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(iii) Abstract 43 

We develop a star-network of connections between a central city and peripheral 44 

villages and analyze the epidemic dynamics of a vector-borne disease as influenced by 45 

daily commuters. We obtain an analytical solution for the global basic reproductive 46 

number R
0
 and investigate its dependence on key parameters for disease control. We 47 

find that in a star-network topology the central hub is not always the best place to focus 48 

disease intervention strategies. Disease control decision is sensitive to the number of 49 

commuters from villages to the city as well as the relative densities of mosquitoes 50 

between villages and city. With more commuters it becomes important to focus on the 51 

surrounding villages. Commuting to the city paradoxically reduces the disease burden 52 

even when the bulk of infections are in the city because of the resulting diluting effects 53 

of transmissions with more commuters. This effect decreases with heterogeneity in host 54 

and vector population sizes in the villages due to the formation of peripheral epicenters 55 

of infection. We suggest that to ensure effective control of vector-borne diseases in star 56 

networks of village and cities it is also important to focus on the commuters and where 57 

they come from. 58 
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 59 

1. Chapter One: Introduction 60 

Thanks to the development of the concept of metapopulation in ecology, our 61 

understanding of epidemic dynamics of infectious diseases in connected populations has 62 

increased immensely. Metapopulations are groups of interconnected populations that are 63 

subject to semi-independent local dynamics(Adams and Kapan, 2009). Classical 64 

ecological assumptions of metapopulations are; that space is discrete with some patches 65 

suitable for habitation by a focal species and some patches not; that habitat patches have 66 

equal areas and isolation; that local populations in the metapopulation have entirely 67 

independent (uncorrelated) dynamics; and that the exchange rate of individuals among 68 

local populations is so low that migration has no real effect on local dynamics in the 69 

existing populations. In addition, it is said that the classical hallmarks of a true 70 

metapopulation are; population turnover (births and deaths), local extinctions and 71 

colonization(Hanski, 1998; Hanski and Gaggiotti, 2004; Hanski et al., 1997). 72 

These classical ideas from ecology have been imported into the realm of 73 

epidemiology of infectious diseases. For example, for microparasitic infections such as 74 

viruses and bacteria, each susceptible host is a potential patch of a favorable habitat. 75 

Propagules from infected patches can colonize (infect) others (susceptible hosts), 76 

followed by parasitic multiplication and local growth of a parasite population(Keeling et 77 

al., 2004). More importantly, hosts are usually structured into communities of local 78 

populations within which contacts among hosts are more frequent than between such 79 

communities. We therefore have two scales for the spatio-temporal dynamics and 80 
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persistence of parasites; infrapopulation scale (a local population scale; parasite within 81 

host) and the metapopulation scale (spatial and/or social aggregation within hosts) 82 

(Keeling et al., 2004). 83 

Therefore metapopulation concepts help us understand behaviors of disease 84 

dynamics at a higher spatial scale. Through determination of key metapopulation 85 

characteristics relevant to disease dynamics a deeper and better understanding of disease 86 

behavior and consequent potential disease control strategies can be achieved.  87 

At the infrapopulation scale (at a host-parasite level) we have different modes of 88 

transmission of parasites. Infectious diseases can be transmitted either directly, such as 89 

influenza, or indirectly, such as vector-borne diseases like malaria. From a modeling 90 

perspective the dynamics of directly transmitted diseases are simpler than those of 91 

vector-borne diseases because of the presence of an intermediate host in the later. At a 92 

metapopulation scale dynamics of vector-borne diseases will be sensitive to the 93 

different ways we assume about the agent of connectivity. Some studies have 94 

considered static hosts connected by mobile zoonotic vectors as in the epidemic 95 

dynamics of outbreaks of bubonic plague in which rat movements resulted in very 96 

weakly connected human subpopulations (Keeling and Gilligan, 2000). Other 97 

commentators have assumed static vector populations connected by mobile hosts as in 98 

the epidemic dynamics of dengue (Adams and Kapan, 2009; Luz et al., 2003). These 99 

considerations are based on different biological facts of vectors such as life span and 100 

physiology; for instance in the case of bubonic plague it was assumed that the plague is 101 

driven by the dynamics of disease in the rat populations, considering the fact that rats 102 
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are mammals, it makes sense to use this assumption. While when the vectors are much 103 

weaker like mosquitoes, dynamics of diseases among mobile hosts is usually assumed 104 

to drive dengue and malaria epidemics. 105 

In my study we consider a specific structure of the metapopulation, specifically 106 

as a star network. In my network a centrally located city is connected to arbitrary 107 

number of surrounding villages. Focusing specifically on malaria we investigate how 108 

movements of hosts between the city and surrounding villages determine the epidemic 109 

dynamics of malaria and consequent control strategies. In the next section we give an 110 

overview of the mathematical theory of disease dynamics and control. We argue that the 111 

development of the theory in infectious diseases was essentially a search for a threshold 112 

parameter similar to what was done in ecology and demography. In chapter two the 113 

main research is presented which will include the model, its analysis, results, discussion 114 

and conclusion 115 

Mathematical theory for vector-borne disease control: search for 
  
R

0
 116 

In this section I review the literature to trace the development of the 117 

mathematical theory of infectious diseases. The focus will be on vector-borne diseases 118 

as much as possible. The main argument in this section is that the history of 119 

mathematical theory of infectious diseases is simply the history of the search for a 120 

threshold parameter in epidemiology, the so-called basic reproductive number,
  
R

0
. 121 

The first recorded application of mathematical methods to inform decisions of 122 

public health importance was undertaken by Daniel Bernoulli in 1760. He investigated 123 
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theoretically whether inoculation against smallpox should be encouraged even if it was 124 

sometimes a deadly operation (Bacaer, 2011; Dietz and Heesterbeek, 2002). While 125 

Bernoulli’s analysis did not produce explicitly a concrete concept of a threshold 126 

parameter it laid a foundation for application of mathematical concepts in understanding 127 

infectious diseases dynamics. 128 

After Bernoulli and his contemporaries’ pioneer attempts at using mathematics 129 

to investigate dynamics of infectious diseases in the early 18th century, about one 130 

hundred years would pass before another recorded attempt would be undertaken. This 131 

came in the 1900s with the works of Sir. Ronald Ross. Ronald Ross worked with 132 

malaria. Not only did Ross prove experimentally that malaria was transmitted by 133 

Anopheline mosquitoes through their bites of hosts, but also he went on to suggest that 134 

in order to eliminate malaria in a given area it was important to kill only a certain 135 

amount of mosquitoes, the critical density, and not necessarily all of them. This claim, 136 

that it was possible to eliminate malaria by attacking mosquitoes, was met with 137 

skepticism. In 1911 Ross built a mathematical model of transmission for malaria in 138 

order to support his claim (Heesterbeek, 2002; Ross, 1911). Ross was the first to 139 

introduce the concept of a threshold density of mosquitoes above which the disease 140 

becomes endemic and below which the disease dies out. It was with this result that he 141 

backed up his claim that it was not necessary to exterminate all mosquitoes in an area in 142 

order to eliminate malaria. While Ross defined a concept of a threshold in terms of 143 

population density of mosquitoes, he did not generalize it to directly transmitted 144 

diseases. 145 
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Around the time of Ross’s work, another analyst by the name of Alfred J. Lotka 146 

was defining threshold concepts in demography, ecology and epidemiology. Notably in 147 

demography, Lotka defined “net fertility” as the expected number of female offsprings 148 

born to one female during her entire life (Heesterbeek, 2002; Smith et al., 2012). 149 

However, despite the fact that Lotka worked in all three interrelated fields of ecology, 150 

demography and epidemiology, he did not substantively define the threshold concept 151 

that was specifically addressing epidemiology at the time. The closest he could come to 152 

linking demography with epidemiology was to remark that growth of population and 153 

spread of diseases are very similar from a mathematical point of view. 154 

After Ross and Lotka, a duo of modelers interested in presenting a 155 

mathematically coherent theory of infection dynamics came into the scene. These were 156 

Anderson Gray McKendrick and William Ogilvy Kermack (Kermack and McKendrick, 157 

1933; Kermack and McKendrick, 1939; Kermack and McKendrick, 1932; Kermark and 158 

Mckendrick, 1927; M'Kendrick, 1925). Kermack and McKendrick made up for Ross’ 159 

omission of generalizing the threshold property beyond vector-borne diseases. They 160 

proved the threshold theorem, which states that in order for an infectious agent to be 161 

sustained in a population, the population density  N  has to exceed a certain critical 162 

density 
   
N

c
=1 A , where 

    
A = !

t
B

t
dt

0

!

" : (
 
B

t
is the probability that a newly infected 163 

individual is still infected at infection-age  t , and 
  
!

t
is the infectivity at infection-age  t ) 164 

(Heesterbeek, 2002). This is a more general formulation of the threshold property 165 

formerly derived by Ross. 166 
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The idea of a threshold property in epidemiology was therefore more rigorously 167 

presented by Kermack and McKendrick. It was more formalized in the 1950s 168 

particularly with respect to vector-borne diseases through the works of George 169 

MacDonald. In 1952 George MacDonald published a paper titled; “The analysis of 170 

equilibrium in malaria” (Macdonald, 1952), in which he formally coined the term “basic 171 

reproductive rate” and defined it as the number of infections distributed in a community 172 

as the result of the presence in it of a single primary non-immune case. He also assigned 173 

a symbol 
  
z

0
to this quantity. 174 

After this flurry of activities in the 1950s a period of inactivity would follow 175 

during which the threshold concept in epidemiology was hardly addressed in the 176 

literature. Some commentators attribute this trend to the failure of the Global Malaria 177 

Eradication Program which had relied heavily on the threshold concept (Heesterbeek, 178 

2002). However, things would change for better beginning from mid 1970s to 1980s. 179 

During this era several scientists endeavored to establish practical applications of the 180 

threshold concept in epidemiology for control of epidemics. They established the basic 181 

reproductive number as an important parameter for both theoretical and practical 182 

epidemiology. Notable actors during this time include Hethcote and Dietz and later on 183 

in the 1980s to early 1990s, Robert May and Roy Anderson (Heesterbeek, 2002). 184 

The 1990s witnessed the establishment of mathematical tools for calculating the 185 

basic reproductive number in heterogeneous populations (Diekmann et al., 1990) after 186 

which this threshold quantity became a core ingredient of most mathematical works in 187 

epidemiology. The development in computing powers since mid-1990s enabled analysts 188 
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to incorporate high-dimensions in their analytical structures with the consideration of 189 

networks and metapopulations in the dynamics of infections diseases (Hanski et al., 190 

1997; Keeling et al., 2004). The behaviors of the basic reproductive number could be 191 

studied using more realistic models. 192 

From the review presented, I argue that the maturity of the mathematical theory 193 

of infectious diseases epidemiology came with the establishment of the basic 194 

reproductive number. This is because the basic reproductive number provides us with 195 

several pieces of information such as; measure of the possibility of an epidemic in a 196 

totally susceptible population, measure of a disease burden in an ongoing epidemic, and 197 

measure of the amount of effort required to stop an epidemic (Smith et al., 2007). 198 

Therefore, defining this parameter in any infectious disease epidemic system gives the 199 

analyst immense opportunities to inform on various practical and theoretical 200 

possibilities related to disease spread and control. 201 

In the sections that follow I describe my research in detail. My research is about 202 

the spread of vector-borne disease in a metapopulation with a shape of a star network. 203 

At the time of conception of this research there was no analyst who had ever analyzed 204 

epidemic dynamics of a vector-borne disease in a metapopulation shaped as a star 205 

network. I define the basic reproductive number of this system and extract vital 206 

information key to control of the vector borne disease. 207 
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2 Chapter Two: Human mobility and the epidemiology of vector- 208 

borne diseases 209 

The role of host mobility in the epidemic dynamics of vector-borne diseases was 210 

not taken into consideration during the malaria eradication programs of the 1950s and 211 

1960s. This was cited as one of the reasons for failure of that program (Bruce-Chwatt, 212 

1968; Prothero, 1977). Since then there has been a substantial increase in the human 213 

population size, revolutions in transportation technologies and a sharp rise in 214 

urbanization. Poor levels of hygiene in most tropical cities has led to a rise in incidence 215 

of vector-borne diseases such as malaria and dengue (Knudsen and Slooff, 1992; Robert 216 

et al., 2003; Sharma, 1996). 217 

Concentration of most economic and social activities in cities has led to the 218 

formation of mobility patterns of hosts between these central hubs and the surrounding 219 

villages. When hosts move between the central city and peripheral villages they form a 220 

network structure of contact between themselves and the vector populations of the two 221 

spatial places. Since malarial vectors have short maximum flight distances, such as 222 

about 691 metres per life time for Anopheles funestus and Anopheles gambiae (Midega 223 

et al., 2007), it is effectively the host movements and their contact with stationary 224 

vectors that determine epidemic dynamics between two spatially separate localities.  225 

Commuters move back and forth between two subpopulations forming a 226 

connecting link that couples the epidemic dynamics of those subpopulations (Barrat et 227 

al., 2008; Colizza and Vespignani, 2008). This coupling forms a system of populations 228 
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with semi-independent local dynamics, called meta-populations (Adams and Kapan, 229 

2009). An infection event at one spatial point could trigger a full-blown outbreak at 230 

another spatial point in this meta-population structure making the study of the role of 231 

connectivity important for disease control (Hanski and Gaggiotti, 2004; Hanski et al., 232 

1997; Keeling et al., 2004).  233 

Theoretical studies on vector-borne disease dynamics in interconnected 234 

populations have produced several useful results. For example, in meta-populations 235 

mobility leads to disease occurrence among connected patches and speeds up the time 236 

for disease to reach equilibrium in the system (Cosner et al., 2009; Hsieh et al., 2007; 237 

Torres-Sorando and Rodri'guez, 1997). Besides, for heterogeneous vector densities 238 

among patches the disease burden is determined by the patch with the largest vector 239 

subpopulation and decreased with a greater degree of mixing of hosts (Adams and 240 

Kapan, 2009). While most studies do not elicit specific network structure, we believe 241 

that geographical relationships between villages and cities are approximately structured 242 

as a star-network in most tropical cities (Briggs and Mwamfupe, 2000) and that host 243 

commute patterns are not random (Gonzalez et al., 2008).  We construct a simple star- 244 

network in which daily commuters connect  an arbitrary number of villages to a central 245 

city, and incorporate a vector-borne disease transmission epidemic model to understand 246 

the influence of meta-population parameters on the epidemic dynamics. 247 

The most important parameter in epidemiology is the basic reproductive 248 

number, defined as the total number of secondary infections resulting from a single 249 

infectious agent after its introduction into a totally susceptible population throughout 250 
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the agent’s infectious period (Anderson and May, 1992; Arino and Van Den Driessche, 251 

2003; Diekmann et al., 1990; Dietz, 1993; May and Anderson, 1991; Shao, 1999). 252 

Because of the importance of the basic reproductive number in understanding infectious 253 

diseases epidemiology and guiding their public health interventions (Ferguson et al., 254 

2006; Ferguson et al., 2003; Ferguson et al., 2005), we derive this quantity explicitly 255 

and investigate how it can inform disease control decisions as well as the behavior of 256 

the epidemic. 257 
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 258 

3 Chapter Three: The Model 259 

Epidemiological dynamics in a homogeneous star network 260 

Network structure of the host population assumed here is a star with daily 261 

commuters between the central node (city) and each of m  peripheral nodes (or villages) 262 

(Figure 1). 263 

For mathematical simplicity we assume that all peripheral populations have 264 

identical numbers of residents, mosquitoes and commuters to the city. This assumption 265 

is relaxed later. We also assume that infection dynamics of all peripheral populations are 266 

synchronized. The rate of movement of hosts is not affected by their disease statuses.  267 

We adopt frequency-dependent transmission in a susceptible-infectious- 268 

susceptible (SIS) epidemic model for hosts (Anderson and May, 1992; Macdonald, 269 

1956; May and Anderson, 1991; Ross, 1911). We adopt a susceptible-infectious (SI) 270 

epidemic model for mosquito vectors because once infected they do not recover from 271 

infection. There is no vertical transmission within the mosquito population; that is, 272 

newborns do not acquire infection from their parents. Susceptible mosquitoes are 273 

supplied by newborns. In this construction an infection of a susceptible host occurs 274 

through a bite by an infected mosquito, and an infection of a susceptible mosquito 275 

occurs through its bite of an infected host. There is no direct transmission between hosts 276 

or between mosquitoes. 277 
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 The variables describing epidemic dynamics of the SIS model among hosts and 278 

the SI model among mosquitoes are as follows (see also Table 1). The number of 279 

susceptible and infected mosquitoes is denoted respectively by x
u

 and y
u
 in the central 280 

city (or urban area, and hence the subscript u), and by x
r
 and y

r
 in a peripheral village 281 

(or rural area, and hence the subscript r). On the other hand, the number of susceptible 282 

and infected hosts is denoted respectively by X
u
and Y

u
 in the central city; by X

c
 and 283 

Y
c
 in those hosts commuting (and hence the subscript c) from a peripheral village to the 284 

central city every day and staying in the city only during daytime; and by X
r
 and Y

r
 for 285 

resident hosts who stay in a peripheral village for the whole day. 286 

During daytime in the city, there are 
 
X
u

+mX
c
 susceptible hosts and 

 
Y
u

+mY
c
 287 

infected hosts (where m  stands for the number of peripheral villages as noted before), 288 

and x
u

 susceptible mosquitoes and y
u
 infected mosquitoes. During nighttime, 289 

 
m(X

c
+Y

c
)  people go back to their own villages, leaving only 

 
X
u

+Y
u
 in the city.  290 

In a frequency-dependent transmission we assume that mosquitoes bite hosts at 291 

a constant rate. Transmission is therefore sensitive to the number of hosts available to 292 

receive the bites. Infection dynamics are separated into daytime and nighttime 293 

dynamics. The people who commute to the city can be infected when being bitten by an 294 

infected mosquito in the city during daytime and when being bitten by an infected 295 

mosquito in the village during nighttime. Writing only dynamics for infected 296 

components (see the Appendix for full ODEs) we have the following expressions for 297 

dynamics at any arbitrary point in daytime (time is measured in units of days) 298 

 k! t < k+ 0.5 (k = 0,1,2...) : 299 
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dYu

dt
=

bd!Xu

Nu +mNc

yu!"Yu , (1) 300 

 
  

dyu

dt
=
bd !! Yu +mYc( )
Nu +mNc

xu"Dyu , (2) 301 

 
  

dYc

dt
=

bd!Xc

Nu +mNc

yu!"Yc , (3) 302 

 
  

dyr

dt
=
bd !! Yr

Nr

xr"Dyr , (4) 303 

 
  

dYr
dt

=
bd!Xr

Nr

yr!"Yr ,  (5) 304 

where b
d
 is the rate at which a mosquito bites a host in daytime,  !  is the per bite 305 

probability that the disease is transmitted from an infected mosquito to a susceptible 306 

host and   !!  is the per bite probability that the disease is transmitted from an infected 307 

host to a susceptible mosquito. 
 
!  is the rate at which an infected host recovers (and 308 

becomes susceptible again) and D  is the mortality rate of adult mosquitoes. Also, 309 

N
u
,  N

c
 and N

r
 are the respective numbers of host residents in the city, commuters from 310 

a village and daytime village residents.  M
u
 and M

r
 are the respective numbers of 311 

mosquitoes in the city and in a single village. Therefore 
 
X
u
(t)= N

u
!Y

u
(t) , 312 

 
X
c
(t)= N

c
!Y

c
(t) , 

 
X
r
(t)= N

r
!Y

r
(t) , 

 
x
u
(t)= M

u
! y

u
(t)  and 

 
x
r
(t)= M

r
! y

r
(t)  are 313 

the numbers of susceptible hosts and mosquitoes in each compartment. The rate at 314 

which a particular host is bitten by a particular mosquito during the day in the city is 315 

 
b
d
(N

u
+mN

c
)  and is b

d
N

r
 in one village.  316 
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Nighttime epidemiological dynamics are derived similarly for any time point 317 

 k+ 0.5! t < k+1 (k = 0,1,2,....)   as 318 

 
  

dYu
dt

=
bn!Xu

Nu

yu!"Yu  (6) 319 

 
  

dyu
dt

=
bn !! Yu
Nu

xu"Dyu  (7) 320 

 
  

dYc
dt

=
bn!Xc

Nr +Nc

yr!"Yc  (8) 321 

 
  

dyr

dt
=
bn !! Yr +Yc( )
Nr +Nc

xr"Dyr   (9) 322 

 
  

dYr
dt

=
bn!Xr

Nr +Nc

yr!"Yr  (10) 323 

where b
n
 is the mosquito biting rate at night. 324 

In the following sections we derive an analytical solution for the global basic 325 

reproductive number R
0  of the star network and investigate its sensitivity to key 326 

population and networks parameters relevant to disease control. 327 
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 328 

4 Chapter Four: Results 329 

Basic reproductive number R
0
for the meta-population  330 

Linearization of epidemic dynamics (1)-(10) by assuming that infected densities 331 

are small near the disease-free equilibrium results into a system; 332 

 
  

dy

dt
=

A
d
y(t), for t  at daytime (k! t < k+ 0.5;   k = 0,1,2,!),

A
n
y(t),  for t  at nighttime  (k+ 0.5! t < k+1;  k = 0,1,2,!),

"

#
$$$

%
$$$

(13) 333 

where  y= (Yu , yu ,Yc , yr ,Yr )
T  with T denoting transposition of vector 

 y
, and 334 

 

  

Ad =

!! "1#Nu 0 0 0
"1 "# Mu !D "1 "# Mum 0 0
0 "1#Nc !! 0 0
0 0 0 !D "2 "# Mr

0 0 0 "2#Nr !!

#

$

%%%%%%%%%%%%%%%%%

&

'

(((((((((((((((((((

, (14a) 335 

 

  

An =

!! "3#Nu 0 0 0
"3 "# Mu !D 0 0 0
0 0 !! "4#Nc 0
0 0 "4 "# Nr !D "4 "# Mr

0 0 0 "4#Nr !!

#

$

%%%%%%%%%%%%%%%%%

&

'

(((((((((((((((((((

, (14b) 336 

where 337 

 
  
!1 =

bd
Nu +mNc

,  !2 =
bd
Nr

,  !3 =
bn
Nu

,  and !4 =
bn

Nr +Nc

 . (15) 338 
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The solution to equation (13) for  t = k  (integer) is given by 339 

 y(k)= y(0)e
k
2
(Ad+An )

= y(0)kA , where 340 

 
 
A=

Ad + An
2

. (16) 341 

In the Appendix an equation for non-integer time point ( t ! k ) is shown, which is a bit 342 

more complicated but it does not affect the subsequent calculations of the basic 343 

reproductive number by assuming that infection starts at  t = 0 , as in the next generation 344 

matrix method we count the cumulative number of secondary infections toward  t!" . 345 

Equation (16) is the averaged matrix for daytime dynamics and nighttime 346 

dynamics. This calculation is possible because of linearization around the disease-free 347 

equilibrium. In the Appendix the basic reproductive number is calculated using the 348 

method of next-generation matrix (Diekmann et al., 1990; Diekmann et al., 2010; 349 

Diekmann et al., 2012; Heesterbeek, 2000; Heesterbeek, 2002), which after 350 

rearrangement gives the expression for the basic reproductive number R
0
 for the whole 351 

system as 352 

 
  
R0 =

!1 +!2 +!3 +!4
2

+
!1 +!2 +!3 +!4( )2

4
! !1!3 +!1!4 +!2!4( ),  (17) 353 

where 354 



 24 

 

  

!
1

=
1

D"

#
1
+#

3

2

!

"
###

$

%
&&&

2

$ '$ N
u
M

u
=
$ '$ N

u
M

u

4D"

b
d

N
u

+mN
c

+
b
n

N
u

!

"
####

$

%
&&&&

2

,

!
2

=
1

D"

#
1

2

!

"
###
$

%
&&&

2

$ '$ mN
c
M

u
=
$ '$ mN

c
M

u

4D"

b
d

N
u

+mN
c

!

"
####

$

%
&&&&

2

,

!
3

=
1

D"

#
4

2

!

"
###
$

%
&&&

2

$ '$ N
c
M

r
=
$ '$ N

c
M

r

4D"

b
n

N
r
+N

c

!

"
####

$

%
&&&&

2

,

!
4

=
1

D"

#
3
+#

4

2

!

"
###

$

%
&&&

2

$ '$ N
r
M

r
=
$ '$ N

r
M

r

4D"

b
d

N
r

+
b
n

N
r
+N

c

!

"
####

$

%
&&&&

2

,

  (18) 355 

are the basic reproductive numbers of infection cycles for: city residents and city 356 

mosquitoes (
 
!
1
), daytime commuters and city mosquitoes (

 
!
2

), returning nighttime 357 

commuters and village mosquitoes (
 
!
3
), and non-commuting village residents and 358 

village mosquitoes (
 
!
4

) (see Figure 2). See Appendix for the derivation of (17)-(18). 359 

More important applications of the explicit formula (17) for the whole system basic 360 

reproductive number is seen in sensitivity analyses discussed in next sections. 361 

 362 

Sensitivity analysis of parameters to system basic reproductive number 363 

 Where should mosquito control be focused between the city and surrounding 364 

villages? 365 

In this section we show how the analytical results for the basic reproductive 366 

number obtained in the last section (equation 17) can be used to design the control 367 

strategy. This is based on the derivation of the dependence of the global basic 368 

reproductive number R
0  on a given epidemiological or network parameters shown in 369 

details in the Appendix. Here we choose the number of mosquitoes in a village and the 370 
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city, M
r
 and M

u
respectively as the target parameters for control of the vector-borne 371 

disease. We consider the relative impact on 
  
R

0
 of proportional changes in the mosquito 372 

populations of city or villages. Since 
  
R

0
 also estimates the effort required to control a 373 

disease (Smith et al., 2007), we are hereby answering the question of where to focus 374 

control effort for a certain predetermined fractional reduction in 
  
R

0
 given a distribution 375 

of mosquitoes between the city and villages (see Appendix for full derivation). We 376 

obtain conditions when intervening in city will lead to more prevention of disease as  377 

 
  

!R0
!(logMu )

>
!R0

!(logMr )
"
!1 +!2
!3 +!4

>1.  (20) 378 

From equation (20) we see that focusing control efforts in the city is more effective 379 

when 
   
!

1
+!

2
>!

3
+!

4
. But if it becomes such that 

   
!

3
+!

4
>!

1
+!

2
 then focusing 380 

control efforts in villages becomes more effective. Substituting equation (18) into 381 

equation (20) results into an expression for a critical value, denoted hereby by 
 
!
c
which 382 

is related to the ratio of mosquito densities in the city and villages as 383 

 
 

!R0
!(logMu )

>
!R0

!(logMr )
  if and only if 

  

Mu

Mr

>!c , (21) 384 

where  385 
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or, since the total host population is 
  
N = N

u
+ m N

r
+ N

c
( )  we define the proportions 387 

of city residents as    pu = Nu / N ,  commuters as    pc = mNc / N  , and village residents as 388 

   pr = mNr / N , and write 22a as, 389 
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. (22b) 390 

To see how the strength of connections between city and village through 391 

commuting affects the effective mosquito control in city and villages, we here fix the 392 

proportion of city host population, p
u

, and the number of villages, m  in (22b), and 393 

allow the proportion of commuters, p
c  (and hence village hosts,  pr =1! pu! pc ), to 394 

vary so we can observe how 
 
!
c  varies with the proportion of commuters, p

c
. Since 

 
!
c
 395 

is a threshold value, it divides the region into two, each with different implications to 396 

the focus of disease control as shown in Figure 3. In the region under the curve which 397 

corresponds to 
  
(M

u
M

r
)<!

c
, reducing mosquito density in the surrounding villages by 398 

a fixed factor is more effective in reducing   R0  than doing so in the city. The region 399 

above the curve corresponds to 
  
(M

u
M

r
)>!

c
 when focusing on the central city is more 400 

effective than focusing on the surrounding villages. From Figure 3 we observe that an 401 

increase in commuters to the central city makes infections more likely to occur in the 402 

surrounding villages making focus of mosquito control there more effective. This is 403 

because in frequency-dependent transmission the efficiency of transmission depends on 404 

the possibility of one person being bitten by a mosquito in succession; one to receive an 405 
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infection and the second to pass it on (Keeling and Rohani, 2011). When more 406 

commuters move to the city, they leave a smaller number of people in the villages 407 

making vector-borne disease transmissions more efficient there than in the city. Since 408 

people in the city do not move, any increase in the number of hosts because of the 409 

incoming commuters serves to make the possibility of a mosquito biting a host in two 410 

successions less likely, lowering the infection risk.  411 

 412 

Epidemic occurrence with intensity of village-to-city connections  413 

(a) Homogeneous case 414 

The host and vector meta-population structure we assume in this paper is quite 415 

simple: a star network with the central city and m  surrounding villages (Figure 1). 416 

However, we can ask several important questions about the effects of host population 417 

structure within this framework.  418 

For subsequent analyses, we assume that the total nighttime population of city 419 

residents, N
u

, and the total nighttime villages residents, 
 
m(N

c
+N

r
) , are constant when 420 

we vary the host population structure. Consequently, the total host population, denoted 421 

by 
 
N = N

u
+m(N

c
+N

r
) , is also kept constant. The total mosquito population 422 

 M = Mu +mMr  is also kept constant. In numerical examples in this section we 423 

assume, for simplicity, that the biting rates during day and night are the same: 424 

 i.e., b
d

= b
n

= b( ) . The more general case of heterogeneous bite rates between day and 425 

night (  bd ! bn ) was also analyzed (see section 4 in Appendix) and yielded qualitatively 426 
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similar results to the homogeneous case reported in this section. Moreover, in addition 427 

to fractions of city residents, p
u

, commuters, p
c
, and village residents, p

r
 defined in 428 

equation 22b we define proportions of mosquitoes in the city as 
 
q
u

= M
u
M  and in all 429 

villages as 
 
q
r

= mM
r
M . For example, we can change the fraction of commuters by 430 

increasing the number N
c
 of daytime commuters while keeping the nighttime total 431 

population  m N
c
+N

r
( )  constant, and ask how this changes the global basic 432 

reproductive number R
0
.   433 

 We here examine whether or not increasing connectivity would increase R
0

434 

when metapopulation is nearly isolated. This could be answered by looking at the 435 

partial derivative of R
0
 with respect to p

c  , !R0 /! pc( ) , as 
 
p
c
! 0  while keeping 436 

 
p
c
+ p

r
=1! p

u
constant. We find a paradoxical case where increasing connectivity 437 

(i.e., number of commuters) in the network decreases the basic reproductive number, 438 

lowering the possibility of disease occurrence (see full derivation in the Appendix). This 439 

happens if the following condition is true, 440 

 
 

qu
qr

>
pu

1! pu
 , (23) 441 

or simply if  qu > pu  (as  qr =1!qu ), i.e. when mosquitoes are more concentrated in the 442 

city than their hosts. This simple condition remains the same even when daytime and 443 

nighttime biting rates are different (i.e.,   bd ! bn ).  444 

Equation (23) shows that a paradoxical region in which there is decreasing 445 

possibility of disease occurrence with increasing connectivity exists when the ratio of 446 

mosquitoes to hosts in the city exceeds the ratio of mosquitoes to hosts in the villages. 447 
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This condition is shown graphically for homogeneous assumptions in Figure 4 (dark 448 

lines) showing the dependence of the basic reproductive number R
0
 on the whole range 449 

of proportion of commuters p
c
, and not just for 

 
p
c
! 0 . The paradoxical region is 450 

observed in panels b-d (dark line). The reverse is true when hosts are more concentrated 451 

in the city than mosquitoes ( qu > pu ). This condition holds in panel a of Figure 4.  452 

The paradoxical region of decreasing basic reproductive number with 453 

increasing number of commuters to the city occurs because movement of hosts acts to 454 

reduce the efficiency of infections in the city by decreasing the mosquitoes-to-hosts 455 

ratio while at the same time the increased efficiency of transmissions in the villages 456 

being not enough to compensate the decrease in the city. This paradoxical region 457 

becomes more pronounced with increasing mosquito density in the city (Figure 4d) as 458 

more commuters are needed before the epidemic can start increasing again. The sharp 459 

rise in the basic reproductive number at very high proportions of commuters is a direct 460 

artifact of frequency-dependency assumptions. That is when there are extremely small 461 

numbers of hosts left in the villages relative to the number of mosquitoes, making 462 

transmissions extremely efficient, leading to the observed sharp rise in the values of the 463 

basic reproductive number. 464 

 465 

 (b) Heterogeneous case 466 

Furthermore, we investigated the influence of heterogeneity in the number of 467 

hosts and mosquitoes in the villages on the behavior of the paradoxical region. We fixed 468 

the number of city hosts at 20% of the total population and assumed that all villages had 469 
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the same proportion of commuters to the city. Keeping total host and total vector 470 

populations in villages constant, heterogeneity was introduced through random 471 

assignments of host and vector population sizes among a fixed number of villages using 472 

a uniform distribution in a simplex (a space formed by possible values of proportions 473 

allotted to villages)  (see Appendix section 5 for details). While in the homogeneous 474 

case all villages had the same numbers of hosts and vector populations, the 475 

randomization in the heterogeneous case produced villages with various sizes of human 476 

and vector populations. Field evidence suggests a high degree of clustering in mosquito 477 

populations among villages (Keating et al., 2005; Mbogo et al., 2003) and our purpose 478 

here was to imitate this heterogeneity using a simple probability distribution. Results 479 

are shown in Figure 4 with grey lines. 480 

 Firstly, we observe that depending on the ratio of mosquitoes to hosts, 481 

heterogeneity can increases the basic reproductive number even for lower values of the 482 

proportion of commuters as seen in Fig 4a and 4b. With more mosquitoes in the city this 483 

increase only occurs for higher proportions of commuters as seen in Fig 4c and 4d. 484 

Random heterogeneity can result into some villages having higher numbers of 485 

mosquitoes than that of humans leading to a formation of peripheral epicenters with 486 

higher transmissions than in the homogeneous case. Also heterogeneity could result in 487 

some mosquito to host ratios becoming smaller in some villages than in the 488 

corresponding homogeneous case, but the existence of epicenters in villages with higher 489 

mosquito to host ratios outweighs in the net effect. This result has direct implications 490 

for surveillance systems, it is important to try to understand the demographic 491 
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characteristics of surrounding villages both in terms of their host and mosquito 492 

densities.  493 

Secondly we observe that heterogeneity tends to narrow the paradoxical region. 494 

The paradoxical region depends on the relative densities of hosts and mosquitoes in an 495 

area. Heterogeneity in host and vector populations in villages leads to formation of 496 

peripheral epicenters with extremely efficient infections making the dilution effect of 497 

commuters in the city less important unless mosquito-to-human ratio is extremely high 498 

in the city as well, thereby narrowing the paradoxical region.  499 
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 500 

5 Chapter Five: Discussion 501 

We constructed a simple star network model of connections between a central 502 

city and an arbitrary number of surrounding villages. Then we incorporated a classic 503 

epidemic model for vector-borne diseases in order to understand the effects of 504 

connectivity as effected by daily commuters on the epidemic dynamics and disease 505 

control decisions.  506 

Through the method of next generation matrix we obtained an explicit 507 

expression for the basic reproductive number R
0
 of the system. A basic reproductive 508 

number is an important quantity in epidemiology because it has implications in planning 509 

of public health interventions against infectious diseases by aiming to maintain its value 510 

below the threshold, which is unity (Anderson and May, 1992; Ferguson et al., 2006; 511 

Ferguson et al., 2003; Ferguson et al., 2005; Scherer and McLean, 2002). The behavior 512 

of the basic reproductive number can be more complicated at the threshold value; such 513 

as disease-free state being unstable even for 
 
R
0

<1  (Hadeler and Van den Driessche, 514 

1997; Van den Driessche and Watmough, 2000; Van den Driessche and Watmough, 515 

2002) or the threshold vanishing altogether as in complex networks (Barrat et al., 2008). 516 

However, it provides a good theoretical approximation for most practical purposes of 517 

disease control (Anderson and May, 1992). 518 

The primary goal of this research was to investigate explicitly the role that 519 

commuters play in affecting the behavior of an epidemic and the implications to disease 520 
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control in a defined network structure. Based on the basic reproductive number, two 521 

questions were asked and answered; first one was on effects of commuters on the 522 

decision of where to direct disease control efforts between the city and villages when 523 

we aim to reduce the basic reproductive number
  
R

0
 and the second one was on the 524 

effects of commuters on the overall behavior of the epidemic. 525 

In a meta-population it is not always obvious where to focus disease control 526 

strategies because of the unknown influence of commuters as well as relative densities 527 

of mosquitoes to hosts. Besides, the disease control decision is normally a function of 528 

many factors such as economic, humanitarian, clinical and even political factors. 529 

Different points of view can give different prescriptions for disease control. For 530 

example, from an optimal control perspective some studies suggest focusing on 531 

subpopulations with the lowest number of infected hosts (Mbah and Gilligan, 2011; 532 

Rowthorn et al., 2009). Our study prescribes from the perspective of effectiveness of 533 

infections as influenced by commuters. We find that the decision of where to focus 534 

control efforts is sensitive to the proportion of commuters and the relative mosquito 535 

densities in the city and villages but an increase in the number of commuters from the 536 

villages to the city makes focusing on the surrounding villages more effective in vector- 537 

borne diseases. This is because when more and more people commute they make 538 

infections in the villages more effective thereby increasing chances of an epidemic in 539 

the whole meta-population.  540 

We found that commuters can influence the epidemic dynamics by lowering the 541 

basic reproductive number in certain conditions. In frequency-dependent transmissions 542 
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the effective ratio of mosquitoes to hosts is key in determining the occurrence of an 543 

epidemic. When this ratio is high in the city (and therefore higher basic reproductive 544 

number) any increase in the commuters to the city lowers the basic reproductive number 545 

leading to a paradoxical region. On the other hand, when this ratio becomes higher in 546 

the surrounding villages than in the city the paradoxical regions narrows down as 547 

commuting has weaker effect in this case. Particularly, for higher mosquito to host 548 

population ratios in the city heterogeneity in host and vector populations in villages 549 

increases the basic reproductive number and narrows the paradoxical region because of 550 

formation of peripheral epicenters with highly efficient transmissions. Therefore, 551 

understanding the demographic dynamics of villages in terms of its hosts and vectors is 552 

important for planning disease control. 553 

Our two results can be combined to inform disease control strategies. The first 554 

result emphasizes focusing control in the surrounding villages after determining key 555 

parameters which are commuters and the mosquito densities in city and villages; the 556 

second results emphasizes on the surveillance of the surrounding villages in order to 557 

capture those epicenters of infections. It is well known that rural tropical Africa has 558 

more vector borne disease transmissions than the urban Africa because of the presence 559 

of large vector populations and ubiquity of breeding sites in the former (Walker, 2002). 560 

Recent theoretical and empirical studies have shown that movements of hosts between 561 

two spatial points such as from villages to central cities is responsible for persistence of 562 

vector-borne diseases in cities despite control strategies (Adams and Kapan, 2009; Le 563 

Menach et al., 2011; Wesolowski et al., 2012). Our study has pinpointed one possible 564 
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way of how such movements affect disease control decisions and the behavior of the 565 

epidemic dynamics of vector-borne diseases.   566 

 567 

 568 
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Table 1: Meaning of symbols used 718 

Symbol Meaning 

x
u

 Number of susceptible mosquitoes in the central city 

y
u
 Number of infected mosquitoes in the central city 

x
r
 Number of susceptible mosquitoes in the peripheral 

village 

y
r
 Number of infected mosquitoes in the peripheral 

village 

X
u
 Number of susceptible hosts in the central city 

Y
u
 Number of infected hosts in the central city 

X
c
 Number of susceptible commuting hosts 

Y
c
 Number of infected commuting hosts 

X
r
 Number of susceptible hosts who stay in the village the 

whole day 

Y
r
 Number of infected hosts who stay in the village the 

whole day 

m  Number of peripheral villages 

b
d
 Daytime mosquito bite rate 

b
n  

 !   

 

Nighttime mosquito bite rate 

Per bite probability of transmission from mosquito to 

host 

  !!  Per bite probability of transmission from host to 

mosquito 

 
!  Recovery rate of hosts 

D  Death rate of mosquitoes 

 
N

u
= X

u
+Y

u
 Total number of residents in the city 

 
N

c
= X

c
+Y

c
 Total number of commuters from one of the villages 

 
N

r
= X

r
+Y

r
 Total numbers of residents remaining in one village 

 N = N
u

+m N
c
+N

r
( ) Total number of hosts in the entire system 
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M

u
= x

u
+ y

u
 Total number of mosquitoes in the central city 

 
M

r
= x

r
+ y

r
 Total number of mosquitoes in one peripheral village 

 
M = M

u
+mM

r

 
Total equilibrium density of mosquitoes in the whole 

system 

 
!
1
 Basic reproductive number for the infection cycle in 

the city (between hosts and mosquitoes in the city) 

 
!
2
 Basic reproductive number for the daytime commuters 

and mosquitoes in the city 

 
!
3
 Basic reproductive number for the nighttime 

commuters and mosquitoes in one village 

 
!
4
 Basic reproductive number for the infection cycle in a 

village (between hosts and mosquitoes in a village) 

R
0
 Basic reproductive number for the entire system (a 

central city and m  villages) 

p
u

 Proportion of hosts in the city 

p
c
 Proportion of commuting host 

p
r
 Proportion of hosts in a village 

q
u

 Proportion of mosquitoes in the city 

q
r
 Proportion of mosquitoes in a village 

 
!
c
 Critical value for ratio of mosquitoes in the city to 

mosquitoes in the villages 

 719 

 720 
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Figure 1: A star-network with a central city and surrounding villages 721 

 722 

Figure 1. A star-network with a central city and m  peripheral villages. Mobility 723 

patterns in the homogeneous assumption is such that daily commuters (shown by C in 724 

the figure) from surrounding villages connect the infection dynamics of all populations 725 

of villages with each other as well as with the city. Mosquitoes don’t move between city 726 

and village or between villages. 727 
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Figure 2: Basic reproductive numbers for various infection cycles 728 

 729 
Figure 2. Basic reproductive numbers for various infection cycles: In homogeneous 730 

assumption that m  village populations in the star network are identical in their resident 731 

and commuter host and mosquito population sizes, we derive individual basic 732 

reproductive numbers (
 
!
i
's ) for four infection cycles in the network as shown: city 733 

hosts and city mosquitoes infection cycle (
 
!
1
), daytime commuters and city mosquitoes 734 

infection cycles (
 
!
2

), nighttime commuters and village mosquitoes infection cycle (
 
!
3
), 735 

and village hosts and village mosquitoes infection cycle (
 
!
4
). 736 
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Figure 3: Dependence of control decision on the mosquito densities 737 

and proportion of commuters to the city 738 

 739 

 740 

Figure 3: Ratio of city-to-villages mosquito densities 
  
(M

u
/ M

r
)  as a function of the 741 

proportion of commuters, p
c  from villages. When we change p

c
, the total nighttime 742 

populations are kept constant; the proportion of city residents 
 
p
u

= 0.2  remains 743 

unchanged while the proportion of village residents, p
r
 changes with p

c
as 744 

 
p
r

=1! p
u
! p

c
= 0.8! p

c
.  (Parameters: 

  
!=1 30 ,  D=1/ 7 ,  m= 5 , 

 
b
d

= b
n

= 0.15 ) 745 
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Figure 4: Behavior of basic reproductive number with respect to 746 

commuters and behavior of village populations 747 

 748 

 749 

Figure 4. Dependence of basic reproductive number R
0
on the proportion of commuters 750 

p
c  that move to the city everyday in homogeneous assumption (solid black curves) and 751 

heterogeneous assumption (gray curves). The proportion of mosquitoes in villages q
r
 752 

differs for each panel such that in 4a, (
 
q
r

= 0.85 ); in 4b, (
 
q
r

= 0.50 ); in 4c, 753 

(
 
q
r

= 0.40 ); and in 4d, (
 
q
r

= 0.20 ). Corresponding city mosquito densities can be 754 

obtained using the assumption that 
 
q
r
+q

u
=1 . The proportion of city residents is fixed 755 

at 
 
p
u

= 0.2  and the proportion of commuters, p
c
, as well as that of village residents, 756 
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p
r

=1! p
u
! p

c
= 0.8! p

c
, are changed simultaneously along the horizontal axis. 757 

(Parameters are: 
 
b
n

= b
d

= 0.15 ,  m= 5 ,  D=1/ 7 , and   !=1/ 30 .) 758 
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Appendix 759 

1. Full ODEs for epidemic dynamics 760 

We here consider frequency dependent transmission of malaria in a city-and- 761 

villages star network with commuters. Full ODEs for host susceptible-infected- 762 

susceptible (SIS) model for susceptible and infected city residents ( Xu  and  Yu ), 763 

susceptible and infected commuters from a village ( Xc  and  Yc  ), susceptible and 764 

infected resident of a village ( Xr  and  Yr ), together with the vector susceptible-infected 765 

(SI) models for susceptible city mosquitoes ( xu  and  yu ), and susceptible and infected 766 

mosquitoes in a village ( xr   and  yr ) are as follows. 767 

(i).  Daytime infection dynamics for hosts and vectors: 768 

  
    

dXu

dt
=!

bd!Xu

Nu + mNc

yu +"Yu ,   (A1) 769 

 
    

dYu

dt
=

bd!Xu

Nu + mNc

yu!"Yu ,   (A2) 770 

 
    

dxu

dt
=!

bd
"! Yu + mYc( )

Nu + mNc

xu!Dxu + r 1!
xu + yu

Ku

#

$
%%%%

&

'
(((((

xu + yu( ),   (A3) 771 

 
    

dyu

dt
=

bd
!! Yu + mYc( )

Nu + mNc

xu"Dyu ,   (A4) 772 

 
    

dXc

dt
=!

bd!Xc

Nu + mNc

yu +"Yc ,   (A5) 773 

 
    

dYc

dt
=

bd!Xc

Nu + mNc

yu!"Yc ,   (A6) 774 
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dxr

dt
=!

bd
"! Yr

Nr

xr!Dxr + r 1!
xr + yr

Kr

#

$
%%%%

&

'
(((((

xr + yr( ),   (A7) 775 

 
    

dyr

dt
=

bd
!! Yr

Nr

xr"Dyr ,   (A8) 776 

 
    

dXr

dt
=!

bd!Xr

Nr

yr +"Yr ,   (A9) 777 

 
    

dYr

dt
=

bd!Xr

Nr

yr!"Yr .   (A10) 778 

All symbols are as defined in the main text except for the demographic parameters for 779 

mosquitoes:  r , the intrinsic growth rate of mosquito, and  Ku  and  Kr , the mosquito 780 

carrying capacity in city and a village, respectively.  781 

(ii) Nighttime infection dynamics for hosts and vectors 782 

 

    

dXu

dt
=!

bn!Xu

Nu

yu +"Yu ,

 

 (A11)

 

783 

 
    

dYu

dt
=

bn!Xu

Nu

yu!"Yu ,   (A12) 784 

 
    

dxu

dt
=!

bn
"! Yu

Nu

xu!Dxu + r 1!
xu + yu

Ku

#

$
%%%%

&

'
(((((

xu + yu( ),   (A13) 785 

 
    

dyu

dt
=

bn
!! Yu

Nu

xu"Dyu ,   (A14) 786 

 
    

dXc

dt
=!

bn!Xc

Nr + Nc

yr +"Yc ,   (A15) 787 

 
    

dYc

dt
=

bn!Xc

Nr + Nc

yr!"Yc ,   (A16) 788 



 52 

 
    

dxr

dt
=!

bn
"! Yr +Yc( )

Nr + Nc

xr!Dxr + r 1!
xr + yr

Kr

#

$
%%%%

&

'
(((((

xr + yr( ),   (A17) 789 

 
    

dyr

dt
=

bn
!! Yr +Yc( )

Nr + Nc

xr"Dyr ,   (A18) 790 

 
    

dXr

dt
=!

bn!Xr

Nr + Nc

yr +"Yr ,    (A19) 791 

 
    

dYr

dt
=

bn!Xr

Nr + Nc

yr!"Yr .   (A20) 792 

Note that, from (A1)-(A20), we first see that the total number of city resident 793 

  Nu = Xu +Yu , that of commuters from a village,   Nc = Xc +Yc , and that of residents in 794 

a village,   Nr = Xr +Yr , remain constant. Note also that the total numbers of 795 

mosquitoes in the city,   Mu = xu + yu , and that in a village,   Mr = xr + yr , change with 796 

time, irrespective of whether it is in day time or in nighttime, and independent of the 797 

epidemiological state of populations, as 798 

 
   

dMi

dt
= r 1!

Mi

Ki

"

#
$$$$

%

&
'''''

Mi!DMi , (i = r,u),  (A21) 799 

where  Ki   is the mosquito carrying capacity in either village or city which yields the 800 

equilibrium number of mosquitoes as 801 

 
   
Mi = Ki 1! D

r
"

#
$$$

%

&
'''', (i = r,u).  (A22)  802 

Hereafter we assume that mosquito total densities in city and a village are kept constant 803 

defined as (A22). 804 
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 805 

2. Basic reproductive number 806 

Using (A1)-(A20), noting that the total human densities, Nu , Nc , and Nr , 807 

remain constant, and assuming that the total mosquito densities,  Mu  and  Mr , are kept 808 

at their equilibrium values (A22), the density of infected humans in urban resident ( Yu ), 809 

commuters ( Yc ), rural resident ( Yr ) and those in infected mosquitoes in urban ( yu ) area 810 

and rural area ( yr ) change during daytime when commuters resides in the urban place 811 

as 812 

  

    

dYu

dt
=

bd!Xu

Nu + mNc

yu!"Yu ,

dyu

dt
=

bd
"! Yu + mYc( )

Nu + mNc

xu!Dyu ,

dYc

dt
=

bd!Xc

Nu + mNc

yu!"Yc ,

dyr

dt
=

bd
"! Yr

Nr

xr!Dyr ,

dYr

dt
=

bd!Xr

Nr

yr!"Yr ,

  (A23) 813 

for  k< t < k+0.5   (  k = 0,1,2,!). Note that we measure time in units of days, and 814 

divide a day into half for daytime and nighttime. Here,  bd  is the rate at which a 815 

mosquito bites a human in daytime,  !   is the per bite probability that the disease is 816 

transmitted from infected mosquito to susceptible human,   !!  is the corresponding 817 

quantity from infected human to susceptible mosquito. Unlike under density dependent 818 
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transmission (or mass action rule), the biting rate is independent of human density.  819 

Therefore the probability that a particular human is bitten by a particular mosquito is 820 

   bd / (Nu + mNc )  in city and   bd / Nr  in a village during daytime. The nighttime 821 

epidemiological dynamics are derived similarly as 822 

 

    

dYu

dt
=

bn!Xu

Nu

yu!"Yu ,

dyu

dt
=

bn
"! Yu

Nu

xu!Dyu ,

dYc

dt
=

bn!Xc

Nr + Nc

yu!"Yc ,

dyr

dt
=

bn
"! Yr +Yc( )

Nr + Nc

xr!Dyr ,

dYr

dt
=

bn!Xr

Nr + Nc

yr!"Yr ,

  (A24) 823 

for  k+0.5< t < k+1   (  k = 0,1,2,!),  where  bn   is the mosquito biting rate at night. 824 

 We then linearize the epidemiological dynamics by assuming that infected 825 

densities are small to have 826 

 
 

dy(t)
dt

=
Ad y(t), for t  in daytime
Any(t), for t  in nighttime

!
"
###

$
###  

(A25) 827 

where  y= (Yu , yu ,Yc , yr ,Yr )
T , with superscript T  denoting vector transform, and  828 
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Ad =

!! "1#Nu 0 0 0
"1 "# Mu !D "1 "# Mum 0 0
0 "1#Nc !! 0 0
0 0 0 !D "2 "# Mr

0 0 0 "2#Nr !!

#

$

%%%%%%%%%%%%%%%%%

&

'

(((((((((((((((((((

,  (A26) 829 

 

  

An =

!! "3#Nu 0 0 0
"3 "# Mu !D 0 0 0
0 0 !! "4#Nc 0
0 0 "4 "# Nr !D "4 "# Mr

0 0 0 "4#Nr !!

#

$

%%%%%%%%%%%%%%%%%

&

'

(((((((((((((((((((

, (A27) 830 

where 831 

 
    
!1 =

bd

Nu + mNc

, 
    
!2 =

bd

Nr

, 
    
!3 =

bn

Nu

, and 
    
!4 =

bn

Nr + Nc

.  (A28) 832 

The solution to (A25) for  t = k  is given simply by  833 

  y(k)= y(0)e
Ad dt

j

j+1/2

! + An dt
j+1/2

j+1

!
"
#
$$
%$$

&
'
$$
($$j=0

k)1*
= y(0)e

k
2
(Ad+An )

= y(0)ekA  .  834 

where  A= (Ad + An ) / 2   is the mean of the daytime matrix (A26) and the nighttime 835 

matrix (A27) . For  not exactly at an integer value,    y(t)  is expressed in a slightly 836 

complicated form: 837 

 

 

y(t)=
y(0)ekA+(t!k )Ad , (k< t < k+1/ 2),

y(0)e
kA+

Ad
2

+(t!k!1/2)An , (k+1/ 2< t < k+1),

"

#

$$$$

%
$$$$

  838 

but this complication does not affect the subsequent calculations of the basic 839 

reproductive number, if we assume that initial infected agents are introduced at  t = 0  840 

t
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(at an integer point). If the initial infected agents are introduced in another hour in a day 841 

(not at the beginning of daytime), we would have a very minor difference in the basic 842 

reproductive numbers, but we ignore such a technical trivia in this paper.  843 

 Now we define the next generation matrix and obtain the basic reproductive 844 

number. At first, we decompose the averaged matrix A  into transmission part F  and 845 

transition part V  as 846 

  

A=
Ad + An
2

=

0 !1+!3
2
"Nu 0 0 0

!1+!3
2

!" Mu 0 !1
2
!" Mum 0 0

0 !1
2
"Nc 0 !4

2
"Nc 0

0 0 !4
2
!" Mr 0 !2+!4

2
!" Mr

0 0 0 !2+!4
2
"Nc 0

"

#

$$$$$$$$$$$$$$$$$$$$$$$

%

&

'''''''''''''''''''''''''''

(

# 0 0 0 0
0 D 0 0 0
0 0 # 0 0
0 0 0 D 0
0 0 0 0 #

"

#

$$$$$$$$$$$$$$$

%

&

'''''''''''''''''

) F(V ,

 (A29) 847 

We then define a next generation matrix G  as in (Diekmann et al., 2010; Diekmann et 848 

al., 2012)  849 

  

  

G= FV!1 =

0 !1+!3
2D
"Nu 0 0 0

!1+!3
2#

"" Mu 0 !1
2#
"" Mum 0 0

0 !1
2D
"Nc 0 !4

2D
"Nc 0

0 0 !4
2#
"" Mr 0 !2+!4

2#
"" Mr

0 0 0 !2+!4
2D
"Nc 0

#

$

%%%%%%%%%%%%%%%%%%%%%%%%

&

'

((((((((((((((((((((((((((((

,(A30) 850 

 851 
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We can obtain all the eigenvalues of the next generation matrix  from the 852 

characteristic equation 853 

 
  
!I!G =! !4!("1 +"2 +"3 +"4 )!

2 + ("1"3 +"1"4 +"2"4 ){ }= 0 ,  (A31) 854 

where 
 
!
i
 ( i=1,2,3,4 ) is the product of 

 
(i,i+1)  and 

 
(i+1,i)  components of the next 855 

generation matrix G , and are the individual cycles’ basic reproductive numbers. The 856 

whole system basic reproductive number is given by the largest eigenvalue of the next 857 

generation matrix G  and is obtained as 858 

 
  
R0 =

!1 +!2 +!3 +!4
2

+
!1 +!2 +!3 +!4

2
!
"
###

$
%
&&&

2

'(!1!3 +!1!4 +!2!4 ) , (A32) 859 

where 860 
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  (A33) 861 

This completes the derivation of basic reproductive number (17) in the text. 862 

G
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3. Sensitivity of basic reproductive number on urban/rural mosquito densities  863 

The basic reproductive number has a form  R0 = A+ B  where 864 

  
A= (!

1
+!

2
+!

3
+!

4
) / 2  and 

  
B= A

2
!(!

1
!
3
+!

1
!
4

+!
2
!
4
) . It then follows that 865 
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  (A34) 866 

with which the sensitivity of the basic reproductive number on an arbitrary parameter w  867 

is expressed as 868 

 
  

!R
0

!w
=

!R
0

!!
ii=1

4

"
!!

i

!w
 (A35) 869 

As for the sensitivity on urban mosquito density ( w= Mu ), we have, from 870 
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M
u
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2

!M
u
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!
2

M
u
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= 0   (A36) 871 

and (A33)-(A34), 872 
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Likewise, as 874 
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!!
1

!M
r

=
!!

2

!M
r

= 0,
!!

3

!M
r

=
!
3

M
r

,
!!

4

!M
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=
!
4

M
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,  (A38) 875 

we have 876 

 

  

!R0
!Mr

=
!R0
!!3

!3
Mr

+
!R0
!!4

!4
Mr

=
1

Mr8R0 B
2 B(!3 +!4 )"!1(!3 +!4 )+!2 (!3"!4 )+ (!3 +!4 )

2#
$%

&
'(

 (A39) 877 

From (A37) and (A39), we have 878 

 

  

!R0

!(logM
u
)
"

!R0

!(logM
r
)
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1

8R0 B
2 B (!1 +!2 )"(!3 +!4 ){ }+ (!1 +!2 )
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 879 

and therefore decreasing urban mosquito density is more effective in reducing basic 880 

reproductive number if 881 

 
  

!R0
!(logMu )

>
!R0

!(logMr )
"

!1 +!2
!3 +!4

>1. (A40) 882 

Substituting (A33) into the second inequality of (A40), we see that the condition for that 883 

controlling urban mosquitoes is more effective than controlling rural mosquitoes if 884 
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This completes the derivation of equation (22) in the text. 886 
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 887 

4. Sensitivity of basic reproductive number on the fraction of commuters in rural 888 

area 889 

For what follows, we assume that the biting rates in day and night can be 890 

different:  bd ! bn . For homogeneous daytime and nighttime bite rates similar results are 891 

obtained by setting   bd = bn = b . The definitions of   !i s are 892 
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 (A42) 893 

We now introduce the fractions 894 

 
   

pu = Nu / N , pc = mNc / N , pr = mNr / N ,
qu = Mu / M , qr = mMr / M ,

  (A43) 895 

where   
N = Nu + m Nc + Nr( ) is the total number of humans and   M = Mu + mMr  is the 896 

total number of mosquitoes. 897 

 We then ask how the basic reproductive ratio 898 
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depends on the fraction of commuters  pc  in rural area when the fraction of urban 900 

human population  pu  is kept constant.  901 

 To see this we first substitute (A43) into (A42) 902 
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  (A45) 903 

where  904 

     
r0 =

! !!
4D"

M
N

.
  (A46) 905 

In what follows, we assume that the fraction of urban human population 
 
p

u
 906 

remains constant, and change the fraction of commuters 
 
p

c
. The fraction of rural 907 

daytime resident 
 
p

r
 changes accordingly by changing 

 
p

c
 (i.e.,    pr =1! pu! pc ). Under 908 

this assumption, we differentiate each 
  
!

i
 by 

 
p

c
 and take the limit of    pc! 0  to find the 909 

condition under which introduction of nonzero fraction of commuters decreases 
  
R

0
. 910 
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 We first eliminate  pr  by substituting    pr =1! pu! pc  into (A45) and then see 911 

the derivative by  pc  evaluated at    pc = 0 , 912 
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  (A47) 913 

and 914 

 

    

!1 pc=0 = r0 bd + bn( )2 qu

pu

,

!2 pc=0 = !3 pc=0 = 0,

!4 pc=0 = r0 bd + bn( )2 qr

pr

  (A48) 915 

As for the partial derivatives of 
   
R

0
= A + B  by 

  
!

i
’s, evaluated at 

   
p

c
= 0 , 916 

where 
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( ) 2  and 
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( ) , we have 917 
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where we used 919 
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Similarly, 921 
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and hence 925 
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Using these evaluations, we see the following. Suppose first that 
    
(!1!!4 ) pc=0 > 0  or  928 

 
   

qu
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.   (A56) 929 

Then it follows that 930 
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   (A57) 931 

Thus (A56) gives the condition for the existence of the paradoxical region. 932 

 If the reverse inequality holds  (  qu pu < qr pr  ), we have 933 
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 (A58) 934 

and hence   R0  increases as  pc  is increased from 0.  935 

 Similar result holds for the homogenous bite rates obtained by setting 
  
b

n
= b

d
. 936 

This conclusion holds no matter how large is the difference between daytime and 937 

nighttime mosquito bite rates. This completes the derivation of the condition (23) in the 938 

text for paradoxical dependence of R0  on connectivity. 939 
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5. Incorporating heterogeneity 940 

We define a parameter  h  that assigns different levels of heterogeneity and 941 

homogeneity in the host and vector population sizes. When    h =1  we only recover the 942 

heterogeneous component and when    0 < h <1  there is a nonzero homogeneous 943 

component. 944 

 The heterogeneous component is obtained by sampling host and vector 945 

populations using a uniform distribution in the simplex whose dimension equals the 946 

number of villages (see example in Figure A1 below for 3 villages).  947 

 We sample a vector of uniform random real numbers between 0 and 1; 948 

   
ui !U(0,1] , i =1,2...m( )  where  m  is the number of villages. The normalized negative 949 

logarithm of this vector produces a uniform distribution in a simplex (Devroye, 1986; 950 

Tanizaki, 2004), also see Fig A1 below. If 
 
H

i
 represents the size of host population in 951 

one village among villages containing a total of 
 
N

r
 hosts then: 952 

  

   

Hi =
!log ui( )
!log ui( )( )

i=1

m

"
hNr + 1!h( ) Nr

m
  (A59) 953 

Where the first part of the right-hand side of (A59) represents a random population size 954 

component weighted by the homogeneity parameter    h such that 0! h!1 and the 955 

second part represents a uniform population size component. 956 

Similarly, if 
 
V

i
 represents the size of vector population in one village among 957 

villages containing a total of 
 
M

r
 vectors, then: 958 
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Vi =
!log ui( )
!log ui( )( )

i=1

m

"
hMr + 1!h( ) Mr

m
 . (A60) 959 

Note that those 
 
u

i
’s used in (A60) are different from those used in (A59); 960 

therefore the human population size and the mosquito population size are not 961 

necessarily synchronized. For each realization of (A59) and (A60) a dominant 962 

eigenvalue of the resulting 
   
3m+ 2( ) by 3m+ 2( ) dimensional next-generation matrix 963 

(NGM) is calculated numerically. Note that for  m  villages we have one urban infected 964 

human population and  m  infected commuters and  m  infected rural human populations 965 

as well as one infected rural mosquito population and  m  infected rural mosquitoes, 966 

giving the aforementioned dimension of the next-generation matrix.  967 

 968 

 969 

 970 

 971 
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972 

Figure A1. Comparison of sampling results among three villages between (a) 973 

normalized random real numbers between 0 and 1 and (b) normalized negative 974 

logarithms of random real numbers between 0 and 1. In both (a) and (b) 10,000 samples 975 

were plotted. 976 
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