow(i, j) if nodes i and j directly linked. In this case, random

walker starts from node i and walk to node ;.

wij

PropFlow(i, j) = Nodelnput,; (5.1)

Wik
keN i)
Where, w;; denotes the weight of the link between nodes i and j. k denotes a node
and set N(i) denotes node i’s neighbors whose depth is greater than the depth of
node of i from the starting node. Initial node input is regarded as 1. If nodes i
and j are indirectly linked, PropFlow algorithm computes the information flow

through all the shortest paths from node i to node j using Equation 5.1 recursively
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and take the summation.

For example, the Equations 5.2 to 5.7 show how to compute the PropFlow(A, D)
between nodes A and D in the coauthorship network shown in Figure 5.1. Link
weights are denoted by p. We assumed the random walker starts from node A.
PropFlow(A, D) is computed using link weights of links AB, BC, CD, BE, ED.
There are four paths the random walker can reach node D from node A. They
are A B—»C—-D, A-B—»E—»D, A B—-E—-C—D, and A->B—>C—E—D. We
have to note that PropFlow algorithm use modified breadth-first search method
and it stops when revisiting any node. Thus, random walker doesn’t revisit node C
from node E. Therefore, the paths A>B—E—C—D and A->B—C—E—D have
not considered for computations. First, we have to compute PropFlow(A, B).
Weight of the link between A and B is 3. The sum of the link weights of links
between A and its neighbors is 4. Note that initial node input of A is considered

as 1. PropFlow(A, B) can be compute as;

3 3 3
PropFlow(A,B) = 1% ———— = 1% - = — 5.2
ropFlow(A, B) *(1+3) * 1 2 (5.2)
PropFlow(B, C) can be compute as;
PropFlow(B, C) = PropFlow(A,B) * m
3 1 3
PropFlow(B, E) can be compute as;
PropFlow(B, E) = PropFlow(A, B) m
3 1 3
= —%—- = — 4
474716 >4
PropFlow(C, D) can be compute as;
5
PropFlow(C, D) = PropFlow(B, C) 5
3 3
= — 1 = — .
16 " 16 (5-5)
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Figure 5.1: An example of a coauthorship network

PropFlow(E, D) can be compute as;

1
PropFlow(E, D) = PropFlow(B, E) * 1

3 3

= orl= (5.6)

Therefore, the PropFlow(A, D) is;

3 3 6 3
PropFlow(A, D) = T + T = T = 3 5.7)

Although PropFlow algorithm computes the information flow in social net-
works using link weights, the information flow doesn’t depend only on the link
weights. The activeness of the links is a vital factor for information flow. The
links become weak or deactivate if nodes haven’t interacted recently with respect
to the current time. Despite of their weights, the weakened or deactivated links
can cause a decay in information flow. We therefore, introduced an extension of
PropFlow algorithm referred to as T_Flow algorithm [71] in order to consider the

effect of active links for information flow.
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5.2 T_Flow algorithm

The time stamps of the links or interactions are useful in determining the active-
ness of the links. If a node pair interact recently the link between them become
active. In other words, the time stamp of the last interaction is a vital information
in deciding the activeness of a link. Hence, we used the most recent time stamps
of the interactions between nodes for our computations. Time stamp can be the
most recent hour, day or year of a interaction between a node pair. The time unit
of the time stamps depends on the network. 7_Flow algorithm use the same set-
tings as in PropFlow algorithm for random walk. It considers link weight as well
as link activeness to compute transition probabilities. The relationship between
information flow and the activeness of links is defined by a decaying function.
The empirical studies have revealed that the decay in social network links is a
power function of time [7]. Therefore, we assumed the decay of information flow
as a function of decaying factor @ (0 < a < 1) and difference of time stamps of
adjacent links. The decaying function d(i, j) for information flow from node i to

its adjacent node j is defined as;
di, j) = (1 — ) (5.8)

The decaying factor @ (0 < @ < 1) is the rate of decay per unit time of the infor-
mation flow and ¢, is the time stamp of the link which random walker comes into
the node i and ¢, is the time stamp of the link which random walker going to node
Jj- The value of decaying function become 1 when @ = 0 which means no decay
in information flow. At this point 7_Flow algorithm is identical to its previous
version PropFlow algorithm. The T_Flow algorithm computes information flow

from node i to j via direct link as follows;

W;;

T_Flow(i, j) = Nodelnput; * % (1 = @)l

Wik
keN(i)

(5.9

If nodes i and j are indirectly linked, 7_Flow algorithm computes the information

flow through all the shortest paths from node i to node j using Equation 5.9 re-

72



cursively and take the summation. The total flow between two nodes regarded as
the 7_Flow for the node pair. At the start of the random walk, ¢, is regarded as
the current time and the initial node input is considered as 1. We have listed the

T _Flow algorithm in Algorithm 1.

For example, the Equations 5.10 to 5.15 show how to compute 7'_Flow(A, D)
between nodes A and D in Figure 5.1. Time stamps of the links denoted by ¢ in
Figure 5.1. We assumed the random walker starts from node A and the current
time is the year 2012. T_Flow(A, D) is computed using link weights of links AB,
BC, CD, BE, ED and their time stamps. First, we have to compute 7_Flow(A, B).

T_Flow(A,B) =1 (13T3) % (1 — q)2012-2011|
:%*(1—0{)122*(1—0,’) (5.10)

The link BC has the time stamp (2007) and the link BE has the time stamp
(2004). Therefore, BC is the most active link. Thus, more information should
flow through BC than BE which has the same weight as BC but less active than
BC. T_Flow(B, C) can be compute as;

1
T_Flow(B,C) = T_Flow(A, B) x ————— s (1 — )?011-2007

2+1+1)
:2*(1_@*%*(1—@4
= 136 w (1 -a)
(5.11)
T_Flow(B, E) can be compute as;
T_Flow(B,E) = T_Flow(A, B) * (2+—i+1) % (1 — q)?011-2004

:%>|<(l—a/)>x<%>k(l—a/)7

3 8

(5.12)
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T_Flow(C, D) can be compute as;

T_Flow(C,D) =T_Flow(B, C) * % (1 - a)'2007‘2009|
= %*(1—@7 (5.13)
T_Flow(E, D) can be compute as;
T_Flow(E,D) =T_Flow(B, E) = % (1 — a,)|2004—2006|
= 13—6 «(1-a)'” (5.14)

Therefore, the T_Flow(A, D) is;

3 3
T_Flow(A,D) = " (1-a) + e 1-a)t (5.15)

5.3 Experimental settings

At first, we analyzed effectiveness of 7_Flow algorithm for link prediction by
varying « from O to 0.9. Then, the link prediction performances of PropFlow al-

gorithm and 7_Flow algorithm were compared using three feature combinations.

1. Baseline combination (BC) which include neither PropFlow algorithm nor

T_Flow algorithm
2. PropFlow combination (PFC) which includes PropFlow algorithm
3. T_Flow combination (TFC) which includes T_Flow algorithm

For the comparison, we conducted the experiments for T_Flow combination using
two-loop cross validation where the inner loop determines a and the outer-loop
evaluates prediction. Training data in the outer loop is used in the inner loop to
find the optimal parameter value which is then used to evaluate the test data in
the outer loop. The feature combinations used in the experiments are shown in

Table 5.1. In our experiments, J48 Weka implementation [24] of C4.5 decision
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Algorithm 1: T_Flow Algorithm

Input: network G = (V, E), start node s, depth /, decaying factor «, current
time 7.
Output: T_Flow T, for all neighbors of s within depth /
begin
insert s into Visitedset
push s into NewsS earchqueue
push ¢z, into T'imequeue
insert (s,1) into T'¢
OldS earchqueue «— empty
for Distance— 0 to [l do
OldS earchqueue «— NewS earchqueue
empty NewS earchqueue
while OldS earchqueue is not empty do
pop i from OIdS earchqueue
pop t, from Timequeue
find Nodelnput using i in T
ty <0
SumWeight < 0
Flow <« 0
for j in neighborhood of i do
if depth of j > depth of i then
| add weight of edge between i and j to S umWeight
end
end
for jin neighborhood of i do
if depth of j > depth of i then
w;; < weight of edge between i and j
t, < time stamp of edge between i and j
Flow <« Nodelnput * Sumu‘j‘i,';ight % (1 — @)=l
add (j, Flow) into T,
if j is not in Visitedset then
insert j into Visitedset
push j into NewsS earchqueue
push 7, into Timequeue
end
end
end
end
end
end
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Table 5.1: Features used in PropFlow combination and T_Flow combination

Feature Formula BC PFC TFC
Adamic/Adar 2kel() OT() m v v v
Common neighbors IXOIRNE)] v v v
Jaccard’s coefficient :?8; B ?8;: v v v
Preferential attachment  |T'(Z)|[°(j)| v v v
PropFlow v -
T Flow - v

tree algorithm [86] was used with 10-fold cross validation. Machine learning ap-
proaches need /) Training data to train the learning method, and 2) Test data to
test the learned models. In practical terms, two-thirds of the data for training and
one-third for test. In some cases the amount of data may not be sufficient for
this holdout method of training and test. The other issue is examples of a cer-
tain class could missing in the training data. Such kind of situations may lead to
learn inappropriate models by the learning methods. A simple statistical method
called cross-validation is a promising technique to solve this problem. In cross-
validation, we partition the data set in to a known number of partitions called folds.
Then holdout one fold as test and remaining as the training sets. Repeating this
procedure for all folds ensures that every instance in the data has been used ex-
actly once for testing. Tenfold cross-validation is the standard way of evaluation
in supervised learning. In tenfold cross-validation we split data in to ten portions
and repeat the model evaluation ten times by holding one portion at a time as the
test set. The experiments presented in this section used ten-fold cross-validation
method for model evaluation. All network data sets are very sparse and hence
SMOT oversampling algorithm [12] was used in order to deal with class imbal-
ance problem. Precision, recall and F-measure are used as performance metrics
in the experiments. In both PropFlow and T_Flow algorithms, the depth [ is set to
3 which means we excluded the nodes that are more than three links away from
a node. We tested the effectiveness of T_Flow algorithm for a data set extracted

from facebook social network and coauthorship data sets extracted from e-print
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Table 5.2: Statistics of facebook data

Training data | Nodes | Edges | Clustering coefficient | Mean degree
Dl 7,094 | 13,294 0.0270 1.87
D2 12,862 | 29,656 0.0292 2.30
D3 9,310 | 18,138 0.0277 1.94
D4 14,405 | 30,142 0.0242 2.09
D5 19,614 | 51,030 0.0319 2.60
D6 17,277 | 36,414 0.0300 2.10
archive®.

5.4 Experiment with facebook data

The facebook data set is a set of wall postings collected from the regional face-
book network of New Orleans from September, 2006 to January, 2009 [103]. This
data set consist of wall postings exchanged by 60,290 users who are connected by
1,545,686 links. We extracted six different snapshots of data from May, 2008
to December, 2008 which shows a rapid increase of wall postings. Wall post-
ings are considered as the interactions between users. Each data set consist of
wall postings of three weeks. Link weight represents the number of wall post-
ings exchanged between a pair of users. The day of the most recent wall posting
represents the time stamp of a link.

We train the decision tree algorithm for facebook data using wall postings in
two consecutive weeks to predict links in the following week. The statistics of
the facebook training data are shown in Table 5.2. The unit of time for facebook
data is days. The experiment was conducted for six data sets and the average
performance of T_Flow algorithm was computed.

Link prediction performance of T_Flow combination with the variation of &
for facebook data is shown in the Figure 5.2. Average recall and average F-
measure shows peaks at @ = 0.1 and @ = 0.3 and then decrease as « increase

from 0.3 to 0.9 while the average precision doesn’t show any drastic changes. We

* http://arxiv.org/
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Figure 5.2: Performance of 7_Flow combination for different « values (facebook
data)

obtained the highest average F-measure for T_Flow combination at @ = 0.1. The
decaying factor @ measures the decay of influence of wall posting exchange per
unit time on information flow. The links become more active if users exchange
wall postings frequently and recently. Hence, the information flow decays with
the time if users don’t exchange wall postings frequently and recently. The face-
book network grow rapidly over time and the interactions happen within a quick
time. As a consequence, the decay in information flow per unit time(per day) pro-
portionately small. In other words, if a wall posting does not exchange within a
day the decay of information flow is proportionately low. Hence, the results are
better for the smaller o values(smaller decay). As shown in Table 5.2, the clus-
tering coefficients and mean degrees of the data is fairly small. It implies that the
users interact with less number of friends and only few links are active during the

particular time period.

Table 5.3 shows the comparison of PropFlow combination and T_Flow com-
bination for facebook data. We tested 7T_Flow combination using two-loop cross
validation method for determining @ and 10-fold cross validation for computing
the results. The results shows that average F-measure of T_Flow combination is
better than the average F-measure of PropFlow combination which implies that

the information flow via active links is a vital factor for link prediction.
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Table 5.3: Comparison of PropFlow combination and T_Flow combination for
facebook data

Feature Avg. Precision | Avg. Recall | Avg. F-measure
combination
BC 0.8368 0.1238 0.2132
PFC 0.6692 0.2898 0.4023
TFC 0.6658 0.3327 0.4412

5.5 Experiment with coauthorship data

The coauthorship data sets extracted from e-print archive within ten years pe-
riod of publications on subject areas Astro physics (Astro-ph), Condensed matter
physics (Condmat-ph), High energy physics(theory) (Hep-th) and High energy
physics(phenomenology) (Hep-ph) from 1992 to 2002. We created six data sets
for each subject area and computed the average performance of 7_Flow algorithm.
We have shown the statistics of each coauthorship network in the Table 5.4. Pub-
lications are considered as the interactions between authors and the year of the
most recent publication represents the time stamp of a link. Link weights were
computed using method introduced in [78] which is explained here. Let i and j
are two authors and (‘)‘f.‘ and (‘)"J‘. are indicator functions. If author i is an author of
paper k then 6¢ = 1 and zero otherwise. If paper k has ny authors, the weight of
collaboration w;; between two authors i and j is computed as the summation of all

coauthored papers;
okok
— E L
Wij = e — 1 (516)

k

We train the decision tree algorithm using five consecutive years of coauthor
data to predict links in the following year. For example, data from 1992 to 1996
is used as training data to predict links emerged in the year 1997. The unit of time
for the coauthorship data is years.

Link prediction performance of 7_Flow combination with the variation of «
for each coauthorship data is shown in Figure 5.3. We obtained the highest av-
erage F-measures at different a values for different subject areas. The activeness

of links in coauthorship networks are not change rapidly as authors work together
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Table 5.4: Statistics of coauthorship data

Data set Training Nodes | Edges | Clustering | Mean
(Subject area) data coeflicient | degree
DI1(1992-1996) | 8,098 | 53,086 0.6974 6.55
D2(1993-1997) | 12,647 | 113,924 | 0.7092 9.00
Astro-ph D3(1994-1998) | 17,346 | 177,390 | 0.7062 10.22
D4(1995-1999) | 22,180 | 261,724 | 0.7042 11.80
D5(1996-2000) | 27,067 | 358,794 | 0.7031 13.25
D6(1997-2001) | 31,526 | 455,670 | 0.6992 14.45
DI1(1992-1996) | 8,798 | 35,288 0.6269 4.01
D2(1993-1997) | 14,197 | 67,120 0.6702 4.73
Condmat-ph D3(1994-1998) | 20,410 | 108,926 | 0.6965 5.33
D4(1995-1999) | 27,053 | 157,530 | 0.7139 5.82
D5(1996-2000) | 33,461 | 209,852 | 0.7229 6.27
D6(1997-2001) | 40786 | 278,152 | 0.7336 6.81
D1(1992-1996) | 9,029 | 56,108 0.5879 6.21
D2(1993-1997) | 10,670 | 71,328 0.6004 6.68
Hep-ph D3(1994-1998) | 12,230 | 88,644 0.6082 7.24
D4(1995-1999) | 13,189 | 98,494 0.6095 7.46
D5(1996-2000) | 14,325 | 136,754 | 0.6237 9.54
D6(1997-2001) | 15,259 | 139,362 | 0.6315 9.13
DI1(1992-1996) | 8,438 | 24,904 0.4904 2.95
D2(1993-1997) | 9,459 | 29,286 0.4976 3.09
Hep-th D3(1994-1998) | 10,242 | 33,026 0.5094 3.22
D4(1995-1999) | 10,543 | 35,322 0.5164 3.35
D5(1996-2000) | 11,001 | 38,648 0.5146 3.51
D6(1997-2001) | 11,392 | 41,212 0.5162 3.61
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Figure 5.3: Variation of F-measure with decaying factor a(coauthorship data)

for long time to publish research papers. Therefore, the influence of coauthorship
on link activeness is proportionately high. The other notable characteristic is that
Astro-ph, Condmat-ph and Hep-ph coauthorship networks have high clustering
coeflicients and mean degrees as shown in Table 5.4. Higher clustering coeffi-
cients and mean degrees in the recent years tells that authors tends to interact(via
publications) with more coauthors as networks grow with the time. More interac-
tions makes networks more active and 7_Flow combination perform better than

PropFlow combination.

In contrast, PropFlow combination performs significantly better than 7_Flow
combination for Hep-th data as shown in Figure 5.3(d). As shown in Table 5.4,
Hep-th coauthorship network has low clustering coefficients and low mean de-
grees. This observation tells that this network is less active compared to the other

subject areas. In other words, the authors rarely make new coauthorships. This
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Table 5.5: Comparison of PropFlow combination and 7_Flow combination for
coauthorship data

Data set Feature Avg. Avg. Avg.
(Subject area) | combination | Precision | Recall | F-measure
Astro-ph BC 0.7128 | 0.4367 0.5263
PFC 0.7003 | 0.4208 0.5005
TFC 0.7394 | 0.5005 0.5802
Condmat- BC 0.6617 | 0.4485 0.5227
ph PFC 0.6573 | 0.4872 0.5480
TFC 0.7095 | 0.5208 0.5960
Hep-ph BC 0.7480 | 0.3162 0.4400
PFC 0.6795 | 0.3438 0.4443
TFC 0.6963 | 0.3525 0.4654
Hep-th BC 0.7987 | 0.3875 0.5208
PFC 0.6775 | 0.5180 0.5862
TFC 0.7381 | 0.3973 0.5157

phenomenon could specific to the network. In our experiments, we have assumed
that the average time taken for a publication is one year. However, it takes more
than one year in some research areas to make a publication. In such kind of situa-

tions, we have to choose the time unit depending on the interaction time.

The summary of results is shown in Table 5.5 with comparison of PropFlow
combination and T_Flow combination for coauthorship data. We tested T_Flow
combination using two-loop cross validation method for determining a and 10-
fold cross validation for computing the results. The results shows that average F-
measure of T_Flow combination is better than the average F-measure of PropFlow
combination. In fact, T_Flow combination shows significant improvement in av-
erage F-measure for Astro-ph data. The results implies that the information flow
via active links is a vital factor for link prediction. In our further analysis, we
observed that the difference between F-measure values of PropFlow and T_Flow
combinations increase for recent coauthorship networks as shown in Figure 5.4. In
other words, T_Flow combination shows better performances on recent data sets
which has higher clustering coefficient and mean degrees. Further, we obtained

the highest F-measure for Condmat-ph data in the experimental results shown
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F-measure curves of Astro-ph data

PropFlow

F-measure curves of Condmat-ph data

PropFlow wmum
09} L P
T_FIOW 0.9 T_FIOW
0.8 0.8+
0.6¢ 0.6 M
o5l ol R o
ool oal ,,,,,,/,%
03¢ 03t
0.2} 02r
01 N 01 -
0 Z e Z Ze Z R 0 Z Z 7 Zc e Z
o, %, T e e Y, %, Y, G % T %,
R 9 U, Y Yo, e Y ‘9 %, Y
% N 0, % % 0, % 0, % % % v,
(a) Astro-ph (b) Condmat-ph
. F-measure curves of Hep-ph data | F-measure curves of Hep-th data
PropFlow mumm PropFlow wum
09y T_FIOW s 091 T_FIOW mm
0.8} 0.8
0.7 0.7
0.6 Fumimigg 0.6 ,m““‘““““.u\\mmumuuumummuunnu||m.|..,,,,,,“\mmmmmunmllmumnmm......
0.5 0.5
04y %//’// ““\\\\\\“““"'”“tumr::::::Am::uuuunuuuuuuu 04+
03+ 03
0.2 0.2
0.1 0.1F
0 /e e e Ze Ze 7 0 ¢ 7 e e ¢ 7
% % % B B, % % % % % %
9 9 [0 9 7 7 9 9 9 9 2 2
% N % % % ©, o9 N % 9% % 0,
(c) Hep-ph (d) Hep-th

Figure 5.4: Variation of F-measure with network growth(coauthorship data)

in Table 5.5. This means that the decay of information flow per unit time in
Condmat-ph data is higher than the other subject areas. Such kind of data are ap-
propriate to study the correlation between dynamic behavior of networks(network

growth) and performance of 7_Flow algorithm.

5.6 Experiments with a rapidly growing network

We carried out further experiments to investigate the performance of 7_Flow al-
gorithm when networks change rapidly. The coauthorship data shows drastic rise
of links and nodes in the recent years. It implies that many interactions hap-
pen in the recent past. Thus, we used six different network data sets extracted
from Condmat-ph publications from 1997 to 2007. Statistics of the data sets are

shown in Table 5.6 and experimental settings are the same as in the Section 5.5.
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Table 5.6: Statistics of Condmat-ph data

Training Nodes | Edges | Clustering | Mean

data coeflicient | degree
D1(1997-2001) | 40,786 | 278,152 | 0.7336 6.81
D2(1998-2002) | 46,124 | 328,432 | 0.7348 7.11
D3(1999-2003) | 50,632 | 373,934 | 0.7347 7.38
D4(2000-2004) | 55,425 | 424,116 | 0.7349 7.65
D5(2001-2005) | 59,742 | 467,608 | 0.7357 7.82
D6(2002-2006) | 62,802 | 493,634 | 0.7367 7.86

Precision, Recall and F-measure for Condmat-ph data
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Figure 5.5: Performance of T_Flow combination for different « values (Condmat-
ph)

Clustering coefficients and mean degrees are almost same for six data sets. Link
prediction performance of 7_Flow combination with the variation of « is shown
in Figure 5.5. Comparison of PropFlow combination with 7"_Flow combination
is shown in Table 5.7. We tested T_Flow combination using two-loop cross val-
idation method for determining @ and 10-fold cross validation for computing the
results. The results shows a significant improvement for 7__Flow combination. It
implies that T_Flow algorithm is more sensitive for rapid changes in link active-

ness and hence, shows better performance for dynamic networks.
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Table 5.7: Comparison of PropFlow combination and T_Flow combination for

Condmat-ph data
Feature Avg. Precision | Avg. Recall | Avg. F-measure
combination
PFC 0.5852 0.1655 0.2567
TFC 0.6637 0.3258 0.4302

5.7 Comparison of Time score and T_Flow

Time score is limited to node pairs which have common neighbors. In other words,
it is restricted the node neighborhood to 2-hops (two links). In contrast, 7_Flow
is applicable for any node pair. However, we limited the node neighborhood for
3-hops for T_Flow to reduces the computational cost. In reality, new links emerge
between nodes which resides more than 2-hops or 3-hops apart. Therefore, it is
necessary to know the amount (percentage) of links can be predict by Time score
and T_Flow with respect to the whole network. In other words, the percentage
recall of Time score combination(TSC) and T_Flow combination(TFC) is useful
and necessary: (1) to know the coverage of links predicted by each feature com-
pared to the whole network, (2) to compare Time score and T_Flow in terms of
percentage recall. Therefore, we computed recall for 7SC and TFC with respect
to whole networks of facebook data and Condensed matter physics (Condmat-ph)
data.

In the experiments, we used J48 weka implementation of C4.5 decision tree
algorithm as our supervised learning method. First, we apply 7SC and TFC for
facebook data which is described in Table 5.2. We train the decision tree algo-
rithm for facebook data using wall postings in two consecutive weeks to predict
links in the following week. The unit of time for facebook data is days. The
experiment was conducted for six data sets and the average performance of 7SC
and TFC was computed. Second, we apply 7SC and TFC for coauthorship data
extracted from Condmat-ph publications from the year 2000 to 2005. We train
the decision tree algorithm using data from year 2000 to 2004 to predict links ap-
peared in the year 2005. The unit of time for Condmat-ph data is days. Details
of the experimental results are given in the Tables 5.8 and 5.9 and Table 5.10.
Table 5.8 shows number of links predicted by 7SC and TFC for each facebook
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Table 5.8: Comparison of number of links predicted by 7SC and TFC for facebook
data with respect to whole network

Data | Number of correct | Number of correct | Number of links
predictions by TSC | predictions by TFC | in whole network

D1 81 658 1637

D2 93 783 3028

D3 114 854 2365

D4 59 951 3679

D5 196 1382 5921

D6 64 1270 3952

data set compared to the number of links in the whole network. Table 5.9 shows
number of links predicted by 7SC and TFC for Condmat-ph data set compared
to the number of links in the whole network. Table 5.10 presents the summary
of the comparison of two features in terms of percentage recall of 7SC and TFC.
According to the Table 5.10, the average percentage recall of TFC is 30.6% for
facebook data while average percentage recall of TSC is 3.2%. For Condmat-ph
data, average percentage recall of TFC is 2.9% and average percentage recall of
TSC is 0.9%. This results indicate that TFC perform 10-times better than 7SC
for facebook data and TFC perform 3-times better than 7SC Condmat-ph data.
The other observation is that both 7SC and TFC perform better for facebook data
compared to Condmat-ph data. This can be happen becuase facebook network
mostly evolve through the interactions occur within the local communities while
coauthorship networks evolve through the interactions which are not limited to
the local communities. Therefore, this observation indicates that Time score and
T_Flow are more effective for networks which evolve through local interactions.
Moreover, T_Flow can cover any node pair and is more effective than Time score

which is limited to 2-hops.
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Table 5.9: Comparison of number of links predicted by 7SC and TFC for
Condmat-ph data with respect to whole network

Data Number of correct | Number of correct | Number of links

predictions by TSC | predictions by TFC | in whole network
Condmat-ph 208 702 24406
(2000-2005)

Table 5.10: Comparison of average percentage recall of T7SC and TFC

Average percentage recall(%)
facebook data | Condmat-ph data
TSC 3.229 0.851
TFC 30.582 2.875

Feature combination

5.8 Conclusion

There have been numerous path based/flow based algorithms introduced for link
prediction. Most of them have rarely accounted the link activeness. Hence, we
extended one of the previous algorithm PropFlow by incorporating link activeness
and introduced a new algorithm called 7_Flow. T_Flow algorithm computes in-
formation flow using activeness of links and link weights. The main characteristic
of T_Flow algorithm is that it combines the impact of link activeness for informa-
tion flow which has not been considered in the previous method PropFlow. We
combined the activeness of links and link weights in 7_Flow algorithm and inves-
tigated how it affect the information flow which is a vital factor for link evolution.
The experimental results shows that 7__Flow algorithm outperform the previous
PropFlow algorithm which only considers the impact of link weights for informa-
tion flow. Thus, T__Flow algorithm is better for link prediction in social networks

where the link activeness varies rapidly over time.
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Chapter 6
Conclusion

Summary In this chapter we summarize the research presented in this thesis and
our contributions. We introduced two easy to implement yet significantly effec-
tive time-aware methods which can be used for link prediction in highly dynamic
social networks. The effectiveness is proved with the evidence of experimental re-
sults. Further, we emphasis that these methods are easily extendable to any type
of network data.

6.1 Contribution

We considered the classical problem of link prediction where we are given a snap-
shot of a social network at time #, and we seek to accurately predict the edges that
will be added to the network during the interval from time ¢ to a given future time
t + 1. Most common way is to measure the closeness/similarity of nodes to each
other in terms of various social aspects. Social networks continuously evolve in re-
sponse to the underlying social dynamics, and those similarities change over time
due to highly dynamic behavior of nodes and links. Clearly, older events are less
likely to be relevant for determining the future linkages than recent ones. There-
fore, it is necessary to develop features or methods which can treat the rapidly
changing network data to understand the mechanisms of network evolution. We
learnt that time-related data is very important to understand underlying mecha-

nisms of temporality. Thus, we introduced the aspect of time for link prediction.
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We contributed by introducing two novel time-related features which can be used
with machine learning methods for link prediction in rapidly evolving social net-
works. We devised two novel time-related features based on link activeness. We
used timestamps of interactions, which is strongly correlated with link activeness,
to define our novel features. The advantage of using timestamps of interactions is

they are easy obtain across many social networks.

6.2 Discussion

The research presented in this thesis introduced two highly effective time-aware
features for link prediction in rapidly evolving social networks. Most of the recent
link prediction research are being focused on temporal and local patterns of the
networks. Number of research works have been introduced time-related features
and methods to deal with temporal behavior of node and links. Those features or
methods have been defined using social scientific aspects such as decay of rela-
tionships or social links over time. This phenomenon has been studied extensively
in the empirical studies, and revealed that the decay of social links is a power
function of time. The strength/activeness of social links associated with vari-
ous factors depending on the network. In most cases, link strength/activeness is
strongly correlated with time-related factors but in some others are not. However,
generally, strength of social links strongly correlated with time-related factors. A
simplest yet vital factor is link age. Link age can be interpreted in two ways:
(1) elapsed time since the creation of link (2) elapsed time since the last interac-
tion/transaction”, with respect to the current time. According to our perception,
the second factor is strongly correlated with link activeness. If transactions or
interactions happen frequently and recently the links become active and strong.
Active links has an utmost importance for link evolution. Thus, we started from
this point and introduced two robust features Time score and T_Flow to incorpo-

rate the following hypotheses of link activeness:

1. If a node pair interacted with each other recently with respect to the current

time, then the link between them becomes active.

* We used terms interaction and transaction interchangeably with the same meaning
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2. If anode interacted with its neighbors within a closer proximity of time, the

neighbors are more likely to become linked.

According to the definition, 7ime score has two terms related to link activeness,

(1-a) (k, =t.— max(t,, 1)) corresponds to the first assumption and m

corresponds to the second assumption. In this case, Time score computes the de-

cay in three different ways. First, when k, = 0 (¢, = max(t,,t,,))) and t;, # t,

Kn N S
[t1, =12, 1+1

to deal with decay of link strengths. Second, when k, # 0 (t. # max(t,,,1,,)) and

the decaying function (1 — @) becomes 1 for any @ and the term uses
t, = t,, the decaying function (1 — @)* uses to deal with decay of link strengths.
Third, when &, # 0 (. # max(t,,,1,)) and t;, # 1, both —— and (1 - )"
uses to deal with decay of link strengths. Changing its form according to some
corner cases is one drawback of the Time score, i.e. it doesn’t use unique function
to deal with decay of link strength in some special cases such as first and second
case. This drawback has been alleviated in 7_Flow while including all the as-
pects of Time score. Important point is that 7_Flow algorithm only use decaying
function (1 — @)% to deal with decay of link strengths. At the start of random
walk, ¢, is considered as the current time or a given time such elapsed time mea-
sure with respect to the given time. In the middle of the random walk 7, and ¢,
are the timestamps of the adjacent edges. Therefore, 7_Flow doesn’t change its
form irrespective of the cases suchas a = 0, t, = t,, t, = t, = t., etc. Thus,
T _Flow algorithm computes the decay in information flow in the same manner for
any node pair. The consistency has made 7T_Flow algorithm is an effective and
generalized method to deal with the decay of link activeness. Both novel features
are capable of dealing with rapidly changing nature of the networks. We used
the timestamps of the links/interactions to devise the features. The timestamps
of links/interactions are available and a common information across most social
networks. Therefore, the novel time-aware features are easily adaptable for any
kind of network.

We identified some limitations in the time-aware features we introduced in
this thesis. One of them is, we used one type of interactions to determine the link
activeness. The hypothesis behind the novel features is the activeness of links
is highly correlated with future link evolution. Under this assumption we used

timestamps of interactions or transactions to determine the activeness of links. In-
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teractions can be happen in different ways. For example, facebook users interact
with their friends by exchanging wall postings, photo/video tagging, chatting, lik-
ings, etc. Every way of interaction contribute for activeness of the links between
nodes and hence, affect the future link evolution. It is worthwhile to study and
investigate all these factors to determine the link activeness. It would lead to for-
mulate accurate link prediction methods. However, it is a complex task to investi-
gate the relationship between activeness of links all the factors contribute for link
activeness. The influence of these factors vary over time in different and complex
patterns. Besides, the data related to most of these factors are not easy to obtain
due to various issues such as privacy and security matters. Thus, we choose easy
obtain and commonly available interaction types for the data sets we used in our
experiments. In order to study the phenomenon of link activeness, we picked wall
postings as the interaction type for facebook data and coauthorships as the inter-
action type for scientific collaboration network data. We collected the timestamps
of interactions of both data sets. Time take for an interaction is different for each
data set. In facebook online social network, the average interaction/response time
for a wall posting takes 12 to 48 hours. In contrast, in the social networks such
as coauthor networks the average interaction time is around 1 year. Generally, the
scientific papers published in conferences held annually. However, there are some
exceptions exist depending on the research areas. Thus, we decided to use days as
the time unit for facebook data and years as the time unit for coauthorship data as

an average time measure.

The features Time score and T_flow include a parameter a, the decaying factor.
Decaying factor @ (0 < @ < 1) is the rate of decay in link activeness per unit time.
In our work, we analyzed the performance by varying the parameter values within
a given set of values from 0.1 to 0.9. The reason for this analysis it to provide a
guideline to pick the parameter value particularly, according to the time unit. We

observed following characteristics in the experimental analysis:

1. For facebook data, both Time score and T_Flow shows optimal link predic-
tion performance for smaller a values (¢ = 0.1). This observation implies
that smaller @ values are suitable for rapidly evolving networks with short

interaction time such as days, hours, etc.
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2. For coauthorship data, Time score shows the optimal link prediction per-
formance for Condmat-ph data at @ = 0.8. T_Flow shows optimal link
prediction performance for Astro-ph data at @ = 0.3, for Condmat-ph data
at o = 0.9, for Hep-ph data at @ = 0.7and for Hep-ph data at @ = 0.6. These
observations implies that higher « values are suitable for rapidly growing
networks with longer interaction time such as months, years, etc. However,
optimal link prediction performance for Astro-ph data observed at @ = 0.3
which an exception compared to the other data sets. According to Table 5.4
Astro-ph data has the highest growth of links and mean degree which im-
plies that this network is highly active in terms of interactions compared to
the other networks. In other words the interactions happen fairly quickly
than in the other networks. Thus, the average time taking for an interaction
might be less than 1 year. Thus, smaller a values shows better results for
Astro-ph data.

Although we picked the parameter value for @ Time score using the above analyt-
ical procedure,parameter learning method called two-loop cross validation used
for evaluating T_flow. Two-loop cross validation method learns the best parame-
ter value in its inner loop and used it for feature evaluation in the our loop. How-
ever, we used the set of nine values (0.1, 0.2, ..., 0.9) for this evaluation. We didn’t
test the values in between them such as 0.15,0.24,0.36,.... It would be more
effective if we tested such kind of values. This can be done by more sophisticated
parameter learning methods which we hope to incorporate in our future works.

In the present work, we developed our methods for homogeneous networks.
However, most of the social networks are represented as multi-relational net-
works. Users linked with others via different types of links. Thus, predicting
the links which are more likely to happen with their types has become an im-
portant aspect of link prediction. Each type of link in a network is related to a
specific service or purpose. This implies that, a user use different channels or
links to connect with another user depending on the time. This is another time
related temporal behavior of links, which is one of our future directions. In our
future works, We will be incorporate the novel features introduced in this thesis in
multi-relational link prediction framework to provide improved and accurate link

prediction system.
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6.3 Conclusion

There have been numerous attempts to address the problem of link prediction us-
ing supervised learning methods which acquire the knowledge through various
measures. However, the knowledge gained through the existing static knowledge
extraction measures are not sufficient for accurate link prediction in highly dy-
namic social networks. It leads to inaccurate and less precise predictions. In order
to alleviate this problem, we contributed by introducing two novel time-aware
features which are based on common neighbors and information flow via active
links. We used the latest timestamps, which are easily obtainable in most net-
works, of interactions/links to compute them. Both features tested in conjunction
with supervised learning method on real world social networks namely, facebook
friendship network data and coauthorship data extracted from ePrint archives.
The results shows that new time-aware methods, Time score and T_Flow, outper-
form the existing static methods. Besides, that we analyzed the performance of
both methods by varying their parameter values in order to provide a guideline for
choosing parameters for different networks. Thus, they are sophisticated methods
to use any kind of evolving network. In our concluding remarks, we would like to
emphasis that two time-aware methods are extremely helpful in link prediction in

dynamic social networks.
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