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ABSTRACT

Black objects lose their mass and angular momenta through evaporation by
Hawking radiation, and the investigation of their time evolution has a long his-
tory. In this thesis, after reviewing previous studies on the time evolution of
evaporating black holes, we study this problem for a five-dimensional doubly
spinning black ring. We consider a thin black ring with a small thickness pa-
rameter, λ ≪ 1, which can be approximated by a boosted Kerr string locally.
For simplicity, we concentrate on the case in which the black objects emit only
massless scalar particles. We show that a thin black ring evaporates with fixing
its thickness parameter λ. Further, in the case of an Emparan-Reall black ring,
we derive analytic formulas for the time evolution, which has one parameter
to be evaluated numerically. By developing a numerical code, we determine
the value of this parameter with sufficient numerical accuracy. We demonstrate
that the lifetime of a thin black ring is shorter by a factor of O(λ2) compared
to a five-dimensional Schwarzschild black hole with the same initial mass. We
also evaluate the energy and angular spectra of radiated particles in the evapo-
ration of a thin Emparan-Reall black ring. In addition to the evaporation of a
thin black ring approximated by a boosted black string, we also discuss evap-
oration of a thin five-dimensional unboosted Schwarzschild black string whose
Schwarzschild radius 2MK is much smaller than the compactification scale L
along the string direction. We study the time evolution of its mass and the en-
ergy spectrum of emitted particle from the black string, and compare them with
those of a four-dimensional Schwarzschild black hole. We show that the energy
emission rate of a black string is larger by a factor of O(L/MK) compared to
that of a black hole.
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1 Introduction

In four spacetime dimensions, a stationary, asymptotically flat, vacuum black
hole is completely characterized by its mass and spin angular momentum[1]. In
particular, the topology of its event horizon must be a sphere [2]. By contrast, in
five dimensions, in addition to the Myers-Perry black hole [3] which is a natural
generalization of the four-dimensional Kerr black hole, various exact solutions of
black objects with nonspherical horizon topologies have been found [4, 5, 6, 7,
8](see [9] for a review). In this thesis, we focus attention to black ring solutions
with the S1×S2 horizon topology. A black ring solution rotating in the direction
of S1 was found by Emparan and Reall [4]. Since a five-dimensional spacetime
can have two angular momenta, Pomeransky and Sen’kov [10] extended it to a
solution with two independent rotation parameters (i.e., spinning both in the
directions of S1 and S2).

A black hole is known to evaporate due to quantum effects of fields in curved
spacetime as shown by Hawking [11]. The rate of mass and angular momentum
loss by the Hawking radiation for a Kerr black hole was first studied by Page
[12, 13] taking account of fields with spins 1/2, 1, and 2, and it was shown
that a Kerr black hole spins down to a nonrotating black hole regardless of its
initial state. However, Chambers et al. [14] (see also [15]) showed that if only
a massless scalar field is taken into account (i.e., in the absence of fields with
nonzero spin), a four-dimensional Kerr black hole evolves to a state with the
nonvanishing nondimensional rotation parameter, a/M ≃ 0.555. This analysis
was extended to five-dimensional Myers-Perry black holes by Nomura et al [16].
They showed that any such black hole with nonzero rotation parameters a and b
evolves toward an asymptotic state with a/M1/2 = b/M1/2 ≃ 0.1975(8/3π)1/2.
Here, this value is independent of the initial values of a and b.

It is interesting to extend these studies to the case of a black ring. Although
the Hawking radiation of black rings has been studied in various context [17,
18, 19, 20], the time evolution of a black ring has not been studied up to now.
The difficulty in this study is that the method of mode decomposition of the
Klein-Gordon field in this spacetime is not known since separation of variables
has not been realized, and therefore, two-dimensional numerical calculations of
eigenfunctions are required. In order to avoid this difficulty, we consider a thin
black ring with a small thickness parameter, λ ≪ 1. Here, “thin” or the small
thickness parameter λ means that the S2 radius is much smaller compared to
the S1 radius. In such a situation, a black ring can be approximated by a
boosted black string. Then, the separation of variables for the scalar field can
be done, and we have well defined modes.

Using this thin-limit approximation, we give a formulation to study the
evolution of a thin Pomeransky-Sen’kov black ring by the Hawking radiation,
and discuss general features that do not depend on details of the greybody
factor. Then, we apply our method to a special case of the Emparan-Reall
black ring without S2 rotation, and derive a semi-analytic formula for the time
evolution of the evaporation. Here, the formula is semi-analytic in the sense that
the evolution is expressed by analytic formulas but they include one parameter

3



related to the greybody factors that have to be evaluated numerically. By
developing a numerical code, we also determine the value of this parameter
with sufficient numerical accuracy.

In addition to the time evolution, we present numerical results on detailed
properties of the evaporation of a thin Emparan-Reall black ring. Specifically,
we examine the energy and angular spectra of emitted particles in the evapo-
ration. In order to clarify the property of the energy spectrum that is specific
to the evaporation of a black ring, we discuss the results by comparing it with
that of a four-dimensional Schwarzschild black hole.

Because a black ring was approximated by a black string in the thin-limit
approximation above, we can apply our method also to evaporation of a thin
black string. For this reason, we discuss evaporation of a thin Schwarzschild
black string in the unboosted frame. Here, a thin black string means that the
Schwarzschild radius 2MK is much smaller than the compactification scale L
along the string direction. In addition to the formulas for time evolution, we
present numerical results on detailed properties of evaporation such as an energy
spectrum and compare them with those of a four-dimensional Schwarzschild
black hole. We also discuss the connection of these results with the evaporation
of a thin black ring.

This thesis is organized as follows. In Sec. 2, we review the evolution of a
four-dimensional Kerr black hole and a five-dimensional Myers-Perry black hole.
In Sec. 3, the black ring solution is reviewed and its boosted Kerr string limit is
shown. In Sec. 4, we derive the equations that determine the emission rates of
mass and angular momenta of a black ring via Hawking radiation. In Sec. 5, the
time evolution of evaporating black rings is discussed and we check the validity
of our numerical result by studying the DeWitt approximation. In Sec. 6, we
present the energy and angular spectrum of emitted particles in the evaporation
of a thin Emparan-Reall black ring. In addition, we discuss evaporation of a
thin Schwarzschild black string. Sec. 7 is devoted to a conclusion. To simplify
the notation, we use the natural units ℏ = c = kB = 1.
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2 Evolution of evaporating spherical black holes

In this section, we review the evolution of black holes with spherical horizon by
Hawking evaporation. In the first subsection, we explain Hawking radiation. In
the remaining two subsections, the time evolution of a Kerr black hole and a
Myers-Perry black hole, emitting massless scalar particles, is discussed.

2.1 Hawking radiation

Black holes do not only absorb matter around them, but also emit radiation
with a thermal spectrum due to quantum effects, which is called Hawking ra-
diation. We derive the thermal spectrum, following the discussion in Ford’s
lecture note[21].

2.1.1 Particle creation

We consider a massless scalar field satisfying the Klein-Gordon equation in
curved spacetime

(−g)−1/2
∂µ
(√

−ggµν∂νΦ
)
= 0, (2.1)

where g is the determinant of the metric gµν . We define the inner product of a
pair of solutions of the Klein-Gordon equation by

(f1, f2) = i

∫
(f∗2 ∂µf1 − f1∂µf

∗
2 )dΣ

µ, (2.2)

where dΣµ = dΣnµ. Here, dΣ is the volume element in a given spacelike
hypersurface, and nµ is the timelike unit vector normal to this hypersurface.

Let {fj , f∗j } be a complete set of solutions of Eq. (2.1), where fj has a
positive norm. We write the field Φ using annihilation and creation operators
aj and a

†
j′ as

Φ =
∑
j

(ajfj + a†jf
∗
j ). (2.3)

The commutation relation is [aj , a
†
j′ ] = δjj′ and a vacuum state |0⟩ is defined

by aj |0⟩ = 0.
Let us consider a spacetime which is asymptotically flat in the past and in

the future, but which is non-flat in the intermediate region. Let {fj} be positive
frequency solutions in the past (the “in-region”), and let {Fj} be positive fre-
quency solutions in the future (the “out-region”). These modes are orthonormal
in the sense that

(fj , fj′) = (Fj , Fj′) = δjj′ , (f∗j , f
∗
j′) = (F ∗

j , F
∗
j′) = −δjj′ , (2.4)

with all other inner products vanishing. We expand the in-modes in terms of
the out-modes:

fj =
∑
k

(αjkFk + βjkF
∗
k ). (2.5)
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From Eq. (2.4), we have the conditions for αjk and βjk.∑
k

(αjkα
∗
j′k − βjkβ

∗
j′k) = δjj′ ,

∑
k

(αjkαj′k − βjkβj′k) = 0. (2.6)

The inverse expansion is

Fk =
∑
j

(α∗
jkfj − βjkf

∗
j ). (2.7)

The field Φ can be also expanded in terms of {Fj}.

Φ =
∑
j

(bjFj + b†jF
∗
j ). (2.8)

The aj and a†j are annihilation and creation operators, respectively, in the

in-region. On the other hand, the bj and b†j are the corresponding operators
for the out-region. The in-vacuum state is defined by aj |0⟩in = 0, whereas the
out-vacuum state is defined by bj |0⟩out = 0. These creation and annihilation
operators are related to each other:

aj =
∑
k

(α∗
jkbk − β∗

jkb
†
k), bk =

∑
j

(αjkaj + β∗
jka

†
j). (2.9)

This relation is called a Bogolubov transformation, and the αjk and βjk are
called the Bogolubov coefficients.

In the following, we will consider the gravitational collapse. Namely, the in-
region is described by the past null infinity I−, and the out-region is described
by the future null infinity I+ and the future event horizon H+. The number
operator which counts particles on I+ is Nℓ = b†ℓbℓ, where ℓ is the mode which
left I− and reached I+, not H+. Thus the mean number of particles created
into mode ℓ is

⟨Nℓ⟩ = in⟨0|b†ℓbℓ|0⟩in =
∑
j

|βjℓ|2. (2.10)

If any of the βjℓ coefficients are non-zero, the particle creation occurs.

2.1.2 Thermal spectrum

For simplicity, we wil concentrate on the case of a massless scalar field in a
four-dimensional nonrotating black hole, i.e., a Schwarzschild black hole. The
metric of a Schwarzschild black hole is given by

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dΩ2, (2.11)

where

f(r) = 1− 2G4MS

r
, dΩ2 = dθ2 + sin2 θdϕ2. (2.12)
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Here, G4 is the four-dimensional gravitational constant and MS is the mass of
the Schwarzschild black hole. Its event horizon is located at r = 2G4MS . For
later use, we define the advanced and retarded time coordinates as

v = t+ r∗, u = t− r∗, (2.13)

where r∗ is the tortoise coordinate given by

r∗ = r + 2G4MS ln

(
r − 2G4MS

2G4MS

)
. (2.14)

We imagine that the black hole was formed at some time in the past by
gravitational collapse, and assume that no scalar particles were present before
the collapse began. The in-modes, fωℓm, are pure positive frequency on the past
null infinity I−, so fωℓm ∼ e−iωv as v → −∞, Similarly, the out-modes, Fωℓm,
are pure positive frequency on the future null infinity I+, so Fωℓm ∼ e−iωu as
u → ∞. In order to determine the particle creation, we need to calculate the
Bogolubov coefficients.

In WKB approximation, the out-modes asymptotically behave as

Fωℓm ∼ Yℓm(θ, ϕ)√
4πω r

×

{
e−iωu, on I+

A(ω)e4G4MSiω ln[(v0−v)/C], on I− (2.15)

where Yℓm(θ, ϕ) is a spherical harmonic, C is a constant, and v0 is the limit-
ing value of v for rays which pass through the body before the horizon forms.
Therefore, the out-modes on I− have the form

Fωℓm ∼

{
A(ω)e4G4MSiω ln[(v0−v)/C], v < v0

0, v > v0
(2.16)

We expand out-modes in terms of in-modes:

Fωℓm =

∫ ∞

0

dω′
(
α∗
ω′ωfω′ℓm − βω′ωf

∗
ω′ℓm

)
. (2.17)

Here we did not write the common modes (ℓ,m) of the Bogolubov coefficients
α∗
ω′ℓm,ωℓm and βω′ℓm,ωℓm. Thus, βω′ω is

βω′ω = − 1

2π

√
ω′

ω
A(ω)

∫ v0

−∞
dv e−iω

′ve4G4MSiω ln[(v0−v)/C]

= − 1

2π

√
ω′

ω
A(ω)eiωv0

∫ ∞

0

dv′eiω
′v′e4G4MSiω ln(v′/C),

(2.18)
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Figure 1: The closed contour of the integration in Eq. (2.20).

where v′ = v0 − v. On the other hand, α∗
ω′ω is

α∗
ω′ω =

1

2π

√
ω′

ω
A(ω)

∫ v0

−∞
dv eiω

′ve4G4MSiω ln[(v0−v)/C]

=
1

2π

√
ω′

ω
A(ω)eiωv0

∫ ∞

0

dv′e−iω
′v′e4G4MSiω ln(v′/C)

= − 1

2π

√
ω′

ω
A(ω)eiωv0e4πG4MSω

∫ ∞

0

dv′eiω
′v′e4G4MSiω ln(v′/C).

(2.19)

Here, we use ∮
C

dv′ e−iω
′v′ e4G4MSiω ln(v′/C) = 0, (2.20)

where the integration is taken around the closed contour C illustrated in Fig. 1.
From Eq. (2.18) and Eq. (2.19), the Bogolubov coefficients are related to each
other as

|αω′ω| = e4πG4MSω|βω′ω|. (2.21)

The condition on the Bogolubov coefficients, Eq. (2.6), is written as∑
ω′

(
|αω′ω|2 − |βω′ω|2

)
=
∑
ω′

(
e8πG4MSω − 1

)
|βω′ω|2 = 1. (2.22)

The mean number of particles created into mode (ω, ℓ,m) is now given by

⟨Nω,ℓ,m⟩ =
∑
ω′

|βω′ω|2 =
1

e8πG4MSω − 1
. (2.23)
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This is a thermal spectrum with a temperature of

TS =
1

8πG4MS
(2.24)

which is the Hawking temperature of the black hole.
This discussion can be extended to the case of D(> 4) dimensional nonrotat-

ing spherical black holes. The difference is that instead of ω and TS , we need to
use the energy of a scalar particle in the background of a D-dimensional nonro-
tating spherical black hole and the temperature of the horizon. In the rotating
case, we have to replace ω by the energy ω∗ of the mode with respect to the
null geodesic generator of the black hole horizons because the mode function
behaves as exp(−iω∗u±) in the coordinates that are regular around the black
hole horizon, where u± is the advanced time/retarded time around the horizon.
In general, this null geodesic generator ξ can be written as ξ = ∂t+

∑
j Ωj∂ϕj in

terms of the time translation Killing vector ∂t and the rotational Killing vectors
∂ϕj . From this, it follows that ω∗ for the mode ∝ exp(−iωt + i

∑
jmjϕ

j) is
expressed as

ω∗ = ω −
∑
j

mjΩj . (2.25)

2.1.3 Greybody factor

Particles emitted from a black hole traverse a curved spacetime geometry before
they reach an observer located at infinity. The black hole background thus
work as a potential barrier for them and give a deviation from the blackbody
radiation. Though particles emitted with sufficiently high energy reach the
observer, particle emitted with law energy go back to the black hole by its
gravitational pull. Therefore, the accurate expected number of particles emitted
per unit time for each mode for a Schwarzschild black hole is given by

⟨NS⟩ =
Γ
(Sch)
ℓm (ω)

eω/TS − 1
, (2.26)

where Γ
(Sch)
ℓm (ω) is a deviation from the blackbody radiation, called greybody

factor. The greybody factor is the probability for an outgoing wave of the cor-
responding modes to reach infinity. Owing to the flux conservation, this coin-
cides with the absorption probability of the incoming wave of the corresponding
modes.

Next, we formulate the time evolution of the black hole mass. Particles
emitted in a time interval ∆t have the following discrete energy:

∆ω =
2π

∆t
× (natural number). (2.27)

The energy of the particles emitted in ∆t for each mode is therefore

∆E

∆t
=

∆ω

2π
ω⟨NS⟩. (2.28)
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Because the total energy can be obtained if we take summation of Eq. (2.28)
over all modes, the emission rate of the mass of the black hole is formulated as

−dMS

dt
=

1

2π

∑
ℓm

∫ ∞

0

ω⟨NS⟩dω, (2.29)

where the summation is taken over all modes. In order to determine the time
evolution of a black hole in Hawing radiation, we need to obtain the greybody
factor for each mode, which has to be evaluated numerically.

2.2 Evolution of a evaporating Kerr black hole

We discuss the evolution of a Kerr black hole emitting scalar radiation via the
Hawking process [14] (see also [15]) .

2.2.1 Kerr solution

The metric of a Kerr black hole is given in the Boyer-Lindquist coordinates as

ds2 =−
(
1− 2G4MKr

ρ2

)
dt2 − 2G4MKar sin

2 θ

ρ2
(dtdϕ+ dϕdt)

+
ρ2

∆
dr2 + ρ2dθ2 +

sin2 θ

ρ2

[(
r2 + a2

)2 − a2∆sin2 θ
]
dϕ2,

(2.30)

where ρ2 = r2 + a2 cos2 θ and ∆ = r2 − 2G4MKr + a2. MK and a corre-
spond to the mass and rotational parameter, respectively. One can recover the
Schwarzschild metric (2.11) by setting a = 0. The event horizon is located at
r = r+ where

r± := G4MK ±
√
G4M2

K − a2 = G4MK(1±
√
1− a2∗), (2.31)

with a∗ := a/(G4MK). The temperature and surface gravity of the horizon are

TK =
κK
2π

, κK =
r+ − r−

4G4MKr+
. (2.32)

We transform the Boyer-Lindquist coordinates (2.30) to the Kerr ingoing
coordinates (v, r, θ, ϕ̃). Here, (v, ϕ̃) are introduced as

dv = dt+ (r2 + a2)
dr

∆
, dϕ̃ = dϕ+ a

dr

∆
. (2.33)

With these coordinates, the Kerr metric in the Kerr ingoing coordinates is given
by

ds2 =−
(
1− 2G4MKr

ρ2

)
dv2 − 2G4MKar sin

2 θ

ρ2

(
dϕ̃dv + dvdϕ̃

)
− 2a sin2 θdϕ̃dr + 2drdv + ρ2dθ2

+
sin2 θ

ρ2

[(
r2 + a2

)2 − a2∆sin2 θ
]
dϕ̃2

(2.34)
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2.2.2 Formulation

We formulate the emission rate of the mass and angular momentum of the Kerr
black hole, following Page[13].

In terms of Kerr-ingoing coordinates (v, r, θ, ϕ̃), the Klein-Gordon equation

□ϕ = 0, separates by writing ϕ = R(r)S(θ)e−iωveimϕ̃, where the angular func-
tion S(θ) is a spheroidal harmonics. The radial function, R(r), satisfies[

d

dr
∆
d

dr
− 2iK

d

dr
− 2iωr − λ

]
R(r) = 0, (2.35)

where K = (r2 + a2)ω − am, λ = Eℓmω − 2amω + a2ω2, and Eℓmω is the
separation constant. Asymptotic solutions can be expressed by

R −→
{ Zhole r → r+,
Zinr

−1 + Zoutr
−1e2iωr r → ∞.

(2.36)

The subscript “in” refers to an ingoing wave originating from infinity, “out”
refers to an outgoing wave reflected from the black hole that propagates toward
infinity, and “hole” refers to the component of the wave that is transmitted into

the black hole through the horizon at r = r+. The greybody factor Γ
(Kerr)
ℓm (ω)

is

Γ
(Kerr)
ℓm (ω) = 1−

∣∣∣∣Zout

Zin

∣∣∣∣2 . (2.37)

We express the rates at which the mass and angular momentum decrease by
the quantities

f := −M2
KṀK , g := −MK

a∗
J̇K . (2.38)

where the dot ( ˙ ) denotes the derivative with respect to t. This definitions
remove overall dependence on the size (mass) of the black hole. The coordinate
t is the usual Boyer-Lindquist time coordinate. These quantities will determine
the evolution of the Kerr black hole, which is defined by(

f
g

)
=
∑
l,m

1

2π

∫ ∞

0

dx
Γ
(Kerr)
ℓm (ω)

e(ω−mΩK)/TK − 1

(
x

ma−1
∗

)
. (2.39)

Here ΩK = a∗/2r+ is the surface angular frequency, and we have defined x =
MKω. The relative magnitude of the mass and angular momentum loss rates
will determine whether or not the black hole will spin down to a nonzero value
of a∗. To obtain the evolution of a∗, we differentiate a∗ = JK/M

2
K with respect

to time t. From Eq. (2.38), the equation for a∗ is derived as

ȧ∗
a∗

= − hf

M3
K

, (2.40)

where h(a∗) was defined by

h(a∗) :=
g(a∗)

f(a∗)
− 2. (2.41)
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Figure 2: The scale invariant mass(left panel) and angular momentum(right
panel) loss rates, due to scalar particle emission, for a Kerr black hole. In the
left panel, the mass loss rate approaches the value 7.439× 10−5 at low rotation,
while it reaches 2.601×10−4 at the extreme limit a∗ = 1. In the right panel, the
angular momentum loss rate approaches 8.886×10−5 at low rotation, while the
emission rate is 6.853× 10−4 at a∗ = 1. These figures are taken from Ref. [14].

When h = 0, Eq. (2.40) becomes ȧ∗ = 0. This means that the Kerr black hole
continues to lose mass with a nonzero constant value, a∗ = a∗0. Since the mass
loss rate is always positive throughout the Hawking process, the function f must
be positive definite. If dh/da∗ is positive at a point where h = 0, the black hole
will asymptotically evolve toward a stable state. If dh/da∗ is negative or zero at
the point, then it represents an unstable equilibrium point of a∗, and the black
hole will evolve away from it.

2.2.3 Results

In Ref. [14], Chambers et al. numerically calculated the functions f(a∗) and
g(a∗) at 18 values of a∗ ranging from a∗ = 1 × 10−4 to a∗ = 0.99. They
extrapolate these values to a∗ = 0 and a∗ = 1 and interpolate for points of
interest.

Fig. 2 shows the behavior of the mass and angular momentum loss rate as a
function of the specific angular momentum, described in a scale invariant way
by the function f(a∗) and g(a∗), respectively. The loss of mass and angular
momentum by emission of scalar particles are more effective at high values of
a∗. The functions f(a∗) and g(a∗) is used to determine h(a∗) in the following.

Fig. 3 shows the behavior of h(a∗). The most important feature is that
h(a∗) = 0 at a value of a∗ ≃ 0.555 as seen in the figure. Because a black hole
that forms with a value of a∗ > 0.555 will have h(a∗) > 0, ȧ∗ will be negative
by Eq. (2.40) and the value of a∗ will decrease as the black hole evaporates,
approaching a∗ = 0.555. In contrast, because a black hole that forms with
a∗ < 0.555 will have h(a∗) < 0, ȧ∗ will be positive and the value of a∗ will
increase towards a∗ = 0.555. Thus, a Kerr black hole emitting massless scalar
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Figure 3: The function h(a∗), Eq. (2.41), is plotted as a function of a∗. The
point at which h(a∗) = 0 occurs at a∗ = 0.555. A hole formed with a∗ on either
side of this value will evolve to a state characterized by this value. This figure
is taken from Ref. [14].

particles will evolve towards a state with a∗ ≃ 0.555.

2.3 Evolution of a evaporating Myers-Perry black hole

In this subsection, we discuss the evolution of a five-dimensional rotating black
hole emitting scalar particles via the Hawking process for arbitrary initial values
of the two rotation parameters a and b. It is found that any such black hole
whose initial rotation parameters both nonzero evolves toward an asymptotic

stat a/M
1/2
MP = b/M

1/2
MP =const.(̸= 0), where this constant is independent of the

initial values of a and b.

2.3.1 Myers-Perry solution

The metric of a 5-dimensional rotating black hole is given in the Boyer-Lindquist
coordinates as

ds2 =− dt2 + (r2 + a21)(dµ
2
1 + µ2

1dϕ
2
1) + (r2 + a22)(dµ

2
2 + µ2

2dϕ
2
2)

+
ΠF

Π− µr2
dr2 +

µr2

ΠF
(dt+ a1µ

2
1dϕ1 + a2µ

2
2dϕ2)

2,
(2.42)

where

F = 1− a21µ
2
1

r2 + a21
− a22µ

2
2

r2 + a22
, Π = (r2 + a21)(r

2 + a22). (2.43)

The metric (2.42) has three parameters. µ gives the black hole mass MMP as

MMP =
3π

8G
µ, (2.44)

13



where G is the five-dimensional gravitational constant. For later convenience,
using this parameter, we define a typical scale length as rs :=

√
µ. The rotation

parameters a1 and a2 give the angular momenta Jϕ and Jψ as

J (MP )

ϕ =
2MMP

3
a1, J (MP )

ψ =
2MMP

3
a2. (2.45)

The variables µ1 and µ2 obey a constraint

µ2
1 + µ2

2 = 1. (2.46)

Instead of keeping the symmetric form of the metric (2.42), we solve the
constraint (2.46) explicitly. We use the following parametrization

µ1 = sin θ, µ2 = cos θ, (2.47)

and introduce the following notations

a = a1, b = a2, ϕ = ϕ1, ψ = ϕ2, (2.48)

ρ2 = r2 + a2 cos2 θ + b2 sin2 θ, (2.49)

∆ = (r2 + a2)(r2 + b2)− µr2. (2.50)

Then the metric (2.42) takes the form

ds2 =− dt2 + (r2 + a2) sin2 θdϕ2 + (r2 + b2) cos2 θdψ2

+
µ

ρ2
[
dt+ a sin2 θdϕ+ b cos2 θdψ

]2
+
r2ρ2

∆
dr2 + ρ2dθ2.

(2.51)

Three angles take the following values:

0 < ϕ,ψ < 2π, 0 < θ < π/2. (2.52)

The metric (2.51) is invariant under the following transformation

a↔ b, θ ↔ π

2
− θ, ϕ↔ ψ. (2.53)

It possesses 3 Killing vectors, ∂t, ∂ϕ and ∂ψ. The event horizon and the inner
horizon of the black hole are located at r+ and r− respectively, where

r2± =
1

2

[
µ− a2 − b2 ±

√
(µ− a2 − b2)2 − 4a2b2

]
. (2.54)

The angular velocities Ωa and Ωb are

Ωa =
a

r2+ + a2
, Ωb =

b

r2+ + b2
. (2.55)

The temperature and surface gravity of the horizon are

TMP =
κMP
2π

, κMP =
r2+ − r2−
2MMP r+

. (2.56)
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From the condition for the existence of horizon(s), we obtain the condition
a + b ≤ rs constraining the angular momenta. In terms of the nondimensional
rotation parameter a∗ := a/rs and b∗ := b/rs, the condition becomes

a∗ + b∗ ≤ 1. (2.57)

Note that we can assume that a ≤ 0 and b ≤ 0 without loss of generality.

2.3.2 Formulation

First, we formulate the time evolution of the Myers-Perry black hole. To quan-
tize a massless scalar field Φ, we expand it as Φ = R(r)Θ(θ)eimϕeinψe−iωt.
Nomura et al. evaluated the emission rates of the total energy and angular mo-
menta by calculating the vacuum expectation value of the energy-momentum
tensor of the scalar field (Note that this method to determine the emission rates
is different from the method used in Sec. 2.2). Then, the emission rates of the
black hole mass MMP and angular momenta Jϕ and Jψ are given by 1

− d

dt

 MMP

J (MP )

ϕ

J (MP )

ψ

 =
1

2π

∑
lmn

∫ ∞

0

dω
Γ(MP )

lmn (ω)

eω+/TMP − 1

 ω
m
n

 . (2.58)

Here, ω+ = ω −mΩϕ − nΩψ, l is the eigenvalue of the angular function Θ(θ)

and Γ
(MP )
lmn (ω) is the greybody factor.

Similarly to Sec. 2.2, we introduce scale invariant rates of change for the
mass and angular momenta of an evaporating black hole as

f := −r2sṀMP ga := − rs
a∗
J̇ (MP )

ϕ , gb := −rs
b∗
J̇ (MP )

ψ , (2.59)

where the dot ( ˙ ) denotes the derivative with respect to t. In terms of the scale
invariant functions f , ga and gb, the time evolution equations for a∗ and b∗ are
given by

ȧ∗
a∗

= − 8

3π

fha
r4s

,
ḃ∗
b∗

= − 8

3π

fhb
r4s

, (2.60)

where the dimensionless functions ha and hb are defined as

ha :=
3

2

(
ga
f

− 1

)
, hb :=

3

2

(
gb
f

− 1

)
. (2.61)

The evolution of a∗ and b∗ are determined through numerical evaluation of f ,
ga and gb. In the evolution of Eq. (2.60), a fixed point ha = 0 and hb = 0 plays
an important role. Because the mass of an evaporating black hole decreases
throughout the Hawking process, f is positive definite. If ha > 0, then a∗
decreases, while if ha < 0, then a∗ increases. Because ha depends not only on
a∗ but also on b∗, ha = 0 gives a curve in the a∗-b∗ plane.

1The formulas expressed here have different forms from the original ones in Ref. [16] because
of the different definitions of the greybody factor.
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Figure 4: The contours of f(left panel) and ga(right panel) in the a∗-b∗ plane.
The black regions correspond to zero, which is forbidden because there is no
horizon in this region.. The white regions correspond to the maximums, fmax ≃
f(0.85, 0.05) = 4.349 and ga,max ≃ f(0.85, 0.05) = 5.92467. The difference
between two contours is fmax/10 in the left panel and ga,max/10 in the right
panel. These figures are taken from Ref. [16].

2.3.3 Results

In order to investigate the time evolution of a∗ and b∗, we have to analyze
Eq. (2.60). In the following analysis, we use units such that rs = 1. For this
purpose, the contour plots of f and ga are depicted in Fig. 4 (gb is obtained by
exchanging the axes for a∗ and b∗). In the a∗-b∗ plane, the regions in which
a∗+b∗ > 1 is forbidden because there is no horizon (the black regions in Fig. 4).
Two white regions in the left panel show that f becomes large, i.e., the emission
rate is high. In the right panel, there is only one white region where the angular
momentum Jϕ is emitted effectively. If the two rotation parameters are equal
(i.e. a∗ = b∗), the emission rates are suppressed even if the black hole is in a
maximally rotating state (a∗ = b∗ = 0.5). In fact, the angular equation for Θ(θ)
in this case is exactly the same as that for the Schwarzschild black hole [23].
This is consistent with the result given in Ref. [24].

Fig. 5 shows the evolution of a black hole in the a∗-b∗ plane. The vector
field (ȧ∗, ḃ∗) with arrows means how the values of a∗ and b∗ evolve toward the
fixed point. The arrows far from the symmetry line of a∗ = b∗ are very large.
Then, if the initial value of a∗ (or b∗) is large, a∗ and b∗ approach the same

value fast. Near the fixed point (a∗, b∗) = (a
(cr)
∗ , a

(cr)
∗ ) ≈ (0.1975, 0.1975), the

arrows are very small, which means that the evolution toward the fixed point
is slow. We thus find that after reaching a state with a∗ = b∗, a∗ and b∗
eventually evolve together toward the fixed point (a

(cr)
∗ , a

(cr)
∗ ). This means that

any rotating black hole with two nonzero rotation parameters will evolve toward

a final state with the same specific angular momenta, a∗ = b∗ = a
(cr)
∗ . On the
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Figure 5: The vector field describes the direction in which a∗ and b∗ evolve,
i.e. (ȧ∗, ḃ∗). For any initial values of a∗ and b∗, the system evolves toward
a∗ = b∗ = 0.1975 (the black spot), which is a stable fixed point. The shaded
region is forbidden. This figure is taken from Ref. [16].

other hand, for a black hole with only one nonzero rotation parameter, i.e. a ̸= 0
but b = 0 exactly, the stable fixed point is a∗ ≈ 0.1183, which is determined by
the equation ha(a∗, 0) = 0.

In the above analysis, the dynamical system of Eq. (2.60) has one stable
attractor, which can be reached through the Hawking evaporation. However,
the black hole may evaporate away before this fixed point is reached. This
happens if the evaporation time, τM = −M/Ṁ , is longer than the evolution
time scale in the a∗-b∗ plane, τa∗ = a∗/|ȧ∗|. Therefore, if the initial mass of the
black hole is sufficiently large, the two specific angular momenta will become
equal in the Hawking process.
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3 Black rings

In this section, we review basic properties of black rings. In addition, we show
that for a doubly spinning black ring, there is a limit in which the ring very thin
and locally it approaches the geometry of a boosted Kerr black string. This limit
was discussed in the more general case of an unbalanced Pomeransky-Sen’kov
black ring in Ref. [25].

3.1 An Emparan-Reall black ring

In this subsection, we review a singly spinning black ring.

3.1.1 Emparan-Reall solution

The black ring metic is given by

ds2 =− F (x)

F (y)

(
dt+R

√
λν(1 + y)dψ

)2
+

R2

(x− y)2

[
− F (x)

(
G(y)dψ2 +

F (y)

G(y)
dy2
)

+ F (y)2
(
dx2

G(x)
+
G(x)

F (x)
dϕ2
)]

,

(3.1)

with
F (ξ) = 1− λξ, G(ξ) = (1− ξ2)(1− νξ). (3.2)

Note that the form of the solution is not a original one obtained in Ref. [4], but
the one revised in Ref. [26]. This solution is characterized by the following three
parameters: a length scale R and dimensionless parameters λ and ν.

The range of ν and λ are

0 ≤ ν < λ < 1. (3.3)

In order to avoid a closed timelike curve, we restrict the x range to

−1 ≤ x ≤ 1. (3.4)

The y range is
−∞ < y ≤ −1, λ−1 < y <∞. (3.5)

|y| = ∞ is a ergoshere, y = 1/ν is a event horizon, y = 1/λ is a singularity
inside the event horizon.

In this metric, the surface ”t, y, ψ = const.” corresponds to S2 and x and ϕ
are their coordinates. On the other hand, the curve ”t, y, x, ϕ =const.” corre-
sponds to S1 and ψ is its coordinate. Therefore, the whole represents a ring-
shape S1 × S2.

ν parametrize the radius of S2. We recover a very thin black ring as ν → 0.
At the opposite limit, the solution represents a very fat black ring as ν → 1.
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3.1.2 Conical singularities

The solution generally has conical singularities. We eliminate them because
we will consider the balanced black ring(, i.e. the black ring with no conical
singularities,) below. Considering an small circle around an axis, we impose the
condition for a length of an arc ℓ and an radius r.

2π = ℓ/r (3.6)

First, we obtain the period ∆ϕ of ϕ at x = −1. Using

ℓ =

∫ ∆ϕ

0

√
gϕϕdϕ = ∆ϕ

RF (y)

(x− y)

√
G(x)

F (x)
, (3.7)

r =

∫ x

−1

√
gxxdx =

∫ x

−1

RF (y)

(x− y)

dx√
G(x)

, (3.8)

the condition for avoiding the conical singularity is

2π = lim
x→−1

ℓ

r

=

(
lim∆ϕRF (y)

(x−y)

)(
lim
√

G(x)
F (x)

)
lim
∫ x
−1

RF (y)
(x−y)

dx√
G(x)

=

(
∆ϕ RF (y)

(−1−y)

)(
1
2

√
G(−1)
F (−1)

G′(−1)F (−1)−G(−1)F ′(−1)
F 2(−1)

)
RF (y)
(−1−y)

1√
G(−1)

= ∆ϕ
G′(−1)

2
√
F (−1)

.

(3.9)

Here we use

lim
x→x0

G(x)

F (x)
= lim
x→x0

G′(x)

F ′(x)
. (3.10)

Therefore, the period of ϕ is

∆ϕ =
4π
√
F (−1)

G′(−1)
=

2π
√
1 + λ

1 + ν
. (3.11)

As a similar way, one can obtain the period ∆ψ of ψ at y = −1 is

∆ψ = ∆ϕ. (3.12)

The period ∆ϕ′ of ϕ at x = +1 is

∆ϕ′ =
4π
√
F (+1)

|G′(+1)|
=

2π
√
1− λ

1− ν
. (3.13)
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In addition, ∆ϕ′ and ∆ϕ should be identical to each other because they are the
periods of the same ϕ:

∆ϕ′ = ∆ϕ. (3.14)

Using λ and ν, we rewrite this condition.

λ =
2ν

1 + ν2
. (3.15)

3.1.3 Asymptotical flatness

We check asymptotical flatness of the black ring metric at x = y = −1. First,
we make the periods of ψ and ϕ 2π with

ψ̃ =
2π

∆ψ
ψ, ϕ̃ =

2π

∆ϕ
ϕ (3.16)

In addition, we define new coordinates ζ and η as

ζ =
R̃
√
−1− y

(x− y)
, η =

R̃
√
x+ 1

(x− y)
(3.17)

with

R̃ =

√
2(1 + λ)√
1 + ν

R. (3.18)

Therefore, the metric at x = y = −1

ds2 ∼ −dt2 + dζ2 + ζ2dψ̃2 + dη2 + η2dϕ̃2. (3.19)

It can be found that the black ring solution is asymptotically flat.

3.1.4 Physical quantities

Using the three parameters ν, λ, R, we show the physical quantities for the
Emparan-Reall black ring. Note that ”→” means that we impose the balance
condition (3.15).

The mass and angular momentum along S1 are

M =
3πR2

4G

λ(λ+ 1)

1 + ν
→ 3πR2

4G

2ν(1 + ν)

(1 + ν2)2
, (3.20)

Jψ =
πR3

2G

√
λν(1 + λ)5/2

(1 + ν)2
→ πR3

2G

√
2ν2(1 + ν)3

(1− ν)3(1 + ν2)3
. (3.21)

Of course, the angular momentum along S2 is Jϕ ≡ 0. The area and temperature
of the horizon are

AH = 8π2R3λ
1/2(1 + λ)(λ− ν)3/2

(1 + ν)2(1− ν)
→ 8π2R3 ν

2
√
2(1− ν)(1 + ν)3

(1 + ν2)3
, (3.22)

TH =
κ

2π
=

1

4πR

1− ν√
λ(λ− ν)

→ 1

4πR

1 + ν2√
2

√
1− ν

1 + ν
, (3.23)

where κ is the surface gravity of the horizon.
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3.1.5 Non-uniqueness

We focus on the angular momentum normalized by mass

j2 :=
27π

32G

J2

M3
=

(1 + ν)3

8ν
. (3.24)

One easily sees that it is infinite at ν = 0, decrease to a minimum value 27/32
at ν = 1/2, and then grows to 1 at ν = 1. This implies that in the range

27

32
≤ j2 < 1 (3.25)

there exist two black rings with the same value of the spin for fixed mass. This
regime of non-uniqueness occurs when the parameter ν takes values in

√
5− 2 ≤ ν < 1. (3.26)

3.1.6 Thin ring limit

There is a limit in which the ring very thin and locally it approaches the geom-
etry of a boosted black string. To recover this limit, we focus on a region near
the horizon

R→ ∞, λ→ 0, ν → 0 (3.27)

while keeping Rλ and Rν the following finite value:

Rλ = rH coshσ, Rν = rH sinhσ. (3.28)

Here, we introduced new parameters rH and σ. We also define new coordinates
r, θ, and z as

r = −RF (y)
y

, cos θ = x, z = Rψ. (3.29)

The black ring metric (3.1) matches a boosted Schwarzschild black string

ds2 = −f̄
(
dt− rH sinh 2σ

2rf̄
dz

)2

+
f

f̄
dz2 +

1

f
dr2 + r2dΩ (3.30)

with

f = 1− rH
r
, f̄ = 1− rH cosh2 σ

r
. (3.31)

We can find from the metric that rH is a Schwarzschild radius and σ is a
boost parameter. Due to the balance condition, the boost parameter takes the
constant value, σ = arctan(1/

√
2).

3.2 A Pomeransky-Sen’kov black ring

In this subsection, we review a doubly spinning black ring. This is the extension
of the Emparan-Reall black ring.
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3.2.1 Pomeransky-Sen’kov solution

The metric of the Pomeransky-Sen’kov black ring is [10]

ds2 =− H(y, x)

H(x, y)
(dt+Ω)

2 − F (x, y)

H(y, x)
dψ2 − 2

J(x, y)

H(y, x)
dψdϕ

+
F (y, x)

H(y, x)
dϕ2 +

2R2H(x, y)

(x− y)
2
(1− ν)

2

(
dx2

G(x)
− dy2

G(y)

)
,

(3.32)

where the 1-form Ω is

Ω =−
2Rλ

√
(1 + ν)

2 − λ2

H(y, x)

[ (
1− x2

)
y
√
νdϕ

+
1 + y

1− λ+ ν

{
1 + λ− ν + x2yν (1− λ− ν) + 2νx (1− y)

}
dψ
]
,

(3.33)

and the functions G,H, J and F are

G(x) =
(
1− x2

) (
1 + λx+ νx2

)
, (3.34)

H(x, y) =1 + λ2 − ν2 + 2λν
(
1− x2

)
y

+ 2xλ
(
1− y2ν2

)
+ x2y2ν

(
1− λ2 − ν2

)
,

(3.35)

J(x, y) =
2R2

(
1− x2

) (
1− y2

)
λ
√
ν

(x− y) (1− ν)
2

×
[
1 + λ2 − ν2 + 2 (x+ y)λν − xyν

(
1− λ2 − ν2

)]
,

(3.36)

F (x, y) =
2R2

(x− y) (1− ν)
2

×
[
G(x)

(
1− y2

) [{
(1− ν)2 − λ2

}
(1 + ν) + yλ

(
1− λ2 + 2ν − 3ν2

)]
+G(y)

[
2λ2 + xλ

{
(1− ν)2 + λ2

}
+ x2

{
(1− ν)2 − λ2

}
(1 + ν)

+ x3λ
(
1− λ2 − 3ν2 + 2ν3

)
− x4(1− ν)ν

(
−1 + λ2 + ν2

) ]]
.

(3.37)

Here, we follow the notation of Ref. [10] except that we choose the signature
(−,+,+,+,+) for the metric, exchange ϕ and ψ, and use R instead of k. The
coordinate ranges are −∞ < t < +∞, 0 < ϕ,ψ < 2π, −1 ≤ x ≤ 1 and
−∞ < y < −1. R is a parameter of dimension of length, which determines
the characteristic scale of the S1 radius. λ and ν are dimensionless parameters
satisfying 0 ≤ ν < 1 and 2

√
ν ≤ λ < 1+ν, which determine two nondimensional

rotation parameters. The regular event horizon exists at y = yh, where

yh =
−λ+

√
λ2 − 4ν

2ν
. (3.38)
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Figure 6: The parameter space (λ, ν) of the Pomeransky-Sen’kov solution. λ
and ν can take values in the region surrounded by solid lines. The line ν = λ−1
is the Myers-Perry black hole limit, the line ν = 0 is the Emparan-Reall black
ring limit, and the line ν = λ2/4 is the extremal limit. The point λ = ν = 0
corresponds to the boosted Kerr string limit. The broken line ν = a2∗λ

2/4 is the
path to the point λ = ν = 0 with a fixed a∗.

The solution is asymptotically flat and the spacelike infinity is located at x =
y = −1. This becomes clear when the new coordinates (r1, r2) are introduced
by the set of equations:

r1r2 = − 4k2G(x)G(y)

(x− y)2(1− ν)
,

r21 − 222
2

=
k2(1− xy) [2 + (x+ y)λ+ 2xyν]

(x− y)2(1− ν)
(3.39)

In the new coordinates the flat space metric at x = y = −1 has the form:

dℓ2 = dr21 + dr22 + r21dψ
2 + r22ϕ

2. (3.40)

The coordinates (x, ϕ) parametrize the two-sphere S2 and ψ parametrizes
the circle S1. One recovers the Emparan-Reall black ring by setting ν = 0, and
the line ν = λ2/4 represents the sequence of extremal black rings (see Fig. 6).

3.2.2 Physical quantities

The mass and angular momenta are

M =
3πR2λ

G(1− λ+ ν)
, Jϕ =

4πR3λ
√
ν
√

(1 + ν)2 − λ2

G(1− ν)2(1− λ+ ν)
, (3.41)

Jψ =
2πR3λ(1 + λ− 6ν + λν + ν2)

√
(1 + ν)2 − λ2

G(1− ν)2(1− λ+ ν)2
. (3.42)

23



The angular velocities, the area, and the surface gravity of the horizon are
written as [7]

Ωϕ =
λ(1 + ν)− (1− ν)

√
λ2 − 4ν

4Rλ
√
ν

√
1 + ν − λ

1 + ν + λ
, Ωψ =

1

2R

√
1 + ν − λ

1 + ν + λ
,

(3.43)

AH =
32π2R3λ(1 + ν + λ)

(1− ν)2(y−1
h − yh)

, κ =
(y−1
h − yh)(1− ν)

√
λ2 − 4ν

4Rλ(1 + ν + λ)
. (3.44)

The Pomeransky-Sen’kov solution has no conical singularities. The general dou-
bly spinning black ring with conical singularities and the way to eliminate them
are discussed in Ref. [27].

The angular momenta normalized by mass are

jψ :=
27π

32G

J2
ψ

M3
≥ 3

4
, jϕ ≡ 27π

32G

J2
ϕ

M3
≤ 1

4
. (3.45)

There is the lower limit on the angular momentum along ψ. On the other hand,
there is the upper limit on the angular momentum along ϕ.

3.2.3 Thin ring limit

We consider a thin ring limit λ → 0 where the ratio of the S2 radius to the S1

radius becomes very small. Here, we have to take care of the fact that this limit
depends on the path to the point λ = ν = 0. For example, taking the limit
λ → 0 on the line ν = 0 gives the boosted Schwarzschild string, while taking
the limit λ → 0 on the extremal line ν = λ2/4 should result in the extremal
Kerr black string. Therefore, λ = ν = 0 is a degenerate point, and in order to
resolve this degeneracy, we introduce a new parameter a∗ as

ν =
1

4
a2∗λ

2, (3.46)

and consider a limit λ→ 0 on the line of a fixed a∗ (see Fig. 6). Also, in order
to obtain a well-defined limit, we introduce

MK =
1√
2
λR, (3.47)

and fix MK in taking this limit.
We introduce the new coordinates r, z and θ as

y = −
√
2R

r
, ψ = − z√

2R
, x = cos θ, (3.48)

and collect the leading-order term of each metric component with respect to λ.
In the limit λ→ 0, the functions in the metric can be approximated by

G(x) ∼ sin2 θ (3.49)
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G(y) ∼ −R
2

r2

(
1− 2MK

r
+
a2

r

)
(3.50)

H(x, y) ∼ 1 +
a2 cos2 θ

r2
(3.51)

H(y, x) ∼ 1− 4MK

r
+
a2 cos2 θ

r2
(3.52)

J(x, y) ∼ −R2
√
2MKa sin

2 θ

r
(3.53)

F (x, y) ∼ −2R2

[
1− 2MK

r
+
a2 cos2 θ

r2

]
(3.54)

F (y, x) ∼ sin2 θ

M4
Kr

2

[
r4 − 4MKr

3 + r2a2(1 + cos2 θ)

− 2M2
Kra

2(1 + cos2 θ) + a4 cos2 θ
] (3.55)

Ω ∼ 2
√
2MK/r

H(y, x)

(
a sin2 θdϕ− dz

)
(3.56)

Then, the black ring solution is reduced to the so-called boosted Kerr string
solution

ds2 = −
(
1− 2MKr cosh

2 σ

ρ2

)
dt2 +

2MKr sinh 2σ

ρ2
dtdz

+

(
1 +

2MKr sinh
2 σ

ρ2

)
dz2 +

ρ2

∆
dr2 + ρ2dθ2

+

(
r2 + a2

)2 −∆a2 sin2 θ

ρ2
sin2 θdϕ2

− 4MKr coshσ

ρ2
a sin2 θdtdϕ− 4MKr sinhσ

ρ2
a sin2 θdzdϕ, (3.57)

where ρ2 = r2 + a2 cos2 θ and ∆ = r2 − 2MKr + a2, and a is defined by
a := MKa∗. Since MK and a are the mass and rotational parameter of a four-
dimensional Kerr black hole respectively, a∗ represents the nondimensional rota-
tion parameter along S2 direction. σ := arctanh(1/

√
2) is the boost parameter.

Although the boost parameter can take any value for a general boosted Kerr
string, it is restricted to this value for the thin limit of a black ring. The event
horizon is located at r = r+ where r± :=MK±

√
M2
K − a2 =MK(1±

√
1− a2∗).

In studying the evaporation of a black ring, we use this boosted Kerr string
solution in the following sense. We consider the situation where λ is very small,
and do not take the exact limit. Then, in the neighborhood of the black ring, the
spacetime metric can be well approximated by the boosted Kerr string solution.
For this reason, the value of R is not infinite in our analysis although it is
very large compared to MK . The relative error in this approximation is O(λ)
compared to the leading order in the following analyses.
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In this thin-limit approximation, the physical quantities in Eqs. (3.41)–(3.44)
are expressed in terms of R,MK and a (or a∗) as

M ≃ 3
√
2πRMK , Jψ ≃ 2

√
2πR2MK , Jϕ ≃ 4πa∗RM

2
K . (3.58)

Ωϕ ≃ a

2MKr+

1

coshσ
, Ωψ ≃ 1

2R
, (3.59)

AH ≃ 16π2r+MKR, κ ≃ r+ − r−
4MKr+

1

coshσ
. (3.60)

The inverse relations of Eq. (3.58) are

R ≃ 3Jψ
2M

, MK ≃
√
2

9π

M2

Jψ
, a∗ ≃ 27π

4

JψJϕ
M3

, (3.61)

and λ is expressed as

λ =

√
2MK

R
≃ 4

27π

M3

J2
ψ

. (3.62)

Because λ−1/2 is proportional to the angular momentum Jψ normalized by mass
M , it can be interpreted as the nondimensional rotation parameter along S1.
At the same time, Eq. (3.62) also means that λ gives the order of the ratio of the
S2 radius to the S1 radius. Therefore, λ is interpreted as an indicator for the
“thickness” of the black ring. In this thesis, we call λ the thickness parameter.

3.2.4 Effect of boost

Note that Ωϕ in Eq. (3.59) is equal to the angular velocity defined by the Killing
generator ξ of the horizon of the boosted Kerr string2,

ξ = ∂t +Ωϕ∂ϕ + V ∂z (3.63)

with
V = tanhσ, (3.64)

and κ in Eq. (3.60) is identical to the surface gravity of the horizon calculated
with ξ. For a later convenience, it is useful to compare Ωϕ and κ with the
angular velocity and the surface gravity of the horizon of the unboosted Kerr
string. In the following, a quantity in the unboosted system is indicated by
prime ( ′ ). In the unboosted system, the Killing generator of the horizon is
ξ′ = ∂t′ +Ω′

ϕ∂ϕ, and Ω′
ϕ and κ′ calculated from ξ′ are

Ω′
ϕ =

a

2MKr+
, κ′ =

r+ − r−
4MKr+

. (3.65)

There is a deference in the quantities of the boosted and unboosted systems
by a factor of 1/ coshσ. This is understood as the effect of time delay in the
Lorentz boost.

2Our expression of Ωϕ does not agree with that of Ref. [28] because the definition is
different.
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4 Formulation

In this section, we formulate the time evolution of mass and angular momenta
of a thin black ring via Hawking radiation, by approximating the evolution
of a scalar field in the black ring spacetime by that in a boosted Kerr string
spacetime.

4.1 Emission rate

The evolution of a scalar field is governed by the Klein-Gordon equation in the
black ring spacetime

(−g)−1/2
∂µ
(√

−ggµν∂νΦ
)
= 0, (4.1)

where g is the determinant of the black ring metric.
To quantize the field, we need to expand it in terms of the eigenmodes for

Φ, which can be written in the black ring background as

Φ = e−iωteimϕeinψΨ(x, y), (4.2)

where ω, m and n are the eigenvalues for the Killing vector fields ∂t, ∂ψ and
∂ϕ, respectively. By inserting this expression into Eq. (4.1), we obtain a second-
order elliptic equation for Ψ(x, y) in the (x, y) plane. This equation has a discrete
series of regular solutions labeled by an integer ℓ. In the Schwarzschild string
limit with Jϕ = 0, this series of solutions become proportional to the associate
Legendre functions Pmℓ (x). Thus, the mode functions are labeled by the four
parameters (ω, ℓ,m, n) in which ℓ, m and n take integer values.

Following the discussion in chapter 2, the expected number of particles emit-
ted per unit time for each mode from the black ring is given by

⟨NBR⟩ =
Γ
(BR)
ℓmn (ω)

e(ω−nΩψ−mΩϕ)/TBR − 1
, (4.3)

where TBR is the temperature of the horizon and Γ
(BR)
ℓmn (ω) is the greybody

factor, which is identical to the absorption probability of the incoming wave of
the corresponding modes. This determines the emission rates of the total mass
M and angular momenta Jψ and Jϕ as

− d

dt

 M
Jψ
Jϕ

 =
1

2π

∑
ℓ,m,n

∫ ∞

0

dω⟨NBR⟩

 ω
n
m

 , (4.4)

where the summation is taken over all modes. Note that in this expression, it
is difficult to estimate the greybody factor generally because we cannot sepa-
rate the coordinates x and y, and two-dimensional numerical calculations are
required to determine the energy eigenvalues and corresponding eigenmodes.

In order to circumvent this difficulty, we consider the situation where the
mode functions can be approximately evaluated: a black string limit discussed
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above. For the boosted black string (3.57), we can separate the wave equation,
and therefore, we approximate the evolution of a scalar field in a black ring
spacetime by that in a boosted Kerr string spacetime. In this situation, the
variables can be separated as

Φ = e−iωtR(r)e−ikzeimϕSmℓ (θ), (4.5)

where Smℓ (θ) is the spheroidal harmonic function. From the coordinate trans-
formation (3.48), n of a black ring and k of a boosted black string are related
by

n = 2kR tanhσ. (4.6)

The expected number of particles emitted per unit time per mode is given by

⟨NBBS⟩ =
Γℓmn(ω)

e(ω−kV−mΩϕ)/T − 1
, (4.7)

where T = κ/2π is the temperature of the horizon with κ in Eq. (3.60), and V
is the linear velocity introduced in Eq. (3.64). Γℓmn(ω) is the greybody factor
of the boosted Kerr string spacetime. We evaluate the emission rates (4.4) by
using ⟨NBBS⟩ instead of ⟨NBR⟩.

4.2 Simplification

We normalize all quantities by the mass density MK ,

ω̃ =MKω, k̃ =MKk, Ω̃ϕ =MKΩϕ, T̃ =MKT =
MKκ

2π
. (4.8)

We change the order of summations over ℓ and m as

∞∑
ℓ=0

ℓ∑
m=−ℓ

=
∞∑

m=−∞

∞∑
ℓ=|m|

, (4.9)

and introduce

g(m)(ω̃, k̃) :=

∞∑
ℓ=|m|

Γℓmn(ω̃), (4.10)

where k̃ and n are related to each other by Eq. (4.6). Then, the emission rates
can be written as

− d

dt

 M
Jψ
Jϕ

 =
1

2πMK

∞∑
m=−∞

∞∑
n=−∞

∫ ∞

|k̃|
dω̃

g(m)(ω̃, k̃)

e(ω̃−k̃V−mΩ̃ϕ)/T̃ − 1

 ω̃/MK

n
m

 .

(4.11)
Here, the lower limit of the integral is |k̃| because the modes with their energy
ω < |k̃| are gravitationally bounded and do not escape to infinity. Because
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the spectral density of k̃ is very large, O(1/λ), the summation over n can be
replaced by the integral:∑

n

→
∫
dn =

2R tanhσ

MK

∫
dk̃. (4.12)

The relative error produced by this replacement is O(λ) and negligible in our
thin-limit approximation. We obtain

−dM
dt

=
R√

2πM3
K

∞∑
m=−∞

∫ ∞

−∞
dk̃

∫ ∞

|k̃|
dω̃

ω̃g(m)(ω̃, k̃)

e(ω̃−k̃V−mΩ̃ϕ)/T̃ − 1
, (4.13)

−dJψ
dt

=
R2

πM3
K

∞∑
m=−∞

∫ ∞

−∞
dk̃

∫ ∞

|k̃|
dω̃

k̃g(m)(ω̃, k̃)

e(ω̃−k̃V−mΩ̃ϕ)/T̃ − 1
. (4.14)

−dJϕ
dt

=
R√

2πM2
K

∞∑
m=−∞

∫ ∞

−∞
dk̃

∫ ∞

|k̃|
dω̃

mg(m)(ω̃, k̃)

e(ω̃−k̃V−mΩ̃ϕ)/T̃ − 1
. (4.15)

The integral in each formula can be further simplified if we perform the trans-
formation from (ω̃, k̃) to (ω̃′, k̃′),

ω̃ = ω̃′ coshσ + k̃′ sinhσ, k̃ = ω̃′ sinhσ + k̃′ coshσ. (4.16)

Substituting these formulas with coshσ =
√
2 and sinhσ = 1 and rewritingMK

and R by M , Jψ and Jϕ using Eq. (3.61), we obtain the simplified expression
of the evolution:

− 1

M

dM

dt
= 2F (a∗)

J4
ψ

M8
, (4.17)

− 1

Jψ

dJψ
dt

= 3F (a∗)
J4
ψ

M8
, (4.18)

− 1

Jϕ

dJϕ
dt

= G(a∗)
J3
ψ

JϕM5
, (4.19)

with

F (a∗) :=
37π2

23
√
2

∞∑
m=−∞

I
(m)
1 (a∗), (4.20)

G(a∗) :=
35π

22
√
2

∞∑
m=−∞

I
(m)
2 (a∗). (4.21)

Here, we defined

I
(m)
1 (a∗) :=

∫ ∞

−∞
dk̃′
∫ ∞

|k̃′|
dω̃′ ω̃′g′(m)(ω̃′, k̃′)

e(ω̃
′−mΩ̃′

ϕ)/T̃
′ − 1

, (4.22)

I
(m)
2 (a∗) :=

∫ ∞

−∞
dk̃′
∫ ∞

|k̃′|
dω̃′ mg′(m)(ω̃′, k̃′)

e(ω̃
′−mΩ̃′

ϕ)/T̃
′ − 1

, (4.23)
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with g′(m)(ω̃′, k̃′) = g(m)(ω̃, k̃). In the same manner as Eq. (4.8), we normalized
the quantities Ω′

ϕ and T ′ = κ′/2π of the unboosted system in Eq. (3.65) as

Ω̃′
ϕ :=MKΩ′

ϕ and T̃ ′ :=MKT
′. Their explicit formulas are

Ω̃′
ϕ =

(1/2)a∗

1 +
√
1− a2∗

, T̃ ′ =
(1/4π)

√
1− a2∗

1 +
√
1− a2∗

, (4.24)

and depend only on a∗. Note that we used the fact that the integrals of terms
proportional to k̃′ vanish because the greybody factor is an even function of k̃′

(see Eqs. (4.30) and (4.31) of the next subsection), and thus, such terms are
odd functions of k̃′. From Eqs. (4.17)–(4.19) and Eq. (3.61), the equation for
a∗ is derived as

− 1

a∗

da∗
dt

= 3H(a∗)
J4
ψ

M8
, (4.25)

where

H(a∗) :=
9π

4

G(a∗)

a∗
− F (a∗). (4.26)

Therefore, the time evolution of a thin black ring by the Hawking radiation
is determined by the equations for M , Jψ and a∗, that is, Eqs. (4.17), (4.18)
and (4.25). The remaining work is to calculate the greybody factors and obtain
F (a∗) and H(a∗) of Eqs. (4.20) and (4.26) numerically.

4.3 Greybody factor

In the following, we discuss the greybody factor for a massless scalar field in
a boosted Kerr string spacetime. Substituting the ansatz (4.5) into the Klein-
Gordon equation (4.1) in the background of the boosted Kerr string (3.57), we
get the following angular and radial wave equations for Smℓ (θ) and R(r) [28]:

0 =
1

sin θ
∂θ (sin θ∂θS

m
ℓ ) +

[
a2
(
ω2 − k2

)
cos2 θ − m2

sin2 θ
+ λℓm

]
Smℓ , (4.27)

0 = ∆∂r (∆∂rR)−∆
[
k2r2 + a2ω2 − 2ωma coshσ + λℓm

]
R

+
[ [
ω
(
r2 + a2

)
−ma coshσ

]2
+ 2MKr

(
r2 + a2

)
cosh2 σ (ω − k tanhσ)

2

− 2MKr
(
r2 + a2

)
ω2 −m2a2 sinh2 σ + 4kmaMKr sinhσ

]
R, (4.28)

where λℓm is the separation constant which is determined as an eigenvalue of
(4.27). For small a2

(
ω2 − k2

)
, the eigenvalues associated with the spheroidal

wave functions Smℓ are λℓm = ℓ (ℓ+ 1) +O
(
a2
(
ω2 − k2

))
[29].

As we mentioned in Sec. 4.1, the greybody factor is calculated as the ab-
sorption probability of the incoming waves of the corresponding mode. With
the tortoise coordinate r∗ and a new wave function u defined by

dr∗ =
r2 + a2

∆
dr, R =

1√
r2 + a2

u, (4.29)
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the radial wave equation (4.28) can be rewritten as the following equation of
Schrödinger type: [

d2

dr2∗
+ ω′2 − V (r)

]
u = 0, (4.30)

where V (r) is the effective potential

V (r) =
∆
{
2MKr(r

2 − 2a2) + a2(r2 + a2)
}

(r2 + a2)4

+
∆(ω′2a2 + λℓm + k′

2
r2) + 4mω′MKar −m2a2

(r2 + a2)2
.

(4.31)

Here, the quantities in the unboosted frame, ω′ and k′, were introduced in the
same manner as Eq. (4.16). Note that Eqs. (4.30) and (4.31) have the same
form as the equations for a massive scalar field with angular frequency ω′ and
mass |k′| in a four-dimensional Kerr spacetime. As the boundary condition, we
impose the ingoing condition at the horizon. Then, u behaves as

u(r∗) ∼

{
e−iω

′
+r∗ at r → r+,

Aine
−iω′

∞r∗ +Aoute
iω′

∞r∗ at r → ∞.
(4.32)

Here ω′
+ := ω′ −mΩ′

ϕ and ω′
∞ :=

√
ω′2 − k′2. The greybody factor is written

as

Γ′
ℓm(ω′, k′) = 1−

∣∣∣∣AoutAin

∣∣∣∣2 , (4.33)

which has to be evaluated numerically.
In this thesis, we perform numerical calculations of the greybody factor in

the case of the Emparan-Reall black ring, i.e., a = 0. In this case, Smℓ (θ)eimϕ

becomes the spherical harmonic function Yℓm(θ, ϕ) and the greybody factor is
independent of m, and therefore, the calculation becomes much simpler com-
pared to the case a ̸= 0. We developed a code to calculate the greybody factor
in this situation. The left and right panels of Fig. 7 show the behaviors of the
greybody factors of the first three even ℓ numbers for k̃′ = 0 and 0.6, respec-
tively. Our result is in good agreement with the analytic approximate formula
for low-frequency waves in Ref. [30] (see also [31, 32]).

Note that if we take the limit ω̃′ → k̃′ for k̃′ ̸= 0, the greybody factor
is expected to approach a nonzero finite value.3 Obtaining these values by
numerical calculation is rather difficult because the greybody factors have to
be evaluated at a very distant position r/M ≫ 1/v′2 with v′ =

√
1− (k′/ω′)2.

Although these values are left uncertain in our calculation, we have checked that
the error caused by this uncertainty is small. For example, the error in F (0) of
Eq. (5.9) is smaller than 0.1%.

3This behavior has been claimed in Ref. [30] and we have also checked it using an analytic
toy model.
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Figure 7: Greybody factors Γ′ as functions ofMKω
′ for the modes ℓ = 0, 2, and

4 in the case a∗ = 0 for (a) MKk
′ = 0 (left panel) and (b) MKk

′ = 0.6 (right
panel). In the right panel, the data for MKω

′ ≥ 0.6005 are plotted.

4.4 Absorption cross section

We check the validity of our numerical results in the previous subsection dis-
cussing an absorption cross section. Our numerical calculation was done for a
thin Emparan-Reall black ring. In other words, we obtained the greybody fac-
tor for a massless scalar field in a five-dimensional boosted Schwarzschild string
spacetime. Note that this is the same as the greybody factor for a massive
scalar field in a four-dimensional Schwarzschild spacetime. Therefore, in this
subsection, we discuss an absorption problem of the Schwarzschild black hole
for massive scalar field with energy ω and mass k.

The relation between the partial absorption cross section σℓ and the grey-
body factor Γℓ is given by[30]

σℓ(ω) =
π

ω2v2r2s
(2ℓ+ 1)Γℓ(ω), (4.34)

where v2 = 1 − k2/ω2 and rs is the horizon radius of the Schwarzschild black
hole. Unruh derived the analytic expression of the low-energy partial absorption
cross section for the massive scalar by matching the near-horizon radial solution
and the asymptotic solution via the solution in the intermediate regime.

σ
(Unruh)
ℓ =

π

ω2v2r2s
(2ℓ+ 1)Γ

(Unruh)
ℓ , (4.35)

Γ
(Unruh)
ℓ =

π(ℓ!)422ℓ+2(1 + v2)ω2ℓ+3v2ℓr2ℓ+3
s

(2ℓ!)4(2ℓ+ 1)2[1− exp {−πω(1 + v2)/v}]

ℓ∏
s=1

[
s2 +

(
ω(1 + v2)

2v

)2
]
.

The interesting result in Eq.(4.35) is the S-wave cross section(ℓ = 0), which is

σ
(Unruh)
0 =

(2π)2(1 + v2)ωrs
v2[1− exp {−πω(1 + v2)/v}]

. (4.36)
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Figure 8: The total absorption cross sections as functions of rsω for k =
0, 0.15, 0.3 and 0.5. The wiggly behaviour indicates that each partial absorption
cross section has a peak at different energy scale. Regardless of mass the total
absorption cross sections approach 27π/4 at the high-energy limit. For m = 0,
σtot approaches 4π at the small ω.

Taking ω → 0 limit and assuming ω ≪ 1, we have

σ
(Unruh)
0 ∼ 4π, (4.37)

which equals to the horizon area. This is an universal property of the low-energy
absorption cross section for massless scalar in black hole physics.

The total absorption cross section is given by

σtot =
∑
ℓ

σℓ. (4.38)

σtot has the wiggly pattern described by

σtot(ω) =
27π

4
−

√
2
sin(

√
2ππω)

ω
, (4.39)

because of the wave-black hole interaction in the effective potential [33]. This
takes the limiting value 27π/4 ∼ 21.2 at large ω region. This also indicates that
each partial cross section has a peak in a different value of ω.

In Fig. 8, the total absorption cross sections are plotted as functions of rsω
for four different masses k = 0, 0.15, 0.3 and 0.5 (compare this figure with Fig.3
of Ref. [34]). For all value of k, the oscillatory patterns of σtot appear and the
total absorption cross sections approach 27π/4 at large ω region. These results
are consistent with Eq. (4.39). For the massless mode k = 0, σtot → 4π in
the low energy limit ω → 0. This implies the behaviors of low-energy partial
absorption cross sections as follows: in the low energy region, the partial cross
section for ℓ = 0 takes 4π as predicted in Unruh approximation, Eq. (4.37), while
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Figure 9: Partial absorption cross sections are plotted as functions of rsω for
ℓ = 0(left panel) and for ℓ = 1(right panel). In the left panel, partial absorption
cross sections σ0 of ℓ = 0 mode are shown for k = 0, 0.07, 0.1, 0.2 and 0.4. σ0
for the massless mode approaches 4π at the small ω. In the right panel, partial
absorption cross sections σ1 of ℓ = 1 mode are shown for k = 0, 0.5, 0.7 and 0.9.
σ1 for the massless mode approaches zero at the small ω.

the partial cross sections for ℓ > 0 are zero. The implication can be confirmed
in the next paragraph.

In Fig. 9, we plotted the partial absorption cross sections as functions of rsω
for ℓ = 0(left panel) and for ℓ = 1(right panel). Compare these figures with
Fig.7 of Ref. [34]. In the left panel, the partial absorption cross sections σℓ=0

are shown for k = 0, 0.07, 0.1, 0.2 and 0.4. σ0 for the massless mode approaches
4π at the small ω. In the right panel, the partial absorption cross sections σℓ=1

are shown for k = 0, 0.5, 0.7 and 0.9. σ1 for the massless mode approaches
zero at the small ω. Therefore, in the low energy region, σℓ>0 approaches zero
and only σ0 contributes to the total absorption cross section. Moreover, the
absorption cross sections of nonzero mass go to infinity in the sufficiently small
ω region, which is independent of ℓ. These are consistent with the behavior of
the greybody factor discussed in the previous subsection. As shown in Fig. 7,
while the greybody factor for massless mode approach zero if we take the limit
ω → k, that for massive mode is still finite in the low energy limit. When we
transform the greybody factor to the absorption cross section using Eq. (4.34),
the massless and massive modes give σℓ = 0 and σℓ → ∞, respectively.
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5 Evolution by Evaporation

In this section, we discuss general features of the time evolution of the evap-
orating Pomeransky-Sen’kov black ring. Then, we focus attention to the case
of the Emparan-Reall black ring, and derive semi-analytic solutions of the time
evolution using the numerical results of the greybody factors.

5.1 Evolution of Pomeransky-Sen’kov black rings

First, we discuss general features that does not depend on the details of the
greybody factor. From Eqs. (4.17) and (4.18), the following relation can be
immediately found:

J2
ψ

M3
= const. (5.1)

From Eq. (3.62), this means that the thickness parameter λ does not change,

λ(t) ≡ λ(0). (5.2)

Therefore, a Pomeransky-Sen’kov black ring evaporates without changing the
initial value of the nondimensional rotation parameter along S1.

Next, let us assume a∗ > 0 and consider how to solve the evolution equations
for a∗(t) and M(t). Eliminating M and Jψ from Eqs. (4.17) and (4.25) using
Eq. (5.1), we obtain

d

dt

(
3a∗H(a∗)

da∗/dt

)
= 4F (a∗). (5.3)

In principle, this equation can be solved at least numerically to yield a∗(t) once
H(a∗) and F (a∗) are specified. Then, from Eqs. (4.17) and (4.25), the time
evolution of M(t) is formally given by

M(t) =M(0) exp

[
2

3

∫ a∗(t)

a∗(0)

F (a∗)

a∗H(a∗)
da∗

]
. (5.4)

We point out that the behavior of H(a∗) is crucial for the evolution of
a∗. This function is analogous to h(a∗) of Ref. [14] where the evolution of a
four-dimensional Kerr black hole was investigated: The value of a∗ increases
(decreases) if H(a∗) is negative (positive). If H(a∗) crosses zero from negative

to positive at some value a∗ = a
(c)
∗ similarly to Fig. 3 of Ref. [14], the black

ring inevitably evolves to the state with a
(c)
∗ . Therefore, numerical calculation

of H(a∗) is very interesting, but is left for future work. In the present thesis,
we only study what happens in the case of an Emparan-Reall black ring.

5.2 Evolution of Emparan-Reall black rings

In the case of the Emparan-Reall black ring, Jϕ(t) ≡ 0 and a∗ ≡ 0, and
Eqs. (4.17) and (4.18) can be solved analytically:

M(t) =M(0)

(
1− 4F (0)

Jψ(0)
4

M(0)8
t

)1/2

, (5.5)
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Jψ(t) = Jψ(0)

(
1− 4F (0)

Jψ(0)
4

M(0)8
t

)3/4

. (5.6)

Therefore, our remaining task is to determine F (0) numerically.
As discussed in Sec. 4.2, basically we have to calculate Eqs. (4.10), (4.22),

and (4.20), and in those equations, the summation over m was taken at the
last step. But in the case of a∗ = 0 considered here, it is better to take the
summation with respect tom in advance because the integrand does not depend
on m. For this reason, we calculate summation of the greybody factors as

g′(ω̃′, k̃′) :=
∞∑
ℓ=0

ℓ∑
m=−ℓ

Γ′
ℓm(ω̃′, k̃′) =

∞∑
ℓ=0

(2ℓ+ 1)Γ′
ℓ(ω̃

′, k̃′). (5.7)

Then, F (0) is given by

F (0) =
37π2

23
√
2
I1, I1 :=

∫ ∞

−∞
dk̃′
∫ ∞

|k̃′|
dω̃′ ω̃

′g′(ω̃′, k̃′)

eω̃′/T̃ ′ − 1
. (5.8)

The integrations of I1 were executed with the Simpson’s method. The do-
main of integration of I1 was made finite by discarding the region where the
integrand is sufficiently small. We therefore set the upper limit of integration
with respect to ω̃′ to be 0.75. We took summation with respect to ℓ up to ℓ = 5,
because the contributions from the modes ℓ > 5 turned out to be negligible.
This is because the potential walls for ℓ > 5 are so high that they reflect almost
of all waves. In this manner, F (0) is determined as

F (0) ≃ 0.239. (5.9)

As a check, we compute F (0) using the DeWitt approximation [41] in the next
subsection. The two results agree well, and therefore, our numerical result is
reliable.

As shown in Eq. (5.2), the nondimensional rotation parameter J2
ψ/M

3 is
held fixed throughout the evolution, and this also indicates the constancy of
the thickness parameter λ. Because a∗ ≡ 0, the Emparan-Reall black ring
evaporates keeping similarity to its initial shape: The black ring at any time
can be obtained by uniformly scaling its initial configuration. The scaling factor
C(t) can be found by deriving the time evolution of the ring radius R as

C(t) :=
R(t)

R(0)
=

(
1− 4F (0)

Jψ(0)
4

M(0)8
t

)1/4

. (5.10)

The lifetime tLT of a thin black ring with mass M is

tLT ≈
(
27πλ

4

)2(
M

Mp

)2

tp, (5.11)

where Mp and tp are the Planck mass (ℏ2/G)1/3 and the Planck time ℏ/Mpc
2,

respectively. The time scale is proportional toM2, and this dependence onM is
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same as that of the five-dimensional Schwarzschild black hole. However, because
of the prefactor (27πλ/4)2, the lifetime of a thin black ring with λ ≲ 10−2 is
much shorter than that of the five-dimensional Schwarzschild black hole with
the same mass.

5.3 DeWitt approximation

In order to check the validity of our numerical result (5.9) of F (0) in the case of
the Emparan-Reall black ring, we compute this value in an approximate way. As
the method of approximation, we adopt the DeWitt approximation [41] that was
originally developed to evaluate the contribution of the greybody factor to the
evaporation of a Schwarzschild black hole (see p. 394 of Ref. [35] for a review).
In that study, the greybody factor was obtained by appropriately reinterpreting
the capture condition of null geodesics. Although this approximation holds
only for high-frequency regime in a strict sense, it gives a rather good result.
In fact, the difference of the DeWitt approximation from the numerical result is
≈ 6%. Compare the formula of the mass-loss rate by the DeWitt approximation
(Eq. (146) of Ref. [41]) and the numerical value reported in Ref. [14].

In the spacetime of a five-dimensional Schwarzschild string, a massless par-
ticle with momentum in the z direction effectively behaves as a massive particle
in a four-dimensional Schwarzschild spacetime. Therefore, as the first step, we
study timelike geodesics in a four-dimensional Schwarzschild spacetime and de-
rive the capture condition. Then, we translate it to the greybody factor for a
massless scalar field in a spacetime of a Schwarzschild string. Using this result,
we derive the value of F (0) in the DeWitt approximation by performing the
summation and integration in Eqs. (5.7) and (5.8).

The metric of a four-dimensional Schwarzschild spacetime is given by

ds2 = −f(r)dt2 + dr2

f(r)
+ r2(dθ2 + sin2 θdϕ2), (5.12)

f(r) = 1− 2MK

r
. (5.13)

This is the same metric as (2.11) if we take the mass parameter asMK = G4MS .
The geodesic motion of a massive particle in the equatorial plane is governed
by the following equations:

f(r)ṫ = e, (5.14)

r2ϕ̇ = j, (5.15)

−f(r)ṫ2 + ṙ2

f(r)
+ r2ϕ̇2 = −1. (5.16)

Here, e and j indicate the energy and angular momentum per unit mass of the
test particle, and dot ( ˙ ) denotes the derivative with respect to the particle’s
proper time τ . Substituting Eqs. (5.14) and (5.15) into Eq. (5.16), we obtain

ṙ2 + V (r) = e2, (5.17)
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where

V (r) =

(
j2

r2
+ 1

)(
1− 2MK

r

)
. (5.18)

Let us consider the situation where a test particle exists in the neighborhood
of the horizon and moves toward outside (i.e. ṙ > 0). Denoting the peak value
of V (r) as Vpeak, the particle escapes to infinity if the condition Vpeak < e2 is
satisfied. Conversely, a particle with Vpeak > e2 is reflected back to the black
hole by the centrifugal barrier. After some calculation, the condition Vpeak = e2

is shown to be equivalent to

j = e
√
F (e)MK , (5.19)

where

F (e) =
27e4 − 36e2 + 8 + e(9e2 − 8)3/2

2e2(e2 − 1)
. (5.20)

Therefore, a particle escapes to infinity if j < e
√
F (e)MK , and it is reflected

back to the black hole if j > e
√
F (e)MK . This condition is equivalent to the

one obtained in Ref. [36]. Here,
√
F (e) varies from 4 to 3

√
3 as e is increased

from unity to infinity.
We use this result in order to approximate the greybody factor in the particle

emission from the Schwarzschild string. Here, we choose the unboosted frame,
and as done in Sec. 4.2, the quantities in this frame are indicated by prime ( ′ ).
Consider the emission of a quantum particle with mass k′, angular frequency
ω′, and angular quantum number ℓ. Replacing j → ℓ/k′ and e → ω′/k′ in
the capture condition derived above, the particle with ℓ ≲ ω′

√
F (ω′/k′)MK

escapes to infinity and that with ℓ ≳ ω′
√
F (ω′/k′)MK falls back to the horizon.

Therefore, the greybody factor is approximated by

Γ′
ℓm(ω̃′, k̃′) ≈ θ(ω̃′

√
F (ω̃′/k̃′)− ℓ), (5.21)

where θ(u) denotes the Heaviside step function, and we introduced ω̃′ =MKω
′

and k̃′ = MKk
′ in the same manner as Eq. (4.8). Note that in the massless

particle limit, k̃′/ω̃′ → 0, Eq. (5.21) becomes Γℓmn ≈ θ(3
√
3ω̃′ − ℓ), and this

agrees with the formula in the original DeWitt approximation [41].
Now, we evaluate the value of F (0). The computation can be done with the

formula given in Sec. 5.2. The quantity g′(ω̃′, k̃′) in Eq. (5.7) is

g′(ω̃′, k̃′) =
∞∑
ℓ=0

(2ℓ+ 1)θ(ω̃′
√
F (ω̃′/k̃′)− ℓ) ≈ ω̃′2F (ω̃′/k̃′). (5.22)

Here, the summation over ℓ was changed by integration as done by DeWitt.
Then, F (0) can be calculated by substituting this formula into Eq. (5.8). It is
convenient to introduce new variables (x, y) by x = k̃′/ω̃′ and y = ω̃′, and in
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these variables, analytic integration can be proceeded as

I1 =

∫ ∞

0

y4dy

e8πy − 1

∫ 1

−1

dxF (1/|x|)

=
ζ(5)

4096π5

[
88 + 33

√
2 arcsin

(
2
√
2

3

)
− 3 log 3

]
. (5.23)

Substituting this result into Eq. (5.8), we obtain

F (0) ≈ 1.40× 10−6 (5.24)

This value is fairly close to our numerical value in Eq. (5.9): Similarly to the
original DeWitt approximation for the Schwarzschild black hole, the approxi-
mate value is about 6% smaller compared to the numerical value. Therefore, the
result of the DeWitt approximation supports the correctness of our numerical
calculation.
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6 Energy and angular spectra

In this section, we study the spectra of energy and angular momentum of radi-
ated particles in the evaporation of a thin Emparan-Reall black ring.

6.1 Formulas for energy and angular spectra

For a thin Emparan-Reall black ring with a∗ = 0, the emission rates of energy
and angular momentum are given by Eqs. (4.13) and (4.14) with dJϕ/dt = 0. In
Sec. 4.2, we simplified these formulas by performing the Lorentz transformation
from (ω̃, k̃) to (ω̃′, k̃′) through Eq. (4.16). Physically, this corresponds to the
transformation from the boosted frame to the unboosted frame. Therefore,
when we speak about the spectra, the two kinds of spectra can be considered:
The spectra in the boosted frame (with respect to ω) and those in the unboosted
frame (with respect to ω′). In this thesis, we prefer to analyze the spectra in the
boosted frame, because the spectra in the boosted frame correspond to those for
a distant observer at rest in the original black ring spacetime. For this reason,
we rewrite Eqs. (4.13) and (4.14) in order to match them to our purpose here.
Because the integrand does not depend on m in the case of a∗ = 0, we take
summation with respect to m in advance,

∞∑
m=−∞

g(m)(ω̃, k̃) =
∞∑
ℓ=0

(2ℓ+ 1)Γℓ(ω̃, k̃), (6.1)

and change the order of integration with respect to ω̃ and k̃ as∫ ∞

−∞
dk̃

∫ ∞

|k̃|
dω̃ =

∫ ∞

0

dω̃

∫ ω̃

−ω̃
dk̃. (6.2)

Then, the formulas for the emission rates become

−dM
dt

=
R√

2πM3
K

∫ ∞

0

dω̃
∞∑
ℓ=0

(2ℓ+ 1)

∫ ω̃

−ω̃
dk̃

ω̃Γℓ(ω̃, k̃)

e(ω̃−k̃V )/T̃ − 1
, (6.3)

−dJψ
dt

=
R2

πM3
K

∫ ∞

0

dω̃
∞∑
ℓ=0

(2ℓ+ 1)

∫ ω̃

−ω̃
dk̃

k̃Γℓ(ω̃, k̃)

e(ω̃−k̃V )/T̃ − 1
. (6.4)

Therefore, the energy and angular spectra are written as

−d
2M

dtdω̃
=

R√
2πM3

K

dIM
dω̃

, −d
2Jψ
dtdω̃

=
R2

πM3
K

dIJ
dω̃

, (6.5)

with the definitions

dIM
dω̃

:=
∞∑
ℓ=0

(2ℓ+ 1)

∫ ω̃

−ω̃
dk̃

ω̃Γℓ(ω̃, k̃)

e(ω̃−k̃V )/T̃ − 1
, (6.6)
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dIJ
dω̃

:=
∞∑
ℓ=0

(2ℓ+ 1)

∫ ω̃

−ω̃
dk̃

k̃Γℓ(ω̃, k̃)

e(ω̃−k̃V )/T̃ − 1
. (6.7)

The quantities dIM/dω̃ and dIJ/dω̃ are interpreted as the rescaled energy and
angular spectra.

We also would like to compare the energy spectrum of a thin black ring with
that of a four-dimensional Schwarzschild black hole. The energy spectrum of
evaporation of a four-dimensional Schwarzschild black hole with a mass MS =
MK/G4, where G4 is the four-dimensional gravitational constant, is given by

−d
2MS

dtdω̃
=

1

M2
K

dI
(BH)
M

dω̃
with

dI
(BH)
M

dω̃
:=

1

2π

∞∑
ℓ=0

(2ℓ+ 1)
ω̃Γ

(BH)
ℓ (ω̃)

eω̃/T̃ ′ − 1
, (6.8)

where Γ
(BH)
ℓ (ω̃) is the greybody factor for a massless scalar field in a four-

dimensional Schwarzschild spacetime. Here, dI
(BH)
M /dω̃ is the rescaled energy

spectrum. The trivial difference between the two energy emission rates (6.3) and
(6.8) is that the black ring evaporation is different by a factor of ∼ R/MK ∼
1/λ ≫ 1 compared to the four-dimensional black hole evaporation. This is
because a large number of the Kaluza-Klein modes contribute to the black ring
evaporation, while only massless modes contribute to the evaporation of a four-
dimensional Schwarzschild black hole. In the following, we discuss the difference

between the rescaled energy spectra dIM/dω̃ and dI
(BH)
M /dω̃ apart from this

trivial difference of O(R/MK).

6.2 Numerical results

Now, we present the numerical results.

6.2.1 Energy spectrum

Figure 10 shows the rescaled energy spectrum dIM/dω̃ of emitted particles from
a thin Emparan-Reall black ring as a function of ω̃. The contributions from
different quantum numbers ℓ = 0, 1, and 2 are also plotted. only the ℓ = 0 and
1 modes give the dominant contributions for the energy spectrum. The data
for the higher multipole modes ℓ ≥ 3 are not plotted because they are tiny and
invisible.

Let us discuss the feature of the energy spectrum of the black ring evap-
oration by comparing it with that of the evaporation of a four-dimensional
Schwarzschild black hole. The numerical data of the energy spectra for a black
ring and for a four-dimensional black hole are plotted in Fig. 11. First, we
focus attention to the low-frequency region, ω̃ ≪ 1. In this region, the energy
spectrum for the black ring evaporation grows more slowly compared to that for
the four-dimensional black hole as ω̃ is increased. This feature can be explained
by the approximate analysis as follows. In this region, the energy spectrum is
approximately determined only by the ℓ = 0 mode. Since the field equation in
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Figure 10: The rescaled energy spectrum dIM/dω̃ as a function of ω̃ together
with the contributions of different quantum numbers ℓ = 0, 1, and 2. This profile
is proportional to the energy spectrum.

the unboosted frame is identical to the Klein-Gordon equation with mass k′, we
can use Unruh’s approximate formula [30] for the greybody factor,

Γ0 ≈ 32π(1 + v′2)ω̃′3

1− exp[−2πω̃′(1 + v′2)/v′]

≈ 16ω̃′
√
ω̃′2 − k̃′2 + 16πω̃′

(
2ω̃′2 − k̃′2

)
+ · · · , (6.9)

for the ℓ = 0 mode, where v′ :=
√
1− k̃′2/ω̃′2 is the velocity at infinity. Trans-

forming this formula into the boosted frame and substituting it into Eq. (6.6),
we find

dIM
dω̃

≈ ω̃3. (6.10)

On the other hand, the approximate behavior of dI
(BH)
M /dω̃ for ω̃ ≪ 1 for the

four-dimensional Schwarzschild black hole is derived as

dI
(BH)
M

dω̃
≈ π−2ω̃2. (6.11)

This explains the slower growth of the rescaled energy spectrum for the black
ring compared to that for the four-dimensional black hole.

Next, we discuss the behavior in the high-frequency region ω̃ ≫ 1. In this
case, the greybody factor for a sufficiently small ℓ is approximately unity (see
Fig. 7 and also Eq. (5.21) in Sec. 5.3), and therefore, the contribution from a
mode with a sufficiently small ℓ is approximated as∫ ω̃

−ω̃
dk̃

ω̃Γℓ(ω̃, k̃)

e(ω̃−k̃V )/T̃ − 1
≈ ω̃

8π
e−8(

√
2−1)πω̃. (6.12)
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Figure 11: The rescaled energy spectra dIM/dω̃ for a thin black ring and

dI
(BH)
M /dω̃ for a four-dimensional Schwarzschild black hole as a function of ω̃.

Since the number of the modes that contribute to the energy spectrum is O(ω̃2),
we have

dIM
dω̃

∼ ω̃3e−8(
√
2−1)πω̃ (6.13)

for ω̃ ≫ 1 as an order estimate. On the other hand, for a four-dimensional
Schwarzschild black hole, we have

dI
(BH)
M

dω̃
∼ ω̃2e−8πω̃. (6.14)

The remarkable difference of the black ring formula (6.13) from the black hole
formula (6.14) is the presence of the factor

√
2 − 1 ≈ 0.414 in the argument of

the exponential function. Because of this factor, the energy spectrum for the
black ring evaporation decays much more slowly than that for the black hole as
ω̃ is increased. We can also confirm this slower decay from our numerical data
as shown in Fig. 11. The origin of this factor is the argument (ω̃ − k̃V )/T̃ in
the exponential function of the denominator in the left-hand side of Eq. (6.12).
In this formula, the momentum k̃ in the z direction of the boosted black string
spacetime enters like a chemical potential, and this “chemical potential term”
enhances the emission rate of particles with positive momenta k̃ > 0. From
the viewpoint of the original black ring spacetime, more number of particles
with positive angular momenta are emitted. Note that similar phenomena are
observed in the evaporation of Kerr and Myers-Perry black holes [32, 37, 38, 39,
40]: The energy emission rate of a rotating black hole is also enhanced in the
high-frequency regime compared to that of a Schwarzschild(-Tangherlini) black
hole because of the effect of the chemical potential term.

The location of the peak has to be evaluated numerically. Our numerical
result shows that the peak position is ω̃ ≃ 0.21 with the peak value dIM/dω̃ =
4.73 × 10−4. On the other hand, the peak position for the energy spectrum
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Figure 12: The rescaled angular spectrum dIJ/dω̃ as a function of ω̃ together
with the contributions of different quantum numbers ℓ = 0, 1, and 2. The inset
highlights the region 0 ≤ ω̃ ≤ 0.06. This profile is proportional to the angular
spectrum.

dIM/dω̃ for a four-dimensional Schwarzschild black hole is ω̃ ≃ 0.12. The peak
of dIM/dω̃ is located at a higher frequency (in the unit of MK) compared

to that of dI
(BH)
M /dω̃. The difference in the peak positions comes from both

the contribution from the Kaluza-Klein modes and the effect of the chemical
potential term.

To summarize, the energy spectrum of emitted particles from a black ring
shifts towards higher frequency domain compared to that from a four-dimensional
black hole with the same value of MK .

6.2.2 Angular spectrum

Now, we turn our attention to the angular spectrum. Figure 12 shows the
rescaled angular spectrum dIJ/dω̃ as a function of ω̃ together with the contri-
butions of different quantum numbers ℓ = 0, 1, and 2. The modes ℓ ≥ 3 are not
plotted for the same reason as the rescaled energy spectrum. Again, the ℓ = 0
and 1 modes give the dominant contributions to the angular spectrum.

First, we discuss the behavior in the low-frequency region. In this region,
the spectrum is approximately determined only by the ℓ = 0 mode. As we
can see in the inset of Fig. 12, the rescaled angular spectrum is negative for
ω̃ ≲ 0.05. This behavior can be confirmed also from the approximate analysis.
Substituting Unruh’s approximate formula (6.9) for the greybody factor of the
ℓ = 0 mode into Eq. (6.7), we have

dIJ
dω̃

≈

(
π − 8

√
2

3

)
ω̃4 ≈ −0.630× ω̃4 (6.15)

after some calculation. In discussing the reason for this negativity, there are two
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important effects: The chemical potential term and the greybody factor. As dis-
cussed above, the chemical potential term enhances the emission rate of particles
with positive k̃, and hence, tends to make the angular spectrum positive. On
the other hand, for a fixed Lorentz invariant ω̃2− k̃2, the greybody factor is ap-
proximately proportional to the frequency ω̃′ in the unboosted frame. Because
ω̃′ =

√
2ω̃− k̃, the positive momentum k̃ decreases the transmission probability

to infinity for a given ω̃. In other words, the relation Γ(ω̃, |k̃|) < Γ(ω̃,−|k̃|)
holds. The greybody factor suppresses the emission of particles with positive
momenta k̃, and tends to make the angular spectrum negative. Therefore, the
two effects compete with each other. At the leading order, the two effects cancel
out and there is no O(ω̃3) term in Eq. (6.15). At the subleading order, the effect
of the greybody factor is stronger than the effect of the chemical potential, and
this leads to the negative result of O(ω̃4) in Eq. (6.15).

Next, we discuss the behavior in the high-frequency region ω̃ ≫ 1. As done
in the discussion on the energy spectrum, we approximate the greybody factor
for a sufficiently small ℓ to be unity. Then, the contribution from a mode with
a sufficiently small ℓ is approximated as∫ ω̃

−ω̃
dk̃

k̃Γℓ(ω̃, k̃)

e(ω̃−k̃V )/T̃ − 1
≈ ω̃

8π
e−8(

√
2−1)πω̃. (6.16)

Since the number of the modes that contribute to the angular spectrum is O(ω̃2),
an order estimate gives

dIJ
dω̃

∼ ω̃3e−8(
√
2−1)πω̃. (6.17)

This is the same behavior as that of the energy spectrum, Eq. (6.13). The
numerical result also shows the similarity in the behavior of dIM/dω̃ and dIJ/dω̃
in the high-frequency region. Compare Figs. 10 and 12.

The peak position of the angular spectrum is numerically determined to be
ω̃ ≃ 0.25 with dIJ/dω̃ ≃ 3.43 × 10−4. This peak is located at a bit higher
frequency than the peak location of the energy spectrum, and the peak values
of dIM/dω̃ and dIJ/dω̃ have the same order. To shortly summarize, a black
ring emits positive angular momentum except for a small region ω̃ ≲ 0.05, and
the shape of the angular spectrum is similar to that of the energy spectrum.

6.3 Spectrum of a five-dimensional thin black string

Up to this point, we have studied the evaporation of an Emparan-Reall black
ring in the thin-limit approximation. There, the evaporation of a black ring was
approximated by that of a thin black string. Therefore, there is a close connec-
tion between the evaporation of a thin black ring and that of a thin black string.
For this reason, our formalism and numerical code can be directly applied also to
the evaporation of a thin Schwarzschild black string whose Schwarzschild radius
2MK is much smaller than the compactification scale L along the string direc-
tion. In this subsection, we study evaporation of a five-dimensional unboosted
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thin Schwarzschild black string and present numerical results on detailed prop-
erties of the evaporation by comparing them with those of a four-dimensional
Schwarzschild black hole. We also discuss the relation between these results and
the evaporation of a thin black ring.

In this subsection, we use the unit c = ℏ = G4 = 1 where G4 is the four-
dimensional gravitational constant.

6.3.1 Energy emission rate

We consider a five-dimensional Schwarzschild string with the metric

ds2 = −f(r)dt2+ dr2

f(r)
+r2(dθ2+sin2 θdϕ2)+dz2, f(r) = 1− 2MK

r
. (6.18)

Here, z = 0 and L are identified and we consider the situation L ≫ MK . This
black string is assumed to evaporate by emitting massless scalar particles in the
five-dimensional spacetime. In the evaporation of a black string, the Kaluza-
Klein modes with various values of momentum k′ = 2πn/L in the string direc-
tion contribute. Since these modes effectively behave as massive scalar fields in
a four-dimensional spacetime, evaporation of a five-dimensional Schwarzschild
string is identical to evaporation of a four-dimensional Schwarzschild black hole
emitting scalar particles with various discrete masses. The energy emission rate
of a black string is given by

−
dM

(BS)
K

dt
=

1

2π

∫ ∞

0

dω′
∑
ℓ,m,n

ω′Γ
(BS)
ℓmn (MKω

′)

eω′/T ′ − 1
. (6.19)

Since the black string is assumed to be thin, L ≫ MK , the summation over n
modes can be replaced by the integral with respect to k′:∑

n

→
∫
dn =

L

2π

∫
dk′. (6.20)

Then, the energy emission rate is

−
dM

(BS)
K

dt
=

L

4π2M3
K

I
(BS)
1 , (6.21)

with

I
(BS)
1 =

∫ ∞

0

dω̃′ ω̃′

eω̃′/T̃ ′ − 1

∞∑
ℓ=0

(2ℓ+ 1)

∫ ω̃′

−ω̃′
dk̃′Γ

(BS)
ℓ (ω̃′, k̃′). (6.22)

Note that I
(BS)
1 is identical to I1 of Eq. (5.8) that appeared in the analysis of

evaporation of a thin black ring.
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On the other hand, the energy emission rate for a Schwarzschild black hole
emitting massless particles is

−
dM

(BH)
K

dt
=

1

2π

∫ ∞

0

dω′
∑
ℓ,m

ω′Γ
(BH)
ℓm (MKω

′)

eω′/T ′ − 1
. (6.23)

Rewriting this formula with nondimensional quantities, we have

−
dM

(BH)
K

dt
=

1

2πM2
K

I
(BH)
1 , (6.24)

with

I
(BH)
1 =

∫ ∞

0

dω̃′ ω̃′

eω̃′/T̃ ′ − 1

∞∑
ℓ=0

(2ℓ+ 1)Γ
(BH)
ℓ (ω̃′). (6.25)

Let us compare the two energy emission rates, Eqs. (6.21) and (6.24). The

two integrals I
(BS)
1 and I

(BH)
1 have the same order, I

(BS)
1 ≈ 1.25 × 10−4 and

I
(BH)
1 ≈ 4.67× 10−4 (Here, our numerical result of I

(BH)
1 agrees with the value

reported in Ref. [14]). Therefore, the energy emission rate of a black string
is larger by a factor of O(L/MK) compared to that of a black hole. This is
because more numbers of the Kaluza-Klein modes contribute to the emission as
L/MK is increased. Therefore, in the Hawking radiation of a black string, as
the string becomes thinner, its evaporation becomes faster compared to that of
a Schwarzschild black hole whose mass is identical to the mass density of the
black string.

6.3.2 Time evolution

Solving Eqs. (6.21) and (6.24), we have

M
(BS)
K = MK(0)

(
1− I

(BS)
1 L

π2MK(0)4
t

)1/4

, (6.26)

M
(BH)
K = MK(0)

(
1− 3I

(BH)
1

2πMK(0)3
t

)1/3

, (6.27)

for a black string and a black hole, respectively. Because of the contribution
of the massive modes in the black string case, the powers in these formulas are
different from each other.

6.3.3 Energy spectrum

Let us focus attention to the energy spectrum. For this purpose, we introduce
the “effective greybody factor for the mode ℓ” for a black string with

Γ
(eff)
ℓ (ω̃′) :=

∫ ω̃′

−ω̃′
dk̃′Γ

(BS)
ℓ (ω̃′, k̃′). (6.28)
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Then, the quantity I
(BS)
1 of Eq. (6.22) is expressed as

I
(BS)
1 =

∫ ∞

0

dω̃′ ω̃′

eω̃′/T̃ ′ − 1

∞∑
ℓ=0

(2ℓ+ 1)Γ
(eff)
ℓ (ω̃′). (6.29)

Note that this formula is same as Eq. (6.25) except that Γ
(BH)
ℓ is replaced by

Γ
(eff)
ℓ . In addition, we introduce the “total effective greybody factor” by

Γ
(eff)
BS (ω̃′) :=

∞∑
ℓ=0

(2ℓ+ 1)Γ
(eff)
ℓ (ω̃′) (6.30)

for a black string. The similar quantity is also introduced for a black hole as

Γ
(eff)
BH (ω̃′) :=

∞∑
ℓ=0

(2ℓ+ 1)Γ
(BH)
ℓ (ω̃′). (6.31)

In terms of these total effective greybody factors, the spectra of the quantities

I
(BS)
1 and I

(BH)
1 with respect to ω̃′ become

dI
(BS)
1

dω̃′ =
ω̃′

eω̃′/T̃ ′ − 1
Γ
(eff)
BS (ω̃′), (6.32a)

dI
(BH)
1

dω̃′ =
ω̃′

eω̃′/T̃ ′ − 1
Γ
(eff)
BH (ω̃′). (6.32b)

These quantities dI
(BS)
1 /dω̃′ and dI

(BH)
1 /dω̃′ are related to the energy spectra

as

d2E(BS)

dtdω̃′ =
L

4π2M3
K

dI
(BS)
1

dω̃′ , (6.33a)

d2E(BH)

dtdω̃′ =
1

2πM2
K

dI
(BH)
1

dω̃′ . (6.33b)

Therefore, dI
(BS)
1 /dω̃′ and dI

(BH)
1 /dω̃′ can be called the rescaled energy spectra.

Figure 13 shows the effective greybody factors Γ
(eff)
ℓ for the mode ℓ as func-

tions of ω̃′ for ℓ = 0, ..., 5. The greybody factor Γ
(BS)
ℓ (ω̃′, k̃′) is approximately

unity in the high frequency region ω̃′ ≳ ℓ/(3
√
3) [see Eq. (5.21)], and therefore,

Γ
(eff)
ℓ (ω̃′) behaves as

Γ
(eff)
ℓ (ω̃′) ≃

∫ ω̃′

−ω̃′
dk̃′ = 2ω̃′. (6.34)

This behavior can be seen for ℓ = 0, 1, and 2 in the domain of ω̃′ shown in
Fig. 13.

In Fig. 14, the total effective greybody factor Γ
(eff)
BS for a black string is

plotted as a function of ω̃′. The quantities (2ℓ+ 1)Γ
(eff)
ℓ are also shown for the

48



 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5

 0  0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

Γ l
(e

ff
)

MKω’

l=0 l=1 l=2 l=3

l=4
l=5

Figure 13: The effective greybody factors Γ
(eff)
ℓ for the mode ℓ introduced in

Eq. (6.28) as functions of MKω
′ for the modes ℓ = 0, 1, 2, 3, 4, and 5. In the

high frequency region, Γ
(eff)
ℓ for the modes ℓ = 0, 1, and 2 behave as ≈ 2MKω

′.

first six ℓ modes. For comparison, we also plotted Γ
(eff)
BH for a black hole. The

value of Γ
(eff)
BH is larger than that of Γ

(eff)
BS in the low frequency region, ω̃′ ≲ 0.55.

This is because the domain of integration of Eq. (6.28) becomes smaller as k̃′

is decreased. Also, the greybody factor is a monotonically decreasing function
of |k̃′| for a fixed ω̃′. Conversely, in the high frequency region ω̃′ ≳ 0.55, we

have Γ
(eff)
BS > Γ

(eff)
BH reflecting the fact that domain of integration of Eq. (6.28)

becomes larger than unity.

In Fig. 15, the rescaled energy spectrum dI
(BS)
1 /dω̃′ for a black string is

plotted as a function of ω̃′ together with the contributions of different quantum
numbers ℓ = 0, 1, and 2. Although we plotted the modes ℓ = 3, 4, and 5,

they are tiny and invisible. For comparison, dI
(BH)
1 /dω̃′ for a black hole is also

plotted. Reflecting the results for Γ
(eff)
BS and Γ

(eff)
BH , the value of dI

(BH)
1 /dω̃′ is

larger than that of dI
(BS)
1 /dω̃′ in the low frequency region, ω̃′ ≲ 0.55. The peak

of dI
(BS)
1 /dω̃′ is located at a slightly higher frequency compared to the peak

location of dI
(BH)
1 /dω̃′, and the decay of dI

(BS)
1 /dω̃′ for the black string in the

high frequency region is slower than dI
(BH)
1 /dω̃′ for the black hole. Therefore,

the energy spectrum of emitted particles from a black string shifts towards the
higher frequencies compared to that from a black hole for a fixed MK .

As in Sec. 6.2, we discuss the behaviors of the energy spectrum of the black
string evaporation in the low and high frequency regions by comparing it with
that of the evaporation of a four-dimensional Schwarzschild black hole. In the
low-frequency region, ω̃′ ≪ 1, the energy spectrum for the black string increases
slowly compared to that for the Schwarzschild black hole as ω̃′ is increased. Since
the ℓ = 0 mode dominates the energy spectrum in this region, using Unruh’s
approximation for greybody factor, (6.9), for the ℓ = 0 mode, we have the
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Figure 14: Left panel: The total effective greybody factor Γ
(eff)
BS for a black

string introduced in Eq. (6.30) as a function of MKω
′ (solid line) together with

the contributions from first six ℓ modes, (2ℓ+1)Γ
(eff)
ℓ . Right panel: Comparison

between Γ
(eff)
BS and Γ

(eff)
BH (the solid line and the dash-dotted line, respectively).

The value of Γ
(eff)
BH is larger than that of Γ

(eff)
BS in the low frequency region.

rescaled energy spectrum for the black string (6.32a) is approximated by

dI
(BS)
1

dω̃′ ≈ 2ω̃′3. (6.35)

For the black string (6.32a), we have

dI
(BH)
1

dω̃′ ≈ 2

π
ω̃′2. (6.36)

This explains the slower growth of the rescaled energy spectrum for the black
string compared to that for the Schwarzschild black hole.

On the other hand, in the high-frequency region, ω̃′ ≫ 1, the energy spec-
trum for the black string evaporation decays more slowly than that for the
Schwarzschild black hole as ω̃′ is increased. In this region, the greybody factor
for a sufficiently small ℓ is approximately unity, and the summation with respect
to ℓ is taken up to ℓ ∼ O(ω̃′) (see Sec. 5.3). Using Eq. (6.34), we approximate
the total effective greybody factor for the black string by

Γ
(eff)
BS (ω̃′) ∼ ω̃′2, (6.37)

and for the black hole,

Γ
(eff)
BH (ω̃′) ∼ ω̃′. (6.38)

Therefore, in the high-frequency region, the rescaled energy spectrum for the
black string behaves as

dI
(BS)
M

dω̃′ ∼ ω̃′3e−8πω̃′
. (6.39)
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Figure 15: The rescaled energy spectrum dI
(BS)
1 /dω̃′ of Eq. (6.32a) for a black

string as a function of MKω
′ (the solid line) together with the contributions of

different quantum numbers ℓ = 0, 1, and 2. The contributions from the modes
ℓ ≥ 3 are tiny and invisible. This profile is proportional to the energy spectrum.

For comparison, dI
(BH)
1 /dω̃′ for a black hole is also plotted (the dash-dotted

line). The value of dI
(BH)
1 /dω̃′ is larger than that of dI

(BS)
1 /dω̃′ in the low

frequency region. The inset highlights the region 0.54 ≤ ω̃′ ≤ 0.6. The function

dI
(BS)
1 /dω̃′ decays more slowly compared to dI

(BH)
1 /dω̃′ in the high frequency

region.

For the black hole, we have

dI
(BH)
M

dω̃′ ∼ ω̃′2e−8πω̃′
. (6.40)

The difference in the power of ω̃′ causes the slower decay of the rescaled energy
spectrum for the black string compared to that for the Schwarzschild black hole.

6.3.4 Relation to the evaporation of a thin black ring

As already pointed out, the formula (6.22) of I
(BS)
1 for a thin black string is

equivalent to I1 of Eq. (5.8) that appeared in the analysis of a thin black ring.

Similarly to I
(BS)
1 for a black string, the quantity I1 gives the rescaled energy

emission rate of a thin black ring as seen from Eqs. (5.8) and (4.17). For this

reason, one might expect that the rescaled energy spectrum dI
(BS)
1 /dω̃′ for a

thin black string shown in Fig. 15 would also correspond to the rescaled energy
spectrum dI1/dω̃

′ for a thin black ring. But we have to be careful in this
reinterpretation.

In the case of a thin black ring, the function dI1/dω̃
′ is not proportional

to the energy spectrum for observers at rest in an asymptotically flat region.
This is because the energy spectrum for such observers has to be evaluated with

51



Eq. (4.13) where the frequency is given by ω̃, not by ω̃′. Originally, the trans-
formation from (ω̃, k̃) to (ω̃′, k̃′) was introduced in Eq. (4.16) in order to make
calculations of Eqs. (4.13)–(4.15) easier. Physically, this transformation corre-
sponds to the Lorentz transformation from the boosted frame to the unboosted
frame. Therefore, dI1/dω̃

′ represents the rescaled energy spectrum for observers
in the unboosted frame. From a viewpoint of the original black ring spacetime,
the observers in the unboosted frame are moving in the ψ direction with the
angular velocity identical to the horizon angular velocity Ωψ. Note that in order
to avoid superluminal motion, such rotating observers have to stay in a region
whose distance d from the black ring horizon satisfies MK ≪ d≪ R.
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7 Conclusion

In this thesis, we have studied the time evolution of evaporation of a thin black
ring under the assumption that only a massless scalar field is emitted in the
Hawking radiation. In order to separate the Klein-Gordon equation in the back-
ground of a black ring metric, we have considered the thin-limit approximation,
where the black ring metric is approximated by the boosted Kerr string metric.
Then, we have given a set of equations, Eqs. (4.17), (4.18) and (4.25), that deter-
mines the quasistationary evaporation of a thin Pomeransky-Sen’kov black ring.
In this setup, a black ring evaporates without changing the thickness parameter
λ. Also, we have analytically solved these equations in the case of an Emparan-
Reall black ring and given its time evolution in Eqs. (5.5) and (5.6), with the
factor F (0) ≃ 0.239 that has been determined by numerical calculation of the
greybody factor. In the evaporation, the shape of the Emparan-Reall black ring
keeps similarity to its initial configuration. The lifetime of a black ring is shorter
by a factor of O(λ2) compared to a five-dimensional Schwarzschild black hole
with the same initial mass.

We have also examined the energy and angular spectra of emitted particles
in the evaporation of a thin Emparan-Reall black ring. Compared to the energy
spectrum for a four-dimensional Schwarzschild black hole, the energy spectrum
for a black ring shifts to high-frequency region. In particular, the decay rate of
the black ring spectrum is slower than that for a four-dimensional black hole
by a factor of

√
2 − 1 in the high-frequency region because of the effect of the

“chemical potential” term. It has also been shown that the angular spectrum
has a similar shape to that of the energy spectrum except in the low-frequency
region ω̃ ≲ 0.05 where the angular spectrum becomes negative due to the effect
of the greybody factors.

As a closely connected system to a thin black ring, we applied our method
also to the evaporation of a thin black string. In addition to the formulas for time
evolution, we have given the numerical results on detailed properties of evapo-
ration of a five-dimensional unboosted Schwarzschild black string by comparing
them with those of a four-dimensional Schwarzschild black hole. Because of the
contribution of the Kaluza-Klein modes, the energy emission rate of a black
string is larger by a factor of O(L/MK) compared to that of a black hole. The
energy spectrum of a black string shifts towards the higher frequencies compared
to that of a black hole if we compare them fixing MK . The energy spectrum of
the Schwarzshild string is proportional to that of the thin Emparan-Reall black
ring for observers rotating with the angular velocity identical to the horizon
angular velocity Ωψ.

As a future work, it is interesting to study the time evolution of a Pomeransky-
Sen’kov black ring with nonvanishing rotational parameter a∗ along the S2 di-
rection. For this purpose, we have to calculate the functions F (a∗) and H(a∗)
of Eqs. (4.20) and (4.26), and therefore, developing the code for computing the
greybody factor of the boosted Kerr string is required. In addition, we are also
interested in the time evolution of evaporation of a thin black ring in the case
that massive and/or nonzero spin particles are emitted.
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