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Abstract

Semantic enrichment of mathematical expressions is an important

component in the mathematics understanding system, and plays a

key role in content-based search engine for mathematical expressions.

This dissertation presents a new approach to the semantic enrichment

of mathematical expression problem. The problem is formulated as

adding semantic form to the presentation form of mathematical ex-

pressions. More specific, it is the problem of translating a mathemat-

ical expression from its Presentation MathML to Content MathML.

The proposed approach uses statistical machine translation method

to learn the translation rules automatically from parallel MathML

markup data. The structural difference between Presentation and

Content MathML is solved by introducing new segmentation rule. An

enhancement to statistical machine translation system is made by us-

ing an support vector machines classifier to disambiguate the ambigu-

ous mathematical terms with features extracted from both presenta-

tion form mathematical expressions and surrounding text. Combining

theses system archives improvements over prior semantic enrichment

systems.

This dissertation also presents a content-based mathematical search

system which is an application of semantic enrichment of mathemat-

ical expressions. The approach uses semantic enrichment of math-

ematical expressions to convert mathematical expressions into their



content forms and searching is done using these content-based expres-

sions. By considering the meaning of mathematical expressions, the

quality of search system is improved over presentation-based systems.

This dissertation makes noteworthy contributions to mathematical-

related research field. It confirms that natural language process-

ing techniques can be applied to solve mathematical expressions re-

lated problems. Since mathematical content is a valuable information

source for many users, this finding has important implications for

developing mathematical-related systems.
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Chapter 1

Introduction

The issue of retrieving semantically similar mathematical expressions has received

considerable critical attention [Aizawa et al., 2013]. Semantic search for math-

ematical expressions improves search accuracy by ascertaining the contextual

meaning of mathematical terms as they appear in a search-able database to gen-

erate more relevant results. Semantic enrichment of mathematical expressions

is an important component of the mathematics understanding system. It plays

a key role in a content-based search engine for mathematical expressions. The

process of associating semantic tags, usually concepts, with mathematical ex-

pressions, so-called semantic enrichment, is an important technology for fulfilling

the dream of a global digital mathematical library.

A considerable amount of literature has been published on retrieving semanti-

cally similar mathematical expressions [Adeel et al., 2008; Kohlhase & Prodescu,

2013; Kohlhase & Sucan, 2006; Liska et al., 2013; Nguyen et al., 2012; Wolfram,

2013]. These studies used two freely available toolkits, SnuggleTeX [McKain,

2013] and LaTeXML [Miller, 2013], for semantic enrichment of mathematical

expressions. Mathematical expressions are first semantically enriched to their

content-based format, which is Content MathML (see 2.1.4). Search is then per-

1



1. Introduction

formed by matching the queries with indexed mathematical terms in the database.

The experimentally obtained results show that the proposed approaches, using

classical information retrieval strategies, can perform better than other methods.

Research efforts to date have tended to examine retrieval of semantically sim-

ilar mathematical expressions specifically rather than semantic enrichment of

mathematical expressions. Much uncertainty remains about the relation between

the performance of mathematical search systems and the performance of semantic

enrichment components. Prior attempts to address the semantic enrichment of

mathematical expressions problem include SnuggleTeX [McKain, 2013] and La-

TeXML [Miller, 2013]. These systems use handwritten rule-based methods for

disambiguation and translation. Two issues limit these solutions:

• As handwritten rule-based systems, these systems require mathematical

knowledge and human involvement;

• These systems remain at the experimental stage because of difficulties with

processing complex mathematical symbols and because of the wide-ranging

nature of mathematical expressions.

Furthermore, no research has been found that has surveyed how well semantic

enrichment components perform.

Therefore, this study has two primary aims:

• To develop an understanding of semantic enrichment of mathematical ex-

pressions and its performance.

• To investigate the contribution of semantic enrichment of mathematical

expressions to content-based mathematical search systems.

This dissertation will first develop a semantic enrichment of mathematical ex-

pressions system based on machine-learning techniques and will then go on to

2



1. Introduction

establish a method for automatic evaluation of the performance of semantic en-

richment of mathematical expressions system. This dissertation will also develop

a content-based mathematical search system and examine the contribution of se-

mantic enrichment of mathematical expressions to a content-based mathematical

search system.

This study was undertaken to address the following research questions:

• How well do machine-learning-based approaches perform compared to hand-

written rule-based approaches on the problem of semantic enrichment of

mathematical expressions?

• To what extent can we apply natural language processing techniques to the

problem of semantic enrichment of mathematical expressions?

• How is the performance of semantic enrichment of mathematical expressions

system affecting content-based mathematical search systems?

Chapter 3, 4, and 5 of this dissertation respectively address the three research

questions above.

This dissertation follows machine-learning-based approaches, with in-depth

analysis of the relation between mathematical expressions and natural language

text. The data used in this dissertation were collected from the Wolfram Func-

tions Site [Wolfram, 2013], the world’s largest collection of mathematical expres-

sions. Other data were also prepared by annotating mathematical expressions

drawn from 20 papers from the archives of the Association for Computational

Linguistics Anthology Reference Corpus [Bird et al., 2008; Kan, 2013]. Exper-

iments are performed using a ten-fold cross validation or reserved test set on

numerous mathematical expressions to ensure the correctness of the proposed

approaches.

3



1. Introduction

This report is the first of a study making a complete evaluation of a semantic

enrichment of mathematical expressions system. This study provides a testing

dataset for mathematical term sense disambiguation and suggests two standard

metrics for evaluating this task: the tree-edit-distance error rate and the perfect

translation rate. This is also the first study to evaluate the relation between

the performance of mathematical search system and the performance of semantic

enrichment component. The results of this research will serve as a base for future

studies in this field.

Throughout this dissertation, the term “semantic enrichment” of mathemati-

cal expressions will be used to refer to adding Content MathML markup to Presen-

tation MathML markup of mathematical expressions. This definition is the same

as that of David McKain [McKain, 2013] who defined “semantic enrichment” as

generating “semantically richer” outputs than its usual display-oriented Presenta-

tion MathML. Fundamentally, semantic enrichment means enriching the content

of data by tagging, categorizing, or classifying data in relation mutually, to dic-

tionaries, or other base reference sources. A considerable amount of literature has

been published on “semantic enrichment” including semantic enrichment of jour-

nal articles [Batchelor & Corbett, 2007], and semantic enrichment of text [Peñas

& Hovy, 2010].

The main reason for choosing this topic is inspired by the idea of Tim Berners-

Lee about “Semantic Web” [Berners-Lee, 2000]. His vision suggests that com-

puters of the future can analyze all data on the Web, as well as understand the

contents of human language. With the huge amount of information available on

the Web, automatic extraction, organization, and summarization of web infor-

mation is necessary. In the future, it will not be necessary for people to surf

hundreds of web pages, or read dozens of articles to find the information they

need. A computer will automatically do all the work: analyze an article, find

4



1. Introduction

related articles, and summarize all the information, and then provide it to users.

Semantic enrichment of mathematical expressions is the first step toward this

goal.

The overall structure of the dissertation takes the form of six chapters, in-

cluding this introductory chapter, as depicted in Figure 1.1. Chapter 2 begins to

lay out the background by introducing mathematical expression representation.

It then provides an overview about the related work on semantic enrichment of

mathematical expressions and mathematical search systems. Chapter 3 presents a

method for semantic enrichment of mathematical expressions based on a Statisti-

cal Machine Translation approach. Portions of this chapter were published previ-

ously as [Nghiem et al., 2013a]. Chapter 4 describes an additional enhancement

for semantic enrichment of mathematical expressions by introducing the method

for sense disambiguation of mathematical terms. Portions of this chapter were

published previously as [Nghiem et al., 2013b,c]. Chapter 5 describes a method

for content-based mathematical search system and the contribution of semantic

enrichment of mathematical expressions to that system. Chapter 6 concludes the

dissertation and points to possible avenues for future work.

5



1. Introduction

Application of SMT
(chapter 2.3)

Math search systems
(chapter 2.2)

Math representation
(chapter 2.1)

Math Semantic 
Enrichment

Semantic Math 
Search

(chapter 5)

apply for

SMT approach
(chapter 3)

SD Data
(chapter 4.2)

SD System
(chapter 4.3)

combine

WSD using parallel 
data

(chapter 2.4)
WSD approach

(chapter 4)

using using

Figure 1.1: Overview structure of the thesis.
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Chapter 2

Literature review

This chapter begins by laying out the background by introducing representation of

mathematical expressions. It then provides an overview about the related work

on semantic enrichment of mathematical expressions and mathematical search

system.

2.1 Mathematical expression representation

Many websites such as Wikipedia use images to present mathematical expressions.

Using images, the rendering of mathematical expression is independent of client-

side browser resources. Figure 2.1 portrays a page from a mathematical section on

Wikipedia with mathematical expressions displayed as images. Images provide

a methodologically uniform approach, but the result is not machine-readable.

It is possible to use optical character recognition (OCR) software to recognize

mathematical expressions and convert them to accessible formats. A well-known

example of mathematical OCR software is InftyReader [Suzuki et al., 2004].

Several markup languages for mathematical expression representation. Com-

mon mathematical markup languages are TEX, ASCIIMathML, OpenMath, OM-

7



2. Literature review

Article

Math Equation

Variable's nameEquation's name

Related
Equation

Figure 2.1: Mathematical expressions on Wikipedia.

Doc, and MathML. The markup languages are divisible into two main types:

presentation markup and content markup. Presentation markups, which include

TEX, ASCIIMathML, and Presentation MathML, are used to describe the layout

structure of a mathematical expression. Content markups, which include Open-

Math, OMDoc, and Content MathML, provide explicit encoding of the underlying

mathematical structure of an expression.

2.1.1 TEX

TEX [Knuth, 1984; Lamport, 1986] is a typesetting system which can typeset

complex mathematical expressions. TEX is popular in academia and has been

commonly used by many researchers, especially in mathematics. TEX provides a

text syntax for mathematical expressions so that authors can typeset expressions

in their papers by themselves. An expression is printed as a person would write

it by hand, or as a person would typeset the expression. On certain web pages,

such as Wikipedia, mathematical expressions can be displayed in TEX format

using the alt attribute.

8



2. Literature review

Figure 2.2 portrays a mathematical expression and its written form using TEX.

\sin \alpha = \frac {\textrm{opposite}} {\textrm{hypotenuse}} = \frac {a} {h}

sin 𝛼 =
𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒

ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒
=
𝑎

ℎ

Figure 2.2: Mathematical expression written using TEX.

2.1.2 OpenMath

OpenMath [Buswell et al., 2004] is a standard markup language for representing

the meaning of mathematical expressions. It emphasizes the representation of

semantic information and is not intended to be used directly for presentation.

OpenMath uses an extensible Content Dictionary for encoding the semantics

of mathematics. It enables mathematical expressions to be exchanged among

computer programs, stored in databases, or published on the world wide web.

OpenMath has a strong relation to the MathML markup language; it is useful to

complement MathML.

2.1.3 OMDoc

OMDoc [Kohlhase, 2006] (Open Mathematical Documents) is a semantic markup

format for mathematical documents. It covers the whole range of written math-

ematics including mathematical expressions, statements, and theories. OMDoc

is used in e-learning, data exchange, and document preparation. It also empha-

sizes representation of semantic information that is not primarily presentation-

oriented. OMDoc uses OpenMath and Content MathML formats to present

mathematical expressions.

9



2. Literature review

2.1.4 MathML

The best-known open markup format for representing mathematical expressions

on the web is MathML [Ausbrooks et al., 2010]. It is a format recommended by

the W3C Math Working Group as a standard to represent mathematical expres-

sions. MathML is an XML application for describing mathematical notations

and encoding mathematical content within a text format. MathML has encoding

of two types: content-based encoding, called Content MathML and presentation-

based encoding, called Presentation MathML. Content MathML addresses the

semantic meaning whereas Presentation MathML addresses the display of the

mathematical expressions.

Presentation MathML specifically examines the display of an expression and

has about 30 elements. The presentation elements of Presentation MathML

are divided into two classes: token elements and layout schemata. Token ele-

ments represent identifier names, function names, numbers, and so forth. Layout

schemata build expressions from parts. Figure 2.3 shows the Presentation Markup

of the expression arctan(0)=0 1.

Content MathML provides an explicit encoding of the underlying mathemat-

ical meaning of the mathematical expression rather than its layout. It uses the

apply element to represent the function application. The function being applied

is the first child element under apply, remaining child elements are operands or

parameters. Content MathML has over a hundred different elements for different

functions and operators. Figure 2.4 shows the Content Markup of the expression

arctan(0)=0.

One disadvantage of MathML is it is not designed to be written by a human.

To overcome this problem, ASCIIMathML [ASCIIMathML, 2013] provides an

easy means to write mathematical expressions. Mathematical expressions repre-

1http://functions.wolfram.com/01.14.03.0001.01
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2. Literature review

Presentation MathML

<mrow >

<mrow >

<msup >

<mi >tan </mi >

<mrow >

<mo >-</mo>

<mn >1</mn>

</mrow >

</msup >

<mo >(</mo >

<mn >0</mn >

<mo >)</mo >

</mrow >

<mo >=</mo >

<mn >0</mn >

</mrow >

Figure 2.3: MathML presentation markup for the expression arctan(0)=0.

sented using ASCIIMath markup are easy to produce because they mainly use

ASCII characters to represent the mathematical symbols. The script of ASCI-

IMathML is open source and available under a GPL license. Figure 2.5 shows

the ASCIIMathML markup of the well-known quadratic formula.

MathML presentation and content markups are chosen in this dissertation to

represent mathematical expressions for the following reasons:

ContentMathML

<apply >

<eq/>

<apply >

<arctan/>

<cn >0</cn >

</apply >

<cn >0</cn >

</apply >

Figure 2.4: MathML content markup for the expression arctan(0)=0.
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2. Literature review

ASCIIMathML

x=(-b+-sqrt(b^2-4a c))/(2a)

Figure 2.5: Well-known quadratic formula written in ASCIIMathML.

• Since its release in 1997, MathML has grown to become a general format

that enables mathematics to be served, received, and processed in widely

various applications.

• MathML is useful to encode both mathematical notation and mathematical

content.

• Large collections of mathematical expressions are already available in MathML,

and access to these collections is easy.

• All other markups including eqn [Kernighan & Cherry, 1975], OpenOf-

fice.org Math [Oracle, 2013], ASCIIMathML, and OpenMath can be con-

verted into MathML using freely available toolkits [Stamerjohanns et al.,

2009].

2.2 Mathematical Presentation to Content Con-

version

As described in the previous section, mathematical expressions consist of presentation-

based and content-based formats. Mathematical search systems can either use

presentation-based or content-based format as indexed terms. Whereas presentation-

based systems capable of returning exact or similar matches, content-based sys-

tems can return more meaningful results. However, content-based search systems

need a mathematical expression in content-based format. Because content-based

12
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mathematical expressions are usually not available, conversion or semantic en-

richment of mathematical expressions is necessary.

Few studies have addressed the problem of semantic enrichment of mathe-

matical expressions. In this section, we list some of the work on interpreting the

meaning of mathematical expressions. Two available systems support generation

of Content MathML markup from Presentation MathML or LaTeX: SnuggleTeX

and LaTeXML. Other systems of Grigore et al. [2009] and Wolska & Grigore

[2010]; Wolska et al. [2011] specifically identify the correct meaning or class of a

mathematical term.

2.2.1 System of Grigole et al.

Grigore et al. [2009] proposed an approach to understanding mathematical ex-

pressions based on the text surrounding the mathematical expressions. The main

concept underlying this approach is to use the surrounding text for disambigua-

tion based on word sense disambiguation and lexical similarities. First, a local

context C (five nouns preceding a target mathematical expression) is found in

each sentence. For each noun, the system identifies a Term Cluster (derived from

the OpenMath Content Dictionary). The highest semantic scores obtained are

weighted, summed up, and normalized by the length of the considered context.

The Term Cluster with the highest similarity score is assigned as the interpreta-

tion. When this approach was evaluated for 451 manually annotated mathemat-

ical expressions, the best result was an F0.5 score of 68.26.

2.2.2 SnuggleTeX

A project called SnuggleTeX [McKain, 2013] addresses the semantic interpreta-

tion of mathematical expressions. The project provides a direct method to gen-

erate Content MathML from Presentation MathML based on manually encoded

13
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rules. The current version at the time of writing this paper supports operators

that are the same as ASCIIMathML [ASCIIMathML, 2013]. For example, it uses

the ASCII string “\in” instead of the symbol “∈”. One important shortcoming

of this approach is that it always makes the same interpretation for the same

Presentation MathML element.

2.2.3 LaTeXML

Lamapun [Ginev et al., 2009] project investigates semantic enrichment, structural

semantics, and ambiguity resolution in mathematical corpora. The project uses

LaTeXML [Miller, 2013] for conversion from LaTeX to MathML. Unfortunately,

no evaluation of these systems has been made to date.

2.2.4 System of Wolska et al.

Wolska & Grigore [2010]; Wolska et al. [2011] presented a knowledge-poor method

for identifying the denotation of simple symbolic expressions in mathematical dis-

course. Based on statistical co-occurrence measures, the system sorted a simple

symbolic expression under one of seven predefined concepts. Here, the authors

found that lexical information from the linguistic context immediately surround-

ing the expression improved results. This approach achieves 66% agreement with

the gold standard of manual annotation by experts. From our perspective, the

predefined concepts are closely related to syntactic function, not the semantics of

the terms.
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2.3 Statistical Machine Translation and its ap-

plications

Statistical machine translation (SMT) [Brown et al., 1990, 1993; Chiang, 2005;

Yamada & Knight, 2001] is by far the most widely studied machine translation

method. SMT uses a very large dataset of good translations, which comprises a

corpus of texts already translated into another language called a parallel corpus.

It uses these parallel texts to infer a statistical model of translation automatically.

The statistical model is then applied to new texts to derive a translation.

2.3.1 Word alignment

Most of the methods on extracting translation rules from a parallel corpus start

with a word alignment. In the word alignment process, each element in one

language is matched with the corresponding element in the other language. Many

word aligners are available today, including GIZA++ [Och & Ney, 2003],

MGIZA++ [Gao & Vogel, 2008], and Berkeley Aligner [Liang et al., 2006]. This

dissertation uses GIZA++ toolkit which implements the IBM Models 1–5 and

an HMM word alignment model. The training of these models is done using the

Expectation-Maximization (EM) algorithm.

EM algorithm is used to estimate parameters in statistical models, where the

model depends on unobserved variables. In word alignment, the EM algorithm

first initializes model parameters. It then iterates alternates between performing

an expectation step, and a maximization step. Expectation step assigns proba-

bilities to the missing data. Maximization step estimates model parameters from

completed data. Figure 2.6 presents an example of EM algorithm with source lan-

guage is Presentation MathML elements and target language is Content MathML

elements.
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… mi:cos mn:0 mo:= mn:1 … mi:cos mi:pi mo:= mn:-1 … mi:cos mn:1 …

… eq cos cn:0 cn:1 … eq cos pi cn:-1 … cos cn:1 …

… mi:cos mn:0 mo:= mn:1 … mi:cos mi:pi mo:= mn:-1 … mi:cos mn:1 …

… eq cos cn:0 cn:1 … eq cos pi cn:-1 … cos cn:1 …

… mi:cos mn:0 mo:= mn:1 … mi:cos mi:pi mo:= mn:-1 … mi:cos mn:1 …

… eq cos cn:0 cn:1 … eq cos pi cn:-1 … cos cn:1 …

… mi:cos mn:0 mo:= mn:1 … mi:cos mi:pi mo:= mn:-1 … mi:cos mn:1 …

… eq cos cn:0 cn:1 … eq cos pi cn:-1 … cos cn:1 …

… mi:cos mn:0 mo:= mn:1 … mi:cos mi:pi mo:= mn:-1 … mi:cos mn:1 …

… eq cos cn:0 cn:1 … eq cos pi cn:-1 … cos cn:1 …

p(mo:= | eq) = 0.999854
p(mi:cos | cos) = 0.584167
p(mn:0 | cn:0) = 0.999687
p(mn:1 | cn:1) = 0.999999
p(mi:pi | pi) = 1
…

Figure 2.6: Illustration of EM algorithm.

2.3.2 Applications of Machine Translation

Word Alignment-based Semantic Parsing [Wong & Mooney, 2006] applies MT

techniques to learn semantic parsers. The fundamental idea is to use SMT to learn

to translate from natural language to a meaning representation language. A word

alignment model is used for lexical acquisition, and a syntax-based translation

model is used as the parsing model. Results of this study show that SMT is

applicable to semantic parsing.

Several reports have described encouraging results for word sense disambigua-

tion based on parallel corpora [Carpuat & Wu, 2007; Chan & Ng, 2005; Diab &
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Resnik, 2002; Lefever & Hoste, 2010; Lefever et al., 2011; Padó & Lapata, 2009;

Tufiş et al., 2004]. Ide et al. [2002] used translation equivalents derived from

parallel aligned corpora to determine sense distinctions that are applicable to

automatic sense-tagging. They evaluated their work using a subset of 33 nouns

covering a range of occurrence frequencies and degrees of ambiguity [Ide et al.,

2001], with results indicating no significant difference in agreement rates for the

algorithm and for human annotators. The main limitation of this study is its

dependence on aligned corpora, which are not easily obtainable.

2.4 Mathematical Search System

As the demand for mathematical searching increases, several mathematical re-

trieval systems have come into use. Most systems use the conventional text

search techniques to develop a new mathematical search system [National In-

stitute of Standards and Technology, 2013; Springer, 2013; Uniquation, 2013].

Some systems with specific format for mathematical content and queries [Al-

tamimi & Youssef, 2008; Miner & Munavalli, 2007; Yokoi & Aizawa, 2009; Youssef,

2005; Youssef & Altamimi, 2007]. Based on a different mathematical markup,

current mathematical search systems are divisible into presentation-based and

content-based systems. Presentation-based systems duel with the presentation

form whereas content-based systems duel with the meanings of mathematical

formulae.

2.4.1 Presentation-based systems

2.4.1.1 Springer LaTeXSearch

Springer offers a free service, Springer LATEX Search [Springer, 2013], to search

for LaTeX code within scientific publications. It enables users to locate and view
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equations containing specific LATEX code, or equations containing LATEX code that

is similar to another LATEX string. A similar search in Springer LATEX Search ranks

the results by measuring the number of changes between a query and the retrieved

formulae. Each result contains an entire LaTeX string, a converted image of the

equation, and information about and links to its source. However, the ranking

algorithm performs poorly when only measuring the number of changes.

2.4.1.2 MathFind

MathFind [Munavalli & Miner, 2006] is a math-aware search engine under de-

velopment by Design Science. This work extends the capability of existing text

search engines to search mathematical content. The system analyzes expres-

sions in MathML and decomposes the mathematical expression into a sequence

of text-encoded math fragments. Queries are also converted to sequences of text

and the search was done as normal text search. However, treating mathematical

expressions as text can not fully capture the structural notations of mathematical

formulae.

2.4.1.3 Digital Library of Mathematical Functions

The Digital Library of Mathematical functions (DLMF) project at NIST is a

mathematical database available on the Web [Miller & Youssef, 2003; National In-

stitute of Standards and Technology, 2013]. Two approaches are used for search-

ing for mathematical formulas in DLMF. The first approach converts all mathe-

matical content to a standard format. The second approach exploits the ranking

and hit-description methods. These approaches enable simultaneous searching

for normal text as well as mathematical content.

In the first approach [Youssef, 2005], they propose a textual language, Textual-

ization, Serialization and Normalization (TexSN). TeXSN is defined to normalize
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non-textual content mathematical content to standard forms. User queries are

also converted to the TexSN language before processing. Then, a search is per-

formed to find the mathematical expressions that match the query exactly. As a

result, similar mathematical formulae are not retrieved.

In the second approach [Youssef, 2007], the search system treats mathemat-

ical expressions as a document containing a set of mathematical terms. This

paper introduces new relevance ranking metrics and hit-description generation

techniques. They claimed that the new relevance metrics are far superior to the

conventional tf-idf metric. The new hit-descriptions are also more query-relevant

and representative of the hit targets than conventional methods. However, this

paper lacked a thorough subjective evaluation including numerous users and a

carefully selected benchmark of queries.

Other notable math search systems include Math Indexer and Searcher Sojka

& Ĺı̌ska [2011], EgoMath Miutka & Galambo [2011], and ActiveMath Siekmann

[(visited on 01 March. 2014].

2.4.2 Content-based systems

2.4.2.1 Wolfram Function

The Wolfram Functions Site [Wolfram, 2013] is the world’s largest collection of

mathematical formulas accessible on the Web. Currently the site has 14 function

categories containing more than three hundred thousand mathematical formulae.

This site allows users to search for mathematical formulae from its database. The

Wolfram Functions Site proposes similarity search methods based on MathML.

However, content-based search is only available with a number of predefined con-

stants, operations, and function names.
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2.4.2.2 MathWebSearch

The MathWebSearch system [Kohlhase & Prodescu, 2013; Kohlhase & Sucan,

2006] is a content-based search engine for mathematical formulae. It uses a

term indexing technique derived from an automated theorem proving to index

Content MathML formulae. The system first converts all mathematical formulae

to Content MathML markup and uses substitution-tree indexing to build the

index. The authors claimed that search times are fast and unchanged by the

increase in index size. However, MathWebSearch is currently restricted to an

exact formula search without similarity search and full-text search.

2.4.2.3 MathGO!

Adeel et al. [2008] proposed a mathematical search system called the MathGO!

Search System. The approach used conventional search systems using regular ex-

pressions to generate keywords. For better retrieval, the system clustered mathe-

matical formula content using K-Som, K-Means, and AHC. They did experiments

on a collection of 500 mathematical documents and achieved around 70–100 per-

cent precision. However, the complexity of their algorithm is expected to increase

when the number of templates increases.

2.4.2.4 MathDA

Yokoi and Aizawa [Yokoi & Aizawa, 2009] proposed a similarity search method

for mathematical expressions that is adapted specifically to the tree structures ex-

pressed by MathML. They introduced a similarity measure based on Subpath Set

and proposed a MathML conversion that is apt for it. Their experiment results

showed that the proposed scheme can provide a flexible interface for searching for

mathematical expressions on the Web. However, the similarity calculation is the

bottleneck of the search when the database size increases. Another shortcoming
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of this approach is that the system only recognizes symbols and does not perceive

the actual values or strings assigned to them.

2.4.2.5 System of Nguyen et al.

Nguyen et al. [2012] proposed a math-aware search engine that can handle both

textual keywords and mathematical expressions. They used Finite State Machine

model for feature extraction and representation framework captures the semantics

of mathematical expressions For ranking, they used the passive–aggressive on-

line learning binary classifier. Evaluation was done using 31,288 mathematical

questions and answers downloaded from Math Overflow [MathOverflow, 2013].

Experimental results showed that their proposed approach can perform better

than baseline methods by 9%. However, results for other kinds of mathematical

document retrieval have not been reported.
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Chapter 3

Semantic Enrichment of

mathematical expressions

This chapter presents a method for semantic enrichment of mathematical expres-

sions based on Statistical Machine Translation approach. Portions of this chapter

were previously published as [Nghiem et al., 2013a].

3.1 Overview

The semantic enrichment of mathematical expressions is among the most sig-

nificant areas of discussion related to the digitization of mathematical and sci-

entific content and its applications. The challenge entails associating semantic

tags, usually concepts, with mathematical expressions. Encoding the underlying

mathematical meaning of an expression confers several benefits:

• It facilitates more precise information exchange between systems that pro-

cess mathematical objects;

• It improves the accuracy of mathematical search systems by enabling se-

mantic searching of mathematical expressions;
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• It also benefits computer algebra systems, automated reasoning systems,

and multi-lingual translation systems.

As with natural language, the semantic enrichment of mathematical expres-

sions is a nontrivial task. Although more rigorous than natural language, mathe-

matical notations are ambiguous, context-dependent, and vary from community

to community. The difficulty in inferring semantics from a presentation stems

from the many-to-many potential mappings from presentation to semantic [Aus-

brooks et al., 2010]. Examples include binomial coefficients, which can be pre-

sented in varying notations: C(n, k),nCk,
nCk, C

k
n, C

n
k . Moreover, each notation

can have other author-dependent meanings aside from the binomial coefficient

itself.

This chapter introduces an automatic semantic enrichment method for math-

ematical expressions to analyze and disambiguate mathematical terms. In this

study, MathML [Ausbrooks et al., 2010] Presentation Markup is used to dis-

play mathematical expressions and MathML Content Markup is used to convey

mathematical meaning. The semantic enrichment task then becomes the task of

generating Content MathML outputs from Presentation MathML expressions.

Prior attempts to address this problem include SnuggleTeX [McKain, 2013]

and LaTeXML [Miller, 2013]. These systems use handwritten rule-based meth-

ods for disambiguation and translation. The first discussions and analyses of

semantic enrichment of mathematical expressions emerged during version 1.2.0

of SnuggleTeX within the Maths Assess Project [MathsAssess, 2013]. However,

these features are still to be considered experimental and no research has been

found that surveyed how well semantic enrichment component performs.

This chapter proposes an approach based on Statistical Machine Translation

(SMT) [Brown et al., 1990] techniques. In the proposed framework, the under-

lying mathematical meaning of an expression is inferred from the probability
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distribution p(c|p) that a semantic expression c is the translation of presenta-

tion expression p. The probability distribution is automatically calculated given

parallel markup MathML data which contains both Presentation and Content

MathML markup for a single expression. The data used in this study was col-

lected from the Wolfram Functions Site [Wolfram, 2013] (WFS). Another parallel

markup MathML data was also prepared by annotating mathematical expressions

drawn from 20 papers from the ACL Anthology Reference Corpus [Bird et al.,

2008; Kan, 2013] (ACL-ARC).

The SMT approach has a number of attractive features over rule-based ap-

proach. The first advantage of using SMT is we can make better use of resources.

As mentioned above, there is a great deal of mathematical expressions in MathML

parallel markup format, i.e. the Wolfram Functions Site data. The second ad-

vantage of using SMT is we can quickly produce the translation rule set. The

rule-based translation system requires the manual development of rules, which

can be costly, and which often do not generalizable.

The main disadvantage of the SMT method is that it does not work well be-

tween languages that have significantly different word orders which is the case

of Presentation to Content MathML. Several attempts have been made to over-

come the different word order problem by re-ordering one language side [Birch &

Osborne, 2011; Nagata et al., 2006; Yang et al., 2012]. To deal with this short-

coming, the dissertation proposes a type of rule, named the “segmentation rule”.

Segmentation rules are used for the purpose of reducing the different word order

between Presentation and Content MathML expressions. These rules are learned

at the same time the system learns the translation rule from MathML parallel

markup data.

Evaluation was performed by using a ten-fold cross validation on mathemat-

ical expressions from the six categories of the Wolfram Functions Site. This ex-
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periment evaluated the effectiveness of the proposed learning method. Another

experiment was performed to assess the correlation between systems performance

and training set size. The proposed method is compared to prior work [McKain,

2013] using a data set collected from ACL-ARC scientific papers. Results show

that proposed approach yields improvements in the mathematics semantic en-

richment problem, generating fewer errors and outperforming this previous work.

3.2 Proposed System

3.2.1 System Overview

The same framework of SMT system is applied here. The parallel markup ex-

pressions are used to automatically infer a statistical model of translation (rules

for translation and their probabilities). The statistical model is then applied to

new expressions to derive a translation. Figure 3.1 gives the system framework.

Rule ExtractionRule Extraction

Segmentation 
Rules

Segmentation 
Rules

Translation RulesTranslation Rules
Processed Data

MathML Parallel 
Markup

Presentation 
MathML

expression

Processed 
expression

Content MathML
Generation

Content MathML
Generation

Content MathML
expression

PreprocessingPreprocessing

Training

Running

Figure 3.1: System Framework

The system has two phases, a training phase and a running phase, and consists

of three main modules.

• Preprocessing: Processes MathML expressions. It removes error expressions

and XML tags that convey no meaning.
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• Rule Extraction: Extracts rules for translation, given the training data.

There are two types of rules: segmentation rules and translation rules.

Each rule is associated with its probability.

• Content MathML Generation: Generates Content MathML expressions

from input Presentation MathML expressions using rules from the Rule

Extraction step.

3.2.2 Preprocessing

In MathML Presentation Markup, certain elements are used for formatting pur-

poses only: the mtext and mspace tags are used to insert a space between ex-

pressions. Some mtable tags are used to number the mathematical expressions.

A pair of parentheses indicates that the expressions in the parentheses belong to-

gether. These elements are removed in specific cases where the structure encodes

the same information. Keeping these elements can produce misleading results.

Expressions with more than 200 nodes in their Content Markup are removed for

simplification. Figure 3.2-(b) illustrates an example of this step.

The data contains expressions that convey the same meaning, but their Con-

tent MathML are written in different ways. To improve the alignment results, the

system normalized two expressions having the same content meaning on the Con-

tent MathML side. Currently, these three cases are implemented in the proposed

system:

• sqrt(X) and X
1
2

• X − Y and X + (−Y )

• 1
X

and X−1
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Figure 3.2: (a) Original Presentation and Content MathML Markup tree repre-
sentations (b) preprocessed trees and the alignment between the nodes (c) seg-
mentation process.
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3.2.3 Extracting Rules

There are two sets of rules extracted: segmentation rules and translation rules.

Segmentation rules are used to segment Presentation MathML trees into smaller

subtrees. Translation rules are used to translate Presentation MathML trees into

Content MathML trees. Segmentation rules and translation rules operate the

same as “grammar rules” and “rule table” in SMT systems.

3.2.3.1 Extracting Segmentation Rules

Segmentation rules are proposed to divide a large Presentation MathML tree into

smaller subtrees while maintaining alignment with their corresponding Content

MathML trees.

Long sentences pose a common problem for SMT. System training with long

sentence pairs requires more memory and CPU time. The translation quality is

also low due to poorly aligned words in long sentence pairs. In this study, 151.2

nodes is the average length of mathematical expressions in the dataset (counting

only the leaf nodes). The 30.66 average node is still high, even after removing

expressions with more than 200 nodes in their Content Markup. Long mathe-

matical expressions must be segmented into shorter ones. Note that segmenting

MathML expressions is easier than segmenting natural language sentences since

the structural information is explicitly encoded using XML.

For a given mathematical expression pair (p, c), we have p1, p2, ..., pn as sub-

trees of p and c1, c2, ..., cm as subtrees of c. A segmentation of (p, c) is defined as a

sequence of subtree pairs (ps1 , c1), (ps2 , c2), ..., (psm , cm), where ps1 , ps2 , ..., psm are

corresponding subtrees of

c1, c2, ..., cm.

To achieve segmentation, GIZA++ [Och & Ney, 2003] toolkit is used to ob-

tain alignment between the leaf nodes of Presentation and Content MathML
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trees. Figure 3.2-(b) shows an example of this alignment. Segmentation Rules

are extracted based on this alignment. For each Content MathML subtree ci,

the corresponding Presentation MathML subtree psi is the subtree satisfying the

following condition:

psi = arg max
j

P(pj|ci, a) (3.1)

P(pj|ci, a) is calculated by obtaining the ratio of number of alignments between

pj and ci to the total of alignment in a, where variable a represents the alignments

between p and c.

P(pj|ci, a) =
count[a(pj, ci)]

|a|
(3.2)

The following constraint is applied: distinct Presentation subtrees cannot

be aligned with the same Content subtree. The only exception is the case of

operators. Many identical operators subtrees in a Presentation subtree can be

aligned with one Content subtree. This allowance is made because the Content

function can have more than two arguments, while the Presentation operator

permits only two. A segmentation that does not satisfy this constraint is invalid.

A segmentation rule is created each time the system segments the tree. Each

segmentation rule is associated with a probability which represents how likely it

is that the right-hand side of the rule will happen given the left-hand side.

Figure 3.2-(c) shows an example of segmentation process and extracted seg-

mentation rules. Table 3.1 gives examples of segmentation rules. In the table, the

numbers, such as [1], represent corresponding Presentation and Content markup

subtrees.
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Table 3.1: Examples of segmentation rules extracted from Wolfram Functions
Site dataset

Segmentation Rule Probability
mrow { mrow[1] mo(=)[0] msup[2] } 1
→ apply { eq[0] apply[1] apply[2] }
mrow { mrow[1] mo( /; )[0] mrow[2] } 0.9998
→ apply { ci( Condition )[0] apply[1] apply[2] }
mrow { mrow[1] mo( = )[0] mrow[2] } 0.9946
→ apply { eq[0] apply[1] apply[2] }
mrow { mrow[1] mo( ∝ )[0] mrow[2] } 0.9511
→ apply { ci( Proportional )[0] apply[1] apply[2] }
mrow { msup[1] mo( . )[0] mrow[2] } 0.8582
→ apply { times[0] apply[1] apply[2] }

3.2.3.2 Extracting Translation Rules

If the subtree cannot be segmented or if the segmentation is invalid, a translation

rule is extracted. Translation rules are used to translate a Presentation tree

directly into a Content tree. Each translation rule is also associated with its

frequency of occurrence throughout the training process. Training halts when no

expressions can be segmented. Algorithm 1 gives the pseudo code for extracting

the rules.

Function “UpdateProbability” uses Equation (3.2) to calculate the probability

of each rule. Function “GetTranslationRule” and “GetSegmentationRule” extract

the appropriate rules from the traning sample. Function “ExtractRule” calls ifself

recursively until the subtree cannot be segmented anymore. Table 3.2 shows

examples of translation rules.

Note that the rule <mo>-</mo> → <plus/> is a legal translation rule but

its probability is low. The rule is extracted from those expressions which contain

addition of 3 or more terms, i.e. X − Y + Z (plus between X and −Y and

Z), these expressions were not normalized in the preprocessing step. Alignment

errors or segmentation errors can also lead to wrong rule extraction.

30



3. Semantic Enrichment of mathematical expressions

Algorithm 1 Extract Translation Rules and Segmentation Rules

Input: set of training MathML files parallel markup M
Output: list of segmentation rules SR

list of translation rules TR
function EXTRACTRULES(M)

SR← ∅
TR← ∅
A = ALIGN(M) . alignments of nodes (output of GIZA++)
for all m ∈M do

EXTRACTRULE(m,A,SR,TR)
end forreturn SR, TR

end function

function EXTRACTRULE(m,A,SR,TR)
tr = GetTranslationRule(m) . Extract the translation rule
if TR contains tr then

UpdateProbability(TR)
else

TR← TR ∪ {tr}
end if
sr = GetSegmentationRule(m) . Extract the segmentation rule
if SR contains sr then

UpdateProbability(SR)
else

SR← SR ∪ {sr}
end if
let subTrees[1 .. N] be subtrees of m
for i = 1→ N do

EXTRACTRULE(subTrees[i],A,SR,TR)
. Extract rules of each subtree

end for
end function

function GetRules(m) . GetTranslationRule, GetSegmentationRule
for all stP ∈ m do

stC, count← GetMaxAlign(m,A) . get the content sub-tree stC has
most alignments to stP

end for
return MakeRule(subTreeP , subTreeC, count)
end function
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Table 3.2: Examples of translation rules extracted from Wolfram Functions Site
dataset

Translation Rule Probability
< mo > . < /mo > → < times/ > 1
< mo > ∈ < /mo > → < in/ > 1
< mi > m < /mi > → < ci > m < /ci > 1
< mo > /; < /mo > → < ci > Condition < /ci > 0.9998
< mo > = < /mo > → < eq/ > 0.9993
< mi > n < /mi > → < ci > n < /ci > 0.9941
< mo > - < /mo > → < minus/ > 0.9431
< mo > - < /mo > → < plus/ > 0.0566
< mo > + < /mo > → < plus/ > 0.9995

3.2.4 Content MathML Generation

Segmentation rules and translation rules are applied for the translation at this

step. Given a Presentation MathML tree, the system will generate a correspond-

ing Content MathML tree. A greedy translation method is used here to reduce

translation time. If more than two rules can be applied to translate a tree, the

rule with higher probability is chosen.

The translation process is as follows: First, the same pre-process module is

applied on the Presentation MathML tree. The difference here is that the sys-

tem removes only non-semantic elements. Second, if the processed tree can be

translated using translation rules, then apply the rule for translation. If not, the

segmentation rule is applied to segment the tree into subtrees. If no rule can be

applied, return a translation error. Third, the translation rules are applied to

translate the Presentation MathML subtrees into Content MathML subtrees. Fi-

nally, the translated Content MathML subtrees are grouped to form the complete

Content MathML tree.

Algorithm 2 gives the translation algorithm. The “GetBestRule” function

searches for the rule with highest probability in the rule list. The “Apply” func-

tion applies a translation rule to a Presentation MathML tree and returns the
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translated Content MathML tree. The “RebuildTree” function combines the

translated subtrees into a complete tree based on the alignment indexes in the

segmentation rule. In some cases, the system was unable to apply any of the

segmentation or translation rules, generally due to unseen data. For those cases,

the system ignored the root of the subtree and translated its children. This

would generate errors at the root of the subtree but improve overall performance.

Heuristic translations are also applied to translate numbers and identifiers in the

mn and mi tags.

Algorithm 2 Translate Presentation to Content MathML tree

Input: Presentation MathML tree preTree
segmentation rules SR
translation rules TR

Output: Content MathML tree contentTree
function TRANSLATE(preTree)

rule1 ← GetBestRule(preTree, TR)
if rule1 6= null then

return Apply(tRule, preTree)
end if
rule2 ← GetBestRule(preTree, SR)
if rule2 6= null then

let pSub[1 .. N] be subtrees of preTree
let cSub[1 .. N] be new contentTree
for i = 1→ N do

cSub[i] = TRANSLATE((pSub[i]))
end for
return RebuildTree(cSub, sRule)

. combines cSub based on the segmentation rule
else

return < cerror/ >
end if

end function

Using the proposed approach, the system is capable of handling ambiguous

cases. Figure 3.3 shows an disambiguation example. Normally the term < mi >

sin < /mi > is translated to <sin/> but when it is accompanied by < mrow ><
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3. Semantic Enrichment of mathematical expressions

mo > − < /mo >< mn > 1 < /mn >< /mrow >, the system can correctly

translated it to < arcsin/ >.

apply

eq

apply apply

arcsin

cn

divide pi

cn

1 sep 2 6

mrow

mrow

mo

mfrac

msup

mfrac

=

mi mn

mi mrow

mn mn

π 6sin

mo mn

1 2- 1

Input: Presentation MathML tree Output: Content MathML tree

Figure 3.3: Disambiguation example

3.3 Experimental Results and Discussions

3.3.1 Evaluation Setup

The evaluation used two datasets for the experiments:

• The first dataset is Wolfram Functions site data (WFS) and contains math-

ematical expressions collected from the Wolfram Functions site [Wolfram,

2013], a site created as a resource for educational, mathematical, and scien-

tific communities. The site contains the world’s most encyclopedic collec-

tion of information on mathematical functions. All formulas on this site are

available in both Presentation MathML and Content MathML format. In

the experiments, there are six mathematical categories: elementary func-

tions, constants, Bessel-type functions, integer functions, polynomials, and

Gamma Beta Erf. The dataset contains 205,653 mathematical expressions

in total.
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3. Semantic Enrichment of mathematical expressions

• The second dataset is ACL Anthology Reference Corpus [Bird et al., 2008;

Kan, 2013] (ACL-ARC) which contains mathematical expressions extracted

from scientific papers in the area of Computational Linguistics and Lan-

guage Technology. This corpus is also a target corpus of the mathemati-

cal formula recognition task in The ACL 2012 Contributed Task [Schafer

et al., 2012]. Currently, mathematical expressions are drawn from 20 papers

to investigate the cross-domain applicability of the proposed method. All

mathematical expressions in these papers are manually annotated with both

Presentation Markup and Content Markup. The total number of mathe-

matical expressions in the data set is 2,065. Table 3.3 gives various statistics

for these datasets.

The default parameter setting of GIZA++ is used to obtain the alignments

between Presentation MathML terms and Content MathML terms.

Table 3.3: Data statistics. The first six categories were collected from the Wol-
fram Functions site. The last was extracted from 20 ACL papers.

Category No. of math
expressions

Bessel-TypeFunctions 1,960
Constants 709
ElementaryFunctions 30,220
GammaBetaErf 2,895
IntegerFunctions 1,612
Polynomials 1,489
ACL-ARC 2,065

3.3.2 Evaluation Methodology

Training and testing were performed using ten-fold cross-validation. For each

category, the original corpus was partitioned into ten subsets. Of the ten subsets,

a single subset is retained as validation data for testing the model, using the
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remaining subsets as training data. The cross-validation process was repeated

ten times, with each of the ten subsets used exactly once as validation data. The

ten results from the folds then averaged to produce a single estimate. In both

datasets, formula-wise partition is used.

Given a Presentation MathML expression e, let A is the correct Content

MathML tree and B is the output tree of the automatic translation. Evaluation

was done by counting the correctness of tree B by comparing it directly to tree A.

In the experiments, the system extended the conventional definition of Translation

Edit Rate and applied a specific metric that combines the following:

• Tree Edit Distance [Zhang & Shasha, 1989]: The tree edit distance is the

minimal cost of transforming A into B using edit operations. Three types

of edit operations are possible: substituting, inserting, or deleting a node.

• Translation Edit Rate [Snover et al., 2006]: The translation edit rate is

an error metric for machine translation that measures the number of edits

required to change a system output into one of the references.

The new metric is called the Tree Edit Distance Rate (TEDR). TEDR is

defined as the ratio of (1) the minimal cost of transforming tree A into another

tree B using edit operations and (2) the maximum number of nodes of A and B.

It can be computed using Equation 4.1.

TEDR(A→ B) =
TED(A,B)

max{|A|, |B|}
(3.3)

For example, Figure 3.4 depicts an output tree (A) and a reference (B). Com-

pared to the reference tree, the system must substitute 1 node, insert 3 nodes, and

delete 0 node in the output tree, so that TED(A,B) = 4, while the maximum

number of nodes of the two trees is 8. Therefore, TEDR(A → B) = 4
8

= 0.5.

TEDR = 0 is optimal for this metric.
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Figure 3.4: Example of an output tree (A) and a reference (B).

There are two methods to calculate the TEDR value of multiple tree pairs.

The tree-based method (macro averaged) calculates the TEDR value of each tree

pair and then average them. The main disadvantage of this method is that it

treats small and large trees equally. The node-based method (micro averaged)

first sums up the TED value of these multiple tree pairs and then divides this

value to the sum of maximum number of nodes. The second method was chosen

because it gives better estimation of how many nodes are wrongly translated. For

easier interpretation, the chart representation of the result uses 1 − TEDR. In

this scenario, the higher the 1− TEDR score, the better the system.

Besides TEDR, another metris is used which is the Perfect Translation Rate

(PTR). PTR is simply the percentage of perfectly translated expressions. PTR

is calculated by counting how many expressions are correctly translated and then

divide this number to the number of expressions. This metric is important in

applications which require perfect translation, such as searching for exact math-

ematical expressions.
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3. Semantic Enrichment of mathematical expressions

3.3.3 Experimental Results

First, the evaluation investigated the coverage of segmentation and translation

rules which were automatically extracted from the training data. Evaluation

was done using the data from the Elementary Functions category, the largest

category. Segmentation and translation rules are effective in 98.69% of translation

cases. The rest 1.31% is where the system cannot apply any segmentation nor

translation rule, which will generate cerror node. Translation rules are used

twice as often as segmentation rules. Translation rules contribute 65.62% of the

translation, while segmentation rules contribute about 33.07%. The accuracy of

these rules is 99.13% and 98.3%, respectively. (This value is calculated by the

ratio of the correct rules applied to the total rules applied.) The results show

that the coverage of segmentation and translation rules is high and selected rules

are mostly correct.

Second, the translation quality of the system are then investigated with dif-

ferent mathematical categories. For the WFS dataset, the experimental results

showed that the proposed approach gave good results: an 8% TEDR score with a

large training data set (“Elementary Functions” category). For smaller data sets

(fewer than 3,000 training samples), the results vary from 41% to 49% TEDR.

Table 3.4 shows results for each category of the Wolfram Functions Site data.

The second and third columns show the average number of segmentation rules

and translation rules extracted on each fold, respectively. The two last columns

show TEDR and PTR scores.

Third, an experiment is set up using 20,314 short mathematical expressions

in the Wolfram Functions Site data. This experiment investigated the correlation

between translation quality and the size of the training data set. There are 10 test

sets, each test set contain 10 percent of the total mathematical expressions. The

training data for each test set varied from 10 to 90 percent of the data size, each
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3. Semantic Enrichment of mathematical expressions

Table 3.4: Results for each category of the Wolfram Functions Site data.
Category Avg. No. Avg. No. TEDR PTR

of FR of TR
Bessel-TypeFunctions 447 9,432 42.31 19.24
Constants 258 1,116 42.35 18.67
ElementaryFunctions 937 12,286 8.00 67.48
GammaBetaErf 658 8,594 49.30 15.9
IntegerFunctions 431 2,667 41.03 23.2
Polynomials 457 4,464 45.73 13.04

stage added 10 percent of the expressions to the training set. Figure 3.5 shows

the correlation between translation quality and training set size. The results of

the this experiment are consistent with those of Koehn et al. [2003] who found

the larger the training data, the better the results. The error rate decreased with

the training data size while perfect translation rate increased.
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Figure 3.5: Correlation between TEDR and PTR scores and training set size.

Finally, this study set up an experiment to compare the proposed system to

SnuggleTeX using ACL-ARC dataset. SnuggleTeX cannot be used with the WFS

dataset because the WFS dataset contains a large number of Unicode symbols

while SnuggleTeX provides very limited support. There are two systems, SMT-

1 used ACL-ARC data for training and testing while SMT-2 used WFS data

39



3. Semantic Enrichment of mathematical expressions

for training and ACL-ARC data for testing. Table 3.5 shows the TEDR and

PTR scores of the proposed systems compared to SnuggleTeX. SMT-2 system

had a 27.67% lower TEDR score and a 4.4% higher PTR score compared to

SnuggleTeX. For this cross-domain setting, SMT-based method is advantageous,

and even more when the datasets belong to the same domain. SMT-1 system

had a 32.69% lower TEDR score and a 16.35% higher PTR score compared to

SnuggleTeX, while running times of both systems were more or less equivalent.

However, the proposed systems needed to learn the rules from the training data

in advance.

Table 3.5: Results for ACL-ARC data. SMT-1 used ACL-ARC data, ten-fold
cross-validation. SMT-2 used the rules extracted from WFS Data.

TEDR PTR
SMT-1 58.63 47.12
SMT-2 63.65 35.17
SnuggleTeX 91.32 30.77

Figure 3.6 shows the comparison of the different systems. In direct com-

parison, the systems using SMT are superior to SnuggleTeX in both evaluation

metrics. The result of SMT-1 is higher than the result of SMT-2 because this sys-

tem took advantage of the manually annotated training data of papers from the

ACL archive. Surprisingly, all of the systems got better PTR scores compare with

PTR scores achieved using WFS data for testing. These results may be explained

by the fact that it is easier to correctly translate short mathematical expressions

which contain only one or two nodes than long expressions and ACL-ARC data

has a large number of short expressions.
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Figure 3.6: Comparison of the different systems.
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Chapter 4

Sense Disambiguation of

Mathematical Term

This chapter addresses the open problem of mathematical term sense disam-

biguation. Section 4.1 introduces a method that uses a MathML parallel markup

corpus to generate relevant training and testing datasets. Experimental results

indicate that we can generate such data automatically and with reasonable accu-

racy. Based on the dataset generated, in section 4.2, a Support Vector Machines

classifier is used to disambiguate the sense of mathematical terms. This approach

combines with statistical machine translation approach in chapter 3 improved the

semantic enrichment of mathematical expressions performance. Portions of this

chapter were previously published as [Nghiem et al., 2013b,c].
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4. Sense Disambiguation of Mathematical Term

4.1 Mathematical Sense Disambiguation Data

Creation

4.1.1 Overview

Word-sense disambiguation (WSD) refers to the process of identifying the correct

sense or meaning of a word in a sentence when the word has multiple meanings.

WSD remains a difficult open problem in natural language processing. Current

WSD systems are based on supervised, unsupervised, and knowledge-based ap-

proaches [Navigli, 2009]. This chapter focuses on the problem of disambiguating

the sense of mathematical terms occurring within normal text, an aspect little dis-

cussed to date. Mathematical term sense disambiguation will be an enhancement

for semantic enrichment of mathematical expressions system.

The problem of achieving automated understanding of mathematical expres-

sions can be illustrated quite clearly. For instance, depending on context, the

mathematical term δ can be interpreted to refer to Kronecker Delta, Dirac

Delta, Discrete Delta, or simply to a variable δ. Another example is i, which

can be interpreted to mean the imaginary constant, the index variable, or

the bound variable of an operation. Other examples include α, β, σ, φ, ω,

Φ, B, H, x, y, sim. In many such cases, disambiguation can play a crucial role

in the automated understanding, translation, and calculation of mathematical

expressions.

One major issue in early research on machine understanding of mathematical

terms found in text was the lack of evaluation datasets. A previous study [Wolska

et al., 2011] was based on a small evaluation set of 200 mathematical expressions

annotated by experts. Clearly, large samples of sense-tagged data would re-

quire significant human annotation and labor. Fortunately, then, Ide et al. [2002]

showed that sense distinctions derived from cross-lingual information are at least
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as reliable as those made by human annotators. The novel research described here

presents a fully automated method for generating large samples of mathematical

terms with sense-tagged data.

As part of the effort described here to address mathematical term sense dis-

ambiguation (MTSD), this chapter first proposes a method that uses a MathML

parallel markup corpus to generate training and testing datasets. Second, this

chapter proposes heuristics that improve alignment results for the parallel markup

corpus. Third, this chapter presents a classification-based approach to the MTSD

problem. To the best of our knowledge, this study is the first to make use of par-

allel corpora to address MTSD.

4.1.2 Method

This method compiled the MTSD data using parallel MathML markup expres-

sions gathered from the Web. First, using a set of heuristic rules, the system pre-

processed the parallel MathML markup expressions. It then used the GIZA++

toolkit to obtain node-to-node aligned data. Based on the node-to-node aligned

data, the system created subtree-to-subtree aligned data. Finally, it extracted

ambiguous terms from the subtree-to-subtree aligned data to obtain data for

MTSD. Figure 4.1 gives the steps taken to generate the data.

A crucial step in generating MTSD data is achieving alignment between the

Presentation side and the Content side of the expressions. Given a set of several

MathML parallel markup expressions, the system used the automated word align-

ment GIZA++ [Och & Ney, 2003] to obtain alignment between the Presentation

terms and Content terms. Developed to train word-based translation models, the

GIZA++ toolkit is not directly applicable to a tree-based corpus. One common

solution is to convert the tree into a sentence by extracting the leaf nodes of the

tree and to form a sequence [Sun et al., 2010]. While this approach works well
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Figure 4.1: Steps for generating the data for MTSD.

for natural language text, it is less effective with mathematical expressions, since

the intermediate nodes of these expressions contain layout information.

Before using GIZA++, to enhance alignment precision, the system applies

two heuristic rules to the presentation tree based on information on its structure.

The first heuristic rule converts the intermediate layout nodes (except mrow) to

leaves on the tree by moving them to the position of their first child. When mov-

ing an intermediate layout node, the system creates a temporary (‘temp’) node

to replace the moved node and to keep the other child nodes intact. Unneces-

sary parentheses, which indicate that the expressions in the parentheses belong

together, are also removed. Figure 4.2 illustrates an example of this heuristic.

In Figure 4.2, the system moved the msup node to a leaf of the tree and

removed a pair of parentheses, <mo>(</mo> and <mo>)</mo>, near <mn>0</mn>

node. Red lines represent alignments from presentation nodes to content nodes.

Green lines represent alignments from content nodes to presentation nodes. Blue

lines represent expanded alignments between subtrees.

The second heuristic rule moves operator (mo) nodes to the beginning of the

subtree if that subtree contains operator nodes. This rule reduces cross align-

ments, since most notations in content MathML are prefix notations and placed

in leaf nodes. In Figure 4.2, the <mo>=</mo> node is moved to the first position
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Figure 4.2: Example of alignment results for GIZA++ before and after applying
the heuristic rules for the expression arctan(0)=0.

of the tree. The <mo>-</mo> node is not moved because it is already the first

child of its parent node.

To extract more complex mathematical terms, the system expand the node-

to-node alignments to subtree-to-subtree alignments. In this study, the subtree

alignment is expanded only to the parent of the mi nodes. The criteria used here

to achieve subtree aligned pair are similar to that used by Tinsley et al. [2007].

First, a node can be linked only once. Second, descendants of a presentation

node can link only to descendants of its content counterpart. Third, ancestors of

a presentation node can link only to ancestors of its content counterpart (a node

counts as its own ancestor).

If one presentation node links to more than one content node, the system

keeps only the link with the highest alignment score, as given by Equation 4.1.

The number of alignments between the presentation tree treeP and the content

tree treeC is the sum of (1) the number of alignments from the leaf children of

treeP to the leaf children of treeC and (2) the number of alignments from the

leaf children of tree to the leaf children of treeP . For more accurate results, the
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system removed node-to-node alignments if alignment probabilities fell below a

certain threshold (0.2). In Equation 4.1, Pchild and Cchild, respectively, refer to

the child nodes of treeP and treeC . The blue lines in Figure 4.2 represent the

expanded alignments between subtrees.

score(treeP, treeC) =
# alignments

# Pchild + # Cchild

(4.1)

Based on the alignment results, the system extracted pairs of presentation

mathematical terms and their associated content terms. A mutually aligned

presentation subtree and content subtree form a pair. This study will consider

only mathematical terms containing mi (e.g. tan−1, Ai, Ai(0), Γ, Γ(2
3
)). Only

terms associated with ambiguous mapping are retained to generate training and

testing data.

4.2 Mathematical Sense Disambiguation System

4.2.1 Overview

Disambiguation of mathematical elements is an important component in the se-

mantic enrichment system. Basic methods for dealing with ambiguities so far were

rule-based [McKain, 2013; Miller, 2013]. The rule-based approach is of course

generally not able to derive meaning from arbitrary Presentation MathML ex-

pressions. The statistics-based approach resolves ambiguities based on the prob-

abilities Nghiem et al. [2013a], and thus gets better results than the rule-based

system. This chapter enhances the statistics-based approach by combining it with

a disambiguation component.

So far, there has been limited discussion about the contribution of surrounding

text to mathematical element disambiguation problem. It is becoming increas-
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ingly difficult to ignore the surrounding text of mathematical expressions. For

example, the token δ can be mapped to KroneckerDelta if its surrounding text

contains the word ‘Kronecker delta’. It is difficult to disambiguate using only

the presentation of mathematical expression. The combination of mathematical

expression itself and its surrounding text can lead to improvements in disam-

biguation process.

The aim of this section is to examine and solve the ambiguity when map-

ping Presentation MathML elements to their Content elements. This section also

attempts to find the contribution of surrounding text to mathematical element

disambiguation problem. A Support Vector Machine [Cortes & Vapnik, 1995]

(SVM) learning model is used for MathML Presentation token element (mi) dis-

ambiguation. Both presentation of mathematical expression and its surrounding

text are encoded in a feature vector used in SVM. To evaluate the efficacy of

the proposed method, the system is incorporated into an SMT-based semantic

enrichment system.

The problem is formulated as follows: given a Presentation MathML expres-

sion and its surrounding text, can we interpret its Content MathML expression?

This chapter provides contributions in three main areas of mathematical semantic

enrichment problem. First, it shows that combination of a disambiguation com-

ponent and the SMT-based system improves the system’s performance. Second,

it shows that the text surrounding the mathematical expressions contributes to

the disambiguation process. Third, it shows that the name of the category that

a mathematical expression belongs to is the most important text feature for dis-

ambiguation.
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4.2.2 Method

The system has two phases, a training phase and a running phase, and consists

of three main modules.

• Statistical-based rule extraction: Extracts rules for translation, given the

training data. Two types of rules are established: segmentation rules and

translation rules. Each rule is associated with its probability.

• SVM-based disambiguation: An SVM training algorithm builds a model

that assigns to identifiers (mi) their correct content. Features are extracted

from both the presentation of mathematical expressions and their surround-

ing text.

• Translation: The input of this module includes a Presentation MathML ex-

pression, a set of rules for translation, and the output from the disambigua-

tion module. This module translates Presentation into Content MathML

expression.

Figure 4.3 shows the system framework.

4.2.2.1 Statistical-based rule extraction

The rules for translation were extracted according to the procedure in chapter 3.

Given a set of training mathematical expressions in MathML parallel markup,

two types of rules are extracted: segmentation rules and translation rules. Trans-

lation rules are used to translate (sub)trees of Presentation MathML markup to

(sub)trees of Content MathML markup. Segmentation rules are used to combine

and reorder the (sub)trees to form a complete tree. The output of this module

is a set of segmentation and translation rules, each rule is associated with its

probability.
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Figure 4.3: System Framework

4.2.2.2 SVM disambiguation

An mi token element in MathML presentation markup can be translated into

many different elements in MathML content markup. In this section, it is as-

sumed that one mi element can be translated into one of a limited predefined

set of Content elements. Given an mi element, the system uses an SVM training

algorithm to build a model that assigns to its correct Content element. When

translating, each of the Presentation mi elements will be disambiguated before

generating Content MathML expressions. The accuracy of the SVM disambigua-

tion is a crucial preprocessing step for a high-quality MathML Presentation to

Content translation.

The system used the alignment output of GIZA++1 [Och & Ney, 2003] to gen-

erate training and testing data for the disambiguation problem. Given a training

data consists of several parallel markup expressions, GIZA++ was used to align

the Presentation terms to the Content terms. From this alignment results, the

system extracts pairs of Presentation mi elements and their associated Content

1https://code.google.com/p/giza-pp/
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elements. Only mi elements that have ambiguities in their translation are kept to

generate training and testing data. Table shows 4.1 the examples of Presentation

mi elements and their associated Content elements.

Table 4.1: Presentation mi elements and their associated Content elements
Presentation

elements
Content elements

<mi> σ </mi>
<ci>Weierstrass
Sigma</ci>
<ci>Divisor Sigma</ci>
<ci> σ </ci>

<mi> µ </mi> <ci>MoebiusMu</ci>
<ci> µ </ci>

<mi>H</mi> <ci>StruveH</ci>
<ci>Harmonic
Number</ci>
<ci>Hankel H1</ci>
<ci>Hankel H2</ci>
<ci>Hermite H2</ci>
<ci>H</ci>

<mi>y</mi> <ci>Bessel Y Zero</ci>
<ci>Spherical Bessel
Y</ci>
<ci>y</ci>

For each mathematical expression, an mi element has only one correct transla-

tion. In other mathematical expressions, the same mi element might have another

correct translation. Assume that an mi element e has n ways of translating from

Presentation into Content MathML. For each mathematical expression, the sys-

tem creates one positive instance by combining e and its correct translation. The

system also creates n − 1 negative instances by combining e and its incorrect

translations.

The features used in the SVM disambiguation may be divided into two main

groups: Presentation MathML features and surrounding text features. Presenta-

tion MathML features are extracted from the Presentation MathML markup of
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the mathematical expression. Surrounding text features are extracted from the

text surrounding the mathematical expression. The category which the mathe-

matical expression belongs to is also used. Table 4.2 shows the features used for

classification.

Table 4.2: Features used for classification
Feature Description

Presenta-
tion

MathML
Only child

Is it the only child of its
parent node

feature Preceded by mo
Is it preceded by an <mo>
node

Followed by mo
Is it followed by an <mo>
node

&#8289;
Is it followed by a Function
Application

Parent’s name
The name of its parent
node

Name The name of the identifier

Text
feature

Category
Relation between category
name and candidate
translation

Unigram
Vector represents unigram
feature

Bigram
Vector represents bigram
feature

Trigram
Vector represents trigram
feature

Candidate translation
One of n candidate
translations of the mi
element

There were six Presentation MathML features in this experiment. The first

one determines whether the mi element is the only child of its parent. The

relation between the mi element and its surrounding mo elements is encoded in

the following three features. The last two features represent the name of the mi

element and its parent. Among these features, the name of the mi element is the
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most important feature.

Among the text features, the first one is the category that mathematical

expression belongs to. In mathematical resource websites, such as the Wolfram

Functions Site, mathematical expressions belong to different categories. However

we usually do not have the text surrounding these mathematical expressions.

The system then can calculate the relation between the category name and the

Content translation of each mi element. The relation has one of three values: the

same as the Content translation, contains the Content translation, or does not

contain the Content translation.

In case there are available the text surrounding or the description of the

mathematical expressions, the system can use n-gram features [Cavnar & Trenkle,

1994]. The system uses unigram, bigram and trigram features in this study.

These features are implemented as the vectors containing the n-grams which

appear in the training data. The system will assign each instance into one of

two classes, depending on the candidate translation. The class is ‘true’ if the

candidate translation is the correct Content translation of the mi element, and

‘false’ otherwise.

Each training instance of SVM learning is a vector which contains Presenta-

tion MathML features, text features, guessed meaning, and a Boolean variable

indicates whether the guessed class is correct or not. The number of text fea-

tures are depending on the dataset. For the Wolfram Functions Site data, each

training instance contains one category feature. For the ACL data, each training

instance contains three n-gram features: unigram, bigram and trigram features.

When running, the system generates some meanings for each mi term and SVM

will decide which meaning is the correct meaning. Since the binary decision is

made independently for each MathML term, SVM might decide that there are

two or more correct meanings for one term. In such a case, the system choose
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the meaning which has higher probability.

4.2.2.3 Translation

After disambiguation, the result is used to enhance the semantic enrichment of a

statistical-machine-translation-based system. The input of this module includes

a Presentation MathML expression, a set of rules for translation, and the out-

put from the disambiguation module. The output of this module is the Content

MathML expression which represents the meaning of the Presentation MathML

expression. If there is only one mapping from a Presentation element, that Con-

tent element is chosen. If the disambiguation module accepts more than two

mappings from a Presentation element, the Content element with higher proba-

bility is chosen.

4.3 Evaluation

4.3.1 Mathematical Sense Disambiguation Data Creation

4.3.1.1 Evaluation Setup

For these experiments, the data was collected by using parallel MathML markup

expressions from the Wolfram Functions Site as described in 3. All mathematical

expressions on WFS are available in MathML parallel markup. For simplicity,

the system excluded long expressions containing more than 30 leaf nodes. After

that, there is a total of 20,314 mathematical expressions on the dataset.

4.3.1.2 Evaluation Results

Evaluation began by investigating the quality of the generated MTSD data. Using

WFS data, the system generated 2,925 different mathematical terms. There are
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390 distinct ambiguous terms and 2,535 distinct unambiguous terms. Of the

ambiguous terms, 90 distinct terms are single mi elements. There are 67,987

instances contain all the ambiguous terms in the data. Table 4.3 shows the

generated data.

Table 4.3: Generated data

Type
Distinct

term
Ambiguous mi

terms
90

Other ambiguous
terms

300

Unambiguous terms 2,535

The table shows that only 14% of the extracted mathematical terms are am-

biguous. One possible explanation: in WFS data, people tend to use one meaning

for a fixed notation. Another: the system depends on the quality of the alignment

output. The aligner may ignore an alignment if the probability of the alignment is

low. This also causes errors in sense extraction if a sub-tree is aligned with a sin-

gle term but the links are not fully connected: for example, tan−1 (Presentation)

and arctan (Content).

Within the scope of this study, the system focused on the single mi element

terms. They was chosen because of the mi element term often contains more

ambiguities than other terms: number (mn) and operator (mo) terms. The same

method can be expanded to encompass additional ambiguous terms. These single

mi element terms are manually verified to assess the quality of the generated

MTSD data. Of 247 extracted senses, 197 were correct, an accuracy rate of

79.76% for the generated data. Each mi element term has an average of 2.74

senses. The term with the most senses was <mi>C</mi>, which had six senses:

Catalan, CatalanNumber, C, GegenbauerC, Cyclotomic, and FresnelC.
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Next, evaluation continues by setting up an experiment using libSVM1 in the

Weka toolkit [Hall et al., 2009] to examine sense disambiguation results for each

presentation MathML term. The data which was used contained the 90 distinct

ambiguous mi terms. Evaluation compared the results for systems using different

training data: automatically extracted data and manually verified data. The

system also compared the results of this approach to the ‘most frequent’ method,

which chooses the interpretation of highest probability. Since in the real world

not every mathematical expression is associated with its category name, another

experiment is also set up to assess the performance of this approach with and

without the ‘category’ feature.

The system built two models using nine-tenths of the automatically extracted

data and nine-tenths of the manually verified data. Both systems set aside one-

tenth of the verified data for testing. Classification accuracies were computed

over the set of binary decisions. The default libSVM parameters are used. Table

4.6 gives the disambiguation accuracy for ambiguous mi terms.

Table 4.4: Sense disambiguation accuracy for ambiguous mi terms

Method
Ex-

tracted
data

Verified
data

All feature 91.40 93.94
Without
‘category’
feature

91.22 92.41

Most frequent 85.01 89.76

The results in Table 4.6 indicate reasonable results for the automatically ex-

tracted data. The proposed approach gained improvements ranging from 1.2 to

2.5 percent by building a model using manually verified data. The classifier with

‘category’ feature slightly outperformed the classifier without the ‘category’ fea-

1http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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ture. Overall, the results here were approximately 4 to 7 percent more accurate

than for the ‘most frequent’ method. The explanation for the relatively high

scores for the ‘most frequent’ method is that mathematical elements often have

a preferred meaning.

The results suggest we can make direct use of automatically generated data

when working on the MTSD problem. For mathematical expressions in MathML

parallel markup, the generated data is good enough without manual checking.

The results also show that the text feature-i.e., the category of the mathematical

term-contributes to system performance. While this improvement is modest, it

suggests that features aside from the mathematical term itself can be helpful.

However, the system works well even without this feature.

4.3.2 Mathematical Sense Disambiguation System

The first dataset for the experiments is the Wolfram Functions site [Wolfram,

2013]. This site was created as a resource for educational, mathematical, and sci-

entific communities. All formulas on this site are available in both Presentation

MathML and Content MathML format. The only text information on this dataset

is the function category of each mathematical expression. The experiments used

136,685 mathematical expressions divided into seven categories: elementary func-

tions, constants, Bessel-type functions, integer functions, polynomials, Gamma

Beta Erf, and polynomials.

The second dataset for the experiments is the Archives of the Association for

Computational Linguistics Corpus [Kan, 2013] (ACL-ARC). It contains mathe-

matical expressions extracted from scientific papers in the area of Computational

Linguistics and Language Technology. Currently, evaluation use mathematical

expressions drawn from 20 papers which were selected from this dataset. All

mathematical expressions are manually annotated with MathML parallel Markup
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and their textual descriptions. Out of 2,065 mathematical expressions in the

dataset, only 648 expressions have their own description. Table 4.5 shows exam-

ples of mathematical expressions and their description in ACL-ARC dataset.

The annotation design for linking mathematical formulas to natural language

descriptions in the surrounding text are reported in [Kristianto et al., 2012].

There are two types of description: a short description and a full description.

Short description specifies the type and category of the mathematical expres-

sions. While full description contains the characteristics of the formula within

the category. In our experiment, the full descriptions are used since they contains

more information for disambiguation.

The evaluation was done using two metrics: accuracy score for disambiguation

and tree edit distance rate score for semantic enrichment. The accuracy score of

disambiguation is the ratio of correctly classified instances to total instances. The

tree edit distance rate (TEDR) score [Snover et al., 2006] is defined as the ratio

of (1) the minimal cost of transforming the generated into the reference Content

MathML tree using edit operations and (2) the maximum number of nodes of the

generated and the reference Content MathML tree. Evaluation also compares the

semantic enrichment results to the results of the system in chapter 3.

First evaluation set up an experiment to examine the disambiguation result

on each Presentation MathML mi element. In this experiment, three systems are

compared. The first system uses both Presentation MathML and text features.

The second system uses only Presentation MathML features. The last system

chooses the interpretation with highest probability. Table 4.6 shows the results

of the disambiguation component.

The results in Table 4.6 show that disambiguation result using SVM out-

performed the ‘most frequent’ method. The reason ‘most frequent’ method got

high scores is because mathematical elements often have a preferred meaning.
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Table 4.5: Examples of mathematical expressions and their description in ACL-
ARC dataset

Textual description
MathML Presentation

expression
MathML Content

expressions
a word to be
translated

<mrow> <mi>w</mi>
</mrow>

<ci>w</ci>

a word in a
dependency
relationship

<mrow> <mi>w</mi>
</mrow>

<ci>w</ci>

a matrix
<mrow> <mi>t</mi>
</mrow>

<ci>t</ci>

a similarity matrix
which specifies the
similarity between
individual elements

<mrow> <mi>sim</mi>
</mrow>

<ci>sim</ci>

argument

<mrow> <msub>
<mi>S</mi> <msub>
<mi>j</mi>
<mi>i</mi> </msub>
</msub> </mrow>

<apply> <selector
/> <ci>S</ci>
<apply> <selector
/> <ci>j</ci>
<ci>i</ci>
</apply> </apply>

The LM probabilities

<mrow> <mi>P</mi>
<mo>e</mo> <mrow>
<mo>(</mo> <mrow>
<mi>v</mi>
<mo> | </mo> <mrow>
<mi>Parent</mi>
<mo>e</mo> <mrow>
<mo>(</mo>
<mi>v</mi>
<mo>)</mo> </mrow>
</mrow> </mrow>
<mo>)</mo> </mrow>
</mrow>

<apply>
<ci>P</ci>
<apply>
<ci> | </ci>
<ci>v</ci>
<apply>
<ci>Parent</ci>
<ci>v</ci>
</apply> </apply>
</apply>
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Table 4.6: Disambiguation accuracy

Category

Num-
ber of

in-
stances

With
text
fea-

tures

With-
out
text
fea-

tures

Most
fre-

quent

ACL-ARC 2,996 92.9573 93.7583 93.4246
Bessel-
TypeFunctions

1,352 92.8254 92.3077 86.0947

Constants 714 91.1765 90.3361 83.7535
ElementaryFunc-
tions

6,073 96.1963 96.3774 89.6427

GammaBetaErf 3,816 95.2830 94.4706 78.0136
Hypergeometric-
Functions

72,006 97.5571 97.0697 88.0746

IntegerFunctions 11,955 95.8009 95.1652 90.0711
Polynomials 5,905 98.2388 95.3091 87.3328
All WFS Data 320,726 98.9243 98.4398 92.7025

The systems that used only Presentation MathML features achieved even better

scores, because they use surrounding mathematical elements. It is interesting to

note that on the ACL-ARC data, the ‘most frequent’ system get higher score

than the system with text features. Overall, on WFS data, the system gained 5

to 16 percent accuracy improvements.

The systems that also used text features outperform the systems that used

only Presentation MathML features in most of WFS categories. This result may

be explained by the fact that the category of a mathematical expression is closely

related to that expression. Contrary to expectations, this study did not find any

improvement in ACL-ARC data. It seems possible that these results are due to

the lack of training data and the sparseness of n-gram features. This finding was

unexpected and suggests that in order to use n-gram text features, more data is

needed.

Second, evaluation set up an experiment to examine the semantic enrichment
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Table 4.7: Semantic enrichment TEDR

Category

Num-
ber of
expres-

sion

With
text

feature

With-
out
text

feature

Most
fre-

quent

Bessel-
TypeFunctions

701 18.0604 18.0604 18.4118

Constants 555 33.9016 34.0328 34.6230
ElementaryFunc-
tions

9,537 7.4879 7.4809 7.7343

GammaBetaErf 1,558 17.2308 17.2851 18.4796
Hypergeometric-
Functions

9,347 49.4678 49.4797 49.6902

IntegerFunctions 1,175 20.5292 20.5874 20.9945
Polynomials 727 19.6309 19.7987 20.2685
All WFS Data 23,600 29.0707 29.0869 29.2769

result. The results from disambiguation component are used in the semantic

enrichment system. This evaluation compares three systems: with text feature,

without text feature, and the proposed system in chapter 3 which used ‘most fre-

quent’ method. This experiment uses 90 percent of expressions for training both

SVM-based disambiguation and translation components. The evaluation uses the

other 10 percent of expressions for testing. Table 4.7 shows the translation result.

The results in Table 4.7 show that combining disambiguation and statisti-

cal machine translation improved the system. Expressions in ‘Gamma Beta Erf’

category benefit from the disambiguation module the most with 1.2 percent er-

ror rate reduction. Less ambiguity in elementary functions might lead to lower

performance in ‘Elementary Functions’ category. This part did not show the eval-

uation result on ACL-ARC data because the disambiguation result was almost

the same as the ‘most frequent’ method. Overall, on WFS data, the proposed

approach achieved 0.2 to 1.2 percent error rate reduction.
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Chapter 5

Content-based mathematical

search

This chapter presents a description of a method for content-based mathemati-

cal search system and the contribution of semantic enrichment of mathematical

expressions to that system.

5.1 Overview

The issue of retrieving mathematical content has received considerable critical

attention Aizawa et al. [2013]. Mathematical content is a valuable information

source for many users and is increasingly available on the Web. Retrieving this

content is becoming more and more important.

Conventional search engines, however, do not provide a direct search mech-

anism for mathematical expressions. Although these search engines are useful

to search for mathematical content, these search engines treat mathematical ex-

pressions as keywords and fail to recognize the special mathematical symbols and

constructs. As such, mathematical content retrieval remains an open issue.
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Some recent studies have proposed mathematical retrieval systems based on

the structural similarity of mathematical expressions Altamimi & Youssef [2008];

Miner & Munavalli [2007]; National Institute of Standards and Technology [2013];

Springer [2013]; Youssef [2005]; Youssef & Altamimi [2007]. However, in these

studies, the semantics of mathematical expressions is still not considered. Be-

cause mathematical expressions follow highly abstract and also rewritable rep-

resentations, structural similarity alone is insufficient as a metric for semantic

similarity.

Other studies Adeel et al. [2008]; Kohlhase & Prodescu [2013]; Kohlhase & Su-

can [2006]; Nguyen et al. [2012]; Wolfram [2013]; Yokoi & Aizawa [2009] have ad-

dressed semantic similarity of mathematical formulae, but this required content-

based mathematical formats such as content MathML Ausbrooks et al. [2010] and

OpenMath Buswell et al. [2004]. Because almost all mathematical content avail-

able on the Web is presentation-based, these studies used two freely available

toolkits, SnuggleTeX McKain [2013] and LaTeXML Miller [2013], for semantic

enrichment of mathematical expressions. However, much uncertainty remains

about the relation between the performance of mathematical search system and

the performance of the semantic enrichment component.

Based on the observation that mathematical expressions have meanings hid-

den in their representation, the primary goal of this chapter is making use of

mathematical expressions’ semantics for mathematical search. To accomplish

this problem of retrieving semantically similar mathematical expressions, we use

the results of state-of-the-art semantic enrichment methods. This chapter seeks

the answers to two questions.

• What is the contribution of semantic enrichment of mathematical expres-

sions to content-based mathematical search systems?

• Which one is better: presentation-based or content-based mathematical
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search?

To implement a mathematical search system, various challenges must be over-

come. First, in contrast to text which is linear, mathematical expressions are

hierarchical: operators have different priorities, and expressions can be nested.

The similarity between two mathematical expressions is decided first by their

structure and then by the symbols they contain Kamali & Tompa [2009, 2013].

Therefore, current text retrieval techniques cannot be applied to mathematical

expressions because they only consider whether an object includes certain words.

Second, mathematical expressions have their own meanings. These meanings can

be encoded using special markup languages such as Content MathML or Open-

Math. A few existing mathematical search systems also make use of this informa-

tion. Such markup, however, is rarely used to publish mathematical knowledge

related to the Web Kamali & Tompa [2009]. As a result, we were only able

to use presentation-based markup, such as Presentation MathML or TEX, for

mathematical expressions.

This chapter presents an approach to a content-based mathematical search sys-

tem that uses the information from semantic enrichment of mathematical expres-

sions system. To address the challenges described above, the proposed approach

is described below. First, the approach used Presentation MathML markup, a

widely used markup for mathematical expressions. This makes our approach more

likely to be applicable in practice. Second, a semantic enrichment of mathemat-

ical expressions system is used to convert mathematical expressions to Content

MathML. By getting the underlying semantic meanings of mathematical expres-

sions, a mathematical search system is expected to yield better results.
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5.2 Methods

The framework of the system is shown in Fig. 5.1. First, the system collects

mathematical expressions from the web. Then the mathematical expressions

are converted to Content MathML using a semantic enrichment of mathematical

expressions system described in Chapter 3. Indexing and ranking the mathemat-

ical expressions are done using Apache Solr system [Apache, 2013] following the

method described in Topic et al. [2013]. When a user submits a query, the system

also converts the query to Content MathML. Then the system returns a ranked

list of mathematical expressions corresponding to the user’s queries.

Content MathML expressions

Presentation MathML
expressions

Indexing

Semantic
Enrichment

Ranking

Figure 5.1: System Framework.

5.2.1 Data collection

Performance analysis of a mathematical search system is not an easy task because

few standard benchmark datasets exist, unlike other more common information

retrieval tasks. Mathematical search systems normally build their own mathe-

matical search dataset for evaluation by crawling and downloading mathematical
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content from the web. Direct comparison of the proposed approach with other

systems is also hard because they are either unavailable or inaccessible.

Recently, simpler and more rapid tests of mathematical search system have

been developed. The NTCIR-10 Math Pilot Task Aizawa et al. [2013] was the

initial attempt to develop a common workbench for mathematical expressions

search. Currently, the NTCIR-10 dataset contains 100,000 papers and 35,000,000

mathematical expressions from ArXiv Cornell University Library [2013] which

includes Content MathML markup. The task was completed as an initial pilot

task showing a clear interest in the mathematical search. However, the Content

MathML markup expressions are generated automatically using the LaTeXML

toolkits. Therefore, this dataset is unsuitable to serve as the gold standard for

the research described in the present chapter.

As Wolfram Functions Site Wolfram [2013] is the only website that provides

high-quality Content MathML markup for every expression, data for the search

system was collected from this site. The Wolfram Functions Site data have nu-

merous attractive features, including both Presentation and Content MathML

markups, and category for each mathematical expression. In the experiment,

the performance of semantic enrichment of mathematical expressions component

will be compared directly with the system performance obtained using correct

Content MathML expressions on Wolfram Functions Site data.

5.2.2 Semantic enrichment of mathematical expressions

The mathematical expressions were preprocessed according to the procedure

described in Chapter 3. Given a set of training mathematical expressions in

MathML parallel markup, rules of two types are extracted: segmentation rules

and translation rules. These rules are then used to convert mathematical expres-

sions from their presentation to their content form. Translation rules are used
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to translate (sub)trees of Presentation MathML markup to (sub)trees of Con-

tent MathML markup. Segmentation rules are used to combine and reorder the

(sub)trees to form a complete tree.

After using the semantic enrichment of mathematical expressions system to

convert the expressions into content MathML, we use these converted expressions

for indexing. The conversion is not a perfect conversion, so there are terms that

could not be converted. The queries submitted to the search system are also

processed using the same conversion procedure.

5.2.3 Indexing

The indexing step was prepared by adapting the procedure used by Topić et.

al Topic et al. [2013]. This procedure used pq-gram-like indexing for Presentation

MathML expressions. We modified it for use with Content MathML expressions.

There are three fields used to encode the structure and contents of a mathematical

expression: opaths, upaths, and sisters. Each expression is transformed into

a sequence of keywords across several fields. opaths (ordered paths) field gath-

ers the XML expression tree in vertical paths with preserved ordering. upaths

(unordered paths) works the same as opaths without the ordering information.

sisters lists the sister nodes in each subtree. Figure 5.2 presents an example

of the terms used in the index of the expression sin(π
8
):< apply >< sin/ ><

apply >< times/ >< pi/ >< apply >< power/ >< cntype = “integer” > 8 <

/cn >< cntype = “integer” > −1 < /cn >< /apply >< /apply >< /apply >.

5.2.4 Searching

In the mathematical search system, users can input mathematical expressions

using presentation MathML as a query. The search system then uses the semantic

enrichment of mathematical expressions module to convert the input expressions
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opaths:
1#1#apply 1#1#1#sin 1#1#2#apply 1#1#2#1#times 1#1#2#2#pi 1#1#2#3#apply

1#1#2#3#1#power 1#1#2#3#2#cn#8 1#1#2#3#3#cn#-1

opaths:
1#apply 1#1#sin 1#2#apply 1#2#1#times 1#2#2#pi 1#2#3#apply 1#2#3#1#power

1#2#3#2#cn#8 1#2#3#3#cn#-1

opaths:
apply 1#sin 2#apply 2#1#times 2#2#pi 2#3#apply 2#3#1#power 2#3#2#cn#8

2#3#3#cn#-1

opaths: sin

opaths: times

opaths: pi

opaths: apply 1#power 2#cn#8 3#cn#-1

opaths: power

opaths: cn#8

opaths: cn#-1

upaths:
##apply ###sin ###apply ####times ####pi ####apply #####power #####cn#8

#####cn#-1

upaths:
#apply ##sin ##apply ###times ###pi ###apply ####power ####cn#8

####cn#-1

upaths:
apply #sin #apply ##times ##pi ##apply ###power ###cn#8 ###cn#-1

upaths: sin

upaths: apply #times #pi #apply ##power ##cn#8 ##cn#-1

upaths: times

upaths: pi

upaths: apply #power #cn#8 #cn#-1

upaths: power

upaths: cn#8

upaths: cn#-1

sisters: power cn#8 cn#-1

sisters: times pi apply

sisters: sin apply

sisters: apply

Figure 5.2: Index terms of the expression sin(π
8
).
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opaths:
1#1#apply 1#1#1#sin 1#1#2#apply 1#1#2#1#times 1#1#2#2#pi 1#1#2#3#apply

1#1#2#3#1#power 1#1#2#3#2#cn#8 1#1#2#3#3#cn#-1

upaths:
##apply ###sin ###apply ####times ####pi ####apply #####power #####cn#8

#####cn#-1

upaths:
#apply ##sin ##apply ###times ###pi ###apply ####power ####cn#8

####cn#-1

sisters: power cn#8 cn#-1

sisters: times pi apply

sisters: sin apply

sisters: apply

Figure 5.3: Query terms of the expression sin(π
8
).

to Content MathML. Figure 5.3 presents an example of the terms used in the

query of the expression sin(π
8
). Matching is then performed using eDisMax, the

default query parser of Apache Solr. Ranking is also done using the default

modified TF/IDF scores and length normalization of Apache Solr.

5.3 Experimental Results

5.3.1 Evaluation Setup

We collected mathematical expressions for evaluation from the Wolfram Func-

tion Site. At the time collected, there were more than 300,000 mathematical

expressions on this site. After collection, we filtered out long expressions contain-

ing more than 20 leaf nodes to speed up the semantic enrichment because the

processing time increases exponentially with the length of the expressions. The

number of mathematical expressions after filtering is approximately 20,000. Pre-

sumably, this number is adequate for evaluating the mathematical search system.

Evaluation was done by comparing three systems:
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• Presentation-based search with Presentation MathML (PMathML): index-

ing and searching are based on the Presentation MathML expressions.

• Content-based search with semantic enrichment (SE): indexing and search-

ing are based on the Content MathML expressions. The Content MathML

expressions are extracted automatically using semantic enrichment module.

• Content-based search with correct Content MathML (CMathML): indexing

and searching are based on the Content MathML expressions. The Content

MathML expressions are those from the Wolfram Function Site.

We used the same data to train the semantic enrichment module by 10-fold

cross validation method. The data is divided into 10 folds. The semantic enrich-

ment result of each fold was done by using the other 9 folds as training data.

5.3.2 Evaluation Methodology

We used “Precision at 10” and “normalized Discounted Cumulative Gain” met-

rics to evaluate the results. In a large-scale search scenario, users are interested in

reading the first page or the first three pages of the returned results. “Precision

at 10” (P@10) has the advantage of not requiring the full set of relevant math-

ematical expressions, but its salient disadvantage is that it fails to incorporate

consideration of the positions of the relevant expressions among the top k. In

a ranked retrieval context, normalized Discounted Cumulative Gain (nDCG) as

given by Equation 5.1 is a preferred metric because it incorporates the order of

the retrieved expressions. In Equation 5.1, Discounted Cumulative Gain (DCG)

can be calculated using the Equation 5.2, where reli is the graded relevance of

the result at position i. Ideal DCG (IDCG) is calculable using the same equation,

but IDCG uses the ideal result list which was sorted by relevance.
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nDCGp =
DCGp

IDCGp

(5.1)

DCGp = rel1 +

p∑
i=2

reli
log2(i)

(5.2)

For performance analysis of the mathematical search system, we manually

created 15 information needs (queries) and used them as input queries of our

mathematical search system. The queries are created based on NTCIR queries

with minor modification. Therefore, the search system always gets at least one

exact match. Table 5.1 shows the queries we used. The top 10 results of each

query were marked manually as relevant (rel = 1), non-relevant (rel = 0), or

partially relevant (rel = 0.5). The system then calculates P@10 and an nDCG

value based on the manually marked results.

Table 5.1: Queries.
No. Query

1
∫∞
0
x dx

2 x2 + y2

3
∫∞
0
e−x

2
dx

4 arcsin(x)
5 k2

6 cosh ez+sinh ez
e

7 RzΨ
ν(z), ∞̃

8
∫

ad+bz

z
dz

9 limν→∞
Lα+ν
Lν

10 BPzB
µ
ν (z)

11 ν ∈ N
12 Ψν(z)
13 log(z + 1)
14 Hn(z)
15 1

π

∫ π
0

(cos tn− z sin t)dt
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5.3.3 Experimental Results

Comparisons among the three systems were made using P@10 and nDCG scores.

Table 5.2 and figure 5.5 show the P@10 and nDCG scores obtained from the

search. Figure 5.4 depicts the top 10 precision of the search system. The x axis

shows the k number, which ranges from 1 to 10. The y axis shows the precision

score. The precision score decreased, while k increased, which indicates that the

higher results are more relevant than lower results.

Table 5.2: nDCG and Precision at 10 scores of the search systems.

Method
nDCG

P@10

PMathML 0.941 0.707
CMathML 0.962 0.747
SE 0.951 0.710

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10

Precision at k

PMathML CMathML SE

Figure 5.4: Top 10 precision of the search system.

In the experiment, a strong relation between semantic enrichment of math-

ematical expressions and content-based mathematical search system was found.

As shown in Chapter 3, the error rate of semantic enrichment of mathemati-

cal expressions module is around 29 percent. With current performance, using
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0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

PMathML

CMathML

SE

P@10 nDCG

Figure 5.5: Comparison of different systems.

this module for the mathematical search system still improves the search perfor-

mance. The system gained 1 percent in nDCG score and 0.3 percent in P@10

score compared to the Presentation MathML-based system. Overall, the system

using perfect Content MathML yielded the highest results. In direct comparison

using nDCG scores, the system using semantic enrichment is superior to the Pre-

sentation MathML-based system, although not by much. Out of 15 queries, the

semantic enrichment system showed better results than Presentation MathML-

based system in 7 queries, especially when the mathematical symbols contain

specific meanings, e.g. Poly-Gamma function (query 10), Hermite-H function

(query 14). In case the function has specific meaning but there is no ambiguity

representing the function, e.g. Legendre-Q function (query 12), both systems give

similar results. Presentation MathML system, however, produced better results

than semantic enrichment systems in 5 queries when dealing with elementary

functions (query 2, 8, 15), logarithm (query 13), and trigonometric functions

(query 6) because of its simpler representation using Presentation MathML. One

exception is the case of query 4, when there is more than one way to represent an

expression with a specific meaning, e.g. sin−1 and arcsin, Presentation MathML
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system gives unstable results.

This finding, while preliminary, suggests that we can choose either search

strategy depending on the situation. We can use Presentation MathML system for

elementary functions or when there is no ambiguity in the Presentation MathML

expression. Otherwise, we can use a Content MathML system while dealing with

functions that contain specific meanings. Another situation in which we can use

a Content MathML system is when there are many ways to present an expression

using Presentation MathML markup.

The average time for searching for a mathematical expression is less than one

second on our Xeon 32 core 2.1 GHz 32 GB RAM server. The indexing time,

however, took around one hour for 20,000 mathematical expressions. Because

of the unavailability of standard corpora to evaluate content-based mathemati-

cal search systems, the evaluation at this time is quite subjective and limited.

Although this study only uses 20,000 mathematical expressions for the evalua-

tion, the preliminary experimentally obtained results indicated that the semantic

enrichment approach showed promise for content-based mathematical expression

search.
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Chapter 6

Conclusion

This dissertation discussed the problems posed by the semantic enrichment of

mathematical expressions and its application: content-based mathematical search.

The semantic enrichment approach is based on statistical machine translation for

translating Presentation MathML expressions into Content MathML expressions.

The structural difference between Presentation and Content MathML is solved

by introducing new segmentation rule. The proposed approach shows a signifi-

cant improvement over a prior rule-based system. Experimental results confirm

it should aid in the automatic understanding of mathematical expressions.

This dissertation also presents an approach for creating training data for

the mathematical term sense disambiguation problem. Combining word-to-word

alignment models and heuristic alignments, this approach shows that we can

generate reasonably accurate mathematical term sense disambiguation data us-

ing available parallel corpora. The data generated can then be used to train a

classifier that allows automatic sense-tagging of mathematical expressions. This

study has shown that the disambiguation component using presentation features

improved the system performance. The use of text features, especially the cate-

gory of each expression, also played an important role in the disambiguation of
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mathematical elements. The sense disambiguation module then can be incorpo-

rated with the statistical translation system to improve the overall performance of

semantic enrichment of mathematical expressions problem. The approach, which

combines statistical machine translation and disambiguation component, shows

promise. Experimental results of this study showed that the proposed system

achieves improvements over prior systems.

Mathematical notations are context-dependent, so to generate the correct

semantic output, we must consider not just the surrounding expressions but also

the document containing the notations. This dissertation considered only the

first kind of context information. This being merely a first attempt at translation

from Presentation to Content MathML using machine learning methods, room for

improvement certainly remains. Future efforts should seek to expand the systems

capacity to handle all mathematical notations. The system currently handles a

limited range of mathematical notations, potential improvements for semantic

enrichment of mathematical expressions include the following:

• Expanding training data so the system can cover more mathematical nota-

tions from different categories.

• Incorporating the information implicit in surrounding mathematical expres-

sions; for example, definitions or other mathematical expressions.

• Improving alignment accuracy. Alignment errors can generate errors in the

subsequent steps of the translation, such as rule extraction.

In contrast to natural language text, mathematical expressions require specific

processing methods. More work needs to be done to establish the features best-

suited to mathematical terms in a larger dataset. An extension of the model

with more text and context features, in addition to the category feature, should

prove interesting. Since the alignments between presentation and the content
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tree affect the generated data, improving alignment accuracy may boost system

performance.

This research has raised many questions in need of further investigation. One

question is finding and combining new features, such as the style of the font,

for the disambiguation task. Another possible improvement is making use of co-

occurrence of mathematical elements in the same document. This dissertation

only disambiguated lexical ambiguities of mathematical expressions. Structural

ambiguities should also be considered to achieve better results. The evidence

from this study suggests that in a small dataset, descriptions of mathematical

expressions did not improve the system performance. Further work needs to be

done to establish whether descriptions of mathematical expressions contribute to

the the task in a larger dataset.

By using semantic information obtained from semantic enrichment of math-

ematical expressions module, the content-based mathematical search system has

shown promising results. The experimental results confirm that this information

is helpful to the mathematical search. However, this is only a first step; many

important issues remain for future studies. Using an expression semantic markup

is only one way of considering the semantic meaning of the formula. There are

other valuable information needs to be considering as well, such as the description

of the formula and its variables.
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