
An Experimental Space for Conducting

Driving Behavior Studies Based on a

Multiuser Networked 3D Virtual Environment

and the Scenario Markup Language

Kugamoorthy GAJANANAN

Department of Informatics,
School of Multidisciplinary Sciences

The Graduate University for Advanced Studies (SOKENDAI)

Doctoral Dissertation

Doctor of Philosophy

September 2013

A dissertation submitted to the Department of Informatics,

School of Multidisciplinary Sciences,

The Graduate University for Advanced Studies(SOKENDAI)

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Informatics

Advisory committee

Professor Helmut Prendinger (SOKENDAI)

Professor Ken Satoh (SOKENDAI)

Associate Professor Tetsunari Inamura

Associate Professor Asanobu Kitamoto (SOKENDAI)

Associate Professor Ryutaro Ichise (SOKENDAI)

Professor Masao Kuwahara (Tohoku University)

Abstract

This thesis describes a new framework for conducting controlled driving

behavior studies based on multiuser networked three-dimensional (3D)

virtual environments. The framework supports (a) the simulation of mul-

tiuser immersive driving, (b) the visualization of interactive surrounding

traffic, (c) the specification and creation of reproducible traffic scenar-

ios, and (d) the collection of meaningful driving behavior data. Thus the

framework allows traffic engineers to investigate complex traffic situations

that depend on the interaction between multiple drivers. Specifically, we

use our framework to investigate the ‘rubbernecking’ phenomenon, which

refers to the slowing down of a driver due to an accident on the opposite

side of the road, and its effect on the following drivers. The main contri-

bution of the thesis is two-fold. First, we developed the Scenario Markup

Language (SML) as a practical tool to specify dynamic traffic situations

(e.g. an accident). Second, we designed the SML Framework to simulate

interactive ambient vehicles in a multiuser driving simulator and to ensure

the reproducibility of particular traffic situations, so that traffic engineers

can obtain comparable data and draw valid conclusions. To demonstrate

the effectiveness of our framework, we collaborated with traffic engineers

to specify the traffic accident scenario in SML and to conduct a study on

the rubbernecking phenomenon.

In the Chapter 1, main stream of alternative approaches for driver be-

havior experiments are introduced, and their relative pros and cons are

discussed. Then, the importance of multiuser driving simulators and of

simulating realistic traffic scenarios to create predictable experiences for

human participants in driver experiments, are discussed. Next, the chal-

lenges in simulating realistic traffic scenarios in driving simulators are

introduced.

In the Chapter 2, related works are introduced in various areas related

to this research. We specifically review the techniques used for simulat-

ing ambient traffic in driving simulator environment, scenario authoring

as high level specification, scenario control system implementation, and

intermediate mapping representations that maps high level specification

to scenario implementation.

The Chapter 3 describes the motivating traffic phenomenon called ‘rub-

bernecking and the tagging structures of the Scenario Markup Language

(SML) by walking through an example from our target traffic situation,

the specification of an accident using the Scenario Markup Language.

The Chapter 4 covers a description of the SML Framework. Here we show

how the framework has been designed on top of our in-house three dimen-

sional (3D) virtual environment technologies. Specifically, we present the

approaches utilized for a) simulating multiuser immersive driving in 3D

virtual environment, b) simulating ambient traffic in a multiuser driving

simulator, and c) implementing the intermediate representation mapping

and scenario control scheme. In addition, we provide the details of how

research and technical challenges are addressed.

In the Chapter 5, we explain how we demonstrate the effectiveness of our

framework, by conducting a multiuser driving behavior experiment using

SML Framework. We describe our multiuser driving behavior experiment

on the traffic phenomenon called rubbernecking effect. Here, we report on

the results of our study from two viewpoints: (a) the reproducibility of

the traffic accident situation (i.e. state variables of interest are recreated

successfully in 78% of the cases), and (b) the interactive car-following

behavior of human subjects embedded in the traffic situation of the virtual

environment.

Finally, in Chapter 6, we summarize the research work and conclude the

thesis. In addition, we indicate the directions for further research.

ii

Acknowledgements

First of all, I extend my deepest gratitude to my supervisor, Professor

Helmut Prendinger, for accepting my request to conduct doctoral re-

search in his laboratory and for providing me an opportunity to work

in a unique, highly dynamic research environment during last three years.

Prof. Prendinger helped me in numerous ways that includes formulating

the research topic, presenting and publishing research outcome at various

venues, letting me collaborate with many researchers.

I thank the members of my Ph.D thesis committee, Professor Ken Satoh,

Assoc.Professor Tetsunari Inamura, Assoc.Professor Asanobu Kitamoto,

and Assoc.Professor Ryutaro Ichise for their critical, yet constructive com-

ments, suggestions and feedback during the meetings I had with them.

Next, I would like to thank my collaborators, in particular, Prof. Edward

Chung, Dr. Marc Miska, and Dr. Alfredo Nantes from the Smart Trans-

port Research Center, Queensland University of Technology, in Australia.

Prof. Edward Chung and Dr. Miska invited me as a visiting researcher

and helped me to conduct a driver behavioral experiment at their center.

Moreover, Dr. Miska helped me to gain knowledge about subject area, and

contributed towards developing a traffic simulator. Dr. Alfredo Nantes

helped me to formulate the hypotheses from traffic engineering,and to an-

alyze the behavioral data to draw valid conclusions on those hypotheses.

Then, I thank Dr. Arturo Nakasone, who helped me design the Scenario

Markup Language, which is an integral part of my research. Apart from

that, he also helped in general about conducting research, by sharing his

own experience.

I also thank all of my lab mates namely Martin Lindner, Edgar Santos,

Marconi Madruga, Eurico Doirado, Goncalo Pereira, Sandra Gama, Pedro

Cuba, Edern Grey, Joana Silva, Iker Azorin, Kuan-Lin Chiu, Edern Grey

and Ricardo Mendes for their valuable contribution in this work. Without

their hard work and contribution, certainly none of my thesis work would

exist.

Moreover, I thank Dr. Keisuke Okuno, who has been my mentor ever

since I joined the PhD program and even now. His in-depth questions

and critics about my research work made me to think objectively about

the problems and solved them very efficiently.

Further, I thank Dr. Johan Olstam from VTI, the Swedish National Road

and Transport Research Institute. I came across his work in my litera-

ture review and contacted him for technical questions about his approach.

Dr. Olstam helped me by answering my questions, as well sharing his

knowledge and experience in traffic scenario simulation.

I thank National Institute of Informatics for providing me the necessary

financial, human and technological resources support. I also thank the

Graduate University for Advanced Studies (SOKENDAI) for awarding

me the Short-Stay Study Abroad Program grant, which helped me to

conduct the driving experiment in the Smart Transport Research Center.

Further, I also thank NII secretaries for the their assistance to handle all

the administrative and paper work in Japanese language throughout my

research work, which made my life easy a foreign student.

Finally, I think my parents, my wife and my friends for their love, encour-

agement and great support through out my research, which helped me to

handle the challenging research situations very well.

iv

To my parents, for their love and support.

Contents

1 Introduction 1

1.1 Motivation and Background . 1

1.2 Aim and Objectives . 4

1.3 Summary of Contributions . 5

1.4 Delimitations . 6

1.5 Thesis Outline . 6

2 Related Work 8

2.1 Introduction . 8

2.2 Driving Simulators . 8

2.3 Simulation of Surrounding Vehicles in Driving Simulators 9

2.4 Addressing Challenges of Scenario Authoring and Implementation . . 11

2.4.1 Scenario Authoring Languages 11

2.4.2 Intermediate Representations that Map High Level Specifica-

tions to the Scenario Control Implementations 13

2.4.3 Control Schemes for Scenario Implementation 14

2.4.3.1 Controlled Vehicles 14

2.4.3.2 Autonomous Vehicles 14

2.4.3.3 Directable Semi Autonomous Vehicles 15

2.4.3.4 Combined or Mixed Approaches 15

2.5 Conclusion . 17

3 Traffic Scenario Authoring with Scenario Markup Language 18

3.1 Introduction . 18

3.2 Motivating Traffic Scenario on Rubbernecking Effect 18

3.3 Scenario Markup Language Concepts 20

3.3.1 SML Elements and Entities 20

3.3.2 SML Event . 23

vi

3.3.3 SML Behavior, Perception with its Container, Action, Command 24

3.3.4 SML Director Element . 25

3.4 Conclusion . 26

4 SML Framework - Overall Architecture 27

4.1 Introduction . 27

4.2 Simulation of Multiuser Immersive Driving in a Large Scale 3D Virtual

Environment . 28

4.2.1 Unity3D Virtual Environment 28

4.2.1.1 3D Model of Virtual Environment 29

4.2.2 Distributed Virtual Environments 30

4.2.3 Multiuser Immersive Driving Simulator Client 31

4.3 Integration of Multiuser Immersive Driving Simulation with Micro-

scopic Traffic Simulator . 32

4.3.1 OpenTraffic Middleware . 33

4.4 Scenario Implementation . 35

4.4.1 Behavior Tree as an Intermediate Representation 35

4.4.2 Scenario Control System . 36

4.4.2.1 Orchestration Layer - AI Car Module 38

4.4.2.2 Command Layer . 39

4.4.2.3 Unity3D Layer . 41

4.4.3 Incident Creation Functions 41

4.4.3.1 Selection . 42

4.4.3.2 Preparation . 43

4.4.3.3 Execution . 44

4.4.3.4 Time Estimation . 44

4.5 Collection of Driver Behavior and Traffic Data 44

4.6 Addressing Technical Challenges . 46

4.7 Conclusion . 48

5 Multiuser Driving Experiment 49

5.1 Introduction . 49

5.2 Method . 50

5.2.1 Subjects . 50

5.2.2 Apparatus . 51

5.2.3 Experimental Procedure . 51

5.3 Experimental Results . 52

vii

5.3.1 Informatics View - Accuracy of Accident Creation 52

5.3.2 Traffic Engineering View - Rubbernecking 54

5.3.2.1 Data Analysis Process 55

5.3.2.2 Hypotheses and Results 57

5.4 Conclusion . 60

6 Conclusion 61

6.1 Summary . 61

6.2 Limitations . 63

6.3 Implications for Research and Policy 64

6.4 Future Work . 65

7 Publications 67

Bibliography 70

A Scenario Markup Language Documentation 78

A.1 Specification of Scenario Markup Language 79

A.1.1 SML . 79

A.1.2 Head . 79

A.1.3 Entities . 80

A.1.4 Entity . 80

A.1.5 Property . 81

A.1.6 User . 81

A.1.7 Body . 82

A.1.8 Scenario . 82

A.1.9 Director . 83

A.1.10 Seq . 84

A.1.11 Par . 85

A.1.12 Sel . 85

A.1.13 Task . 86

A.1.14 Event . 86

A.1.15 Conditions . 87

A.1.16 Condition . 87

A.1.17 Variables . 88

A.1.18 Variable . 88

A.1.19 Behavior . 89

viii

A.1.20 Action . 89

A.1.21 ALL . 90

A.1.22 ANY . 90

A.1.23 Perception . 91

A.1.24 Command . 91

A.1.25 Param . 92

A.2 How to use SML Execution System in a simulation program (Program-

mers Reference) . 92

A.2.1 Example Usage of SML Execution System 92

A.2.2 ScenarioControlSystem . 94

A.2.3 IScenarioInterface . 97

B Scenario Markup Language Script 99

B.1 SML Header Script . 99

B.2 SML Body Script . 100

C Questionnaire 101

C.1 Background Information . 101

C.2 Questions related to the simulation environment 102

D Participant Information 103

D.1 Welcome to our Study! . 103

D.2 Instructions . 104

ix

List of Figures

3.1 Illustration of a rubbernecking scenario. 19

3.2 The overall structrual diagram of a SML scenario script 21

3.3 The overall structrual diagram of the header part of a SML scenario

script . 21

3.4 The overall structrual diagram of the body part of a SML scenario script 22

3.5 Snippet of an SML script that specifies two car entities. 23

3.6 Snippet of an SML script that specifies the reference user. 23

3.7 An example SML script that specifies an accident event 23

3.8 An example SML script that specifies a behavior for an entity. 24

3.9 An example SML script that specifies the supervisor element (director)

of the accident scenario . 25

4.1 SML Framework Design Diagram . 28

4.2 The driving simulator apparatus . 29

4.3 A first person or driver view of the 3D virtual environment 30

4.4 A conceptual diagram of the Scenario Markup Language (SML) Frame-

work . 36

4.5 The concept diagram that illustrates three functionality of the Scenario

Control System: a) selection, b) preparation, and c) execution. 37

4.6 The overall driving behavior (NavigationBT). 39

4.7 The behavior that represents basic driving behavior (BasicDrivingBT) 40

4.8 The behavior tree that represents the functions of Scenario Control

System. 40

5.1 The birdview of 3D virtual environment setup in a 2D diagram. . . . 50

5.2 The traffic accident scenario concept in a 2D diagram. U1 is lead

driver; U2, U3, and U4 are followers. 52

5.3 The line line graph showing the distances between the actual and spec-

ified locations of lead user and accident 53

x

5.4 The space-time diagram for choosing observation window 54

5.5 The plots for behavioural distributions of headway and speed. The

graphs refers to the ‘Drive With Traffic’ runs from all nine sessions. . 56

5.6 The mode plots for headway, speed, and delta speed of overall driving

behavior of four drivers in a platoon from all nine sessions. 58

5.7 The variance plots for headway, speed, and delta speed of overall driv-

ing behavior of four drivers in a platoon from nine sessions. 59

xi

List of Tables

4.1 Driver behavioral and microscopic vehicle traffic data schema (* refers

to user driven vehicles only, # refers to autonomous and semi-autonomous

vehicles only) . 46

xii

Chapter 1

Introduction

1.1 Motivation and Background

Traffic engineers study driving behavior by exposing human participants to specific

traffic situations, such as an accident or a merging maneuver. The natural responses of

drivers during these studies are captured and analyzed to validate relevant hypotheses

about how drivers respond to some traffic situations of interest. Large scale behav-

ioral studies are required by traffic engineers to properly support these hypotheses.

Examples include traffic phenomena like the rubber necking effect (explained later in

Chapter 3), intersection safety, car following in traffic congestion, and so on.

Traffic engineers rarely conduct behavioral studies in the real world, even though

it is the most realistic environment. One reason is that, real world is unpredictable

with regards to weather and road traffic conditions. Another reason is that the lim-

ited control possibilities in the real world can undermine the design of driver behavior

experiments with reproducible conditions for all subjects [37]. Test tracks offer a safe

environment and the possibility of providing driver subjects equivalent conditions.

However, test tracks have drawbacks notably with regard to the variety and com-

plexity of the driving context [37]. Alternatively, they use web-based surveys which,

however, restrict the type of behavioral data collected. In recent years, simulators

were built to address several aspects of transport, including driving behavior, traffic

flow, road safety, and road design (e.g. [19], [37], [60], [46]). For example, Hattrori et

1

al.[19] successfully used a driving simulator to elicit a driving behavior model from

human driving behaviors. Driving simulators support driving in a simulated three

dimensional (3D)virtual environment and hence offer a somewhat less realistic envi-

ronment than the real world. However, one can safely control, vary and reproduce the

experimental conditions in in a simulated virtual environment. In addition, a simu-

lated environment has proven to be not only a highly desirable platform for transport

behavioral studies but also a powerful analysis tool of the simulation results. The

transport behavioral studies conducted in a simulated environment can yield better

understanding of traffic phenomenon being studied and can be a a powerful way to

gain widespread acceptance of complex strategies tested. Unlike other driving data

collection methods, driving simulators show high validity of study results, which is

crucial to assess how drivers will react in real-life situations [32].

To conduct transport behavioral experiments in simulated environments, traffic

engineers want to create predictable experiences for human participants. To achieve

this, they require realistic scenarios and precisely controlled events [22]. Here, traffic

engineers author scenarios that unfold in a simulated environment, whereby the sce-

nario script orchestrates the simulation run to create predictable experiences for the

participants.

The scenario-based programming is a known tool for authoring and creating re-

alistic scenarios and events in a simulated environment [2]. Here, the challenges are

to create believable entity (e.g. a car) behavior and to orchestrate different enti-

ties behavior into credible, controlled scenarios [2]. The scenario-based programming

mainly deals with handling the interaction between scenario entities. However, the

utilization of a simulated environment is often complicated by the knowledge gap

that exists between (a) the specification of traffic scenarios by experts, such as traffic

engineers; and (b) the technical implementation by software developers. To bridge

this gap, three challenges are to be addressed in an integrated manner:

2

• Design of an authoring language that is practical for traffic engineers to use .

• Design of a practical intermediate representation that maps high level specifi-

cations of traffic situations to the scenario implementation.

• Integration of the driving simulator with (i) a general purpose traffic simulator

to simulate surrounding vehicles (‘ambient traffic’) and (ii) a special purpose

simulator to create specific incidents, such as a traffic accident.

Willemsen et al.[57] proposed an interpreted scripting language and Devillers and

Donikian [11] presented a programming style language as authoring languages to

orchestrate the events of traffic situations (the first challenge). However, the use of

the language of Willemsen et al.[57] is tightly linked to a pre-defined road network

and, hence, is difficult to reuse outside the framework of the authors. The language

of Devillers and Donikian [11], on the other hand, assumes solid programming skills,

which may not be possessed by traffic domain experts. In contrast, the design of our

scenario language was informed by the domain experts and disentangled from domain

specific information (e.g. road network).

Willemsen et al.[57] addressed the mapping problem (the second challenge) by

employing Hierarchical Concurrent State Machines (HCSMs), whereas Devillers and

Donikian [11] used super-step semantics of state-charts. As an alternative to the state

machine representations, we propose Behavior trees (BT) [31]. Compared to state

machines, BT are scalable, reusable and modular [25].

As for the third challenge, current approaches fall between two extreme cases of

control schemes [15]: (i) tightly controlled or scripted vehicles [57], and (ii) fully

autonomous vehicle. Approach (i) leads to high reproducibility of scenarios, but

requires complex scenario programming [37]. Approach (ii) makes reproducibility

of traffic scenarios very hard and is thus rarely used in scenario creation. As an

alternative, Olstam et al.[37] propose to combine approaches (i) and (ii), and separate

3

phases of autonomous vehicles with phases of controlled vehicles. In the latter phase,

add-on behaviors are attached on top of the ‘normal’ behavioral models used by

autonomous vehicles, i.e. dedicated parameters of the behavioral models underlying

the ‘normal’ behavioral updates are manipulated to create scenarios. We will use a

similar combined approach, but for increased flexibility, we disentangle the scenario

control scheme from the module that simulates the ambient traffic.

All existing proposals in the transport domain, that create scenarios and excep-

tional events in a simulated environment to conduct behavioral experiments, rely on

single-user driving simulation. In these simulations, traffic engineers cannot analyze

more complex phenomena, such as the interaction among multiple human drivers and

pedestrians. This limitation makes it difficult to collect large scale realistic behavioral

data, because in real life, human drivers have to deal with multiple interactions.There

are study cases which could benefit from the existence of multiple drivers in driving

simulators. One of them is a driver behavior interaction study where traffic engineers

really want to investigate how real drivers deal with each other when they perceive

a situation, but whose interactions are too dangerous or not allowed to study in the

real world.

The introduction of multiple drivers in driving simulator experiments brings in

more challenges : a) how to simulate ambient traffic for all subjects who share a

common simulation space, b) how to create scenarios using the surrounding traffic

which is now shared among multiple drivers simultaneously driving, c) how to design

and conduct driver behavior experiments which involves several subjects and investi-

gating interactive driving behavior of multiple drivers in case of exceptional events,

and d)how data from such an experiment should be analyzed.

1.2 Aim and Objectives

In this work, we aim to develop an integrated framework which supports :

4

• Simulation of multiuser immersive driving in a large scale 3D virtual environ-

ment.

• Simulation of surrounding traffic in a large scale 3D virtual environment.

• Specification and creation of traffic scenarios (with sufficient reproducibility and

controllability)

• Collection of meaningful driving behavior data, and the impact of an exceptional

event or scenarios on these behaviors

1.3 Summary of Contributions

To help traffic engineers to author and create scenarios in a simulated 3D environment

for the purpose conducting transport behavioral studies, we have to address three

challenges:

• Design of an authoring language that is practical for traffic engineers to use.

• Design of a practical intermediate representation that maps high level specifi-

cations of traffic situations to the scenario implementation.

• Integration of the driving simulator with (i) a general purpose traffic simulator

to simulate surrounding vehicles (‘ambient traffic’) and (ii) a special purpose

simulator to create specific incidents, such as a traffic accident.

Some approaches or ideas addressing above challenges, discussed in this thesis have

been explored in other related studies individually but this work made a contribution

on the integrated use of them.

Therefore the main contribution of this thesis is the integrated framework which

is able to simulate ambient vehicles in a multiuser driving simulator and to enable au-

thoring and creating reproducible traffic scenarios with in the 3D virtual environment.

The contributions also include:

5

• Scenario Markup Language, as a high level specification tool for authoring traffic

scenarios

• Flexible Integration of the Microscopic Traffic Simulator and the Multiuser Driv-

ing Simulator for the purpose of simulating ambient traffic in a large 3D virtual

environment

• Scenario Control Scheme that exploits the above integration, hence allow cre-

ating traffic scenarios in the context of a multiuser 3D virtual environment

• Design of a Multiuser Driving Experiment in a simulated 3D environment, anal-

ysis of collected multiuser interactive driver behavioral data and extraction of

useful results

• The standard to represent the road network in 2D and 3D virtual environment,

which is used as a base/input for the Microscopic Traffic Simulator

1.4 Delimitations

The thesis only discusses the following topics to a limited extent.

• Literature survey of traffic simulators

• Literature survey of driving simulators

1.5 Thesis Outline

The thesis is structured as follows. In the Chapter 2, we review techniques used

for simulating ambient traffic in driving simulator environment, scenario authoring,

intermediate mapping representations, and scenario control system implementation.

Chapter 3 is dedicated to describing the motivating traffic phenomenon called

‘rubbernecking and the tagging structures of the Scenario Markup Language (SML)

6

by walking through an example from our target traffic situation, the specification of

an accident.

Chapter 4 covers a description of the SML Framework. Here we show how the

framework has been designed on top of our in-house three dimensional (3D) virtual

environment technologies. Specifically, we present the approaches utilized for a) sim-

ulating multiuser immersive driving in 3D virtual environment, b) simulating ambient

traffic in a multiuser driving simulator, and c) implementing the intermediate repre-

sentation mapping and scenario control scheme. In addition, we provide the details

of how research and technical challenges are addressed.

In Chapter 5, we describe our multiuser driving behavior experiment on the rub-

bernecking effect. The analysis of the results will reflect both the perspectives of

informatics and traffic engineering.

Finally, in Chapter 6 we will summarize the research work and conclude the thesis.

In addition, we indicate the directions for further research.

7

Chapter 2

Related Work

2.1 Introduction

This chapter reviews the related research work on a) driving simulators used in driver

behavior studies, b) the simulation frameworks that generate and simulate ambient

or surrounding vehicles in driving simulators, and c) addressing challenges of scenario

authoring and implementation. We also discuss the limitations on the related research

work in the mentioned areas.

2.2 Driving Simulators

Driving simulators are a great tool to create realistic driver sensations in labora-

tory environments, and are widely used for driver behavioral experiments on several

aspects of transport, including driving behavior, traffic flow, road safety, and road

design (e.g. [19], [37], [60], [46]). This is mainly because, driving simulators offer a

safe, but easy to control simulated environment in which experimental conditions can

be reproduced for all participating drivers.

The driving simulators range from high fidelity ones that uses real vehicle cabins

and advanced motion systems with multiple degrees of freedom, that support the

drivers visual impression of the vehicles movements to low fidelity ones that simply

utilize a simple desktop simulators that are merely a computer monitor with a video

game-type steering wheel and pedals. The detailed discussion on the types research

8

driving simulators, with a wide range of capabilities is beyond the scope of this thesis.

However, interested readers should refer to [5], [6], [47], and [54] .

Driving simulators a) uses complex or simplified computer models to calculate

the physics and movements of the driving simulator driven vehicle in the simulated

environment, corresponding to drivers use of the steering wheel and the pedals, b)

renders the view of the driver in the virtual environment.

One main limitation in the related research work that utilize driving simulators to

investigate travel and driver behavior in case of exceptional events, traffic scenarios,

is that almost all of them rely on only a single-user driving simulator. To compensate

the non-existence of other user-driven vehicles, a single-user driving simulator is often

integrated with a microscopic traffic simulation to generate the surrounding vehicles.

In such context, most of the time, only the closest neighborhood of the user-driven

vehicle is populated with ambient traffic.

2.3 Simulation of Surrounding Vehicles in Driving

Simulators

Since one of the main ideas of driving simulator based experiments is to create a safe

environment that resembles driving in real traffic systems as closely as possible, it is

important that ambient or surrounding traffic, that behave in a realistic and trustwor-

thy way is required [38]. This is the case for most of the related work, which does not

consider multiuser based driving simulators. Therefore, most of the related work use

the microscopic simulators for simulating the ambient vehicles. Microscopic traffic

simulators, model and simulate traffic and vehicles at the microscopic, or vehicle-by-

vehicle, level.

Some of the related approaches for the simulation of the surrounding vehicles use

available commercial microscopic traffic simulation tools. For example, Punzo and

Ciuffo [42], Ciuffoet al. [8], and Gregoireet al.[24] used AIMSUN [3], while Jenkins

9

[21] utilised VISSIM [14] to simulate ambient traffic in driving simulators.

Main limitations in using commercial microscopic traffic simulation tools for simu-

lating ambient traffic is that, the autonomous vehicles behavior can not be controlled

flexibly so that they fulfill the the additional demands on the creation of traffic sce-

narios (Next section discuss how ambient vehicles are controlled to create scenarios

in a virtual environment). Most of the time, source code is not available for access

and the interface to modify or adapt the behaviors of individual vehicle’s behavior or

whole traffic system is limited.

For the sake of flexibility of using microscopic traffic simulators to simulate am-

bient vehicles which can be later controlled for scenario creation, some researchers

develop models specialized for the application of simulation of surrounding vehicles

in driving simulators. The examples include, the ARCHISIM model [[17], [13]], the

NADS model [36], the DRIVERSIM model [58] and the VTI Model [[38], [37]]. Ex-

cept the work by Olstam and his colleagues, other researchers in this area, has mainly

focused on decision making modeling concepts behind the traffic models.

The researchers develop models specialized for the application of simulation of

surrounding vehicles in driving simulators, have relied on the concept of area of in-

terest, which is the closest neighborhood of the driving simulator vehicle and it is

only within this neighborhood that ambient vehicles have to be simulated [38]. The

area of interest moves with the same speed as the driving simulator vehicle and can

be interpreted as a moving window, which is centered on the simulator vehicle [38].

The concept of area of interest for simulating ambient traffic in driving simulator was

originally proposed in [13] and [7]. The main motivation behind the use of area of

interest for generating traffic in driving simulators is that, to avoid simulating vehicles

several miles ahead of or behind the simulator vehicle, which is not efficient from a

computational point of view [38].

However, simulating ambient traffic for multiuser driving simulators, which share

10

a common simulation environment, is difficult. This is because high computational

efforts is required not only to simulate and but also to visualize the ambient traffic,

in very large areas and thereby many vehicles, in each of the driving simulators. The

moving window technique cannot be directly applied for simulating ambient traffic as

in the case for a single-user driving simulator. This is because,in multi user driving

simulator environment, generating vehicles within the sight distance of a driving

vehicle would make the generated vehicle to pop up in or out front or back of the

other simulator vehicle which share the same space. In addition, when running long

driving simulator experiments in a large area with multiple users, one-hour experiment

at a traffic flow of 1000 vehicles per hour will require that on average, 1000 vehicles

per simulation time step have to be updated.

2.4 Addressing Challenges of Scenario Authoring

and Implementation

This section reports on work related to the three interrelated challenges of (i) specify-

ing scenarios in a high level language appropriate for non-programmers, (ii) designing

an intermediate representation that maps high level specifications to the scenario

control implementation, and (iii) implementing scenario control schemes to create

specific incidents, such as a traffic accident.

2.4.1 Scenario Authoring Languages

In scenario based programming, the challenges are to create believable entity behavior

(animation and simulation) and to orchestrate different entities behavior into credible,

controlled scenarios in 3D simulated environments.

First we look at the scripting languages targeted for behavior programming for en-

tities in 3D simulated environments. There has been a family of languages introduced

for animation and simulation behaviors of entities in 3D:

11

• Perlin et al.[39] introduced the Improv, which is an action based scripting lan-

guage to empower computer animators to create behavioral entities which can

be controlled by scripts. Using Improv, well-defined actions, which are routines

that control an objects degrees of freedom for a period of time, can be created

and later invoked in the simulation.

• Conway developed Alice [9], which is programming environment to make 3D

animation accessible to novices. Alice provides its own scripting language based

on the Python language to control and describe the movements of objects in

the environment.

• UnrealEngine [51], which is a game development tool set designed with ease

of content creation and programming in mind, provides UnrealScript language

[49] as a powerful, built-in programming language that maps naturally onto

the needs and nuances of game programming. UnrealScript language defines a

distinct notion of state and can be used to build autonomous agents

• Unity3D [50],very similar to UnrealEngine, is a software platform that consists

of an integrated tool for design and development of 3D real-time simulation

content or games. Unity3D allows developers to write simple behavior scripts

in JavaScript, C# or Boo.

It is obvious that, except Alice, all of the above mentioned scripting languages are

indented for 3D real-time simulation programmers who work on the low level behavior

programming.

Secondly, we review what languages are available for authoring scenarios, espe-

cially in traffic domain.

Besides the scripting language of Willemsen et al.[57], and the programming style

language of Devillers and Donikian [11], other approaches for traffic scenario authoring

were developed.

12

Early work on scenario scripting language by Van Winsum [[52], [53]] propose an

approach which is conceptually similar to Improv scripting language [39]; in addition

it allows the simulation entities to be commanded to perform certain actions.

Allen et al. [45] use a textual description, whereas others utilized a specialized

representation called ‘tile’ [[59], [48]]. The idea of specifying a series of tiles in a

configuration file can be sufficient for simple scenarios, but cannot scale well for

complex dynamic and non-deterministic scenarios. Another disadvantage with textual

and tile based approaches is that the entire scenario (static and dynamic elements)

need to be specified beforehand in text or tiles.

In our earlier work, Prendinger et al.[[40],[41]] developed XML based markup

languages to control complex scenarios involving sequential and parallel activities of

animated agents in virtual worlds. These works target the creation of believable dia-

logue between life-like agents, rather than reproducible traffic situations for behavioral

driver studies.

2.4.2 Intermediate Representations that Map High Level Spec-
ifications to the Scenario Control Implementations

Researchers used different intermediate representations to bridge the gap between

high level specifications and the scenario control implementations. The systems of

Kearney et al.[22] and Willemsen et al.[57] translate scenario instructions into Hierar-

chical Concurrent State Machines (HCSMs). They used HCSMs for scenario control

implementation as well as for modeling ambient vehicle behavior. In his early work on

behavior programming or description languages, Donikian [12] proposed hierarchical,

parallel, transition systems or states (HPTS) as an approach to capture the behaviors

of entities in a interactive simulation. In addition, the HTPS base language can also

be used to program scenarios. Later, Devillers and Donikian employed the superstep

semantics of statecharts [18] to specify the semantics of scenario instructions [11].

Atir and Harel proposed an approach based on the adaptation of live sequence charts

13

(LSCs)[2]. However, LSCs do not scale well compared to state machines since the way

execution occurs is highly centralized and LSCs are insufficient for complex scenarios.

Miguel et al.[20] developed a scenario language based on the Grafcet language using

Petri Nets (PN), which internally makes use of state machines.

All of the existing approaches use some state machine-based representations, which

are difficult to maintain and reuse. Conversely, the Behavior trees (BT) [31] we use

are highly modular and scalable.

2.4.3 Control Schemes for Scenario Implementation

Several researchers have proposed methodologies to implement traffic scenarios with

surrounding traffic in driving simulators. They fall into the following categories:

• Approaches with tightly controlled vehicles [E.g. [10], [7], and [22]]

• Approaches with autonomous vehicles

• Approaches with directable semi autonomous vehicles [E.g. [57]]

• Approaches that combined or mixed two of the above approaches (i.e. combine

autonomous and controlled vehicles in scenario creation or combine autonomous

and semi-autonomous vehicles in scenario creation) [E.g. [37]].

2.4.3.1 Controlled Vehicles

The approaches with tightly controlled vehicles offer high controllability of the created

traffic situation and reproducibility of the experimental conditions , but they are not

scalable to realistic traffic scenarios involving a large number of vehicles [37].

2.4.3.2 Autonomous Vehicles

The autonomous agents and their behavior models are instilled with a basic com-

petence to perform required actions and with the agility to engage in realistic in-

teractions with unpredictable subjects (i.e. users)of the virtual environment [57].

14

Autonomous agents form the heart of an engaging, interactive virtual environment

experience [57]. Realistic autonomous agent behavior contributes to suspension of

disbelief on the users’s behalf and immerse the user into the virtual environment [26].

The approaches with autonomous vehicles show increased realism of the traffic

scenario, but the reproducibility of particular traffic situations is an issue due to

the autonomous decisions of the cars [37]. There are virtually no approaches that

utilize autonomous vehicles alone for traffic scenario creation. However, autonomous

vehicles are used to provide ambient environment to enhance the immersive feeling

of real traffic system with in the virtual environment.

2.4.3.3 Directable Semi Autonomous Vehicles

An important issue realized by both driving simulator researchers and autonomous

agent researchers is that it is important to orchestrate or direct autonomous be-

haviors in the environment to create controlled experiences [57]. Related work in-

volved with directable autonomous behaviors originated from the research work in

autonomous agent architectures for robotics and animation [[28], [26], [29]]. To con-

vert autonomous agents, into a a directable one that can accept direction, one has

to program the agents with public communication interfaces through which they can

receive messages or commands from directors (e.g. scenario control). For example,

a vehicle agent, which performs a normative autonomous activity in other circum-

stances, can be commanded to speed up or slow down or to brake abruptly. The

directable agents behaviors are truly semi-autonomous since they combine a respon-

siveness to guidance with their normative autonomous activity [57].

2.4.3.4 Combined or Mixed Approaches

Other researchers proposed to combine autonomous and controlled vehicles in scenario

creation [[1], [37], [55], and[56]]. Inspired by the work of Alloyer et al.[1] and Wassink

et al.[[55],[56]], Olstam et al.[37] propose an approach to combine the autonomous

15

and semi-autonomous vehicles in scenario creation. In Olstam’s work [37], periods

with autonomous vehicles are combined with periods with only controlled vehicles.

Here the basic idea is to let the surrounding vehicles run in autonomous mode between

controlled phases in which predetermined scenarios unfold. In addition, the simulation

of the surrounding vehicles should change from the autonomous to the controlled mode

to participate in scenario creation.

In Olstam’s work [37], the algorithm to bring about a traffic situation is tightly

integrated to the simulation time step that calculates behavioral update for all sur-

rounding vehicles based on the ordinary traffic models. The algorithm has to ensure

that the surrounding vehicles switch from autonomous to controlled mode to partic-

ipate in the scenario execution. During the controlled phase, some particular traffic

situation is created (e.g. a catching up maneuver, as explained in [37]) by overriding

the normative behavior of some vehicles, which actively participate in a scenario, with

add-on behaviors. This is achieved by manipulating the parameters of the behavioral

models. This approach is sufficient in the case of a single-user driving simulator envi-

ronment in which only a small number of autonomous vehicles surround a single user

driver and some of them actively create a scenario in the closest neighborhood.

In our approach, on the other hand, we decided to restrict the scenario control

scheme (that brings about a traffic situation) to orchestrate the behavioral updates

of only the vehicles that participate in the scenario. This approach has the advantage

that the scenario control scheme for traffic situation creation is disentangled from

the simulation time step which calculates behavioral update for other surrounding

vehicles that do not participate in the scenario. In this way, our approach is able to

create specific traffic situations, while simulating ambient traffic for the multi-user

driving simulator, in a shared simulated environment.

16

2.5 Conclusion

In this chapter, we reviewed related work, that use a) driving simulators for inves-

tigating driver behavior in case of exceptional traffic events and scenarios, and b)

different approaches to simulate ambient traffic in driving simulators, and that ad-

dress the challenges of scenario authoring and implementation. We also discussed the

limitations in the related approaches in the above mentioned areas.

The research work presented in this thesis relates directly to the discussed body of

work, and uses many of the ideas and guidelines for simulating ambient traffic in driv-

ing simulators and creating scenarios in this context. However, our work is different

from the related work in terms of: a) how we integrate a microscopic traffic simulator

with the multiuser driving simulator and b)how we separate scenario authoring and

control system from the rest of the simulation.

Our chief goal is to a) make scenario authoring practical for traffic engineers

to use, b) simulate ambient traffic in multiuser driving simulators which shared a

common, large scale 3D environment, and c) specify and create traffic scenarios with

sufficient reproducibility and controllability. In the next chapters, we show how our

goal achieved.

17

Chapter 3

Traffic Scenario Authoring with
Scenario Markup Language

3.1 Introduction

SML is a high-level, practical specification language for authoring traffic scenarios.

A preliminary version of the basic concepts of the SML was already introduced in

Gajananan et al.[16]. In this section, we describe the core tagging structures of the

SML language, which are used to specify the target traffic scenario.

Note that the usage of the word ‘scenario’ sometimes refers to both the static

structure of the virtual environment or scene (e.g. road network) and the dynamic

characteristics of a simulation (e.g. critical events) [15]. We use scenario (script) to

refer to entities (vehicles) in the simulation and the orchestration of their behaviors

(interactions) to create a specific situation or event [10].

3.2 Motivating Traffic Scenario on Rubbernecking

Effect

For this work, we choose a traffic accident scenario as a study case which could benefit

from the existence of multiple drivers in driving simulators. As for the accident

scenario, we specifically mean the situation in which a following car collides with a

leading car from behind. The chosen scenario helps traffic engineers to investigate

18

Lead Driver

 Right

(Oncoming Direction)

Left

Figure 3.1: Illustration of a rubbernecking scenario.

how real drivers react to each other when they perceive the accident situation (i.e.

how drivers change their operational driving behavior at the incident site), but whose

interactions are too dangerous or unpractical to be studied in the real world.

This particular scenario is motivated by the traffic phenomenon called rubber-

necking; whereby drivers tend to crane their neck in order to get a better view of

a nearby car crash. In Fig. 3.1, an illustration of a rubbernecking phenomenon is

provided. In this example, an accident has happened on the right side of a road

(oncoming direction). The first driver on the left side (reference side), is the one who

first perceives the accident and, likely, initiates the formation of traffic jam.

The rubbernecking phenomenon can cause traffic congestion to surge, for drivers

may become distracted and drastically change their rate of travel, which in turn may

cause traffic congestion on the opposite road side of the road where the accident

happened [23].Traffic engineers identified this traffic phenomenon as a leading cause

of traffic congestion and secondary accidents. They claim that drivers looking at

other vehicle crashes and other roadside traffic incidents cause the rubbernecking

19

effect. We use this traffic accident scenario as a running example to describe the

tagging structures of the Scenario Markup Language (see the following section in

this Chapter), to explain the technique to create reproducible traffic situations (see

Chapter 4) and validate hypotheses about the rubbernecking effect, in the multiuser

experiment (see Chapter 6).

3.3 Scenario Markup Language Concepts

We conceptualize a scenario as the script that specifies the behaviors (defined by the

interests of a scenario author) of entities, and how those behaviors are orchestrated,

by creating, destroying or modifying characteristics of entities and coordinating their

actions, to produce experiences for human users immersed in a 3D virtual environ-

ment. In this case, an entity refers to a materialized or embodied virtual object (e.g.

a car) or to a virtual character represented as a human avatar (a synthetic human

user or a bot). Users who are participants of a behavioral study may interact with

one or more entities in the virtual world during a simulation run designated for the

behavioral study.

A behavioral entity perceives its environment, makes decisions, performs actions

and has an interface for communication. Our conceptualization of defining the be-

havior of entities is similar to the definition above.

3.3.1 SML Elements and Entities

The root element of a scenario script is SML. The tagging structure <SML></SML>

contains all other tagging structures, in particular ‘entities’ - the entities involved in

a scenario, ‘user’ - the user referenced in a scenario, ‘director’ - the portion of script

that orchestrates certain behaviors of specified entities, and ‘events’ - generated as

an outcome of executing the scenario, ‘behaviors’ - a set of interesting behaviors for

the entities defined above, from a scenario point of view. We assume that entities

20

Figure 3.2: The overall structrual diagram of a SML scenario script

Figure 3.3: The overall structrual diagram of the header part of a SML scenario script

will have their autonomous behaviors implemented, will behave accordingly mostly

except the time the behaviors defined in a scenarios are executed. In addition, we

implement a set of interface methods to direct or command an entity from a scenario.

For the accident scenario, we define two car entities along with their attributes

and properties (see Fig. 3.5). We identify each entity by its id. The ids of entities are

assigned once the candidates are chosen from the simulation space (e.g. cars that are

selected to create an accident). Each entity has a type. Currently, the type attribute

supports ‘Vehicle’, which was sufficient for the scenario used in the experiment (see

21

Figure 3.4: The overall structrual diagram of the body part of a SML scenario script

Section V). It can be extended to other types of entities (e.g. pedestrian), once they

are implemented in the simulation. To define the properties of an entity, we specify

an element called Property. Using this tag inside the Entity structure, a script author

can define the information to initialize an entity for a scenario.

An SML script lets a script author freely define the properties for an entity. How-

ever he/she has to ensure that the component responsible for the entity supports the

specified properties. In the example script shown in Fig. 3.5, we show some example

properties that are currently supported for each type of entities used in our simu-

lation. For a car entity, we define (a) desiredspeed that specifies the desired speed,

(b) desiredaccel that specifies the desired acceleration and, (c) scenarioroleloc that

specifies what location the entity has to take initially in the scenario execution. Later

on, in Section IV, we will discuss how the properties are used.

Our target environment has to handle multiple users simultaneously. We decided

that there has to be at least one User as the focal point of a scenario, that is, the

experimental condition is to be reproduced from the viewpoint of one specified user.

22

<entity name = AI Car A" id= " type = "Vehicle">

<property name = "desiredspeed" value = 40m/s"/>

<property name = desiredaccel" value = 1.6m/s2"/>

<property name = "scenariorole" value = "Follow_Car"/>

<property name = scenarioroleloc" value = ROLE_LOC_A"/>

</entity>

<entity name = AI Car B" id= " type = "Vehicle" >

<property name = " desiredspeed " value = 30m/s"/>

<property name = desiredaccel " value = 1.5m/s2"/>

<property name = "scenariorole" value = "Lead_Car"/>

<property name = scenarioroleloc" value = ROLE_LOC_B"/>

</entity>

Figure 3.5: Snippet of an SML script that specifies two car entities.

<user name = TestUser01" id= U01" >

<property name = "usecarid " value = 01"/>

<property name = scenariorole" value = referenceuser"/>

</user>

Figure 3.6: Snippet of an SML script that specifies the reference user.

This user is identified as shown in Fig. 3.6.

3.3.2 SML Event

One can define a set of events (e.g. an accident) in a scenario specification to create

interesting experiences for users.The event definition specifies the conditions that

decide when the event is triggered, as shown in Fig. 3.7. The conditions for triggering

events can be based on an interaction of a human participant with an entity, or the

environment, or of entities with others. The conditions can also be based on the

changes in the simulation state, or a timer or the changes that occur in the external

applications such as a traffic simulation application.

<event>

<condition>

<var name =EventId" valueType ="string" value="Accident_Event_01"/>

<var name ="Collider" valueType ="string" value="CarB"/>

<var name ="Collidedwith" valueType ="string" value ="CarA"/>

<var name ="Location" valueType ="vector3" value ="ACC_LOC"/>

</condition>

</event>

Figure 3.7: An example SML script that specifies an accident event

23

<behavior ref = "VMS_A" id = "ManageMessages">

<action id = "UpdateMessage">

<perception id = "p3" Eventid = "Accident_Event_01"/>

<command id = "update">

<param name = "msg" value = "Reduce Speed Accident Ahead" />

</command>

</action>

</behavior>

Figure 3.8: An example SML script that specifies a behavior for an entity.

3.3.3 SML Behavior, Perception with its Container, Action,
Command

For each behavior (e.g. ManageMessages), we specify one or more actions (e.g. Up-

dateMessage etc.) inside each behavior specification as shown in Fig. 3.8. Each

action specifies a perception container which has a set of perceptions defined in it.

A behavioral entity perceives its environment (e.g. Accident Event) via the percep-

tions. Each perception is contingent upon an event, which means that a perception

is the minimum unit of event handling from the script perspective. Hence the per-

ception is activated when the corresponding event is triggered during a simulation.

This may lead to the activation of the perception container the perception belongs

to (decision making aspect of an entity). In turn, this leads to the execution of an

entitys action that the perception container belongs to. Therfore a perception acts

as a pre-condition for an action.

An action definition can have a set of commands defined in it. Therefore, a

behavioral entity performs an action by executing the commands specified for that

action. A command is the minimum unit of execution from a scenario and entity

perspectives. It carries an instruction or a functional call with required parameters

for the component that controls the entity. The parameters used with the commands

are passed using call by value semantics.

24

<director>

<seq>

<task id="MoveToTargetLocation">

<command>

<param name=" entityId value = ""/>

<param name="entityName" value = "AI Car A "/>

<param name="targetLocation" value ="ACC_LOC"/>

</command>

</task>

<task id="MoveToTargetLocation">

<command>

<param name="entityId" value =""/>

<param name="entityName" value = "AI Car B"/>

<param name="targetLocation" value ="ACC_LOC"/>

</command>

</task>

</seq>

</director>

Figure 3.9: An example SML script that specifies the supervisor element (director)
of the accident scenario

3.3.4 SML Director Element

In order to orchestrate the behavior of entities involved in a traffic scenario, we propose

the concept of a supervisor, specified as director in the script. For the director, we

specify task elements which contain information about the actions an entity has to

perform. Each task defines a command for actions to be executed by an entity.

Therefore each task refers to a single entity and is executed by the director of a

scenario. A task execution (i.e. sending commands to entities) is performed via the

communication interface available for each entity.

For example, as shown in Fig. 3.9, we define the director for the scenario script

that creates the accident situation. In this example, we specify two tasks for the

director, whereby each task defines a command to be sent to a different car entity:

AI (Artificial Intelligence) Car A and AI Car B.

As shown in Fig. 3.5, the two car entities involved in the scenario are initialized

with a property called ‘scenarioroleloc’ that specifies what role the entity has to take

initially in the scenario execution. In this example, AI Car A takes the ‘leading

role’ hence its ‘scenarioroleloc’ is specified to be in front of that of AI Car B, which

takes the ‘following role’. When these car entities successfully reach their respective

25

‘scenarioroleloc’, the director executes its task (‘MoveToTargetLocation’) to create

an accident at the specified target location during a simulation run. This operation

sends a command to the component that controls the car entity with the parameters

specifying the target accident location. The component controlling the car entity

tries to execute the command on the respective car entity so that an accident can be

created.

A scenario director can orchestrate the behavior of entities by executing corre-

sponding tasks. This can be done by using scenario the temporal elements of direc-

tor, such as seq (sequential), par (parallel) or sel (selective). With the seq element

one can specify that tasks follow immediately one after the other. The par element

defines that tasks should be executed in parallel. The sel element defines that tasks

should be executed depending on the condition.

These temporal elements enable SML to provide high-level synchronization of the

behavior of entities that result in a particular traffic situation. For example, as shown

in Fig. 3.9, the task of the director tasks defined in seq temporal element orchestrates

the two car entities behaviors by issuing necessary commands, so that an accident,

e.g. the following car (AI Car B) hits the leading car (AI Car A), can be created.

Finally, we use a XML schema definition for SML scenario specification, to check

the logical coherence of a SML script.

3.4 Conclusion

Here we wish to note that an empirical evaluation of a scripting tool such as SML

is notoriously difficult, as related approaches are sparse and setting up test cases

for comparison is unpractical. So, as preliminary empirical evidence on SML’s ease-

of-use, it was important that our collaborators from the Smart Transport Research

Centre at Queensland University of Technology actually used SML to specify the

scenario.

26

Chapter 4

SML Framework - Overall
Architecture

4.1 Introduction

In this chapter, we will explain the SML Framework, as illustrated in Fig. 4.1, by

describing its main components. The SML Framework is a 3D experimental space for

driving behavior studies.The framework is designed on top of the following technolo-

gies:

• The DiVE (Distributed Virtual Environment)framework [27] provides network-

ing features for simultaneously connecting and synchronizing multiple users (i.e.

a driving simulator) via Unity3D[50] clients.

• The OpenTraffic middleware integrates microscopic traffic simulation, road net-

work, and users [35].

• Driving Simulator Client provides an interface for driving, was developed by

tweaking a high-end, physically accurate and realistic car model created by

Unity3D. Please see the Fig. 4.2 which shows the hardware of the desktop

based driving simulator apparatus.

27

Figure 4.1: SML Framework Design Diagram

4.2 Simulation of Multiuser Immersive Driving in

a Large Scale 3D Virtual Environment

4.2.1 Unity3D Virtual Environment

Unity3D [50] is a software platform that consists of an integrated tool for design and

development of 3D real-time simulation content (can create and customize content

through a programming and scripting interface). Unity3D also provides an engine

(physics, graphics and sound) for executing the simulation applications. Additionally,

28

Figure 4.2: The driving simulator apparatus

Unity3D allows for an easy distribution of the driving simulation application as an

executable in various platforms. Unity3D based client contains all necessary features,

such as rendering, lighting, terrains, audio, physics and input control.

4.2.1.1 3D Model of Virtual Environment

Urban areas are probably one of the most challenging road networks to simulate in

a virtual environment compared to the freeways and motorways. Most of the related

driving simulator based experiments mainly focus on freeways and motorways because

of their simplicity. However, we build a 3D virtual city environment, a model of the

Chiyoda-ku urban area in Tokyo, as the virtual driving experiment space where many

participants can drive simultaneously using their respective driving simulators.

To build 3D virtual city environment, we use CityEngine [44], which is a 3D Mod-

eling application, specialized in the procedural generation of three dimensional urban

environments such as cities and road networks. CityEngine helps us creating the de-

29

Figure 4.3: A first person or driver view of the 3D virtual environment

tailed large-scale 3D city model, which is then imported in the Unity3D environment

for simulation and 3D visualization of the simulation space, including roads, road

furniture, and buildings.

However, we needed to optimize the organization of the graphical environment

(the meshes and textures), with the help of a graphic designer and later with an

automated approach (e.g., scripts to combine meshes and texture).

4.2.2 Distributed Virtual Environments

We have developed DiVE (Distributed Virtual Environments), a new framework for

massively multiuser networked 3D virtual worlds [27]. The framework provides the

networking features for connecting multiple users to a shared virtual environment.

DiVE was developed at the National Institute of Informatics and has already been

used in several applications in the transport domain. DiVE currently supports around

100 simultaneous user drivers. DiVE consists of two main components: a client library

and a server library.

30

• The client library provides the functionality for client applications (the driving

simulator), e.g. to create and synchronize the car entities within the virtual

environment, forward in-application events between individual clients or send

remote-control commands to other components of the system.

• The server library receives operations from its clients and sends events back to

them. Each client and its respective entities are represented on the server to

keep a synchronized state among clients. To maintain that state, the server

keeps track of entities positions and forwards changes to affected clients - as

determined by clients individual areas of interest. Furthermore the server takes

care of authentication and access control, application event propagation, etc.

The rendering of a large number of vehicles in the client computer puts a high

demand on the graphics card. To overcome this problem, DiVE supports the concept

of an interest area based on visibility, where each entity in the environment can have

an interest area of an arbitrary size and the respective client will only receive updates

about entities within that reach from the server. This means that the relevant data

is delivered only to interested clients, where the client library uses them to update

the entities properties of the client applications accordingly.

4.2.3 Multiuser Immersive Driving Simulator Client

The driving simulator client is based on Unity3D. The client viewer serves three

functions:

• Immersive driving simulation, i.e. vehicles graphics, physics, and sound, as well

as the interface to the input device a driving wheel and pedals,

• 3D visualization of the simulation space, including roads, road furniture, and

buildings, and

• 3D visualization of ambient traffic (i.e. surrounding autonomous vehicles).

31

Fig. 4.1 shows how the multiuser immersive driving simulator fits in the SML

Framework (as indicated by Client Viewer #1, #2 and so on.) in Unity3D. Fig. 4.3

illustrates the first person or driver view of the 3D virtual environment, which shows

a user, driving a simulator vehicle, interacts with the simulated autonomous vehicles

in a 3D virtual city environment. Fig. 4.2 shows the hardware of the desktop based

driving simulator apparatus.

The setup of the driving simulator uses steering wheel and pedals set as input

devices. Actions of the driver are picked up by the driving simulator logic compo-

nent, which then renders the view of the driver depending on the setup of the driving

station(i.e. simple PC in standalone or web player modes, multi-screen driving sim-

ulation setup or portable devices like iPad).

DiVE client component in the driver simulator would receive the updates of the

surrounding computer vehicles from the DiVE server and render them in the driving

simulator client. DiVE client module would send the updates of driving simulator

vehicles information (e.g. positions, velocity, and rotations) to the DiVE server,

which will distribute the information to all registered clients to allow for a real multi-

user immersive driving experience. This would enable the traffic client (OpenTraffic

middleware) to receive the updates of driving simulator vehicles information (see

Fig. 4.1) so that autonomous vehicle can recognize user driven vehicles in the multiuser

shared 3D virtual environment.

4.3 Integration of Multiuser Immersive Driving Sim-

ulation with Microscopic Traffic Simulator

This section explains the simulation of surrounding traffic in a large Scale 3D dis-

tributed virtual environment which connects multiple driving simulator clients simul-

taneously.

A core function of our framework is to integrate our immersive multiuser driving

32

simulator with a microscopic traffic simulator. The role of the microscopic traffic sim-

ulator is to create ambient traffic and increase the realism of the driving environment.

We opted to use a generic microscopic traffic simulator [33]. To ensure the smooth

and flexible integration of different simulators and other functionality, we have devel-

oped the OpenTraffic Middleware or OTM [35]. The middleware was developed at

the National Institute of Informatics, in collaboration with Queensland University of

Technology, for the purpose of supporting this thesis work.

4.3.1 OpenTraffic Middleware

OTM is a common simulation platform that uses various modules to perform micro-

scopic traffic simulation. The middleware supports two types of modules: logical and

functional.

• Logical modules include road network processing, traffic simulator, traffic con-

trol and traffic evaluation.

• The functional control module supports the visualization of the traffic simu-

lation. Logical and functional modules communicate with the middleware via

interfaces. The modules can be developed independently and implement the

corresponding OTM interfaces such as logical or functional

Before listing some examples of logical modules, we want to mention the Smart

Transport Research Centre (STRC) road network standard, developed at Queensland

University of Technology, which is an ontology-based approach to describe a road

network in terms of its geographical and logical representation at many levels of

details [34]. We use the STRC road network standard to encode the road network of

our 3D virtual city environment. The STRC road network standard is also used to

specify the required input parameters for the logical modules of OTM.

• Network processing: road network encoding of virtual 3D city, including nodes,

links and lanes

33

• Traffic simulator: e.g. traffic demand

• Traffic control: e.g. traffic signal information, such as location and cycle time

The functional controller is responsible for interfacing with the logical modules of

OTM. Its main functions are:

• Initialize the logical modules by providing the necessary inputs

• Tick the logical modules with the time elapsed since last update to receive new

frames

• Parse the new frames from OTMs logical modules to visualize ambient traffic

• Inform the positional information of all user-driven vehicles to the logical mod-

ules of OTM

The functional controller parses each new frame from OTM and initializes or

updates necessary entities (e.g. car entity and traffic control entity) in the DiVE

virtual environment. This functionality is supported by the DiVE client library, which

in turn sends relevant information of entities to the DiVE server library. Finally, the

DiVE server library broadcasts the updates about entities to the clients. In this way,

we can simulate ambient traffic with a traffic simulator in the context of a multiuser

driving simulator.

In the other direction, at every tick, the functional controller informs the positional

information of all user-driven vehicles to the traffic simulator via OTM messages. This

enables the vehicles simulated by the traffic simulator to be aware of the presence of

user-driven vehicles in the simulation space.

This two-way communication mechanism allows us to maintain synchronization

between the information processed by OTMs logical modules (such as the traffic

simulator) and the information processed by the functional controller (from the virtual

34

world), and hence all users interacting with driving simulator clients can share the

same simulated traffic scenario.

To the best of our knowledge, the integration of a general purpose traffic simulator

with a massively multiuser driving simulation is unique among approaches aiming to

collect human driving data, which only consider single-user driving simulators.

To summarize, the integration was facilitated by two of our in-house technologies:

(a) our Distributed Virtual Environments (DiVE) technology supports multiuser driv-

ing, and (b) our OpenTraffic Middleware (OTM) allows us having traffic simulation

as an independent module.

4.4 Scenario Implementation

Fig. 4.4 shows the conceptual diagram of the the Scenario Markup Language (SML)

Framework which consist of three layers: 1) High level specification of scenarios in

SML shown in Fig. 3.2 - Fig. 3.9 , 2) BT representation of SML Director and, 3) Sce-

nario Control System (which in turn has three sub layers). The framework accepts

SML scripts as input, generates a behavior tree (BT) as the intermediate representa-

tion for a scenario specification in SML, and unfolds the scenario in the 3D simulation

space.

4.4.1 Behavior Tree as an Intermediate Representation

We use behavior trees [31] as an intermediate representation to handle the execution

of the tasks of the ‘director’ component of a scenario script. For instance, the tasks of

the ‘director’ component of a scenario (see Fig. 3.9) are represented by the behavior

tree shown in Fig. 4.4. Tasks and temporal elements (e.g. seq, par, and sel) in the

example script shown in Fig. 3.9 will become the main building blocks of a behavior

tree shown in Fig. 4.4. The task elements will translate into action (leaf) nodes, which

execute the task defined in it. The temporal elements of the ‘director’ component for

35

Figure 4.4: A conceptual diagram of the Scenario Markup Language (SML) Frame-
work

a scenario will translate into the inner nodes of the behavior tree. The task elements

or other temporal elements, which are embedded into other temporal elements, will be

converted into a behavior tree with sub-trees while preserving hierarchy of behaviors.

The BT approach fits well here, because director’s tasks (mainly concerned with

orchestrating the behaviors of entities) are embedded in the temporal elements. Hence

they are composed as hierarchies of sub-trees in behavior trees.

4.4.2 Scenario Control System

One way to create specific traffic situations is to reuse the microscopic traffic simulator

that populates all surrounding vehicles. In this approach, dedicated parameters of

36

Figure 4.5: The concept diagram that illustrates three functionality of the Scenario
Control System: a) selection, b) preparation, and c) execution.

the driver behavioral models (underlying the traffic simulator) for some surrounding

vehicles are manipulated to create traffic situations [37].

In our case, we devise a different method for creating traffic situations (e.g. an

accident), because we use a general purpose microscopic traffic simulator [33] to sim-

ulate ambient traffic in a multi user networked environment. The traffic simulator

does not support the required operations to create the traffic situations.

Instead, we decouple the scenario creation functionality from the traffic simulator

that populates ambient traffic. In this way, we entangle the scenario creation from

the time step that calculates behavioral update for all surrounding vehicles based on

the ordinary traffic models.

Concretely, we introduce the Scenario Control System (SCS), which performs the

following operations (see Fig. 4.5):

• The SCS monitors the ambient traffic, which is simulated by the traffic simula-

tor, and analyzes the suitability of the vehicles to create a specific scenario.

• The SCS requests the traffic simulator to release the control of the selected

37

number of candidate vehicles which are chosen based on the suitability criteria.

• The SCS assumes the control of the candidate vehicles and initializes their

driving behavior with simplified traffic models and assigns them to a role to

take part in a specific scenario, i.e. to reach some location as lead or following

vehicle in the example presented in this work.

We refer to these selected computer vehicles, now controlled by SCS, as Artificial

Intelligence (AI) Cars. In terms of simulation, these AI Cars are treated as any other

vehicles. These AI Cars are directable semi-autonomous vehicles, which performs a

normal autonomous activity in other circumstances, except the time when they are

are commanded or directed from scenario control.

4.4.2.1 Orchestration Layer - AI Car Module

In the AI Car module, we use behavior trees to represent and implement the micro-

scopic driving models for the AI Cars. Fig. 4.6 shows the conceptual diagram for

the behavior tree (NavigationBT) representation of overall driving behavioral model,

which has several sub-behavior trees embedded: BasicDrivingBT, MoveStopTarget-

LocationBT, and LaneChangeBT.

The BasicDrivingBT sub-behavior tree is expanded with more detail as shown in

Fig. 4.7. In the BasicDrivingBT, there are four parallel-running action nodes such as

FollowWayPoints, FollowLeader, MaintainSpeed, and StopAtDesiredLocation.

FollowWayPoints refers to the lane tracking behavior represented in traditional

traffic models. In our case, this behavior ensures that an AI Car navigates in the

simulation space based on a navigation network. For that, we built a navigation

network with additional information (e.g. extra way points) on top of the Smart

Transport Research Center road (STRC) network standard[34].

FollowLeader, MaintainSpeed, StopAtDesiredLocation represents a typical car fol-

lowing, speed adapting and stopping behaviors, respectively, in traffic flow models.

38

Figure 4.6: The overall driving behavior (NavigationBT).

The functions of these behaviors are mainly concerned with the computation of the

acceleration magnitude of an AI Car for the respective driving behavior such as car

following or speed adaptation or stopping behavior.

The advantage of the behavior tree approach is that it provides modularity and

flexibility to replace the underlying driving models such as car following, cruising,

stopping, lane changing, by new models, if needed.

Further, all the driving behavior models are parameterized, which means that,

when a car is initialized with these models, a set of appropriate values can be assigned

to the parameters. For example, for the car following behavior, the parameters such

as desired-speed, desired-acceleration can be assigned with the values taken from car

entities properties as shown in Fig. 3.5.

4.4.2.2 Command Layer

The competing behaviors models such as car following, speed adapting, and stop-

ping behavior (these behaviors runs in parallel) calculate acceleration magnitudes.

MakeDrivingDecision (see Fig. 4.7) action node will choose one of acceleration mag-

nitudes to apply to an AI Car.

As proposed by Cremer et al. in [10], we use the most conservative rule that choose

the minimum acceleration produced by competing behaviors. Then the computed

39

Figure 4.7: The behavior that represents basic driving behavior (BasicDrivingBT)

Figure 4.8: The behavior tree that represents the functions of Scenario Control Sys-
tem.

40

acceleration is sent to the command layer (e.g. SetAccelerationCommand) which in

turn directs a steering behavior component that steers an AI Car in the simulation

space (Unity3D layer in Fig. 4.4).

Further, the MakeDrivingDecision behavior node decides if an AI Car should: a)

move-and-stop at a target location (MoveStopTargetLocationBT), or b) change lane

(LaneChangeBT), as shown in the Fig. 4.6. When such a decision is made, execution

of overall driving behavior represented by NavigationBT will switch from the branch

that represents BasicDrivingBT to the respective branches that correspond to move-

and-stop or lane change behaviors.

4.4.2.3 Unity3D Layer

We use Unity3D to simulate the semi autonomous vehicles or AI Cars (physics and

graphics) and other autonomous vehicles in our 3D virtual environment, as illustrated

in Fig. 4.4.

The Unity3D based environment motivated us to use ‘Behave’, which is a system

for designing, integrating and running behavior logic using behavior trees for simu-

lated characters in Unity3D simulation [4]. The Behave system is used to implement

behavior trees based on driving behavior models for AI Cars at orchestration level.

Each behavior tree shown in Fig. 4.6 and Fig. 4.7 is designed using the Behave

system. The advantage of using the Behave system is that it seamlessly integrates to

our Unity3D based simulation and its runtime environment. The Unity3D runtime

environment takes care of executing the driving behavior models represented as be-

havior trees by triggering its functions of temporal elements (e.g. parallel node) and

its leaf nodes (e.g. action nodes of vehicle behavior models).

4.4.3 Incident Creation Functions

The Scenario Control System functions as a runtime environment to execute the

scenarios that are specified in the SML script and represented as a behavior tree (see

41

Fig. 4.4). In the following, we describe the key functions of SCS. Behavior trees are

used to implement the functions of SCS. Fig. 4.5 shows the conceptual execution

diagram of the behavior tree that represents three functions of SCS: (a) selection, (b)

preparation, and (c) execution.

Let us recall the requirement for our example scenario: the two AI Cars (one

follows the other) are required to create an accident situation when the following-car

collides with the leading-car from rear-end. The accident must happen at a particular

location and a certain distance from the oncoming subject vehicle (leading user-driven

car) so that lead-user can experience the accident (via visual and sound channels)

which may possibly recreate the rubbernecking effect in the simulation space (as

illustrated in Fig. 3.1). For this to happen, SCS needs to use its three functions as

explained below.

4.4.3.1 Selection

The selection function identifies the required number of computer vehicles, e.g. two

cars for creating the mentioned accident scenario within the time interval t0−t1 shown

in Fig. 4.5.

To find the most suitable vehicles from the currently available pool of oncoming

computer vehicles simulated by the traffic simulation, we use the suitability criteria

equation proposed by [37].

First, computer vehicles that currently run on the specified part of the road are

queried. To evaluate how suitable a computer vehicle is for a scenario, we use the

initial state specified for each entity involved in the scenario. Here the initial state

refers to the ‘scenarioroleloc’ and ‘desiredspeed’ properties for entities involved in the

scenario (see Fig. 3.5). The ‘scenarioroleloc’ property refers to (a) the initial location

and (b) desired speed of the referred entity right before the ‘director’ component of

a scenario is executed. Olstam et al.[37] specifies the initial position and speed as

relative to the user-driven vehicle (e.g. 400 meters ahead and 15% slower). We made

42

a different assumption regarding the initial state specified for entities involved in a

scenario by assigning them absolute values for the initial position and speed. This

is due to the reason that traffic engineers had the requirement to fix the location of

accident at an absolute position instead of relative position from the lead user.

At time t1, the selection function is completed and has chosen the best available

candidate vehicles (AI Cars) to be handed over to the preparation phase. In addition,

the selection function initializes the driving behavior models of the AI Cars and their

roles in the scenario by using the properties specified in the entity definition, such as

desiredspeed, desiredaccel and scenarioroleloc (see Fig. 3.5).

4.4.3.2 Preparation

The purpose of the preparation function is to ensure that the selected AI Cars reach

their initial scenario-role positions and speed in time left for preparation (i.e. t1 − t2

in Fig. 4.5).

To successfully prepare the selected AI Cars to participate in a scenario, the

AI Car module computes the acceleration that an AI Car needs to apply in order

to reach its initial scenario role. The acceleration value is calculated based on the

difference between the required average speed for an AI Car to reach its role and its

current speed divided by the time left for preparation (i.e. t1 − t2 in Fig. 4.5). Here

the average travel speed required for an AI Car to reach its initial scenario role is

computed based on the leading user-driven car’s average travel speed, the distance to

the initial scenario role location and time left for preparation. To compute the leading

user-driven car’s average travel speed, we use the equation proposed by[37]. In using

that equation, we set the estimated desired speed of the leading user-driven car to 60

km/h. Such was the speed that all users were instructed to maintain, throughout all

experiments. However this assumption caused the problem to accurately reproduce

the accident later as the subjects sometime did not drive at 60 km/h.

43

4.4.3.3 Execution

Once the AI Cars reach their initial scenario-role positions (specified as ‘scenariorole-

loc’) in time, SCS will execute the tasks of the ‘director’ component of a scenario

script (i.e. the action nodes of the behavior tree that represents SML Director as

shown in Fig. 4.4) to create an accident at a target location and at a specific distance

from the oncoming leading user-driven car (as illustrated in Fig. 5.2). This operation

sends the command MoveToTargetLocation to the AI Car module with the parame-

ters specifying the target accident location. The AI Car module tries to execute the

command (at the command and Unity3D layers) on the respective AI Car so that an

accident can be created.

The execution function of SCS and AI Car module must complete in time t3 to

successfully create a scenario as specified.

4.4.3.4 Time Estimation

The accident situation has to be reproduced from the lead users’ point of view (the

reference car) at a precise point in time. Therefore the time left for selection, prepa-

ration and execution (i.e. the time intervals t0 − t1, t1 − t2, and t2 − t3 in Fig. 4.5)

functions of SCS have to be computed precisely. For that, we use the time estimation

equation proposed in [37]. The time estimation consists of estimating the user-driven

vehicle’s average travel speed.

4.5 Collection of Driver Behavior and Traffic Data

Table. 4.1 summarizes the schema of the data stored from user driven vehicles and

surrounding ambient traffic (autonomous and semi-autonomous vehicles). The frame-

work logs (1) positions, velocities, and accelerations behavior, and (2) status of steer-

ing wheel, acceleration and brake pedals of the user-driven vehicles.

In addition, the headway and the reaction time-lag data can be calculated based

44

on the velocity and location of each car in the simulation. This shows that data on

interaction between user-driven vehicles can be obtained in our framework, which is

important for validating traffic models. Note that this data is generally not directly

observable from common traffic data.

Furthermore, based on the collected data and vehicle specific information (e.g.

size), traffic data like lateral positions of leading and following vehicles on the longi-

tudinal gap, vehicle composition in the traffic stream, lateral distribution of vehicles,

lateral distribution of vehicles on a road of certain width and lateral gaps and longi-

tudinal gaps can be derived easily. This data is useful for traffic engineers to analyze:

(a) certain driver behaviors (a car tries to overtake a truck), (b) how narrow lanes

affect the traffic stream and why, and (c) mixed traffic situations.

In addition, the following data can be logged in the framework: high level user-

driven vehicle data like number of collisions, speed limit violation, traffic signs missed,

pedestrians hit, centerline crossings, road edge excursions, off road accidents, travel

time between two designated locations, headway distance between two specific user-

driven vehicles, lane deviation, speed deviation, lane excursions, time to collision, fuel

usage, and local speed at certain locations of the road network. Traffic engineers are

interested in using these data to investigate various aspects of driver behavior like

eco-friendliness, aggressiveness, and factors influencing lane selection.

Further, the framework can also log specific events(e.g. accident), which are useful

for analysis of the experimental results.

It should be noted that, we would have a limitation regarding how much data we

can log because currently the data to be logged need to be transmitted in the network

because traffic simulation client, driving simulation clients and logging component are

connected via DiVE framework, so that logging component can grab the data from

the network.

Another important information is that how the timestamp logged relate to the

45

Attribute Type or Unit Attribute Type or Unit
Vehicle Id Integer Timestamp HH:MM:SS

Vehicle Type String Gas * Double
Current Position X:Y:Z (Double) Gear * Double

Origin# X:Y:Z (Double) RPM * Double
Destination# X:Y:Z (Double) Distance Travelled Double

Velocity X:Y:Z (Double) CO2 Emission Double
Direction X:Y:Z (Double) Indicator Left Boolean

Acceleration X:Y:Z (Double) Indicator Right Boolean
Steering Wheel Position* Float(-1 to 1) Break Light Boolean

Acceleration Pedal Position* Float 0 to 1) Road Link Id Integer
Brake Pedal Position* Float(0 to 1) Lane Number Integer

Table 4.1: Driver behavioral and microscopic vehicle traffic data schema (* refers to
user driven vehicles only, # refers to autonomous and semi-autonomous vehicles only)

simulation time. The difference between two consecutive timestamps should be con-

stant, because of constant sampling rate. However, currently the timestamp relates to

the real global time of whole simulation system, and does not relate to the simulation

time. The logging component tries to achieve the sampling rate of 100 ms (i.e 10

times per second, which is acceptable in traffic domain) at its best effort. if it grabs

too much data to log, then it suffers to maintain its sampling rate constant (this is

another reason we have to restrict the data we log). Therefore one can assume that

the sampling rate is semi-constant.

4.6 Addressing Technical Challenges

In this section, we discuss the identified challenges and how we addressed them using

our framework.

• One is to make the scenario authoring language practical to use. In that, first we

expected to full fill traffic engineers requirement in capturing scenario specifica-

tion. Then, we wanted to make the language to be powerful enough to specify

different kind of traffic situations. To address this challenge, we proposed an

XML-like language called SML with domain independent language structures

46

to let traffic engineers to author scenarios. For that, we defined appropriate el-

ements to the SML to capture traffic engineers requirement. We made SML as

a high level specification language, by abstracting the complexity into scenario

control system.

• The second challenge is to increase the scalability of simulation of ambient

traffic for multiuser driving simulator to cover large scale 3D virtual environ-

ment. To address this challenge, we used a flexibly integrated microscopic traffic

simulation, with less effort, on top of our in-house technologies such as DiVE

framework and OpenTraffic middleware. That helped us to simulate ambient

traffic for multiuser driving simulator in a large scale 3D virtual environment

In addition, we separated the execution of scenarios from the simulation of

ambient traffic to make it more controllable and flexible in terms of of creating

and simulating different traffic situation as close as possible to what is specified

by traffic engineers. Further, we used the tested algorithms from related work

to create controllable and reproducible situations so that the same experimental

conditions can be reconstructed (see ”Incident Creation Functions” section).

Our framework can simulate: a)autonomous vehicles as ambient traffic that

serve the purpose of enhancing the realism, and b) directable semi autonomous

vehicles to create scenarnios with sufficient reproducibility and controllability.

• Third challenge is the accessibility. Our Framework has the potential to be

accessed over the (3D) Internet, thanks to our in-house technologies such as as

DiVE framework and OpenTraffic middleware and immerisive driving in multi-

ple platform (i.e. simple PC in standalone or web player modes, multi-screen

driving simulation setup or portable devices like iPad)

• Fourth challenge is the multiuser immersive 3D environment. Compared to the

related work which are limited to creating scenarios from single users point of

47

view, since our framework allows multiple users to participate in driver experi-

ments, there is a potential to create scenarios from multiple users point of view.

That would give traffic engineers the in-depth understand of the inter-active be-

haviors of multiple drivers, i.e. how they react to each other and the behaviors

of vehicle platoons in different conditions.

• Fifth challenge is the extensibility. With most of of related work, it is difficult

to integrate and test with other microscopic traffic simulators. However, our

framework allows flexible integration and testing of different microscopic traffic

simulators.

4.7 Conclusion

Some approaches or ideas that were used to simulate ambient traffic in a multiuser

driving simulator and implement scenario control system in this thesis, have been

explored in other related studies individually but this work made a contribution on

the integrated use of them.

The simulation approach described in this section, presented an integrated frame-

work that provide the platform for simulating ambient traffic in a multiuser driving

simulator that exist in a 3D virtual environment in which scenarios and situations

can be formed around a multiple human subjects. In addition, the framework allows

researchers to create experiences for multiple human subjects, with predictability,

reproducibility and controllability in real-time, in the 3D virtual environment and

capture the natural responses of human subjects which are later analyzed to validate

relevant hypotheses about how drivers respond to some traffic situations of interest.

48

Chapter 5

Multiuser Driving Experiment

5.1 Introduction

Using the technologies presented in this thesis, we conducted an empirical study on

the rubbernecking effect. For that purpose, we specified and implemented a scenario

where a traffic accident happens on the opposite side of the road from the perspective

of the subjects who were driving as a group of four drivers on a single lane.

Fig. 5.1 shows the simulation setup of the 3D virtual environment which include a)

the locations where user start and finish driving, b) origin and destination from which

traffic simulation cars spawned and sinked, c) location where scenario preparation

starts, d)location where scenario execution starts, and e) possible accident location.

Fig. 5.1 also illustrates that where a group of fours user driven cars would start driving

and follow the route until reaching the finishing location.

Our study investigates the rubbernecking scenario by testing if our approach can

reproduce certain important state variables regarding the accident location, such as

the distance to the lead user car or the distance between the desired and actual acci-

dent location. We also analyze how drivers change their operational driving behavior

at the incident site.

Precisely speaking, we investigate a special case of the rubbernecking scenario,

where the accident just happened in the driver’s vicinity. In the general rubbernecking

scenario, the accident has already happened and the driver is approaching the accident

49

Figure 5.1: The birdview of 3D virtual environment setup in a 2D diagram.

location[43]. From the literature on the rubbernecking effect[30], we predicted:

1. The headway of subjects’ vehicles increases after passing the accident location.

2. The subjects’ speed decreases upon the perception of accident.

3. The subjects’ speed variance (delta speed) reduces after passing the accident

site.

The following sections describe our method and results.

5.2 Method

5.2.1 Subjects

Nine groups with four subjects each participated in the experiment. All subjects were

either staff member or research student at the QUT. There were 5 females and 31

males, on average 29 years of age, and 7 years of driving experience. 19 had previous

experience with driving simulators. The limited availability of subjects with previous

experience with driving simulators led us to include subjects with no experience.

However, we provided subjects sufficient time to practice in the driving simulator.

50

5.2.2 Apparatus

In the experiment, the driving simulation workstation is a DELL Precision m4600 with

a 2.2 GHz Intel(R) Core (TM) i7-2720QM and 8 GB RAM, and a nVidia Quadro

1000M graphic processing unit. A Logitech G27 model game wheel was prepared for

each subject as an input device to interact with the driving simulator. Subjects were

given the Sony Stereo headphone to listen to the sound (e.g. car engine sound and

ambient sound) created as part of the simulation. Subjects were seated in front of 21

inch monitors, at a distance of 40cm, and could not see each other’s monitor. Subjects

used the computers at the Smart Transport Research Center, which is located at QUT.

5.2.3 Experimental Procedure

We conducted the experiment in three days, in February 2012, in multiple sessions.

All subjects were provided with an information sheet regarding the experiment they

were to undergo and the related consent form to sign. The information sheet stated

that the goal of the experiment was to investigate human driving behavior. Then,

we introduced subjects to the driving simulation environment and let them drive for

5 minutes to get used to the simulation environment and practice their driving using

the game wheel. After that, the official experiment runs started.

The experiment consisted of three conditions:

1. Drive Alone(DA): subjects driving in the environment without other traffic (for

familiarization)

2. Drive With Traffic(DwT): subjects driving in the environment containing other

traffic, in other lanes

3. ‘Drive With Traffic DI’ (DwT-DI)(Dynamic Incident): similar to (b); with the

difference that the system created an accident scenario while subjects were

driving

51

Figure 5.2: The traffic accident scenario concept in a 2D diagram. U1 is lead driver;
U2, U3, and U4 are followers.

In each condition, four subjects drove together as a group (platoon) on a single

lane, as illustrated by Fig. 12. Users were asked not to engage in any overtaking

maneuver. In conditions(1) and (2), Traffic volume in terms of flow was set to 2000

vehicles/h/direction (per two lanes). A five minute rest period was included between

trial runs.

5.3 Experimental Results

5.3.1 Informatics View - Accuracy of Accident Creation

In this thesis, we use U1Spec to denote the specified location of the lead user driver,

when the accident happens. Similarly, ASpec will indicate the specified location for

the accident to happen (see Fig. 5.2).The symbols U1Actual and AActual denote the

locations of lead user car and accident, respectively.

We postulate that our approach can reproduce the accident at a specified distance

from the lead user car, that is, between U1Spec and ASpec. Traffic engineers suggested

such a distance to be 85m (i.e. identified as ‘Specified Distance’ in Fig. 5.2), with the

tolerance of 20m.

Fig. 5.3 illustrates a line line graph which shows the distances between the location

of the user-driven car at the time of the accident (noted as U1Actual in Fig. 5.2) and

the location where an accident occurs (noted as AActual in Fig. 5.2) in each session.

The distances shown are the actual distances in meters. The two vertical red lines

52

Figure 5.3: The line line graph showing the distances between the actual and specified
locations of lead user and accident

compose the 85m window that represents the distance between the specified accident

location and the specified location of the lead user-driven car, which is ‘Specified

Distance’ in Fig. 5.2. Unsuccessful sessions are indicated by dashed lines. From the

Fig. 5.3, we interpret that in seven, out of nine sessions, our approach was able to

reproduce the accident scenario successfully. That is, the accident was generated

before the first user drive passes the accident location.

In the cases of successful attempts (in Sessions 1, 3, 5, 6, and 7), the actual

distance (identified as ‘Actual Distance’ in Fig. 5.2) between lead-user and accident

location was close to the specified distance (85m) with the tolerance of 20m . In the

remaining two sessions, actual distances were longer than the specified distance by

approximately 50m (in Sessions 8 and 9).

As for the two unsuccessful sessions (Sessions 2 and 4 in Fig. 5.3), the system was

still able to create the accident close to the specified location. However, the lead-

user had already passed the location where the accident was created. The reason for

this inaccuracy was that that a user desired speed of 60km/h was assumed, when

53

+S

-S

Figure 5.4: The space-time diagram for choosing observation window

calculating the average travel speed (hence time) of user driver as in [37] which was

used in preparation and selection phases to decide the suitable AI Cars and to compute

exact time for AI Cars to create the accident. However, the leaders in session 2

and 4 were observed to drive at 62 km/h on average, compared to the successful

sessions where the leaders were driving 57 km/h on average during the preparation

and selection phases.

5.3.2 Traffic Engineering View - Rubbernecking

Before describing the results, we explain the process of data analysis that was required

to inform the hypotheses.

54

5.3.2.1 Data Analysis Process

Fig. 5.4 illustrates the pace-time diagram for choosing observation window. The

thinnest line is the leading car; the red square is the point in time and space where

the second car reaches the incident location; the green lines are the +/- 90 meter

window, spanning the space domain of course, centered at the red square. As shown

in Fig. 5.4, we only analyzed the data falling within an observation (space) window.

Anything outside this region was assumed to carry irrelevant information, insofar

as the rubbernecking phenomenon was concerned. We therefore used space as an

independent variable and distance-to-incident as a reference point The space widows

had size 2*S (meters), ranging from -S to +S. Here, S denotes the distance from

vehicle-to incident location, along the direction of travel. Negative values indicate

that the incident location had yet to be reached.

We treated headway, speed and delta speed as dependent variables and obtain

them from the data (position and time) falling within the observation window. These

data from nine sessions were aggregated and analyzed as a whole. In other words, the

data from all nine experiment sessions was clustered into three groups; these being

‘Drive Alone’, ‘Drive With Traffic’, ‘Drive With Traffic DI’. Then, for each group of

data, we performed the following data processing:

1. Cluster the data into n space bins

2. Fit some, parametric, unimodal distribution (e.g. Gaussian or Gamma) that

best describes the shape of the binned data

3. Compute the mode (i.e. the maximum of the distribution) and variance for each

distribution for each space bin, in order to characterize the behavior of that bin

Step (1) enabled us to study the behavior of drivers at various locations of the

road, before approaching the accident location. In step (2), the use of parametric

descriptions allowed a concise general description of the data. The disadvantage

55

Figure 5.5: The plots for behavioural distributions of headway and speed. The graphs
refers to the ‘Drive With Traffic’ runs from all nine sessions.

of parametric versus non-parametric distributions (e.g. histograms) is that in the

former, the shape of the data is assumed to be known. By contrast, non-parametric

approaches make no assumption on the dataset, although they are typically less robust

to outliers in the case of small datasets and, by nature, cannot generalize1. Fig. 5.5

shows the difference between parametric (thin curve) and non-parametric (light grey

histogram) distributions. Finally, step (3) was performed in order to determine the

representative values for headway, speed and delta speed; and the deviation from the

1In Pattern Recognition, the term generalization denotes the capability of a model to make
accurate inference upon new data.

56

overall behavior from all drivers. Representative headways, speeds and delta speeds

were given by the mode of the distribution. The standard deviation denoted the

variance from the overall trend.

As far as concerns the distributions, choosing the best model was achieved through

Maximum Likelihood Estimation (MLE), that is, by choosing the density function

whose fitting would produce the highest likelihood. The functions investigated were

Gaussian, Gamma and Extreme Value. It turned out that headway was best described

by a Gamma function, whereas speed and delta speed were both normal-shaped

(Fig. 5.5).

In order to draw the mode and standard deviation (SD) profile for the space

window considered, we linearly interpolated mode and SD points from each space

bin, as shown in Fig. 5.6 and in Fig. 5.7.

The fourth row of graphs in Fig. 5.6 and Fig. 5.7 represent the difference between

the behavior (mode and variance) between accident scenario (i.e. ‘Drive With Traffic

DI’) and baseline (i.e. ‘Drive With Traffic’). We now turn to the discussion of our

results.

5.3.2.2 Hypotheses and Results

The first hypothesis states that the headway of subjects’ vehicles increases after pass-

ing the accident location. In our experiment, however, we observed that the mode

headway decreased gradually upon the perception of the incident. At the end of the

observation window (90m after the incident), the speed was reduced by almost 2mps

(7.2kph) and the headway had dropped by 10 meters.

The second hypothesis predicts that subjects’ speed decreases upon the perception

of the accident. The mode plot graphs in Fig. 5.6 show the mode speed decreased

gradually upon the perception of the incident. This result supports the hypothesis

of speed reduction as a consequence of the rubbernecking effect. This result is in

agreement with what has been observed from real freeway rubbernecking data.

57

Figure 5.6: The mode plots for headway, speed, and delta speed of overall driving
behavior of four drivers in a platoon from all nine sessions.

The third hypothesis claims that the difference between the speed of adjacent

vehicles (delta speed) deceases after passing the accident site. Fig. 5.6 shows that at

about 20 meters after the incident the platoon underwent a delta-speed reduction of

about 1 mps (3.6kph).

Overall, the variance plot graphs in Fig. 5.7 suggest that drivers experienced diffi-

culties in maintaining some desired headway and speed after perceiving the accident.

A large, positive divergence value indicates that the headway and speed variance of

the accident scenario (i.e. ‘Drive With Traffic DI’) is bigger than the one of the base-

line (i.e. ‘Drive With Traffic’). In other words, the sight of the accident made the

subjects uncertain about the headway and speed they wanted to maintain.

Further we investigated if the change of headway and speed is statistically signif-

icant among the three conditions: ‘DA’, ‘DwT’, ‘DwT–DI’. For this, we performed

One-Way Multivariate Analysis of Variance (MANOVA) tests among three condi-

tions (or groups). The dependent variables were the headway, and speed, of the

58

Figure 5.7: The variance plots for headway, speed, and delta speed of overall driving
behavior of four drivers in a platoon from nine sessions.

vehicles at the four space bins, around the incident location. The MANOVA tested

if the 4D means or groups centroids, actually formed one, two or three different

groups, according to the Mahalanobis distance between groups. The MANOVA test

on the speed data, enabled us to reject both the one group, and two-group hypothe-

ses (p1 < 0.001, p2 < 0.001). By contrast, the MANOVA test on the headway data,

showed (p1 < 0.0001, p2 = 0.1560) that the centroid are best described by two groups

only. As the Mahalanobis distance between ‘DwT–DI’ and the other two groups is

bigger than the distance between ‘DA’ and ‘DwT’, we concluded that ‘DA’ and ‘DwT’

are similar, but both statistically different from ‘DwT–DI’. On average, 14% of the

data points per session were cleansed for which headway values greater than 150m

as the study condition (driving as platoon) was not met. Moreover, we concede that

randomization of the three conditions helps to avoid any carry over effects. However,

in our particular case, we chose not to randomize the three conditions, based on the

59

assumption that having seen the accident would significantly affect users driving in

the other condition (DwT).

As for the delta speed, the standard deviation from the accident scenario was

always bigger than the one from the baseline, throughout the observation window.

This result could be attributed to the small size of the dataset, among other things.

Just like acceleration versus velocity and position, the delta speed between vehicles is

expected to vary more rapidly than speed and headway. If the dataset is too small and

the data has high variance, it may be hard to guess what the characteristic behavior

of the target phenomenon is, regardless of the model or distribution that is used.

5.4 Conclusion

Please note that the introduction of multiple drivers in a driving simulator exper-

iment brought us more challenges : a) how to design and conduct driver behavior

experiments which involves several subjects and investigating interactive driving be-

havior of multiple drivers in case of exceptional events, and b) how data from such

an experiment should be analyzed. This is because, when adding more subjects in an

experiment like the one reported, we tend to lose some statistical power to analyze

the data in a meaningful way.

To demonstrate the effectiveness of our framework and to address the challenges

mentioned, we collaborated with traffic engineers to design and conduct a driver

behavior study focusing on the rubbernecking phenomenon.

In this chapter, we presented a) experimental design of a multiuser driver be-

havior study in a 3D virtual environment, b) the data analysis process, and c) the

experimental results from both the perspectives of informatics and traffic engineering.

60

Chapter 6

Conclusion

6.1 Summary

In this thesis, we have presented a new framework for conducting controlled driving

behavior studies in a multiuser networked 3D virtual environment, which supports

(a) the simulation of multiuser immersive driving, (b) the visualization of interactive

surrounding traffic, (c) the specification and creation of traffic scenarios, and (d) the

collection of meaningful driving behavior data.

Using our framework, we address the gap between the specification of scenarios in a

high level language (by experts) and the technical implementation of the specification

of scenarios with simulators (by developers). Specifically, we propose (a) the Scenario

Markup Language as a high level specification language, (b) a technique to map high

level descriptions to the scenario control implementation based on behavior trees,

and (c) the Scenario Control System that uses an external traffic simulation, which

is integrated with a multiuser driving simulator to implement scenarios.

Our technique to create reproducible traffic situations allows both autonomous

and directable semi-autonomous vehicles to co-exist in the simulation environment.

This enables us to simulate realistic ambient traffic while being able to create tightly

controlled traffic situations. Thus the framework empowers traffic engineers to in-

vestigate complex traffic situations that depend on the interaction between multiple

drivers. Specifically, we used our framework to investigate the ‘rubbernecking’ phe-

61

nomenon.

From an informatics view, our study shows promising results (i.e. accident sce-

nario created successfully 78% in the empirical study) in terms of reconstructing a

reproducible traffic accident scenario in a multiuser driving simulation context in mul-

tiple experiment sessions. This allows us to compare data and draw valid conclusions

regarding how a traffic accident scenario (perceived by drivers as it happens) affects

the car-following behavior (headway, speed, delta speed) of four users driving as a

platoon in a single lane, at the close proximity of the incident site. We reckon the

source of inaccuracy is from the assumption regarding user-driven vehicles desired

speed which caused the problem to accurately reproduce the accident in few occa-

sions as the subjects sometimes did not drive at 60 km/h and the time duration for

selection and preparation phases of scenario vehicles were short.

Further, we recall that the reproducibility of scenarios (i.e. state variables) in

the simulation depends on the precise calculation of timing of (a) starting and com-

pleting the selection of suitable candidate vehicles and assigning the scenario roles to

the selected vehicles (selection phase), (b) transporting the selected vehicles to the

respective scenarios role location (preparation phase), and (c) executing the scenario

directors commands, i.e. when to issue the commands to the selected vehicles (exe-

cution phase). Further, the time calculation takes in account the lead drivers driver

speed as key factor, because scenarios have to be created so that lead user can perceive

it in time. Therefore, to improve our framework in its ability to create reproducibility

of scenarios, we identified two approaches: (a) a more precise calculation of timing

by computing the lead users desired speed as the speed averaged over a window of

time, and (b) an increment of the time duration for selection and preparation phases

of scenario vehicles.

From a traffic engineering view, the study supports two of the three hypotheses

regarding the rubbernecking effect. As predicted, the speed and the delta speed of the

62

subjects decreases upon the perception of accident. However, it does not support the

hypothesis that the headway increases. Although there is evidence that the perception

of an accident does change the behavior of all drivers, further research will need to

be conducted to understand the headway drop phenomena at the accident location.

In general, our framework was able to measure the effect of perceiving the accident

by a group of drivers, on headway, speed and delta speed variance.

6.2 Limitations

In regarding improvement in the simulation, observations made during the experi-

ments indicate the need for smaller adjustments for ambient vehicles behavior at the

intersection as well as curves. Further, we only simulated cars for the microscopic

traffic simulation and subjects, participated in the experiment, commented that there

needs to be different types of vehicles such as buses, trucks, cycles, and pedestrians

as well.

We used a finite automata based microscopic simulation of surrounding traffic

(i.e. autonomous vehicles). It increases the realism of the ambient environment in

driving simulator. However, it also increases the variation in experimental condi-

tions between multiple sessions, making it difficult to compare results because of the

increased statistical variation. To solve this issue, we could replace the current micro-

scopic traffic simulator with the agent-based simulation of ambient vehicles. In this

way, we believe that we can avoid variations in experimental conditions between mul-

tiple sessions because the focus of agent-based simulation is on modeling the decision

making processes and detailed motion control of autonomous vehicles [57].

Driving simulator client lacks certain features that are essential for any vehicles.

For example, current implementation of driving simulator interface does not have side

mirrors, which led us to restrict the humans drivers not to overtake or change lane

during the experiment reported here. Hence, we also needed to restrict the experi-

63

ment to focus only on the aspect of longitudinal driving behavior (or car following),

avoiding any lateral driving behavior which involves lane changing or overtaking. The

side mirrors have to implemented, so that we can extend the experiments that can

investigate not only the longitudinal driving behavior, but also lateral one.

For the driving simulator experiment conducted, we used a simplified traffic acci-

dent scenario to test if our approach can reconstruct the situation. In improving this

scenario creation, we would consider relaxing the requirement on the fixed accident

location by specifying it relative to the lead user vehicle. In this way, we hope to

increase the accuracy of reproducing the accident successfully.

6.3 Implications for Research and Policy

The simulated framework presented in this thesis offers researchers and policy mak-

ers a low-cost, virtual experiment station, that allows studying the effect of various

exceptional events and traffic scenarios on the travel and driver behavior of multiple

human drivers in a safe and controlled environment. Generation and simulation of

surrounding traffic for multiuser driving simulators increases the realism of the simu-

lated environment that resembles driving in real traffic systems as closely as possible.

Researchers are enabled to test new strategies,methods, and algorithms to address

various transportation issues, while policy makers can analyze the impacts of those

prior to application and real-life trials.

Additionally, every experiment with the system provides feedback data to the sim-

ulation component for calibration, so to provide an even more realistic environment.

Specifically, the framework creates opportunities for developing new traffic simula-

tion models or enhancing existing models. All data (e.g. vehicle trajectory data)

concerning the driving simulator vehicle as well as the ambient vehicles, are logged.

The collected data can be analyzed to improve or calibrate the the traffic flow models

such as car-following, lane-changing, and overtaking behavior by incoperating the ad-

64

ditional knowledge gained regarding the human behavior changes due to the impact

of an exceptional event or traffic scenarios.

Further, the integration of a multiuser driving simulator and a microscopic traffic

simulator, along with scenario control can lead to the development of new methods

for validation of existing traffic simulation models.

6.4 Future Work

Future work will address several limitations of our framework. Our current scenario

example only uses two car entities to create scenarios; there can be other cases which

involve multiple different entities and more interactions among them (e.g. more cars

and traffic signals). For example, an accident situation involving many cars at an

intersection controlled by a traffic signal can be more difficult in terms of preparing

the entities to reproduce the scenario accurately and realistically.

Another example would be to simulate different geographical locations of a city

which has complex geometry. Since we have integrated tools for automatic generation

of 3D virtual cities along with road infrastructure and furniture, it would be feasible

for us to generate more cities and highways easily, rather than have to design them

manually, so that we can conduct experiments in different geographical locations to

investigate various traffic situations that are influenced by the geometrical structures

of the locations.

In addition, currently we proposed an XML like language for scenario authoring.

In future, we consider developing a graphical tool for scenario authoring and make

authoring more intuitive for non-programmers.

Further, more studies need to be conducted that focus on more complex transport

scenarios (e.g. high density of traffic and changes in road geometry will increase the

complexity of the preparation of the entities involved in the scenario) to draw more

solid conclusions about our simulation framework. Future experiments can also focus

65

on the simulation of different weather and road conditions as part of the test case

scenarios, with the involvement of multiple users taking part.

66

Chapter 7

Publications

Some parts of this thesis have been published in other publications.

Journal Papers as the First Author

1. Kugamoorthy Gajananan, Alfredo Nantes, Marc Miska, Arturo Nakasone, Hel-

mut Prendinger, An Experimental Space for Conducting Driving Behavior Stud-

ies based on a Multiuser Networked 3D Virtual Environment and the Scenario

Markup Language, IEEE Transactions on Human-Machine Systems, 2013. (In

press.) The paper was recommended for publication in the former IEEE Trans-

actions on Systems, Man, and Cybernetics - Part A: Systems and Humans (2011

Impact Factor: 2.123)

Journal Papers as a Co-Author

1. Helmut Prendinger, Marc Miska, Kugamoorthy Gajananan, and Alfredo Nantes,

A Cyber-Physical System Simulator for Risk Free Transport Studies, Journal

of Computer-Aided Civil and Infrastructure Engineering, 2013.(Under Submis-

sion)

2. Helmut Prendinger, Kugamoorthy Gajananan, Ahmed Bayoumy, Ahmed Fares,

Reinaert Molenaar, Daniel Urbano, Hans van Lint and Walid Gomaa Tokyo

67

Virtual Living Lab: Designing Smart Cities based on the 3D Internet, IEEE

Internet Computing, Special Issue on Smart Cities, 2013.(Under 2nd Review)

Refereed Conference Papers as the First Author

The first version of the Scenario Markup Language was originally presented in :

1. Kugamoorthy Gajananan, Arturo Nakasone, Helmut Prendinger, and Marc Miska

Scenario markup language for authoring behavioral driver studies in 3D virtual

worlds, Proc IEEE Symp on Visual Languages and Human-Centric Computing

(VL/HCC’11), Pittsburgh, PA, USA, 2011.9, pp 43-46.

2. Kugamoorthy Gajananan, Arturo Nakasone, Edgar Santos, Helmut Prendinger,

and Marc Miska Scenario authoring for driver behavioral data collection in

3D virtual environments, Proc 2011 IEEE Int’l Conf on Virtual Environments,

Human-Computer Interfaces and Measurement Systems (VECIMS’11), Ottawa,

Ontario, Canada, 2011.9, pp 1 - 5

3. Kugamoorthy Gajananan, Arturo Nakasone, Helmut Prendinger, Eurico Doirado,

Pedro Cuba, Marc Miska. Creating Interactive Driver Experiences with the

Scenario Markup Language, Proc 8th International Conference on Advances

in Computer Entertainment Technolgoy (ACE’11), Lisbon, Portugal, 2011.11,

Article No. 41.

4. Kugamoorthy Gajananan, Sra Sontisirikit, Jianyue Zhang, Marc Miska, Ed-

ward Chung, Eward Guha, and Helmut Prendinger. A Cooperative ITS study

on green light optimization using an integrated traffic, driving, and communica-

tion simulator. Proc 36th Australasian Transport Research Forum (ATRF’13),

Brisbane, Australia, 2013.10. (Abstract accepted)

68

Refereed Conference Papers as a Co-Author

The standard to represent the road network in 2D and 3D virtual environment, which

is used as a base/input for the Microscopic Traffic Simulator is presented in the

following paper. I contributed to the paper by helped Dr. Marc Miska in developing

a new road network encoding standard, in terms of researching the related work,

finding the limitations in them, identifying the new requirements from the target

projects where standard to be used.

1. Marc Miska, Kugamoorthy Gajananan, Eduard Chung, and Helmut Prendinger.

A traffic simulation standard based on data marts, Electronic Proc 34th Aus-

tralasian Transport Research Forum(ATRF’11), Adelaide, South Australia, 2011.9.

69

Bibliography

[1] Olivier Alloyer, Esmail Bonakdarian, James Cremer, Joseph Kearney, and Peter

Willemsen. Embedding scenarios in ambient traffic. In In Driving Simulation

Conference, pages 75–84, 1997.

[2] Yoram Atir and David Harel. Using lscs for scenario authoring in tactical simula-

tors. In Proceedings of the 2007 summer computer simulation conference, SCSC,

pages 437–442, San Diego, CA, USA, 2007. Society for Computer Simulation

International.

[3] Jaime Barcel and Jordi Casas. Dynamic network simulation with aimsun.

In Ryuichi Kitamura and Maso Kuwahara, editors, Simulation Approaches in

Transportation Analysis, volume 31 of Operations Research/Computer Science

Interfaces Series, pages 57–98. Springer US, 2005.

[4] Behave, August 2011.

[5] E. Blana and University of Leeds. Institute for Transport Studies. Driving Sim-

ulator Validation Studies: A Literature Review. ITS working paper. Institute for

Transport Studies, University of Leeds, 1996.

[6] E. Blana and University of Leeds. Institute for Transport Studies. A Survey of

Driving Research Simulators Around the World. Working paper (University of

Leeds. Institute for Transport Studies). Institute for Transport Studies, Univer-

sity of Leeds, 1996.

70

[7] Esmail Bonakdarian, James Cremer, Joseph Kearney, and Pete Willemsen. Gen-

eration of ambient traffic for real-time driving simulation. In In Image Confer-

ence, pages 123–133, 1998.

[8] Torrieri V. Ciuffo B., Punzo V. Integrated environment of driving and traffic sim-

ulation. In Proceedings of Road Safety and Simulation International Conference.,

pages 7–9, November 2007.

[9] M.J. Conway. Alice: Easy-to-learn 3D Scripting for Novices. University of

Virginia, 1998.

[10] James Cremer, Joseph Kearney, and Yiannis Papelis. Hcsm: a framework for

behavior and scenario control in virtual environments. ACM Trans. Model. Com-

put. Simul., 5(3):242–267, July 1995.

[11] Frédéric Devillers and Stéphane Donikian. A scenario language to orchestrate vir-

tual world evolution. In Proceedings of the 2003 ACM SIGGRAPH/Eurograph-

ics symposium on Computer animation, SCA ’03, pages 265–275, Aire-la-Ville,

Switzerland, Switzerland, 2003. Eurographics Association.

[12] Stéphane Donikian. Hpts: a behaviour modelling language for autonomous

agents. In Proceedings of the fifth international conference on Autonomous

agents, AGENTS ’01, pages 401–408, New York, NY, USA, 2001. ACM.

[13] Stephane Espi. Archisim: Multiactor parallel architecture for traffic simulation.

In In Proceedings of the Second World Congress on Intelligent Transport Systems,

page vol. IV, November 1995.

[14] Martin Fellendorf and Peter Vortisch. Microscopic traffic flow simulator vissim.

In Jaume Barcel, editor, Fundamentals of Traffic Simulation, volume 145 of

International Series in Operations Research & Management Science, pages 63–

93. Springer New York, 2010.

71

[15] D.L. Fisher, M. Rizzo, J. Caird, and J.D. Lee. Handbook of Driving Simulation

for Engineering, Medicine, and Psychology. Taylor & Francis, 2010.

[16] K. Gajananan, A. Nakasone, H. Prendinger, and M. Miska. Scenario markup

language for authoring behavioral driver studies in 3d virtual worlds. In Visual

Languages and Human-Centric Computing (VL/HCC), 2011 IEEE Symposium

on, pages 43 –46, sept. 2011.

[17] Sameh El Hadouaj and Stephane Espi. A Generic Road Traffic Simulation Model,

chapter 180, pages 1314–1321.

[18] David Harel. Statecharts: A visual formalism for complex systems. Sci. Comput.

Program., 8(3):231–274, June 1987.

[19] H. Hattori, Y. Nakajima, and T. Ishida. Learning from humans: Agent model-

ing with individual human behaviors. Systems, Man and Cybernetics, Part A:

Systems and Humans, IEEE Transactions on, 41(1):1 –9, jan. 2011.

[20] F. Nunes Ferreira J. Miguel Leito, A. Augusto Sousa. A scripting language for

multi-level control of autonomous agents in a driving simulator. In In Driving

Simulation Conference, Paris, pages 339–351, 1999.

[21] Jacqueline Marie Jenkins. Modeling the interaction between passenger cars and

trucks. PhD thesis, Texas A&M University, 2004.

[22] Joseph Kearney, Peter Willemsen, Stephane Donikian, and Frederic Devillers.

Scenario languages for driving simulation. In Driving Simulation Conference,

DSC’99, pages 377–393, 1999.

[23] Victor L. Knoop, Serge P. Hoogendoorn, and Henk J. van Zuylen. Capacity Re-

duction at Incidents: Empirical Data Collected from a Helicopter. Transportation

Research Record, 2071:19–25, 2008.

72

[24] Gregoire S. Larue, Inhi Kim, Andry Rakotonirainy, Luis Ferreira, and Narelle L.

Haworth. Integrating driving and traffic simulators to study railway level crossing

safety interventions : a methodology. In 13th International Conference on Com-

puter System Design and Operation in the Railway and other Transit Systems,

pages 719–732. WIT Press, September 2012.

[25] Chong-U Lim, Robin Baumgarten, and Simon Colton. Evolving behaviour trees

for the commercial game defcon. In Proceedings of the 2010 international con-

ference on Applications of Evolutionary Computation - Volume Part I, EvoAp-

plicatons’10, pages 100–110, Berlin, Heidelberg, 2010. Springer-Verlag.

[26] A. Bryan Loyall and Joseph Bates. Real-time control of animated broad agents.

In In Proceedings of the Fifteenth Annual Conference of the Cognitive Science

Society, 1993.

[27] Marconi Madruga Filho, Helmut Prendinger, Todd Tilma, Martin Lindner,

Edgar Santos, and Arturo Nakasone. Practicing eco-safe driving at scale. In

Proceedings of the 2012 ACM annual conference extended abstracts on Human

Factors in Computing Systems Extended Abstracts, CHI EA ’12, pages 2147–

2152, New York, NY, USA, 2012. ACM.

[28] Pattie Maes. The agent network architecture (ana). SIGART Bull., 2(4):115–120,

July 1991.

[29] Pattie Maes. Modeling adaptive autonomous agents. Artificial Life, 1:135–162,

1994.

[30] Jonathan P. Masinick and Hualiang (Harry) Teng. An analysis on the impact

of rubbernecking on urban freeway traffic. Technical Report UVACTS-15-0-62,

Center for Transportation Studies,University of Virginia, 351 McCormick Road,

P.O. Box 400742, Charlottesville, VA 22904-4742. USA., August 2004.

73

[31] I. Millington and J. Funge. Artificial Intelligence for Games, Second Edition.

Morgan Kaufmann Publishers, 2009.

[32] M. Miska, H. Prendinger, A. Nakasone, and M. Kuwahara. Driving and traveller

behavior studies using 3d internet. In Intelligent Transportation Systems (ITSC),

2010 13th International IEEE Conference on, pages 1632 –1637, sept. 2010.

[33] Marc Miska. Microscopic Online Simulation for Real time Traffic Management.

PhD thesis, The Netherlands TRAIL Research School, 2007.

[34] Marc Miska, Kugamoorthy Gajananan, Edward Chung, and Helmut Prendinger.

A traffic simulation standard based on data marts. In Peter Tisato, Lindsay

Oxlad, and Michael Taylor, editors, 34th Australasian Transport Research Forum

2011, pages 1–11, Adelaide, S. Aust., September 2011. PATREC.

[35] Marc Miska, Edgar Santos, Edward Chung, and Helmut Prendinger. Opentraffic

- an open source platform for traffic simulation. In Peter Tisato, Lindsay Oxlad,

and Michael Taylor, editors, 34th Australasian Transport Research Forum 2011,

Adelaide, S. Aust., September 2011. PATREC.

[36] Y. Papelis O. Ahmad. A comprehensive microscopic autonomous driver model

for use in high- fidelity driving simulation environments. In In Proceedings of

81st Annual Meeting of the Transportation Research Board, Washington, USA,

2001.

[37] Johan Olstam, Stphane Espi, Selina Mardh, Jonas Jansson, and Jan Lundgren.

An algorithm for combining autonomous vehicles and controlled events in driving

simulator experiments. Transportation Research Part C: Emerging Technologies,

19(6):1185 – 1201, 2011.

74

[38] Johan Janson Olstam, Jan Lundgren, Mikael Adlers, and Pontus Matstoms. A

framework for simulation of surrounding vehicles in driving simulators. ACM

Trans. Model. Comput. Simul., 18(3):9:1–9:24, July 2008.

[39] Ken Perlin and Athomas Goldberg. Improv: a system for scripting interactive

actors in virtual worlds. In Proceedings of the 23rd annual conference on Com-

puter graphics and interactive techniques, SIGGRAPH ’96, pages 205–216, New

York, NY, USA, 1996. ACM.

[40] H. Prendinger, S. Descamps, and M. Ishizuka. Mpml: A markup language for

controlling the behavior of life-like characters. Journal of Visual Languages and

Computing, 15(2):183–203, 2004.

[41] H. Prendinger, S. Ullrich, A. Nakasone, and M. Ishizuka. Mpml3d: Scripting

agents for the 3d internet. Visualization and Computer Graphics, IEEE Trans-

actions on, 17(5):655 –668, may 2011.

[42] V. Punzo and B. Ciuffo. Integration of driving and traffic simulation: Issues and

first solutions. Trans. Intell. Transport. Sys., 12(2):354–363, June 2011.

[43] Karel Brookhuis Raymond Hoogendoorn, Serge P. Hoogendoorn and Winnie

Daamen. Mental workload, longitudinal driving behavior, and adequacy of car-

following models for incidents in other driving lane. Transportation Research

Record: Journal of the Transportation Research Board, No. 2188, Transportation

Research Board of the National Academies, Washington D.C., page 6473, 2010.

[44] J. Russell and R. Cohn. Cityengine. Book on Demand, 2012.

[45] T.J. Rosenthal R.W.Allen and G. Park. Scenarios produced by procedural meth-

ods for driving research, assessment and training applications. In In Driving

Simulation Conference, page Paper No. 621, 2003.

75

[46] Majid Sarvi, Masao Kuwahara, and Avishai Ceder. Freeway ramp merging phe-

nomena in congested traffic using simulation combined with a driving simulator.

Computer-Aided Civil and Infrastructure Engineering, 19(5):351–363, 2004.

[47] JJ Slob. State-of-the-art driving simulators, a literature survey. Eindhoven:

Technische Universiteit, 2008.

[48] P. Suresh and R.R. Mourant. A tile manager for deploying scenarios in virtual

driving environments. In In Driving Simulation Conference, North America,

pages 21–29, 2005.

[49] Unrealscript reference, August 2012.

[50] Unity3d, August 2011.

[51] Unrealengine, August 2012.

[52] W. van Winsum. Ssl/nsl specification release 1.2. Trc, University of Groningen,

November 1994.

[53] P. van Wolffelaar and W. van Winsum. Traffic modeling and driving simulation

- an integrated approach. In In Driving Simulation Conference, DSC’95, pages

235–244, 1995.

[54] Ying Wang, Wei Zhang, Su Wu, and Yang Guo. Simulators for driving safety

study a literature review. In Randall Shumaker, editor, Virtual Reality, vol-

ume 4563 of Lecture Notes in Computer Science, pages 584–593. Springer Berlin

Heidelberg, 2007.

[55] I. H. C. Wassink, E. M. A. G. van Dijk, J. Zwiers, A. Nijholt, J. Kuipers, and

A. O. Brugman. Bringing hollywood to the driving school: dynamic scenario gen-

eration in simulations and games. In Proceedings of the First international con-

76

ference on Intelligent Technologies for Interactive Entertainment, INTETAIN’05,

pages 288–292, Berlin, Heidelberg, 2005. Springer-Verlag.

[56] Ingo Wassink, Betsy van Dijk, Job Zwiers, Anton Nijholt, Jorrit Kuipers, and

Arnd Brugman. In the truman show: Generating dynamic scenarios in a driving

simulator. IEEE Intelligent Systems, 21(5):28–32, September 2006.

[57] Peter Willemsen. Behavior and Scenario Modeling for Real-time Virtual Envi-

ronments. PhD thesis, Department of Computer Science, University of Iowa,

2000.

[58] Steven Wright. Supporting intelligent traffic in the leeds driving simulator. PhD

thesis, School of Computing, University of Leeds, 2000.

[59] G. Watson Y. Papelis, O. Ahmad. Developing scenarios to determine effects of

driver performance: Techniques for authoring and lessons learned. In In Driving

Simulation Conference, North America, 2003.

[60] K. Yamada and J. K. Kuchar. Preliminary study of behavioral and safety effects

of driver dependence on a warning system in a driving simulator. Trans. Sys.

Man Cyber. Part A, 36(3):602–610, May 2006.

77

Appendix A

Scenario Markup Language
Documentation

SML is a XML-based scripting language to describe a scenario in a 3D virtual simu-

lation environment based on .NET platform

Note that the usage of the word scenario sometimes refers to both the static

structure of the virtual environment or scene (e.g. road network) and the dynamic

characteristics of a simulation (e.g. critical events) [16]. We use scenario (script) to

refer to entities or actors (or computer controlled agents) in the simulation, the behav-

ior of entities, and the orchestration or coordination of their behaviors (interactions)

to create a specific situation or event.

Although SML is not constrained to one single virtual world platform by design,

the current version only supports to create scenarios using the entities inhabiting in a

simulation environment based on .NET platform, e.g., Unity3D (http://unity3d.com/)

or Second Life (http://www.secondlife.com) or OpenSimulator (http://opensimulator.org).

With SML, it is easy to construct scenarios, involving different entities in a sim-

ulation environment.

In the main text of the thesis, we have utilized Scenario Markup Language in

the context of creating a traffic scenario, hence entities are vehicles or traffic lights.

However, Scenario Markup Language Framework itself is generic enough to handle

other contexts other than traffic.

78

Note: In this appendix, we provide a detail explanation of the SML Framework as

a software which can be used in different simulation contexts. Please note that, SML

Framework has been a work-in-progress software, early versions have been reported

in the main text of the thesis and there have many changes overtime, we provide here

the latest version of the specification and programming reference. As part of it, we

introduce SML Execution System, which refers to the reusable software originated

from SML Framework which is described in the main thesis.

A.1 Specification of Scenario Markup Language

A.1.1 SML

1 <SML >

2 ...

3 </SML >

Description: The SML-element contains encapsulates the whole scenario script.

It must be the root element of every SML script.

Attributes

- None

Legal child elements

- < Head >

- < Body >

A.1.2 Head

1 <Head >

2 ...

3 </Head >

Description: The Head-element contains a general description of the entities or

actors and users. This description includes a specification of the entities which are

present in a simulation program and their Property.

Attributes

79

- None

Legal child elements

- < Entities >

- < User >

A.1.3 Entities

1 <Entities >

2 ...

3 </Entities >

Description: The Entities-element contains a description for each entity present in

a simulation. This description includes a specification of the entities which are present

in a simulation program and their Property. The Entity-elements are optional to the

Entities-element, however typically at least one entity is present. Attributes

- None

Legal child elements

- < Entity >

A.1.4 Entity

1 <Entity id = "AI Car D" name="AI Car D" type=" vehicle">

2 <property name = "scenariorole" valueType = "string" value = "Lead_Car" />

3 <property name = "MaximumAcceleration" valueType = "float" value = "5m/s2"/>

4 </Entity >

Description: The Entity-elements build the core of every SML script. Everything

in a simulation that acts, reacts or ‘just is’, is represented by an entity. Entity also

is sometimes referred as actor.

Attributes

- id [required]: Since entities have to interact with each other they need an id to

be used to address them when assigning commands to entities. These names

are case-sensitive and have to be unique throughout the whole SMl script!

80

- name [required]: If ids of the entities are not proper noun, scenario author can

choose to name entities to be recognizable in the SML script.

- type [required]: The type of the entity. ”vehicle” is the current example, while

”‘vehicle”-entities represent vehicle (so-called) agents in simulation program.

Legal child elements

- < Property >

A.1.5 Property

1 <property name = "scenariorole" value = "Lead_Car"/>

Description: To configure Entities Property-elements are used. For example all

vehicle Entities need to know what their scenario role ”scenariorole” property as

shown in the example above.

Attributes

- name [required]: The name of the property to set. Every property may only be

set once!

- valueType [required]: This refers to the type of the property being set.

- value [required]: This refers to the value of the property being set.

Legal child elements

- None

A.1.6 User

1 <User userid ="User1">

2 ...

3 </user >

Description: Our target environment has to handle multiple users simultaneously.

We decided that there has to be at least one User as the focal point of a scenario;

that is, scenario is to be reproduced from the viewpoint of one specified user.

81

Attributes

- id [required]: Since users have to interact with each other they need an id to be

used to address them.

- name [required]: If ids of the users are not proper noun, scenario author can

choose to name users to be recognizable in the SML script.

Legal child elements

- < Property >

A.1.7 Body

1 <Body >

2 ...

3 </Body >

Description: The Body-element contains a general description of the dynamics of

a scenario. This description includes a specification of the entities’e behaviors, events,

and the special element called Director, which contains the script for orchestrating

entities.

Attributes

- None

Legal child elements

- < Scenario >

- < Event >

- < Behavior >

A.1.8 Scenario

1 <Scenario >

2 ...

3 </Scenario >

82

Description: The Scenario-element contains a general description of the dynamics

of a scenario, specifically the special element called Director, which contains the script

for orchestrating entities.

Attributes

- scenarioId [required] : Since multiple scenarios can be loaded at the same time,

and have to interact with each other they need an id to be used to address

them.

- scenarioName [required] : If ids of the scenarios are not proper noun, scenario

author can choose to name scenarios to be recognizable in the SML script.

- scenarioDescription [optional] : A small description for describing what the

scenario is about.

Legal child elements

- < Director >

A.1.9 Director

1<director >

2 <seq >

3 <task taskId =" Accelerate">

4 <param name=" actorId" valueType =" string" value ="AI Car A"/>

5 <param name=" acceletationMagnitude" valueType =" float" value ="2.5f"/>

6 </task >

7 <par >

8 <task taskId =" Accelerate">

9 <param name=" actorId" valueType =" string" value ="AI Car B"/>

10 <param name=" acceletationMagnitude" valueType ="float" value ="1.5f"/>

11 </task >

12 <task taskId =" ChangeStatus">

13 <param name=" actorId" valueType =" string" value =" TrafficLightA "/>

14 <param name=" targetStatus" valueType ="float" value ="Red"/>

15 </task >

16 </par >

17 </seq >

18</director >

Description: The Director-element contains a set of task organized using temporal

elements. A scenario director can orchestrate the behavior of entities by executing

corresponding tasks. This can be done by using the temporal elements of scenario

83

director, such as seq (sequential), par (parallel) or sel (selective). These temporal

elements enable SML to provide high-level synchronization of the behavior of entities

that result in a particular situation.

Attributes

- None

Legal child elements

- < seq >

- < sel >

- < par >

- < task >

A.1.10 Seq

1 <seq >

2 ...

3 </seq >

Description: The Sequential-element defines a sequence of activities that are per-

formed sequentially one after the other once the Sequential-activity is started. A

Sequential-activity finishes when the last of its child-activities has finished.

Attributes

- None

Legal child elements

- < seq >

- < sel >

- < par >

- < task >

84

A.1.11 Par

1 <par >

2 ...

3 </par >

Description: The Parallel-element defines a set of activities that are performed

concurrently and started all at the same time when the Parallel-activity is started.

A Parallel-activity finishes when all of its child-activities have finished

Attributes

- None

Legal child elements

- < seq >

- < sel >

- < par >

- < task >

A.1.12 Sel

1 <sel >

2 ...

3 </sel >

Description: The Selected-element defines a set of activities of which one is ran-

domly chosen and started when the Selected-activity is started. An activity from that

set is only chosen once if the Selected-activity is started repeatedly. After all activities

were chosen once, they all become available again. A Selected-activity finishes when

the chosen child-activity finishes.

Attributes

- None

Legal child elements

85

- < seq >

- < sel >

- < par >

- < task >

A.1.13 Task

1 <task >

2 ...

3 </task >

Description: The Task-element contains a command to control an entity’s behav-

ior. For example, as shown in Code listing, the task of the director tasks defined in

seq temporal element orchestrates the two car entities and a traffic lights’ behaviors

by issuing necessary commands, so that a traffic light turns red, while two AI Cars’

crossing the red light.

Attributes

- taskId [required] : taskId should be unique across the SML Execution System,

which is used to identify a task uniquely.

Legal child elements

- < param >

A.1.14 Event

1 <Event eventid =" UserFarFromAICar_Event0">

2 <Conditions >

3 <Condition Condexpres =" CameFarFromAICar:UserFarFromAICar_Event0">

4 <Variables >

5 <Variable name ="User" valueType =" string" value ="User1"/>

6 <Variable name ="AICar" valueType =" string" value=" ScriptedCarA "/>

7 <Variable name =" distance" valueType ="int" value ="50"/ >

8 </Variables >

9 </Condition >

10 </Conditions >

11 </Event >

Description: The Event-element contains a the event definition which specifies

the conditions that decide when the event is triggered. Simulation program should

86

retrieve the set of events as shown later the code listing and check for the conditional

expression and variables’ values and trigger the event.

Attributes

- eventid [required] : eventid should be unique across the SML Execution System,

which is used to identify an event uniquely.

Legal child elements

- < Conditions >

A.1.15 Conditions

1 <Conditions >

2 ...

3 </Conditions >

Description: The Conditions-element contains a set conditions to be satisfied so

that event can be triggered in the simulation program.

Attributes

- None

Legal child elements

- < Condition >

A.1.16 Condition

1 <Condition Condexpres =" CameFarFromAICar:UserFarFromAICar_Event0">

2 ...

3 </Condition >

Description: The Condition-element contains an expression, which is validated

along with variables the condition contain.

Attributes

- condexpres [required] : condexpres should be unique across the SML Execution

System, which is used to identify a condition uniquely.

Legal child elements

- < V ariables >

87

A.1.17 Variables

1 <Variables >

2 ...

3 </Variables >

Description: The Variables-element contains a list of variables that should be

validated to trigger the event.

Attributes

- None

Legal child elements

- < V ariable >

A.1.18 Variable

1 <Variable name ="User" valueType =" string" value =" User1"/>

2 ...

3 </Variable >

Description: The Variable-element contains a variable which should be validated

against the simulator conditions, to trigger the event.

Attributes

- name [required] : The name of the variable. The name has to be unique and

must not conflict with variable names used by entities!

- valueType [required] : The type of the variable value. Must be one of string,

float or boolean

- value [required] : The value the variable is initialized with.

Legal child elements

- None

88

A.1.19 Behavior

1 <behavior behaviorid =" ScriptedCarA_Behavior0" refActor ="AI Car A"/>

2 ...

3 </behavior >

Description: The Behavior-element contains a list of actions, referring to an entity,

that can be executed due to an triggered event.

Attributes

- behaviorid [required] : behaviorid should be unique across the SML Execution

System, which is used to identify a behavior uniquely.

- refActor [required] : The referred actor the behavior belongs to. This should

be one of the entities defined in the header part of the SML script.

Legal child elements

- < Action >

A.1.20 Action

1 <action actionid =" ScriptedCarA_Action0">

2 ...

3 </action >

Description: The Action-element defines an activity which is to be executed by

an entity when the Action-element is started. An action definition can have a set of

perceptions contained in one of the container ALL or ANY. An action definition can

have a set of commands defined in it. Therefore, SML Execution system executes a

behavioral entity’s an action by executing the commands specified for that action.

Since commands instruct entities to do certain things, Action are the activities which

actually do something visible. An Action or finishes when its command finishes.

Attributes

- actionid [required] : actionid should be unique across the SML Execution Sys-

tem, which is used to identify an action uniquely.

Legal child elements

89

- < ALL >

- < ANY >

- < Command >

A.1.21 ALL

1 <ALL >

2 ...

3 </ALL >

Description: The All-element is a perception-container which occurs after all of

the enclosed child perceptions have occurred. After the All-element occurred, all

enclosed perceptions are reset and the All-perception can occur again.

Attributes

- None

Legal child elements

- < Perception >

A.1.22 ANY

1 <ANY >

2 ...

3 </ANY >

Description: The Any-element is a perception-container which occurs when one

of the enclosed child perceptions occurs.

Attributes

- None

Legal child elements

- < Perception >

90

A.1.23 Perception

1 <perception activated ="false" id =" UserCloseToAICar_Event0_Perception0"

2 event =" UserCloseToAICar_Event0">

Description: The Perception-element defines a perception-command. Perceptions

are activated when the corresponding event occurs. Each perception is contingent

upon an event, which means that a perception is the minimum unit of event handling

from the script perspective. Hence the per- ception is activated when the correspond-

ing event is triggered during a simulation. This may lead to the activation of the

perception container the perception belongs to.

Attributes

- id : id should be unique across the SML Execution System, which is used to

identify a perception uniquely.

- activated : This must be false initially, will be reset by the SML Execution

System.

Legal child elements

- None

A.1.24 Command

1 <command commandid =" Accelerate">

2 ...

3 </command >

Description: The Command-element contains a command which is the minimum

unit of execution from a scenario and entity perspectives. It carries an instruction or

a functional call with required parameters for the component that controls the entity.

The parameters used with the commands are passed using call by value semantics

Attributes

- commandid [required] : commandid should be unique across the SML Execution

System, which is used to identify a command uniquely.

91

Legal child elements

- < Param >

A.1.25 Param

1 <param name ="actor" value =" ScriptedCarA" valueType =" SMLFramework.Core.Actor"/>

Description: The Param-element contains a parameter, that need to be passed a

long with a command or task.

Attributes

- name [required] : The name of the parameter. The name has to be unique and

must not conflict with parameter names used by entities!

- valueType [required] : The type of the parameter value. Must be one of string,

float or boolean or any other custom object type

- value [required] : The value the parameter is initialized with.

Legal child elements

- None

A.2 How to use SML Execution System in a sim-

ulation program (Programmers Reference)

SML Execution System consists of two main parts:

1. ScenarioControlSystem

2. IScenarioInterface

A.2.1 Example Usage of SML Execution System

In the SMLFrameworkTest.cs file provided in the SML package can be seen how the

SML Execution System functions are called from a C# program. The following is a

partial display of the file:

92

1 using System;

2 using System.Collections.Generic;

3 using System.Linq;

4 using System.Text;

5 using System.Timers;

6 using SMLFramework;

7 using C5;

8 using Action = SMLFramework.Core.Action;

9 using Event = SMLFramework.Core.Event;

10 using Task = SMLFramework.Core.Task;

11

12 namespace SMLFramework.Tests

13 {

14 public class SMLFrameworkTest

15 {

16 private const string Filename = @"InconspicuousCarfollowing.xml";

17

18 private const string Filepath = @"C:\ SMLExample\SMLFramework.Tests \";

19

20 private static ScenarioControlSystem _controlSystem;

21

22 private SMLFrameworkTest smlTest;

23

24 private bool triggered = false;

25

26 static void Main(string [] args)

27 {

28 smlTest = new SMLFrameworkTest ();

29

30 _controlSystem = ScenarioControlSystem.Instance ();

31

32 _controlSystem.ParseSmlScenarioScript(Filepath , Filename);

33

34 _controlSystem.InitializeScenariControlSystem ();

35

36 smlTest.InitializeActors ();

37

38 ...

39

40 _controlSystem.ExecuteScenariDirectorTasks ();

41 }

42

43

44 public void InitializeActors ()

45 {

46

47 var exampleActor1 = new ExampleActor ("AI Car A");

48

49 var exampleActor2 = new ExampleActor ("AI Car B");

50

51 var exampleActor3 = new ExampleActor (" TrafficLightA ");

52

53 actorIntefaces = new HashDictionary <string , IScenarioInterface >();

54

55 var smlActors = _controlSystem.RetriveActors ();

56

57 foreach (var actor in smlActors)

58 {

59 if (actor.Key == exampleActor1.ActorId)

60 {

61 actorIntefaces.Add(exampleActor1.ActorId , exampleActor1);

62 }

63

64 if (actor.Key == exampleActor2.ActorId)

65 {

66 actorIntefaces.Add(exampleActor2.ActorId , exampleActor2);

67 }

68

93

69 if (actor.Key == exampleActor3.ActorId)

70 {

71 actorIntefaces.Add(exampleActor3.ActorId , exampleActor3);

72 }

73

74 }

75

76 _controlSystem.SetScenarioInterface(actorIntefaces);

77 }

78

79 public void TestTriggeringEvents ()

80 {

81 if (! triggered)

82 {

83 foreach (var kvp in _controlSystem.RetriveEvents ())

84 {

85 if (kvp.Value.EventCond.Expression.Equals (" Event0 "))

86 {

87 var eventArg = new Event.EventArguments(kvp.Value);

89 kvp.Value.TriggerEvent(eventArg);

90 triggered = true;

91 }

92 }

93 }

94 }

95

96 }

97

98 public class ExampleActor : IScenarioInterface

99 {

100 public string ActorId { private set; get; }

101

102 public ExampleActor(string actorId)

103 {

104 ActorId = actorId;

105 }

106

107 public void ExecuteAction(Action action)

108 {

109 Console.WriteLine (" Executing action " + action.ActionId);

110 }

111

112 public void ExecuteTask(Task task)

113 {

114 Console.WriteLine (" Executing task " + task.TaskId);

115 }

116

117 }

118 }

A.2.2 ScenarioControlSystem

ScenarioControlSystem functions as the main entry point to the SML Execution

System.

Within ScenarioControlSystem, the SML instruction parser and executor are

implemented as a DLL. If a user wants to use this DLL in his/her own applica-

tion, there are some steps that must be performed. First of all, he/she should in-

94

clude an import for SMlFramework as shown in line 6 in above code listing : e.g.,

using SMLFramework;

Additionally, this DLL has a simple public interface consisting of the following

methods. The simulators that integrates to SML Execution System, can make use of

the following methods to interact with it.

1. Instance() : This method creates an ScenarioControlSystem object instance

and return a reference to the instance back to the simulation program. (See

line 30 in the above code listing.)

2. ParseSmlScenarioScript(string filepath, string filename) This method ac-

cepts two parameters : file path where a SML script is located, and the name of

the SML script, then it executes the parsing functionality of the SML system.

After the successful execution of this step, all the instructions specified in the

SML script would be loaded in the memory and are ready to be executed. (See

line 32 in the above code listing.)

3. InitializeScenarioControlSystem() : This method initialize the execution func-

tionality of the SML System. (See line 34 in the above code listing.)

4. StopScenarioControlSystem() : This method stops the execution of the SML

System as a whole.

5. RetriveActors() : The method return a dictionary of actors initialized from a

SML script : GuardedDictionary < string, Actor >. (See line 55 in the above

code listing.) Please note that, what scenario authors specify as entities will

be treated as actors with in the SML Execution System, so actors and entities

are referring to the same concept. The simulators that uses the SML Execution

System, should use this method to retrieve all the actors specified in the scenario

script.

95

6. SetScenarioInterface

(HashDictionary < string, IScenarioInterface > actorInterfaces) : Af-

ter retrieving the list of reference to actors from the SML Execution System,

a simulation program must hook them up with the actual actors or entities

or computer agents inhibiting inside the simulation program and let the SML

Execution System which actors in the scenario script are referring to which ac-

tual entities in side the simulation program so that SML Execution System can

control the entities as specified in the scenario script.

First, a simulation program must define actors as shown in the above code list-

ing (line 98 - 117)and each actor class must implement the IScenarioInterface.

Please see the detail in the section IScenarioInterface. Then, HashDictionary <

string, IScenarioInterface > actorInterfaces has to be constructed as

shown in InitializeActors() method in the above code listing (line 44 - 77)

and using SetScenarioInterface, simulation program must hook up the ac-

tors specified in the script, with the actual actors or entities in the simulation

program.

7. RetriveUsers() : The method return a dictionary of users initialized from a

SML script : GuardedDictionary < string, User >

8. RetriveEvents() : The method return a dictionary of events initialized from a

SML script : GuardedDictionary < string, Event > (See line 83 in the above

code listing.)

9. TriggerEvent : This method should be invoked by the simulation program,

when the conditional expression and the variables matches, so that SML Exe-

cution System can activate perception that may lead the execution of some of

the entities’ behavior. (See line 89 in the above code listing.)

10. ExecuteScenarioDirectorTasks() : A simulation program should invoke this

96

method so that SML Execution System can execute the tasks specified as part

of SML Director Element. SML Execution System would take care in which

order the task must be executed, as per the temporal elements specified in the

SML Director Element. However, the simulation program must decide, when to

invoke ExecuteScenarioDirectorTasks() method. For example, section ‘Inci-

dent Creation Functions’ in the main text explains a case where SML Director’s

task are executed.

A.2.3 IScenarioInterface

IScenarioInterface refers to the interface, which has to be implemented by the

actors or entities in the simulation so that SML Execution System can interact with

them according to an SML script definition. IScenarioInterface basically define the

following two methods that need to be implemented by the the respective entities.

When a simulation program define actors as shown in the above code listing (line

98 - 117) and each actor class must implement the IScenarioInterface. The following

two methods are the ways, SML Execution System can control the actors within the

simulation program.

1. ExecuteAction(Action action) This function must be implemented by the sim-

ulation program within the Actor class, which will be invoked by the SML

Execution System, when the behavior of the correspond entity defined in the

scenario script is executed.

How the execution of an action should take place is up to the simulation program

that defines the actor.

2. ExecuteTask(Task task) This function must be implemented by the simulation

program within the Actor class, which will be invoked by the SML Execution

System, when SML directors tasks defined in the scenario script is executed.

97

How the execution of a task should take place is up to the simulation program

that defines the corresponding actor.

98

Appendix B

Scenario Markup Language Script

Here we present the SML script that was used to create the rubbernecking scenario

for the experiment reported in this thesis.

B.1 SML Header Script

99

B.2 SML Body Script

100

Appendix C

Questionnaire

This is the questionnaire used in the experiment described in Chapter 5.

We are working on a project with the aim of investigating driver behavior in

various transport circumstances.

You have been driving the simulator in 15 minutes in a 3D virtual city. The

following questions will treat how similar driving in the simulator and driving a car

in the real world.

First there will be a couple of questions regarding your background information,

then questions related to the driving experience in the simulation environment (the

realism in the driving of the vehicle and the realism in other drivers behavior), finally

the questions related to the simulation environment.

C.1 Background Information

1. Respondent ID :

2. Gender : Male or Female

3. Date of Birth :

4. Occupation :

5. Car Usage (Hours driven per week, during last one year):

101

6. Year of license issued :

7. How much experience do you have with computers?

8. How much experience do you have in playing video games?

9. Do you have previous experience in a driving simulator?

C.2 Questions related to the simulation environ-

ment

1. Did you experience any traffic situation that felt strange or unrealistic during

your ride? In other words did any other driver behave strange or unrealistic at

any time?

2. If you answered yes in above question, try to describe the situation/situations

Situation : Which Road : Describe the situation: Do you think that this situa-

tion could appear in real life? Yes/No

3. If you answered no in question above. In your opinion could all situations during

your driving happen in real life?

4. How did you experience the traffic conditions? Was like the normal traffic

conditions that you might experience in real world?

5. There was an accident on the course? Did you recognize it?

6. If you have recognized the accident during your ride, please specify the location

you saw the accident? what you saw at accident location? what you experience

at the accident location?

102

Appendix D

Participant Information

D.1 Welcome to our Study!

We would kindly ask you to read this page carefully before we start the experiment:

In this study, we want to investigate the interaction (human factor) between mul-

tiple users (as drivers) in the driving simulation environment. As a 3D virtual envi-

ronment, we chose a small part of Tokyo city that mimic the real world to a certain

extent.

In order to measure the driver behavior changes in driving simulation environment,

we use the following devices:

1. Driving wheel and pedal set

2. Keyboard

3. Desktop computer & Monitor

4. Headphone

The devices are proved to have no effect on your health. Your data will be logged/-

stored anonymously. Please wear the headphone during the experiment and refrain

from talking.

103

D.2 Instructions

In the experiment, we will ask you to drive a virtual car, in a platoon of 3 cars,

using the driving wheel and pedal set on a selected road in the 3D virtual world

environment.

1. Introductory Task: Please practice driving in the virtual environment (alone)

for about 5 minutes, up to 50km/h.

2. Main Task: If you are a lead driver - Please drive safely with the speed up to

60km/h.

If you are a following driver - Please drive at a natural (small but safe) distance

from the lead driver you are following, maybe about the length of two cars. -

If you get disconnected, you can speed up to 60km/h to catch up with the lead

car

For all drivers, please drive the car as normal as possible:

1. all driver stay on one lane (i.e. no lane changing), which is the first lane on left

side, precisely, the 3rd from the left.

2. follow traffic rules and manners as in the real world

3. obey the speed limit as instructed above.

Please don’t

1. bump into other cars

2. race with other participants

3. exchange cars with other participants

4. drive on the wrong way or route not designated for the experiment (don’t leave

the main road = don’t turn left or right)

104

5. stop the car and wander around with your avatar

6. stop the car and idle for long

Afterwards the experiment is finished, we will ask you to fill out a questionnaire

about your experience with the driving in 3D Virtual World.

Thank you for participating in our study!

105

PARTICIPANT INFORMATION FOR QUT RESEARCH PROJECT
– Simulation & Questionnaire –

Multi-user driving simulation experiment

RESEARCH TEAM
Principal Researcher: Dr Marc Miska, Research Associate, QUT

Associate Researcher: Kugamoorthy Gajananan, PhD Student, National Institute of Informatics
 The Graduate University for Advanced Studies, Japan now visiting QUT

DESCRIPTION
This project is being undertaken as part of PhD study for Kugamoorthy Gajananan.

The purpose of this project is to investigate the interaction (human factor) between multiple users (as drivers), using a computer
based driving simulation environment.

You are invited to participate in this project because you already are a licensed driver of a motor vehicle and had previous
exposure to computer games, which will allow you to easily adapt to the simulation setup.

PARTICIPATION
Your participation in this project is entirely voluntary. If you do agree to participate, you can withdraw from the project at any time
without comment or penalty. Any identifiable information already obtained from you will be destroyed. Your decision to
participate, or not participate, will in no way impact upon your current or future relationship with QUT or with National Institute
of Informatics, The Graduate University for Advanced Studies, Japan.

You will be involved in a computer based driving simulation, during which you will drive a car in a virtual environment, using a
steering wheel and pedal set for acceleration and breaking. After the driving experiment, you will be asked to complete an
anonymous questionnaire with likert scale answers (i.e., realistic representation – unrealistic representation / slow - fast scale)
that will take approximately 15 minutes. Questions will include the driving experience.

1. Rate yourself as a driver in real life
2. Car usage frequency
3. How many years have you been driving

If you agree to participate you do not have to complete any question(s) that you are uncomfortable answering.

EXPECTED BENEFITS
It is expected that this project will not directly benefit you directly if you are not a transport related student/professional.
However, it may be of benefit in way that you may get to learn how we study driver behavior in 3D driving simulation environment
that may lead us to have a better understanding of the human factors that are involve in driving.

RISKS
There are no risks beyond normal day-to-day living associated with your participation in this project.

PRIVACY AND CONFIDENTIALITY
All comments and responses are anonymous and will be treated confidentially. The names of individual persons are not required
in any of the responses.

The project is funded by The Graduate University for Advanced Studies, Japan and they will not have access to the data obtained
during the project.

Please note that non-identifiable data collected in this project may be used as comparative data in future projects.

CONSENT TO PARTICIPATE
We would like to ask you to sign a written consent form (enclosed) to confirm your agreement to participate.

QUESTIONS / FURTHER INFORMATION ABOUT THE PROJECT
If have any questions or require any further information please contact one of the research team members below.

Marc Miska – Research Associate (Program Director) Kugamoorthy Gajananan – Visiting Researcher
Science and Engineering Faculty – Civil Engineering and The Built Environment – Civil Engineering

Phone 3138 2992 Phone 3138 1462
Email marc.miska@qut.edu.au Email k-gajananan@nii.ac.jp.

CONCERNS / COMPLAINTS REGARDING THE CONDUCT OF THE PROJECT
QUT is committed to research integrity and the ethical conduct of research projects. However, if you do have any concerns or
complaints about the ethical conduct of the project you may contact the QUT Research Ethics Unit on 3138 5123 or email
ethicscontact@qut.edu.au. The QUT Research Ethics Unit is not connected with the research project and can facilitate a resolution
to your concern in an impartial manner.

Thank you for helping with this research project. Please keep this sheet for your information.

CONSENT FORM FOR QUT RESEARCH PROJECT
– Simulation & Questionnaire –

Multi-user driving simulation experiment

RESEARCH TEAM CONTACTS
Marc Miska - Research Associate (Program Director) Kugamoorthy Gajananan – Visiting Researcher

Science and Engineering Faculty – Civil Engineering and The Built Environment – Civil Engineering
Phone 3138 2992 Phone 3138 1462

Email marc.miska@qut.edu.au

Email k-gajananan@nii.ac.jp.

STATEMENT OF CONSENT

By signing below, you are indicating that you:

 Have read and understood the information document regarding this project.

 Have had any questions answered to your satisfaction.

 Understand that if you have any additional questions you can contact the research team.

 Understand that you are free to withdraw at any time, without comment or penalty.

 Understand that you can contact the Research Ethics Unit on 3138 5123 or email ethicscontact@qut.edu.au if you have
concerns about the ethical conduct of the project.

 Understand that non-identifiable data collected in this project may be used as comparative data in future projects.

 Agree to participate in the project.

Name

Signature

Date

Please return this sheet to the investigator.

PARTICIPATE IN RESEARCH
Information for Prospective Participants

The following research activity has been reviewed via QUT arrangements for the conduct of research involving human participation.
If you choose to participate, you will be provided with more detailed participant information, including who you can contact if you have any concerns.

Multi-user driving simulation experiment

Research Team Contacts

Principal Researcher: Dr. Marc Miska, Research Associate, QUT

Associate Researcher: Kugamoorthy Gajananan, PhD Student, National Institute of Informatics, The Graduate University for
Advanced Studies, Japan now visiting QUT

What is the purpose of the research?

The purpose of this research is to investigate the interaction (human factor) between multiple users (as drivers) in the driving
simulation environment.

Are you looking for people like me?

The research team is looking for research students, staff members and any professionals who have a driver’s license, and
previous exposure to computer games, due to the nature of the simulation.

What will you ask me to do?

Your participation will involve driving a car in a virtual world using a gamepad. You will be asked to use a headphone and not to
talk during the experiment.

Are there any risks for me in taking part?

The research team does not believe there are any risks beyond normal day-to-day living associated with your participation in this
research.

It should be noted that if you do agree to participate, you can withdraw from participation at any time during the project without
comment or penalty.

Are there any benefits for me in taking part?

It is expected that this project will not benefit you directly if you are not transport related student/professional. However, it may
benefit in way that you may get to learn how we study driver behaviour in 3D driving simulation environment that may lead us
to have better understanding of the human factors that involve in driving.

Will I be compensated for my time?

There will be no compensation due to limited funds.

I am interested – what should I do next?

If you have any questions or would like to participate in this study, please contact the research team for details of the next step
– marc.miska@qut.edu.au, k-gajananan@nii.ac.jp.

You will be provided with further information to ensure that your decision and consent to participate is fully informed.

Thank You!

