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The Hartree-Fock (HF) approximation to the molecular electronic Schödinger equa-

tion can recover more than 95 % of the molecular electronic energy within a single-particle

picture. In the single-particle or mean-field picture, the correlated motion of the electrons

is not taken into account. Many-electron nature that goes beyond the single-particle pic-

ture is called as electron correlation, which does give rise to the rest of the electronic

energy. The magnitude of the electron correlation effect in energy is of the same order of

the chemical energetics such as the reaction and the dissociation energies[1]. Therefore,

in modern quantum chemistry, inclusion of the electron correlation is an indispensable

key for quantitative computational prediction of molecular properties. When the HF

description is qualitatively correct as a reference and the electron correlation can be ac-

counted for as its relative perturbation, the single-reference correlation theories such as

Møller-Plesset perturbation (MP), configuration interaction (CI) and the coupled-cluster

(CC) can improve upon the HF wave function and associated energy.

When the HF wave function may not give even a qualitatively correct description, one

has to use the multireference electronic structure theory. In the multireference frame-

work, the reference function is not confined to be a single Slater determinant, but is

described using multiple reference determinants or configurations on an equal footing.

Consequently, the multireference wave function is suitable for encoding a portion of the

electron correlation, the so-called static correlation, which is physically characterized as

a superposition state of the configurations rather than a scattering of the electrons. The

remaining portion of the correlation is referred to as the dynamic correlation and stems

mainly from the short-range interaction amongst the electrons.
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The concept of the Complete-Active Space (CAS) of Roos et al.[2, 3], or equiva-

lently the fully-optimized reaction space (FORS) of Ruedenberg et al.[4] has provided

an innovative way to capture the static correlation, leading to a multireference analogue

of the HF self-consistent field theory; the Complete-Active Space Self-Consistent Field

(CASSCF) theory. In the CAS model, molecular orbitals (MOs) are classified into three

types; doubly occupied core, fractionally occupied active and unoccupied virtual orbitals

as depicted in Fig. 1.1. In the CASSCF procedure, the wave function is constructed as a

linear combination of the determinants that are generated by (1) occupying all the core

MOs with a pair of electrons, and (2) distributing 0, 1, or 2 electrons in the active MOs

in all the possible way. The expansion coefficients for determinants as well as MOs are

optimized variationally to yield minimal electronic energy. Consequently, the static cor-

relation in the active space is described in the CASSCF wave function and the optimized

MOs. On top of the CASSCF reference function, the dynamic correlation is taken into

account by considering electronic interactions among core, active and virtual MOs. The

introduction of dynamic correlation is carried out by means of the multireference MP, CI

and CC approaches as addressed hereinafter.

To the best of our knowledge, the eldest multireference theory is the multireference

configuration interaction (MRCI) in which, typically, singly- and doubly-excited configu-

rations with respect to the (multiple) reference configurations are taken into account[5, 6].

When the reference function or CAS space is formed properly, the MRCI wave function

is known to give extremely accurate description even in case that bond formation or

breaking takes place, involving substantially strong quasi-degeneracy. A primal draw-
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back of the MRCI is a lack of the size-consistency in the energy i.e. the total energy of

the super-system composed of subsystems A and B is not equal to a sum of the energies

of the subsystems. The quadruple excitations contributions referred to as the exclusion

principle violating (EPV) terms are responsible for retaining this property[7, 8].

Starting from the multireference coupled-cluster (MRCC) ansatz[9, 10, 11, 12, 13, 14,

15], which is a potentially size-consistent parameterization, several formulae to approxi-

mate the effect of the EPV terms have been proposed; Multireference Averaged Coupled-

Pair Functional (MR-ACPF) by Gdanitz and Ahlrichs[16, 17, 18], Multireference Aver-

aged Quadratic Coupled-Cluster (MR-AQCC) by Szalay and Bartlett[19, 20, 21], Mul-

tireference Full Coupled-Pair Functional (MR-FCPF) by Malrieu et al.[22, 23, 24, 24], and

Multiconfigurational Coupled Electron-Pair Approximation (MCCEPA) by Staemmler et

al.[25]. All of these methods are formulated on the basis of the approximate energy func-

tional by which the energy and the reduced density matrices (RDMs) are determined

variationally. It is notable that the MRCI energy obeys the upper-bound nature; the

MRCI energy is always much higher than the exact energy. Nevertheless, the approxi-

mately size-consistent variants do not fulfill this property because their energy function-

als are constructed by means of the a priori parameters. Amongst the above mentioned

size-consistency correction schemes, only MR-FCPF and MCCEPA give the exactly size-

consistent energy although their implementations into the MRCI programs require much

greater development efforts than those of the rests. The other means to approximate the

effect of the EPV terms is the so-called Davidson-type correction[26, 27, 28, 29, 30], by

which the MRCI energy is scaled by using the reference amplitude (or CI coefficients).
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With inclusion of the approximate EPV terms into the MRCI formulae, the lack of the

size-consistency in the MRCI approach is no longer a practical impedance for the accurate

application to the systems such as the chemical reactions.

The multireference second-order perturbation theory (CASPT2) was developed as

a (potentially) size-consistent and computationally affordable alternative to the MRCI

approaches by Roos et al.[31, 32]. The CASPT2 is a multireference extension of the

second-order MP (MP2) method and indeed produce the MP2 correlation energy when

the reference function is set to the HF wave function. Despite the resemblance to the

MP2, in multireference case, there is an ambiguity on the definition of the zeroth order

Hamiltonian. For this reason, several forms of the zeroth order Hamiltonian have been

developed so as to better produce experimental results[33, 34]. Since the CASPT2 is

developed on the basis of the single state perturbation theory, if there exists a closely

degenerated state to the reference state as seen in case of the conical intersections, or the

crossing avoidance amongst the several state, the CASPT2 is known to be ill-behaved.

With the intention of dealing with such a case, the Multiconfigurational Quasi-Degenerate

Perturbation Theory (MC-QDPT)[35], or the Multi-State CASPT2 (MS-CASPT2)[36] is

developed in the framework of the multi-state perturbation theory.

Under the existence of the so-called intruder states, which is typically characterized

as an excitations from the active MOs into the low-lying occupied or virtual MOs, the

CASPT2 indicial equation often shows the singular behavior where the zeroth Hamil-

tonian minus the zeroth energy (H0 − E0) may become small or negative[37]. This

can be circumvented by varying the type of the zeroth Hamiltonian, or by using the
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level-shift[34]. However, the choice of the zeroth Hamiltonian and the magnitude of the

level-shift may affect the quality of the energy and the wave functions. Another way to

avoid the intruder state problem is to combine the MRCI and CASPT2 frameworks; the

excitations from the active MOs ((active, active) → (active, virtual) and (active, active)

→ (virtual, virtual)) are treated in the MRCI framework while the rests, which involve

at least one core MOs, are handled within the CASPT2 framework[37]. The joint ap-

proach is referred to as CIPT2. The CIPT2 is known as being liberated from the intruder

state problem since the excitations solely from the active MOs are responsible for this

phenomenon and are treated in the CI framework.

The MRCC has been extensively developed by Mukherjee et al.[9, 11], Jeziorski and

Monkhorst[10], Simons et al.[14], Bartlett et al.[15], Hanrath[13], Hanauer and Köhn[38,

39], Gauss et al.[40, 41, 42, 43, 44, 45], Yanai and Chan et al.[46, 47, 48, 49, 50, 51], and

many others[12, 52, 53]. For the HF reference function, the CC theories are conceived as

the most successful electron correlation theory because it is size-consistent and unitary-

invariant. Moreover, the CCs are more robust than the MP perturbation expansions,

which often become ill-behaved under the existence of the quasi-degenerated configura-

tions. Despite the prosperity of the single-reference CC, as far as we know, the MRCC

approaches are still under development and so far the gold standard MRCC has never

been established yet.

Computational complexity of the conventional multireference electron correlation the-

ory within the CAS framework directly depends on the dimension of the Hilbert space.

This means that the computational demands increase exponentially with respect to the
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molecular size. Therefore, the applicability of the CAS-based multireference approach is

limited to utmost an active space with 16 electron in the 16 MOs. A way to avoid this

complexity is to use the concept of the Restricted Active Space (RAS)[54, 55, 56], or the

Generalized Active Space (GAS)[57, 58] instead of the CAS model. The RAS (or GAS)

can be conceived as a generalization of the CAS, and the correlation in the active space

is solved by means of the truncated CI at several excitation levels. It has been shown

that the RAS based multireference perturbation theory (RASPT2) can indeed handle

a large-size active space, such as active space with 29 electrons distributed in 28 active

MOs[56, 59], which is far from tractable for the conventional CASPT2 method. However,

a specific care has to be taken into account in order to achieve the chemical accuracy

because, unlike the CAS case, the RAS framework can cover only a selected portion of

the active-space correlations within the Hilbert space. In addition, the adequacy of the

RAS setting may strongly depend on specific expertise of the users.

The recent progress in ab initio Density-Matrix Renormalization Group (DMRG) has

opened a new way to eliminate the exponentially growing complexity from the multirefer-

ence electron correlation theory[60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75].

The DMRG algorithm is an efficient alternative to the full CI method. The compact pa-

rameterization of the DMRG wave function achieves the drastic reduction in the compu-

tational cost for overcoming the exponential complexity in the CI treatment required for

the multireference theory. Accurate DMRG calculations of the active-space energy and

the energy differences for the systems with the approximately 30 – 40 active MOs have

been reported in Refs.[63, 68, 76, 70, 77]. The breathtaking performance of the ab initio
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DMRG has greatly extended the applicability of the multireference quantum chemistry.

The CASSCF that uses the DMRG algorithm for the full CI treatment in the active

space is referred to as the DMRG-CASSCF (or DMRG-SCF at the earlier stage) and is

originally proposed independently by Zgid and Nooijen[78], and by Chan et al.[79]. In the

DMRG-CASSCF procedure, one- and two-body RDMs in the active space are generated

by the DMRG for construction of the energy gradient with respect to the orbital rotation

and then, the subsequent orbital optimization is carried out like the conventional CASSCF

method. The only difference between the DMRG- and conventional CASSCF methods

lies in the algorithm to perform the active space CI; the ab initio DMRG for the former

and the usual full CI for the latter. Recently, the DMRG-CASSCF study by Kurashige

et al.[80] reported high-level electronic structure calculations on the Mn4CaO5 cluster, a

catalytic metalloenzyme in photosystem II. In this study, a fairly large basis set and the

CAS with 44 electrons distributed in the 35 MOs are used and such a large active space

is apparently far beyond the reach of the conventional CAS methods.

The CASPT2 with the DMRG reference function is developed by Kurashige and

Yanai[81] and applied to the potential energy calculation of the Cr2 molecule. The

calculation involved the active space with the 12 electrons in the 28 MOs and promising

agreement with the experimental results was confirmed. The equilibrium inter-nuclear

distance and spectroscopic parameters for Cr2 were also calculated by using the DMRG-

CASPT2 and conventional MR-AQCC, the latter of which used the active space with

12 electrons in 12 MOs. The obtained values were reasonably well in comparison to

the experimental values. However, by the nature of the CASPT2, the choice of the
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zeroth Hamiltonian certainly affected the accuracy of the results. The connectivity of

the CASPT2 framework is borne by the internally contracted (IC) representation of the

wave function ansatz, which was originally proposed by Meyer[82].

The IC basis is an alternative constitutional unit of the many-body wave function to

the Slater determinant. When the CAS-based multireference wave function is constructed

as a linear combination of the determinants, the expansion length would increase expo-

nentially with respect to the molecular size. The Hamiltonian matrix elements appear to

be represented as a product of the one- or two-body molecular integral and a coupling

coefficients of the determinants, which are efficiently calculated by means of the group

theoretical algorithms[83, 84, 85, 86]. On the other hand, when the wave function is rep-

resented as a linear combination of the IC basis, increase in the expansion length stays

polynomial order with respect to the molecular size. In this case, the matrix elements

can be represented as a product of the molecular integrals and the active space RDMs

instead of the coupling coefficients. In a combination of the multireference wave function

and the DMRG reference, the RDMs produced by the DMRG algorithm are used for

construction of the Hamiltonian.

In Chapter 2, the development of the MRCI that can use the DMRG reference func-

tion, referred to as DMRG-MRCI, is presented and the performance to the linear polyene

molecules ranging from C6H8 to C24H26 is given. In this calculation, it has been shown

that the computational scaling of the DMRG-MRCI is polynomial order while that of

the most sophisticated implementations of the conventional MRCI[87, 88, 89, 90] scale

exponentially. The adiabatic singlet and triplet gap for the free-base porphyrin was also
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calculated by using the DMRG-MRCI where all the π electrons and MOs were taken into

account in the active space. As a consequence, extremely promising agreement with the

experimental and the diffusion Monte Carlo (DMC) results has been confirmed. Origi-

nally, the IC-MRCI was developed by Werner et al. in 1982[91]. However, their ansatz

necessitates the five-body RDM (5-RDM) in construction of the semi-internal excitation

blocks, leading to the computational scaling at least of O(N11) where N is a magnitude of

the molecular size. The quite high computational effort of the earliest IC-MRCI has hin-

dered its practical application to the medium-size molecules. To eliminate this drawback,

we express the semi-internal Hamiltonian elements by using the multiple-commutators

and then, the lengthy 5-RDM has proven to vanish exactly[92, 93]. Moreover, we em-

ploy the cumulant-approximation[94, 95, 96, 97] to decompose the 4-RDMs, which is still

large for the systems with approximately 20 – 30 active MOs. As a consequence, in

our IC-MRCI formalism, the construction of the Hamiltonian requires only 1 – 3 RDMs

and its computational scaling is estimated to be of O(N9). Due to the introduction of

the IC basis, the tensor-contracted form of the MRCI equation becomes so complicated

that the manual implementation into the computer code, which is an error-prone proce-

dure, seems impossible. To this end, we develop the tensor generator[98] to expand the

many-body ansatz according to the Wick’s theorem and to translate into the efficiently-

vectorized computer code using the Message-Passing Interface (MPI) parallelism. On the

basis of the DMRG-MRCI program, we have implemented the MR-ACPF, MR-AQCC

and MR-CEPA0 that can also use the DMRG reference function.

In Chapter 3, we report the practical applications of the DMRG-MRCI to the iron-
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oxo porphyrins. The iron-oxo porphyrin derivatives are known to play a crucial role in

the cytochrome P450 catalytic cycle[99, 100]. In such a in vivo enzymatic reaction, the

active intermediate is supposedly conceived as iron(IV)-oxo porphyron radical cation,

which is often referred to as Compound I (Cpd I). The spectroscopic consensus supports

this speculation[101, 102, 103, 104, 105, 106]. Nonetheless, the recent advances in the

laser-flash photolysis (LFP) spectroscopic technique has suggested the existence of the

relatively stable iron(V)-oxo porphyrin[107, 108] and coincides with the data from the

UV/vis spectroscopy. The existence and, if it exists, the stability of the low-lying iron(V)-

oxo porphyrin electronic isomer (electromer) have been studied by means of density

functional theory (DFT) and RASPT2 by Pierloot et al.[59]. In the RASPT2 calculations,

they used the 16 π MOs of the porphyrin, all of the 3d orbitals of iron and 3 double-shell d

orbitals in the active space, leading to the RAS with 29 electrons in the 28 MOs. Contrary

to the experimental consensus, their extremely large calculations have suggested that the

iron(V)-oxo porphyrin may be much more stable than the iron(IV) electromer in vacuo,

which is, however, considered to be the ground state. The key to address this collision

of the calculations against the experiments is speculated as the existence of the solvent:

Under a presence of the polarizable continuum surrounding, iron(IV)-oxo porphyrin is

stabilized relative to the iron(V)-oxo electromer within their DFT calculations. Against

this background, we perform the highly-accurate DMRG-MRCI calculations on these

electromers with a much larger active space; 29 electrons in the 30 MOs.

For carrying out the extremely-large scale MRCI calculation, we have rewritten a sym-

bolic manipulation and optimization module in our tensor generator by using Haskell, a
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purely-functional programming language[109]. By expanding the cumulant-approximated

form of the 4-RDM in the MRCI formulae explicitly, and by factorizing them into a stream

of the binary contraction, the formal scaling of the DMRG-MRCI has been reduced to

O(N8) from the previous order of O(N9). For evaluation of the tensor contractions, use

of the matrix-matrix multiplication routine (like DGEMM) as a kernel may require the sort-

ing of each tensor in the binary contraction as a preprocess. For the larger molecules,

or much more active MOs, the inefficient sorting algorithm often causes a substantial

amount of cache-miss. Hence, for the large systems such as an iron-oxo porphyrin with

30 active MOs, optimization of the loop structure for the sorting step is an indispensable

key. To this end, we have added a functionality to optimize the loop structure in the

code generator. Due to these modifications, the current version of the DMRG-MRCI

program is more than 20 times faster than the earlier one. In Chapter 4, the plausibility

of the oxygen-oxygen bond formation process from water, that is catalyzed by a differate

intermediate ([H4Fe2O7]
2+), is evaluated by using the DMRG-based methods (CASSCF,

CASPT2 and MRCI) and DFTs. For the multireference calculation, an extremely large

active space with 36 electrons distributed in the 32 active MOs is used. The optimiza-

tion in the algorithms is a key to such an extraordinarily large scale MRCI calculation.

Finally, the general conclusion is drawn in Chapter 7.

Apart from the multireference electron correlations, Appendices A and B are de-

voted to the developments of the second order polarization propagator in the algebraic-

diagrammatic construction framework, which is referred to as ADC(2)[110, 111, 112, 113].

The ADC(2) propagator can be conceived as a linear-response to the ground state MP2
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wave function. Therefore, the excitation energy and the expectation values with respect

to the excited state, which are calculated by seeking the pole structure of the ADC(2),

are consistent with the MP2 treatment of such ground state properties. The numerical

problem to calculate the excitation energy and the transition amplitude from the ADC

propagator is given as a symmetric eigenvalue equation with respect to the response ma-

trix. In case of the ADC(2), the response matrix is expanded in the singly and doubly

excitation manifolds and similarly to the configuration interaction singles with doubles

correction (CIS(D))[114, 115], the triply excited configurations come into play in the

singly excited block as a second order contribution. Hence, all the contributions are

connected so that the ADC(2) is a size-consistent and unitary-invariant theory by the

nature. The ADC(2) can also be seen as a second order extension to the configuration

interaction singles and the relationship to the quasi-degenerated perturbative variant of

the CIS(D) is addressed in Refs. [116, 117, 118].

The other second order approach to the excited state would be the usual second order

polarization propagator (SOPPA) originally proposed by Oddershede and Jørgensen[119,

120]. The response matrix of SOPPA is expanded in both excitation and de-excitation

manifolds and is a second order extension to the random-phase approximation (RPA)[121,

122]. The SOPPA excitation energy does not exactly corresponds to the MP2 ground

state energy since the presence of the de-excitation block in the response matrix causes

higher than the second order contributions. From the computational point of view, the

SOPPA has been recognized as a more demanding alternative to the ADC(2) because the

second order treatment of the excitation/de-excitation coupling block necessitates the rel-
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atively large four-virtual (⟨vv|vv⟩) electron repulsion integrals. Refs.[120, 123] detail the

implementation of the SOPPA. Recently, the second order polarization propagator with

the coupled-cluster singles and doubles (CCSD) reference function has been vigorously

developed by several groups[124, 125, 126, 127, 128, 129, 130].

In Appendix A, the partial renormalization technique proposed by Dykstra and Davidson[131]

is applied to the ADC(2) framework. The partially-renormalized ADC(2), which we call

PR-ADC(2), has shown to possess a strong resistance to the quasi-degeneracy when ap-

plied to a series of the porphyrin derivatives. As a consequence, the PR-ADC(2) produced

the accurate excitation energies for these molecules in comparison to the experimental

values. In Appendix B, the self-energy shifting proposed by Surján et al.[132, 133] is

applied to the ADC(2). When the optimal damping parameter is also introduced, as

in case of Ref. [134], the excitation energies of the CCSD quality is shown to be avail-

able. This modification requires the floating-point operations of utmost O(N4) while the

formal scaling of the ADC(2) itself is O(N5). Therefore, the additional computational

effort is negligibly small and when compared to the CCSD whose cost is of O(N6), this

approach possesses quite promising scaling.
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[20] L. Füsti-Molnár and P. G. Szalay, J. Chem. Phys. 100, 6288 (1996).

[21] P. G. Szalay, Chem. Phys. 349, 121 (2008).

[22] J. L. Heully and J. P. Malrieu, Chem. Phys. Lett. 199, 545 (1992).

[23] J. P. Daudey, J. L. Heully, and J. P. Malrieu, J. Chem. Phys. 99, 1240 (1993).

[24] J. P. Malrieu, J. P. Daudey, and R. Caballol, J. Chem. Phys. 101, 8908 (1994).

[25] R. Fink and V. Staemmler, Theor. Chim. Acta. 87, 129 (1993).

[26] S. R. Langnoff and E. R. Davidson, Intern. J. Quantum Chem. 8, 61 (1974).

[27] E. R. Davidson and D. W. Silver, Chem. Phys. Lett. 52, 403 (1977).

[28] K. A. Brueckner, Phys. Rev. 100, 36 (1955).



CHAPTER 1. GENERAL INTRODUCTION 17

[29] J. A. Pople and R. Krishnan, Intern. J. Quantum Chem. S11, 149 (1977).

[30] L. Meissner, Chem. Phys. Lett. 146, 204 (1988).
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[42] F. Evangelista, M. Hanauer, A. Köhn, and J. Gauss, J. Chem. Phys. 136, 204108

(2012).



18 CHAPTER 1. GENERAL INTRODUCTION

[43] T.-C. Jagau and J. Gauss, Chem. Phys. , 73 (2012).

[44] T.-C. Jagau and J. Gauss, J. Chem. Phys. 137, 044115 (2012).

[45] T.-C. Jagau and J. Gauss, J. Chem. Phys. 137, 044116 (2012).

[46] T. Yanai and G. K.-L. Chan, J. Chem. Phys. 124, 194106 (2006).

[47] T. Yanai and G. K.-L. Chan, J. Chem. Phys. 127, 104107 (2007).

[48] E. Neuscamman, T. Yanai, and G. K.-L. Chan, J. Chem. Phys. 130, 124102 (2009).

[49] T. Yanai, Y. Kurashige, E. Neuscamman, and G. K.-L. Chan, J. Chem. Phys. 132,

024105 (2010).

[50] E. Neuscamman, T. Yanai, and G. K.-L. Chan, J. Chem. Phys. 132, 024106 (2010).

[51] Y. Yanai, Y. Kurashige, E. Neuscamman, and G. K.-L. Chan, Phys. Chem. Chem.

Phys. 14, 7809 (2012).

[52] V. V. Ivanov and L. Adamowicz, J. Chem. Phys. 112, 9258 (2000).

[53] D. Datta, L. Kong, and M. Nooijen, J. Chem. Phys. 134, 214116 (2011).

[54] J. Olsen, B. O. Roos, P. Jørgensen, and H. J. A. Jensen, J. Chem. Phys 89, 2185

(1988).
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Figure 1.1: The MO classification in the CAS framework. The core and virtual MOs are

doubly occupied and unoccupied, respectively while the occupation number of the active

MOs can be a decimal fraction ranging from 0 to 2.
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teraction theory using cumulant reconstruction with internal contraction

of density matrix renormalization group wave function”, The Journal of
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2.1 Introduction

Electron correlation in molecules is defined as the difference between the exact solution

of the electronic Schrödinger equation and an approximate solution based on mean-field

theory; such correlation is known to play a crucial role in the reliability of quantum

chemistry calculations. The magnitude of the electron correlation effect in the chem-

ical binding energy is of same order as that of such energetics itself.[1, 2] Thus, for

quantitative energetics, which determine the consequences of various chemical processes,

sophisticated electron correlation methods would be indispensable. For efficient compu-

tation of electron correlation, it is profitable to divide the correlation into two types:

static and dynamic. Dynamic correlation is ascribed to short-range inter-electronic in-

teractions, which can be interpreted from the scattering caused by Coulomb interactions.

When the dynamic correlation is a major part of the total correlation, the single refer-

ence (SR) coupled-cluster[3, 4, 5, 6] (CC) theory serves as an effective model. In contrast,

the static correlation is associated with the quasi-degeneracy of electronic configuration

states. Although it also stems from the Coulomb interactions, they are characterized by

the superposition of the electronic configurations rather than by a picture of the scatter-

ing of electrons. The complete active space (CAS) method provides a robust modeling

of static correlation through the exact quantum mechanical treatment of a user-specified

subset of electrons and orbitals, namely, the active space, which is responsible for the

description of quasi-degenerate or multireference chemical interactions.

The multireference configuration interaction (MRCI) method has been widely used
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as a powerful means for achieving highly accurate solutions to the electronic Schrödinger

equation for multireference systems.[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]

It was originally derived and implemented by Bünker and Peyerimhoff[7, 8] using deter-

minants or configuration state functions (CSFs) as the CI basis. Despite its accuracy,

its high computational cost has limited applicability of early variants of MRCI to small

molecules composed of only a few atoms. This limitation arises because the length of the

configuration expansion quite rapidly increases with the number of the active orbitals.

Later, the highly efficient MRCI framework was developed with the introduction of the

so-called internally contracted (IC) basis,[14, 15, 16, 17] which was originally proposed by

Meyer.[22] The resulting method termed IC-MRCI was implemented into sophisticated

computer code by Werner et al.[15, 16] in the molpro program package.[23] To distin-

guish the CSF basis from the IC basis, the determinant or CSF basis employed in the

early MRCI method is referred to as uncontracted basis. In IC-MRCI, dynamic correla-

tion is calculated by correcting the active-space description by including single and double

excitations from the reference. The latest version of the IC-MRCI program developed by

Werner et al.[17] is readily applicable to molecules that are intractable in uncontracted

MRCI implementations. Nevertheless, the applicability of conventional MRCI methods

remains limited because the computational demands have strong exponential dependence

on the size of the active space. This dependence essentially arises from the underlying

full configuration expansion of the active-space wave function.

Recently, the ab initio density-matrix renormalization group (DMRG) method has

been vigorously studied as an efficient substitute for the full CI method.[24, 25, 26, 27,
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28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39] By virtue of the compact parameterization

of the DMRG wave function, the DMRG algorithm[24, 25, 26] has promising capabilities

for overcoming the exponential complexity in the CI treatment of the CAS reference.

Accurate DMRG predictions of active-space energies and energy differences can now be

obtained for active-space sizes in the range of 30-40 active orbitals in compact molecules,

including transition metal complexes[27, 32, 40, 34, 41] and to more than 100 active or-

bitals in the optimal case of long chains.[30, 31, 36, 39] This revolutionary performance

greatly expands the domain of applications for multireference quantum chemistry calcu-

lations.

In this study, we present a new IC-MRCI method that can use the active-space DMRG

wave function as the reference with much larger size CAS than is possible with con-

ventional MRCI methods. The IC representation is the key to a smooth connection

between the DMRG and MRCI methods. In the IC approach, information on the refer-

ence wave function entering into the equations and energy expressions are all managed

by replacements with many-particle reduced density matrices (RDMs). Hereafter, we

simply refer to the particle rank of RDMs and many-body operators as ‘rank’ unless

otherwise stated. The IC approach allows for rather simplified treatments of the intrinsic

high-dimensional entanglement of the active-space wave function. As a result, the IC

approach is highly scalable to larger active space, while bypassing the exponential de-

pendence of the underlying complexity. In recent technological advances in the DMRG

method, an efficient algorithm to obtain the two-rank RDM of the DMRG wave function

was developed by Zgid and Nooijen[42] and by Chan et al.[43] We have recently extended
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this procedure to evaluate three- and four-rank RDMs.[44, 45] These RDMs were used in

our previous studies to combine the DMRG wave function with types of multireference

theory, including the orbital optimization method based on the CAS self-consistent field

(CASSCF) model,[46, 47, 40, 43, 48] as well as dynamic correlation methods based on the

canonical transformation (CT)[49, 50, 51, 52, 53, 54] and CAS second-order perturbation

(CASPT2) models.[55, 56, 44, 45] We applied these methods to the copper-oxo dimer

isomerization problem with CAS(28e,32o) [DMRG-CT][57] and to the dissociation curve

of the chromium dimer in a double-shell active space [DMRG-CASPT2].[44] These pre-

vious developments are schematically similar to the present study in which we integrate

the DMRG and IC-MRCI methods (DMRG-MRCI for short) by exploiting RDMs from

the DMRG wave function to expand the available size of the active space. Nevertheless,

there are several technical hurdles to be cleared.

In the present DMRG-MRCI approach, all single and double excitations relative to

the reference function are treated in the IC representation. We term this strategy the

full IC (FIC) scheme. The MRCI ansatz, in conjunction with the FIC representation,

was initially studied by Werner and Reinsch;[14] they found that the error caused by the

IC is negligible for energies and other properties. However, there are two major technical

difficulties in the FIC-MRCI method, as was also pointed out by Siegbahn et al.:[58]

(i) Hamiltonian matrix elements in the semi-internal double excitation basis involve the

five-rank RDM, which is computationally formidable. (ii) The working equations need

to be built from an extremely large number of tensor contraction terms; the number

of terms is too large to implement into computer code by hand. To avoid these com-
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plications, the work of Werner and Reinsch[14] as well as Werner and Knowles[15, 16]

reintroduced determinants basis, uncontracting the internal and semi-internal parts of

doubly excited functions. Although this scheme introduces an exponential bottleneck in

part, a balanced admixture of IC and uncontracted basis actually gives the best perfor-

mance for a typical size of conventional CAS, such as CAS(12e,12o).[14, 15, 16] Later,

Werner’s group incorporated their partial IC approach into the CASPT2[59, 60, 61, 62],

CASPT3[63] and explicitly-correlated multireference[64, 18, 19] methods. In the devel-

opment of DMRG-MRCI, we attempt to challenge the above two difficulties [(i) and

(ii)] without using uncontracted basis, which is not available in DMRG calculations. A

commutator-based reduction technique will be introduced to eliminate the five-rank RDM

arising in semi-internal Hamiltonian elements; they are then expressed, without any ap-

proximation, using the four-rank RDM.[65, 66] Furthermore, we attempt to eliminate

the four-rank RDM using its cumulant reconstruction, which does introduce approxi-

mation errors. The cumulant reduction for 4-RDM has been employed by several earlier

studies[67, 68, 69, 70, 71, 72, 72, 73] in the multireference methods and also has been inves-

tigated by our group for the development of the cumulant-approximated DMRG-CASPT2

method, which will be published somewhere.[45] To deal with the huge complexity of com-

puter implementation, an automated technique is employed to derive and factorize ten-

sorial expressions and to generate efficient parallelized computer code, as has been done

in previous studies on other developments.[74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86]

In addressing these challenges, we will show that the DMRG-MRCI is free from the ex-

ponential bottleneck and its scalability is polynomial order versus the number of orbitals
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including active orbitals.

This paper proceeds as follows. In Section 2.2, the formalisms of the conventional and

present MRCI methods are given and extensions to size-consistency-corrected variants,

including the averaged coupled-pair functional[87, 88, 89] (ACPF) and averaged quadratic

CC[90, 91, 92] (AQCC), are given. In Section 2.3, the features of the automated equation

and code generation techniques are briefly discussed. In Section 2.4, to reveal the scalabil-

ity of the DMRG-MRCI, the computational times for a series of polyene molecules (C6H8

– C24H26) are measured using the references extended to CAS(24e,24o). The singlet and

triplet gap for the free-base porphyrin molecule is calculated by means of the DMRG-

MRCI with the a posteriori and a priori size-consistency corrections.[93, 94, 95, 96, 97]

In addition, the errors caused by the FIC representation and the use of the cumulant

approximation to the four-rank RDM are assessed employing a nitrogen molecule for

benchmark. Finally, conclusions are drawn in Section 2.5.

2.2 Theory

2.2.1 Notation and conventions

Before proceeding to address our theoretical framework, we summarize the notation and

abbreviations employed throughout this article. The notation for orbital indices and

frequently used abbreviations are compiled in Table 2.1. Unless otherwise noted, the

Einstein summation convention is imposed for tensor contraction expressions. In the

multireference approach, the reference function is given as a linear combination of a set
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of determinants that span the reference space as follows,

|Ψ0⟩ := AIµ |ΦIµ⟩ . (2.1)

We proceed to the formulations in spin-free form using the unitary group generators given

by

Er
p =

∑
σ

a†rσapσ (2.2)

or

Ers
pq =

∑
σ,τ

a†rσa
†
sτaqτapσ (2.3)

for one- and two-rank operators, respectively, where σ and τ run over the spin states (α

and β), and a (a†) denotes the annihilation (creation) operator. The previous work of

Kutzelnigg and Mukherjee provided a multireference generalization of normal ordering,

which facilitates the derivation of spin-free tensor contraction equations.[98, 99, 100, 67]

The definitions of one- and two-rank generators [Eqs. (2.2) and (2.3)] are easily generalized

to generators of higher rank, which are denoted by Ers···
pq···. Using these generators, the

electronic Hamiltonian can be defined by,

H = hq
pE

p
q +

1

2
V rs
pq E

pq
rs (2.4)

where hq
p and V rs

pq are one- and two-body molecular integrals in the spatial MO basis.

In the active space model, an entire set of orbitals in the reference is classified into

three groups: core (doubly-occupied), active (with fractional occupancy ranging from 0

to 2), and external (unoccupied). In the MRCI method with CAS reference, dynamic
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correlation arises from interactions between the active and remaining inactive (core and

external) orbitals. Note that the intra-active interaction can also capture a part of dy-

namic correlation.

2.2.2 The MRCI theory

The ansatz of the MRCI wave function is classified into two types: uncontracted and

internally contracted (IC). In the uncontracted MRCI type, which is the earliest scheme,

the wave function is parameterized as a linear combination of all the singly and doubly

excited determinants or CSFs from the reference configurations,[7]

|Ψ⟩ := CIµ |ΦIµ⟩+ C
Sµ

A |Φ
A
Sµ
⟩+ C

Dµ

AB|Φ
AB
Dµ
⟩ (2.5)

where the capital indices A and B denote the unoccupied orbitals of each reference

determinant. The determinant amplitude, C, is optimized variationally to yield the

upper-bound for the eigenvalue of the electronic Schödinger equation. Then, the MRCI

equation is written as a standard eigenequation,

HC = CE , (2.6)

which determines the amplitude C and the electronic energy E. The Hamiltonian ma-

trix (H) elements are constructed as a sum of products of molecular integrals and cou-

pling coefficients; the latter can be calculated very efficiently using group theoretical

approaches.[101, 102, 103, 104, 16] The uncontracted MRCI is algorithmically a straight-

forward approach to solving the Schödinger equation on the basis of the variation theo-

rem , and it can provide a very accurate wave function when a good subset of N -electron
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Hilbert space is used for the reference. However, the length of the configuration expansion

of ansatz [Eq. (2.5)] increases exponentially with dimension of the active orbital space,

so the practical applicability of the uncontracted MRCI is quite limited.

The first ansatz of the IC-MRCI wave function was proposed by Werner and Reinsch

(WR)[14] as follows,

|Ψ⟩ :=
(
C0 + Crs

pqE
pq
rs

)
|Ψ0⟩ (2.7)

where C refers to the CI amplitude of the IC basis. In this expression, the spin-free

generators, which are independent of reference configurations, act on the reference wave

function |Ψ0⟩. It is succinctly indicated that the WR ansatz of Eq. (2.7) can readily

remove the exponential complexity of the dimension of the variational space. The conse-

quence of this reduction is that we must evaluate the Hamiltonian matrix elements using

high-rank RDMs up to rank five! Nontrivial RDMs arise in active space and are given as

Dk
i = ⟨Ψ0|Ek

i |Ψ0⟩ , (2.8)

Dkl
ij = ⟨Ψ0|Ekl

ij |Ψ0⟩ , (2.9)

· · ·

Dkl···
ij··· = ⟨Ψ0|Ekl···

ij··· |Ψ0⟩ , (2.10)

for the one-, two-, and general-order RDMs, respectively. These RDMs can be obtained

from the full CI treatment in the active space; however, its computational cost increases

exponentially as the number of active orbitals increases.

Werner and Knowles (WK) developed a more efficient contraction scheme from a

hybrid approach mixing the uncontracted and IC frameworks by introducing the following
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ansatz[15, 16]

|Ψ⟩ := CIµ |ΦIµ⟩+ C
Sµ

A |Φ
A
Sµ
⟩+ C

Dµ

{AB}′ |Φ
{AB}′

Dµ
⟩

+

(
Cik

abE
ab
ik +

1

2
Cwi

abE
ab
wi

+ Cik
abE

ab
ik +

1

2
C iw

abE
ab
iw

)
|Ψ0⟩ (2.11)

where {AB}′ runs over pairs of active orbitals, as well as over pairs of active and external

orbitals. Because of the compact representation of external excitations, the WK-MRCI

method allows the use of much larger references with larger basis sets than earlier gen-

erations of the MRCI method. An improved variant of the WK ansatz [Eq. (2.11)] was

later developed by the same group[17] using a contraction scheme of the Celani-Werner

(CW) type,[59, 60] which introduced additional IC bases associated with excitations from

core orbitals. The CW scheme significantly reduces the dimension of the CI space for

systems having a number of core orbitals, but it gives rise to an enormous number of

tensor contraction terms in the computational formulae. This complexity was resolved

by means of an automated technique, in which a computer helps derive and implement

the CW-MRCI method into efficient computer code. The CW-MRCI achieves better

performance when many core orbitals exist and is liberated from the limitation of the

WK-MRCI on the available number of core orbitals in calculations. The resulting CW-

MRCI implementation generally performs much better than WK-MRCI, and the relative

efficiency is increasingly enhanced as the number of core orbitals increases. Mathematical

expressions for the variants of the MRCI ansatz appear somewhat complex at a glance;

so for convenience, we summarize the contraction schemes of MRCI in Table 2.2.
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2.2.3 The IC-MRCI framework

The spin-free generators that produce all single and double excitations from the reference

function are classified into eight independent groups,

Eik
wy, E

km
wi (2.12)

for internal excitations,

Eia
wy, {Eka

wi , E
ka
iw}, Ema

ik (2.13)

for semi-internal excitations and

Eac
wy, E

ac
wi, E

ac
ik (2.14)

for external excitations. In constructing the Hamiltonian matrix, the reference function

and all IC bases produced by these generators couple with each other through the Hamil-

tonian, which has up to two-body interactions. A beauty of the IC framework is that

the dimension of the variational space is completely independent of that of the reference

space. All singly and doubly excited determinants are contracted to form a basis

Epq
rs |Ψ0⟩ = AIµEpq

rs |ΦIµ⟩ = AIµ |Φpq
rs,Iµ
⟩. (2.15)

By comparing Eq. (2.7) and Eq. (2.5), it is evident that there is a much greater degree

of variational freedom in the uncontracted type. In the IC-MRCI, the parameters of

the reference function [A in Eq. (2.15)] are kept fixed, and the IC amplitudes [C in Eq.

(2.7)] are variationally optimized. Hence, the dimension of the IC-MRCI Hamiltonian

matrix increases at merely a polynomial rate as the system size grows; thus, it is scalable
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to exceedingly large CAS. Nevertheless, the Hamiltonian matrix elements are given by

quite a complex expansion into numerous products of the molecular integrals and RDMs

of ranks one through five.

2.2.4 Commutator-based reduction scheme of higher rank RDMs

Let us consider the diagonal blocks of the Hamiltonian matrix elements for the semi-

internal IC basis Ema
ik (ooov) and internal Ekm

wi (cooo), which are given by

⟨Ψ0|Eik
maHEnb

jl |Ψ0⟩ , [ooov-ooov] (2.16)

and

⟨Ψ0|Ewi
kmHEln

yj |Ψ0⟩ . [cooo-cooo] (2.17)

In these elements, the excitation operators on the left and right sides provide a total of

six active indices. Given that the Hamiltonian H is decomposed into the active space

Hamiltonian Hact and the rest as

H = Hact + H∆ , (2.18)

with

Hact = hj
iE

i
j +

1

2
V kl
ij E

ij
kl , (2.19)

four active indices are provided by Hact. These thus indicate that the tensor contraction

expressions give rise to the RDM with ten (six plus four) active indices, namely 5-RDM,

in the above Hamiltonian matrix elements [Eqs. (2.16) and (2.17)]. As mentioned earlier,
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such a large number of indices in 5-RDM, as well as the high-order scaling of its size

(O(o10)), is thought to prevent efficient use of the FIC scheme. Note that the 5-RDM

arises in the semi-internal Hamiltonian matrix elements only.

In this study, we introduce an exact mathematical transformation that eliminates the

dependence on 5-RDM. Our approach exploits a property of the reference function |Ψ0⟩,

which is determined by the CASSCF method, achieving the following equation,

Hact|Ψ0⟩ = E0|Ψ0⟩ . (2.20)

where E0 is the reference energy, namely the CASSCF energy. The action of the Hamil-

tonian H on the reference function is written as

H|Ψ0⟩ = E0|Ψ0⟩+ |Ψres⟩ (2.21)

and

|Ψres⟩ = H∆|Ψ0⟩ (2.22)

where Ψres refers to the residual interaction component. In addition, we consider the

following equations for the double commutators of H and the generators of the ooov and

cooo types,

⟨Ψ0|[Eik
ma, [H,Enb

jl ]]|Ψ0⟩ = ⟨Ψ0|Eik
maHEnb

jl |Ψ0⟩

− ⟨Ψ0|Eik
maE

nb
jl H|Ψ0⟩ , (2.23)

and

⟨Ψ0|[Ewi
km, [H,Eln

yj ]]|Ψ0⟩ = ⟨Ψ0|Ewi
kmHEln

yj |Ψ0⟩

− ⟨Ψ0|Ewi
kmE

ln
yjH|Ψ0⟩ , (2.24)
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respectively. Note that the double commutators ⟨[..., [H, ...]]⟩ do not contain RDM with

rank larger than 4 because of the nature of the commutator; the five rank interaction is

exactly cancelled out. Insertion of Eq. (2.21) into Eqs. (2.23) and (2.24) finally leads to

the following formulae to evaluate the semi-internal Hamiltonian matrix elements:

⟨Ψ0|Eik
maHEnb

jl |Ψ0⟩ = ⟨Ψ0|[Eik
ma, [H,Enb

jl ]]|Ψ0⟩

+ E0⟨Ψ0|Eik
maE

nb
jl |Ψ0⟩ , (2.25)

and

⟨Ψ0|Ewi
kmHEln

yj |Ψ0⟩ = ⟨Ψ0|[Ewi
km, [H,Eln

yj ]]|Ψ0⟩

+ E0⟨Ψ0|Ewi
kmE

ln
yj |Ψ0⟩ , (2.26)

where the following relations are used:

⟨Ψ0|Ewi
kmE

ln
yj |Ψres⟩ = 0 , (2.27)

⟨Ψ0|Eik
maE

nb
jl |Ψres⟩ = 0 , (2.28)

which are asserted by the killer condition associated with nonconservation of electron

numbers in the operators. Using Eqs. (2.25) and (2.26), consequently, the highest rank of

RDM required for FIC-MRCI can be reduced, without approximation, from five to four.

In Eqs. (2.25) and (2.26), the left-hand sides (lhs) and the second terms on the

right-hand sides (rhs) are evidently symmetric, while the symmetries of the first terms

on the rhs are not trivial. If the reference function does not satisfy the condition [Eq.

(2.20)] exactly, the Hamiltonian blocks evaluated through the commutators, [Eqs. (2.25)

and (2.26)], are no longer symmetric. This case also arises when 4-RDM is treated



42 CHAPTER 2. DEVELOPMENT OF THE DMRG-MRCI

approximately. In Sec. 2.2.5, we will discuss a cumulant approximation to 4-RDM. With

this approximation, the symmetrization of the Hamiltonian matrix has to be performed

to recover the symmetries of the first terms on the rhs of Eqs. (2.25) and (2.26).

2.2.5 Approximation to 4-RDM by cumulant reconstruction

Even with exact cancellation of the 5-RDM, there remains the 4-RDM in the tensor con-

traction formulas of the IC-MRCI Hamiltonian matrix. The O(o8) size of the 4-RDM

rapidly becomes considerably large to store in fast memory. For example, with 20 active

orbitals, the numerical array of the 4-RDM, without any use of permutation symmetry,

occupies 190 gigabytes of memory. To circumvent this difficulty, we introduce an approx-

imation to the FIC-MRCI method. In our implementation, the 4-RDM is reconstructed

on-the-fly from lower-order (up to three-rank) RDMs on the basis of cumulant expansions

of the 4-RDM. The approximation is made by neglecting the four-rank cumulants for the

cumulant reconstruction of the 4-RDM.

The concept of cumulant expansions is used in statistical mechanics to provide hier-

archical relationships among different orders of correlation functions. This concept has

been extended to the quantum mechanics of fermionic many-body systems for direct de-

termination of RDMs.[68, 69, 105, 106, 107, 108, 109] The cumulant decomposition of

n-RDM (n = 1, 2, 3, and 4) can be written using the anti-symmetrized products among
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the k-RDMs (k = 1, 2, . . ., n− 1) along with the n-rank cumulant (∆), as follows,

Dj
i = ∆j

i , (2.29)

Dij
gh = ∆ij

gh + 4Di
g ∧Dj

h, (2.30)

Djkl
ghi = ∆jkl

ghi + 9Djk
gh ∧Dl

i − 12Dj
g ∧Dk

h ∧Dl
i, (2.31)

Dklmn
ghij = ∆klmn

ghij + 16Dklm
ghi ∧Dn

j + 18Dkl
gh ∧Dmn

ij

− 144Dkl
gh ∧Dm

i ∧Dn
j + 96Dl

g ∧Dk
h ∧Dm

i ∧Dn
j (2.32)

where ∆···
··· refers to the fully-connected cumulant and is regard as perturbative in the

cumulant approximation. The wedge symbol (∧) represents the anti-symmetrized

products[109, 73]

(Xn ∧Ym)
i1,i2,··· ,in+m

j1,j2,··· ,jn+m
=

(
1

(n + m)!

)2∑
π,σ

ϵ(π) ϵ(σ) π σ
(
Xi1··· ,in

j1··· ,jn

) (
Y

in+1··· ,im+n

jn+1··· ,jm+n

)
,

(2.33)

where X and Y are tensors whose ranks are n and m, respectively. In Eq. (2.33), π and σ

permute all of the upper and lower indices, respectively, while ϵ returns the corresponding

sign change to the given permutation. Eqs. (2.29) – (2.32) are expressed in spin-

dependent form, but instead, we employ the spin-free variants of these formulas[71, 72, 73]

for implementation. In our approximation to 4-RDM, the fully-connected cumulants

∆klmn
ghij are neglected in Eq. (2.32). The Fortran subroutine to calculate spin-free 4-

RDM on the basis of cumulant approximation is given as supplementary material.[110]

It is well known that the cumulant-approximated 4-RDM for the correlated reference

is no longer N -representable.[111, 112, 113] It is thus found that, when used for evaluating
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the IC-MRCI Hamiltonian matrix, it can lead to the serious breakdown of the variational

nature of the IC-MRCI. Related to this, the elimination of four-rank cumulants may in-

duce nonphysical interactions in the Hamiltonian matrix, producing spurious eigenstates,

which may be much lower than the lowest state of IC-MRCI using exact 4-RDM. This

means that specific numerical care has to taken of these issues to seek valid eigenstates, as

discussed later. Our FIC-MRCI framework that uses a cumulant-approximated 4-RDM

is referred to as FIC-cu(4)-MRCI.

2.2.6 Diagonalization

Because the IC bases are not orthogonal, the IC-MRCI equation takes the form of the

generalized eigenequation,

HC = SCE (2.34)

where the Hamiltonian (H) and overlap (S) matrix elements are given as,

H0,0 = E0, (2.35)

H0,R = ⟨Ψ0|HER|Ψ0⟩, (2.36)

HL,0 = ⟨Ψ0|ELH|Ψ0⟩, (2.37)

HL,R = ⟨Ψ0|ELHER|Ψ0⟩, (2.38)

and

S0,0 = 1, (2.39)
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S0,R = 0, (2.40)

SL,0 = 0, (2.41)

SL,R = ⟨Ψ0|ELER|Ψ0⟩. (2.42)

In Eqs. (2.35) – (2.42), L and R refer to the excitation class in Eqs. (2.12) – (2.14). In

the diagonalization process based on the block-Davidson algorithm,[114] the σ-vector (the

matrix-vector product of Hamiltonian and trial CI wave function) has to be calculated

for each iteration, as given by

σ0 ← T 0E0 + TR⟨Ψ0|HER|Ψ0⟩, (2.43)

σL ← T 0⟨Ψ0|ELH|Ψ0⟩+ TR⟨Ψ0|ELHER|Ψ0⟩ (2.44)

where σ = {σ0; σL} and T = {T 0;TR} are the σ-vector and trial Ritz vector in the

non-orthonormal representation, respectively. Our primal development is to implement

Eqs. (2.43) and (2.44) into efficient computer code. Their tensor contraction formulas,

which are programmable mathematical expressions for computer implementation, can be

derived systematically using Wick’s theorem. However, the resulting formulae involve

approximately as many as three thousand terms of tensor contraction. Such an exceed-

ingly large number of terms cannot be easily derived and coded by hand. To resolve

this difficulty, we developed a tensor generator that automates the manipulation of ten-

sor terms and creates efficient computer code. These are rather straightforward, but

definitely error-prone procedures.



46 CHAPTER 2. DEVELOPMENT OF THE DMRG-MRCI

A schematic diagram of the diagonalization procedure is shown in Fig. 2.1. The σ-

vector in the non-orthonormal representation is transformed into the orthonormalized

representation,

σ̃P ←
1
√
ϵP

JL
P σL (2.45)

where J and ϵ are the unitary orthogonalization matrix and normalization factors, re-

spectively. These are obtained as eigenvectors and eigenvalues of the overlap matrix S

[Eq. (2.42)], respectively:

SJ = Jϵ. (2.46)

In forming J and ϵ from Eq. (2.46), the full diagonalization of the S matrix of the same

size as the 3-RDM (o3×o3) is required for the semi-internal (ooov:Ema
ik ) and internal

(cooo:Ekm
wi ) excitation blocks, demanding computational effort O(o9). The redundant

IC components associated with the eigenvectors with small eigenvalues are truncated in

forming the orthonormalized IC bases. In the WK and CW ansatz, this o9 procedure

is avoided because the semi-internal and internal blocks are treated in the uncontracted

basis.

2.2.7 The IC-ACPF and IC-AQCC

Lack of size-consistency is one of the primary drawbacks of the MRCI. This is due to

the truncation of excitation classes at the level of single and double excitations.[115,

116, 117] Related to this, a size-consistency error is ascribed to the quadruple excitation

manifolds, which are referred to as the exclusion principle violating (EPV) term and are
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not considered in MRCI. Numerous attempts have been made to remedy this drawback of

the MRCI. Generally, there are two strategies to recover this property without introducing

further complexity: so-called a posteriori and a priori size-consistency corrections. The

former type of the correction is referred to as the Davidson-type correction.[93, 94, 95,

96, 97] It can be obtained in a noniterative manner by rescaling the MRCI correlation

energy at a cost of merely several flops. The latter type of correction is based on the

correlation energy functional, including MR-ACPF and MR-AQCC proposed by Gdanitz

and Ahrlichs[87, 88, 89] and by Szalay and Bartlett,[90, 91, 92] respectively, in which the

correlation energy and CI amplitude are defined as the variational solution to minimize

F [C0, C̃P ] :=
⟨Ψ0|

(
C0 + EP ′

C̃P ′

)
(H − E0)

(
C0 + C̃PEP

)
|Ψ0⟩

C0C0 + λC̃P C̃P
(2.47)

and the wave function ansatz is given as

|Ψ⟩ :=
(
C0 + C̃PEP

)
|Ψ0⟩. (2.48)

Here, the amplitude for the IC basis, C̃P , is given in the orthonormalized representation.

Several forms for the factor, λ in Eq. (2.47), have been derived so as to best approximate

the effect of the EPV term on the basis of coupled-cluster or electron-pair theories.[118,

119] The explicit forms of λ are summarized in Table 2.3 for the functionals that are

applicable with the IC framework. To the best of our knowledge, there are several

other forms of functionals,[91, 120, 121, 122] including ACPF-2[88] and the total-energy-

based functional for AQCC,[92] but they cannot be defined in the IC framework because

their differences with the conventional ACPF and AQCC stem from the uncontracted

representation of the variational space.
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By differentiating the functional [Eq. (2.47)] with respect to C0 and C̃P along with

the stationary conditions,

∂F

∂C0

= 0,
∂F

∂C̃P

= 0 (2.49)

one readily obtains a set of projected equations

C0F = C̃P ⟨Ψ0|HEP |Ψ0⟩, (2.50)

λC̃PF = C0⟨Ψ0|EP ′
H|Ψ0⟩+ C̃P ⟨Ψ0|EP ′

(H − E0)EP |Ψ0⟩. (2.51)

Then, expanding the amplitude as a linear combination of the Ritz vector,C0

C̃P

 = αI

T 0
I

T̃ P
I

 (2.52)

the projected equations [Eqs. (2.50) and (2.51)] are transformed into the corresponding

subspace equations

αI(E0T
0
I + ⟨Ψ0|HEP |Ψ0⟩T̃ P

I ) = αI(E0 + F )T 0
I , (2.53)

αI(⟨Ψ0|EP ′
H|Ψ0⟩T 0

I + ⟨Ψ0|EP ′
H + (1− λ)FEP |Ψ0⟩T̃ P

I )

= αI(E0 + F )T̃ P
I . (2.54)

By applying the transposed Ritz vector (T̃J) from the left side, the quasi-eigenvalue

equation with respect to the Davidson mini-(or subspace-)Hamiltonian can be written as

αIT̃J

 E0 ⟨Ψ0|HEP |Ψ0⟩

⟨Ψ0|EP ′
H|Ψ0⟩ ⟨Ψ0|EP ′

[H + (1− λ)F ]EP |Ψ0⟩

 T̃I

= αI(E0 + F ), (2.55)
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which apparently converges to that for the CISD equation if λ is set to unity. For the

functionals other than the CISD type, Eq. (2.55) has to be solved iteratively due to the

correlation energy dependence of the mini-Hamiltonian. The concomitant computational

cost is negligibly small compared to that for constructing of the σ-vector.

2.3 Implementation

2.3.1 Automated tensor generation and implementation

The biggest difficulties in the development of the FIC-MRCI and its size-consistency-

corrected variants (ACPF, AQCC, etc.) are the derivation and factorization of the σ-

equations into a stream of binary contractions. They are translated into high-performance

computer code, which can efficiently run on top of highly tuned matrix–matrix multi-

plication subroutines such as DGEMM. These procedures are rather straightforward but

quite prone to errors. To address these issues, we developed an efficient tensor generator

using the C++ language for rapid development of the complicated electronic structure

theory.[123] Its predecessor, sqa, is available as supplemental material to Refs.[51, 52].

The following operations are processed by means of the newly developed tensor generator.

1. Expand σ-equations [Eqs. (2.43) and (2.44)] into programmable formulae according

to Wick’s theorem

2. Combine like terms (all the permutational symmetries are considered)

3. Factorize terms into a stream of binary contractions
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4. Generate parallelized tensor contraction code

The first two steps are considerably easier compared with the last two because they

are unambiguous. Nevertheless, the optimal way to factorize the tensor products into a

sequence of binary contractions may depend on several external factors, such as speed

of disk I/O, the kind of parallelization strategy, and the scheme of storage allocation

of the tensor quantities. Hence, minimization of flop counts does not simply result in

obtaining optimal tensor contraction patterns. Against this difficulty, we utilize heuristic

algorithms so as to mimic the contraction patterns of our parallel CT code.[54] There are

two points to be considered: loading the electron repulsion integrals (ERIs) from disk

and constructing 4-RDM from lower-order ones. The latter always requires floating point

manipulations, at least of O(o8) with huge prefactors for one time. In order to minimize

these heavy manipulations by making them outermost procedures in loop-structures,

priority weights are defined, and values of the weights for loading ERIs and for cumulant

reconstruction of 4-RDM are set so those operations are always of top priority. In the

resultant implementation, the floating-point operations of binary contractions involving

4-RDM formally scale as O(co8), O(o9) and O(o8v). In computing a single σ-vector, the

cumulant construction of the 4-RDM is repeated a constant number of times, which is

favorably independent of the number of orbitals. Further, tensors whose sizes are less

than or equal to o6 are stored in memory in the current implementation; these refer to

1-, 2-, 3-RDMs and other intermediate arrays. All tensor contractions involving the ERIs

are parallelized on top of the message passing interface (MPI) with respect to the first

MO index of four-index ERIs.
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Let us here discuss the factorization pattern of the contractions for 4-RDM in some

detail. This process is key to efficient implementation of tensor contractions for computing

the σ-vector where 4-RDM is constructed on-the-fly with the cumulant approximation. It

is difficult to develop efficient subroutines for cumulant reconstruction using a vectorized

subroutine such as DGEMM, because of its direct-product nature. Hence, the performance

of the tensor contraction code in constructing the σ-vector becomes quite sensitive to

the loop structure used in this procedure. In the σ-equation of our FIC-cu(4)-MRCI,

there are 38 tensor contraction terms that all involve 4-RDM. Among these, 26 terms

require either O(co8), O(o9) or O(o8v) flop counts, involving cumulant reconstruction;

these manipulations dominate the total required computational time for large active

space calculations. We here introduce the contracted 4-RDMs,

(ΓA)klgh ← Dklmn
ghij V ij

mn, (2.56)

(ΓB)klmghp ← Dklmn
ghij V ij

pn, (2.57)

which can be calculated with O(o8) and O(o8 × (c + o + v)) flop counts, respectively.

It is found that 32 out of the 38 binary contractions can replaced by these predefined

tensors. The construction of ΓA and ΓB is performed once in a single FIC-cu(4)-MRCI

calculation outside the iterative Davidson procedure, whereas it is the heaviest tensor

contraction in the FIC-cu(4)-MRCI. The ΓA tensor [Eq. (2.56)] is stored in memory

while the ΓB tensor [Eq. (2.57)] is written to disk for each value of the index p, which

runs over all MOs, and read from disk when they are necessary. Due to this factorization,

the number of the tensor contraction terms that actually involve 4-RDM in the σ-vector
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calculation can be reduced to only six. In each of the these six contraction terms, the

cumulant reconstruction involving O(o8) flop counts is carried out once for a single σ

vector calculation, so that they are no longer the bottleneck in constructing the σ-vector.

The generated tensor contraction code to evaluate the σ-equations and diagonal pre-

conditioner elements are interfaced to the hand-coded block-Davidson solver, which is a

main routine in the FIC-cu(4)-MRCI program. In a setup procedure in the FIC-cu(4)-

MRCI program, the data files containing the 1-, 2-, 3-RDMs are restored from hard

drives. They serve as a joint between the DMRG and FIC-cu(4)-MRCI calculations; in

the DMRG-cu(4)-MRCI procedure, the FIC-cu(4)-MRCI uses the RDM data provided

by the preceding DMRG calculation. The DMRG-cu(4)-MRCI code is implemented in

orz package, our in-house electronic-structure program suite. The explicit formulae of

the FIC-cu(4)-MRCI are attached to this article as supplementary material[110].

Indices of the core MOs in the RDM are excluded by using the killer conditions,

a†w|Ψ0⟩ = 0; thus, the RDMs are decomposed into a product of lower-rank one and

Kronecker’s deltas. For instance,

Dyj
iw = − δywD

j
i , (2.58)

Dxyi
vkw = Di

k(δyvδ
x
w − 2 δxv δ

y
w). (2.59)

In addition, the RDM with external indices vanishes because of another killer condition,

aa|Ψ0⟩ = 0. Therefore, in our implementation, only active indices are left in the RDM,

providing computational efficacy by the exclusion of core indices.
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2.3.2 Truncation of the IC basis: Avoidance of variational col-

lapse

When the cumulant approximation is employed in the 4-RDM, serious variational col-

lapses may occur in some cases; the lowest energy root of the IC-MRCI equation [Eq.

(2.34)] is determined to be completely unlike the true solution for the ground state, and

the value of C0 (reference weight) almost vanishes. When the variational collapse occurs,

the trial eigenvalue of the Hamiltonian continues to go down during the block-Davidson

procedure, typically converging to a value that is lower than the energy of the reference

state by one order magnitude or more. In some cases, with vanishing C0, the obtained

energy happens to be plausible for the solution of the MRCI. According to our experi-

ences, when the value of C0 results in near zero, one should suspect that the variational

collapse occurs. This phenomenon arises from the fact that the cumulant-approximated

RDM is no longer N -representable. Therefore, as long as the cumulant approximation

is employed in framework of the variational theory such as MRCI, the variational col-

lapse is essentially non-negligible. This problematic behavior can possibly be remedied

by truncating the IC basis with small ϵP [Eq. (2.45)] less than a given cutoff threshold

(which is denoted by τ). This truncation introduces extra errors in the values of the

energy and wave function. We determined that the truncation threshold τ = 1.0× 10−2

would be sufficient to avoid variational collapses as long as one seeks the ground state

wave function in the near-equilibrium geometry.

As demonstrated in Sec. 2.4.4 for stretched geometries, this value for the cutoff thresh-
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old may be insufficient to avoid variational collapses. Then, a much stronger truncation

with larger τ is needed to stabilize the solution, while the truncation in return gives rise

to errors in CI space.

2.4 Benchmark sets and application

We performed several benchmark calculations on illustrative chemical systems. The scal-

ability of DMRG-cu(4)-MRCI was assessed by employing a polyene chain as a benchmark

set. The singlet and triple energies of the free-base porphyrin molecule were evaluated

using DMRG-MRCI with CAS(26e,24o), which is the record of the largest reference space

ever used in MRCI calculations. Errors caused by the FIC representation and neglect

of four-rank cumulant in 4-RDM were examined in the calculation of bond dissociation

of a nitrogen molecule. The WK- and CW-MRCI calculations were performed using

molpro program suite, version 2012.1,[23] in serial execution. The development ver-

sion of the orz program package was used for DMRG-CASSCF, DMRG-cu(4)-MRCI,

DMRG-cu(4)-ACPF and DMRG-CASPT2 calculations. All the data sets are available

as supplementary material to this work[110].

2.4.1 Polyene: CnHn+2, CAS(ne, no)

To demonstrate scalability of the FIC-cu(4)-MRCI, computational times for a polyene

chain from C6H8 to C24H26 were measured. All π MOs were included in the active

space, e.g. CAS(24e, 24o) for C24H26, for this benchmark. The 1s orbitals of C atoms
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were frozen. Structures of these molecules were optimized by using the CAM-B3LYP

density functional[124] with 6-31G* basis set.[125] All calculations were performed in C2h

symmetry by using 6-31G* basis set. Fig. 2.2 and Table 2.4 show the computational times

per iteration for FIC-cu(4)-MRCI and for MRCI based on the WK and CW contraction

schemes. Timings of construction of the contracted 4-RDM [ΓB of Eq. (2.57)] are included

in Table 2.4.

The FIC-cu(4)-MRCI calculations were performed on top of an MPI-based paral-

lelization using three computer cluster nodes; each node has two Intel R⃝ Xeon R⃝ X5660

processors of 2.80 GHz and 96 gigabytes of memory. The WK- and CW-MRCI calcu-

lations were performed on the same machine. Computational timings for the WK- and

CW-MRCIs were taken as the differences between the times at which the first and second

iterations finished. The WK-MRCI could not be applied to polyenes larger than C8H10

due to limitations on computer time. Moreover, memory capacity was insufficient for the

CW-MRCI calculation on C16H16 or larger.

For this benchmark set, the computational times for the WK-MRCI were fit to an

exponential function, revealing that the WK scheme scaled by 6.3× 10−4 exp(2.26o) (in

seconds); on transition from C6H8 to C8H10, the computational time increased by about

a factor of 90. For C10H12, the first iteration of WK-MRCI took about 4 × 105 seconds

even though in the first iteration several computational procedures were skipped. This

leads to a drastic reduction in computational time compared with the second and third

iterations. The CW-MRCI exhibited impressive performance when the active space was

sufficiently small, about 8.5 times faster than FIC type for C8H10. Although for C12H14



56 CHAPTER 2. DEVELOPMENT OF THE DMRG-MRCI

the CW-MRCI remained substantially efficient, computational time rose quite steeply

and its scaling was 4.4× 10−3 exp(1.01o).

CW-MRCI surpassed FIC-MRCI in computational time for smaller cases up to C12H14.

However, the WK- and CW-contracted types showed steep increases in computational

times because of the exponential dependence that comes from the uncontracted treat-

ment. In contrast, the computational time of the FIC-MRCI increased rather slowly in a

polynomial order. The timing of FIC-MRCI was found to be 5.8× 10−3o4.69 seconds in a

range between C6H8 and C12H14, and 5.2×10−6o7.42 seconds in a range between C14H16 to

C24H26. Construction of the contracted 4-RDM [ΓB] (Eq. (2.57)) scaled by 1.6×10−5o6.73

(in seconds) from C6H8 to C12H14, and 6.2×10−8o9.00 (in seconds) from C14H16 to C24H26;

this shows that the observed scaling converges to the formal one (O(o9)). The scaling

for constructing the σ-vector was found to converge to O(o7.5), while its formal scaling

is O(o9). We deduced that the true bottleneck of the calculation did not appear in this

benchmark set.

2.4.2 The basis set dependence

In this section, dependence of computational time on the size of the basis set is presented

using C12H14 and C16H18 molecules for benchmark test. We employed three different

basis sets (6-31G*, 6-311G* and 6-311G**[126]). The computer cluster nodes described

in Sec. 2.4.1 were used here. In Fig. 2.3 and Table 2.5, the computational time per

iteration is shown for each number of the MOs. The setting of the calculations regarding

frozen cores and active space was the same as configured in Sec. IV A. For the C12H14,
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the figure shows that the computational time (in seconds) scales by 9× 10−7N3.93, while

for C16H18, the scaling is 1×10−5N3.64 where N refers to the number of total MOs. These

results suggest that overall computational times are dominated by the tensor contractions

that involve at least three external MO indices. In the σ-equations, binary contractions

with the four external indices take the form of a product of the amplitude and ERIs,

W ca
ik ← T bd

ik V
ab
cd (2.60)

or

W ac
wy ← T bd

wyV
ab
cd (2.61)

where W represents the intermediate tensor; hence, these contractions require floating

point operations of O(c2v4), or O(o2v4). In contrast, binary contractions with three

external indices do not always appear as a product of the amplitude and ERIs,

W ac
wy ← T ba

yi W
′cb
wi. (2.62)

The complexity of Eq. (2.62) is O(c2ov3). In addition, there are several other types of

contraction patterns, similar to Eq. (2.62) that scale as O(c3v3), O(co2v3) or O(o3v3).

Even though contractions such as Eqs. (2.60) – (2.62) can be parallelized throughout all

nodes without any waste of CPU time in this computer configuration, they still serve as

rate-determining steps.

To address this point, we are planning to extend our code generator so as to be able

to use the so-called external exchange operator (EEO) type contraction technique that

is implemented in molpro suite[127]. In addition, use of density-fitting (DF) instead of



58 CHAPTER 2. DEVELOPMENT OF THE DMRG-MRCI

the ERIs themselves may possibly overcome these bottlenecks in tensor contractions[128,

129, 130, 131, 132].

2.4.3 Free-base porphyrin: Singlet–Triplet gap

To assess the accuracy of the DMRG-cu(4)-MRCI, we calculated the energy gap between

the lowest singlet and triplet states of the free-base porphyrin molecule (C20H14N4). All

out-of-plane 2p orbitals of C and N were used in the active space (CAS(26e, 24o)).

Because the observation of the S-T (single-triplet) gap was based on a phosphorescence

assay, the relaxed geometry was employed for the triplet state. For both singlet and

triplet states, geometry optimization was performed using the UB3LYP functional[133]

and the 6-31G* basis set with the gaussian09 program package.[134] The symmetry of

the lowest triplet state was taken as B2u.

We also performed the S-T gap calculation with a smaller active space, CAS(8e, 8o),

and compared the results to those from the full valence DMRG-cu(4)-MRCI calculations.

The setting of this small CAS was (5-6b3u; 2-3au; 3-4b1g; 3-4b2g). We confirmed that this

reproduces the CAS treatment in Ref.[135].

The starting reference description with CAS(26e, 24o) was calculated using the DMRG-

CASSCF method. In the DMRG procedure, a Pipek–Mezey localization[136] was applied

to the out-of-plane 2p orbitals, which were then arranged to form the lattice sites of the

DMRG state. The one-dimensional DMRG ordering of the localized MOs, as well as their

shapes, are given as supplementary material.[110] In the orbital optimization and gener-

ation of the RDMs, 1024 DMRG states were used. In the MRCI, ACPF, and CASPT2
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calculations, the C and N 1s orbitals were not correlated. Thus, the orbital space for

the multireference calcualtions consisted of 44 core, 24 active and 272 virtual MOs. For

the DMRG-cu(4)-MRCI and DMRG-cu(4)-ACPF treatments, the overlap truncation was

used with the threshold of τ = 1.0× 10−2.

In Table 2.6, the total energies of the S0 and T0 states and the S-T gap are shown

for the free-base porphyrin. For reference, the CASPT2 value from Roos et. al.[137] and

the diffusion Monte Carlo (DMC) value from Aspuru-Guzik et. al.[138] are also shown;

the former corresponds to the vertical excitation from S0 to T0. It is notable that by

involving all out-of-plane 2p electrons and orbitals in the active space, the CASSCF

and MRCI values descrease by 0.39 and 0.34 eV, respectively, relative to the CAS(8e,

8o) counterparts. In comparison, the difference in CASPT2 between two tested active

spaces is 0.08 and 0.21 eV with and without the IPEA shift (0.25)[139], respectively.

By increasing the size of the active space, CASPT2 was found to be in good agreement

with the experimental value. However, when using 0.25 for the IPEA shift value, the

CASPT2(26e,24o) result is away from the experimental value by approximately 0.15

eV. This odd behavior suggests that the considerably good agreement for the CASPT2

calculation is more of a coincidence rather than substantial. Note that use of this IPEA

value is considered to be the present de facto standard in the CASPT2 methodology.

If the smaller active space is used, the MRCI value (1.75 eV) deviates from the

experimental and DMC values by approximately 0.19 eV, and this discrepancy cannot

be corrected by adding the Davidson correction. However, by including all out-of-plane

2p electrons and orbitals in the active space, the MRCI value is improved drastically,
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resulting in 1.41 eV. The MRCI+Q (1.53 eV) and the ACPF (1.55 eV) produce values

very similar to the experimental one (1.58 eV). Note that the solvent effect is not included

in any of the theoretical methods in Table 2.6.

2.4.4 Comparison to WK-MRCI

The accuracy of FIC-MRCI correlation energy relative to the WK type was tested in the

bond dissociation curve of a nitrogen molecule. In Fig. 2.4, the deviations are shown for

FIC-MRCI and FIC-ACPF with CAS(6e, 6o). In the reference space, two σ and four π

MOs formed from 2p orbitals were considered, and 2s orbitals were set to the correlated

core MOs while the 1s orbitals remained frozen, namely uncorrelated. All calculations

were performed in D2h symmetry by using aug-cc-pVTZ.[140, 141] When the exact 4-

RDM was used, we found that FIC-MRCI tends to produce slightly lower correlation

energies (and higher total energies) than WK in a range of 1.0 – 1.5 mEh in accordance

with the variational theorem. However, ACPF shows somewhat different behavior. The

stationary functional of ACPF [Eq. (2.47)] does not always lead to an upper-bound

on the true energy spectrum because the λ coefficient is basically an approximation to

recover EPV terms. When the cumulant-based 4-RDM was used with a cutoff threshold

(τ = 1.0×10−2) for forming the IC basis, the errors caused by the cumulant approximation

were negligibly small for bond length shorter than Re (1.1208Å). However, for bond length

longer than Re, variational collapses occurred. By raising the threshold τ to 1.0× 10−1,

the variational collapse was circumvented though the notable errors associated with the

truncation of IC basis were observed at the near equilibrium bond distance. For bond
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length longer than 2.6 Å, magnitudes of the errors associated with the cumulant reduction

increased drastically for MRCI and ACPF, reaching approximately 12.00 and 21.14 mEh,

respectively, with two tested cutoffs for τ .

Next, we added to the active space the two σ MOs from 2s orbitals of nitrogen,

having CAS(8e, 8o). We then repeated the assessment with this reference. The results

are plotted in the Fig. 2.5. The tendencies in Fig. 2.5 are similar to those in Fig. 2.4

for CAS(6e, 6o), but the magnitudes of the errors decreased, becoming about five times

smaller. Note that the variational collapse was recovered at bond length from 1.3 to

1.6 Å. This indicates that enlargement of active space helps improve the accuracy and

stability of the cumulant-approximated MRCI solutions.

2.4.5 Comparison to full CI energy

In Fig. 2.6, energy differences relative to full CI values are shown for a nitrogen molecule

with the cc-pVDZ basis set. For this assessment, CAS(6e, 6o), the same active space

as in Sec. 2.4.4, was used for FIC-MRCI and FIC-ACPF calculations. The full CI and

uncontracted MRCI energies were taken from Ref.[142]. When using the exact 4-RDM,

the FIC-MRCI calculations produced, for all the bond lengths, somewhat higher values

than the uncontracted MRCI using Kállay’s string-based MRCC program;[143, 143] this

behavior is consistent with the variational theorem. Considering size-consistency correc-

tions (+Q correction and ACPF), the errors from full CI almost vanish. The correlation

energies of MRCI with the cumulant-approximated 4RDM fall below those of the uncon-

tracted type with R(N-N) ≥ 2.225Å (4.2a0), indicating that the they are not a variational
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solution. With cumulant-based 4-RDM, the results of MRCI+Q and ACPF are similar

to those of the MRCI within an error of 0.01 mEh.

2.5 Conclusion

In this study, we have formulated a multireference approach that combines the ab initio

DMRG and MRCI methods. The utilization of the FIC scheme is a key to the smooth con-

nection between these two methods. The five-rank (ten-index) RDM, taken into account

in the semi-internal and the internal excitation blocks of the Hamiltonian, is eliminated

exactly by means of a commutator-based reduction technique. As a consequence, tensor

contractions involving the 5-RDM, whose size grows at the rate of o10, are no longer nec-

essary. The remaining 4-RDM is approximated by neglecting the cumulants of rank four;

thus, the σ-vector can be represented using the 1–3 rank RDMs. However, it is impos-

sible to manually derive and implement the working equations of the FIC-MRCI theory

because those programmable expressions are composed of approximately three thousand

monstrous tensor contractions. Therefore, we have adopted an automated technique for

resolving this difficulty, just as in the previous development of the CW-MRCI method,[17]

which rather uses a weaker contraction scheme than ours. We have developed an efficient

code generator on the basis of normal ordering in terms of the spin-free unitary group

generator.

This generator derives all working equations and then transforms them into paral-

lelized tensor contraction code on top of vectorized linear algebra subroutines. Even
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though there is still plenty of room for optimizing the generated code, we find that the

existing code can already be used at the production level.

The computational time of FIC-MRCI is of polynomial order in the molecular size,

whereas the WK and CW variants scale exponentially with increasing complexity of the

variational space. In addition, the DMRG-cu(4)-MRCI, a combined approach of ab initio

DMRG and FIC-MRCI using cumulant reconstruction of 4-RDM, was applied to calculate

the singlet-triplet gap for the porphyrin molecule using full valence π orbitals, namely

24 orbitals, in CAS. To the best of our knowledge, this is the largest reference space

ever used in the MRCI, MRCI+Q and MR-ACPF calculations. The Davidson-corrected

DMRG-cu(4)-MRCI and DMRG-cu(4)-ACPF were found to give results in considerably

reasonable agreement with experimental values measured by phosphorescence observa-

tion.

Our MRCI is an approximation to the conventional uncontracted MRCI in the sense

that the four-rank cumulant is neglected and the wave function is constructed thoroughly

from the IC basis. Errors caused by these approximations were assessed in illustrative

calculations of a nitrogen molecule with various bond lengths; the magnitude of the errors

were merely of milli-hartree order. Even so, because the neglect of the cumulants violates

N -representability, the cumulant approximation to 4-RDM often causes a variational

collapse. Near the equilibrium bond length, this phenomenon is shown to be readily

avoidable using a relatively small value for the truncation threshold (τ = 1.0 × 10−2).

Also for the practical applications, error caused by the cumulant approximations is found

to be negligibly small.
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In conclusion, the DMRG-MRCI was shown to be a highly scalable MRCI theory.

However, the ninth-power scaling with molecular size (O(N9)) may still hinder its routine

application to chemically interesting systems, such as the isomerization reactions of the

Cu2O2 complexes which may require the 28 electrons and 32 MOs in the active space.

For practical applications, use of the DF technique is under investigation for improving

the efficacy of our code. In addition, the tensor generator, developed as a byproduct of

this work, is designed to be applicable to any ansatz, including the perturbative, coupled-

cluster, or canonical-transformation types.
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Table 2.1: Notation and abbreviations

Orbital indices

p, q, r, s Generic orbitals

v, w, x, y Core (inactive) orbitals

g, h, i, j, k, l, m, n Active orbitals

a, b, c, d External (virtual) orbitals

Determinant indices

Iµ Reference space (N)

Sµ Singles space (N -1)

Dµ Pair space (N -2)

Abbreviations

ACPF Averaged Coupled-Pair Functional

AQCC Averaged Quadratic Coupled-Cluster

CAS Complete Active Space

CC Coupled-Cluster Theory

CSF Configuration State Function

CT Canonical Transformation Theory

cu(4) Neglect of 4-particle rank cumulant
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Table 2.1: Notation and abbreviations (cont.)

Abbreviations (cont.)

CW Celani-Werner internal contraction

DMRG Density-Matrix Renormalization Group

EPV Exclusion Principle Violating

ERI Electron-Repulsion Integral

FIC Full-Internal Contraction (or Full-Internally Contracted-)

IC Internal Contraction (or Internally Contracted-)

MO Molecular Orbital

MPI Message Passing Interface

MR Multireference

MRCI Multireference Configuration Interaction

n-RDM n-particle rank Reduced-Density Matrix

SCF Self-Consistent Field

SR Single Reference

WR Werner and Reinsch internal contraction

WK Werner and Knowles internal contraction
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Table 2.3: Forms of the factor λ, used in the correlation energy functionals.

Functional type Form of λ

CISD 1

ACPF 2
Ne

AQCC 1− (Ne−3)(Ne−2)
Ne(Ne−1)

CEPA(0) 0
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Table 2.4: Calculation times of a single iteration including the construction of a σ vec-

tor in benchmark MRCI calculations using the WK, CW, and FIC-cu(4) schemes for

CnHn+2 (6 ≤ n ≤ 24) with the CAS(ne,no) reference. Times for the construction of the

intermediate ΓB [Eq. (2.57)], which need be evaluated only once in the FIC-cu(4)-MRCI

calculation, are also shown. All timings are given in seconds. All out-of-plane valence 2p

orbitals were included in the CAS. All 1s orbitals of C and H were kept uncorrelated.

σ-vector

Molecule WK-MRCI CW-MRCI FIC-cu(4)-MRCI ΓB

C6H8 207 3 27 3

C8H10 18470 13 94 17

C10H12 – 58 277 79

C12H14 – 515 698 325

C14H16 – 12424 1805 1250

C16H18 – – 4572 4618

C18H20 – – 9566 11897

C20H22 – – 19584 30863

C22H24 – – 47340 73136

C24H26 – – 104396 170238
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Table 2.5: Calculation times (in seconds) of a single iteration including the construction

of a σ vector in the FIC-cu(4)-MRCI calculations using three types of basis sets (6-31G*,

6-311G* and 6-311G**) for C12H14 with CAS(12e,12o) and for C16H18 with CAS(16e,16o).

All out-of-plane valence 2p orbitals were included in the CAS. All 1s orbitals of C and H

were kept uncorrelated.

Basis set Number of MOs σ-vector

C12H14

6-31G* 184 698

6-311G* 246 2350

6-311G** 288 3998

C16H18

6-31G* 244 4572

6-311G* 326 13571

6-311G** 380 22728



82 CHAPTER 2. DEVELOPMENT OF THE DMRG-MRCI

Table 2.6: Energies and their differences for S0 and T0 states of the free-base porphyrin

molecule calculated using several methods with the CAS(8e,8o) and CAS(26e,24o) refer-

ences. The total energies and the singlet–triplet gaps are given in Eh and eV, respectively.

Method Basis set S0 T0 Gap

CAS(8e, 8o)

CASSCF 6-31G* -983.314 110 -983.253 405 1.65

CW-MRCI 6-31G* -985.264 078 -985.199 718 1.75

CW-MRCI+Qd 6-31G* -986.023 128 -985.958 101 1.77

CASPT2 (IPEA shift = 0.00) 6-31G* -986.441 282 -986.392 060 1.34

CASPT2 (IPEA shift = 0.25) 6-31G* -986.429 953 -986.363 526 1.81

CAS(26e, 24o) with the DMRG

CASSCF 6-31G* -983.535 440 -983.489 008 1.26

FIC-cu(4)-MRCI 6-31G* -985.410 545 -985.358 663 1.41

FIC-cu(4)-MRCI+Qa 6-31G* -986.115 122 -986.060 678 1.48

FIC-cu(4)-MRCI+Qe 6-31G* -986.504 297 -986.447 988 1.53

FIC-cu(4)-ACPF 6-31G* -986.581 052 -986.524 167 1.55

CASPT2 (IPEA shift = 0.00) 6-31G* -986.421 523 -986.364 533 1.55

CASPT2 (IPEA shift = 0.25) 6-31G* -986.403 296 -986.339 726 1.73

CASPT2 (Roos et. al.)f ANOg – – 1.52

DMC (Aspuru-Guzik et. al.)h – – – 1.60

Experimenti – – – 1.58
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Figure 2.1: Flowchart of the iterative diagonalization procedure of the FIC-MRCI

method.
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Figure 2.2: Calculation times (in seconds) of a single iteration including the construction

of a σ vector in FIC-cu(4)-, CW-, WK-MRCI calculations for polyene molecules from

C6H8 to C24H26 with the CAS(ne,no) reference. All out-of-plane valence 2p orbitals were

included in the CAS. All 1s orbitals of C and H were kept uncorrelated.
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Figure 2.3: Dependence of the computational time of FIC-cu(4)-MRCI calculations per

interation on the number of external MOs for CnHn+2 with use of a given CAS(ne,no)

reference for n = 12 and 16. Three types of the basis sets, 6-31G*, 6-311G* and 6-311G**,

were employed. The active space consists of all out-of-plane π orbitals. All 1s orbitals of

C and H were frozen.
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Figure 2.4: Errors in correlation energies of FIC-MRCI, FIC-ACPF and their cumulant-

approximated variants relative to the WK counterparts for dissociation of the N2

molecule. The CAS(6e, 6o) consisting of all 2p orbitals of the N atoms was used for

the reference space while the 1s orbitals were frozen. The aug-cc-pVTZ basis set was

used. The value of threshold for the overlap truncation (τ) used to avoid the variational

collapse caused by the cumulant approximation is given in parentheses.
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Figure 2.5: Errors in correlation energies of FIC-cu(4)-MRCI, FIC-cu(4)-ACPF and their

cumulant approximated variants relative to the WK counterparts for dissociation of the

N2 molecule. The CAS(8e, 8o) consisting of all 2s and 2p orbitals of the N atoms was

used for the reference while the 1s orbitals were frozen. The aug-cc-pVTZ basis set was

used. The value of threshold for the overlap truncation (τ) used to avoid the variational

collapse caused by the cumulant approximation is given in parentheses.
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Figure 2.6: Energy differences from the full CI energies for dissociation of the N2 molecule.

All 2p orbitals of the N atoms were taken as the active space, resulting in CAS(6e, 6o).

The cc-pVDZ basis set was employed. The MRCI+Q energies were evaulated on the basis

of the renormalized Davidson correction.[93, 94, 95] The uncontracted MRCI values were

taken from Ref. [142].
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3.1 Introduction

The cytochrome P450 is a large superfamily of the protein-bounded porphyrin complexes

with the active oxygen that hydroxylates the substrate. Due to the highly active nature

of the oxygen, the cytochrome P450 catalyzes the conversion of a variety of chemical

compounds by inserting the oxygen atom into an inert C-H bond of the substrate[1, 2].

The reactive intermediate in cytochrome P450 catalytic reaction is postulated to be an

iron-oxo porphyrin radical cation, which is often referred to as Compound I (Cpd I)[3], and

is considered to participate the oxygen-transfer reactions[4]. While the neutral iron(III)-

oxo porphyrin derivatives are relatively stable, a more oxidized iron(IV)-oxo porphyrin

radical cation is known to be a highly reactive oxidant in an in vivo context. This is

because of the extremely electrophilic nature of the FeIV-O group, and therefore the

oxidation state of iron in the Cpd I is thought to be iron(IV). For the ground state Cpd

I and the synthetic analogues, the spectroscopic consensus has been drawn that supports

this assumption[5, 6, 7, 8, 9, 10]. However, recent advances in the laser flash photolysis

(LFP) technique have suggested the existence of the low-lying and thermally-accessible

iron(V)-oxo porphyrin electronic isomer (electromer)[11, 12]. For the FeV-O synthetic

analogues, it has been reported that the coordination of the corrole, which would be a

much stronger electron donor than the porphyrin, stabilized the highly oxidative FeV-

O group, and consequently the iron(V)-oxo corrole was spectroscopically detected in

real time[13]. Stabilization of the (+V) oxidation state of iron is also observed under

the existence of the other strong electron donor in several iron-oxo compounds[14, 15].
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Therefore, it may be plausible for the thermally-accessible iron(V)-oxo compounds with

the porphyrin ligands to really exist in the biological context. It was reported that the

synthetic iron(V)-oxo porphyrin transient reacted 4 – 5 orders of magnitude faster than

the corresponding iron(IV)-oxo electromers[16]. If such a compound exists in an in vivo

enzymatic cycle, it would be a remarkably strong oxidant.

Aiming to provide the theoretical issue to the existence of the hypothetical iron(V)-

oxo electomer of the Cpd I, Pierloot et al. recently performed the restricted active space

second order perturbation (RASPT2)[17, 18, 19, 20, 21] and the density-functional theo-

retical (DFT) calculations[22] to examine the stability relative to the iron(IV)-oxo elec-

tromer, which is supposedly a ground state. In the RASPT2 calculations, they included

16 π MOs of the porphyrin, all the 3d orbitals of iron, 2p orbitals of oxygen and further

3 double shell d orbitals, resulting in the active space with 29 electrons distributed in the

28 MOs, and a fairly large basis set was used. Contrary to the experimental consensus,

their extraordinarily large-scale multireference calculations suggested that the iron(V)-

oxo porphyrin may presumably be stabler than its iron(IV)-oxo electromer in vacuo,

which is, however, considered to be the ground state. The reason of the inconsistency

between the experiments and the large-scale multireference calculation was speculated to

consist in an existence of the solvent: In the presence of the polarizable continuum, it

was observed by the DFT calculation that iron(IV)-oxo porphyrin was stabilized relative

to the iron(V)-oxo electromer. It was further suggested that in the second order pertur-

bartive treatment the dynamic correlation for the high-spin pentaradicaloid form of the

iron(IV)-oxo electromer might be overestimated. Accodring to the various spectroscopic



92 CHAPTER 3. IRON-OXO PORPHYRIN ELECTROMERS

techniques[5, 6, 7, 8, 9, 10], the triradicaloid iron(IV)-oxo was suggested to be the ground

state.

For giving a more thorough rationale for the stability of the iron(V)-oxo porphyrin

with respect to the iron(IV)-oxo electromer, these two requirements would have to be

fulfilled: (1) Use of the Complete-Active Space (CAS) methodology[23, 24, 25] instead

of the RAS analogue and (2) use of a much more robust treatment of the dynamic

correlation than the second order perturbation, i.e. the MultiReference Configuration

Interaction (MRCI)[26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43],

Coupled-Cluster (MRCC)[44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59],

or Canonical Transformarion (CT)[60, 61, 62, 63, 64, 65] ansatz. Nonetheless, such a

large active space is far beyond the reach of any conventional CAS-based multireference

methodologies. In the CAS-CI framework, the static correlation in the active space is

solved by means of the Full Configuration Interaction (FCI) while the RAS analogue uses

the truncated CI for the active space correlation. The computational effort of the CAS-

CI method explicitly depends on the dimension of the Hilbert space and so, it scales

exponentially (or factorially) with respect to the size of the molecule. Therefore, the

applicability of the usual CAS method is limited to the active space utmost with 16

electrons distributed in the 16 molecular orbitals (MOs).

The recent advances in the ab initio Density-Matrix Renormalization Group (DMRG)

have opened a new possibility for overcoming this inherent limitations of the CAS-based

multireference methodologies[66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81].

The DMRG algorithm is an efficient alternative to the conventional FCI and the compact
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parameterization of the wave function achieves a drastic reduction in the computational

cost. By means of the DMRG treatment, the exact diagonalization of the active-space

Hamiltonian with approximately 30 – 40 active MOs is no longer an obstacle for the

multireference quantum chemistry[69, 74, 82, 76, 83]. The Complete-Active Space Self-

Consistent Field (CASSCF) that uses the DMRG as an engine to diagonalize the active-

space Hamiltonian has been proposed by Zgid and Nooijen[84] and by Chan et al.[85]. By

means of the joint approach of the DMRG and CASSCF, which is referred to as DMRG-

CASSCF, recently, the multireference calculation on the Mn4CaO5 cluster, a catalytic

metalloenzyme in photosystem II has performed using a fairly large basis set and active

space with 44 electrons in the 35 active MOs[86]. Use of the active space DMRG is a key

to perform such an extremely large scale CAS treatment, which is far beyond the reach

of the conventional CAS methodologies. So far, inclusion of the dynamic correlation on

top of the DMRG reference function is possible by means of three approaches; (1) the

multireference second order perturbation [DMRG-CASPT2][87, 88], (2) the multirefer-

ence CT theory [DMRG-CT][63] and (3) the MRCI and its size-consistency corrected

variants such as averaged coupled-pair functional (ACPF)[89, 90, 91], averaged quadratic

coupled-cluster (AQCC)[92, 93, 94, 95], which we call DMRG-MRCI, DMRG-ACPF and

DMRG-AQCC[43], respectively. All of these multireference dynamic correlation methods

have been developed in the internally-contracted (IC) framework to achieve the compact

wave function representation[96, 97, 98, 28, 29].

The objective of this research is to ascertain the stability of the hypothetical iron(V)-

oxo electromer of the Cpd I by means of the high-level electron correlation theory based
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on the DMRG multireference methodologies. The high-performance computer implemen-

tation of the DMRG-MRCI methods enables us to perform the extraordinaliry large-scale

calculations on both iron(IV)-oxo and iron(V)-oxo prophyrin electromers of the Cpd I.

In these calculations, we included further 2 double-shell d orbitals into the Pierloot’s

active space, leading to the active space with 29 electrons distributed in the 30 active

MOs. For achieving such large-scale MRCI calculations, cumulant-approximated form

of the 4-particle rank reduced-density matrix (4-RDM)[43] is decomposed explicitly and

factorized into a stream of the binary contractions. Due to this, the formal scaling of

the DMRG-MRCI calculation is reduced to O(N8) from the previous one (O(N9)) where

N refers to the magnitude of the molecular size. A computer-aided approach was em-

ployed on the symbolic optimization of the tensor equation and on the translation of the

equations into the parallilized and efficiently-vectorized computer code.

3.2 Theory

3.2.1 The DMRG-MRCI

In the DMRG-MRCI theory, the wave function is written in the IC framework as

|ΨMRCI⟩ :=

(
C0 +

∑
pqrs

Crs
pqE

ps
rs

)
|Ψ0⟩ (3.1)

where C and E refer to the MRCI amplitude and the spin-free excitation operator, re-

spectively, while Ψ0 represents the DMRG- or conventional CASSCF reference function.

The indices wxyz, ijkl.. and abcd.. represent the core, active and virtual MOs, respec-
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tively, while the others (prqs) are used for the generic MOs. Note that the (Ers
pq) covers

the eight types of the excitation in total, except the intra-active excitation (Ekl
ij ) from

the consideration[31, 32, 43]. In Eq. (3.1), the action of the E-operator to the refer-

ence generates the IC basis, an alternative many-body basis to the Slater determinant;

|erspq⟩ ← Eps
rs |Ψ0⟩. Since the IC excitation function is a non-orthonormal and overcomplete

basis, the DMRG-MRCI equation takes form of the generalized eigenvalue equation

HC = SCE (3.2)

where H and S represent the Hamiltonian and overlap matrices, respectively. At each step

of the block-Davidosn procedure[99, 100] to solve Eq. (3.2), the σ-equation (Hamiltonian–

Vector product) is calculated;

σL =
∑
R

⟨eL|H|eR⟩TR (3.3)

where L (R) refers to either of the eight types of the IC basis and T represents the Ritz

vector that constitutes the MRCI amplitude (C in Eq. (3.1)). The molecular electronic

Hamiltonian in the spin-free formulation is used

H =
∑
pq

hq
pE

p
q +

1

2

∑
pqrs

V rs
pq E

pq
rs . (3.4)

The explicit form of the spin-free working equation is derived from Eqs. (3.3) and (3.4)

by invoking the normal ordering of the spin-free E-operator[101]. For this purose, the

symbolic manipulation programs have been developed by the several groups[102, 62, 103,

64, 104, 43]. Each term of the MRCI σ-equation is expressed as a product of one T-

amplitude, one molecular integral (h or V in Eq. (3.4)) and one RDM. Note that the
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RDM is an expectation value of the E-operator with respect to the reference function,

i.e. Dkl..
ij.. = ⟨Ψ0|Ekl..

ij.. |Ψ0⟩.

As originally proposed by Werner and Reinsch[28], when Eq. (3.3) is evaluated

straightforwardly, the lengthy 5-RDM, which is a ten-index tensor, stems from the semi-

internal excitation (Eai
jk) block of the σ equation, resulting in the substantially large com-

putational scaling of O(N11). To eliminate this quantity, we express the semi-internal

Hamiltonian elements by using the multiple commutators[105, 43] as

σjk
ai =

(
⟨Ψ0|[[Ejk

ai , H], Enb
lm]|Ψ0⟩+ E0⟨Ψ0|Ejk

aiE
nb
lm|Ψ0⟩

)
T nb
lm (3.5)

where E0 represents the reference energy. The non-trivial conversion from Eq. (3.3) to Eq.

(3.5) is responsible for eliminating the presence of the 5-RDM without any approximation.

As a consequence, the DMRG-MRCI σ-equation becomes expressible only by 1 – 4 RDMs

and then, its concomittant computational scaling is reduced to O(N9). The proof of this

tranformation is given in Ref. [43].

Novertheless, the eight-index 4-RDM still hinders the aplication of the DMRG-MRCI

to the systems with approximately 20 – 30 active MOs or more. By neglecting the 4-

particle rank cumulant in the 4-RDM, the relatively large 4-RDM is decomposed into

a sum of an anti-symmetrized product of the lower-rank RDMs[106, 107, 108, 109, 110,

111, 112, 113, 114, 115, 116, 117]. The definition of the cumulant-decomposition for the

spin-free RDM is not as evident as that in the spin-dependent case[114, 115, 116]. Our

formulation on the spin-free cumulant-decomposed 4-RDM is given, in the supplimentary
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material of Ref. [43], as

Dklmn
ghij → Dklm

ghi D
n
j + (15 terms)

−Dkl
ghD

mn
ij + (26 terms)

+
1

3
Γkl
ghΓmn

ij + (26 terms) (3.6)

where Γ represents the spin-free cumulant, i.e. Γrs
pq = Drs

pq −Dr
pD

s
q + 1

2
Ds

pD
r
q .

The full-form of the σ-vector (Eq. (3.3)) and the diagonal preconditioner required

in the block-Davidson procedure are composed of approximately as many as 3000 tensor

contraction terms in total. The derivation and implementation of such a tremendous

amount of terms are somewhat straightforward, but quite prone to errors. To this end, we

have developed a tensor generator to expand the many-fermionic ansatz into the tensor-

contracted forms and to trasnlate them to the efficiently vectorized tensor contraction

code[104]. The generated program can use more than hundreds of computer nodes on

the basis of the Message-Passing Interface (MPI) parallelism.

3.2.2 Symbolic optimization of the cumulant-approximated 4-

RDM

In the earlier algorithm implemented in our tensor generator, the largest number of the

tensors consisting of a single tensor-contracted term is assumed to be three. Since the

typical term in the DMRG-MRCI σ-equation is written as σ ← V ·T ·D, this postulate

is true. However, when the cumulant decomposition (Eq. 3.6) is invoked in the spin-free

4-RDM, the terms with the 4-RDM takes form as σ ← V ·T ·Dm ·D(4−m) where m refers
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to the particle rank of the RDM and is either of 1, 2 or 3. In the previous implementation

of the DMRG-MRCI, the 4-RDM is constructed on-the-fly from the lower order RDMs to

ensure the postulate. In this scheme, the cumulant reconstruction of the 4-RDM and the

associated tensor contraction require the floating-point operations (FPOs) of O(N8) and

O(N9), respectively. Due to the direct-product nature of the cumulant reconstruction

scheme, the O(N8) manipulations cannot be vectorized by means of the efficient matrix

multiplication subroutines such as DGEMM.

For the systems with approximately 30 active MOs, it was found that the unvector-

ized O(N8) manipulation causes a substantial amount of cache-miss. Therefore, explicit

decomposition of the cumulant-approximated 4-RDM and factorization of them into a

stream of binary tensor contraction are imperative tasks on. To this end, we have rewrit-

ten the symbolic manipulation part of our tensor generator so as to minimize the FPO and

to eliminate the demanding unvectorized step from the calculation. The newly developed

symbolic program can deal with the tensor-contracted term with the arbitrary number

of tensor factors by taking into account all the possible way to form the binary contrac-

tions. Moreover, the program, which is written in Haskell language[118] on the basis of

the purely-functional programming, optimizes the binary contraction with respect to the

minimization of the FPO, permutational symetry of the tensor and the parallelization

aspect. As a consequence, the formal scaling of the DMRG-MRCI is reduced to O(N8)

from previous order of O(N9) and the unvectorized O(N8) operations for the cumulant

reconstruction of the 4-RDM is eliminated from the construction of the σ-equation.

For a fairly large system, it was also observed that the sorting of each tensor in the
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binary contraction, as a preprocess to perform the Matrix–Matrix multiplication, may

become crucial. The inefficient sorting algorithm often causes a drastic mount of cache-

miss, leading to extreme decrease in the computational throughput. An optimization

algorithm for the presorting of the tensor has been implemented in the code generator.

Due to these modifications, the new DMRG-MRCI program shows a drastic speedup

relative to the previous version and is routinely applicable even to the systems with more

than 30 active MOs.

Hereafter, in this Section, we briefly sketch the basic design of our tensor contraction

program used for the construction of the σ-vector. Since we are aiming at execution of

the DMRG-MRCI for the systems with approximately 30 active and 500 virtual MOs,

loop-fusion among the binary contractions is a necessary requirement to reduce the size of

the intermediate arrays that should be allocated on the fast memory. If the term has only

three tensor factors, the term is decomposed into two binary contractions and there are

only three possibilities to form them; ((V ·D) ·T), ((V ·T) ·D) and ((D ·T) ·V). In this

case, factorization of the term into the binary contraction and fusion of the loops shared

with both binary contractions are rather simple. However, if the number of the tensor

factors is four, the number of the unique combinations to form the binary contractions is

as many as fifteen[119]. Amongst them, twelve patterns form the sequential contractions,

i.e. for instance (((V ·Dm) ·T) ·D(4−m)), while the remaining three are the non-sequential

contraction patterns such as ((V ·Dm) · (T ·D(4−m))). The algorithm to fuse the common

loops amongst the binary contractions also becomes much more complicated than that

for the loop-fusion of the two binary contractions. By the virtue of the Haskell as a
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functional programming language, the computer code for such an abstract optimization

algorithm can be implemented relatively easily in comparison to the implementation with

the usual procedural programming languages such as Python, C/C++ and FORTRAN.

3.3 Results and discussion

As a model molecule for the active intermediate in the Cpd I, we used neutral FeO(P)(Cl)

where P stands for porphyrin. As shown in Ref. [22], Pierloot’s RASPT2 calculations

produced much lower total energies for the two states (6A1 and 2E) than the 4A2 state,

which has a tetravalent FeIV iron; however, the 4A2 state is experimentally suggested

to be the ground state. The electronic structures for 6A1 and 2E states are consider

to be (5FeIV)(2P·)Cl and (2FeV)(1P)Cl, respectively, while that for the 4A2 ground state

is (3FeIV)(2P·+)Cl. We performed the DMRG-CASSCF/MRCI calculations for these

three states. The same geometries were used as in Pierloot’s calculation, which were

optimized by means of the BP86 density functional[120, 121] for each state. The DMRG-

CASSCF/MRCI calculations were performed with the development version of the orz

package, our in-house quantum chemistry program suite, using the second order Douglas-

Kroll Hamiltonian[122, 123, 124] for the quasi-relativistic treatment. The ANO-RCC

basis set[125] was used on all the atoms, contracted to [7s6p5d3f2g1h] on Fe, to [4s3p1d]

on Cl, to [4s3p2d1f ] on O, to [3s2p1d] on N and C, and to [2s] on H, leading to ap-

proximately 500 basis functions in total. All the calculations were performed with C2v

symmetry.
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In Figs. 3.1, the natural orbitals (NOs) obtained from the DMRG-CASSCF are shown

in the one-dimensional DMRG ordering. In Fig. 3.1, NO1 – NO16 are 16 π MOs of P

formed from the 2p orbitals on the carbon atoms while the remaining NOs are formed

from the 3d orbitals on iron. Note that NO20 and NO21 are double-shell orbitals (3d
′
xy

and 3d
′

z2), which were missed in the Pierloot’s active space setting. For the 2E state, only

the π∗
xz orbital (NO26) in the Fe–O bond is singly-occupied while for the pentaradicaloid

6A1 state, non-bonding dx2−y2 orbital (NO18), the highest occupied π orbital (NO3) in

the porphyrin, π∗
xz and π∗

yz orbitals (NO26 and NO29, respectively) are singly-occupied

as shown in Fig. 3.2. The triradicaloid 4A2 state is considered to be the ground state

that has three open-shell orbitals; π∗
xz, π

∗
yz orbitals and the highest occupied π orbital in

the porphyrin. We set the initial super-block matrix elements for the DMRG sweep in a

manner such that these spin-states are allowed to be constructed.

For carrying out the DMRG-MRCI calculation on the FeO(P)Cl using active space

with 29 electrons distributed in the 30 orbitals, we incorporated an extra optimization

into our implementation. To measure how much the performance of our program was

improved, we performed a benchmark calculation on the [H4Fe2O7]
2+, a hypothetical

differate intermediate that catalyzes the water to form the O–O bond[126], using ANO-

RCC basis set. The differate system is composed of 19 closed, 32 active and 279 virtual

orbitals. The calculation was performed on top of a MPI-based parallelization using six

computer nodes; each of which has two Intel R⃝ Xeon R⃝ X5660 processors of 2.80 GHz

and 96 gigabytes of memory. As a preliminary steps to diagonalize the DMRG-MRCI

Hamiltonian, two intermediate tensors [ΓA and ΓB in Ref. [43]] have to be constructed
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whose associated tensor contraction require FPOs of O(N8) and O(N9), respectively.

Both ΓA and ΓB are formed by contracting the 4-RDM and electron repulsion integral

(V in Eq. (3.4)) as

(ΓA)klgh ←
∑
ijmn

Dklmn
ghij V ij

mn (3.7)

and

(ΓB)klmghp ←
∑
ijn

Dklmn
ghij V ij

pn. (3.8)

By using the previous DMRG-MRCI code, the construction of ΓA and ΓB were observed

to take 4311 and 1141585 seconds, respectively, in wall time. In the current imple-

mentation, the 4-RDM in both Eqs. (3.7) and (3.8) is explicitly decomposed into the

cumulant-approximation and factorized into binary tensor contractions. Because of this,

the largest FPOs for construction of ΓA and ΓB are reduced from O(N8) and O(N9)

to O(N7) and O(N8), respectively. In the current implementation, constructions of the

ΓA and ΓB were observed to take 16 and 1569 seconds, respectively, in wall time on the

same cluster configuration. Owing to the explicit decomposition of the 4-RDM in the

σ-equation (Eq. (3.3)), the computational scaling is reduced to O(N8) from the previous

one (O(N9)). The actual computational timings for a single σ-vector evaluated with the

previous and current implementations was measured to be 869959 and 125095 seconds,

respectively, in wall time. In consequence of the reduction in the computational scaling

and of the elimination of the unvectorized cumulant reconstruction, a drastic acceleration

was achieved in the construction of both the σ-vector and the preliminary intermediates.
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3.4 Concluding remark

To theoretically give an answer to the argument on the hypothetical iron(V)-oxo elec-

tromer of the Cpd I, we used a more thorough active space setting than the work of

Pierloot et al.; in our CAS treatment, 2 double-shell 3d orbital of iron were additionally

included, resulting in the active space with 29 electrons distributed in the 30 orbitals. On

top of this CAS setting, a series of the extremely-large scale DMRG-CASSCF/MRCI cal-

culations are carried out for the problematic two cases; for the high-spin (5FeIV)(2P·)Cl

and (2FeV)(1P)Cl, which were assigned to 6A1 and 2E states, respectively. Pierloot’s

RASPT2 calculation (in vacuo) predicted an inconsistent consequence with the exper-

imental consensus; the 6A1 and 2E states were calculated to be much stabler than the

triradicaloid ground state (4A2 state).

The execution of such large DMRG-MRCI calculations required an extreme improve-

ments in our computer implementation. To this end, we have developed a symbolic

program to optimize the tensor-contracted equations of the DMRG-MRCI. To reduce the

inefficient sorting algorithm of the intermediate tensor, which often deteriorates the com-

putational throughput, we have added an optimization algorithm of the loop-structure

to our tensor generator. Due to these modifications, the computational performance of

the DMRG-MRCI has presently proven to be approximately seventh time faster than

the previous implementation for a benchmark system with the 32 active orbitals: The

construction of a single σ-equation, which took approximately ten days by means of the

previous implementation, is now achievable in nearly one day.
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[21] P.-Å. Malmqvist et al., J. Chem. Phys. 128, 204109 (2008).
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NO1 NO2 NO3

NO4 NO5 NO6

NO7 NO8 NO9

NO10 NO11 NO12

NO13 NO14 NO15

Figure 3.1: The one-dimensional DMRG ordering of the natural orbitals (NOs),

which were used to form the lattice sites of the DMRG state. These

MOs were depicted by using the Charmol, a program for molecular graphics

(http://sourceforge.net/projects/charmol/)
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NO16 NO17 NO18

NO19 NO20 NO21

NO22 NO23 NO24

NO25 NO26 NO27

NO28 NO29 NO30

Figure 3.1: (Continued.)
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triradicaloid ground state

pentaradicaloid state

Figure 3.2: The elctronic occupations for the iron-oxo porphyrin electromers where tri-

radicaloid iron(IV)-oxo is recognized as the ground state by experimental means. The

other two states (6A1 and 2E states) are the two lowest lying excited state.
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4.1 Introduction

Solar-driven catalysis of water splitting has been a subject of intensive investigation

for many years; the focus has been mainly on understanding the biological process of

photosynthesis to evolve atmospheric oxygen[1, 2] as well as developing its artificial analog

using synthetic systems for solar energy conversion and storage.[3, 4, 5, 6, 7, 8] This

catalytic process mediates two reactions, H2 formation and water oxidation, which involve

a multi-electron transference coupled to proton migration. The oxidation of water to O2

is considered to be a rate-limiting step, which is largely responsible for a multi-electronic

process to form the O-O bonding, prior to release of O2, through the buildup of high redox

potentials. Detailed characterization of the O-O bond formation is thus imperative for

improving catalyst design while it generally remains elusive despite extensive theoretical

and experimental investigations.[9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

Two classes of the reaction mechanisms of the O-O bonding event have been proposed:

(i) oxo or oxyl aggregation associated with direct radical coupling and (ii) nonradical acid-

base mechanism triggered by nucleophile attack. In the radical coupling mechanism (i),

the O-O bond is formed between two cofacial metal-bound radicaloid oxo or oxyl (M-O)

units through the combination of two singly-occupied M-O π orbitals; this process has

been widely implicated in the design of multi-center water oxidation catalysts. The acid-

base mechanism (ii) embraces attack of hydrolytic water to an electrophilic M-O group,

in which the formation of the O-O σ bond is conjugated with the breaking of the M-O π

bond via the reduction of the metal center.
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Over the past decades, there have been a large degree of theoretical and experimen-

tal efforts devoted to the design of efficient water oxidation catalysts. Numerous types

and variants of synthetic systems to catalyze the water-splitting reaction have been de-

veloped and characterized, ranging from single-center transition metal complexes,[21,

22, 23, 24, 25, 26] dimeric or dimetalic coordination systems,[27, 28, 29, 30] tetra-nuclear

clusters[31, 32] to solid-state metal-oxide systems.[33, 34] Although high-performance cat-

alytic systems that operate under homogeneous condition have been synthesized, many of

the most efficient catalysis to date relies on the use of expensive and earth-scare transition

metals such as ruthenium[16, 24, 17, 25, 32, 5, 27, 26, 6] and iridium[21, 22, 23].

An increasingly important challenge arising in recent years is to develop economically-

viable water oxidation catalysts using earth-abundant materials,[35, 36] e.g., cobalt,[37,

38, 4] manganese,[13] iron,[39, 40] and copper[41] based systems; however, the 3d metal-

based catalysis remains much less established. As desirable catalysts using the first-row

transition metals, iron-based systems are most valued in the sense that iron is the most

abundant and environmentally benign. Recent studies led to the discovery of promis-

ing catalysts of iron-mediated water oxidation, such as iron-centered complexes bear-

ing tetraamido macrocyclic ligands[39] or tetradentate N-donor ligands;[40] they show

marked catalytic ability in the presence of an excess of some sacrificial oxidant. Theo-

retical and experimental characterizations of these systems are at present under active

investigation.[42, 43, 44, 45]

Water oxidation is catalyzed in nature by Mn4Ca cofactor embedded within the

oxygen-evolving complex (OEC) in photosystem II.[1, 2] Determination of the exact
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molecular details of the biological water-splitting reaction has been a challenging goal

for experimental[1, 2, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55] and computational studies[56,

57, 58, 59, 60, 61, 62] of the OEC. It is considered to eventually inspire us with the ba-

sic design of efficient synthetic catalysts based on abundant metals like OEC. Recently,

atomistic details of the crystal structure of PSII with OEC in the dark-stable S1 state

of Kok’s catalytic cycle was reported by Shen and Kamiya groups, dissecting the topo-

logical structure of the Mn cluster at a resolution of 1.9 Å.[1] This work paves the way

for illuminating the physical chemical details of OEC through electronic structure sim-

ulation as well as spectroscopic analysis. Earlier computational studies on the Mn4Ca

were conducted entirely within the mean-field electronic structure approaches based on

density functional theory (DFT),[56, 57, 58, 59, 60, 61] which is a workhorse method of

quantum chemistry that has been widely applied to various catalytic systems despite the

cost of uncontrolled functional.

Formidable difficulties in quantum mechanical modeling of the electronic character of

the tetra-nuclear Mn complex lie in the fact that the Mn ions each permit a multi-valency

ascribed to a partially-filled 3d shell and there are diverse types of the Mn-O and Mn-Mn

chemical interactions. In the picture based on the configuration interaction (CI) theory,

such complex electronic states can be in a rigorous sense interpreted as a superposition

of multiple electron configurations. For each Mn, the description of 3d electrons that

quantum-mechanically fluctuate in the 3d shell within a narrow energy range requires

multiple energetically-competing configurations. This near-degeneracy can be attributed

to electron correlation in many-body theory, and such correlated nature is referred to as
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multireference, which cannot be in principle properly handled with the mean-field or one-

electron theory including DFT. In the Mn4Ca cluster, the full set of such configuration,

arising from the Mn 3d orbitals and the µ-oxo 2p bridges, involves an active space of 44

electrons in 35 orbitals, denoted (44e,35o), resulting in over 1018 configurations.[62] This

thus involves a large degree of quantum entanglement of electrons, which is out of reach

of the conventional approaches.

In the previous study,[62] we tackled this nontrivial complexity of the Mn cluster us-

ing the quantum simulation based on the density matrix renormalization group (DMRG)

algorithm.[63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75] The DMRG allowed us to

efficiently describe the entanglement structure of a large-dimensional wave function in a

space of (44e,35o) at the near full CI level of accuracy by reducing it to the special struc-

ture of low energy physical states. In addition, our recent development[76, 77, 78] enables

the orbital optimization to be coupled with active space DMRG calculations in the same

manner as the complete active space self-consistent field (CASSCF) calculations.[79, 80]

This level of theoretical descriptions, corresponding to CASSCF(44e,35o), has been a

long-standing demand of quantum chemists. Our DMRG calculations confirmed that at

the Shen-Kamiya X-ray diffraction geometry, the Mn cluster model is reduced relative to

the widely-accepted biological S1 state, supporting the recent hypothesis about potential

X-ray damage to Mn ions.[81, 58] We further identified multiple low-lying energy surfaces

associated with the structural deformation seen using X-ray crystallography, highlighting

“spin-independent” multi-state reactivity in transition metal chemistry. In addition, the

relations between bonding nature and changes in orbital entanglements were illustrated
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across Kok’s S1 to S4 states. We here note these calculations did not take into account

dynamic correlation, which is irrelevant to the qualitative accuracy in determining refer-

ence electronic structures but is known to have a certain quantitative impact on relative

energies.

In this work, using the DMRG method, we investigate the electronic-level mechanism

of the O-O bond formation mediated by 3d-block transition metal complex. Recently,

Roth and colleagues reported a joint experimental-computational analysis to unravel the

mechanism of a bench-top water oxidation catalyzed by potassium ferrate (K2FeVIO4).[9]

In the study, comparisons of experimental and DFT-based free energy as well as oxygen-

18 kinetic isotope effects[82] were made, showing that the intramolecular radical O-O

coupling within the dimerized ferrate, or diferrate, occurs in preference to intermolec-

ular water attack ascribed to the acid-base mechanism. This finding renders diferrate

attractive for basic study as a model of 3d metal-based water-splitting oxidants. The

feature of the O-O bond formation deduced for the diferrate complex bears a structural

resemblance to that hypothesized for the Mn cluster of the OEC,[83, 84, 57] in that

the both undergo the reaction that couples two terminal O ligands over the coordinated

metal centers. A difference may arise from the electronic-level understanding of these

O-O couplings. The determination of oxo (M=O) versus oxyl (M−O•) coupling is of

considerable interest. It was shown by Roth et al. experimentally and computationally

that the O-O bond formation in diferrate originates from the coupling of the adjacent

oxo moieties (Fe(VI)=O).[9]

The object of this study is to carry out detailed quantum chemical analysis on the
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above-mentioned direct oxo-coupling reaction using multireference theory. We employ

various levels of active space to evaluate the potential energy profiles, in which the re-

action energies and redox behavior of diferrate are monitored as a function of the O-O

bond distance. As described earlier, the multireference treatment is highly desirable (but

also challenging) for electronic structure calculations of multi-center transition metal com-

plexes. The bonding nature of Fe-O has been extensively investigated in earlier theoretical

studies on the chemistry of heme and nonheme oxygen activating iron enzymes.[85, 86, 87]

These studies coped with difficulties in characterizing the Fe-O bonding nature because it

has remarkable electronic flexibility associated with multivalent and variously-oxidizable

nature of the iron ion. The importance of multireference understanding arises again

from this flexible electronic structure in the Fe-O bond. In the present study, the mul-

tireference character of two interacting Fe-O moieties is described using an entangled

many-electron wave function in a high-dimensional active space, which can be computed

only with ab initio DMRG. Another challenge of this study lies in the quantitatively

accurate determination of relative energies, where dynamic correleation effects also play

a major role. We attempt to account for dynamic correlation energies on top of the

active space DMRG wave function through complete active space second-order pertur-

bation (CASPT2) theory[88, 89] and multireference configuration interaction (MRCI)

theory.[90, 91] The joint theory to combine DMRG with CASPT2 and MRCI was devel-

oped recently by our group, referred to as DMRG-CASPT2[92, 93] and DMRG-MRCI,[94]

respectively. It has been recognized that the inclusion of the second (higher-lying) valence

shell into active space treatment, the so-called “double shell” correction,[85, 86, 95] plays
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a critical role in complementing the performance of the simple PT2 treatment. These

unprecedented computational settings allow us to gain a deeper insight into chemical

bonds of Fe-O and dimeric coupling.

This paper is organized as follows. In Sec. 2, we provides a brief review of quantum

chemical DMRG and associated dynamic correlation methods. Computational details

are given in Sec. 3. The results from our calculations are displayed along with discussion

in Sec. 4. Finally, Sec. 5 concludes our work.

4.2 Theoretical methods

Although general algorithmic aspects of the present ab initio (or quantum chemical)

DMRG approaches are given in detail in our previous work,[76, 72, 94, 92, 93] their basic

ideas and background are recapitulated in this section in order to introduce the notations

and give a self-contained description of our methods.

4.2.1 Ab initio density matrix renormalization group

The DMRG theory, introduced by White,[63, 64] is originally a numerical method of

condensed-matter physics to study strongly correlated quantum phenomena. In the

DMRG algorithm, the wave function of highly correlating electrons is encoded into

the special entanglement structure that is present in low-lying physical quantum states.

Quantum chemical DMRG is formulated by assigning orbitals to the lattice.[65, 66, 67,

68, 69, 70, 72, 71, 73, 74, 75] The resulting description is represented in a compact, re-
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duced form that is based on a contracted product of tensors, the so-called matrix product

state ansatz,[71, 73, 74] given as

|ΨDMRG〉 = Cn1
i1
Cn2
i1i2
· · ·Cnk−1

ik−2ik−1
Cnk
ik−1
|n1n2 · · ·nk〉, (4.1)

where the Einstein summation convention is imposed and |n1n2 · · ·nk〉 denotes the Slater

determinant in an occupation number form; nµ is the occupation of the orbital µ, and the

total number of orbitals is k. The tensorial objects C
nµ
ij in eqn (4.1) are each optimized

one after the other in a variational fashion through the DMRG sweep procedure, in which

the Hamiltonian is repeatedly diagonalized in the model space with renormalized basis.

The dimension of the renormalized Hilbert space is quadratically dependent on the user-

specified integer parameter, hereafter denoted M , which is equal to the dimension of

the auxiliary indices i1, i2, · · · ik−1. The level of the approximation is thus determined

by M and is typically chosen to be in the range of a few hundreds to thousands for

molecular electronic structure calculations. With increasing M , the solution variationally

approaches the full configuration interaction (FCI) accuracy.

The DMRG method is by nature particularly efficient for describing 1D many-body

systems, as eqn (4.1) succinctly highlights the 1D nature of the DMRG representation.

Despite the specialized ansatz, a capability of treating high dimensional problems has

been shown in some systems studied in condensed-matter physics, such as 2D Kagome

lattice antiferromagnet.[96] In a very similar sense, the non-1D complexity of correlation

nature arises in electron structures of inorganic coordination molecules. Applicability of

DMRG to multinuclear transition metal compounds has been revealed in recent studies
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using the quantum chemical (or ab initio) DMRG approach.[69, 70, 72, 97, 92, 93, 75, 62]

Challenging applications to such complex chemical systems can be found in the pre-

vious DMRG studies on dicopper-dioxygen isomers,[69, 72, 97] tetranuclear manganese

cluster,[62] and 2Fe-2S ferredoxins.[75] This capability considerably exceeds the limitation

of the conventional approaches.

In this study, the electronic structure of the dimeric ferrate molecule is characterized

using the DMRG method. In general, extra complexity for calculation setups arises in

the ab initio DMRG approach; users are required to specify the shapes of the orbitals and

the arrangement of their order on the 1D lattice. The accuracy of the DMRG depends

much on them. A set of localized molecular orbitals (MOs) obtained by the Pipek-Mezey

transformation[98] or other variants is a natural choice for shaping the orbitals. The use of

these atomic-orbital (AO)-like MOs likely improves the feasibility of the orbital ordering.

The bonding topology in the molecule serves as a clue to seize the correlation network

among the orbitals. It is, however, not so obvious to reduce the topology of transition

metal compounds, like diferrate, onto 1D because their molecular structures are generally

rich in dimension. Finding the best ordering is technically a hard problem, but in fact in

many cases reasonable ordering that give sufficient accuracy can be obtained by heuristic

approaches. Variational nature of the DMRG energy is helpful for the determination of

the shapes and order of the orbitals.
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4.2.2 Active space DMRG model

It is suitable to use the DMRG for the treatment of the correlation problem in active

space, which is a central model space to describe the static (or strong) correlation ascribed

to the overlap of near-degenerate valence atomic states. We employ the complete active

space (CAS) model[79, 80] to construct the active space. In the CAS approach, the set of

MOs in quantum chemical calculations is divided into two sections, referred to as active

and external orbitals, respectively, and the static correlation is accounted for using the

active orbitals through the exact or near-exact diagonalization. The DMRG enables us

to handle exceedingly larger-size CAS.

The active space DMRG method is carried out in conjunction with the orbital op-

timization procedure, resulting in a highly-scalable analog of the complete active space

self-consistent field (CASSCF) method. This integrated approach is referred to as the

DMRG-CASSCF method.[76, 77, 78] The orbital optimization is a key ingredient for the

active space treatment of the transition metal systems because it enables the identification

of the active orbitals in a systematic fashion. The DMRG-CASSCF calculations deliver

the optimal active orbitals that are determined self-consistently by energy minimization.

4.2.3 DMRG-CASPT2 and DMRG-MRCI methods

The way of characterizing electron correlation in terms of static and dynamic corre-

lations separately is a well-established concept, and the active space approaches treat

these types of correlation on the separated physical scales. Given that static correlation



130 CHAPTER 4. DIFFERATE-MEDIATED WATER OXIDATION

is accounted for by DMRG-CASSCF, the rest of correlation, namely dynamic correlation,

arises from electronic interactions between active space orbitals and external (core and

virtual) orbitals. Their description can be efficiently obtained with a lower level theory,

such as configuration interaction,[90, 91, 99, 100] perturbation theory,[79, 80] exponential-

based transformation,[97, 101] etc. In this study, the complete active space second-order

perturbation (CASPT2)[92, 93] and multireference configuration interaction (MRCI)[94]

theories are used on top of the DMRG-CASSCF reference to achieve qualitative accu-

racy of correlation energies. Dynamic correlation effects are considered to be crucial for

transition metal systems where marked short-range Coulombic interaction arises from a

number of electrons that are locally packed in atomic d-block space of metal sites.

The CASPT2 was introduced by Roos et al.[79, 80] as the multireference extension

of the second-order Møller-Plesset theory. Given the DMRG-CASSCF description as the

zeroth order wave function |Ψ(0)〉, the DMRG-CASPT2 method determines the first-order

perturbative correction to it, denoted |Ψ(1)〉, as given by,

|Ψ〉 = |Ψ(0)〉+ |Ψ(1)〉 . (4.2)

The first order wave function |Ψ(1)〉 is expanded into the configuration basis within the

single and double excitation space:

|Ψ(1)〉 =
∑
pqrs

cpqrs ÊpqÊrs|Ψ(0)〉 =
∑
µ

cµ|µ〉 , (4.3)

where the fourfold compound index pqrs is labeled as µ (and ν afterward). The first
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order equation to obtain cµ is written as:

∑
ν

[〈µ|Ĥ0|ν〉 − E0〈µ|ν〉] cν = −〈µ|V̂ |Ψ(0)〉 , (4.4)

where the zeroth order part Ĥ0 and perturbation V̂ constitute the Hamiltonian Ĥ, as

given by Ĥ = Ĥ0 + V̂ . The definition of Ĥ0 is given in detail in ref. [92, 93]. The

zeroth order energy E0, the equivalent of the DMRG-CASSCF energy, is then written as

E0 = 〈0|Ĥ0|0〉, and the DMRG-CASPT2 energy EDMRG−CASPT2 is obtained as:

EDMRG−CASPT2 = E0 + E2 , (4.5)

with the second-order energy given by E2 = 〈Ψ0|V |Ψ1〉 =
∑

µ〈Ψ(0)|V̂ |µ〉 cµ. The most

computational intensive part of DMRG-CAPST2 calculations lies in the evaluations of

the 3- and 4-particle rank reduced density matrices (RDMs) from the active space DMRG

wave function. They are mainly used to form the first order equation (eqn (4.4)).

The MRCI method has been widely used as a powerful means for achieving highly ac-

curate solutions for multireference electronic systems.[90, 91, 99, 100] The basic algorithm

of MRCI can be simply conceived as diagonalizing Hamiltonian in CI space, which is rep-

resented with a liner combination of configurations. The DMRG-MRCI wave function

is linearly expanded into singly- and doubly-excited internally-contracted configurations

relative to DMRG reference space |Ψ(0)〉, as given by

|Ψ〉 = (c0 +
∑
pqrs

cpqrs ÊpqÊrs)|Ψ(0)〉 . (4.6)

The CI coefficients {cµ} including c0 are determined by the eigen-equation:

Hc = EDMRG−MRCISc , (4.7)
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where Hµν = 〈µ|Ĥ|ν〉, Sµν = 〈µ|ν〉, and the eigenvalue corresponds to the DMRG-MRCI

energy (see also ref [94]). Our DMRG-MRCI implementation entails the a posteriori

size-consistency correction, also known as Davidson (+Q) correction,[102, 103, 104, 105]

which can be computed from c.

4.3 Computational details

4.3.1 Density functional theory (DFT) calculations

Spin-polarized (or spin-unrestricted) DFT calculations were performed on the dimeric

ferrate molecule (µ-1,2-oxo-bridged diferrate) with the gaussian 09 package,[106] em-

ploying the def2-TZVP basis sets.[107] The geometry optimizations for reactant and

product states, transition state (TS) search, and potential energy surface (PES) scan

were carried out using the B3LYP exchange-correlation functional[108] under C2v molec-

ular symmetry. In the PES scan calculations, the O-O bond distance was used as the

scanning variable, which was set to constant values, allowing the other geometric param-

eters to be relaxed; the scanned O-O bond length was chosen to be in the range between

1.3 and 1.8 Å by a step size of 0.1 Å and between 2.0 and 3.0 Å by 0.2 Å for monitoring

the O-O bond formation. Upon the molecular geometries obtained by B3LYP, which are

referred to as the B3LYP geometries, we performed single-point energy calculations using

the meta-hybrid functional TPPSh.[109] In these DFT calculations, antiferromagnetic or-

der arising from the two localized Fe spin sites was described with the spin-polarized (or

broken-symmetry) treatment. The net charge of the system was set to +2, and the num-
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bers of α and β electrons were assumed to be equal. Relativistic effects were neglected

for the DFT calculations. In this study, consideration of environment effects was left out

of scope.

4.3.2 DMRG-CASSCF/CASPT2/MRCI calculations

Multireference calculations using the DMRG-CASSCF, DMRG-CASPT2, and DMRG-

MRCI methods were performed on the B3LYP geometries with the system isolated in the

gas phase. We used the atomic natural orbital (ANO) basis sets[110] corresponding to

Fe: [21s15p10d6f4g] / (6s5p3d2f1g), O: [10s9p4d3f ] / (4s3p2d1f), and H: [8s4p] / (2s1p)

contractions. Scalar relativistic effects were included using the second-order Douglas-

Kroll-Hess (DKH) Hamiltonian.[111, 112, 113] The PES of the O-O bond formation

was calculated in the singlet state with the same molecular charge as used in the DFT

calculations.

The active space for the DMRG treatment was composed of the following orbitals in

the AO representation: (i) all the valence 3d orbitals for the two Fe atoms, (ii) all the 2p

orbitals of the two adjacent O ligands associated with the O-O bonding, (iii) three higher-

lying O 2p′ (or 3p) orbitals for the double-shell treatment of each of the Fe-oxo moieties,

and (iv) two 2p orbitals for each of the remaining five O atoms. This CAS setting resulted

in an active space of 36 electrons distributed in 32 (= 5×2 + [3 + 3]×2 + 2×5) orbitals,

denoted as CAS(36e,32o), which is tractable with the DMRG approach.

The active orbitals used in the DMRG calculations were localized with “split-localized”

procedure,[114] subject to the reduced Cs symmetry constraints, to transform them into
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efficient local sites that can be mapped to the DMRG 1D lattice. The localized or-

bitals obtained by the DMRG-CASSCF calculation for the reactant structure is shown

in Fig. S1† in order of our DMRG orbital ordering. Different sets of orbital ordering were

used for three segments of the reaction path as a function of the O-O distance: R(O-O)

≤ 1.8 Å, 1.8 ≤ R(O-O) ≤ 2.2 Å, and R(O-O) ≥ 2.2 Å; we confirmed that the difference

in the orbital ordering at the joints, i.e., R(O-O)=1.8 and 2.2 Å, altered the energies only

to a negligible degree. The active space DMRG wave functions were determined with

M = 512 and 1024 spin-adapted[70, 75] renormalized basis, and the natural orbitals and

associated occupancies were obtained from the density matrices.

The dynamic correlation was evaluated with DMRG-CASPT2 and DMRG-MRCI+Q

on top the preceding DMRG-CASSCF description. In the DMRG-CASPT2 calculations,

the modification to the zeroth-order Hamiltonian was employed with the ionization po-

tential/electron affinity (IPEA)[115] specified to be 0.25 a.u. along with an imaginary

denominator shift (IS) of 0.2 a.u. The DMRG-MRCI+Q calculations employed the over-

lap truncation with the threshold of τ = 5 × 10−2 (see also ref [94] for the definition of

τ). The seventeen core orbitals were frozen. The three-particle rank RDM was evaluated

directly using the DMRG wave function, while the four-particle rank RDM was evalu-

ated in an approximate fashion using lower-particle rank RDMs through the cumulant

reconstruction neglecting the connected four-rank cumulants.[94, 116]
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4.3.3 Conventional CASPT2/MRCI calculations

We examined the dependence of accuracy of the multireference treatments on the size of

active space. The CASSCF, CASPT2 and MRCI+Q calculations were performed with

another two sets of active space: CAS(4e,4o) and CAS(20e,14o). The molpro[117] and

molcas[118] packages were used for the multireference calculations with CAS(4e,4o) and

CAS(20e,14o), respectively. MRCI+Q(20e,14o) was not considered in this study. The

supersymmetry was invoked in CASSCF(20e,14o) to avoid mixing of inner-shell orbitals

and active-space orbitals. The IPEA and IS parameters were set to the same as used in

the DMRG-CASPT2 calculations.

4.4 Results and Discussions

The O-O bonding reaction is the primal focus of the present study. Fig. 4.1 shows the

molecular structures of the diferrate molecule that were optimized with the B3LYP cal-

culations for the reactant, transition intermediate, and product states, labeled by R, TS,

and P, respectively. The bond distance between the two O atoms associated with the O-O

bonding, denoted R(O-O), was 3.226, 1.893, and 1.347 Å for R, TS, and P, respectively.

The O-O forming reaction proceeds as a function of R(O-O). With decreasing R(O-O),

the bond between the Fe ion and O ligand and is increasingly stretched: R(Fe-O)= 1.584,

1.647, and 1.757 for R, TS, and P, respectively. The B3LYP geometries considered in

this study are all provided in ESI.†

Comparisons are made in the potential energy profiles between the DFT and DMRG
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results (Fig. 4.2) and between the DMRG and conventional multireference results (Fig. 4.3).

Fig. 4.2 and 4.3 show the energies relative to the R state. Activation barriers (∆E(R→

TS)) and reaction energies (∆E(R→ P)) are summarized in Table 4.1. Total energies at

the calculated points were shown in Table S1.† DMRG-CASSCF, DMRG-CASPT2, and

DMRG-MRCI+Q all commonly predicted that the active barrier and reaction energy are

positive and negative, respectively, and the O-O coupling reaction should be more or less

facile. This qualitative trend is basically in accord with the DFT potential energy profiles

as well as the results of the earlier study of Roth et al.[9] Some marked differences in quan-

titative features were observed among DMRG and DFT results. The activation barrier

obtained by DMRG-CASSCF was estimated to be ca. 5 kcal/mol higher than those by

DMRG-CASPT2 and DMRG-MRCI+Q. The reaction energy of DMRG-MRCI+Q was

ca. 4 kcal/mol lower than those of DMRG-CASSCF and DMRG-CASPT2. From gen-

eral theoretical point of view, the errors of the results should be MRCI+Q < CASPT2

< CASSCF. A notable difference between the DFT and DMRG results arises from the

reaction energies (Fig. 4.2). The DFT predictions provided a rather stabilized P, which

was lower in energy by ca. 9-11 and 5-7 kcal/mol relative to the DMRG-CASPT2 and

DMRG-MRCI+Q results, respectively. This should lead to important differences in the

understanding of the chemical process subsequent to P, which is followed by O2 release.

Note that the use of the DFT(B3LYP) geometries for the DMRG calculations should be

validated in future work.

As shown in Fig. 4.3, the minimal active space treatment modeled by CAS(4e,4o)

caused a complete failure with and without dynamic correlation correction, yielding
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chemically invalid potential energy profiles. The relative energies of CASSCF(20e,14o)

on the reaction coordinate R → TS showed a good agreement with DMRG-CASSCF

energy profile; however, the relative energy of P was underestimated to a great extent by

CASSCF(20e,14o) with an error of ca. 15 kcal/mol relative to that of DMRG-CASSCF.

The CASPT2 correction to CASSCF(20e,14o) gave rise to a questionable potential en-

ergy profile, in which minima were observed at the intermediates of the reaction pathway.

The CASPT2 and MRCI+Q results for the present diiron system were shown to depend

largely on the active space.

We next proceed to qualitative characterization of the role of electrons in the O-

O bonding formation. On the basis of natural orbital (NO) analysis, relative change in

electron populations was monitored along the reaction coordinate. The active space wave

functions obtained by the DMRG-CASSCF and conventional CASSCF calculations were

used to derive the NOs and associated occupation numbers (NOONs), which range from 0

(unoccupied) to 1 (singly occupied) and 2 (doubly occupied). In the natural orbital based

picture, electron populations determined by the conventional CASSCF were found to be

more or less similar to those by DMRG-CASSCF using large active space. Therefore,

unless otherwise noted, our description of the natural orbitals in the O-O bonding process

is given hereafter at the CASSCF(20e,14o) level of theory.

In the multireference calculations, the R state was shown to be an antiferromagnetic

state formed by four near-singly-occupied orbitals (9–12 in Fig. 4.4). They are localized

on the two Fe-O units, as shown in Fig. 4.4 as well as Fig. S4† [DMRG-CASSCF(36e,32o)].

The bonding nature of the Fe-O units for R is characterized in detail as follows:
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1. In our calculation for R, the oxidation states of the Fe and O ions are confirmed

to be +6 and −2, respectively.

2. Fe(VI) ions each have two singly-occupied 3d orbitals, which are related to the

two-fold degenerate e orbitals arising from the tetrahedral complex and having

a lower-energy level relative to the t2 counterparts. This reflects the fact that

the monomeric ferrate can be seen approximately as a tetrahedral coordination

complex.

3. As shown in Fig. 4.5, the singly-occupied 3dxz (3dyz) of each Fe is coupled to the

doubly-occupied 2px (2py) orbital of the associated O ligand. This orbital coupling

between Fe d and O p orbitals gives rise to the bonding and antibonding π orbitals,

which are designated as ψd+p and ψd−p, respectively, and evaluated to be doubly

and singly occupied, respectively. This interaction picture shows that the O atom

coordinates Fe as the oxo ligand and the two spins are built up at each oxo group.

4. The four singly-occupied NOs in Fig. 4.4 (9–12) are regarded as formed by the σ

and π interactions between two units of ψd−p arising in the dimeric Fe(VI)=O. As

shown in Fig. 4.6, they are interpreted as bonding σd−p (9) and πd−p (11) orbitals

as well as anti-bonding σ∗d−p (10) and π∗d−p (12) orbitals. Note that the singlet state

is totally formed with these open shells, meaning the spins on them are coupled

antiferromagnetically. The similar orbital interactions take place between two units

of ψd+p, leading to σd+p (5), σ∗d+p (6), πd+p (7), and π∗d+p (8) orbitals, which are all

doubly occupied.

Table 4.2 shows the occupancies of the σd−p, σ
∗
d−p, πd−p, and π∗d−p orbitals as a function
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of the reaction coordinate, R, TS, and P. Natural orbitals and occupancies are shown

for TS and P of (20e,14o) in Fig. Fig. S2, and S3,† respectively, and for TS and P of

(36e,32o) in Fig. S5, and S6,† respectively.

Varying occupancies associated with antiferromagnetic (or radical) coupling in two

iron sites were mainly observed in these orbitals. As the reaction proceeds from R to

TS, the strength of the O-O interaction rises to the degree that the occupancies of σd−p

and σ∗d−p approach 1.64 and 0.51, respectively, for CAS(20e,14o) and 1.70 and 0.42,

respectively, for CAS(36e,32o), which are rather away from fully singly-occupied nature

of these orbitals for R. The presence of the approximately doubly-occupied σd−p orbital

indicates that the σ type bond is formed to an appreciable extent. The πd−p and π∗d−p

orbitals were found to remain more or less singly occupied in the domain from R to

TS. These occupancies indicate that the adjacent Fe-O species of TS form transiently a

peroxo bridge.

As the reaction finally turns into P, the transfer ratio of one electron from σ∗d−p

to σd−p exceeds 90%, indicating a tight formation of the σ bond in O-O. In addition,

we observed a rise in electron populations associated with the forming of π-type O-O

bond; the corresponding πd−p and π∗d−p orbitals have an occupancy of ca. 1.7–1.8 and 0.5,

respectively.

In Fig. 4.7, an overall mechanism of the electronic process in the diferrate-mediated

O-O bonding reaction is schematized. We here introduce the bond order of O-O and

Fe-O, denoted as n(O-O) and n(Fe-O), respectively. Let them be estimated using the

following formulas in conjunction with the results (Table 4.2) from the natural orbital
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analysis:

n(O-O) = (f(σd−p)− f(σ∗d−p) + f(πd−p)− f(π∗d−p))/2 (4.8)

n(Fe-O) = 2− n(O-O) (4.9)

where f(τ) refers to the NOON of the orbital τ . Table 4.3 shows the estimations of

n(O-O) and n(Fe-O). They are reflected by the bond orders of the chemical structures

shown in Fig. 4.7.

The prominent feature of this O-O bond formation lies in the dual bonding character

associated with σ and π orbital interactions. The formation rate of the σ bond was found

to be much faster than that of the π bond. As indicated in our scheme (Fig. 4.7), the

metal-oxo bonds are homolitically cleaved and the oxidation states of the Fe ions each

decrease. When the O-O bond is formed (P), O-O has a bond order of 1.5, exceeding

a single bond, and remains coordinated to Fe ions with a bond order of 0.5 (Table 4.3).

It was thus indicated that the Fe ions of P formally have a non-integer oxidation states,

+4.5, i.e. between +4 and +5. In the reaction scheme proposed by Roth et al.,[9] the O-O

bond of the P intermediate was characterized as a single bond, which serves as a bridge

connecting the two Fe(V)−O• groups. These descriptions highlight a marked difference

between our study and that of Roth et al., which should be quite critical for evaluating

the viability of the subsequent O2 release. Our non-integer picture of electron occupan-

cies arises from the theoretical treatment based on a quantum superposition of electron

configurations beyond the single-determinant DFT picture. The discovery of these re-

markable chemical bonds in the O-O bond formation was enabled by the quantitative
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description of bonding characters, which was properly obtained by the multireference

approaches.

4.5 Conclusions

It is of great importance to corroborate the role of electrons that come into play in the O-O

bond formation on the basis of quantum chemical theory. The electronic-level elucidation

serves as a core foundation to understand the overall mechanism of the water oxidation

mediated by artificial or native catalysts. However, the quantum chemical treatment of

the catalytic systems involving multiple metal centers poses great challenges. A correct

qualitative description of transition metal chemistry can be provided by accounting for

all quantum valence degrees of freedom of the electronic wave function. For theoretical

analysis of multi-center catalysts having numerous elections that participate in the re-

action, such rigorous calculations have been considered to be formidable because of its

exponentially growing complexity.

In our previous work,[62] using the DMRG method, we determined many-electron

wave functions of the water-splitting Mn4CaO5 cluster with the accuracy of the model

corresponding to the CASSCF(44e,35o) level of theory; in this active space, 3d shells of

four Mn atoms as well as 2p shells of five oxo bridges were all considered of as highly

relevant to identifying the oxidation states of the Mn cluster. In the present study, we

displayed the DMRG calculations for the O-O bond formation reaction taking place in

the diferrate (two-center) catalyst model, which was previously studied by Roth and
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colleagues by means of experiment and DFT simulation.[9] Roth et al. provided the

scheme of the direct radical coupling of the adjacent oxo ligands in the formation of

the O-O bond. We examined this O-O coupling scheme in detail with multireference

treatments using large-size active spaces up to CAS(36e,32o) in conjunction with dynamic

correlation correction. This work presented the first application of the DMRG-CASPT2

and DMRG-MRCI methods using double shell (i.e. 2p and 3p) active space, which is

responsible for the redox behavior of the two oxo units, to the qualitative determination

of the potential energy profiles.

Comparisons were made between the potential energy profiles determined by various

electronic structure methods. The active space description obtained by the DMRG-

CASSCF method which accounts for static correlation alone was quite valuable and

robust for getting a qualitative insight into the highly-correlated electronic structure of

the system. The contribution of the dynamic correlation to it through DMRG-CASPT2

and DMRG-MRCI was shown to be an indispensable factor for studying potential energy

profiles, which are considerably affected by the associated quantitative corrections. Inclu-

sion of double shells in active space plays an important role in obtaining reliable results

from CASPT2 calculations. The importance of this double-shell effects has frequently

been pointed out by earlier studies;[85, 86, 95] however, handling them with conventional

approaches is not computationally feasible, especially for multinuclear complexes.

Overall, our calculations of the potential energy profile confirmed a viability of the

O-O bond formation as a result of the coupling of the two Fe-oxo (Fe(VI)=O) units.

A marked difference between DFT and DMRG results lies in the relative energy of the
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product state with respect to the reactant state. The DFT predictions provided a rather

stabilized product state, which was lower in energy by ca. 9-11 and 5-7 kcal/mol compared

to the DMRG-CASPT2 and DMRG-MRCI relative energies, respectively. This seems to

likely give rise to critical difference in quantitative characterization of the viability of

the pathway for O2 release, which occurs after the O-O bonding step and is thought

to be triggered by additional water insertion. Using natural orbital analysis, we offered

the intriguing suggestion that the resultant O-O bond is intermediate between single

and double or a 1.5 bond, characterized by the formation of a single σ bonding and a

substantial portion of a π bonding.

Computational investigations into water oxidation have so far mostly been carried out

within the simplifying electronic structure framework of DFT, which uses a one-electron

wavefunction picture. Recent technological advances in ab initio DMRG and associated

dynamic correlation methods open up the possibility for practical, reliable multireference

treatments of multinuclear transition metal complexes. Complementing the DFT picture,

they provide a more complete and desirable picture at the entangled quantum many-

electron level, which should expedite the deeper and accurate understanding of catalytic

water oxidation processes. The water attack mechanism, which is thought to be another

pathway of the O-O bond formation in diferrate, is out of scope in this study, but needs

be investigated using the DMRG approaches in future work.
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a) Reactant (R)

b) Transition state (TS)

c) Product (P)

O-O=3.226 Å

Fe-O=1.584 Å

O-O=1.893 Å

Fe-O=1.647 Å

O-O=1.347 Å

Fe-O=1.757 Å

Figure 4.1: Optimized structures for reactant (R), transition state (TS), and product

(P) of diferrate, [H4Fe2O7]
2+.
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Figure 4.2: Relative energies of [H4Fe2O7]
2+ obtained by DFT calculations with B3LYP

and TPSSh functionals and multireference DMRG-CASSCF/CASPT2/MRCI calcula-

tions with a (36e,32o) active space along the O-O bonding reaction coordinate. All

energies (in kcal/mol) are measured relative to that of R (R(O-O)= 3.226 Å). M = 1024

was used for DMRG calculations.
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Table 4.1: Activation barriers (∆E(R → TS)) and reaction energies (∆E(R → P)) of

[H4Fe2O7]
2+ obtained by various methods (in kcal/mol). The B3LYP geometries were

used for the energy calculations of R, TS, and P. DMRG results were taken from the

DMRG calculations with M = 1024.

Method
Activation barrier Reaction energy

∆E(R→ TS) ∆E(R→ P)

B3LYP 7.98 -10.71

TPSSh 6.37 -9.17

DMRG-CASSCF(36e,32o) 10.33 0.08

DMRG-CASPT2(36e,32o) 5.82 -0.37

DMRG-MRCI+Q(36e,32o) 6.01 -3.98

CASSCF(20e,14o) 9.72 -15.23

CASPT2(20e,14o) -13.16 -3.91

CASSCF(4e,4o) -14.59 -83.27

CASPT2(4e,4o) -16.01 -60.43

MRCI+Q(4e,4o) -15.65 -79.13
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Figure 4.3: Relative energies of [H4Fe2O7]
2+ obtained by multireference calculations using

various levels of active space, (4e,4o), (20e,14o), and (36e,32o), along the O-O bonding

reaction coordinate. Optimized orbitals from CASSCF procedure were used. CASPT2

and MRCI methods were further used to include dynamic correlation energies where

possible. All energies (in kcal/mol) are measured relative to that of R (R(O-O)= 3.226

Å). The active space (36e,32o) was treated by the DMRG method M = 1024.
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Figure 4.4: Natural orbitals and electron occupancies (in parentheses) of active space

from CASSCF(20e,14o) calculation for diferrate in R state.
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O 2px(y)

Fe 3dxz(yz)

d p\ +

d p\ Ѹ Fe

O

Fe

O

Figure 4.5: Orbital interaction diagram for the valence Fe-O orbital nature in monomeric

ferrate. The coupling between the singly-occupied Fe 3dxz (or 3dyz) and doubly-occupied

2px (or 2py) orbitals leads to the bonding and antibonding Fe-O orbitals, designated as

ψd+p and ψd−p.
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Figure 4.6: Orbital interaction dia-

gram for valence orbitals formed by

the dimerized Fe-O units in diferrate.

The two adjacent sets of ψd±p each

arising in the Fe-O unit (shown in

Fig. (4.5)) are coupled via the σ (or π)

interaction, leading to bonding σd±p

[5 and 9] and antibonding σ∗d±p [6 and

10] (or πd±p [7 and 11] and π∗d±p [8

and 12]).

Fe
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Table 4.2: Electron occupancies for natural orbitals σd−p, σ
∗
d−p, πd−p, and π∗d−p highly

relevant to the O-O coupling in diferrate for R, TS, and P. They are obtained by the

CASSCF calculations with (4e,4o), (20e,14o), and (36e,32o) active space for diferrate.

Size of CAS geometry σd−p σ∗d−p πd−p π∗d−p

CAS(4e,4o)

R 1.03 0.97 0.98 1.02

TS 1.53 0.47 1.20 0.80

P 1.94 0.06 1.79 0.21

CAS(20e,14o)

R 1.12 1.06 1.05 1.13

TS 1.64 0.51 1.33 0.88

P 1.92 0.07 1.76 0.49

CAS(36e,32o) a)

R 1.05 1.08 1.01 1.11

TS 1.70 0.42 1.21 0.90

P 1.94 0.07 1.67 0.48

a) DMRG M = 512.
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oFe

o

IV…V Fe

o

IV…V
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VIFe

o
VI Fe

o

oFe

o

V Fe

o

V

R TS P

Figure 4.7: Schematic representation of bond structure of diferrate and oxidation states

of Fe ions determined by the multireference electronic structure calculations for the in-

tramolecular O-O bond formation.
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Table 4.3: Bond orders of O-O and Fe-O, denoted n(O-O) and n(Fe-O), respectively, for

R, TS, and P of diferrate. They are evaluated using eqn (4.8) and (4.9) with the electron

occupancies shown in Table 4.2.

Size of CAS geometry n(O-O) n(Fe-O)

CAS(4e,4o)

R 0.0 2.0

TS 0.7 1.3

P 1.7 0.3

CAS(20e,14o)

R 0.0 2.0

TS 0.8 1.2

P 1.6 0.4

CAS(36e,32o) a)

R -0.1 2.1

TS 0.8 1.2

P 1.5 0.5

a) DMRG M = 512.
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In the present study, we have formulated a MultiReference Configuration Interac-

tion (MRCI) theory that can use the ab initio Density-Matrix Renormalization Group

(DMRG) wave function as a reference. Due to the compactly parameterized ansatz of

the DMRG wave function, the joint approach, which we call the DMRG-MRCI, is lib-

erated from the exponentially-growing complexity and proven to possess an exceptional

performance to deal with the large-scale multireference correlation to account for both

static and dynamic correlations. The extraordinarily complicated working equations

for the DMRG-MRCI are derived and implemented into the high-performance computer

program by means of the automation technique. The computational effort of the DMRG-

MRCI has been shown to scale polynomially with respect to the size of system and the

dimension of the active space. The DMRG-MRCI has been applied to several multiref-

erence systems, which have never been calculated by means of such a accurate quantum

chemical method. The results obtained in this study are summarized as follows.

In Chapter 2, the derivation and the implementation of the DMRG-MRCI into an

efficiently vectorized program are given. The connectivity of the ab initio DMRG and the

MRCI are borne by the Internally-Contracted (IC) representation of the wave function.

Nonetheless, when the MRCI wave function is expanded by means of the IC basis, the

straightforward evaluation of the Hamiltonian matrix elements required 5-particle rank

reduced density-matrix (5-RDM), a ten-index tensor quantity. Due to the presence of

this, the computational scaling of the DMRG-MRCI was estimated to be, at least, of

O(N11) where N refers to a magnitude of the system size. To this end, we reformulate

the MRCI Hamiltonian elements in a multiple-commutator form so as for the lengthy
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5-RDM to be cancelled out. As a consequence, in our formalism, the construction of the

Hamiltonian requires only 1 – 4 RDMs. The exceedingly complicated MRCI equations in

the tensor-contracted form are derived and implemented by means of an automated tensor

generator, which was developed by us using the object-oriented C++ language. The

DMRG-MRCI with the cumulant-approximated 4-RDM was applied to the dissociation

curve of the nitrogen molecule and then, the errors caused by use of the IC basis and by

neglect of the cumulant were estimated to be negligibly small. The S0–T0 gap for the

free-base porphyrin was calculated by means of the DMRG-MRCI with the full π valence

orbitals included in the active space and was shown to be in good agreement with the

experimental and the Diffusion Monte-Carlo (DMC) results.

In Chapter 3, the stability of the hypothetical iron(V)-oxo porphyrin compound,

which is a typical model molecule for the active intermediate in the in vivo enzyme so-

called Compound I (Cpd I), was calculated by means of the DMRG-based multireference

theories including the DMRG-MRCI. According to the spectroscopic consensus, in the

ground state Cpd I, the oxidation state of iron in the active intermediate is recognized as

iron(IV). However, recent advances in the laser-flash photolysis (LFP) suggest the pres-

ence of the low-lying and thermally-accessible iron(V)-oxo porphyrin electronic isomer

(electromer). In an earlier theoretical study, a large-scale multireference perturbation

(RASPT2) and the density-functional theoretical (DFT) calculations were performed

on both iron(IV)-oxo and iron(V)-oxo electromers by Pierloot et. al.. The RASPT2

study reached a conclusion: The iron(V)-oxo electromer might be much stabler than the

iron(IV)-oxo in vacuo.
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To perform such a large calculation on the iron-oxo porphyrin at the DMRG-MRCI

level of theory, a further optimization in our computer implementation was needed. For

this purpose, we have rewritten the symbolic manipulation component in our tensor gen-

erator to eliminate the unvectorized cumulant-reconstruction step and to optimize the

sorting algorithm. The performance of the DMRG-MRCI program has been greatly im-

proved by these optimizations and so its applicability was drastically extended. Presently,

the MRCI calculation that uses approximately 30 active orbitals or more is routinely ex-

ecutable on the usual PC clusters.

In Chapter 4, we have performed a series of the multireference calculations on the

O–O (oxygen–oxygen) bond formation process catalyzed by a differate catalyst. This

process is conceived as a key step of the catalytic reaction of the dioxygen formation

from water molecule. Recently, kinetic isotope effect analysis was carried out on the

O–O bond formation catalyzed by a potassium ferrate compound (K2FeO4), revealing

the intermolecular oxo-coupling mechanism within a di-iron(VI)intermediate. The study

also involved a series of the Density-Functional Theoretical (DFT) calculations, support-

ing the experimental results. However, the strong multireference correlation effect in

a general sense plays an important role in the electronic structure of multi-metal reac-

tion. Therefore, we performed the large-scale multireference calculations on top of the

DMRG reference function; the active space with 36 electrons distributed in the 32 or-

bitals was used. The second order multireference perturbation (DMRG-CASPT2) and

DMRG-MRCI calculations revealed that the DFT overstabilized the reaction energy.

Apart from the development and application of the DMRG-MRCI, Appendices A



CHAPTER 5. GENERAL CONCLUSION 169

and B are devoted to the derivation of the second order polarization propagator in the

algebraic-diagrammatic construction framework, which is referred to as ADC(2). In

Appendix A, the partially-renormalized ADC(2) [PR-ADC(2)] is developed and imple-

mented as a part of the PSI4 quantum chemistry program suite. We performed the

PR-ADC(2) calculations on the free-base and metallo-porphyrins and as a consequence,

their characteristic peaks in the UV/vis spectra called B- and Q-bands were reproduced

accurately relative to the experimental and Symmetry-Adopted Cluster and Configu-

ration Interaction (SAC/SAC-CI) values. Since the computational scaling of the PR-

ADC(2) is of O(N5), while that for SAC/SAC-CI is of O(N6), the PR-ADC(2) has been

proven a useful method to calculate excitation energy, overcoming a fairly large quasi-

degeneracy in electronic structure. In Appendix B, the self-energy shifting is introduced

in the ADC(2) theory, referred to as ADC(2)SS. The ADC(2)SS was applied to the

several small to medium size molecules and yielded better results than the by the usual

ADC(2) for both valence and Rydberg excitations. We have observed that the ADC(2)SS

produces the excitation energy for both valence and Rydberg state as accurately as the

Coupled-Cluster with Singles and Doubles (CCSD). The computational efforts for the

ADC(2)SS and CCSD scale O(N5) and O(N6), respectively. Therefore, we conclude that

the ADC(2)SS is useful and reliably applicable approach.
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1. Introduction

Porphyrin derivatives are involved in various biological processes including photosyn-

thesis and transportation of oxygen molecules in blood and so forth. These functions

of the chemical species originate from rich and highly stable π electrons perpendicu-

larly lying on the tetrapyrrole ring. Free-base (H2P) and metalloporphyrins including

zinc- (ZnP) and magnesium- (MgP) porphyrins (hereafter porphyrin is occasionally ab-

breviated as P) are also attracting chemical attentions with respect to their particular

spectral behavior, showing two characteristic peaks at 450 and 600 nm called B- and

Q-bands, respectively in the electronic spectra. In addition, B-band possesses very large

intensity with the molar absorption coefficient, which reaches almost 106 M/cm[1] while

Q-band exhibits very small intensity contrastingly. The peak positions and widths vary

depending on the environmental effect caused by peripheral residues in proteins, or the

functional groups bonded to the ring itself. Due to this fact, a series of chlorophyll can

absorb almost whole range of the radiation effectively, for carrying out photosynthetic

reaction[2]. From such respect, these molecules are expected as efficient photosensitizers

for organic solar cell[3, 4].

Numerous theoretical efforts on the accurate description of the porphyrin analogs

have been accumulated from chemical motivation stated above. The fact that reliable

description on the electronic structure is a challenging subject due to the remarkable near

degeneracy in the conjugated π states also promotes such theoretical study. In addition

excited state calculations based on a hybrid of the density-functional theory and the mul-
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tireference configuration interaction technique (DFT/MRCI)[5, 6] have been revealed the

apparent immixture of doubly- and triply-excited configurations in the electronic spectra.

The symmetry-adapted cluster and configuration interaction (SAC-CI)[7, 8] study has

also been carried out on the excited states corresponding to Q- and B-bands of monomer

and dimer of zinc-porphyrin, and the effect caused by addition of phenyl group has been

discussed[9]. Another branch of the coupled cluster (CC) methodologies[10] for the ex-

cited state, the equation-of-motion coupled cluster with singles and doubles amplitudes

(EOM-CCSD)[11, 12] and the completely renormalized variant with triples correction

(CREOM-CCSD(T))[13, 14] have also been applied to ZnP and showed good agreement

with the observed spectra[15]. Later, even larger π-conjugated systems are calculated

also by the Kowalski’s group as well as the performance of their massively parallelized

program is benchmarked and analyzed in detail[16]. The intention of our modified po-

larization propagator is in common to their completely renormalization scheme which

drastically reduces errors in the EOM-CCSD excitation energy under the existence of

strong quasi-degeneracy. While the CREOM-CCSD(T) seems to be quite effective for

porphyrin derivatives, the concomitant polynomial scaling by magnitude of seventh power

of the system size still limits the routinely use of this theoretical framework to such the

large molecules, without availability of the massively parallel machines. The structure,

vibrational frequency and excitation energy for H2P, ZnP and MgP have been calculated

very recently by various methodologies composed of CC, DFT and multireference theories

and carefully examined in Ref. [17].

Such the theoretical progress on porphyrin derivatives has been motivated by ad-
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vances in powerful computational facilities equipped with many distributed memories

and more than thousands of CPU cores because these highly correlated methods are

scaled by magnitude of at least, sixth power of the system size. Therefore, we propose

a modified second order polarization propagator approach[18], which is based on the

algebraic-diagrammatic construction scheme (ADC(2))[19, 20] and seek the applicability

of this approach. The polynomial scaling of the ADC(2) is merely fifth power of the

system size. Hence, the practical applicability of this method is possibly outstanding. In

addition, our modified propagator approach is expected to show significant resistance to

the strong quasi-degeneracy due to the fact that the propagator framework is interpreted

as based on the quasi-degenerated perturbation theory. To the best of our knowledge, the

performance of the second order polarization propagator for such the chemically interest-

ing species has never been assessed before. Relationship among the ADC(2), a series of

quasi-degenerated variants of the configuration interaction singles (CIS)[21] with doubles

correction (CIS(D))[22, 23] called CIS(Dn)[24, 25] and the second order approximated CC

(CC2)[26, 27] has been already figured out by Hättig[28]. Our extension in the ADC(2)

is based on Dykstra and Davidson’s partial renormalization (PR) technique[29] in terms

of the coupled-pair functional (CPF) scheme[30, 31].

In Ref. [32] the partially renormalized CIS(D) (PR-CIS(D)) is presented utilizing

the spin-adapted formulation[33]. In this letter, the partially renormalized ADC(2)

(PR-ADC(2)) is developed and implemented as a functionality of an efficient ADC

program[34]. Initially, the performance for the formaldehyde and ethylene is examined

and the PR effect is assessed by comparing to the CCSD and observed values. Then per-
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formance for the porphyrin and its derivatives (ZnP, MgP) are assessed and compared

with the higher order and observed values. As a consequence the encouraging agreement

are obtained even though at the level of the second order of the fluctuation.
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2. Theory

2.1. A summary of the ADC(2) model

Only a brief summary of the ADC(2) model is given in this section. For more detail

and foundation of this theory, one ought to refer to the original papers[19, 20]. Moreover,

the relationship to the other framework of response theory as discussed in Ref. [28] would

also be helpful for further understanding. Originally, the ADC scheme is founded on the

polarization propagator[18] defined as an expectation value in terms of the T -product[35],

Ppq,rs(t, t
′
) = −i⟨Ψ0|T [a†q(t)ap(t)a

†
r(t

′
)as(t

′
)]|Ψ0⟩ (A.1)

where Ψ0 represents the exact ground state wave function in Heisenberg notation. Here-

after, indices ijklmn and abcdef stand for the occupied and virtual orbitals, respecitvely

while pqrs denote the generic orbitals. Since the definition Eq. (A.1) depends only on the

time difference t− t
′
, the Fourier transformation gives the ω-dependent spectral form[35],

Ppq,rs(ω) =

∫ ∞

∞
eiω(t−t

′
)Ppq,rs(t, t

′
)d(t− t

′
)

= lim
η→0

∑
α

{
⟨Ψ0|a†qap|Ψα⟩⟨Ψα|a†ras|Ψ0⟩

ω − Eα + E0 + iη
−
⟨Ψ0|a†ras|Ψα⟩⟨Ψα|a†qap|Ψ0⟩

ω + Eα − E0 − iη

}
(A.2)

with respect to the α-th exact excited state designated by Ψα, which diverges if ω is equal

to the exact excitation and de-excitation energies. There exists a relationship between

the first and the second terms in Eq. (A.2), represented as Π+ and Π−, respectively,

Π†
+(−ω) = Π−(ω). (A.3)
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Hence Eq. (A.3) argues that only one term in Eq. (A.2) is necessary and sufficient for

seeking the pole structure of the polarization propagator.

In the ADC scheme, only the excitation term Π+ is expanded as

(Π+)pq,rs(ω) = ⟨Ψ0|a†qap(ω −H + E0 + iη)−1a†ras|Ψ0⟩

=
∑
α,β

⟨Ψ0|a†qap|Ψ̃α⟩
{

(ω1−H
′
)−1
}

α,β
⟨Ψ̃β|a†ras|Ψ0⟩ (A.4)

where H′ is referred to as the shifted-Hamiltonian, or the response matrix. Contrastingly,

in the other propagator framework called the super operator algebra[18], both Π+ and

Π− terms are expanded in excitation and de-excitation manifolds. In Eq. (A.4), the

intermediate state Ψ̃α is generated as

|Ψ̃α⟩ = τα|Φ⟩ (A.5)

where Φ is the reference wave function and α denotes the excitation level with respect to

the replacement operator τ ,

{τα} = {τai , τabij , τabcijk , · · · ; a > b > c, i > j > k, · · · }. (A.6)

The orthonormality among each excited manifold is readily ensured by the successive

Gram-Schmidt procedure. The matrix element of the response matrix is defined by the

expectation value of the commutation relation,

(H
′
)α,α′ = ⟨Φ|τ †α[H, τα′ ]|Φ⟩ (A.7)

where α and α
′

label the excitation class presented in Eq. (A.6). The explicit formulae

complete through the second order are expanded in the single and double replacement
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manifolds, given as follows,

H
′

=

⟨Φ0|12(1 + PijPab)τ
a
i
†[H + [H,K], τ bj ]|Φ0⟩ ⟨Φ0|τai †[H, τ efmn]|Φ0⟩

⟨Φ0|τ bj †[H, τ cdkl ]|Φ0⟩t ⟨Φ0|τ cdkl †[H(0), τ efmn]|Φ0⟩

 (A.8)

in which K and P stand for the Møller-Plesset first order (MP1) wave operator[36] and

permutation operator which interchanges the subsequent indices, respectively and Φ0

denotes the Hartree-Fock wave function. In Eq. (A.8), the non-relativistic electronic

Hamiltonian is divided into the zeroth order part and the fluctuation, as H = H(0) +V in

the Møller-Plesset manner[36]. Eventually, the secular equation of the ADC(2) is written

as

H
′
X = XΩ (A.9)

where X contains the transition amplitudes composed of the single and double excitation

components in its column while Ω is a diagonal matrix that possesses the excitation

energies. The X and Ω are equivalent to the second order poles and the associated

residues of Eq. (A.4).

It is notable that the response matrix in the ADC(2) takes a symmetric form liberated

from the imaginary part in the excitation energy, which is an advantage over the other

response theories[28, 37]. In addition, the solution of the secular equation, Eq. (A.9),

X and Ω inherently satisfies the size-consistency[18]. The second order un-linked term

that arises from the singles/singles block of Eq. (A.8) compensates the Møller-Plesset

second order perturbation (MP2) correction for the ground state, and the construction

of the σ-vector requires the tensorial contraction of only the fifth power of the system

size. Therefore, the correlation level and the polynomial scaling of the ADC(2) are
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completely consistent with the ground state MP2 theory. The second order terms, which

survive eventually, in the singles/singles block of Eq. (A.8) are composed of the three

Hugenholts diagrams[18] with 3 hole (h) - 3 particle (p) intermediate states, which give

the subtracted correlation correction for the excited state from the ground state MP2

correction. Such the diagrams are recognized to represent the differential correlation (DC)

effect in the CIS(D) sense[22, 23]. On the other hand, the remaining six diagrams of the

second order originate from the coupling among the singles/doubles, doubles/singles and

doubles/doubles blocks, corresponding to 2 h - 2 p intermediate states and are referred

to as the orbital relaxation (OR) term. The OR terms are regarded to introduce the OR

effect throughout the electronic excitation process.
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2.2. The PR-ADC(2) scheme

In the MP2 energy and MP1 wave function expressions, the total electron correlation

energy is calculated by summing up the pair-wise fractions for all the active electron

pairs[36, 38]. So the correlation between electron pairs can not be accounted for at this

level of the fluctuation although in the CC theory, such an effect can be counted even

if truncating the cluster operator up to a given excitation level[10, 18]. By this fact,

the correlation energy tends to be overrated at the MP2 level if the substantial quasi-

degeneracy exists. By utilizing the partial renormalization scheme, such a situation can

be somewhat remedied. The energy and wave function expressions for the PR-MP2[29]

are written as

K̃|Φ0⟩ =
∑
P

|ΨP ⟩
1 +

∑
Q TPQ⟨ΨQ|ΨQ⟩

(A.10)

EPR−MP2 = ⟨Φ0|V K̃|Φ0⟩ (A.11)

where PQ stand for the indices of the electron pairs while ΨP,Q represent the pair-

correlation function[30, 38]. In Eq. (A.10), TPQ denotes the so-called topological factor[30],

which plays the central role on retaining the size-consistency of Eqs. (A.10) and (A.11)

and K̃ denotes the partially renormalized wave operator. Setting TPQ = 0, the usual MP2

expressions are recovered although in the case of unity, the size-consisitency is crucially

violated. The optimal choice of TPQ is given in Ref. [29] as

TPQ =
1

4
(δik + δil + δjk + δjl) (A.12)
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supposing P = (i, j) and Q = (k, l), which averages the contribution from the equivalent

electron pairs appearing in denominator of Eq. (A.10). Also in Ref. [29], the potential

energy curve calculated by using the PR-MP2 is shown to possess promising resistance to

the quasi-degeneracy and behave properly even at a relatively long bond-length, without

showing any singularity.

The explicit forms of PR-MP2 energy and PR-MP1 wave function are constructed as

follows,

EPR−MP2 =
∑
i>j

∑
a>b

V ij
ab K̃

ab
ij (A.13)

K̃|Φ0⟩ =
∑
i>j

∑
a>b

K̃ab
ij |Φab

ij ⟩ (A.14)

where V ij
ab stands for the anti-symmetric electron repulsion integral in Dirac form with

subscripts and superscripts representing the bra and ket MO indices, respectively. Then

the partially renormalized MP1 amplitude K̃ab
ij is given as,

K̃ab
ij ←

Kab
ij

Nij

(A.15)

Nij = 1 +
1

2
(1 + Pij)ρ

(2)
ii (A.16)

in which Kab
ij denotes the MP1 amplitudes. Moreover, the second order density matrix

ρ(2) is given as

ρ
(2)
ij =

1

2

∑
a>b

∑
k

Kab
ikK

ab
jk (A.17)

in terms of the occupied/occupied space. It is notable that in second term of Eq. (A.16)

the diagonal elements of the second order density matrix are averaged for the i and j

occupied orbitals, which causes inclusion of the pair-wise correlation corrections after all.
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Additional contraction to the strict ADC(2) fits in at most fourth power of system size

as apparent from Eq. (A.16). Employing the partially renormalized amplitude defined

by Eq. (A.15) in the actual construction of the contribution from singles/singles block

of Eq.(A.8) to the σ-vectors, the pair-wise correction is accounted for in the excitation

energy to be obtained as an eigenvalue in the secular equation, Eq. (A.9). This manner

is completely consistent with the preceding PR-CIS(D) treatment offered in Ref. [32],

even though PR-CIS(D) was derived on basis of the spin-adapted formulations. Finally,

we name the newly developed partially renormalized scheme PR-ADC(2).
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3. Computational consideration

Before examining the performance of the PR-ADC(2) for a series of the porphyrin

derivatives, we had applied this method to formaldehyde and ethylene, which were com-

mon test cases for assessment of the excited state theory as seen in Refs. [22, 41]. As their

structures, the geometries optimized at MP2/6-31G* level from Refs. [39, 40] were used.

Only the strict and PR-ADC(2) computations were performed in this work. The CIS(D),

PR-CIS(D) and CCSD values were taken from Ref. [32] and Ref. [22], respectively and

6-311G(2+,2+)G** basis set[39, 40] was employed for these two molecules. As pointed

out by Hirata[41], the fourth and fifth lowest excited states 11A1 and 21A1 are known

to possess very small values of the overlap between corresponding CIS and CCSD wave

functions, up to 55 % and 57 %, respectively. On the other hand, the excited states in

ethylene can be described rather nicely. By considering these speculations, we limited

the range of discussions only to the lowest three excited states for formaldehyde.

To begin the evaluation of the theoretical model, the geometry optimizations were

performed for H2P, ZnP and MgP at B3LYP/6-31G*[42] level using the Gaussian09

program[42, 43]. In the succeeding excitation energy calculation, the CIS(D) and PR-

CIS(D) computations were carried out with our ABINIT-MPX program[44]. In addition,

all the strict and PR-ADC(2) calculations were executed using our local version of Psi3

quantum chemistry program suite[45] in which the ADC module[34] was implemented.

This propagator module will be included in the upcoming Psi4 quantum chemistry pro-

gram suite[46]. For the porphyrin derivatives, the 6-31G* basis set was employed for the
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excited state calculation. In Table A.2, the calculated excitation energies are shown for

the three types of the porphyrin derivatives. Moreover, the rotation angles (θ) defined

by

cos θ =
X̃t

Sb
CIS

|X̃S| · |bCIS|
(A.18)

are also shown in parenthesis, in which bCIS and X̃S represent the CIS wave function

and the singles component of the PR-ADC(2) eigenvector. The definition, Eq. (A.18)

is different from the theta diagnostic offered by M. Oumi et. al.[48], which gives the

coupling between the CIS states near in energy but can be conceived as a generalization

without any ambiguity on definition of the quasi-degenerated manifold.

Throughout a series of calculations, none of the occupied and virtual MOs had been

frozen and the cartesian basis functions were employed. As also shown in the other

preceding research as Ref. [9], the characteristic two peaks in the electronic spectra of

porphyrin are associated with the (HOMO-1, HOMO)→(LUMO, LUMO+1) transitions

and well described by these four orbitals as shown in Fig. A.1. The nature of the

transitions are of typical valence excitation so that the diffused components were not

added in the basis function for these cases.
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4. Results and discussion

4.1. Benchmark computations for formaldehyde and ethylene

The several low-lying excited states of formaldehyde and ethylene have been chosen as

test sets based on the assessment by Hirata[41]. As reported by M. Oumi[48], the CIS(D)

has been diagnosed as valid for all the excited state summarized in Table A.1. In other

words, the coupling among the CIS states has been found to be small so that the CIS

eigenvector seems to be sufficiently similar to that of the ADC(2). By considering such

the aspects, these excited states are good test cases for assessment of the effect caused by

PR scheme into the ADC(2) theory. For formaldehyde, it is found that the PR-ADC(2)

excitation energies are lower about 0.03 - 0.05 eV than those of the strict ADC(2). In

addition, even for 11B2 and 21B2 states, which possess the Rydberg character, the PR-

ADC(2) tends to fall short of the strict ADC(2). This lowering in the energy is also

observed to the PR-CIS(D) values, in which the PR scheme improves only the DC effect

as discussed in Ref. [29]. Such the similarity of the behaviors of the PR-CIS(D) and

the PR-ADC(2) indicates that the PR scheme modifies solely the DC effect, even though

through the diagonalization of the response matrix the DC and OR terms are mixed to

give the excitation energy and transition amplitude as eigenvalue and eigenvector. The

divergent behavior of the perturbative expansion of the energy of the 11A2 lowest excited

state has been figured out by Hirata[41], examining up to the third and partially fourth
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order terms. In such the perturbative series, the first and second order terms correspond

to the CIS and CIS(D) energies. Hence the perturbative series for the excited states have

been shown to be more difficult to converge than that for the ground state, due to the

fact that the effects other than the correlation, like the relaxation are also included in

“the fluctuation” for the excited state. Even though the higher order effects are readily

accounted for in such he PR based methods as the PR-CIS(D) and PR-ADC(2), the

divergent behavior has not been observed in this work.

For ethylene, for which the CIS(D) has been diagnosed as more valid than the former

case by M. Oumi[48] it is notable that the CIS(D) values are very similar to those of the

ADC(2). As a consequence of the fact that the PR scheme corrects the PR-CIS(D) and

PR-ADC(2) values mostly equally, the two partially renormalized approaches produce

almost same energies except for the 11B1u state. The PR-ADC(2) value for the 11B1u

state differ about 0.19 eV from that of the PR-CIS(D), which can be explained by the

theta value in Ref.[48] that this state has a relatively large rotation angle up to 2.3◦

among the excited states of ethylene. Through this benchmark sets, it has been shown

that the PR correction works to the PR-CIS(D) and PR-ADC(2) almost equally in order

to improve mainly the DC effect.
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4.2. The Performance of PR-ADC(2) scheme for H2, ZnP and MgP

Table A.2 shows the calculated excitation energies for the three types of porphyrin

molecules, H2P, ZnP and MgP with the CIS(D), PR-CIS(D), ADC(2) and PR-ADC(2) as

well as the CIS values and the reference and observed data from Refs. [6, 9]. Symmetry of

the associated excited states and the spectral characters are also shown in Table A.2. In

the spectra of H2P, Q-band splits off into two Qx and Qy peaks due to its lower symmetry

than that of the other two cases. It is found from Table A.2 that the elements in the

singly excited eigenvector are obviously rotated by inclusion of the correlation and quasi-

degeneracy up to about 20 degree. This fact indicates the diagonalization of the correlated

response matrix is indispensable for these species so that the CIS(D) which treats the

effects of the correlation and the relaxation in a pseudo-perturbative manner[49] is not

appropriate. In other words, the validity of CIS(D) energy can be realized only if the the

effect of quasi-degeneracy of the excited state is sufficiently small. On the other hand,

the ADC(2) is considered as the quasi-degenerated perturbative theory so the ADC(2)

should be more appropriate for this case. This speculation is also consistent with the

odd behavior of the doubles correction in the CIS(D) energy for Q-bands, which raises

the value of the CIS excitation energy and widen the discrepancy from the observed data

up to 0.4 eV. By introducing the partial renormalization technique into MP1 amplitude

in the CIS(D) energetic equation, such an erratic behavior is readily corrected and the

moderately passable values are obtained for all the states except the Qy-band of H2P

that is still a difficult case. The DC effect is tempered by inclusion of the correlation
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between electron pairs and the overrated correction into the excitation energy seems

to be properly modulated. This fact is coincident with the speculation that the odd

behavior of the doubles correction of CIS(D) energy is caused by the overestimated MP2

correction for the ground state with the strong quasi-degenerated character. In the case

of ADC(2), which is based on the quasi-degenerated perturbative treatment[28], such

the values of the excitation energies fit in the observed data moderately good and are

mostly comparable to those from the preceding SAC-CI study[9]. However for the Qy-

band of H2P the correction is not yet sufficient and the gap between the calculated and

observed excitation energies increases compared with the CIS level. At last PR-ADC(2)

can reproduce the highly encouraging results even for the Qy-band and the associated

excitation energy is lowered from the CIS value.

By nature of the multiconfigurational character of the excited states, the DFT/MRCI

values from Ref. [6] still show quite good agreement for all the states. Even utilizing

the partial renormalization[29] into the DC term, the PR-ADC(2) is based on the single

reference theory so that the deviations from observed data reach up to around 0.2 eV.

However, it is notable that employing partially renormalized wave operator defined by

Eq. (A.10) the contribution from the 3 h - 3 p terms is scaled with respect to the

electron pairs, which results in lowering the excitation energy about 0.2 eV for both

Q- and B-bands. Such an effect is caused by inclusion of the pair-pair correlation that

appears as higher order effect beyond MP2 level description, as discussed by Dyktra and

Davidson[29].
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5. Summary

In this letter, we present a polarization propagator scheme[18, 19, 20] complete

through the second order termed PR-ADC(2) in which the correlation between elec-

tron pairs is included for both the ground and the excited states. The newly developed

propagator approach has been implemented in an efficient ADC program developed by

MS. In addition, this approach preserves the size-consistency and unitary-invariance as

well as is based on the CPF[30] typed modification[29] in terms of the MP2 energy and

MP1 wave function. As a common test set, the PR-ADC(2) is applied to formaldehyde

and ethylene. Then, it has been verified that the PR correction is negligible if the quasi-

degeneracy is insignificant and the PR correction improves mostly the DC effect, but the

OR effect still remains unmodified. To this point, development of the other modification

scheme may be desired such as the self-energy shifting[50]. Eventually the PR-ADC(2)

is applied for Q- and B-bands in three porphyrin molecules, H2P, ZnP and MgP and

shows encouraging results comparable to previous SAC-CI study[9] while the CIS(D)

produces poor values especially for the Q-bands due to the fact that the simple doubles

correction does not lower the CIS excitation energy. The ADC(2) can be regarded as

one of the quasi-degenerated perturbative variants of the CIS(D) and the corresponding

singly excited eigenvectors for such the bands are obviously rotated by effect of the strong

quasi-degeneracy.
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Table A.1: Calculations of the excitation energies (in eV) for several low-lying singlet excited states of

formaldehyde and ethylene. The character of the excited states is shown in parenthesis as “V” and “R”

denote the valence and Rydberg states, respectively.

State CIS CIS(D) PR-CIS(D) ADC(2) PR-ADC(2) CCSD Obs.

Formaldehyde 11A2(V) 4.48 3.98 3.91 3.86 3.81 3.95 4.07

11B2(R) 8.63 6.44 6.41 6.28 6.25 7.06 7.11

21B2(R) 9.36 7.26 7.23 7.22 7.19 7.89 7.97

Ethylene 11B3u(V) 7.13 7.21 7.16 7.19 7.15 7.31 7.11

11B1g(V) 7.71 7.84 7.80 7.82 7.78 7.96 7.80

11B1u(V) 7.74 8.04 7.99 8.00 7.80 8.14 7.60

11B2g(V) 7.86 7.86 7.81 7.85 7.80 7.99 8.01

11Ag(R) 8.09 8.18 8.13 8.16 8.11 8.34 8.29

† Taken from Refs. [39, 40] and the references therein.
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Table A.2: Singlet excitation energies (in eV) corresponding to Q- and B-bands for H2P, ZnP and MgP systems calculated by various approaches

along with the observed data. For the PR-ADC(2) singly excited eigenvalues, rotation angles from the CIS vectors are shown in parenthesis.

CIS CIS(D) PR-CIS(D) ADC(2) PR-ADC(2) DFT/MRCI[6] SAC-CI[9] Obs.†

H2P

11B3u/Qx 2.41 2.47 2.23 2.24 2.04 (15.75◦) 1.97 1.70 1.98

11B2u/Qy 2.54 2.94 2.70 2.63 2.43 (16.67◦) 2.38 2.19 2.42

21B3u/B 4.52 3.47 3.29 3.52 3.35 (19.41◦) 3.07 3.43 3.33

ZnP

11Eu/Q 2.54 2.79 2.55 2.53 2.33 (15.24◦) 2.21 1.84 2.28

21Eu/B 4.75 3.52 3.32 3.59 3.43 (14.98◦) 3.28 3.50 3.04, 3.22, 3.05

MgP

11Eu/Q 2.49 2.73 2.49 2.47 2.26 (15.57◦) 2.16 2.01 2.07,2.14

21Eu/B 4.70 3.48 3.29 3.56 3.39 (15.78◦) 3.25 3.63 3.05, 3.18

† Taken from Ref. [6] and the references therein.
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Figure A.1: The canonical (a) HOMO-1 (b) HOMO (c) LUMO (d) LUMO+1 in H2P depicted

by MOLKEL[47] program. In case of ZnP and MgP, increase in symmetry from D2h to D4h

makes the LUMO and LUMO+1 degenerate.
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B.1 Introduction

To determine the optical behavior of materials requires at least consideration of the

excitation process, in terms of the ground state (GS) to an excited state (ES). In addition,

if the optical phenomena under consideration range over the UV/vis region, then the

electronic ESs must be assessed. From this perspective, reliable and accurate calculations

of the excitation process are of central importance in the field of theoretical chemistry

[1, 2, 3, 4, 5]. The ESs are categorized according to the characters of the associated

initial and final states i.e., the core, valence and Rydberg states. In contrast to the two

former types, the Rydberg ES is distinct, due to the transition of an electron to the

highly diffused orbitals. Therefore accurate accounts for the orbital relaxation, which is

an effect of the gross charge rearrangement through the excitation process, is merely at a

qualitative level if uncorrelated methods such as the configuration interaction with singles

excitation (CIS) [6] is utilized. The excutation energies (EEs) and properties obtained

with the CIS frequently deviate from the observed values by approximately 1-2 eV or

more.

Correlated treatment of the ES requires the second or higher order correction to

the CIS energy. In the second order treatment, double and factorized triple excitation

contributions with respect to the GS configuration are taken into account. This method

is referred as CIS(D) [7, 8] and has been widely used due to its economic performance;

therefore, moderately promising consequences is available for most of the typical singly

excited states compared with the observed values at a cost of the fifth power of the
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molecular size. Another branch of the correlated ES theory, which is referred to as the

algebraic-diagrammatic construction (ADC), is available for the excitation propagator

[9, 10, 11, 12], in which both the excitation energy and expectation value are treated

at the arbitrary order of the fluctuation. The second order approximation, ADC(2)

corresponds exactly to the second order Møller-Plesset expansion [13] for the ES and is

strictly formulated in terms of the intermediate-state representation (ISR) [14, 12, 15].

The resemblance in formulas of the second order approximation for coupled-cluster with

singles and doubles (CC2) [16, 17, 18] to ADC(2) is addressed and both theories are

implemented with the resolution of the identity approximation [19].

The second order approaches for the ES are all capable of being implemented into

a highly efficient programs because their tensor-contracted forms are simpler than the

CCSD and the higher order methods. However, for the Rydberg excitations, the second

order correction often overestimates the electron correlation and orbital relaxation (OR)

effect and the error from the observed value appears to be enhanced. In the second

order approach, the effect of the doubly excited configurations introduces the orbital

relaxation corrections into the excitation energy. Since the diagonal block of the doubly

excited configurations in the response matrix is expanded up to the zeroth order[7], the

orbital relaxation effect tends to be overestimated for the Rydberg type excitations and

this phenomena result in the values of the EE approximately 0.5 eV smaller than the

CCSD values. To overcome this drawback, an optimal damping parameter is introduced

into the OR term in combination with the scaled-opposite spin (SOS) parameterization

for the CIS(D) model [20]. Another procedure to compensate this situation is Dyson-
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shifting [21, 22], which is also known as the self-energy shifting [23, 24] in the OR term,

in combination with the damping parameter. By shifting the denominator of the OR

term with the correlated self-energy, the higher order effects are effectively introduced

without a drastic increase in the computational effort. These approaches are known to

retain size-consistency and is invariant under the rotation of the degenerate molecular

orbitals (MOs)[25, 26]. Therefore they are reliably applicable to large, realistic molecular

systems in a well balanced way between the Rydberg and valence states.

Because these methods are based on the CIS(D) theory which does not require the

diagonalization of the response matrix, the correlated transition amplitude is unavailable.

When the method based on the quasi-degenerated perturbation is utilized instead of the

CIS(D), the correlated transition amplitude is made available as the eigenvector of the

response matrix. Moreover, stronger resistance to the quasi-degeneracy of the electronic

structure is also expected[27]. By utilizing the alternative methods such as the ADC(2),

CIS(2X) [28, 5, 29] and a series of CIS(Dn) [30] theory a more well balanced and useful

correction approach that is effective for both the valence and Rydberg states is thought to

be achievable. We have already implemented CIS(D) and the corrected variant termed

CIS(D)SS [31, 32] in the multilayer fragment molecular orbital (ML-FMO) framework

by utilizing a massively parallel, integral direct algorithm [33] in our ab initio program

entitled ABINIT-MPX [34]. The MLFMO-CIS(D)SS approach has been demonstrated

as accurately and robustly applicable to various proteins including yellow- and blue-

fluorescent [32] proteins.

From such a practical point of view, we present the self-energy shifting for the second
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order response matrix in combination with the use of a damping parameter implemented

in an efficient computer program. Results for several small to medium sized molecules are

shown in this communication followed by the promising agreements that are confirmed

for both the Rydberg and valence excitations.

B.2 Theory

B.2.1 Structure of the second order response matrix

For the perturbative treatment of the electron correlations, the second quantized elec-

tronic Hamiltonian is divided into a sum of the zeroth order part (H0) and the fluctuation

(U) in a way originally proposed by Møller and Plesset[13]:

H0 =
∑
pq

F q
p a

paq (B.1)

U = −
∑
ipa

V iq
ip a

paq +
1

4

∑
pqrs

V rs
pq a

paqasar (B.2)

where F and V represent the Fock matrix and the anti-symmetrized electron repulsion

integral (V rs
pq = ⟨pq|rs⟩ − ⟨pq|sr⟩), respectively, in the spin-orbital notations while the

ap and aq represent the usual electronic creation (a†p) and annihilation (ap) operators,

respectively. Indices i, j, k, l and a, b, c, d represent occupied and virtual MOs, respec-

tively, while the rests are used for the generic states. The reference Hartree-Fock (HF)

function (Ψ0) serves as the zeroth order wave function;

H0|Ψ0⟩ = E0|Ψ0⟩ (B.3)
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and the HF electronic energy is obtained as a sum of the zeroth and first order energies;

EHF = ⟨Ψ0|H0 + U |Ψ0⟩. (B.4)

The electron correlation comes into play in the energy at the higher than or equal to the

second order level of the fluctuation potential (Eq. (B.2)). The second order expression

of the ground state energy (MP2 energy formula) is given as

E2 = ⟨Ψ0|U |Ψ1⟩ (B.5)

=
∑
ijab

V ij
abK

ab
ij (B.6)

where K is the first order amplitude;

Kab
ij =

V ab
ij

ϵa + ϵb + ϵi − ϵj
(B.7)

assuming the canonicality of the MOs, i.e. F q
p = ϵpδ

q
p. The first order wave function is

constructed as

|Ψ1⟩ =
1

4

∑
ijab

Kab
ij a

aabajai|ΨHF ⟩. (B.8)

In the ADC framework, the polarization propagator (Π+) in the ω-representation is

given in the following form [9, 10, 11, 12];

(Π+)pq;rs(ω) = ⟨Φ0|aqap(ω −H + E0 + iη)−1aras|Φ0⟩ (B.9)

=
∑
α,β

⟨Φ0|aqap|Ψ̃α⟩
{

(ω1−A)−1
}
α,β
⟨Ψ̃β|aras|Φ0⟩ (B.10)

where Φ0 represents the exact ground state wave function while the Ψ̃ is the intermediate

state constructed by the action of the excitation operators to the HF reference function

|Ψ̃α⟩ = τα|Ψ0⟩ (B.11)

{τα} = {aaai, aaabajai, aaabacakajai, · · · ; a > b > c, i > j > k, · · · }. (B.12)



APPENDIX B. SELF-ENERGY SHIFTED ADC(2) 205

In Eq. (B.10), A refers to the response matrix whose elements are defined, by using the

reference function Ψ0, as

(A)α;β = ⟨Ψ0|[τ †α, [H, τβ]]|Ψ0⟩. (B.13)

Because the EEs are calculated as the poles of the polarization propagator (Eq. (B.10)),

numerical problem to seek the pole structure of Π+ can be rewritten as the eigenvalue

equation with respect to the response matrix;

lim
ω→ωpole

Π+(ω) =∞⇐⇒ lim
ω→ωpole

(ω1−A) = 0. (B.14)

In the second order level of the fluctuation potential (U in Eq. (B.2)), the response

matrix is to be expanded in terms of the singles (S), and doubles (D) excitation manifolds.

The S/S block is treated up to the zeroth, first and second order while the D/D block

is treated only up to the zeroth order [9, 16]. The coupling blocks (S/D and D/S ele-

ments) are expanded up to the first order. To our knowledge, the ADC(2) was originally

derived using purely diagrammatic technique[9] by removing the de-excitation diagrams

that appear in the random-phase approximation (RPA) equation[35, 36]. Later, an al-

gebraic procedure for derivation of the arbitrary order ADC, i.e., ADC(n), known as

intermediate-state representation (ISR), was developed [14] and the relationship to the

quasi-degenerate variants of CIS(D) [30, 37] and CC2-LR was addressed[38]. In contrast

to the RPA type approach such as the second order polarization propagator approach

(SOPPA) [39, 40], this type of theory possesses a simpler structure in the response matrix

due to the decoupling of the de-excitation manifolds. The numerical procedure for solv-

ing the ADC(2) equation appears to be more straightforward than that for the SOPPA
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because the dimension of the ADC response matrix is a half of SOPPA one. Moreover,

rather demanding four-virtual electron repulsion integral (ERI), which is necessary for

SOPPA calculation, is no longer required.

The response matrix elements of ADC(2) in spin-orbital notation can be written

explicitly as

(ASS)ia;jb = Fabδij − Fijδab − V ib
ja +

1

2
(1 + PijPab)

[
−1

2
Kae

mnV
mn
be δij −

1

2
Kef

imV
jm
ef δab + Kae

inV
jn
be

]
(B.15)

(ASD)ia;ldkc = V al
cd δik + V kl

di δac − V ak
cd δil − V kl

ci δad (B.16)

(ADD)iajb;ldkc = Fadδilδjkδbc + Fbcδilδjkδad − Filδjkδadδbc − Fjkδilδadδbc (B.17)

where the Einstein summation convention and the Brillouin condition [41] are supposed.

Eqs. (B.16) and (B.17) are in common with the corresponding super operator matrix

elements for the SOPPA [39, 40, 41, 42]. In Eq. (B.15), the last term on the right-hand

side arises from the decoupling of the de-excitation manifolds. In solving the eigenvalue

equation in terms of the response matrix given by Eqs. (B.15) – (B.17), the D/D block,

which appears as diagonal sub-matrix, is renormalized into the S/S block to give the

energy dependent potential. As a consequence, a pseudo-eigenvalue equation with respect

to the effective response matrix given in the S manifold,

Aeff
SS (ω) = ASS + A†

SD(ωE−ADD)−1ADS. (B.18)

In analogy with the CIS(D) theory [7], the second order terms in ASS give the subtracted

correlation correction between the ES and GS known as the differential correlation (DC)

terms whereas the other second order terms, which arise from the second term in Eq.
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(B.18), introduce the orbital relaxation (OR) effect throughout the electron transition.

To calculate the EEs, one has to solve the state-specific eigenvalue equation

Aeff
SS (ω)XS = ωXS (B.19)

in self-consistent manner. In Eq. (B.19), XS represents the effective singly excited am-

plitude. The diagonalization of the response matrix (Aeff
SS ) by using the block-Davidson

algorithm[43, 44, 45] dominates the overall computational time. In the diagonalization,

σ-vector (Matrix-Vector product) has to be constructed at each step;

σS(ω) = Aeff
SS (ω)BS (B.20)

where BS refers to the Ritz vector for the effective singly excited amplitudes. The

construction of Eq. (B.20) scales by O(N5) where N represents the magnitude of the

size of the system unless the resolution-of-identity (RI) or the local correlation approach

is employed. The explicit formulas of the energy-dependent σ-equation in spin-free form

are given in Table B.1.

B.2.2 Self-energy shifting and use of the damping parameter

for ADC(2)

For well balanced treatment of the valence and Rydberg type ESs, two requirements

must be fulfilled; use of the sufficiently diffused basis set and inclusion of the higher than

second order terms in the OR term of the effective response matrix. Since the exponents

and contraction coefficient are optimized for the GS energy in most basis set, use of
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relatively large basis set is desired for the EE calculations. Even in the calculations of

the response properties, the situation is thought to be the same as the EE calculations.

Even if a sufficiently large basis set is used, the EEs tend to deviate over approximately

0.5 eV from those obtained by the higher order methods such as CCSD [46, 47]. For

the accurate calculation of the EE for the Rydberg excitation, one has to include the

higher than the zeroth order terms in the OR term. In the response matrix at complete

thorough the second order level, the D/D block is expanded up to the zeroth order and

is given as diagonal matrix. For this specific simplicity, the efficient solution of the EE

is available because there is no need to store the doubly excited amplitude in solving the

quasi-eigenvalue equation in terms of the effective response matrix (Eq. (B.18)). The

denominator shift can recover this dilemma by which the denominator in the OR term

of the second order response matrix Eq. (B.18) is shifted by the correlated self-energy.

The most strict way would possibly be to shift the denominator by the diagonal first

order matrix elements of the D/D block. Let us note that such a diagonally-renormalized

approach is not invariance under the unitary transformations of the degenerate MOs. On

the other hand, the self-energy shifting retains the unitary-invariance when is applied to

the theory that holds the unitary-invariance (e.g. ADC(2), CIS(D), ...) and is known to

give the accurate EEs when used in the CIS(D) with use of the damping parameter.

When the self-energy shifting is used in the ADC(2), the D/D block of the response

matrix (Eq. (B.17)) is modified as follows

(ADD)iajb;ldkc = (ϵa + ϵb − ei − ej)δjkδilδadδbc (B.21)
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where {ei} represents the single-ionization energies calculated as the poles of the second

order electron propagator. The damping parameter (λ) is introduced in the ADC(2)

framework as

Aeff
SS (ω) = ASS + A†

SD(λωE−ADD)−1ADS. (B.22)

In the ab initio electron propagator theory, the Dyson’s equation gives the relationship

of the zeroth order (Hartree-Fock) propagator (G0) with the correlated propagator (G)

G(e)−1 = G0(e)
−1 −Σ(e). (B.23)

In Eq. (B.23), Σ represents the self-energy term which gives rise to the inclusion of the

correlation effect. At the second order level of the fluctuation, the Dyson’s equation (Eq.

(B.23)) is written as

(G2)p;q(e)
−1 = (e− ϵp)δpq −

(
1

2

∑
iab

V pi
ab V

ab
qi

e + ϵi − ϵa − ϵb
+

1

2

∑
ija

V pa
ij V ij

qa

e + ϵa − ϵi − ϵj

)
(B.24)

where the first and second terms on the right-hand side correspond to the G0 and Σ2,

respectively. Furthermore, we use the quasi-particle approximation by which the non-

diagonal elements of G2 are neglected ((Σ2)p;q → (Σ2)p;qδpq). With the quasi-particle

approximation, the computational cost to solve Eq. (B.24) to obtain the second order

ionization energies scales by O(N4) once the integral transformation from AO to MO

basis is done. In this paper, we have used another type of the second order self-energy

expression called parameterized GW2 (pGW2) model[48]. The pGW2 can be considered

as a spin-component scaling type of modification[49] to the second order self-energy term.

In the case of ADC(2), adoption of the damping parameter as zero (setting λ →

0 in Eq. (B.22)) eliminates the energy-dependence of the effective response matrix,
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resulting in the working equations similar to the CIS(2X) model. Hereafter, we call such

a second order method as ADC(2)λ=0. Also, we name the modified ADC(2) that uses

the self-energy shifted denominator (Eq. (B.21)) instead of Eq (B.17) as ADC(2)SS. Our

conventions for a series of the modified ADC(2) schemes are compiled in Table B.2.

B.2.3 Implementation

We have implemented the ADC(2) program in the Psi3 open source quantum chemistry

program package[50]. Our implementation is based on a completely file-based algorithm,

so that the sorted tensorial quantities including ERIs and the Fock matrix elements were

written to direct access files in symmetry blocked forms, which are the largest input

files for the ADC module. The ADC module utilizes the direct-product decomposition

technique [51]; the algorithms for molecular symmetry exploitation that largely reduces

the floating-point operations and the memory requirement by a factor of ≈ h2, where h

represents the order of the computational point-group. This algorithm enables tensorial

quantities to be blocked out and stored according to their irreducible representation, such

as the two-electron integrals, the σ-vectors and the intermediates encountered through

the computation. As a result, the tensor contraction requires only the matrix-matrix

manipulation of the symmetry-allowed, non-zero blocks. The main routine of our program

performs the diagonalization of the effective response matrix (Eq. (B.18)) in a self-

consistent manner; due to the energy dependence, the quasi-eigenvalue equation has to

be solved for each ES. The outer iteration to obtain the self-consistent eigenvalue is

accelerated by using the Newton-Raphson algorithm[52] and because of this, the total
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computational time becomes approximately half.

The ADC program is ported to Psi4, the latest version of the package[53], and is now

available under the open source license as a part of the release. Moreover, our program

is capable of performing the partially-renormalized ADC(2) calculation[54].

We also have implemented the electron propagator program to calculate the correlated

ionization energy according to the second order and pGW2 self-energy approximations[55].

The algorithm used to seek the pole structure is based on Ref. [42].

B.3 Computational details

All of the geometries were optimized via the MP2 / aug-cc-pVDZ [56, 57] level com-

putation using the MPQC program [58], and used as input data for calculation of the

vertical EEs using CIS(D), CC2, ADC(2), ADC(2)SS and EOM-CCSD as references. .

The calculated EE values were compared to the experimental data [59, 60] for benzalde-

hyde and styrene. For the water molecule, the basis set dependence of the EEs obtained

with ADC(2) and the modified variants were tested by varying the basis sets from aug-

cc-pVDZ to aug-cc-pV7Z [56, 57, 61, 62, 63, 64]. All the calculations were performed

with our local version of the PsI3 quantum chemistry program package, in which we

implemented the ADC module, named ADC. Our Psi3 is capable of performing the strict

and modified ADC(2) computations for the EEs in combination with the our electron

propagator program.
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B.4 Test cases and results

B.4.1 Adoption of λ into accounting of the orbital relaxation

effect

Firstly, we examine the corrections purely from inclusion of the damping parameter λ [20]

in the OR term. Medium-sized molecules such as glycine, naphthalene and styrene, ben-

zaldehyde were selected. For the former two species, the calculated values are compared

to those at the CCSD level, while the latter two with the experimental data because of

convenient availability. For all the calculations, aug-cc-pVDZ basis set was used. These

results are shown in Tables B.3 and B.4, where the characteristics of the associated ES

are represented in parenthesis as “R” for Rydberg and “V” for valence states. In ad-

dition, the deviations from those values of the references are summarized graphically in

Figs. B.1 - B.3 for ease of visualizing the tendencies. In Table B.3, it is notable that the

glycine molecule, for which by nature of the Rydberg excitations, CIS(D), ADC(2) and

CC2 tend to fall short from the CCSD values by up to 0.5 eV. On the other hand, in

case of CIS, without any consideration of the correlation and the relaxation, it is easily

recognizable that all of the states are largely overshot by 0.5-1.5 eV, even though the

second order correction works and reduces the errors. This tendency is a typical error in

these cases because of the weakness of the second order approach. When the first order

description is not merely at the qualitative level, such as in case of Rydberg excitation,

the second order correction tends to be overestimated. The introduction of λ as zero re-

sults in recovery from such a drawback, as in the case of CIS(D), which approaches close
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to those of CCSD, as shown in Fig. B.1. However, for π∗ excitations, which are frequently

encountered in naphthalene, the situation is somewhat different. For such cases, all of

the values are overshot, especially for the B3u and B2g states with significant deviations

recognizable from the values at the CCSD level, while the strict ADC(2) fits moderately

well for both states. From Table B.4, it is readily conceived that the typical second order

methods are all clearly overrated from the experimental values. By inserting λ into the

OR term as zero, the separation is largely widened and λ acts to correct such a situation

with respect to the substantially quasi-degenerated states. Expansion of the OR term

in Eq. (B.18) as an infinite series shows that the adoption of λ as zero is equivalent to

the lowest order treatment on quasi-degeneracy. Although in Ref. [30], the zeroth order

model with respect to the quasi-degeneracy, CIS(D0) is superior to CIS(D) in accuracy,

which is the same situation presented in Table B.4. This would be ascribed to the ge-

ometries optimized via non-correlated calculations, while in this work MP2 geometries

were employed.

By adopting the λ parameter, the encouraging remediation is thus recognized for the

Rydberg state, as already reported for CIS(D), although for the other type of ES, the

calculated values are largely overrated to widen the absolute values of discrepancy from

the reference values. Thus, the inclusion of λ as zero seems to be insufficient for both

types of excitation.
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B.4.2 Correction ascribable to self-energy shifting in the OR

term

Here we examine the correction by the self-energy shifting [21, 22], by considering several

molecules, formaldehyde, water, and 2,3,5,6-tetrafluorobenzene, for which the results are

shown in Table B.5. For formaldehyde, a typical test case for comparison of the Rydberg

and valence excitations, as presented in Ref. [21], all of the second order methods includ-

ing ADC(2) almost give the values at the CCSD level for a 1A2 state of valence character.

However, for the other two ESs, 1B1 and 2B1, which possess Rydberg character, accor-

dance falls far short. Behavior such as the latter case can be retrieved by employing

λ, but in this case, the valence state 1A2 tends to become too high compared with the

reference value. This dilemma is also observed in the previous section. For the water

molecule, which possesses countless numbers of Rydberg states, as with the previous ex-

ample, for strong 3p-type character that gives rise to the oxygen atom, all of the lowest

ESs shown in Table B.5 are of the Rydberg type for which λ improves the original OR

term by significantly lifting up the excess accounting such that almost identical outcomes

to the reference are obtained. The use of self-energy, abbreviated as SS and the adopted

self-energy term therein is represented by subscript in parenthesis, slightly diminishes

the correction introduced solely by λ, which results in broadening of the deviation at

this level of basis set.For this case, considerations of the basis set dependence and the

behavior toward the limit will be given in 3. C.

As the last case described here, 2,3,5,6-tetrafluorobenzene is considered, for which the
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deviations by each method are depicted in Fig. B.4. This molecule has both types of

excitation and is thus an ideal example for this type of benchmark. If λ only is adopted

to dampen the OR term, then the EEs are lifted up to over 1 eV from those of the

strict ADC(2) that deviate up to approximately 0.8 eV. Such an overestimation over 0.5

eV is recognized regardless of the character of the state, even for Rydberg states such

as the Ag state and for the B3u valence state. When the self-energy is also used to

shift the denominator of the OR term, the overrated correction is buffered to give good

agreement. Especially when the second order self-energy expression is used in shifting the

denominator, the calculated EEs are found to be in good accordance for all the states.

When both the damping parameter and the self-energy shifting are used, the deviations

from the reference values are fairly within approximately 0.3 eV, regardless of the type

of the ESs.

B.4.3 Basis set dependence in EEs for cases where self-energies

are adopted

As mentioned in 3. B, the water molecule was chosen as the benchmark for the aug-cc-

pVNZ basis, where N varies D to 7, to observe the behavior of the EEs calculated using

both the strict and the shifted ADC(2) methods compared with the CCSD values. In

Table B.6 and Fig. B.5, the relationship between the four lowest EEs and the basis set is

given. We have found that as the number of the basis function increases, the differences

between the values of the ADC(2) and the CC2 is reduced. Therefore, in Fig. B.5,

only the ADC(2) values are shown. As the number of the basis set increases, the EEs
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calculated by the ADC(2)λ=0 tends to overshoot the EEs and discrepancy between EEs

calculated by the ADC(2)λ=0 and the CCSD values keeps being larger even though all

the states given in Fig. B.5 are of Rydberg excitations. At the aug-cc-pV5Z level, all the

curves tend to increase reasonably parallel and mostly reach their limit. The ADC(2)

curves are found to be almost parallel to the CCSD curve. In the case of ADC(2)SS also,

similar behavior is readily recognized, and as the basis set grows the energy curves follow

those of CCSD in a highly promising manner, although with aug-cc-pVDZ, ADC(2)λ=0

is preferable for these types of excitation. The shifted ADC(2) methods tend to give the

EEs between those of the strict ADC(2) and ADC(2)λ=0 and the good agreement with

the reference CCSD values is observed.

B.5 Concluding remarks

The typical second order methods for ESs, including ADC(2) [9], tend to fall short of

the higher order methods or the observed values upon calculation with respect to the

Rydberg excitations. Even though for the valence excitations moderately relatively good

agreement is available by using these approaches, for Rydberg state the deviations over

approximately 0.5 eV from the CCSD level, are frequently observed. In order to overcome

these ill behavior of the ADC(2), we introduced the self-energy shifting into the OR

term. When the damping parameter is also employed, the accuracy of the EEs becomes

almost comparable to the CCSD value at a cost of merely O(N5) operations. We term

these methods as the ADC(2)SS(2);λ=0 and ADC(2)SS(pGW2);λ=0 where in the subscripts,
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SS(2) and SS(pGW2) represents the second order and pGW2 self-energy expressions,

respectively, which are used to shift the denominator of the OR term of the ADC(2)

response matrix. This type of modification scheme has already been developed in the

framework of the CIS(D) and proved to give uniformly improved EEs for both the valence

and Rydberg states. Since the ADC(2) is a variant of the CIS(D) in the sense that it is

based on the quasi-degenerate perturbation theory, for systems that possess the quasi-

degeneracy in the electronic state, the shifted ADC(2) model is expected to work more

effectively than the shifted CIS(D) method.

As a consequence the damping parameter alone does not generally suffice because

while it remedies the defect for Rydberg states, it also gives too much redundant cor-

rection that causes extra deviation for the other types of excitation. Employing the

self-energy shifting in the OR term provides a balanced treatment for both valence and

Rydberg states. On the other hand, we have observed that the ADC(2)SS;λ=0 shows quite

similar behavior to the CCSD for both the valence and the Rydberg states. Throughout

this work, CCSD was chosen as a reference for which the accuracy of the ADC(2)SS;λ=0

was assessed. It has been reported that CCSD tends to overshoot the EEs for the valence

states by approximately 0.2 eV from the more accurate ab initio models in which the

triply excited correction is taken into account[65, 66]. Because ADC(2)SS;λ=0 tends to

give somewhat higher EEs for the valence states by up to approximately 0.2 eV than

the CCSD values, the specific care might be required for seeking the ESs other than the

Rydberg states. Again we stress that the our modification requires the floating-point

operations of only O(N4), which arises from the construction of the second order self-
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energy term with the quasi-particle approximations. Moreover, the self-energy shifted

ADC(2) methods retain the size-consistency and unitary-invariance, and give the EEs

of the CCSD quality by the floating-point operations of totally O(N5). The correction

scheme developed and its performance is examined in this work and we have found that

our modified scheme is regarded as reliable and reasonable for the calculation of large

molecules.

By the nature of the file-based algorithm, our ADC module is not specialized for truly

large, realistic molecules without spatial symmetry. However, it is applicable to moder-

ately large-sized molecules if they possess high symmetry by utilization of both point-

group and spin symmetries. Although the largest tested case in this communication is

naphthalene, our module is readily applicable for even larger molecules, including por-

phyrin derivatives. We are presently developing a more efficient algorithm and code that

will be readily applicable for even larger systems by utilizing a massively parallelized

programming model.
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Table B.1: Intermediate tensors and σ-equations for the ADC(2) singlet excitations where

the singly excited amplitude and orbital energy are represented by b and ϵ. The electron

repulsion integral is given in the Dirac notation.

formula

Kijab ← ⟨ij|ab⟩
ϵi+ϵj−ϵa−ϵb

Xij ←
∑

kab Kikab⟨jk|ab⟩

Xab ←
∑

ijc Kijac⟨ij|bc⟩

Aaibj ← δij
[
δabϵa − 1

2
(X t

ab + Xab)
]
− δab

[
δijϵi + 1

2
(X t

ij + Xij)
]

+2⟨ij|ab⟩ − ⟨ia|jb⟩

Dia ←
∑

jb(2⟨ji|ba⟩ − ⟨ji|ab⟩)bjb

σia ← 1
2

∑
jb(2Kijab −Kijba)Djb

Eia ←
∑

jb(2Kjiba −Kjiab)bjb

σia ← 1
2

∑
jb(2⟨ij|ab⟩ − ⟨ij|ba⟩)Ejb

Xjiab ←
∑

c⟨jc|ab⟩bic

Yijab ←
∑

k⟨ak|ij⟩bkb

Zijab ← Xjiab − Yijab

Bijab ← 2Zijab−Zijba+2Zjiba−Zjiab

ω+ϵi+ϵj−ϵa−ϵb

σia ←
∑

jbc Bijbc⟨aj|bc⟩

σia ← −
∑

jkb⟨jk|ib⟩Bjkab

σia ←
∑

jb Aaibjbjb
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Table B.2: Our naming conventions for the modified ADC(2) schemes are summerized.

λ represents the damping parameter used to scale the energy dependence of the effective

response matrix (see Eq. (B.22)) while Σ represents the self-energy employed in Eq.

(B.21). The self-energy formulae are given in the spin-free representation assuming the

closed-shell system.

Models Value of λ Formula of self-energy (Σ)p;q

ADC(2) 1 –

ADC(2)λ=0 0 –

ADC(2)SS(2);λ=0 0
∑

iab
⟨pi|ab⟩(2⟨ab|qi⟩−⟨ab|iq⟩)

e+ϵi−ϵa−ϵb
+
∑

ija
⟨pa|ij⟩(2⟨ij|qa⟩−⟨ij|aq⟩)

e+ϵa−ϵi−ϵj

ADC(2)SS(pGW2);λ=0 0
∑

iab
0.96⟨pi|ab⟩⟨ab|qi⟩

e+ϵi−ϵa−ϵb
+
∑

ija
0.96⟨pa|ij⟩⟨ij|qa⟩

e+ϵa−ϵi−ϵj
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Table B.3: Lowest vertical EEs (eV) for glycine and naphthalene calcllated by using the

CIS, CIS(D), ADC(2) and CC2 with the aug-cc-pVDZ are shown. Also, the CCSD values

calculated with the same basis set are given.

Symmetry CIS CIS(D) ADC(2) CC2 ADC(2)λ=0 CCSD

glycine

1A”(R) 6.70 5.70 5.47 5.71 5.89 5.74

1A
′
(R) 7.40 5.79 5.71 5.74 6.15 6.08

2A”(R) 8.42 6.75 6.71 6.74 7.22 7.13

2A
′
(R) 8.57 6.45 6.50 6.55 7.03 6.99

naphthalene

B2u(V) 5.01 5.14 4.80 4.80 5.24 5.05

B3u(V) 5.15 4.44 4.42 4.41 4.88 4.38

Au(V) 5.67 5.49 5.46 5.44 5.87 5.61

B2g(V) 6.02 5.86 5.84 5.82 6.27 6.01

B1g(V) 6.33 6.16 5.86 5.85 6.42 6.09

Au(V) 6.65 6.42 6.40 6.39 6.88 6.59

B2g(V) 6.86 6.55 6.53 6.51 7.03 6.68



228 APPENDIX B. SELF-ENERGY SHIFTED ADC(2)

Table B.4: Lowest vertical EEs (eV) for styrene and benzaldehyde calculated by using

the CIS, CIs(D), ADC(2), CC2, and ADC(2)λ=0 with aug-ccpVDZ basis set are shown.

The accuracy of the calculated EEs are compared with the experimental ones.

Symmetry CIS CIS(D) ADC(2) CC2 ADC(2)λ=0 Exp.

styrene

1A
′

5.30 5.38 5.28 5.30 5.67 5.21

2A
′

5.67 4.92 4.83 4.82 5.29 4.42

benzaldehyde

1A” 4.75 3.88 3.65 3.86 3.96 3.34

1A
′

5.67 5.01 4.86 4.85 5.34 4.51

2A
′

5.72 5.79 5.54 5.57 5.99 5.34
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Table B.5: Lowest few EEs (eV) for formaldehyde, water and 2,3,5,6-tetrafluorobenzene

calculated by using the CIS, CIs(D), CC2, strict and shifted ADC(2) with aug-ccpVDZ

basis set are shown. As a reference, the CCSD values are also given.

ADC(2)λ=0

Symmetry CIS CIS(D) ADC(2) CC2 - SS(2) SS(pGW2) CCSD

formaldehyde

1A2(V) 4.56 4.06 3.93 4.10 4.24 4.00 4.12 4.03

1B1(R) 8.53 6.34 6.26 6.39 6.82 6.50 6.65 7.03

2B1(R) 9.40 7.45 7.37 7.47 7.94 7.66 7.79 7.98

water

1B1(R) 8.67 6.97 6.97 7.10 7.44 7.18 7.28 7.46

1A2(R) 10.36 8.73 8.63 8.75 9.22 8.95 9.06 9.22

1A1(R) 11.00 9.41 9.36 9.48 9.96 9.73 9.82 9.86

2B1(R) 12.14 10.55 10.59 10.72 11.23 11.01 11.09 11.09

2,3,5,6-tetrafluorobenzene

B3u(V) 6.06 5.05 4.94 4.98 5.57 5.21 5.37 5.04

B2g(R) 6.96 6.33 6.18 6.14 6.62 6.31 6.45 6.37

B2u(V) 6.47 6.74 6.43 6.50 7.07 6.80 6.92 6.62

B3g(R) 7.64 7.19 7.02 6.99 7.50 7.26 7.37 7.12

B1u(R) 7.87 7.09 7.00 6.94 7.50 7.20 7.34 7.18

Au(R) 8.02 7.19 7.10 7.07 7.63 7.31 7.45 7.36

Ag(R) 9.80 9.28 8.25 8.32 9.47 8.88 9.07 8.72

B1g(R) 9.43 8.73 8.54 8.52 9.20 8.91 9.04 8.78
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Table B.6: Lowest four EEs (eV) for water calculated by using the CIS, CIs(D), CC2,

strict and shifted ADC(2) with aug-ccpVNZ basis set are shown where N = D-7. As a

reference, the CCSD values are also given. Because of the limitation of the computational

resource, ADC(2)SS;λ=0 calculations could not be performed.

ADC(2)λ=0

Symmetry CIS CIS(D) ADC(2) CC2 - SS(2) SS(pGW2) CCSD

aug-cc-pVDZ

1B1(R) 8.67 6.97 6.97 7.10 7.44 7.18 7.28 7.46

1A2(R) 10.36 8.73 8.63 8.75 9.22 8.95 9.06 9.22

1A1(R) 11.00 9.41 9.36 9.48 9.96 9.73 9.82 9.86

2B1(R) 12.14 10.55 10.59 10.72 11.23 11.01 11.09 11.09

aug-cc-pVTZ

1B1(R) 8.69 7.19 7.20 7.25 7.70 7.46 7.55 7.61

1A2(R) 10.39 8.94 8.86 8.90 9.48 9.24 9.33 9.37

1A1(R) 10.97 9.53 9.53 9.58 10.15 9.94 10.03 9.96

2B1(R) 11.80 10.28 10.33 10.38 11.00 10.79 10.87 10.82

aug-cc-pVQZ

1B1(R) 8.69 7.24 7.30 7.32 7.79 7.56 7.65 7.68

1A2(R) 10.36 9.04 8.96 8.97 9.59 9.36 9.46 9.44

1A1(R) 10.95 9.61 9.62 9.63 10.21 10.02 10.01 10.01

2B1(R) 11.60 10.11 10.18 10.19 10.84 10.63 10.72 10.65
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Table B.6: (continued)

ADC(2)λ=0

Symmetry CIS CIS(D) ADC(2) CC2 - SS(2) SS(pGW2) CCSD

aug-cc-pV5Z

1B1(R) 8.69 7.31 7.35 7.35 7.84 - - 7.71

1A2(R) 10.36 9.07 9.00 9.00 9.62 - - 9.47

1A1(R) 10.94 9.61 9.64 9.65 10.25 - - 10.01

2B1(R) 11.40 9.89 9.95 9.94 10.62 - - 10.44

aug-cc-pV6Z

1B1(R) 8.69 7.31 7.35 7.36 7.86 - - 7.72

1A2(R) 10.36 9.10 9.02 9.01 9.64 - - 9.48

1A1(R) 10.92 9.59 9.63 9.63 10.24 - - 10.03

2B1(R) 11.26 9.69 9.76 9.74 10.44 - - 10.27

aug-cc-pV7Z

1B1(R) 8.69 7.37 7.38 7.37 7.88 - - 7.73

1A2(R) 10.36 9.10 9.04 9.02 9.66 - - 9.49

1A1(R) 10.91 9.56 9.61 9.61 10.24 - - 10.01

2B1(R) 11.24 9.67 9.73 9.71 10.42 - - 10.25
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Figure B.1: Errors of the CIS and the second order methods (CIS(D), ADCC(2), CC2,

ADC(2)λ=0) from the CCSD values for glycine are shown. As a basis set, aug-cc-pVDZ was

used.
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Figure B.2: Errors of the CIS and the second order methods (CIS(D), ADCC(2), CC2,

ADC(2)λ=0) from the CCSD values for naphtalene are shown. As a basis set, aug-cc-pVDZ

was used.
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Figure B.3: Errors of the CIS and the second order methods (CIS(D), ADCC(2), CC2,

ADC(2)λ=0) from the CCSD values for styrene and benzaldehyde are shown. As a basis set,

aug-cc-pVDZ was used.
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Figure B.4: Errors of the CIS and the second order methods (CIS(D), ADCC(2), CC2,

ADC(2)λ=0) from the CCSD values for 2,3,5,6-tetrafluorobenzene are shown. As a basis set,

aug-cc-pVDZ was used.
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Figure B.5: Calculated EEs for (a) 1B1(R), (b) 1A2(R) and (c) 1A1(R), (d) 2B1(R) states by

using the strict and shidted-ADC(2) methods by using the six types of basis set; aug-cc-pVNZ

(N = D-7). Also, the CCSD values are shown as a reference.
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