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Abstract

The purpose of this study is to clarify the statistical properties of the particle radial
diffusion in an radially bounded magnetic field region with irregularities, where the col-
lisional (statistical) stochasticity and the magnetic (deterministic) stochasticity coexist.
Note that, contrary to other works, the boundedness of the magnetic stochastic region is
included and the statistical properties of the magnetic stochasticity are not postulated.

By analyzing the statistical quantities, the radial diffusion is recognized as one of the
following three processes:

(a) The Wiener process (standard Brownian motion} characterized by a power-law au-

tocorrelation coefficient, normal diffusive behaviour, Gaussian distribution, Marko-
vianity, and statistical non-stationarity ‘

(b) the uniform mixing process characterized by an exponentially vanishing autocorre-
lation coefficient, non-diffusivity, uniform distribution, Markovianity, and statistical
stationarity

(c) thestrange diffusive process characterized by a power-law autocorrelation coefficient,
subdiffusivity or non-diffusivity, neither Gaussianity nor uniformity, and statistical
non-stationarity. The strict jﬁstiﬁcation of Markovianity remains open problem.

Extensive numerical analyses are performed in two dimensional (8s/ssc, v/14) para-
metric space, where s, and v are the strength of the magnetic field perturbation and the
collision (deflection) frequency, respectively. The normalization parameter § s corresponds
to the islands overlapping criterion, and s is the characteristic frequency of the passing
particle motion. In conclusion, the following is shown. .

(1) The radial diffusion only due to the collisional stochasticity in & regular magnetic’
field (neoclassical transport with v # 0 and s, = 0)

(i) is initialized in the velocity space by the pitch angle scattering which is a

uniform mixing process
(ii) develops as & Wiener type process in the configuration space .

The statistical properties of the neoclassical radial diffusion are generically associ-
ated with the locality of the particle radial displacements.

(2) The radial diffusion only due to the maguetic field stochasticity (v = 0, 85 # 0)

(i) apliears as a strange diﬁmive process when 8/8pc 2 1,
(ii) appears es an uniform mixing process when s3/8: > 1,



The statistical properties of the magnetic st.ocpasticity are associated with the non-
locality of the radial displacements of the stochastic magnetic field lines.

(3) The radial diffusion due to both the collisional (statistical) and the magnetic (de-
terministic) stochasticity (v # 0 and s # 0) '
(i) develops as a strange diffusive process in almost all parameter space,

(ii) appears as the Wiener process only when the collisional decorrelation of particle
orbits from magnetic field lines is strong enough.

From the viewpoint of the locality of the particle radial displacerhents, the Wiener
domain is reached when the locality is established by the enough effective collisions.

From above results, it may be concluded:

— The constant diffusion coefficient has sense only in the limited regions in the (sb [ 8bes V1)
parametric space, i.e. in the regions where the radial diffusion reslizes as the Wiener

type process.
— The particularity of the deterministic stochasticity have to be accounted.

_ The particle radial diffusion should to be reconsidered from the viewpoint of the
non-local transport.
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1 Introduction

Being out of equilibrium, due to internal or external forces, & physical system relaxes to
the state which is determined under given conditions by the requirements of the so called
H-theorem, or S-theorem [1] (closed, and open system, respectively}. In other words, the
relaxation follows the simple rule which is contained in the formulation of the principle
of minimum entropy production in stationary state {1]. Nate that the entropy is adopted
as a relative measure of the uncertainty of the statistical description of physical system.

Generslly, the slow relaxation process is treated as a diffusion process {1}. According
to this, the diffusion process is recognized as a characteristic of the final stage of relaxation
towards equilibrium. However, such & determination assumes that the system relaxation
‘may be described beyond several strictly distinct time (length) scales, among which that
for a diffusion will be the longest one.

For example, in unified kinetic and hydrodynamic theory [1], the diffusion character-
istic time, 74, the mean free path time , 7, and the characteristic time for the system to
be described by statistical system, Tpn, are ordered es

Toh LT KT

The first one, Toh, is according to Krilov (2] clarified by the characteristic time of develop-
ment of the dynamical {exponential) instability of motion per one particle within physi-
cally infinitesimal volume. Thus, unigue definition of the border for an relaxation process
to be treated as a diffusion is missing. In other words, the actual physical conditions
determine conclusions about the type of the relaxation process. To describe the diffusion
process theoretical approaches are based on analogy between the transport problem and
the Gaussian random walk or standard Brownian motion theory and complementary ki-
" netic approach (3, 4]. Briefly it can be illustrated starting with the classical diffusion of

an ensemble of identical particles suspended in a fluid (plasma) which is based on two
physical postulates: the net transport of the particles across a unit surface is proportional
. to the gradient of the particle density normal to the unit ares, and in an unbounded
medium the number of particles is conserved. Two mentioned concepts are modeled by
the local Fick's law: 7 = —DVn, and the continuity equation

dn <

E +Vi=0

“where n = n(Z,t) is the number of suspended particles per unit volume at # and time
t, D is the diffusion coefficient which is postulated to be constent, and 7 is the particle
current, § = ¥n with ¥ the local velocity. Because of simplicity one dimensional examples
are presented in the following. As a result the diffusion equation is obtained

o
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or including streaming
n Daﬂn _ v@
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The solution of the last equation subject to a sharp delta function initial condition

n(z,0) = 8(z — zo) in an unbounded medium is the propagating Gauss packet

(z—x0- vt)a) ’

2.8 = i exp( 4Dt

characterized with
(z) = zo+vt, and ({z - (z))*) =2Dt,
where (z} denotes average with respect to n(z,t).

In the theory of Brownian motion a stochastic process is often characterized by the
Bachelier-Smoluchowski-Chapman-Kolmogorov (BSCK) chain equation [3, 4, 5)

F(z2,talzo, to) = f_ o:o F(za, tadzy, 8} f(z1, tilzo, to)d2n,

where f(z2,%2{21,%1) is the probability that a variable z(—oo < = < o0o) suffers a transition
from z; to xz, in time ¢, — ¢t;. In the statistical theory this is connected with Markov
property. When moments exist for various transit probabilities the chain equation is easily
converted into a Fokker-Plank differential equation similar to the diffusion equation. In
the case of a translationally invariant stochastic process with

f(za, tzlﬂ_:o. to) = f(x2 — To,t2 — fo)

adopting the Fourier transform

flk,t) = ]_ - Sf(z, t)exp(ikz)dz
and the convolution theorem for Fourier transforms BSCK equation yields
Fkta —to) = Flk,ta — 1) flk, 81 ~ ta),

when it is apparent that the Gauss pauckét is one of the solutions. The last property is
called self-similarity. Thus, equivalence between the classical diffusion and the Brownian
motion (central limit theorem) is established.

In the terms of the random walk theory {3, 4, 6], the classical diffusion of random
walker is observed. Defining, the probability density function, n;(z), of the position z; of
a walker after j steps and f(z) the probability density function for the displacement of
the walker at each step, the functions [ny(x)] are related through the recurrence formule

(@) = [ flz -y’

For a walker initially at the origin ne(x) = 3(::) the propageting Gauss packet results
after the random walk with euccessive equal displacements which ooccurred at regular
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intervals. Corresponding characteristic (structure) function which appears in the random
walk generating function [3]

f(k).= 1+ ik(z) — %k’(&:z)
is characterized by two non-vanishing cumulants
Ci(t) = (z),  Cat) = ((z — (2))*) = 2Dt

i.e. it is Gaussian. The distribution of jump times of random walker is a Poisson like with
at least

(£} = Toorr
where T is the correlation time. The diffusion coefficient is constant
p - (A7) _ dOy(t)
i TO2At T 24t

Therefore, the classical diffusion is interpreted as a Markov, Gaussian, and normal dif-
fusive stochastic process. As a consequence the Einstein relation from transport theory
{2], which states that the mean square displacement is proportional to the time, with the
proportionality coefficient equal to the diffusion coefficient is established.

The implementation of boundaries to the free diffusion of particles affects the statistical
properties of the diffusion process [1). Moreover, the recent developments in physics of
systems out of equilibrium [6}-[9], e.g. transport in disordered systems, transport theory
of Hamiltonian systems, turbulence theory, etc., treat the diffusive process as a synonym
for a relaxation process. Actually, the strict distinction of the characteristic time (length)
scale is not possible, i.e. the relaxation develops beyond many scales, but no one scale will
be characteristic and dominate process (9]. For example, in order to describe the relaxation
in disordered media, the continuous time random walk theory (CTRW) {3, 4] concerns
with random walk generated by steps taken at regular time intervals 7, 27, 37, .... Actually,
the particle may be trapped (etuck), and accelerated by the fractal structure of medium
and it may happen that corresponding probability density function, ¢(t), for pausing
times between successive steps in the walk is characterized by the infinity first cumulant
{t} — oo, i.e. the characteristic time of process is absent. To understend the transport
problem in complex system the non-Gaussian random walk, i.e. general Brownian motion
theory, and complementary strange kinetic theory are adopted {6, 8, 9]. In other words,
the standard approach based on Gaussianity, Markovianity, and normal diffusivity is
naturelly extended (so called generalized central limit theorem (CLT)). Simply, the self-
similarity is showed to be property of the Levi-functions in space, and (or) time for which
the second cumulant and (or) the firet cumulant and higher cumulants, are infinite: these
are distributions with long tail in space and (or) time. The physical system experiences
the Levy-flights during the definite interval of time, thus the superdiffusivity is found (10] .

Ci(t) = 2°, a>1
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It is interchanged with the trapping phases during which the diffusion is slowed down
a<l

and subdiffusivity is detected. The strange diffusive behaviour is generically connected
with the apparent non-Gaussianty, and non-Markovianity (during the subdiffusive phases
the system carries information from successively states). The usual definition of the
diffusion constant is meaningless. There are some tendencies {8, 9] (generalized Fokker-
Plank equation approach) for a process which is not smooth and homogeneous in z, ¢ to
use

|Az
D =lim |At|ﬁ’Where Az, At -0

instead of D. The problem is physical mesning of the coefficients @, and 8. It seems
that they are connected with the properties of the phase space of the system under
consideration.

The particle radial diffusion is a problem of great importance in the context of the
transport in a magnetically confined plasma. The earliest theoretical approaches [11]-{18]
treat it as a classical diffusion with premise to determine the constant diffusion coefficien-
t. Thus, the Gaussianity, Markovianity, and normal diffusivity of the collisional radial
diffusion are assuined a priori. The usual diffusion constant is then obtained as the long
time limit of the second cumulant (mean square displacement) under constraint that the
diffusion is local. The locality constraint is necessity in order to treat the diffusion process
in real system, which is usually inhomogeneous and bounded, from the viewpoint of the
standard diffusion theory established for homogeneous and unbounded system. In the reg- -
ular magnetic field with toroidally nested flux surfaces (domain of the neoclassical theory)
the radial diffusion (in configuration space) is completely determined by the deterministic
_ drift motion of particle guiding centers inherent in such a geometry and the stochasticity

due to the Coulomb collisions in velocity space. The locality constraint is ensured with
respect to the smallness of the particle displacement which is of the order p,fa < 1,
where p, is the particle poloidal gyroradius, and ¢ is the minor radius. The properties
of the neoclassical radial diffusion are categorized quantitatively according to the rela-
tive magnitude between the characteristic frequency (time) of the stochasticity {Coulomb
collision frequency) v (7. = v~1), and those of the drift motion. In axisymmetric toka-
mé.ks, the deterministic drift motion of guiding centers has two types of characteristic
frequency (times): the bounce frequency vy (%), and the transit frequency v(7). Thus
three asymptotic regimes exist: collisionless banana regime, v € vi.(7 3% Tie); intermedi-
ate plateau regime, v, € v € (e 3 T > 7)), and collisional Pfirsch-Schliiter regime,
Ve € (1 2> ), where v, = we ig the effective bounce frequency with € being the inverse
aspect ratio. For each asymptotic regime, the diffusion coefficient (vt > 1) is obtained by
using e varistional approach {11], or a moment approach [12]. In this study, to investigate -
the statistical properties of the neoclassical radial diffusion the Monte Carlo technique
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is used. The adopted magnetic field is an tokamak equilibria with perfect nested flux
surfaces and the Coulomb collisions are introduced by the pitch-angle scattering in the
velocity space. The neoclassical radial diffusion appeers as a Wiener process which is
associated with the locality of the particle radial displacements due to the particle drift
motions and the Coulomb collisions. In other words, the assumptions‘ of the neoclassical
theory about the normal diffusivity, Gaussianity, and Markovianity of the particle radial
diffusion are justified. Additionally, the time-independent neoclassical diffusion coefficient
is obtained.

However, experimentally obtained diffusion coefficients are usually much greater than
the neoclassical ones. As one of the reasons, the destruction of the regular magnetic
surfaces due to MHD instabilities and error fields is suggested. Even if the amplitude of
the magnetic field perturbations is small, they can change the topology of the magnetic
field structure due to the resonance at their mode rational surfaces, namely, the magnetic
islands and stochastic region are created [4, 13]. Usually, many Fourier modes of the mag-
netic perturbation can be simultaneously excited, and so the radially extended magnetic
gtochastic region appears after the overlapping of the magnetic island chains, i.e. the
global magnetic stochasticity is created as the amplitude of the magnetic perturbation
increases [4, 13]. Thus, with the increase of the stochasticity level, the particle radial
diffusion in the stochastic magnetic field region comes to be prescribed by the statistical
properties of the stochastic magnetic field lines themselves. :

In order to estimate the diffusion coefficient of the static highly stochastic magnetic
field, the correlation of the radial component of the perturbed magnetic field between.
two different points (Eulerian correlation) is specified by two characteristic lengths of the
stochastic magnetic field lines: the parallel Ly and perpendicular length L, to the equi-
librium magnetic field lines [14]. Moreover, the stochastic magnetic field is characterized
by another characteristic length, radial Kolmogorov length Ly, which is associated with
the fast exponential divergence of the stochastic magnetic field lines in the radial direc--
tion [15]-{17]. Depending on the relative magnitude of these three characteristic lengths:
Ly, Ly and Lg, the various types of diffusive regimes are defined. The most famous one
is the quasilinear regime, where the relation

L[|<<LK<<LJ,_<L

~ holds, and L is the length of the stochastic region. In this limit, the constant diffusion

coefficient of the stochastic magnetic field lines is derived by postulating that in a radially
unbounded stochastic magnetic field region (L — o), the magnetic field stochasticity
appears as & radially homogeneous, Gaussian random process with Iy <« Ly — oo.
The quasilinear diffusion coefficient is proportional to the square of the amplitude of
- pg_rturbq.tion. Ris worth to mention, frequently discussed percolation diffusive regime



defined by

8B

Lylg

> Ll:

where {68/B| is the magnitude of the magnetic perturbation {17]. The percolation dif-

fusion coefficient is constant and proprtional to the magnitude of the perturbation. Note
that the quasilinear limit can be written in equivalent form as

L|| \%)\ < L.

The radial unboundedness of the homogeneous stochastic region is equivalent of the
locality constraint in the neoclassical particle radial diffusion in the regular magnetic field
configuration. In the quasilinear regime, the evaluation of Lagrangian correlation, i.e.
evaluatiorr of the correlations along the magnetic field lines, is easily performed due to
the feature of Ly — oo [18]. When the perpendicular characteristic length L, is finite,
the Corrsin approxima.tion is used to evaluate the Lagrangian correlation {18]. However,
this approximation is valid only for a homogeneous equilibrium magnetic field without a
magnetic shear [19]. '

On the basis of the diffusion of the stochastic magnetic field lines, the diffusion co-
efficient of the radial heat (particle) transport is calculated under the influence of the
Coulomb collisions. It is reasonably assumed that the particle displacements due to col-
lisions appesr as a standard (Gaussian) Brownian process with the mean free path Amsp
as the characteristic length. Thus, depending on the relative magnitude of four charac-
teristic lengths: Ly, L1, Lk, a0d Amyp, several asymptotic diffusive regimes are obtained.
In the pioneering paper [15], both the collisionless and collisional limits are considered in
the quasilinear regime of the magnetic field stochasticity. For both of them, the time in-
dependent diffusion coefficient is found, which means that the particle radial diffusion is a
normal diffusive process like a standard Brownian motion. However, the particle diffusion
coefficient becomes time-dependent in the absence of any perpendicular motion to the
stochastic magnetic field lines. ‘This case corresponds to the subdiffusive process, where
the diffusion coefficient decreases with time. The existence of subdiffusivity influenced
extensive investigations of the particle radial diffusion in the highly stochastic magnetic
field {20, 21, 22, 23]. For example, in paper {20] from the viewpoint of the standard dif-
fusion theory the Langevin equation, hybrid, and kinetic methods, and in paper [21] the
continuous time random walk theory are applied in order to describe the particle radial
diffusion in the presence of the st.ochastié mﬁ.gnetic field. In this approaches the particles
are tied to the magnetic field lines, i.e. the particles move in radial direction only as far as .
the field lines radially diffuse, and undergo so called parallel collisions. with surrounding
plasma. Namely, the magnetic stochasticity is a spatially homogeneous, static Gaussien
prowm,thecoulombeomsiommmoddeduaGaumianpmoessmvelodtyspmmd



the perpendicular drift motion is neglected. The results are the long time limit subdif-
fusivity, and time dependent diffusion coefficient independent on approach {20, 21]. But,
the particle radial diffusion is characterized by the Gaussian profile and Markovianity
from the viewpoint of the standard diffusion theory, while the CTRW describes it as a
non-Gaussian and non-Markov process modeled by the non-Markov diffusion equation
(3]. Thus, these are the first indications that the statistical approach based on the mean
square displacement is insufficient in order to understand the physics of the particle ra-
dial diffusion. Inclusion of the perpendicular drifts leads system to the normal diffusive
behaviour [22].

In all previous treatments of the particle radial diffusion in the highly stochastic mag-
netic field, it is worth to stress that the allowable analytical approaches assume unbound-
edness and inhomogeneity of the highly stochastic magnetic field and specify the statistical
characteristics of the magnetic field perturbation. Thus, there are ambiguous points when
such analytical results are applied to a realistic system as the ideal limits. Especially, the
treatment of the statistical properties of the stochastic magnetic field in the radial di-
rection leads to problems. In torus systems, generally, the equilibrium magnetic field
is inhomogeneous in the radial direction due to the magnetic shear, and the magnetic
stochastic region created by perturbed magnetic fields, e.g. due to MHD instabilities or
error fields, is usually bounded in the radial direction. It means that the Corrsin approx-
imation is not valid and the perpendicular characteristic length L ghould to be treated
as finite. From the technical point of view, due to the inhomogeneity and boundedness in
the radial direction, the Fourier transformation is not applicable to the radial direction,
which means that the approach to assume the Eulerian correlation function in the Fourier
space may not be directly applicable to the systems with inhomogeneous and bounded
stochastic region in the radial direction. Thus, in the realistic magnetic field configura-
tions with radially bounded and inhomogeneous stochastic regions, the applicability of
the previous analytical results is under question. As another aspect, it should be pointed
out that the physical interpretation why the above mentioned subdiffusivity of the radial
diffusion occurs is not so clear. ‘The reason may not be unique depending on the situations
which are investigated. However, in the present context as one of reasons, the non-locality
of the particle radial displacements is considered. Up to now, the role of non-locality has
not been properly mentioned.

On the other hand in the case before overlapping, near overlapping, and moderate
overlapping, the magnetic field inside the stochastic region is generally neither entirely
regular nor entirely irregular, but a complicated mixture of regular and irregular regions.
In the regular island like regions, the magnetic field lines lie on tori or KAM surfaces [4, 13],
while in irregular domains the magnetic field lines are apparently stochastic, or chaotic
indicating the deterministic stochasticity {4, 13]. With stress on the enhancement of the
time-independent diffusion coefficlent of the collisionsal redisl diffusion due to the magnetic .




field destruction, the series of researches are developed (24, 25, 26]. To ensure locality,
i.e. not to allow large particle displacements from the initial flux surface, the value of the
diffusion coefficient is evaluated in the interval of the order of several collisional times. In
these cases, the statistical treatment of the particle radial diffusion inside the partially
destroyed magnetic field region is missing. However, the non-Gaussianity and strange
diffusivity (supperdiffusivity and subdiffusivity) of the magnetic field stochasticity in the
presence of regular structures are suggested from analogy with the standard mepping
(27, 28, 29].

To avoid problems coming from the applicability of the analytical results in an ide-
alized situation to a realistic one, to clarify the relationship between expected various
diffusion processes and non-locality of the particle radial displacements, and to clarify
the statistical properties of the various types of irregular magnetic field themselves, the
statistical- properties of the magnetic and particle radial diffusion have been examined
for various values of the stochasticity parameter and the Coulomb collision frequency by
using direct numerical calculations of the trajectories of magnetic field lines and Monte
Carlo simulations of the particle radial diffusion. The adopted system consists of both an
axisymmetric MHD equilibrium with perfect nested flux surfaces and a radially bounded
irregular magnetic field created by superposing the three Fourier harmonics of a magnet-
ic perturbation which resonate at their mode rational surfaces. By changing values of
the strength of perturbation, which is treated as a stochasticity parameter, the level of
stochasticity is controlled. Thus, four types of the radially bounded magnetic stochastic
region are created: region with isolated island chains under the overlapping threshold,
with weak overlapping of the magnetic islands, with moderate overlapping characterized
by the mixture of regular and irregular domains, and with highly irregular stochastic
magnetic field lines. The statistical properties of the magnetic stochasticity, which re-
alizes within the radially bounded stochastic region, are not assumed, but examined by
numerically calculating the Liapunov exponent [13], the cumulant up to the fourth order
(30, 31], and the autocorrelation coefficient {5, 30]. It is found that as the level of stochas-
ticity increases, the magnetic field stochasticity inside the radially bounded perturbed
magnetic field region tends to appear as a uniform mixing process characterized by non-
diffusivity, radially uniform distribution, statistical stationarity, and Markovianity. The
uniform mixing process, which stems from both the radial boundedness of the stochastic
region and fast exponential divergence of the magnetic field lines in the radial direction, is
firstly mentioned in the context of the particle radial diffusion in the stochastic magnetic
field. Note that the radial diffusion of the guiding center particles tied to the stochas-
tic magnetic field lines without both the perpendicular drifts and Coulomb collisions is
equivalent to the radial diffusion of the magnetic field lines.

After clarifying the statistical properties of the magnetic field stochasticity within the
radially bounded miagnetic field region, the effects of the perpendicular drift of guiding



centers and of the Coulomb collisions are investigated through the Monte Carlo technique.
The perpendicular drifts qualitatively do not change the statisticel properties of the par-
ticle radial diffusion, since the radial displacement due to the fast parallel drift motions-
slong the stochastic magnetic field lines is dominant compared with that due to the slow
perpendicular drift motions. Thus, the statistical properties of the collisionless particle
radisl diffusion in the radially bounded stochastic magnetic field are prescribed by those of
the stochastic magnetic field, and the particle radial diffusion is non-local. The Coulomb
collisions interrupt the fast parallel motions along the stochastic magnetic field lines. As
the stochasticity parameter increases and collision frequency decreases, the particle radial
diffusion appears as a strange diffusive process characterized by subdiffusivity, neither
uniform nor Gaussian profile, statistical non-stationarity, reflecting the statistical proper-
ties of the magnetic stochasticity. The radial diffusion is still non-local in this regime. In
the opposite limit with small stochasticity parameter and a high collision frequency, the
radial exponential divergence of the magnetic field lines is suppressed, and the frequent
collisions recover the locality of the diffusion, so that the diffusion appears as the Wiener
process which is previously recognized in the neoclassical radial diffusion in the regular
magnetic field [32]. It is clarified that non-locality of the particle radial displacements
leads to non-diffusivity or subdiffusivity in a radially bounded stochastic magnetic field
region. The stochastic parameter is interpreted as the indicator of the non-locality of the

particle radial displacements, and the Coulomb collision frequency is recognized as the
scattering rate of such the non-local displacements. Thus, as a result of the superposition
of these two effects, the degree of the non-locality of the particle radial displacements is
determined, leading to various types of diffusion process.

The organization of this study is as follows. In the present context, the part.lcle radial
diffusion is synonym of a relaxation of the magnetic (deterministic) stochasticity, and the
collisional (statistical) stochasticity. To investigate statistical properties of such a complex
problem in first section the basic concepts in theory of stochastic processes are shortly
mentioned: random walk, probability concept, deterministic, and statistical stochasticity.

In section 2, the basic equations of the guiding center electrons, the numerical Monte
Carlo method, and magnetic field configuration consisting of an axisymmetric MHD e-
quilibrium and a radially bounded magnetic field region with irregularities are described.
As the statistical measures the cuamulant up to the fourth order, the diffusion coefficient
and autocorrelation coefficient are defined in section 3. Additionally, the effective radi-
al Liapunov exponent is introduced in connection with the magnetic stochasticity. By
using these measures, the statistical analyses are performed in section 4 by comparing
numerically obtained process with the fundamental diffusive process: the Wiener process
in infinite domain; and the fundamental process from the viewpoint of the determinis-
tic stochasticity: the uniform mixing in finite domain of configuration space. In section
4.1 the stutisticalpmpmlesoftheoomaonnlsbochasticitylnthevelodtyspaoe and the



configuration space are investigated. It is shown that the particle radial diffusion in the
regular magnetic field is the Wiener process due to the locality of the particle radial dis-
placements according to the negligible small deviations of particle orbits from the starting
flux surface due to perpendicular drift motions and the Coulomb collisions, compared with
the minor radius which appears as a characteristic dimension of system. Section 4.2 is
devoted to the statisticel analysis of the magnetic field stochasticity which is meaningful
in the region of so called global magnetic stochasticity initialized by the overlapping be-
tween two neighboring islands. One fitting equation is given for all mentioned stochastic
levels in the region of global stochasticity, by which the saturated value of the effective
radial Liapunov exponent is estimated. Additionally the number of the magnetic field
lines with positive radial Liapunov exponent is taken as an indicator of the existence of
the regular structures inside the stochastic region. In section 5.1, the effects of the per-
pendicular drift motions on the statistical properties of the radial diffusion in the radially
bounded stochastic magnetic field region are presented. The statistical properties of the
particle radial diffusion in the presence of both the magnetic field stochasticity inside
the radially bounded perturbed magnetic field region and the collisional stochasticity due
to the Coulomb collisions are investigated in section 5.2. The statistical properties are
investigated in two-parameter space consisting of above mentioned four levels of stochas-
ticity and for three collision frequencies corresponding to plateau, and Pfirsch-Schliiter
region. In section 6, the characteristic lengths, the locality of diffusion, the second cu-
mulant, and the ballistic phase in the highly stochastic magnetic field are discussed. It is
shown that the present situation with radially bounded stochastic field is characterized
by completely different ordering of the characteristic lengths from that in the quasilinear
regime. Also, it is shown that the diffusion coefficient defined by the time derivative of
the second cumulant has no clear physical meaning when the locality of the diffusion is
not ensured. Moreover, the short time ballistic phase in the highly stochastic magnetic

field is discussed associated with the dynamical relaxation to an equilibrium. Section 7
presents conclusions. '

1.1 On random phenorhena

The large scale random phenomena in their collective action may create strict non random
irregularity [3]. Starting from this premise, the theory of probability goes beyond the
traditional Brownian motion based on Gaussian central limit theorem [5, 6] to the fractal
Brownian motion with whom the class of Levy-flight random walks (3, 10}, and continuous
time random walks [3, 4] are associated. Accordingly the generalized central limit theorem
is adopted [6].
Let walker performs at each step a jump of length z, independently chosen at each
" gtep according to a given distribution f(z), which decreases for large x as |z|~'+#) (with
# > 0 to allow normalization). After N steps, its position is the sum of N independent
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displacements

N
Xy = z__jl:cn (1)
Note that
=) = [2°f(@)d= | @)
and .
X% = N(z%) ~ N j: = f(e)dz @)

where . = NV# is the largest value among N terms of the sum (1) [6].
Then:

(i1} for 0 < p < 1, X behaves typically as N /¢ (or NInN if p = 1). Note that {z) is
inﬁnité in this case;

(i2) for 1 < p < 2, {x) is finite while the difference X ~ — ()N again behaves typically as

NY#, (or as v NInN for N =2). Note that the variable X% — X is still infinite;

(i3) for pu > 2, writing t = nr, (z?) is finite and XN = Vt, X% — X5 = 2Dt where
parameter T is the time step, V' is the velocity .

vz
T
and D is the diffusion coefficient
b &)=y
27

Stated more precisely [6], the variable Zy = Xn/N¥ for 0 < p < 1, (Xn — (z}N)/NY/¢
. for 2> £ > 1, has a limit distribution when N — oo in the sense

Probability(u1 < Z < ti2) —N-oo f“ Ly, g(u)du

and when x> 2

-Vt
Probability(u; < X:/ﬁbl: | < tg) oo ./:: ? G(u)du

The limit distributions L, g and G (G =

L,=20) are defined by their characteristic func-
tions (Fourier transforms) f(k) :

j(k) = [ dvexplika)f(@) = exp(~Clkt*), 0<B<pand C=comst. ()

They are called Levy (Gaussian when p1 = 2) or "stable” laws of index p. The last denotes
the invariant property of the characteristic functions which may be written as

f(a1k)f(aak) = f(ak)

- 11




where a, 2 are given positive constants and a is function of latter [4, 6]. Up to translations
and dilatations the Levy laws are fully characterized by the two parameters 4 and 3
(0 < p <2, -1 < B <1). The latter characterizes its degree of asymmetry {4, 6] which
depends on the relative frequency of occurance of large positive and negative increments
in the sum (1). In other words, the limit distributions Fn(z) for the sum of N steps (1)
have the same distribution f(z) (up to scale factors) as the individual steps. The infinite
value of the second moment of f(z) when g < 2 means that there is no characteristic
size for the random walk jumps, except in the Gaussian case of 4 = 2. It is just this
absence of a characteristic scale that makes Levy random walks (flights) scale invariant
fractals. Thus to employ Levy flights for trajectories, one introduces velocity through

a coupled spatial-temporal probability density ¢($,t) for a random walker to undergo a
displacement z in a time ¢ [9, 10]

-

P(z,t) = ¥(zlt)f(z)

Putting for simplicity ¥(z}t) =~ §(t — |z}/V (t)), it may be seen that such random walks
with explicit velocities (which can depend on the size of jump [10}), visit all points of the
jump on the path between 0 and z. For various values of u, that leads to the following
different time dependencies of the mean square displacement

(') = 1%, (8)

where with a > 1 superdiffusive behaviour is associated.

On the other hand the random walk is characterized by the waltmg time probabil-
ity distribution function w(t) (probability density of duration ¢ between two successive
steps of walker), and characteristic waiting time (). The traditional Brownian motion is
described by the waiting time probability which is in the long time limit given as

t
w(t) = exp(~) ©)
and corresponding (t) is finite
&)= (M
In the presence of trapping effects ! in the real dynamic systems (t) may diverge what is

manifested as subdiffusion [4, 9]. This divergence comes about by Levy-type waiting time -
distribution function with the long time behaviour (power-law like)

w(®) ™ ®)

ITyapping describes the occesional immobilization of the random walking test perticle or & waiting

time which defines the time span elapsing between the immobilization and the subsequent release of the
test particle.

12



LAt L Rty

where 0 < n < 1, and T is an intrinsic time scale of the waiting process. Such a random
walk is treated by the theory of continuous time random walk (CTRW) (3, 4, 9], and it is
proved that

(z%) = t7,

, (9)
where 0 < & < 1. The real physical systems may include both the enhanced diffusive
behaviour (for example accelerating modes) and subdiffusive behaviour (due to trapping

in space and time), what go beyond the traditional Brownian motion description {6, 9, 10].
If for any stochastic process the following condition are satisfied

(i) the distribution of the summed random events is not ”too broad” (a sufficient con-
dition is in particular, the finiteness of its second cumulant);

(i) these random events must not be "long-range correlated” (in time and space)

the Gaussian central limit theorem applies (i3), and so called normal diffusion of the clas-
sical Brownian motion is observed. The process is described by the Merkovian diffusion-
convection equation [3, 4]. On the other hand the non-Markovian diffusion equation (3, 4]
and so called fractal Fokker-Planck type equations {8] are used in order to described frac-
tal Brownian motion, characterized by strange diffusion properties [9]. Therefore, the

investigation of the actual physical process needs to identify measures which declare the
validity of conditions (i) and (ii). |

1.2 Characterization of stochastic processes

Let X be & stochastic variable with the probability density Fx(z). Then, all quantities
Y (t) that are defined as functions of X by some mapping f are stochastic processes (30]

Yx(t) = f(X,t) ' (10)

On inserting for X one of its possible values z, a sample function or realization of the
process is given by

Ye(t) = f(z,t) (11)
The probability density for Yx(t) to take the value y at time ¢, and the joint probability
density that Y has the value ¢ at 1, y2 at &3, .., and so on till y, at t, are
filwrt) = [ 8y — Yal®) Fx() ds, (12)
and .
Falyntrivats;  i¥mta) = : S - (13)
[ 80 = Ye(ta))6lys — Yelta))-8(un — Yelta) Fx(®) d,
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‘Each moment of the joint distribution of Y (t1),Y (t2),-

respectively. They permit to compute all avreges

(Y(t)Y{ta) -.Y(ta)) = (14)
[ylyz---ynfn('yhtl;ym t2; .- Yny tn) dn da...dyn

The hierarchy of functions f, obeys the following four " consistency conditions”
@) fa20;
(ii) f. does not change on interchanging two pairs (zx, te), and (T, t;);
(iii)
/fu(yhtl;u-;yn-l,tn—l;ymtn)dyn = fa-1{y1, 8153 Yn-1,tn-1)
(iv) ff{(yl,fl) dy, =1

, - [30, 33] can be found as the
.. in the expression of the characteristic functional

G(K) = j K(t1).. k(ta)(Y (£2)..Y (tm)) dr...dtm

coefficient of the term with k(tl)k(tg).

where k(t) is an arbitrary test functlon Similarly, the cumulants can be found from
logG([k) = 3 = [ k(ta)-- K(Em) (Y (0)--Y (b)) it
m=1

where the double brackets denote cumulants. In the following the cumulants up to fourth
order with respect to fixed ¢, and the second cumulant with respect to two different time

instants are of interest. They are denoted by Ca(t),n =1,2,3,4 and A(t, ), respectively.

Thus
Ci(t) = (Y =) _ (15)
Cat) = ((YOYEN) = () — (Y (&) A (16)
Cs(t) = (Y3 = V() — 3(Y2()(Y (£)) + 3(Y (&) (17)
Culty = ((YH() = (V*() — 3(r3 ()Y (1)) — 3(Y*(®))*
+ ,12(1;’2(‘5))(1’6))2—fi(‘r’(t))4 _ ' (18)
and ' _
Al t) = (Y)Y () = Y OY () — Y ONY () (19)

A process is stationary when the moments are not affected by a shift in time
(Y (t1 + 7)Y (2 + 7). Y (tn + 7)) = (Y (L)Y (£2)..Y (ta)) —(20)

for all n,7 and t1,£2,...,tn [30]. In particular (Y(¢)) = const. Thus, it is convenient
to substract this constant from Y(t), and deal with the zeroth-mean prooess Y(t) =
Y(t)— (Y) At the eame time (Y™¢t)) = const..and A(t,t) = A(t' —t).

14



A process is called Gaussian process if all its f arc Gaussian distributions
(k) =
exp ([ KE)(¥ (o) dt = 5 [ [ RN @Y () dindes)

The conditional probability fi1(y2, taly1,t1) is the probability density for Y to take
the value y, at to, given that its value at t; is ¥ (transition probability). Additionally,
the general conditional probability fi, is defined by

(21)

Fie(Ueer, tear 5ooi Vet thatlyt 20 i Uk B) =
Feat(W1,t15 - Yio b Uit bieats -3 Unts bea)
fe(yn,tys i Vi te)

1.2.1 Markov property

The concept of Markovianity is established as the probabilistic analogy of the processes
of classical mechanics, where the future development is completely determined by the
- present state and is independent of the way in which the present state is developed [33].

In stochastic (statistical) processes the future is never uniquely determined, but there are
at least proba.blhty relations enabling to make predlctlons Thus, a Markov process is

defined as a stochastic process with the property that for any set of n successive times,
tl < t2 < aan < tn,

flln—l(ym talyn, tas 3 Yn-1, th1) = flll(ym talyn-1, ta-1), (22)

i.e the conditional probabﬂity density at t,, given the value yn_; at ¢,y is uniquely deter-
mined (the whole hierarchy f,, can be constructed) and is not affected by any knowledge of
the values at earlier time [5, 30, 33]. In other words, 8 Markov process is fully determined
by the two functions fi(y1,¢1), and fij (42, 2ltn, 1) which obey two identities '

(i) the Chapman—Kolmogorov equation

f111(y3,t3|y;,t1) = [ Sin(ys, tslye, t2) fra (ye, talys, 61) dye (23)
(ii)
filya,ts) = f Fui(ya talyn, 61) fi(yn, 6) din (24)

Vice versa, any two non-negative functions fy, fyj1 that obey identities (equations (23)
and (24)) define uniquely a Markov process.

Associating the conditional probability of a deterministic system to be in state z =
¢($01 t— tO) att by

flll(zs tlzl'h t0) 5($ ¢(30: t— tO))
where zq is the position at to, the Markov property in statlstical sense is applicable [30]
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On the other hand, the randomness with respect to the dynamical instability of motion
(exponential divergence of the close trajectories {2, 34]) may be a property of nonlinear
deterministic systems (in some parametric regions): the deterministic stochasticity is
created, and probability concept becomes applicable. Thus, neglecting the regular phase

of the growth of exponential instability, that is neglectmg the residual correlations, the
" Markov property is established.

1.3 On deterministic stochasticity

Nonlinear systems governed by perfectly deterministic laws of motion may behave in
such a complex way as to simulate & random motion. This randomness is equivalent
to the exponentially divergence of close trajectories (exponential instability) {2, 7, 13].
However, this does not imply an exponential correlation decay, nor even decay at all. The -
corresponding "anomalies” in the motion statistical properties, particularly, occur when
the "chaos border” in the phase space is present which separates a chaotic and regular
components of the motion. In order to illustrate mentioned behaviour here is considered
a conservative Hamiltonian system with two degrees of freedom [13]: its phese space is
4D. The equation of motion in action-angle coordinates J = (J1, J2), 6 = (8,,85) given by

-

dJ 8H

% = o5 =9

dg 8H 3H0(J) -

¢ _ Jé, 25
& = a7= a5 e 9) (25)

(f= —8H(J,6)/80,5 = 8H,(J,8)/8J are the periodic functions of the a.ngle variables)
are derived from the Hamiltonian

H(J,8) = Ho(J) + eBy(J, ), (26)

which consists of so called unperturbed part Ho(J), and small perturbation & H. (1,0 (e <
1). The energy being conserved, the motion occurs along an orbit lying in the 3D energy
hypersurface. If the orbits are bounded then by fixing one of the coordinates (f2 = const.)

a 2D Poincare surface of section (J; — 6;) may be considered {13]. The sequence of

intersection points follows some mapping law which may be interrelated with a canonical
transformation in the complete phase space.

So called twist mapping, which is area-preserving [13, 34], may be considered in the

J1 — 0, (index is lost in the followings) choosing At = 2 /w; as time step which separates
successive intersections with Jy = const.:

Jot1 = Jnt ef(-’uﬂ.an)
eu+[ = 0!! + 2‘[&(-’.;4.1) + Eg(J'H-h 0) (27)
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Here the rotational number « is given by

2na(J) = %%2 = % (28)

The generalized standard mapping

In+1 = In+Kf.(0ﬂ)
0ﬂ+1 = 6,,+I,.+1,mod21r, (29)

with K = 27c/c fmes 85 8 stochasticity parameter, [ = 2o’ AJ, and f* = f/fmar 88
the jump in the action, normalized to a maximum value of unity, is obtained from (27)
putting f = f(8), g = 0 and linearizing about a period 1 fixed point Ju41 = Jo = Jo for
which a(Jp) is an integer [13}.

For the unperturbed system (27) any point on the circle a(J) = n/m is a fixed point
of the mapping with period m. When the small perturbation is included the resonances
at a(J) = n/m sare seeds for eventually topological changes in the system. The KAM

theorem [13] ensures the existence of an invariant torus (f, 6) parametrized by £in the
2D Hamiltonian system (25)

J = .ﬁ;-{—ﬁ(é',e)
= E+u€e), (30)

By

where{iandifarepeﬁodicinfandvanishfore= Oandg=(3istheunperturbed
frequency on the torus, provided conditions

1. the linear independence of the frequencies
S mu(HN#£0
1

over some domain of J (sufficient nonlinearity), where the w; are the components of
&= BHo/é)f and the m; are the components of the integer vector m;

a smoothness condition on the perturbation (sufficient number of continuous deriva-
tives of H 1);

3. initial conditions sufficiently far from resonance to satisfy
|- @ = ™"

for all /it, where 7 is dependent on the number of degrees of freedom and smoothness

of Hy, and = is dependent on ¢, on the magnitude of the perturbation Hamiltonian
'Hy, and on the nonlinearity of the unperturbed Hamiltonian Hp..
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Thus, some of fixed points remain after the perturbation is adopted (2km points). Due
to area preserving property the Poincare-Birkhoff theorem proves they are of elliptic and
hyperbolic type [4, 13]. Anyway, the topology of the phase space is deeply changed by
the perturbation. Near every rational surface with o = n/m, immediately, there appear
closed regular orbits encircling the m elliptic points, forming a chain of m islands. The
motion near the hyperbolic points (which are connected by separatrices) is much more
complicated: it is this neighborhood that a chaotic layer starts [4, 13]. Nevertheless,
for sufficiently small stochasticity parameter, the alternation of elliptic and hyperbolic
points is a generic property of the system. Thus, according to the initial conditions
and the value of stochasticity parameter (K for the standard mapping) there appear
orbits having different topological properties: cycles (which correspond to the periodic
motion), invariant KAM curves (island chains or trapped orbits, and KAM barriers or
passing orbits), and chaotic (irregular) orbits whose intersection points densely fill a two
dimensional region. Thus, the rational curves with growing K are immediately destroyed
and replaced by island chains. The irrational are more robust: most of them subsist in
the perturbed map as KAM barriers. Anyway, 85 K incresses it reaches & value where
~ the KAM curve changes its character [13). Instead of a continuous curve it develops holes
which transform it into fractal, so called cantori. These holes are possible ”exit points”
for & chaotic orbit which was formerly blocked by the KAM barrier. The various KAM
barriers do not disappear at the same K: some occupy more and more area in the phase
space until & final critical K, is reached when the last KAM barrier is destroyed: global
chaos (stochasticity). There still remain, however, regions bounded by islands, these
regions shrinking as the stochasticity parameter increases.

The inclusion of & time variation in the perturbed Hamiltonian (26) introduces another
degree of freedom into the observed system, such that the energy E is no longer conserved.
Thus the resonance conditions is modified 1t - & + w; = O where w; is the frequency of
time variations. Thus, the motion is allowed across the energy hypersurfaces and the
phenomenon of Arnold diffusion appears [13].

From the statistical viewpoint, the irregular chaotic regions are characterized by the
mixing (2, 7, 13]. Actually, the points (orbits) of the initial region Mo (phase space re-
gion (J,8)) tend to be uniformly distributed over the surface (3D vohime) of the single
valued integrals of motion (here energy E in the stationary case) as the time increases.
It governs the system relaxation, and the probabilistic laws of the distribution [4, 13]
of the states, which are independent of the initial state, may be adopted. In the trans-
port theory of Hamiltonian systems (7, 8, 34] the independence of the initial conditions
inside the irregular domains is then signed as the Markov property of them. Quantita-
tively it is measured by exponentially decreasing correlation function. The appearience
of correlations is then recognized by the power-law correlation functions. Note that such
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& deterministic stochasticity is signed by positive Liapunov exponent 2 and Kolmogorov
entropy * [13].

On the other hand the complex structure of phase space ‘makes the theory of fractal
Brownian motion [9, 10} applicable. The orbit which starts in the chaotic region separated
by cantori like boundary from the other chaotic region had to wait for a.felatively long time
before finding its way through a hole in the cantorus. Shortly, the orbit cannot wander
at random to any point of phase space at any time. Rather, it sticks to a certain region
neer an istand chain for a certain time then jumps to another region, where it sticks again
for many iterations, etc.. The other possibility is to obtain so called accelerated modes,
if the particle is trapped by the separatrix web formed by the separatrices overlapping
of the neighboring island chains. Then it may be interchanged between them. Various
mappings may model the various examples of deterministic stochastic motions [8, 13, 29].
Some of them are successively treated by the theory of CTRW and Levi random walk
[9, 10, 29} (standard mapping) based on above briefly mentioned circumstances. The same
mechanism is believed to be in the origin of the magnetic field stochasticity although the

model treated here is much more complicated than simple standard mapping given by
equation (29). '

1.4 On the collisional stochasticity

In this study the test electron ensemble experiences the surrounding plesma (which is
treated as a continuous medium) through the Coulomb collisions [4]. The particularity of
the Coulomb collisions which dates from the long range nature of a Coulomb interparticle
force is closely interrelated with the observation that the cumulative effect of the small
deflections resulting from interactions with distant particles is more important than the
effect of the occasional large deflections caused by relatively close encounters in plasma.
Thus the diffusion type Fokker-Plank collisional operator is established in order to model
the energy conserved test particle-plasma background interaction

3fgt ot 23)\ ((1 Az)af()‘ t)) , : (31)

where f(\t) = f(F,t,)), Ffixed. Note that the particles redistribute in the velocity space
due to the pitch angle scattering, staying all time at the same energy gurface (E = const.):
mixing property in v-space {13]. In other words, statistically collision is treated as &
process of transition of a group of particles from an initial state to a final state having the
same total momentum and energy. This process is completed during a negligably short

time 7.(= #~1) and in a region of negligebly emall size I, i.e. it is a quasi-instanteous,

2The Liapunov exponent of given trajectory measures the mean exponentisl rate of divergence of
trajectories surrounding it. -

“l'heKolmgomuhopyhllddmdutho
over all positive Liapunov exponents.

integral over & specified region of phase space of sum
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and quasi-pointlike event. As a result, the particle evolution is no longer described as a
dynamical process but rather as a succession of separate transitions characterized by a
transition probability f(7,¢,)). The collisional stochasticity is & statistical stochasticity
[4). Actually, the Fokker-Plank equation (31) with the initial condition

ft=0) =8 — o) (32)

is valid for the conditional {transition) probability fij1(A,t|Xo,0) identifying f(A\,t = 0) =
Fin(A, 0120, 0), and f(A, t) with fi;1(A, £}, 0).

Adopting such a model the Markov property is established in the sense developed in
section 1.2.1.



2 Establishment of model

The particles diffuse being tied to the magnetic field lines which diffuse themselves, and
due to external collisional stochasticity. In other words, the particle diffusion is governed
by two stochasticity origins: the magnetic field stochasticity and collisions.

The test particle radial diffusion is evaluated by solving the gyro-phase averaged Boltz-
mann equation with the linearized pitch angle scattering due to the Coulomb collisions.
The last one describes the unidirectional background plasma-test particle interaction.
Note that the pitch angle scattering operator is used instead of the full ¢ollision operator
which changes both the energy and pitch of particles. It is justified by the physics of
the neoclassical and transport due to asymmetries which are determined primarily by the
varying depth of particle trapping in the magnetic wells which exist along the field lines.
The last is changed only by the pitch angle scattering. Addltlona.lly, the uniformity of
the plasme background is implicitly assumed, and the test particle ensemble of the high
number of independent electrons is prepared. The orbit part of Boltzmann equation, i.e.
the equation of particle motion in the guiding center approximation is derived adopting
the Littlejohn approach {35]. The magnetic Boozer coordinates based on the-eqtﬁlibrium
toroidally nested magnetic field are applied. Such a choice is fully justified by assuming
that the magnetic field is destroyed only locally. The form of perturbation is chosen with
premise that the topological changes are of interest, and that in the tokamak environment
such changes are dominately influenced by the resistive instability [36].

The numerical Monte Carlo model is established following reference [26]. Under as-
sumption that the energy is conserved, the pitch angle scattering operator is numerically
obtained starting from the binomial distribution.

2.1 The guiding-center equations

In order to find the Hamiltonian guiding-center equations the variational method of Lit-
tlejohn [35], i.e. so called hybrid Hamiltonian-Lagrangian method is adopted. Such a
variational approach have the advantages of being invariant under arbitrary coordinate
transformations, and that the invariance associated with symmetries follows transparent-

ly from the independence of the Lagrangian of the corresponding symmetry coordinates
(Noether's theorem).

The variational principle in the general form is given by

5]A=0 ~(33)

where Aisa non-degenerate 1-form in the extended phase space (7, §,t). In the Lagrangian
approach '

A=Ldt o (34)
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where L is the particle Lagrangian
L(Z,Zt)=4 2 - H, (35)
written in an arbitrary coordinate system or phase space Z = (g, p, t)

t) = (zwp = 1,...,6),
¥ = (Yt = 1,...,6), and H are functions of 2 and ¢, given by

8q :
"Bt (36)

H(E, t) = Hoan _ﬁ'

Q'-Ql

where H,, is the usual Hamiltonian in terms of canonical variables (¢,§) = (gi,pi,t =
1,2,3).

The equations of motion in the Littlejohn approach follow by varying the integral of
L(Z, Z, t)dt,_ considering the variations of all six phase space coordinates Z' independent
during the variational process.

For a particle in an electroma.gnetic field, the canonical Hamiltonian is

can(@, B, t) = (p - -A(q, -‘-‘t)) + e®(q, et), (37)

where € is the adiabatic ordering parameter which physically represents the ratio of gyro-
radius to scale length (it is written € = 1 at the end of calculations). Note that adiabatic
ordering assumes the slow change of the corresponding parameter. Let Z = (&, ¥), where
# = (x4, 1 = 1,2,3) is the particle position, and ¥ = (vy, £ = 1,2, 3) is the particle velocity

. L_ P eAget)
| =40 V=g me (38)
Then, the particle Lagrangian is
mu?
L= (—A(:c, et) +mt'") z- (etb(:c et) + 5 ) (39)

Note that @ is considered independent of %, even though ¥ = £ follows from the equation
of motion. This is because the variational principle selects the physical motion out of all
conceivable motions, as the one to make the action integral stationary.

The basic idea of Littlejohn is that the Lagrangian for the guiding center equa.tioﬁ.s
is the gyroaverage of the exact (particle) Lagrangian. It is realized by combining the
coordinate transformations according to the Darboux theorem [37], and the gauge trans-

formations based on observation that equations of motion (Lagrange-Euler equations) are
invariant under transformation dS
where § = S(Z,t) is arbitrary scalar function.

At first step the particle velocity ¥, and position Z are decomposed according to

#=ub+ws end £=2+°‘;&
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where u,b,w are purely averaged in the lowest order, (iee. u=Upw=2"U)¢isa

perpendicular unit vector which is purely oscillatory, X is the guiding center position,
U= (U, Un) is the guiding center velocity,

o
]

61X62

(913
]

—sinyé; — cosyés

=
Il

b x & = cosy€é; — 8inyéy,

~v is the instantaneous gyrophase, and & 2(Z, gt) are arbitrary chosen unit vectors. So,
after the first step the six independent phase space coordinates are Z = (X, u,,w).
At second step a gauge transformation in phase space

ds
L—*L'l-EE (41)

ie. -

. 6 08 as

T—oi+5; H—oH-—Gn
with S = S(Z,t) an arbitrary scalar, gives possibility to write the oscillatory part of the
particle Lagrangian approximately as a totel time derivative

eB3S dS

L-(L)= w5y a-t——!-O( €), (42)
so that this oscillating part can be eliminated term by term from the Lagrangian. The
result is

LR, X, Up,m,7) = (L) = eA" - X + Zpy - B, (43)
where
{ m 2 = mmn
| H—e@+ﬂB+2U“, [ 2B
and A* is the effective magnetic potential
5 @ - mU“ : _
A'=A+pB,  p= B - (44)

defined by the pseudo-magnetic field B* = Vx A

. The quantity py is the paraliel
gyroradius.

The Euler-Lagrange equations for the six independent variables Z = (J? Uy, . i) axe
given by

8L d (6L aL .

5—569"5 0 “
i.e. explicitly the set of the drift equa.tions is
X = (B+—V x (Uig ))

_ Bj

Xa =
i =

v =

e s

| | (46)

eB
m



where i = B/B, and B} = B+ -V x (iimUy/e).
The total magnetic field is assumed to be of the form [24]

B, =B +46B, (47)

where B is the equilibrium magnetic field, and

§B =V x (bB) (48)

is the slow perturbation [24], i.e. |51§/§] < 1, and 1/82- 8|6B/B|/ot < 1. Note that

the first condition corresponds to the term small perturbation. Then, the total modified
potential is

A; = A+(p +b)B,
and the vector form of the drift velocity is given by

_ 5 wB+V x (e +b)B)
v=X= B+#n-VX ((pu-{-b)g) ' (49)

where v = U) is the parallel velocity to the equilibrium magnetic field B, py = v /9

and Q is the gyrofrequency. '

The toroidal topology of the unperturbed magnetic field determined the establishment
of the model in the Boozer coordinates (1,8, () [38): # is the label of a flux surface defined
~ as the toroidal flux/2x, 8 is the poloidal, and ( is the toroidal angle. Thus, the covariant,

and contravariant form of the static unperturbed magnetic field in Boozer coordinates are
written as
B =IV0+JV(+ 8.V, (50)

and .
B =V x V8-V x V¢, (51)

respectively, where 2xJ(2nI) are the poloidal (toroidal) current outside (inside) the flux
surface. Following the assumptions of Boozer [39] that B. does not change ¢ position of
particle (according to 8. = Jps—Pfirsch-Schiiiter current), and focusing attention on the
topology changes to a magnetic configuration, the term B.V4 is neglected in the following.
When the slow perturbation 8B is included the same premise is adopted. Actually, the
term f. appears in combinations pyS., and bf. in the system Jacobian which determines
how long & particle trajectory takes to cover different parts of its trajectory [39]

J=g=
(1 @rnr- %) —I(—-e+(pn+b)(.r'—"’8"g)))'l

and (¥)e,c components, i.e. B, does not change ¥ position of pa.i‘t.icle.
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Hence, the drift velocity (equation (49)) can be written as

_(J+eD)Uy (V4 x V8 — eV x V( + 7 x (py + B)(JV( + 1v9))

B B(J+eI+ (o) +0)(JI' — 1J%) | (52)
in the Boozer coordinate system which is chosen in such a way that By, A, vanish :
canonical magnetic coordinate system {39, 40].

Note that two pairs of the canonical conjugate coordinates (8. = 0) are
(bpc),  (6er¥),
where ¢ = J8 — I(,p. = py + b, and 8. = 6 — +([40].

2.2 The Monte Carlo model of the test particle diffusion
2.2.1 Model equations

The test particle transport in the presence of destroyed magnetic surfaces is evaluated by
the solution of the gyro-phase averaged Boltzmann equation [41]

o vo.-vf=c(f), (83)

‘where f = f(t,7, E, p) is the particle distribution function, and C(f) is the linearized
pitch-angle scattering due to Coulomb collisions. The energy E of each guiding cen-
ter particle is conserved, and only the magnetic moment p is changed by the Coulomb
collisions.

In the magnetic field B, of the form given by equation (47), the test particle drift
velocity ¥ is given by equation (49)..

Instead of solving equation (53) directly, the Monte Carlo technique is used [26]
Equations for each guiding center particle equivalent to equation (53) consist of two parts:

orbit, and collision part. Without the Coulomb collisions the characteristic equations of
equation (53) are obtained from {26] '

= ﬁ = ¥- V¢, (54)
where £ = (v,0,(,p.). Hence, the equanons of the guiding center in the Boozer coordi-
nates become

. 1 8B 8B e?B? b ab

v = '?[‘S(J'%'IEE)_T"" (JEE"Ia_c)] (%%)

. 5§ 8B e'B? 8b

0 = -J—+—— —pJ —J— 56

6 8B e*B? [ ab]
= ——I—+ 11+ pt + 11— . (87

C ~ w ~m pl Pe w ( )
. é
o = =3 [(c - ch') -7+ 1+ pcI') | (58)

+—1"ll [(c -—'poJ')-a—o +(1+ "J'_)I’?] -
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and

v = e[J+Ie+p{JI' - 1) (59)
e’B
§ = n+—i | (60)

To investigate the structure of the magnetic field lines, similar equations are construct-
ed as follows. By neglecting the particle drift motion the equation (49) becomes

B

—— (61)
Bt -1
Substituting equation (61) into equation (54) the equivalent of equation (54} can be
written in the form of the magnetic field line equation

o dy dé . _ ”lldt (62)
' B, - Vll) B, - ve B,-V({ Bi-n

v=y

where the time ¢ can be taken as an independent variable. The equation (62) can be

identified as the equivalent of the equations of the guiding center by putting § = 0 and
pe = b in equations (55), (56), and (57), namely

. _ mQpy (,8b  8b |

b= mnlE-) @
; _ mpy (,  8(JY) |

= (" 0% )’ o
. mQ2py 8(Ib))

¢ = = (1+ 5% (65)

where
y=e(J+eT +b(JI' ~ J'D)) (66)

The equations (63)-(65) are solved under the condition that v = const. and p = 0.
The pitch angle scattering in equation (53) is expressed as

Yoon=35(a-m%) 6"

where the pitch angle A = v /v is used instead of pu, and v is the deflection frequency
[26]. Knowing the solution of equation (67) with the initial condition f(A,t = 0) =
5(\ — Xo) a Langevin equation giving the same mean value of A and standard deviation o
is constructed :

D rna=we (68)
where the collisional effect from the plasma background is splited up into two parts:
a systematic part v, representiné dynamical friction experienced by the particle and
fiuctuation part, W(t) which is modeled as a white noise source

W@ =0, (WEW(E)) = Dé—¢) (69)
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According to (67) the constant D is chosen to be D = (1 — A2)v. The general solution of
the Langevin equation (68) is

Mt) = Moo+ [ W ()t dt | (70)

Corresponding the average value (A(t)) (the first cumulant), and the mean square dis-
placement (the second cumulant) are given by

@) = doe™, . (1)
o = () - (O = 150 (1 e, (72)
In the limit vt < 1 equations (71) and (72) become
- (A@&) = Ao(l—wut) (73)
o (t) ~ (1—MQwt | (74)
For a discrete time step At satisfying Atv < 1, A is then changed as
Mtn) = Mtn1)(1 = &) £ /(L= Wltn-1))vdt, (75)

for one step from ¢p_; = (n — 1)At to t, = nAt {26]. The symbol + indicates that the
sign is to be chosen randomly, but with equal probability for plus and minus.
The magnetic field stochasticity and pitch angle scattering due to Coulomb collisions

introduce stochasticity in the system, so that the particle ensemble allows statistical
treatment.

2.2.2 The structure of magnetic field

In the Boozer coordinates contravariant form of the equilibrium magnetic field B is ex-
pressed by equation (51). Henée, topology of the magnetic field is torus consisting of
nested toroidal flux surfaces. In the small perturbation given by equation (48), the func-
tion b, which has unit of length, is used to represent the structure of destroyed magnetic
field ﬁt, i.e. the islands and stochastic regions. Its Fourier representation is

b(¢, o, C) = E bmu(‘:b)oos("w —n( + Cm.ﬂ)s (76)

where (myn is the phase and [bmal/a < 1. The form of bma(¥) is given by

b _ -,

g ()

where parameter s indicates the strength of perturbation, called hereafter stochasticity
parameter. The parameter A¢ is noted as the width of perturbation.

27



The equations of the magnetic field lines are given by equation (62). Thus, by using

equations (51), (48), and (70), the topological changes of the magnetic configuration are
dominated by

aﬁ-v-p\

o) = 3 — 0 )om(ein(mé = ¢ + () (78)

According to section 1.3, in the presence of small perturbation near every rational
surface with ¢ = n/m, closed regular orbits appear encircling the m elliptic points, and
forming & chain of m islands. The elliptic points are separated by hyperbolic points which
are connected by separatrices. The island width [42] is approximately given by

Wman = Wm,n\/s—, Wm,n = (4Q\’ %"{') ) (79)

where rm o is the radial position of the rational surface with ¢ = m/n, ¢ = dg/dr, and
a and R are minor and major radii, respectively.. The most irrational surfaces subsist
as KAM barriers among the island chains. As the stochasticity parameter increases it
reaches value at which the KAM curve changes its character from a continuous to curve
with holes. Thus, the KAM curve is transformed into so called cantory [4]. Previously
blocked by the KAM barriers chaotic motion could be continued through the formed
holes. Different KAM barriers disappear at different value of stochasticity parameter,
some occupy more and more ares in phase space. Finally at a critical parameter the last
KAM barrier is destroyed: overlapping is started. Roughly, the value of stochasticity
parameter at which the overlapping starts is estimated from equality of the separation

between two selected neighboring rational surfaces Ar to the sum of the half widths of
the corresponding islands

Wmp + Wi v Wm,n + wm’,n‘ .
5 = 5 Vs (80)
Thus, the threshold value for overlapping is

‘ 2Ar 2 '
1 81
8e (Wm.ﬂ, + Wml,nl) ( )
However, there still remain regions bounded by islands which shrink as the stochastici-

ty parameter increases. Thus, according to initial conditions and value of stochasticity
parameter orbits of different topology appear (section 1.3).

As a magneto-hydrodynamic (MHD) equilibrium an axisymmetric flux conserving
tokamak (FCT) with regular nested flux surfaces is adopted. The boundary is circu-

lar, B = 3T, and major and minor radii are R = 3m, and a = 1.01m, respectively The
profile of the rotational tra.nsform is speciﬁed as

¢=09- 05875() | a (52)
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the aspect ratio is given by

E =

a 1
and B =(kinetic pressure/magnetic pressure)= 0.
The Fourier harmonics of the magnetic field perturbation are chosen to be

n T 2 7

m_ 10’3’ 11’
Cam = 0 and A¢/fth, = 0.1. The relative magnitude of the perturbation is given by

sp = |6B - #|/B =~ ms/(r/a) = 4.8s. Thus, according to equation (81), the critical value
of s is

Spe =T X 1078 (84)

2.3 Numerical model
2.3.1 Monte Carlo equivalent of the pitch angle scattering

The Monte Carlo equivalent to the pitch angle scattering operator ‘(67) is numerically
constructed starting with the binomiel distribution [26]. Actuslly, the broadening of f is
supposed to be due to a large number of steps in A of equal value but of random sign.

It is then derivable from the binomial distribution for obtaining m plus values in n trials
with equal probability for plus and minus

P(m) = 51,,-;1,—(—;:‘—‘_;,-1—,1 (85)

In the limit n 3> 1, the binomial distribution can be written as [26]

2
PU) = mmexpl(=3), (86)

with respect to the number of pluses minus the number of minuses, § = 2m —n. Thus, it
resembles an Gaussian distribution with the standard deviation oy = /n. In the language
of X the square of the standard deviation of f (distribution of pitch angles) is

o= (%) — (W, (87)

where the moments (\) and {)?) can be derived from equation (67) putting () = [ AfdA

)~ (88)
%2 = v(1-X3) : (89)

Haftershortti{:xetisexpectedftobeaGaussian. then A = o(1 — 1) with standard
deviation o = ((1 — A3)vt)¥2. The standard devistion o = ((1 — A3)ut)"/? is equivalent
to 04 = /Rt after n steps in ), choosing A step of magnitude ((l-g)v-r)mwlth_rthe
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length of time between the steps (note that then £ = n7). With respect to the above
discussion it is possible to write

A= () £ 0y (90)
Clearly, if the pitch is changed from A to A, after a time step of length + with

Ao = Ao(1 — vr) £ ((1 = Nvr)'2, (91)

then the effects of the Lorentz scattering operator will be reproduced if v7 <« 1 which is
equivalent to equation (69).

With such a procedure if Ao} < 1, then {A,| < 1 [25]. Clearly, |Ao] must be near one
for a problem to occur, so let Ay = 1 — §, with § < 1. The largest A, can be
An =1 — (6 + v7) + (2607)1/2 . (92)

~

Themaximumvalueof)\,,aséisvariedoocursat&é v7 /2, s0

1
Al <1=2(vr)
2
To have a good representation of the pitch angle scattering operator vr < 1.

2.3.2 Numerical pi‘ocedﬁre

The numerical code named DCOM [43] is used in order to model equation (53) according
to discussion in section 2.2. The calculations are started (t = 0) by introducing the mo-
. noenergetic (E = 3keV) test electron ensemble of N = 10000 independent electrons with
randomly distributed poloidal, toroidal, and pitch angle, {6,¢€[0,2n], Ae[-1,1]) at flux
surface with r/a = 0.63(¢ = 2/3). Each of the ensemble electrons evolutes independently
according to equations (55-568) which are solved by the 6th order Runge-Kutta procedure
[43]. To satisfy the energy constraint condition E = const., the numerical step is chosen
to be dt = 5 x 10~s. This corresponds to the maximum numerical error of order 10™4%,
which is detected in the low collisional regimes (parameter set in section 4.1.2). In all
other circumstances the maximum error is of order 10~%%.

When the magnetic field line diffusion is investigated (section 4.2) the test field line
ensemble is initially loaded at ¢ = 2/3 with randomly distributed 8,{. The magnetic
field line, i.e. the electron (E = m ve/2 = 3keV) which is tied to the magnetic field line
(& =0,y = v/ ), is followed numerically solving equations (63-65).

After each particle orbit step the Monte Carlo equivalent pitch angle operator is ap-
plied. The particularity of such a Monte Carlo procedure requires the checking of its
validity. Therefore, the results of paper [44] are taken as the referent ones. In the neo-
classical domain the system has two types of characteristic frequencies associated with the
particle dynamics: the transit frequency of passing particles v, and the bounce frequency
of trapped pa.tﬂcles 1, The characteristic times are (= 1) for passing and n(=1;)
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for trapped particles, respectively. According to the relative magnitude among above

characteristic frequencies (times) associsted with particle dynamics and the deflection
collision frequency v (collision time, 7. = v~} due to the Coulomb collision associated

with stochasticity, there are three types of collisionality regime:

VL Upe €V OF T > The > 7t @ banana regime
Vhe K VK Vg OF Tpe > T > T : Pplateau regime (93)
Ve K Vg €V OT The 3> T¢ > T, : Pfirsch- Schliiter regime,

where vy, = €1 = 'r,;l is the effective bounce frequency. Thus, in the presence of collisions
the characteristic frequencies and times at the initial flux surface are [44]
v -1 —1 7
v, = —— = 221 x108s! : 7=y, = 435x107's
R

. r\3/2 | (94)
vy = (-I_Z) vy = 230x10°s! @ m=y' = 452x10°°%s

where v = /2E/m.

In the simulation of the neoclassical radial diffusion, the different collisional regimes
are treated by choosing the parémeter v/v, to be 0.0045, 0.45 and 4.5, which correspond
to the banana, plateau and Pfirsch-Schliiter regime, respectively. On the other hand,
being interested in the qualitatively new effects from collisions in the presence of the

magnetic field irregularities the chosen collisional frequencies are:v /v, = 0.45,4.5, and 45,
respectively.
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3 Establishment of the statistical approach

In this study the radial diffusion is synonym for the relaxation of the collisional stochastici-
ty, and the magnetic field stochasticity. According to section 1.4 the collisional stochastici-
ty is of the statistical type beyond the time scale with step 7c. The smallness of the particle
radial displacement due to collisions in regular magnetic field, ér/a = ppfa = 1074, (pp
is the poloidal gyro-radius of electron), allows to assume that particle wanders across the
infinity domain. On the other hand, the magnetic stochasticity (section 1.3) is gener-
ated by the exponential (dynamical) instability and realizes inside the finite domain in
configuration space. Thus, the statistical analysis of the radial diffusion is established
on comparison with the fundamental diffusion process: the Wiener process in infinity

domain; and the uniform mixing process in finite domain.

3.1 Statistical measures
The statistical measures are defined with respect to the particle radial displacement
5r(t) = r(t) — r(0)
adopting ensemble average ,
. 1 N .
(V)= ¥ (95)
i=1 - _
where N is the number of particles in the observed particle ensemble.
3.1.1 The cumulant coefficients

The dimensionless n-th cumulant coefficient +, {5, 31} is given by

lt) = 6"07% (96)

where Cy(t) is n-th cumulant. Up to the 4th order it is calculated as (section 1.2)

Ci(t) = (6r(t)), (97)
- Calt) = ((6r(t) - @r(®))"), n=23 - (98)
Cult) = ((&r(t) — (6r())*) —3C5(t). o (99)

The first cumulant is a measure of the advective effect or convective diffusion {5, 30].
This advective effect is eliminated from the higher cumulants by definitions (equations
98,99).

The second cumulant is the dispersion around (r(t)}, and a measure of the conductive
diffusion. Its time development indicates the type of diffusive behaviour [4, 9). The
normal diffusive behaviour is denoted by the linear increasing Cy(t) in time. Accordingly,
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the slower and faster than linear increasing in time are declared as the subdiffusivity
and superdiffusivity of the observed stochastic process, respectively. In the power-law
approximation

Caft) = t%, (100)

the diffusion exponent o appears as a quantitative indication of the type of diffusive
behaviour. The process with @ < 1,= 1,> 1 is a subdiffusive, normal diffusive, or
superdiffusive process, respectively.

It is proved [31] that the only physically acceptable random process with a finite
number of nonvanishing cumulant coefficients is Gaussian with yn52 = 0. Therefore, the
cumulant coefficients Yn»2 generically carry information about non-Gaussianity (section
1.2). The degree of asymmetry around (r(t)) and relative peakedness or flatness of a
particle distribution, with respect to Gaussian, are characterized by 73 (skewness), and
74 (kurtosis), respectively. A positive (negative) value of skewness signifies a distribution
with an ssymmetric tail extending out towards r(t) > (r(¢)) (r(t) < (r(t)}). On the other
hand, a positive (negative) value of kurtosis indicates more peaked (flated) distribution

than the Gaussian one, i.e. the importance of the tails of the distribution is enhanced
(reduced), respectively.

3.1.2 Effective diffusion coefficient
Under assumption that the diffusion is local

or

hall << 1, (101)
the parameter dCott)

D(t) = —2- - 102
and power-law equivalent

Dpett) = 28

can be considered in order to indicate the type of diffusive behaviour: normal diffusivity,
D(t) = Dpu(t) = const.; subdiffusivity, D(t) # Dpu(t), and both of them decrease in
time; superdiffusivity, D(t) # Dpw(t), and both of them increase in time. Additionally,
the relative displacement D(t) from Dpy(t) is checked calculating

_ i 1D(E) — aDpu(t)]
AD(%) = limesy 0] 100, (104)

where T is the characteristic time of treated process. Note that. AD = 0 for a normal
diffusive process.

The parameter D(t) is called the effective diffusion coefficient, and Dy is noted as

the power-law equivalent of the effoctive diffusion ooeﬂident Fora pmctlcal purpose only
the constant D(t) is meaningful.
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3.1.3 The autocorrelation coefficient

In order to estimate the time correlations between two states of system, the autocorrela-
tion coefficient {30, 33] is given by

Aty — T~ GrONErE) - reN) (105)
VA6r(e) = GrONA (Er(E) - Er(eN))

The system autocorrelation time is uniquely determined under condition

A(t,t) = A(t' —t)

when it is identified with the time instant after which the value of A(t’' — t) vanishes, i.e
the events are uncorrelated. This condition is called the covariance stationarity [5]. Note
that vanishing of the autocorrelation (decorrelated two events) is weaker criterion than
statistical independence.

Usually, the system relaxation beyond some proper time scale follows exponential law.
However, the relaxation in disordered media has given another opportunity [9, 31]: the
power-law decreasing correlations. In other words the residual correlations are detected
during the relaxation process (section 1).

In the physics of system near equilibrium, the statistical approach is usually developed
with premise of the covariance stationarity. Therefore, the standard approaches are not

enough precise in order to clarify the processes which evaluate in time, and corresponding
autocorrelations are functions of the time instant t(ort’) and time interval 7 =t' —¢.

3.1.4 Statistical stationarity

The statistical stationarity of the particle radial diffusion is defined as (according to (20))

Cia(t+T) = Ciralt)
Yt +T) = 74(t) (106)
Alt,tY = A(t'-1)

with arbitrary T. Corresponding diffusion exponent is zero, and D(t) = 0: the non-
diffusive behaviour. In the absence of external forces the system is relaxed to the e
quilibrium. In other words, when the cumulant, and autocorrelation coefficients are not
affected by a shift in time the stochastic process is statistically stationary. Note that the

covariance stationarity is defined in section 3.1.3 as the independence of autocorrelation
on shift in time.

3.1.5 Effective Liapunov exponent

In the context of the radial diffusion the degree of stochasticity for the magnetic field lines '

is additionally indicated by the effective radial Liapunov exponent. Thus, in the following

~ magnetic field line is the equivalent of the particle trajectory.
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Generally, the Liapunov exponent of i-th trajectory (magnetic field line), for given
initial conditions (position and initial orientation of the infinitesimal displacement) indi-
cates the exponential rate of divergence of trajectories (magnetic field lines) surrounding
it (13] ‘

(B0 8,0) = 2, (107
where &, = (r,0) is the initial position, ¥ = AFo/|AZy| is the infinitesimal displacement
between two initially close magnetic field lines, t ~ (, and d(Zo,t) is the norm of the
tangent vector AZ(t), i.e. distance between close trajectories at time t. The positive value
of the Liapunov exponent l.; > O denotes exponential separation between i-th trajectory
and initially neighboring one. On the other hand l;i <0 corresponds to regular motion
during which i-th trajectory and initially neighboring trajectories are stuck to each other
(L < 0) or they are separated linearly with time (lei = 0). In the theory of stochastic
processes the finite long time value of Liapunov exponent is of interest. On the other hand,
in the context of the particle radial diffusion the interest is also in the time development
of the radial Liapunov exponent which is given by

lei = lei(To, 1) = lei(To, Er ) (108)
where &, = (01w/0r)/(|0@W/8r]).

The effective radial Liapunov exponent is defined as averaged radial Liapunov expo-
nent with respect to different initial conditions ¢ (magnetic field lines)

Mt——Zam (109)

i-—l

Note that for the trajectories in M dimensional phase space there is an M dimensional
basis of @ such that for any @, L takes on one of the M (possible nondistinct) values '
which are ordered by size 85

la 2l > .. 2 lem

They ‘are independent of the choice of metric for the phase space. Furthermore, the
higher-order Liapunov exponents {13] are introduced in order to describe the mean rate
of exponential growth of a p-dimensional volume in tangential space, p < M.

The Liapunov exponents are closely linked with the Kolmogorov-Sinai entropy (K-

entropy) (13, 34] which represents production and growth of uncertainty in the stochastic
process

szlei

leg>0

3.2 The Wiener process

The Wiener process in unbounded domain is fundamental to the study of diffusion pro-
cesses (5, 30]. In the theory of Gaussian Brownian motion it describes the positions of the
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independent particles on a coarse time scale of step d7, which is enough small with respect
to the observation time, but nevertheless so large that in two successive time intervals dr,
the movements executed by one and the same particle can be thought of as events which
are independent of each other. Thus, of particular importance is statistical independence
of the increments in the Wiener process. More precisely, the Wiener process is a Markov

process (section 1.2.1) beyond the time scale with step dr. It is described by the Langevin
equation as the integral of the white noise, W (t)

dz
7 w(t), , (110)

with
(W) =0, (W)W () = Dot — t)

where D is a constant and z(t) is the particle position. Note that zi(t),i=1,.,N (where
N is the number of particles in the observed particle ensemble), and each z:(t) separately,
are independent random events.

Corresponding Fokker-Plank equation is
2
%f(ma tlzo,O) = %%if(fca t|m01 0)
Its solution is the Gaussian conditional (transition) probability f(z, t|zo,0) with the initial
condition f(x,0]|z0,0) = 8(x — xo) = f(20,0). Thus, being of Markov type the Wiener
process is totally determinated by the probability of any of its states (for example initial
state , f(xo,0)) and the transition probabilities f(x,t|To,0) from the referent state to the
i-th one (section 1.2.1).

Applying the statistical approach from section 3.1 the cumulant coefficients, diffusion
exponent and autocorrelation coefficient are

C,1=0,Co=Dt,a=1 (111)
Yad = 01 (112)
A(t,t) = \g, t<t (113)

The autocorrelation coefficients satisfy relation

ARG EVAR ) = ALt),  VE< ()" < (> (114)

Thus, from the sta.tistiéa.l view point, the Wiener process is a normal diffusive, Markov,
Gaussian, and statistically non-stationary process.

3.3 The uniform mixing process

Following Krilovs' definition [2).* & system is of & mixing type when any region, Mo, of the
phase space of the system changes in accordance with the equations of motion insuch a
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way that, while retaining its measure (the volume according to the Liuville theorem) and
its connectivity (by virtue of the continuity of the equations of motion), it is deformed
so that the measure of that part of it, which finds itself in any prescribed region of a
given layer of the phase space (the part of the phase space that is deliminated by the
values of the single-valued integral of motion) tends to be proportiolna.l to the measure
of this prescribed region as the time increases.” A given layer is recognized as a part of
phase space delimited by the values of the single-valued integrals of motion where the
initial region Mg is defined. In other words, the points of the initial region My tend to
be uniformly distributed over the surface of the single-valued integrals of motion as the
time increases [2]. In the present context the allowable region for mixing is bounded in
- configuration space by impermeable KAM barriers around the destroyed magnetic field

region (section 2.2.2). The uniform mixing is generically associated with the exponentially
fast relaxstion of distribution function to the uniform distribution

lim¢>fmf($, t) = (f(x'l t))! (115)

where Torr i8 the correlation time, i.e. the mixing relaxation time and exponentially
vanishing correlations [2]

limt‘—t>rmc(gl(t)i gQ(t’)) = 0) (116)

where C(g1(t), g2(')) denotes arbitrary correlation function, and g1, g2 are arbitrary func-
tions of the system states. Equivalently, it may be written by

ljmk—ﬁ)rm.f(xka tkh;is ti) = f(xlh tk)f(xis t;‘), : (117)

where f(z, tﬁl:c;, t;) is the transition probability. One of the exponentially vanishing cor-
relations among the states of system may be expressed by the autocorrelation coefficients
(91(2) = g(t), go(t') = g(t")) 88

A(t, t)) = exp (-t::) : | (118)

T

where Torr is the relaxation (correlation) time of mixing. The weaker concept of mixing,
which allows slower than exponential decay [2, 7], is suggested in the physical systems
recently. Generically it reflects the influence of chaoticity borders, ie. regularly like
structures inside the stochastic region where the mixing is expected to be realized. Thus,
the exponentially fast mixing is declared as the uniform mixing process.
In the uniform mixing-type systems trajectories starting from two points laying close
~ to each other diverge rapidly following an exponential law. It is described by the positive
Liapunov exponent (section 3.1.5), and the positive Kolmogorov entropy (section 3.1.5).
According to section 1.2.1 the Markov property of the mixing system is established with
respect to the exponentisl divergence of initially neighboring trajectorleé.
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The randomness with respect to the exponential instability of motion, i.e. the expo-
nential divergence of the close trajectories {13], is called the deterministic stochasticity
(section 1.3): the probability concept becomes applicable. Thus, the uniform mixing pro-
cess which could be initialized by the exponential instability, appears as one of candidates
to explain the statistical properties of the magnetic stochasticity.

In the actual problem the uniform mixing is bounded inside the irregular magnetic

field regions. Thus, tendency to uniformization inside the 1D stochastic region: ze|a, b),
is associated by

a+b (b—a)?

6
C,— , Co— B ,73—'0,14—>—g,anda—>0 (119)

- Hence, the uniform mixing is & non-diffusive, Markov, uniform, and statistically sta-
tionary process in the time limit ¢ > 7oy

3.4 Strange diffusive process

If the radial particle diffusion is neither the Wiener nor uniform mlxmg process, then
the long-range correlations in space and time, and long tail effects are suggested {6). In
such a case, various relaxation processes may exist. In the context of the radial particle
diffusion in the radially bounded stochastic magnetic field region, however, the diffusive
process, which is neither the Wiener nor the uniform mixing process in the long time
limit, is categorized as subdiffusive or non-diffusive, profile neither uniform nor Gaussian,
statistically non-stationary, and {maybe) non-Markov strange diffusive process.

3.5 Statistical criterions

In conclusion several definitions are adopted as the sta.ndmg points for a declaration about
the type of the relaxation process.
e Criterion I: The Wiener approximation is justified under the following conditions:
(i) Ja— 1| € 0.1 normal diffusivity *

(ii) the power-law autocorrelation coefficient fit to the Wiener one written in equa-
tion (113)

(iii) {vs«| < 0.1, the vanishing third and fourth cumulant.

e Criterion II: The uniform mixing approximation is justified under the following
conditions:

(i) @ <0.1, t > Teorr non-diffusivity, (Cz ~ wi/12),
‘A 10% error criterion. |



(ii) the exponentially vanishing autocorrelation coefficient, Teorr i8 finite
(i) |ys| < 0.1 and e + 6/5] < 0.1.
e Criterion III: Out of the domains of the Wiener, and uniform mixing approximation,
the system relaxation associated by
(i) strange diffusivity (subdiffusivity, superdiffusivity) or non-diffusivity,
(ii) power-law autocorrelation coefficient,
(iii) non-vanishing the third and fourth cumulants, and |ys| > 0.1, |vs +6/5] > 0.1
is a strange diffusion process. Because of convinience the strange diffusive process

which is non-diffusive and almost statistically stationary is denoted as a non-uniform-
mlxlpg process.

Because of completeness two additional definitions are adopted:

e The Gaussian approximation is justified by the two following conditions (section
1.1): the particle distribution is not "too broad”, and the particle motion is not
"long-range correlated”. In the present context it is équivalent to the statement:
whenever the Wiener approximation is fully justified the Gaussianity is guaranteed.

e The Markovian approximation is justified whenever the correlations are being rapid-

ly lost during the system relaxation: Teorr < 7, Where Toorr is the correlation time
(uniform mixing: the autocorrelation time; the Wiener process: dr), and 7 is the
observation time. ' '
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4 Statistical properties of the stochasticity origins

The present section is devoted to the statistical analysis of the collisional stochasticity,
and the magnetic field stochasticity. ‘

As it is said in section 1.4, the collisional (statistical) stochasticity is initialized in
velocity space by the pitch angle scattering. In the regular magnetic field with nested
toroidal surfaces, the collisional stochasticity realizes in configuration space through the
particle drift motion: the neoclassical radial diffusion. Thus, the statistical analysis is
done in two steps: the collisional stochasticity in velocity, and configuration space.

| According to section 1.3, the magnetic field stochasticity is generated by the exponen-
tial instability in configuration space. It can be realized within the bounded configuration
space region as isolated separatrix irregularity, mixture of regular and irregular domains,
and highly developed magnetic field irregularities over all given region. As it was men-
tioned in section 1.3, the regular structures inside the stochastic region, and the bound-
aries of it, can change the statistical properties of the magnetic field stochasticity. Here
the destruction of the magnetic field is done by involving properly chosen small resonant
perturbation. Tables which are mentioned in this section are plotted on page 82.

4.1 Collisional stochasticity
4.1.1 Collisional stochasticity: velocity space

The statistical characteristics of the pitch angle scattering (velocity space stochasticity
origin in the neoclassical radial diffusion ) can be determined analytically by a conditional
probability f(X,t|Ae,0) with the initial condition

F0P0,0) =6 —X) (120)

satisfying the Fokker-Plank equation (67). Therefore, the pitch angle scattering is a

Markov process, i.e. the knowledge of the general solution of equation (67) (the pitch
angle conditional probability)

Ot 0) = 5 2R o)y exe () o

where P,()) is the Legendre polynomial [45), fully determines the pitch-angle scattering.
Using the orthonormallity relations of the Legendre polynomials

1 2
j_ AP (NPa(N) = —rbnm, (122)
average with respect to f(X,¢|Xo,0) |
XN = [ XD R0, (123)
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and calculating the statistical measures with respect to A(t), the values of the first and
second cumulants (equations (15) and (16), or (97) and (98)) are
Ci(t) = doe™* (124)
and .
Cz(t) = A%(e—sm - e""") + -:;(1 - e—BVt) (125)

The straightforward calculations (equation (96)) give the values of cumulants in the limit
vt > 1

1 6
Ci=0, G=z Twn= 0,  m=-—%, (126)
and
You #0, n=1,2,..and a=0 (127)

Note that Je[—1, 1].
The calculations of two time autocorrelation functions give
1 1 _
(M) — AEONAE) = AEM) = (4§ =)o+ 4 360

3
—_— A%e_u(t‘*'t‘)

Hence, the autocorrelation coefficient according to equation (105) is
At,t)=e Y, t'>t when vt>1, (128)

where Torr = v~! is the autocorrelation time. Since the cumulant coefficients are con-
stants, and A(t,t') is the function only of ¢’ —¢, the pitch angle scattering is a statistically
gtationary process (section 3.1.4).

According to criterion II (section 3.4) the pitch angle scattering is the uniform mixing
process in velocity space.

The analytically predicted statistical properties of the pitch angle scattering are checked
-by the same numerical procedure as that established for the treatment of the radial dif-
fusion. The numerical calculations are started with ensemble of N = 10000 independent
particles, whose pitch angle distribution is obtained by uniform random number gener-
ator. For a fixed parameter v, at each time step (At = 0.5 X 10~%s) the pitch angle of
each particle is changed by the Monte Carlo procedure (equation (75)). The statistical
procedure in section 3.1.1 gives the values of cumulants which are scattered around the

analytical ones (equation (126,127))
Ci() = (0.0 £107%), Caft) = (% +£0.002), (6 =(0.0£001),  (129)
N(t)=(-3£001), end a=0, (130)
- . where the second number in brackets shows maximum discrepancy from the analytical .
estimations.
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Additionally, the calculations of the autocorrelation coefficients give
At t) e W Ofterr 1 > ¢ (131)
where the correlation time is teorr = V7!

Therefore, the numerically obtained statistical properties of the pitch angle scattering
are consistent with the analytical ones.

4.1.2 Collisional stochasticity: configuration space

Since the collisional stochasticity in the regular magnetic field (the neoclassical radial
diffusion) is realized by the synergetic effect between particle drift motion [deterministic
part] and Coulomb collision (in our case, pitch angle scattering) [stochastic part], it is
expected that the temporal behaviour of statistical properties changes beyond the slowest

time scale among that of the trapped and passing particle orbits, and stochastic pitch-
angle scattering. Thus, a system characteristic time is according to formula (94)

1. for banana regime
Te ~ % Tp for plateau regime (132)
Tee for Pfirsch-Schliiter regime

1t is considered that the system is in transient phase for t < 75, and the time region ¢ > 7,
is specified as the asymptotic time region.
In the standard neoclassical theory, the radial diffusion is treated as the normal diffu-

sive process. For each collisionality regime, the analytical diffusion coefficient is given by
2 )

Dps = D,,-; S s for KV
t

D, = 064x -@— =124x102m?/s : for M. KV <K (133)
vy 2rR .

D, = Dp; : for v K v
t

where p = mv/(eB) is the Larmor radius. In figure 1 the analytical diffusion coefficient
is plotted as the function of parameter v (solid line). In the followings, the stochastic
‘properties of the relaxation of the collisional stochasticity in configuration space, i.e. the
radial diffusion are numerically analyzed for each collisionality regime. The correspond-
ing collision frequencies are shown in figure 1: v/v, = 0.0045,0.45, and 4.5 for banana,
plateau, and Pfirsch-Schliiter collisionality regime, respectively. The ratios among various
characteristic times are given, using equation (95), by

T=TciTe:Tt = 1 :0.0425 :0.00435 banana regime
Te=The:Te:T¢ = 1 :0.218 :0.095 plateau regime (134)
1

T =T Tt T = :0.095 :0.0218  Pfirsch-Schliiter regime.
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Figure 1: The comparison of the numerically and the analytically calculated neoclassical
diffusion coefficients (solid and dotted curve, respectively) for starting particles position
r/a = 0.63 is shown. The values v and v, correspond to the effective bounce frequency
and transit frequency, respectively. The axes are plotted in log-log proportion.

The type of diffusive behaviour
The normal diffusivity of the radial diffusion is proved by the numerical calculations

of the second cumulant (equation (98)), and the diffusion coefficient (equation (102)). In
figure 2, Cao(t) is plotted with respect to ¢. The normal diffusive response of system

Colt) = ¢ | (135)

in all collisional regimes is clarified by the value of the diffusion exponent a: a = 1.
It is followed by the saturation of the effective diffusion coefficient, and its power-law
equivalent (figure 3)

D = Dy, = const., t>1, (136)

Estimations give D = (0.0004,0.013,0.056)m?s~! for the banana, plateau, and Pfirach-
Shliiter regimes, respectively. These are consistent with the analytical neoclassical results
indicated in figure 1 (open circles on the curve). '
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Figure 2: The 2nd cumulant time development for v/ve = 0.0045,0.45, and 4.5, is plotted

by solid, dashed, and dotted curve, respectively. Time is normalized with respect to the
system characteristic time 7,.
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Figure 3: The diffusion coefficient vs time normalized with 7,. In the long time limit

t/7. > 1 values of D = Dj, are estimated as D = 0.0004, 0.013, and 0.056m?s™! for

v /v = 0.0045 (solid curve), 0.45 (dashed curve), and 4.5 (dotted curve), respectively.



The autocorrelation coefficient

In figures 4(a), 4(b), and 4(c) the autocorrelation coefficients A(t,t) given by equa-

tion (105) are plotted with respect to 7 = t' — t, and starting time, ¢, chosen to be

(2 x1073,1.6,3.2,...,12.8)7,,(4 x 10-3,1,...,8)7,, and (2 x 107%,1,...,8)r,, for the radial
diffusion in the banana, plateau, and Pfirsch-Schliiter regimes (solid lines), respective-
ly. As t increases the form of A(t,t') curves changes (figures 4(a), 4(b), and 4(c)). The
fine structures are observed in the power-law like autocorrelation curves. In the colli-
sionless (banana) regime (figure 4(a)) they are the result of the characteristic trapped
and passing particle periodic motions, which are weakly affected by rare stochastic events
(Ts = e 3> Tpe > Tt). Asthe stochastic small particle deflections from the regular drift or-
bits become more frequent ( 7, ="r;,¢ > Te, Tt, the collisional regimes), the autocorrelation
curves become more smooth (figures 4(b), and 4(c)).

Additionally, in figures 4(a), 4(b), and 4(c) the sutocorrelation coefficients A(t,t")
for the radial diffusion in the banana, plateau and Pfirsch-Schliiter regime (solid curves)
are compared with the Wiener ones (dotted curves) which are given by equation (113).
The time behaviour of the autocorrelation coefficients is well approximated by the Wiener
process with the increase in ¢ in all collisional regimes. This is more clear with the increase
in T = ' —t. According to the absence of any time correlation effect in the Wiener process
the deviations of A(¢,t') in the asymptotic time limit from the Wiener ones may be related
to the existence of the short time correlations. Also, figures (4(a),4(b), and 4(c)) show
that tendency of the radial diffusion A(t,t') curves to fit to the Wiener ones is slower
in the collisionless than in the collisional regimes. It appears since the particle orbit
motion is less affected by collisions in the banana regime with 7. > 7, > 7¢ than in the

plateau and Pfirsch-Schliiter regimes with the characteristic time ordering Toe > 7c > Tt
and m > T¢ > T, respectively.

In order to confirm above observations from figure 4, the coefficient y, associated with
equation (114), is calculated

At A@ ) "o g
- - 137
At t) L t<ti<t (137)

For a Wiener process y = 0. The numerical values of A(t,t") are collected on time scale
whose unit step and starting time are At = 0.17, and t = (0.5,1,2,3, 5)7,, respectively.
Therefore, £ = t + mAt and t' = t" + nAt, where m,n = 1,2.... In table 1 the maximum
values of |y| are shown for the banana (v/u = 0.0045), plateau (v/v, = 0.45), and
Pfirsch-Schliiter (v/v; = 4.5) regime, respectively. The radial diffusion process in the
plateau regime is the best approximated by a Wiener process (7, = The > 7c > ).
Generally, the values of |y|maz(t) decrease as the starting time ¢ increases and average
values of deviations, {y), given in table 2 tend to the Wiener one (y) =0 in all collisionsl

regimes. Thus, in the long time limit ¢ 3 7, the radial diffusion A(t, ¢} curves fit nicely
to the Wiener ones.
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Figure 4: The A(t,t') vs 7/7,. Different curves are obtained with respect to different
starting time ¢/7,. The values of t/7, are written on the right: (a) v/v, = 0.0045, (b)
v/v, = 0.45, (¢} v/u, = 4.5. Corresponding Wiener curves are plotted by dashed curves.

I maial



The cumulant coeflicients

The calculations of C(t) (equation (97)) show that the convective effect is irrelevant
(IC1(t)] = |{8r(2)}| = 10~%a = pyy) in all collisional regimes.

The time behaviour of skewness (v3), and kurtosis () is investigated in order to
see relation with Gaussianity. The values of skewness tend to |ys| = 0.02 (t » 7,) in
figure 5, which indicates a highly symmetric particle radial distribution with respect to
(r(t)) = r(t = 0) in all collisional regimes. The normalized drift widths of passing Ap/a
and trapped A./a particles (electrons) at the initial magnetic surface are given by

Lo A _g9x10®
a  tafe
and
B _Al_50x10-¢
- a ¢ '

where € = r{t = 0)/R = 0.21. These values are so small that electrons could not feel
asymmetry of the system, even if their orbits are asymmetric around their initial magnetic
surfaces. Figure 6 shows tendency of kurtosis to reduce to || = 0 in asymptotic time

4] ; 1.0 lJS 20
ts
Figure 5: The third cumulant time developments for v/v; = 0.0045,0.45, and 4.5, are
illustrated by solid, dashed, and dotted curve, respectively.

region, ¢ 3> 7,, or more strictly, ¢ > 207, in the collisionless, and ¢ > 57, in the collisional
regimes. Thus, the obtained time behaviour of <y, illustrates the particularity of the
collisionless regime, or generally, of the time regions where the stochastic scatterings
weakly affect the particle orbit motion (transient time regions in all collisional regimes).
The particle orbit effects strongly affect the radial diffusion in the collisionless regime by
slowing down relaxation of kurtosis to (t) s 0. The transient positive value of kurtosis
in the collisionless banana regime (golid line in figure 6) indicates a more peaked (at r(t) =

{r(t)}) distribution function than Gaussian (vare stochastic ecatterings yet can not produce
 the significant radial displacement of ensemble constituent majority from the regular drift
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Figure 6: The fourth cumulant time developments for v/v; = 0.0045,0.45, and 4.5, are
illustrated by solid, dashed, and dotted curve, respectively.

surfaces). On the other hand; the negative transient values of kurtosis observed in the
collisional Pfirsch-Schliiter regime (dotted curve in figure 6}, correspond to a more flated

distribution than Gaussian (particles wander across areas in the neighborhood of the
earlier regular drift surfaces).

The short time ballistic phase
The short time , t & T¢ < 7,, ballistic phase characterized by

Cylt) = 1 | (138)

and the diffusion exponent o = 2, is detected in all collisional regimes (figure 7). During
it particles "freely” follow corresponding regular drift orbits. The collisional effects, which
introduce stochasticity in the system, can not enough affect the particle motions as long
as 7. is higher or the same order as 7, and the ballistic phase is observed. In the banana
(. = 107%s), plateau (1. = 107%s), and Pfirsch-Schliiter (T = 107 "s) regimes, 7. > Ti,
T. > 7, and T, = T, respectively. Hence, the short time (t = 7,) ballistic behaviour
is found in all collisional regimes, but can not influence the long time behaviour of the
particle diffusion.

Thus in the limit, ¢ 3 74, according to the criterion I in section (3.4) the neoclassical
radial diffusion is a Wiener type process.
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Figure 7: _The short time behaviour of C; for banans, plateau, and Pfirsch-Schliiter
regimes (solid, dashed, and dotted curve, respectively).

4.1.3 Type of the statistic process: the long time limit

e The collisional stochasticity is developed as a non-diffusive, Markov, uniform, and
statistically stationary process, i.e. the uniform mixing in velocity space. The
correlations exponentially vanish after the correlation time, 7corr = 7e.

e The collisional stochasticity is realized in configuration space as & radial diffusion
which is a normal diffusive, Markov, Gaussian, and statistically non-stationary pro-
cess, i.e. the Wiener type process.



4.2 Statistical propertieé of the magnetic field stochasticity

To investigate the statistical properties of the magnetic field structure, namely the cu-
mulant, diffusion coefficient, diffusion exponent, and autocorrelation coefficient, equa-
tions of the magnetic field line given by (63)-(65) are solved under the condition of
p = 0,E = 3keV, for various values of s, (section 2.2.2). In this treatment the time
t is used as independent variable, so that the direct comparison of statistical quantities of
the magnetic field structure with those of particles under Coulomb collision becomes pos-
sible. Moreover, obtained statistical properties are interpreted as those of guiding center
particles without perpendicular drift motion and Coulomb collisions. To create various
types of magnetic field structure, ss/ss is chosen as 0.33 (before overlapping), 1.3 (near
overlapping), 3.3 (moderate overlapping), and 33 (highly overlapping). The critical value
of s; corresponding to the overlapping condition: s is given by equation (84).

The magnetic field stochasticity appears in the configuration space through the growth
of irregular domains. Thus, as long as the overlapping of neighboring islands (developing
of the global magnetic stochasticity) has not been started the irregularities are localized
around the island separatrix regions, and the statistical treatment is meaningless. How-
ever, the va.lues of the cumulant, and autocorrelation coefficients in the absence of the
global magnetxc stochasticity are mentioned because of completeness.

The magnetic field structures, for sp/85 = 0.33,1.3,3.3, and 33, are the isolated island
" chain at ¢ = 3/2(ws 2/a = 0.024}, overlapping among islands at ¢ = 3/2,10/7,11/7(wy fa =~

0.14), stochastic sea (wsfa = 0.17) with isolated island structures at ¢ = 10/7,11/7
(Wm.n/we = 1/4), and stochastic sea without structures (wee/a = 0.25). The wn . and
wy are the width of the island and stochastic region, respectively. In figures 8a-8d, the
corresponding Poincare plots at the poloidal cross section with ( = 2.4rad are shown.
The time interval for sequential plotting is 100 x df = 10~"s, and the test magnetic field
lines are followed during the time interval of 0 > ¢t < 1.5 X 104s for .9,,/35c 0.33,3.3,
and 33, and the time interval of 1.3 x 10738 > t < 1.5 x 10738 for s/spc = 1.3.

4.2.1 Effective Liapunov exponent

The effective radial Liapunov exponent given by equation (109) provides a quantitative
measure of the degree of stochasticity for magnetic field lines. Note that the magnetic field
line is identified by an electron tied to it (section 2.2). Thus, the effective radial Liapunov
exponent is calculated for a sample of N = 1000 magnetic field lines (electrons). The
numerical approach of reference {46] is adopted for the magnetic field line described by
equations (63)-(65), where the toroidal angle ¢ is treated as an independent variable
instead of time t by combining equations as dy/d{ and d6/d(. The transformation to
time is done by ¢ ~ ¢ with ¢ & R/vy, vy = \/2E/m, and E = 3keV. |

Under the threshold for overlapping, 8/8s < 1, although the effective radial Liapunov
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Figure 8: The Poincare plots of the test magnetic field line ensemble in (r,8) plane at

¢ = 2.4: (8) sp/Sse = 0.33, (b) ss/56c = 1.3, (¢) sp/Spe = 3.3, (d) ss/spc = 33. The arrows
show position of the rational surfaces, ¢ = 10/ 7,3/2,11/7.

exponent {l.(t)) increases almost monotonically in time, it is always negative during the
calculation tending to finite negative value (le(®))c = —5 x 1072 after t > 9 X 1075
(figure 9a). The corresponding number of the magnetic field lines with positive Liapunov
exponent N,(t) is very few as indicated in figure 10a. On the other hand, in the region of
the global magnetic stochasticity, ss/ssc = 1, the effective radial Liapunov exponent (I.(t)}
and the number of the magnetic field lines with positive Liapunov exponent Np(t) almost
monotonically increase with time, as is show in figures 9b-9d and 10b-10d, respectively.
The {I.(t)) changes from negative to positive values, asymptotically leading to saturation.
The N,(t) also shows the tendency to saturate, as time increases, and it saturates faster
than the effective radial Liapunov exponent. A time ¢4 at which the effective radial
Liapunov exponent becomes zero : {l¢(t))=0, is defined as a characteristic time for sp/spc 2
1. As is understood from figures 10b-10d, as 8/ sy increases, about half of the magnetic
field lines are characterized by the positive Liapunov exponent (I > 0) (diverge) at
t = tq. After g, Ny(t) still continuously increases, and (L(t)) becomes positive, which
means that the divergence of the magnetic field lines starts in the sense of the average.
Thus, the time ¢4 is recognized s the decorrelation time of the stochastic magnetic field
lines. Judging from figures 9b-9d, the simple analytical model expression of {lc(¢)) can be
introduced 88 o

o e =w (1-%). - ()
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where (i) is asymptotic value of the effective radial Liapunov exponent which is deter-
mined by fitting the above expression to the numerically obtained one. The fitting curves
are shown in figures 9b-9d by dotted lines, where good agreement between the numeri-
cal data and the model expression is found. From this good fitting it can be concluded
that the time independent effective radial Liapunov exponent is indeed asymptotically
obtained (in infinite time limit). Therefore, it is useful to introduce such a finite time ¢,
that indicates how the system is near a final relaxed state. In the present case, such time
t, is defined as {l.(t = ¢t,)) = 0.9{L.), namely, ¢, = 10 X t4. Note that ¢, depends only on
tq, once the ratio (l(t))/(lc) is determined. In the following the time ¢, is interpreted as a
relaxation time of the effective radial Liapunov exponent. Times tq4, t,, and the estimated
¢(l.) are denoted in figures 9 and 10, and are summarized as

tyr 1.2 X 10748, 8, = 10 X £, c{le) = 5.4 x 107, for sp/8p = 1.3,
e~ 2.0 X 10788, ¢, = 10 x ¢4, c{l;) = 3.7 % 1072 |, for 85/86c = 3.3, (140)
tgrs 1.8 x 10758, ¢, = 10 X tg, c{l) = 4.5 x 107" , for 8p/sp. = 33.

By assuming (lﬁd(t)) s In{d(t)), from the equations (107), (109) a.nd (139),

~{d(t)) = (d(0)Yexp ({L)(t — ta)) , (141)

is obtained. This relation means that the averaged distance {d(t)) between initially two
neighboring trajectories exponentially grows after ¢ = 4. As one of the measures of the

uniformity of process, the relative dispersion of the effective Liapunov exponent around
mean value is defined as

- JOh — P
Al (t) = ) . (142)
The relative dispersidns Al(t) for sy/8p = 1.3,3.3, and 33 are Al(t = t,) =~ 0.99,0. 217,

and 0.093, respectively. Thus, the uniform exponentml divergence of magnetic field lines
is obtained as 8, /8 increases.

From relation (140), the larger sp/ss. is, the shorter t4, ¢, and the mterval t, — td
become. Moreover, as it is shown in figures 10b-10d, approximately 0%, 80%, 98%, and
100% of magnetic field lines have a positive Liapunov exponent (magnetic field lines
diverge) for sp/85 = 0.33,1.3,3.3, and 33, respectively. The existence of magnetic field
lines with a non-positive Liapunov exponent for 85/ssc = 1 is related to the presence of
regular structures inside the destroyed magnetic field region. As long as the magnetic
field lines are stuck to the regular structures (e.g. island like structures) their freely
wandering is prohibited, leading to the negative or zero Liapunov exponent. Thus, a8
84/ 84 increases the importance of sticking to regular structures decreases, so that the time
ordering from equation (140) becomes meaningful. The particularity of the overlapping
threshold region, 8,/8y = 1.3, is very slow increase of Liapunov exponent and the number
of exponentially diverging magnetic field lines in time after ¢ = ¢4. It is according to
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fact that approximately 20% of magnetic field lines are prevented to wander by sticking
to regular structures at t > t,. Additional confirmation is obtained from the Poincare
sections. Roughly, at t = t4 the part of magnetic field lines started from flux surface
with ¢ = 3/2 can be transported into the region around ¢ = 11 /7, and additionally at
t = 5t transport into the region ¢ = 10/7 starts. In other words, the magnetic field lines
being temporary stuck by regular structures need long time to experience all allowable
stochastic region (bounded by impermeable KAM surfaces around the destroyed magnetic
field region) and slow saturation of the effective radial Liapunov exponent is observed.

As it is clear from the above argument, even if the overlapping condition of magnetic
islands is satisfied (sp/ssc > 1), the statistical treatment of the magnetic field stochasticity
is meaningless before t = 4. Moreover, the statistical properties of the magnetic field
stochasticity are thought to become uniquely clear after t = t,. However, as it is shown in
figures 10a-10d, the number of the magnetic field lines with positive Liapunov exponent
becomes constant before ¢ = ¢, for 55/sp. = 3.3, and 33. On the other hand, for So/80c = 1.3
it is not constant within calculation time, but similar tendency of Liapunov exponent to
be constant is found. Since the magnetic field lines with positive Liapunov exponent
have same expanding properties, once the number of magnetic field lines with positive
Liapunov exponent becomes nearly constant, the statistical properties of the magnetic
field stochasticity are considered not to change, at least qualitatively. Hence, the statistical
properties of the magnetic field stochasticity are mainly examined after the number of the
magnetic field lines with positive Liapunov exponent becomes constant, namely after t =
t,, in order to save the computational time. In the following calculations, this condition
is satisfied for sy/sp = 3.3, and 33, and it is weakly satisfied for sp/ 86 = 1.3.
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Figure 9: The time behaviour of the radial effective Liapunov exponent (le)e vs t for
s/ 56 = 0.33,1.3,3.3, and 33 is plotted in figures (a),(b),(c), and (d), reapectively.
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Figure 10: The number of magnetic field lines Np with positive radiel Liapunov exponeat
vs time t for sy/ex = 0.33,1.3,3.3, end 33 is plotted in figures (a),(b}\(c): and (d),

respectively.
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4.2.2 Type of diffusive behaviour

The case with isolated magnetic field irregularities (s,/s = 0.33) is cheracterized by the
oscillatory behaviour of the second cumulant Cs(t) around 2 x 10-%, and corresponding
oscillatory behaviour of the diffusion exponent, a around 0.

In figure 11 the time developments of the second cumulant in the region of global
stochasticity (sp/se > 1) are shown for sy/sp = 1.3, for sp/se. = 3.3, and for sp/sp = 33,
respectively. After the transient phase (t > tq), the second cumulants gradually increase.
This behaviour is completely different from that of the Wiener process shown in figure 2.
The corresponding diffusion exponent a, two types of diffusion coefficient D(t), Dpu(t),
and the relative difference AD(%) in the long time limit are shown in tables 3 and 4 (the
corresponding row is indicated by v/ = 0(vaL = 0). In the case of sy/spc = 1.3, the
diffusion exponent « is fairly less than unity, but finite. Thus, it is understood that the
radial magnetic field diffusion behaves as subdiffusive. In this case, the relative difference
AD(%) given by equation (104) between D(t) given by equation (102) and D,(t) given
by equation (103) is not so large (table 4). The power-law approximation of the diffusion
coefficient is not so wrong. However, in the stochastic sea with (ss/ss = 3.3) and without
structures (sp/sp. = 33 > 1), this difference becomes quite large (exp in table 4), and the
diffusion exponent becomes significantly small. Thus, the radial magnetic field diffusion
is considered to be non-diffusive. .

After the overlapping of the magnetic islands, as sp/sic increases, the type of diffu-
sive behaviour changes from subdiffusivity to non-diffusivity in the long time limit. This
tendency is natural in the considered magnetic field. The stochastic magnetic field con-
gidered here is bounded in the radiel direction, namely outside of the stochastic region
KAM surfaces exist. Thus, the maximum relative radial displacement (6r(t) — (57 (£)}) mas
in the duration of the calculation is bounded by w,/2 for each field line: non-locality
of the radial displacements. Moreover, as 8s/8s. increases, the magnitude of the effective
radial Liapunov exponent (l.) rapidly increases as it is shown in figure 9, o that majority
of magnetic field lines reach the boundary of the stochastic region in a short time. Hence
Ca(t) rapidly increases up to the order of the bounded value w2 /12, which leads to the.
subdiffusive or non-diffusive behaviour in the long time limit. Indeed as it is shown in
figure 4, Cy(t) for s3/sp = 3.3 and 33 is of the order of w},/12 after ¢t = ¢4. In the long
time limit, Cz &~ w2, /16 for s,/8p. = 3.3 and C2 = w2, /12 for sy/s, = 33. The situation
of the radial particle diffusion in the regular magnetic field investigated in section 4.1 is
completely different. Although the system is bounded by the minor radius a, the relative
radial displacement &r(t) — (§r(t)) is significantly small compared with a because of the
quite small radial drift width, so that the particles never reach the plasma boundary in
the observation duration, or the particles can not recognize the existence of the boundary.

“Therefore, the relative radial displacement can act 88 5r(t) — (6r(t)) ~ Vic (cis positive

constant) by the collisional effect, leading to the normal diffusion.
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Figure 11: The second cumulant vs time for 8o/ ssc = 1.3,3.3, and 33 are plotted by solid,

dashed, and dotted curve, respectively. The time ¢ is normalized with the rejaxation time
of the effective radial Liapunov exponent t,.

4.2.3° Autocorrelation coefficient

The oscillatory behaviour of A(f,7) with respect to 7 is one of characteristics of the
relaxation in the region of isolated island chain with ss/ssc = 0.33. ,

In figure 12, the autocorrelation coefficients A(t,7 =t'—t) ve T are plotted at t = 0. 56t ,
for 85/8pc = 1. 3 (solid line), for 8/8s = 3.3 (dashed line), and for s3/8 = 33 (dotted
line), respectively. The reminiscent oscillatory pattern on the power-law like envelope
for 8y/84 = 1.3 (where overlapping between islands has just been started (figure 8b))
is the indication of the relative importance of the regular motion inside the stochastic
region. It is indicated by Poe in table 5. As 8s/syc increases, this oscillatory behaviour
of A(t,t') vanishes, and a stationary power-law like behaviour appears. For 8p/86c = 3.3,
this stationary power-law like behaviour can be fitted as

At t) = A(T) 2 7707, (143)
for large 7 (figure 12, dashed line), and is indicated by Py in table 5.
In the presence of stochastic sea without structures (ss /8h. = 33), the exponentially

fast vanishing autocorrelation coefficient (denoted by E in table 5) is obtained (figure

12, dotted curve). Since the autocorrelation coefficient is found to be independent of the
starting time ¢, it may be expressed as

At wA(r)Nexp(—-é.:), " (144)

where Toore 18 the sutocorrelation time. The numerically evaluated 7err is svound 24 x
10~%s. This time corresponds to £¢ given by equation (140).



Figure 12: The autocorrelation coefficient A(t,t') vs 7 = (¢' — )/, for the starting time
t/t, = 0.56: sp/sp = 1.3 solid curve, s3/spc = 3.3 dashed curve, and sp/sp. = 33 dotted

curve.

Figure 13: The A(t,t") vs r = (¢’ — t)/t, for s/ss = 1.3 with respect to starting time
t/t, = 8 x 1075,0.1,0.15, ...,0.45. The arrow shows direction of the increasing ¢.
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According to figure 12 and the above discussion, the larger 8y/ 8y i8, the time cor-
relations are lost faster, and the tendency of A(t,t") to be stationary becomes stronger.
For sy/s5 > 1, as it is shown in figure 9, some of magnetic field lines have a negative
Liapunov exponent, which means that those field lines stick to the regular structures in
the stochastic region (section 4.2.1). This sticking may be related with the slow relax-
ation of A(t,t"). As sp/ss. increases more, regular structures disappear, so that all of the
magnetic field lines have a positive Liapunov exponent as is shown in figure 9d, leading
to exponentially fast relaxation of A(t,t) for sp/ss. > 1.

For sp/s6c = 33 > 1 the effective radial Liapunov exponent has a time independent
positive value in the long time limit ¢ > t,. According to the value of relative dispersion
of the effective radial Liapunov exponent A = 0.093, this means that all the magnetic
field lines with a positive radial Liapunov exponent have time-independent same mag-
nitude of the Liapunov exponent in the average sense. In other words it is connected
with ergodicity of the magnetic field lines. Hence, the autocorrelation coefficient A(t,t9)

may become independent of time, namely stationary: A(t,t) = A(r = ' — t), and the

autocorrelation time as a time after which the time correlations vanish Teorr for sp/spe > 1
becomes similar to tg with {{.(ts)) = 0. In weaker sense the stationarity of the autocor-
relation coefficient for st/ spe = 3.3 can be considered from the same point of view. Note
the absence of the autocorrelation time due to presence of regular structures inside the

" stochastic sea for s /st = 3.3 which is indicated by the non-vanishing long time tail of
the autocorrelation coefficient. On the other hand the stationarity of the autocorrelation
coefficient for s,/s5 = 1.3 is absent as it is seen in figure 13, in which the A(t,t) curves
are plotted with respect to starting time ¢/t, = 0.8 x 107%,0.1,0.15,....,0.45.

4.2.4 Cumulant coefficients

Although the first cumulants C; show complicate temporal behaviours depending on
8/ 8be, the magnitude normalized by the minor radius is always quite small independent
on 84/ 8y, a8 is indicated in table 6 for the long time limit. .

Before island overlapping with sp/sec < 1, 88 well as Cy and Oy, both the skewness
s and kurtosis 74 show oscillatory behaviours in time around s ~ 0 and Yo ~ —0.4,
reflecting the regular motions in the magnetic islands.

After the overlapping with s3/ss > 1, such oscillatory behaviours in time disappear,
and the radial distribution of the stochastic magnetic field lines or particles strongly tied
to them is completely different between the state near island overlapping threshold with
8s/8sc ~ 1 and the more stochastic state with s5/ssc > 1. Near the threshold of island
overlapping, both the skewness «s and kurtosis v rapidly increase in the ballistic phase
corresponding to the time ¢ < t4, and gradually decrease keeping the values positive,
as is indicated in figures 14 and 16 by solid lines. Thus, the radial distribution is a
peaked proﬁie compared with Gaussian, and also the distribution has an asymmetric tail
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extending out towards §r > {6r), which is consistent to the Poincare plot shown in figure
8b. In the modersate overlapping case with sp/ss > 1, sticking of the magnetic field lines
to O-points and around X-points of the magnetic island chain near the flux surface, from

which magnetic field lines are started, is fairly released as is shown in figure 8. Thus,
except for such sticking regions and inside of the magnetic islands with different helicity,
the Poincare plots of the field lines are almost uniform. Reflecting the results of the
Poincare plots, the kurtosis 4 has a tendency to reach the values similar to the uniform
mixing process: 74 = —6/5, as is shown in figure 15 by the dashed line. As s/ sp. increases
more, the uniformity of the Poincare plots becomes stronger as is shown in figure 8d, so
that within the ballistic phase (¢ < tq), the kurtosis 4 almost reaches the value of the
uniform mixing process, as is indicated in figure 15 by the dotted line. The skewness 3
of the moderate or highly overlapping case takes a small negative value within ballistic
phase, and keeps the sign and the magnitude unchanged after ¢t = {4, as is shown in
figure 14 by dashed and dott.ed lines. Thus, in these cases, the radial distribution of the
stochastic magnetic field or particles strongly tied to them is fairly or almost the uniform
distribution with a small asymmetric tail towards ér < (ér).

5.
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Figure 14: The skewness ys vs t/t, for so/se = 1.3 (solid curve), Sp/sp. = 3.3 (dashed
curve)_, and sp/spc = 33 (dotted curve).

Figure 15: The kurtosis 4 vs t/t, for 8y/8s. = 1.3 (solid curve), sp/sp = 3.3 (dashed
curve), and 8y/85 = 33 (dotted curve).
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4.2.5 Type of statistical process

Judging from the criteria given in section 3.5, in the partially destroyed magnetic field
structure with mixture of regular and irregular regions (s5/sec > 1) the magnetic field
stochasticity appears in the long time limit with ¢ > ¢, or t 2> {4 as & strange diffusive
process: subdiffusive (8y/sy. = 1.3) or non-diffusive (for sp/spc = 3.3), neither Gaussian
nor uniform, and statistically non-stationary (ss/ss. = 1.3) or almost stationary process
(sv/sec = 3.3). This strange diffusive process is symbolized by § in table 9. As s,
increases, the autocorrelation coefficient changes from power-law with oscillatory pattern
for sp/spc = 1.3 to power-law like behaviour given by equation (143) for s;/sw. = 3.3.
Thus, in order to distinguish these properties, Sosc and S, are used in table 9, respectively.
Because of non-diffusivity and almost statistical stationarity the magnetic stochasticity
for sy/sp. = 3.3 can be denoted as a relaxation process of non-uniform mixing type.
When s5/8sc > 1, the magnetic stochasticity in the long time limit with £ > Toorr &
t; appears as a uniform mixing process (criterion II): non-diffusive, uniform, Markov,
statistically stationary process with exponentially vanishing autocorrelation coefficient. It
is denoted by symbol U in table 9. Note that the criterion of the skewness 73 (admitting
10% error) is violated for uniform mixing process: s = —0.13 < (—0.1) in table 7.
This deviation of s from the uniform mixing process comes from the asymmetry of the
system. Since the relative width of the stochastic region is fairly large (wae/a =~ 0.24) and
the equilibrium magnetic shear is not so small, asymmetry of the stochastic magnetic field
is naturally created. However, this asymmetry does not affect other statistical properties,
thus the highly overlapping case with 85/su = 33 is treated as a uniform mixing process.
The question about Markovianity remains open. Actually, the Markovian approxima-
tion (section 3.4) is justified whenever the correlations sre being rapidly lost during the
relaxation of the system. In the present case, the Markov approximation is applicable
only to the case with highly developed magnetic field stochasticity (ss/ss > 1) in the
long time limit. In the partially destroyed magnetic field structure with mixture of regular
and irregular domains (8s/8s = 1), however, the non-uniformity, and power-law like or
oscillatory like behaviour of the autocorrelation coefficient indicate that the space-time
correlations remain in the time limit ¢ > ¢, Thus, from the statistical point of view, it is

considered that obstruction of the uniform mixing by sticking of test magnetic field lines
to the local regular structures leads to non-Markovianity. '
Thus:

o In the partially destroyed magnetic field region (mixture of regular and irregular do-
mains) the magnetic stochasticity relaxes as a strange diffusive process: subdiffusiv-

* ity or non-diffusivity, neither Gaussianity nor uniformity, power-law autocorrelation
_coefficient A(t’ — t), non-stationarity or almost stationarity, and non-Markovianity.

¢ In the totally destroyed magnetlc field reglons (ch ges, without structures)
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the magnetic stochasticity is realized as a uniform mixing process: non-diffusivity,

uniformity, exponentially vanishing autocorrelating coefficient, statistical stationar-
ity, and Markovianity.

The non-diffusivity and strange statistical properties are associated with the non-

locality of the radial displacements of the stochastic magnetic field lines (particles
strongly tied to the stochastic magnetic field lines).

5 Statistical properties of the particle radial diffu-
sion

In the present section a systematic presentation of the statistical properties of the particle
radial diffusion in the magnetic field with irregularities is done. Main task is to recognize
the general tendencies of it beyond the (85/8be, /v4) parametric space. Two accesses are
allowable: start from the magnetic field stochasticity, and from the Wiener limit (neoclas-
sical radial diffusion). Here the first one is selected. Thus, the particles are not tied to
magnetic field lines which can be seen as 2 mixture of the regular and irregular structures,
or the highly stochastic sea without structures, but they are additionally redistributed in
* configuration space by the collisionless drift decdrrelation, and the collisional decorrelation
from the magnetic field lines.

Interest is in the qualitative changes of the statistical properties of the partlcle radial
diffusion by the collisionless, and collisional decorrelation from the magnetic field lines.
Therefore, the values of parameter v/v; are chosen to be v/v, = 0.45,4.5, and 45, i.e. the
plateau, and Pfirsch-Schliiter neoclassical collisionality regimes.

Tables introduced in this section are presented on page 82.

5.1 Collisionless drift decorrelation

In section 4.2, the statistical properties of the magnetic field are examined from the view
point of the radial displacement. As it is mentioned in 4.2, those properties are interpreted
as the statistical properties of the radial particle diffusion without the perpendicular
drift motion and Coulomb collision. In this section, the influences of the perpendicular
drift motion on the statistical properties of the radial particle diffusion without Coulomb
collision are investigated.

Even if the Coulomb collision does not exist, the particle can move from one magnetic
field line to another due to the drift motion. This effect is called the collisionless drift
decorrelation from the magnetic field line. However, since the drift velocity perpendicular
. to the magnetic field lines is much smaller than the parallel velocity, effects due to drift
moﬂmammngneﬁcﬁddﬁnesonthestaﬂstiedpmperdesmwndderedwbemd
l. Indeed, although quantitative differences exist as shown in tables (3)-(9), qua.llta.tive
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Figure 16: The A(t,t") vs T = t'—t for sp/spc = 33 without (a) and with the perpendicular
drift (b). Different curves correspond to starting time ¢/t, = 2.5 X 10-3,0.75, and 3.

differences are not seen except for the autocorrelation coeflicient for sp [s6c=333>1. In
figure 16, the autocorrelation coefficients A(t,7 = t' — t) vs time interval 7/t, are drawn
for several starting times t: t/t, = (2.5 % 10-3,0.75, and 3). Figures 16a, and 16b corre-
spond to the case without perpendicular drift motion (section 4.2) and with perpendicular
drift, respectively. In the presence of perpendicular drift, although the autocorrelation |
coefficients exponentially vanish independent of the starting time for 7/t, < 1, a finite
correlation 'A(t,t') s 0.05 is recovered after the correlation time 7/t, > Teorrfts = 0.1,
when the starting times are taken as large 8s t/t; > Teorr/ts. It is new quality with respect
to the case without drift which is characterized by the exponentially vanishing A(t, t') af-
ter T/ty > Teorr [ts for all starting times. In other words, due to the perpendic\ﬂin' drift the
particles are redistributed with respect to the case without drift which can be responsible
to the finite correlations observed in figure 16b. However the physical reason is not clear.
Such a case is denoted by Eexy in table 5 and Ueyr in table 9.

As summary, although quantitative differences (and qualitative differences in the lim-
ited range of parameter 8y/8s) exist, the statistical properties of the radial diffusion
without Coulomb collision are determined by those of the stochastic magnetic field.

5.2 Particle radial diffusion in the presence of both magnetic
and collisional stochasticity

In this section the statistical properties of the radial particle diffusion in the presence
of both magnetic field and collisional stochasticities are considered. Three cases of col-
lisionality are chosen to be vfy; = 0.45,4.5, and 45, where 1, = 2.21 X 10857} is the
transit frequency of passing particles defined in the equilibrium magnetic field (eq. (94))-
Thus, v/v, = 0.45 corresponds to plateau collisionality regime, and v/y, = 4.5, and 46
correspond to Pfirsch-Schliiter collisionality regime, respectively. ,

When the global magnetic stochasticity has not been developed (8s/80c < 1), the
' "puﬂderadiddiﬁudmisgomnedbythemondsw&uﬂdty.hthewlﬂdoﬂm
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limit the test particles started inside the islands are prevented from escaping there into the
regular KAM regions. Thus, the trapped particles inside islands execute periodic motion
as long as they are tied to the magnetic field line. The characteristic time of this motion
around O-point is estimated to be ty = 27 =~ 8.7 x 1075, where 7, = vl =4.35 % 107 7s

is the characteristic time of passing particle motion (94). Thus, the long time limit in the
presence of collisions is determined by

t > max(7e, {ts)), (145)

where 7. = v~! is the collisional characteristic time and {ty) = 1.8ty = 1.6 x 107% is
the averaged time of ¢y, which is obtained by simple approximation of the motions in the
magnetic islands as one dimensional pendulum. The ratios of (ts) to 7. are shown in table
10 for sy/sse = 0.33. Since (t) > 7, the long time limit for ss/sic. = 0.33 is defined as
t:> (ts)- .

In the region of global magnetic stochasticity with sp/sp. > 1 the relaxation time of

the effective radial Liapunov exponent, ¢, (section 4.2.1) is compared with the collisional
characteristic time, and the long time limit is defined as

t > max(7e, L) (146)

The ratios of t4 to 7. are shown in table 10 for spfsp. = 1.3,3.3, a.nd'33, respectively.
Because of la>td> 7o the long time limit for these cases is defined as t > t,. However
as well as the magnetic field structure in 4.2, once ¢ 2> {4 is satisfied, the statistical

properties do not change qualitatively. Thus, to save computational time, the long time
limit is treated as ¢ > t, for s,/8s = 1.3, and 3.3.

5.2.1 Type of diffusive behaviour

The collisional effects on the second cumulant (relative mean square displacement) C»(t)
are shown in figure 17, (a) for &/8s = 0.33, (b) for 84/5s = 1.3,-(c) for s5/8e. = 3.3, and
(d) for sy/ss = 33. Before the island overlapping (85/5be = 0.33), {le(t)) is always negetive
as is discussed in 4.2.1. When the collisions are absent , Ca(t) shows & superdiffusive phase
due to the ballistic motion in the early time, where maxC, becomes of the order of that
in the corresponding uniform mixing process: CYMIo™ — (wg)2/12 ~ 4.8 x 107°. After
such the superdiffusive phase, Cat) decreases and oscillates around a constant value,
because of stickness to the regular structures inside of the magnetic islands ({l(t)) 18
always nega.tive). When the collisions are introduced, such the superdiffusive phase and
oscillatory behaviour are suppressed because of 1. < {ts) as is shown in table 10, and
Ca comes to monotonically increase in time. As the collision frequency increases, the
diffusive behsviour in the long time limit changes from subdiffusive for v/v, = 0.45 to
normal diffusive for ¥/w = 4.5 and 45 as is shown in table 3, and the magnitude of the
diffusion coefficient decreases up to the level of the neoclassical diffusion in the regular
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Figure 17: The Ca(t) vs t/t, for s3/spc = 0.33 (8), 53/58c = 1.3 (b), 85/sp. = 3.3 (c) and
s/ssc = 33 (d). In each figure solid curve corresponds to the case without collisions and

perpendicular drift motion, and dashed, dot—dashed and dotted curve to vy, =0.45,4.5
and 45, respectively.

magnetic field, independent of the definition of the diffusion coefficient, as is indicated in
table 4. The magnetic structure before overlapping considered here has both magnetic
islands with small widths and quite tiny stochastic region around the separatrix. Thus,
when the Coulomb collisions are fairly frequent (1. < (ts)), particle orbits scattered by
the collisions can not follow the magnetic field lines inside of small magnetic islands and
of tiny stochastic region, leading to the normal diffusion with magnitude gimilar to that
in the neoclassical diffusion. As the collision frequency decreases (Te < t3), particles can
trace the magnetic field lines, which may lead to the subdiffusivity reflecting magnetic
field structures. Note that the change of the magnitude of C; with respect to v/v, is not
monotonic. Since this behaviour is more clear for sp/ss. = 1.3, the reason is considered
there.

Near the threshold of the island overlapping (s5/ss. = 1.3), the behaviour of C3, and
so, the behaviour of the diffusion exponent and the diffusion coefficient, are qualitatively
similar to those before the island overlapping (ss/8sc = 0.33), as are shown in figure 17(b),
and tables 3 and 4, namely with increasing in the collision frequency, type of diffusivity
changes from the subdiffusive for v/ = 0.45 and 4.5 to the normal diffusivity for vin=
45. As is similar to the case before overlapping, the change of the magnitude of C; with

" respect to v/ is not monotonic. In the absence of the Coulomb collision, a superdiffusive
‘ phmedmetaoballlat.lcmotic:nnem‘.ist:int;heea.rhr1;lmetmwelllmbeforeovtatt'la.pplns.‘Whﬂte
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{L.(t)) is negative and maxC, becomes the order of that in the corresponding uniform
mixing process: Cy"/°™ = (w,)?/12 ~ 6.6 x 1074. After decreasing, Cx(t) increases in
time with oscillatory behaviour. It can be associated with the positive value of {l.(t))
and increase of the number of field lines with positive effective radial Liapunov exponent
a8 is seen in figures 9 and 10. When weak collisions with v/i, = 0.45 are introduced,
such the superdiffusive phase and oscillatory behaviour disappear according to 7. < t4
as shown in table 10, and the magnitude of Cs(t) decreases. This phenomenon is due to
the interruption of the parallel free streaming by the pitch angle scattering. Since the
mean free path is still long (vy7e ~ 32m), however, the subdiffusivity due to the magnetic
field is still strong. As the collision frequency increases more (v/ve = 4.5), according to
the reduction of the mean free path (vyrc ~ 3.2m), the subdiffusive properties and the
magnitude of Cy(t) are more reduced. When the collision frequency becomes extremely
large (v/v, = 45), the mean free path becomes considerably short (vy7e ~ 0.32m), so that
the diffusion due to the stochastic magnetic field is lost and the normal diffusion due to
the pitch angle scattering appear. This collisional effect is understood in terms of the

relative average radial displacement of the stochastic magnetic field lines (eq. 141) in the
duration of the collision time

Ad = -—'——“(d(“?(o) 40 elled™e _ 1, (147)

In the case with sy/s, = 1.3, as is shown in figure 9b, {le)c is the order of 5.4 x 1072, s0
that Ad ~ (l.)7. < 1, namely the relative average radial displacement of the stochastic
magpetic field lines in the duration of the collision time is too small in the range of
the collision frequency considered here, and the radial displacements due to collisions
themselves become significant as v increases. In the weak stochastic magnetic field with
8/8sc < 1, infrequent collisions reduce the relative mean square displacement C2, however,
frequent collisons enhance it in the long time limit.

In the moderate overlapping case with s,/sw. = 3.3, when the collision is absent, the
relative mean square displacement Ca becomes as large as the corresponding uniform
mixing level in the early superdiffusive phase: Cyrifom — (wy)?/12 ~ 2.4 x 1073, after
that, C, does not decreases so much, but hold the level in the interval of t < tg4, where
. the effective radial Liapunov exponent (I.) is still negative. Since the magnetic field
is considerably stochastic compared with those for sp/sec < 1, field lines or particles
with only parallel drift spreading in the superdiffusive phase are considered not to return
near the original position. After t = t4, the effective radial Liapunov exponent. becomes
positive, and both {l.) and the number of field lines with (lc) > 0 increase, so that Cs
gradually increases keep the level of the uniform mixing process. Weak collisions with
v/v, = 0.45 do not disturb so much the radial diffusion due to magnetic field stochasticity,
a.sisundetswod&omﬁgumﬂqmthattherelaxiwavemgemdiddispboementofthe
stochastic magnetic field lines in the duration of the collision time is fairly large, €.
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Ad ~ 0.31 for {l.)c = 2.5 x 10~2. Hence, subdiffusivity stemming from the magnetic field
stochasticity remains, and the level C; is in the range of the uniform mixing process. When
the collision frequency increases as v/v, = 4.5 and 45, Ad decreases and the property of
subdiffusivity is gradually lost, and finally the normal diffusivity appears, as is shown
in table 3. In the range of the collision frequency considered here, the magnitude of C,
monotonically decreases as the collision frequency increases (figure 17c).

In the highly overlapped case with sy/ss. = 33, as well as the moderate overlapping,
the relative mean square displacement C, becomes as large as the uniform mixing level
in the early superdiffusive phase: CY™/*™ = (w,)?/12 ~ 5.2 x 1073, Since the stochastic
magnetic field has no regular structures, ¢4 is quite small, and all of magnetic field lines
have positive Liapunov exponent in a short time as is seen in figure 10d, then C; becomes
almost constant with the level of uniform mixing process except for the small oscillatory
behaviour. The relative average radial displacement of the stochastic magnetic field lines
in the duration of the collision time Ad is 89.,0.58, and 4.7x 1072 for v/, = 0.45,4.5, and
45, respectively. Thus, the collisional effects are so weak that the process always shows
subdiffusivity due to the magnetic field stochasticity in the range of the collision fre-

quency considered here, and the magnitude of C; monotonically decreases as the collision
frequency increases (figure 17d). ‘

5.2.2 Autocorrelation coefficients

The effect of collisions on the autocorrelation coefficient A(t,t') is shown in figures 18a~d:
(a) for s5/s6. = 0.33, (b) for sp/sec = 1.3, (c) for sb/Spc = 3.3, and (d) for sp/sp. = 33,
respectively. In each figure, the autocorrelation coefficients A(t,t") = AQt, T =t' —t) are
plotted as functions of the time interval 7 = ¢/ — ¢ and the starting time t. Because of
convinience 7 is normalized with ¢, ({ts) for s5/sec = 0.33). Two starting timest =t <1,
and ¢ = ¢; = t,/2 are specified. The starting time ¢.= ¢; corresponds to the early time:
¢ =3.1 x 1073(t;) for 8/8s. = 0.33, t = 8.3 x 10~*¢, for 85/s4 = 1.3, =2.5 X 107%¢, for
8s/8pc = 3.3, and t = 2.8 x 1073, for s3/8sc = 33; and the starting time¢ = ¢, corresponds
to the late time: t = 41.{ty) for ss/ss = 0.33, t = 0.56¢, for s/ssc-= 1.3, t = 0.56¢,
for sp/spc = 3.3, and ¢t = 1.51¢, for sp/spc = 33. The dashed, dot-dashed, and dotted
curves correspond to v/v, = 0.45,4.5, and 45, respectively and the corresponding Wiener
cases are drown by solid curves. As the collision frequency v/v, increases, independent
of sp/8se, the autocorrelation coefficient A(t,7) has a tendency to become non-stationary
power law like, whose values for a fixed ¢ and 7 are smaller than those of the corresponding
Wiener process in the range of the collision frequency considered here. When the collision
frequency v/v, increases an d ss/s;. decreases, A(t,7) finally becomes Wiener like. In
table 5, the types of the behaviour of A(£, ) as a function of ¢ and T are indicated, where

Pw means that the behaviour of A(¢,7) is well approximated by the Wiener process in
the whole starting time or in the long time limit, and P indicates the above mentioned:
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Figure 18: The A(t,t') vs 7 for two different starting times: ¢; = 0.031(ts), ¢z = 41.(tp) for
85/ 860 = 0.33; £1 7= 8.3 x 1074, 5 = 0.56t, for 85/sp = 1.3; t1 % 2.5 X 10744, ¢, = 0.56%,
for 8y/8e = 3.3; &y = 2.8 x 1073¢,,t2 = 1.51¢, for 8s/sp. = 33. The dashed, dot-dashed,
and dotted curves correspond to v/u, = 0.45,4.5, and 45, respectively, and the Wiener

case is drawn by solid curves. Times are normalized with respect to ¢, for 8p/sp. = 1 and
(to} for spfsu. < 1.



power-law like behaviour. These properties are understood as follows. The numerator of
the autocorrelation coefficient A(t,t") is expressed as

((Er(t) — (Br(e))Er(t") — (6r(t))) ~ (Br(t)ér())
(6r(t)?) + ((6r(t') — 8r(t))ér(¢)), for t'> t, (148)

where the first cumulant C;(t) = (6r(t)) is neglected, because it is quite small as indicated
in table 6. Thus, the starting time t appearing in A(t,7) is interpreted as the common
time interval between two trajectories ér(t) and ér(t’) for ¢’ > t. In the case of the Wiener
process, as is understood from equation (110), the radial displacement is a superposition
(time integration) of completely independent events created by the white noise. In this
context, the pitch-angle scattering acts as the white noise (although both the pitch-
angle scattering frequency and the width of perpendicular particle drifts determine the
ma.gmtude of the correlation of the white noise). Therefore, the correlation without
common time interval vanishes, namely, {(§r(t) — ér(t))dr{(t)) = 0 in the above equation.
In other words, the correlation is created within the common time interval ¢. For a fixed
T, the longer such the common time interval ¢ becomes, the more the correlation persists.
This property of the Wiener process is one of the characteristics of the particle radial
diffusion by the Coulomb collision in the regular magnetic field [32], and is closely related
to the locality of the particle orbits and particle diffusion in the radial direction . Partially
because the drift width is quite small compared with the system size, and partially because

- the accumulation of small pitch-angle scatterings created in the velocity space gradually

change the particle radial drift motions, the locality of the radial diffusion is ensured.
Thus,the correlation indicating that the constituents of the particle ensemble stays near
each other between two different times is increased, as the common time interval ¢ or the
starting time of A(t,7) increases for a fixed 7.

On the other hand, the stochastic magnetic field in the radlally bounded region shows
the uniform mixing properties when sy/8u(> 1) increases, as discussed in 4. 2. In these
cases, the stochasticity of the magnetic field lines is characterized by the positive radial
effective Liapunov exponent {[.}(> 0), namely the ensemble of field lines or particles tied
to the magnetic field lines have a tendency to exponentially spread in the radial direction.
Thus, the knowledge that the field lines or particies stay near to each other is easily lost
even if the common time interval t is large, so that the correlation between stochastic
field lines or particle trajectories, comes to be rapidly lost independent of the common
time interval or field lines makes fast loss of the correlations or fast decorrelation in the

"radial direction.

When the collisions are introduced to the particle radial diffusion in the ‘stochastic
magnetic field, the fast radial epreading of the particles along the perturbed field lines

is interrupted. As e result, particles can stay nearer compared with the case without
collisions, which means that the fast loss of the correlations by the stochastic magnetic field
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Figure 19: The A(t,t') vs 7 = t/ — t for sp/se. = 3.3 (solid curve): (a) v/v, = 0.45,
(b) v/v. = 4.5, and (c) v/v, = 45. Corresponding Wiener curves are plotted by dashed
lines. The starting time t is chosen as t = (3.6 X 1074,2.0 x 1072,...,0.8)t,. In figure 7 is
normalized with respect to ¢,.
is suppressed by the Coulomb collisions. The fact that the Coulomb collisions suppress
the decorrelation due to the magnetic field stochasticity appears as the non-stationary
power-law like behaviour of the autocorrelation coefficient. As s,/3i increases, such the
collisional suppression of the decorrelation is reduced, since {leyre = A/Lk increases,
where A = vy and Lx = v/ (lo) are the mean free path and the Kolmogorov length,
reepectlvely Note that the Coulomb collisions themselves do not make the correlation, but
suppress the decorrelation by the stochastic magnetic field. In the case of the neoclassical
- particle radial diffusion, perpendicular particle drifts are decorrelated by the Coulomb
collisions and superposion of such random events leads to the Wiener process according
to the central limit theorem [6]. In contrast with it, in the particle diffusion in the highly
stochastic magnetic field, parallel particle drift along stochastic magnetic field lines leads
" to the decorrelation in the radial direction, and Coulomb collisions suppress such the
decorrelation through the scattering of the parallel particle drift.
In figures 19a,b, A(t,7) ve 7/t, for 8y/8pc = 3.3 i8 plotted by solid curve with respect
to various starting times: (a) for v/u = 0.45, and (b) for v/v, = 45, respectively. The
corresponding A(t, T) of the Wiener process is also drawn by dashed curve. The starting

time is chosen as ¢ = (2.5 x 1074,6.2 x 1072,...,0.56) ¢,. It is quite clear that the A(t,7)
becomes that of the Wiener process, as v/v; increases.

5.2.3 The cumulant coefficients

As is shown in table 6, the convective effect indicated by C is quite weak independent
of both 8,/84 and v/14. Although the values of Cy are larger that those in the neoclassical

cases in [32], they are still too small compared with the minor radius a (C‘; is normalized
by a).
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Figure 20: The time behaviour of kurtosis 4 for sp/8be = 1.3 and different collisionalities:

v = 0 (solid line), v/v; = 0.45 (dashed line), v/v, = 4.5 (dot-dashed line), and v/, = 45
(dotted line). Time is given as t/t,.

indicate the deviation of the pacticle distribution from a Gaussian profile, and y4 = —6/5
corresponds to the uniform mixing process.

Before the island overlapping with sp/ss: < 1, the oscillatory behaviours coming from
the particle regular motions, observed in the case without Coulomb collisions, are sup-
pressed by the Coulomb collisions. Since the particle radial displacements stemming
from the isolated magnetic island chain are quite small (particles are initially loaded at
the corresponding rational surface), the radial displacements are mainly governed by the
Coulomb collisions, leading to the distribution with vanishing both 73 and v (tables 7
and 8). Note that the vanishing of the skewness and kurtosis together with the previously
mentioned normal diffusivity and the Wiener like autocorrelation coefficient (section 4.1)
for v/v, = 4.5 and 45 means that the particle distribution is Gaussian according to the
criterion given in section 3.5.

In the highly overlapping case with ss/Ss > 1, the scattering due to the Coulomb
collision of the parallel particle motion along the stochastic magnetic field lines is so weak
that the particle radial distribution is similar to-the corresponding uniform profile with
~4 = —6/5, 8s is shown in table 8. As is mentioned in section 4.2, inhomogeneity of the
equilibrium magnetic field due to the magnetic shear creates the finite skewness 7s, but
the values of s are similar to the cases without collisions.

The behaviour of 43 and 7 in the case near the island overlapping threshold and
the moderate overlapping are fairly complicated. The reason may be due to the reguler
structures inside the stochastic sea, to or around which particles stick. The Coulomb
collisions scatter particle motions: they sometimes scatter the particle from the stochastic
field line to the particle stuck by regular structure and vice versa. The change of the
temporal behaviours of « due to the Coulomb collisions is shown in figure 20 for 8p/86c =
3.3, where the change of the radial profile in the long time limit from a broad profile
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(% < 0) to a peaked one (74 > 0) is understood as v/ increases.

5.2.4 Type of statistical process

The type of statistical process is summarized in table 11, being based on the result-
s presented in 5.2, where U and W indicate the uniform mixing and Wiener process,
respectively, and the symbol S denotes the strange diffusive process.

In the absence of the Coulomb collision, inside the bounded destroyed magnetic field
region, as ss/se.(> 1) increases, the magnetic stochasticity or the particle radial diffusion
with only parallel drift motion comes to appear as & uniform mixing process reflect-
ing non-locality of orbits, which is a non-diffusive, uniform, statistically stationary, and
Markov process after the exponentially fast relaxation of the autocorrelation coefficien-
t. The Coulomb collisions interrupts the fast radial displacement of particles along the
perturbed magnetic field lines, however, the locality is not obtained. Thus, the particle
radial diffusion develops as a strange diffusive process in the long time limit: subdiffu-
give, non-uniform and non-Gaussian, and statistically non-stationary process, in almost
all (85/5bc, ¥/ve) parameter space. When the collisions are fairly frequent (v/v; > .1) and
uniformity of the magnetic field stochasticity is fairly lost, the locality of the particle
motion is recovered, and the boundary effects become negligible during calculation time.
Then the particle radial diffusion is governed as the Wiener process with normal diffusiv-
ity, Gaussianity, statistical non—statioxiarity, and Markovianity, as well as the neoclassical
diffusion in the regular magnetic field.

The process obrresponding to sp/sec = 3.3 and v/v, = 45 is similar to the Wiener
process. However, only the kurtosis 4 does not satisfy the criterion given in section 3.5,
andsothisprooeasisexpreesedbpr in table 9. As is understood from this example
and other cases recognized 8s the strange diffusive process in table 9, the various types

. of the strenge diffusive process exist, e.g., even if the process shows a normal diffusivity:

a ~ 0.92 for sp/sp. = 1.3 and v/1; = 4.5, the radial profile is broader than s Gaussian and
the autocorrelation is not Wiener like. The significant point is not the detail differences
in the diffusive process, but the overall tendency in two-parameter space (88/ S0, v/ 1
). Table 9 shows that the change in the type of diffusive process is prescribed by the
Coulomb collisional suppression of the non-locality of radiel particle displacements due
to the stochastic magnetic field.

The Markovianity in the strange diffusive process is still open question, which will be
considered in future. However, adopting the viewpoint from section 3.5, the Markovianity
is lost whenever the long space and time correlations are created. Considering them as
the results of validation of criterions I and II (section 3.5) the non-Markovianity is natural
property of the strange diffusion. Note that the usual transport anslyses based on the
locality of the particle motion have & sense only in the Wiener domain.




6 Discussion

Here, following several points are discussed.

6.1 Characteristic lengths of magnetic field lines

In this work, the several types of radially bounded stochastic magnetic field region are
treated. On the contrary, in the most of previous works the statistical properties of
the magnetic stochasticity are given a priori, mainly as a static, homogeneous Gaussian
process which develops in the radially unbounded magnetic ficld region [14, 15, 16, 17,
18]. In other words, all these cases correspond to the parametric domain sp/spe > 1
in actual model. In order to clarify the effects of the boundedness, three characteristic
lengths associated with the magnetic field stochasticity are examined: the perpendicular
correlation length L, the parallel correlation length Ly, and the Kolmogorov (Liapunov)
length Lg. The most significant difference in the present context is connected with the
perpendicular correlation length L, . For example, in the quasi-linear approximation [14,
15, 16, 17, 18], in order to obtain a constant diffusion coefficient of the magnetic field lines,
a radially unbounded, homogeneous stochastic region is used, where the perpendicular
correlation length may be treated as infinity: Ly — oo. However, in present situation,
L, is limited, namely, L, < wy, where wy is radial width of the stochastic region.
According to the discussion in 4.2.'1, the parallel correlation length L is recognized as a
length which corresponds to the decorrelation time of the stochastic magnetic field lines
ta: Ly = tav). Indeed, such the decorrelation time is similar to the correlation time 7corr of
the autocorrelation coefficient in the highly stochastic case with s3/se > 1. The Liapunov
length is obtained from the asymptotic value of the effective radial Liapunov exponent
(L) 88 Lx = vy/{l). Substituting the corresponding values to the three characteristic
lengths, the following ordering is obtained for s5/sp > 1:

Ly « Lx € L. (149)

Note that ordering in the radially bounded stochastic magnetic field is completely different
from other situations, especially from the quasi-linear approximation [15, 16, 17).

The ordering between the collisional mean free path Amyp, and the characteristic lengths
of the stochastic magnetic field lines for sp/ss. = 1 is summarized in table 11. As viv
decreases, and as s/ sy increases, the collisional mean free path Amsp becomes comparable
to the Liapunov length Lg, and finally larger than L and comparable to the parallel
correlation length Ly. Thus, it is understood that the collisional effects becomes more
significant as the level of stochasticity of the magnetic perturbation decreases or 8/ 8bc
decreases. Moreover, it will be expected that in more collisionless cases with Ly €
Am{p» Whose condition will be established for banana collisionality regime, the statistical
properties of the particle radial diffusion become closer to those of the magnetic field
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stochasticity. In order to obtain the proper statistical properties in the parameter space
considered here, all of calculations have been performed up to z > Ly or ¢ ~ ¢

10 X tg > ts. In the case before overlapping with sp/Sp. < 1, the ensemble averaged
Lispunov exponent is always negative. Thus, Ly and Ly are interpreted as infinity, so
that the ordering Ly < Amsp < Lk, Ly — oo holds, where L, is recognized as the
width of the magnetic islands at ¢ = m/n = 3/2: wy3. Note that the characteristic
lengths and orderings discussed here have not strict sense in the inhomogeneous magnetic
field stochastic region: the mixture of regular and irregular structures. In such a case,
the stickness of the magnetic field lines to or around regular structures, indicated by
the presence of magnetic field lines with a negative Liapunov exponent in the long time
limit ¢ > ¢, means the existence of many different scales [9]. To investigate more precise
properties of the radial diffusion in such cases, the method of the continuous time random
walk [3, 21] maybe suggested. However, in order to understand the general and global
tendencies of the particle radial diffusion, the concept of characteristic lengths is useful
for all sy/sy > 1 cases, because both Ly and Ly are definitely determined by the effective
radial Liapunov exponent {l.(t)) in average sense without ambiguity..

6.2 Locality of the radial diffusion

In this section the relation between locality of the diffusion and the constant diffusion
coefficient is investigated. In the standard theory of Brownian motion, according to the

Gaussian central limit theorem (6], the spreading of the Gaussian is described by the
diffusion coefficient given by

D = lime oo D(t) = lime oo 22 ‘;’;gﬂ. | (150)

Such & diffusion coefficient is analogy of that in the standard random walk (3, 6]
(Az)

D=2 (151)
where Az, and At are the characteristic space and time steps of random walker, respec-
tively. Following these developments, in the classical diffusion theory (3, 20}, the diffusion
process in an unbounded, homogeneous media is characterized by the diffusion coefficient.
In the context of the confinement physics, it is ensured by the demand for locelity of diffu-
gion. In order to understand the meaning of the locality, the standard neoclassical radial
diffusion treated in [41] is reconsidered. By integrating the linearized gyro-phase averaged
Boltzmann equation given by equation (1) in the velocity space (in the present case, the
energy E is a parameter , so that integration is done only over the magnetic moment oh
and by taking the flux surface average, the equation of continuity in the rediel direction
is obtained 8 o

e _ war("'@‘ v9e). (152)

74




where (Q(F, t)) r is the flux surface average of Q(F,t), and (Q(,t))r becomes a function
with respect to r and t. Also, {n}r is the flux surface averaged density, = n(F, )U(F, 1)
is the particle flux, and V' = dV/dr with the volume V surrounded by the flux surface
specified by an appropriate radial coordinate r. The diffusion coefficient D is introduced
through the phenomenological Fick’s law in the radial direction given by

£ Vr = —D(F, t) = 3"'(" 23 (153)

Since the radial diffusion is concerned, by assuming a weak poloidal and toroidal depen-

dence (this is usually ensured by the strong magnetic field and the rotational transform)
the flux surface averaged Fick's law becomes

(E-Vr)r= "(D‘“—)F ~ =D(r t)a<n)F (154)

where D(r,t) = (D)r. As is clear from the form of the above equation, the standard
Fick’s law is based on the locality of the diffusion, since the particle flux at a position
r is completely determined only by the diffusion coefficient D and the gradient of (n)r
at the same position r. By using the Fick's law, and defining the probability f(r,t) =

{n(r,t)}r/N where N is the total number of the particles, the diffusion equation of the
particles is obtained

af(r,t) 10 . af(r,t)
ét = Vidr (V D(r,t) ) . (155)
Here, how to obtain the diffusion coefficient D(r,t) by the Monte Carlo method is consid-
ered [26]. In the Monte Carlo method, the particles are initially loaded on & flux surface
as f(r,0) = §(r — ro). Putting ér = r — rq, from the equation (155),

d—‘% = %(&r) (V’ ar(V"D)) (156)

where two partial integrations in r are done, assuming f = 6f/r =0 at r = 0 and a.
Similarly,
')
9 _ & or- oy =20y +2( "B 2y, o
is obtained. Thus, when the particle distribution f does not spread so much in the radial
direction (in this case the above boundary conditions are satisfied), namely the locality

of the radial diffusion is ensured: |5r|/L < 1, where L is scale leéngth of the equilibrium,

1dC:

D(ro,t) = 5= (158)
is obtained, partially because the second term in the right-hand side of the equation
(157) is neglected due to |6r — {§r}|/L < 1, where L = |1/D - 8D/8r|™* (note that the
diffusion coefficient is determined by the equilibrium quantities), and partially because
(D) ~ D(ro,t) by the condition |{§r)}|/L <« 1. The equation (157) means that the local
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diffusion coefficient at the position where particles are initially loaded is obtained, when
the locality of the diffusion is ensured.

From above consideration, it is known that

(a) The definition of the diffusion coefficient through the second cumulant given by the
equation (102) has meaning, when the locality of the diffusion is satisfied. Note that
the validity of this definition of the diffusion coefficient is not directly related to the
time-dependence of the diffusion coefficient.

(b) The more significant point is that the concept of the diffusion process itself using

the diffusion coefficient assumes the locality of the diffusion process as is seen in the
standard Fick’s law.

In the present parameter space {v/vy, Su/Sec), €xcept for the Wiener domain, the locality
of the diffusion process does not hold, where the diffusion coefficient defined by equation
(102) does not have clear meaning, and moreover, the standard local Fick’s law may not
hold. In such strange diffusive processes and a uniform mixing process, the diffusion
coefficient defined by the equation (102) have to be understood as the time derivative of
the second cumulant itself, and the particle radial transport must be treated as a non-local
. transport, which may be related to systems far from thermodynamical equilibria.

6.3 The second cumulant

It is discussed in section 6.2, the diffusion coefficient, introduced through the local Fick’s
law, have no clear physical meaning in the diffusive process without locality like a strange
diffusive process and uniform mixing process. On the contrary, the second cumulant
itself always has a clear physical meaning as the mean square displacement (4, 30]. The
time dependence of the second cumulant Ca(t) indicates how fast the radial dispersion
of particles spread out as time increases. Thus, when the systems with time-dependent
diffusion coefficient are compared in order to evaluate how long or how much particles

are confined near their initial position, the temporal behaviour of Cy must be evaluated
instead of the diffusion coefficient.

6.4 Ballistic phase of uniform mixing process

The statistical properties of the uniform mixing process and the strange diffusive process
observed in the highly stochastic magnetic field with sy/s,. > 1, are strongly affected
by the fast exponential divergence of magnetic field lines in the radial direction. As
is understood from figure 17d, as the collision frequency decreases, the magnitude of
C, almost reaches the final state within the short time ballistic phase (t < tg4), which
indicates that the process for particle to spread in the radial direction up to the level of
the fast exponential divergence, is not regarded as a diffusive process, but as a dynamical
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relaxation process. After such a ballistic phase or dynamical relaxation process (¢ > t4)

the uniform mixing properties of the magnetic field lines alone for v/ve = 0 or together
with the Coulomb collisions for v/i, # 0, make the particle radial motions diffusive
process. In contrast with it, in the case of Wiener process, although the ballistic phase
exists in the early time, such a phase does not influence the time evolution of the system
after that, or it does not prescribe the final state of the system, because of the locality of '
the particle orbits. Thus, the time evolution of the system showing the Wiener behaviour
is treated as a diffusive process in almost all time. However, in the uniform mixing
process and the strange diffusive process similar to that, created by the non-local particle
motions, the ballistic phase almost prescribes the final state of the system. Hence, the
time evolution of such non-local fast processes should be treated in the framework of a

fast dynamical relaxation process of a system far from equilibria to an equilibrium.

7 Conclusion

In this study the statistical properties of the particle radial diffusion in the radially bound-
ed magnetic field region with irregularities are investigated. The particle radial diffusion
is treated as a realization of the collisional (statistical) stochasticity and the magnetic
(deterministic) stochasticity. '

The particle radial diffusion in the regular magnetic field with nested flux surfaces,
i.e. the neoclassical radial diffusion is realization of the collisional stochasticity alone. In
the absence of collisions the electron guiding centers draw periodic trapped and passing

* motions in the configuration space, whose drift width dr is at most the poloidal gyroradms
pp in the axisymmetric systems, hence ér ~ pp < a. The collisional stochasticity due
to the Coulomb collisions is created in the A(= vy /v) velocity space by the pitch-angle
scattering as a uniform mixing process. The pitch-angle scattering acts as the white
noise on the perpendicular drift motions (although the magnitude of the correlation of
the white noise is determined by both the pitch-angle scattering and the drift width).
Thus, due to the radial locality of the collisionless particle motion: érfa < 1 & nd
the accumulation effect of the small pitch-angle scattering acting as a white noise, the
locality of the particle radial diffusion is ensured and the radial diffusion appears as a
Wiener process with normal diffusivity, Gaussian distribution, statistical non-stationarity
and Mark ovianity. The system characteristic time is estimated as the largest among the
collisional characteristic time 7., the effective bounce time ¢, and the characteristic time
of passing particle motion ;.

The main effort in this study is to investigate the statistical properties of the parti-
cle radial diffusion in the presence of both the collisional and the magnetic stochastic-
ity. Thus, the electron redial diffusion is investigated in a radially bounded stochastic
magnetic ﬁeld region existing in the axisymmetric torus MHD equmbrium. In order to
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collisional characteristic time 7., the effective bounce time ¢, and the characteristic time
of passing particle motion ;.

The main effort in this study is to investigate the statistical properties of the parti-
cle radial diffusion in the presence of both the collisional and the magnetic stochastic-
ity. Thus, the electron redial diffusion is investigated in a radially bounded stochastic
magnetic ﬁeld region existing in the axisymmetric torus MHD equmbrium. In order to
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take account of the practical situation that magnetic field perturbations usually create
a radially bounded stochastic region in the axisymmetric torus equilibria and avoid the
assumptions related to the statistical properties of the stochastic magnetic field, a radially -
bounded stochastic magnetic field is created by superposing three Fourier harmonics of
the perturbed magnetic field which resonate at the rational surfaces to & axisymmetric
MHD equilibrium. Due to the radial boundedness, the statistical properties of such a
stochastic magnetic field are completely different from those used in the previous works
(15, 16, 17, 18, 20, 21]. Especially, the radially bounded stochastic magnetic field has &
finite correlation length in the radial direction. It is opposite to the quasi-linear approxi-
mation (15, 16, 17] where usually the radial (perpendicular) correlation length is treated
as infinity by assuming radially infinite homogeneous stochastic field.

By changing the amplitude of the perturbed magnetic field, several types of the radi-
ally bounded magnetic field region are created: region with isolated island chain before
the overlapping threshold (ss/ss < 1), region with overlapped magnetic islands near the
overlapping threshold (ss/ss. ~ 1), stochastic sea with regular structures (ss/s6c > 1),
and stochastic sea without structures (ss/ss 2> 1). The stochasticity parameter s corre-
sponds to the strength of perturbation, and s is the value of the stochasticity parameter
at the overlapping threshold. One aspect of the stochasticity of the resonantly perturbed
magnetic field is understood from the temporal behaviour of the effective radial Liapunov
exponent {l.(t)) and the number of the magnetic field lines with the positive Liapunov
exponent Np(t), where time t is used as the independent variable. The conversion into the
length along the equilibrium field direction is performed as z ~ R({ ~ vt with the major
radius R and the parallel velocity of particle v tied to the magnetic field line. Before
o;rerla.pping with 8p/8p < 1, the number of the magnetic field lines with the positive Lia-
punov exponent Np(t) is zero or quite a few, and the effective radial Liapunov exponent
(le(t)) is always negative. After, overlapping with 85/8sc > 1, i.e. in the region of global
magnetic stochasticity, N, almost monotonically increases with time, finally leading to
the saturation. As sp/sec(> 1) increases, the saturated value of Np increases, i.e. from
N, < N for 8;/sp. > 1 to N, = N for 85/ 8ve > 1, where N is the total number of observed
field lines. The existence of the magnetic field lines with the negative Liapunov exponent
for 83/s5. > 1 indicates importance of sticking to regular structures inside the stochastic -
region. Associated with the variation of Np(t), {l(t)) almost monotonically increases from
negative to positive value, finally leading to asymptotic saturation, as time ¢ increases.
In spite of the various stochasticity levels depending on 85/ Sbe, after overlapping, the ef-
fective radial Liapunov exponent is for all 85/s5 > 1 described as (L(t)) = {te)(1 —taft),
where 4 is the decorrelation time of the magnetic field lines satisfying (l.(ts)) = 0, and
(L) is the saturated value of (l(t)). In other words, the effective radial Liapunov. ex-

. ponent is characterized by two independent quantities t4 and (lc). Recognizing tqvy 88

the parallel correlation length of the magnetic field lines: Ly = tqvy, and defining the
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Liapunov length Ly = vy/{l), both the parallel correlation length L and the Liapunov
length Ly decrease as sp/sp(> 1) increases. Since the perpendicular (radial) correlation
length of the magnetic field lines L} & wy, where wy is the radial width of the stochastic
region, L; <« Ly <« Ly holds independent of ss/ssc > 1 in the considered cases. Note
that this ordering is different from that of the usual quasi-linear approximation. To ob-
tain the statistically meaningful results, the calculations are performed up to 2> L or
t ~t, = 10X t4 > ty, where t, is defined as a time satisfying (I.(t,)}/{l.) = 0.9. The eval-
uation in the long time limit is done at ¢ > t, for s3/ssc = 1 or at ¢ > () for s5/s < 1
where (t;) is a typical time of particle motion trapped by the islands. As sp/se.(> 1)
increases, the dispersion of the effective radial Liapunov exponent Al. decreases, which
means that all the magnetic field lines have a tendency to radially spread with almost
same exponential divergence rate.

The statistical properties of the magnetic field stochasticity are examined by evalu-
ating the cumulant coefficients up to fourth order, the effective diffusion coefficient, and
autocorrelation coefficient A(t,t') between two different times t and ¢. Due to the above
mentioned fast exponentiation of the magnetic field lines in a radially bounded stochas-
tic magnetic field region, the relaxation of the magnetic field stochasticity or particles
tied to magnetic field lines without the perpendicular drift and Coulomb collisions has
a tendency to become a uniform ﬁ:ixing process, as sp/8u.(> 1) increases. Namely, the
stochastic process which is characterized by non-diffusivity (diffusion exponent o ~ 0),
uniform distribution, statistical stationarity, and Markovianity after the correlation time

—orr 7 t4 which is estimated from the exponentially vanishing autocorrelation coefficient:
A(t,t) ~ A(r =t/ — t) ~ exp(—t/Teorr). A clear uniform mixing process is obtained for
85/56 3> 1. When the regular structures exist inside stochastic sea, the magnetic field s-
tochasticity appears as one of the strange diffusive processes in the long time limit. Within
the stochastic sea with regular structures the magnetic stochasticity appears as a strange
diffusive process characterized by non-diffusivity, uniform like broad distribution, statis-
tical stationarity and power-law autocorrelation coeficient: A(t,t) ~ A(r = t—t)y~71°
with a positive constant c. - On the other hand, near the overlapping threshold with
8u/86c ~ 1, where the regular structures become more significant, the magnetic field
stochasticity appears as a strange diffusive process with subdiffusivity (a < 1), distribu-
tion far from uniform and Gaussian, statistical non-stationarity. Sticking of the magnetic
field lines to or around regular structures inside the stochastic region leads to the space
and time correlations compared with uniform mixing process, so that in these strange
processes non-Markovianity may be suggested.

The uniform mixing process and the strange processes are related to the non-locality.
Particles tied to the stochastic magnetic field lines easily spread out in the radial direction
and reach up to the boundary, so that the radial displacement ér is prescribed by the
radial width of the stochastic region wy : or ~ wy, leading to the non-loeality of the
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radial diffusion where ér/a < ér/w, < 1 with the minor radius a as the scale length of
the system. ,

The deviation of the particle orbits by the collisionless perpendicular drift motion from
the stochastic magnetic field qualitatively do not change the above mentioned statistical
properties of the radial diffusion of particles tied to stochastic magnetic field lines, except
for generation of the small correlation of A(t,t’) after 7oy for ss/spc > 1. Hence, it is
concluded that the stochastic properties of the collisionless particle radial diffusion are
almost all determined by those of the stochastic magnetic field lines. The reason is due to
the fact that the parallel drift velocity of particles along the stochastic magnetic field is
quite larger that the perpendicular drift velocity. The fast parallel drift motions along the
stochastic magnetic field themselves make the stochastic radial displacement quite larger
than that due to the slow perpendicular drift motions.

In the presence of the Coulomb collisions, the Coulomb collisions interrupts the fast
parallel motion along the stochastic magnetic field lines. The range of the collision fre-
quency considered here is from the neoclassical plateau regime with vfve <1, to Pfirsch-
Schliiter regime with v/vy > 1 and v/1; >> 1, where v, is the transit frequency of particles
in the regular magnetic field. Since 7. < {t;) and 7. < ¢, hold, the long time limit is de-
fined as ¢ > max(t,, ) = t, for sp/sse > 1, and as t > max({ts), 7.) = (t;) for Sof86e < 1,
where 7. is the collision characteristic time, defined as 7, = 1 fv. As sp/sp(> 1) increases,
both the lLiapunov length Lg and the parallel correlation length Ly become shorter with
keeping the inequality L} < Lx < L;;. The significance of collisional scattering of par-
allel drift motions for ss/ss > 1 are qualitatively determined by the relative magnitude
of the mean free path A, p to characteristic lengths of the stochastic magnetic field lines:
Ly,Lg, and L||, especially the relative magnitude between ),, sp a0d Lg is important.
When Amsp, < Lk, the collisional interruption of the parallel drift along the stochastic
magnetic field lines becomes significant. In opposite, when Ay, 3> Ly particles spread
out in the radial direction along the stochastic magnetic field lines before they suffer
significant scattering due to collisions. Thus, the collisions become significant as sp/ss
decreases for a fixed v/1, or as v/u; increases for a fixed sp/sp.. Before overlapping with
8s/8ec < 1, {lc(t)) is always negative, thus the collisional scattering are more significant
that after overlapping with s,/s,. > 1. So, as v/v, decreases and as S/ Spe increases, the
particle radial diffusion reflects the statistical properties of the magnetic field stochastic-
ity, and behaves as a strange diffusive process with subdiffusivity, profile neither uniform
nor Gaussian, statistical stationarity. The autocorrelation coefficient is power-law like,
non-stationary, A(t,t') = A(t,7 = ¢ — t), and non-locality of the stochastic process still
remains by reflecting fast parallel motion along the stochastic magnetic field lines. The
Markovianity is still open question. In opposite limit, namely, in the region with /v, »'1
and sp/s8c < 1, the collisional scattering of parallel drift motions becomes so significant
that the stochastic radial particle displacements are created not by parallel drift motion-
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s along the stochastic field lines, but by the collisional scattering of the perpendicular
drift motions, leading to Wiener process through recovering the locality of the stochastic
process.

The normal diffusivity with time independent diffusion coefficient is obtained only
in the Wiener domain, where locality of the diffusion is ensured. In other processes,
time dependent diffusion coefficient in subdiffusive process or non-diffusivity are obtained,
where the locality of the diffusion process is not ensured. In the present situations with

radially bounded stochastic magnetic region, the subdiffusivity appears associated with

the non-locality of the stochastic process. In such a non-local process, the diffusion

coefficient defined by the time derivative of the second cumulant does not have the clear
physical meaning, or rather the second cumulant itself is a good indicator of the process
but not sufficient. Note that the diffusion coefficient is introduced through standard
phenomenological Fick’s law based on the locality of the diffusion process, hence if the
locality is not ensured, than such a Fick’s law does not hold as it is. Additionally,
the time development of the second cumulant for sp/ssc = 1 and v/1y = 0, indicated
the universality of the short time (¢ < t4) dynamical relaxation phase (ballistic phase).
However, in the long time limit (¢ > ¢,) process appears as a strange diffusive process when
the fast exponentiation of the stochastic ﬁla.gnetic field lines is suppressed by the stikness
to the regular structures within the radially bounded stochastic regioﬁ, or the uniform
mixing in the absence of regular structures. These aspects suggest reconsideration of the

radial diffusion process from the viewpoint of the general Brownian motion and non-local
transport theory.
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Tables

Table 1: The maximum deviation of the autocorrelation coefficients, |y|, from the Wiener
value y = 0 in the banana, plateau and Pfirsch-Schliiter regimes, with respect to the

different starting times t/7,.

t/1, | v/v = 0.0045 | v/1, =045 viv =45

0.5 0.2014 0.1009 0.0772
1 0.1753 0.0548 | 0.0744
2 0.1157 0.0383 0.0729
3 0.0970 0.0426 0.0438
5 0.0553 0.0181 0.0251

Table 2: The average value of the deviation y from the Wiener one {¢) = 0 in the banana,
plateau and Pfirsch-Schiiiter regimes, respectively.

t/1, | v/ve =0.0045 | /1, =045 | v/, = 4.5
0.5 0.0407 0.0050 0.0190
1 0.0567 0.0137 -0.0274
2 0.0525 0.0061 " 0.0275
3 0.0416 0.0122 0.0162
5 0.0283 0.0001 0.0115

Table 3: The values of the diffusion exponent « in the long time limit in the parameter

space (8b/Sbe, /1)

v/v\ss/ Sbe 0.33 1.3 1 33| 33
0(vgy = 0) | osc. ~0.0 | 0.40 | 0.01 } 0.02
O(var # 0) | osc. ~ 0.0 0.29 | 0.01 | 0.02
0.45 0.73 |0.63]0.30] 0.07
4.5 097 |092]052]012
45 107 |1.00] 1.04] 0.22

.82



Table 4: The values of the effective diffusion coefficient D{t),Dp,, and AD{(%) in the long
time limit in (5s/8ec, ¥/14) parametric space. In the circumstancies when AD becomes
enormously high (e.g. > 100%) the system behaviour is noted as the exponentially like.

Note that in the presence of collisions D(t) and Dy, are normalized by the corresponding
neoclassical value D,..

vivi\sy/su. | 0.33 1.3 3.3 33
Ovgy =0) | osc. | 0.079 } 0.26 0.60
0sC. 0.18 3.3 100
(1%) | (exp.) | (exp.)
O(vgy #0) | osc. | 0.042 | 0.26 0.62
0SC. 0.13 3.3 80.0
(10%) | (exp.) | (exp.)
0.45 4.08 4.7 67.1.} 93.0
5.2 77 | 180 | 1170
(7.5%) | (6.5%) | (15%) | (11%)
4.5 1.2 2.2 14.0 38.1
1.2 2.5 25. 270.
(0.6%) | (2.7%) | (7.2%) | (5.0%)
45 1.01 1.10 1.85 4.5
0.96 1.02 1.8 20

2%) | (23%) | (0.1%) (3%)

Teble 5: The time behaviour of the autocorrelation coefficient in the parametric space

(86/ 8be, V/11)-

vivi\ss/ss. | 0 1033 1.3 133 33

0(var = 0) 05C. | Pase | P | E

0(var #90) 05C. | Pose | Put | Ecorr
045 |Pw| P | P | P | P
4.5 Pw|Pv | P |\P| Py
45 Py| Pw | Pw | Pw | P




Table 6: The values of the Cy(t) in the long time limit.

vfu\so/ Sbe 0.33 1.3 3.3 33
O(var =0) | 15x10% [57x10%| —5x10-% | —6x 1073
0a#£0) | 20x10* |62x10° | -65x103| —5x 103
0.45 20x10° |1.4x10°3| 20x 104 | ~6.0 x 10~2
4.5 30x10-° | 1.1 x 1073 | 80x10~* | —4.0x10-2
s 30x10% |29x10-3| 1.1x107° | —1.0x 1072

u/ug\sb/sbc 033 | 13 3.3 33
O(vas = 0) | osc. | 0.60 [-0.08 | -0.13
0(var #0) | osc. |0.60[-0.02]-0.18
045 | 0.0 ]0.70]-0.20]-0.11]
45 0.05 | 0.25|-0.15 | -0.15
45 0.045 | 0.10 | 0.02 | -0.17

Table 7: The values of +; in the long time limit in (ss/ssc, v/ve) parametric space.

Table 8: The kurtosis in the long time limit in (sb/56c, ¥/ 1) space.

v/v\ss/se. | 033 | 1.3 | 33 | 33
Ovay =0) | osc. | 1.8 [-0.95]-1.15
O(vgy #£0) | osc. | 1.7 | -0.95) -0.85
0.45 005 3.0 |-0.15} -1.1
4.5 005| 1.7} 14 -1
45 0.1 (002| 06 | -0.8

Table 9: The type of statistical process.

vivi\so/sec | 0 1033 | 1.3 ]33 | 33

O(vay =0) Sosc | S | U
O(vay # 0) Sosc | Sst | Ucorr

0.45 wis|]S{8) S8

4.5 wlw]S§| S8 S

45 WIW |W |Wp| S




Table 10: The relation of the characteristic times in (ss/Sec, v/ v¢) parametric space: (ty)/7c
for sp/ssc = 0.33, and t4/7 for sp/spc > 1. The time {ty) is the characteristic time for

trapping by island, 7 is the collisional characteristic time, and t4 is the magnetic field
decorrelation time.

v/vl\ss/ss | 033 13 | 33 | 33
0.45 16 | 120 20 18

4.5 16 | 1200 | 200 | 180

45 160 | 12000 | 2000 | 1800

Table 11: The ordering of the characteristic lengths: Ly the parallel characteristic length,
L, the perpendicular characteristic length, Lk the Liapunov length, and Angy, the mean
free path; with respect to sp/ss > 1 and v/v, > 0 parameter space.

v/v\ss/suc 1.3 3.3 33
0.45 Ly € dngp € Lx € Iy Ly € Amgp < Lk < Ly | Ly € Lx € dmygp < Iy
4.5 LJ_((M],,((L}(((L" Ll<</\m!p<<LK<<L|| L) € Mdngp < Lg € Iy
45

Ly < Mngp € Lg < 1y

Li < Amgp € L € Iy

Ly <dmpp < L €1y
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