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Abstract

A divergence measure describes discrepancy between two probability distributions. We
present a local learning approach with a specific form of the measures called the gamma-
divergence. Learning algorithms are divided into two types, global learning algorithms and
local learning algorithms. Global learning algorithms employ all the data simultaneously to
estimate the whole data structure, while local learning algorithms employ a part of the data
to capture the local structure. Estimation with the gamma-divergence has the local learning
capability. The gamma-divergence is a generalization of the Kullback-Leibler divergence
with the power index gamma. It employs the power transformation of density functions,
instead of the logarithmic transformation employed by the Kullback-Leibler divergence.
We consider the gamma-divergence between the underlying distribution and a parametric
model, where the underlying distribution means the one which data follow. As a function of
the parameter, the gamma-divergence has some local minimum points corresponding to the
local structure in the data set. Therefore, we can capture the local structure by the local min-
imum points. We show that the existence of the local minimum points theoretically in some
simple settings. The local learning capability of estimation with the gamma-divergence is
applied with respect to cluster analysis and detection of heterogeneous correlation structure.
Cluster analysis is aimed to divide data into some groups called clusters. Finding clus-
ters can be regarded as investigation of the local structure of the data set, so we can apply

the local learning capability to cluster analysis. We propose a new method for clustering



with local minimization of the gamma-divergence based on the normal distribution, which
we call “spontaneous clustering”. The greatest advantage of the spontaneous clustering is
that it automatically detects the number of clusters that adequately reflect the data structure.
In contrast, existing methods, such/dsmeans, fuzzy-means, or model-based clustering
need to prescribe the number of clusters. Instead of the number of clusters, the value of
gamma should be determined for the spontaneous clustering. We propose two methods for
this purpose. One is a heuristic choice similar to the bandwidth selection in kernel density
estimation. The other is based on Akaike Information Criterion (AIC). We detect all the
local minimum points of the gamma-divergence, by which we define the cluster centers.

As for the second application we discuss a parameter estimation problem for a Gaussian
copula model. A copula is a multivariate distribution function with uniformly distributed
marginals on the unit interval and it determines the correlation structure of a multivariate
distribution. We consider the heterogeneous correlation structure, that is, the copula of the
underlying distribution might be a mixture of some Gaussian copulas. This heterogeneity
can be captured by finding the local minimum points of the gamma-divergence based on the
Gaussian copula model. We propose a fixed point algorithm to obtain the local minimum
points of the gamma-divergence. It is also shown that the gamma-estimation is robust
against outliers in terms of the influence function. A feasible form of the gamma-divergence
is given that suites the Gaussian copula model.

In both applications, we consider the situation where the underlying distribution might
deviate from the statistical model we fit. The statistical model is a single parametric model,

while the underlying distribution is represented by a mixture of some distributions in the



model. This is not the standard situation where the statistical model includes the underlying
distribution. In this thesis, we show that even in such a situation the estimation is possible
by using the gamma-divergence. One of the advantages of this method is that it works well

for mixtures of any number of distributions if they are “distinct” enough.
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Chapter 1

Introduction

Divergence measures serve the concept of distance between two probability distributions.
The most well-known divergence is the Kullback-Leibler (KL) divergence proposed in
Kullback and Leibler (1951). It is well known that the maximum likelihood estimation
can be regarded as the minimization of the empirically estimated KL divergence. A number
of different divergence measures have been presented in the literature (Rao, 1982; Eguchi,
1985; Amari and Nagaoka, 2000; Zhang, 2004; Cichocki and Amari, 2010). Other diver-
gence measures lead to different estimators in the same way as the maximum likelihood
estimator is defined. Divergence measures are used in not only statistical estimation but
also other statistical analyses, such as hypothesis test (Pardo, 2006), multivariate analysis
(Mollah et al., 2006, 2010), information criteria (Konishi and Kitagawa, 2008), and boost-
ing (Murata et al., 2004).

In this thesis, we focus on applications of thelivergence, which is one of divergence

measures employing the power transformation of density functions. The power transforma-



tion has been employed in statistics, information theory, and physics (Tsallis, 1988). For
example, in Box and Cox (1964), it is used for transforming data to meet the standard as-
sumptions, such as the normality of the data. A number of divergence measures with the
power transformation have been proposeér(®, 1961; Sharma and Mittal, 1977; Liese
and Vajda, 1987). Some of the divergence measures have been proved to be especially use-
ful for constructing robust methods. The density power divergence was proposed in Basu
et al. (1998) for robust parametric estimation. Minami and Eguchi (2002) presented the
same divergence independently for robust blind source separation, which is called the
divergence. Jones et al. (2001) and Fujisawa and Eguchi (2008) proposeditieggence
for robust parametric estimation. Jones et al. (2001) investigated the robustness of the es-
timation with thev-divergence from the point of view of the influence function, and they
compared the properties of thedivergence with those of the-divergence. On the other
hand, in Fujisawa and Eguchi (2008), the robustness was explored in terms of information
geometry. We, however, employ thedivergence not for robustness but for detection of the
local structure in the data set.

Here is a simple example that explains the motivation for employing{i®ergence
to capture the local structure. Consider the problem of estimating the Gaussian mean pa-
rametern.. The maximum likelihood estimator (MLE) ¢f is given by the arithmetic mean
of the data set as the unique maximum point of the log likelihood function. Similarly,
the y-estimator ofu is defined by the minimum point of theloss function, which is the
empirically estimatedy-divergence. It is known that the MLE behaves poorly in various

situations where the Gaussianity assumption is inappropriate. For example, if the data are



derived from a mixture of two normal distributions while our model is normal, then the es-
timation with the log likelihood function fails, as shown in Figure 1 (a). This failure results
from the unfaithfulness of the model. The estimation with {hess function, however,
captures all the components of the normal mixture, even though based on the unfaithful
model. Figure 1 (b) shows that theloss function has two local minimum points corre-
sponding to the two mean values of the two normal distributions. That is, the two means
can be estimated by the two local minimum points. This thesis applies such a property to
detect local mean structure and local correlation structure in the data set, i.e. cluster analysis
and parameter estimation of a copula model.

Cluster analysis is a common procedure for grouping similar objects in unsupervised
learning (Jain et al., 1999; Xu and Wunsch, 2005; Hastie et al., 2009). The procedure stably
produces a classification and is frequently used as a preprocessing technique before super-
vised learning. Cluster analysis has wide applications over many disciplines in exploratory
data analysis. See, for example, Jin et al. (2011) and Wu et al. (2011) for recent develop-
ments. There are two main approaches in cluster analysis. One is the hierarchical approach,
which describes a tree structure called a “dendrogram”. The other is the approach of data
space partition, such as tli&-means clustering. This thesis focuses on the latter approach
from the point of view of statistical pattern recognition. We propose what we call the spon-
taneous clustering. It starts with finding cluster centers in a data set. For this purpose, we
employ they-loss function of the Gaussian mean parameter. In the spontaneous clustering,
we will propose to determine the cluster centers by the local minimum points of lttes

function. Almost all procedures via data space partition require to pre-determine the num-



ber of clusters; the selection of the number of clusters is a major challenge. A number of
methods for this purpose have been proposed in the literature (Xu and Wunsch, 2005). Our
clustering method can find the number of clusters automatically, as long as the value of

is properly fixed. The name “spontaneous clustering” comes from this property. Instead
of the number of clusters, the value of the power indeshould be determined. We will
propose two methods to accomplish this aim. One is a heuristic choicéhat merely re-

lies on the range of the data, and the other is a more sophisticated method based on Akaike
Information Criterion (AIC).

The estimation of the Gaussian copula parameter is the other application of the local
learning capability with they-divergence. Applications of copula models have been in-
creasing in number in recent years. There are a variety of applications on finance, risk man-
agement (McNeil et al., 2005), and multivariate time series analysis (Zhang et al., 2011).
With copula models, the specification of the marginal distributions is parameterized sepa-
rately from the dependence structure of the joint distribution. Hence it gives a convenient
way of the construction of flexible and more general multivariate distributions. As far as
we know, there exist only a few works that tackled with the identification and the statistical
estimation of the mixture of copula models and most of them rely on MCMC algorithm. In
this thesis we focus on a misspecified Gaussian copula model. In other words, a sample fol-
lows a distribution mixed with different sources but a statistical model we fit is just a single
Gaussian copula. Itis very hard to construct multivariate copulas for three or more random
variables (Nelsen, 1999), while the Gaussian is an exception. So we start with the Gaussian

copula model, but later in the section 4.3.6 we will show our method is closely related to



t-copula. As an example of misspecification, we consider that the underlying distribution is

Teo(u; Py) + (1 — 7)ea(u; Pe), (1.1)

wherer is a mixing proportion andg(u; P) denotes the probability density function of

the Gaussian copula with the correlation matrix parameteWe see that the MLE foP

almost surely converges ta”, + (1 — 7) P, under the assumption (1.1), which means that
the MLE fails to detect the structure of the underlying distribution. We make use of the
~-loss function of the Gaussian copula parameter for this problem. Our research shows that
even if a single Gaussian copula model is incorrectly fitted to the data from the mixture
distribution (1.1), they-loss function can detect both and P, separately if?, and P, are
“distinct” enough and- is close to 0.5. We, therefore, propose to use these local minimum
points to detec; and P.

This thesis is organized as follows. In Chapter 2, we make a review of divergence
measures and estimation with thealivergence. Chapter 3 describes the application of the
~-divergence to cluster analysis, where some existing clustering methods are also discussed.
In Chapter 4, we provide a brief summary of copulas and discuss-gstimation for the

Gaussian copula model. Summary and discussion are given in Chapter 5.
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Figure 1.1: (a) Log likelihood function. (b) Minusloss functionZ, (1) (y = 1). In (a) and
(b), the data of size 200 is generated from the mixture of two standard normal distributions

centered at 0 and 10, respectively.



Chapter 2

Minimum Divergence Estimation

2.1 Divergence Measures

In statistics, there are a number of indexes to measure the difference between two objects.
Divergence measures reflect the difference between two probability distributions. They are

defined by functionals which satisfy the following properties:
D(g, f) > 0 with equality if and only ifg = f, (2.1)

whereg and f are probability density functions. Although a large number of divergence
measures have been proposed in the literature, we present an introduction to two wide
classes of divergence measures, Bregman divergencE-aneergence. The-divergence

is derived from thes-divergence, which is one of thé-divergence.
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Bregman divergence

Bregman (1967) introduced a family of divergence measures in the following way,

By(g,f) = /w(f(l')) —¥(g(z)) = ¥ (9(2))(f(z) — g(x))dx (2.2)

for any differentiable convex function with «(0) = lim; ¢ (t) € (—o0, c0). Note that

By(g, f) satisfies condition (2.1) due to the convexity/ofsee Figure 2.1).

U-divergence

The U-divergence is defined similar to the Bregman divergence (Murata et al. (2004)). Let
U be a differentiable and strictly convex function. Then its derivative U’ is a monotonic
function, which has the inverse functign= (u)~!. TheU-divergence with respect 13 is

defined as

Dy(g, f) = /U(f(f(w)))—U(S(g(fﬁ)))—U’(f(g(ﬂﬁ)))(é(f(x))—5(9(1)))df€

We obtain the/-divergence by substituting = U, g(x) = &(g(z)), and f(z) = £(f(x))
in (2.2). The advantage of the form (2.3) is allowing us to plug in the empirical distribution

directly.
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[-divergence

WhenU (t) = Us(t) = {1/(1 + 8)}(1 + Bt)I+9/5 (5 > 0), theU-divergence becomes

Dy, (g, f) = /{g ﬁ}g(m)dm — —— [ g(x)""P — f(2)"Pdx, (2.4)

which is called the5-divergence (Basu et al., 1998; Minami and Eguchi, 2002).

~-divergence

The v-divergence is derived from the-divergence, which can lead more robust methods
than thes-divergence (Jones et al., 2001; Fujisawa and Eguchi, 2008),-Onergence is

defined as

_1

Df0.5) =, [ae)seras ([ ateyan) (25)

wherer, = ([ f(x)*dz) 7,
The derivation of they-divergence is as follows. Consider the following optimization

problem,argmin Dy, (g, v f). The first derivative oDy, (g, v f) with respect ta becomes
v>0

d
d—DUﬁ(g,vf VP~ 1/f z)dr +° /f ).

Set the derivative to 0. Then we have

min Dy, (g, vf) =

n (J f(z)’g(z)dz)'+”
(/g(ac) Bdx — (@) +oda)? ) ) (2.6)



The logarithmic of the ratio of the first and second terms of (2.6) is equal to

L, o) )] £y’

A1+ 5) (J f(x)?g(x)dw)'+?

: (@)f(x)’da v
— B {—10g/ (fgj]f(l‘)l"'ﬁ)ﬂ/(l"'ﬁ) +10g (/Q(ZL') +Bd$> .

Then we consider the value

- f(x)l}rﬂ)ﬁ/(lw) / g(x) f(2)Pdz + ( / o)} +de) 1/(1+5>7

which corresponds td, (g, f) if 5 = ~. Note thatD, (g, f) satisfies condition (2.1) from

this derivation.

2.2 ~-Estimation

Suppose a random sample is generated from a population distribution with density function
g. Let{f(-,0)} be a family of density functions indexed by parameterThe ~-cross

entropy betweeg andf(-,0) is defined as

ol 1:6)) = =1:(6) [ 9(o)fw,6)da,

with power indexy > 0, wherex., () is the normalizing constant defined as

ko (0) = (/ f(x,&)lﬂdx)_llw.

13



The Boltzmann-Shannon cross entropy betwgand f (-, 0) is defined by

—/g(a:) log f(z,0)dx.

The~-cross entropy and the Boltzmann-Shannon cross entropy have the following relation

sincex, (6) converges to 1 ify tends ta0.

LG ) T /g@)nm (M) .

v—0 Y v—0 Y

= —/g(x) log f(x,0)dx.

Hence the Boltzmann-Shannon cross entropy can be seen astbss entropy, and the
~-Cross entropy can be regarded as an extension of the Boltzmann-Shannon cross entropy.
The~-entropy ofg is defined agi,(g) = C,(g, g). Then they-divergence betweepand

f(-,0) becomes

DW(g’f("’Q» = CW(Q? f(,@)) - H’Y(g)'

Recall that they-divergenceD, (g, f(-,6)) is nonnegative, and, (g, f(-,6)) is equal to0

if and only if ¢ satisfies thay(z) = f(z,0) almost everywhere. From these properties,
D.(g, f(-,0)) can be seen as a kind of distance betwgemnd f (-, #) although it does
not satisfy the symmetry. When our aim is to find the closest distributignitomodel
{f(-,0)} with respect to the-divergence, we only have to find the global minimum point

of D, (g, f(-,0)) with respect t@, which is equal to that of’, (g, f(-,6)).

14



The ~-loss function is defined by an estimator of thecross entropy. Lefxy, zo,
..., =, } be arandom sample generated from a population distribution with density function
g and{f(-,0)} be our statistical model. Theloss function forf(-, #) associated with the

~-divergence is given by

L(0) = (05 D f(w0)"

We extend the definition of the-cross entropy to any distributions. For any distribution

functionG, the~-cross entropy betwee® and f(-, 0) is defined as

Cy(G. 1(.6) =~ (0) / £, 6)dG(x).

Note thatL.(#) is equal toC., (G, f(-,6)) with empirical distribution functior(?, so that
E(L,(0)) = Cy(9g, f(-,0)), and L. (¢) almost surely converges @@, (g, f(-,0)). The~-
estimator off is defined by the global minimum point @éf,(#) (Eguchi and Kato, 2010).
From the definition of they-estimator, it satisfies Fisher consistency. If the density func-
tion ¢ belongs to the statistical modé€f (-, 6)}, then they-estimator satisfies asymptotic
consistency and normality. Theloss function and the log likelihood function satisfy the

following relation

v—0

L,(0)+1 1<
lim L) +1 == Zlog f(x;,0).
v n i=1
Hence the MLE can be regarded as thestimator and the-estimator can be seen as an

15



extension of the MLE.
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Chapter 3

Cluster Analysis

3.1 Existing Methods

In this section, we make a review of three clustering algorithmsisthreeans, model-based,
and mean shift clustering. The model-based clustering is based on some parametric models
while the K-means clustering considers the Euclidean distance among the data points. In

the mean shift clustering, density estimates are used for finding cluster centers.

3.1.1 K-Means Clustering

The K-means clustering is to minimize the lack of homogeneity of each cluster based on
the Euclidean distance. For thié-means algorithm, the number of clustétshas been
fixed by the investigator.

Let {zy,x9,...,2,} be a data set, anfl” be the number of clusters. The dispersion

18



matrix based on the data set is defined as

whereCy, is thekth cluster, and: = (1/n) > ", z;. The dispersion matrix represents the
total dispersion, and it can be decomposed into two matrices, the with-in cluster dispersion

matrix Wy and the between-cluster dispersion matix,

so thatl'x = Wx+ Bk, wWheren,, is the number of objects ifiy,, andz;, = (1/nx) erck T.
For cluster analysis, there are a lot of criteria baseth@nand By, for example, mini-

mization ofdet(Wx), and maximization of B W ;') (see Everitt et al. (2011) for more

detailed discussion). The criterion for tfi&means algorithm is minimization of(#/x ).

This criterion is equivalent to minimization of the lack of homogeneity of clusters, that is,

TUSED P S P

k=1 z,x' €Cy,

In practice, the investigators will have to estimate the number of clusters in the data
set. Itis of great importance to select the number of clusters, because the clustering results
may change drastically as the number of clusters increases. Two criteria will be shown for

selection of the number of clusters for themeans clustering.
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CH

In Calinski and Harabasz (1974), a criterion @Hlis defined by

This criterion is analogous to thé-statistic for analysis of variance in the univariate case.

They propose to select the number of clusterahich maximizes Ckk).

Gap Statistic

The within-cluster sum of squares (##/;,) monotonically decreases asincreases, but

there existg:* such that fork > k*, tr(1W}) decreases smaller than fo< £*. Such ak* is

used as an optimal value for the number of clusters. In Tibshirani et al. (2001), they provide

a more sophisticated procedure to formulate this heuristic.

The gap statistic is defined by

Gap, (k) = E,(log(tr(Wy))) — log(tr(Wy)),

where £ denotes the expectation under a sample siZeom a reference distribution.
They propose the optimal value &f which maximizes the gap statistic with taking the
sampling distribution into account. TheT (log(tr(W}))) is calculated by a Monte Carlo

approximation. In practice, the selected number of clusters is the smalesh that

Gapk) > Gapk + 1) — sg41,

20



wheres,. ;1 is a standard error.

3.1.2 Model-Based Clustering

A model-based clustering is to postulate a mixture density function for the population dis-
tribution, from which the data are sampled. Then the parameters in the mixture density
function are estimated, and the posterior probabilities are calculated by plugging-in the es-
timators for the counterparts in the mixture densities. Each object is assigned to the cluster
which maximizes the estimated posterior probability that the object is in the cluster.

Let f(x, 0;) be a density function parametrized #y andg(x, 7, ) be a mixture den-

sity function,

K
g(maTv 6) = Zkak(xaek)u
k=1

wherer = (11, 7o,...,7x) " andd = (67,0, ,...,05)". Herery, 7, ..., i are the mixing
proportions, that is, they are nonnegative and satisfyzbﬁztl 7. = 1. The model-based
clustering postulateg(z, 7, ) for the population distribution, and we estimate the parame-
terr andé.

Although there are a lot of estimation methods, we focus on the maximum likelihood
estimation. Since the log likelihood function fgfz, 7, 0) is often very complicated, it
is hard to calculate the maximum likelihood estimator (MLE) by using the log likelihood
for g(x,7,0). An alternative to obtain the MLE is the EM-algorithm (see Dempster et al.
(1977)). From this, we focus on the situation where the component densities of the mixture
density are normal. Let(z, i, X2) be the density function of the normal distribution with

mean vectop: and covariance matriX. We postulates(z, u, Xx) as thekth component

21



density of the mixture density function. Then the EM-algorithm for normal mixture is given

as follows.

EM-algorithm for normal mixture

Step 1 Set appropriate/”, 7" ... 79 4O L0 u@ 50 w0 5O,
Step 2 Givenr\”, ..., 5 calculater"™", ... Sl by the following update formula.

I o
Tk = ;ZTM?
=1

t t t

S0 _ (s, ), 4
ki K t t )y
Zj:17_j()¢($i;,u§‘)>2§‘))

n )
(t+1)  _ Tki
H - Z w7
i=1 Zj:l Tkj
n (1)

— § Thi

t4+1 t+1
n (t)( ( ))(J] _:u( ))T'
i=1 Zj:l Tkj

Ti — Mg i k

Step 3 Repeat Step 2 until all parameters converge.

For selection of<’, we can use information criteria, such as AIC and BIC,

AIC = =2 log f(;,0,7) + 2(number of parameteys
=1

BIC = —2) log f(x;,0,7) + log(n)(number of parameteys
=1

and select minimizing those criteria.

22



3.1.3 Mean Shift Clustering

A mean shift clustering (MSC) with the Gaussian kernel is to determine the cluster centers

by the modes of the density estimate defined by

n

) = =S (_(227;')'2; wlf) (3.1)

We suppos&(m) is the position ofr; at stagen of the procedure, Wher:ef.o) = x;. Then

7

2™ is updated by

nexp (el - a2/(202)

xgm—l—l) _ Z

= i exp (2™ = i/ (2h2))

ZT;.

Note that eackrl(.m) will converge to a mode of the density estimate defined by (3.1). The
set{z\™ : m € N} is called the trajectory of;. Let {z\° ... 2} be{ci,... ek, }.
Then we define,, as the cluster center, and eachs assigned to the cluster of which the
centerc,, is equal tom§°°>.

For MSC, a bandwidth selection by Einbeck (2011) can be used. Supppsethe

cluster center to which, is assigned. The self-coverage for cluster analysis is defined as

3

S(h) = L(llzi = cinll < h),

=1

S|

wherel(-) is the indicator function. Assume we have evaluat¢tl) over a grid of band-

23



widthsh, < --- < hy. The curvature of(h) is approximated by

Azs(hg) = S(h@rl) — 2S(hg> + S(hgfl).

Let h(;) be the bandwidth yielding thgth lowest of A2S(hy),h = 1,..., L, under the
constraint

S(he) > max{S(h), ..., S(he1), s},

wheres € (0, 1) is a pre-determined constant. A valuesof 1/3 is recommended (Ein-

beck, 2011). Thenh ) is used as the optimal value.

3.2 Spontaneous Clustering

This section is based on the paper (Notsu et al., 2014). We begin with reconsidering the
motivational example in the introduction from the point of view of cluster analysis. First,
we consider a trivial situation, where the number of clusters is one. For example, assume
thatz, ..., z, in R? follow a normal distribution with the mean vectorand the identity

covariance matrix. Then the log likelihood function multipliedb¥/n is given by

po) == S ().

which is equal tol /(2n) (327, ||lzi — ul|? + plog 27), where|| - || denotes the Euclidean
norm. The MLE ofu is just the sample mean, by which the cluster center can be determined.

However, if there is more than one cluster, then the MLE does not work. We take another

24



estimator ofu, they-estimator (Eguchi and Kato, 2010). In general, for a location family
{f(z — pn) : p € R}, wheref(x) is a probability density function, the-loss function is

defined as

Do) = =iy D i = " 32)

wherer, = ([ f(x)lﬂdx)*ﬁ. If f(z) is the normal density function with mean vector

0 and the identity covariance matrix, then tirdoss function becomes

QH'IZ

L) = — {1 +7)(2R) }2<1+~>Z<exp Al )) @y

where the subscripf is omitted for simplicity. They-estimator of the normal meanis
the value which minimizeg., ().
We consider a standard situation/gfclusters, where the density function of the popu-

lation distribution had< modes, for example,

Zkak ZTk—l >0 k=1,... K, (3.4)

k=1

where fi.(x) is a unimodal density function. As stated above, the MLE does not work in
this situation. It is expected that theloss functionL.(x) hasK local minimum points
corresponding tdC mean vectors with respect fo, . . ., fx. Figure 1 (b) shows that, (x)

has two local minimum points when the data have two clusters. Thus the cluster centers

defined by the local minimum points lead to a clustering method similar td<t#meeans
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clustering.

The proposed procedure appears to be similar to density-based clustering methods, for
example, the mean shift clustering (Cheng, 1995), sinceloss functionL. (x) resem-
bles the kernel density estimate with the Gaussian kernel (3.1).=fz, andh? = v71,
thenL., (n) and f,(z) are essentially the same, apart from a constant. Since the mean shift
clustering defines the cluster centers by modes of the density estimate (3.1), the proposed
procedure is the same with the mean shift clustering, that is, finding modes of equation
(3.3).

There are some differences between them, however. We employltes function,
not density estimates, so that we will naturally estimate covariance structures of clusters
by incorporating they-loss function for the covariance matrix of the normal distribution.
In addition, we will propose the selection for the power indekased on the theory of
they-loss function, which also gives a new insight or different view to the selection of the
bandwidth/ for the density estimationL. () is a loss function for the normal mean
fh(q:) is a density estimate obtained by smoothing the histogram in terms of the Gaussian

kernel function. In general, kernel density estimates are given by

k(7))

whereW is a kernel function. Two equations (3.2) and (3.5) are quite different forms

derived from different ideas.
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3.2.1 ~-Loss Function for the Normal Distribution

We consider the-loss function for the normal distribution with the mean vegi@nd the

covariance matrix;,

Ly (1) = = det 577050 3 exp (=2 (w1 = 1) TS i — ) (3.6)

=1

apart from a constant. In the remainder of the thesis, we omit a constant term that does
not affect the optimization. An iteration algorithm to find the local minimum points of

L. (1, X) has been proposed in Fujisawa and Eguchi (2008) and Eguchi and Kato (2010). It

is obtained by differentiating., (., ) with respect tq: andX~! and setting the derivatives

to 0. The algorithm is a concave-convex procedure (CCCP) (Yuille and Rangarajan, 2003),

so that it is guaranteed to decrease{Hess function monotonically as the iteration step

increases. It is described below.
Step 1 Set appropriat@g, andX, as initial values.
Step 2 Giveny,; andX,, calculateu,;,; andy,;,; by the following update formulas,

n

Hi+1 = Z Wo (g, e, 3t) T, (3.7)
i=1
— - T
Y1 = (1+7) Zwv(l‘m fots 20) (25 — fre1) (T — pg1) (3.8)

=1

where

exp (—3(x — ) 'S (2 — p))
St yexp (=3 (x; — p) TSNy — )
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Step 3 For a sufficiently small number, repeat Step 2 while

1 = el + [[Zea = Zeflr > e,

where|| - || denotes the Frobenius norm.

If v = 0, then the right hand sides of equations (3.7) and (3.8) are equal to the sample mean
vector and covariance matrix, respectively, which are just the MLEs. If our aim is to obtain
the local minimum points of.. (1), then we only have to updaje and fix X, to be the
identity matrix/. Similarly, if our aim is to obtain the local minimum points 6f (, X)

with fixed 1, then we only have to update and fixu; = pu.

3.2.2 Spontaneous Clustering Algorithm

In general, the spontaneous clustering based on a density furf¢tiof) with parameted

is defined as follows.
Spontaneous Clustering

Step 1 Find the local minimum points o, (#), denoted by, , . . ., 0, whereL. (6) is the

~v-loss function forf(z, 6).
Step 2 Considerk clusters according téy, . . ., fx, and assign the data to the clusters.

As a special case, the spontaneous clustering based on the normal distribution is defined
as follows. We seb, and©, 5, to be the empty sets at the start of the algorithm. The

algorithm of section 3.2.1 is employed in the spontaneous clustering below.
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Spontaneous Clustering Based on the Normal Distribution

Step 1-11f ©, is the empty set, choos# initial valuesx,...,zu in the data set
{z1,...,x,} atrandom. Otherwise, choose initial valueqin, ..., z,} as follows:
Ty, - - -, Ty areM maximum points ofi(-, ©,,), where

d(z,6,) = min |lo — .

m

Step 1-2 Apply the algorithm in section 3.2.1 to the data déttimes with each initial
valuexz;),7 = 1,..., M to find the local minimum points of,(x). Then add the

obtained local minimum points 1©,,.
Step 1-3 Repeat Step 1-1 and 1-2 until the number of elemeng,idoes not increase.

Step 1-4 For each local minimum point € ©,,, obtain a minimum point oL, (/z, X) with

respect taz, denoted bys, with the algorithm in section 3.2.1. Then agal i) to

O -

Step 2 Write ©(,, 5y by { (fx, ik)}le and assign each observatioefto thekth cluster with

~ A
~

k = argmin(z; — fig) " S0 (@ — fig)-
k=1,...,K

The centers and the covariance matrices of clusters are defifgg a3 ). In the remainder

of this chapter, we focus on the spontaneous clustering based on the normal distribution.
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3.2.3 Selection Procedure fory

The value of the power index plays a key role in the spontaneous clustering, because
~ affects the number of clusters obtained by the spontaneous clustering. We propose two
methods to select the valueof One is a heuristic choice efthat depends on the range of

the data. Our proposal #s= 72/ R?, whereR is defined by the maximum range:

wherex; = (z;1,...,7;,)". The outline of the derivation of is as follows. Suppose the
data set is generated from the mixture of two normal distributions centenedaatd .,

with the identity covariance matrix and the equal mixing proportions, respectively. Our
simulation result suggests that|ifu; — 12)/2|| = 3v/2/2 = 2.12, then the value of needs

to be greater than or equal to 1 for two local minimum pointé ofi:) to exist. Proposition
3.2.1 states that if all the data are multiplied by a scaland the spontaneous clustering is
applied to the transformed data, then the value néeds to be greater than or equakt3

to guarantee the existence of two local minimum point&.ofie). If [|(11 — p2)/2|| = r,

thena = r/(3+/2/2). Hence we propose to use the valueyafefined as

—2
. r 9
7= (3\/§> =92 (3.9)

The value ofr can be estimated by the range of the data. Rgbe the range of thgth
variable. If there ard{ disjoint clusters lying side by side on a line parallel to the axis of

the jth variable, then we can estimatdy R;/(2K) as shown in Figure 3.1. There gre
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variables, s directions have to be considered simultaneously. We use the maximum range
R and estimate by R/(2K). The value ofK" can be determined from our prior knowledge
about the possible number of clustersKif= 2, we havey = 72/ R?. We observe that this

rule works well in several empirical studies, although a complete theoretical background is
missing.

We also propose a more sophisticated method based on AIC. The valwehidh min-
imizes AIC is recommended as the optimal selectiof.dfet &', be the number of clusters
and(jix, 1), k = 1,.. ., K, be the centers and the covariance matrices of clusters result-
ing from the spontaneous clustering. l¢ét:, 11, ) be the density function of the normal
distribution with the mean vectarand the covariance matriX Theng(z, [, ivk) serves
as a density estimator of the mixture compongrit:) in (3.4). The result of the sponta-

neous clustering implies the mixture of normal distributions as an estimator of the density

function of the population distributionin (3.4),

Ky
g’y(x) = Z 7A'7k¢($, ﬂ'yka Evk)7

k=1

where 7. is an estimator of the mixing proportion defined as the proportion of the

observations assigned to thth cluster. The AIC based ap, is defined as follows.

- 3
AIC, = =2 "log §,(x;) + 2 {KW@ + K, — 1} :
i=1

We claim that the value of that minimizes AIC is the optimal one.
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3.2.4 Behavior of they-Loss Function

We provide a justification for the spontaneous clustering by exploring its theoretical aspects.
The key fact is that the-loss functionL.,(;:) hasK local minimum points if the data set

consists ofi cluster groups.

The Existence of Local Minimum Points

In this section, we consider the conditions for the existence of local minimum points of
L.,(i). As we discussed in section 3.2.2, the cluster centers are defined at the local mini-
mum points ofL.,(x), so it is important to know when the-loss function has local mini-
mum points.

To simplify the argument, we assume that the data set is generated from the mixture of

two normal distributions with the covariance matsix/,
g(l’) = Tl¢($7u1702[) + 7—2¢($7u2702[>7 T1 + Ty = 17 Tk > 07 k = 172

For ease of calculation, we consider= oo. As n tends tooco, L. (x) almost surely

converges to the-cross entropy defined by

Cy(g, 00, 1)) = —m/g(x)cﬁ(x,mf)”d:r, (3.10)

wherer, = ([ ¢(z,0, I)H’de)_ﬁ. Section 2.2 contains a general introduction to the
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~y-cross entropy. The@', (g, (-, 1, I)) becomes

Colg 0w D) = D wCy (6w, 0®1), 8, 1))

which is just minus the density function of the mixture of two normal distributions with the
same covariance matrix? 4+ 1/~)I. Hence, the local minimum points 6%,(g, ¢(-, i, I))

are equal to the modes of the density function of the normal mixture. Figure 3.2 shows
—C, (9, ¢(-, 1, 1)) with dimensionp = 2, where—C, (g, ¢(-, i1, I)) has one or two modes
depending on the values pf, u», 71, 72, @andy. For the univariate case, a necessary and suf-
ficient condition that the density function of the mixture of two normal distributions should
be bimodal is given in de Helguero (1904). We use a similar technique as in de Helguero
(1904) to obtain a necessary and sufficient conditiorCigfy, ¢(-, i1, 1)) to have two local

minimum points.

Proposition 3.2.1 Letv = (u1 — p2)/2 andd = ||v||* — (6* + 1/7). ThenC., (g, (-, 1, I))

has two local minimum points if and only if the following three conditions hold:

d > 0, (3.11)
2y Y 27

d — d] — 3.12

o (T2 AVA) > 2 (4 va) 2, (3.12)
2y g 27

— — —. A

eXp( HWQMNE) < Ty (vl =va) = (3.13)

In particular, if ; = 75, then (3.12) and (3.13) hold for any > 0. When the two local
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minimum points exist, they lie on the segment betweemd ;. The one closer tp; and
the other closer tau, are denoted by:; and .5, respectively. Thefy; — pf || and||ps — 1|

are bounded above by

Il - \/ ol - (o4 2).

Proof. No generality is lost by assuming. = —u,. The gradient o, (g, ¢(-, i1, 1)) is
given by

aO’Y(Qv ¢(7 22 ]))

3 o< Tp(p, g, (0% + 1/ )1 (1 — )
u

+7o¢ (1, — i, (‘72 + 1/ + ). (3.14)

From (3.14), every local minimum point @f, (g, ¢(-, #, I)) should exist on the segment

between-y; andy,. The Hessian matrix af’, (g, ¢(-, i, 1)) is given by

0?C s I
001D o s (0 1D O )= )T
=720, =1, (7% + 1N (o )+ )T
+11d(p, pu, (0% +1/7) DI
Fra0(0n i, (0% + /1D 315)

Let pu(t) = tuy. From (3.15) () is a local minimum point ot”, (g, ¢(-, i1, I)) if and only

if ¢ is a local minimum point of”, (g, ¢(-, u(t), I)) with respect tat. C, (g, ¢(-, u(t), 1))
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becomes

Cy(g. ¢(-, pu(t), 1)) o< = exp(—=C(t — 1)%) = mexp(—C(t + 1)*),

whereC'is equal to]|u1 ||*v/(2(1 + o*y)). The derivative of”., (g, #(-, u(t), I)) is given by

0, 0,00,1(0).1)) o mexp(~C(t ~ 1Y)t — 1) + myexp(~Cl(t + 1)1 + 1),

It is possible to restrict-1 < t < 1. Then

d

— exp(-Ct+1+Ct—1)7) > 8;32

= 40t +log(t + 1) —log(l —t) — 1og§ > 0. (3.16)
2

Let i (¢) be the left hand side of inequality (3.16). The derivativé.@f is given by

and

W(t)>0 <= —4C(1—-t)+1—t)+(1+t)>0
= tQ—(I—%)>O.

If 1 —-1/(2C) <0, thenh'(t) > 0, andC,(g, ¢(-, u(t), I)) has one local minimum point.
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HenceC, (g, ¢(-, n(t), I)) has two local minimum points if and only if

1
1—— >0, h(=D) >0, h(D) <0
56 > 0 h(=D) > 0, h(D) <0,

whereD is the positive solution of equatidii(t) = 0, thatisD = /1 — 1/(2C'). Condi-
tion1 — 1/(2C) > 0 is equivalent td|u||* — (¢* + 1/7) > 0. Conditioni(—D) > 0 is

equivalent to

2y ) 5, 1
eXp<1+02,YHH1H\/HM1H (0 +’y
> =L (il + el = (0242 ) ) 2
1+ o2y M1 H1 ~ —

and conditiom(D) < 0 is equivalent to

2y ) ) 1

eXp( 1+U27HM1H\/HM1H (U +7
2
Y 9 9 1 1
< - - - —.
Tom (Hm\l \/HMH (o H)) -

Note thatu] is on the line betwee®; and ;. Similarly (—u;)* is on the line between

—up and—Dypuy. Then

* 1
s = all < (2= D) lmal =l ll - \/ ] - (a2 n ;).

If 77 = 7, thenh(£1) = +oo, h(0) = 0. Conditionl — 1/(2C) > 0 is equivalent to
h'(0) < 0. Hence two conditiong(—D) > 0,h(D) < 0 hold wheneved — 1/(2C) > 0
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holds. O

If 1, andpu, are distinct enough, then conditions (3.11), (3.12), and (3.13) hold. Con-
dition (3.11) means that the distance betwgerand i, should be large for the existence
of two local minimum points; condition (3.12) and (3.13) mean that it£ 7, then the
distance between, and, should be larger compared to the case whes 7.

By proposition 3.2.1, for any?, if ;; and i, are distinct enough, then there exists
7 that guarantees the existence of two local minimum points.@§, (-, i, I)), and two
clusters are defined at the same instant. In addition, although the center of ac|uktes
not coincide with the normal mear), (£ = 1, 2), it becomes arbitrarily close t@,, when

|11 — pz|| becomes large.

3.2.5 Comparison among Spontaneous Clustering and Existing Meth-
ods

In this section, we clarify the differences among the three clustering methods, the sponta-
neous clustering based on the normal distribution, the mean shift clustering with the Gaus-
sian kernel, and thé&-means clustering. For a given number of clust€rshe K-means

clustering determines the cluster centars. . , cx by

argmin Z IIllIl ||xi—ck||2. (3.17)

Clyenes CKERP k‘E{l .....

Eachuz; is assigned to the cluster of which the centers the nearest te; in terms of the

Euclidean distance.
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To find the cluster centers, the spontaneous clustering and the mean shift clustering use
the modes of the same function sinte(y:) and fh are essentially the same apart from a
constant. On the other hand, theémeans clustering uses the minimum point defined by
(3.17). After determining the cluster centers, to assign the data to clusters -theans
clustering uses the Euclidean distance, but the spontaneous clustering uses the Mahalanobis
distance. The mean shift clustering employs the mean shift trajectories for assignment.

Table 3.1 summarizes the comparison among the three clustering methods.

3.3 Simulation and Data Analysis

3.3.1 Simulation 1: The Case of Spherical Clusters

We demonstrate the performance of the spontaneous clustering (SC) in comparison with the
K-means clustering and the mean shift clustering (MSC). In this simulation, we suppose
that the covariance matrices of clusters are known to be the identity matrix. Hence, in SC,
the covariance matrices of clusters were not estimated and fixed to be the identity matrix.
The performance of clustering is measured by BHI as defined below.

The value ofy for SC was determined by the range of data (R) and AIC described in
section 3.2.3 and a heuristic bandwidth selection (HBS) in kernel density estimation. The
value selected by HBS is given by

2
. n(p+2)\r* |
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wheres? is the average of sample variances for each variable (see Silverman (1986) page
87). For theK-means clustering, the method by @aki and Harabasz (1974) and the gap
statistic by Tibshirani et al. (2001) were used to fix the number of clusters.

We considered four different simulation settings with the sample size 200. The samples

were generated from the mixture of five standard normal distributions with

(@) the mean vector§),0,0,0,0)", (4,4,4,4,4)7, (=4, —4,4,4,4)T,

(4,—4,—4,4,4)7,and(4, 4, —4,—4,4)", and equal mixing proportions;

(b) the same mean vectors as (a) but different mixing proportions 0.025, 0.025, 0.375,

0.375,and 0.2;

(c) the mean vector§), 0,0,0,0,0,0,0,0,0) ", (4,4,4,4,4,4,4,4,4,4)7,
(—4,—4,—4,4,4,4,4,4,4,4)",(4,—4,—4,—4,4,4,4,4,4,4)", and

(4,4, —4,—4,—4,4,4,4,4,4)", and equal mixing proportions;

(d) the same mean vectors as (c) but different mixing proportions 0.025, 0.025, 0.375,

0.375, and 0.2.

Figure 3.3 displays a sample from (a). We simulated 100 runs for each setting and com-
pared clustering results from SC with those from ftyaneans clustering and MSC. Figure

3.4 shows the value of AIC and the number of clusters resulting from SC for the sample
in Figure 3.3. The selected value gfbased on AIC wa$.15. To measure the perfor-
mance of clustering, we used the biological homogeneity index (BHI) (Wu, 2011), which

measures the homogeneity between the cluster {C},...,Ck} and the true category
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B:{Bl,...,BL},

Mw

BHI(C,B) = 1(B® = BU)), 3.18
=) > K ) (3.18)

k: 1#7,5,J€Ck

whereB®) ¢ B is the category for the observatiof, andn,, is the number of the obser-
vations inCy. In this simulation,L is equal to the number of components of the normal
mixture, andB® corresponds to its component label in the data generation. This index is
bounded above by 1, which means the perfect homogeneity between the clusters and the
true categories. We should check the estimated number of clusters as well as BHI, since,
occasionally, the value of BHI becomes 1, even though the estimated number of clusters is
larger than the true number of clusters.

Table 3.2 displays the frequency of choosiligelusters, the mean value and the stan-
dard deviation (SD) of BHI over 100 runs. When the mixing proportions are not equal, the
K-means with CHK -means with Gap, or MSC do not detect the correct number of clus-
ters. When the mixing proportions are equal, all the clustering methods work well. SC with
R and SC with HBS behave almost similarly in these simulation settings. They detect the
correct number of clusters in the low dimension case, but do not in the high dimension case
with different mixing proportions. SC with AIC can detect the correct number of clusters

in all the settings.
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3.3.2 Simulation 2: The Case of Ellipsoidal Clusters

We demonstrate the performance of SC in comparison with the model-based clustering
(MBC) with normal components and MSC. We suppose that the covariance matrices of
clusters are heterogeneous and unknown. Hence, in SC, the covariance matrices of clusters
were also estimated. The value pffor SC was determined by AIC, and the number of
clusters for MBC was determined based on AIC and the Bayesian information criterion
(BIC). For MSC, the bandwidth was determined by the self-coverage.

We considered two different simulation settings with the sample size 400. The samples

were generated from the mixture of five normal distributions

(a) with mean vectorg0, 0,0,0,0)", (6,6,6,6,6)", (6, —6,—6,6,6)7,

(6,6,—6,—6,6)", and(6,6,6, —6,—6) ", covariance matriceS;, Ss, S1, So, andS;,

where
1 05 05 05 05 2  —03 —03 —0.3 —0.3
05 1 05 05 0.5 —03 2 —-03 —03 —-03
S1=105 05 1 05 05/, -03 —-03 2 —03 —0.3
05 05 05 1 0.5 -03 —-03 —-03 2 —03
0.5 05 05 05 1 —0.3 —-03 —03 —03 2

and mixing proportions 0.2, 0.2, 0.2, 0.2, and 0.2;

(b) with the same mean vectors and covariance matrices as (a) but different mixing pro-

portions 0.05, 0.05, 0.35, 0.35, and 0.2.

41



Figure 3.5 displays a sample from (a), and Figure 3.6 shows the value of AIC and the
number of clusters resulting from SC for the sample. Note that we used two valaes

7. as the power index, wherey; was used fot_.(;:) when defining the cluster centers,
and~, for L. (i, ) when defining the covariance matrices. The selected valugsanid

~- for the sample in Figure 3.5 werg = 0.1 and~, = 0.2. We simulated 100 runs for
each simulation setting and compared the clustering result from SC with those from MBC
and MSC.

Table 3.3 displays the frequency of choosiKglusters, the mean value and SD of BHI
over 100 runs. When the mixing proportions are equal, all clustering methods without MBC
with AIC can detect five clusters well. When the mixing proportions are not equal, SC with
AIC can detect five clusters as in the case of spherical clusters. On the other hand, other
clustering methods do not detect the correct number of clusters well. We observed that SC

can capture the ellipsoidal cluster structures.

3.3.3 Data Analysis

To evaluate the practical performance of SC, we applied it with the fixed identity covariance
matrix to real data as well as tlié-means clustering and MSC. The data set consists of the

chemical composition of 45 specimens of Romano-British pottery, determined by atomic
absorption spectrophotometry, for nine oxides (Tubb et al., 1980). Figure 3.7 shows the
scatterplot matrix of the data. In addition to the chemical composition of the specimens,
the kiln site at which the specimen was found is known. There exist five kiln sites, and they

are from three different regions, so that we use the three regions as class labels. Our aim is
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to partition the 45 specimens into clusters corresponding to the three classes by using only
information about the chemical composition, without knowledge about the class labels.
The value ofy for SC was determined by the three methods based on R, AIC, and HBS.
The number of clusters for thE-means clustering was determined by CH and Gap. The
bandwidth for MSC was selected by the self-coverage.

Table 3.4 shows the clustering results. The value of AIC and the number of clusters
by SC with AIC are shown in Figure 3.8 (a). SC with R and SC with AIC detect properly
three clusters, while SC with HBS does not. In particular, the clustering result from SC
with R is the most accurate. The scatterplot of@ variable suggests that the number of
clusters is two, and the maximum range is obtained from the variable. This is associated
with the scenario discussed in the derivation of the heuristic method, in which we assume
the number of clusters is two. The values of CH and Gap are shown in Figure 3.8 (b) and
(c). The value of CH does not decrease after some number of clusters, so CH does not
work well for these data. Th&-means with Gap detects more than three clusters, while
MSC detects properly three clusters and assigns the data perfectly. As a result, we observed
SC based on R and AIC and MSC can detect three clusters properly and partition the 45

specimens into clusters corresponding to the three regions.
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Figure 3.1: Sample generated from the mixture of two normal distributions centered at

(0,0)" and(5,0)" with the identity covariance matrix, respectively.

Figure 3.2: lllustration of-C', (g, ¢(-, i, 1)). In (@), 11 = (0,0) ", o = (2,2) ", 71 = 1o =

05,7v=1,02=1.In(b), 1ty = (0,0) ", o = (4,4) ", 71 =7 =05,y = 1,02 = 1.
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Table 3.1: Comparison among Spontaneous Clustering (SC), Mean Shift Clustering (MSC),

and K-Means Clustering.

SC MSC K-Means

Cluster Center ~ modes ofL., (1) modes off,  equation (3.17)

Assignment  Mahalanobis distance trajectories Euclidean distance
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Figure 3.3: Scatterplot matrix of a sample.
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Table 3.2: Results of the Clustering.

Scenario Method L 5 3 f & more BHI (SD)
SCwith R 0O 0 O 0 100 0 | 1.00 (0.00)
SCwithHBS |0 0 O O 100 O | 1.00(0.00)
SC with AIC O 0 O 0O 100 0 | 1.00 (0.00)
®) K-meanswithCH| 0O 0 O 0 100 0 | 1.00 (0.00)
K-meanswithGap9 0 0 0 91 0 | 0.93(0.23)
MSC 0O 0O 0O 0O 100 O | 1.00(0.00)
SC with R 0 0 0 0 93 7 | 1.00 (0.00)
SC with HBS O 0 O 0 98 2 | 1.00 (0.00)
SC with AIC O 0 O 0 98 2 | 1.00 (0.00)
©) K-meanswithCH0O 0O O 100 O 0 | 0.86(0.00)
K-meanswithGap0 0 0 100 O 0 | 0.86(0.00)
MSC O O 25 30 44 1 | 0.97(0.03)
SCwith R 0O 0 O 0 91 9 | 1.00 (0.00)
SC with HBS O 0 O 0 100 0 | 1.00 (0.00)
SC with AIC 0O 0O 0O 0O 100 O | 1.00(0.00)
© K-meanswithCH 0O 0 O 0O 100 0 | 1.00 (0.00)
K-meanswithGap0 0 O O 100 0 | 1.00(0.00)
MSC 0O 0 O 0 100 0 | 1.00 (0.00)
SCwith R O 0 O 0 7 93 | 1.00 (0.00)
SCwithHBS |0 0 O O 11 89 | 1.00(0.00)
SC with AIC 0O 0 O 0 100 0 | 1.00 (0.00)
) K-meanswithCH/ 0O 0 O 100 O 0 | 0.86(0.00)
K-meanswithGap9 0 0 91 9 0 | 0.87(0.04)
MSC 0O 1 13 80 6 0 | 0.96(0.04)
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-10

Figure 3.5: Scatterplot matrix of a sample.
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Figure 3.6: (a) The value of AIC. (b) The number of clusters
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Table 3.3: Results of the Clustering.

Scenario Method r BHI (SD)
1 2 3 4 5 more

SCwithAIC [0 0 0 0 99 1 | 1.00 (0.00)
MBCwithAIC |0 O O 0O 64 36 | 1.00 (0.00)
@) MBCwithBIC |0 0O O O 100 0 | 1.00 (0.00)
MSC 0O 00 O 100 O | 1.00(0.00)
SCwithAIC |O O O O 98 2 | 1.00(0.01)
MBCwithAIC |0 0 0O O 55 45| 1.00(0.00)
®) MBCwithBIC |0 O 0 10 90 0 | 0.99(0.04)
MSC O 0O 8 4 88 0 | 0.99(0.04)

Table 3.4: Results of the Clustering.

Method Number of clusters BHI
SCwith R 3 1.00

SC with HBS 4 0.89
SC with AIC 3 0.96
K-means with CH - -
K-means with Gap 4 0.88
MSC 3 1.00
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Chapter 4

Detection of Heterogeneous Correlation

Structure

4.1 Copulas

A copula is a multivariate distribution function, which determines the correlation or depen-
dence structure of a distribution. Recently, applications of copulas have been increasing
due to the simple structure given by the Sklar’'s theorem. In this section, we will show the

backgrounds and basic properties of copulas.

4.1.1 Backgrounds

The history of copulas has started about 60 years ago in the study of multivariate distribu-
tions with fixed univariate marginals. The term “copula” was employed by Sklar (1959)

for the first time. In a theorem named by Sklar’s theorem, copulas combine a joint distri-
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bution and its marginal distributions. Copulas had been researched in terms of probability
theory rather than statistics at first. However since the middle of seventies, copulas have
become popular little by little for statisticians. In 1990, the first conference devoted to cop-
ulas was held (Dall’Aglio et al., 1991), and a book about copulas was published (Nelsen,
1999), which were to become a standard reference in copula theory. Nowadays, copulas are
widely applied to a lot of fields. For example, Song et al. (2009) make use of the Gaussian
copula to combine some generalized linear models, one for each response variable, and
they apply the proposed method to medical data. IrdBssy (2006), groundwater quality

is analyzed, where the joint distribution of two observations obtained from different points

is represented by a copula.

Finance and risk management are the most active disciplines to apply copulas. In these
fields, we often meet problems where there are a lot of products and the modeling of the
joint distribution of their values is crucial. Copulas enable us to model their joint distri-
bution flexibly, so copulas have been popular in these fields. For example, McNeil et al.
(2005), which is a standard reference for quantitative risk management, devotes one chapter
for copulas. In Li (2001), the Gaussian copula was employed to price a new financial in-
strument “Credit Default Swaps”. The seller of the swap agrees to pay off a third party debt
if this party defaults. The purchaser of the swap makes payment for this insurance. The
joint distribution of default time of the seller and the party was represented by the Gaussian

copula.
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4.1.2 Definitions and Basic Properties

A copula is a multivariate distribution function with standard uniform univariate marginal
distributions. For example, if a random vector= (z1, ..., x,) has continuous univariate
marginal distributiond, .. ., F},, then the distribution function afF’ (x1),. .., F,(x,)) is

a copula. Copulas combine a joint distribution with its univariate marginal distributions as

shown in Sklar’s theorem.

Theorem 4.1.1 (Sklar's theorem)Let F' be ap-dimensional joint distribution function,
andFi, ..., F, be its univariate marginal distribution functions. Then there exists a copula

C' such that

F(xy,...,xp) = C(Fi(x1),..., Fy(xp)), (4.1)

forall z € RP. If Fy, ..., F, are continuous, thef' is unique. Conversely, @ is a copula
and Fy, ..., F, are univariate distribution functions, then the functidrdefined in (4.1) is

a joint distribution function with univariate marginal distribution functiofs, . . . , F},.

By the Sklar's theorem, we can specify a copula and univariate marginals separately in
order to construct a multivariate distribution. This is one of the advantages obtained by
using copulas.

Although the role of the copula in equation (4.1) is not clear, it determines the corre-
lation or dependence structure of the multivariate distribution as shown belowr ket
(z1,...,2,)" be a random vector with a joint distributioR and continuous marginals

Fi, ..., F,. Then, we have the unique copulasatisfying equation (4.1), which is called
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the copula ofr or the copula off’. For the sake of simplicity, we consider the case with

p = 2. Foranyo, 5 € (0,1), we have

where the joint probability that random variables are less than or equal to quantiles depends
on the copula only. It means that this kind of dependence is determined by the copula.
Kendall’sT or Spearman’s is a representative rank correlation and they merely rely on the

copula. Thatis,

1 pl 1 pl
T = 4/ / C(uy, ug)dC(ug,ug) — 1, p= 12/ / (C(uy,ug) — ugug)duydus.
0o Jo o Jo

Note that Pearson’s linear correlation is not determined by the copula only.

The copula oft is invariant with respect to monotone increasing transformations of the
components ofc. That is, for any monotone increasing functidn . .., 7,, the copula
of (Ty(x1),...,T,(z,))" is the same as the one of Therefore, if we consider copulas
of normal distributions, we only have to consider normal distributions with nteand

correlation matrixP.

4.1.3 Examples of Copulas

We present some well-known families of copulas.
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Gaussian copula

Gaussian copulas are the copulas of normal distributions:d(et P) be the density func-
tion of the Gaussian copula, that is, the copula of the normal distribution with mean 0 and

correlation matrixP,
1
calu, P) = det P~ exp (o) (P! = )ao() ) u e 0.1

wherezg(u) = (P71 (uy),..., 27 (u,))", ®(z) denotes the cumulative distribution func-
tion of the standard normal distribution, adis the identity matrix of size. Letv(P)

be thep(p — 1)/2-dimensional vector which consists of the column-wise stacked lower di-
agonal elements oP. For examplep(P) = (pa1,ps1,p32) " if p = 3. The set{v(P) :

P is a correlation matrix of size:} is a parameter space of the Gaussian copula models.

t copula

Let f;(z, v, P) denote the probability density functiontlistribution with degrees of free-

domwv and correlation matrix?,

v+p
(V+p) L I‘TP_ll’ )
filz,v,P) = —2=det(vnP)2 (1—1— ) :
t r'(3) v

Lett, be the cumulative distribution function of thelistribution with degrees of freedom

v, fi(z,v) be its density function, and,,(u) = (¢,;*(v1) , ..., t,*(u,))". Then the

L 2
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probability density function of-copula is given by

Ct<u7 VvP) = ft(xt,l/(u)vV7P>/Hft(t;1<ui>7y>'

Archimedean copula

A continuous, strictly decreasing convex functipn [0, 1] — [0, co] satisfying¢(1) = 0 is
known as an Archimedean copula generator. It is known as a strict generatoy i oo.

If ¢ is a strict Archimedean copula generator, then

gives a copula in any dimensiorif and only if ¢! is completely monotonic:

k
(1) 67 (1) 20

for anyk € N andt. This copula is called Archimedean copula. For example(if =
(—logt)?, we have the Gumbel copula, andyift) = (¢t — 1)/6, we have the Clayton

copula. See McNeil et al. (2005) for more detalils.

4.2 Estimation

In this section, we discuss estimation problems for copula models. Suppissa multi-

variate distribution function with continuous densjtyandC with densityc is the copula
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of F. LetF; (i = 1,...,p) be the univariate marginal df with densityf;. By the Sklar’s

theorem, we have

flxr, ... ) = c(Fi(x), ..., Fp(xp)) fi(xr) - - folzy). (4.2)
We make use of this representation (4.2) to construct statistical models.

4.2.1 Parametric Models

We assume parametric models for a copula and marginals. In equation (42);)let
C(u760>7 fz(xz) = fl('r'mez)a and f(‘r) = f(x70)1 wheref = (e;r?e;ru ce 70;>T' Sup_
posexy,...,x, are independently and identically distributed witfw, ), wherez; =

(zi1,-..,25) " . The log likelihood function becomes

Ly(#) = Zlogf(xi,e)

n p n
- ZIOgC(Fl(ZL’ﬂ,Ql), ceey Fp(xipaep)yec) + ZZIngj(xipgj)

i=1 j=1 i=1

= L5(0) + i%(%),

where

i=1

LS(@) = Z IOg C(F1<£L'il, 61), Ce ,Fp(.fip, 0,,), 90), L{)(HJ) = Z lOg fj(l'ij, QJ)
i=1

59



The maximum likelihood estimators of the parameters are obtained by solving the following

equations,

OLo(0) _ 0 OLo(0) _ 0
YA aep Y

OLo(0)

a0, =0.

These estimating equations are often too complicated to solve. We can consider other esti-
mators based on the decomposition (4.2), which are computationally attractive alternatives
to the maximum likelihood estimators. They are obtained by maximiZif(@,), (j =

1,...,p), substituting the maximizei, . . . ,ép into the counterparts id(¢), and maxi-

A

mizing L (6., 0y, ... ,6,) with respect t@,... That is, we solve the following equations,

o 0Ly _ OLE(0e, 04, .. .,0,) 0
T o0, ’ a0, '

0L (1)
06,

These estimators are called inference functions for margins estimators (IFM-estimators)

(Joe, 2001). The IFM estimator is consistent and asymptotic normal.

4.2.2 Semiparametric Models

We assume a parametric model for a copula but do not make any assumptions for marginals.

Let c(u) = ¢(u, 6.) in (4.2). The log likelihood function becomes

LU(HC) = Zlogc(Fl(xil)a'"7Fp(xip)790)>
=1

up to constant. An estimator &f is defined by maximizing.¢(6.) in which Fi,. ... F,

are replaced by some nonparametric estimates. . , F},, respectively. This estimator is
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consistent and asymptotic normal (Genest et al., 1995)

4.3 ~-Estimation of the Gaussian Copula Parameter

In this section, we consider theestimation for the Gaussian copula models. One of the
important purposes of using copulas is to represent a variety of dependence structure, such
as heavy tail and asymmetric dependence (Demarta and McNeil, 2005). The Gaussian
copula is a fundamental copula, but it is neither heavy tail nor asymmetric. Hence, other
copulas, such ascopulas and Archimedean copulas, are employed, in which the maximum
likelihood estimation is often used. In Yoshiba (2013), the Gaussian copula mixture is
used to model heterogeneous correlation structure. These examples can be considered to
change the Gaussian copula to other copulas. On the other hand, our idea is to change
the maximum likelihood estimation to theestimation, but keep the Gaussian copula as a
statistical model. Due to the change, heterogeneous correlation structure can be captured
as shown in this section. We describe this dual relation of changing models or estimation
methods precisely in section 4.3.6

For the sake of simplicity, we assume the data . ., u, are independently and iden-
tically distributed with a copula densitf«). If we have the data;, ..., z, drawn from a

distribution ' with marginalsty, . . ., ), and copula density, then we have

U; = (F1<CL’Z‘1), c. ,Fp<CL’Z‘p)).

Hence, we can get’s from z’s approximately by computing (z;1), . . ., F,(z;,)) with
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estimatorsf’, . . ., F,. This section is based on the paper (Notsu et al., 2013).

4.3.1 Maximum likelihood Estimation of the Gaussian Copula Param-
eter

We consider the MLE for the Gaussian copula model. The log likelihood function multi-

plied by —1/n is given by

1 IR _
Lo(P) = —zlogdet(P)™" + o ;xJ(P Lo L),
wherez; = zg(u;) fori = 1,...,n. Itis well known that the MLE does not work well

under model misspecification. For example, in the case of (3.4) the MLE for the Gaussian
copula model almost surely converges® + (1 — 7) P, so we cannot detect neith€y

nor . If 7 = 0.5 and

thent P, + (1 — 7) P is equal to the identity matrix, which has no meaning in this situation.

We cannot use the MLE in the case of misspecification.

4.3.2 ~-Estimator of the Gaussian Copula Parameter

Letus,...,u, be arandom sample from a copula with the probability density funetion

while cg(u, P) is our statistical model. The-loss function for the Gaussian copula is given
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by
L,(P) = — det(P)W(llv) ! i exp (—zxiTP%xi) (4.3)
K n < 2 ’

up to constant. The-estimator is proposed as the set of local minimum pointé.@#)
and interpreted as follows. K. (P) has a local minimum, the underlying distribution is
estimated by:(u, P,) using the minimum poing,. If L. (P) has( local minima(¢ > 2),
the underlying distribution is estimated by a mixturg @aussian copulas. Each Gaussian

copula’s parameter is estimated by the corresponding local minimum point.

4.3.3 An Algorithm to Obtain the ~-Estimator

We give a fixed point algorithm to obtain theestimator for the Gaussian copula model
using the Lagrange-multiplier method. We can still make use of this algorithm to obtain the

MLE just by settingy = 0.
Algorithm
1. Set an appropriate correlation matey.

2. Given P, calculateP; ., by the following update formula,

Piyy =% + Pdiag((P, ® P,) "' Diag(1, — %)) P, (4.4)
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where® denotes the Hadamard produkt.is defined by

N = (1+’Y)wa($upt)$¢$iTa

i=1

where

exp (—%xTP_lx)

wy(z, P) = =5 .
) e e (30, P ay)

Here Diag( M) for a square matriX}/ denotes the column vector which consists of
the diagonal elements dff and diaga) for a vectora denotes the diagonal matrix

whose diagonal elements are the components of

3. For sufficient small given number repeat Procedure 2 while

|Pr1 — Pil[e > e

4. For all local minimum points, repeat Procedure 1-3 for different initial valges

We derive the estimation equation f8r which leads to the update formula (4.4). Sidtes
symmetric and positive definite, there exists a maltiaf sizep which satisfies® = RR".
The ith diagonal element of is expressed by, RR"e;, wheree; is the p-dimensional

column vector whoseéth element is 1 and the other elements are 0. Since the diagonal
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elements of” are equal to 1, Lagrange function becomes

ARN) = (det R)TT S exp (—%xJR*”R*@)
=1

p
+> Xi(e/ RRTe; — 1), (4.5)

i=1

wherel = (\y,...,),)" is Lagrange multiplier. We differentiate (4.5) with respecfo'
with the technique in Magnus and Neudecker (1999). The differential’of \ie/ RR"e;,

which is defined in Magnus and Neudecker (1999, Section 5.3 and 5.16), is

d(i)\ieJRRTei> = d(tr (R"diag\)R))

= tr (2R diag\)(dR))

— tr(~2RR diag\)R(dR ")),

where diagk) is the diagonal matrix whose diagonal elements)are. ., \,. From Table

2 in Magnus and Neudecker (1999, Chapter 9) we have

0 < _
OR-1 > Aie/ RR"e; = —2R"diag \)RR".
=1
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Set the derivative of (4.5) t0@, then we have

ONR,N) 4
OR-1 (147)

det R-1) @0 RT (—1 TRTR )
( e ) ;exp 5T x
— (det R T R Y exp (< Lo TR R )
=1
zix; —2R"diag \)RR"

- 0. (4.6)
Multiply R from the left side of equation (4.6), then (4.6) becomes
P = A+ aPdiag\) P,

where

n

A = (1479 wy(wi, Pz,

=1

" -1
_ v ~1\ T3y _) Tp-1T p-1,.
= 2 <1+7 (detR ) + ZZlexp( 2%‘2 R R xl>> )

From the constraint about the diagonal elementB @fe have
Diag(/, — A) = Diag(aPdiag(\) P). 4.7)

In general, for any square matric&sandY” of sizep andp-dimensional column vectar,
we have
Diag(Xdiagz)Y) = (X © Y ")z.
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So (4.7) becomes

= 2(Po P)'Diag(l, — A).
a

Then we have
P = A+ Pdiag((P ® P)"' Diag (I,, — A)) P,

and use this estimation equation as an update formula.
If we consider the estimation problem on Gaussian distributions with heha update
formula for an iteration algorithm to obtain theestimator of the covariance matrixis

given by

Y1 =(147) Z w. (2, Zt)mixiT. (4.8)

i=1

See Fujisawa and Eguchi (2008) for details. If we consider the optimization problem with
the objective functiorL, (P) without the constraint that the diagonal elements’adre 1,
the same iteration algorithm (4.8) can be deduced. So the second term of the right hand
side of the equation (4.4) appears because of the existence of the constraint.

We make a remark on the algorithm to obtain the MLE;@rstimator withy = 0. On
the main update formula (4.4) in Step2 is always the sample covariance matsixor
anyt > 1. Nevertheless we find rather complicated solution of the MLE if we consider a
simpler case op = 2. McNell et al. (2005) show an approximate MLE for the Gaussian

copula model because it takes quite a while to solve the constrained optimization problem
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in order to obtain the MLE in high dimensions. The approximate MLE is given by

diag(S) 2 Sdiag(S) 2, (4.9)

where diagS) is the diagonal matrix whose diagonal elements are equal to thaseVaé
can easily consider an iteration algorithm to obtain an approxima&imator to combine

(4.8) and (4.9). The update formula of the algorithm is given by

[N

P, = diagXi,) 2Xf diagxf, )2,

where

n

X o= (1+7) Z Wy (4, P )aix; .

i=1

If n is infinity, P, and P converge to the same correlation matrix whetends tooco.

HoweverP, and P;* are different in general?; is preferred taP; in terms of accuracy.

4.3.4 Choice of the Carrier Measure

Although the~-cross entropy has been defined on the Lebesgue measure in section 2.2, it
can be defined on any carrier measure. Here we propose, for Gaussian copula models, the
use of a measure, denoted®y, of which Radon-Nikodym derivative is given by{zg) 7,
whereJ(zg) is the Jacobian of the transformatiog(«). From now on we refer this choice

to s, and explain its rationale by virtue of invariance. Fioss function (4.3) is obtained
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by usingQg as a carrier measure.

Let thev-cross entropy with measuég be denoted by

[ g@) (@) Q(dr)

O, (0, 11Q) @)
! (] f@)Qde)}

We assume that = (z1,...,z,)" ~ ¢(z, P), where¢(z, P) denotes the probability
density function of the-dimensional Gaussian distribution with me@mand correlation
matrix P. Letu = (®(zy),...,®(z,))", thenu ~ cg(u, P). If the underlying distribution
of z is g(x), thenu ~ c(u), wherec(u) is given byg(zg(u))J(zg). It is noteworthy that
the~-cross entropy betweeriz) and¢(z, P) based on: is not always equal to the-cross
entropy between(u) andcg(u, P) based onu. So they-estimator based om does not
coincide with they-estimator based on

It is natural for us to require the equivalence of the tyvestimators, and therefore
we employ the measu@g(u). It is striking that they-cross entropy betweer{u) and
cg(u, P) calculated under the measugk; is equal to the one betweerixz) and ¢(z, P)

calculated under the Lebesgue measprethat is,

C’Y(C7CG('7P)‘QG) - C’Y(Qvé(JP)’QL)J
which is proportional to

— det (P)_2<11V> /g(x) exp (—%xTP_1x> dx. (4.10)
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Obviously there is equalization of the tweestimators. Note that theloss function asso-
ciated with (4.10) becomes equation (4.3).

The argument above extends to a general statement. For given one to one transformation
y(x) : x — y, x(y) denotes the inverse functiongfz), and.J(y — x) denotes the Jacobian

of the transformation:(y). Any nonnegative functiong(z), f(z) satisfy

Oy (g(z () Iy = ), f(2(1)J (y = 2)|Q) = Cy(g, FIQL),

if and only if the Radon-Nikodym derivative @ is equal toJ(y — z)~7. Wheng(x)
and f(z) are the probability density functions, to consider theross entropy o under
the Lebesgue measure is equal to consider the one basgdmater the measure having

J(y — x)~7 as its Radon-Nikodym derivative.

4.3.5 Properties of they-Estimator

The~-estimator for the Gaussian copula model under infinite sample size is equal to the set
of the local minimum points of, (¢, ¢s(-, P)|Qs). In this section we leave aside thdoss
function L, (P) for the moment and investigate the property ofthestimator (at infinity)

throughC, (¢, cs(-, P)|Qc). First we consider the case where there is no misspecification.

Theorem 4.3.11f ¢(u) = cg(u, ), thenC,(c, cs(+, P)|Qs) has the local minimum point

F.
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Proof. We see that
C.(ca(-, Py), cal-, P)|Qc) o — det P det(P + yPy) 2. (4.11)
Consider a monotone transformation of the right hand side of equation (4.11) to obtain

—log [det P det(P + ’yPO)’%

1 1
= — log det P 4+ — log det( P Fy).
201 og de +20g et(P +vFp)

ForanyP # P, let P, = (1 —t)Fy + tP, (t > 0) and definef(¢) b

1 1
ft)=— T logdetPt—l—§10gdet(Pt+’YP0)-
We see

'@t = —;tr [P7Y(P—PR)] + % (P, + YPy) (P — Py)]

2(1+7)
1 Y - -1
(1+7 1+~ 0) t }( b)

7

2(1 +

1
27t
Let Dy(cc(+, P1),cc(-, P»)) be the KL divergence betweei(u, P;) andcg(u, P). It is

well known Dy(cs(+, P1),ca(+, P2)) > 0 and equal to O if and only i’, = P,. So for
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P, # P,, we have

Dy(ca(+; Pr), ca(+; P2)) + Dolca(; P2), ca(+; Pr))
= %tr (P, — B) (P, — P))

> 0.

If we read asP, = P, and P, = P+ %PO, then we see that'(t) > 0. The proof is

1
Tty
complete. O

In this case we note that theestimator is equal t§F, }, which implies Fisher consistency.
For asymptotic properties theestimator has asymptotic consistency and normality.

Next we consider the misspecification case where the true data generating process is

given by equation (1.1). We see that

C’Y(C7 CG(" P>|QG) = TCW(CG(WPl)?cG('a P)'QG) + (1 - T)CW(CG(UP?)?CG(" P)|QG)7

which is proportional to

1
2

~ det P30 |7 det Py * det (P! + P

_1 _1
+(1— 7)det Py ? det (P! + P71 } .

ThenC, (¢, cs(-, P)|Qc) is a weighted mean af., (cs(-, P1), co(+, P)|Qc) andC, (ca(+, )
(-, P)|Qc). Each component is a unimodal function, bounded above by 0, and has one

local minimum pointP; and P, respectively. We expect, (¢, cs(+, P)|Qc) has two local
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minimum points, and these local minimum points are néaand P, respectively if P,

and P, are sufficiently “distinct”. However it is hard to formulate such a phenomenon
mathematically so we show through easy examples and a graph that such a phenomenon
occurs. To obtain numerical solutions, we use the expected (or population) version of the

algorithm in section 4.3.3.

Example 1: In the case with dimension 2;,(c, cs(-, P’)|Qc) is a univariate function of,

which is the non-diagonal element Bf Let P, and P, be

Plz 7P2: 9

v = 1,andr = 0.5. If p, > /6 — /28 = 0.842, thenC,(c, cg(-, P)|Qs) has two local

minimum points in the interval—1,0) and(0, 1), respectively.

Example 2: Suppose the true correlation matridgsand P, are given as follows, ané

stands for the parameterization of the statistical model we fit,

1 09 0.9 1 —09 0.9
=109 1 09|:2=]-09 1 -09]-:
092 09 1 092 —09 1
L p1 pip2
po= pr 1 p2
pip2 p2 1
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We also set- = 0.5 andy = 1. Note that—C.,(c, cs(-, P)|Qc) is a function ofp; and
p2. Figure 4.1 shows-C, (¢, cs(-, P)|Qs). We can see there exist two local maxima at

(0.86,0.86) and(—0.86, —0.86).

Example 3: Suppose = 0.4 andv = 1. If P;, P, andP are given by

1 09 07 0.7 1 -09 0.7 0.7
09 1 09 0.7 —0.9 1 —-0.9 —-0.7
Pl = 7P2: )
0.7 09 1 0.7 0.7 —-09 1 0.7
0.7 0.7 0.7 1 0.7 -0.7 0.7 1
L p1 p2 ps
pr L ps ops
P = ,
p2 pa 1 ps
ps ps pe 1

thenC, (¢, cs(+; P)|Qs) has two local minima at

1 0.871 0.686 0.699
0.871 1 0.871 0.683

0.686 0.871 1 0.699

0.699 0.683 0.699 1
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and

1 —-0.892 0.695  0.700

—0.892 1 —0.892 —0.696

0.695 —0.892 1 0.700

0.700 —0.696 0.700 1

Like these examples). (c, cs(-, P)|Qc) has some local minimum points depending
on the underlying distribution. Owing to this property we can detect the heterogeneous

structure of the underlying distribution under misspecification.

4.3.6 Maximum Entropy Copula

So far we have considered theestimation of the Gaussian copula model. In this section
we uncover that the choice of copula model can be characterized in terms of the maxi-
mum entropy distribution. In this regard, Zhang et al. (2011) is the most closely related
work in which the MLE on meta-distribution is addressed. Acopula is deduced from a
multivariatet-distribution while the metadistribution is constructed by linkingtacopula

to univariatet-distributions as its marginal distributions. In our framework, Zhang et al.
(2011)'s work can be interpreted as the maximum likelihood estimatigrcopulas with

the marginals estimated simultaneously. Actually{kestimation of Gaussian copulas and
the maximum likelihood estimation a@fcopulas look very similar and share a common

idea.

75



Eguchi et al. (2011) analyze what the maximgrantropy distributions would be under
the given (population) mean vector and covariance matrix. The answer depends on the
power indexy. Wheny = 0, the Gaussian distribution emerges as the maximeentropy
distribution. Ify < 0, thet-distribution comes up. We show that a similar result holds for
copulas. Suppose that= —2/(v+p) andQ;, (du) = J(z:,) "du, wherev is the degrees
of freedom oft-copula. Let#,(P) be the set of probability density function&:) on [0, 1]?

which satisfy the following equation.

14

v v Td - P.
/[071}1) c(u)ze, (u)ze, (u) ' du 5

Then we see that

argmax H.(c|Q:,) = ct(u, v, P).
cE€Cy(P)

Proof. We show that;(-,v, P) € €,(P). Note thatc;(u, v, P) = fi(zt,(u),v, P)J(x,).

Then,

/ct(u,V,P)a:t7y(u):vt,l,(u)Tdu = /ft(x,u,P)xxTJ(mtyy)J(xt_,,})dx

= /ft(a:,y,P)dx
" p

v—2
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Hencec, (-, v, P) € €,(P). We see that

1

m
Ho (v, P)Qu) = — { [ et P)”vczt,,,(du)}
[0,1]»
L ci(u, v, PYYQy, (du
_ o )7 )i_ (4.12)
(o e, PY1Qu (d)] ™
The numerator of (4.12) becomes
/ ci(u, v, PYT7Q, ,(du) = / (u, v, P)cy(u, v, P)YQy(du)
0,1 0,1
/ (u, v, P) fi(xy,(u), v, P)'du
o, 1]p
/ ft xtll )71/7 P),Ydu7
o
for ¢ € €,(P). Hence
f s c(u)er(u, vy, P)YQy . (du)
Hye(, v, P)| Q) = —— =
[f[O,l}p Ct(“? v, P)I—HQt,V(du) i
- O"/(C7 Ct('v”» P)|Qt,l/)
> H’Y(C‘Qt,u)‘
O

Note that there exists an elementdi(P) exceptc (-, v, P). For a given correlation matrix
P, there existg’ < 0 such that(1 — ¢')P + ¢’ is a positive definite correlation matrix,
sinceP is positive definite. LeP, = (1 —&')P + ¢'I ande = —¢'/(1 — €’). Then we have

(1—¢)Py+el =Pand0 < e < 1. Lete(u) = (1 — &)er(u, v, Py) + eci(u, v, I). Then
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c(u) satisfies that(u) € €, (P) andc(u) # ci(u, v, P).

If v — 0, thent, — ® and@,, — Q.. Hence

argmax Hy(c|QL) = cg(u, P).
CECKQ(P)

That is, t-copula can be characterized as the maximuentropy distribution orf0, 1]7.
Moreover it has limiting equivalence (by letting— 0) with the Gaussian copula which

is tagged with the maximum Boltzmann-Shannon entropy copula. We call these maximum
~v-entropy copulas the-copulas. Let us consider the relationship between/tbepula and

the y-estimation. Our method is discussed on the pair of the Gaussian copula (0-copula)
and~-estimator. On the other hand Zhang et al. (2011) discussed on the pacogiula
model ¢ < 0) and the MLE (0-estimator). We see a sort of duality relationship between

two choices of the pair.

4.3.7 Robustness of the-Estimator

We examine robustness of theestimator for the Gaussian copula model through its in-
fluence function. The influence function measures the asymptotic bias caused by contam-
ination at thex. The boundedness of the influence function means boundedness of the
influence from the outlier, hence its robustness. The influence function eféséimator

is given. We show that it is bounded when> 0. A brief simulation is also performed.

The~-estimator for the Gaussian copula model can be regarded as a fun@tignaif

78



a distributiong defined by

I
e

argsolve/exp <—%xTP’1x> v(P™' = (1+~)P tza" P Yg(z)dx (4.13)
P

Lstwy('x7 )

Then the influence function [k, 7, g) of the~y-estimator is given by

-1

IF(z,T,g) U% z,T(g )dw} Uy (2;T(9)),

whered, (z, P) = %%(%P)- See Huber (1981) for details. The boundedness of the
influence function is equivalent to the boundedness.@fc, P). The following theorem

gives a bound ot (z, P).

Theorem 4.3.2Wheny = 0, that is, for the MLE, the influence function is not bounded.
Wheny < 0, the influence function is not bounded. When 0, the influence function is
bounded and a bound is given by

|P=2 @ P2,

6o P < Py + 222

where® denotes the Kronecker product afid|| for an m-dimensional vectof denotes

the Euclidean norm defined b),&hTh
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Proof. If v = 0 we see
Yo(z, P) =v(P~t — P loa " P7Y).

It is obvious that||:)y(z, P)|| is not bounded with respect ta Next if v # 0, then let

P~! = (P~2)?, whereP~2 is a symmetric matrix. Set= P2z, then
Wy (w, P) = exp (—%yTy> v(P™ = (1+7)P 2y  P72),
Expressgy in polar coordinate, then
y =1rp(0) = r(cosb,sinb cosby,...,sinb; ---sin Hm_l)T,
where0 <r, 0<#,...,0,,_o<m, 0<6,,_1 <2 Hence
U, P) = exp (=212 o(PT = (14 9) P Ep(0)p(6) TP,

If v < 0andr — oo, then we sed., (x, P)|| is not bounded. Next if > 0, we see
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Sinceexp (—2r?) < 1, exp (—2r?) r* < 2/(ey),

2(1+7)

1o (2, P < Jlo(PH) + Ived P~2p(0)p(6) " P2

where vec denotes the vec operator. In addition we observe

Ived P=2p(0)p(0)TPZ)|| = [(P~=® P )vedp(@)p()")|

< (P72 @ P72)|||[ved(p(6)p(6) T)]I.

Since

we see

2(1+7)

|IP~2 @ P2,
ey

1oy (2, P < Jlo(PH)] +

For example, ifP is equal tol,, then||y, (z, I,)|| < 2(16—:”)19.
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4.4 Simulation

4.4.1 Simulation 1: Robustness of the-estimator

This section describes the results of Monte Carlo simulations carried out in order to examine
the robustness of the-estimator for the Gaussian copula model. We generate 500 pseudo-

random samples of size 500 from distribution

0.9¢6(u, P) + 0.1ca(u, I1p),

wherecg(u, I10) is equal to the independent copula a@nds given by

1 0846 --- --- 0.846
1 0.846 --- 0.846
P =
1

For each sample, we calculate theestimatorPse for the Gaussian copula model with

~ = 0.5 and the MLEP.e for the Gaussian copula model. We use the n@ﬁ’n— P| as

the accuracy measure. Table 4.1 shows the root mean squared error (RMSE) of the norm
for the~y-estimator and MLE. We can see that the norm fortkestimator is less than that

for the MLE, so we see that theestimator is more robust than the MLE.
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4.4.2 Simulation 2: Detection of Heterogeneous Correlation Structure

The property of the-estimator to detect heterogeneous structure is investigated by a bunch
of simulations. A comparison of the-estimator with the MLE for a mixture Gaussian
copula (1.1) is also discussed. We conducted two kinds of simulation.

Simulation 2.1: The underlying distribution was constructed based on the one factor Gaus-

sian copula model (Hull and White, 2004). Suppose

rp=a;W +1/1—ale;, i=1,...,p

whereW, ¢4, ..., ¢, have independently the standard normal distribution. Then we see

z~®(x, P),u= (2 Hx1),...,2 (x,)) ~ cc(u, P), where P = (p;;);; satisfies

CLZ'CLJ‘ 7 7é ]

Let the underlying distribution be equation (1.1), whegéu, P;) andcg (u, P,) are made
from the one factor Gaussian copula model. This model means the dependence structure is

expressed by the mixture of Gaussian copulas. Assumé).5, P; is made with

a = (0.92,0.92,0.92,0.92,0.92,0.92,0.92,0.92,0.92,0.92) ",
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and P, with

a = (—0.92,0.92,—0.92,0.92, —0.92,0.92, —0.92,0.92, —0.92,0.92) .

Then we have

1 0.846 --- 0.846 1 —0.846 0.846 --- —0.846

1 : 1

The y-estimator for the Gaussian copula model wijth= 0.7 is investigated. Initial

values ofP which are used in calculating theestimator are

AR(+0.1), AR(£0.3), - -- , AR(£0.9),

where AR(p) is the correlation matrix whosg, j) component{ < j) is equal top’ . If

the~-estimator has two componerds andG, such that

|G1 — Pil| < ||G2 — Pl

then(; is thought of as an estimator #f and denoted byA?l,GE. Similarly G, for P, and
denoted byP, .

We adopt the MLE for a mixture Gaussian copula model (1.1). Althabgand P, are
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the correlation matrices, we tentatively view them to be the covariance matrices and use
EM-Algorithm to obtain an approximate MLE. The obtained estimafgrand P, are not
necessarily the correlation matrices, so they are transformed into the correlation matrices
by

diag( ;)2 Pdiag P) "2,

which is denoted by%-,MLE for i = 1,2. The initial value of(r, P;, P,) which is used in
calculating the MLE is set t60.5, AR(0.5), AR(—0.5)).

A set of data of sizex (n = 200 or 500) was generated from (1.1), and the norm of
Pice — Py, Poge — Po, Pywe — Pi, and Py e — P, were calculated. 500 simulations
were carried out, and then, we calculated the RMSE of the norm based on 500 norm values
obtained by simulation. The results are shown in Table 4.3.

Table 4.2 shows the ratio for theestimator to detect two correlation matrices. For
n = 500 nearly 80 percent was successful, andfer 1000 it worked out almost perfectly.

From Table 4.3, the MLE had better performance thamttestimator. However this is
natural because the MLE is used under no misspecification.

Simulation 2.2: Suppose that the underlying distribution is

c(u) = mieg(u, Pr) + maca(u, Py) + (1 — 71 — 12)ea(u, Iho), (4.14)

wherer; = 7 = 0.45 and P;, P, are the same in Simulation 2.1. The other settings are the
same as in Simulation 2.1. The results are shown in Table 4.5.

Table 4.4 shows the ratio for theestimator to detect two correlation matrices. Com-
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pared to the result of Simulation 2.1 the detection rate at 500 gets worse while at
n = 1000 the result is almost alike in Table 4.2. From Table 4.5, we find the MLE is

considerably underperforming and theestimator is much better.

86



Figure 4.1: lllustration of-C, (c, cs(+, P)|Qc)

Table 4.1: RMSE of the norm for theestimator and MLE.

PGE PMLE
RMSE 0.155 0.808

Table 4.2: Ratio of the number of success for thestimator to detect two correlation
matrices.

n 500 1000
ratio 0.768 0.968

Table 4.3: RMSE of the norm d, ce — Pi, Piuie — Py, Poce — P, andPyyie — Po.

n Pl,GE Pl,MLE P2,GE P2,MLE

RMSE 500 0.600 0.184 0.476 0.186
1000 0.479 0.127 0.431 0.129

Table 4.4: Ratio of the number of success for thestimator to detect two correlation
matrices.

n 500 1000
ratio 0.61 0.966
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Table 4.5: RMSE of the norm QEAPLGE — P, pl,MLE — P, P2,GE — P, and]527M|_E — B

n Pl,GE Pl,MLE PQ,GE PZ,MLE

RMSE 500 0.494 0.946 0.563 0.952
1000 0.468 1.010 0.438 1.032
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Chapter 5

Summary and Discussion

We have considered the local learning based on local minimization of-thieergence.
Applying this local minimization method to cluster analysis, the spontaneous clustering is
proposed. In the spontaneous clustering, the centers of clusters are defined as the local
minimum points of they-loss function. On the other hand, we apply the local minimization
method to the/-estimation of the Gaussian copula parameter to detect heterogeneous corre-
lation structure. In this case, the local minimum points of4Hess function are employed

to estimate each correlation matrix. A large majority of statistical methods use the global
minimum or maximum point of objective functions and try to avoid local minimum or max-
imum points. The convexity of the objective functions plays an important role in statistics.
For example, the support vector machine has a convex loss function, and an efficient al-
gorithm to obtain the global minimum point is considered based on the convexity (Bishop,
2006). Although non-convexity is generally intractable, the proposed methods benefit from

the non-convexity, which makes our method unique and interesting. The idea to use local
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minimum points of they-loss function can be applied to other statistical methods. For ex-
ample, the idea is applied to principal component analysis (Mollah et al., 2010) and could
be applied to regression analysis.

The spontaneous clustering does not require the information about the number of clus-
tersa priori and can find it automatically if the value of the power indes properly fixed.
In contrast, existing methods such/d@smeans and model-based clustering need the num-
ber of clusters. Instead of the number of clusters, the valughads to be determined in
the spontaneous clustering. Two methods to determine the valuéafe been proposed
in this thesis. One is a heuristic method, which depends on the range of the data. Our
simulations show that this method has satisfactory performance and can thus be used in
most situations. A more sophisticated choice based on AIC is also proposed, although it re-
quires more computational effort. When selectingve first considered a cross validation
technique, one of the common procedures to select the optimal value of a tuning parameter
(Hastie et al., 2009). Mollah et al. (2010) proposed using cross validation $eftection.
However, the method does not work well for the spontaneous clustering. Hence we employ
AIC instead. We have demonstrated that the proposed clustering works well by the simu-
lations and the application to the data. Though we did not consider how to determine the
value of~ for they-estimation of the Gaussian copula parameter, the method based on AIC
could be possible for this problem, but it is currently a future problem.

In the spontaneous clustering, the proposed method employs the local minimum points
of equation (3.2) or (3.6). Then, it assigns the data into clusters with the Mahalanobis dis-

tance. We have proposed an iteration algorithm to find the local minimum points. There are,
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however, a bunch of possibility for optimization and cluster assignment. For optimization,
we could, for example, replace Step 1-1 to 1-3 in section 3.2.2 wvittitial values using

all the data. This is nothing but MSC with estimation of covariance matrices. For cluster
assignment, we could use MSC's trajectory-based assignment (Chen et al., 2013).

In the y-estimation of the Gaussian copula model, we choose the measure in terms
of invariance. However the-estimator obtained is equal to the estimator with normal
distribution as a statistical model, so it seems natural. If we use Lebesgue measure in
calculating they-estimator for Gaussian copula model, we cannot calculate the projective
power entropy for all the value of and P.

Another issue in the-estimation of the Gaussian copula model is to what extent the
methodology here works for time series data. Because the basic premise of this problem is
that we have data as quantiles, our method would fit, for example, the modeling of uncon-
ditional loss distribution (McNeil et al. (2005), p.28). Such a case is of particular interest
when the time horizon over which we measure our losses is relatively large. When we
are working on the conditional modeling, our method should be regarded as a tool for the
post analysis. As a typical case, we may want to apply our mixture copula approach to
multivariate log-return series which are appropriately standardized and declustered by the

multivariate GARCH model fitted to them. See Zhang et al. (2011) for more details.
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