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Chapter 1 

General Introduction
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Water is the most ubiquitous substance on earth and is vital for the activity of life, playing 

critical roles in the biological process and in the climate of the globe. Water has various anomalous 

physical properties,1 which arise from the nature of the hydrogen bond (HB).  For example, density 

of water is larger than that of ice, and becomes the maximum at 277K and decrease with decreasing 

temperature. Water has the very high melting (TM=273.15K) and boiling temperatures 

(TB=373.15K) in comparison with the isoelectronic species, such as hydrogen sulfide H2S 

(TM=187.65K and TB=212.45K). Thus, all three phases are present in the ambient condition. The 

solid phase, ice, exhibits more than ten kinds of crystal structures, depending on the temperature 

and pressure.2 In addition, recently a new ice phase, plastic ice, has been discovered by computer 

simulation,3 and unknown phases of ice might still exist.  

The anomalies of liquid water and ice arise from the intermediate strength and highly 

directional nature of HB. HB has the specific attraction character between electronegative atoms 

(O,F,N) and hydrogen atom, and its strength is in between that of van der Waals interaction and of 

covalent bond. A water molecule, having H-O-H angle 104.5°, can make the HBs with four 

surrounding water molecules and form the tetrahedral three-dimensional HB network, whose ideal 

tetrahedral angle is 109.5°. 

  The structure of liquid water was first observed by Bernal and Fowler in 19334 by  using X-

ray diffraction method. Based on their experimental data, they proposed that a water molecule is 

tetra-coordinated in liquid phase.4 In 1938 Morgan and Warren claimed that many HBs connecting 

neighboring molecules must be broken in order to interpret their radial distribution function data, if 

the firm tetrahedral structure is assumed.5 In 1951, Pople suggested that the majority of HBs are 

distorted rather than broken.6 This Pople’s model was extended to the random network model by 

Bernal.7 Since then, various models had been proposed.8

In 1971, the first molecular dynamics (MD) study of liquid water performed by  Rahmann and 

Stillinger gave the direct molecular level insight.9 They  showed that the liquid structure consists of 

a highly strained random HB network which bears little structural resemblance to known aqueous 

crystals. By the development of computer simulations, the cooperative motions and fluctuations in 

liquid water associated with the HB rearrangement dynamics were investigated.10-12

The HB structure of the ice (ice Ih) was first proposed by Pauling in 1935. The oxygen atoms 

are arranged on a hexagonal lattice. Water molecules are linked to one another by HBs, each 

molecule offering its hydrogen atoms to two other molecules and accepting HBs from other two. 

Thus, the strong direction dependence of HB requires water molecule in ice to occupy the 
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tetrahedral lattice position with a specific HB direction. 

How does liquid water find out this specific ice structure from infinite number of possible 

conformations without any  surface/interface? In 2002, M. Matsumoto et.al, have first performed the 

MD simulation of the freezing process and found that the crystallization proceeds in two steps: 

First, a metastable amorphous cluster appears, then it transforms into crystalline structure.13 The 

subsequent computational studies for the spontaneous crystallization of methane hydrate also 

showed the similar mechanism.14,15 

Despite the fact that the computer simulations have revealed the homogeneous freezing 

process of ice at molecular level, the opposite process, homogeneous melting of ice, remains poorly 

understood. The thermally  induced homogeneous melting of solids is fairly well understood, and 

involves the formation and growth of melting nuclei.16-20 But in the case of water, resilient HBs 

render ice melting more complex. We know that the first defects appearing during homogeneous ice 

melting are pairs of five- and seven-membered rings, which appear and disappear repeatedly and 

randomly in space and time in the crystalline ice structure.21-23 However, the accumulation of these 

defects to form an aggregate is nearly additive in energy, and results in a steep free energy increase 

that suppresses further growth. In Chapter 2, I report that molecular dynamics simulations of 

homogeneous ice melting identify as a crucial first step  not  the formation but rather the spatial 

separation of a defect pair. I find that once it is separated, the defect pair, either an interstitial (I) and 

a vacancy (V) defect pair (a Frenkel pair), or an L and a D defect pair (a Bjerrum pair),24 is 

entropically stabilized, or ‘entangled’. In this state, the defects with threefold HB coordination 

persist and grow, and thereby prepare the system for subsequent rapid melting.

Besides its crucial roles in pure water or ice, the HB structure and dynamics around surfaces 

of amphiphile molecules are the keys to understand processes involving hydrophobic/hydrophilic 

interactions in very  different contexts, e.g., aqueous solution of alcohols, molecular self-assembling, 

protein folding, ligand/protein docking, as well as nanoscale water confinement and surface 

wetting.25-27 When the amphiphile molecules are mixed with water, the hydrophilic region of these 

molecules makes the stable interaction with water while the hydrophobic region tends to adhere to 

each other to minimize their exposure to water. The smallest  amphiphile molecule is methanol, 

which contains both hydrophilic group  (OH) and hydrophobic group (CH3). It is well known that 

water mixes with methanol at any mole fraction but the entropy increase of the water-methanol 

mixture is far less than that expected for an ideal solution of randomly mixed molecules.28 This 

feature of the mixing entropy had been explained by, for example, using clathrate-like structure 
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models.28 Recently a lot of experimental29 and theoretical studies30 have been performed on this 

system and showed that water and methanol does mix but incompletely  at the molecular level. It has 

not been well explored, however, how the microscopic structure of methanol-water mixture changes 

against mole fraction. In Chapter 3, I present the results on the local structure of methanol-water 

binary  solution at different concentrations investigated by the O and C K-edge X-ray Absorption 

Spectroscopy  (XAS) and the MD simulation. I have found that methanol-water mixture exhibits 

three different kinds of the local structures against the methanol molar fraction, X; the slops of the 

XAS C K-edge spectral intensity against molar fraction changes at X=0.3 and X=0.7.  It is found 

that the HB network structure among water molecules becomes non-percolated above X=0.3, and 

the HB network among water molecules and alcohol molecules form cluster segments and the HB 

among these cluster segments are broken above X=0.7.  On the other hand the pre-edge feature in 

the O K-edge XAS is found to show almost linear dependence on the concentration. 

 In addition to these studies on water and aqueous solutions, a new approach for estimating 

the binding free energies of ligand/protein docking is investigated. Calculating the binding affinities 

using atomistic simulations can provide detailed molecular level insight into molecular recognition 

mechanism, contributions of water or HBs network in biomolecule system, and help to inform 

fields such as structure-based drug design31,32 and self-assembly.33,34 There are a lot  of approaches 

to estimate the binding affinity, such as docking and scoring approach, thermodynamic integration, 

free energy perturbation and many  other methods. Molecular Mechanics/Poisson Boltzmann 

Surface Area (MM-PBSA), which relies on MD simulation of only  the free and bound states, is 

seen as one of the most applicative approaches to estimate the free energy of small molecules.35-37 

However, for protein size systems, it hardly  harvests adequate conformations in current computer 

power because the conformational space for sampling increases exponentially with the system size 

and in addition the trajectory is easily trapped in local minima of the potential. The superposition 

approach provides an alternative formulation for global thermodynamics within the energy 

landscape framework, which harvests the local energy minima and use the harmonic approximation 

around each minimum.38 This approach is faster than the MM-PBSA and has been successfully 

applied to various small host-guest systems. However, for macromolecules, it  has the same 

problems as the MM-PBSA approach. In Chapter 4, I present a conformational factorization method 

to improve the sampling efficiency  based on the superposition approach.  In this method, the 

number of minima needed to be sampled is greatly reduced by  fixing local configurations which are 

sufficiently distant from the binding site. Furthermore, the basin-hopping parallel tempering39 and 

the local rigid body  framework40 are also employed in this method to sample potential energy 
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minima. I benchmark this approach for human aldose reductase (PDB code 2INE). When varying 

the size of the rigid region, the free energy difference converges for factorization of groups at a 

distance of 14 Å from the binding site, which corresponds to 80% of the protein being locally 

rigidified.

7



References

[1] Eisenberg, D., Kauzmann, W., The Structure and Properties of Water, Oxford (2005)

[2] Petrenko, V. F., Whitworth, R. W., Physics of Ice, Clarendon Press (1999)

[3] Takii, Y., Koga, K., Tanaka, H., J. Chem. Phys., 128, 204501 (2008)

[4] Bernal, J. D., Fowler, R. H. A, J. Chem. Phys., 1, 515-548 (1933)

[5] Morgan, J., Warren, B. E., J. Chem. Phys., 6, 666-673 (1938)

[6] Pople, J. A., Proc. Roy. Soc. A, 205, 163-178 (1951)

[7] Bernal, J. D., Proc. Roy. Soc. A, 280, 299-322 (1964)

[8] Frank, H. S., Wen, W. Y., Discuss. Faraday Soc., 24, 133-140 (1957)

[9] Rahman, A., J. Chem. Phys., 55, 3336 (1971)

[10] Stillinger, F. H., Weber, T. A., Phys. Rev. A, 25, 978-989 (1982)

[11] Tanaka, H., Ohmine, I., J. Chem. Phys., 91, 6318-6327 (1989)

[12] Ohmine, I., Tanaka, H., J. Chem. Phys., 93, 8138-8147 (1990)

[13] Matsumoto, M., Saito, S., Ohmine, I., Nature, 416, 409-413 (2002)

[14] Jacobson, L. C., Hujo, W., Molinero, V., J. Am. Chem. Soc., 132, 11806-11811 (2010)

[15] Walsh, M. R. et al., Science, 326, 1095-1098 (2009)

[16] Iglev, H. et al.. Nature, 439, 183–186 (2006)

[17] Fecht, H. J., Nature, 356, 133–135 (1992)

[18] Cahn, R. W., Nature, 413, 582–583 (2001)

[19] Forsblom, M., Grimvall, G., Nature Mater., 4, 388–390 (2005)

[20] Jin, Z. et al., Phys. Rev. Lett., 87, 055703 (2001)

[21] Tanaka, H., Mohanty, J., J. Am. Chem. Soc., 124, 8085–8089 (2002)

[22] Grishina, N., Buch, V., J. Chem. Phys., 120, 5217–5225 (2004)

[23] Donadio, D., Raiteri, P., Parrinello, M., J. Phys. Chem. B, 109, 5421–5424 (2005)

[24] Bjerrum, N., Science, 115, 385–390 (1952)

[25] Safran, S. A., Statistical Thermodynamics of Surfaces, Interfaces, and Membranes, Westview 

Press (2003)

[26] Tanford, C., Science, 200, 1012-1018 (1978)

[27] Chandler, D., Nature, 437, 640-647 (2005)

[28] Frank, H. S., Evans, M. W., J. Chem. Phys., 13, 507-532 (1945)

[29] Dixit, S. et al., Nature, 416, 829-832 (2002)

[30] da Silva, J. A. B. et al., Phys. Chem. Chem. Phys., 13, 6452-6461 (2011)

[31] Jorgensen, W. L., Science, 303, 1813-1818 (2004)

8



[32] Michel, J., Foloppe, N., Essex, J. W., Mol. Inf., 29, 570-578 (2010)

[33] Johnson, R. R. et al., Nano Lett., 9, 537-541 (2009)

[34] Ercolani, G., J. Am. Chem. Soc., 125, 16097-16103 (2003)

[35] Brown, S. P., Muchmore, S. W., J. Chem Inf. Model., 46, 999-1005 (2006)

[36] Gouda, H. et al., Biopolymers, 68, 16-34 (2003)

[37] Srinivasan, J. et al., J. Am. Chem. Soc., 120, 9401-9409 (1998)

[38] Wales, D. Energy Landscapes,Cambridge University Press (2003)

[39] Strodel, B. et al., J. Am. Chem. Soc., 132, 13300-13312 (2010)

[40] Kusumaatmaja, H. et al., J. Chem. Theory Comput., 8, 5159-5165 (2012).

9



10



Chapter 2 

Defect pair separation as the controlling step in homogeneous ice 
melting

K. Mochizuki, M. Matsumoto and I. Ohmine

Nature, 498, 350-354 (2013)
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2.1  Introduction

Upon heating, ice melts to water. This familiar phase transition is usually initiated at the 

surface of impurities at the melting point. Such a process is called heterogeneous melting. On the 

other hand, if the surface melting is suppressed by some means or ice is heated from inside, for 

example, by laser irradiation, ice spontaneously melts by thermal fluctuation with considerable 

superheating, which is called homogeneous melting.1  How does superheated ice start melting under 

such an ideal condition? It sounds a trivial question, but is not quite simple in reality. Study on 

crystal melting give us important and fundamental information on the transition to the disordered 

state.

Considerable experimental effort has been invested to study the bulk melting.2-4 It is found 

that many  substances can be superheated beyond their melting points.2 For ice, Laubereau et al 

observed its bulk melting by laser-induced temperature jump and found that the maximum 

superheating is 330±10K to persist over the monitored time interval of 1.3 ns,1 although, at the limit 

of superheating, the ultrafast melting process takes place.3 Even at  present, it is not possible to 

directly  observe the very  molecular process in initial stage of the melting at moderately superheated 

temperature, experimentally. Because the initial melting embryo appears randomly after a long 

induction time and then grows too fast to be observed by any experimental mean.

There have been intensive theoretical investigations on the melting mechanism of solids. 

Various theoretical criteria for melting have been employed: for examples, Lindemann criterion5 

and Born criterion.6 Lindemann proposed that melting is caused when the thermal displacement of 

the atoms exceeds a certain fraction of the nearest neighbor distance. Born proposed that a “rigidity 

catastrophe” with a vanishing elastic shear modulus occurs in the melting. By using molecular 

dynamics simulation, Jin et  al. examined these criteria and found that  Lindemann and Born criteria 

response simultaneously when both are applied to the bulk melting of LJ molecules at the limit of 

superheating.7 Moreover, they argued that thermally destabilized particles form liquid embryos and 

the coalescence of such embryos sets off the homogeneous melting. Forsblom found that the 

aggregation of point defects, interstitials and vacancies, initiates melting in aluminum.8,9 Although 

there are the previous theories which have argued for melting mechanisms governed by dislocations 

(defects),10,11 Forsblom first claimed that very small number of defect, which is an aggregation of 

6-7 interstitial and 3-4 vacancies, leads the system to melt.

   Many studies have been also carried out for ice melting. Buch revealed that specific kinds of 

defects, one is called 5+7 defect consisting of 5- and 7-member rings, and another is L+D defect, 
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and their complex appear spontaneously by thermal fluctuation, and predicted that a 5+7 defect is 

likely to serve as a nucleation center for melting.12 Parrinello argued that the aggregation of 5+7 

defects is the general disordering processes in tetrahedral network-forming materials, that  are water 

and silicon.13

 Does the simple aggregation of the initial defects, such as 5+7 and L+D defect, actually lead 

to melting? Once the defect is transformed from the quite stable tetrahedral structure of ice, the 

system contains the large distortion and the potential energy increases by  20-35 kJ mol-1. However, 

the system gains less entropic stabilization when the defect is formed, because the strong direction 

dependence of HB does not permit the large variety of conformations. Thus, the simple aggregation 

of the initial defects likely forms the sharp free energy well and the system hardly escapes from the 

global minimum, that is ice. Thus, while the initial defects in ice are well defined, the embryo 

formation of melting nucleus transformed from these initial defects and the growth of the embryo 

are poorly understood.

In this chapter, I investigate the homogeneous melting of ice Ih at superheated temperature by 

using molecular dynamics simulation. Whole process between perfect ice and critical nucleus is 

studied by various theoretical analyses in molecular level. Especially, I focus on the following 

questions with dynamical aspect; What and why  is the trigger to start melting in the perfect 

crystals? How does the embryo grow by  only thermal fluctuation? When dose liquid appear and 

what role dose the liquid play? What is responsible for the temperature difference ?
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2.2  Simulation details

Molecular dynamics trajectory calculations were performed on a system containing 896 water 

molecules in an almost cubic cell (edge lengths are 3.142, 3.110 and 2.932 nm) with periodic 

boundary conditions. I use the TIP4P water model,14 which is one of the most successful models in 

terms of reproducing the thermodynamic properties of water.15 Intermolecular interaction is 

smoothly  truncated from 1.0530 nm to 1.1638 nm. A preparatory calculation of the proton-

disordered ice Ih structure evolving for 1 ns at  250 K is followed by step-by-step increase of the 

temperature; a pre-melting equilibration run is performed for 1 ns at 270 K after a 1 ns run at 260 K, 

then the melting process is observed for several nanoseconds at  275 K. More than 10 µs of 

trajectories in total are used for statistical analyses. Even though 275 K is higher than the melting 

temperature Tm = 232 K16 predicted by the TIP4P model, 275 K is found to be about the lowest 

temperature at which the system melts.17 At  a higher temperature, for example 300 K, the crystal 

collapses as soon as it  is heated up, while at 275 K the system shows an induction time of a few 

nanoseconds before melting starts.

Hundreds of trajectories are started with different initial proton order configurations and 

different initial velocities applied to water molecular motions in ice. Temperature is controlled by 

the Nosé-Hoover thermostat.18 The density, instead of the pressure, of the system is kept constant in 

this work. The density is set to 0.935 g cm-3, which is the density of ice in this model at the melting 

point under atmospheric pressure. I mainly focus on the molecular mechanism of the initial stage of 

melting, when the volume of the system has not yet changed substantially.

In order to find energy  barriers required for the structural changes of the HB network, reaction 

coordinate analyses19 are performed on inherent structures of the system. The inherent structures are 

obtained by applying the conjugate gradient method20 to the instantaneous structures visited by  the 

trajectories.
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2.3  Result and Discussion

Ice melting trajectory calculations were performed by modelling the superheating of 

crystalline ice Ih21 and following the melting process. Fig.1a plots the potential energy per molecule 

along a typical trajectory. Fig.1b shows the corresponding change in the total number of ‘off-

lattice’ water molecules (n), and in the size of the largest cluster of such molecules (nLC) that grows 

into the melting nucleus. (For snapshots of the corresponding HB structures, see Appendix Fig.A1.) 

I define water molecules as ‘off-lattice’ if they  are more than 0.1 nm away from the nearest  lattice 

point of the ice structure (Appendix Fig.A2), and consider off-lattice molecules within a distance of 

0.6 nm as adjacent to each other and forming a cluster, and thereby determine nLC.

In the quiescent period (<2,150 ps, Fig.1), I see in the ice HB network structural defects of 

five- and seven-membered rings (’5+7 defect’) and/or pairs of L and D defects (‘L+D complex’) 

randomly scattered in space.12,13,22 (In the ordered ice structure, there is one proton between two 

oxygen atoms; in the L and D defects, there are respectively no protons and two protons between 

two oxygen atoms.) Although the appearance of these 5+7 defects and/or L+D complexes is the first 

step in ice melting, their simple accumulation will not result in melting: because they retain fourfold 

HB coordination, individual water molecules in the 5+7 defects are strongly  restricted in their 

motion, and entropy will therefore not increase rapidly with the energy increase. Hence, the free 

energy will rise sharply with an increase in the number of these defects. In the trajectories involving 

only 5+7 defects and/or L+D complexes, I indeed found that n hardly exceeds 15, and that the 

system repeatedly exhibits intermittent creation and annihilation of small-sized melting clusters.

In trajectories resulting in melting, the defect growing to form the melting nucleus is either an 

I defect spatially separated from its accompanying V defect, or a D defect spatially separated from 

its accompanying L defect (see Appendix Fig.A3 for defect structures). In these separated 

structures, the I defect  encompasses an additional lattice water molecule, while the D defect has two 

hydrogen atoms between two oxygen atoms and thus breaks the Bernal-Fowler ice rule.23 Separated 

defects form occasionally during the recrystallization that occurs after thermal fluctuations have 

created several 5+7 defects and/or L+D complexes. Although defects usually  appear and disappear 

rapidly, recrystallization occasionally fails to revert  back to ice obeying the Bernal-Fowler rule and 

instead yields separated I and V (or D and L) defects while the rest of the region recovers the 

original crystalline structure. Clusters of 5+7 defects (or L+D complexes) with nLC > 5 accumulate 

in our simulations every 275ps on average, with 14% forming a separated defect pair and the rest 

recrystallizing. Once a separated defect pair is created (for example, at 2,150 ps in Fig.1), it 
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undergoes facile dislocation on the lattice (see below), and the distance between I and V (or D and 

L) defects increases rapidly. Such a separated pair is hard to annihilate because its recombination 

would require the right  sequence of many HB alternations, and I thus refer to it as entangled. A 

typical separated I–V defect pair is shown Fig.2a.

The small melting cluster containing an I defect just after separation from its V defect often 

exhibits rapid motion in the lattice, which for the trajectory shown in Fig.1 lasts from 2,150 to 2,730 

ps (see Appendix Fig.A4). After this induction period of about 600 ps, the system takes very little 

time to reach the liquid state (about 0.3 ns in Fig.1). The average time from initial I–V separation to 

total melting is about 1 ns, with a Poisson-type time distribution peaking around t = 0.5 ns. The fast 

formation of a critical nucleus and subsequent melting is a direct result of separated I (or D) defects 

enabling facile HB alternations in water ice (see also below).

To quantify the degree of disorder of the HB network of the melting nucleus, I define the 

topological ‘edit’ distance dT as the minimum number of all HB additions and deletions (that is, 

edits) needed to recover from a given disordered HB structure to the network topology  of the closest 

proton-disordered ice structure24 (Appendix section 2.4.2.1 gives the detailed procedure for 

estimating dT .) Formation of a 5+7 defect, for example, introduces two off-lattice molecules and 

increases dT by 4 (sometimes 6) because it  requires the breaking and also the creation of 2 HBs to 

recover the original ice structure. When 5+7 defect pairs accumulate, dT increases by 2n and I can 

then define the excess dT (denoted as dTex) as dT minus 2n. dTex is a measure of the difficulty of 

resolving HB disorder, and hence of the degree of HB network entanglement.

Fig.2b shows the time evolution of dTex for the melting trajectory in Fig.1. dTex stays small 

when melting clusters consisting only of 5+7 defects and/or L+D complexes appear intermittently 

in the quiescent period, and increases suddenly at 2,150 ps when a separated I–V pair is created. 

The melting nucleus containing the I defect then changes its position and size for about 600 ps, with 

dTex fluctuating around larger values. The nucleus finally  starts growing rapidly  at 2,730 ps (Fig.1), 

and dTex increases again. In this growing process, an I defect often couples with its surrounding 5+7 

defects to rapidly convert ice HB network structures into liquid structures. The plot of dTex against 

nLC in Fig.2c shows that the melting trajectory is initially characterized by dTex < 10 as nLC 

fluctuates between 0 and 5 (n fluctuates between 0 and 15), and that dTex then increases and 

fluctuates more strongly  after a separated I–V pair is created. With the increase of dTex, the defect 

pair becomes harder to remove, because the larger number of HBs rearrangement is required to 

recover it. The benefit of a quantitative measure of network disorder is also illustrated by the HB 
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network structures arbitrarily  selected from the trajectory of Fig.1 and shown in Fig.2d and e: 

although the structure in Fig.2d may look more distorted than in Fig.2e, the latter HB network has 

the larger dTex  value and is thus characterized by larger network disorder.

I calculate the free energy of the system from the melting trajectories, and plot it  against nLC 

and dTex  in Fig.3a. (The procedure used to estimate the free energy  is described in section 2.4.2.2). 

The contours are such that they enforce a strong direction dependence on the minimum free-energy 

path to melting: dTex first  increases owing to the formation of a separated pair defect, and only then 

does nLC, the size of the largest cluster that goes on to form the melting nucleus, increase. The solid-

state free-energy minimum is found at nLC = 4, which is about the average size of the melting 

cluster in the quiescent period. The critical nucleus, that  is, the saddle point between solid and 

liquid, is located around nLC = 50 and is about 18 kJ mol-1 higher in energy  than the solid state. 

Beyond the critical nucleus size, the free energy decreases monotonically to the liquid state. The 

size of the critical nucleus decreases with increasing temperature, with our calculations predicting 

that it is around nLC = 33 at 280 K.

This contour map can be projected on nLC to obtain a one-dimensional free-energy  surface. 

The resultant free-energy curve FW (grey line in Fig.3b) is then decomposed into the free energy of 

the ‘un-separated stage’ (FU) and that of the ‘separated stage’ (FS), with FW = -kBT ln[exp(-βFU) + 

exp(-βFS)], where kB is Boltzmann’s constant, T absolute temperature and β = 1/kBT. FU is 

calculated by  projecting the ‘un-separated’ part of the contour in Fig.3a with dTex  ≤ 10, and FS by 

projecting the other part of the contour. Fig.3b shows that FU increases monotonically  and sharply 

with nLC. In contrast, the initial slope of FS is less than half that of FU, showing the facile growth of 

the melting nucleus after defect separation. FS intersects with FU at around nLC = 6.

I next  performed separate molecular dynamics simulations for a system with an extra water 

molecule added to ice. The I defect of this so called ‘doped system’ cannot be annihilated because 

there is no V-defect counterpart, so it  mimics a long-lived I defect. Fig.3c shows that the free energy 

of the doped system (FD) is almost identical to FS, with this strong resemblance between the two 

free energies illustrating the key role of separated I defect formation in melting.

The functional form of free energy in classical nucleation theory25 is given by  f(nLC) = 

a*nLC2/3 - b*nLC + c, where nLC and nLC2/3 correspond to the volume and the surface area of the 

melting nucleus, respectively. Fig.3d illustrates that FW can be fitted well with a function f(nLC) 

(green line), indicating that ice melting can be described within the classical nucleation theory 

framework when looking at  this stochastic part of the melting process. However, homogeneous ice 
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melting advances under normal super-heated conditions only  when a separated I–V (or separated L–

D) pair is involved, and this early molecular melting process is much more intricate and elaborate 

than the simple stochastic process (accumulation of 5+7 defects) considered by classical nucleation 

theory. Although also stochastic in nature, it  requires at least a two-dimensional description of the 

free energy, as in Fig.3a. But once a defect pair has been separated and entanglement created, 

melting is seen to proceed in a near-classical stochastic manner and further destroys the HB network 

of the crystal.

Fig.4 plots the total potential energy  changes26 along a typical melting trajectory as either a 

separated I defect or un-separated defect clusters grow, along with the potential energy  changes of 

individual water molecules involved in defect growth. Energy  barriers15 are particularly low when 

an I defect is involved in separated cluster growth, as its dangling bonds change the HB 

coordination with other water molecules in the lattice to reduce its own energy while destabilizing 

other water molecules. The total potential energy of the system thus slowly increases with the 

increase of nLC. The average energy needed to create an additional defect, ΔU(nLC) = U(nLC +1) – 

U(nLC), is only about 4–5 kJ mol-1 per off-lattice molecule for nLC = 5 to 20. For comparison, the 

experimentally obtained value for liquid water (that  is, nLC =∞) at 0 ℃ is 6 kJ mol-1, calculated 

from the latent heat. But  in the absence of separated I (or D) defects, the energies of all individual 

molecules directly  involved in defect formation and growth increase significantly with the breaking 

of their HBs to form strongly hindered four HB coordinations. The total energy  steadily increases 

with nLC, and ΔU(nLC) ranges from 9 to 13 kJ mol-1 per off-lattice molecule for nLC = 5 to 10. This 

value is much larger than that in the presence of the separated I defect.

The average entropy term TΔS(nLC) for creating one additional defect in the lattice is about 4 

kJ mol-1 for nLC = 5 to 10, which is the difference between the free energy and the average potential 

energy, and then gradually increases with further growth of the liquid fragments27 (Appendix 

Fig.A6), whereas ΔU(nLC) remains nearly constant at about 5 kJ mol-1 for nLC > 5. This results in the 

difference between ΔU and TΔS gradually decreasing, and in TΔS surpassing ΔU at  the critical 

nucleus size, so the free-energy  surface has a gentle and convex upward slope up  to the critical 

nucleus size (Fig.3b). This feature of the potential energy surface and the fact that it is smooth with 

small energy  barriers ensure that  melting proceeds rapidly  once separated I defects have formed and 

the system has gone through the subsequent short induction period.

I note that although I have shown that homogeneous melting under normal super-heating 

conditions only  proceeds when separated I–V (or separated D–L) defect pairs are created, very high 
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temperatures will simply  induce total collapse of the ice network.28 But separated defect pairs may 

possibly also play a role during the very late stages of water freezing,29-32 as separated I–V defects 

can induce HB reorientations that stabilize the system as a more proton-ordered ice,22 after an 

overall crystalline structure has been attained.
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Figure 1  Potential energy per molecule and number of off-lattice molecules in a 
melting trajectory. (a) Potential energy  per molecule of the inherent  structures of a 
typical melting trajectory. At 0 ps, a temperature jump from 270 K to 275 K is imposed. 
(b) Main panel, total number n of off-lattice water molecules (black line) and size nLC of 
the largest cluster (blue line) for the trajectory of a. Note that the melting point of the 
water model (TIP4P) is Tm= 232 K, and 275 K is a superheated state. The potential 
energy fluctuates during the long quiescent period owing to intermittent creation and 
annihilation of small melting clusters. This lasts until 2,150 ps, when relatively large 
energy fluctuations appear with the creation of a separated I–V pair. Rapid growth of the 
melting cluster, and thus rapid energy rise, starts only at 2,730 ps. Inset, data plotted 
using n up to 800, that is, almost complete melting.
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Figure 2  Snapshots of HB structures and the time evolution of excess edit distance, 
dTex. (a) Typical example of a separated I–V defect pair in ice (middle panel). The I 
defect and the four molecules surrounding the V defect (located at  the centre of the 
dotted circle) are indicated by bright colors and shown magnified in the left  and right 
panels, respectively. The ‘editing’ path to recover a crystalline ice structure (see main 
text) is indicated by yellow arrows. For this example, with only a pair of I–V defects, 
dTex is 58. (b) Evolution of dTex, calculated every  1 ps, for the trajectory of Fig.1. The 
quiescent period containing 5+7 defects and/or L+D complexes, the formation of the 
separated I–V defect and the subsequent induction period, and the final period where the 
melting cluster reaches the size of the critical nucleus and grows rapidly, are colored 
blue, green and red, respectively. These structurally distinct periods are further 
emphasized in c, which shows dTex against the largest cluster size nLC (calculated every 
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10 ps). Separation of the defect pair is signalled by the rapid increase in dTex, while nLC 
remains small throughout the subsequent induction period lasting from t = 2,150 to 
2,730 ps (green lines). In both (b) and (c), dark green shading for t  = 2,210–2,730 ps 
indicates when separated defects rapidly dislocate in ice. The thick grey contour lines in 
the background are the free energy contours shown in Fig.3a. d, e, Snapshots of HB 
structures from the same melting trajectory, taken at 997 ps and 2,500 ps (indicated by 
black arrows in (c)). Red lines indicate HBs to off-lattice molecules. The yellow arrows 
indicate the edit paths that recover a crystalline structure through the formation, cutting 
and directional inversion of HBs (see Appendix Fig.A5). The structure in (d) contains 
mostly 5+7 defects, and that in (e) a separated I–V defect pair.
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Figure 3  Free energies. (a) The contour map of free energy as a function of largest 
cluster size (nLC) and excess edit distance (dTex) at 275 K. The origin (nLC, dTex) = (0,0) 
represents ice with no defects. The critical nucleus at (nLC, dTex) = (49, 78) is indicated 
by a black dot. (b) The contour map in a is projected onto nLC to give the ‘whole’ 
process curve (FW, grey  line). The whole process is divided into the unseparated stage 
(FU: blue line) and the separated stage (FS: red line), see main text. (c) Free energy of 
the doped system (FD: orange dashed line), which mimics ice containing a permanent I 
defect (see main text). Note that FD is almost identical to FS (the free energy of the 
separated stage). (d) The empirical function f(n) = a*n2/3 - b*n + c (green dashed line) of 
classical nucleation theory with the parameters a=5.93, b=1.13 and c=-9.71, optimized 
by approximating FW. The classical free energy curve overlaps well with FW.
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Figure 4  Potential energy  surfaces during defect growth. Illustration of how potential 
energy changes as defect sizes nLC increase, in the unseparated (left: blue lines) and 
separated (right: red lines) stage. Total potential energy changes are plotted in bold 
lines, and potential energy  changes of individual molecules directly involved in defect 
growth are plotted with thin blue (left) or thin yellow (right) lines. Potential energies are 
along reaction coordinates. The nucleus size nLC is indicated by  a number at each 
minimum of an inherent structure. The starting points of individual molecular potential 
energy changes are shifted to the corresponding minima of the total energy surfaces. For 
example, five water molecules are directly involved in the defect growth from nLC = 2 to 
4 in the separated stage (five yellow curves at the bottom of the right side figure); the 
curve corresponding to the separated I defect exhibits a monotonic decay.
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2.4  Appendix

2.4.1 Supplementary figures
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1. Supplementary Figures and Legends 
 

 
Figure S0 | Total potential energy, number of the off-lattice molecules, and hydrogen bond 

structures in a melting trajectory. 

(a) and (b) are same as Fig.1(a) and (b) in the manuscript. (a) Total potential energy of the inherent 

structures of a typical melting trajectory. At 0 ps, temperature is jumped from 270 K to 275K.  (b) 

Total number of the off-lattice water molecules, n, (black line) and the largest clustger size, nLC, 

(blue line) for the same trajectory of Fig. 1a.  (c)-(f) are the snapshots of the hydrogen bond 

network structures at 2000, 2800, 2900, and 3000 ps, indicated in (b), respectively.  Oxygen and 

hydrogen atoms of water molecules are represented by small blue and skyblue spheres, respectively. 

Hydrogen bonds on the off-lattice molecules are represented by red lines.  The potential energy 

fluctuates for a long time (the quiescent period) associated with intermittent creation and the 

annihilation of small size melting clusters until 2150 ps.  Then, the relatively large energy 

fluctuation appears with the creation of a “separated” I-V pair.  The rapid growth of the melting 

cluster (nucleus), thus the rapid energy rise, starts at 2730 ps.  

Figure A0  Total potential energy, number of the off-lattice molecules, and HB structures in a 
melting trajectory. (a) and (b) are same as Fig.1(a) and (b) in the manuscript. (a) Total potential 
energy of the inherent  structures of a typical melting trajectory. At 0 ps, temperature is jumped from 
270 K to 275K. (b) Total number of the off-lattice water molecules, n, (black line) and the largest 
cluster size, nLC, (blue line) for the same trajectory of Fig.1a. (c)-(f) are the snapshots of the HB 
network structures at 2000, 2800, 2900, and 3000 ps, indicated in (b), respectively. Oxygen and 
hydrogen atoms of water molecules are represented by small blue and skyblue spheres, respectively. 
HBs on the off-lattice molecules are represented by red lines. The potential energy fluctuates for a 
long time (the quiescent period) associated with intermittent  creation and the annihilation of small 
size melting clusters until 2150 ps. Then, the relatively  large energy  fluctuation appears with the 
creation of a “separated” I-V pair. The rapid growth of the melting cluster (nucleus), thus the rapid 
energy rise, starts at 2730 ps.
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Figure S1 | Histogram of water molecular displacements from the nearest lattice points in a melting 

trajectory (in inherent structures). It clearly shows that the threshold for the off-lattice molecules 

should be chosen at 1Å. 

 

 

 

Figure S2 | Configurations of the typical defects. 

(a) Ice Ih with no defect. Each water molecule has four HBs with its four neighbors with obeying 

Bernal-Fowler ice rule. (b) A 5+7 defect and a L+D complex, directly formed from ice structure 

with thermal agitation. (c) A separated I+V pair and a separated L+D pair, neither of which can be 

created directly from ice structure, as discussed in the main text.  Other water molecules are in ice 

structure.  

Figure A1  Histogram of water molecular displacements from the nearest lattice points in a melting 
trajectory (in inherent structures). It clearly  shows that the threshold for the off-lattice molecules 
should be chosen at 1Å.

 

Figure S1 | Histogram of water molecular displacements from the nearest lattice points in a melting 

trajectory (in inherent structures). It clearly shows that the threshold for the off-lattice molecules 

should be chosen at 1Å. 

 

 

 

Figure S2 | Configurations of the typical defects. 

(a) Ice Ih with no defect. Each water molecule has four HBs with its four neighbors with obeying 

Bernal-Fowler ice rule. (b) A 5+7 defect and a L+D complex, directly formed from ice structure 

with thermal agitation. (c) A separated I+V pair and a separated L+D pair, neither of which can be 

created directly from ice structure, as discussed in the main text.  Other water molecules are in ice 

structure.  

Figure A2  Configurations of the typical defects. (a) Ice Ih with no defect. Each water molecule has 
four HBs with its four neighbors with obeying Bernal-Fowler ice rule. (b) A 5+7 defect and a L+D 
complex, directly  formed from ice structure with thermal agitation. (c) A separated I+V pair and a 
separated L+D pair, neither of which can be created directly from ice structure, as discussed in the 
main text. Other water molecules are in ice structure.
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Figure S3 | Energy barriers and structure changes along reaction coordinates of HB 

transformations. 

(a) Total potential energy change and HB transformation along a reaction coordinate to create a 5+7 

defect. Water molecules involved in the HB transformation are colored; green, yellow and red 

indicates the initial, the intermediate and the final structure of the process, respectively. 

(b) Total potential energy change and HB transformation along a reaction coordinated to create a 

L+D complex; colors are used in the same manner as Fig. S3a.  Detailed analyses for the reaction 

coordinates are made by the method of Grishina et al.12 

(c) Total potential energy change along reaction coordinates of the sequential dislocation of an 

I-defect in ice.   Configurations of the I-defect in three successive energy minima are displayed in 

red color.   Note that the low energy barriers of backward reactions in (a) and (b) indicate the 

facile annihilation of these defects.  Note also that the barrier of I-defect dislocation in (c) is lower 

than to create a 5+7 defect (a) or an L+D complex (b).  The barrier to create a separated I-V pair is 

much higher than these energy barriers. 

 

Figure A3  Energy barriers and structure changes along reaction coordinates of HB transformations.  
(a) Total potential energy  change and HB transformation along a reaction coordinate to create a 5+7 
defect. Water molecules involved in the HB transformation are colored; green, yellow and red 
indicates the initial, the intermediate and the final structure of the process, respectively.  (b) Total 
potential energy change and HB transformation along a reaction coordinated to create a L+D 
complex; colors are used in the same manner as Fig.A3a. Detailed analyses for the reaction 
coordinates are made by  the method of Grishina et al.12@ (c) Total potential energy change along 
reaction coordinates of the sequential dislocation of an I-defect in ice. Configurations of the I-defect 
in three successive energy minima are displayed in red color. Note that the low energy barriers of 
backward reactions in (a) and (b) indicate the facile annihilation of these defects. Note also that  the 
barrier of I-defect dislocation in (c) is lower than to create a 5+7 defect (a) or an L+D complex (b). 
The barrier to create a separated I-V pair is much higher than these energy barriers.
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Figure S4 | (a) and (b) are the detailed edit paths for the same structures of Fig.3(d) and (e), 

respectively. Blue lines are HBs on the off-lattice molecules, while gray thin lines are HBs 

connecting the water molecules on the lattice points of ice. Edit path to recover the crystalline ice 

consists of forming HBs (red), cutting HBs (yellow) and inverting the HB direction (green).  

 

 
Figure S5 | 8 typical interfacial fragments lined up from (a) to (h) in the order of their population. 

First three fragments appear adjacent to a 5+7 defect. Shape and properties of these fragments can 

be seen at the online fragment database: 

 http://vitrite.chem.okayama-u.ac.jp Their ID are #4, #98, #101, #65, #10, #63, #233, #182 in the 

DB. 
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Figure A4  (a) and (b) are the detailed edit paths for the same structures of Fig.3(d) and (e), 
respectively. Blue lines are HBs on the off-lattice molecules, while gray thin lines are HBs 
connecting the water molecules on the lattice points of ice. Edit  path to recover the crystalline ice 
consists of forming HBs (red), cutting HBs (yellow) and inverting the HB direction (green).

 

Figure S4 | (a) and (b) are the detailed edit paths for the same structures of Fig.3(d) and (e), 

respectively. Blue lines are HBs on the off-lattice molecules, while gray thin lines are HBs 

connecting the water molecules on the lattice points of ice. Edit path to recover the crystalline ice 

consists of forming HBs (red), cutting HBs (yellow) and inverting the HB direction (green).  

 

 
Figure S5 | 8 typical interfacial fragments lined up from (a) to (h) in the order of their population. 

First three fragments appear adjacent to a 5+7 defect. Shape and properties of these fragments can 

be seen at the online fragment database: 
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Figure A5  8 typical interfacial fragments lined up from (a) to (h) in the order of their population. 
First three fragments appear adjacent to a 5+7 defect. Shape and properties of these fragments can 
be seen at the online fragment database: http://vitrite.chem.okayama-u.ac.jp Their ID are #4, #98, 
#101, #65, #10, #63, #233, #182 in the DB.

(Fragment of the melting nucleus) In the early  stage of melting nuclear growth, “interfacial 
fragments”, consisting of 5-, 6-, and 7-membered rings, appear. Fragments are three-dimensional 
polyhedral building blocks representing the local connectivity of HB network, in which vertices and 
edges correspond to water molecules and HBs, respectively. When the melting proceeds, “liquid 
fragments,” containing distorted rings such as 4- or 8-membered rings, start to appear at the central 
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domain of the melting nucleus for nLC > 20. The “interfacial fragments” then become a wetting 
boundary of one layer between ice and liquid domain. The “interfacial” molecules, initially highly 
hindered, become less strained. Eight types of “interfacial” fragments constitute 70% of the 
interfacial layer, while “liquid fragments” have more varieties.

According to the fragment description of ice melting, one can see there are 4 stages; (1) 
0-2150 ps, a considerably long quiescence period, mainly  5+7 defects or L+D complexes 
intermittently appear and disappear all over the system. Defective structures appearing in this period 
mainly consist of interfacial fragments (Fig.A5) . (2) 2150-2730 ps. 5+7 defects and L+D 
complexes are accumulated in a locus and then the system fails to revert back to a crystalline 
structure, resulting the formation of a I+V defect pair for t = 2150-2210 ps,. I-defect undergoes 
rapid sequential steps of dislocation in ice for t = 2210-2730 ps . (3) 2730-3050 ps, when the 
melting nucleus undergoes the rapid growth. The interfacial fragments exist  only in a one-layer 
boundary between the melting nucleus and the remaining ice structure. (4) after 3050 ps, when the 
system completes the melting. The interfacial fragments rarely appear in this bulk liquid stage.

2.4.2 Supplementary methods.

2.4.2.1 Edit distance

Recent progress in computer simulation has provided us with new insight into the anomalous 

properties of liquid water and ice.33,34 These discoveries were supported by the development of new 

analytical methods for computer simulation studies. Most of the anomalous properties originate in 

the collective aspects of water, which are introduced by the complex HB network. Methods that 

treat many degrees of freedom are therefore important to explore the properties of water.

How can one measure the difference between structures with many degrees of freedom? In the 

case of protein folding, for example, the structural difference is often measured by using the root 

mean square deviation (RMSD) between the atomic positions in two structures.

A similar procedure is applicable when comparing undistorted and thermally fluctuating ice 

structures. If the latter structure is not quite broken, the structural difference can be measured by 

summing the displacements between the water positions of the same label in two structures. 

Counting the dislocated atoms from the lattice point is also a simple way to evaluate how much the 

given structure is distorted from the crystal structure. The amount of dislocated molecules can be 

estimated experimentally. Many simulation studies on crystal melting also employ this method as a 

crude approximation.35

Liquid water and ice have quite a distinct network of hydrogen bonding.36 Ice and liquid 

water structures can therefore be regarded as the directed graphs. The topology of the graph is 

expressed by an N × N adjacency matrix, where N is the number of water molecules in the structure. 
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The element a(i, j) of the adjacency  matrix is 1 when a water molecule i donates an HB to molecule 

j, and 0 otherwise. Structure change in water can also be measured by  the number of HB 

rearrangements. Hamming distance between two HB networks, say A and B, is defined as the 

number of different matrix elements in the adjacency matrices of these networks37:

DH A,B( ) = aA i, j( )− aB i, j( )
j

N

∑
i

N

∑  (1)

where aA i, j( )  is an adjacency matrix element of structure A.

One might  think that it is possible to measure the disordered nature of ice at the point of 

melting by  utilizing RMSD, the number of dislocated molecules, or Hamming distance. However, 

molecular displacements and HB rearrangements in ice do not always introduce disorder. Two 

typical cases are shown in the following examples.

(I)  In ice near the melting point, a water molecule often moves away from its original lattice 

point by thermal fluctuation and exchange its position with a neighboring water molecule. 

Repeated exchanges allow the water molecule to diffuse in solid ice. However, the resultant 

structure is still ice. Thus, exchange of molecules on the lattice points does not introduce 

disorder in an ice. Mean square displacement cannot be used to figure out the equivalence by 

molecular exchanges.

(II)  In ideal ice, each water molecule donates two HBs and accepts two HBs, the so-called 

“ice rules”.27 The structure of ice affords many equivalent states satisfying the ice rules. The 

directed graph of ice contains a certain amount of cyclic paths along which all the edges (i.e. 

hydrogen bonds) are in the same direction, i.e. homodromic cycles.38 If the original graph 

obeys the ice rule, inversion of edge directions along a homodromic cycle still conserves the 

ice rule and the energy  difference is very small. Such an inversion of a homodromic cycle, i.e. 

collective rotation along a cyclic path, can be observed frequently  in superheated ice in a 

molecular dynamics simulation, but it does not introduce disorder in ice. Hamming distance 

cannot be used to figure out the equivalence by cyclic HB rearrangements along a 

homodromic cycle.

When I measure the disorder of an ice structure, I should pay attention to essential structural 

changes but disregard the interconversion between equivalent ice structures. In the present paper, I 

propose two kinds of edit distances as measures of essential structure change.
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2.4.2.1.1 Concept

In information theory, the edit distance is a metric for measuring the amount of difference 

between two sequences. The edit distance between two strings is defined as the minimal number of 

edit operations – such as addition or deletion of letters – to transform one string to another. The edit 

distance is used to measure variation between DNA.

When I apply the concept of edit distance to a water structure, I define the translation of a 

water molecule or an HB rearrangement, i.e. connection and disconnection, as an edit operation. I 

call a sequence of edit operations “edit sequence” and a sequence of edit operations in the actual 

molecular configuration “edit path”. The edit distance between two structures of ice is defined as 

the minimum number of edit operations to transform one structure to another. Two kinds of edit 

distances are defined.

2.4.2.1.2 Geometrical edit distance

Geometrical edit distance (GED) is the minimal displacement required to move all water 

molecules in a given structure to the lattice points of ice. Suppose two ice structures obtained by 

molecular dynamics simulation. Structures A and B are an initial perfect ice structure and a 

thermally fluctuated ice structure near the melting point, respectively. In B, most water molecules 

are on the ice lattice points, while some dislocate, melt locally, or form defective structure such as a 

5+7 defect.23-25 I define D as the sum of the square deviations between water molecules of the same 

label in structures A and B:

D A,B( ) = ri
A − ri

B( )2
i

N

∑  (2)

where ri
A is the center-of-mass position of the ith water molecule in structure A and N is the number 

of water molecules in the system. Even when structure B is not molten, water molecules displace 

from their initial lattice points by exchanging their positions. Therefore, D gradually  increases with 

time.

To eliminate the unessential displacement by point exchanges, I exchange molecular labels in 

structure A in order to minimize D. If all the water molecules in structure B are on the lattice points, 

minimal D becomes zero. GED is defined as the minimal D obtained by molecular label 

permutation. The shortest edit paths to move molecules from a given structure to the lattice points 

of ice can also be obtained simultaneously. Note that multiple edit paths may give the same GED.
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I also define geometrical edit steps (GES) as a discretized expression of GED. GES is the 

number of times of crossing over the Voronoi bisectors of structure A when water molecules in 

structure B move along the shortest edit path to the lattice points.

Minimization of D is a combinatorial problem. In practice, D is minimized by exchanging the 

molecular labels by using a simulated annealing and tempering method. Suppose a water molecule 

moves away from its lattice point and locates interstitially at a distant place. This kind of pairwise 

defect is called the separated I-V pair. Though the total structure still looks like almost perfect ice at 

first glance, both GED and GES become large. In this case, the editing path indicates the shortest 

route to translate the chain of water molecules from interstitial to vacancy defects (Fig.A6).

If the number of molecules in two structures is different, excess molecules should be removed 

from the larger system and a smaller number of molecules of both are used to calculate D. Removal 

of an excess molecule is also regarded as an edit operation with a constant weight w, i.e.,

D A,B( ) = ri
A − ri

B( )2 + nw
i

N

∑  (3)

where N is the number of molecules in the smaller system and n is the number of excess molecules 

in the larger system. In calculation of D, the combination of molecular labels i in structure A and i’ 

in structure B is optimized so as to minimize D. The choice of molecules to be removed should be 

optimized in order to minimize D. Such a situation occurs when extrinsic molecules are injected in 

the ice lattice or when ice suffers radiation damage.
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Figure S6 | A schematic illustration of the two kinds of edit distances, GED and TED, and the 

corresponding defect pairs in ice. Dotted lines indicate the hydrogen bonds. Red solid arrows 

indicate the geometrical edit path to dissolve the interstitial (I)-vacancy (V) defect pair. A direct 

leap of an interstitial defect to the vacancy (red dashed arrow) offers a larger D value. Sky-blue 

arrows indicate the topological edit path to dissolve the D and L defect pair, i.e. the Bjerrum pair. 

Green lines indicate the hydrogen bonds to be inverted in the edit path, while purple lines indicate a 

detour to dissolve the Bjerrum pair. 

 

2.1.3 Topological Edit Distance 

  Topological edit distance (TED) is the minimal number of HB rearrangements (bond creation and 

removal) required for a given HB network to recover the topology of an ice HB network but which 

obeys the ice rule. 

  Suppose, there are two ice structures A and B. The former is an initial perfect structure and the 

latter is a thermally fluctuating structure. Molecular labels are supposed to be optimized by GED 

calculation in advance. 

  When structure B is made from structure A by inverting one HB, for example, the Hamming 

distance between the two structures becomes 2. A perfect crystal structure A obeying the ice rule 

contains a certain amount of homodromic cycles. One can change the network topology of structure 

A without violating the ice rule by inverting the cycles, and DH also changes as a consequence37. 

TED is defined as the minimal DH(A,B) obtained by inverting the homodromic cycles in structure 

A. The shortest edit paths to convert the disordered network structure into a structure of ice obeying 

the ice rule can also be obtained simultaneously. Note that multiple edit paths may give the same 

TED. 

  When A and B are perfect ice structures with a different proton order, TED becomes zero. 

  Minimization of DH is a combinatorial problem. In practice, DH is minimized by inverting the 

bond directions along the homodromic cycles by using a simulated annealing and tempering 

method. 
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Figure 1 Matsumoto
Figure A6  A schematic illustration of the two kinds of edit distances, GED and TED, 
and the corresponding defect pairs in ice. Dotted lines indicate the HBs. Red solid 
arrows indicate the geometrical edit path to dissolve the interstitial (I)-vacancy (V) 
defect pair. A direct leap of an interstitial defect to the vacancy (red dashed arrow) offers 
a larger D value. Sky-blue arrows indicate the topological edit path to dissolve the D 
and L defect pair, i.e. the Bjerrum pair. Green lines indicate the HBs to be inverted in 
the edit path, while purple lines indicate a detour to dissolve the Bjerrum pair.

2.4.2.1.3 Topological edit distance

Topological edit distance (TED) is the minimal number of HB rearrangements (bond creation 

and removal) required for a given HB network to recover the topology  of an ice HB network but 

which obeys the ice rule. Suppose, there are two ice structures A and B. The former is an initial 

perfect structure and the latter is a thermally fluctuating structure. Molecular labels are supposed to 

be optimized by GED calculation in advance.

When structure B is made from structure A by inverting one HB, for example, the Hamming 

distance between the two structures becomes 2. A perfect crystal structure A obeying the ice rule 

contains a certain amount of homodromic cycles. One can change the network topology  of structure 

A without violating the ice rule by  inverting the cycles, and DH also changes as a consequence.39 

TED is defined as the minimal DH(A,B) obtained by inverting the homodromic cycles in structure 

A. The shortest edit  paths to convert the disordered network structure into a structure of ice obeying 

the ice rule can also be obtained simultaneously. Note that multiple edit paths may  give the same 

TED.
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When A and B are perfect ice structures with a different proton order, TED becomes zero. 

Minimization of DH is a combinatorial problem. In practice, DH is minimized by inverting the bond 

directions along the homodromic cycles by using a simulated annealing and tempering method.

When one tries to find TED between two structures, one must calculate GED in advance in 

order to optimize the molecular labeling between them. Otherwise, a geometrically impossible HB 

rearrangement path might be a candidate for the shortest  edit path. Let us exemplify the case when a 

water molecule moves away from a lattice point and locates interstitially  at a distant  place. If I try  to 

simply  restore the HB network of ice, the shortest edit path would be to remove all the HBs of the 

interstitial molecule and to create four HBs from that molecule to the molecules around the vacancy. 

It is, however, impossible because the molecule must leap through the ice lattice.

If the number of molecules in two structures is different, unconnected nodes should be 

inserted into the smaller system, i.e. empty rows and columns should be added to the adjacency 

matrix of the smaller system, in order to calculate DH. TED is finite if GED is finite, since 

translation of a water molecule in ice always accompanies HB rearrangements. However, the 

opposite is not true. Therefore TED is a more sensitive index to detect the disorder in ice.

2.4.2.1.4 Pair defect and the edit distance

These edit  distances elicit certain kinds of pair defects hidden in disordered ice. In order to 

dissolve a separated L-D defect pair and relocate the excess protonic defect to the right place, it is 

necessary  to reorient water molecules and invert  a chain of HBs by the Bjerrum mechanism.30 TED 

gives the shortest edit path to dissolve the separated L-D pair. On the contrary, if the shortest edit 

path in TED includes a chain of HB inversion, there must be D- and L-defects at  the ends of the 

chain. Thus TED elicits the separated L-D pair in a distorted ice.

In order to dissolve a separated I-V pair, a train of water molecules needs to be translated to 

relocate them to the right places. GED gives the shortest edit path to dissolve the separated I-V pair. 

On the contrary, if the shortest edit  path in GED includes a train of translational motion of water 

molecules, there must be I- and V-defects at the ends of the train. Thus GED elicits the separated I-

V pair in disordered ice.
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2.4.2.2 Free energy landscape

I can estimate the topography of the free energy landscape directly from the simulation result 

with the use of Markov network and the order parameters. Here I introduce the procedure briefly.

2.4.2.2.1 Markov network

Consider there are finite kinds of “states” for a given system and there are the networks of 

“transition paths” among them with a certain probabilities. At time t, the system takes one of the 

states with the probability p(t,i). After a small time interval Δt, the system changes its state to j with 

a transition probability  p(j|i). Note that there is also a probability  of not changing the state p(i|i) and 

thus the transition probability  satisfies the equation: p i | j( ) = 1
i
∑ . Then the probability for the 

system to take a state i at time t+Δt is given by

p t + Δt,i( ) = p i | j( ) p t, j( )
j
∑  (4)

At the stationary state, the following equation should hold:

p i( ) = p i | j( ) p j( )
j
∑ , (5)

where p(i) is the stationary distribution. When p(i|j) is given, the probabilities p(i) at the stationary 

state can be calculated by iterating the equation (4).

2.4.2.2.2 Coarse-grained landscape

I can classify structures into finite number of states (i.e. bins), specified with order 

parameters; for example, a state i is specified with the largest  cluster size of defective molecules 

(nLC), and the excess edit distance (dTex), i = (nLC, dTex), Numbers of structures generated by MD 

simulation are projected on a state i. Then determine the transition probability p(j|i)) between the 

states i and j by counting the number of trajectories which moves from state i to state j during a time 

interval Δt. By  assuming the local equilibria of whole states, the probabilities p(i) at the stationary 

state can be calculated by iterating the equation (4).

When the melting nucleus size becomes very  large, for example, nuclear growth rate becomes 

too rapid and I cannot estimate the stationary probabilities for such states precisely  any longer. In 

order to avoid the calculation of transition probabilities between dubious states, I will put a 
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boundary about the nuclear size and beyond the size is considered to be a single “hidden” state, 

whose stationary probability  is unknowable. Suppose there are only three states, for example, and 

transition between state 1 and 2 or 2 and 3 are allowed. Here I regard the state 3 as the hidden state, 

as shown in Fig.A7.

At the stationary distribution, I can assume the detailed balance between the states, that is, 

p 3 | 2( ) p t,2( ) = p 2 | 3( ) p t, 3( ) . Then the following equation should hold

p t + Δt,2( ) = p 2 |1( ) p t,1( ) + p 2 | 2( ) p t,2( ) + p 2 | 3( ) p t, 3( )
= p 2 |1( ) p t,1( ) + p 2 | 2( ) + p 3 | 2( ){ } p t,2( )

 (6)

Thus, the probability  for the system to be found in state 2 at the next step, p(t+Δt, 2), can be 

calculated without referencing the transition probability from hidden state 3 to state 2, p(2|3), nor 

the probability for the system to be found in state 3, p(t, 3). It  must be noted that the detailed 

balance breaks down when the nucleus size is much larger than its critical size. In such case, the 

gradient of the free energy landscape is so large that  the probability of going back to smaller 

nucleus size becomes too small even with an exhaustive sampling. It is therefore difficult to extend 

the free energy landscape calculation with the present method to the region of much larger nucleus 

size.

 
Figure S7 | An example system with three states, in which state 3 is the hidden state. 

 

At the stationary distribution, we can assume the detailed balance between the states, that is, 

p(3|2) p (t,2)= p (2|3) p (t,3). 

Then the following equation should hold 

p(t+Δt, 2)= p (2|1) p (t,1)+ p (2|2) p (t,2)+ p (2|3) p (t,3) 

= p(2|1) p(t,1) + { p(2|2) + p(3|2) }p(t,2) 

Thus, the probability for the system to be found in state 2 at the next step, p(t+Δt, 2), can be 

calculated without referencing the transition probability from hidden state 3 to state 2, p(2|3), nor 

the probability for the system to be found in state 3, p(t, 3). It must be noted that the detailed 

balance breaks down when the nucleus size is much larger than its critical size. In such case, the 

gradient of the free energy landscape is so large that the probability of going back to smaller 

nucleus size becomes too small even with an exhaustive sampling. It is therefore difficult to extend 

the free energy landscape calculation with the present method to the region of much larger nucleus 

size. 

 

2.2.3 Effective Free Energy and the Entropy 

The effective potential energy of a state i, say U(i), is introduced to represent the coarse-grained 

potential energy landscape against the order parameter, nLC. U(i) is defined as the average potential 

energy of the molecular configurations belonging to the largest nucleus. In the stationary state, the 

probability of choosing a state i, p(i), is considered to be proportional to the Boltzmann distribution  
( (exp −βU(i){ })  and the degeneracy (N(i)) as: 

p(i) = BN(i)exp −βU(i)( )  

where B is a proportionality coefficient. From this formula, we can estimate S(i) = – kB ln N(i), i.e., 

the effective entropy of the state i. The effective free energy should be written naturally as: 
F(i) = −kBT ln p(i) / B( ) = −kBT lnN(i)+U(i) =U(i)−TS(i)  

It must be noted that N(i) contains all kind of degeneracy, including the number of structures 

belonging to a state i.  We should therefore be careful to deal with the absolute values of S(i) and 

F(i). 
  

1 2 3

p(2|1) p(3|2)

p(2|3)p(1|2)

Figure A7  An example system with three states, in which state 3 is the hidden state.

2.4.2.2.3 Effective free energy and the entropy

The effective potential energy  of a state i, say U(i), is introduced to represent the coarse-

grained potential energy landscape against the order parameter, nLC. U(i) is defined as the average 

potential energy of the molecular configurations belonging to the largest  nucleus. In the stationary 

state, the probability  of choosing a state i, p(i), is considered to be proportional to the Boltzmann 

distribution ((exp{−βU(i)}) and the degeneracy (N(i)) as:

35



p i( ) = BN i( )exp −βU i( )( )  (7)

where B is a proportionality coefficient. From this formula, I can estimate S i( ) = −kB lnN i( ) , i.e., 

the effective entropy of the state i. The effective free energy should be written naturally  as:

F i( ) = −kBT ln p i( ) / B( ) = −kBT lnN i( ) +U i( ) =U i( )−TS i( )

It must be noted that N(i) contains all kind of degeneracy, including the number of structures

belonging to a state i. I should therefore be careful to deal with the absolute values of S(i) and F(i).
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Local structure of methanol-water binary solutions studied by 
soft X-ray absorption spectroscopy and molecular dynamics 
simulation
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3.1  Introduction

It is known that methanol-water binary  solutions show smaller entropy  than expected in 

an ideal solution of randomly mixed molecules1 and show a nonlinear profile in viscosity  as 

changing the mixing ratio.2 These characteristics have been discussed by  using clathrate-like 

structure models of methanol molecules with surrounding water molecules and with 

hydrophobic interactions between methyl groups.1 However, a consistent picture of the 

microscopic structure of methanol-water binary solutions is not yet established.

The oxygen atom in a water molecule has two hydrogen-donating (‘donor’) sites and 

two hydrogen-accepting (‘acceptor’) sites, and liquid water forms tetrahedrally-coordinated 

three-dimensional (3D) hydrogen bond (HB) networks.3 On the other hand, a methanol 

molecule has one donor and one or two acceptor sites due to the replacement of one donor site 

by a hydrophobic methyl group, and liquid methanol forms one- and two-dimensional (1D/

2D) HB networks, such as chain and ring structures.4-9 In the neutron diffraction experiments 

of methanol-water binary  solutions,10-12 it is found that 3D HB networks of methanol-water 

mixtures are formed by hydrophilic and hydrophobic interactions between water and 

methanol molecules. Dixit et  al. measured neutron diffraction at X=0.7 in the methanol-water 

binary  solutions (CH3OH)X(H2O)1-X,11 and revealed that the distance between methyl groups 

of methanol molecules becomes closer by adding water molecules.

The interaction between methanol and water molecules in the binary solution was 

studied by  nuclear magnetic resonance,13 mass spectrometry,14 Rayleigh scattering,15 and 

dielectric relaxation methods.16 Takamuku et al. measured the number of water molecules per 

6 methanol molecules as a function of the methanol molar fraction by the mass spectrometry 

of methanol-water liquid micro-jets,14 and found three different  dependences with the borders 

at X=0.7 and X=0.3. They proposed that the chain structures of methanol clusters are 

dominant at X>0.7, the tetrahedral-like water clusters gradually evolve at 0.7>X>0.3, and the 

water cluster is a main species at 0.3>X>0.0.

The interaction in the binary solution was also investigated by vibrational 

spectroscopies: infrared spectroscopy17-24 and Raman spectroscopy.22,25-28 Dixit  et al. found 

nonlinear profiles of the C-O stretching vibration in the Raman spectroscopy when decreasing 

the methanol molar fraction,27 in which the behavior of the energy shifts changes at X=0.70 

and X=0.25. They  proposed different local structures: in the region X>0.7, water molecules 

connect the terminal of the methanol chain and the chain structure is preserved; in the region 
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0.7>X>0.25, the methanol chain is broken by adding water molecules; in the region 

0.25>X>0.05, the hydration structure of methanol molecules is formed.

The structure of liquid methanol and methanol-water binary solutions has been 

investigated theoretically by using molecular dynamics (MD)29-43 and Monte Carlo 

simulations.44-49 In the methanol-rich condition, the 1D/2D HB network structure of methanol 

clusters is not strongly influenced by water molecules.32 As the mixing ratio of water 

increases, the HB networks of both water and methanol molecules grow to be mixed with 

each other.38-40,46,48 When the mixing ratio of water is high, the 3D hydration shell is formed 

around methanol molecules.41,43,45

Although methanol-water binary  solutions have been studied experimentally and 

theoretically as described above, microscopic structures of methanol-water mixtures, such as 

nearest neighbor interactions, have not yet been known in detail. Soft  X-ray absorption 

spectroscopy  (XAS) is an element-selective method to investigate local structures of liquid 

and aqueous solutions. The structure of liquid water was extensively  studied by the O K-edge 

XAS.50-52 Because the X-ray absorption process occurs within a few femto seconds, XAS 

gives us the information of the averaged HB structures, which rearrangements occur within 

the time scale. The hydration structure of cations in aqueous salt solutions was also 

investigated by  the O K-edge XAS.53-54 Wilson et al. studied the O and C K-edge XAS of 

liquid methanol in the total electron yield of liquid micro-jet.55 Tamenori et  al. measured the 

O and C K-edge XAS of free methanol clusters.56 Guo et al. investigated liquid methanol and 

methanol-water binary solutions at X=0.5 by using the O K-edge XAS and X-ray  emission 

spectroscopy.57-58 Guo et al. suggested that liquid methanol shows chains and rings of 6-8 

methanol molecules, and proposed that the number of pure methanol chains decreases and the 

number of mixed methanol-water networks increases when adding water molecules. However, 

the O K-edge XAS shows contributions of oxygen atoms in both methanol and water 

molecules, and is difficult to analyze the local structure of methanol-water mixtures. It is 

necessary  to measure the C K-edge XAS to analyze the local structure of the methyl group of 

methanol molecules in the binary solution.

In the present work, the local structure of methanol-water binary solutions at different 

concentrations by the O and C K-edge XAS is investigated. The XAS measurement is based 

on a transmission mode by  using a recently developed liquid cell that enables to optimize the 

absorbance by  changing the thickness of liquid layer.59 The pre-edge feature in the O K-edge 
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XAS is found to show almost linear dependence of the concentration. On the other hand, in 

the C K-edge XAS, the spectral intensity in a characteristic energy  region is found to change 

its behavior at X=0.7 and X=0.3. With the help of the MD simulation, it has been revealed 

different local structures of methanol-water mixtures at the three concentration regions.
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3.2   Experiments

The experiments were performed at an in-vacuum soft X-ray undulator beam line BL3U 

at UVSOR-II.60 Details of the liquid cell were described previously.59,61 The liquid cell 

consists of four regions, which are separated by  100 nm-thick Si3N4 membranes (NTT AT 

Co., Ltd.). Soft X-rays under vacuum (region I) pass through the buffer region filled with 

helium gas (region II) and the liquid thin layer (region III), and finally reach a photodiode 

detector filled with helium gas (region IV). The regions II and IV are connected and can be 

mixed with other gas molecules for the precise gas-liquid energy shift measurement and 

photon energy calibration. A liquid sample (region III) is sandwiched between two Si3N4 

membranes with pressed Teflon spacers, and can be substituted by  other samples in 

combination with a tubing pump system.

The thickness of liquid layer should be optimized in order to transmit  soft X-rays with 

an appropriate absorbance.62 In the present liquid cell, the thickness of the liquid layer can be 

controlled from 2000 nm to 20 nm by increasing the helium pressure in the regions II and IV. 

The thickness is set to 300 nm in the present O K-edge XAS. In the C K-edge XAS, on the 

other hand, the thickness of liquid methanol is set to 550 nm, and the thickness is set larger in 

more dilute methanol aqueous solutions. The energy resolutions of incident soft X-rays at the 

O and C K-edges are set to 0.40 eV and 0.19 eV, respectively. The XAS spectra are based on 

the Beer-Lambert law, ln(I0/I), where I0 and I are the detection current  through the cell 

without and with samples, respectively. The liquid flow is stopped during the XAS 

measurement because the sample liquid has no radiation damage from the long (say, more 

than one hour) exposure of soft X-rays in the present photon flux. The photon energy in the O 

K-edge is calibrated by the O 1s - π* peak (530.80 eV)63 for free O2 molecules and that in the 

C K-edge is calibrated by the first peak (287.96 eV)56 of free methanol molecules, which are 

mixed with helium gas in the regions II and IV.
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3.3  Results and discussions

3.3.1 Oxygen K-edge XAS

Fig.1 shows O K-edge XAS spectra for methanol-water binary solutions of different 

concentrations at 25 ºC. The absorbance in the O K-edge XAS spectra was normalized by  the 

sample thickness and the concentration of the binary solution considering the soft X-ray 

absorption coefficients of water and methanol in the O K-edge.62 After this normalization, a 

constant background was subtracted and the resultant  the absorption coefficients is shown in 

Fig. 1. In the previous work,57 a small peak was observed around 532 eV in methanol-water 

mixtures; on the other hand, it is not observed for any  concentration in the present 

measurement. It should not be regarded as an intrinsic peak. The pre-edge peak of liquid 

water (534.7 eV) corresponds to the O 1s transition to an unoccupied 4a1* orbital of a water 

molecule (533.9 eV), which is mainly  distributed at  the oxygen atom in water molecule and is 

blue-shifted and broadened by the HB interaction.51 On the other hand, the pre-edge feature of 

liquid methanol (534.9 eV) is embedded in the main peak but is similarly  blue-shifted from 

the gas-phase peak (534.0 eV).55

Fig.1 shows that the intensity  of the pre-edge region around 535.2 eV decreases as the 

molar fraction of methanol (X) decreases in the binary solution (CH3OH)X(H2O)1-X. It is 

known that the pre-edge peak in liquid water reflects the HB interaction, and the intensity of 

methanol is different from that of water. The pre-edge region shows isosbestic points at 534.8 

eV and 535.9 eV. In such a case, one does not have to focus on the peak itself and one can 

select one of the energy regions showing rather large change without detailed spectral 

analysis. This is 535 eV or 540 eV. Since the signal-to-noise ratio in 540 eV is worse than in 

535 eV, the pre-edge region (535 eV) was used to analyze the change in the HB interaction at 

different concentrations.

Fig.2 shows the intensity dependence of the energy region between 534.9 and 535.8 eV 

with a molar fraction step  of 0.05. The intensity  decreases almost linearly  as the molar 

fraction of methanol decreases. Note that the similar linear dependence is found for the energy 

region of 540 eV. There may be some information about different local structures on the 

oxygen atom behind small deviations from the linear dependence, but it is consistent  with the 

result of vibrational spectroscopy,22,24 which explains that  the ratio of HB interaction of 

methanol-methanol to that of methanol-water is linearly dependent on the molar fraction of 

methanol.
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Observation of the isosbestic points suggests that the binary solution has two major HB 

components, though there are four different HB interactions: Om*HOm, Om*HOw, Ow*HOm, 

and Ow*HOw, where Om and Ow denote oxygen atoms of methanol and water, respectively, 

and * denotes the atom with an O 1s hole. There are two possibilities. One is a negligible HB 

interaction between water and methanol, Om*HOw and Ow*HOm, indicating that water 

aggregates are segregated from methanol ones in solution. The other is almost the same HB 

interaction in Ow*HOm as in Ow*HOw and that in Om*HOw as in Om*HOm. The pre-edge peak 

of liquid water is sensitive to the HB interaction of liquid water and is dependent on the 

temperature.52 The concentration dependence in the pre-edge region of the methanol-water 

binary  solution is smaller than the temperature dependence of liquid water. Therefore, nearly 

the same HB interaction between methanol and water could be possible.

Figure 1  O K-edge XAS spectra of methanol-water binary solutions of different 
concentrations at 25 ºC. The mixing ratio of methanol in the solution decreases 
with molar fraction steps of 0.1 along indicated arrows. The inset shows isosbestic 
points (dashed lines) in the pre-edge region.
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Figure 2  Intensity  dependence of the energy region between 534.9 and 535.8 eV 
in the O K-edge XAS spectra as a function of methanol molar fraction (X) in the 
methanol-water binary solutions (CH3OH)X(H2O)1-X. The intensities of methanol 
(X=1.0) and water (X=0.0) are normalized to one and zero, respectively.

3.3.2 Carbon K-edge XAS

Fig.3 shows C K-edge XAS spectra of molecular (gas) and liquid methanol at 25 ºC by 

using the same sample cell. The XAS spectrum of methanol gas was measured by mixing 

methanol vapor into helium buffer gas, and is in agreement with published spectra.55-56,64-65 As 

shown in Fig. 3a, the first  peak (287.96 eV) in a gas-phase spectrum arises from a transition 

of the C 1s electron to the lowest unoccupied orbital (8a’) of C-O anti-bonding and O-H 

bonding characters. The second peak around 289.44 eV arises from a transition of the C 1s 

electron to the second lowest unoccupied orbital (9a’) of pseudo CH3-π* character with a very 

small OH component. The broad peak around 293 eV arises from a transition of the C 1s 

electron to the highest unoccupied orbital (11a’) within a minimal basis picture, which is of 

both C-O anti-bonding and O-H anti-bonding character.

Fig.3b shows the present C K-edge XAS spectrum of liquid methanol with a simple 

structure of three main contributions around 288.4, 289.55, and 293 eV. The published C K-

edge XAS spectrum of free methanol clusters56 is almost the same as the present liquid 

spectrum. On the other hand, the published spectrum of liquid micro-jet  methanol55 is 

different from the present one and is rather similar to the gas-phase spectrum. It  could be 
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difficult to completely remove the contribution from the molecular methanol in the liquid 

micro-jet experiment.

In the liquid spectrum, the first peak (8a’-related), which is an excited state with both 

CH3 and OH components, shows a 0.44 eV blue shift from that in the gas spectrum. On the 

other hand, the second peak (9a’-related), which is an excited state with a large CH3 

component, shows a 0.11 eV blue shift from that in the gas spectrum. Considering atomic 

components in the corresponding molecular orbitals of a methanol molecule, the second 

excited state has mainly a hydrophobic interaction but the first excited state has not only a 

hydrophobic interaction but also an HB interaction. The unoccupied orbital level could be 

destabilized by  both the hydrophobic and hydrophilic interactions in liquid, similarly to the 

case of the blue-shifted O 1s pre-edge peak in liquid water as observed in Fig. 1.

Fig.4 shows C K-edge XAS spectra of methanol-water binary solutions of different 

concentrations at 25 ºC. The C K-edge XAS spectrum is more appropriate than the O K-edge 

XAS as regards the analysis of the intermolecular interaction of methanol, because the carbon 

atom is contained only in methanol. The absorbance in the C K-edge XAS spectra was 

normalized by the sample thickness and the concentration of the binary solution considering 

the soft  X-ray absorption coefficients of methanol in the C K-edge.62 After this normalization,  

the absorbance of water in the C K-edge was subtracted by considering the sample thickness, 

the concentration of the binary solution, and the soft X-ray  absorption coefficient of water in 

the C K-edge.62 Fig.4 shows resultant absorption coefficients. The first peak does not change 

its energy position so much at different concentrations. This is reasonable if the HB 

interaction of methanol with water is not so different from that with methanol.

On the other hand, the second peak, which corresponds to the excited state with a large 

CH3 component, increases the blue shift as the mixing ratio of water increases. It is 

reasonable, considering that the blue shift arises from the interaction of methyl group in 

methanol molecule. Liquid methanol forms 1D/2D network structures and the methyl groups 

are apart from each other due to its hydrophobic interaction. When water molecules join the 

1D/2D HB network of methanol, the 3D HB network might be formed. Then, the interaction 

of methyl groups can be enhanced in binary  solutions and causes the blue shift of the second 

peak in the C K-edge spectra. The general behavior observed in Fig. 4 is consistent with that 

of the neutron diffraction11, where mixed methanol-water networks are formed and methyl 

groups become closer to each other in the methanol-water binary solution.
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When the second peak (289.55 eV) related to the methyl group is blue-shifted by 

increasing the mixing ratio of water. The pre-edge region shows a quasi-isosbestic point 

around 290 eV. Similarly in the case of the O K-edge region, it is possible to select one of the 

energy regions showing rather large change without detailed spectral analysis. This is 289 eV 

or 290.5 eV. The intensity of the valley  structure around 289 eV decreases rather sensitively 

and the signal-to-noise ratio in 290.5 eV is worse than in 289 eV. Therefore, the pre-edge 

region (289 eV) was used to investigate the change in the hydrophobic interaction at different 

concentrations.

Fig.5 shows the intensity in the energy region between 288.7 and 289.2 eV at different 

molar fractions of methanol (X) in the binary solution (CH3OH)X(H2O)1-X. The intensity is 

changed nonlinearly, and show three different behaviors with the borders of X=0.7 and X=0.3. 

Note that the similar nonlinear dependence is found for the energy region of 290.5 eV. In the 

methanol-rich region I (X>0.7), the intensity is not  so much changed as compared to the 

intensity of liquid methanol (X=1.0). The phase transition-like behavior of the intensity 

change is found at X=0.7. The slow decrease in intensity (indicating blue shift of the second 

pre-edge peak) continues when increasing the mixing ratio of water in the region II 

(0.7>X>0.3). The decrease in intensity becomes faster in the water-rich region III 

(0.30>X>0.05). These results suggest different local interactions of the methyl group at the 

different concentration regions.
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Figure 3  C K-edge XAS spectra of (a) methanol gas and (b) liquid methanol at 
25 ºC.

Figure 4  C K-edge XAS spectra of methanol-water binary solutions at different 
concentrations at 25 ºC. The mixing ratio of methanol in the solution decreases 
with molar fraction steps of 0.1 along indicated arrows.
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Figure 5  Results of the C K-edge XAS for the intensity dependence of the valley 
between 288.7 and 289.2 eV as a function of methanol molar fractions (X) in the 
methanol-water binary solutions (CH3OH)X(H2O)1-X. The intensities of methanol 
(X=1.0) and the dilute solution at X=0.05 are normalized to one and zero, 
respectively. Three characteristic regions are found with the borders of X=0.7 and 
X=0.3.

3.3.3 MD simulation

Without  any spectral calculation based on time-consuming density  functional theory or 

ab initio approaches, it would be simply understood that the C K-edge region is sensitive to 

the hydrophobic interaction around the methyl group of methanol. In order to get such 

information from the radial distribution function (RDF) of intermolecular interaction in the 

solutions, I have carried out the MD simulation by using GROMACS 4.5.5.66 The potential of 

methanol molecule is described by OPLSAA,67-68 and that of water molecule is TIP5P.69 

When compared with earlier models (TIP3P and TIP4P), TIP5P model forms a more 

"tetrahedral" water structure that better reproduces the experimental radial distribution 

functions from neutron diffraction. The temperature is controlled by the Nosé-Hoover 

thermostat method.70 The pressure is adjusted by the Parrinello-Rahman method.71 The 

simulation was performed at a time step of 1 fs with a periodic boundary condition and the 

particle-mesh Ewald method.72 The unit cell consists of 500 molecules, and the molar fraction 

of methanol (X) is changed from X=0.0 to X=1.0. Randomly distributed structures were 
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optimized by the simulations, which run during 50 ps at  100 K in the NVT condition, 50 ps at 

200 K and 1 atm in the NPT condition, and 400 ps at 298.15 K and 1 atm in the NPT 

condition. The equilibrium structures were obtained by  sampling the structures every 1 ps 

during a simulation time of 2 ns.

First, I calculated RDF of four different HB: Om-HOm, Om-HOw, Ow-HOm, and Ow-

HOw. The distances of both the first peak and the first minimum point in RDF are not changed 

even at different molar fractions. It means that the HB interaction of water is nearly the same 

as that of methanol as already discussed in the O K-edge XAS.

The number of HBs was counted at different molar fractions, based on the criterion of 

the distance between HO and O within the first  minimum point (2.5 Å) in RDF.73 By 

increasing the molar fraction of water, the total number of HBs increases linearly. The average 

number of HBs around water molecules is between 3.2 and 3.8, and that around methanol is 

between 1.8 and 2.5. This is consistent, considering the water molecule has two donor and 

two acceptor sites and the methanol molecule has one donor and one or two acceptor sites. 

The total average number of HBs increases at the higher mixing ratio of water molecules.

Fig.6 shows the RDF from C in the methyl group of methanol to surrounding atoms at 

different molar fractions of methanol (X) in the binary solution (CH3OH)X(H2O)1-X. Fig.6a 

shows the RDF of C with C and hydrogen H (HC) atoms in the CH3 group of neighboring 

methanol molecules. The RDF distances of both C-C and C-HC are slightly reduced by 

increasing the mixing ratio of water. This result is consistent with the results of neutron 

diffraction.11 Fig.6b shows the RDF of C with Om and HOm in neighboring methanol 

molecules. The intensities of both HOm and Om in the first  coordination peak decrease as 

increasing the mixing ratio of water. On the other hand, as shown in Fig. 6c, the intensities of 

both HOw and Ow in the first coordination peak increase as increasing the mixing ratio of 

water.

Fig.7 shows the coordination number by nearest neighbors HOm and HOw to the C atom 

in the methyl group of methanol at different binary  solutions. The coordination is defined 

within the RDF distance of 3.2 Å, which is the first minimum point of HOm and HOw as 

shown in Fig. 6. The methyl group  in liquid methanol (X=1.0) is surrounded by HOm (blue). 

By increasing the molar fraction of water, the number of HOm coordination decreases and 

instead that of HOw (red) increases. When the methanol molar fraction is below X=0.7, the 

number of HOw coordination becomes larger than the HOm coordination. It is reasonable 
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considering that the molar ratio of methanol and water is 2:1 at X=0.67 and the ratio of the H 

donating site is 1:1. However, the rate of increase in the number of HOw coordination is larger 

than the rate of decrease in the number of HOm coordination. The rate of increase in the 

number of HOw coordination is accelerated in the region III (0.3>X). On the other hand, the 

number of HOm coordination is nearly zero in the region III. Note that X=0.7 and 0.3 are the 

same borders in the spectral change of the C K-edge XAS as shown in Fig. 5.

Next, I investigate the mesoscopic scale HB network in the binary  solution. The average 

size of methanol clusters in pure liquid methanol (X=1.0) is 40 in the present MD simulation. 

The hydrophobic interaction of the methyl group prevents a large HB network formation, and 

permit only  formation of small methanol clusters with an average size of 40. This size is 

larger than the previously predicted size, 6-8 molecules.8

On the other hand, water molecules like to meet (bond) together to form a large HB 

network in solution. Fig.8 shows results of the MD simulation for the average HB network 

size and the average size of water-only clusters embedded in total HB networks at different 

molar fractions of methanol (X) in the binary solutions (CH3OH)X(H2O)1-X. A unit cell in the 

present MD simulation contains totally 500 molecules. 

In the methanol-rich region I (X>0.7), the average size of water-only  clusters is rather 

small considering that a water molecule is difficult to meet another water molecule in this 

region. Water clusters start to grow at X=0.7. As the molar fraction of methanol is down to 

X=0.3 in the region II (0.7>X>0.3), the rate of growing in size of water clusters is accelerated, 

and finally the average size of water clusters is equal to the total number of water molecules 

in the region III. At X=0.7, all the methanol and water molecules join a large HB network, 

though a large water-only  cluster is not yet formed in the network. The ratio of the total 

number of H donating (accepting) sites is 1:1 for water and methanol at  X=0.67; therefore, all 

the water and methanol molecules can meet (bond) together to form a large HB network at 

around X=0.7.
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Figure 6  Results of the MD simulation for the RDF of the C atom with 
surrounding atoms: (a) C and HC in methanol, (b) Om and HOm in methanol, and 
(c) Ow and HOw in water. The mixing ratio of methanol in the solution decreases 
from X=1.0 to X=0.1 with molar fraction steps of 0.1 along indicated arrows. 
Note that RDF in (c) is changed from X=0.9 to X=0.1.
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Figure 7  Results of the MD simulation for the coordination numbers of HOm 
(blue) and HOw (red) to the C atoms of the methyl group of methanol at different 
molar fractions of methanol (X) in the binary solutions (CH3OH)X(H2O)1-X. 
Below X=0.73 (region II), the coordination number of HOw becomes larger than 
that of HOm. In the region III (0.3>X), the linear dependence of HOm and HOw is 
not valid as shown by dashed lines.

Figure 8  Results of the MD simulation for the average HB network size (blue) 
and the average size of water-only clusters (red) embedded in total HB networks 
in a unit cell (500 molecules) of the binary solution (CH3OH)X(H2O)1-X as a 
function of molar fraction of methanol (X). The dashed line (red) is a total number 
of water molecules in the solution.
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3.3.4 Structures of methanol-water mixtures

From the result of the C K-edge XAS shown in Fig. 5, the interaction around the methyl 

group of methanol molecule shows characteristic changes at the three concentration regions. 

The MD simulations also show similar three concentration regions from the coordination 

number around the methyl group shown in Fig. 6 and the average cluster size shown in Fig. 7.

Fig.9a shows a typical structure in the binary solution at X=0.9 in the methanol-rich 

region I. As shown in Fig.8, the average size of water-only clusters is much smaller than the 

total number of water molecules. Water molecules form the HB network with methanol 

clusters and stabilize the total energy of the binary  solution. However, the interaction around 

the methyl group of methanol is not so much influenced by water molecules because of a 

small amount of isolated water molecules. It is consistent with the previous work,16, 27 where 

water molecules are coordinated to the terminal of methanol chains in the methanol-rich 

region.

Fig.5 shows a phase transition-like intensity  change at X=0.7 in the C K-edge XAS. Fig.

7 shows that the number of HOw coordination to the methyl group becomes larger than that of 

HOm coordination below X=0.7. In addition, Fig.8 shows that  the HB network of water 

clusters grows rapidly below X=0.7. Fig.9b shows a typical structure in the binary solution at 

X=0.5 in the region II. Water molecules form a large cluster and have the 3D HB network 

with methanol molecules, resulting in the increase of the interaction of the methyl group in 

methanol with water molecules. The phase transition-like behavior at X=0.7 in the C K-edge 

XAS (Fig. 5) indicates that the 3D HB network involving water clusters is dominant over the 

1D/2D HB network of methanol in the binary  solutions. This result is consistent with the 

previous MD simulation, in which the 1D chain structure of methanol molecules is changed to 

3D mixed clusters by adding water molecules.40

Fig.9c shows a typical structure in the binary solution at X=0.1 in the water-rich region 

III. The HB networks between methanol molecules are mostly  diminished, and methanol 

molecules are isolated in the 3D HB network of water. The hydration structures of methanol 

molecules are dominated by the 3D HB network of water, and the numbers of water 

coordination to the methyl group increase. As a result, the hydrophobic interaction around the 

methyl group is enhanced in this region, increasing a blue-shift in the C K-edge XAS. The 

previous theoretical studies suggested that hydration structures of methanol molecules are 

formed in this concentration region,41, 43, 45 consistent with the present result.
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It is known that  the thermodynamic parameter such as entropy and viscosity shows an 

extreme value at the molar fraction of X=0.30.1-2 Dougan et al. studied neutron diffraction 

experiments and MD simulations, and suggested that both methanol and water molecules are 

percolated in this region, and the thermodynamic parameters show extreme values at the 

molar fraction of X=0.27.12 It means that the structure and abundance of large mixed 

methanol-water HB networks in the binary  solution affect macroscopic thermodynamic 

properties.

Figure 9  Typical structures of methanol-water binary solutions at different 
concentrations: (a) X=0.9, (b) X=0.5, and (c) X=0.1. Methanol and water 
molecules are marked as green and white, respectively. HB between methanol and 
water is marked as an orange line.
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3.4  Conclusions

The local structure of methanol-water binary  solutions was studied by the O and C K-

edge XAS. The pre-edge peak in the O K-edge XAS reflects the HB interaction of oxygen 

atoms and shows almost linear concentration dependence in intensity. It indicates that the HB 

interaction of methanol with surrounding water molecules is nearly the same as in pure liquid 

methanol and the HB interaction of water with surrounding methanol molecules is nearly the 

same as in pure liquid water.

The C K-edge XAS enables us to investigate local structures around the methyl group of 

methanol molecules in the binary  solution. The peak around 290 eV in the C K-edge XAS 

corresponds to a transition of the C 1s electron to the unoccupied orbital around the methyl 

group, and shows the higher photon energy (blue shift) as the mixing ratio of water increases. 

It predicts enhancement in the interaction between the hydrophobic methyl groups by large 

water clusters in mixed methanol-water networks. The intensity change shows a nonlinear 

profile with three characteristic concentration regions in the binary solution (CH3OH)X(H2O)1-

X.

The three regions are consistently interpreted with the help  of the MD simulation. 

Liquid methanol is known to have the 1D/2D HB network structure.8 In the methanol-rich 

region I (X>0.7), the XAS spectra show only weak concentration dependence in intensity. A 

small amount of water molecules exists separately around the methanol clusters. Because the 

structure of methanol clusters is not so much influenced with water molecules, the interaction 

around the methyl group in methanol is not changed in this region. The phase transition-like 

decrease in the pre-edge intensity  occurs at the molar fraction of X=0.7. The 3D HB network 

of water start to grow rapidly  and the HOw coordination to the methyl group  becomes 

dominant over the HOm coordination when the molar fraction is below X=0.7. In the region II 

(0.7>X>0.3), methanol molecules form a large HB network with water molecules. As a result, 

the hydrophobic interaction of the methyl group is enhanced in this region. This behavior is 

reasonable considering that  the molar ratio of methanol and water is 2:1 at X=0.67 and the 

ratio of the H donating site is 1:1. The thermodynamic parameters such as entropy and 

viscosity  are closer to extreme values as the number of mixed HB networks increases at 

X=0.3. In the water-rich region III (0.3>X>0.05), the decrease of intensity in the 289 eV 

region in the C K-edge XAS is accelerated, indicating methanol molecules are embedded in 

the 3D HB network of water molecules.

57



The methyl group in the methanol-water binary solution shows three characteristic local 

structures: methanol-dominant 1D/2D HB network structure, methanol-water mixed 3D HB 

network structure, and water-dominant 3D HB network structure. These features are 

successfully  revealed by the pre-edge analysis in the C K-edge XAS, which is sensitive to the 

hydrophobic interaction of the methyl group, and the MD simulation.
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4.1  Introduction

Predicting binding affinity between two non-covalently bound molecules is a challenging 

problem in molecular science. Calculating binding affinities using atomistic simulations can provide 

detailed molecular level insight into molecular recognition, and help inform fields such as structure-

based drug design1–3 and self-assembly.4,5 For instance, an accurate and efficient method for predicting 

protein–ligand binding free energy can help screen a library  of candidate compounds against  a protein 

target, or assist  in lead optimisation, by predicting the impact of chemical modifications. Hence this is 

an active field for the computational drug design community.1,6,7

A broad class of methods for computing protein–ligand binding docks the ligand into the binding 

pocket and uses a scoring function to estimate the binding affinity.6,7 The scoring functions have 

explicit  terms to model various contributions to the binding free energy, such as the hydrophobic 

effect, hydrogen-bonding, and further entropic contributions, which are usually fitted to experimental 

binding data. This docking and scoring approach is fast, but may not be accurate, due to training set 

bias and an approximate treatment of conformational entropy.

An alternative class of methods employs atomistic force fields to model the interatomic and 

intermolecular interactions. To describe protein–ligand binding the energy function is typically taken 

to be an empirical form, either with explicit water molecules, or an implicit solvent model; I employ 

AMBER8 in the present study.

A range of simulation methods have previously been developed to compute binding free energies 

using force field energy models and molecular dynamics (MD) or Monte Carlo (MC) simulations. 

Alchemical methods, where atoms of one ligand are transformed to those for another ligand, are used 

to compute relative binding affinity. Thermodynamic integration9 and free energy perturbation10–12 

have been employed for alchemical free energy simulations. In another approach, the absolute free 

energy of binding is computed by equilibrium13,14 or non-equilibrium simulations15,16 along a physical 

pathway between the free and the bound ligand. These methods are formally rigorous, but are 

computationally expensive due to sampling limitations in MD or MC simulations of proteins. Another 

class of methods, including Molecular Mechanics/Poisson–Boltzmann Surface Area (MM/PBSA),17–20 

Linear Interaction Energy  (LIE),21–24 and others,25 rely on MD simulation of only the free and bound 

states. These endpoint methods are relatively less expensive than pathway methods, since intermediate 

states are not considered, but still require adequate MD sampling of the end states, which can be 

challenging for protein sized systems. On the whole, current physics-based methods are 
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computationally much more expensive than docking and scoring based methods and therefore have 

found limited utility in applications such as virtual screening.

The force field-based methods are potentially more accurate than docking and scoring 

approaches, as they have been developed to account  for explicit  intermolecular interactions and are 

typically fitted using statistical mechanical theories. However, these methods can be computationally 

expensive, since MD or MC simulations are easily trapped in local minima of the potential or free 

energy surface for relatively long time scales.

The superposition approach provides an alternative formulation for global thermodynamics 

within the energy landscape framework.26–28 Here, the partition function is written as the sum of 

contributions from the catchment basins29 of local potential energy minima.30–32 The contribution of 

each minimum can be estimated using the harmonic approximation, possibly  with anharmonic33 or 

quantum34 corrections. To apply  this procedure to calculate a binding free energy  one can evaluate the 

free energy  of the complex and the free molecules separately from databases of local minima for each 

species. This approach to binding free energy calculations is employed in the mining minima 

algorithm,35 which has been successfully applied to various biomacromolecular systems, especially 

small host–guest systems. Benchmark superposition calculations for atomic and molecular clusters 

show that the energy landscape approach can be much faster than MD or MC based methods, 

especially for cases of broken ergodicity,36–39 since the superposition partition function is explicitly 

ergodic.

To apply the superposition method for large systems requires appropriate sampling, because the 

number of local minima increases exponentially with system size.40,41 A new method has recently been 

described to implement such sampling systematically, and was applied successfully to atomic cluster.42 

Alternatively, the mining minima method has been extended to larger protein–ligand systems43 by 

focusing the calculation on regions around the binding pocket. For example, in ref. 43, protein atoms 

were partitioned into three layers of different thickness with respect to the distance from ligand atoms. 

Atoms in the 7 Å layer closest to the ligand were free to move, while those in the middle layer of 

thickness 5 Å were fixed. Atoms in the outermost layer were deleted.

In the present contribution, I present a method conceptually similar to mining minima, but with 

key differences in the implementation, which aim to improve the accuracy and sampling efficiency. I 

again partition the protein atoms into three layers according to distance from the bound ligand. Atoms 

in the ‘inner’ region, adjacent to the ligand, are unconstrained, while those in the ‘intermediate’ region 

are treated using the local rigid body framework.44 All atoms in the ‘outer’ layer were grouped as one 
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rigid body, but their contributions to the potential energy  of the system are retained. The local rigid 

body framework is used to reduce the number of degrees of freedom, both in sampling minima and in 

the calculation of normal mode frequencies. All ligand atoms are fully flexible.

To benchmark the procedure I systematically  increase the radius defining the innermost 

unconstrained region until the binding free energy converges. The key idea is that contributions from 

minima corresponding to alternative conformations of groups that are sufficiently  distant  from the 

binding site are expected to cancel between the free protein and the complex. Hence, I only need to 

sample consistent conformations for these degrees of freedom. The theory, described in Section 4.2.1, 

therefore corresponds to a factorisation of the partition functions for the protein, ligand, and complex. I 

therefore refer to the method as a factorised superposition approach (FSA).

I apply the FSA procedure to compute the binding free energy for human aldose reductase (5113 

atoms) and one of its inhibitors, phenyl acetic acid (PAC). Human aldose reductase is an NADPH-

dependent oxidoreductase, which catalyses the reduction of a variety  of aldehydes and carbonyls, 

including monosaccharides. It is primarily  known for catalysing the reduction of glucose to sorbitol, 

the first step in the polyol pathway of glucose metabolism.45

The next section describes the theory underlying the factorisation procedure, the calculation of 

approximate free energies, local rigidification, and the sampling of local minima. I then describe the 

system setup  for aldose reductase in Section 4.3, and discuss the conditions for convergence. I find that 

a flexible region of 14 Å, corresponding here to rigidification of about 80% of the protein, is required 

to obtain a converged binding free energy.
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4.2   Methodology

4.2.1 Factorised superposition approach

I wish to estimate the binding free energy or the free energy change, ΔF, involved in forming a 

complex AB from non-covalent association of two molecules A and B. The standard free energy 

difference of this reaction is given by ref. 46–48

e−βΔF
0
= C 0

8π 2
ZAB

ZAZB

, (1)

where ZX is the configurational part of the single-molecule partition function of species      X ∈ {A, B, 

AB}, C0 is the standard concentration, and β = 1/kT, with k the Boltzmann constant and T the 

temperature. The above expression is derived using classical thermodynamics so that the momentum 

factors in the partition function of the free molecules and the bound complex cancel. The translational 

and rotational degrees of freedom have been integrated out from the configurational integral; see ref. 

47 and 48 for a detailed derivation of the above expression.

I compute the partition functions [henceforth referring to the configurational integrals in Eq. (1)] 

using the super- position approach,26,28,30 where each ZX is written as a sum of contributions from local 

minima of the potential energy  surface. In this section, I describe the FSA framework, an extension of 

the superposition approach, which facilitates calculation of an approximate binding free energy from a 

subset of local minima.

The FSA framework was developed in order to provide a route to protein–ligand binding 

energies, where the number of relevant local minima becomes problematic for the standard 

superposition approach. To limit the number of minima, I assume that  the contributions of analogous 

alternative conformations of functional groups that are sufficiently  distant from the binding region 

cancel out. This scheme can be formalised by thinking in terms of the possible local conformations of 

distinct parts of the protein, such as backbone and side chain geometries. As a further simplification, I 

consider molecules that are not rotating or translating, and focus on the vibrational partition function 

for each local minimum.

To index the local minima I consider the possible conformations for each part of the molecule, 

and assume that I can identify them independently of the conformations adopted by the rest of the 

system (a factorisation). Each minimum can then be represented by a vector, x = (x1, x2, ...), where each 

component xi for i = 1, 2, 3,. . . identifies the local conformation of a region i. Some conformations of 

one region will preclude conformations of other regions, so the permitted combinations of xi are 

restricted, which prevents further factorisation in general. I now identify  local minima corresponding 
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to AB as xAB = (xA, xB). If certain local conformations are only possible in the complex, then the 

corresponding geometries in the separate A and B molecules are presumably high in energy, but can 

still be included in the possible conformations enumerated by xA and xB. To analyse the most plausible 

cancellation of contributions from alternative conformations that lie outside the binding region (the 

factorisation) I now assume that xAB can be partitioned into two sets as xAB = (uAB, vAB), as shown in 

Fig. 1. This formalism is designed to reflect our intuition that some local conformations are common to 

each molecule, while others associated with the binding region are not. The conformations collected in 

the vAB set therefore correspond to local structure that is identifiable in each of A, B and AB for all the 

conformations specified by the vector uAB. The corresponding regions in the separate A and B 

molecules are written as uA, vA, uB, and vB, and I assume that all possible conformations specified by 

vA and vB are also available in vAB for any uAB.

A significant simplification is possible if I need only consider a consistent reference 

conformation, v0A and v0B, respectively, for each group collected in vA and vB. In fact, this choice 

produces a combinatorial reduction in the number of minima that may need to be sampled. The 

analysis that follows defines the conditions under which this simplification will be valid. Furthermore, 

our local rigidification procedure44 provides an ideal framework for implementing this approach, and 

enables us to determine a minimal set of states for estimating free energies of binding.

The partition function for separate A and B molecules factorises and I therefore consider

ZA = zA uA ,vA( )e−βVA uA ,vA( )

vA
∑

uA
∑

= zA uA ,vA
0( )e−βVA uA ,vA0( )

uA
∑ ×

zA uA ,vA( )
zA uA ,vA

0( ) e
−β VA uA ,vA( )−VA uA ,vA0( )⎡

⎣
⎤
⎦

vA
∑

 (2)

and similarly for B. In Eq. (2), zA(uA, vA) and VA(uA, vA) are the vibrational partition function and 

potential energy for minimum (uA, vA). The sum is over all local minima of A, identified via their uA 

and vA conformational assignment. Next, I define f(uA, vA) as the free energy of a minimum

f uA ,vA( ) ≡ − 1
β
lnZA uA ,vA( ) +VA uA ,vA( )  (3)

and rewrite Eq. (2) as

ZA = e−β f uA ,vA( )

vA
∑

uA
∑ . (4)
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I define a free energy shift, ΔfA(uA, vA; v0A), as the free energy difference between a given minimum 

(uA, vA) and the corresponding reference (uA, v0A),

ΔfA uA ,vA;vA
0( ) ≡ fA uA ,vA( )− fA uA ,vA

0( ) . (5)

The partition function for each molecule can then be written as

ZX = e−β fX uX ,vX
0( ) e−βΔfX uX ,vX ;vX

0( )
vX
∑

uX
∑ , (6)

and the ratio of partition functions in Eq. (1) becomes

ZAB

ZAZB

= e−βΔF

=
e−β fAB uAB ,vAB

0( ) e−βΔfAB uAB ,vAB ;vAB
0( )

vAB
∑

uAB
∑

e−β fA uA ,vA
0( ) e−βΔfA uA ,vA ;vA

0( )
vA
∑ × e−β fB uB ,vB

0( ) e−βΔfB uB ,vB ;vB
0( )

vB
∑

uB
∑

uA
∑

 (7)

As noted above, I require the vAB = (vA, vB) conformations to appear in both the separate 

molecules and in the complex, and they must be identifiable for each minimum specified by different 

conformations in uAB = (uA, uB). Next I introduce two assumptions, schematically  described in Fig. 1, 

to simplify Eq. (7).

First, I assume that the shifts with respect to the reference conformation in the free energies ΔfX, 

are independent of uX when the conformations of the complex are chosen appropriately:

ΔfX uX ,vX ;vX
0( ) ≈ ΔfX vX ;vX

0( ) ∀ uX . (8)

The summations over the common regions then factorise giving:

e−βΔF =
e−βΔfAB vAB ;vAB

0( )
vAB
∑
⎡

⎣
⎢

⎤

⎦
⎥ e−β fAB uAB ,vAB

0( )
uAB
∑
⎡

⎣
⎢

⎤

⎦
⎥

e−βΔfA vA ;vA
0( )

vA
∑
⎡

⎣
⎢

⎤

⎦
⎥ e−β fA uA ,vA

0( )
uA
∑
⎡

⎣
⎢

⎤

⎦
⎥ e−βΔfB uB ,vB ;vB

0( )
vB
∑
⎡

⎣
⎢

⎤

⎦
⎥ e−β fB uB ,vB

0( )
uB
∑
⎡

⎣
⎢

⎤

⎦
⎥

. (9)

Second, I assume that, for a given minimum, the shifts in the free energy relative to the reference 

conformation, v0AB = (v0A, v0B), are the same in the complex and the separated molecules for all uAB, 

that is,

ΔfAB vAB;vAB
0( ) ≈ ΔfA vA;vA

0( ) + ΔfB vB;vB
0( ) ∀ uAB . (10)
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Note that, by construction, every  vAB conformation in the numerator of Eq. (7). can be associated with 

a product of terms from the vA and vB sums in the denominator. Therefore, using Eq. (10), the factors 

with summations over the common region in Eq. (10). cancel, giving the final result

e−βΔF ≈
e−β fAB uAB ,vAB

0( )
uAB
∑

e−β fA uA ,vA
0( )

uA
∑ e−β fB uB ,vB

0( )
uB
∑

. (11)

I must  therefore sum over members of the uAB minima and over local minima corresponding to all 

conformations of A and B in the same regions, with a Boltzmann weighting. A consistent set of local 

reference conformations v0AB must be used for the  other regions corresponding to vAB.

In the present work, the common regions included only the protein atoms (molecule A) since the 

ligand (molecule B) was treated as fully flexible, reducing Eq. (11) to

e−βΔF ≈
e−βFAB vAB

0( )
uAB
∑
e−βFA vA

0( ) × e−βFB
, (12)

where

e−βFX vX
0( ) ≡ e−β fX uX ,vX

0( )
uX
∑ , X ∈A, AB ,

and

e−βFB ≡ e−β fB uB( )

uB
∑

are the free energies for the free molecules and the complex. Note that the free energy of the protein 

and complex depend on the reference configuration of the common regions. Eq. (12) is the working 

equation for the applications considered below. Since I am primarily interested in the convergence of 

the binding free energy  with respect to the FSA framework, I do not include the 8π2/C0 prefactor from 

Eq. (1), and I treat all molecules in vacuum for this initial benchmarking.

Eq. (12) is quite intuitive, with consistent reference conformations selected for regions of the 

protein that interact only weakly with the binding site. The derivation defines the validity of this 

approximation. In particular, it is clear that sampling over a small number of local minima where the 

conformations in the weakly interacting region are not consistent would introduce systematic errors. 

For large systems the number of possible conformations will be combinatorial, and randomly chosen 

conformations are unlikely to be in correspondence.

70



A straightforward method for implementing Eq. (12) is to sample local minima with the common 

region constrained in the reference conformation. This sampling is accomplished here using the local 

rigidification framework.44 Our strategy for testing Eq. (12) is to check the convergence of the binding 

free energy as I expand the unconstrained region specified by  u. As a cross-validation, the result 

should be independent of the reference conformations specified by v0.

       

Molecule A Molecule B

Complex AB

vBvA

uAB

vAB

uA uB

fA(uA, vA) + fB(uB, vB)

Δf

rigidify common region as v0
AB=(v0

A, v0
B) 

ΔfAB(vAB; v0
AB)

fAB(uAB, vAB)
fA(uA, v0

A) + fB(uB, v0
B)

ΔfA(vA; v0
A)

ΔfB(vB; v0
B)

Δf

fAB(uAB, v0
AB)

Figure 1  (left) Schematic representation of the conformational indexing vectors for 
molecules A and B, and for the complex AB. (right) Schematic representation for the free 
energies of one local minimum of A, B and AB, representing fA(uA, vA), fB(uB, vB) and  
fAB(uAB, vAB). The difference, Δf, does not change if the shift corresponding to different 
vAB, ΔfAB(vAB; v0AB), is independent of uAB [Eq. (8)] and is, additive for ΔfA(vA; v0A) and 
ΔfB(vB; v0B) [Eq. (10)].

4.2.2  Free energy of local minima

In the harmonic approximation, the free energy, f, of a minimum is given by

e−β f = e−βVmin i

βhν( )κ
,     with   ν = ∏

i
ν i( )

1
κ , (13)

where h is Planck’s constant, Vmin is the potential energy of the minimum, and ν is the geometric mean 

of the κ = 3N − 6 vibrational normal mode frequencies. For a fully  flexible mole- cule, κ = 3N − 6

where N is the number of atoms. The number of vibrational modes is reduced if parts of the molecule 

are rigidified, as described in the next section. When applying the superposition formula I collect 

together the identical contributions for all permutation-inversion isomers of a given minimum, which 
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corresponds to weighting e-βf by 1/o, with o the order of the corresponding point group.26,30,49 An 

additional factor that depends on the atomic composition of the system is needed to enumerate the 

distinct local minima precisely, but cancels from all thermodynamic quantities. Since the point group is 

C1 for all the minima considered in the present work, o = 1. Eq. (13) also ignores overall translational 

and rotational contributions (Section 4.2.3.1 in ref. 47), which were found to make a negligible 

contribution to the free energy differences of interest in the present study.

4.2.2.1 Normal mode analysis in the local rigid body framework. 

The cost of diagonalisation of the 3N × 3N dimensional Hessian matrix required for calculating 

the normal mode frequencies for each minimum scales as O(N3). The computational expense is 

reduced when I consider the Hessian corresponding to local rigidification. Since the ligand is treated as 

fully  flexible, its normal mode frequencies are computed by diagonalising the standard all-atom 

Hessian.

I need to address two issues in order to perform a normal mode calculation with local 

rigidification. First, the Hessian matrix of second derivatives required for the normal mode analysis 

has dimension 3N for N atoms. Rigidification reduces the dimensionality, and corresponds to a 

projection of the degrees of freedom of the constrained atoms onto the rotational and translational 

degrees of freedom of the rigid bodies. Second, the moment of inertia tensor is generally not diagonal 

for the kinetic energy expressed in the local rigid body coordinates. Hence I need two steps to calculate 

the corresponding normal modes, as detailed below.

First I establish our notation, denoting the number of rigid bodies by NRB and the number of 

unconstrained atoms by NA. In the angle-axis representation27,50 each rigid body  I has six degrees of 

freedom: three representing the position of the centre of mass (translational degrees of freedom) 

rI={rI1, rI2, rI3 }, and three representing its orientation (rotational degrees of freedom) pI={pI1, pI2, pI3 }. 

For clarity, I employ capital letters for rigid bodies, and lower case for the sites in the rigid bodies. The 

coordinates of the sites, i, for rigid body I are denoted by rI(i)={rI1(i), rI2(i), rI3(i)}, where

r I i( ) = r I + SIx I i( ); i ∈I . (14)

I define xI(i)={xI1(i), xI2(i), xI3(i)} as the reference coordinates of the sites relative to the centre of 

mass of rigid body I, and SI as the rotation matrix constructed from the rotational degrees of freedom 

{pI} (in the angle-axis representation) that rotates rigid body I from its reference frame to its current 

orientation,
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SI = I+ 1− cosθ I( ) !p I !p I + sinθ I !p I ,  (15)

with I the identity  matrix, θI={(pI1)2+(pI2)2+(pI3)2}1/2 and  !p
I the skew-symmetric matrix obtained from 

the rotation vector pI:

 

!pI = 1
θ I

0 − p3
I p2

I

p3
I 0 − p1

I

− p2
I p1

I 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

. (16)

Using the above notation, the Hessian corresponding to local rigid body coordinates is given by

∂2V
∂rα

I ∂rβ
J =

∂2V
∂rα

I i( )∂rβJ j( )j∈J
∑

i∈I
∑ ,

∂2V
∂rα

I ∂pβ
J =

∂2V
∂rα

I i( )∂raJ j( )
∂SJ

∂pβ
J x

J j( )
⎡

⎣
⎢

⎤

⎦
⎥

a=1

3

∑
aj∈J

∑
i∈I
∑ ,

∂2V
∂pα

I ∂pβ
J =

∂2V
∂rb

I i( )∂raJ j( )b=1

3

∑
a=1

3

∑ ∂SI

∂pα
I x

I i( )⎡

⎣
⎢

⎤

⎦
⎥

j∈J
∑

i∈I
∑

b

∂SJ

∂pβ
J x

J j( )
⎡

⎣
⎢

⎤

⎦
⎥
a

,   for I ≠ J  (17)

∂2V
∂pα

I ∂pβ
J =

∂2V
∂rb

I i1( )∂raI i2( )b=1

3

∑
a=1

3

∑ ∂SI

∂pα
I x

I i1( )⎡

⎣
⎢

⎤

⎦
⎥

i2∈I
∑

i1∈I
∑

b

∂SI

∂pβ
I x

I i2( )⎡

⎣
⎢

⎤

⎦
⎥
a

+ ∂V
∂ra

I i( )
∂2SI

∂pα
I ∂pβ

I x
I i( )

⎡

⎣
⎢

⎤

⎦
⎥
aa=1

3

∑
i∈I
∑ ,

where I have used

∂ra
I i( )

∂pα
I = ∂SI

∂pα
I x

I i( )⎡

⎣
⎢

⎤

⎦
⎥
a

, i ∈I . (18)

The notation [....]a corresponds to the a-th component of the vector given inside the bracket. Further 

details of the derivations are given in Section 4.5.1.

To illustrate the computation of the normal modes, I first focus on the kinetic energy terms for 

the rigid bodies:

 
KRB =

1
2
M I !r I( )2 + 1

2
Jαβ
I !pα

I

β=1

3

∑
α=1

3

∑
I

NRB

∑
I

NRB

∑ !pβ
I ,  (19)
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where the mass of rigid body I is M I = mi

i∈I
∑ and Jαβ

I is the corresponding moment of inertia tensor. I 

choose to work in the moving frame of reference, where SI = I, as I find diagonalisation of the inertia 

matrix the most straightforward procedure. Here the moment of inertia has the usual definition.

I now wish to transform to coordinates where the kinetic energy is diagonal, with  QI,T and QI,R 

for the translational and rotational degrees of freedom of rigid body I, so that

 
KRB =

1
2
!QI ,T( )2 + 12 !Q

I ,R( )2⎡
⎣⎢

⎤
⎦⎥I=1

NRB

∑ . (20)

For the translational degrees of freedom, the required coordinate transformation is a simple rescaling: 

QI ,T = M I r I . However, for the rotational degrees of freedom, I must first apply  a coordinate 

transformation w I = A Ip I , so that the moment of inertia becomes a diagonal matrix with diagonal 

elements Ωα
I α = 1, 2, 3( ) .51,52 Then I can simply rescale the orientational coordinates by the moment 

of inertia Qα
I ,R = Ωα

I wα
I .

More generally, the total kinetic energy of the system consists of contributions from the rigid 

bodies and free atoms, and I can write it as

 
K = 1

2
!Qi
2

i=1

η

∑ , (21)

where η = 3NA + 6NRB  is the total number degrees of freedom. For the unconstrained atoms, 

Qi = Xi mi , where mi is the mass of the atom corresponding to atomic Cartesian coordinate Xi.

The next step in computing the normal modes is to expand the potential energy, V, in a Taylor 

series around a local minimum configuration with potential energy Vmin up to second order in the Q 

coordinates:

V =Vmin +
1
2

∂2V
∂Qi ∂Qj

QiQj
i, j=1

η

∑ . (22)

Here, Q is understood as the deviation from the local minimum configuration, which is defined 

as the local origin of coordinates. The Hessian matrix Hij = ∂2V / ∂Qi ∂Qj can be diagonalised using a 

matrix B, whose columns are the eigenvectors of H with associated eigenvalues ω i
2 = 4π 2ν i

2 :
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HijBjk =ω k
2Bik

j=1

η

∑ ; qi = BijQj
j=1

η

∑ , (23)

where qi are the normal mode coordinates. In this coordinate system the Hamiltonian H can be written 

as 

 
H =Vmin +

1
2

!qi
2 +ω i

2qi
2( )

i=1

η

∑ . (24)

Due to the overall translational and rotational symmetries, there are six zero normal mode 

eigenvalues. The total number of vibrational degrees of freedom in local rigid body coordinates is 

therefore κ =η − 6 , which is used in Eq. (13) to define the harmonic free energy  of an individual 

minimum.

4.2.3 Basin-hopping parallel tempering

The minima used in Eq. (12) to compute the binding free energy  were sampled using basin-

hopping global optimisation.53–55 The basin-hopping method steps between local minima of the 

potential energy surface, proposing moves by perturbing the current minimum, and accepting or 

rejecting the new structure obtained after minimisation using criteria such as the energy  difference.53–55 

I used the group rotation moves56 described in Section 4.2.3.1 for perturbing the conformation of the 

current minimum in both the unconstrained inner and locally rigid intermediate regions. The perturbed 

conformation was minimised using a modified L-BFGS algorithm57 with a tolerance of 0.001 kcal 

mol-1 Å-1 on the root mean square force. The new minimum was accepted or rejected using a 

Metropolis criterion based on the potential energy difference with respect to the previous minimum. 

Since the Metropolis criterion is based on the energy difference between local minima, all downhill 

barriers on the potential energy surface are removed. Uphill barriers are reduced to the difference in 

energy of the two minima. The minimisation and reduced barriers permit large perturbations of 

geometry, leading to effective sampling of the low energy regions of the potential energy surface of 

interest.

To enhance the sampling I employed the basin-hopping parallel tempering (BHPT) approach.58 

Conventional parallel tempering involves carrying out a parallel set of canonical Monte Carlo 

simulations at a range of temperatures, with periodic exchange attempts between the runs.59,60 In the 

BHPT approach the replicas evolving at different  temperatures are all basin-hopping runs58 and the 

exchanges are between the current minima in adjacent replicas.
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4.2.3.1 Group rotations.

To propose perturbed conformations within each basin-hopping replica, generalised rotation 

moves were developed. This scheme allows arbitrary groups of atoms to be rotated about an axis 

defined by a bond vector, maintaining maximum flexibility  without introducing reliance on standard 

topologies. Each group i has an associated user specified selection probability, P(select)i, and 

maximum rotation angle, θi
max , to allow for further fine tuning of the conformational sampling. These 

perturbations are referred to as group rotation moves.56 During each basin-hopping step:

1. For each group i, a random number ρ1 is drawn between zero and one. If P(select)i > ρ1 then 

the group is rotated in this step.

2. A second random number ρ2 in the range [-0.5, 0.5] is drawn and the rotation angle to be 

applied to the group is calculated asθi = 2πρ2θi
max , where θi

max is the maximum desired rotation angle 

for group i as a fraction of 2π.

3. The bond vector that connects the group to the rest of molecule is calculated and normalised 

before being scaled by θi .

4. For an atom with position vector r, the rotation matrix S  is generated using an implementation 

of Rodrigues’ rotation formula,62,63

Sr = Icosθ( ) + k̂X sinθ + k̂k̂T 1− cosθ( )⎡⎣ ⎤⎦r , (25)

where I is the identity matrix, k̂ is the rotation axis, and k̂X  is the ‘cross-product matrix’:

k̂ =
k1
k2
k3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
, k̂X =

0 −k3 k2
k3 0 −k1
−k2 k1 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

. (26)

This scheme was initially developed to allow for comprehensive sampling of small ligands, but in the 

current work it has been adapted to sample the rotameric states of protein side chains. Fig. 2 shows the 

rotatable groups used to explore the conformations of the LYS side chain as an illustration. I define up 

to three such rotatable groups for each amino acid side chain, where atoms are rotated about the Cα-Cβ, 

Cβ-Cγ and Cγ–Cδ bonds. For simplicity, I set P(select)i = 0.025 for all groups, giving an average of 5.5 

rotations per basin-hopping step for the 220 groups present  when R = 14 Å (see Section 4.3.4). The 

maximum rotation amplitude θi
max for each group  was chosen based on the group’s size and spatial 

extent, in an effort  to achieve the largest possible step size while minimising possible atom clashes 
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following a rotation. The values used in the current work can be found in Table A1 along with 

associated input files.

While the conformational changes during sampling are mainly determined by the group rotation 

of side chains and ligand, I also included small (0.1 Å) random Cartesian perturbations for all atoms, 

including the backbone, at every  basin-hopping step. In addition, the backbone was free to move 

during minimization in the free and locally rigid regions to accommodate side chain/ ligand 

movement. Thus, the backbone moves during the sampling. To estimate the contribution of the 

backbone movement, I looked at eight aldose reductase crystal structures with different ligands bound, 

which were obtained from the Protein Data Bank. Among these complexes, the smallest ligand has 18 

atoms and the largest has 49. The highest Cα-RMSD between the one I used as a starting point and any 

other is 0.723 Å for the whole protein and 0.609 Å for the residues within 16 Å of the ligand (Table 

A2). These small differences in backbone conformation reflect the fact that the backbone conformation 

is quite well defined for the species considered in the FSA procedure.
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Figure 2  The amino acid lysine (LYS) (a) coloured by element with carbon atoms 
labelled. (b)–(d) show the αβ, βγ and γδ groups that can be rotated during basin-hopping, 
with their associated selection probabilities P(select)i and maximum max rotation 
amplitudes θi

max . The axis of rotation is shown in red, while the atoms to be rotated are 

shown in blue. The graphical representations in Fig. 2–5 were prepared using the Pymol 
program.61
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4.3  Application to human aldose reductase

I employ the binding of human aldose reductase64 with phenyl acetic acid (PAC) as a model 

system to test the factorisation superposition approach (see Fig. 3). For the purposes of this study, 

since I am not focussing on the catalytic activity  of the enzyme, the NADP+ cofactor of the enzyme is 

considered to be part of the protein. The details of the simulation and local rigidification are described 

in Sections 4.3.1 and 4.3.2, respectively. The goals of the present work are to test the following two 

hypotheses. First, that the binding free energy should converge if the active binding site region is 

sufficiently large. Second, that the binding free energy should then be independent of the configuration 

of the inactive region. These hypotheses are tested by computing the binding free energy for systematic 

rigidification with three different reference conformations and examining the convergence to identify 

the maximum rigidification (factorisation) for which Eq. (12) holds.

4.3.1 Simulation set up

The simulations were performed using the AMBER ff99SB force field8 for the protein. 

Parameters for NADP+ were obtained from the AMBER parameter database.65 The PAC ligand was 

parametrised using the General Amber Force Field66,67 with RESP68,69 charges generated iteratively 

using GAMESS-US.70 A cutoff radius of 999.99 Å was used for non-bonded interactions, effectively 

including all pair-wise interactions. To evaluate the influence of the reference conformation, 

corresponding to v0A in Eq. (12), I prepared three initial conformations with different geometries for 

the rigid region. One conformation, named ‘St-1’, was obtained from the Protein Data Bank (PDB 

code 2INE).64 The other conformations, named ‘St-2’ and ‘St-3’, were prepared using a small number 

of basin-hopping steps starting from St-1 without any rigidification. St-2 and St-3 are arbitrarily 

chosen local minima. Similar convergence of the binding free energy with respect to R illustrates the 

point that any reference conformation v0 may be used in the Factorised Superposition Approach (FSA), 

as long as it is used consistently  throughout the minima sampling and normal mode calculations. Fig. 

4(a) shows St-1 and St-2 aligned on all atoms (RMSD 1.5 Å), while Fig. 4(b) shows the alignment for 

St-1 and St-3 (RMSD 1.9 Å). The main differences are the partial unfolding of a helix in St-2 and St-3, 

respectively. Most of the calculations were performed in vacuo to reduce the computational cost and 

facilitate more thorough benchmarking. An accurate solvation model is not required for the present 

study since the objective is to test the factorisation approach, rather than compare directly with 

experiment. Calculations involving explicit solvent will be the focus of future work, as will be 
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discussed in Section 4.3.6. In the present contribution I have simply relaxed the key local minima 

using an implicit solvent model to check that the convergence criteria are robust. 

Rigidification

PAC

NADP+

C7

Figure 3 Cartoon (left  top) and rigidified representations (right) of St1-Comp-R12. In the 
rigidified structure, the yellow lines represent the unconstrained inner region, the red 
surface shows the locally rigidified intermediate region, and the gray part is the outer 
region, rigidified as one group. The ligand PAC with the atom labels used in the text and 
the cofactor NADP+ are described in the insert.
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(a)

(b)

Figure 4 (a) Cartoon descriptions of St-1 (red) and St-2 (sky blue) after align- ment.The 
blue color of St-2 is translucent, thus the overlapped region looks gray. (b) St-1 (red) and 
St-3 (yellow).
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4.3.2 Systematic rigidification

For each structure, the free energy calculations were performed on multiple rigidified versions of 

the protein. The rigidification was applied systematically  to fewer protein atoms, with the 

corresponding complex initially  defined from identical protein and ligand coordinates. I determined 

the rigidified regions using the distance, R (in Angstroms), from the C7 atom of the PAC ligand, 

labelled in Fig. 3. The unconstrained inner layer consisted of all atoms of amino acid residues having 

any atom within a radius R of the C7 reference atom. If any atoms of a residue lay between radii R and 

R + 1 then I rigidified their peptide bonds, sp2 centres, and aromatic rings. This set formed the 

intermediate layer with local rigid bodies. Atoms in the outer layer were rigidified as a single group. 

Fig. 3 shows the resulting rigidification scheme for the complex with a threshold value of R = 12 Å 

defined for St-1 (denoted St1-Comp-R12) and the details of the local rigidification are shown in Fig. 5. 

For St-1, six different rigidified versions were used, corresponding to R = 6, 8, 10, 12, 14 and 16 Å. 

For St-2, four versions (R = 8, 10, 12, 14 Å) were prepared, and for St-3, two versions (R = 12, 14 Å) 

were prepared. In each case the cofactor NADP+ was part of the rigidified region. The number of atoms 

in each group is summarised in Table 1 as a function of R.

Local Rigidification

Figure 5  Examples of the local rigidifications corresponding to the intermediate region of 
Fig. 3. The image at the top  left shows residues 47–49 in human aldose reductase. In the 
local rigidification (right), the red group is an aromatic ring corresponding to the TYR47 
residue, the blue group corresponds to a peptide bond between GLN48 and ASN49, and the 
orange group is a trigonal centre (an amide group in this case) in the side chain of GLN48.
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shows the alignment for St-1 and St-3 (RMSD 1.9 Å). The main
differences are the partial unfolding of a helix in St-2 and St-3,
respectively. Most of the calculations were performed in vacuo
to reduce the computational cost and facilitate more thorough
benchmarking. An accurate solvation model is not required for
the present study since the objective is to test the factorisation
approach, rather than compare directly with experiment. Calcu-
lations involving explicit solvent will be the focus of future work,
as will be discussed in Section 3.6. In the present contribution
we have simply relaxed the key local minima using an implicit
solvent model to check that the convergence criteria are robust.
Example input files are provided in the ESI.†

3.2 Systematic rigidification

For each structure, the free energy calculations were performed on
multiple rigidified versions of the protein. The rigidification was
applied systematically to fewer protein atoms, with the corres-
ponding complex initially defined from identical protein and
ligand coordinates. We determined the rigidified regions using
the distance, R (in Angstroms), from the C7 atom of the PAC
ligand, labelled in Fig. 3. The unconstrained inner layer consisted
of all atoms of amino acid residues having any atom within a
radius R of the C7 reference atom. If any atoms of a residue lay
between radii R and R + 1 then we rigidified their peptide bonds,

sp2 centres, and aromatic rings. This set formed the intermediate
layer with local rigid bodies. Atoms in the outer layer were
rigidified as a single group. Fig. 3 shows the resulting rigidification
scheme for the complex with a threshold value of R = 12 Å defined
for St-1 (denoted St1-Comp-R12) and the details of the local
rigidification are shown in Fig. 5. For St-1, six different rigidified
versions were used, corresponding to R = 6, 8, 10, 12, 14 and 16 Å.
For St-2, four versions (R = 8, 10, 12, 14 Å) were prepared, and for
St-3, two versions (R = 12, 14 Å) were prepared. In each case the
cofactor NADP+ was part of the rigidified region. The number of
atoms in each group is summarised in Table 1 as a function of R.

3.3 Sampling local minima

The BHPT method (Section 2.3)58 implemented in our GMIN71

program was used to sample local minima for the protein and
complex for the different R values with both reference

Fig. 4 (a) Cartoon descriptions of St-1 (red) and St-2 (sky blue) after align-
ment.The blue color of St-2 is translucent, thus the overlapped region looks gray.
(b) St-1 (red) and St-3 (yellow).

Fig. 5 Examples of the local rigidifications corresponding to the intermediate
region of Fig. 3. The image at the top left shows residues 47–49 in human aldose
reductase. In the local rigidification (right), the red group is an aromatic ring
corresponding to the TYR47 residue, the blue group corresponds to a peptide
bond between GLN48 and ASN49, and the orange group is a trigonal centre
(an amide group in this case) in the side chain of GLN48.

Table 1 The binding free energy calculations were performed with the protein
(molecule A) atoms separated into three different regions. The inner region is fully
flexible, the intermediate region consists of local rigid bodies (LRB), and the outer
region is treated as a single rigid body. The total number of atoms in the ligand,
protein (including the cofactor NADP+) and complex (molecule AB) are 18, 5113 and
5131, respectively. The table gives the number of degrees of freedom for protein (kA)
and complex (kAB). The number of degrees of freedom for the ligand is kB = 48

St
Radius
R (Å)

% Rigid
(protein)

Number of rigidified atoms

kA kABIntermediate (# LRB) Outer

1,2 6 99 0 (0) 5091 66 120
8 97 36 (7) 4903 564 618

10 92 92 (17) 4640 1245 1299
12 87 114 (25) 4338 2133 2187
14 80 135 (29) 3972 3192 3246

1 16 78 100 (21) 3886 3507 3561

3 12 88 137 (27) 4378 1956 2010
14 81 146 (32) 3992 3117 3171
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Table 1 The binding free energy  calculations were performed with the protein (molecule 
A) atoms separated into three different regions. The inner region is fully flexible, the 
intermediate region consists of local rigid bodies (LRB), and the outer region is treated as a 
single rigid body. The total number of atoms in the ligand, protein (including the cofactor 
NADP+) and complex (molecule AB) are 18, 5113 and 5131, respectively. The table gives 
the number of degrees of freedom for protein (κA) and complex (κAB). The number of 
degrees of freedom for the ligand is κB = 48

4.3.3 Sampling local minima

The BHPT method (Section 4.2.3)58 implemented in our GMIN71 program was used to sample local 

minima for the protein and complex for the different R values with both reference structures. All 

BHPT simulations were performed with 12 replicas and temperatures exponentially spaced between 97 

K and 2435 K. Minimisation was performed using a modified version of the L-BFGS57 algorithm with 

a tolerance of 0.001 kcal mol-1 Å-1 for the root mean square force. Minima with energies within 0.01 

kcal mol-1 were considered duplicates and excluded from the set used for computing the free energy. 

For the BHPT run for the complex of St-1, the probability of escape from the previous minimum is 

37% at the lowest temperature and 62% at the highest temperature, which corresponds to an efficient 

choice of parameters.

For each minimum, normal mode frequencies were computed using our OPTIM72 program and 

harmonic free energies were obtained from Eq. (13) as the database of minima expanded (Fig. 6). 

Sampling was terminated when the change within the previous 2400 basin-hopping steps was less than 

0.01 kcal mol-1. Table 2 gives the total number of basin-hopping steps and the number of distinct 
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minima sampled for the different simulations. Among these minima, only  a few hundred contribute 

significantly to the super- position sums in Eq. (12), and this number increases with R, as expected. As 

an example, I show how FAB varies for St-1 in Table 3.

A single basin-hopping run of 1000 steps was performed for the ligand using a temperature of 

300 K in the accept/reject step. Only the lowest two local minima contribute significantly to the 

partition function of the noninteracting ligand.
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Figure 6  Binding free energies as a function of the number of distinct local minima 
sampled, corresponding to the progress of the BHPT run. Results are shown for six 
different values of the radius R, which defines the unconstrained region.
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structures. All BHPT simulations were performed with 12
replicas and temperatures exponentially spaced between 97 K
and 2435 K. Minimisation was performed using a modified

version of the L-BFGS57 algorithm with a tolerance of
0.001 kcal mol!1 Å!1 for the root mean square force. Minima
with energies within 0.01 kcal mol!1 were considered duplicates
and excluded from the set used for computing the free energy.
For the BHPT run for the complex of St-1, the probability of
escape from the previous minimum is 37% at the lowest
temperature and 62% at the highest temperature, which corre-
sponds to an efficient choice of parameters.

For each minimum, normal mode frequencies were
computed using our OPTIM72 program and harmonic free
energies were obtained from eqn (13) as the database of
minima expanded (Fig. 6). Sampling was terminated when
the change within the previous 2400 basin-hopping steps was
less than 0.01 kcal mol!1. Table 2 gives the total number of
basin-hopping steps and the number of distinct minima
sampled for the different simulations. Among these minima,
only a few hundred contribute significantly to the super-
position sums in eqn (12), and this number increases with R,
as expected. As an example, we show how FAB varies for St-1
in Table 3.

A single basin-hopping run of 1000 steps was performed for
the ligand using a temperature of 300 K in the accept/reject
step. Only the lowest two local minima contribute significantly
to the partition function of the noninteracting ligand.

3.4 Convergence of the free energy with the size of the
unconstrained region

We calculated binding free energies, DF, using eqn (13) for St-1,
St-2 and St-3 as a function of R, as shown in Fig. 7. For St-1, DF
increases from R = 6 Å to R = 14 Å and appears to have
converged at R = 14 Å. The DF values obtained for St-2 deviate
significantly from that of St-1 at R = 8 Å, but at R = 10 Å
DF approaches the value obtained at R = 14 and 16 Å for
St-1. Similar DF values are also obtained for St-3. DF at R =
14, 16 Å for St-1, R = 12, 14 Å for St-2 and R = 12, 14 Å for St-3 are
within 1.1 kcal mol!1, even though the number of degrees of
freedom (kX) and absolute free energies (FX) are quite different
for each R, as detailed in Tables 1 and 2. Thus, we conclude
that the factorisation superposition approach seems to be
applicable for this system with R Z 14 Å, for appropriate
reference conformations.

Fig. 6 Binding free energies as a function of the number of distinct local minima
sampled, corresponding to the progress of the BHPT run. Results are shown for six
different values of the radius R, which defines the unconstrained region.

Table 2 Total basin-hopping (BH) steps for 12 temperatures and the number of
distinct local minima obtained for the complex (AB) and the protein (A). The
binding free energies (DF) are calculated from the free energies of the complex
(FAB), protein (FA) and ligand (FB). A converged value of FB = 11.4 kcal mol!1 is
obtained from the two lowest minima characterised in a BH run of 1000 steps

St R

Total BH steps # Minima obtained Free energies (kcal mol!1)

Complex Protein Complex Protein Complex Protein DF

1 6 50 723 46 602 3229 2298 !9920.3 !9886.1 !45.6
8 25 002 24 106 3733 3595 !9464.1 !9434.6 !40.9

10 24 072 20 859 3680 2861 !8921.4 !8894.4 !38.4
12 28 467 29 130 4873 4606 !8221.7 !8194.9 !38.2
14 26 351 23 930 4800 4056 !7348.8 !7323.2 !37.0
16 47 880 41 172 6962 6200 !4052.7 !4027.1 !37.0

2 8 18 303 19 473 2117 2259 799.3 822.7 !34.8
10 15 610 31 317 1593 2091 1337.2 1362.1 !36.3
12 17 183 16 474 2400 2351 2021.2 2046.6 !36.8
14 19 235 15 030 3932 2899 2876.9 2901.9 !36.4

3 12 38 676 31 608 4388 3394 !5104.1 !5077.9 !37.5
14 33 816 26 340 3382 3405 !4398.7 !4372.9 !37.2

Table 3 Free energies of the complex (kcal mol!1) for reference St-1 using the Nmin lowest minima. The free energies changing by more than 0.001 kcal mol!1 from
the previous value are summarised below. The final values correspond to FAB in Table 2

Nmin R = 6 Å R = 8 Å R = 10 Å R = 12 Å R = 14 Å R = 16 Å

1 !9916.821 !9463.359 !8920.421 !8219.631 !7346.759 !4049.182
10 !9917.676 !9464.074 !8921.024 !8220.497 !7347.315 !4050.390
30 !9920.302 !9464.075 !8921.306 !8220.884 !7348.228 !4050.837
50 !8921.314 !8221.049 !7348.355 !4051.481
70 !8921.416 !8221.126 !7348.515 !4052.084
90 !8221.161 !7348.649 !4052.097
110 !8221.589 !7348.732 !4052.173
130 !8221.667 !7348.777 !4052.181
150 !8221.669 !7348.796 !4052.634
170 !7348.801 !4052.636
190 !7348.804 !4052.683
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Table 2 Total basin-hopping (BH) steps for 12 temperatures and the number of distinct 
local minima obtained for the complex (AB) and the protein (A). The binding free energies 
(ΔF) are calculated from the free energies of the complex (FAB), protein (FA) and ligand 
(FB). A converged value of FB = 11.4 kcal mol-1 is obtained from the two lowest minima 
characterised in a BH run of 1000 steps

This journal is c the Owner Societies 2013 Phys. Chem. Chem. Phys.

structures. All BHPT simulations were performed with 12
replicas and temperatures exponentially spaced between 97 K
and 2435 K. Minimisation was performed using a modified

version of the L-BFGS57 algorithm with a tolerance of
0.001 kcal mol!1 Å!1 for the root mean square force. Minima
with energies within 0.01 kcal mol!1 were considered duplicates
and excluded from the set used for computing the free energy.
For the BHPT run for the complex of St-1, the probability of
escape from the previous minimum is 37% at the lowest
temperature and 62% at the highest temperature, which corre-
sponds to an efficient choice of parameters.

For each minimum, normal mode frequencies were
computed using our OPTIM72 program and harmonic free
energies were obtained from eqn (13) as the database of
minima expanded (Fig. 6). Sampling was terminated when
the change within the previous 2400 basin-hopping steps was
less than 0.01 kcal mol!1. Table 2 gives the total number of
basin-hopping steps and the number of distinct minima
sampled for the different simulations. Among these minima,
only a few hundred contribute significantly to the super-
position sums in eqn (12), and this number increases with R,
as expected. As an example, we show how FAB varies for St-1
in Table 3.

A single basin-hopping run of 1000 steps was performed for
the ligand using a temperature of 300 K in the accept/reject
step. Only the lowest two local minima contribute significantly
to the partition function of the noninteracting ligand.

3.4 Convergence of the free energy with the size of the
unconstrained region

We calculated binding free energies, DF, using eqn (13) for St-1,
St-2 and St-3 as a function of R, as shown in Fig. 7. For St-1, DF
increases from R = 6 Å to R = 14 Å and appears to have
converged at R = 14 Å. The DF values obtained for St-2 deviate
significantly from that of St-1 at R = 8 Å, but at R = 10 Å
DF approaches the value obtained at R = 14 and 16 Å for
St-1. Similar DF values are also obtained for St-3. DF at R =
14, 16 Å for St-1, R = 12, 14 Å for St-2 and R = 12, 14 Å for St-3 are
within 1.1 kcal mol!1, even though the number of degrees of
freedom (kX) and absolute free energies (FX) are quite different
for each R, as detailed in Tables 1 and 2. Thus, we conclude
that the factorisation superposition approach seems to be
applicable for this system with R Z 14 Å, for appropriate
reference conformations.

Fig. 6 Binding free energies as a function of the number of distinct local minima
sampled, corresponding to the progress of the BHPT run. Results are shown for six
different values of the radius R, which defines the unconstrained region.

Table 2 Total basin-hopping (BH) steps for 12 temperatures and the number of
distinct local minima obtained for the complex (AB) and the protein (A). The
binding free energies (DF) are calculated from the free energies of the complex
(FAB), protein (FA) and ligand (FB). A converged value of FB = 11.4 kcal mol!1 is
obtained from the two lowest minima characterised in a BH run of 1000 steps

St R

Total BH steps # Minima obtained Free energies (kcal mol!1)

Complex Protein Complex Protein Complex Protein DF

1 6 50 723 46 602 3229 2298 !9920.3 !9886.1 !45.6
8 25 002 24 106 3733 3595 !9464.1 !9434.6 !40.9

10 24 072 20 859 3680 2861 !8921.4 !8894.4 !38.4
12 28 467 29 130 4873 4606 !8221.7 !8194.9 !38.2
14 26 351 23 930 4800 4056 !7348.8 !7323.2 !37.0
16 47 880 41 172 6962 6200 !4052.7 !4027.1 !37.0

2 8 18 303 19 473 2117 2259 799.3 822.7 !34.8
10 15 610 31 317 1593 2091 1337.2 1362.1 !36.3
12 17 183 16 474 2400 2351 2021.2 2046.6 !36.8
14 19 235 15 030 3932 2899 2876.9 2901.9 !36.4

3 12 38 676 31 608 4388 3394 !5104.1 !5077.9 !37.5
14 33 816 26 340 3382 3405 !4398.7 !4372.9 !37.2

Table 3 Free energies of the complex (kcal mol!1) for reference St-1 using the Nmin lowest minima. The free energies changing by more than 0.001 kcal mol!1 from
the previous value are summarised below. The final values correspond to FAB in Table 2

Nmin R = 6 Å R = 8 Å R = 10 Å R = 12 Å R = 14 Å R = 16 Å

1 !9916.821 !9463.359 !8920.421 !8219.631 !7346.759 !4049.182
10 !9917.676 !9464.074 !8921.024 !8220.497 !7347.315 !4050.390
30 !9920.302 !9464.075 !8921.306 !8220.884 !7348.228 !4050.837
50 !8921.314 !8221.049 !7348.355 !4051.481
70 !8921.416 !8221.126 !7348.515 !4052.084
90 !8221.161 !7348.649 !4052.097
110 !8221.589 !7348.732 !4052.173
130 !8221.667 !7348.777 !4052.181
150 !8221.669 !7348.796 !4052.634
170 !7348.801 !4052.636
190 !7348.804 !4052.683

PCCP Paper

Pu
bl

ish
ed

 o
n 

31
 O

ct
ob

er
 2

01
3.

 D
ow

nl
oa

de
d 

by
 O

K
A

ZA
K

I N
A

TI
O

N
A

L 
RE

SE
A

RC
H

 IN
ST

 o
n 

14
/1

1/
20

13
 0

1:
53

:2
7.

 

View Article Online

Table 3 Free energies of the complex (kcal mol-1) for reference St-1 using the Nmin lowest 
minima. The free energies changing by more than 0.001 kcal mol-1 from the previous value 
are summarised below. The final values correspond to FAB in Table 2
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4.3.4 Convergence of the free energy with the size of the unconstrained region

 I calculated binding free energies, ΔF, using Eq. (13) for St-1, St-2 and St-3 as a function of R, 

as shown in Fig. 7. For St-1, ΔF increases from R=6Å to R=14Å and appears to have converged at R = 

14 Å. The ΔF values obtained for St-2 deviate significantly from that of St-1 at R = 8 Å, but at R = 10 

Å ΔF approaches the value obtained at R = 14 and 16 Å for St-1. Similar ΔF values are also obtained 

for St-3. ΔF at R = 14, 16 Å for St-1, R=12, 14 Å for St-2 and R=12, 14 Å for St-3 are within 1.1 kcal 

mol-1, even though the number of degrees of freedom (κX) and absolute free energies (FX) are quite 

different for each R, as detailed in Tables 1 and 2. Thus, I conclude that the factorisation superposition 

approach seems to be applicable for this system with R ≥ 14 Å, for appropriate reference 

conformations.
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Figure 7  Binding free energies as a function of the rigidification radius, R. Results for 
St-1, St-2 and St-3 are shown in red, blue and green, respectively. The shaded region 
represents 1.0 kcal mol-1 around the average converged value.
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4.3.5 Computational cost

In the BHPT sampling using GMIN, each basin-hopping step for St1-Comp-R14 takes about 3.1 

times longer than for St1-Comp-R6 on average, because the coordinate space is larger for St1-Comp-

R14. For the normal mode analysis using OPTIM, the diagonalisation of the Hessian matrix for one 

minimum with κ = 3246 (R = 14) and κ = 15387 (without any rigidification) took 6 minutes and 46 

minutes of cpu time on average, respectively, the computational time scales roughly as κ1.5 , as 

suggested by the data in Fig. A1.

In spite of the speedup achieved using the rigid body framework, normal mode calculations for 

the protein and complex minima are still relatively  expensive. It is therefore desirable to use as few 

minima as possible in the superposition sums. Due to the Boltzmann weight in Eq. (13), the low-

energy minima dominate these sums. Table 4 shows the binding free energy computed using minima 

whose energies lie within a cutoff (EC) of the global minimum energy. I find that the binding free 

energy is determined by minima with energies within 10 kT of the global minimum at T = 298 K. This 

cutoff corresponds to a small fraction of the total number of minima sampled for the protein and 

complex. For example, a cut-off of 10 kT applied to the database of minima for the R = 14 Å 

simulations with St-1 drastically  reduces the number of minima of the complex from 4452 to 149. The 

number of relevant  minima for smaller R is even less. A substantial reduction in the total 

computational cost  can therefore be achieved by restricting the normal mode calculations to the low-

energy minima.
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3.5 Computational cost

In the BHPT sampling using GMIN, each basin-hopping
step for St1-Comp-R14 takes about 3.1 times longer than for
St1-Comp-R6 on average, because the coordinate space is larger
for St1-Comp-R14. For the normal mode analysis using OPTIM,
the diagonalisation of the Hessian matrix for one minimum
with k = 3246 (R = 14) and k = 15 387 (without any rigidification)
took 6 minutes and 46 minutes of cpu time on average, respectively,
the computational time scales roughly as k1.5, as suggested by
the data in Fig. S1 of the ESI.†

In spite of the speedup achieved using the rigid body
framework, normal mode calculations for the protein and
complex minima are still relatively expensive. It is therefore
desirable to use as few minima as possible in the superposition
sums. Due to the Boltzmann weight in eqn (13), the low-energy
minima dominate these sums. Table 4 shows the binding free
energy computed using minima whose energies lie within a
cutoff (Ec) of the global minimum energy. We find that the
binding free energy is determined by minima with energies
within 10 kT of the global minimum at T = 298 K. This cutoff
corresponds to a small fraction of the total number of minima
sampled for the protein and complex. For example, a cut-off of

10 kT applied to the database of minima for the R = 14 Å
simulations with St-1 drastically reduces the number of minima
of the complex from 4452 to 149. The number of relevant minima
for smaller R is even less. A substantial reduction in the total
computational cost can therefore be achieved by restricting the
normal mode calculations to the low-energy minima.

3.6 Incorporating solvent effects

The converged binding free energy was found to be approxi-
mately !36.8 kcal mol!1, corresponding to a standard binding
free energy of !29.8 kcal mol!1, which is significantly lower
than experimental binding affinity of !5.5 kcal mol!1.64 We
suspected that this discrepancy is primarily due to the absence
of solvent effects. To test this hypothesis, we repeated the
calculation for R = 14 Å with St-1, using the generalized Born
implicit solvent model, as implemented in AMBER.73 We relaxed
the lowest 500 minima identified in vacuum and recomputed the
normal mode frequencies for both the protein and the complex.
We did not resample minima for these tests, since the vacuum
and the corresponding recomputed potential energies in
the implicit solvent were found to be highly correlated (Fig. S2,
ESI†). Both the ligand minima were also relaxed using for
this case implicit solvent. The resulting binding free energy
was DF1 = !8.4 kcal mol!1, much closer to the experimental
value. We expect that sampling with a more accurate implicit
solvent model, such as linearized Poisson–Boltzmann,74 would
further improve the agreement with experiment.

We note that, in principle, the FSA framework can also be
applied for explicit solvent. However, a large number of explicit
water molecules would significantly increase the number of
minima, and further work would be needed to sample these
structures efficiently, probably by including solvent degrees of
freedom in the factorisation. Including a few explicit water
molecules might be also desirable, for example, in situations
where the crystal structure contains bridging water molecules
between the ligand and the protein.

4 Conclusions

We have presented a new method based on potential energy
landscape theory,26 the factorisation superposition approach
(FSA), for computing the binding free energy of a protein–
ligand complex. In this scheme the free energy of the free and
bound molecules are computed using the superposition
approach from a database of local potential energy minima.
Due to the exponential increase in the number of minima with
system size, exhaustive sampling is not feasible for a protein-
sized system. The FSA approach addresses this problem by
focusing the calculation on protein atoms that interact strongly
with the ligand. In Section 2.1 we presented the theory for
factorising the conformational space of the protein and
complex into two regions based on the size of the binding
pocket. The factorisation facilitates estimation of the binding
free energy using minima corresponding to fluctuations of the
binding region, thereby reducing the number of degrees of
freedom significantly. We describe the approximations under

Fig. 7 Binding free energies as a function of the rigidification radius, R. Results
for St-1, St-2 and St-3 are shown in red, blue and green, respectively. The shaded
region represents 1.0 kcal mol!1 around the average converged value.

Table 4 Binding free energy (kcal mol!1) for reference St-1 using protein and
complex minima with energies within Ecut of the global minimum. The binding
free energy computed using all the minima is given in Table 2. Ecut is in units of kT
for T = 298 K

Ecut R = 6 Å R = 8 Å R = 10 Å R = 12 Å R = 14 Å R = 16 Å

2 !42.8 !40.9 !40.6 !39.0 !36.7 !35.2
5 !45.6 !40.8 !38.4 !39.5 !37.7 !36.5
10 !45.6 !40.8 !38.4 !38.2 !37.0 !37.0
20 !45.6 !40.8 !38.4 !38.2 !37.0 !37.0
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Table 4 Binding free energy (kcal mol-1) for reference St-1 using protein and complex 
minima with energies within Ecut of the global minimum. The binding free energy 
computed using all the minima is given in Table 2. Ecut is in units of kT for T = 298 K
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4.3.6 Incorporating solvent effects

The converged binding free energy was found to be approximately -36.8 kcal mol-1, 

corresponding to a standard binding free energy of -29.8 kcal mol-1, which is significantly  lower than 

experimental binding affinity  of -5.5 kcal mol-1.64 I suspected that this discrepancy is primarily due to 

the absence of solvent effects. To test this hypothesis, I repeated the calculation for R = 14 Å with St-1, 

using the generalized Born implicit solvent model, as implemented in AMBER.73 I relaxed the lowest 

500 minima identified in vacuum and recomputed the normal mode frequencies for both the protein 

and the complex. I did not resample minima for these tests, since the vacuum and the corresponding 

recomputed potential energies in the implicit solvent were found to be highly correlated (Fig. A2). 

Both the ligand minima were also relaxed using for this case implicit solvent. The resulting binding 

free energy was ΔF0 = -8.4 kcal mol-1, much closer to the experimental value. I expect that sampling 

with a more accurate implicit solvent model, such as linearized Poisson–Boltzmann,74 would further 

improve the agreement with experiment.

I note that, in principle, the FSA framework can also be applied for explicit solvent. However, a 

large number of explicit water molecules would significantly  increase the number of minima, and 

further work would be needed to sample these structures efficiently, probably  by including solvent 

degrees of freedom in the factorisation. Including a few explicit water molecules might be also 

desirable, for example, in situations where the crystal structure contains bridging water molecules 

between the ligand and the protein.
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4.4  Conclusions

I have presented a new method based on potential energy landscape theory,26 the factorisation 

superposition approach (FSA), for computing the binding free energy of a protein–ligand complex. In 

this scheme the free energy of the free and bound molecules are computed using the superposition 

approach from a database of local potential energy minima. Due to the exponential increase in the 

number of minima with system size, exhaustive sampling is not feasible for a protein sized system. 

The FSA approach addresses this problem by focusing the calculation on protein atoms that  interact 

strongly with the ligand. In Section 4.2.1 I presented the theory for factorising the conformational 

space of the protein and complex into two regions based on the size of the binding pocket. The 

factorisation facilitates estimation of the binding free energy using minima corresponding to 

fluctuations of the binding region, thereby reducing the number of degrees of freedom significantly. I 

describe the approximations under which such a factorisation is valid, employing a local rigid-body 

framework44 to implement the FSA by treating atoms further from the binding site as collections of 

local rigid bodies. This procedure reduces the number of active degrees of freedom, but retains all the 

terms in the force field.

I applied the FSA method to calculate the free energy change for ligand binding with human 

aldose reductase protein while varying the size of the binding region. I performed the calculations for 

three different conformations of the rigid part of the protein and for different sizes of the binding 

pocket. For a given conformation of the rigidified region, I found that the binding free energy 

converged to within 1 kcal mol-1 as the size of the binding pocket was increased to about 14 Å, 

corresponding to an 80% reduction in the number of protein degrees of freedom. The converged 

binding free energy for all three conformations were found to be within 1.1 kcal mol-1, suggesting 

weak interactions between the ligand and protein atoms beyond 14 Å.

Several further improvements in the accuracy  and speed of the FSA method as presented here 

can be envisioned. Larger systems are likely to derive a greater benefit from the factorisation scheme, 

because the whole region unrelated to ligand binding can be rigidified into a single unit, with only  six 

rigid-body  degrees of freedom. A surprising result of this study is that, even though the number of 

minima increased rapidly  with the size of the unconstrained region around the binding pocket, the 

number of thermally  relevant minima remained small, of the order of few hundred conformations. 

Anharmonicity  corrections33,75,76 could improve the accuracy of the method, and the computationally 

intensive minima sampling and normal mode calculations should be highly amenable to distributed 

computing.
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One key  aspect of the FSA approach is the rigidification of large protein regions distant from the 

binding site. This approach assumes that the configurations of such regions change relatively little 

upon ligand binding. For proteins with significant allosteric effects,77,78 the regions should be rigidified 

in smaller domains, to avoid freezing out the protein allostery. The local rigid body approach, used in 

the ‘intermediate region’, and group rotations for sampling should still be applicable for any  ligand 

binding system.

The converged radius for the flexible region obtained in the present  work, R = 14 Å, is not 

expected to be universal, and other protein–ligand combinations will require analogous convergence 

checks. However, for a given protein, the value of R is likely  to be transferable for different ligands of 

comparable size.

In future work I will consider solvent effects in more detail, and present comparisons with 

alternative approaches for calculating the free energy difference. Our main purpose in the present work 

was to demonstrate the convergence of the FSA scheme. I hope that, with further benchmarking and 

computational optimisation, the FSA method could facilitate screening calculations associated with 

drug design.
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4.5  Appendix

4.5.1 Hessian in the local rigid body coordinates

In this section, I detail the derivations of the Hessian in the local rigid body coordinates. Our 

starting point is the first derivatives of the potential energy. For the translational degrees of freedom, rI, 

this is given by

∂V
∂rα

I =
∂V

∂ra
I i( )

∂ra
I i( )
∂rα

I
a=1

3

∑ = ∂V
∂rα

I i( )i∈I
∑

i∈I
∑ . (A.1)

Additionally, the first derivative of the potential energy with respect to the rotational

degrees of freedom, pI, gives
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I have employed the following relations in the above partial derivatives

ri = r I + SIx I i( ); i ∈I , (A.3)

∂ra
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I = δ aα , (A.4)
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The second derivatives then follow in a similar manner. There are four separate cases to consider, 

and I derive them below for each case
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4.5.2 Supporting tables and figures

θmax
i /2π

Residue name Three letter code αβ βγ γδ

Alanine ALA 1.0 - -

Arginine ARG 0.2 0.3 0.5

Asparagine ASN 0.5 1.0 -

Aspartic acid ASP 0.5 1.0 -

Cysteine CYS 1.0 - -

Glutamic acid GLU 0.3 0.5 1.0

Glutamine GLN 0.3 0.5 1.0

Glycine GLY - - -

Histidine HIS 0.3 0.5 -

Isoleucine ILE 0.5 1.0 -

Leucine LEU 0.5 1.0 -

Lysine LYS 0.2 0.3 0.5

Methionine MET 0.5 0.6 -

Phenylalanine PHE 0.3 0.5 -

Proline PRO - - -

Serine SER 1.0 - -

Threonine THR 1.0 - -

Tryptophan TRP 0.3 0.4 -

Tyrosine TYR 0.3 0.5 -

Valine VAL 1.0 - -

Table S1: The maximum rotation amplitudes θmax
i for the amino acid side chain groups

used in the current work. αβ, βγ and γδ refer to rotation about the Cα-Cβ, Cβ-Cγ and Cγ-Cδ

bonds respectively.

S2

Table A1  The maximum rotation amplitudes θi
max for the amino acid side chain groups 

used in the current work. αβ, βγ and γδ refer to rotation about the Cα-Cβ, Cβ-Cγ and Cγ–Cδ 
bonds respectively.
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PDB ID Cα-RMSD from 2INE (Å) Note

All in 16 Å from ligand

2INE 0.000 0.000 Complexed with Phenylacetic Acid, RMSD reference

2IQ0 0.094 0.085 Complexed with Hexanoic Acid

2IS7 0.137 0.145 Complexed with Dichlorophenylacetic Acid

2INZ 0.155 0.134 Complexed with 2-Hydroxyphenylacetic Acid

1AH0 0.497 0.248 Pig aldose redectase complexed with Sorbinil

1EL3 0.301 0.156 Complexed with IDD384 inhibitor

1EKO 0.474 0.290 Pig aldose reductase complexed with IDD384 inhibitor

1IEI 0.723 0.609 Complexed with Zenarestat

1MAR 0.482 0.495 Complexed with Zopolrestat

Table S2: Cα - RMSD between 2INE which we used as “St-1” and 8 aldose reductase crystal

structures with different ligands bound. Cα-RMSD for each pair is calculated for the whole

system and the residues within 16 Å of the ligand, respectively.

S3

Table A2  Cα-RMSD between 2INE which I used as “St-1” and 8 aldose reductase crystal 
structures with different ligands bound. Cα-RMSD for each pair is calculated for the whole 
system and the residues within 16 Å of the ligand, respectively.
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S4

Figure A1  Average calculation time for diagonalisation of the Hessian matrix. κ = 120, 
1299, 3246, corresponding to complexes with R = 6, 10, 14, and κ = 15387 (without any 
rigidification) are plotted. The fitting line scales as κ1.5, described as blue dashed line. The 
calculations were performed on a 2.6GHz Xeon X5650 machine.
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Figure A2  The potential energies in vacuum (V) and the corresponding recomputed 
energies in the implicit solvent (IS) are plotted. The Pearson correlation coefficient is 0.86.
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Chapter 5 

Summary
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The theoretical studies on complex chemical systems were presented in three chapters of this 

thesis. First, the basic molecular mechanism of the homogeneous ice melting was analyzed. It was 

shown that a separated defect pair (I-V), which is very  small in size, is the key  initial step of ice 

melting.  This defect pair is accidentally  created in the process of a thermally  distorted HB network 

segment (accumulation of 5+7 defects) trying to go back to the crystalline order.  The defect pair is 

entangled, i.e., is long-lived and persistently  agitates the HB network of a crystalline ice. It 

gradually destroys the resilient HB network and leads the system into the total melting. Secondly, I 

investigated how water mixes with methanol in the molecular level at different  water concentrations 

(X). The C K-edge XAS spectral intensity corresponding to the local structure around methyl group 

changes at X=0.3 and 0.7. MD simulation shows the percolation of the HB network among only 

water molecules and the mixture is broken above X=0.3 and 0.7, respectively. Thus, I clarified that 

the local structure of the mixture changes non-linearly governed by the global HB network 

behavior. In addition, I developed a conformational factorization method to improve the sampling 

efficiency for estimating the free energy of ligand binding for macro biomolecules, which is likely 

to facilitate screening calculations associated with drug design. 

In this thesis, I mainly focused on HBs network feature and showed that the HBs network is 

very resilient to change its phase, even the initial conformation is in the metastable state. 

Accordingly, at moderate temperature, the solid-liquid transition (melting) is hardly  achieved 

without the entangled mechanism to prevent the recrystallization and to promote the phase 

transition. The resilient behavior of HB network attributes to the character of local structure that 

each water molecule attempts to form tetra-coordinated HBs with its neighbors for potential energy 

stabilization. This HBs network character is still available in the aqueous mixture with the smallest 

amphiphile molecule (methanol) and the local structure changes around methyl group against the 

aqueous concentration corresponds to the global HBs network behavior composed of water and 

hydroxyl group. Thus, I have performed the MD simulations and carefully analyzed the detail 

structure and dynamics of HBs network in the process of ice melting and in the aqueous mixture, 

then revealed that the local HBs structure strongly  correlates with the global HBs network. In 

addition, I developed the new calculation approach for the ligand-binding free energy, which must 

be useful to evaluate water contribution to the ligand binding process.

In the future work, the molecular mechanism, I found in the homogeneous melting of ice, 

must be explored in the melting processes of other atomic/molecular solids. The role of the 

interstitial defects and the entanglement of the network can be essential for not only ice but also 

other solids. The knowledge on the detail molecular mechanism of the phase transitions will be 
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useful to understand how the complex molecular systems such as proteins and many  biological 

molecular system can exhibit functionalities; for example, a biomolecular system often undergoes 

sequential unique reactions with a very small energy  (ratchet-type mechanism), and a drastic 

conformational change of ligand-protein system is initiated by a small ligand molecule or a small 

local signal (amplification).
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