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Abstract

In this thesis we study the Higgs interactions in physics beyond the Standard Model. After

the discovery of the Higgs boson at the LHC, it is the time to study the Higgs interactions

from various aspects. The precise measurement of the Higgs boson properties provides tests

of the Standard Model, and perhaps the first signal of new physics beyond the Standard

Model can be indirectly found in Higgs physics. In this thesis we concentrate on the

following two issues: the scattering amplitudes of the longitudinal gauge bosons and the

Higgs boson, and the couplings of the Higgs boson to other particles. The first one is

related to the perturbative unitarity of a theory with spontaneously broken symmetries

and expected to be important information for the scalar sector, especially the origin of

the electroweak symmetry breaking. The second one reflects the structure of the Higgs

interactions and gives a clue for the mass generation of the particles. Various new physics

models show the deviations of these properties from the Standard Model prediction, which

may be investigated at the future collider experiments. We examine the unitarity violation

caused by the dimension-six derivative interactions of the Higgs doublets, which indicates

the new physics scale associated with an extended Higgs sector. We compute the strongest

unitarity bound for several models and find it gives rather low cut-off scale compared

with that of the naive dimensional analysis. We also examine the possible deviations of

the Higgs couplings in agreement with the experimental constraints, focusing on the three

models: the minimal composite Higgs models, the Randall-Sundrum model, and the extra

singlet Higgs model. It is found that the correlation of Higgs couplings is quite powerful

to discriminate models at the future collider experiments.

This thesis is composed of five chapters. In chapter 1 we give an overview of the current

status of phenomenological particle physics, especially about Higgs physics. While all the

particles of the Standard Model are observed, we know the phenomena the Standard Model

seems not to cover; hence there are many proposals for new physics beyond the Standard

Model. In chapter 2 we provide a brief overview of Higgs physics in the Standard Model.

The Higgs sector is introduced to account for the low energy breaking of the SU(2)L×U(1)Y
electroweak gauge symmetry to the U(1)EM , and all of the interactions including the Higgs

boson is determined by its mass value. In chapter 3 we analyze the perturbative unitarity

bound given by the dimension-six derivative interactions consisting of the Higgs doublets.

The bound is obtained by diagonalizing the scattering amplitude matrix of two-body to

two-body scattering processes which include the longitudinal gauge bosons and the Higgs

boson. We formulate it in terms of the parameters of the Lagrangian. In chapter 4 we

present the deviations of the Higgs couplings in some models, compared with the Standard

Model prediction, mainly focusing on the minimal composite Higgs model. In order to

classify the features of the models we consider, we elucidate the correlation of the coupling

deviations. The future experiments are able to distinguish the models well by using both

the tree level and loop induced Higgs couplings. In the concluding remarks we summarize

our results and give an outlook for the future prospects of Higgs physics.
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1 Introduction

The Higgs boson which is predicted by the Standard Model (SM) has been discovered

by the ATLAS and CMS experiments at the LHC in 2012 [1]. This observation means

that the spontaneous symmetry breaking (SSB) by the condensation of the scalar field,

Brout-Englert-Higgs mechanism [2], occurs in the real world. The vacuum expectation

value (VEV) of the Higgs field gives the masses of W/Z bosons, quarks, charged leptons

and the Higgs boson itself; the strength of the interaction with the Higgs field is completely

determined by the mass of the interacting particle. Although we have observed only the

gauge interactions as a fundamental interaction so far, the discovery of the Higgs boson and

the SSB strongly implies the existence of the yukawa interaction (at least the top yukawa

interaction) and the Higgs self interaction. Now the experiments shed light on the Higgs

sector, and the SM is being confirmed; the establishment of the SM is one of the greatest

achievement of human intellect.

While the SM can explain extraordinarily well physical phenomena observed at the

microscopic scale, there exists a number of the experimental and the theoretical problems

which the SM cannot answer: neutrino masses and oscillations, dark matter, baryon asym-

metry of the universe, inflation, fine tuning problems, impossibility of the unification of the

gauge couplings, and so forth. We have to introduce a new element into the theory to solve

these problems: symmetries, particles, mechanisms. Such extensions of the SM probably

leave traces of physics beyond the SM; we try to find them by means of direct and indirect

measurements. A direct measurement is the method to search new phenomena which are

undoubtedly signals of new physics. An indirect measurement is the method to investigate

the deviations from the SM prediction, which can be more powerful than a direct one in

some cases. These two ways are complementary, and they allow us to investigate various

features and properties of the model we consider.

With regard to the Higgs sector, one of the important problems is the mystery of why

the electroweak (EW) symmetry is spontaneously broken. This mystery is deeply connected

with the Higgs fine tuning problem which requires unnatural adjustment of the dimension-

full Higgs mass parameter to produce the correct EW scale. Since the EW symmetry is
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broken by hand via the negative mass-squared term in the case of the SM, the model does

not tell us the origin of the SSB and cannot avoid the unacceptable fine tuning of the Higgs

mass parameter. It would be undesirable for the fundamental theory of nature, and we

expect that some mechanism or dynamics naturally explains the EW symmetry breaking

and stabilizes the EW scale. In order to provide the natural description of the Higgs sector

at the EW scale, we have to construct a TeV-scale theory that will replace the SM.

Many models describing the physics beyond the SM have been proposed: supersym-

meric (SUSY) models, composite Higgs models and models with extra dimensions, etc. The

Higgs sector of these models is extended as it is naturally responsible for the EW symmetry

breaking with a certain dynamics or mechanism. Such an extension of the Higgs sector

causes the modification of Higgs physics from that of the SM. The modification can affect

various observables at the collider experiments; maybe its effect could be firstly observed

as deviations from the SM prediction at the energy scale which is lower than a typical

new physics scale (such as the dynamical scale or the masses of new resonances). From

the perspective of the effective theory, we can examine these deviations in terms of higher

dimensional operators including the Higgs field. Higgs physics is therefore important not

only for the establishment of the SM Higgs sector but also for the indirect search of the

new physics. After the discovery of the Higgs boson, it is becoming more important and

interesting to investigate the phenomena beyond the SM by focusing on Higgs physics.

In this thesis we concentrate on Higgs physics as a window to new physics and especially

study the following two subjects.

One of the topics we study is the perturbative unitarity of the scattering amplitudes

of the longitudinal gauge bosons and Higgs bosons [3]. Since the massive gauge boson

has the longitudinal polarization state whose wave function is proportional to the four

momentum in the high energy limit, the massive gauge boson scattering amplitudes grow

as the center of mass energy increases. In the case of the SM the contribution from the

Higgs boson cancels the positive power dependence of energy on the amplitudes, and the

amplitudes are expressed as a function of the Higgs mass; hence the unitarity of the theory

is ensured [4]. This is the striking feature of the renormalizable spontaneously broken

gauge theory. However, if there is a deviation of the coupling between the gauge bosons

and the Higgs boson, such a cancellation would be lost. The amplitudes therefore keep

growing until the energy scale where the perturbative unitarity breaks down, which suggests

that some new physics has to appear at this energy scale and recover the unitarity of the

theory. Typically, the dimension-six derivative interactions of the Higgs field give rise

to the unitarity violation in the high energy region [5]. It is meaningful to estimate the

energy scale of the unitarity violation within the effective theory in which heavy particles

are integrated out and only the SM particles including the Higgs bosons are treated as

a dynamical degrees of freedom (DOF). According to the Ref [6], the general form of

the dimension-six derivative interactions including any number of the Higgs doublets is

constructed. With this consequence we examine the condition of the tree level unitarity

violation in terms of the coefficients of the dimension-six Higgs derivative operators for the

one Higgs doublet and two Higgs doublets cases. By way of example, we show the typical

unitarity violation scales in various composite Higgs models; however our result can be
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applied to any theory where the dimension-six Higgs derivative interactions are generated.

The other topic is the couplings of the Higgs boson to other particles. For the SM

the strength of the couplings is expressed in terms of the particle mass and the VEV of

the Higgs field, and we already know all of the mass parameters in the theory. Hence the

deviation of the couplings from those of the SM is undoubtedly evidence of new physics.

In most cases new physics models predict the modified Higgs couplings at tree or loop

level. These modified couplings are good observables for the search of new physics. At

this stage, the Higgs couplings begin to be observed at the LHC [7]. At the future collider

experiments we can measure the various couplings with high accuracy, ≤ O(1)%, which is

a powerful tool for probing new physics; the more precise the experiment, the higher scale

physics we can probe. In addition, the correlations of the modified Higgs couplings are

useful to discriminate new physics models because they tend to show different features for

each model. In this work we especially study the partial decay widths and the couplings of

the Higgs boson in the minimal composite Higgs model (MCHM) [8] in detail. It is notable

that we compute all of the loop induced effective couplings, hgg, hγγ and hZγ, including

exact mass dependences of the heavy resonances and show their correlations. Then the

result is compared with those of other models, the Randall-Sundrum (RS) model [9] and the

extra singlet Higgs model. Using the correlations of the deviations of the Higgs couplings,

we clarify how we can discriminate each model in the future experiments.

2 Higgs physics in the Standard Model

In this chapter we briefly review the Higgs physics in the SM. The Higgs field is introduced

as (1,2,+1/2)1 under SU(3)C × SU(2)L × U(1)Y , and its VEV breaks SU(2)L × U(1)Y
down to U(1)EM [10]. The Higgs interactions are completely determined by the masses of

the interacting particles.

2.1 Lagrangian including the Higgs field

The Lagrangian including the Higgs field is divided into three parts:

L ⊃ LV + LHkin + Lyukawa, (2.1)

where LV ,LHkin and Lyukawa are Higgs potential part, Higgs kinetic part and yukawa

interaction part. The Higgs field can be parametrized using four real DOFs as

H(x) =
1√
2

(
h1(x) + ih2(x)

h3(x) + ih4(x)

)
. (2.2)

1 We define the hypercharge as Y = Q− T 3
L.
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2.1.1 Higgs potential part

Higgs potential is described by two parameters:

LV = µ2|H|2 − λ|H|4 = −λ
(
|H|2 − µ2

2λ

)2

+
µ4

4λ
. (2.3)

The VEV reads ⟨|H|⟩ ≡ v/
√
2 =

√
µ2/2λ. This non-trivial VEV is essential for the EW

symmetry breaking; the trigger is the sign of the mass parameter µ2 which is chosen by

hand and the reason cannot be explained in the SM. After expanding around the VEV and

using an SU(2)W rotation, the Higgs doublet can be expressed as

H(x) = U(x)
1√
2

(
0

v + h(x)

)
, (2.4)

where U(x) is a gauge transformation of SU(2)W . We can always rotate away this U(x) by

transforming H(x)→ U−1(x)H(x), which means that only one DOF remains physical after

the SSB. The other three DOFs are called Nambu Goldstone (NG) bosons and ”eaten” by

gauge bosons as we will see.

In the basis where U(x) is rotated away, so-called unitary gauge, we are able to rewrite

LV :

LV = −λv2h2 − λvh3 − λ

4
h4

= −1

2
m2
hh

2 −
m2
h

2v
h3 −

m2
h

8v2
h4, (2.5)

where mh is the Higgs mass. Now we have measured the value of the mass of the Higgs

boson:

mh = 125.9± 0.4 [GeV]. (2.6)

Note that we drop the vacuum energy term in the Eq. (2.5); we need not care about it as

long as neglecting the gravity.

2.1.2 Higgs kinetic part

The Higgs kinetic term reads

LHkin = (DµH)†DµH, Dµ = ∂µ − igW a
µ

σa

2
− ig

′

2
BµI2×2, (2.7)

where σa (a=1,2,3) is the Pauli matrices. We then move to the electromagnetic eigenbasis

since U(1)EM gauge symmetry still remains after the EW symmetry breaking:

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ), (2.8)

Zµ =
1√

g2 + g′2
(gW 3

µ − g′Bµ) = cos θWW
3
µ − sin θWBµ, (2.9)

Aµ =
1√

g2 + g′2
(g′W 3

µ + gBµ) = sin θWW
3
µ + cos θWBµ, (2.10)
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where θW is the Weinberg angle. In this basis we get

LHkin =
1

2
∂µh∂

µh+
(gv
2

)2
W+
µ W

−µ
(
1 +

h

v

)2

+

(√
g2 + g′2v

2

)2
ZµZ

µ

2

(
1 +

h

v

)2

=
1

2
∂µh∂

µh+m2
WW

+
µ W

−µ
(
1 +

h

v

)2

+m2
Z

ZµZ
µ

2

(
1 +

h

v

)2

. (2.11)

2.1.3 Yukawa interaction part

The yukawa interaction Lagrangian is the following:

Lyukawa = −
3∑
I,J

L̄gIy
l,g
IJe

g
JH −

3∑
I,J

Q̄gIy
d,g
IJ d

g
JH −

3∑
I,J

Q̄gIy
u,g
IJ u

g
JH̃ + (h.c.), (2.12)

where superscript g means the gauge eigenbasis, and l, d and u stand for lepton, down

quark and up quark respectively. We also define

H̃ = iσ2H∗, (2.13)

LI =

(
νe
e

)
L

,

(
νµ
µ

)
L

,

(
ντ
τ

)
L

, (2.14)

QI =

(
u

d

)
L

,

(
c

s

)
L

,

(
t

b

)
L

, (2.15)

eI = eR, µR, τR, (2.16)

dI = dR, sR, bR, (2.17)

uI = uR, cR, tR. (2.18)

Here L(R) denotes the left (right) handedness. It is notable that in the Eq. (2.12) only

the left handed neutrino is introduced; hence the neutrinos are massless in the SM. Let us

count the DOFs of the yukawa couplings. If y = 0, the Lagrangian is invariant under the

chiral transformations:

LgI → FLIJL
g
J , egI → FeIJe

g
J , (2.19)

QgI → FQIJQ
g
J , dgI → FdIJd

g
J , ugI → FuIJu

g
J , (2.20)

where F is 3× 3 unitary matrix acting on flavor space. The yukawa couplings break these

symmetries explicitly. Let us treat the yukawa couplings as spur ions transforming as

follows:

ylgIJ → FLII′y
lg
I′J ′F

†
eJ ′J , (2.21)

ydgIJ → FQII′y
dg
I′J ′F

†
dJ ′J , (2.22)

yugIJ → FQII′y
ug
I′J ′F

†
uJ ′J . (2.23)
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The Lagrangian is still invariant under these transformations. Note that if we choose FQ =

Fu = Fd = eiB and FL = Wdiag(eiα, eiβ, eiγ), Fe = Wdiag(eiα, eiβ , eiγ) where W †ylgW =

diag(y1, y2, y3), the yukawa Lagrangian remains invariant. These are corresponding to

the baryon number conservation and the lepton number conservation for each generation.

Similarly to the NG boson case, we could write the physical DOF of the yukawa couplings

as

Ny phys = Ny −NG +NG′ , (2.24)

where a chiral symmetry G is broken explicitly by the yukawa sector to a group G′. For

the lepton sector, G = U(3)L ⊗ U(3)e and G
′ = U(1)3. Then we get

moduli : Ny phys = 32 − 2
3(3− 1)

2
= 6, (2.25)

phases : Ny phys = 32 − 2
3(3 + 1)

2
+ 3 = 0. (2.26)

The half of moduli is related to masses, and the others are corresponding to physical yukawa

couplings. For the quark sector, G = U(3)Q ⊗ U(3)u ⊗ U(3)d and G′ = U(1)B, leading to

moduli : Ny phys = 2× 32 − 3
3(3− 1)

2
= 9, (2.27)

phases : Ny phys = 2× 32 − 3
3(3 + 1)

2
+ 1 = 1. (2.28)

The moduli are divided into three masses, three mixing angles and three yukawa couplings.

We have one phase DOF in the quark sector which is the unique source of the CP-violation

in the SM.

In order to get the mass eigenstates we perform the singular value decomposition

(SVD) by defining the following unitary matrices:

3∑
I,J=1

(U liI)
†yl,gIJV

l
Jj = δijy

l
i, (2.29)

3∑
I,J=1

(UdiI)
†yd,gIJ V

d
Jj = δijy

d
i , (2.30)

3∑
I,J=1

(UuiI)
†yu,gIJ V

u
Jj = δijy

u
i . (2.31)

The relations between the gauge eigenstates and the mass eigenstates are

egI = V l
Iiei, (2.32)

dgI = V d
Iidi, (2.33)

ugI = V u
Iiui, (2.34)

L̄gI = L̄i(U
l
iI)

†, (2.35)

Q̄gI = (ūi(U
u
iI)

†, d̄i(U
d
iI)

†)L = (ūi, d̄j(V
CKM
ji )†)L (UuiI)

†

= (ūi, d̄′i)L (UuiI)
† = Q̄I(U

u
iI)

†, (2.36)
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where we define the Cabibo-Kobayashi-Maskawa (CKM) matrix as V CKM
ij = (UuiJ)

†UdJj .

The fit results for the magnitudes of all nine CKM elements are

VCKM =

 0.97427± 0.00015 0.22534± 0.00065 0.00351+0.00015
−0.00014

0.22520± 0.00065 0.97344± 0.00016 0.0412+0.0011
−0.0005

0.00867+0.00029
−0.00031 0.0404+0.0011

−0.0005 0.999146+0.000021
−0.000046

 . (2.37)

The CP phase is often represented by the Jarlskog invariant J defined by

Im[VijVklV
∗
ilV

∗
kj ] = J

∑
m,n

ϵikmϵjln. (2.38)

This is a base-independent, and its fitted value is

J = 2.91+0.19
−0.11 × 10−5. (2.39)

In the mass eigenbasis Lyukawa is rewritten as

Lyukawa = −
3∑
i=1

yliL̄iHei −
3∑

i,j=1

ydi Q̄jV
CKM
ji Hdi −

3∑
i=1

yui Q̄iH̃ui + (h.c.). (2.40)

The CKM matrix appears in the second term. The reason is that the up quarks and the

down quarks cannot be simultaneously diagonalized since the left handed up and down

quarks form the SU(2)L doublets. Interactions between the down quarks and the neutral

components of the Higgs field, however, are diagonal due to the cancellation of the CKM

matrix. This means the CKM matrix, especially the CP violation, appears in the charged

current interaction of the quarks.

In the unitary gauge we get

Lyukawa = −
∑

l=e,µ,τ

ylv√
2

(
1 +

h

v

)
l̄l −

∑
d=d,s,b

ydv√
2

(
1 +

h

v

)
d̄d−

∑
u=u,c,t

yuv√
2

(
1 +

h

v

)
ūu

= −
∑

l=e,µ,τ

ml

(
1 +

h

v

)
l̄l −

∑
d=d,s,b

md

(
1 +

h

v

)
d̄d−

∑
u=u,c,t

mu

(
1 +

h

v

)
ūu.

(2.41)

2.2 Higgs interactions with other particles

As we saw in the previous section, the interactions of the physical Higgs field with other

particles (as well as itself) are determined by the masses of the particles. We summarize the

Higgs interactions at the tree and one-loop levels. We also show the accuracies on Higgs

coupling measurements that experiments are capable of reaching in the future collider

experiments.
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2.2.1 Tree level interactions

The Higgs boson interacts with all massive particles at tree level via mass dependent

couplings. We parametrize the couplings as follows:

L ⊃ −
∑
f

ghf̄fhf̄f +
∑
V

ghV V h
V V

1 + δV Z
+
∑
V

ghhV V
h2

2!

V V

1 + δV Z
− ghhh

h3

3!
− ghhhh

h4

4!
,

(2.42)

where f runs all species of the massive fermions, V = W±/Z and δV Z is introduced to

denote the symmetric factor for the Z boson. In the case of the SM we get the following

couplings from the result of previous section.

ghf̄f =
mf

v
, (2.43)

ghV V =
2m2

V

v
, (2.44)

ghhV V =
2m2

V

v2
, (2.45)

ghhh =
3m2

h

v
, (2.46)

ghhhh =
3m2

h

v2
, (2.47)

The important feature is that the Higgs couplings are controlled by the masses of the in-

teracting particles. In particular, the couplings ghf̄f ,
√
ghhV V /2 and

√
ghhhh/3 are aligned

on the linear line as we can see in the Fig. 1.

We can compute the decay widths of the Higgs boson to two vector bosons and two

fermions; for the vector boson modes one vector boson is on-shell and the other is off-shell

because mh < 2mV . The results are the following:

Γ(h→ f̄f)SM =

√
2GFNc

8π
m2
fmh

√
1−

4m2
f

m2
h

, (2.48)

Γ(h→WW ∗)SM =
3α2mh

32 sin4 θW
G

(
mW

mh

)
, (2.49)

Γ(h→ ZZ∗)SM =
α2mh

128π sin4 θW (1− sin θW )2

(
7− 40

3
sin θW +

160

9
sin2 θW

)
G

(
mZ

mh

)
,

(2.50)

where Nc is the color factor, and we define the function G(x) as

G(x) =− |1− x2|
(
47

2
x2 − 13

2
+

1

x2

)
− 3(1− 6x2 + 4x4)| lnx|

+ 3
1− 8x+ 20x4√

4x2 − 1
arccos

(
3x2 − 1

2x3

)
. (2.51)
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Figure 1. The strength of the Higgs coupling to other particles as a function of the masses of the

interacting particles. The Higgs couplings are linearly dependent on the particle mass. A similar

figure is seen in the Refs. [11, 12].

2.2.2 One-loop level interactions

The quantum number of the Higgs field forbids the Higgs couplings with gg, γγ and Zγ at

tree level. At loop level, however, the Higgs boson can decay into these particles. The loop

induced decay modes are also important to clarify the Higgs properties; in some cases, the

loop induced decays are fairly sensitive to new physics because the smallness of the SM

effect leads to identifying easily a contribution from new physics.

First we consider the decay of the Higgs boson into two gluons. Since the gluon is

SU(3)c gauge boson, in the SM only the quarks appear in the loop; top and bottom quarks

give large contribution to this process, and the other quarks are negligible due to their

small masses, namely, small couplings to the Higgs boson. We here represent the formula

including spin-0, 1/2 and 1 contributions for the sake of generality. The decay width is

given by

Γ(h→ gg) =
α2
sm

3
h

128π3

∣∣∣∣δRT (V )
ghV V
m2
V

A1(τV ) + δRT (f)
2ghf̄f
mf

A1/2(τf ) + δRT (S)
ghSS
m2
S

A0(τS)

∣∣∣∣2 .
(2.52)
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In the above the notation V ,f and S refer to spin-1, spin-1/2 and spin-0 particles, respec-

tively. The loop functions are defined in the App. A, and the argument of the loop function

is defined as τi =
(
2mi
mh

)2
. T (i) is the Dynkin index of the matter representation defined

by the following relation on the group generators:

Tr[T aT b] = T (i)δab. (2.53)

For SU(N) fundamental representations and adjoint representations T (i) = 1
2 and N ,

respectively. In addition, δR = 1
2 for real matter fields and 1 otherwise. In the case of the

SM, we can rewrite the coupling as

2ghff̄
mf

=
2

v
, (2.54)

and the width becomes

Γ(h→ gg)SM =

√
2GFα

2
sm

3
h

128π3
∣∣A1/2(τt) +A1/2(τb)

∣∣2
∼ 2.0× 10−4 [GeV], (2.55)

where we use αs = 0.119,mt = 173 [GeV] and mb = 4.8 [GeV].2

Next we provide the decay width of the Higgs boson into two photons. In this process

the particles which get mass from the Higgs field and are electrically charged can enter the

loop; W±, quarks and charged leptons for the SM case. The decay width is expressed as

Γ(h→ γγ) =
α2m3

h

1024π3

∣∣∣∣ghV Vm2
V

Q2
VA1(τV ) +

2ghf̄f
mf

Nc,fQ
2
fA1/2(τf ) +

ghSS
m2
S

Nc,SQ
2
SA0(τS)

∣∣∣∣2 ,
(2.56)

where Qi is the electric charge in |e| unit, Nc,i is the number colors for each particle. For

the SM case

ghWW

m2
W

=
2ghff̄
mf

=
2

v
, (2.57)

and the width is

Γ(h→ γγ)SM =

√
2GFα

2m3
h

256π3

∣∣∣∣∣12A1(τW ) + 3

(
2

3

)2

A1/2(τt) + 3

(
−1
3

)2

A1/2(τb)

∣∣∣∣∣
2

∼ 1.1× 10−5 [GeV], (2.58)

where we use α−1 = 129 and mW = 80.4 [GeV].

Finally we also consider the Higgs to Z photon decay mode. The particles appearing

in the loop are the same as those of h → γγ. In this mode, however, there could be two

particles with different masses inside the loop. Let us consider the case that the theory

2 Of course the QCD correction is significant in such a calculation, and we have to care about the

renormalization scheme, see e.g. [13]. In this section we just put the pole mass into the equation.
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includes the SM W± boson and the fermions which are interacting with the Higgs boson

and the Z boson with off-diagonal couplings in the mass eigenbasis. The Lagrangian is

described as

L ⊃ m2
WW

+
µ W

−µ + ghWWhW
+
µ W

−µ −miψ̄iψi +Qi|e|ψ̄iγµψiAµ
− ψ̄i(cLijPL + cRijPR)ψjh+ ψ̄iγ

µ(λLijPL + λRijPR)ψjZµ, (2.59)

where PL and PR are the projection operators defined by PL,R = 1∓γ5
2 . The decay width

of this mode is expressed by the following:

Γ(h→ Zγ) =
α2m3

h

512π3

(
1−

m2
Z

m2
h

)3 ∣∣∣∣ ghWW

sin θW cos θW
AV (mW )

+
2Nc

g sin θW

∑
i,j

Qimi(c
L
ij + cRij)(λ

L
ji + λRji)AF (mi,mj)

∣∣∣∣∣∣
2

. (2.60)

For the SM case we get

Γ(h→ Zγ)SM =

√
2GFα

2m3
h

128π3

(
1−

m2
Z

m2
h

)3 ∣∣∣∣ m2
W

sin θW cos θW
AV (mW )

+
2× 3

sin θW cos θW

{(
2

3

)
m2
t

(
1

2
− 2 sin2 θW

(
2

3

))
AF (mt,mt)

+

(
−1
3

)
m2
b

(
−1

2
− 2 sin2 θW

(
−1
3

))
AF (mb,mb)

}∣∣∣∣2
∼7.0× 10−6 [GeV]. (2.61)

There doesn’t appear to be the off-diagonal contributions in the SM.

2.2.3 Experimental sensitivity to the Higgs couplings

It is important to precisely measure the Higgs couplings in order not only to confirm the

SM, but also to investigate the physics beyond the SM. For the SM case, as we looked, the

decay widths of the Higgs boson are determined by the mass of the particles and the EW

parameters. The total decay width, ΓH =
∑

all modes Γ, is dependent on the Higgs mass

and the result is shown in the Fig. 2. The total width sharply changes around the two

vector boson threshold, and in the high mass region the width becomes too broad to be

identified as a particle. For mh = 126 [GeV], total width is ΓH = 4.2× 10−3 [GeV] which

is too small to be experimentally measurable from the shape of the resonance.

The branching ratio (BR) for a particular decay mode is defined by Γ/ΓH . The result of

various modes is shown in the Fig. 3. We can see the BR is sensitive to the Higgs mass. For

mh = 125.9 [GeV], the branching ratios are BR(bb) = 0.563,BR(WW ∗) = 0.229,BR(gg) =

0.0849,BR(ττ) = 0.0617,BR(ZZ∗) = 0.0287,BR(cc) = 0.0284,BR(γγ) = 0.00228 and

BR(Zγ) = 0.00162 [12]. Fortunately it is possible to measure various modes at the collider
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Figure 2. The total decay width as the function of the Higgs mass. The width is monotonic

increasing with the Higgs mass. This figure is taken from the Refs. [14].
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experiments; the Higgs coupling is interesting target for the future physics.

Many studies of the Higgs coupling measurements are done. For example, the accura-

cies that can be achieved by experiments at the LHC and at the ILC are estimated by the

Refs. [15, 16]. The Fig. 4 show the 1σ experimental sensitivities to the Higgs couplings.

At the LHC, due to the QCD back ground, the hbb and hττ couplings are difficult to be

determined well. The loop induced couplings can be relatively well measured. Using ILC

sensitivities, we can determine the couplings within 5% accuracy. Especially, tree level cou-

plings, hV V and hbb, can be measured less than about 1%. Note that h → Zγ mode has

not studied yet although this process is as important as the other loop induced processes,

h → gg and h → γγ; we need to study this mode and clarify its validity for the search of

new physics.
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Figure 4. Comparison of the capabilities of the LHC and the ILC model independent measure-

ments of the Higgs couplings. The plot shows (from left to right in each set of error bars) 1 σ

confidence intervals for LHC at 14 [TeV] with 300 [fb−1], for ILC at 250 [GeV] and 250 [fb−1]

(‘ILC1’), for the full ILC program up to 500 [GeV] with 500 [fb−1] (‘ILC’), and for a program with

1000 [fb−1] for an upgraded ILC at 1 [TeV] (‘ILCTeV’). The marked horizontal band represents a

5% deviation from the Standard Model prediction for the coupling. This figure is taken from the

Ref. [15].
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2.3 Theoretical aspects of Higgs physics

In this section we provide several theoretical aspects of Higgs physics. The Higgs field

is introduced as the only scalar field in the SM to cause the EW symmetry breaking.

Therefore, its theoretical properties are various and important to understand what the

Higgs field is. They are also useful to investigate new physics because models with extended

Higgs sector likely modify the properties.

2.3.1 Perturbative unitarity

In this subsection we discuss the perturbative unitarity of the scattering amplitudes. The

amplitudes of elastic scattering satisfy the following relation for each partial wave:

M I
n =λ(a, b)

∣∣MR
n + iM I

n

∣∣2 , (2.62)

λ(a, b) =
√

(1− (a+ b)2)(1− (a− b)2), (2.63)

where MR
n (M

I
n) is the real (imaginary) part of the partial wave amplitude, a and b are

the ratios between the mass of each particle and the center of mass energy, ma,b/
√
s, and

partial waves are defined as below with the Legendre polynomials Pm(x):

M(cos θ) = 16π
∞∑
n=0

(2n+ 1)MnPn(cos θ), (2.64)∫ 1

−1
dxPm(x)Pn(x) =

2

2n+ 1
δmn. (2.65)

Eq. (2.62) is the equation of the circle with radius 1
2λ and center

(
0, 1

2λ

)
. In the high-

energy limit where the masses of produced particles can be neglected, the radius of the

circle becomes the maximum. Therefore, the actual amplitudes are in the maximal circle.

Finally, partial wave amplitudes at least satisfy MR
n ∈

[
−1

2 ,
1
2

]
and M I

n ∈ [0, 1]. If we

consider processes involving identical particles in the final state, the bound becomes weaker

as MR
n ∈ [−1, 1] and M I

n ∈ [0, 2].

As an example, let us consider the two-body to two-body scattering amplitudes of the

longitudinal gauge bosons. The polarization vector of the massive gauge boson is expressed

as

ϵµL =
E

mV

(
|p|
E
p
|p|

)
, (2.66)

where E and p are energy and three momentum, respectively. Naive estimation of a two

body to two body scattering amplitude is then

M(V a
LV

b
L → V c

LV
d
L ) ∝ |ϵ

µ
L|

4

∼ E4

m4
V

. (2.67)
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This amplitude seems to be divergent in the ultraviolet region. First we consider the

process of longitudinal gauge boson two-body to two-body scatterings with g′ = 0 case.

Diagrams including only the gauge bosons are comprised of one with four point interaction

and ones with three point interaction.

a

b




d

a

b




d

a

b




d

a

b




d

Figure 5. Two-body to two-body scattering process of longitudinal gauge bosons, including only

the gauge bosons. Indices, a, b, c and d, denote the component of the gauge boson.

Focusing on the contributions which diverse as energy increases, we can write the amplitude

of the four point interaction diagram as

M4(ab→ cd) = gWWWW
E4

m4
W

(
−6 + 2 cos2 θ + 4

m2
W

E2

)
δabδcd + · · · . (2.68)

The t-channel and u-channel contributions are

Mt(ab→ cd) = g2WWW

E4

m4
W

(
3− 2 cos θ − cos2 θ +

(
−3

2
+

15

2
cos θ

)
m2
W

E2

)
δabδcd + · · · ,

(2.69)

Mt(ab→ cd) = g2WWW

E4

m4
W

(
3 + 2 cos θ − cos2 θ +

(
−3

2
− 15

2
cos θ

)
m2
W

E2

)
δabδcd + · · · .

(2.70)

Note that s-channel contribution to this term vanishes due to the nature of the structure

constant. The gauge symmetry guarantees the following relation:

gWWWW = g2WWW = g2. (2.71)

Thanks to this relation the sum of these contribution becomes

M4 +Mt +Mu = g2
E2

m2
W

δabδcd, (2.72)

We can see E4 dependence vanishes. The E2 dependence, however, still remains and

violates the tree level unitarity in the high energy region. The Higgs boson mediated

diagram, see the Fig.6, plays an crucial role to save this difficulty.
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Figure 6. Two-body to two-body scattering process of longitudinal gauge bosons, including the

Higgs propagator. Indices, a, b, c and d, denote the component of the gauge boson.

The amplitude of the sum of the Higgs mediated diagrams can be calculated as

Mh(ab→ cd) = g2hWW

4E4

m4
W

1

m2
h − 4E2

δabδcd

= g2
4E4

m2
W

1

m2
h − 4E2

δabδcd. (2.73)

Combining Eq. (2.72) and Eq. (2.73), we get

M4 +Mt +Mu +Mh =
g2

m2
W

m2
hE

2

m2
h − 4E2

δabδcd. (2.74)

This amplitude converges into −2λ in E2 ≫ m2
h limit, and the terms with other combi-

nations of indices behave the same way. Therefore, the Higgs field performs an important

role for constructing the renormalizable theory with massive gauge bosons. If the Higgs

boson is too much heavy the Higgs boson decouples from the theory and the perturbative

unitarity again violates in the high energy region. Conversely, one can constraint the Higgs

mass from the perspective of the unitarity. From this process the Higgs mass is bounded

by about 1300 [GeV].

In order to get the most strongest bound, we need to consider all of the same charge

initial (final) states [4]. Let us analyze the charge neutral and s-wave states for the SM

case. The matrix of the scattering amplitudes for the J = 0 modes, M0(X → Y ) where

X,Y =W+
LW

−
L ,

1√
2
ZLZL,

1√
2
HH,HZL, takes the form

(amplitude matrix) ≃
m2
h

8πv2


1 1√

8
1√
8
0

1√
8

3
4

1
4 0

1√
8

1
4

3
4 0

0 0 0 1
2

 (2.75)

where we use the the s≫ m2
h. The largest eigenvalue gives the strongest bound; we get

mh ≤
√

16πv2

3
(2.76)

≃ 1.01× 103 [GeV]. (2.77)
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2.3.2 Custodial symmetry

At lowest order the W and Z boson masses are related by

ρ =
m2
W

m2
Z cos2 θW

= 1. (2.78)

This relation is the consequence of the custodial symmetry which is an approximate global

symmetry of the Lagrangian including the Higgs field. In order to make the discussion

clear, we introduce the bi-doublet notation:

Φ = (H̃ H) = (iσ2H∗ H). (2.79)

This bi-doublet field is two by two matrix and its VEV is proportional to the identity

matrix, ⟨Φ⟩ ∝ vI2×2.

First we consider the Higgs potential in terms of doublet field:

LV =
µ2

2
Tr[Φ†Φ]− λ

4
(Tr[Φ†Φ])2. (2.80)

This Lagrangian is invariant under the transformation

Φ→ LΦR†, (2.81)

where L(R) is SU(2)L(R) transformation. After the EW symmetry breaking the SU(2)V
symmetry is still preserved; this is called the custodial symmetry. Because of SO(4) ≃
SU(2)L × SU(2)R, we can replace the bi-doublet representation with the fundamental

representation of SO(4). In this case the Higgs VEV breaks SO(4) into SO(3), and this

SO(3) is the custodial symmetry.

We next discuss the Higgs kinetic term. The EW SU(2)W×U(1)Y symmetry is gauged

as

DµΦ = ∂µΦ− igW a
µ

σa

2
Φ− ig′BµΦ

σ3

2
. (2.82)

If g′ = 0, the custodial symmetry is exact and the covariant derivative in the vacuum reads

Dµ⟨Φ⟩ =
gv

2
√
2

(
W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ −W 3
µ

)
. (2.83)

The gauge field mass term is obtained as follows:

1

2
Tr[(Dµ⟨Φ⟩)†Dµ⟨Φ⟩] = g2v2

4

W a
µW

aµ

2
. (2.84)

The ρ parameter is obviously equal to one since cos θW = 1 and Zµ =W 3
µ in this case. Then,

we put g′ ̸= 0; the custodial symmetry is explicitly broken since the SU(2)R generators are

not commutable with U(1)Y generator. The covariant derivative in the vacuum is replaced

as

Dµ⟨Φ⟩ =
gv

2
√
2

(
W 3
µ −

g′

g Bµ W 1
µ − iW 2

µ

W 1
µ + iW 2

µ −W 3
µ + g′

g Bµ

)
. (2.85)
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From this expression we can see the combination, W 3
µ −

g′

g Bµ =
Zµ

cos θW
, acts like W 3

µ for

g′ = 0 case. The ρ parameter, therefore, is again equal to one at tree level. Although the

symmetry is violated at loop level, the effect is not significant because the strength of the

hypercharge gauge coupling is small.

Finally we comment on the yukawa interaction part. If the up type yukawa coupling

is identical to the down type one in the same generation, the yukawa interactions can be

rewritten as

Lyukawa ⊃
∑
i

yiQ̄iΦ

(
uiR
diR

)
. (2.86)

Provided the right handed doublet linearly transforms under SU(2)R, the custodial sym-

metry is preserved. In reality, yui ̸= ydi and the custodial symmetry is broken; however, the

contribution to the ρ parameter from the loop diagram is not large.

As stated above the custodial symmetry is approximately good symmetry within the

renormalizable EW theory. However, higher dimensional operators could violate the cus-

todial symmetry at tree level. For example, consider the following dimension-six operator:

1

Λ2
Tr
[
(Φ†←→D µΦ)

†σ3
]
Tr
[
(Φ†←→D µΦ)σ

3
]
, (2.87)

where Λ is a cutoff scale, and Φ†←→D µΦ = Φ†DµΦ − (DµΦ)
†Φ. This operator affects the ρ

parameter because it gives the contribution to the Z boson mass. The experimental value

of the ρ parameter, ρexp = 1.0008+0.0017
−0.0007, severely constraints a cutoff scale.

If we consider another representation of the Higgs field, the tree level ρ parameter is

not always equal to one. For an arbitrary number of Higgs multiplets, the ρ parameter

becomes

ρ =

∑
i

(
IHi(IHi + 1)− Y 2

Hi

)
⟨Hi⟩2

2
∑

i Y
2
Hi
⟨Hi⟩2

, (2.88)

where IHi and YHi are the isospin and hypercharge for Hi; in the SM IHi = YHi = 1
2 ,

and then ρ = 1. Even if ρ = 1 at tree level, higher representations give interesting

phenomenologies, see e.g. the Ref. [17].

Hence the custodial symmetry is important for considering the Higgs physics beyond

the SM.

2.3.3 Equivalence theorem

The equivalence theorem [18] is a striking feature of gauge theories with spontaneous

symmetry breaking; it relates the amplitude for a process with longitudinally polarized

vector bosons to the amplitude in which the longitudinal vector bosons are replaced by

the corresponding NG bosons. The proof of the theorem is based on the Ward-Takahashi

identity. We now consider, as the most simplest case, a single massive U(1) vector boson
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is emitted or absorbed in a scattering process. We can schematically write the amplitude

of the process:

M(VL, . . . ) =M(ϕ, . . . ) +O
(mV

E

)
, (2.89)

where VL and ϕ are the longitudinal gauge boson and the corresponding NG boson.

Let us define the longitudinal polarization vector:

ϵµL(k) =

(
|k|
mV

, 0, 0,
E

mV

)
(2.90)

=
kµ

mV
+O

(mV

E

)
, (2.91)

where this polarization vector satisfies ϵµLkµ = 0 and ϵµLϵLµ = 1. The Ward-Takahashi

identity for a process of the process with a single external gauge boson is

kµMµ(k) = 0, (2.92)

where we denote the amplitude asM(k) = ϵµMµ(k). In the Landau gauge, this amplitude

can be decomposed into two peaces. One is the diagram where the current can couple

directly into an one particle irreducible vertex function Γµ(k). The other is the diagram

where the current creates a NG boson that couples to an one particle vertex Γ(k). The

interaction term is given by

L ⊃ −gVµJµ, (2.93)

where Jµ = (∂µϕ)ϕ. In the vacuum, Jµ = (∂µϕ)⟨ϕ⟩, the relation linking the gauge current

and the NG boson state is

⟨0|Jµ|ϕ(k)⟩ = −i⟨ϕ⟩kµ. (2.94)

The Ward-Takahashi identity, Eq. (2.92), can be written in terms of two one particle

irreducible diagrams:

kµ

(
Γµ(k) + ig⟨ϕ⟩kµ i

k2
Γ(k)

)
= 0. (2.95)

By using the gauge boson mass relation, mV = g⟨ϕ⟩, we find

kµ
mV

Γµ(k) = Γ(k). (2.96)

In the high energy region ϵµL = kµ

mV
; this means that the longitudinal mode of the massive

gauge boson can be identified to by the NG boson.

We can reconfirm this fact at the field variable level. In the Ferynman-’t Hooft gauge

the gauge constraint is

∂µV
µ + imV ϕ = 0. (2.97)
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If we denote the longitudinal gauge boson as

VL(k) = ϵµL(k)Vµ(k), (2.98)

we get

VL(k) =
kµ

mV
Vµ(k) +O

(mV

E

)
= ϕ(k) +O

(mV

E

)
, (2.99)

where we use the relation of the Eq. (2.97).

As an example we see the process where the Higgs boson decays into two longitudinal

W bosons. The amplitude is

M(h→W+
LW

−
L ) = gmW ϵ

∗
+Lµϵ

∗µ
−L

=
gmW

2

(
m2
h

m2
W

− 2

)
. (2.100)

Meanwhile, the Higgs self interaction, L ⊃ −m2
h
v hϕ

+ϕ−, leads to the amplitude:

M(h→ ϕ+ϕ−) =
m2
h

v
=

gm2
h

2mW
. (2.101)

This amplitude is identical to the Eq. (2.100) in the limit of E(= mh)≫ mW .

We consider an another example, VLVL → VLVL, discussed before. In the case a = b =

1 and c = d = 2, the Eq. (2.74) becomesM ∼ −2λ in the high energy region (E ≫ mh).

On the other hand, NG four-point interaction, L ⊃ −λ
2ϕ

2
1ϕ

2
2, gives

M(ϕ1ϕ1 → ϕ2ϕ2) = −2λ. (2.102)

This amplitude also agrees with the result computed using the longitudinal gauge boson

in the high energy limit.

2.3.4 Higgs low energy theorem

We give a brief review of the Higgs low energy theorem [19] and its application.

First we consider the tree level coupling case. The Higgs interactions in the EW theory

are

L ⊃ −
(
1 +

h

v

)∑
f

mf f̄f −
(
1 +

h

v

)2(
m2
wW

+µW−
µ +

m2
Z

2
ZµZµ

)
. (2.103)

If we consider the constant Higgs field ( ph = 0 ), these interactions can be derived by

redefining the mass parameters as

mi → mi

(
1 +

h

v

)
. (2.104)
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This leads to the following expression of the Higgs low energy theorem:

lim
ph=0
M(Xh) =

∑
i=f,V

1

v
mi

∂

∂mi
M(X), (2.105)

where X is any particle configuration.

The interesting and useful point of this theorem is that we can apply to this theorem

to the loop process. Now we give a sketch of the proof, taking the loop induced Higgs-

gauge-gauge interaction as an example. Let us consider the renormalization group flow

of the gauge coupling. If the beta function changes from b to δb at the threshold M , the

gauge coupling can be expressed as

1

g2(µ)
=

1

g2(Λ)
+

b

8π2
log

Λ

µ
+

δb

8π2
log

Λ

M
, (2.106)

where M is a renormalization scale and Λ is a cut off scale. In this expression we denote

δb as a coefficient of the beta function. We assume that threshold M has the Higgs field

dependence:

1

g2(µ, h(x))
=

1

g2(Λ)
+

b

8π2
log

Λ

µ
+

δb

8π2
log

Λ

M(h(x))
. (2.107)

The gauge coupling depends on the space-time through the Higgs field. Subtracting the

Eq. (2.106) from the Eq. (2.107), we get

1

g2(µ, h(x))
− 1

g2(µ)
= − δb

8π2
log

M(h(x))

M
. (2.108)

Using this expression we can rewrite the gauge kinetic term − 1
4g2
V a
µνV

aµν as

− 1

4g(µ)2
V a
µνV

aµν +
δb

32π2
logM(h(x))V a

µνV
aµν + (M term). (2.109)

After the expansion of h(x)→ v + h(x), the second term reads

δb

32π2
logM(h(x))V a

µνV
aµν ⊃ δb

32π2
h

v

v

M(v)

∂M(v)

∂v
V a
µνV

aµν

=
δb

32π2
h

v

∂ logM(v)

∂ log v
V a
µνV

aµν . (2.110)

Then we can derive the loop induced Higgs coupling by reading the coefficient of the beta

function. Although we provide the one-loop result, the Higgs low energy theorem is studied

at two-loop level [20].

As an explicit application of the theorem, we show the hgg coupling induced by the

top loop. After the wave function renormalization of the gauge field we get

−1

4
V a
µνV

aµν +
g2sδb

32π2
h

v

∂ logM(v)

∂ log v
GaµνG

aµν . (2.111)
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The coefficient of the beta function is

δb =
4

3
C(r), (2.112)

where C(r) is defined as Tr[tatb] = C(r)δab. In the case of the SM, C(r) = 1
2 and ∂ logM(v)

∂ log v =

1; then we obtain

Lhgg =
αs
12π

h

v
GaµνG

aµν . (2.113)

This result becomes identical to the exact result in the limit of mt
mh
→∞.

2.3.5 Fine tuning problem

Although the SM is the most successful theory ever, the theory is less than satisfactory in

both experimental and theoretical points of view. One of the most important problem is

the fine tuning of the Higgs boson mass parameter; the question is why the Higgs boson is

so much lighter than the plank scale.

Unlike fermions and gauge bosons, the Higgs boson mass is not protected a symmetry,

such as the chiral symmetry and the gauge symmetry. The Higgs boson mass is naively

expected to be the planck scale, mpl ∼ 1018 [GeV]. In fact, the quantum correction to the

Higgs boson mass from the top quark is

δm2
h = −3y2t

8π2

(
Λ2 − 3m2

t ln

(
Λ2 +m2

t

m2
t

)
+ · · ·

)
, (2.114)

where Λ is a cutoff scale (we naively expect Λ ∼ mpl). One can express the bare mass

parameter as

m2
h,bare = m2

h,phys + δm2
h. (2.115)

In order to get m2
h,pays = (126 [GeV])2, the nature has to finely adjust the Lagrangian

parameter m2
h,bare. This is an indication that within the SM m2

h is an unnatural parameter.

The smallness of the Higgs boson mass cannot be explained in the SM; setting m2
h = 0

doesn’t enhance the symmetry of the theory.

The measure of the fine tuning may be defined as

∆ =
2δm2

h

m2
h,phys

. (2.116)

The degree of the fine tuning is expressed by 100
∆ [%], and we naively expect ∆ ≤ 1. In the

SM case this requirements reads Λ ≤ 5× 102 [GeV]. Note that definition of the measure is

not unique, and the standard of naturalness is totally depending on the human sense.

Several models beyond the SM which solve the fine tuning problem are proposed.

A supersymmetric model is one of the promising candidates. The quadratic divergence

of the Higgs boson mass from a certain particle is cancelled by the contribution from a

superpartner particle. In other words, the supersymmetry links fermions and bosons, which
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means that the chiral symmetry is extended to the scalar sector. A composite Higgs model

is another possibility. In this case the Higgs boson is realized as a NG boson arising from

the spontaneous global symmetry breaking. An approximate global symmetry ensures

the light Higgs boson. Some models, e.g. Little Higgs models, introduce the same spin

particles for the cancellation of the one-loop quadratic divergence of the Higgs boson mass.

In addition, models which extend the dimension of the space-time are also advocated. Note

that even is the quadratic divergence is killed, the logarithmic term still remains and leads

the little hierarchy problem [21]. It is becoming interesting to reconsider the degree of the

fine tuning which is permissible in the nature and the question whether the fine tuning is

a serious problem or not.

Perhaps our understanding of the fine tuning is wrong [22]. The uncomputable power

divergences are removed by an unknown UV gravitational dynamics. If it is true we can

discuss only the finite Higgs mass (presumably up to a logarithmic divergence). Such an

idea is a good match for the model in which the EW symmetry breaking is due to the

dimensional transmutation with an extended Higgs sector.

In any case the fine tuning problem is the important stepping stone to the physics

beyond the SM.

3 Perturbative unitarity of Higgs derivative inter-

actions

This chapter is based on the Ref. [23]. When we consider physics beyond the SM with

extended Higgs sector, its low energy effective theory probably includes dimension six

derivative interactions as a part of higher dimensional operators. These operators have

two origins: expansion of kinetic terms if the Higgs doublet is realized as a part of pseudo

NG field; integrating out heavy new scalar/vector bosons that interact with the Higgs field.

The latter case appears even in models including elementary Higgs field.

If the Higgs boson were removed from the SM, the Higgs sector would be described

by SU(2)L×SU(2)R/SU(2)V nonlinear sigma model. Derivative interactions of NG fields

emerge from the kinetic term. These interactions contribute to scattering among longitu-

dinal massive gauge bosons through the equivalence theorem and cross sections of these

processes become larger and larger as energy increases. They finally become so large as

to violate the perturbative unitarity around 1[TeV] [4]. Of course, the recent observation

of the Higgs boson told us the absence of the unitarity violation and validity of the SM

description even much above the TeV scale. We confront the similar problem in studying

derivative interactions of Higgs doublets. In this chapter, we examine the scales where

the given perturbative description is available in several models that include derivative

interactions of the Higgs doublets.

Before going to the detail, let us discuss the general form of the unitarity constraint.

Considering the scattering amplitude which is linearly dependent on the Mandelstam vari-
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ables. We can express the amplitude as

M =
Csŝ+ Ctt̂

M2
(3.1)

=
ŝ

M2

((
Cs −

Ct
2

)
P0 +

Ct
2
P1

)
, (3.2)

where ŝ(t̂) is the Mandelstam variable and M is a typical new physics scale. The zeroth

and the first modes of partial wave amplitudes appear:

M0 =
ŝ

16πM2

(
Cs −

Ct
2

)
, (3.3)

M1 =
ŝ

16πM2

Ct
6
. (3.4)

Eventually, the following conditions are respectively obtained,

ŝ

M2
≲ 16π

|2Cs − Ct|
, (3.5)

ŝ

M2
≲48π

|Ct|
. (3.6)

If the condition, |Ct| ≤ 3|Cs| ≤ 2|Ct|, is satisfied, the unitarity bound given by the first

mode of the partial wave amplitude is stronger than that given by the zeroth mode.

3.1 Unitarity of derivative interactions on one Higgs doublet models

The perturbative unitarity bounds given by the derivative interaction are discussed on

1HDMs.

Firstly, we derive the formula of the unitarity bound and investigate its general prop-

erties. The formulae of the perturbative unitarity are shown before.

Then results are applied to explicit models. We study the unitarity bounds on two mod-

els: the minimal composite Higgs model [8] and the littlest Higgs model with T-parity [24].

The latter model has previously been studied in the Refs. [25, 26]. In the Ref. [26], several

Little Higgs models are also investigated.3 Since the normalization of decay constants can

be changed, the combination f2

cH
is meaningful. Here, we follow the normalization given in

the original papers. Decay constants have physical meanings through masses of additional

massive vector bosons and fermions in each model. The Higgs doublet is embedded in such

a way as to preserve the custodial symmetry in both models.

3 They obtained the unitarity bounds with all NG bosons. However, we focus on the Higgs doublets

because other NG bosons are too heavy to treat as massless particles. Our results are conservative compared

to theirs.
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3.1.1 Formulae and general properties of the unitarity bound

The effective Lagrangian of derivative interactions in 1HDM is4

L ⊃ cH

2f2
∂(H†H)∂(H†H) +

cT

2f2
(H†←→∂ H)(H†←→∂ H), (3.7)

where f is a scale related to new physics and H†←→∂ H := H†(∂H)−(∂H)†H. For the second

operator, we replace the covariant derivatives with partial ones because in this paper we

consider only longitudinal modes of the gauge bosons. Since the latter term violates the

custodial symmetry, our analysis is based on the Lagrangian with cT = 0.5

Since our focus is entirely on the four point scattering processes given by Eq. (3.7),

the VEV of the Higgs boson plays no role in the following calculation. Therefore, we use

H =

(
C+

N

)
, H† =

(
C− N †

)
, (3.8)

where C+(N) is a charged (complex-neutral) scalar field. The charged scalar and imaginary

part of the neutral scalar are respectively eaten by W± and Z bosons. Using the above

notation, the following amplitudes are obtained6:

M(C+C− → C+C−) =M(NN † → NN †)

=
ŝ+ t̂

f2
cH , (3.9)

M(C+C− → NN †) =
ŝ

f2
cH , (3.10)

where ŝ and t̂ are the Mandelstam variables and we consider the energy scale where particles

can be treated as massless, i.e. ŝ+ t̂+ û = 0.

Following the Ref. [4], we construct matrices with partial wave amplitudes. The largest

eigenvalue of these matrices gives us the strongest bound to the perturbative unitarity. We

4 Using the field redefinition H → H +
(
a
f2

)
(H†H)H, where a is chosen as an appropriate value, any

other dimension-six derivative interaction of the Higgs doublet can be expressed with the kinds of operators

given here [5].
5 Since the remaining term, ∂(H†H)∂(H†H), changes the normalization of the Higgs field, in addition

to the SM contributions, the oblique parameters receive O
(
v2

f2

)
corrections. After eliminating tree-level

corrections, models including additional heavy particles probably obtain the oblique corrections at the

same order. They can be canceled with tuning parameters. The derivative interactions receive no sizable

corrections from the tuning. Therefore, we consider only tree-level contributions to the oblique corrections.
6 We neglect the effects of EW symmetry breaking because they are below the leading order around the

unitarity violation scale. For example, the ratio of contributions generated by the SM and the demension-six

derivative interactions in the 1HDMs is

(SM)

(dim6)
=

2m2
hf

2

v2cH ŝ
∼ 1

2cH
f2

ŝ
,

where we have assumed ŝ ≫ m2
h and have used the result given by Eq. (3.11). As we will see later, the

typical unitarity violation scale is a few times larger than the decay constant. Therefore, the above effects

are small enough to be neglected.
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have found that the zeroth mode gives the strongest bound in 1HDMs, so we focus on this

case. With the formulae in the Subsec. 2.3.1, the strongest bound is given by the largest

eigenvalue of the following matrix:(
M0(C

+C− → C+C−) M0(C
+C− → NN †)

M0(NN
† → C+C−) M0(NN

† → NN †)

)
=

ŝ

16πf2

(
cH

2 cH

cH cH

2

)
. (3.11)

The perturbative unitarity condition is therefore

ŝ

f2
≲ 16π

3cH
. (3.12)

Assuming that derivative interactions are purely given by the kinetic term of the nonlinear

sigma model, the conservative cut-off scale is expressed in terms of the decay constant, i.e.

Λ ∼ 4πf.7 Using the relation, the unitarity bound is related to the cut-off scale as

ŝ

Λ2
∼ 1

3πcH
. (3.13)

Therefore, if the relation

cH ≲ 1

3π
(3.14)

is satisfied, models reach the cut-off scale before accessing the unitarity violation scale.

Then, the effective Lagrangian, Eq. (3.7), is available up to the cut-off scale. On the

other hand, if the coefficient cH is much larger than unity, the unitarity violation scale

is comparable to the scale of the new physics, f , so that the description of the effective

Lagrangian is invalid even in the energy region around f . In the case cH is O(1), the

unitarity violation scale lies between the new physics scale and the cut-off. Most of examples

shown later are involved in this case. Around the unitarity bound, we have to include

resonance effects; see, for example, the Ref. [28]. It is therefore necessary to clarify the

valid energy scale in the description for each model.

We apply the result to cross sections of the scattering of the Higgs boson and longitu-

dinal modes of massive gauge bosons, so called vector boson scattering (VBS) processes,

with the equivalence theorem. Since these energy scatterings are dominated by the coef-

ficient, cH , with the custodial symmetry, all of the cross sections are proportional to each

other. Here we focus only on the process W+
LW

−
L → hh, and relations with the others are

shown in the Tab. 1. Considering this sort of process, we must remember the importance

of the central region8 which is pointed out in the Ref. [29], so that we also show the ratios

between the cross section of the Higgs pair production and those of the other processes

with the central region cut. The cross section of W+
LW

−
L → hh is

σ(W+
LW

−
L → hh) =

ŝ

32π

(
cH

f2

)2

≲ 8π

9ŝ
≃ 1.1× 106

ŝ [TeV]2
[fb]. (3.15)

For this process, Fig. 7 shows the region where perturbative unitarity is violated.
7 If UV completions are specified, the generalized dimensional analysis may introduce lower cut-off

scales [27].
8 This region is defined as cos θ ∈

[
− 1

2
, 1
2

]
in detectors, where θ is an angle from the beam axis.
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Process Full Central

W+
LW

−
L → hh 1 1/2

W+
LW

−
L → W+

LW
−
L 2/3 13/48

W+
LW

−
L → ZLZL 1 1/2

ZLZL → hh 1 1/2

ZLZL → W+
LW

−
L 2 1

W+
L ZL → W+

L ZL 2/3 13/48

W+
LW

+
L → W+

LW
+
L 1 1/2

Table 1. Cross-sections of VBS processes in the units of σ(W+
L W

−
L → hh). In the Full/Central

column, the cross sections of VBS subprocesses with/without the central region cut are shown.

102

103

104

105

106

500 1000 1500 2000 2500 3000

σ
(W

L
W

L
→

h
h
)
[f
b
]

√
ŝ [GeV]

f/
√
cH = 500 [GeV]

f/
√
cH = 750 [GeV]

f/
√
cH = 1000 [GeV]

Unitarity violation region

Figure 7. The upper bound of the cross section forW+
L W

−
L → hh with the perturbative unitarity

condition. The horizontal axis is the collision energy of this VBS subprocess. In the upper shaded

region, the unitarity is broken down. The black, dark gray and light gray lines are the cross sections

where f√
cH

= 500, 750, and 1000 [GeV], respectively. For the other processes, the bounds can be

obtained with a shift of the vertical axis by the factors given in the Tab. 1.

Assuming that cross sections reach the above bound at
√
ŝ = 3 [TeV], we can obtain

the relation:

f√
cH
∼
√

3ŝ

16π
∼ 733 [GeV]. (3.16)

If cH ∼ 1, the effect of the derivative interaction in the process is comparable to the SM

background of about
√
ŝ = 2 [TeV], where the cross section is 3 × 104 [fb] without the

central region cut; see the Ref. [29]. Note that the value of f is typically related to new

particle masses. For example, in the little Higgs scenario [30], the top partner mass is given

by O(f). From the viewpoint of the fine tuning, f is required to be below about 1 [TeV].
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3.1.2 The minimal composite Higgs model

This model is described by the SO(5)/SO(4) nonlinear sigma model including four NG

fields [8]. They are identified as the Higgs doublet.

The Lagrangian is

L =
f2

2
(∂Σ)† (∂Σ) , (3.17)

with

Σ =

(
sin[h/f ] h⃗/h

cos[h/f ]

)
, (3.18)

where h⃗ is the real scalar multiplet of four NG bosons and h is its norm. Expanding these

trigonometric functions, we obtain

cH = 1. (3.19)

Using the Eq. (3.12), the relation between the decay constant and the energy scale of

the unitarity violation is

ŝ

f2
∼ 16π

3
. (3.20)

Assuming that perturbative unitarity is violated at 3 [TeV], the decay constant is about 750

[GeV]. On the other hand, if the decay constant is chosen as 500 [GeV], the perturbativity

is preserved up to about 2 [TeV], where the cross section of W+
LW

−
L → hh is 7× 105 [fb].

In this case, the cross section of the Higgs boson pair production is one order of magnitude

larger than that given by the SM. However, it is challenging to observe this process because

the main decay mode is hh→ 4b, which is overwhelmed by the QCD background.

3.1.3 The littlest Higgs model with T-parity

Derivative interactions on the littlest Higgs model with T-parity [24] are shown below.

Scalar fields are described by the SU(5)/SO(5) nonlinear sigma model which includes 14

NG bosons.

The kinetic term of this model is

L =
f2

8
tr
[(
∂e−2iΠ/f

)(
∂e2iΠ/f

)]
, (3.21)

where Π is the NG field. The Higgs doublet is assigned in the NG field as

Π =
1√
2

 H

H† HT

H∗

 . (3.22)
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We omitted the other NG bosons since they don’t contribute to the current analysis.

Extracting the derivative interaction from the kinetic term, we obtain

cH =
1

2
. (3.23)

This result is consistent with previous works [25, 26].

If we suppose that f = 750 [GeV], the perturbative unitarity is preserved up to about

4 [TeV]. Hence this model description is valid in higher energy scales while the signals of

the derivative interaction are smaller than the previous model. For f = 750 [GeV], the

cross section of W+
LW

−
L → hh in this model almost corresponds to the line where f√

cH
is

1000 [GeV] in the Fig. 7.

3.2 Unitarity of derivative interactions on two Higgs doublet models

In this section we extend the previous discussion to dimension-six derivative interactions

including two Higgs doublets.

The modification is straightforward, and the prescription is also simple. However,

the formulae become too complex because of the many DOF. Then we cannot obtain the

formula of the strongest bound like the Eq. (3.12) with the largest eigenvalue of a matrix

that consists of partial wave amplitudes. Since the matrix can be diagonalized in individual

models, three models are investigated as examples.

We study the consequences of the above result with several models including two Higgs

doublets. The following three models are studied: the bestest little Higgs model [31];

the UV friendly T-parity little Higgs model [32]; and an inert doublet model. The first

and second ones are composite Higgs models and the last one is a toy model including

elementary Higgs doublets.

In this section, we consider processes whose initial states are electromagnetically neu-

tral. Matrices giving the unitarity bounds for singly or doubly charged initial states are

also shown in the App. B.

3.2.1 Formulae and general properties of the unitarity bound

The analyses in this section are based on the following effective Lagrangian:

L ⊃c
H
1111

f2
OH1111 +

cH1112
f2

(OH1112 +OH1121)

+
cH1122
f2

OH1122 +
cH1221
f2

OH1221 +
cH1212
f2

(OH1212 +OH2121)

+
cH2221
f2

(OH2221 +OH2212) +
cH2222
f2

OH2222

+
cT1122
f2

OT1122 +
cT1221
f2

OT1221 +
cT1212
f2

(OT1212 +OT2121), (3.24)
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where

OHijkl =
1

1 + δikδjl
∂(H†

iHj)∂(H
†
kHl), (3.25)

OTijkl =
1

1 + δikδjl
(H†

i

←→
∂ Hj)(H

†
k

←→
∂ Hl), (3.26)

and

Hi =

(
C+
i

Ni

)
, H†

i =
(
C−
i N †

i

)
. (3.27)

In the case where we study the custodial symmetric models, the above coefficients are real

and follow the relation derived in the App. C:

3cT1122 + cH1221 − cH1212 =0, (3.28)

cT1122 + cT1221 + cT1212 =0. (3.29)

The 2HDMs require mixing angles to get mass eigenstates of scalar fields. In this paper,

we use the equivalence theorem and focus on only derivative interactions, that is, masses

of scalar fields are neglected. In this case, the perturbative unitarity bound is independent

of mixing angles. This is also true for models including N Higgs doublets.

The unitarity bound is expressed as

ŝ

f2
≲ 8π

|Cmax|
, (3.30)

where Cmax is the largest eigenvalue of the matrices given in App. B.9

As we will see later, the largest eigenvalue |Cmax| can be as large as about 10. In

this case, the unitarity bound becomes quite strong and leads us to an interesting remark.

Consider, for instance, the pair production of a heavy particle whose mass is O(f) in VBS

processes; the energy scale where the pair is produced could be as large as the unitarity

violation scale. This means that we couldn’t discuss this kind of process by means of these

low-energy descriptions.

3.2.2 The bestest little Higgs model

The bestest little Higgs model [31] is a little Higgs model which includes two Higgs dou-

blets. We obtain 15 NG fields that parametrize the SO(6) × SO(6)/SO(6) coset. The

normalization of the kinetic term is the same as the Eq. (3.21), and the NG field is

Π =
i√
2

 h1 h2
−hT1
−hT2

 , (3.31)

9 The Eq. (3.30) and the viewpoint explained below are also stated in the Ref. [26].
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where h1,2 are real scalar multiplets considered two Higgs doublets and the other NG

bosons are eliminated. In this model, Higgs doublets interact with heavy gauge bosons and

a singlet scalar. The masses of the heavy gauge bosons depend on the other decay constant

that is larger than f in order to avoid the constraints from the EW precision measurement.

Thus the effects coming from the heavy gauge bosons are tiny, and we neglect them. The

interaction with a singlet is required to obtain a collective quartic coupling. For simplicity,

we introduce the following terms to see the effect:

Lσ ⊃ −
m2
σ

2
σ2 + λfσ(H†

1H2 +H.c.), (3.32)

where σ is a neutral singlet scalar.10 Including this contribution, the coefficients of the

derivative interactions are

cH1111 =
1

2
, cH1112 =0, (3.33)

cH1122 =0, cH1221 =
1

4
+ cσ, cH1212 =

1

4
+ cσ, (3.34)

cH2221 =0, cH2222 =
1

2
, (3.35)

cT1122 =0, cT1221 =
1

4
, cT1212 =−

1

4
, (3.36)

where

cσ =
λ2f4

m4
σ

. (3.37)

The unitarity bound depends on the value of cσ because the largest eigenvalue is a function

of it. For 0 ≤ cσ < 1
8 , the bound is

ŝ

f2
≲ 16π

2− cσ
. (3.38)

For cσ = 0, it is bounded as

ŝ

f2
≲ 8π, (3.39)

and it becomes weak as cσ increases. For cσ = 1
8 , the bound is the weakest:

ŝ

f2
≲ 8

16π

15
. (3.40)

In the region, 1
8 < cσ, the bound is

ŝ

f2
≲ 16π

1 + 7cσ
, (3.41)

where the right-hand side decreases as cσ increases and the bound becomes the same as

the case of cσ = 0 at cσ = 1
7 .

10 In the original paper [31], mσ =
√
λ65 + λ56 f and λ = λ65−λ56√

2
.

– 31 –



The unitarity bounds for the cross sections of W+
LW

−
L → hh and W+

LW
+
L → W+

LW
+
L

are displayed below. We define the mass eigenstates, h and W±
L , as follows:

h√
2
=NR

1 cosα+NR
2 sinα, (3.42)

W±
L =C±

1 cosβ + C±
2 sinβ, (3.43)

where NR
i is the real part of Ni and α and β are mixing angles. Unitarity bounds for these

processes are

σ(W+
LW

−
L → hh) =

ŝ

32πf4
Bh(α, β)

2 ≲ 2π

ŝ

Bh(α, β)
2

Cmax
2 , (3.44)

σ(W+
LW

+
L →W+

LW
+
L ) =

ŝ

32πf4
Bw(β)

2 ≲ 2π

ŝ

Bw(β)
2

Cmax
2 , (3.45)

where

Bh(α, β) =
1

4

(
1 + (1 + 2cσ(1− c4β))c2(α−β) + 2cσs4βs2(α−β)

)
, (3.46)

Bw(β) =
1

2
(1 + cσ(1− c4β)) . (3.47)

Here the parameters cx and sx are cosx and sinx, and Cmax = 2−cσ
2 for 0 ≤ cσ < 1

8 and

Cmax = 1+7cσ

2 for 1
8 ≤ cσ. If α = β is satisfied, the so-called decoupling limit, we get the

relation: Bh(β, β) = Bw(β).

The perturbative unitarity bounds of W+
LW

−
L → hh are shown in the Fig. 8. In order

to see the effects of the new parameters, we fix the decay constant to be 750 [GeV]. The

shaded regions in these figures are changed in response to the mixing angles because the

cross section depends on the angles. However, the unitarity bound itself depends only on

the coefficient, cσ. Hence we can see that the energy scales where each cross section line

intersects the unitarity violation regions are independent of the angles, e.g.
√
ŝ ∼ 1.9 [TeV]

for cσ = 1. For β = 0 and α− β = π
6 , the cross sections are independent of the value of cσ;

thus, we have only one line but still the intersecting points are the same.

3.2.3 The UV friendly little Higgs model

The UV friendly T-parity little Higgs model [32] also includes two Higgs doublets as a part

of the 14 NG bosons given by the SU(6)/Sp(6) nonlinear sigma model. The normalization

of the kinetic term is also the same as the Eq. (3.21). This model possesses Z2 symmetry,

so-called T-parity, and one of the Higgs doublets is T-odd. This doublet has no VEV. Since

we study only Higgs doublets, the NG field Π can be considered as follows:11

Π =
1

2


−ϵ(H1 −H2) H1 +H2

ϵ(H†
1 −H

†
2) −HT

1 −HT
2

H†
1 +H†

2 ϵ(HT
1 −HT

2 )

−H∗
1 −H∗

2 −ϵ(H∗
1 −H∗

2 )

 , (3.48)

– 32 –



102

103

104

105

106

500 1000 1500 2000 2500 3000

σ
(W

L
W

L
→

h
h
)
[f
b
]

√
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Figure 8. The perturbative unitarity bounds of W+
L W

−
L → hh for various cσ and mixing angles.

The decay constant is fixed to be 750 [GeV]. The mixing angles are set to be (β, α − β) =
(
π
6 , 0
)

(upper left),
(
0, π6

)
(upper right),

(
π
4 ,

π
6

)
(lower left) and

(
π
6 ,

π
4

)
(lower right). The light gray, dark

gray and black lines are cross sections for cσ = 1, 0, and 1
8 , respectively. The unitarity violation

regions depend on the value of cσ, and their brightness corresponds to each line.

where ϵ is the totally antisymmetric tensor, ϵ12 = 1. Since contributions of heavy new

particles can be ignored in this model, derivative interactions are generated only by the

11 Assignment and normalization of NG bosons given by the original paper are different from the ordinary

prescription of the nonlinear sigma model. Since we study only the part of two Higgs doublets, normalization

of these fields are changed in order to get the canonical kinetic term.
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kinetic term. The coefficients of the derivative interactions are as follows:

cH1111 =4, cH1112 =0, (3.49)

cH1122 =1, cH1221 =0, cH1212 =− 3, (3.50)

cH2221 =0, cH2222 =4, (3.51)

cT1122 =1, cT1221 =0, cT1212 =1. (3.52)

These coefficients apparently violate the custodial invariant conditions, the Eqs. (3.28)

and (3.29). In this model only one of the Higgs doublets has the VEV, so that tree-level

contributions to ρ parameter do not appear. With these coefficients, the strongest bound

is

ŝ

f2
≲ π. (3.53)

Assuming that perturbative unitarity is violated at 3 [TeV], the decay constant, f , is

determined as 1.7 [TeV]. This value looks large from the viewpoint of fine tuning as we

have already seen. On the other hand, if the decay constant is about 1 [TeV], the unitarity

is broken below about 1.7 [TeV].

The unitarity bounds of W+
LW

−
L → hh and W+

LW
+
L →W+

LW
+
L are

σ(W+
LW

−
L → hh) =

ŝ

2πf4
≲ π

2ŝ
, (3.54)

σ(W+
LW

+
L →W+

LW
+
L ) =

ŝ

2πf4
≲ π

2ŝ
. (3.55)

Note that the cross sections have no mixing angle dependence because only one of the Higgs

doublet gets a VEV. These bounds to the cross sections are shown in the Fig. 9. They

correspond to the case cσ = 15
7 for the bestest little Higgs model. The unitarity bound of

this model is severe because the largest eigenvalue is much larger than the previous models.

3.2.4 Inert doublet models with odd scalars

We investigate the following Lagrangian consisting of elementary scalar and vector fields:

L ⊃− m2
s0

2
ϕ20 + λ0fϕ0

(
H†

1H2 +H.c.
)

−
m2
sL

2
ϕaLϕ

a
L + λLfϕ

a
L

(
H†

1σ
aH2 +H.c.

)
−m2

sLϕ
a†
T ϕ

a
T +
√
2λLf

(
ϕa†T (HT

1 σ
2σaH2) + H.c.

)
+
m2
v0

2
V0 · V0 + g0V0 ·

(
iH†

1

←→
∂ H2 +H.c.

)
+m2

v0V
†
S · VS +

√
2g0

(
iV †
S ·H

T
1 σ

2←→∂ H2 +H.c.
)

+
m2
vL

2
V a
L · V a

L + gLV
a
L ·
(
iH†

1σ
a←→∂ H2 +H.c.

)
. (3.56)
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Figure 9. The perturbative unitarity bounds of W+
L W

−
L → hh in the UV friendly T-parity little

Higgs model. The horizontal axis is the collision energy of this VBS subprocess. In the upper

shaded region, unitarity is broken down. The black, dark gray and light gray lines are the cross

sections corresponding to f = 500, 750, and 1000 [GeV], respectively.

Scalar fields ϕ0, ϕ
a
L, and ϕ

a
T , are respectively 10, 30, and 31 representations of SU(2)L ×

U(1)Y , and vector fields V0, VS , and V
a
L , are, respectively, 10, 11, and 30 representations.

We suppose that these new particles and H2 are odd under an additional Z2 symmetry, and

H1 and the other SM particles are even under the discrete symmetry. We consider the case

that only one of the Higgs doublets has a VEV, such as in the model in the Subsec. 3.2.3.

These choices of couplings and masses for ϕaL and ϕaT , and V0 and VS are required to respect

SO(4) symmetry.12 This set up suppresses contributions to the oblique corrections.

After integrating out heavy particles, we obtain the following coefficients of the deriva-

tive interactions:

cH1111 =0, cH1112 =0, (3.57)

cH1122 =− 2sL + 3v0 + 3vL, cH1221 =s0 − 2sL + 3v0, cH1212 =s0 − 2sL + 3vL, (3.58)

cH2221 =0, cH2222 =0, (3.59)

cT1122 =− v0 + vL, cT1221 =− sL − vL, cT1212 =sL + v0, (3.60)

12 This structure should be broken by the renormalization group running of the couplings even if the UV

completion possesses the structure. We assume that this SO(4) symmetry is still good symmetry so as to

suppress large corrections to the ρ parameter in the scale where the Lagrangian (3.56) is available.
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where

s0 =

(
λ0f

2

m2
s0

)2

, sL =

(
λLf

2

m2
sL

)2

, (3.61)

v0 =

(
g0f

mv0

)2

, vL =

(
gLf

mvL

)2

. (3.62)

Even if additional particles exist, their contributions are included in these four coefficients.

We cannot discriminate these multiple contributions from a large contribution of a par-

ticle with a large coupling. Using these coefficients, the eigenvalues of the Eq. (B.1) are

fortunately obtained as the following simple forms:

cI1 =− s0 − 7sL + 3v0 + 3vL
2

, (3.63)

cI2 =
7s0 − 9sL + 9v0 + 9vL

2
, (3.64)

cI3 =
s0 − 3sL + 3v0 − 9vL

2
, (3.65)

cI4 =
s0 − 3sL − 9v0 + 3vL

2
, (3.66)

cI5± =± s0 + sL + 3v0 + 3vL
2

, (3.67)

cI6± =± s0 + 9sL − 9v0 − 9vL
2

. (3.68)

The strongest unitarity condition is given by the Eq. (3.30) with the largest eigenvalue in

the above.

Derivative interactions generated by integrating out T-odd heavy particles must include

two H1 and two H2, as in the Eqs. (3.58) and (3.60). Furthermore there are no mixing

angles in the Higgs doublets because only one of the Higgs doublets has a VEV. They are

the reason why cross sections of W+
LW

−
L → hh and W+

LW
−
L →W+

LW
−
L vanish.

In this model we have four coefficients the Eqs. (3.61) and (3.62) to parametrize the

dimension-six differential operators. If we suppose that s0 = sL = v0 = vL = 1, the

eigenvalue cI2 becomes the largest: cI2 = 8. This value gives us a perturbative unitarity

condition which is the same as the Eq. (3.53).

The unitarity bound, the Eq. (3.30), can be interpreted as the perturbativity condition

of couplings. For example, if s0 = sL = v0 = 0 and vL ̸= 0, we get |Cmax| = 9vL
2 . Then the

unitarity bound is

√
ŝ ∼ 4

√
π

3

mvL

gL
. (3.69)

In order to preserve unitarity, the unitarity violation scale should be larger than the mass,

mvL. As a result, we get the following condition:

gL ≲ 4
√
π

3
. (3.70)

If the model includes only one 30 vector, this requirement is stronger than the naive

perturbativity condition gL < 4π. On the other hand, if it includes several 30 vectors, the
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unitarity bound also limits how many there are.

3.3 Conclusions

We have studied perturbative unitarity for dimension-six derivative interactions of the

Higgs doublets. They are generated by kinetic terms in composite Higgs models, or by

integrating out heavy particles that interact with the Higgs doublets. The latter case

means that derivative interactions appear even in models consisting of elementary Higgs

doublets.

We first studied the unitarity bounds in models including only one Higgs doublet. The

strongest bounds are expressed by the largest eigenvalue of the matrix given by partial wave

amplitudes of VBS processes. We focused on the high-energy region such that derivative

interactions could dominate the contributions to the scattering among longitudinal vector

bosons. Assuming that the given derivative interactions respect the EW constraints, only

a combination of parameters cH

f2
appears in the analysis. Therefore, the unitarity condition

is expressed by the parameter as Eq. (3.12). We have applied it to the cross section of

WLWL → hh.

We have calculated the bounds on explicit models: the minimal composite Higgs model,

the littlest Higgs model. Their structures of global symmetry are significantly different

from each other; SO(5)/SO(4) and SU(5)/SO(5). However, the given bounds are similar;

cH = 1 and 1
2 . The decay constants f are related to the masses of the top like fermions

in composite Higgs models. It is therefore supposed that f√
cH

is larger than about 500

GeV; see e.g. the Ref. [33], where the perturbative unitarity is violated above the region√
ŝ ≳ 2 TeV. Even in this case, it is difficult to obtain cross sections large enough to

distinguish new physics contributions from the SM ones.

Secondly, similar analyses have been performed in 2HDMs. A simple formula for the

unitarity bound could not be obtained in terms of parameters included in the effective

Lagrangian (3.24) since the matrix of partial wave amplitudes is too complex to be diago-

nalized. Hence we have investigated the unitarity bound with explicit models: the bestest

little Higgs model; the UV friendly T-parity little Higgs model; and the inert doublet model

with heavy Z2 odd particles. The first and the second ones are literally a kind of little

Higgs model and the third one is a toy model including elementary Higgs doublets.

In the first one, derivative interactions are generated not only by the kinetic term but

also by the integrating out of a heavy scalar field. The constraints of the former to the

unitarity are similar to those given by the 1HDMs discussed in the Sec. 3.1. Including the

latter one, the largest eigenvalue depends on the scalar contribution. The unitarity bound

can be stronger than the case not including it.

In the second model, the unitarity condition is much more severe compared to the

other models mentioned in this paper. This is because the coefficients of the derivative

interactions are large in this model. Therefore the unitarity is violated at a low scale

compared with the other models. In this kind of model, large coefficients can produce

large cross sections which are large enough to exceed the SM background. On the other

hand, assuming that the masses of additional particles are near the decay constant, they are
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also near the scale of the unitarity violation. Therefore, contributions of vector resonances

probably need to be considered when people investigate, for instance, pair productions of

these additional particles with vector boson collisions.

In the last model that includes an elementary Higgs doublet, VBS processes of the

SM particles are suppressed as we have shown. In this kind of model, the masses of heavy

particles should be smaller than the unitarity violation scale. This condition means that

couplings between Higgs doublets and heavy particles are much smaller than the strong

coupling, 4π, or the number of these particles is limited.

We have clarified the importance of studying the unitarity bound when Higgs derivative

interactions are investigated because the bound can be significantly lower than the naive

cut-off scale. We could observe the energy-growing behavior of VBS processes at the future

collider experiments [29, 34].

4 Higgs couplings beyond the Standard Model

In this chapter we study the Higgs couplings for some models. After the discovery of the

Higgs boson, the precise measurement of the Higgs couplings is growing in importance and

necessity. If we observe the deviation from the SM, it is a solid evidence of the physics

beyond the SM. Such an indirect search of new physics is complementary to the direct

search, and this kind of search is quite powerful due to the high sensitivity of the Higgs

coupling measurements at the future collider experiments.

Many models beyond the SM predict non-SM Higgs couplings in various ways. In order

to discriminate these models, the measurement of a specific coupling is not enough because

a new physics theory can possibly explain the coupling by choosing model parameters;

hence we need to study correlations among the Higgs couplings and compare them with

those of other models. In this thesis we study the three models: the minimal composite

Higgs model (MCHM); the Randall-Sundrum (RS) model; the extra singlet Higgs model.

The MCHM is the model with the minimal realization of the composite Higgs which is

based on a strongly interacting field theory. The RS model is the model with an extra

dimension which is considered to be related to a strongly coupled conformal theory through

the duality. The extra singlet Higgs model is the minimal extension of the Higgs sector in

the SM.

In particular, we focus on the MCHM because the Higgs couplings of this model has

not studied comprehensively. From the experimental perspective we examine the following

(effective) couplings: hV V , hbb, hgg, hγγ and hZγ. We first calculate the decay widths

of the Higgs boson. Then we define the deviation of the Higgs couplings using them and

show the differences among the models. We clarify how we can discriminate the models at

the future collider experiments using the correlations of the coupling deviations.

4.1 The minimal composite Higgs model

The MCHM is the model based on the SO(5)/SO(4) symmetry breaking which was origi-

nally introduced in the context of 5D theories [8]. This symmetry breaking gives four NG
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fields which form a fundamental representation of SO(4) or equivalently a bi-doublet of

SU(2)L × SU(2)R; these fields are identified as the Higgs fields. This symmetry breaking

pattern is the minimal realization including the custodial symmetry. In order to reproduce

the fermion quantum numbers an additional local symmetry U(1)X is introduced, leading

to the symmetry breaking pattern SO(5) × U(1)X/SO(4) × U(1)X . The SM EW gauge

symmetry SU(2)L×U(1)Y is embedded into SO(4)×U(1)X and the hypercharge is defined

by Y = T 3
R +X [8, 35].

The SM fermion is realized by mixing the elementary fermion whose quantum number

is the same as the SM one with the composite fermions, so-called the partial compositeness,

and there are various possibilities to introduce the composite fermions. The most simplest

choice is to introduce a spinorial representation of SO(5). However, this choice leads to

the large correction to the ZbLb̄L coupling at tree level; the experimental constraint leaves

no allowed parameter space [36]. The ZbLb̄L constraint can be relaxed if the composite

fermions are fundamental or antisymmetric representations of SO(5); in this case a sub-

group of the custodial symmetry O(3) ⊂ O(4) protects the ZbLb̄L coupling [37]. In this

thesis we focus on the case where a single vector-like fermion whose representation is 5 of

SO(5), which is called MCHM5.

4.1.1 The Lagrangian

We decompose the Lagrangian of the MCHM5 into three parts:

L ⊃ LHkin + LFkin + LY ukawa+Mass. (4.1)

Here we don’t care about the Higgs potential and gauge kinetic terms which are assumed

to be unchanged from those of the SM.

First we construct the Higgs kinetic term. Before proceeding, we define the basis for

the algebra of SO(5) that is used throughout in this thesis. We use the following explicit

expressions of the SO(4) ≃ SU(2)L × SU(2)R and SO(5)/SO(4) generators:

T aL,ij = −
i

2

(
1

2
ϵabc(δbi δ

c
j − δbjδci ) + (δai δ

4
j − δaj δ4i )

)
, (4.2)

T aR,ij = −
i

2

(
1

2
ϵabc(δbi δ

c
j − δbjδci )− (δai δ

4
j − δaj δ4i )

)
, (4.3)

T âL,ij = −
i√
2
(δâi δ

5
j − δâj δ5i ), (4.4)

where a = 1, 2, 3, â = 1, . . . , 4 and i, j = 1, . . . , 5. Now we introduce the following notations

and parametrization of the NG fields:

Σ = Σ0e
Π/f , Π = −i

√
2T âhâ, Σ0 = (0, 0, 0, 0, 1), (4.5)

where f is the decay constant and hâ are the four real NG fields that are identified as the

Higgs fields. Using the explicit expressions we obtain

Σ =
sin(h̃/f)

h̃
(h1, h2, h3, h4, h̃ cot(h̃/f)), (4.6)
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where we define h̃ =
√∑

â h
2
â. The kinetic term is then given by

LHkin =
f2

2
(DµΣ)(D

µΣ)T , DµΣ = ∂µΣ+ igW a
µΣT

a
L + ig′BµΣT

3
R. (4.7)

It is possible to perform an SO(4) rotation to align the Higgs VEV to the h3 direction.

We denote h3 = H = ⟨H⟩+ h, and in the unitary gauge we get

Σ = Σ0


1

1

cos(H/f) − sin(H/f)

1

sin(H/f) cos(H/f)

 (4.8)

= Σ0Ω (4.9)

= (0, 0, sin(H/f), 0, cos(H/f)). (4.10)

The Higgs kinetic term in terms of H is therefore

LHkin =
1

2
∂µH∂

µH +
g2f2

4
sin

(
H

f

)(
W+
µ W

−µ +
1

2 cos2 θW
ZµZ

µ

)
, (4.11)

where the VEV is given by f2 sin2(⟨H⟩/f) = v2 = (246 [GeV])2.

Next we build the fermion kinetic term. In order to describe the SM fermion using the

partial compositeness, we introduce vector-like fermions which have quantum numbers such

that they can mix with the fundamental fermions qL = (tL, bL)
T and tR. The composite

fermion transforming as 52/3 under SO(5)× U(1)X is written as

Ψ =
1√
2


B −X
i(B +X)

T + U

i(T − U)√
2T̃

 . (4.12)

Under SU(2)L × SU(2)R, a 5 of SO(5) decomposes into 5 ∼ (2,2)⊕ (1,1). The quantum

numbers of the composite fields are summarized in the Tab. 2.

The SU(2)L doublet Q = (T,B)T have the same quantum number as qL, whereas T̃ has

the same one as tR. The Lagrangian of the fermion kinetic term is

LFkin =iq̄L/DqL + it̄R/DtR + ib̄R/DbR + iΨ̄L/DΨL + iΨ̄R/DΨR, (4.13)

where the covariant derivative acting on each fermion is given by

DµqL =

[
∂µ − ig

σa

2
W a
µ − ig′

1

6
Bµ

]
qL, (4.14)

DµtR =

[
∂µ − ig′

2

3
Bµ

]
tR, (4.15)

DµbR =

[
∂µ − ig′

(
−1
3

)
Bµ

]
bR, (4.16)

DµΨL(R) =
[
∂µ − igW a

µT
a
L − ig′Bµ(T 3

R +X)
]
ΨL(R), (4.17)
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field T 3
L T 3

R X Y = T 3
R +X QEM = T 3

L + Y

X 1/2 1/2 2/3 7/6 5/3

U −1/2 1/2 2/3 7/6 2/3

T 1/2 −1/2 2/3 1/6 2/3

T̃ 0 0 2/3 2/3 2/3

B −1/2 −1/2 2/3 1/6 −1/3

Table 2. The quantum numbers of the composite fermions in Ψ. Note that ((X,U)T , (T,B)T )

forms a bi-doublet (2,2) under SU(2)L × SU(2)R.

where σa are the Pauli matrices, and U(1)X generator is introduced as X = 2
3I5×5.

Finally we construct the yukawa and mass terms:

LY ukawa+Mass = −Y f(Ψ̄LΣ
T )(ΣΨR)−MΨ̄LΨR −∆Lq̄LQR −∆R

¯̃TLtR + (h.c.). (4.18)

The first term is (proto) yukawa interaction which produces the interaction between the

Higgs boson and the composite fermions. The second term is the vector mass of the

composite fermions. The third and fourth term is the mixing of the composite sector and

the fundamental sector, which is the key factor of the partial compositeness. In this set

up, the lightest bottom quark is still massless; hence we add the small breaking term of

the partial compositeness:

−Lb = ybq̄LHbR + (h.c.). (4.19)

This term gives the mass term to the fundamental b quark. We expect the coefficient yb
is much smaller than unity. Including this breaking term into the theory we get the mass

terms in the vacuum of the Higgs field as

−Lm = ψ̄tLMtψtR + ψ̄bLMbψbR + (h.c.), (4.20)

where we introduce the following notations:

ψt = (t, T, U, T̃ )T , (4.21)

ψb = (b, B)T , (4.22)

Mt =


0 ∆L 0 0

0 M + Y fs2

2
Y fs2

2
Y fsc√

2

0 Y fs2

2 M + Y fs2

2
Y fsc√

2

∆R
Y fsc√

2

Y fsc√
2

M + Y fc2

 , (4.23)

Mb =

(
yb⟨H⟩√

2
∆L

0 M

)
, (4.24)

with the definition s = sin(⟨H⟩/f) = v/f and c = cos(⟨H⟩/f). Note that in the v → 0

limit (no EW symmetry breaking) the lightest top and bottom quarks become massless. For
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v = 0, we can analytically diagonalize these mass matrices using the following orthogonal

transformations:(
qL
QL

)
=

(
cosϕL − sinϕL
sinϕL cosϕL

)(
qL,m
QL,m

)
, tanϕL =

∆L

M
, (4.25)(

tR
T̃R

)
=

(
cosϕR − sinϕR
sinϕR cosϕR

)(
tR,m
T̃R,m

)
, tanϕR =

∆R

M + Y f
, (4.26)

where the subscript m denotes the mass eigenstate. The mass eigenvalues of the composite

states are

MQ =
M

cosϕL
, (4.27)

MX =M, (4.28)

MT̃ =
M + Y f

cosϕR
. (4.29)

When turning on the Higgs VEV, we need to diagonalize the mass matrices by perform-

ing the SVD numerically. Before going to the mass eigenbasis we introduce the interaction

matrix as follows:

L ⊃ ψ̄tγ
µ

(
2|e|
3

)
I4×4ψtAµ + ψ̄bγ

µ

(
−|e|
3

)
I2×2ψbAµ + ψ̄Xγ

µ

(
5|e|
3

)
ψXAµ

+ ψ̄tγ
µ(CtLPL + CtRPR)ψbW+

µ + ψ̄Xγ
µ(CXL PL + CXR PR)ψtW+

µ + (h.c.)

+ ψ̄aγ
µ(N a

LPL +N a
RPR)ψaZµ − ψ̄a(YaLPL + YaRPR)ψah

+ ghWWhW
+
µ W

−µ + ghZZh
ZµZ

µ

2
, (4.30)

where a = t, b,X. For the latter convenience we rewrite the Lagrangian of the fermion-

massive gauge bosons interaction terms as follows:

LW =
g√
2
ψ̄tγ

µ(C̃tLPL + C̃tRPR)ψbW+
µ +

g√
2
ψ̄Xγ

µ(C̃XL PL + C̃XR PR)ψtW+
µ + (h.c.), (4.31)

LZ =
g

2 cos θW
ψ̄aγ

µ(Ñ a
LPL + Ñ a

RPR − 2 sin2 θWQa)ψaZµ. (4.32)

In this expression the Qa reads the product of the corresponding electric charge and the
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unit matrix. The interaction matrices are defined as follows:

CtL =


g√
2

0

0 g√
2

0 0

0 0

 , CtR =


0 0

0 g√
2

0 0

0 0

 , (4.33)

CXL,R =
(
0 0 g√

2
0
)
, (4.34)

N t
L =


g

2cW
− 2gs2W

3cW
0 0 0

0 g
2cW
− 2gs2W

3cW
0 0

0 0 − g
2cW
− 2gs2W

3cW
0

0 0 0 −2gs2W
3cW

 , (4.35)

N t
R =


−2gs2W

3cW
0 0 0

0 g
2cW
− 2gs2W

3cW
0 0

0 0 − g
2cW
− 2gs2W

3cW
0

0 0 0 −2gs2W
3cW

 , (4.36)

N b
L =

(
− g

2cW
+

gs2W
3cW

0

0 − g
2cW

+
gs2W
3cW

)
, (4.37)

N b
R =

(
gs2W
3cW

0

0 − g
2cW

+
gs2W
3cW

)
, (4.38)

NX
L,R =

g

2cW
−

5gs2W
3cW

(4.39)

YtL,R =


0 0 0 0

0 sc sc 1−2s2√
2

0 sc sc 1−2s2√
2

0 1−2s2√
2

1−2s2√
2
−2sc

 , (4.40)

YbL,R =

(
yb
2 0

0 0

)
, (4.41)

YXL,R = 0, (4.42)

ghWW =
2m2

W

v

√
1− v2

f2
, (4.43)

ghZZ =
2m2

Z

v

√
1− v2

f2
, (4.44)

where we introduce the notation sW (cW ) as the shorthand for sin θW (cos θW ). In order to
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go to the mass eigenbasis, we perform the SVD:

ψtL(R) = V t
L(R)ψtL(R),m, (4.45)

ψbL(R) = V b
L(R)ψbL(R),m, (4.46)

where V t
L(R) and V b

L(R) are the 4 × 4 and 2 × 2 unitary matrices respectively, and the

diagonalized mass matrices are

V t†
L MtV

t
R =Mt,diag = Diag(mt1, mt2, mt3, mt4), (4.47)

V b†
L MbV

b
R =Mb,diag = Diag(mb1, mb2), (4.48)

where the mass eigenvalues are defined as mi ≥ mj for i > j; hence we identify mt4 and

mb2 with mt and mb of the SM. The interaction matrices become

CtL(R),m = V t†
L(R)C

t
L(R)V

b
L(R), (4.49)

CXL(R),m = CXL(R)V
t
L(R), (4.50)

N t
L(R),m = V t†

L(R)N
t
L(R)V

t
L(R), (4.51)

N b
L(R),m = V b†

L(R)N
b
L(R)V

b
L(R), (4.52)

YtL(R),m = V t†
R(L)Y

t
L(R)V

t
L(R), (4.53)

YbL(R),m = V b†
R(L)Y

b
L(R)V

b
L(R). (4.54)

From the next section, we work in the mass eigenbasis but omit the subscript m for sim-

plicity.

Here we comment on the Higgs low energy theorem limit. As an explicit example

we consider the effective hgg coupling. Following the Higgs low energy theorem, we can

express the effective Lagrangian generated by the charge 2/3 loops as

Lhgg =
αs
12π

h

v

∂ log(DetM†
t(v)Mt(v))

∂ log v
GaµνG

aµν . (4.55)

Using the Eq. (4.23), we get

Lhgg =
αs
12π

1− 2 v
2

f2√
1− v2

f2

h

v
GaµνG

aµν . (4.56)

The important feature is that this coupling is only depending on the v2/f2. In order to

understand this feature we perform the field redefinition [38] as

Ψ→ ΩTΨ. (4.57)

In this basis we can rewrite the yukawa and mass terms as follows:

LY ukawa+Mass = −Y f(Ψ̄LΣ
T
0 )(Σ0ΨR)−MΨ̄LΨR −∆Lλ̄LΩ

TΨR −∆RΨ̄LΩηR + (h.c.),

(4.58)
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where we introduce the incomplete SO(5) multiplet:

λL =
1√
2
(bL − ibL tL itL 0)T , (4.59)

ηR =
1√
2
(0 0 0 0

√
2tR)

T . (4.60)

The mass matrix reads

Mt =


0 ∆L

2 (1 + c) ∆L
2 (−1 + c) ∆L√

2
s

−∆R√
2
s M 0 0

−∆R√
2
s 0 M 0

∆Rc 0 0 M + Y f

 . (4.61)

In this basis it is clear that there is no Higgs dependence in the composite sub-block of the

matrix. The determinant becomes

DetM†
t(v)Mt(v) =

(
MY f∆L∆R

2
√
2

sin

(
2v

f

))2

. (4.62)

This determinant can be decomposed into two parts:

DetM†
tMt = P (M,Y,∆L,∆R, f)× F (v/f), (4.63)

where F (v/f) satisfies F (0) = 0. Therefore the quantity ∂ log(DetM†
tMt)/∂ log v does not

depend on the function P whose arguments are the parameter of the composite sector and

the linear mixing term. This separation can be realized if there is a single SO(5) invariant

constructed by the linear mixing parameters which can be treated as spurions [38, 39]. This

fact is quite characteristic and useful for the analysis of the loop induced Higgs couplings.

4.1.2 Experimental constraints

The strongest experimental constraints on composite Higgs models still come from the

electroweak precision measurements at the Z pole at the LEP collider. A convenient

description of the LEP precision data is given in terms of the parameters ϵ1, ϵ2, ϵ3 and

ϵb [40]. In addition to the SM contribution, there are three contributions in the MCHM5.

The first contribution comes from the modified coupling of the Higgs to the massive gauge

bosons, which induces a logarithmic contribution to the epsilon parameters ϵ1 and ϵ2, or

equivalently to T̂ and Ŝ. The contribution is cut-off by the mass mρ of the first composite

Higgs resonance [36],

δϵIR1 = −3α(mZ)

16πc2W

v2

f2
log

(
m2
ρ

m2
h

)
, (4.64)

δϵIR3 =
α(mZ)

48πs2W

v2

f2
log

(
m2
ρ

m2
h

)
. (4.65)
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The contribution to the ϵ1 parameter is negative and the contribution to the ϵ3 parameter

is positive. The second effect is the direct contribution of the vector and axial vector

resonances to the ϵ3 parameter. This contribution is found to be

δϵUV3 =
m2
W

m2
ρ

(
1 +

m2
ρ

m2
a

)
≃ 1.36

m2
W

m2
ρ

, (4.66)

where we use the relation ma
mρ
≃ 5

3 , obtained in the five dimensional realization of the

model [8]. The last contribution comes from the quantum correction of the heavy fermions.

This contribution affects the both the ϵ1 and ϵb parameters which are corresponding to the

T̂ parameter and the Zbb̄ coupling, respectively. We can compute them at full one-loop

level. The contribution to the ϵ1 parameter is obtained as follows:

ϵfermion
1 =

3α(mZ)

16π sin2 θW cos2 θW

{
∑
i,α

(|C̃tLiα|2 + |C̃tRiα|2)θ+(yti, ybα) + 2Re[C̃tLiαC̃t∗Riα]θ−(yti, ybα)∑
i

(|C̃XL1i|2 + |C̃XR1i|2)θ+(yX , yti) + 2Re[C̃XL1iC̃X∗
R1i]θ−(yX , yti)

− 1

2

∑
i,j

(|Ñ t
Lij |2 + |Ñ t

Rij |2)θ+(yti, ytj) + 2Re[Ñ t
LijÑ t∗

Rij ]θ−(yti, ytj)

− 1

2

∑
α,β

(|Ñ b
Lαβ |2 + |Ñ b

Rαβ |2)θ+(ybα, ybβ) + 2Re[Ñ b
LαβÑ b∗

Rαβ ]θ−(ybα, ybβ)

− 1

2

(
(|ÑX

L |2 + |ÑX
R |2)θ+(yX , yX) + 2Re[ÑX

L ÑX∗
R ]θ−(yX , yX)

)}
, (4.67)

where i, j and α, β run 1 ∼ 4 and 1 ∼ 2, and yψ =
m2
ψ

m2
Z
. The loop functions θ+ and θ− are

defined in the App. A. This result includes the effect of the SM top and bottom quarks with

the modified couplings; then it is corresponding to the T̂ parameter as δϵth1 −ϵ
SM,fermion
1 = T̂ .

The SM contribution with the limit |V CKM
tb | = 1 is obtained as

ϵSM,fermion
1 =

3α(mZ)

16π sin2 θW cos2 θWm2
Z

(
m2
t +m2

b − 2
m2
tm

2
b

m2
t −m2

b

ln

(
m2
t

m2
b

))
∼ 9.23× 10−3. (4.68)

The contribution to the ϵb parameter is a little bit complicated. We don’t care about the

right handed bottom quark effect because the fundamental sector doesn’t mix with the

composite sector with respect to the right handed bottom quark; the effect is negligibly

small. The amplitude for the decay of a Z boson to massless left handed bottom quarks

can be written

M(Z → bLb̄L) = −gLb̄γµ
(
1− γ5

2

)
bϵµ, (4.69)

where the gL coupling is modified from its value in the SM:

gL = gSML + δgL. (4.70)

– 46 –



The correction δgL is coming from the heavy fermions via the loop process. At one-loop

level we have

δgL =
α

2π

g

cos θW
(F − FSM ), (4.71)

where the function F is the contribution from the heavy fermions, including the SM top

quark with the modified coupling. The contribution can be computed as

F =
∑
i

|C̃tLi2|2
{
FSM (mti) + F1

(
˜N t
Lii − 1

2
,
Ñ t
Rii

2
,mti

)}

+
1

2

∑
i,j

C̃t∗Li2C̃tLj2F2

( ˜N t
Lij

2
,

˜N t
Rij

2
,mti,mtj

)
, (4.72)

where the functions FSM , F1 and F2 are defined in the App. A. Using these results we get

the contribution to the ϵb parameter:

ϵfermion
b − ϵSM,fermion

b = −2 α
2π

g

cos θW
(F − FSM ) , (4.73)

where we extract the effect beyond the SM. Now we can express the ϵ parameters as the

following:

ϵth1 = 5.38× 10−3 + δϵIR1 + (ϵfermion
1 − ϵSM,fermion

1 ), (4.74)

ϵth2 = −7.06× 10−3, (4.75)

ϵth3 = 5.42× 10−3 + δϵIR3 + δϵUV3 , (4.76)

ϵthb = −6.48× 10−3 + (ϵfermion
b − ϵSM,fermion

b ), (4.77)

εth = Diag
(
ϵth1 , ϵth2 , ϵth3 , ϵthb

)
. (4.78)

The first terms of each ϵ are the SM contributions with mh = 126 [GeV] and mt = 173

[GeV]. On the other hand, experimental values of the ϵ parameters are well measured [41]:

ϵexp1 = (5.4± 1.0)× 10−3, (4.79)

ϵexp2 = (−7.9± 0.9)× 10−3, (4.80)

ϵexp3 = (5.34± 0.94)× 10−3, (4.81)

ϵexpb = (−5.0± 1.6)× 10−3, (4.82)

εexp = Diag (5.4, −7.9, 5.34, −5.0)× 10−3, (4.83)

∆εexp = Diag (1.0, 0.9, 0.94, 1.6)× 10−3. (4.84)

Note that we include the W mass update [42]. These constraints are not independent but

correlated each other; the correlation matrix is obtained as

ρ =


1 0.80 0.86 0.00

0.80 1 0.53 −0.01
0.86 0.53 1 0.02

0.00 −0.01 0.02 1

 . (4.85)
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Now the χ2 fit can be peformed. The quantity χ2 is defined by

χ2 =
(
εth − εexp

)
C−1

(
εth − εexp

)
, (4.86)

where C−1 is the inverse of the variance-covariance matrix:

C = ∆εexp ρ∆εexp. (4.87)

The number of the parameters of the MCHM5 is seven, {f,mρ, Y, yb,M,∆L,∆R}. The

ratio v2

f2
is directly connected to the fine tuning; therefore we compute the minimum of the

χ2 for a fixed value of ξ. The parameter yb is determined by the requirement of the correct

bottom mass and its effect to other observables is enough tiny to ignore; which means

that we can treat yb as a fixed parameter. We also have to reproduce the SM top mass,

mt = 173 [GeV], which leads one relation between the parameters of the theory. Finally

we should perform the χ2 fit using the following four DOF; one dimension-full parameter

mρ and three dimension-less parameters

ϕL = arctan

(
∆L

M

)
, (4.88)

ϕR = arctan

(
∆R

M + Y f

)
, (4.89)

R =
M + Y f

M
. (4.90)

ϕL(R) is the mixing parameter of the left (right) handed elementary and composite sectors,

and R is the ratio of the dimension-full parameters M and yf . In this analysis we require

the 99% C.L. with four DOFs:

χ2 ≤ 13.277, (4.91)

where the value of right handed side is the corresponding χ2 value at p = 0.01. The

minimum value of χ2
min is smaller than the SM value, χ2

SM = 5.03, because of the larger

number of fitting parameters.

Other constraints come from the CKM matrix element |Vtb| and the direct top partner

search at the LHC. The lower limit on |Vtb| is obtained from the single top production in

pp̄ collisions [44]:

|Vtb| > 0.92, at 99% C.L., (4.92)

where the top mass is assumed as 172.5 [GeV]. This constraint is significantly upgraded

compared with the previous study, |Vtb| > 0.77 [45]. However, this upgrade does not give

a big change to our analysis. In the Fig.10, we plot a sample of parameters passing the

χ2 test for each |Vtb| constraint in the case of f = 750 [GeV]. We find the small region,

especially the light top partner mass region, is excluded by the change of the constraint.

From the figure we find that there are two typical regions in the range of relatively small

top partner mass: the small compositeness region and the large compositeness region. In
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Figure 10. A sample of parameters passing the χ2 test of the EW precision tests for |Vtb| > 0.77

(left) and |Vtb| > 0.92 (right) in the case of f = 750 [GeV]. The vertical axis is the compositeness

of the left handed sector and the horizontal axis is the lightest top partner mass mt3.

the small compositeness region, the main component of ψt3 is the singlet T̃ and the other

states are rather heavy. On the other hand, in the large compositeness region the exotic

charge state ψX becomes light below 1 [TeV].

The direct top partner search at the LHC is also experimental constraints. This constraint

is roughly 700 [GeV] [47]. However, we check that this constraint gives no significant influ-

ence to the Higgs couplings we discuss in the next section; hence we ignore this constraint

in our analysis.

We comment on the parameters we use for the numerical simulations. The ranges of

the parameters we use are as follows:

mρ = [2πf, 4πf ], (4.93)

M = [0,mρ], (4.94)

Y = [−4π, 4π], (4.95)

sinϕL = [0, 1], (4.96)

sinϕR = [0, 1]. (4.97)

The first parameter mρ is the cut-off scale of the theory; we find that for this range the

result does not change significantly. In regard to the other parameters, we vary them as

large as possible although perhaps they may be somewhat unphysical.

As a conclusion of this section we plot the contributions to the ϵ1 and ϵb parameters

from the fermionic resonances for the parameter region passing the χ2 tests in the case of

f = 750 [GeV], see the Fig. 11. We find the contribution to the ϵb parameter corresponding

to the ZbLb̄L coupling tends to be large and gives a severe constraint; this result is consistent

with the Ref. [46]. We can see it is possible to get in agreement with the EW precision

tests by having a small positive contribution to both (ϵfermion
1 − ϵSM,fermion

1 )/ϵSM,fermion
1 and

(ϵfermion
b − ϵSM,fermion

b )/ϵSM,fermion
b .
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Figure 11. Scatter plot of the contributions to the ϵ1 and ϵb parameters from the ferimionic

resonances. In this plot we ignore the small contribution δϵIR1 .

4.1.3 Decay widths and couplings: numerical result

We now study the decay widths of the Higgs boson in the MHCM5. In this subsection

we present the decay widths in terms of the parameters of the Lagrangian in the mass

eigenbasis, and then perform the monte carlo simulation in the case of f = 750 [GeV] as a

reference value. We include the contributions from all of the fermionic resonances taking

into account the top and bottom quarks, and apply the experimental constraints considered

in the previous subsection.

Using the results in the Sec. 2.2, the ratios of the decay widths to those of the SM can

be expressed in the following forms.

h→ V V ∗ mode:

Γ(h→ V V ∗)

Γ(h→ V V ∗)SM
= 1− v2

f2
. (4.98)

This mode is completely determined by the decay constant. This result is derived by the

resummation of the Higgs kinetic term (4.7); therefore this is valid in all order of v2

f2
. For

the value of f = 750 [GeV], the ratio is Γ/ΓSM = 0.892.

h→ bb mode:

Γ(h→ bb)

Γ(h→ bb)SM
=
YbL22
mb
v

=
YbR22
mb
v

. (4.99)

The hermiticity of the Lagrangian leads the relation YbL22 = YbR22. Since we construct the

bottom quark mass by the explicit breaking of the partial compositeness, this mode is the
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almost same as the SM case, see the Fig. 12. The difference is lower than O(10−5) %.
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Figure 12. The ratio of the h → bb mode decay widths for f = 750 [GeV]. The vertical axis is

the ratio of Γ(h → bb) and the SM one, and the horizontal axis is the lightest top partner mass.

The ratio is almost one; the difference is less than O(10−5) %. This result is unchanged before and

after imposing the experimental constraints.

h→ gg mode:

Γ(h→ gg)

Γ(h→ gg)SM
=

∣∣∣∣2vA1/2(τt) +
2

v
A1/2(τb)

∣∣∣∣−2

×∣∣∣∣∣
4∑
i=1

2YtLii
mti

A1/2(τti) +

2∑
α=1

2YbLαα
mbα

A1/2(τbα)

∣∣∣∣∣
2

, (4.100)

where we define τϕ =
(
2mϕ
mh

)2
, and the loop function A1/2 is expressed in the App. A. This

mode is important for the production of the Higgs boson because the gluon fusion process

is the dominant process at the LHC. In particular, if we ignore the other Higgs production

modes we get the relation

Γ(h→ gg)

Γ(h→ gg)SM
=

σ(pp→ h)

σ(pp→ h)SM
. (4.101)

In the MCHM5 this mode is significantly suppressed because of the structure of the top

yukawa coupling; in the Higgs low energy theorem limit the top yukawa coupling is sup-

pressed by 1−2ξ√
1−ξ . Due to this suppression the small value of f is undesirable from the view

point of the LHC experiment. For example, in the case of f = 500 [GeV] we find

σ(gg → h)

σ(gg → h)SM
× BR(h→ γγ)

BR(h→ γγ)SM
∼ 0.33 (for f = 500[GeV]). (4.102)

This value is too small to explain the experimental data. In this thesis we therefore consider

the decay constant is larger than 750 [GeV] (although the production is still a bit small for
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the decay constant below 1000 [GeV]). We show the result in the Fig. 13 with/without the

constraints of the EW precision measurements and the CKM matrix element |Vtb|. The

suppression of the width is larger than 30%. Without the constraints, the ratio can vary

by about 10 %. In the small ratio region the top quark yukawa coupling is small and the

coupling of one of the partner becomes large. However, in such a case the contributions

to the ϵ1 and ϵb parameters from the fermion loop turn out to be rather small compared

with those of the SM. After imposing the constraints, we find that the possible value of

the ratio is within a few % of the result of the Higgs low energy theorem limit.
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Figure 13. The ratio of the h→ gg mode decay widths for f = 750 [GeV] without the constraints

(left) and with the constraints (right). The vertical axis is the ratio of Γ(h→ gg) and the SM one,

and the horizontal axis is the lightest top partner mass. Since the top yukawa coupling receives the

large suppression, this mode shows the large deviation from the SM prediction.

h→ γγ mode:

Γ(h→ γγ)

Γ(h→ γγ)SM
=

∣∣∣∣∣2v12A1(τW ) +
6

v

(
2

3

)2

A1/2(τt) +
6

v

(
−1
3

)2

A1/2(τb)

∣∣∣∣∣
−2

×∣∣∣∣∣2v12
√

1− v2

f2
A1(τW )

+

4∑
i=1

6YtLii
mti

(
2

3

)2

A1/2(τti) +

2∑
α=1

6YbLαα
mbα

(
−1
3

)2

A1/2(τbα)

∣∣∣∣∣
2

, (4.103)

where the loop function A1 is defined in the App. A. The W boson also contributes to this

mode and its contribution is large and opposite compared with the fermionic contribution.

Therefore, the suppression is relatively smaller than that of the h → gg mode. From the

Fig. 14 we can see that the difference whether the constraints are imposed or not is not

significant. The width is suppressed by about 5 %.
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Figure 14. The ratio of the h→ γγ mode decay widths for f = 750 [GeV] without the constraints

(left) and with the constraints (right). The vertical axis is the ratio of Γ(h→ γγ) and the SM one,

and the horizontal axis is the lightest top partner mass. The plots are almost flat with respect

to the lightest top partner mass because the dominant contribution coming from the W boson is

determined only by the decay constant.

h→ Zγ mode:

Γ(h→ Zγ)

Γ(h→ Zγ)SM
=

∣∣∣∣ gmW

sW cW
AV (mW )

+
6

gsW

[
2

3

g

cW

(
1

2
− 2s2W

2

3

)
2mt

v
mtAF (mt,mt)

+
−1
3

g

cW

(
−1

2
− 2s2W

−1
3

)
2mb

v
mbAF (mb,mb)

]∣∣∣∣−2

×∣∣∣∣∣ gmW

sW cW

√
1− v2

f2
AV (mW )

+

4∑
i,j=1

4

gsW
(YtLij + YtRij)(N t

Lij +N t
Rij)mtiAF (mti,mtj)

+
4∑

α,β=2

−2
gsW

(YbLαβ + YbRαβ)(N b
Lαβ +N b

Rαβ)mbαAF (mbα,mbβ)

∣∣∣∣∣∣
2

,

(4.104)

where the loop functions AV and AF are defined in the App. A. The striking feature of this

mode is that different mass eigenstates can be appeared in the loop because there exists

the off-diagonal interactions in both Higgs-fermions and Z boson-fermions interactions.

Therefore, although the W contribution is similarly dominant in this mode, the width

exhibits a different behavior from the h → γγ mode. This mode is already studied in the

Ref. [48], including only composite sector. In this thesis we include the fundamental sector

and compute the width including the exact dependence on the all fermion masses and the

off-diagonal interactions. Before imposing the constraints the possible range is quite wide;

especially the ratio can be larger than unity. This is because that the sign of the fermionic
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contribution can be changed, and off-diagonal contributions can be entered. After applying

the constraints, we find the large ratio region is excluded but still have the fairly wider

possible range than that of the h→ γγ mode; this process is also interesting for the collider

search.
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Figure 15. The ratio of the h→ Zγ mode decay width for f = 750 [GeV] without the constraints

(left) and with the constraints (right). The vertical axis is the ratio of Γ(h→ Zγ) and the SM one,

and the horizontal axis is the lightest top partner mass. In the light mass region the contribution

of the heavy fermions gives relatively large deviation compared with the heavy mass limit.

We summarize the result of the ratios of the decay widths in the Fig. 16. In the

MCHM5 the h→ gg mode shows the largest deviation from the SM about larger than 30

%. On the other hand, the h → bb mode is almost the same as the SM case. The other

three modes receives the suppressions about 5 ∼ 10 %.
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Figure 16. The summary of the ratios of the decay widths of h → XX for f = 750 [GeV]. The

vertical axis is the ratio of Γ(h → XX) and the SM one for various decay modes. We perform

the numerical calculation and show the result for the parameters which are allowed by the EW

precision tests and the |Vtb| constraint.
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Next we define the deviation of the Higgs couplings from the SM prediction in ac-

cordance with the Ref. [15] in order to compare with the experimental sensitivity. In the

perspective of the effective coupling, we can define the deviation of the coupling from that

of the SM using the decay widths computed above:

d(hXX) =

√
Γ(h→ XX)

Γ(h→ XX)SM
− 1, (4.105)

According to the Ref. [15], the future experiments can reveal this deviation with high

precision for various modes. In this thesis we use the following modes: hWW , hZZ and

hbb for the tree level couplings; hgg, hγγ and hZγ for the one-loop effective couplings.

Although the experimental sensitivity of the hZγ coupling has not studied yet, we also

present the result of this coupling to show the impact on new physics search of this mode.

As a reference analysis, we study the possible deviations of the Higgs coupling in the case

of f = 750 [GeV]. We show the result in the Fig. 17. The thin line (LHC14) shows the

1σ confidence intervals for the LHC sensitivity at 14 [TeV] with 300 [fb−1]. The bold

line (ILC250) shows the 1σ confidence intervals for the ILC sensitivity at 250 [GeV] with

250 [fb−1]. If the plots are below these lines, we can observe the deviations of the couplings.

In the present case the hgg coupling can be distinguished from the SM at both the LHC

and ILC, and the hV V coupling is detectable only at the ILC. For the hγγ mode, it is

difficult to observe the deviation due to the small difference. The interesting point is that if

we can measure the hZγ coupling with the sensitivity close to the hγγ mode the deviation

of this coupling is likely to be observed.
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Figure 17. The deviations of the Higgs couplings for f = 750 [GeV] and the experimental

sensitivities. The vertical axis is the deviation of the coupling from those of the SM. The thin

(bold) line is the 1σ confidence sensitivity at 14 [TeV] LHC with 300 [fb−1] (250 [GeV] ILC with

250 [fb−1]).
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Finally we perform the numerical calculation with varying the decay constant f from

750 [GeV] to 2000 [GeV]. Using the fine tuning measure defined in the Ref. [36], we find

f = 2000 [GeV] corresponds to about 1 % fine tuning. It probably seems to be unnatural;

however, we here allow up to 1 % fine tuning in the light of recent experimental results that

we have found no new particles at the LHC. In our numerical calculation we first determine

the decay constant f from 750 [GeV] to 2000 [GeV] and then randomly choose the input

parameters in accordance to the Eqs. (4.93)-(4.97). The ratio of decay widths are denoted

in the Fig. 18. As we saw the displacements of each ratio is not large for the fixed f . Hence

the wide possible ranges in the figure are due to the change of f ; the possible range moves

from the bottom to the top as f becomes large. If we take f → ∞ limit, the theory can

reproduce the SM and all of the ratios converge to unity.
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Figure 18. The summary of the ratios of the decay width of h→ XX for f = [750, 2000] [GeV].

The vertical axis is the ratio of Γ(h→ XX) and the SM one for various decay modes. We perform

the numerical calculation and show the result for the parameters which are allowed by the EW

precision tests and the |Vtb| constraint.

The summarized results of the deviations of the couplings and the experimental sen-

sitivities are shown in the Fig. 19. For the wide range of f we can detect the non-SM hgg

coupling at both the LHC and the ILC. For the ILC case we can probe f up to about

1500 [GeV]. In addition, the hZZ coupling is a useful probe to search the large value of f

because of the high accuracy at the ILC; we find f ≤ 1850 [GeV] can be investigated. The

hZγ coupling could be an interesting target up to around f ∼ 1000 [GeV].

4.2 Other models

In this section we study other models compared with the MCHM5. As comparison models

we study the RS model and the extra singlet Higgs model. With respect to the SUSY
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Figure 19. The deviations of the Higgs couplings for f = [750, 2000] [GeV] and the experimental

sensitivities. The vertical axis is the deviation of the coupling from those of the SM. The thin

(bold) line is the 1σ confidence sensitivity at the 14 [TeV] LHC with 300 [fb−1] (250 [GeV] ILC with

250 [fb−1]).

model, we will give a comment later. Here we just explain the structure of the Higgs

coupling, and the actual numerical simulation will be done in the next section.

4.2.1 Randall-Sundrum model

The RS model is one of solution of the gauge hierarchy problem with one AdS extra space

dimension. In addition to the background metric, we introduce a massive five dimensional

scalar field which interacts at the brane in order to stabilize the distance between branes,

which is known as the Goldberger-Wise mechanism [49]. This scalar field generates the

potential for the radion field. Considering the scalar perturbation which is corresponding

to the radion, we find the metric is given by

ds2 = e−2(krcϕ+F (x,ϕ))ηµνdx
µdxν − (1 + 2F (x, ϕ))2r2cdϕ

2. (4.106)

The fifth dimension has the topology S1/Z2 and is parametrized by ϕ (0 < ϕ < π). Here

krcπ is the product of the fifth dimensional curvature k and the size of the fifth dimension

rcπ, and F is a scalar perturbation F (x, ϕ) = r(x)R(ϕ) [50] where r(x) is the radion field

and R(ϕ) is determined by the Einstein equation. If the back reaction is negligibly small,

the scalar perturbation is

F (x, ϕ) =
r(x)

Λϕ
e2krc(ϕ−π), (4.107)

where Λϕ is the VEV of the radion Λϕ =
√
6mple

−krcπ ∼ TeV. In this thesis we consider

the case in which all fields except for the Higgs boson propagate along the fifth dimension;
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the effect of the higher dimensional operators are suppressed, and there arises Kaluza-Klein

(KK) particles in the four dimensional effective theory.

Let us first show the KK reduction of the bulk gauge fields in the case of an U(1)

gauge theory [51]. The extension to the non-abelian gauge theory is straightforward. The

five dimensional action of the bulk gauge field is

SV = −1

4

∫
d4x

∫
dϕ
√
−GGABGCDFACFBD, (4.108)

where GAB(A,B = 0 ∼ 4) is the five dimensional metric and G is its determinant such

that
√
−G = e−4krcϕrc. We introduce the Z2 parity and assign the Z2 even and odd to Vµ

and V4, respectively. Z2 even states can have the zeroth modes which are identified to be

the SM fields. We can rewrite the five dimensional action as

SV ⊃ −
1

4

∫
d4x

∫
dϕ rc

(
ηµνηλτFµλFντ − 2ηµνVν∂4(e

−2krcϕ∂4Vν)
)
. (4.109)

The KK reduction of the gauge fields is realized using the fifth dimensional wave function

of the n-th KK mode ξ(n):

Vµ(x, ϕ) =
∞∑
n=0

V (n)
µ (x)

ξ(n)(ϕ)
√
rc

. (4.110)

The wave function has to satisfy the following two conditions: the first one is the orthonor-

mality condition; ∫ π

−π
dϕ ξmξn = δmn, (4.111)

the second one is the bulk differential equation;

− 1

r2c

d

dϕ

(
e−2krcϕ d

dϕ
ξ(n)

)
= m2

nξ
(n), (4.112)

where mn is a mass of the n-th KK mode. From these conditions we can analytically

express the n-th wave function:

ξ(n) =
ekrcϕ

Nn
[J1(zn) + αnY1(zn)], (4.113)

where Jn(Yn) is the Bessel function of the first (second) kind, see the App. A, and zn =
mn
k e

krcπ. We here introduce the normalization factor Nn which is determined by the

Eq. (4.111), and

αn = − π

2(log(mn/2k)− krcπ + γ + 1/2)
, (4.114)

where γ is the Euler-Mascheroni constant. In particular, the zeroth mode of the wave

function is ξ(0) = 1√
2π
. Moreover, the boundary conditions at the visible brane lead the

following equation which determines the masses of each KK mode:

J1(zn) +
mn

k
J ′
1(zn) + αn

(
Y1(zn) +

mn

k
Y ′
1(zn)

)
= 0. (4.115)
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In this thesis we neglect the small correction to the wave function and to the KK mass of

the massive gauge bosons from the EW symmetry breaking.

Next we present the KK reduction of the bulk massive fermions [52].

Sf =

∫
d4x

∫
dϕ
√
−G

[
eAa

{
i

2
Q̄γa∂AQ− ∂AQ̄γaQ+ ωbcAQ̄

1

2
{γa, σbc}Q

}
−mQ sgn(ϕ)Q̄Q+

∑
q=u,d

(
i

2
q̄γa∂Aq − ∂Aq̄γaq + ωbcAq̄

1

2
{γa, σbc}q

)

−
∑
q=u,d

mq sgn(ϕ)q̄q −
v√
2rc

(ūLY5DuR + d̄LY5DdR)δ(|ϕ| − π)

]
, (4.116)

where eAa = Diag(ekrcϕ, ekrcϕ, ekrcϕ, ekrcϕ, 1/rc) is an inverse vielbein, ωbcA is a spin connec-

tion, uL(R), dL(R) are five dimensional up and down quarks, and q(Q) is an SU(2)L singlet

(doublet). Note that our assumption of the localized Higgs field only allows the localized

yukawa interaction on the visible brane. In order to construct the chiral effective theory

we impose the appropriate Z2 parity to the quark fields. Integrating this action by parts,

we get the following action after some simplifications:

Sf =

∫
d4x

∫
dϕ rc

[
e−3krcϕ

Q̄i/∂Q+
∑
q=u,d

q̄i/∂q


− e−4krcϕ sgn(ϕ)

cQkQ̄Q+
∑
q=u,d

cqkq̄q


− 1

2rc

Q̄L(e−4krcϕ∂ϕ + ∂ϕe
−4krcϕ)QR +

∑
q=u,d

q̄L(e
−4krcϕ∂ϕ + ∂ϕe

−4krcϕ)qR + (h.c.)


− e−3krcϕ v√

2rc
(ūLY5DuR + d̄LY5DdR)δ(|ϕ| − π)

]
, (4.117)

where we rewrite mQ(q) = cQ(q)k; naively we expect the coefficient cQ(q) is O(1). The KK

reduction of the five dimensional fermion Ψ is performed by

Ψ(x, ϕ) =

∞∑
n=0

ψL,Rn (x)
e2krcϕ√

2
fL,Rn (ϕ), (4.118)

where f
L(R)
n (ϕ) is the left (right) handed fifth dimensional wave function of the n-th KK

mode and ψn is the n-th order four dimensional fermion. As with the gauge field we have

the two conditions. The orthonormality condition is∫ π

−π
ekrcϕfA∗m (ϕ)fBn (ϕ) = δmnδ

AB, (4.119)

where A,B = L,R. The differential equation of the wave function is(
± 1

rc
∂ϕ −mn

)
fL,Rn (ϕ) = −mne

krcϕfR,Ln (ϕ) + ekrcϕ
v√
2rc

Y5Df
R,L
n δ(ϕ− π). (4.120)
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Then we get the following wave function:

fL,Rn (ϕ) =
ekrcϕ/2

NL,R
n

(
JcL,R∓1/2

(mn

k
ekrcϕ

)
+ βL,Rn YcL,R∓1/2

(mn

k
ekrcϕ

))
. (4.121)

We define the function βL,Rn for each Z2 parity:

(βL,Rn )even =

(
1
2 + cL,R

)
JcL,R∓1/2

(
mn
k

)
+ mn

k J
′
cL,R∓1/2

(
mn
k

)(
1
2 + cL,R

)
YcL,R∓1/2

(
mn
k

)
+ mn

k Y
′
cL,R∓1/2

(
mn
k

) , (4.122)

(βL,Rn )odd = −
JcL,R∓1/2

(
mn
k

)
YcL,R∓1/2

(
mn
k

) . (4.123)

In particular the zeroth mode is given by

fL,R0 (ϕ) =
e±cL,Rϕ

NL,R
0

, with NL,R
0 =

√
2(ekrcπ(1+2cL,R) − 1)

krc(1 + 2cL,R)
. (4.124)

The profile of the wave function is controlled by the bulk mass, i.e. the parameter cL,R in

this case. If the fermion is localized near the visible brane, its coupling with the Higgs boson

becomes large because the Higgs field is localized on the visible brane. Such a situation is

realized by the small cL,R. We can relax the hierarchy problem of the yukawa couplings by

choosing appropriate O(1) parameters.

At this point we can illustrate the interactions of the Higgs field and the radion field

with the SM fields and the KK modes [53]. The radion interactions are similar to those

of the Higgs; the interaction is realized through the mass of the interacting particles. The

interaction with the massive gauge boson is

LrV V =− r

Λϕ

(
2m2

WW
(0)+
µ W (0)+µ + 2m2

Z

Z
(0)
µ Z(0)µ

2

+ 4πm2
W

∞∑
n=1

ξ
(n)
W (π)ξ

(n)
W (π)W (n)+

µ W (n)+µ + · · ·

)
, (4.125)

LhV V =− h

v

(
2m2

WW
(0)+
µ W (0)+µ + 2m2

Z

Z
(0)
µ Z(0)µ

2

+ 4πm2
W

∞∑
n=1

ξ
(n)
W (π)ξ

(n)
W (π)W (n)+

µ W (n)+µ + · · ·

)
, (4.126)

where V
(0)
µ is the SM vector boson and V

(n)
µ is the n-th KK mode. ξ

(n)
W (π) is the wave

function of the n-th KK mode on the visible brane. The interaction with the fermion is

Lrff =
f

Λϕ

(
mf ψ̄

(0)ψ(0) + ekrcπ
v√
2rc

Y5D

∞∑
n=1

f (n)∗(π)f (n)(π)ψ̄(n)ψ(n)

)
, (4.127)

Lhff =
h

v

(
mf ψ̄

(0)ψ(0) + ekrcπ
v√
2rc

Y5D

∞∑
n=1

f (n)∗(π)f (n)(π)ψ̄(n)ψ(n)

)
, (4.128)
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where ψ(0) is the SM fermion field and ψ(n) is the n-th KK mode. f (n)(π) is the wave

function of the n-th KK mode on the visible brane. The loop induced effective couplings

to gg and γγ are also well known. Note that in the radion case there exists the tree level

coupling [54]:

Lrgg,rγγ = − r

4Λϕ

((
1

krcπ
+
αs
2π
brQCD

)
GaµνG

aµν +

(
1

krcπ
+
αs
2π
brEM

)
FµνF

µν

)
, (4.129)

where

brQCD = 7 + (A1/2(τf ) +AfKK1/2 ), (4.130)

brEM = −11

3
+

8

3
(A1/2(τf ) +AfKK1/2 ) + (A1(τW ) +AWKK

1 ), (4.131)

and the KK mode contributions AfKK1/2 and AWKK
1 are computed as follows:

AfKK1/2 = ekrcπ
v√
2rc

Y5D

∞∑
n=1

f (n)∗(π)f (n)(π)

m
(n)
fKK

Af1/2, (4.132)

ASKK1 = 2π

(
mW

m
(n)
WKK

)2 ∞∑
n=1

ξ
(n)
W (π)ξ

(n)
W (π)AW1 , (4.133)

where m
(n)
fKK

and m
(n)
WKK

are the mass of the n-th KK mode. Note that the sum of all KK

modes is finite [55]. For the Higgs boson case the interaction is obtained as

Lhgg,hγγ = − r

4v

(αs
2π
bhQCDG

a
µνG

aµν +
αs
2π
bhEMFµνF

µν
)
, (4.134)

Next we consider the radion-Higgs mixing [56]. The mixing is induced by a curvature-

Higgs mixing term in the four dimensional effective Lagrangian:

Lξ =
√
gindξR(gind)H

†H, (4.135)

where ξ is a parameter and gind is an induced metric which is given by e−2(krcπ+r/Λϕ)ηµν .

R(gind) is the Ricci scalar calculated from the induced metric. After simplification we get

the Higgs boson and the radion quadratic terms as

L = −1

2
h∂2h− 1

2
m2
hh

2 − 1

2
(1 + 6ξγ2)f∂2r − 1

2
m2
rr

2 + 6ξγh∂2r, (4.136)

where we introduce the notation ζ = v
Λϕ

. In order to obtain the canonical kinetic terms,

we first rescale the fields as follows:

h = h′ +
6ξζr′

Z
, (4.137)

r =
r′

Z
, (4.138)

where Z2 = 1 + 6ξζ2(1− 6ξ). The positivity of Z2 requires the following relation:

1

12

(
1−

√
1 +

4

ζ2

)
< ξ <

1

12

(
1 +

√
1 +

4

ζ2

)
. (4.139)
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Then we perform the orthogonal transformation as(
h′

r′

)
=

(
cos θ sin θ

− sin θ cos θ

)(
hm
rm

)
, (4.140)

where the subscript m denotes the mass eigenstate, and the mixing angle is

tan 2θ = 12ξζZ
m2
h

m2
r −m2

h(Z
2 − 36ξ2ζ2)

. (4.141)

Finally we get the following relation between the gauge eigenstate and the mass eigenstate:

h =

(
cos θ − 6ξζ

Z
sin θ

)
hm +

(
sin θ +

6ξζ

Z
cos θ

)
rm, (4.142)

r = − sin θ
hm
Z

+ cos θ
rm
Z
. (4.143)

From now on we study the couplings of hm, and the subscript m is omitted for simplicity.

In our numerical calculation, we use the following parameters. We set the cut-off

scale Λϕ = 10 [TeV] in order to evade the experimental constraints [57]. The bulk mass

parameters cL and cR are changed from −1 to 1 with the constraints that the SM fermion

masses are reproduced. We vary the mixing parameter ξ also from −1 to 1. The range of

the radion mass eigenvalue is set as mr = [200, 1000] [GeV]. The lower bound is determined

from the view point that the radion cannot be produced at the ILC 250 [GeV], and the

upper bound is just put on 1 [TeV].

4.2.2 Extra singlet Higgs model

We consider a theory where an extra gauge singlet Higgs boson mixes with the SM Higgs

boson [58]. This singlet may spontaneously break symmetries in some hidden sector group.

The Lagrangian of the Higgs sector is changed from the SM as follows:

L ⊃ (DµH)†DµH + µ2|H|2 − λ|H|4

+ ∂µΦ
†∂µΦ+ µ′2|Φ|2 − λ′|Φ|4 − λ′′|Φ|2|H|2. (4.144)

We have two CP-even mass eigenstates which are linear combinations of H and Φ with the

mixing angle θH : (
h

H

)
=

(
cos θH − sin θH
sin θH cos θH

)(
HCP even, neutral

ΦCP even, neutral

)
, (4.145)

where we denote the Higgs fields in the right handed side as CP-even neutral components.

The lighter mass eigenstate is identified to the observed Higgs boson, i.e. mh = 126 [GeV],

which requires sin2 θH < 0.5. With respect to the Higgs couplings, all we need is the

mixing angle to describe the couplings. We can express the couplings of the CP-even mass

eigenstate in unit of those of the SM Higgs:

g2h = cos2 θHg
2
SM (4.146)

g2H = sin2 θHg
2
SM . (4.147)
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The deviation of the Higgs couplings from the SM is

d(hXX) = −sin2 θH
2

. (4.148)

The striking feature of this model is that all of the Higgs couplings are changed in the same

way.

The experimental constraints come from the direct detection of H and the EW pre-

cision tests. In this thesis we focus on the region where the direct detection cannot be

achieved and the EW precision tests are satisfied. In according to the Ref. [58], this

requirement restricts the mixing parameter as sin2 θH < 0.11; hence the amount of the

deviation of the Higgs coupling is within 6%.

4.3 Model discrimination using the correlation of Higgs couplings

In this section we compare the deviations of the Higgs couplings among the models we

studied in the previous sections. As we emphasized, the correlations of the deviations are

important for the model discrimination because they could extract the peculiar information

of the model we consider. We focus on the correlation between the hZZ and hbb coupling

deviations for the tree level process. The hZZ mode is a well-measurable mode at the

LHC and ILC; the hWW mode is not considered because the sensitivity of this mode is

similar to that of the hZZ mode. The hbb mode can be measured with high sensitivity at

the ILC, and bb final state is a main decay mode of the Higgs boson. For the loop induced

process, we focus on the correlation between hgg, hγγ and hZγ coupling deviations. The

hgg mode is important for the production of the Higgs boson at the LHC and sensitive to

the new colored particles which interact with the Higgs boson. The hγγ mode gives us the

information of the Higgs mass and the new charged particles which interact with the Higgs

boson. The hZγ mode is not yet studied experimentally, but we can also use this mode for

new physics search. Although the branching ratios of these modes are relatively small, the

loop process is useful to discriminate the models which are degenerate at tree level. We

investigate on the experimental accessibility of the model discrimination by using the date

of the Ref. [15].

First we consider the correlation between the deviations of the hbb and hZZ couplings

at the LHC. In this section we denote the numerical results of the MCHM5 and the RS

model as blue and red points respectively while the extra singlet Higgs model which ca be

analytically studied is expressed by the green line. Experimental sensitivities are shown by

the black line, and we can survey the region outside the line from the origin (0, 0) which

is corresponding to the SM case. Due to the small deviations, we cannot observe the tree

level couplings at the LHC. In the MCHM5 the bottom yukawa coupling is almost the

same as that of the SM as we saw. For the RS and extra singlet Higgs models, the tree

level coupling deviations are determined only by the mixing angle; hence the correlation

shows the same behavior and the red points are on the green line in the figure.
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Figure 20. The correlation between the coupling deviations of the hbb and hZZ couplings. The

blue point, red point and green line denote the MCHM5, the RS model and the extra singlet Higgs

model, respectively. The red points are on the green line because only the mixing angle determines

the deviations for both models. The black dashed line gives the 1σ interval sensitivity of the LHC

14 [TeV] with 300 [fb−1]. This line means that we can probe the region outside the line from the

origin (0, 0). We find we cannot observe the deviations at the LHC.

Next we investigate the correlation between the deviations of the hγγ and hgg couplings

at the LHC. We find that the hgg coupling is promising for the search of the MCHM5 and

RS models. For the MCHM5 we can investigate f up to about 1100 [GeV]. The interesting

point is the different behavior of the hγγ coupling deviation. As we saw it cannot be large to

detect in the MCHM5; however the RS model shows it can possibly be large to be observed

in the positive direction. This is because the contribution of the KK mode can be opposite

to that of the SM by changing the wave function profile; the bulk mass parameters cL and

cR are independent and can especially have the opposite signs. Therefore the deviations

of the hγγ and hgg couplings show the negative correlation. Using the correlation, we

perhaps distinguish the RS model from the MHCM5 if the negative d(hgg) and positive

d(hγγ) are observed within the prediction of the model. No deviation can be found in the

extra singlet Higgs model.

Then we study the correlation between the deviations of the hbb and hZZ couplings

at the ILC. In this thesis we use the ILC sensitivity of the coupling measurements for the

250 [GeV] with 300 [fb−1] and 1000 [GeV] with 1000 [fb−1] cases. Because of the high

sensitivity of the ILC experiment, we can probe the very wide parameter region using this

correlation. For the MHCM5 with f below 2000 [GeV], we definitely observe the modified

hZZ coupling at the ILC1000 while the hbb coupling deviation can be never seen because

the coupling is almost the same as the SM case. On the other hand, both of the deviations

can be detected in the RS and extra singlet Higgs models if the mixing angle is not too tiny;

for the extra singlet Higgs model we can investigate the mixing angle as sin2 θh ≥ 0.012.

– 64 –



-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10

-0.10

-0.05

0.00

0.05

dHhggL

dH
hΓ
Γ
L

LHC14

Extra singlet

RS

MCHM5

Figure 21. The correlation between the coupling deviations of the hγγ and hgg couplings. The

blue point, red point and green line denote the MCHM5, the RS model and the extra singlet Higgs

model, respectively. The result of the Higgs low energy theorem limit for the MCHM5 is expressed

as the yellow line. The black dashed line gives the 1σ interval sensitivity of the LHC 14 [TeV] with

300 [fb−1]. This line means that we can probe the region outside the line from the origin (0, 0).

The deviations of the extra singlet Higgs model are too small to observe. On the other hand, the

hgg coupling is promising for the MCHM5 and the RS model.

We find that in any case the RS and extra singlet Higgs models can be distinguished from

the MCHM5 because the case where the hZZ coupling deviation is observed alone is only

possible in the MCHM5. This is due to the great sensitivity of the hbb coupling at the ILC

experiment.

The correlation between the deviations of the hγγ and hgg couplings at the ILC is

also useful for the model discrimination. The hgg mode is quite powerful for the MCHM5;

at the ILC250 the decay constant can be searched up to about 1500 [GeV], and at the

ILC1000 we can absolutely detect the deviation. The difference of the correlations of the

RS and extra singlet Higgs models is available to discriminate them. For the RS model,

the hγγ coupling deviation could be large because of the KK contribution even in the small

mixing region. On the other hand, for the extra singlet Higgs model negative d(hγγ) could

be observed. Therefore this correlation resolves the degeneracy of the RS and extra singlet

Higgs models at the tree level.

Finally we also show the result of the correlation of the hγγ and hZγ couplings. For

this study we use the result of the TLEP with
√
s = 350 [GeV] and 2600 [fb−1] [59], which

is the best sensitivity proposed at the present. Since the hZγ mode is not well studied

experimentally, we naively expect that the sensitivity of this mode is different by only the

statistics compared with the hγγ mode. The branching ratio of the h→ Zγ mode is about

two-thirds of the h→ γγ mode, and we cannot use the invisible decay of the Z boson whose
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Figure 22. The correlation between the coupling deviations of the hbb and hZZ couplings. The

blue point, red point and green line denote the MCHM5, the RS model and the extra singlet Higgs

model, respectively. The red point is on the green line because only the mixing angle determines

the deviations for both models. The black thin (thick) line gives the 1σ interval sensitivity of the

ILC 250 [GeV] with 300 [fb−1] (1000 [GeV] with 1000 [fb−1]). This line means that we can probe

the region outside the line from the origin (0, 0). Due to the high sensitivity at the ILC, we can

measure the deviations in the wide parameter regions of each model.
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Figure 23. The correlation between the coupling deviations of the hγγ and hgg couplings. The

blue point, red point and green line denote the MCHM5, the RS model and the extra singlet Higgs

model, respectively. The result of the Higgs low energy theorem limit for the MCHM5 is expressed

as the yellow line. The black thin (thick) line gives the 1σ interval sensitivity of the ILC 250 [GeV]

with 300 [fb−1] (1000 [GeV] with 1000 [fb−1]). This line means that we can probe the region outside

the line from the origin (0, 0). The hgg mode is quite powerful, and the positive deviation of the

hγγ coupling is useful to distinguish the RS model and the extra singlet Higgs model.
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branching ratio is about 20 %; the error of the coupling measurement is expected to be
√

15
8

times of the hγγ one13. If we have such a good sensitivity, this mode is also interesting for

new physics search. For the MCHM5, the hZγ mode can be searched up to about f = 1200

[GeV]. We find the hZγ deviation shows different behavior compared with the hγγ case

for the RS model. The reason why is that the possible wave function profile is asymmetric

for the positive and negative values, and the relative sign of the fermionic contribution to

hγγ and hZγ is opposite. Therefore the plots shows the negative correlation.
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Figure 24. The correlation between the coupling deviations of the hγγ and hZγ couplings. The

blue point, red point and green line denote the MCHM5, the RS model and the extra singlet Higgs

model, respectively. The result of the Higgs low energy theorem limit for the MCHM5 is expressed

as the yellow line. The gray line gives the 1σ interval sensitivity of the TLEP 350 [GeV] with 2600

[fb−1]. This line means that we can that we can probe the region outside the line from the origin

(0, 0). The future experiment gives us interesting possibilities for the measurement of the hγγ and

hZγ modes.

4.4 Conclusions

After the discovery of the Higgs boson, the precise study of the Higgs property is becoming

important and interesting. Some of the Higgs couplings are observed at the LHC; then the

parameter fitting of the theories we are interested in becomes possible [60]. It is important

to examine the modified Higgs couplings of models beyond the SM and to clarify the

correlation of the couplings in order to discriminate the models.

We have studied the modified Higgs couplings for the three explicit model: the MCHM5,

the RS model, the extra singlet Higgs model. We especially focused on the MCHM5 and

computed the tree level and the one-loop level (effective) couplings including exact mass

dependences of all fermionic resonances. The constrains of the EW precision tests and

13 In addition the hadronic decay of the Z boson is not easy for experimental analysis.
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the CKM matrix element |Vtb| are imposed, and the possible range of the decay widths

with/without the constraints are shown. We have found that the finite mass effect of the

heavy fermions is small except for the hZγ mode, and the Higgs low energy theorem limit

well describes the modified couplings. In the MCHM5, the hZZ and hgg modes are promis-

ing to be observed at the collider experiments, and the hZγ mode is also an interesting

target at the future collider experiments.

We have shown the correlation of the deviations of both the tree level couplings and the

loop induced effective couplings. At the LHC, the deviations of the hγγ and hgg couplings

are useful to investigate the MCHM5 and RS models. In some region we can observe both

d(hγγ) and d(hgg) for the RS model, which can be a discriminator of these models. At the

ILC we can discriminate the three models in the wide parameter regions; especially we can

investigate the decay constant up to about 2000 [GeV] for the MCHM5 and the mixing

angle up to 0.012 for the other models. Using the correlation of the tree level couplings,

we can distinguish the MCHM5 from the other models. In addition, the correlation of

hγγ-hgg modes allows us to discriminate the RS model and the extra singlet Higgs model

because in the RS model the KK mode contribution could enhance the hγγ coupling in the

positive direction while the extra singlet Higgs model always show the negative deviation.

Let us comment on the SUSY model. Since the number of model parameters is large,

it is difficult to determine the general features of coupling correlations using a small DOFs.

However, tree level couplings can be investigated generally by treating the quantum cor-

rections to the Higgs mass matrix as parameters. According to the Ref. [58], the deviation

of the hbb coupling tends to be positive, which is a strong discriminator for the comparison

with the three models we studied.

We have clarified the importance and usefulness of the correlation of the Higgs cou-

plings. It is important to study the modified Higgs couplings for more models and to

investigate discrimination possibilities of the models at the future collider experiments.

5 Concluding remarks

The LHC has discovered the Higgs boson, and the next important step would be to mea-

sure accurately its properties. Many models beyond the SM predict the modified Higgs

interactions which may produce indirect signals of new physics. It is important to study

the features of the signals for each model and to clarify how we can discriminate models

at the future collider experiments.

In this thesis we focused on the two aspects of the Higgs interactions. The first one

is the perturbative unitarity of the scattering amplitudes of the scalar particles. This is

directly connected with the mechanism of the EW symmetry breaking. If the coupling

between the Higgs boson and the longitudinal gauge boson deviates from that of the SM,

the unitarity breaks down at some high energy, which indicates the energy scale of new

physics. The second one is the deviations of the Higgs couplings. In the SM all couplings to

other particles are determined by the mass parameters which are already known. Therefore,
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the deviation of Higgs couplings is a clear evidence of physics beyond the SM, and the future

experiment can measure it about typically O(1) % precision.

In the chapter 3 we studied the perturbative unitarity violation caused by the dimension-

six Higgs derivative interactions. The theory which modifies the Higgs sector would produce

these interactions in the low energy effective theory, and the scattering amplitudes of the

scalar particles grow with the energy. A more fundamental theory has to replace the effec-

tive theory before reaching at least the energy scale of the unitarity violation. We focused

on one and two Higgs doublets case and gave the formula of the unitarity bound in terms

of the parameters of the Lagrangian. The strongest bound is obtained from the largest

eigenvalue of the scattering amplitude matrices which consist of the charge-conserving

two-body to two-body scattering processes. We actually estimated the violation scales

in various models and found them to be rather low, especially in the two doublets case,

compared with the naive dimensional analysis.

In the chapter 4 we examined the deviations of Higgs couplings in the three models:

the MCHM5, the RS mode, the extra singlet Higgs model. We focused on the MCHM5

and computed the tree level and the one-loop level (effective) couplings of the Higgs boson

including the exact mass dependences of all heavy fermionic resonances. We found that

the effect of the heavy resonances is small, and the Higgs low energy theorem limit is

good approximation, except for the hZγ mode. We clarified the correlation of the Higgs

couplings for each model, which is found to be quite powerful to discriminate the models.

In particular, the high sensitivity of coupling measurements at the ILC permits us to

distinguish the models in most parameter regions we consider.

Era of the precision measurement of Higgs physics has begun. The precise measure-

ment of the Higgs properties provides a rich variety of new physics search; this kind of

indirect search is complementary to the direct search. By clarifying the properties, we

could get hints for Higgs physics beyond the SM: the origin of the EW symmetry break-

ing, the structure of the yukawa couplings and the meaning of the fine tuning, etc. These

information could be a foothold for a more fundamental theory of the nature. Therefore,

Higgs physics is one of the most interesting targets of the future collider experiments. It is

important to study how we determine the new physics scenario using the high sensitivity

of the experiments. In future we will obtain more and more data; we expect we can find

the physics beyond the SM by using them.
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A Loop functions and special functions

In this appendix we collect the definitions of various functions.

Loop functions used in the calculation of the decay widths are defined as follows:

A1(τ) =− τ2[2τ−2 + 3τ−1 + 3(2τ−1 − 1)f(τ)], (A.1)

A1/2(τ) = 2τ2[τ−1 + (τ−1 − 1)f(τ)], (A.2)

A0(τ) =− τ2[τ−1 − f(τ)], (A.3)

AV (mV ) = 2

(
m2
h

m2
V

(1− 2c2W ) + 2(1− 6c2W )

)
C2(mV ) + 4(1− 4c2W )C0(mV ), (A.4)

AF (m1,m2) =C0(m1,m2,m2) + C1(m1,m2,m2)− C1(m2,m1,m1)

+ 2C2(m1,m2,m2) + 2C2(m2,m1,m1), (A.5)

where

C2(ma) =
λaτa

8m2
a(λa − τa)

+
λaτ

2
a

8m2
a(λa − τa)2

(λa(f(λa)− f(τa)) + 2(F (λa)− F (τa))) ,

(A.6)

C0(ma) = −
λaτa

2m2
a(λa − τa)

(f(λa)− f(τa)), (A.7)

C1(m1,m2,m2) ≡ C11(m
2
Z , 0,m

2
h;m1,m2,m2)

=
B0(m

2
h;m1,m2)−B0(m

2
Z ;m1,m2)

m2
Z −m2

h

− C0(m
2
Z , 0,m

2
h;m1,m2,m2),

(A.8)

C2(m1,m2,m2) = C12(m
2
Z , 0,m

2
h;m1,m2,m2) + C23(m

2
Z , 0,m

2
h;m1,m2,m2)

=
m2

1 −m2
2 −m2

Z

2(m2
Z −m2

h)
2

[
B0(m

2
h;m1,m2)−B0(m

2
Z ;m1,m2)

]
+

1

2(m2
Z −m2

h)m
2
h

[
m2
h + 2m2

2m
2
hC0(m

2
Z , 0,m

2
h;m1,m2,m2)

+ (m2
2 −m2

1)B0(m
2
h;m1,m2) +A0(m1)−A0(m2)

]
. (A.9)
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Here we define λa = (2ma/mZ)
2, τa = (2ma/mh)

2 and

f(τ) =

arcsin2
√

1
τ , τ ≥ 1,

−1
4

(
Log 1+

√
1−τ

1−
√
1−τ − iπ

)2
, τ < 1,

(A.10)

F (τ) =


√
τ − 1 arcsin

√
1
τ , τ ≥ 1,

√
1−τ
2

(
log 1+

√
1+τ

1−
√
1−τ − iπ

)
, τ < 1.

(A.11)

The expressions of the scalar one-, two-, three- point functions A0, B0 and C0 are

A0(m) = m2

[
1− log

m2

µ2

]
, (A.12)

B0(p
2,m1,m2) = 2− log

m1m2

µ
+
m2

1 −m2
2

p2
log

m2

m1

+
λ1/2(p2,m2

1,m
2
2)

p2
log

m2
1 +m2

2 − p2 + λ1/2(p2,m2
1,m

2
2)

2m1m2
,

(A.13)

C0(M
2
2 , 0,M

2
1 ;m1,m2,m2) =

1

M2
1 −M2

2

2∑
i=1

∑
σ=±1

(−1)iLi2
[

2M2
i

m2
2 −m2

1 +M2
i + σλ1/2(M2

i ,m
2
1,m

2
2)

]
,

(A.14)

where µ is renormalization scale, and the ultraviolet poles in A0 and B0 are subtracted

since the amplitudes are finite; λ is the usual two-body phase space function: λ(x, y, z) =

x2 + y2 + z2 − 2(xy + yz + xz).
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We also define loop functions appeared in the calculation of the ϵ parameters:

θ+(x1, x2) = x1 + x2 −
2x1x2
x1 − x2

log
x1
x2
− 2(x1 log x1 + x2 log x2) +

x1 + x2
2

∆,

(A.15)

θ−(x1, x2) = 2
√
x1x2

(
x1 + x2
x1 − x2

log
x1
x2
− 2 + log(x1x2)−

∆

2

)
, (A.16)

FSM (m) =

m2

m2
W

8 sin2 θW

(
m2

m2
W
− 1
)2 ( m4

m4
W

− 7
m2

m2
W

+ 6 +

(
3
m2

m2
W

+ 2

)
log

m2

m2
W

)
,

(A.17)

F1(gL, gR,m) =
1

8 sin2 θW

 m2

m2
W

gL

2− 4
m2

m2
W
− 1

log
m2

m2
W


− m2

m2
W

gR

∆+
2 m2

m2
W
− 5

m2

m2
W
− 1

+

m4

m4
W
− 2 m2

m2
W

+ 4(
m2

m2
W
− 1
)2 log

m2

m2
W


 , (A.18)

F2(gL, gR,m1,m2) =
1

8 sin2 θW

(
m2

2

m2
W
− m2

1

m2
W

){

2gL

 m2
1

m2
W
− 1

m2
2

m2
W
− 1

m4
2

m4
W

log
m2

2

m2
W

−
m2

2

m2
W
− 1

m2
1

m2
W
− 1

m4
1

m4
W

log
m2

1

m2
W

− 2gR

√
m2

1

m2
W

m2
2

m2
W

(

(∆ + 1)

(
m2

2

m2
W

− m2
1

m2
W

)
+

m2
2

m2
W
− 4

m2
2

m2
W
− 1

m2
2

m2
W

log
m2

2

m2
W

−
m2

1

m2
W
− 4

m2
1

m2
W
− 1

m2
1

m2
W

log
m2

1

m2
W

)}
,

(A.19)

where ∆ is the divergent part which we don’t specify its explicit form because the divergence

cancels out.

The Bessel functions of the first and second kind are the following:

Jν(z) =
(z
2

)ν ∞∑
k=0

(−1)k

(
z2

4

)k
k!Γ(ν + k + 1)

, (A.20)

Yν(z) =
Jν(z) cos(νπ)− J−ν(z)

sin(νπ)
. (A.21)

Their derivatives with respect to order are defined as

∂Jν(z)

∂ν
= Jν(z) log

z

2
−
(z
2

)ν ∞∑
k=0

(−)kψ(ν + k + 1)

Γ(ν + k + 1)

(
4
z2

)k
k!

, (A.22)

∂Yν(z)

∂ν
= cot(νπ)

(
∂Jν(z)

∂ν
− πYν(z)

)
− csc(νπ)

∂J−ν(z)

∂ν
− πJν(z), (A.23)
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where ψ(z) = Γ′(z)/Γ(z).

B Unitarity matrices and other bounds

Here we derive the matrices given by the zeroth modes of partial wave amplitudes for

various VBS processes in 2HDMs. Using the largest eigenvalue of each, the perturbative

unitarity bound is obtained with Eq. (3.30).

B.1 Neutral two-body states

The matrix for partial wave amplitudes of neutral two-body states is shown here. Initial

and final states are given by eight states, namely, C+
1 C

−
1 , C+

1 C
−
2 , C+

2 C
−
1 , C+

2 C
−
2 , N1N

†
1 ,

N1N
†
2 , N2N

†
1 and N2N

†
2 . If all of the coefficients, except for cH1111, are turned off, the matrix
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becomes the one in the case of 1HDM given in Eq. (3.11).

3cT1111+c
H
1111

2
3cT1112+c

H
1112

2
3cT1112+c

H
1112

2
3cT1221−cH1221+2cH1122

2

3cT1112+c
H
1112

2
3cT1122+2cH1221−cH1122

2
3cT1212+c

H
1212

2
3cT2221+c

H
2221

2

3cT1112+c
H
1112

2
3cT1212+c

H
1212

2
3cT1122+2cH1221−cH1122

2
3cT2221+c

H
2221

2

3cT1221−cH1221+2cH1122
2

3cT2221+c
H
2221

2
3cT2221+c

H
2221

2
3cT2222+c

H
2222

2

cH1111 cH1112 cH1112 cH1122

cH1112 cH1221 cH1212 cH2221

cH1112 cH1212 cH1221 cH2221

cH1122 cH2221 cH2221 cH2222

cH1111 cH1112 cH1112 cH1122

cH1112 cH1221 cH1212 cH2221

cH1112 cH1212 cH1221 cH2221

cH1122 cH2221 cH2221 cH2222

3cT1111+c
H
1111

2
3cT1112+c

H
1112

2
3cT1112+c

H
1112

2
3cT1221−cH1221+2cH1122

2

3cT1112+c
H
1112

2
3cT1122+2cH1221−cH1122

2
3cT1212+c

H
1212

2 cT2221

3cT1112+c
H
1112

2
3cT1212+c

H
1212

2
3cT1122+2cH1221−cH1122

2 cT2221

3cT1221−cH1221+2cH1122
2 cT2221 cT2221

3cT2222+c
H
2222

2



. (B.1)

If we impose SO(4) symmetry on the above matrix and eliminate cT1122 and cT1212 with
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Eqs. (C.12) and (C.13), the matrix is simplified as follows:

cH1111
2

cH1112
2

cH1112
2

3cT1221−cH1221+2cH1122
2

cH1112
2

cH1221+c
H
1212−cH1122
2 −3cT1221−cH1221

2
cH2221
2

cH1112
2 −3cT1221−cH1221

2
cH1221+c

H
1212−cH1122
2

cH2221
2

3cT1221−cH1221+2cH1122
2

cH2221
2

cH2221
2

cH2222
2

cH1111 cH1112 cH1112 cH1122

cH1112 cH1221 cH1212 cH2221

cH1112 cH1212 cH1221 cH2221

cH1122 cH2221 cH2221 cH2222

cH1111 cH1112 cH1112 cH1122

cH1112 cH1221 cH1212 cH2221

cH1112 cH1212 cH1221 cH2221

cH1122 cH2221 cH2221 cH2222

cH1111
2

cH1112
2

cH1112
2

3cT1221−cH1221+2cH1122
2

cH1112
2

cH1221+c
H
1212−cH1122
2 −3cT1221−cH1221

2 0

cH1112
2 −3cT1221−cH1221

2
cH1221+c

H
1212−cH1122
2 0

3cT1221−cH1221+2cH1122
2 0 0

cH2222
2



. (B.2)

B.2 Singly charged two-body states

The matrix for the zeroth mode partial wave amplitudes of singly charged two-body states

is shown below. Initial and final states consist of the following four states: C+
1 N

†
1 , C

+
1 N

†
2 ,
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C+
2 N

†
1 , and C

+
2 N

†
2 :

−3cT1111+c
H
1111

2 −3cT1112+c
H
1112

2 −3cT1112+c
H
1112

2 −3cT1221+c
H
1221

2

−3cT1112+c
H
1112

2 −3cT1122+c
H
1122

2 −3cT1212+c
H
1212

2 −3cT2221+c
H
2221

2

−3cT1112+c
H
1112

2 −3cT1212+c
H
1212

2 −3cT1122+c
H
1122

2 −3cT2221+c
H
2221

2

−3cT1221+c
H
1221

2 −3cT2221+c
H
2221

2 −3cT2221+c
H
2221

2 −3cT2222+c
H
2222

2


. (B.3)

We explicitly impose SO(4) symmetry as in the case of the neutral states:

− cH1111
2 − cH1112

2 − cH1112
2 −3cT1221+c

H
1221

2

− cH1112
2

cH1221−cH1212−cH1122
2

3cT1221−cH1221
2 − cH2221

2

− cH1112
2

3cT1221−cH1221
2

cH1221−cH1212−cH1122
2 − cH2221

2

−3cT1221+c
H
1221

2 − cH2221
2 − cH2221

2 − cH2222
2


. (B.4)

B.3 Doubly charged two-body states

The entries of the following matrices are the coefficients of VBS processes for the doubly

charged states: C+
1 C

+
1 , C+

1 C
+
2 , and C+

2 C
+
2 . If processes have the same particles in their

final states, the unitarity bound becomes weak, as mentioned in the Subsec 2.3.1. The

effect has been included in the following matrix:
− cT1111−cH1111

2 cH1112 − cT1112 − cT1212−cH1212
2

− cT1112−cH1112
2 −3cT1221+3cT1122+c

H
1221+c

H
1122

2 − cT2221−cH2221
2

− cT1212−cH1212
2 cH2221 − cT2221 − cT2222−cH2222

2

 . (B.5)

We also impose SO(4) symmetry on the above:

cH1111
2 cH1112

3cT1221−cH1221+4cH1212
6

cH1112
2 −3cT1221+c

H
1212+c

H
1122

2
cH2221
2

3cT1221−cH1221+4cH1212
6 cH2221

cH2222
2

 . (B.6)
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C Custodial symmetry of derivative interactions

Dimension-six derivative interactions of Higgs doublets naively violate custodial symmetry.

We study the conditions of the derivative interactions that ensure symmetry in the case of

2HDMs. In the following discussion, we refer to results and notations in the Ref. [6, 61].

Derivative interactions are classified into three kinds of operators: operators includ-

ing unique indices are called type I, e.g. ∂(H†
1H1)∂(H

†
1H1); in type II, only one of four

doublets has a different index, e.g. ∂(H†
1H1)∂(H

†
1H2); the others belong to type III, e.g.

∂(H†
1H2)∂(H

†
2H1). For type I and II, current-current interactions, namely OT operators,

violate custodial symmetry because they produce additional contributions to the mass of

the Z boson. This is interpreted from a different viewpoint with the nonlinear representa-

tion. For type I, as studied in the Ref. [62], operators belonging to OT are built from the

generator of the hypercharge, i.e. the third generator of SU(2)R:

(hTR3∂h)(hTR3∂h) =
1

2
OT1111, (C.1)

where h is a real scalar multiplet that corresponds to the Higgs doublet. Since the generator

violates SO(4) symmetry, custodial symmetry cannot be preserved after the EW symmetry

breaking. In other words, operators that consist of SO(4) symmetric combinations of

generators produce the custodial symmetric derivative interactions. This is also the case

for operators of type II.14

For type III derivative interactions, the situation is different, that is, certain combina-

tions of SU(2)R violating operators recover SU(2)R symmetry. In this type, the following

operators produce real DOF of derivative interactions:

TLα11 T
Lα
22 =

1

4
(3OH1221 −OT1122 +OT1221), (C.2)

TLα12 T
Lα
12 =

1

2
(3OH1122 + 3OH1212 + 3OH2121 +OT1122 −OT1221), (C.3)

TRβ11 T
Rβ
22 =

1

4
(3OH1212 + 3OH2121 +OT1122 −OT1212 −OT2121), (C.4)

TRβ12 T
Rβ
12 =

1

2
(3OH1122 + 3OH1221 −OT1122 +OT1212 +OT2121), (C.5)

Sα312 S
α3
12 =

1

2
(3OH1122 − 3OH1212 − 3OH2121 +OT1122 −OT1221), (C.6)

Sαβ12 S
αβ
12 =

3

2
(2OH1122 −OH1221 −OH1212 −OH2121), (C.7)

TR3
11 T

R3
22 =

1

2
OT1122, (C.8)

TR3
12 T

R3
12 =

1

2
(OT1221 +OT1212 +OT2121), (C.9)

U12U12 =
1

2
(OT1221 −OT1212 −OT2121), (C.10)

14 It is also true for imaginary DOF of derivative interactions. Any imaginary DOF of coefficients violate,

in addition to CP symmetry, custodial symmetry. There are no relations to ensure custodial symmetry for

imaginary DOF, so we discuss only real DOF here.
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where XA
ij := (hXA

(i,j)∂h) and h includes eight real scalar fields interpreted as two Higgs

doublets. Generators TLα(i,j), T
Rβ
(i,j), S

αβ
(i,j) and U(i,j) are, respectively, (3,1), (1,3), (3,3), and

(1,1) representations of SU(2)L×SU(2)R. Explicit forms of these matrices are given in the

Ref. [6]. If we naively follow the discussion for type I and II, the coefficients of operators

(C.6), (C.8), and (C.9) should vanish for SO(4) symmetry. However, we have found that

some operators preserving SU(2)R can be given by a certain combination of operators

violating SU(2)R. Since these operators are not linearly independent of each other, several

relations are derived. In these relations, the above operators violating SU(2)R symmetry

appear with a certain proportional relation:

aS1212 : a
Y
1122 : a

Y
1212 = 1 : −2 : 1, (C.11)

where they are respectively coefficients of operators (C.6), (C.8) and (C.9). This condition

is expressed as

cT1122 + cT1221 + cT1212 =0, (C.12)

3cT1122 + cH1212 − cH1221 =0, (C.13)

where cH,Tijkl are defined as the coefficients ofOH,Tijkl . The result is consistent with the custodial

symmetric conditions shown in the Refs. [6].

The above analysis is easily extended to models including N Higgs doublets. In this

case, two other classes of derivative interactions should be defined: operators including

three deferent indices are called type IV, e.g. ∂(H†
iHj)∂(H

†
iHk); the other operators whose

indices are totally different from each other are classified as type V, e.g. ∂(H†
iHj)∂(H

†
kHl).

With similar discussions to those given above, the following proportional relations are

obtained:

aSijik : a
Y
iijk : a

Y
ijik = 1 : −2 : 1, (C.14)

aSijkl : a
S
ijkl : a

Y
ijkl : a

Y
ikjl : a

Y
iljk = 1 : −1 : 1 : −2 : 1, (C.15)

aSikjl : a
S
iljk : a

Y
ijkl : a

Y
ikjl : a

Y
iljk = 1 : 1 : −1 : 1 : 1, (C.16)

where aYijkl and a
S
ijkl are, respectively, coefficients of TR3

ij T
R3
kl and Sα3ij S

α3
kl , the first relation

is for type IV and the others are for type V. The following relations are induced for the

coefficients of the derivative interactions: for type IV,

cTiijk + cTijik + cTijki =0, (C.17)

3cTiijk + cHijki − cHijik =0; (C.18)

for type V,

cHijkl − cHijlk − cHikjl + cHiklj + cHiljk − cHilkj =0, (C.19)

3(cTijkl + cTijlk)− cHikjl + cHiklj − cHiljk + cHilkj =0, (C.20)

3(cTikjl + cTiklj)− cHijkl + cHijlk + cHiljk − cHilkj =0, (C.21)

3(cTiljk + cTilkj) + cHijkl − cHijlk + cHikjl − cHiklj =0. (C.22)

– 78 –



with without

I N 2N

II N(N − 1) 2N(N − 1)

III 2N(N − 1) 3N(N − 1)

IV 2N(N − 1)(N − 2) 3N(N − 1)(N − 2)

V N(N − 1)(N − 2)(N − 3)/3 N(N − 1)(N − 2)(N − 3)/2

Sum N2(N2 + 2)/3 N2(N2 + 3)/2

Table 3. Real DOF of dimension-six derivative interactions on models including N Higgs doublets

with/without SO(4) symmetry for each type.

After imposing these conditions to ensure SO(4) symmetry on the derivative interactions,

we get their remaining DOF. The result is shown in the Tab. 3.

References

[1] G. Aad et al. [ATLAS Collaboration], “Observation of a new particle in the search for the

Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B 716, 1

(2012) [arXiv:1207.7214 [hep-ex]]; S. Chatrchyan et al. [CMS Collaboration], “Observation of

a new boson at a mass of 125 GeV with the CMS experiment at the LHC,” Phys. Lett. B

716, 30 (2012) [arXiv:1207.7235 [hep-ex]].

[2] F. Englert and R. Brout, “Broken Symmetry and the Mass of Gauge Vector Mesons,” Phys.

Rev. Lett. 13, 321 (1964). P. W. Higgs, Phys. Lett. 12, 132 (1964).

[3] M. Gell-Mann, M. L. Goldberger, N. M. Kroll and F. E. Low, “Amelioration of divergence

difficulties in the theory of weak interactions,” Phys. Rev. 179, 1518 (1969). S. Weinberg,

“Physical Processes in a Convergent Theory of the Weak and Electromagnetic Interactions,”

Phys. Rev. Lett. 27, 1688 (1971). S. D. Joglekar, “S matrix derivation of the Weinberg

model,” Annals Phys. 83, 427 (1974). C. H. Llewellyn Smith, “High-Energy Behavior and

Gauge Symmetry,” Phys. Lett. B 46, 233 (1973). J. M. Cornwall, D. N. Levin and

G. Tiktopoulos, “Derivation of Gauge Invariance from High-Energy Unitarity Bounds on the

s Matrix,” Phys. Rev. D 10, 1145 (1974) [Erratum-ibid. D 11, 972 (1975)].

[4] B. W. Lee, C. Quigg and H. B. Thacker, “Weak Interactions at Very High-Energies: The

Role of the Higgs Boson Mass,” Phys. Rev. D 16 (1977) 1519. B. W. Lee, C. Quigg and

H. B. Thacker, “The Strength of Weak Interactions at Very High-Energies and the Higgs

Boson Mass,” Phys. Rev. Lett. 38, 883 (1977).

[5] G. F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, “The Strongly-Interacting Light

Higgs,” JHEP 0706, 045 (2007) [hep-ph/0703164].

[6] Y. Kikuta, Y. Okada and Y. Yamamoto, “Structure of dimension-six derivative interactions

in pseudo Nambu-Goldstone N Higgs doublet models,” Phys. Rev. D 85, 075021 (2012)

[arXiv:1111.2120 [hep-ph]].

[7] G. Aad et al. [ATLAS Collaboration], “Measurements of Higgs boson production and

couplings in diboson final states with the ATLAS detector at the LHC,” Phys. Lett. B 726,

88 (2013) [arXiv:1307.1427 [hep-ex]]. S. Chatrchyan et al. [CMS Collaboration], “Observation

– 79 –



of a new boson with mass near 125 GeV in pp collisions at
√
s = 7 and 8 TeV,” JHEP 1306,

081 (2013) [arXiv:1303.4571 [hep-ex]].

[8] K. Agashe, R. Contino and A. Pomarol, “The Minimal composite Higgs model,” Nucl. Phys.

B 719, 165 (2005) [hep-ph/0412089].

[9] L. Randall and R. Sundrum, “A Large mass hierarchy from a small extra dimension,” Phys.

Rev. Lett. 83, 3370 (1999) [hep-ph/9905221]. L. Randall and R. Sundrum, “An Alternative

to compactification,” Phys. Rev. Lett. 83, 4690 (1999) [hep-th/9906064].

[10] S. Weinberg, “A Model of Leptons,” Phys. Rev. Lett. 19, 1264 (1967).

[11] R. Belusevic and T. Higo, “A CLIC-Prototype Higgs Factory,” arXiv:1208.4956

[physics.acc-ph].

[12] D. M. Asner, T. Barklow, C. Calancha, K. Fujii, N. Graf, H. E. Haber, A. Ishikawa and

S. Kanemura et al., “ILC Higgs White Paper,” arXiv:1310.0763 [hep-ph].

[13] M. Spira, A. Djouadi, D. Graudenz and P. M. Zerwas, “Higgs boson production at the

LHC,” Nucl. Phys. B 453, 17 (1995) [hep-ph/9504378].

[14] SHeinemeyer et al. [LHC Higgs Cross Section Working Group Collaboration], “Handbook of

LHC Higgs Cross Sections: 3. Higgs Properties,” arXiv:1307.1347 [hep-ph].

[15] M. E. Peskin, “Comparison of LHC and ILC Capabilities for Higgs Boson Coupling

Measurements,” arXiv:1207.2516 [hep-ph].

[16] M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, “Measuring Higgs Couplings at a

Linear Collider,” Europhys. Lett. 101, 51001 (2013) [arXiv:1301.1322 [hep-ph]].

[17] J. Hisano and K. Tsumura, “Higgs boson mixes with an SU(2) septet representation,” Phys.

Rev. D 87, no. 5, 053004 (2013) [arXiv:1301.6455 [hep-ph]].

[18] M. S. Chanowitz and M. K. Gaillard, “The TeV Physics of Strongly Interacting W’s and

Z’s,” Nucl. Phys. B 261, 379 (1985).

[19] J. R. Ellis, M. K. Gaillard and D. V. Nanopoulos, “A Phenomenological Profile of the Higgs

Boson,” Nucl. Phys. B 106, 292 (1976). M. A. Shifman, A. I. Vainshtein, M. B. Voloshin and

V. I. Zakharov, “Low-Energy Theorems for Higgs Boson Couplings to Photons,” Sov. J.

Nucl. Phys. 30, 711 (1979) [Yad. Fiz. 30, 1368 (1979)].

[20] B. A. Kniehl and M. Spira, “Low-energy theorems in Higgs physics,” Z. Phys. C 69, 77

(1995) [hep-ph/9505225].

[21] R. Barbieri and A. Strumia, “The ’LEP paradox’,” hep-ph/0007265.

[22] M. Farina, D. Pappadopulo and A. Strumia, “A modified naturalness principle and its

experimental tests,” JHEP 1308, 022 (2013) [arXiv:1303.7244 [hep-ph]].

[23] Y. Kikuta and Y. Yamamoto, “Perturbative unitarity of Higgs derivative interactions,”

arXiv:1210.5674 [hep-ph].

[24] N. Arkani-Hamed, A. G. Cohen, E. Katz and A. E. Nelson, “The Littlest Higgs,” JHEP

0207, 034 (2002) [hep-ph/0206021]; H. -C. Cheng and I. Low, “TeV symmetry and the little

hierarchy problem,” JHEP 0309, 051 (2003) [hep-ph/0308199]; H. -C. Cheng and I. Low,

“Little hierarchy, little Higgses, and a little symmetry,” JHEP 0408, 061 (2004)

[hep-ph/0405243]; I. Low, “T parity and the littlest Higgs,” JHEP 0410, 067 (2004)

[hep-ph/0409025].

– 80 –



[25] N. Mahajan, “Littlest Higgs model and unitarity constraints,” hep-ph/0310098,

[26] S. Chang and H. -J. He, “Unitarity of little Higgs models signals new physics of UV

completion,” Phys. Lett. B 586, 95 (2004) [hep-ph/0311177].

[27] H. Georgi, “Generalized dimensional analysis,” Phys. Lett. B 298, 187 (1993)

[hep-ph/9207278].

[28] R. Contino, D. Marzocca, D. Pappadopulo and R. Rattazzi, “On the effect of resonances in

composite Higgs phenomenology,” JHEP 1110, 081 (2011) [arXiv:1109.1570 [hep-ph]].

[29] R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, “Strong Double Higgs

Production at the LHC,” JHEP 1005, 089 (2010) [arXiv:1002.1011 [hep-ph]].

[30] N. Arkani-Hamed, A. G. Cohen and H. Georgi, “(De)constructing dimensions,” Phys. Rev.

Lett. 86, 4757 (2001) [hep-th/0104005]; N. Arkani-Hamed, A. G. Cohen and H. Georgi,

“Electroweak symmetry breaking from dimensional deconstruction,” Phys. Lett. B 513, 232

(2001) [hep-ph/0105239]; N. Arkani-Hamed, A. G. Cohen, T. Gregoire and J. G. Wacker,

“Phenomenology of electroweak symmetry breaking from theory space,” JHEP 0208, 020

(2002) [hep-ph/0202089].

[31] M. Schmaltz, D. Stolarski and J. Thaler, “The Bestest Little Higgs,” JHEP 1009, 018 (2010)

[arXiv:1006.1356 [hep-ph]].

[32] T. Brown, C. Frugiuele and T. Gregoire, “UV friendly T-parity in the SU(6)/Sp(6) little

Higgs model,” JHEP 1106, 108 (2011) [arXiv:1012.2060 [hep-ph]].

[33] G. Aad et al. [ATLAS Collaboration], “Search for a heavy top-quark partner in final states

with two leptons with the ATLAS detector at the LHC,” arXiv:1209.4186 [hep-ex].

[34] R. Contino, C. Grojean, D. Pappadopulo, R. Rattazzi and A. Thamm, “Strong Higgs

Interactions at a Linear Collider,” arXiv:1309.7038 [hep-ph].

[35] M. Farina, C. Grojean and E. Salvioni, “(Dys)Zphilia or a custodial breaking Higgs at the

LHC,” JHEP 1207, 012 (2012) [arXiv:1205.0011 [hep-ph]].

[36] R. Barbieri, B. Bellazzini, V. S. Rychkov and A. Varagnolo, “The Higgs boson from an

extended symmetry,” Phys. Rev. D 76, 115008 (2007) [arXiv:0706.0432 [hep-ph]],

R. Contino, “A Holographic composite Higgs model,” hep-ph/0609148.

[37] R. Contino, L. Da Rold and A. Pomarol, “Light custodians in natural composite Higgs

models,” Phys. Rev. D 75, 055014 (2007) [hep-ph/0612048], M. S. Carena, E. Ponton,

J. Santiago and C. E. M. Wagner, “Light Kaluza Klein States in Randall-Sundrum Models

with Custodial SU(2),” Nucl. Phys. B 759, 202 (2006) [hep-ph/0607106], A. D. Medina,

N. R. Shah and C. E. M. Wagner, “Gauge-Higgs Unification and Radiative Electroweak

Symmetry Breaking in Warped Extra Dimensions,” Phys. Rev. D 76, 095010 (2007)

[arXiv:0706.1281 [hep-ph]], G. Panico, E. Ponton, J. Santiago and M. Serone, “Dark Matter

and Electroweak Symmetry Breaking in Models with Warped Extra Dimensions,” Phys. Rev.

D 77, 115012 (2008) [arXiv:0801.1645 [hep-ph]].

[38] A. Azatov and J. Galloway, “Light Custodians and Higgs Physics in Composite Models,”

Phys. Rev. D 85, 055013 (2012) [arXiv:1110.5646 [hep-ph]].

[39] M. Montull, F. Riva, E. Salvioni and R. Torre, “Higgs Couplings in Composite Models,”

Phys. Rev. D 88, 095006 (2013) [arXiv:1308.0559 [hep-ph]].

[40] G. Altarelli and R. Barbieri, “Vacuum polarization effects of new physics on electroweak

– 81 –



processes,” Phys. Lett. B 253, 161 (1991), G. Altarelli, R. Barbieri and S. Jadach, “Toward

a model independent analysis of electroweak data,” Nucl. Phys. B 369, 3 (1992)

[Erratum-ibid. B 376, 444 (1992)], G. Altarelli, R. Barbieri and F. Caravaglios,

“Nonstandard analysis of electroweak precision data,” Nucl. Phys. B 405, 3 (1993).

[41] S. Schael et al. [ALEPH and DELPHI and L3 and OPAL and SLD and LEP Electroweak

Working Group and SLD Electroweak Group and SLD Heavy Flavour Group

Collaborations], “Precision electroweak measurements on the Z resonance,” Phys. Rept. 427,

257 (2006) [hep-ex/0509008].

[42] T. E. W. Group [CDF and D0 Collaborations], “2012 Update of the Combination of CDF

and D0 Results for the Mass of the W Boson,” arXiv:1204.0042 [hep-ex].

[43] M. Gillioz, R. Grober, C. Grojean, M. Muhlleitner and E. Salvioni, “Higgs Low-Energy

Theorem (and its corrections) in Composite Models,” JHEP 1210, 004 (2012)

[arXiv:1206.7120 [hep-ph]].

[44] V. M. Abazov et al. [D0 Collaboration], “Evidence for s-channel single top quark production

in pp̄ collisions at
√
s = 1.96 TeV,” arXiv:1307.0731 [hep-ex].

[45] T. E. W. Group [CDF and D0 Collaborations], “Combination of CDF and D0 Measurements

of the Single Top Production Cross Section,” arXiv:0908.2171 [hep-ex].

[46] C. Anastasiou, E. Furlan and J. Santiago, “Realistic Composite Higgs Models,” Phys. Rev.

D 79, 075003 (2009) [arXiv:0901.2117 [hep-ph]].

[47] M. Carena, I. Low and C. E. M. Wagner, “Implications of a Modified Higgs to Diphoton

Decay Width,” JHEP 1208, 060 (2012) [arXiv:1206.1082 [hep-ph]].

[48] A. Azatov, R. Contino, A. Di Iura and J. Galloway, “New Prospects for Higgs Compositeness

in h → Z gamma,” arXiv:1308.2676 [hep-ph].

[49] W. D. Goldberger and M. B. Wise, “Modulus stabilization with bulk fields,” Phys. Rev.

Lett. 83, 4922 (1999) [hep-ph/9907447].

[50] C. Csaki, M. L. Graesser and G. D. Kribs, “Radion dynamics and electroweak physics,”

Phys. Rev. D 63, 065002 (2001) [hep-th/0008151].

[51] H. Davoudiasl, J. L. Hewett and T. G. Rizzo, “Bulk gauge fields in the Randall-Sundrum

model,” Phys. Lett. B 473, 43 (2000) [hep-ph/9911262]. A. Pomarol, “Gauge bosons in a

five-dimensional theory with localized gravity,” Phys. Lett. B 486, 153 (2000)

[hep-ph/9911294]. T. Gherghetta and A. Pomarol, “Bulk fields and supersymmetry in a slice

of AdS,” Nucl. Phys. B 586, 141 (2000) [hep-ph/0003129]. S. Chang, J. Hisano, H. Nakano,

N. Okada and M. Yamaguchi, “Bulk standard model in the Randall-Sundrum background,”

Phys. Rev. D 62, 084025 (2000) [hep-ph/9912498].

[52] S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, “Flavor Physics in the

Randall-Sundrum Model: I. Theoretical Setup and Electroweak Precision Tests,” JHEP

0810, 094 (2008) [arXiv:0807.4937 [hep-ph]]. M. Bauer, S. Casagrande, U. Haisch and

M. Neubert, “Flavor Physics in the Randall-Sundrum Model: II. Tree-Level

Weak-Interaction Processes,” JHEP 1009, 017 (2010) [arXiv:0912.1625 [hep-ph]].

[53] H. Kubota and M. Nojiri, “Radion-higgs mixing state at the LHCwith the KK contributions

to the production and decay,” Phys. Rev. D 87, 076011 (2013) [arXiv:1207.0621 [hep-ph]].

[54] C. Csaki, J. Hubisz and S. J. Lee, “Radion phenomenology in realistic warped space

models,” Phys. Rev. D 76, 125015 (2007) [arXiv:0705.3844 [hep-ph]].

– 82 –



[55] M. Carena, S. Casagrande, F. Goertz, U. Haisch and M. Neubert, “Higgs Production in a

Warped Extra Dimension,” JHEP 1208, 156 (2012) [arXiv:1204.0008 [hep-ph]].

[56] D. Dominici, B. Grzadkowski, J. F. Gunion and M. Toharia, “The Scalar sector of the

Randall-Sundrum model,” Nucl. Phys. B 671, 243 (2003) [hep-ph/0206192]. V. Barger and

M. Ishida, “Randall-Sundrum Reality at the LHC,” Phys. Lett. B 709, 185 (2012)

[arXiv:1110.6452 [hep-ph]]. B. Grzadkowski, J. F. Gunion and M. Toharia, “Higgs-Radion

interpretation of the LHC data?,” Phys. Lett. B 712, 70 (2012) [arXiv:1202.5017 [hep-ph]].

H. de Sandes and R. Rosenfeld, “Radion-Higgs mixing effects on bounds from LHC Higgs

Searches,” Phys. Rev. D 85, 053003 (2012) [arXiv:1111.2006 [hep-ph]].

[57] K. Agashe, R. Contino, L. Da Rold and A. Pomarol, “A Custodial symmetry for Zb anti-b,”

Phys. Lett. B 641, 62 (2006) [hep-ph/0605341]. C. Csaki, A. Falkowski and A. Weiler, “The

Flavor of the Composite Pseudo-Goldstone Higgs,” JHEP 0809, 008 (2008) [arXiv:0804.1954

[hep-ph]]. O. Gedalia, G. Isidori and G. Perez, “Combining Direct & Indirect Kaon CP

Violation to Constrain the Warped KK Scale,” Phys. Lett. B 682, 200 (2009)

[arXiv:0905.3264 [hep-ph]].

[58] R. S. Gupta, H. Rzehak and J. D. Wells, “How well do we need to measure Higgs boson

couplings?,” Phys. Rev. D 86, 095001 (2012) [arXiv:1206.3560 [hep-ph]].

[59] M. Bicer, H. Duran Yildiz, I. Yildiz, G. Coignet, M. Delmastro, T. Alexopoulos, C. Grojean

and S. Antusch et al., “First Look at the Physics Case of TLEP,” arXiv:1308.6176 [hep-ex].

[60] K. Cheung, J. S. Lee and P. -Y. Tseng, “Higgs Precision (Higgcision) Era begins,” JHEP

1305, 134 (2013) [arXiv:1302.3794 [hep-ph]].

[61] J. Mrazek, A. Pomarol, R. Rattazzi, M. Redi, J. Serra and A. Wulzer, “The Other Natural

Two Higgs Doublet Model,” Nucl. Phys. B 853, 1 (2011) [arXiv:1105.5403 [hep-ph]].

[62] I. Low, R. Rattazzi and A. Vichi, “Theoretical Constraints on the Higgs Effective

Couplings,” JHEP 1004, 126 (2010) [arXiv:0907.5413 [hep-ph]].

– 83 –


