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(iii) Abstract

We develop a star-network of connections between a central city and peripheral
villages and analyze the epidemic dynamics of a vector-borne disease as influenced by
daily commuters. We obtain an analytical solution for the global basic reproductive
number R, and investigate its dependence on key parameters for disease control. We
find that in a star-network topology the central hub is not always the best place to focus
disease intervention strategies. Disease control decision is sensitive to the number of
commuters from villages to the city as well as the relative densities of mosquitoes
between villages and city. With more commuters it becomes important to focus on the
surrounding villages. Commuting to the city paradoxically reduces the disease burden
even when the bulk of infections are in the city because of the resulting diluting effects
of transmissions with more commuters. This effect decreases with heterogeneity in host
and vector population sizes in the villages due to the formation of peripheral epicenters
of infection. We suggest that to ensure effective control of vector-borne diseases in star
networks of village and cities it is also important to focus on the commuters and where

they come from.



1. Chapter One: Introduction

Thanks to the development of the concept of metapopulation in ecology, our
understanding of epidemic dynamics of infectious diseases in connected populations has
increased immensely. Metapopulations are groups of interconnected populations that are
subject to semi-independent local dynamics(Adams and Kapan, 2009). Classical
ecological assumptions of metapopulations are; that space is discrete with some patches
suitable for habitation by a focal species and some patches not; that habitat patches have
equal areas and isolation; that local populations in the metapopulation have entirely
independent (uncorrelated) dynamics; and that the exchange rate of individuals among
local populations is so low that migration has no real effect on local dynamics in the
existing populations. In addition, it is said that the classical hallmarks of a true
metapopulation are; population turnover (births and deaths), local extinctions and
colonization(Hanski, 1998; Hanski and Gaggiotti, 2004; Hanski et al., 1997).

These classical ideas from ecology have been imported into the realm of
epidemiology of infectious diseases. For example, for microparasitic infections such as
viruses and bacteria, each susceptible host is a potential patch of a favorable habitat.
Propagules from infected patches can colonize (infect) others (susceptible hosts),
followed by parasitic multiplication and local growth of a parasite population(Keeling et
al., 2004). More importantly, hosts are usually structured into communities of local
populations within which contacts among hosts are more frequent than between such

communities. We therefore have two scales for the spatio-temporal dynamics and
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persistence of parasites; infrapopulation scale (a local population scale; parasite within
host) and the metapopulation scale (spatial and/or social aggregation within hosts)
(Keeling et al., 2004).

Therefore metapopulation concepts help us understand behaviors of disease
dynamics at a higher spatial scale. Through determination of key metapopulation
characteristics relevant to disease dynamics a deeper and better understanding of disease
behavior and consequent potential disease control strategies can be achieved.

At the infrapopulation scale (at a host-parasite level) we have different modes of
transmission of parasites. Infectious diseases can be transmitted either directly, such as
influenza, or indirectly, such as vector-borne diseases like malaria. From a modeling
perspective the dynamics of directly transmitted diseases are simpler than those of
vector-borne diseases because of the presence of an intermediate host in the later. At a
metapopulation scale dynamics of vector-borne diseases will be sensitive to the
different ways we assume about the agent of connectivity. Some studies have
considered static hosts connected by mobile zoonotic vectors as in the epidemic
dynamics of outbreaks of bubonic plague in which rat movements resulted in very
weakly connected human subpopulations (Keeling and Gilligan, 2000). Other
commentators have assumed static vector populations connected by mobile hosts as in
the epidemic dynamics of dengue (Adams and Kapan, 2009; Luz et al., 2003). These
considerations are based on different biological facts of vectors such as life span and
physiology; for instance in the case of bubonic plague it was assumed that the plague is

driven by the dynamics of disease in the rat populations, considering the fact that rats
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are mammals, it makes sense to use this assumption. While when the vectors are much
weaker like mosquitoes, dynamics of diseases among mobile hosts is usually assumed
to drive dengue and malaria epidemics.

In my study we consider a specific structure of the metapopulation, specifically
as a star network. In my network a centrally located city is connected to arbitrary
number of surrounding villages. Focusing specifically on malaria we investigate how
movements of hosts between the city and surrounding villages determine the epidemic
dynamics of malaria and consequent control strategies. In the next section we give an
overview of the mathematical theory of disease dynamics and control. We argue that the
development of the theory in infectious diseases was essentially a search for a threshold
parameter similar to what was done in ecology and demography. In chapter two the
main research is presented which will include the model, its analysis, results, discussion

and conclusion

Mathematical theory for vector-borne disease control: search for R,

In this section I review the literature to trace the development of the
mathematical theory of infectious diseases. The focus will be on vector-borne diseases
as much as possible. The main argument in this section is that the history of
mathematical theory of infectious diseases is simply the history of the search for a
threshold parameter in epidemiology, the so-called basic reproductive number, R, .

The first recorded application of mathematical methods to inform decisions of

public health importance was undertaken by Daniel Bernoulli in 1760. He investigated
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theoretically whether inoculation against smallpox should be encouraged even if it was
sometimes a deadly operation (Bacaer, 2011; Dietz and Heesterbeek, 2002). While
Bernoulli’s analysis did not produce explicitly a concrete concept of a threshold
parameter it laid a foundation for application of mathematical concepts in understanding
infectious diseases dynamics.

After Bernoulli and his contemporaries’ pioneer attempts at using mathematics
to investigate dynamics of infectious diseases in the early 18" century, about one
hundred years would pass before another recorded attempt would be undertaken. This
came in the 1900s with the works of Sir. Ronald Ross. Ronald Ross worked with
malaria. Not only did Ross prove experimentally that malaria was transmitted by
Anopheline mosquitoes through their bites of hosts, but also he went on to suggest that
in order to eliminate malaria in a given area it was important to kill only a certain
amount of mosquitoes, the critical density, and not necessarily all of them. This claim,
that it was possible to eliminate malaria by attacking mosquitoes, was met with
skepticism. In 1911 Ross built a mathematical model of transmission for malaria in
order to support his claim (Heesterbeek, 2002; Ross, 1911). Ross was the first to
introduce the concept of a threshold density of mosquitoes above which the disease
becomes endemic and below which the disease dies out. It was with this result that he
backed up his claim that it was not necessary to exterminate all mosquitoes in an area in
order to eliminate malaria. While Ross defined a concept of a threshold in terms of
population density of mosquitoes, he did not generalize it to directly transmitted

diseases.
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Around the time of Ross’s work, another analyst by the name of Alfred J. Lotka
was defining threshold concepts in demography, ecology and epidemiology. Notably in
demography, Lotka defined “net fertility” as the expected number of female offsprings
born to one female during her entire life (Heesterbeek, 2002; Smith et al., 2012).
However, despite the fact that Lotka worked in all three interrelated fields of ecology,
demography and epidemiology, he did not substantively define the threshold concept
that was specifically addressing epidemiology at the time. The closest he could come to
linking demography with epidemiology was to remark that growth of population and
spread of diseases are very similar from a mathematical point of view.

After Ross and Lotka, a duo of modelers interested in presenting a
mathematically coherent theory of infection dynamics came into the scene. These were
Anderson Gray McKendrick and William Ogilvy Kermack (Kermack and McKendrick,
1933; Kermack and McKendrick, 1939; Kermack and McKendrick, 1932; Kermark and
Mckendrick, 1927; M'Kendrick, 1925). Kermack and McKendrick made up for Ross’
omission of generalizing the threshold property beyond vector-borne diseases. They
proved the threshold theorem, which states that in order for an infectious agent to be

sustained in a population, the population density N has to exceed a certain critical
density N_ = /A, where A= J; h ¢, B, dt : (B, is the probability that a newly infected
individual is still infected at infection-age ¢, and ¢, is the infectivity at infection-age ¢ )

(Heesterbeek, 2002). This is a more general formulation of the threshold property

formerly derived by Ross.
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The idea of a threshold property in epidemiology was therefore more rigorously
presented by Kermack and McKendrick. It was more formalized in the 1950s
particularly with respect to vector-borne diseases through the works of George
MacDonald. In 1952 George MacDonald published a paper titled; “The analysis of
equilibrium in malaria” (Macdonald, 1952), in which he formally coined the term “basic
reproductive rate” and defined it as the number of infections distributed in a community
as the result of the presence in it of a single primary non-immune case. He also assigned
a symbol z to this quantity.

After this flurry of activities in the 1950s a period of inactivity would follow
during which the threshold concept in epidemiology was hardly addressed in the
literature. Some commentators attribute this trend to the failure of the Global Malaria
Eradication Program which had relied heavily on the threshold concept (Heesterbeek,
2002). However, things would change for better beginning from mid 1970s to 1980s.
During this era several scientists endeavored to establish practical applications of the
threshold concept in epidemiology for control of epidemics. They established the basic
reproductive number as an important parameter for both theoretical and practical
epidemiology. Notable actors during this time include Hethcote and Dietz and later on
in the 1980s to early 1990s, Robert May and Roy Anderson (Heesterbeek, 2002).

The 1990s witnessed the establishment of mathematical tools for calculating the
basic reproductive number in heterogeneous populations (Diekmann et al., 1990) after
which this threshold quantity became a core ingredient of most mathematical works in

epidemiology. The development in computing powers since mid-1990s enabled analysts

13



to incorporate high-dimensions in their analytical structures with the consideration of
networks and metapopulations in the dynamics of infections diseases (Hanski et al.,
1997; Keeling et al., 2004). The behaviors of the basic reproductive number could be
studied using more realistic models.

From the review presented, I argue that the maturity of the mathematical theory
of infectious diseases epidemiology came with the establishment of the basic
reproductive number. This is because the basic reproductive number provides us with
several pieces of information such as; measure of the possibility of an epidemic in a
totally susceptible population, measure of a disease burden in an ongoing epidemic, and
measure of the amount of effort required to stop an epidemic (Smith et al., 2007).
Therefore, defining this parameter in any infectious disease epidemic system gives the
analyst immense opportunities to inform on various practical and theoretical
possibilities related to disease spread and control.

In the sections that follow I describe my research in detail. My research is about
the spread of vector-borne disease in a metapopulation with a shape of a star network.
At the time of conception of this research there was no analyst who had ever analyzed
epidemic dynamics of a vector-borne disease in a metapopulation shaped as a star
network. I define the basic reproductive number of this system and extract vital

information key to control of the vector borne disease.

14



2 Chapter Two: Human mobility and the epidemiology of vector-

borne diseases

The role of host mobility in the epidemic dynamics of vector-borne diseases was
not taken into consideration during the malaria eradication programs of the 1950s and
1960s. This was cited as one of the reasons for failure of that program (Bruce-Chwatt,
1968; Prothero, 1977). Since then there has been a substantial increase in the human
population size, revolutions in transportation technologies and a sharp rise in
urbanization. Poor levels of hygiene in most tropical cities has led to a rise in incidence
of vector-borne diseases such as malaria and dengue (Knudsen and Slooff, 1992; Robert
et al., 2003; Sharma, 1996).

Concentration of most economic and social activities in cities has led to the
formation of mobility patterns of hosts between these central hubs and the surrounding
villages. When hosts move between the central city and peripheral villages they form a
network structure of contact between themselves and the vector populations of the two
spatial places. Since malarial vectors have short maximum flight distances, such as
about 691 metres per life time for Anopheles funestus and Anopheles gambiae (Midega
et al., 2007), it is effectively the host movements and their contact with stationary
vectors that determine epidemic dynamics between two spatially separate localities.

Commuters move back and forth between two subpopulations forming a
connecting link that couples the epidemic dynamics of those subpopulations (Barrat et

al., 2008; Colizza and Vespignani, 2008). This coupling forms a system of populations
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with semi-independent local dynamics, called meta-populations (Adams and Kapan,
2009). An infection event at one spatial point could trigger a full-blown outbreak at
another spatial point in this meta-population structure making the study of the role of
connectivity important for disease control (Hanski and Gaggiotti, 2004; Hanski et al.,
1997; Keeling et al., 2004).

Theoretical studies on vector-borne disease dynamics in interconnected
populations have produced several useful results. For example, in meta-populations
mobility leads to disease occurrence among connected patches and speeds up the time
for disease to reach equilibrium in the system (Cosner et al., 2009; Hsieh et al., 2007;
Torres-Sorando and Rodri'guez, 1997). Besides, for heterogeneous vector densities
among patches the disease burden is determined by the patch with the largest vector
subpopulation and decreased with a greater degree of mixing of hosts (Adams and
Kapan, 2009). While most studies do not elicit specific network structure, we believe
that geographical relationships between villages and cities are approximately structured
as a star-network in most tropical cities (Briggs and Mwamfupe, 2000) and that host
commute patterns are not random (Gonzalez et al., 2008). We construct a simple star-
network in which daily commuters connect an arbitrary number of villages to a central
city, and incorporate a vector-borne disease transmission epidemic model to understand
the influence of meta-population parameters on the epidemic dynamics.

The most important parameter in epidemiology is the basic reproductive
number, defined as the total number of secondary infections resulting from a single

infectious agent after its introduction into a totally susceptible population throughout
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the agent’s infectious period (Anderson and May, 1992; Arino and Van Den Driessche,
2003; Diekmann et al., 1990; Dietz, 1993; May and Anderson, 1991; Shao, 1999).
Because of the importance of the basic reproductive number in understanding infectious
diseases epidemiology and guiding their public health interventions (Ferguson et al.,
2006; Ferguson et al., 2003; Ferguson et al., 2005), we derive this quantity explicitly
and investigate how it can inform disease control decisions as well as the behavior of

the epidemic.
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3 Chapter Three: The Model
Epidemiological dynamics in a homogeneous star network

Network structure of the host population assumed here is a star with daily
commuters between the central node (city) and each of m peripheral nodes (or villages)
(Figure 1).

For mathematical simplicity we assume that all peripheral populations have
identical numbers of residents, mosquitoes and commuters to the city. This assumption
is relaxed later. We also assume that infection dynamics of all peripheral populations are
synchronized. The rate of movement of hosts is not affected by their disease statuses.

We adopt frequency-dependent transmission in a susceptible-infectious-
susceptible (SIS) epidemic model for hosts (Anderson and May, 1992; Macdonald,
1956; May and Anderson, 1991; Ross, 1911). We adopt a susceptible-infectious (SI)
epidemic model for mosquito vectors because once infected they do not recover from
infection. There is no vertical transmission within the mosquito population; that is,
newborns do not acquire infection from their parents. Susceptible mosquitoes are
supplied by newborns. In this construction an infection of a susceptible host occurs
through a bite by an infected mosquito, and an infection of a susceptible mosquito
occurs through its bite of an infected host. There is no direct transmission between hosts

or between mosquitoes.
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The variables describing epidemic dynamics of the SIS model among hosts and
the SI model among mosquitoes are as follows (see also Table 1). The number of
susceptible and infected mosquitoes is denoted respectively by x, and y, in the central
city (or urban area, and hence the subscript #), and by x, and y_in a peripheral village
(or rural area, and hence the subscript 7). On the other hand, the number of susceptible
and infected hosts is denoted respectively by X, and Y, in the central city; by X, and
Y. in those hosts commuting (and hence the subscript c¢) from a peripheral village to the
central city every day and staying in the city only during daytime; and by X, and Y, for
resident hosts who stay in a peripheral village for the whole day.

During daytime in the city, there are X, 4+ mX_ susceptible hosts and Y, + mY,
infected hosts (where m stands for the number of peripheral villages as noted before),
and x, susceptible mosquitoes and y, infected mosquitoes. During nighttime,
m(X,+Y.) people go back to their own villages, leaving only X, +Y, in the city.

In a frequency-dependent transmission we assume that mosquitoes bite hosts at
a constant rate. Transmission is therefore sensitive to the number of hosts available to
receive the bites. Infection dynamics are separated into daytime and nighttime
dynamics. The people who commute to the city can be infected when being bitten by an
infected mosquito in the city during daytime and when being bitten by an infected
mosquito in the village during nighttime. Writing only dynamics for infected
components (see the Appendix for full ODEs) we have the following expressions for

dynamics at any arbitrary point in daytime (time is measured in units of days)
k<t<k+4+0.5 (k=0,12.):
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dyY, b, X
u u _ Y , l
&N tmN Yo =Y, (1)

b, (Y, +mY,
dy, b tmh), py, 2)
dt N,+mN,

dyY, b, X

= < —~Y 3
dt N,+mN, Yu ™ Me ®)
dy, b,7Y
—L=Ad rx Dy, 4
a N Y, “4)
dy brX

where b, is the rate at which a mosquito bites a host in daytime, 7 is the per bite
probability that the disease is transmitted from an infected mosquito to a susceptible
host and 7’ is the per bite probability that the disease is transmitted from an infected
host to a susceptible mosquito. 7 is the rate at which an infected host recovers (and
becomes susceptible again) and D is the mortality rate of adult mosquitoes. Also,

N,, N, and N, are the respective numbers of host residents in the city, commuters from
a village and daytime village residents. M, and M, are the respective numbers of
mosquitoes in the city and in a single village. Therefore X (1)=N, Y (¢),
X.t)=N,-Y.(t), X (t)=N,-Y (), x,(t)=M,—y,(t) and x (t)=M, —y (t) are
the numbers of susceptible hosts and mosquitoes in each compartment. The rate at

which a particular host is bitten by a particular mosquito during the day in the city is

b,/(N,+mN,) andis b,/N, in one village.
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Nighttime epidemiological dynamics are derived similarly for any time point

k+05<t<k+1(k=0,12,..) as

ﬁ _b1X,

—~Y 6
7 IYREAL (6)

u

% = %xu Dy, )
R ®
oy ?
@R o

where b, is the mosquito biting rate at night.

In the following sections we derive an analytical solution for the global basic

reproductive number R, of the star network and investigate its sensitivity to key

population and networks parameters relevant to disease control.
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4 Chapter Four: Results

Basic reproductive number R, for the meta-population

Linearization of epidemic dynamics (1)-(10) by assuming that infected densities

are small near the disease-free equilibrium results into a system;

dy A)y(t), fort atdaytime (k<t<k-+0.5; k=0,1,2,---),

(13)

dt A y(t), fort atnighttime (k+0.5<r<k+1; k=0,1,2,--),

where y=(Y,,y,,Y.,y,,Y,)" with T denoting transposition of vector y, and

—y BTN, 0 0 0
gr'M, —-D Br'Mm 0 0
A = 0 BTN, —y 0 0
0 0 0 -D 627’ M,
0 0 0 B,TN, —7y
—7y B,TN, 0 0 0
Br'M, —D 0 0 0
A = 0 0 —y B, TN, 0 ,
0 0 B4T/Nr -D @T’M,
0 0 0 B, TN, —ry
where
b, b, b
= , = —, = n . and = n
61 Nu+mNC B Nr ﬁS u ﬁ4 Nr+Nc
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The solution to equation (13) for t = k (integer) is given by

A,)

k _
y(k)= .Y(O)ez(Ad+ " = y(0)*, where

A,+A
2

A=

n (16)

In the Appendix an equation for non-integer time point (¢ = k ) is shown, which is a bit
more complicated but it does not affect the subsequent calculations of the basic
reproductive number by assuming that infection starts at # =0, as in the next generation
matrix method we count the cumulative number of secondary infections toward ¢ — co.

Equation (16) is the averaged matrix for daytime dynamics and nighttime
dynamics. This calculation is possible because of linearization around the disease-free
equilibrium. In the Appendix the basic reproductive number is calculated using the
method of next-generation matrix (Diekmann et al., 1990; Diekmann et al., 2010;
Diekmann et al., 2012; Heesterbeek, 2000; Heesterbeek, 2002), which after

rearrangement gives the expression for the basic reproductive number R, for the whole

system as

2
_ et estpites (et tpste)
R, = +

B 4 _(plpS + 0Py T ,02P4) , (17)

where
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2 , 2
plzi[/Bl—f—/BS] 7_7_/]VuMM:7—7—NuMu bd +bn ,
Dy 2 4Dy |N,+mN_ N,
2 , 2
Dy 2 4D~y N,+mN, (18)
_L &]2 N M — TT/NcMr b, ’
7=y 2 T 4Dy NN )
2 / 2
p4:i M] TT/Ner:M b_d_i_bin s
D~y 2 4Dy (N, N,+N,

are the basic reproductive numbers of infection cycles for: city residents and city
mosquitoes ( p, ), daytime commuters and city mosquitoes ( p, ), returning nighttime
commuters and village mosquitoes ( p;), and non-commuting village residents and
village mosquitoes ( p, ) (see Figure 2). See Appendix for the derivation of (17)-(18).
More important applications of the explicit formula (17) for the whole system basic

reproductive number is seen in sensitivity analyses discussed in next sections.

Sensitivity analysis of parameters to system basic reproductive number

Where should mosquito control be focused between the city and surrounding
villages?

In this section we show how the analytical results for the basic reproductive
number obtained in the last section (equation 17) can be used to design the control
strategy. This is based on the derivation of the dependence of the global basic
reproductive number R, on a given epidemiological or network parameters shown in

details in the Appendix. Here we choose the number of mosquitoes in a village and the
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city, M, and M respectively as the target parameters for control of the vector-borne
disease. We consider the relative impact on R of proportional changes in the mosquito
populations of city or villages. Since R; also estimates the effort required to control a
disease (Smith et al., 2007), we are hereby answering the question of where to focus
control effort for a certain predetermined fractional reduction in R given a distribution
of mosquitoes between the city and villages (see Appendix for full derivation). We

obtain conditions when intervening in city will lead to more prevention of disease as

IR, > IR, N Pt > 1.
O(ogM,) O(dogM,) p,+p,

(20)

From equation (20) we see that focusing control efforts in the city is more effective
when p, +p, > p, +p,. Butif it becomes such that p, + p, > p, + p, then focusing
control efforts in villages becomes more effective. Substituting equation (18) into

equation (20) results into an expression for a critical value, denoted hereby by 6. which

is related to the ratio of mosquito densities in the city and villages as

OR, OR,

> M“
O(logM,) O(logM,)

if and only if
M

>0, (21)

C
r

where

[ﬂ] =0 = AN, £V, . (22a)
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or, since the total host populationis N = N+ m(N +N C) we define the proportions

of city residents as p = N, /N, commuters as p, =mN_/ N , and village residents as

p,=mN_/ N, and write 22a as,

2 2

n bd bn

m| p, R

M p,+p. p. P.tP.

u :ec: 5 3 . (22b)
M. ). b, b b,
pu +7n c
pu+pc pu pu+pc

To see how the strength of connections between city and village through
commuting affects the effective mosquito control in city and villages, we here fix the
proportion of city host population, p, , and the number of villages, m in (22b), and
allow the proportion of commuters, p, (and hence village hosts, p, =1—p, —p.), to
vary so we can observe how 6. varies with the proportion of commuters, p_ . Since 0,
is a threshold value, it divides the region into two, each with different implications to

the focus of disease control as shown in Figure 3. In the region under the curve which

corresponds to (M ,/M,) < 0.

c

, reducing mosquito density in the surrounding villages by
a fixed factor is more effective in reducing R, than doing so in the city. The region
above the curve corresponds to (M, /M,)> 6. when focusing on the central city is more
effective than focusing on the surrounding villages. From Figure 3 we observe that an
increase in commuters to the central city makes infections more likely to occur in the
surrounding villages making focus of mosquito control there more effective. This is
because in frequency-dependent transmission the efficiency of transmission depends on

the possibility of one person being bitten by a mosquito in succession; one to receive an
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infection and the second to pass it on (Keeling and Rohani, 2011). When more
commuters move to the city, they leave a smaller number of people in the villages
making vector-borne disease transmissions more efficient there than in the city. Since
people in the city do not move, any increase in the number of hosts because of the
incoming commuters serves to make the possibility of a mosquito biting a host in two

successions less likely, lowering the infection risk.

Epidemic occurrence with intensity of village-to-city connections

(a) Homogeneous case

The host and vector meta-population structure we assume in this paper is quite
simple: a star network with the central city and m surrounding villages (Figure 1).
However, we can ask several important questions about the effects of host population
structure within this framework.

For subsequent analyses, we assume that the total nighttime population of city
residents, N, , and the total nighttime villages residents, m(N, + N, ), are constant when
we vary the host population structure. Consequently, the total host population, denoted
by N=N,+m(N_+N,), is also kept constant. The total mosquito population
M =M _ + mM, is also kept constant. In numerical examples in this section we
assume, for simplicity, that the biting rates during day and night are the same:

(ie., b, =b, =b). The more general case of heterogeneous bite rates between day and

night (b, = b, ) was also analyzed (see section 4 in Appendix) and yielded qualitatively
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similar results to the homogeneous case reported in this section. Moreover, in addition
to fractions of city residents, p,, commuters, p,_, and village residents, p, defined in
equation 22b we define proportions of mosquitoes in the city as ¢, = M, /M and in all
villages as g, = mM, /M . For example, we can change the fraction of commuters by
increasing the number N_ of daytime commuters while keeping the nighttime total
population m(N_+ N, ) constant, and ask how this changes the global basic
reproductive number R, .

We here examine whether or not increasing connectivity would increase R,
when metapopulation is nearly isolated. This could be answered by looking at the
partial derivative of R, with respectto p, ,(OR,/dp,),as p. — 0 while keeping
p.+ p, =1— p, constant. We find a paradoxical case where increasing connectivity
(i.e., number of commuters) in the network decreases the basic reproductive number,
lowering the possibility of disease occurrence (see full derivation in the Appendix). This

happens if the following condition is true,

foy P (23)
9. 1-p,

or simply if ¢, > p, (as g, =1—gq, ), i.e. when mosquitoes are more concentrated in the
city than their hosts. This simple condition remains the same even when daytime and
nighttime biting rates are different (i.e., b, = b, ).

Equation (23) shows that a paradoxical region in which there is decreasing
possibility of disease occurrence with increasing connectivity exists when the ratio of

mosquitoes to hosts in the city exceeds the ratio of mosquitoes to hosts in the villages.
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This condition is shown graphically for homogeneous assumptions in Figure 4 (dark
lines) showing the dependence of the basic reproductive number R, on the whole range
of proportion of commuters p_, and not just for p. — 0. The paradoxical region is
observed in panels b-d (dark line). The reverse is true when hosts are more concentrated
in the city than mosquitoes (g, > p, ). This condition holds in panel a of Figure 4.

The paradoxical region of decreasing basic reproductive number with
increasing number of commuters to the city occurs because movement of hosts acts to
reduce the efficiency of infections in the city by decreasing the mosquitoes-to-hosts
ratio while at the same time the increased efficiency of transmissions in the villages
being not enough to compensate the decrease in the city. This paradoxical region
becomes more pronounced with increasing mosquito density in the city (Figure 4d) as
more commuters are needed before the epidemic can start increasing again. The sharp
rise in the basic reproductive number at very high proportions of commuters is a direct
artifact of frequency-dependency assumptions. That is when there are extremely small
numbers of hosts left in the villages relative to the number of mosquitoes, making
transmissions extremely efficient, leading to the observed sharp rise in the values of the

basic reproductive number.

(b) Heterogeneous case
Furthermore, we investigated the influence of heterogeneity in the number of
hosts and mosquitoes in the villages on the behavior of the paradoxical region. We fixed

the number of city hosts at 20% of the total population and assumed that all villages had
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the same proportion of commuters to the city. Keeping total host and total vector
populations in villages constant, heterogeneity was introduced through random
assignments of host and vector population sizes among a fixed number of villages using
a uniform distribution in a simplex (a space formed by possible values of proportions
allotted to villages) (see Appendix section 5 for details). While in the homogeneous
case all villages had the same numbers of hosts and vector populations, the
randomization in the heterogeneous case produced villages with various sizes of human
and vector populations. Field evidence suggests a high degree of clustering in mosquito
populations among villages (Keating et al., 2005; Mbogo et al., 2003) and our purpose
here was to imitate this heterogeneity using a simple probability distribution. Results
are shown in Figure 4 with grey lines.

Firstly, we observe that depending on the ratio of mosquitoes to hosts,
heterogeneity can increases the basic reproductive number even for lower values of the
proportion of commuters as seen in Fig 4a and 4b. With more mosquitoes in the city this
increase only occurs for higher proportions of commuters as seen in Fig 4c and 4d.
Random heterogeneity can result into some villages having higher numbers of
mosquitoes than that of humans leading to a formation of peripheral epicenters with
higher transmissions than in the homogeneous case. Also heterogeneity could result in
some mosquito to host ratios becoming smaller in some villages than in the
corresponding homogeneous case, but the existence of epicenters in villages with higher
mosquito to host ratios outweighs in the net effect. This result has direct implications

for surveillance systems, it is important to try to understand the demographic
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characteristics of surrounding villages both in terms of their host and mosquito
densities.

Secondly we observe that heterogeneity tends to narrow the paradoxical region.
The paradoxical region depends on the relative densities of hosts and mosquitoes in an
area. Heterogeneity in host and vector populations in villages leads to formation of
peripheral epicenters with extremely efficient infections making the dilution effect of
commuters in the city less important unless mosquito-to-human ratio is extremely high

in the city as well, thereby narrowing the paradoxical region.
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5 Chapter Five: Discussion

We constructed a simple star network model of connections between a central
city and an arbitrary number of surrounding villages. Then we incorporated a classic
epidemic model for vector-borne diseases in order to understand the effects of
connectivity as effected by daily commuters on the epidemic dynamics and disease
control decisions.

Through the method of next generation matrix we obtained an explicit
expression for the basic reproductive number R, of the system. A basic reproductive
number is an important quantity in epidemiology because it has implications in planning
of public health interventions against infectious diseases by aiming to maintain its value
below the threshold, which is unity (Anderson and May, 1992; Ferguson et al., 2006;
Ferguson et al., 2003; Ferguson et al., 2005; Scherer and McLean, 2002). The behavior
of the basic reproductive number can be more complicated at the threshold value; such
as disease-free state being unstable even for R, <1 (Hadeler and Van den Driessche,
1997; Van den Driessche and Watmough, 2000; Van den Driessche and Watmough,
2002) or the threshold vanishing altogether as in complex networks (Barrat et al., 2008).
However, it provides a good theoretical approximation for most practical purposes of
disease control (Anderson and May, 1992).

The primary goal of this research was to investigate explicitly the role that

commuters play in affecting the behavior of an epidemic and the implications to disease
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control in a defined network structure. Based on the basic reproductive number, two
questions were asked and answered; first one was on effects of commuters on the
decision of where to direct disease control efforts between the city and villages when
we aim to reduce the basic reproductive number R and the second one was on the
effects of commuters on the overall behavior of the epidemic.

In a meta-population it is not always obvious where to focus disease control
strategies because of the unknown influence of commuters as well as relative densities
of mosquitoes to hosts. Besides, the disease control decision is normally a function of
many factors such as economic, humanitarian, clinical and even political factors.
Different points of view can give different prescriptions for disease control. For
example, from an optimal control perspective some studies suggest focusing on
subpopulations with the lowest number of infected hosts (Mbah and Gilligan, 2011;
Rowthorn et al., 2009). Our study prescribes from the perspective of effectiveness of
infections as influenced by commuters. We find that the decision of where to focus
control efforts is sensitive to the proportion of commuters and the relative mosquito
densities in the city and villages but an increase in the number of commuters from the
villages to the city makes focusing on the surrounding villages more effective in vector-
borne diseases. This is because when more and more people commute they make
infections in the villages more effective thereby increasing chances of an epidemic in
the whole meta-population.

We found that commuters can influence the epidemic dynamics by lowering the

basic reproductive number in certain conditions. In frequency-dependent transmissions
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the effective ratio of mosquitoes to hosts is key in determining the occurrence of an
epidemic. When this ratio is high in the city (and therefore higher basic reproductive
number) any increase in the commuters to the city lowers the basic reproductive number
leading to a paradoxical region. On the other hand, when this ratio becomes higher in
the surrounding villages than in the city the paradoxical regions narrows down as
commuting has weaker effect in this case. Particularly, for higher mosquito to host
population ratios in the city heterogeneity in host and vector populations in villages
increases the basic reproductive number and narrows the paradoxical region because of
formation of peripheral epicenters with highly efficient transmissions. Therefore,
understanding the demographic dynamics of villages in terms of its hosts and vectors is
important for planning disease control.

Our two results can be combined to inform disease control strategies. The first
result emphasizes focusing control in the surrounding villages after determining key
parameters which are commuters and the mosquito densities in city and villages; the
second results emphasizes on the surveillance of the surrounding villages in order to
capture those epicenters of infections. It is well known that rural tropical Africa has
more vector borne disease transmissions than the urban Africa because of the presence
of large vector populations and ubiquity of breeding sites in the former (Walker, 2002).
Recent theoretical and empirical studies have shown that movements of hosts between
two spatial points such as from villages to central cities is responsible for persistence of
vector-borne diseases in cities despite control strategies (Adams and Kapan, 2009; Le

Menach et al., 2011; Wesolowski et al., 2012). Our study has pinpointed one possible
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way of how such movements affect disease control decisions and the behavior of the

epidemic dynamics of vector-borne diseases.
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Table 1: Meaning of symbols used

Symbol Meaning
X, Number of susceptible mosquitoes in the central city
v, Number of infected mosquitoes in the central city
X, Number of susceptible mosquitoes in the peripheral
village
y, Number of infected mosquitoes in the peripheral
village
X, Number of susceptible hosts in the central city
Y, Number of infected hosts in the central city
X, Number of susceptible commuting hosts
Y, Number of infected commuting hosts
X, Number of susceptible hosts who stay in the village the
whole day
Y Number of infected hosts who stay in the village the
whole day
m Number of peripheral villages
b, Daytime mosquito bite rate
b, Nighttime mosquito bite rate
T Per bite probability of transmission from mosquito to
host
7’ Per bite probability of transmission from host to
mosquito
N Recovery rate of hosts
D Death rate of mosquitoes
N,=X,+Y, Total number of residents in the city
N. =X _+Y, Total number of commuters from one of the villages
N =X +7, Total numbers of residents remaining in one village
N=N,+ m( N, Total number of hosts in the entire system
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Mu:xu+yu
M}':xr+yr
M=M,+mM,

Py

P2

P3

Py

P.
P.
p,
q,
q,

Total number of mosquitoes in the central city
Total number of mosquitoes in one peripheral village

Total equilibrium density of mosquitoes in the whole
system

Basic reproductive number for the infection cycle in
the city (between hosts and mosquitoes in the city)

Basic reproductive number for the daytime commuters
and mosquitoes in the city

Basic reproductive number for the nighttime
commuters and mosquitoes in one village

Basic reproductive number for the infection cycle in a
village (between hosts and mosquitoes in a village)

Basic reproductive number for the entire system (a
central city and m villages)

Proportion of hosts in the city
Proportion of commuting host
Proportion of hosts in a village
Proportion of mosquitoes in the city
Proportion of mosquitoes in a village

Critical value for ratio of mosquitoes in the city to

mosquitoes in the villages
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Figure 1: A star-network with a central city and surrounding villages

VILLAGE 1

COMMUTERS @

Figure 1. A star-network with a central city and m peripheral villages. Mobility
patterns in the homogeneous assumption is such that daily commuters (shown by C in
the figure) from surrounding villages connect the infection dynamics of all populations
of villages with each other as well as with the city. Mosquitoes don’t move between city

and village or between villages.
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Figure 2: Basic reproductive numbers for various infection cycles
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Figure 2. Basic reproductive numbers for various infection cycles: In homogeneous
assumption that m village populations in the star network are identical in their resident
and commuter host and mosquito population sizes, we derive individual basic
reproductive numbers ( p,'s ) for four infection cycles in the network as shown: city
hosts and city mosquitoes infection cycle ( p, ), daytime commuters and city mosquitoes
infection cycles ( p, ), nighttime commuters and village mosquitoes infection cycle ( p;),

and village hosts and village mosquitoes infection cycle (p, ).
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Figure 3: Dependence of control decision on the mosquito densities

and proportion of commuters to the city

0.55/
CONTROL IN CITY

0.45;
M,
M,

0.35

0.25t: ‘

0 0.2 0.6 0.8

Pc

Figure 3: Ratio of city-to-villages mosquito densities (M, / M) as a function of the
proportion of commuters, p_ from villages. When we change p_, the total nighttime
populations are kept constant; the proportion of city residents p, = 0.2 remains
unchanged while the proportion of village residents, p, changes with p_as

p,=1—p —p.=08—p,.. (Parameters: y=1/30, D=1/7, m=5, b,=b,=0.15)
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Figure 4: Behavior of basic reproductive number with respect to

commuters and behavior of village populations
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Figure 4. Dependence of basic reproductive number R, on the proportion of commuters
p. that move to the city everyday in homogeneous assumption (solid black curves) and
heterogeneous assumption (gray curves). The proportion of mosquitoes in villages g,
differs for each panel such that in 4a, (¢, =0.85); in 4b, (g, = 0.50); in 4c,

(g, =0.40); and in 44, (g, = 0.20 ). Corresponding city mosquito densities can be
obtained using the assumption that g, + g, =1. The proportion of city residents is fixed

at p, =0.2 and the proportion of commuters, p,, as well as that of village residents,
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p,=1—p,—p.=0.8—p,_, are changed simultaneously along the horizontal axis.

(Parameters are: b, =b, =0.15, m=5, D=1/7,and 7y=1/30.)
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Appendix

1. Full ODEs for epidemic dynamics

We here consider frequency dependent transmission of malaria in a city-and-

villages star network with commuters. Full ODEs for host susceptible-infected-
susceptible (SIS) model for susceptible and infected city residents (X, and Y ),

susceptible and infected commuters from a village (X, and Y, ), susceptible and

infected resident of a village (X, and Y)), together with the vector susceptible-infected

(SI) models for susceptible city mosquitoes (x, and y, ), and susceptible and infected

mosquitoes in a village (x, and y_) are as follows.

(1). Daytime infection dynamics for hosts and vectors:

dX bTX
= - yu—l_fyy;’
dt N +mN,

dY btX
= yu_,-)/ u?
dt N +mN
d b1 (Y +mY
X:_d (u > — Dx +r 1— u+yu <X +y>,
dt Nu+mN u u . u u

— d c _|_ ,
dt N +mN, Y
dY deX

- Y, =7,
dt N +mN, =" ¢
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dx b'Y LT,
E—— dN, X —Dxr—i—r[l— , (xr+y,), (A7)
dy de'Y

[ I x _D ., A8
dt N 7 & @
er B deXr + Y (A9)
dt N Y
dY brtX
—r—d ~ry _~Y. Al10
dt N om0 (A1)

All symbols are as defined in the main text except for the demographic parameters for
mosquitoes: 7, the intrinsic growth rate of mosquito, and K and K, the mosquito
carrying capacity in city and a village, respectively.

(i1) Nighttime infection dynamics for hosts and vectors

ax, btX, Y (All)
dt N, P

ay brX, ¥ (A12)
dt N, It

dxu bHT/Y; 'xu + yll

P A R A b AR o
dy b7'Y

Fu i uy _py Al4
dt N " Y (A1D
ax,  b1X, Ly (A15)
dt N Ncy’ Ter

ay, — brX, ¥ (A16)
dt _N,,+Ncyr Ter
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d, b7V, +7) X+

I A o A0 o
d br'Y +Y

L:Mx._py" (A18)
dt N +N, ' ’

er B bnTXr + Y (A19)
i NN

a¥, _ 57X, Y (A20)
i NN

Note that, from (A1)-(A20), we first see that the total number of city resident

N, = X, +7Y , that of commuters from a village, N, = X +7Y , and that of residents in
avillage, N, = X +7Y , remain constant. Note also that the total numbers of
mosquitoes in the city, M, =x_ + y , and that in a village, M = x_+ y _, change with
time, irrespective of whether it is in day time or in nighttime, and independent of the

epidemiological state of populations, as

[

M
dt

M
1—?’]Mi—DMi, (i=ru), (A21)

1

where K. is the mosquito carrying capacity in either village or city which yields the

equilibrium number of mosquitoes as

M =K, [1 —2], (i=ru). (A22)
r

Hereafter we assume that mosquito total densities in city and a village are kept constant

defined as (A22).
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2. Basic reproductive number

Using (A1)-(A20), noting that the total human densities, N,, N_,and N,,
remain constant, and assuming that the total mosquito densities, M, and M, are kept
at their equilibrium values (A22), the density of infected humans in urban resident (Y ),
commuters (Y,), rural resident (V) and those in infected mosquitoes in urban ( y, ) area

and rural area ( y ) change during daytime when commuters resides in the urban place

as

—Dy,,
dt N, +mN ! !
ﬂzﬂy Y, (A23)
dt N +mN, " ¢
dy :de/Yr —Dy’
N
dY b1X,
dt N, I

for k<t<k+0.5 (k=0,1,2,---). Note that we measure time in units of days, and
divide a day into half for daytime and nighttime. Here, b, is the rate at which a
mosquito bites a human in daytime, 7 is the per bite probability that the disease is
transmitted from infected mosquito to susceptible human, 7’ is the corresponding

quantity from infected human to susceptible mosquito. Unlike under density dependent
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transmission (or mass action rule), the biting rate is independent of human density.
Therefore the probability that a particular human is bitten by a particular mosquito is
b,/(N,+mN ) incity and b,/ N in a village during daytime. The nighttime

epidemiological dynamics are derived similarly as

lel _bnTXM Y

dt N, Y=V

d bT'Y

L:—”T U x —Dy ,

dt Nu u u

dY btX

LT Ly, A24
i NN Y, Y, (A24)
dy, b7 (Y +7)

—L ="' _"Cx —Dy,

dt N +N, ! g

dYr B b”TXr Y

d NN

for k+0.5<t<k+1 (k=0,1,2,---), where b is the mosquito biting rate at night.
We then linearize the epidemiological dynamics by assuming that infected

densities are small to have

A, y(t), fort in daytime
dt A y(t), fort in nighttime

where y= (Y ,y ,Y.,y.,Y.)" , with superscript 7 denoting vector transform, and
y u yl/t C yr r p p g
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-y BTN, 0 0 0
Br'M, —D B7'M.m 0 0

A, = 0 BTN, —v 0 0 , (A26)
0 0 0 -D ﬁg’Mr
0 0 0 B, 7N, —v
—y pBy7N, O 0 0
Br'M, —D 0 0 0
A = 0 0 -y B, 7N, 0 , (A27)
0 0 64T’N,. -D @T’M,
0 0 0 B, 7N, —v
where
bd bd b b
E = —, — n . and = I . A28
b N, +mN, b, N, b N, by N +N, (A28)

The solution to (A25) for ¢ = k is given simply by

k-1 j+12 Jtl
Z/:o J: Aq dt+j;+]/2A,, dr AgtA,)

k _
y(k)= y(0)e = y0)e> "™ = y0)e* .

where A= (A,+ A,)/2 is the mean of the daytime matrix (A26) and the nighttime
matrix (A27) . For ¢ not exactly at an integer value, y(¢) is expressed in a slightly

complicated form:

y(0)e =04 (k<t<k+1/2),

kﬁ+ﬂ+(t7k71/2)A”

y(0)e 2 Jk+1/2<t<k+1),

)=

but this complication does not affect the subsequent calculations of the basic

reproductive number, if we assume that initial infected agents are introduced at r =0
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(at an integer point). If the initial infected agents are introduced in another hour in a day
(not at the beginning of daytime), we would have a very minor difference in the basic
reproductive numbers, but we ignore such a technical trivia in this paper.

Now we define the next generation matrix and obtain the basic reproductive

number. At first, we decompose the averaged matrix A into transmission part F and

transition part V as

Z:Ad+An
2
A 0 0
Wy, 0 Ae'Mm 0 0 70000
2 ! 2 0D00O
= 0 TN, 0 BN, 0 —00~y00| (A29)
Ba s Bo+Ba s 000DO
0 0 5mM 0 > "M 10000~
0 0 0 2ry. o
=F-V,

We then define a next generation matrix G as in (Diekmann et al., 2010; Diekmann et

al., 2012)
0o ey o 0 0
BLEB3 g BLrM om 0 0
2y u 2y "
G=FV'= 0 JLIN, 0 JATN, 0 (A30)
0 04 iy 0 D254 11 pp
2y r 2y r
B2+04
0 0 0 2N 0
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We can obtain all the eigenvalues of the next generation matrix G from the

characteristic equation

M =Gl =X\ = (o, + p, + o5 + p )X + (015 + pips + p2p)} =0, (A31)

where p, (i =1,2,3,4) is the product of (i,i+1) and (i+1,i) components of the next
generation matrix G, and are the individual cycles’ basic reproductive numbers. The
whole system basic reproductive number is given by the largest eigenvalue of the next

generation matrix G and is obtained as

RO\/'O1+’02+'03+p4 +\/[p1+p2+p3+p4

2
) 5 ] —(pp3+ pipy + 0204) » (A32)

where

:L[ﬁﬁ@]QT o TTNM, (b b\
' Dy e 4Dy |N,+mN, N,|’
2
p :L &]2 TT/mNM _TT/mNCMu bd
> Dyl 2 o 4Dy |N,+mN, |’
i / . (A33)
p';:L _4] TT/NcMr — T NcMr bn
Dy\ 2 4Dy |N,+N,
2
. mm];w _TTNM, (b b,
YDyl 2 e 4Dy |N, N, +N,|°

This completes the derivation of basic reproductive number (17) in the text.
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3. Sensitivity of basic reproductive number on urban/rural mosquito densities

The basic reproductive number has a form R, =+ A+ VB where

A=(p,+p,+ps+p,)/2 and B= A’ —(p,p,+ p,p, + p,p,) - It then follows that

p 8R\/—{2\/_+p1+p2 P3s— 04}
1
{2‘/_"’[)1"‘/)2"‘/)2 4}
(A34)
p 8R\/_{2\/_ p1+p2+pz+p4}
8R\/_{2\/_ P~ p2+p3+p4}

4
with which the sensitivity of the basic reproductive number on an arbitrary parameter w

is expressed as

ZaR 9p: (A35)
op, Ow

As for the sensitivity on urban mosquito density (w = M), we have, from

O _ . Opy _pr Opy _Opy (A36)
oM, M, oM, M, OM, OM,

and (A33)-(A34),

OR, _OR, p  OR) py

oM, Op, M, 0p, M,
1 ? (A37)

1
= 12 /B 2 B B
MMSRO,/B[ (o, +p)+ (o +p,) —p3(p—py) p4(pl+p2)]

Likewise, as
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Op _0py _y Ops _ Py Opy _ Py (A38)
oM, oM, ~ oM, M, oM, M,

we have

OR, _OR, py | OR ps
oM, Op, M, Op, M
1

M 8RB

r

(A39)
[2\/5(,03 + 0= pi(ps+ p)+ P (ps—py)+(ps +,04)2

From (A37) and (A39), we have

OR,  OR,
O(logM,) O(logM,)

1
_ 2B - - ’
8R0J§[ {(py+P) = s+ P} + (o + ) = (py + )|

1
= 2B —
i Ta{ VB +p,+ 4 py+p, Mo+ 02)— (03 + 9}

and therefore decreasing urban mosquito density is more effective in reducing basic

reproductive number if

OR, IR, PN Pt p, >1.

> (A40)
d(logM,) I(ogM,) P3P,

Substituting (A33) into the second inequality of (A40), we see that the condition for that

controlling urban mosquitoes is more effective than controlling rural mosquitoes if

2
M[N+bdN 1%1] ‘ [N+bdN] ‘
m m.
u u C u u CZ >1. (541)

M 2
. b Iy i[by b |y
N, +N, N N +N,

This completes the derivation of equation (22) in the text.
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4. Sensitivity of basic reproductive number on the fraction of commuters in rural

area

For what follows, we assume that the biting rates in day and night can be
different: b, = b,. For homogeneous daytime and nighttime bite rates similar results are

obtained by setting b, = b = b. The definitions of p,s are

b, “r'N M
M=y N +mN, N, | Dy
2
1 b, TTmN M,
TYUN +mN | T Dy
(A42)
2
1l b 7'N.M,
BTN N Dy
1(b, b Yr'NM
p4 —— _+ n r r .
4N, N +N| Dy
We now introduce the fractions
=N,/N, p=mN_/N, p =mN_|N,
pu u pc c pr r (A43)

g =M /M, g =mM | M,
where N=N + m(NC + Nr) is the total number of humans and M = M_+mM  is the

total number of mosquitoes.

We then ask how the basic reproductive ratio
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2

PPt ptp,
2

p,+p,+p,+p
R =,|- 22 3 4+\/ —(plp3+plp4+pzp4) (A44)

depends on the fraction of commuters p_ in rural area when the fraction of urban

human population p  is kept constant.

To see this we first substitute (A43) into (A42)

2
b=~ —2 ’ T—T/p q,=n|—"—+-"| P4
' 4(Np,+Np, Np,) Dy " Clp,tp. o)t
i b Y b
d T d
P, = — Np Mg, =r, p4,
> 4| Np,+Np,| Dy “\p,+p,
2
1 b 7' Np, Mg, i ’ (A45)
p3 4 Np6+% D,_y m m 0 pc+pi pcqr
m m
2
_l bd n T_T/%Mql =7 i n
p4 4 Npr Np1+Npc ny m m 0 pr pr+pc prqr)
m m m
where
. ' %
4Dy N’

(A46)

In what follows, we assume that the fraction of urban human population p,
remains constant, and change the fraction of commuters p_. The fraction of rural
daytime resident p_ changes accordingly by changing p_ (i.., p, =1—p — p.). Under
this assumption, we differentiate each p, by p_and take the limit of p — 0 to find the

condition under which introduction of nonzero fraction of commuters decreases R,.
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We first eliminate p_ by substituting p, =1—p — p_ into (A45) and then see

the derivative by p_ evaluatedat p. =0,

2
dp, 0 b, b q
—1L =y — + =-2r (b +b )b, —~
8pc p.=0 0 apc pu +pc pu puqu 0( d n) d pu2
p.=0
) all b YV
el o4, 75— . ¢ :robaf2 quz
p. "= T"Op|\p,tp. p,
p=0 (A47)
) all b Y
Ps n 2 q.
R = v q _— p =7
a p.=0 01y a 1_ c 07n _ 2
P, r\lt=p) ) (1-p,)
) allb, b Y
A 0 — qu _d_ —+ n pr e O,
apc Pe 8pc pl’ 1_ pu
p.=0
and
2 qll
Pi|p=0 = r0<bd +bn> >
Pa| p=0 = P3| p=0 = 0, (A48)

As for the partial derivatives of R, =+v A+ \/E by p,’s, evaluated at p. =0,

where A:(p1+p2—|-p3—|—p4)/2 and B:Az—(p1p3+p1p4—|—p2p4), we have

62



OR| _Gitami| _ B245 (o el
6p1 p.=0 2\/A+JE|pC:0 4R0\/E =0
_ 2\/5/24-(,01+p2+p3+p4)/2—(p3+p4)
4R B .
:2\/E+pl+p2—p3—p4| _ 1 1+ pl_p4]
SR VB |p£:0 R lo=rl)
where we used
4
Bl PP ’ :r02<bd+bn> ﬂ_ﬂz
=0 2 4 p, P,
=0
Similarly,
8R0| :2\/§+p1+p2+p3—p4‘ _ 1 m Pl_/)4]
ap2|p6:o 8R0\/E ‘p(,:o 4R0 |p1 —p4| =0
6Ro| :2\/§_p1+p2+p3+p4‘ _ 1 pl_p4]
9py), , 8RB L 4R Ja-eld)
6Ro| :2\/E—p1—p2—|—p3+,04‘ — 1 pl_p4]
ap4|p6:o 8R0\/E L(:O 4R, |,01 —p4| b0
and hence
OR| _OR| _| V2R, if(p,=p), >0,
dp, | 5.0 dp, | =0 0, if otherwise.

63

(A49)

(A50)

(AS1)

(A52)

(A53)

(A54)



8R0| _8R0| _ 0’ if(pl_p4)p[:OZO’ (A55)
dp, | dp, |p o 1/2R, if otherwise.

p.=0

Using these evaluations, we see the following. Suppose first that (p, —p,), _, >0 or

Ly (A56)

OR| 24: OR, p,| 1 (dp, 9p,
op, L, A dp, Op, - 2R|0p, Op, o
’ (AS57)
_nb(b,+2b) ¢
<0
2R, pu2
Thus (A56) gives the condition for the existence of the paradoxical region.
If the reverse inequality holds (g, / p, <4, / p, ), we have
OR| 24:0130 op,| _ 1 (9p, . Op,
dp, = dp, Op, ) 2R\ 0p, Op, o
‘ ‘ ‘ (AS8)
— rObnz qr
2IQO (1 - pu)2

and hence R increases as p, is increased from 0.

Similar result holds for the homogenous bite rates obtained by setting b, =b, .
This conclusion holds no matter how large is the difference between daytime and
nighttime mosquito bite rates. This completes the derivation of the condition (23) in the

text for paradoxical dependence of R, on connectivity.
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5. Incorporating heterogeneity

We define a parameter £ that assigns different levels of heterogeneity and
homogeneity in the host and vector population sizes. When /7 =1 we only recover the
heterogeneous component and when 0 < 42 <1 there is a nonzero homogeneous
component.

The heterogeneous component is obtained by sampling host and vector
populations using a uniform distribution in the simplex whose dimension equals the
number of villages (see example in Figure Al below for 3 villages).

We sample a vector of uniform random real numbers between 0 and 1;

u € U(0,1], ( i= 1,2...m) where m is the number of villages. The normalized negative

logarithm of this vector produces a uniform distribution in a simplex (Devroye, 1986;
Tanizaki, 2004), also see Fig Al below. If H_ represents the size of host population in

one village among villages containing a total of N _ hosts then:

H = m_log(”") WN -+ (1—h) e (A59)

Z(—log(ul)) m

Where the first part of the right-hand side of (A59) represents a random population size
component weighted by the homogeneity parameter h such that 0 < h <1 and the
second part represents a uniform population size component.

Similarly, if V. represents the size of vector population in one village among

villages containing a total of M vectors, then:
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Vl.:m_loﬂhMlﬂ—(l—h) )

Z(—log(ul_)) "

i=1

Note that those u.’s used in (A60) are different from those used in (A59);
therefore the human population size and the mosquito population size are not

necessarily synchronized. For each realization of (A59) and (A60) a dominant

eigenvalue of the resulting (3m + 2) by <3m + 2) dimensional next-generation matrix
(NGM) is calculated numerically. Note that for m villages we have one urban infected
human population and m infected commuters and m infected rural human populations

as well as one infected rural mosquito population and m infected rural mosquitoes,

giving the aforementioned dimension of the next-generation matrix.
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Figure A1. Comparison of sampling results among three villages between (a)
normalized random real numbers between 0 and 1 and (b) normalized negative
logarithms of random real numbers between 0 and 1. In both (a) and (b) 10,000 samples

were plotted.
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