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Abstract

A divergence measure describes discrepancy between two probability distributions. We

present a local learning approach with a specific form of the measures called the gamma-

divergence. Learning algorithms are divided into two types, global learning algorithms and

local learning algorithms. Global learning algorithms employ all the data simultaneously to

estimate the whole data structure, while local learning algorithms employ a part of the data

to capture the local structure. Estimation with the gamma-divergence has the local learning

capability. The gamma-divergence is a generalization of the Kullback-Leibler divergence

with the power index gamma. It employs the power transformation of density functions,

instead of the logarithmic transformation employed by the Kullback-Leibler divergence.

We consider the gamma-divergence between the underlying distribution and a parametric

model, where the underlying distribution means the one which data follow. As a function of

the parameter, the gamma-divergence has some local minimum points corresponding to the

local structure in the data set. Therefore, we can capture the local structure by the local min-

imum points. We show that the existence of the local minimum points theoretically in some

simple settings. The local learning capability of estimation with the gamma-divergence is

applied with respect to cluster analysis and detection of heterogeneous correlation structure.

Cluster analysis is aimed to divide data into some groups called clusters. Finding clus-

ters can be regarded as investigation of the local structure of the data set, so we can apply

the local learning capability to cluster analysis. We propose a new method for clustering



with local minimization of the gamma-divergence based on the normal distribution, which

we call “spontaneous clustering”. The greatest advantage of the spontaneous clustering is

that it automatically detects the number of clusters that adequately reflect the data structure.

In contrast, existing methods, such asK-means, fuzzyc-means, or model-based clustering

need to prescribe the number of clusters. Instead of the number of clusters, the value of

gamma should be determined for the spontaneous clustering. We propose two methods for

this purpose. One is a heuristic choice similar to the bandwidth selection in kernel density

estimation. The other is based on Akaike Information Criterion (AIC). We detect all the

local minimum points of the gamma-divergence, by which we define the cluster centers.

As for the second application we discuss a parameter estimation problem for a Gaussian

copula model. A copula is a multivariate distribution function with uniformly distributed

marginals on the unit interval and it determines the correlation structure of a multivariate

distribution. We consider the heterogeneous correlation structure, that is, the copula of the

underlying distribution might be a mixture of some Gaussian copulas. This heterogeneity

can be captured by finding the local minimum points of the gamma-divergence based on the

Gaussian copula model. We propose a fixed point algorithm to obtain the local minimum

points of the gamma-divergence. It is also shown that the gamma-estimation is robust

against outliers in terms of the influence function. A feasible form of the gamma-divergence

is given that suites the Gaussian copula model.

In both applications, we consider the situation where the underlying distribution might

deviate from the statistical model we fit. The statistical model is a single parametric model,

while the underlying distribution is represented by a mixture of some distributions in the
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model. This is not the standard situation where the statistical model includes the underlying

distribution. In this thesis, we show that even in such a situation the estimation is possible

by using the gamma-divergence. One of the advantages of this method is that it works well

for mixtures of any number of distributions if they are “distinct” enough.
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Chapter 1

Introduction

Divergence measures serve the concept of distance between two probability distributions.

The most well-known divergence is the Kullback-Leibler (KL) divergence proposed in

Kullback and Leibler (1951). It is well known that the maximum likelihood estimation

can be regarded as the minimization of the empirically estimated KL divergence. A number

of different divergence measures have been presented in the literature (Rao, 1982; Eguchi,

1985; Amari and Nagaoka, 2000; Zhang, 2004; Cichocki and Amari, 2010). Other diver-

gence measures lead to different estimators in the same way as the maximum likelihood

estimator is defined. Divergence measures are used in not only statistical estimation but

also other statistical analyses, such as hypothesis test (Pardo, 2006), multivariate analysis

(Mollah et al., 2006, 2010), information criteria (Konishi and Kitagawa, 2008), and boost-

ing (Murata et al., 2004).

In this thesis, we focus on applications of theγ-divergence, which is one of divergence

measures employing the power transformation of density functions. The power transforma-
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tion has been employed in statistics, information theory, and physics (Tsallis, 1988). For

example, in Box and Cox (1964), it is used for transforming data to meet the standard as-

sumptions, such as the normality of the data. A number of divergence measures with the

power transformation have been proposed (Rényi, 1961; Sharma and Mittal, 1977; Liese

and Vajda, 1987). Some of the divergence measures have been proved to be especially use-

ful for constructing robust methods. The density power divergence was proposed in Basu

et al. (1998) for robust parametric estimation. Minami and Eguchi (2002) presented the

same divergence independently for robust blind source separation, which is called theβ-

divergence. Jones et al. (2001) and Fujisawa and Eguchi (2008) proposed theγ-divergence

for robust parametric estimation. Jones et al. (2001) investigated the robustness of the es-

timation with theγ-divergence from the point of view of the influence function, and they

compared the properties of theβ-divergence with those of theγ-divergence. On the other

hand, in Fujisawa and Eguchi (2008), the robustness was explored in terms of information

geometry. We, however, employ theγ-divergence not for robustness but for detection of the

local structure in the data set.

Here is a simple example that explains the motivation for employing theγ-divergence

to capture the local structure. Consider the problem of estimating the Gaussian mean pa-

rameterµ. The maximum likelihood estimator (MLE) ofµ is given by the arithmetic mean

of the data set as the unique maximum point of the log likelihood function. Similarly,

theγ-estimator ofµ is defined by the minimum point of theγ-loss function, which is the

empirically estimatedγ-divergence. It is known that the MLE behaves poorly in various

situations where the Gaussianity assumption is inappropriate. For example, if the data are
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derived from a mixture of two normal distributions while our model is normal, then the es-

timation with the log likelihood function fails, as shown in Figure 1 (a). This failure results

from the unfaithfulness of the model. The estimation with theγ-loss function, however,

captures all the components of the normal mixture, even though based on the unfaithful

model. Figure 1 (b) shows that theγ-loss function has two local minimum points corre-

sponding to the two mean values of the two normal distributions. That is, the two means

can be estimated by the two local minimum points. This thesis applies such a property to

detect local mean structure and local correlation structure in the data set, i.e. cluster analysis

and parameter estimation of a copula model.

Cluster analysis is a common procedure for grouping similar objects in unsupervised

learning (Jain et al., 1999; Xu and Wunsch, 2005; Hastie et al., 2009). The procedure stably

produces a classification and is frequently used as a preprocessing technique before super-

vised learning. Cluster analysis has wide applications over many disciplines in exploratory

data analysis. See, for example, Jin et al. (2011) and Wu et al. (2011) for recent develop-

ments. There are two main approaches in cluster analysis. One is the hierarchical approach,

which describes a tree structure called a “dendrogram”. The other is the approach of data

space partition, such as theK-means clustering. This thesis focuses on the latter approach

from the point of view of statistical pattern recognition. We propose what we call the spon-

taneous clustering. It starts with finding cluster centers in a data set. For this purpose, we

employ theγ-loss function of the Gaussian mean parameter. In the spontaneous clustering,

we will propose to determine the cluster centers by the local minimum points of theγ-loss

function. Almost all procedures via data space partition require to pre-determine the num-
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ber of clusters; the selection of the number of clusters is a major challenge. A number of

methods for this purpose have been proposed in the literature (Xu and Wunsch, 2005). Our

clustering method can find the number of clusters automatically, as long as the value ofγ

is properly fixed. The name “spontaneous clustering” comes from this property. Instead

of the number of clusters, the value of the power indexγ should be determined. We will

propose two methods to accomplish this aim. One is a heuristic choice ofγ that merely re-

lies on the range of the data, and the other is a more sophisticated method based on Akaike

Information Criterion (AIC).

The estimation of the Gaussian copula parameter is the other application of the local

learning capability with theγ-divergence. Applications of copula models have been in-

creasing in number in recent years. There are a variety of applications on finance, risk man-

agement (McNeil et al., 2005), and multivariate time series analysis (Zhang et al., 2011).

With copula models, the specification of the marginal distributions is parameterized sepa-

rately from the dependence structure of the joint distribution. Hence it gives a convenient

way of the construction of flexible and more general multivariate distributions. As far as

we know, there exist only a few works that tackled with the identification and the statistical

estimation of the mixture of copula models and most of them rely on MCMC algorithm. In

this thesis we focus on a misspecified Gaussian copula model. In other words, a sample fol-

lows a distribution mixed with different sources but a statistical model we fit is just a single

Gaussian copula. It is very hard to construct multivariate copulas for three or more random

variables (Nelsen, 1999), while the Gaussian is an exception. So we start with the Gaussian

copula model, but later in the section 4.3.6 we will show our method is closely related to
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t-copula. As an example of misspecification, we consider that the underlying distribution is

τcG(u;P1) + (1− τ)cG(u;P2), (1.1)

whereτ is a mixing proportion andcG(u;P ) denotes the probability density function of

the Gaussian copula with the correlation matrix parameterP . We see that the MLE forP

almost surely converges toτP1 + (1− τ)P2 under the assumption (1.1), which means that

the MLE fails to detect the structure of the underlying distribution. We make use of the

γ-loss function of the Gaussian copula parameter for this problem. Our research shows that

even if a single Gaussian copula model is incorrectly fitted to the data from the mixture

distribution (1.1), theγ-loss function can detect bothP1 andP2 separately ifP1 andP2 are

“distinct” enough andτ is close to 0.5. We, therefore, propose to use these local minimum

points to detectP1 andP2.

This thesis is organized as follows. In Chapter 2, we make a review of divergence

measures and estimation with theγ-divergence. Chapter 3 describes the application of the

γ-divergence to cluster analysis, where some existing clustering methods are also discussed.

In Chapter 4, we provide a brief summary of copulas and discuss theγ-estimation for the

Gaussian copula model. Summary and discussion are given in Chapter 5.
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Figure 1.1: (a) Log likelihood function. (b) Minusγ-loss functionLγ(µ) (γ = 1). In (a) and

(b), the data of size 200 is generated from the mixture of two standard normal distributions

centered at 0 and 10, respectively.
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Chapter 2

Minimum Divergence Estimation

2.1 Divergence Measures

In statistics, there are a number of indexes to measure the difference between two objects.

Divergence measures reflect the difference between two probability distributions. They are

defined by functionals which satisfy the following properties:

D(g, f) ≥ 0 with equality if and only ifg ≡ f, (2.1)

whereg andf are probability density functions. Although a large number of divergence

measures have been proposed in the literature, we present an introduction to two wide

classes of divergence measures, Bregman divergence andU -divergence. Theγ-divergence

is derived from theβ-divergence, which is one of theU -divergence.
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Bregman divergence

Bregman (1967) introduced a family of divergence measures in the following way,

Bψ(g, f) =

∫
ψ(f(x))− ψ(g(x))− ψ′(g(x))(f(x)− g(x))dx (2.2)

for any differentiable convex functionψ with ψ(0) = limt→0 ψ(t) ∈ (−∞,∞). Note that

Bψ(g, f) satisfies condition (2.1) due to the convexity ofψ (see Figure 2.1).

U -divergence

TheU -divergence is defined similar to the Bregman divergence (Murata et al. (2004)). Let

U be a differentiable and strictly convex function. Then its derivativeu = U ′ is a monotonic

function, which has the inverse functionξ = (u)−1. TheU -divergence with respect toU is

defined as

DU(g, f) =

∫
U(ξ(f(x)))− U(ξ(g(x)))− U ′(ξ(g(x)))(ξ(f(x))− ξ(g(x)))dx

=

∫
U(ξ(f(x)))− U(ξ(g(x)))− g(x)(ξ(f(x))− ξ(g(x)))dx. (2.3)

We obtain theU -divergence by substitutingψ = U, g(x) = ξ(g(x)), andf(x) = ξ(f(x))

in (2.2). The advantage of the form (2.3) is allowing us to plug in the empirical distribution

directly.
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β-divergence

WhenU(t) = Uβ(t) = {1/(1 + β)}(1 + βt)(1+β)/β (β > 0), theU -divergence becomes

DUβ
(g, f) =

1

β

∫ {
g(x)β − f(x)β

}
g(x)dx− 1

1 + β

∫
g(x)1+β − f(x)1+βdx, (2.4)

which is called theβ-divergence (Basu et al., 1998; Minami and Eguchi, 2002).

γ-divergence

Theγ-divergence is derived from theβ-divergence, which can lead more robust methods

than theβ-divergence (Jones et al., 2001; Fujisawa and Eguchi, 2008). Theγ-divergence is

defined as

Dγ(g, f) = −κγ
∫
g(x)f(x)γdx+

(∫
g(x)1+γdx

) 1
1+γ

, (2.5)

whereκγ =
(∫

f(x)1+γdx
)−γ/(1+γ)

.

The derivation of theγ-divergence is as follows. Consider the following optimization

problem,argmin
v>0

DUβ
(g, vf). The first derivative ofDUβ

(g, vf) with respect tov becomes

d

dv
DUβ

(g, vf) = −vβ−1

∫
f(x)βg(x)dx+ vβ

∫
f(x)1+βdx.

Set the derivative to 0. Then we have

min
v>0

DUβ
(g, vf) =

1

β(1 + β)

(∫
g(x)1+βdx−

(
∫
f(x)βg(x)dx)1+β

(
∫
f(x)1+βdx)β

)
. (2.6)
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The logarithmic of the ratio of the first and second terms of (2.6) is equal to

1

β(1 + β)
log

(
∫
g(x)1+βdx)(

∫
f(x)1+βdx)β

(
∫
f(x)βg(x)dx)1+β

=
1

β

{
− log

∫
g(x)f(x)βdx

(
∫
f(x)1+β)β/(1+β)

+ log

(∫
g(x)1+βdx

)1/(1+β)
}
.

Then we consider the value

− 1

(
∫
f(x)1+β)β/(1+β)

∫
g(x)f(x)βdx+

(∫
g(x)1+βdx

)1/(1+β)

,

which corresponds toDγ(g, f) if β = γ. Note thatDγ(g, f) satisfies condition (2.1) from

this derivation.

2.2 γ-Estimation

Suppose a random sample is generated from a population distribution with density function

g. Let {f(·, θ)} be a family of density functions indexed by parameterθ. The γ-cross

entropy betweeng andf(·, θ) is defined as

Cγ(g, f(·, θ)) = −κγ(θ)
∫
g(x)f(x, θ)γdx,

with power indexγ > 0, whereκγ(θ) is the normalizing constant defined as

κγ(θ) =

(∫
f(x, θ)1+γdx

)− γ
1+γ

.
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The Boltzmann-Shannon cross entropy betweeng andf(·, θ) is defined by

−
∫
g(x) log f(x, θ)dx.

Theγ-cross entropy and the Boltzmann-Shannon cross entropy have the following relation

sinceκγ(θ) converges to 1 ifγ tends to0.

lim
γ→0

Cγ(g, f(·, θ)) + 1

γ
= −

∫
g(x) lim

γ→0

(
f(x, θ)γ − 1

γ

)
dx

= −
∫
g(x) log f(x, θ)dx.

Hence the Boltzmann-Shannon cross entropy can be seen as the0-cross entropy, and the

γ-cross entropy can be regarded as an extension of the Boltzmann-Shannon cross entropy.

Theγ-entropy ofg is defined asHγ(g) = Cγ(g, g). Then theγ-divergence betweeng and

f(·, θ) becomes

Dγ(g, f(·, θ)) = Cγ(g, f(·, θ))−Hγ(g).

Recall that theγ-divergenceDγ(g, f(·, θ)) is nonnegative, andDγ(g, f(·, θ)) is equal to0

if and only if θ satisfies thatg(x) = f(x, θ) almost everywherex. From these properties,

Dγ(g, f(·, θ)) can be seen as a kind of distance betweeng and f(·, θ) although it does

not satisfy the symmetry. When our aim is to find the closest distribution tog in model

{f(·, θ)} with respect to theγ-divergence, we only have to find the global minimum point

of Dγ(g, f(·, θ)) with respect toθ, which is equal to that ofCγ(g, f(·, θ)).
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The γ-loss function is defined by an estimator of theγ-cross entropy. Let{x1, x2,

. . . , xn} be a random sample generated from a population distribution with density function

g and{f(·, θ)} be our statistical model. Theγ-loss function forf(·, θ) associated with the

γ-divergence is given by

Lγ(θ) = −κγ(θ)
1

n

n∑
i=1

f(xi, θ)
γ.

We extend the definition of theγ-cross entropy to any distributions. For any distribution

functionG, theγ-cross entropy betweenG andf(·, θ) is defined as

Cγ(G, f(, θ)) = −κγ(θ)
∫
f(x, θ)γdG(x).

Note thatLγ(θ) is equal toCγ(Ĝ, f(·, θ)) with empirical distribution functionĜ, so that

E(Lγ(θ)) = Cγ(g, f(·, θ)), andLγ(θ) almost surely converges toCγ(g, f(·, θ)). Theγ-

estimator ofθ is defined by the global minimum point ofLγ(θ) (Eguchi and Kato, 2010).

From the definition of theγ-estimator, it satisfies Fisher consistency. If the density func-

tion g belongs to the statistical model{f(·, θ)}, then theγ-estimator satisfies asymptotic

consistency and normality. Theγ-loss function and the log likelihood function satisfy the

following relation

lim
γ→0

Lγ(θ) + 1

γ
= − 1

n

n∑
i=1

log f(xi, θ).

Hence the MLE can be regarded as the0-estimator and theγ-estimator can be seen as an
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extension of the MLE.
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Figure 2.1: Illustration of the Bregman divergence.
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Chapter 3

Cluster Analysis

3.1 Existing Methods

In this section, we make a review of three clustering algorithms, theK-means, model-based,

and mean shift clustering. The model-based clustering is based on some parametric models

while theK-means clustering considers the Euclidean distance among the data points. In

the mean shift clustering, density estimates are used for finding cluster centers.

3.1.1 K-Means Clustering

TheK-means clustering is to minimize the lack of homogeneity of each cluster based on

the Euclidean distance. For theK-means algorithm, the number of clustersK has been

fixed by the investigator.

Let {x1, x2, . . . , xn} be a data set, andK be the number of clusters. The dispersion

18



matrix based on the data set is defined as

TK =
K∑
k=1

∑
x∈Ck

(x− x̄)(x− x̄)⊤,

whereCk is thekth cluster, and̄x = (1/n)
∑n

i=1 xi. The dispersion matrix represents the

total dispersion, and it can be decomposed into two matrices, the with-in cluster dispersion

matrixWK and the between-cluster dispersion matrixBK ,

WK =
K∑
k=1

∑
x∈Ck

(x− x̄k)(x− x̄k)
⊤, BK =

K∑
k=1

nk(x̄k − x̄)(x̄k − x̄)⊤,

so thatTK = WK+BK , wherenk is the number of objects inCk, andx̄k = (1/nk)
∑

x∈Ck
x.

For cluster analysis, there are a lot of criteria based onWK andBK , for example, mini-

mization ofdet(WK), and maximization of tr(BKW
−1
K ) (see Everitt et al. (2011) for more

detailed discussion). The criterion for theK-means algorithm is minimization of tr(WK).

This criterion is equivalent to minimization of the lack of homogeneity of clusters, that is,

tr(WK) =
K∑
k=1

1

2nk

∑
x,x′∈Ck

∥x− x′∥2.

In practice, the investigators will have to estimate the number of clusters in the data

set. It is of great importance to select the number of clusters, because the clustering results

may change drastically as the number of clusters increases. Two criteria will be shown for

selection of the number of clusters for theK-means clustering.
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CH

In Caliński and Harabasz (1974), a criterion CH(k) is defined by

CH(k) =
tr(Bk)/(k − 1)

tr(Wk)/(n− k)
.

This criterion is analogous to theF -statistic for analysis of variance in the univariate case.

They propose to select the number of clustersk, which maximizes CH(k).

Gap Statistic

The within-cluster sum of squares tr(Wk) monotonically decreases ask increases, but

there existsk∗ such that fork ≥ k∗, tr(Wk) decreases smaller than fork < k∗. Such ak∗ is

used as an optimal value for the number of clusters. In Tibshirani et al. (2001), they provide

a more sophisticated procedure to formulate this heuristic.

The gap statistic is defined by

Gapn(k) = E∗
n(log(tr(Wk)))− log(tr(Wk)),

whereE∗
n denotes the expectation under a sample sizen from a reference distribution.

They propose the optimal value ofk, which maximizes the gap statistic with taking the

sampling distribution into account. ThenE∗
n(log(tr(Wk))) is calculated by a Monte Carlo

approximation. In practice, the selected number of clusters is the smallestk such that

Gap(k) ≥ Gap(k + 1)− sk+1,

20



wheresk+1 is a standard error.

3.1.2 Model-Based Clustering

A model-based clustering is to postulate a mixture density function for the population dis-

tribution, from which the data are sampled. Then the parameters in the mixture density

function are estimated, and the posterior probabilities are calculated by plugging-in the es-

timators for the counterparts in the mixture densities. Each object is assigned to the cluster

which maximizes the estimated posterior probability that the object is in the cluster.

Let fk(x, θk) be a density function parametrized byθk, andg(x, τ, θ) be a mixture den-

sity function,

g(x, τ, θ) =
K∑
k=1

τkfk(x, θk),

whereτ = (τ1, τ2, . . . , τK)
⊤ andθ = (θ⊤1 , θ

⊤
2 , . . . , θ

⊤
K)

⊤. Hereτ1, τ2, . . . , τK are the mixing

proportions, that is, they are nonnegative and satisfy that
∑K

k=1 τk = 1. The model-based

clustering postulatesg(x, τ, θ) for the population distribution, and we estimate the parame-

ter τ andθ.

Although there are a lot of estimation methods, we focus on the maximum likelihood

estimation. Since the log likelihood function forg(x, τ, θ) is often very complicated, it

is hard to calculate the maximum likelihood estimator (MLE) by using the log likelihood

for g(x, τ, θ). An alternative to obtain the MLE is the EM-algorithm (see Dempster et al.

(1977)). From this, we focus on the situation where the component densities of the mixture

density are normal. Letϕ(x, µ,Σ) be the density function of the normal distribution with

mean vectorµ and covariance matrixΣ. We postulateϕ(x, µk,Σk) as thekth component
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density of the mixture density function. Then the EM-algorithm for normal mixture is given

as follows.

EM-algorithm for normal mixture

Step 1 Set appropriateτ (0)1 , τ
(0)
2 , . . . , τ

(0)
K , µ

(0)
1 , µ

(0)
2 , . . . , µ

(0)
K ,Σ

(0)
1 ,Σ

(0)
2 , . . . ,Σ

(0)
K .

Step 2 Givenτ (t)1 , . . . ,Σ
(t)
K , calculateτ (t+1)

1 , . . . ,Σ
(t+1)
K by the following update formula.

τ
(t+1)
k =

1

n

n∑
i=1

τ
(t)
ki ,

τ
(t)
ki =

τ
(t)
k ϕ(xi, µ

(t)
k ,Σ

(t)
k )∑K

j=1 τ
(t)
j ϕ(xi, µ

(t)
j ,Σ

(t)
j )

,

µ
(t+1)
k =

n∑
i=1

τ
(t)
ki∑n

j=1 τ
(t)
kj

xi,

Σ
(t+1)
k =

n∑
i=1

τ
(t)
ki∑n

j=1 τ
(t)
kj

(xi − µ
(t+1)
k )(xi − µ

(t+1)
k )⊤.

Step 3 Repeat Step 2 until all parameters converge.

For selection ofK, we can use information criteria, such as AIC and BIC,

AIC = −2
n∑
i=1

log f(xi, θ̂, τ̂) + 2(number of parameters),

BIC = −2
n∑
i=1

log f(xi, θ̂, τ̂) + log(n)(number of parameters),

and selectk minimizing those criteria.
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3.1.3 Mean Shift Clustering

A mean shift clustering (MSC) with the Gaussian kernel is to determine the cluster centers

by the modes of the density estimate defined by

f̂h(x) =
1

nhp

n∑
i=1

exp
(
− 1

2h2
∥x− xi∥2

)
(2π)p/2

. (3.1)

We supposex(m)
i is the position ofxi at stagem of the procedure, wherex(0)i = xi. Then

x
(m)
i is updated by

x
(m+1)
i =

n∑
j=1

exp
(
−∥x(m)

i − xj∥2/(2h2)
)

∑n
ℓ=1 exp

(
−∥x(m)

i − xℓ∥2/(2h2)
)xj.

Note that eachx(m)
i will converge to a mode of the density estimate defined by (3.1). The

set{x(m)
i : m ∈ N} is called the trajectory ofxi. Let {x(∞)

1 , . . . , x
(∞)
n } be{c1, . . . , cKh

}.

Then we defineck as the cluster center, and eachxi is assigned to the cluster of which the

centerck is equal tox(∞)
i .

For MSC, a bandwidth selection by Einbeck (2011) can be used. Supposeci,h is the

cluster center to whichxi is assigned. The self-coverage for cluster analysis is defined as

S(h) =
1

n

n∑
i=1

1(∥xi − ci,h∥ ≤ h),

where1(·) is the indicator function. Assume we have evaluatedS(h) over a grid of band-
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widthsh1 < · · · < hL. The curvature ofS(h) is approximated by

△2S(hℓ) = S(hℓ+1)− 2S(hℓ) + S(hℓ−1).

Let h(j) be the bandwidth yielding thejth lowest of△2S(hℓ), h = 1, . . . , L, under the

constraint

S(hℓ) > max{S(h1), . . . , S(hℓ−1), s},

wheres ∈ (0, 1) is a pre-determined constant. A value ofs = 1/3 is recommended (Ein-

beck, 2011). Thenh(1) is used as the optimal value.

3.2 Spontaneous Clustering

This section is based on the paper (Notsu et al., 2014). We begin with reconsidering the

motivational example in the introduction from the point of view of cluster analysis. First,

we consider a trivial situation, where the number of clusters is one. For example, assume

thatx1, . . . , xn in Rp follow a normal distribution with the mean vectorµ and the identity

covariance matrix. Then the log likelihood function multiplied by−1/n is given by

L0(µ) = − 1

n

n∑
i=1

log

(
exp

(
−1

2
∥xi − µ∥2

)
(2π)p/2

)
,

which is equal to1/(2n)(
∑n

i=1 ∥xi − µ∥2 + p log 2π), where∥ · ∥ denotes the Euclidean

norm. The MLE ofµ is just the sample mean, by which the cluster center can be determined.

However, if there is more than one cluster, then the MLE does not work. We take another
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estimator ofµ, theγ-estimator (Eguchi and Kato, 2010). In general, for a location family

{f(x − µ) : µ ∈ Rp}, wheref(x) is a probability density function, theγ-loss function is

defined as

Lγ,f (µ) = − 1

n
κγ

n∑
i=1

f(xi − µ)γ, (3.2)

whereκγ =
(∫

f(x)1+γdx
)− γ

1+γ . If f(x) is the normal density function with mean vector

0 and the identity covariance matrix, then theγ-loss function becomes

Lγ(µ) = − 1

n
{(1 + γ)(2π)γ}

γp
2(1+γ)

n∑
i=1

(
exp

(
−1

2
∥xi − µ∥2

)
(2π)p/2

)γ

, (3.3)

where the subscriptf is omitted for simplicity. Theγ-estimator of the normal meanµ is

the value which minimizesLγ(µ).

We consider a standard situation ofK clusters, where the density function of the popu-

lation distribution hasK modes, for example,

g(x) =
K∑
k=1

τkfk(x),
K∑
k=1

τk = 1, τk > 0, k = 1, . . . , K, (3.4)

wherefk(x) is a unimodal density function. As stated above, the MLE does not work in

this situation. It is expected that theγ-loss functionLγ(µ) hasK local minimum points

corresponding toK mean vectors with respect tof1, . . . , fK . Figure 1 (b) shows thatLγ(µ)

has two local minimum points when the data have two clusters. Thus the cluster centers

defined by the local minimum points lead to a clustering method similar to theK-means
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clustering.

The proposed procedure appears to be similar to density-based clustering methods, for

example, the mean shift clustering (Cheng, 1995), since theγ-loss functionLγ(µ) resem-

bles the kernel density estimate with the Gaussian kernel (3.1). Ifµ = x, andh2 = γ−1,

thenLγ(µ) andf̂h(x) are essentially the same, apart from a constant. Since the mean shift

clustering defines the cluster centers by modes of the density estimate (3.1), the proposed

procedure is the same with the mean shift clustering, that is, finding modes of equation

(3.3).

There are some differences between them, however. We employ theγ-loss function,

not density estimates, so that we will naturally estimate covariance structures of clusters

by incorporating theγ-loss function for the covariance matrix of the normal distribution.

In addition, we will propose the selection for the power indexγ based on the theory of

theγ-loss function, which also gives a new insight or different view to the selection of the

bandwidthh for the density estimation.Lγ(µ) is a loss function for the normal meanµ;

f̂h(x) is a density estimate obtained by smoothing the histogram in terms of the Gaussian

kernel function. In general, kernel density estimates are given by

1

nhp

n∑
i=1

W

(
x− xi
h

)
, (3.5)

whereW is a kernel function. Two equations (3.2) and (3.5) are quite different forms

derived from different ideas.
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3.2.1 γ-Loss Function for the Normal Distribution

We consider theγ-loss function for the normal distribution with the mean vectorµ and the

covariance matrixΣ,

Lγ(µ,Σ) = − detΣ− γ
2(1+γ)

n∑
i=1

exp
(
−γ
2
(xi − µ)⊤Σ−1(xi − µ)

)
, (3.6)

apart from a constant. In the remainder of the thesis, we omit a constant term that does

not affect the optimization. An iteration algorithm to find the local minimum points of

Lγ(µ,Σ) has been proposed in Fujisawa and Eguchi (2008) and Eguchi and Kato (2010). It

is obtained by differentiatingLγ(µ,Σ) with respect toµ andΣ−1 and setting the derivatives

to 0. The algorithm is a concave-convex procedure (CCCP) (Yuille and Rangarajan, 2003),

so that it is guaranteed to decrease theγ-loss function monotonically as the iteration stept

increases. It is described below.

Step 1 Set appropriateµ0 andΣ0 as initial values.

Step 2 Givenµt andΣt, calculateµt+1 andΣt+1 by the following update formulas,

µt+1 =
n∑
i=1

wγ(xi, µt,Σt)xi, (3.7)

Σt+1 = (1 + γ)
n∑
i=1

wγ(xi, µt,Σt)(xi − µt+1)(xi − µt+1)
⊤, (3.8)

where

wγ(x, µ,Σ) =
exp

(
−γ

2
(x− µ)⊤Σ−1(x− µ)

)∑n
j=1 exp

(
−γ

2
(xj − µ)⊤Σ−1(xj − µ)

) .
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Step 3 For a sufficiently small numberε, repeat Step 2 while

∥µt+1 − µt∥+ ∥Σt+1 − Σt∥F > ε,

where∥ · ∥F denotes the Frobenius norm.

If γ = 0, then the right hand sides of equations (3.7) and (3.8) are equal to the sample mean

vector and covariance matrix, respectively, which are just the MLEs. If our aim is to obtain

the local minimum points ofLγ(µ), then we only have to updateµt and fixΣt to be the

identity matrixI. Similarly, if our aim is to obtain the local minimum points ofLγ(µ,Σ)

with fixedµ, then we only have to updateΣt and fixµt = µ.

3.2.2 Spontaneous Clustering Algorithm

In general, the spontaneous clustering based on a density functionf(x, θ) with parameterθ

is defined as follows.

Spontaneous Clustering

Step 1 Find the local minimum points ofLγ(θ), denoted bŷθ1, . . . , θ̂K , whereLγ(θ) is the

γ-loss function forf(x, θ).

Step 2 ConsiderK clusters according tôθ1, . . . , θ̂K , and assign the data to the clusters.

As a special case, the spontaneous clustering based on the normal distribution is defined

as follows. We setΘµ andΘ(µ,Σ) to be the empty sets at the start of the algorithm. The

algorithm of section 3.2.1 is employed in the spontaneous clustering below.
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Spontaneous Clustering Based on the Normal Distribution

Step 1-1 If Θµ is the empty set, chooseM initial valuesx(1), . . . , x(M) in the data set

{x1, . . . , xn} at random. Otherwise, choose initial values in{x1, . . . , xn} as follows:

x(1), . . . , x(M) areM maximum points ofd(·,Θµ), where

d(x,Θµ) = min
µ̂∈Θµ

∥x− µ̂∥.

Step 1-2 Apply the algorithm in section 3.2.1 to the data setM times with each initial

valuex(i), i = 1, . . . ,M to find the local minimum points ofLγ(µ). Then add the

obtained local minimum points toΘµ.

Step 1-3 Repeat Step 1-1 and 1-2 until the number of elements inΘµ does not increase.

Step 1-4 For each local minimum point̂µ ∈ Θµ, obtain a minimum point ofLγ(µ̂,Σ) with

respect toΣ, denoted bŷΣ, with the algorithm in section 3.2.1. Then add(µ̂, Σ̂) to

Θ(µ,Σ).

Step 2 WriteΘ(µ,Σ) by {(µ̂k, Σ̂k)}Kk=1 and assign each observationxi to thek̂th cluster with

k̂ = argmin
k=1,...,K

(xi − µ̂k)
⊤Σ̂−1

k (xi − µ̂k).

The centers and the covariance matrices of clusters are defined as(µ̂k, Σ̂k). In the remainder

of this chapter, we focus on the spontaneous clustering based on the normal distribution.
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3.2.3 Selection Procedure forγ

The value of the power indexγ plays a key role in the spontaneous clustering, because

γ affects the number of clusters obtained by the spontaneous clustering. We propose two

methods to select the value ofγ. One is a heuristic choice ofγ that depends on the range of

the data. Our proposal iŝγ = 72/R2, whereR is defined by the maximum range:

R = max
j=1,...,p

{(
max
i=1,...,n

xij

)
−
(

min
i=1,...,n

xij

)}
,

wherexi = (xi1, . . . , xip)
⊤. The outline of the derivation of̂γ is as follows. Suppose the

data set is generated from the mixture of two normal distributions centered atµ1 andµ2

with the identity covariance matrix and the equal mixing proportions, respectively. Our

simulation result suggests that if∥(µ1−µ2)/2∥ = 3
√
2/2

.
= 2.12, then the value ofγ needs

to be greater than or equal to 1 for two local minimum points ofLγ(µ) to exist. Proposition

3.2.1 states that if all the data are multiplied by a scalara, and the spontaneous clustering is

applied to the transformed data, then the value ofγ needs to be greater than or equal toa−2

to guarantee the existence of two local minimum points ofLγ(µ). If ∥(µ1 − µ2)/2∥ = r,

thena = r/(3
√
2/2). Hence we propose to use the value ofγ defined as

γ̂ =

(
r

3
√
2

2

)−2

=
9

2r2
. (3.9)

The value ofr can be estimated by the range of the data. LetRj be the range of thejth

variable. If there areK disjoint clusters lying side by side on a line parallel to the axis of

the jth variable, then we can estimater by Rj/(2K) as shown in Figure 3.1. There arep
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variables, sop directions have to be considered simultaneously. We use the maximum range

R and estimater byR/(2K). The value ofK can be determined from our prior knowledge

about the possible number of clusters. IfK = 2, we havêγ = 72/R2. We observe that this

rule works well in several empirical studies, although a complete theoretical background is

missing.

We also propose a more sophisticated method based on AIC. The value ofγ which min-

imizes AIC is recommended as the optimal selection ofγ. LetKγ be the number of clusters

and(µ̂γk, Σ̂γk), k = 1, . . . , Kγ be the centers and the covariance matrices of clusters result-

ing from the spontaneous clustering. Letϕ(x, µ,Σ) be the density function of the normal

distribution with the mean vectorµ and the covariance matrixΣ. Thenϕ(x, µ̂γk, Σ̂γk) serves

as a density estimator of the mixture componentfk(x) in (3.4). The result of the sponta-

neous clustering implies the mixture of normal distributions as an estimator of the density

function of the population distributiong in (3.4),

ĝγ(x) =

Kγ∑
k=1

τ̂γkϕ(x, µ̂γk, Σ̂γk),

where τ̂γk is an estimator of the mixing proportionτk defined as the proportion of the

observations assigned to thekth cluster. The AIC based on̂gγ is defined as follows.

AICγ = −2
n∑
i=1

log ĝγ(xi) + 2

{
Kγ

p(p+ 3)

2
+Kγ − 1

}
.

We claim that the value ofγ that minimizes AICγ is the optimal one.
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3.2.4 Behavior of theγ-Loss Function

We provide a justification for the spontaneous clustering by exploring its theoretical aspects.

The key fact is that theγ-loss functionLγ(µ) hasK local minimum points if the data set

consists ofK cluster groups.

The Existence of Local Minimum Points

In this section, we consider the conditions for the existence of local minimum points of

Lγ(µ). As we discussed in section 3.2.2, the cluster centers are defined at the local mini-

mum points ofLγ(µ), so it is important to know when theγ-loss function has local mini-

mum points.

To simplify the argument, we assume that the data set is generated from the mixture of

two normal distributions with the covariance matrixσ2I,

g(x) = τ1ϕ(x, µ1, σ
2I) + τ2ϕ(x, µ2, σ

2I), τ1 + τ2 = 1, τk > 0, k = 1, 2.

For ease of calculation, we considern = ∞. As n tends to∞, Lγ(µ) almost surely

converges to theγ-cross entropy defined by

Cγ(g, ϕ(·, µ, I)) = −κγ
∫
g(x)ϕ(x, µ, I)γdx, (3.10)

whereκγ =
(∫

ϕ(x, 0, I)1+γdx
)− γ

1+γ . Section 2.2 contains a general introduction to the
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γ-cross entropy. ThenCγ(g, ϕ(·, µ, I)) becomes

Cγ(g, ϕ(·, µ, I)) =
∑
k=1,2

τkCγ(ϕ(·, µk, σ2I), ϕ(·, µ, I))

∝ −
∑
k=1,2

τkϕ

(
µ, µk,

(
σ2 +

1

γ

)
I

)
,

which is just minus the density function of the mixture of two normal distributions with the

same covariance matrix(σ2 + 1/γ)I. Hence, the local minimum points ofCγ(g, ϕ(·, µ, I))

are equal to the modes of the density function of the normal mixture. Figure 3.2 shows

−Cγ(g, ϕ(·, µ, I)) with dimensionp = 2, where−Cγ(g, ϕ(·, µ, I)) has one or two modes

depending on the values ofµ1, µ2, τ1, τ2, andγ. For the univariate case, a necessary and suf-

ficient condition that the density function of the mixture of two normal distributions should

be bimodal is given in de Helguero (1904). We use a similar technique as in de Helguero

(1904) to obtain a necessary and sufficient condition forCγ(g, ϕ(·, µ, I)) to have two local

minimum points.

Proposition 3.2.1 Letν = (µ1−µ2)/2 andd = ∥ν∥2− (σ2+1/γ). ThenCγ(g, ϕ(·, µ, I))

has two local minimum points if and only if the following three conditions hold:

d > 0, (3.11)

exp

(
2γ

1 + γσ2
∥ν∥

√
d

)
>

γ

1 + γσ2

(
∥ν∥+

√
d
)2 τ1
τ2
, (3.12)

exp

(
− 2γ

1 + γσ2
∥ν∥

√
d

)
<

γ

1 + γσ2

(
∥ν∥ −

√
d
)2 τ1
τ2
. (3.13)

In particular, if τ1 = τ2, then (3.12) and (3.13) hold for anyd > 0. When the two local
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minimum points exist, they lie on the segment betweenµ1 andµ2. The one closer toµ1 and

the other closer toµ2 are denoted byµ∗
1 andµ∗

2, respectively. Then∥µ1−µ∗
1∥ and∥µ2−µ∗

2∥

are bounded above by

∥ν∥ −

√
∥ν∥2 −

(
σ2 +

1

γ

)
.

Proof. No generality is lost by assumingµ2 = −µ1. The gradient ofCγ(g, ϕ(·, µ, I)) is

given by

∂Cγ(g, ϕ(·, µ, I))
∂µ

∝ τ1ϕ(µ, µ1, (σ
2 + 1/γ)I)(µ− µ1)

+τ2ϕ(µ,−µ1, (σ
2 + 1/γ)I)(µ+ µ1). (3.14)

From (3.14), every local minimum point ofCγ(g, ϕ(·, µ, I)) should exist on the segment

between−µ1 andµ1. The Hessian matrix ofCγ(g, ϕ(·, µ, I)) is given by

∂2Cγ(g, ϕ(·, µ, I))
∂µ∂µ⊤ ∝ −τ1ϕ(µ, µ1, (σ

2 + 1/γ)I)
γ

1 + σ2γ
(µ− µ1)(µ− µ1)

⊤

−τ2ϕ(µ,−µ1, (σ
2 + 1/γ)I)

γ

1 + σ2γ
(µ+ µ1)(µ+ µ1)

⊤

+τ1ϕ(µ, µ1, (σ
2 + 1/γ)I)I

+τ2ϕ(µ,−µ1, (σ
2 + 1/γ)I)I. (3.15)

Let µ(t) = tµ1. From (3.15),µ(t) is a local minimum point ofCγ(g, ϕ(·, µ, I)) if and only

if t is a local minimum point ofCγ(g, ϕ(·, µ(t), I)) with respect tot. Cγ(g, ϕ(·, µ(t), I))
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becomes

Cγ(g, ϕ(·, µ(t), I)) ∝ −τ1 exp(−C(t− 1)2)− τ2 exp(−C(t+ 1)2),

whereC is equal to∥µ1∥2γ/(2(1+ σ2γ)). The derivative ofCγ(g, ϕ(·, µ(t), I)) is given by

d

dt
Cγ(g, ϕ(·, µ(t), I)) ∝ τ1 exp(−C(t− 1)2)(t− 1) + τ2 exp(−C(t+ 1)2)(t+ 1).

It is possible to restrict−1 < t < 1. Then

d

dt
Cγ(g, ϕ(·, µ(t), I)) > 0

⇐⇒ exp
(
−C(t+ 1)2 + C(t− 1)2

)
>

(1− t)τ1
(t+ 1)τ2

⇐⇒ −4Ct+ log(t+ 1)− log(1− t)− log
τ1
τ2
> 0. (3.16)

Let h(t) be the left hand side of inequality (3.16). The derivative ofh(t) is given by

h′(t) = −4C +
1

t+ 1
+

1

1− t
,

and

h′(t) > 0 ⇐⇒ −4C(1− t2) + (1− t) + (1 + t) > 0

⇐⇒ t2 −
(
1− 1

2C

)
> 0.

If 1 − 1/(2C) ≤ 0, thenh′(t) ≥ 0, andCγ(g, ϕ(·, µ(t), I)) has one local minimum point.
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HenceCγ(g, ϕ(·, µ(t), I)) has two local minimum points if and only if

1− 1

2C
> 0, h(−D) > 0, h(D) < 0,

whereD is the positive solution of equationh′(t) = 0, that isD =
√
1− 1/(2C). Condi-

tion 1 − 1/(2C) > 0 is equivalent to∥µ1∥2 − (σ2 + 1/γ) > 0. Conditionh(−D) > 0 is

equivalent to

exp

(
2γ

1 + σ2γ
∥µ1∥

√
∥µ1∥2 −

(
σ2 +

1

γ

))

>
γ

1 + σ2γ

(
∥µ1∥+

√
∥µ1∥2 −

(
σ2 +

1

γ

))2

τ1
τ2
,

and conditionh(D) < 0 is equivalent to

exp

(
− 2γ

1 + σ2γ
∥µ1∥

√
∥µ1∥2 −

(
σ2 +

1

γ

))

<
γ

1 + σ2γ

(
∥µ1∥ −

√
∥µ1∥2 −

(
σ2 +

1

γ

))2

τ1
τ2
.

Note thatµ∗
1 is on the line betweenDµ1 andµ1. Similarly (−µ1)

∗ is on the line between

−µ1 and−Dµ1. Then

∥µ∗
1 − µ1∥ ≤ (1−D)∥µ1∥ = ∥µ1∥ −

√
∥µ1∥2 −

(
σ2 +

1

γ

)
.

If τ1 = τ2, thenh(±1) = ±∞, h(0) = 0. Condition1 − 1/(2C) > 0 is equivalent to

h′(0) < 0. Hence two conditionsh(−D) > 0, h(D) < 0 hold whenever1 − 1/(2C) > 0
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holds. 2

If µ1 andµ2 are distinct enough, then conditions (3.11), (3.12), and (3.13) hold. Con-

dition (3.11) means that the distance betweenµ1 andµ2 should be large for the existence

of two local minimum points; condition (3.12) and (3.13) mean that ifτ1 ̸= τ2, then the

distance betweenµ1 andµ2 should be larger compared to the case whenτ1 = τ2.

By proposition 3.2.1, for anyσ2, if µ1 andµ2 are distinct enough, then there exists

γ that guarantees the existence of two local minimum points ofCγ(g, ϕ(·, µ, I)), and two

clusters are defined at the same instant. In addition, although the center of a clusterµ∗
k does

not coincide with the normal meanµk (k = 1, 2), it becomes arbitrarily close toµk, when

∥µ1 − µ2∥ becomes large.

3.2.5 Comparison among Spontaneous Clustering and Existing Meth-

ods

In this section, we clarify the differences among the three clustering methods, the sponta-

neous clustering based on the normal distribution, the mean shift clustering with the Gaus-

sian kernel, and theK-means clustering. For a given number of clustersK, theK-means

clustering determines the cluster centersc1, . . . , cK by

argmin
c1,...,cK∈Rp

n∑
i=1

min
k∈{1,...,K}

∥xi − ck∥2. (3.17)

Eachxi is assigned to the cluster of which the centerck is the nearest toxi in terms of the

Euclidean distance.
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To find the cluster centers, the spontaneous clustering and the mean shift clustering use

the modes of the same function sinceLγ(µ) and f̂h are essentially the same apart from a

constant. On the other hand, theK-means clustering uses the minimum point defined by

(3.17). After determining the cluster centers, to assign the data to clusters, theK-means

clustering uses the Euclidean distance, but the spontaneous clustering uses the Mahalanobis

distance. The mean shift clustering employs the mean shift trajectories for assignment.

Table 3.1 summarizes the comparison among the three clustering methods.

3.3 Simulation and Data Analysis

3.3.1 Simulation 1: The Case of Spherical Clusters

We demonstrate the performance of the spontaneous clustering (SC) in comparison with the

K-means clustering and the mean shift clustering (MSC). In this simulation, we suppose

that the covariance matrices of clusters are known to be the identity matrix. Hence, in SC,

the covariance matrices of clusters were not estimated and fixed to be the identity matrix.

The performance of clustering is measured by BHI as defined below.

The value ofγ for SC was determined by the range of data (R) and AIC described in

section 3.2.3 and a heuristic bandwidth selection (HBS) in kernel density estimation. The

value selected by HBS is given by

γ̂ =

(
n(p+ 2)

4

) 2
p+4

/σ̂2,
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whereσ̂2 is the average of sample variances for each variable (see Silverman (1986) page

87). For theK-means clustering, the method by Caliński and Harabasz (1974) and the gap

statistic by Tibshirani et al. (2001) were used to fix the number of clusters.

We considered four different simulation settings with the sample size 200. The samples

were generated from the mixture of five standard normal distributions with

(a) the mean vectors(0, 0, 0, 0, 0)⊤, (4, 4, 4, 4, 4)⊤, (−4,−4, 4, 4, 4)⊤,

(4,−4,−4, 4, 4)⊤, and(4, 4,−4,−4, 4)⊤, and equal mixing proportions;

(b) the same mean vectors as (a) but different mixing proportions 0.025, 0.025, 0.375,

0.375, and 0.2;

(c) the mean vectors(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)⊤, (4, 4, 4, 4, 4, 4, 4, 4, 4, 4)⊤,

(−4,−4,−4, 4, 4, 4, 4, 4, 4, 4)⊤, (4,−4,−4,−4, 4, 4, 4, 4, 4, 4)⊤, and

(4, 4,−4,−4,−4, 4, 4, 4, 4, 4)⊤, and equal mixing proportions;

(d) the same mean vectors as (c) but different mixing proportions 0.025, 0.025, 0.375,

0.375, and 0.2.

Figure 3.3 displays a sample from (a). We simulated 100 runs for each setting and com-

pared clustering results from SC with those from theK-means clustering and MSC. Figure

3.4 shows the value of AIC and the number of clusters resulting from SC for the sample

in Figure 3.3. The selected value ofγ based on AIC was0.15. To measure the perfor-

mance of clustering, we used the biological homogeneity index (BHI) (Wu, 2011), which

measures the homogeneity between the clusterC = {C1, . . . , CK} and the true category
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B = {B1, . . . , BL},

BHI(C,B) = 1

K

K∑
k=1

1

nk(nk − 1)

∑
i ̸=j,i,j∈Ck

1(B(i) = B(j)), (3.18)

whereB(i) ∈ B is the category for the observationxi, andnk is the number of the obser-

vations inCk. In this simulation,L is equal to the number of components of the normal

mixture, andB(i) corresponds to its component label in the data generation. This index is

bounded above by 1, which means the perfect homogeneity between the clusters and the

true categories. We should check the estimated number of clusters as well as BHI, since,

occasionally, the value of BHI becomes 1, even though the estimated number of clusters is

larger than the true number of clusters.

Table 3.2 displays the frequency of choosingK clusters, the mean value and the stan-

dard deviation (SD) of BHI over 100 runs. When the mixing proportions are not equal, the

K-means with CH,K-means with Gap, or MSC do not detect the correct number of clus-

ters. When the mixing proportions are equal, all the clustering methods work well. SC with

R and SC with HBS behave almost similarly in these simulation settings. They detect the

correct number of clusters in the low dimension case, but do not in the high dimension case

with different mixing proportions. SC with AIC can detect the correct number of clusters

in all the settings.
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3.3.2 Simulation 2: The Case of Ellipsoidal Clusters

We demonstrate the performance of SC in comparison with the model-based clustering

(MBC) with normal components and MSC. We suppose that the covariance matrices of

clusters are heterogeneous and unknown. Hence, in SC, the covariance matrices of clusters

were also estimated. The value ofγ for SC was determined by AIC, and the number of

clusters for MBC was determined based on AIC and the Bayesian information criterion

(BIC). For MSC, the bandwidthh was determined by the self-coverage.

We considered two different simulation settings with the sample size 400. The samples

were generated from the mixture of five normal distributions

(a) with mean vectors(0, 0, 0, 0, 0)⊤, (6, 6, 6, 6, 6)⊤, (6,−6,−6, 6, 6)⊤,

(6, 6,−6,−6, 6)⊤, and(6, 6, 6,−6,−6)⊤, covariance matricesS1, S2, S1, S2, andS1,

where

S1 =



1 0.5 0.5 0.5 0.5

0.5 1 0.5 0.5 0.5

0.5 0.5 1 0.5 0.5

0.5 0.5 0.5 1 0.5

0.5 0.5 0.5 0.5 1


, S2 =



2 −0.3 −0.3 −0.3 −0.3

−0.3 2 −0.3 −0.3 −0.3

−0.3 −0.3 2 −0.3 −0.3

−0.3 −0.3 −0.3 2 −0.3

−0.3 −0.3 −0.3 −0.3 2


,

and mixing proportions 0.2, 0.2, 0.2, 0.2, and 0.2;

(b) with the same mean vectors and covariance matrices as (a) but different mixing pro-

portions 0.05, 0.05, 0.35, 0.35, and 0.2.

41



Figure 3.5 displays a sample from (a), and Figure 3.6 shows the value of AIC and the

number of clusters resulting from SC for the sample. Note that we used two valuesγ1 and

γ2 as the power indexγ, whereγ1 was used forLγ(µ) when defining the cluster centers,

andγ2 for Lγ(µ,Σ) when defining the covariance matrices. The selected values ofγ1 and

γ2 for the sample in Figure 3.5 wereγ1 = 0.1 andγ2 = 0.2. We simulated 100 runs for

each simulation setting and compared the clustering result from SC with those from MBC

and MSC.

Table 3.3 displays the frequency of choosingK clusters, the mean value and SD of BHI

over 100 runs. When the mixing proportions are equal, all clustering methods without MBC

with AIC can detect five clusters well. When the mixing proportions are not equal, SC with

AIC can detect five clusters as in the case of spherical clusters. On the other hand, other

clustering methods do not detect the correct number of clusters well. We observed that SC

can capture the ellipsoidal cluster structures.

3.3.3 Data Analysis

To evaluate the practical performance of SC, we applied it with the fixed identity covariance

matrix to real data as well as theK-means clustering and MSC. The data set consists of the

chemical composition of 45 specimens of Romano-British pottery, determined by atomic

absorption spectrophotometry, for nine oxides (Tubb et al., 1980). Figure 3.7 shows the

scatterplot matrix of the data. In addition to the chemical composition of the specimens,

the kiln site at which the specimen was found is known. There exist five kiln sites, and they

are from three different regions, so that we use the three regions as class labels. Our aim is
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to partition the 45 specimens into clusters corresponding to the three classes by using only

information about the chemical composition, without knowledge about the class labels.

The value ofγ for SC was determined by the three methods based on R, AIC, and HBS.

The number of clusters for theK-means clustering was determined by CH and Gap. The

bandwidth for MSC was selected by the self-coverage.

Table 3.4 shows the clustering results. The value of AIC and the number of clusters

by SC with AIC are shown in Figure 3.8 (a). SC with R and SC with AIC detect properly

three clusters, while SC with HBS does not. In particular, the clustering result from SC

with R is the most accurate. The scatterplot of Al2O3 variable suggests that the number of

clusters is two, and the maximum range is obtained from the variable. This is associated

with the scenario discussed in the derivation of the heuristic method, in which we assume

the number of clusters is two. The values of CH and Gap are shown in Figure 3.8 (b) and

(c). The value of CH does not decrease after some number of clusters, so CH does not

work well for these data. TheK-means with Gap detects more than three clusters, while

MSC detects properly three clusters and assigns the data perfectly. As a result, we observed

SC based on R and AIC and MSC can detect three clusters properly and partition the 45

specimens into clusters corresponding to the three regions.
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Figure 3.1: Sample generated from the mixture of two normal distributions centered at

(0, 0)⊤ and(5, 0)⊤ with the identity covariance matrix, respectively.

Figure 3.2: Illustration of−Cγ(g, ϕ(·, µ, I)). In (a),µ1 = (0, 0)⊤, µ2 = (2, 2)⊤, τ1 = τ2 =

0.5, γ = 1, σ2 = 1. In (b),µ1 = (0, 0)⊤, µ2 = (4, 4)⊤, τ1 = τ2 = 0.5, γ = 1, σ2 = 1.
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Table 3.1: Comparison among Spontaneous Clustering (SC), Mean Shift Clustering (MSC),

andK-Means Clustering.

SC MSC K-Means

Cluster Center modes of−Lγ(µ) modes off̂h equation (3.17)

Assignment Mahalanobis distance trajectories Euclidean distance

var 1
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−
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Figure 3.3: Scatterplot matrix of a sample.
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Figure 3.4: The value of AIC and the number of clusters.
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Table 3.2: Results of the Clustering.

Scenario Method
K

BHI (SD)
1 2 3 4 5 more

(a)

SC with R 0 0 0 0 100 0 1.00 (0.00)

SC with HBS 0 0 0 0 100 0 1.00 (0.00)

SC with AIC 0 0 0 0 100 0 1.00 (0.00)

K-means with CH 0 0 0 0 100 0 1.00 (0.00)

K-means with Gap 9 0 0 0 91 0 0.93 (0.23)

MSC 0 0 0 0 100 0 1.00 (0.00)

(b)

SC with R 0 0 0 0 93 7 1.00 (0.00)

SC with HBS 0 0 0 0 98 2 1.00 (0.00)

SC with AIC 0 0 0 0 98 2 1.00 (0.00)

K-means with CH 0 0 0 100 0 0 0.86 (0.00)

K-means with Gap 0 0 0 100 0 0 0.86 (0.00)

MSC 0 0 25 30 44 1 0.97 (0.03)

(c)

SC with R 0 0 0 0 91 9 1.00 (0.00)

SC with HBS 0 0 0 0 100 0 1.00 (0.00)

SC with AIC 0 0 0 0 100 0 1.00 (0.00)

K-means with CH 0 0 0 0 100 0 1.00 (0.00)

K-means with Gap 0 0 0 0 100 0 1.00 (0.00)

MSC 0 0 0 0 100 0 1.00 (0.00)

(d)

SC with R 0 0 0 0 7 93 1.00 (0.00)

SC with HBS 0 0 0 0 11 89 1.00 (0.00)

SC with AIC 0 0 0 0 100 0 1.00 (0.00)

K-means with CH 0 0 0 100 0 0 0.86 (0.00)

K-means with Gap 9 0 0 91 9 0 0.87 (0.04)

MSC 0 1 13 80 6 0 0.96 (0.04)
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Figure 3.5: Scatterplot matrix of a sample.
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Figure 3.6: (a) The value of AIC. (b) The number of clusters.
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Table 3.3: Results of the Clustering.

Scenario Method
K

BHI (SD)
1 2 3 4 5 more

(a)

SC with AIC 0 0 0 0 99 1 1.00 (0.00)

MBC with AIC 0 0 0 0 64 36 1.00 (0.00)

MBC with BIC 0 0 0 0 100 0 1.00 (0.00)

MSC 0 0 0 0 100 0 1.00 (0.00)

(b)

SC with AIC 0 0 0 0 98 2 1.00 (0.01)

MBC with AIC 0 0 0 0 55 45 1.00 (0.00)

MBC with BIC 0 0 0 10 90 0 0.99 (0.04)

MSC 0 0 8 4 88 0 0.99 (0.04)

Table 3.4: Results of the Clustering.

Method Number of clusters BHI

SC with R 3 1.00

SC with HBS 4 0.89

SC with AIC 3 0.96

K-means with CH - -

K-means with Gap 4 0.88

MSC 3 1.00
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Chapter 4

Detection of Heterogeneous Correlation

Structure

4.1 Copulas

A copula is a multivariate distribution function, which determines the correlation or depen-

dence structure of a distribution. Recently, applications of copulas have been increasing

due to the simple structure given by the Sklar’s theorem. In this section, we will show the

backgrounds and basic properties of copulas.

4.1.1 Backgrounds

The history of copulas has started about 60 years ago in the study of multivariate distribu-

tions with fixed univariate marginals. The term “copula” was employed by Sklar (1959)

for the first time. In a theorem named by Sklar’s theorem, copulas combine a joint distri-
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bution and its marginal distributions. Copulas had been researched in terms of probability

theory rather than statistics at first. However since the middle of seventies, copulas have

become popular little by little for statisticians. In 1990, the first conference devoted to cop-

ulas was held (Dall’Aglio et al., 1991), and a book about copulas was published (Nelsen,

1999), which were to become a standard reference in copula theory. Nowadays, copulas are

widely applied to a lot of fields. For example, Song et al. (2009) make use of the Gaussian

copula to combine some generalized linear models, one for each response variable, and

they apply the proposed method to medical data. In Baŕdossy (2006), groundwater quality

is analyzed, where the joint distribution of two observations obtained from different points

is represented by a copula.

Finance and risk management are the most active disciplines to apply copulas. In these

fields, we often meet problems where there are a lot of products and the modeling of the

joint distribution of their values is crucial. Copulas enable us to model their joint distri-

bution flexibly, so copulas have been popular in these fields. For example, McNeil et al.

(2005), which is a standard reference for quantitative risk management, devotes one chapter

for copulas. In Li (2001), the Gaussian copula was employed to price a new financial in-

strument “Credit Default Swaps”. The seller of the swap agrees to pay off a third party debt

if this party defaults. The purchaser of the swap makes payment for this insurance. The

joint distribution of default time of the seller and the party was represented by the Gaussian

copula.
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4.1.2 Definitions and Basic Properties

A copula is a multivariate distribution function with standard uniform univariate marginal

distributions. For example, if a random vectorx = (x1, . . . , xp) has continuous univariate

marginal distributionsF1, . . . , Fp, then the distribution function of(F1(x1), . . . , Fp(xp)) is

a copula. Copulas combine a joint distribution with its univariate marginal distributions as

shown in Sklar’s theorem.

Theorem 4.1.1 (Sklar’s theorem)Let F be a p-dimensional joint distribution function,

andF1, . . . , Fp be its univariate marginal distribution functions. Then there exists a copula

C such that

F (x1, . . . , xp) = C(F1(x1), . . . , Fp(xp)), (4.1)

for all x ∈ Rp. If F1, . . . , Fp are continuous, thenC is unique. Conversely, ifC is a copula

andF1, . . . , Fp are univariate distribution functions, then the functionF defined in (4.1) is

a joint distribution function with univariate marginal distribution functionsF1, . . . , Fp.

By the Sklar’s theorem, we can specify a copula and univariate marginals separately in

order to construct a multivariate distribution. This is one of the advantages obtained by

using copulas.

Although the role of the copula in equation (4.1) is not clear, it determines the corre-

lation or dependence structure of the multivariate distribution as shown below. Letx =

(x1, . . . , xp)
⊤ be a random vector with a joint distributionF and continuous marginals

F1, . . . , Fp. Then, we have the unique copulaC satisfying equation (4.1), which is called
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the copula ofx or the copula ofF . For the sake of simplicity, we consider the case with

p = 2. For anyα, β ∈ (0, 1), we have

P
(
x1 ≤ F−1

1 (α), x2 ≤ F−1
2 (β)

)
= C(α, β),

where the joint probability that random variables are less than or equal to quantiles depends

on the copula only. It means that this kind of dependence is determined by the copula.

Kendall’sτ or Spearman’sρ is a representative rank correlation and they merely rely on the

copula. That is,

τ = 4

∫ 1

0

∫ 1

0

C(u1, u2)dC(u1, u2)− 1, ρ = 12

∫ 1

0

∫ 1

0

(C(u1, u2)− u1u2)du1du2.

Note that Pearson’s linear correlation is not determined by the copula only.

The copula ofx is invariant with respect to monotone increasing transformations of the

components ofx. That is, for any monotone increasing functionT1, . . . , Tp, the copula

of (T1(x1), . . . , Tp(xp))⊤ is the same as the one ofx. Therefore, if we consider copulas

of normal distributions, we only have to consider normal distributions with mean0 and

correlation matrixP .

4.1.3 Examples of Copulas

We present some well-known families of copulas.
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Gaussian copula

Gaussian copulas are the copulas of normal distributions. LetcG(u, P ) be the density func-

tion of the Gaussian copula, that is, the copula of the normal distribution with mean 0 and

correlation matrixP ,

cG(u, P ) = detP− 1
2 exp

(
−1

2
xG(u)

⊤(P−1 − Ip)xG(u)

)
, u ∈ [0, 1]p,

wherexG(u) = (Φ−1(u1), . . . , Φ−1(up))
⊤, Φ(x) denotes the cumulative distribution func-

tion of the standard normal distribution, andIp is the identity matrix of sizep. Let v(P )

be thep(p− 1)/2-dimensional vector which consists of the column-wise stacked lower di-

agonal elements ofP . For example,v(P ) = (p21, p31, p32)
⊤ if p = 3. The set{v(P ) :

P is a correlation matrix of sizem} is a parameter space of the Gaussian copula models.

t copula

Let ft(x, ν, P ) denote the probability density function oft-distribution with degrees of free-

domν and correlation matrixP ,

ft(x, ν, P ) =
Γ
(
ν+p
2

)
Γ
(
ν
2

) det(νπP )−
1
2

(
1 +

x⊤P−1x

ν

)− ν+p
2

.

Let tν be the cumulative distribution function of thet-distribution with degrees of freedom

ν, ft(x, ν) be its density function, andxt,ν(u) = (t−1
ν (u1) , . . . , t−1

ν (up))
⊤. Then the
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probability density function oft-copula is given by

ct(u, ν, P ) = ft(xt,ν(u), ν, P )/

p∏
i=1

ft(t
−1
ν (ui), ν).

Archimedean copula

A continuous, strictly decreasing convex functionϕ : [0, 1] → [0,∞] satisfyingϕ(1) = 0 is

known as an Archimedean copula generator. It is known as a strict generator ifϕ(0) = ∞.

If ϕ is a strict Archimedean copula generator, then

C(u1, . . . , up) = ϕ−1(ϕ(u1) + · · ·+ ϕ(up))

gives a copula in any dimensionp if and only if ϕ−1 is completely monotonic:

(−1)
dk

dtk
ϕ−1(t) ≥ 0

for anyk ∈ N andt. This copula is called Archimedean copula. For example, ifϕ(t) =

(− log t)θ, we have the Gumbel copula, and ifϕ(t) = (t−θ − 1)/θ, we have the Clayton

copula. See McNeil et al. (2005) for more details.

4.2 Estimation

In this section, we discuss estimation problems for copula models. SupposeF is a multi-

variate distribution function with continuous densityf , andC with densityc is the copula
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of F . LetFi (i = 1, . . . , p) be the univariate marginal ofF with densityfi. By the Sklar’s

theorem, we have

f(x1, . . . , xp) = c(F1(x1), . . . , Fp(xp))f1(x1) · · · fp(xp). (4.2)

We make use of this representation (4.2) to construct statistical models.

4.2.1 Parametric Models

We assume parametric models for a copula and marginals. In equation (4.2), letc(u) =

c(u, θc), fi(xi) = fi(xi, θi), and f(x) = f(x, θ), whereθ = (θ⊤c , θ
⊤
1 , . . . , θ

⊤
p )

⊤. Sup-

posex1, . . . , xn are independently and identically distributed withf(x, θ), wherexi =

(xi1, . . . , xip)
⊤. The log likelihood function becomes

L0(θ) =
n∑
i=1

log f(xi, θ)

=
n∑
i=1

log c(F1(xi1, θ1), . . . , Fp(xip, θp), θc) +

p∑
j=1

n∑
i=1

log fj(xij, θj)

= Lc0(θ) +

p∑
j=1

Lj0(θj),

where

Lc0(θ) =
n∑
i=1

log c(F1(xi1, θ1), . . . , Fp(xip, θp), θc), L
j
0(θj) =

n∑
i=1

log fj(xij, θj).
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The maximum likelihood estimators of the parameters are obtained by solving the following

equations,

∂L0(θ)

∂θ1
= 0, . . . ,

∂L0(θ)

∂θp
= 0,

∂L0(θ)

∂θc
= 0.

These estimating equations are often too complicated to solve. We can consider other esti-

mators based on the decomposition (4.2), which are computationally attractive alternatives

to the maximum likelihood estimators. They are obtained by maximizingLj0(θj), (j =

1, . . . , p), substituting the maximizerŝθ1, . . . , θ̂p into the counterparts inLc0(θ), and maxi-

mizingLc0(θc, θ̂1, . . . , θ̂p) with respect toθc. That is, we solve the following equations,

∂L1
0(θ1)

∂θ1
= 0, . . . ,

∂Lp0(θp)

∂θp
= 0,

∂Lc0(θc, θ̂1, . . . , θ̂p)

∂θc
= 0.

These estimators are called inference functions for margins estimators (IFM-estimators)

(Joe, 2001). The IFM estimator is consistent and asymptotic normal.

4.2.2 Semiparametric Models

We assume a parametric model for a copula but do not make any assumptions for marginals.

Let c(u) = c(u, θc) in (4.2). The log likelihood function becomes

L0(θc) =
n∑
i=1

log c(F1(xi1), . . . , Fp(xip), θc),

up to constant. An estimator ofθc is defined by maximizingL0(θc) in which F1, . . . , Fp

are replaced by some nonparametric estimatesF̂1, . . . , F̂p, respectively. This estimator is
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consistent and asymptotic normal (Genest et al., 1995)．

4.3 γ-Estimation of the Gaussian Copula Parameter

In this section, we consider theγ-estimation for the Gaussian copula models. One of the

important purposes of using copulas is to represent a variety of dependence structure, such

as heavy tail and asymmetric dependence (Demarta and McNeil, 2005). The Gaussian

copula is a fundamental copula, but it is neither heavy tail nor asymmetric. Hence, other

copulas, such ast-copulas and Archimedean copulas, are employed, in which the maximum

likelihood estimation is often used. In Yoshiba (2013), the Gaussian copula mixture is

used to model heterogeneous correlation structure. These examples can be considered to

change the Gaussian copula to other copulas. On the other hand, our idea is to change

the maximum likelihood estimation to theγ-estimation, but keep the Gaussian copula as a

statistical model. Due to the change, heterogeneous correlation structure can be captured

as shown in this section. We describe this dual relation of changing models or estimation

methods precisely in section 4.3.6

For the sake of simplicity, we assume the datau1, . . . , un are independently and iden-

tically distributed with a copula densityc(u). If we have the datax1, . . . , xn drawn from a

distributionF with marginalsF1, . . . , Fp and copula densityc, then we have

ui = (F1(xi1), . . . , Fp(xip)).

Hence, we can getu’s from x’s approximately by computing(F̂1(xi1), . . . , F̂p(xip)) with
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estimatorsF̂1, . . . , F̂p. This section is based on the paper (Notsu et al., 2013).

4.3.1 Maximum likelihood Estimation of the Gaussian Copula Param-

eter

We consider the MLE for the Gaussian copula model. The log likelihood function multi-

plied by−1/n is given by

L0(P ) = −1

2
log det(P )−1 +

1

2n

n∑
i=1

xi
⊤(P−1 − Ip)xi,

wherexi = xG(ui) for i = 1, . . . , n. It is well known that the MLE does not work well

under model misspecification. For example, in the case of (3.4) the MLE for the Gaussian

copula model almost surely converges toτP1 + (1 − τ)P2, so we cannot detect neitherP1

norP2. If τ = 0.5 and

P1 =

 1 0.9

0.9 1

 , P2 =

 1 −0.9

−0.9 1

 ,

thenτP1+(1− τ)P2 is equal to the identity matrix, which has no meaning in this situation.

We cannot use the MLE in the case of misspecification.

4.3.2 γ-Estimator of the Gaussian Copula Parameter

Letu1, . . . , un be a random sample from a copula with the probability density functionc(u)

while cG(u, P ) is our statistical model. Theγ-loss function for the Gaussian copula is given
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by

Lγ(P ) = − det(P )−
γ

2(1+γ)
1

n

n∑
i=1

exp
(
−γ
2
xi

⊤P−1xi

)
, (4.3)

up to constant. Theγ-estimator is proposed as the set of local minimum points ofLγ(P )

and interpreted as follows. IfLγ(P ) has a local minimum, the underlying distribution is

estimated bycG(u, P̂γ) using the minimum point̂Pγ. If Lγ(P ) hasℓ local minima(ℓ ≥ 2),

the underlying distribution is estimated by a mixture ofℓ Gaussian copulas. Each Gaussian

copula’s parameter is estimated by the corresponding local minimum point.

4.3.3 An Algorithm to Obtain the γ-Estimator

We give a fixed point algorithm to obtain theγ-estimator for the Gaussian copula model

using the Lagrange-multiplier method. We can still make use of this algorithm to obtain the

MLE just by settingγ = 0.

Algorithm

1. Set an appropriate correlation matrixP0.

2. GivenPt, calculatePt+1 by the following update formula,

Pt+1 = Σt + Ptdiag
(
(Pt ⊙ Pt)

−1 Diag(Ip − Σt)
)
Pt, (4.4)
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where⊙ denotes the Hadamard product.Σt is defined by

Σt = (1 + γ)
n∑
i=1

wγ(xi, Pt)xixi
⊤,

where

wγ(x, P ) =
exp

(
−γ

2
x⊤P−1x

)∑n
j=1 exp

(
−γ

2
xj⊤P−1xj

) .

Here Diag(M) for a square matrixM denotes the column vector which consists of

the diagonal elements ofM and diag(a) for a vectora denotes the diagonal matrix

whose diagonal elements are the components ofa.

3. For sufficient small given numberε, repeat Procedure 2 while

||Pt+1 − Pt||F > ε.

4. For all local minimum points, repeat Procedure 1-3 for different initial valuesP0.

We derive the estimation equation forP , which leads to the update formula (4.4). SinceP is

symmetric and positive definite, there exists a matrixR of sizep which satisfiesP = RR⊤.

The ith diagonal element ofP is expressed bye⊤i RR
⊤ei, whereei is thep-dimensional

column vector whoseith element is 1 and the other elements are 0. Since the diagonal
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elements ofP are equal to 1, Lagrange function becomes

Λ(R, λ) =
(
detR−1

) γ
(1+γ)

n∑
i=1

exp
(
−γ
2
xi

⊤R−1⊤R−1xi

)
+

p∑
i=1

λi(e
⊤
i RR

⊤ei − 1), (4.5)

whereλ = (λ1, . . . , λp)
⊤ is Lagrange multiplier. We differentiate (4.5) with respect toR−1

with the technique in Magnus and Neudecker (1999). The differential of
∑p

i=1 λie
⊤
i RR

⊤ei,

which is defined in Magnus and Neudecker (1999, Section 5.3 and 5.16), is

d

(
p∑
i=1

λie
⊤
i RR

⊤ei

)
= d

(
tr
(
R⊤diag(λ)R

))
= tr

(
2R⊤diag(λ)(dR)

)
= tr

(
−2RR⊤diag(λ)R(dR−1)

)
,

where diag(λ) is the diagonal matrix whose diagonal elements areλ1, . . . , λp. From Table

2 in Magnus and Neudecker (1999, Chapter 9) we have

∂

∂R−1

p∑
i=1

λie
⊤
i RR

⊤ei = −2R⊤diag(λ)RR⊤.
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Set the derivative of (4.5) toO, then we have

∂Λ(R, λ)

∂R−1
=

γ

(1 + γ)

(
detR−1

) γ
(1+γ) R⊤

n∑
i=1

exp
(
−γ
2
xi

⊤R−1⊤R−1xi

)
−γ
(
detR−1

) γ
(1+γ) R−1

n∑
i=1

exp
(
−γ
2
xi

⊤R−1⊤R−1xi

)
xixi

⊤ − 2R⊤diag(λ)RR⊤

= O. (4.6)

Multiply R from the left side of equation (4.6), then (4.6) becomes

P = A+ aPdiag(λ)P,

where

A = (1 + γ)
n∑
i=1

wγ(xi, P )xixi
⊤,

a = 2

(
γ

1 + γ

(
detR−1

) γ
1+γ

n∑
i=1

exp
(
−γ
2
xi

⊤R−1⊤R−1xi

))−1

.

From the constraint about the diagonal elements ofP we have

Diag(Ip − A) = Diag(aPdiag(λ)P ). (4.7)

In general, for any square matricesX andY of sizep andp-dimensional column vectorx,

we have

Diag(Xdiag(x)Y ) = (X ⊙ Y ⊤)x.
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So (4.7) becomes

λ =
1

a
(P ⊙ P )−1Diag(Im − A).

Then we have

P = A+ Pdiag
(
(P ⊙ P )−1 Diag (Im − A)

)
P,

and use this estimation equation as an update formula.

If we consider the estimation problem on Gaussian distributions with mean0, the update

formula for an iteration algorithm to obtain theγ-estimator of the covariance matrixΣ is

given by

Σt+1 = (1 + γ)
n∑
i=1

wγ(xi,Σt)xixi
⊤. (4.8)

See Fujisawa and Eguchi (2008) for details. If we consider the optimization problem with

the objective functionLγ(P ) without the constraint that the diagonal elements ofP are 1,

the same iteration algorithm (4.8) can be deduced. So the second term of the right hand

side of the equation (4.4) appears because of the existence of the constraint.

We make a remark on the algorithm to obtain the MLE, orγ-estimator withγ = 0. On

the main update formula (4.4) in Step 2Σt is always the sample covariance matrixS for

any t ≥ 1. Nevertheless we find rather complicated solution of the MLE if we consider a

simpler case ofp = 2. McNeil et al. (2005) show an approximate MLE for the Gaussian

copula model because it takes quite a while to solve the constrained optimization problem
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in order to obtain the MLE in high dimensions. The approximate MLE is given by

diag(S)−
1
2Sdiag(S)−

1
2 , (4.9)

where diag(S) is the diagonal matrix whose diagonal elements are equal to those ofS. We

can easily consider an iteration algorithm to obtain an approximateγ-estimator to combine

(4.8) and (4.9). The update formula of the algorithm is given by

P ∗
t+1 = diag(Σ∗

t+1)
− 1

2Σ∗
t+1diag(Σ∗

t+1)
− 1

2 ,

where

Σ∗
t+1 = (1 + γ)

n∑
i=1

wγ(xi, P
∗
t )xixi

⊤.

If n is infinity, Pt andP ∗
t converge to the same correlation matrix whent tends to∞.

HoweverPt andP ∗
t are different in general.Pt is preferred toP ∗

t in terms of accuracy.

4.3.4 Choice of the Carrier Measure

Although theγ-cross entropy has been defined on the Lebesgue measure in section 2.2, it

can be defined on any carrier measure. Here we propose, for Gaussian copula models, the

use of a measure, denoted byQG, of which Radon-Nikodym derivative is given byJ(xG)
−γ,

whereJ(xG) is the Jacobian of the transformationxG(u). From now on we refer this choice

toQG, and explain its rationale by virtue of invariance. Theγ-loss function (4.3) is obtained
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by usingQG as a carrier measure.

Let theγ-cross entropy with measureQ be denoted by

Cγ(g, f |Q) =
∫
g(x)f(x)γQ(dx){∫
f(x)Q(dx)

} γ
1+γ

.

We assume thatx = (x1, . . . , xp)
⊤ ∼ ϕ(x, P ), whereϕ(x, P ) denotes the probability

density function of thep-dimensional Gaussian distribution with mean0 and correlation

matrixP . Let u = (Φ(x1), . . . ,Φ(xp))
⊤, thenu ∼ cG(u, P ). If the underlying distribution

of x is g(x), thenu ∼ c(u), wherec(u) is given byg(xG(u))J(xG). It is noteworthy that

theγ-cross entropy betweeng(x) andϕ(x, P ) based onx is not always equal to theγ-cross

entropy betweenc(u) andcG(u, P ) based onu. So theγ-estimator based onx does not

coincide with theγ-estimator based onu.

It is natural for us to require the equivalence of the twoγ-estimators, and therefore

we employ the measureQG(u). It is striking that theγ-cross entropy betweenc(u) and

cG(u, P ) calculated under the measureQG is equal to the one betweeng(x) andϕ(x, P )

calculated under the Lebesgue measureQL, that is,

Cγ(c, cG(·, P )|QG) = Cγ(g, ϕ(·, P )|QL),

which is proportional to

− det (P )−
γ

2(1+γ)

∫
g(x) exp

(
−γ
2
x⊤P−1x

)
dx. (4.10)
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Obviously there is equalization of the twoγ-estimators. Note that theγ-loss function asso-

ciated with (4.10) becomes equation (4.3).

The argument above extends to a general statement. For given one to one transformation

y(x) : x 7→ y, x(y) denotes the inverse function ofy(x), andJ(y 7→ x) denotes the Jacobian

of the transformationx(y). Any nonnegative functionsg(x), f(x) satisfy

Cγ (g(x(·))J(y 7→ x), f(x(·))J(y 7→ x)|Q) = Cγ(g, f |QL),

if and only if the Radon-Nikodym derivative ofQ is equal toJ(y 7→ x)−γ. Wheng(x)

andf(x) are the probability density functions, to consider theγ-cross entropy onx under

the Lebesgue measure is equal to consider the one based ony under the measure having

J(y 7→ x)−γ as its Radon-Nikodym derivative.

4.3.5 Properties of theγ-Estimator

Theγ-estimator for the Gaussian copula model under infinite sample size is equal to the set

of the local minimum points ofCγ(c, cG(·, P )|QG). In this section we leave aside theγ-loss

functionLγ(P ) for the moment and investigate the property of theγ-estimator (atn infinity)

throughCγ(c, cG(·, P )|QG). First we consider the case where there is no misspecification.

Theorem 4.3.1 If c(u) = cG(u, P0), thenCγ(c, cG(·, P )|QG) has the local minimum point

P0.
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Proof. We see that

Cγ(cG(·, P0), cG(·, P )|QG) ∝ − detP
1

2(1+γ) det(P + γP0)
− 1

2 . (4.11)

Consider a monotone transformation of the right hand side of equation (4.11) to obtain

− log
[
detP

1
2(1+γ) det(P + γP0)

− 1
2

]
= − 1

2(1 + γ)
log detP +

1

2
log det(P + γP0).

For anyP ̸= P0, letPt = (1− t)P0 + tP, (t > 0) and definef(t) by

f(t) = − 1

2(1 + γ)
log detPt +

1

2
log det(Pt + γP0).

We see

f ′(t) = − 1

2(1 + γ)
tr
[
P−1
t (P − P0)

]
+

1

2

[
(Pt + γP0)

−1 (P − P0)
]

=
1

2(1 + γ)
tr

[{(
1

1 + γ
Pt +

γ

1 + γ
P0

)−1

− P−1
t

}
(P − P0)

]

=
1

2γt
tr

[{(
1

1 + γ
Pt +

γ

1 + γ
P0

)−1

− P−1
t

}
{
Pt −

(
1

1 + γ
Pt +

γ

1 + γ
P0

)}]

Let D0(cG(·, P1), cG(·, P2)) be the KL divergence betweencG(u, P1) andcG(u, P2). It is

well knownD0(cG(·, P1), cG(·, P2)) ≥ 0 and equal to 0 if and only ifP1 = P2. So for
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P1 ̸= P2, we have

D0(cG(·;P1), cG(·;P2)) +D0(cG(·;P2), cG(·;P1))

=
1

2
tr ((P1 − P2)(P2 − P1))

> 0.

If we read asP1 = Pt andP2 = 1
1+γ

Pt +
γ

1+γ
P0, then we see thatf ′(t) > 0. The proof is

complete. 2

In this case we note that theγ-estimator is equal to{P0}, which implies Fisher consistency.

For asymptotic properties theγ-estimator has asymptotic consistency and normality.

Next we consider the misspecification case where the true data generating process is

given by equation (1.1). We see that

Cγ(c, cG(·, P )|QG) = τCγ(cG(·, P1), cG(·, P )|QG) + (1− τ)Cγ(cG(·, P2), cG(·, P )|QG),

which is proportional to

− detP− γ
2(1+γ)

[
τ detP

− 1
2

1 det
(
P−1
1 + γP−1

)− 1
2

+(1− τ) detP
− 1

2
2 det

(
P−1
2 + γP−1

)− 1
2

]
.

ThenCγ(c, cG(·, P )|QG) is a weighted mean ofCγ(cG(·, P1), cG(·, P )|QG) andCγ(cG(·, P2)

,cG(·, P )|QG). Each component is a unimodal function, bounded above by 0, and has one

local minimum pointP1 andP2, respectively. We expectCγ(c, cG(·, P )|QG) has two local
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minimum points, and these local minimum points are nearP1 andP2 respectively ifP1

andP2 are sufficiently “distinct”. However it is hard to formulate such a phenomenon

mathematically so we show through easy examples and a graph that such a phenomenon

occurs. To obtain numerical solutions, we use the expected (or population) version of the

algorithm in section 4.3.3.

Example 1: In the case with dimension 2,Cγ(c, cG(·, P )|QG) is a univariate function ofρ,

which is the non-diagonal element ofP . LetP1 andP2 be

P1 =

 1 ρ∗

ρ∗ 1

 , P2 =

 1 −ρ∗

−ρ∗ 1

 ,

γ = 1, andτ = 0.5. If ρ∗ >
√
6−

√
28

.
= 0.842, thenCγ(c, cG(·, P )|QG) has two local

minimum points in the interval(−1, 0) and(0, 1), respectively.

Example 2: Suppose the true correlation matricesP1 andP2 are given as follows, andP

stands for the parameterization of the statistical model we fit,

P1 =


1 0.9 0.92

0.9 1 0.9

0.92 0.9 1

 , P2 =


1 −0.9 0.92

−0.9 1 −0.9

0.92 −0.9 1

 ,

P =


1 ρ1 ρ1ρ2

ρ1 1 ρ2

ρ1ρ2 ρ2 1

 .
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We also setτ = 0.5 andγ = 1. Note that−Cγ(c, cG(·, P )|QG) is a function ofρ1 and

ρ2. Figure 4.1 shows−Cγ(c, cG(·, P )|QG). We can see there exist two local maxima at

(0.86, 0.86) and(−0.86,−0.86).

Example 3: Supposeτ = 0.4 andγ = 1. If P1, P2, andP are given by

P1 =



1 0.9 0.7 0.7

0.9 1 0.9 0.7

0.7 0.9 1 0.7

0.7 0.7 0.7 1


, P2 =



1 −0.9 0.7 0.7

−0.9 1 −0.9 −0.7

0.7 −0.9 1 0.7

0.7 −0.7 0.7 1


,

P =



1 ρ1 ρ2 ρ3

ρ1 1 ρ4 ρ5

ρ2 ρ4 1 ρ6

ρ3 ρ5 ρ6 1


,

thenCγ(c, cG(·;P )|QG) has two local minima at

P =



1 0.871 0.686 0.699

0.871 1 0.871 0.683

0.686 0.871 1 0.699

0.699 0.683 0.699 1


,
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and

P =



1 −0.892 0.695 0.700

−0.892 1 −0.892 −0.696

0.695 −0.892 1 0.700

0.700 −0.696 0.700 1


Like these examples,Cγ(c, cG(·, P )|QG) has some local minimum points depending

on the underlying distribution. Owing to this property we can detect the heterogeneous

structure of the underlying distribution under misspecification.

4.3.6 Maximum Entropy Copula

So far we have considered theγ-estimation of the Gaussian copula model. In this section

we uncover that the choice of copula model can be characterized in terms of the maxi-

mum entropy distribution. In this regard, Zhang et al. (2011) is the most closely related

work in which the MLE on metat-distribution is addressed. At-copula is deduced from a

multivariatet-distribution while the metat-distribution is constructed by linking at-copula

to univariatet-distributions as its marginal distributions. In our framework, Zhang et al.

(2011)’s work can be interpreted as the maximum likelihood estimation oft-copulas with

the marginals estimated simultaneously. Actually theγ-estimation of Gaussian copulas and

the maximum likelihood estimation oft-copulas look very similar and share a common

idea.
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Eguchi et al. (2011) analyze what the maximumγ-entropy distributions would be under

the given (population) mean vector and covariance matrix. The answer depends on the

power indexγ. Whenγ = 0, the Gaussian distribution emerges as the maximumγ-entropy

distribution. Ifγ < 0, thet-distribution comes up. We show that a similar result holds for

copulas. Suppose thatγ = −2/(ν+p) andQt,ν(du) = J(xt,ν)
−γdu, whereν is the degrees

of freedom oft-copula. LetCγ(P ) be the set of probability density functionsc(u) on [0, 1]p

which satisfy the following equation.

∫
[0,1]p

c(u)xt,ν(u)xt,ν(u)
⊤du =

ν

ν − 2
P.

Then we see that

argmax
c∈Cγ(P )

Hγ(c|Qt,ν) = ct(u, ν, P ).

Proof. We show thatct(·, ν, P ) ∈ Cγ(P ). Note thatct(u, ν, P ) = ft(xt,ν(u), ν, P )J(xt,ν).

Then,

∫
ct(u, ν, P )xt,ν(u)xt,ν(u)

⊤du =

∫
ft(x, ν, P )xx

⊤J(xt,ν)J(x
−1
t,ν )dx

=

∫
ft(x, ν, P )dx

=
v

v − 2
P.
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Hencect(·, ν, P ) ∈ Cγ(P ). We see that

Hγ(ct(·, ν, P )|Qt,ν) = −
[∫

[0,1]p
ct(u, ν, P )

1+γQt,ν(du)

] 1
1+γ

= −

∫
[0,1]p

ct(u, ν, P )
1+γQt,ν(du)[∫

[0,1]p
ct(u, ν, P )1+γQt,ν(du)

] γ
1+γ

. (4.12)

The numerator of (4.12) becomes

∫
[0,1]p

ct(u, ν, P )
1+γQt,ν(du) =

∫
[0,1]p

ct(u, ν, P )ct(u, ν, P )
γQt,ν(du)

=

∫
[0,1]p

ct(u, ν, P )ft(xt,ν(u), ν, P )
γdu

=

∫
[0,1]p

c(u)ft(xt,ν(u), ν, P )
γdu,

for c ∈ Cγ(P ). Hence

Hγ(ct(·, ν, P )|Qt,ν) = −

∫
[0,1]p

c(u)ct(u, ν, P )
γQt,ν(du)[∫

[0,1]p
ct(u, ν, P )1+γQt,ν(du)

] γ
1+γ

= Cγ(c, ct(·, ν, P )|Qt,ν)

≥ Hγ(c|Qt,ν).

2

Note that there exists an element inCγ(P ) exceptct(·, ν, P ). For a given correlation matrix

P , there existsε′ < 0 such that(1 − ε′)P + ε′I is a positive definite correlation matrix,

sinceP is positive definite. LetP1 = (1− ε′)P + ε′I andε = −ε′/(1− ε′). Then we have

(1 − ε)P1 + εI = P and0 < ε < 1. Let c(u) = (1 − ε)ct(u, ν, P1) + εct(u, ν, I). Then
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c(u) satisfies thatc(u) ∈ Cγ(P ) andc(u) ̸= ct(u, ν, P ).

If γ → 0, thentν → Φ andQt,ν → QL. Hence

argmax
c∈C0(P )

H0(c|QL) = cG(u, P ).

That is, t-copula can be characterized as the maximumγ-entropy distribution on[0, 1]p.

Moreover it has limiting equivalence (by lettingγ → 0) with the Gaussian copula which

is tagged with the maximum Boltzmann-Shannon entropy copula. We call these maximum

γ-entropy copulas theγ-copulas. Let us consider the relationship between theγ-copula and

theγ-estimation. Our method is discussed on the pair of the Gaussian copula (0-copula)

andγ-estimator. On the other hand Zhang et al. (2011) discussed on the pair ofγ-copula

model (γ < 0) and the MLE (0-estimator). We see a sort of duality relationship between

two choices of the pair.

4.3.7 Robustness of theγ-Estimator

We examine robustness of theγ-estimator for the Gaussian copula model through its in-

fluence function. The influence function measures the asymptotic bias caused by contam-

ination at thex. The boundedness of the influence function means boundedness of the

influence from the outlier, hence its robustness. The influence function of theγ-estimator

is given. We show that it is bounded whenγ > 0. A brief simulation is also performed.

Theγ-estimator for the Gaussian copula model can be regarded as a functionalT (g) of
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a distributiong defined by

argsolve
P

∫
exp

(
−γ
2
x⊤P−1x

)
v(P−1 − (1 + γ)P−1xx⊤P−1)g(x)dx = 0. (4.13)

Let ψγ(x, P ) be

ψγ(x, P ) = exp
(
−γ
2
x⊤P−1x

)
v(P−1 − (1 + γ)P−1xx⊤P−1).

Then the influence function IF(x, T, g) of theγ-estimator is given by

IF(x, T, g) = −
[∫

ψ̇γ(x, T (g))g(x)dx

]−1

ψγ(x;T (g)),

whereψ̇γ(x, P ) = ∂
∂v(P )

ψγ(x, P ). See Huber (1981) for details. The boundedness of the

influence function is equivalent to the boundedness ofψγ(x, P ). The following theorem

gives a bound ofψγ(x, P ).

Theorem 4.3.2 Whenγ = 0, that is, for the MLE, the influence function is not bounded.

Whenγ < 0, the influence function is not bounded. Whenγ > 0, the influence function is

bounded and a bound is given by

∥ψγ(x, P )∥ ≤ ∥v(P−1)∥+ 2(1 + γ)

eγ
∥P− 1

2 ⊗ P− 1
2∥,

where⊗ denotes the Kronecker product and∥h∥ for anm-dimensional vectorh denotes

the Euclidean norm defined by
√
h⊤h
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Proof. If γ = 0 we see

ψ0(x, P ) = v(P−1 − P−1xx⊤P−1).

It is obvious that∥ψ0(x, P )∥ is not bounded with respect tox. Next if γ ̸= 0, then let

P−1 = (P− 1
2 )2, whereP− 1

2 is a symmetric matrix. Sety = P− 1
2x, then

ψγ(x, P ) = exp
(
−γ
2
y⊤y

)
v(P−1 − (1 + γ)P− 1

2yy⊤P− 1
2 ).

Expressy in polar coordinate, then

y = rp(θ) = r(cos θ1, sin θ1 cos θ2, . . . , sin θ1 · · · sin θm−1)
⊤,

where0 ≤ r, 0 ≤ θ1, . . . , θm−2 ≤ π, 0 ≤ θm−1 ≤ 2π. Hence

ψγ(x, P ) = exp
(
−γ
2
r2
)
v(P−1 − r2(1 + γ)P− 1

2p(θ)p(θ)⊤P− 1
2 ).

If γ < 0 andr → ∞, then we see∥ψγ(x, P )∥ is not bounded. Next ifγ > 0, we see

∥ψγ(x, P )∥ ≤ exp
(
−γ
2
r2
)
∥v(P−1)∥

+exp
(
−γ
2
r2
)
r2(1 + γ)∥v(P− 1

2p(θ)p(θ)⊤P− 1
2 )∥.
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Sinceexp
(
−γ

2
r2
)
≤ 1, exp

(
−γ

2
r2
)
r2 ≤ 2/(eγ),

∥ψγ(x, P )∥ ≤ ∥v(P−1)∥+ 2(1 + γ)

eγ
∥vec(P− 1

2p(θ)p(θ)⊤P− 1
2 )∥,

where vec denotes the vec operator. In addition we observe

∥vec(P− 1
2p(θ)p(θ)⊤P− 1

2 )∥ = ∥(P− 1
2 ⊗ P− 1

2 )vec(p(θ)p(θ)⊤)∥

≤ ∥(P− 1
2 ⊗ P− 1

2 )∥∥vec(p(θ)p(θ)⊤)∥.

Since

∥vec(p(θ)p(θ)⊤)∥ = tr(p(θ)p(θ)⊤p(θ)p(θ)⊤)
1
2 = 1,

we see

∥ψγ(x, P )∥ ≤ ∥v(P−1)∥+ 2(1 + γ)

eγ
∥P− 1

2 ⊗ P− 1
2∥.

2

For example, ifP is equal toIp, then∥ψγ(x, Ip)∥ ≤ 2(1+γ)
eγ

p.
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4.4 Simulation

4.4.1 Simulation 1: Robustness of theγ-estimator

This section describes the results of Monte Carlo simulations carried out in order to examine

the robustness of theγ-estimator for the Gaussian copula model. We generate 500 pseudo-

random samples of size 500 from distribution

0.9cG(u, P ) + 0.1cG(u, I10),

wherecG(u, I10) is equal to the independent copula andP is given by

P =



1 0.846 · · · · · · 0.846

1 0.846 · · · 0.846

. . . . ..
...

. ..
...

1


.

For each sample, we calculate theγ-estimatorP̂GE for the Gaussian copula model with

γ = 0.5 and the MLEP̂MLE for the Gaussian copula model. We use the norm∥P̂ − P∥ as

the accuracy measure. Table 4.1 shows the root mean squared error (RMSE) of the norm

for theγ-estimator and MLE. We can see that the norm for theγ-estimator is less than that

for the MLE, so we see that theγ-estimator is more robust than the MLE.
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4.4.2 Simulation 2: Detection of Heterogeneous Correlation Structure

The property of theγ-estimator to detect heterogeneous structure is investigated by a bunch

of simulations. A comparison of theγ-estimator with the MLE for a mixture Gaussian

copula (1.1) is also discussed. We conducted two kinds of simulation.

Simulation 2.1: The underlying distribution was constructed based on the one factor Gaus-

sian copula model (Hull and White, 2004). Suppose

xi = aiW +
√

1− a2i εi, i = 1, . . . , p

whereW, ε1, . . . , εp have independently the standard normal distribution. Then we see

x ∼ Φ(x, P ), u = (Φ−1(x1), . . . ,Φ
−1(xp)) ∼ cG(u, P ), where P = (pij)ij satisfies

pij =


1 i = j

aiaj i ̸= j

.

Let the underlying distribution be equation (1.1), wherecG(u, P1) andcG (u, P2) are made

from the one factor Gaussian copula model. This model means the dependence structure is

expressed by the mixture of Gaussian copulas. Assumeτ = 0.5, P1 is made with

a = (0.92, 0.92, 0.92, 0.92, 0.92, 0.92, 0.92, 0.92, 0.92, 0.92)⊤,
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andP2 with

a = (−0.92, 0.92,−0.92, 0.92,−0.92, 0.92,−0.92, 0.92,−0.92, 0.92)⊤.

Then we have

P1 =



1 0.846 · · · 0.846

1
. . .

...

. . .
...

1


, P2 =



1 −0.846 0.846 · · · −0.846

1
. . . .. .

...

. . . .. .
...

1


.

The γ-estimator for the Gaussian copula model withγ = 0.7 is investigated. Initial

values ofP which are used in calculating theγ-estimator are

AR(±0.1), AR(±0.3), · · · , AR(±0.9),

whereAR(ρ) is the correlation matrix whose(i, j) component (i < j) is equal toρj−i. If

theγ-estimator has two componentsG1 andG2 such that

||G1 − P1|| < ||G2 − P1||,

thenG1 is thought of as an estimator ofP1 and denoted bŷP1,GE. SimilarlyG2 for P2 and

denoted byP̂2,GE.

We adopt the MLE for a mixture Gaussian copula model (1.1). AlthoughP1 andP2 are
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the correlation matrices, we tentatively view them to be the covariance matrices and use

EM-Algorithm to obtain an approximate MLE. The obtained estimatorsP̂1 andP̂2 are not

necessarily the correlation matrices, so they are transformed into the correlation matrices

by

diag(P̂i)
− 1

2 P̂idiag(P̂i)
− 1

2 ,

which is denoted bŷPi,MLE for i = 1, 2. The initial value of(τ, P1, P2) which is used in

calculating the MLE is set to(0.5, AR(0.5), AR(−0.5)).

A set of data of sizen (n = 200 or 500) was generated from (1.1), and the norm of

P̂1,GE − P1, P̂2,GE − P2, P̂1,MLE − P1, andP̂2,MLE − P2 were calculated. 500 simulations

were carried out, and then, we calculated the RMSE of the norm based on 500 norm values

obtained by simulation. The results are shown in Table 4.3.

Table 4.2 shows the ratio for theγ-estimator to detect two correlation matrices. For

n = 500 nearly 80 percent was successful, and forn = 1000 it worked out almost perfectly.

From Table 4.3, the MLE had better performance than theγ-estimator. However this is

natural because the MLE is used under no misspecification.

Simulation 2.2: Suppose that the underlying distribution is

c(u) = τ1cG(u, P1) + τ2cG(u, P2) + (1− τ1 − τ2)cG(u, I10), (4.14)

whereτ1 = τ2 = 0.45 andP1, P2 are the same in Simulation 2.1. The other settings are the

same as in Simulation 2.1. The results are shown in Table 4.5.

Table 4.4 shows the ratio for theγ-estimator to detect two correlation matrices. Com-
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pared to the result of Simulation 2.1 the detection rate atn = 500 gets worse while at

n = 1000 the result is almost alike in Table 4.2. From Table 4.5, we find the MLE is

considerably underperforming and theγ-estimator is much better.
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Figure 4.1: Illustration of−Cγ(c, cG(·, P )|QG)

Table 4.1: RMSE of the norm for theγ-estimator and MLE.

P̂GE P̂MLE

RMSE 0.155 0.808

Table 4.2: Ratio of the number of success for theγ-estimator to detect two correlation
matrices.

n 500 1000
ratio 0.768 0.968

Table 4.3: RMSE of the norm of̂P1,GE − P1, P̂1,MLE − P1, P̂2,GE − P2, andP̂2,MLE − P2.

n P̂1,GE P̂1,MLE P̂2,GE P̂2,MLE

RMSE
500 0.600 0.184 0.476 0.186
1000 0.479 0.127 0.431 0.129

Table 4.4: Ratio of the number of success for theγ-estimator to detect two correlation
matrices.

n 500 1000
ratio 0.61 0.966
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Table 4.5: RMSE of the norm of̂P1,GE − P1, P̂1,MLE − P1, P̂2,GE − P2, andP̂2,MLE − P2.

n P̂1,GE P̂1,MLE P̂2,GE P̂2,MLE

RMSE
500 0.494 0.946 0.563 0.952
1000 0.468 1.010 0.438 1.032
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Chapter 5

Summary and Discussion

We have considered the local learning based on local minimization of theγ-divergence.

Applying this local minimization method to cluster analysis, the spontaneous clustering is

proposed. In the spontaneous clustering, the centers of clusters are defined as the local

minimum points of theγ-loss function. On the other hand, we apply the local minimization

method to theγ-estimation of the Gaussian copula parameter to detect heterogeneous corre-

lation structure. In this case, the local minimum points of theγ-loss function are employed

to estimate each correlation matrix. A large majority of statistical methods use the global

minimum or maximum point of objective functions and try to avoid local minimum or max-

imum points. The convexity of the objective functions plays an important role in statistics.

For example, the support vector machine has a convex loss function, and an efficient al-

gorithm to obtain the global minimum point is considered based on the convexity (Bishop,

2006). Although non-convexity is generally intractable, the proposed methods benefit from

the non-convexity, which makes our method unique and interesting. The idea to use local
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minimum points of theγ-loss function can be applied to other statistical methods. For ex-

ample, the idea is applied to principal component analysis (Mollah et al., 2010) and could

be applied to regression analysis.

The spontaneous clustering does not require the information about the number of clus-

tersa priori and can find it automatically if the value of the power indexγ is properly fixed.

In contrast, existing methods such asK-means and model-based clustering need the num-

ber of clusters. Instead of the number of clusters, the value ofγ has to be determined in

the spontaneous clustering. Two methods to determine the value ofγ have been proposed

in this thesis. One is a heuristic method, which depends on the range of the data. Our

simulations show that this method has satisfactory performance and can thus be used in

most situations. A more sophisticated choice based on AIC is also proposed, although it re-

quires more computational effort. When selectingγ, we first considered a cross validation

technique, one of the common procedures to select the optimal value of a tuning parameter

(Hastie et al., 2009). Mollah et al. (2010) proposed using cross validation forγ selection.

However, the method does not work well for the spontaneous clustering. Hence we employ

AIC instead. We have demonstrated that the proposed clustering works well by the simu-

lations and the application to the data. Though we did not consider how to determine the

value ofγ for theγ-estimation of the Gaussian copula parameter, the method based on AIC

could be possible for this problem, but it is currently a future problem.

In the spontaneous clustering, the proposed method employs the local minimum points

of equation (3.2) or (3.6). Then, it assigns the data into clusters with the Mahalanobis dis-

tance. We have proposed an iteration algorithm to find the local minimum points. There are,
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however, a bunch of possibility for optimization and cluster assignment. For optimization,

we could, for example, replace Step 1-1 to 1-3 in section 3.2.2 withn initial values using

all the data. This is nothing but MSC with estimation of covariance matrices. For cluster

assignment, we could use MSC’s trajectory-based assignment (Chen et al., 2013).

In the γ-estimation of the Gaussian copula model, we choose the measure in terms

of invariance. However theγ-estimator obtained is equal to the estimator with normal

distribution as a statistical model, so it seems natural. If we use Lebesgue measure in

calculating theγ-estimator for Gaussian copula model, we cannot calculate the projective

power entropy for all the value ofγ andP .

Another issue in theγ-estimation of the Gaussian copula model is to what extent the

methodology here works for time series data. Because the basic premise of this problem is

that we have data as quantiles, our method would fit, for example, the modeling of uncon-

ditional loss distribution (McNeil et al. (2005), p.28). Such a case is of particular interest

when the time horizon over which we measure our losses is relatively large. When we

are working on the conditional modeling, our method should be regarded as a tool for the

post analysis. As a typical case, we may want to apply our mixture copula approach to

multivariate log-return series which are appropriately standardized and declustered by the

multivariate GARCH model fitted to them. See Zhang et al. (2011) for more details.

91



Acknowledgements

I would like to express my sincere gratitude to Prof. S. Eguchi for giving me the great

opportunity to do research with him at The Graduate University for Advanced Studies. I

am very grateful for his valuable guidance, useful advice, and financial support. I deeply

appreciate Assoc. Prof. Y. Kawasaki , Prof. S. Kuriki, and Assoc. Prof. Y. Nishiyama,

who were my secondary supervisors and gave me lectures about time series analysis, basics

of mathematical statistics, and martingale theory. I would like to provide special thanks to

Assoc. Prof. Y. Kawasaki, who proofread my two academic papers.

Thanks are due to Prof. H. Fujisawa for valuable comments in almost all my presenta-

tions, Dr. O. Komori for useful discussion about replies to reviewer’s comments, and my

colleague Md. Ashad Alam for his help in writing English. My colleagues always encour-

aged and relaxed me, especially F. Kobayashi. I. Kawaji, Y. Hasebe, N. Watanabe, and

other staff of The Institute of Statistical Mathematics have supported me a lot. I would like

to thank them.

I would like to take this opportunity to express my sincere gratitude to S. Nagumo and

F. Nagumo, who are the owners of the restaurant near my apartment. They treated me as a

family member. Owing to their encouragement, my thesis was finally completed.

92



Last but not least, I would like to express my best thank to my parents, Yoshifumi and

Yukiko Notsu, and my brothers and sister, for financial support and warm encouragement.

Without their help, I could not have completed this thesis.

93



Bibliography

Amari, S. & Nagaoka, H. (2000).Methods of Information Geometry. American Mathemat-

ical Society.
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