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Chapter 1

General Introduction

Electron paramagnetic resonance (EPR) spectroscopy is one of the most powerful tools

for investigating electronic and structural features of systems containing unpaired elec-

trons, for example, radicals or coordination compounds. There are two major parameters

derived from EPR spectra: hyperfine coupling constants (HFCCs) and g−tensors. While

the HFCCs describe the interaction between the electron spin and magnetic field created

by a nuclear spin, the g−tensors parameterize the interaction between the electron spin

and homogeneous external magnetic field. Thus, the HFCCs provide the information

about the electron spin density in vicinity of the given nuclei. On the other hand, the

g−tensors are the property of an entire molecule. Beside experimental measurements,

theoretical interpretations are also quite important not only for explaining what governs

the observed spectra, but also for predicting parameters that are not easy to measure in

experiment. Before introducing the main points of the present thesis, we will briefly reca-

pitulate the previous calculations of EPR parameters using modern electronic structure

methods.

1.1 Brief overview of EPR parameter calculations

1.1.1 Hyperfine coupling constants

Let us begin with discussing HFCCs. There are both isotropic and anisotropic contribu-

tions to HFCCs. The isotropic HFCC is typically associated with the spin density in the

vicinity of the nuclei. This leads to the difficulties for numerically accurate prediction

of HFCCs; therefore, the methods including both high-order correlation and relativity

are often required in order to accurately predict HFCCs.

1
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In non-relativistic limit, Bartlett and co-workers developed several approaches based on

the coupled cluster (CC) method to evaluate the HFCCs, including finite-field CC [1]

or analytical derivative CC [2]. Momose et al. [3, 4] employed the symmetry adapted

cluster−configuration interaction (SAC−CI) method to evaluate the HFCCs of several

organic radicals. Chipman systematically assessed the influence of excitation levels of

the configuration interaction (CI) method for treatment of HFCCs for the CH radical [5],

which revealed a non-monotonic variation of the isotropic HFCC value for the C center

with increasing CI excitation levels. Engels [6, 7] developed a new selection procedure for

multireference CI (MRCI) method in order to accurately characterize HFCCs of small

molecules. The density functional theory has been also extensively used to calculate

the HFCCs. Among the functionals tested, the hybrid functionals such as B3LYP [8, 9]

and PBE0 [10, 11] are known to perform best in many cases. In a recent assessment of

DFT performance, Kossmann et al. [12] has shown that the meta-GGA functional TPSS

[13] (and its hybrid version TPSSh [13]) and the double hybrid functional B2PLYP [14]

provide the HFCCs in acceptable agreement with experimental results.

Regarding the relativity, because the isotropic HFCC depends on the spin distribution

in the closest vicinity of the nuclei, the scalar relativistic (SR) effects are quite im-

portant. The spin-orbit coupling (SOC) effect on HFCCs is often small and can be

neglected. However, there are situations where it can be non-negligible. In framework

of four component approach (4c), Quiney and Belanzoni [15] have employed the Dirac-

Hartree-Fock (DHF) approximation to calculate HFCCs of diatomic molecules. Later,

multi-configuration Dirac-Fock (MCDF) calculations were carried out by Song et al. [16]

for coinage atoms. Malkin and coworkers [17] have recently implemented the 4c-DFT

including the finite size nuclei for calculation of HFCCs. It is not doubtful that the 4c

level of relativistic treatment can provide the accurate HFCCs; it is, however, too expen-

sive when combined with high level of correlation treatment. Thus, the quasi-relativistic

approaches have become the useful tools for HFCC calculations. Since the first work

conducted by van Lenthe and colleagues [18], the zeroth-order regular approximation

(ZORA) based DFT method has been widely used [19–22]. The implementation of

second-order Douglas-Kroll-Hess (DKH2) transformation for HFCCs was first presented

by Malkin and coworkers [23, 24]. Very recently, Sandhoefer and colleagues [25] have

successfully applied the DKH2 transformation in combination with orbital-optimized

second-order Møller-Plesset perturbation (OO-MP2) to calculation of HFCCs for tran-

sition metal complexes, which are difficult for DFT method. Filatov, Cremer and their

coworker [26–28] have reported the calculations of HFCCs using infinite-order regular

approximation (IORA) and normalized elimination of the small component (NESC)

formalism in connection with high-level correlation methods, such as quadratic configu-

ration interaction singles and doubles (QCISD) and CCSD.
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1.1.2 Molecular g−tensors

We now turn to the g−tensors. There are two different ways of g−tensor calculations:

the first-order and second-oder perturbation treatments. In the first one, the SOC is

first included in the wavefunction and the Zeeman interaction is accounted for through

the first-order degenerate perturbation theory within the ground state Kramers doublet.

In the second one, the SOC and Zeeman interaction are included using the second-order

perturbation theory, which is formulated with the linear response theory (LRT) or sum-

over-states (SOS) expansion. It is worth emphasizing that the first-order perturbation

approach includes the full SOC effects, while the second-order perturbation approach

only includes the first-order (linear) SOC effects. In principle, the second-order approach

can be applied to any multiplicity, while the first-order approach, which is based on

the Kramers theorem, is limited to systems consisting of an odd number of electrons.

Several recent works have been devoted to an extension of the first-order approach to

any multiplicity.

DFT is the most popular quantum chemical method for g−tensor calculations. In the

first-order approach, the DFT method is usually used in combination with the two-

component (2c) relativistic Hamiltonian. For instance, van Lenthe et al. [29] used the

ZORA Hamiltonian to treat SOC and SR effects. Neyman et al. [30] and Malkin et al.

[31] reported their quasi-relativistic DKH implementations. The 4c-DFT method was

also employed for g−tensor calculations, such as Komorovský et al. [32] and Repiský

et al. [33]. Regarding the second-order approach, Ziegler and cowrokers [34, 35] first

implemented the linear response DFT (LR-DFT) for g−tensor calculations using the

gauge-including atomic orbital (GIAO). Malkina, Kaupp and their coworkers [36, 37]

reported the g−tensor calculations based on the SOS density functional perturbation

theory (SOS-DFPT). Neese [38, 39] has proposed the coupled-perturbed Kohn-Sham

(CP-KS) equation for EPR parameter predictions. Thereafter, Rinkevicius et al. [40]

developed the spin-restricted open-shell DFT linear response theory (RDFT-LR). Re-

cently, there have been several interesting studies making comparison between the per-

formance of first- and second-order perturbation approaches based on DFT method,

such as Hrobarik and colleagues [41], Autschbach and Pritchard [42], as well as Verma

and Autschbach [43].

Since the earliest work carried out by Lushington and coworkers [44–47], ab initio meth-

ods have been widely used for g−tensor calculations. In the framework of the second-

order perturbation approach, Vahtras et al. [48] initially implemented the LRT for the

restricted open shell Hartree-Fock (ROHF) and the multiconfigurational self-consistent

field (MCSCF). Later, Brownridge and colleagues [49] extended the SOS multirefer-

ence configurattion interaction (SOS-MRCI) calculations, which was first used for small
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molecules by Lushington and coworker [44–47], to medium-sized systems by more ef-

ficient implementation. Meanwhile, Neese [50] implemented and assessed a series of

SOS-based ab initio methods. Thereafter, Neese [51] proposed the analytical derivative

MRCI method that is equivalent to the untruncated SOS-MRCI. The complete active

space second order perturbation based SOS (SOS-CASPT2) method was implemented

by Vancoillie and colleagues [52]. Gauss and coworkers [53] recently reported a scheme

for the calculation of g−tensors at the CC level. Regarding the first-order perturbation

treatment, Bolvin [54] employed the spin-orbit restricted active space state interaction

(SO-RASSI) procedure for CASPT2 as well as CC singles and doubles with perturba-

tive triples [CCSD(T)] to evaluate g−tensors for a wide range of molecules. Tatchen and

corworkers [55] developed the new route toward g−tensors based on the multireference

spin-orbit configuration interaction (MRSOCI) method. The extension of the first-order

perturbation approach based on the CASPT2 method to any multiplicity was also re-

ported by Chibotaru and Ungur [56]. Most recently, Ganyushin and Neese [57] proposed

an interesting approach, in which the SOC was variationally included in the complete

active space self-consistent field theory (CASSCF) wavefution. This approach has been

successfully applied to transition metal complexes. Meantime, Vad and colleagues [58]

implemented the single-reference 4c-CI method to calculate the g−tensors for doublet

radicals.

1.2 Scope of this thesis

Despite the recent progress, it is still important and challenging to provide highly reliable

values of EPR paramters, even for small molecules, from quantum chemical calculations

that are numerically convergent with respect to the level of the theoretical treatment.

Therefore, the major purpose of this study is not to practically calculate EPR parameters

using available methods, but to develop and/or assess the new methods for prediction of

EPR parameters. The thesis begins with this general introduction followed by the next

four chapters, which are central in the doctoral research, focusing on the prediction of

molecular HFCCs and g−tensors using ab initio quantum chemistry methods based on

the density matrix renormalization group (DMRG).

The DMRG method was introduced in condensed-matter physics by White [59, 60], and

later applied to ab initio quantum chemical calculations [61–70]. The DMRG method

has been shown to be an exceedingly efficient approach to a near “exact” [or full CI

(FCI)] solution. In this algorithm, the molecular orbitals (MOs) are assigned to 1D

quantum lattice sites. The tractable correlation length in the 1D lattice is controlled
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by the number of renormalized basis states M , which affects the computational cost as

O(M3k3 +M2k4), where k refers to the number of MOs.

Although the DMRG method can be used in a brute-force way as a highly-scalable sub-

stitute for the FCI, recent studies have shown that it can be more practically used in

combination with the complete active space (CAS) model to describe the multireference

(or active-space) correlation. This active-space DMRG approach has been combined

with the orbital optimization procedure [68, 71, 72] and is able to go far beyond the

limitation of the traditional CASSCF method. In practical applications, the DMRG

method has been shown to be successful for the prediction of molecular properties in

large-scale multireference states [69, 73–82]. Most recently, Boguslawski et al. demon-

strated that a reliable spin density can be calculated using the DMRG algorithm [83]

and concluded that reliable reference spin densities can be obtained even if the total

energies are not converged with respect to M .

In the Chapter 2, we have assessed the performance of ab initio DMRG in combina-

tion with complete active space (CAS) procedure, the CAS configuration interaction

(CASCI), and the CASSCF for prediction of HFCCs of light radicals: BO, CO+, CN,

AlO, and C2H3. We found that the DMRG-CASSCF calculation with sufficiently large

active space could provide the HFCCs in good agreement with experimental values, es-

pecially in the case of AlO radical that seems to be formidable for conventional methods.

In order to get insight into the accuracy of DMRG calculations, the orbital contributions

to the total spin were analyzed at a given nucleus. We also assessed the performance

of DMRG method by calculating HFCCs at various numbers of renormalized states M .

We found that the DMRG calculations with M = 512 were capable of giving the reliable

HFCCs for our test cases.

In the Chapter 3, as a continuation of the Chapter 2, we have evaluated the HFCCs

of radicals containing a single heavy element using the DMRG method that takes into

account SR effects. The quasi-relativistic Douglas-Kroll-Hess (DKH) transformation

has been applied to both Hamiltonian and hyperfine coupling operator. To our best

knowledge, this study is the first to present the HFCCs at the DKH3 level of scalar

relativistic treatment, which was found crucial to obtain converged results. As test

cases, we applied the DMRG-CASSCF/DKH3 implementation to evaluate HFCCs of 4d

transition metals: Ag atom, Pd in PdH radical, and Rh in RhH2 radical. Our calculated

values were in good agreement with experimental values.

In the Chapter 4, the molecular g−tensors were evaluated using CASSCF method. As

the first step before employing the DMRG-CASSCF method for g−tensor calculation

provided in the next chapter, the conventional FCI method was used to describe the

correlation in active space. We have employed two technical approaches. The first is the
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quasi-degenerate perturbation theory (QDPT). The second is the analytical response

theory based on coupled-perturbed (CP) equation. We have made the comparison be-

tween the performance of CP- and QDPT-CASSCF approaches for some heavy doublet

radicals. Although the CP-CASSCF approach can include all excited states expanded

in active space, it is limitated to weak SOC cases. The QDPT-CASSCF approach with

truncated state expansion, however, can be applied for systems with strong SOC. Apart

from the perturbation treatment, the SOC treatment is also important for the accuracy

of g−tensor calculations. In this work, we employed the flexible nuclear screening spin-

orbit (FNSSO) approximation, which has been very recently developed by Chalupský

and Yanai [84]. The g−tensor calculations of a test set including 20 small light radicals

were first performed. Next, we evaluated the g−tensor of 5 radicals including heavy

atoms.

In the Chapter 5, a new approach for molecular g-tensors based on the analytical re-

sponse theory for DMRG, referred to as CP-DMRG, was implemented. The CP-DMRG

method has been recently proposed by Dorando, Hachmann, and Chan [85] for electric

field related properties. In this Chapter, we will provide our formulation for the case of

molecular g−tensors. The algorithm for implementation will be also provided.

In the Chapter 6, a mean-field (or one-particle) theory to represent electron correlation

at the level of the MP2 theory has been formulated and implemented. Orbitals and

associated energy levels are given as eigenfunctions and eigenvalues of the resulting one-

body (or Fock-like) MP2 Hamiltonian, respectively. They are optimized in the presence

of MP2-level correlation with the self-consistent field procedure and used to update the

first-order Møller-Plesset perturbation (MP1) amplitudes including their denominators.

Numerical performance was illustrated in molecular applications for computing reaction

energies, applying Koopmans’ theorem, and examining the effects of dynamic correlation

on energy levels of metal complexes.

Finally, the general conclusion will be provided in Chapter 7.



Chapter 2

Non−relativistic DMRG

calculations of HFCCs for light

molecules: diatomic 2Σ and vinyl

radicals as test cases

T. N. Lan, Y. Kurashige, T. Yanai,

“Toward reliable prediction of hyperfine coupling constants using ab initio density matrix

renormalization group method: diatomic 2Σ and vinyl radicals as test cases”,

J. Chem. Theory Comput. 10, 1953 (2014)

2.1 Introduction

In this chapter, we attempt to use the DMRG method with large active space to in-

clude near convergent electron correlation in the HFCC calculations. For light element

molecules, the SOC effects are small and can be neglected, so that the HFCCs are dom-

inated by the Fermi contact (FC) term [86] and the spin-dipole (SD) interaction term

[87]. This work serves as the initial application of the DMRG algorithm in combina-

tion with CASCI and CASSCF methods for computing the HFCCs, the FC and SD

terms. The electron correlation effects on the computed HFCC values are systemati-

cally investigated using various levels of active space, which are increasingly extended

from the single valence space to the large model space entailing double valence and at

least single polarization shells. In addition, the core correlation is treated by including

the core orbitals in active space. High-accuracy wavefunctions are obtained using the

7
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DMRG-CASCI and DMRG-CASSCF calculations with large-size active space. The ex-

act diagonalization with such active space can be achieved only by the DMRG method.

The dependence of the formulas for the FC and SD terms on the DMRG wavefunction

arises through the spin density. The DMRG with enlargement of the active space de-

livers convergence of the spin density to a FCI-quality description. To achieve further

insights into the accuracy of HFCC calculations, the orbital contributions to the total

spin density are analyzed at a given nucleus, which is directly related to the FC term

and is numerically sensitive to the level of correlation treatment and basis set.

In this study, assessment of the DMRG method for HFCC calculations is first performed

on small 2Σ radicals: BO, CO+, CN, and AlO. Although these test molecules are small

in size, determination of their HFCCs is considered to be important from both exper-

imental and computational perspectives. Moreover, it is of significant value to provide

theoretical results with near exact accuracy that can serve as benchmark data. The

HFCCs of BO and CO+ have been well characterized by the conventional methods,

namely DFT and CC, to an acceptable accuracy with respect to the experimental val-

ues. However, the determination of HFCCs for the CN and AlO molecules is a challenge

for the computational approaches. The difficulties are that the unrestricted treatment

for CN suffers from a large degree of spin contamination [88], and the delicate balance

between the ionic states of AlO must be handled carefully in the electronic structure

calculations [89–93]. Finally, to explore the performance of present approach for HFCC

prediction of multi-atomic organic radicals, we evaluate the HFCCs of vinyl (C2H3) rad-

ical. We concomitantly address the following questions of technical interest: (i) Can

HFCCs be accurately described by the active-space wavefunction? (ii) What type of or-

bitals should be included in active space for HFCC calculations? We attempt to address

these issues using the active-space DMRG method.

The chapter is organized as follows. In Sec. 2.2, we briefly discuss the background of

quantum chemical calculations for the hyperfine coupling tensors. The computational

details are shown in Sec. 2.3. The results are presented and discussed in Sec. 2.4. Finally,

a summary and concluding remarks are given in Sec. 2.5.
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2.2 Theoretical background

2.2.1 Hyperfine coupling tensor

The hyperfine coupling tensor A is parameterized by a phenomenological spin Hamilto-

nian that describes the interaction between electron spin s and nuclear spin I:

ĤSI = s ·A · I. (2.1)

In the absence of SOC, this Hamiltonian contains two terms; the FC Hamiltonian [86]

ĤFC =
8π

3
geβ

∑
K

gKβK
∑
i

[
δ (riK) siI

(K)
]
, (2.2)

and the SD Hamiltonian [87]

ĤSD = geβ
∑
K

gKβK
∑
i

[
siI

(K)

r3
iK

− 3
(siriK)

(
I(K)riK

)
r5
iK

]
, (2.3)

where K and i run over the number of nuclei and electrons, respectively. The constant

ge is the g-value of a free electron (ge = 2.002319), β is the Bohr magneton, gK and

βK are the nuclear g-value and nuclear magneton of a given nucleus K, respectively.

riK(= (riK,x, riK,y, riK,z)) is the relative position vector between the i-th electron and

K-th nucleus. The symbol δ(...) refers to the Dirac delta function. The A tensor of

nucleus K is obtained by taking the second derivative of the spin Hamiltonian with

respect to electron and nuclear spins:

A(K) =
∂2ĤSI

∂s ∂I
. (2.4)

This can be expressed as the decomposed form:

A(K) = A(K;c) + A(K;d), (2.5)

with the FC tensor A(K;c),

A
(K;c)
kl = δkl

8π

3

PK
2S

∑
µν

P (α−β)
µν 〈χµ|δ(riK)|χν〉, (2.6)

and the SD tensor A(K;d),

A
(K;d)
kl =

PK
2S

∑
µν

P (α−β)
µν 〈χµ|r−5

iK (r2
iKδkl − 3riK,kriK,l)|χν〉 , (2.7)
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where k, l = x, y, z; PK(= ge β gK βK) is the nucleus-type constant, and S is the total

spin. The one-particle integrals 〈χµ| · · · |χν〉 in Eqs. (2.6) and (2.7) are represented

in atomic orbital (AO) basis χµ and χν . The FC integral is regarded as the overlap

distribution at the nuclear point K. The implementation of the SD integral is more

complicated than that of the FC integral. The SD integral was implemented using the

Rys-quadrature algorithm [94]. The matrix P
(α−β)
µν is the difference between the α and

β electron density matrices in the AO basis representation, which is referred to as the

AO spin density matrix.

2.2.2 Spin density analysis

The spatially resolved spin density can be given by

ρ(α−β)(r) =
∑
µν

P (α−β)
µν χµ(r)χν(r)

=
∑
µν

MO∑
pq

D(α−β)
pq cpµ cqν χµ(r)χν(r) , (2.8)

where the matrix D
(α−β)
pq is the spin density matrix represented in the given MO basis,

thus referred to as the MO spin density matrix, and cpµ are the MO coefficients. Di-

agonalization of the MO spin density matrix leads to the so-called spin natural orbitals

(SNOs). Let n
(α−β)
i and Uip be its eigenvalues and eigenvectors, respectively, so that we

have
∑

pq UipUjqD
(α−β)
pq = δijn

(α−β)
i . The MO coefficients of the SNOs, {c̄iµ}, can be

obtained from the unitary transformation of {cpµ} as

c̄iµ =
MO∑
p

Uip cpµ . (2.9)

This definition is analogous to that for the natural orbitals (NOs) obtained by diago-

nalization of the density matrix. The eigenvalue n
(α−β)
i is called the spin occupation

number of the i-th SNO. The spatially resolved spin density ρ(α−β)(r) [Eq. (2.8)] can be

rewritten using the SNO basis as follows:

ρ(α−β)(r) =

SNO∑
i

∑
µν

n
(α−β)
i c̄iµ c̄iνχµ(r)χν(r) . (2.10)

Finally, it can be written as the summation of individual SNO contributions:

ρ(α−β)(r) =
SNO∑
i

ρ
(α−β)
i (r) , (2.11)
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where ρ
(α−β)
i (r) is the spatial distribution of the spin density associated with the i-th

SNO, given by

ρ
(α−β)
i (r) = n

(α−β)
i

∑
µν

c̄iµ c̄iνχµ(r)χν(r) . (2.12)

The SNO analysis is useful to identify those MOs that primarily contribute to the spin

density at the nucleus.

2.3 Computational details

The FC and SD terms were calculated using Eqs. (2.6) and (2.7), respectively. These

formulas clearly show that the accuracy of HFCCs is essentially determined by that of

the calculated spin density ρ(α−β)(r) [Eq. (2.8)]. In the present work, the spin density

was evaluated from the CAS-type wavefunctions. The active spaces used in this work are

presented in Table 2.1. The DMRG code implemented by our group [70] was employed

to obtain the active-space wavefunction for active space involving more than 16 orbitals;

otherwise, the FCI procedure was used. The number of spin adapted renormalized states

M was set to 512 in all DMRG calculations. We have implemented the spin adaptation

of Zgid and Nooijen [67] in our DMRG code; therefore, the number of actual bases

that are not spin adapted is much larger than M (approximately twice). The numerical

convergence of HFCCs with respect to M will be discussed later (Sec. 2.4.5).

Table 2.1: Active orbitals.

Molecule Active space Active orbitals

BO, CO+, and CN

CAS(9e,8o) B, C, O, N: 2s2p

CAS(9e,16o) B, C, O, N: 2s2p3s3p

CAS(9e,28o) B, C, O, N: 2s2p3s3p4s3d

CAS(13e,30o) B, C, O, N: 1s2s2p3s3p4s3d

AlO

CAS(9e,8o) Al: 3s3p O: 2s2p

CAS(9e,16o) Al: 3s3p3d O: 2s2p3p

CAS(9e,21o) Al: 3s3p3d O: 2s2p3p, 3d

CAS(15e,28o) Al: 2p3s3p3d4p O: 2s2p3s3p3d

CAS(21e,31o) Al: 1s2s2p3s3p3d4p O: 1s2s2p3s3p3d

CAS(15e,33o) Al: 2p3s3p3d4p4d O: 2s2p3s3p3d

CAS(21e,36o) Al: 1s2s2s2p3s3p3d4p4d O: 1s2s2p3s3p3d

C2H3 CAS(15e,33o) C: 1s2s2p3s3p4s3d H: 1s
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For the diatomic radicals, the canonical HF MOs were used as the initial orbitals. For

vinyl radical, however, the initial orbitals were obtained from the restricted active space

SCF (RASSCF) calculation including single and double excitations from RAS1 to RAS3

(singly occupied orbital was included in RAS2 space). The basis sets for this calculation

are ANO-L [95, 96] with 4s2p1d and 1s contractions for C and H atoms, respectively.

The program package molcas [97] was used for this purpose.

Table 2.2: Bond lengths of 2Σ diatomic radicals used to calculate the HFCCs.

Molecule
Bond length (Å)

Present worka Neese et al.b

BO 1.2049 1.2049

CO+ 1.1500 1.1105

CN 1.1718 1.1555

AlO 1.6176 1.6176

a Ref. [98].
b Ref. [38].

For comparison, the HFCCs were also calculated using the DFT and CCSD meth-

ods. The orca code[99] was used for DFT calculations with three functionals; the

hybrid-GGA functional B3LYP, meta-GGA functional TPSS, and pure-GGA functional

BP86.[100, 101] The CCSD calculations were performed using the gaussian 09 program

package[102] without the frozen core approximation.

Table 2.2 shows the geometries of diatomic molecules used in these calculations, which

were adopted from experimental measurements [98]. As a reference, these include the

geometries employed in the previous work of Neese and colleagues [12, 38, 103]. The

molecular structure of vinyl radical is shown Figure 2.1. Because not even an approx-

imate experimental structure has been reported for this radical, we use the geometry

theoretically recomended by Peterson and Dunning [104] as follows: r(C1C2) = 1.3102

Å, r(C1H1) = 1.0773 Å, r(C2H2) = 1.0830 Å, r(C2H3) = 1.0881 Å, a(C2C1H1) =

137.0◦, a(H2C2C1) = 122.0◦, a(H3C2C1) = 121.3◦.

The point-group symmetry of molecules are C2v and Cs for diatomic and vinly radicals,

respectively.
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Figure 2.1: Molecular structure of vinyl (C2H3) radical.

2.4 Results and discussion

2.4.1 BO and CO+ radicals

HFCC calculations were first performed for the BO and CO+ radicals, which have been

well characterized by the DFT and CC methods. The EPR-type basis sets reported by

Barone and coworkers[105] in combination with appropriate functionals are known to

generally provide reasonable HFCCs for organic radicals. On the other hand, the ANO-

type basis sets by Roos and colleagues have been widely used for the construction of

correlated molecular wavefunctions; however, the performance for HFCCs calculations

has not yet been tested. Thus, the HFCCs of the BO and CO+ radicals were evaluated

here using both EPR-III and ANO-L-TZP basis sets. For the BO radical, the total

number of AOs for the EPR-III and ANO-L-TZP basis sets is 69 and 60, respectively,

while that for CO+ is 80 and 60, respectively. The calculated values of the HFCCs are

summarized in Tables 2.3 and 2.4. The experimental gas-phase and Ne-matrix HFCCs

available for BO[106–109] and CO+[110–112] are presented. The gas-phase and Ne-

matrix values for the B center are not so different, while those for the C center differ

significantly. The DFT/EPR-III and CCSD/EPR-III results for the BO radical are

basically consistent with the previous results reported by Neese and coworkers,[12, 103]

while those for CO+ are not. This inconsistency for CO+ can be attributed to the

difference in geometry used between the present and previous calculations, as shown in

Table 2.2.

Fermi contact term. Herein, let this analysis focus on the HFCCs of less electroneg-

ative atom centers, i.e. the B and C centers. The CCSD results with the EPR-III basis

set for these centers are comparable with the experimental values and the errors with

respect to the gas-phase values for the B and C centers are 1.37 and 3.44%, respec-

tively. Among the DFT functionals, the B3LYP functional generally provides the best
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results. The BP86 and TPSS functionals yield FC terms for the B center that are in

good agreement with the experimental results, while those for the C center are largely

underestimated.

We now move to the results of the CASCI and CASSCF calculations. For the CASCI

calculations, the effect of core correlation seems to be negligible, and the FC term is

significantly decreased for both the B and C centers with enlargement of the active space,

which results in underestimation with the DMRG-CASCI calculations. The CASSCF

results clearly show that the active space with full valence shells alone is insufficient for

reliable prediction of the HFCCs. In the presence of the polarization shell but without

core correlation, the orbital optimization in the CASSCF calculations provides only a

marginal improvement upon the CASCI results. In contrast, the FC term is significantly

increased when the core correlation is taken into account. The FC term obtained by

DMRG-CASSCF(13e,30o)/EPR-III is in excellent agreement with the experimental gas-

phase values and the errors for the B and C centers are 0.87 and 0.99%, respectively.

Concerning the basis set, the values for the FC terms obtained with ANO-L-TZP are

far from experimental values. This inadequacy of ANO-L-TZP for HFCC prediction

is associated with contraction of the ANO-type basis sets, which are too contracted

in the s-shells. Thus, the ANO-type basis set is not sufficiently flexible to properly

describe the spin-polarization of the core region. To confirm that the EPR-III basis

set provides convergent basis set descriptions, HFCC calculations were performed with

the uncontracted ANO-L-TZP basis set (Table 2.5). The total number of AOs for this

uncontracted basis set is 164 for both BO and CO+ radicals, which indicates that it

is much larger and more flexible than the EPR-III basis set. Table 2.5 shows that

the HFCC values obtained with the EPR-III and uncontracted ANO-L-TZP basis sets

are comparable; therefore, it can be concluded that the basis set error in EPR-III is

negligible for these 2Σ radicals.

The spin density at the nuclear centers was analyzed using SNOs to determine the de-

pendence of the FC term on the active space and the orbital optimization in more detail.

Table 2.6 shows the contributions to the total spin density from the SNO with the largest

spin occupation number (SON) and from the other SNOs at each of the B and C centers

obtained with the EPR-III basis set. The eigenvector elements Uip for construction of

the SNO with the largest SON reveal that it is dominantly composed of a singly occupied

MO (SOMO) and is thus regarded as a singly occupied SNO (SOSNO). The total spin

density at the nuclei centers is dominated by the SOSNO because the remaining SNOs

have negligible spin occupancies. For the CASCI calculation, enlargement of the active

space depresses the net spin density associated with the SOSNO. The contribution from

the SNOs other than the SOSNO to the spin density is relatively small. The total spin
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Table 2.3: HFCCs (in MHz) for the 2BO molecule obtained with the EPR-III and
ANO-L-TZP basis sets, where the total numbers of AOs are 69 and 60, respectively.

Method

11B 17O

A(K;c) A
(K;d)
11 A(K;c) A

(K;d)
11

EPR-III

CASCI(9e,8o) 966.29 −28.11 −23.72 12.28

CASCI(9e,16o) 920.81 −25.29 −12.08 16.95

DMRG-CASCI(9e,28o) 903.81 −24.98 −2.43 18.84

DMRG-CASCI(13e,30o) 904.59 −25.02 −2.94 18.83

CASSCF(9e,8o) 916.85 −26.72 −19.02 19.80

DMRG-CASSCF(9e,28o) 912.09 −24.22 −5.67 21.07

DMRG-CASSCF(13e,30o) 1018.33 −24.44 −11.95 20.84

B3LYP 1074.79 −27.80 −11.66 21.42

TPSS 990.76 −27.04 −5.70 25.20

BP86 989.79 −26.84 −7.73 23.32

CCSD 1041.15 −24.87 −11.96 21.68

ANO-L-TZP

CASCI(9e,8o) 969.42 −28.44 −39.44 8.93

CASCI(9e,16o) 911.81 −24.76 −26.30 17.60

DMRG-CASCI(9e,28o) 885.48 −23.13 −32.44 19.43

DMRG-CASCI(13e,30o) 901.80 −23.19 −30.06 19.44

FCI-CASSCF(9e,8o) 895.24 −25.86 −31.70 19.95

DMRG-CASSCF(9e,28o) 901.54 −23.33 −24.07 20.89

DMRG-CASSCF(13e,30o) 930.68 −23.55 −24.58 20.92

B3LYP 1015.79 −25.90 −32.21 21.82

TPSS 928.40 −25.30 −22.84 25.47

BP86 929.68 −24.95 −25.27 23.73

CCSD 958.07 −23.52 −30.58 21.88

Exp − gas-phase a 1027 −27 n/a

Exp − Ne-matrix b 1033 −25 −19 12

a Ref. [106];
b Ref. [107–109]
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Table 2.4: HFCCs (in MHz) for the 2CO+ molecule obtained with the EPR-III and
ANO-L-TZP basis sets, where the total numbers of AOs are 80 and 60, respectively.

Method

13C 17O

A(K;c) A
(K;d)
11 A(K;c) A

(K;d)
11

EPR-III

CASCI(9e,8o) 1469.96 −48.44 −7.87 29.14

CASCI(9e,16o) 1450.21 −47.84 1.84 30.24

DMRG-CASCI(9e,28o) 1410.98 −47.68 19.88 33.77

DMRG-CASCI(13e,30o) 1409.23 −47.72 20.01 33.78

CASSCF(9e,8o) 1431.59 −46.13 25.37 38.00

DMRG-CASSCF(9e,28o) 1396.59 −44.14 26.56 38.73

DMRG-CASSCF(13e,30o) 1492.96 −44.82 32.60 38.55

B3LYP 1548.21 −50.08 39.73 44.02

TPSS 1444.78 −49.26 39.73 47.10

BP86 1439.34 −50.22 37.39 44.44

CCSD 1557.75 −43.63 32.87 42.78

ANO-L-TZP

CASCI(9e,8o) 1396.95 −47.39 −10.88 29.19

CASCI(9e,16o) 1365.90 −46.27 4.55 31.85

DMRG-CASCI(9e,28o) 1314.59 −45.99 32.98 35.64

DMRG-CASCI(13e,30o) 1296.20 −46.11 32.12 35.61

CASSCF(9e,8o) 1360.59 −45.29 19.66 37.76

DMRG-CASSCF(9e,28o) 1318.98 −43.48 14.57 38.44

DMRG-CASSCF(13e,30o) 1348.58 −43.72 20.24 38.31

B3LYP 1435.01 −47.80 29.27 43.71

TPSS 1331.67 −47.07 31.79 46.71

BP86 1338.13 −47.88 29.49 44.06

CCSD 1425.84 −42.03 18.53 42.30

Exp − gas-phase a 1506 −46 n/a

Exp − Ne-matrix b 1573 −49 19 33

a Ref. [110];
b Ref. [111, 112]
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density thus decreases with enlargement of the active space, which leads to a decrease

in the values of the FC terms for the B and C centers. From a comparison of the

results from the DMRG-CASCI(9e,28o) and DMRG-CASCI(13e,30o) calculations, i.e.

with and without two 1s orbitals in CAS, it was concluded that the core correlation does

not induce any significant change in the total spin density with the CASCI calculation.

Table 2.5: HFCCs (in MHz) for the B center in 2BO and the C center in 2CO+

radicals with the uncontracted ANO-L basis set, where the total number of AOs is 164
for both radicals.

Center Method A(K;c) A
(K;d)
11

B in BO

B3LYP 1072.80 −28.16

TPSS 982.71 −27.53

BP86 986.66 −27.47

CCSD 1041.70 −25.28

DMRG-CASSCF(13e,30o) 1028.41 −24.34

C in CO+

B3LYP 1542.81 −50.38

TPSS 1430.26 −49.61

BP86 1432.74 −50.77

CCSD 1554.42 −43.85

DMRG-CASSCF(13e,30o) 1493.89 −44.22

Let us discuss the orbital optimization effects on the spin density that arise from the

CASSCF procedure. A comparison is made between two large CAS calculations; DMRG-

CASSCF(9e,28o) and DMRG-CASSCF(13e,30o). The spin density associated with the

SOSNO from the two DMRG-CASSCF calculations is similar, whereas that with the

other SNOs significantly increases with inclusion of the two 1s orbitals in the CAS

method. This indicates that the core correlation leads to strong enhancement of the

total spin densities at nuclei centers. The poor agreement of DMRG-CASSCF(9e,28o)

with the experiment data was significantly improved with DMRG-CASSCF(13e,30o).

Finally, we briefly discuss the FC term for the O center. The HFCCs of an electronega-

tive atom is difficult to experimentally measure in the gas-phase; therefore, the calcula-

tion results are compared with Ne-matrix measurements. The errors of the DMRG-

CASSCF(13e,30o)/EPR-III results relative to the experimental values are 7.04 and

13.60% for the O center in the BO and CO+ radicals, respectively. The results ob-

tained with CCSD are very close to those with DMRG-CASSCF(13e,30o), especially for

the EPR-III basis set.

Spin-dipole term. The elements of SD tensors are shown in Tables 2.3 and 2.4 for

the B and C centers, respectively. The general conclusion is that the SD term is less
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Table 2.6: SNO contributions to spin density (in a.u.) at the B (BO) and C (CO+)
centers. The values in parentheses indicate the SON of SOSNO. For the CASSCF
calculations, only the two largest active spaces are compared. Only the results of the

EPR-III basis set are presented.

Center Method
Contribution of Sum of the other SNO

Total
SOSNO contributions

B

CASCI(9e,8o) 0.6722 (0.9870) 0.0012 0.6734

CASCI(9e,16o) 0.6325 (0.9716) 0.0089 0.6414

DMRG-CASCI(9e,28o) 0.6209 (0.9693) 0.0086 0.6295

DMRG-CASCI(13e,30o) 0.6291 (0.9694) 0.0011 0.6302

DMRG-CASSCF(9e,28o) 0.6238 (0.9700) 0.0120 0.6358

DMRG-CASSCF(13e,30o) 0.6213 (0.9725) 0.0880 0.7097

C

CASCI(9e,8o) 1.2892 (0.9577) 0.0120 1.3076

CASCI(9e,16o) 1.2664 (0.9553) 0.0236 1.2900

DMRG-CASCI(9e,28o) 1.2394 (0.9529) 0.0157 1.2551

DMRG-CASCI(13e,30o) 1.2398 (0.9530) 0.0139 1.2537

DMRG-CASSCF(9e,28o) 1.2127 (0.9509) 0.0297 1.2424

DMRG-CASSCF(13e,30o) 1.2385 (0.9525) 0.0942 1.3334

dependent on the basis set and the active space than the FC term. The SD term

converges smoothly with enlargement of the active space. The core correlation does not

affect the SD term. With enlargement of the active space, the values of the SD term for

the B and C centers decrease, while those for the O center increase for both radicals. The

CCSD results are generally close to those obtained with DMRG-CASSCF(13e,30o). For

the B center, the error of the SD term calculated by DMRG-CASSCF(13e,30o)/EPR-III

with respect to that from Ne-matrix measurements (2.24%) is smaller than that from

gas-phase measurements (9.48%). In contrast, the DMRG-CASSCF(13e,30o)/EPR-III

results for the C center are in better agreement with the gas-phase value (2.56% error)

than with the Ne-matrix value (8.53% error). Unfortunately, all the values presented

herein are largely overestimated with respect to the Ne-matrix values for the O centers

in both radicals.

To summarize, the performance of the DMRG method for the prediction of HFCCs for

BO and CO+ radicals, which can be accurately described by DFT and CC methods,

was assessed. While the DMRG-CASCI calculations gave results that were in poor

agreement with the experimental values, the DMRG-CASSCF calculations with orbital

optimization and inclusion of the core correlation were in excellent agreement with the

gas-phase measurements for the FC terms of the less electronegative centers.
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2.4.2 CN radical

Momose et al. [4] first used the SAC-CI method to calculate the HFCCs of the CN

radical and the results compared favorably with the experimental results. However,

as shown later by Fernandez et al. [113], this agreement was fortuitous and resulted

from cancellation of the basis set and correlation errors. These authors employed the

multiconfiguration self-consistent-field (MCSCF) restricted-unrestricted (RU) response

function method [114] to evaluate HFCCs for the CN radical. In this approach, although

the spin polarization of the core orbitals cannot be described by the MCSCF wavefunc-

tion itself, it was perturbatively addressed by the response term. Accurate HFCCs for

the CN radical were generally obtained with an appropriate conjunction between the

active space and basis set. Gauld et al. [88] found that the QCISD approach with per-

turbative triples [QCISD(T)] underestimated the FC term of this radical. Nevertheless,

good agreement with the experimental value was obtained when the CCSD(T) method

was employed in place of QCISD(T). Neese and colleagues [12] recently reported that

the double hybrid functional B2PLYP does not accurately characterize the HFCCs of

the CN radical. In their later work [103], the OO-MP2 method provided the HFCCs in

acceptable agreement with the experimental values for many molecules, while it failed

for the CN radical. From the previous subsection, the ANO-L-TZP basis set was deemed

inadequate for HFCC prediction, so that only the results obtained with the EPR-III ba-

sis set were presented. The total number of AOs is 80. All results are summarized in

Table 2.7. Experimental gas-phase values for the CN radical are not available; there-

fore, Ne-matrix values [115] were used as references. The CCSD results of the present

work are consistent with those reported by Kossmann and Neese [103], where the same

basis set (EPR-III), but different geometry, was used (see Table 2.2). Based on this

consistency, we also adopted their CCSD(T) results [103] for further consideration.

Fermi contact term. Here, we mainly focus on the less electronegative center, i.e., the

C center. For the DFT calculations, the TPSS and BP86 functionals largely underesti-

mate the FC term for the C center with errors of 14.29 and 15.99%, respectively. For

the CC methods, CCSD overestimates the FC term for the C center with errors of up

to 11.39%. However, with inclusion of the perturbative triples, the error is decreased to

5.43%.

Regarding the CASCI calculations, the FC term for the C center is rapidly decreasing

with enlargement of the active space. As the active space is extended from CAS(9e,28o)

to CAS(13e,30o), the error is decreased from 19.20 to 16.60%. For the DMRG-CASSCF

calculations, the FC term also converges smoothly with respect to the active space.

By relaxing the orbitals with 1s orbitals in the active space, the error with respect to

the experimental value is reduced to 4.43%. It is worth noting that the CCSD(T) and
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Table 2.7: HFCCs (in MHz) for the 2CN molecule obtained with EPR-III basis set,
where the total number of AOs is 80. For comparison, the CCSD and CCSD(T) results
from Kossmann and Neese’s work were also adopted, where the same basis set was used,

but with a slightly different geometry (see Table 2.2).

Method

13C 14N

A(K;c) A
(K;d)
11 A(K;c) A

(K;d)
11

CASCI(9e,8o) 936.03 −62.25 8.78 −8.78

CASCI(9e,16o) 767.11 −53.93 3.70 −13.63

DMRG-CASCI(9e,28o) 700.91 −54.34 9.04 −15.51

DMRG-CASCI(13e,30o) 685.66 −54.37 8.18 −15.52

CASSCF(9e,8o) 629.40 −51.06 −19.72 −17.90

DMRG-CASSCF(9e,28o) 596.48 −52.33 −3.42 −19.22

DMRG-CASSCF(13e,30o) 561.95 −52.92 −20.14 −19.28

B3LYP 572.62 −59.93 −18.90 −21.66

TPSS 504.83 −59.34 −16.35 −22.12

BP86 494.08 −59.47 −13.65 −21.58

CCSD a 655.27 −52.97 −20.03 −19.84

CCSD b 655.40 −53.00 −20.00 −19.80

CCSD(T) b 556.10 −56.70 −18.30 −19.10

Exp − Ar-matrix c 588 −45 −13 −15

a Present work
b Kossmann and Neese, Ref. [103]

c Ref. [115]

DMRG-CASSCF(13e,30o) results are very close together. This means that the DMRG-

CASSCF(13e,30o) has captured the high-order correlation, which is required for the

accuracy of the FC term for the C center in the CN radical.

The SNO contributions to the total spin density are analyzed next. Table 2.8 shows the

SOSNO contribution and the summation of the other SNO contributions to the total spin

density at the C center. The SOSNO spin density rapidly decreases with enlargement

of the active space in the CASCI calculations, while the increase in the summation of

the other SNO spin densities is relatively slow. Consequently, the total spin density at

the C center decreases. For the CASSCF calculations, the orbital relaxation lowers the

SOSNO spin density relative to that of the CASCI calculations. While the SOSNO spin

densities from the DMRG-CASSCF(9e,28o) and DMRG-CASSCF(13e,30o) calculations

are comparable, the summation of the other SNO spin densities from the latter is much

smaller than from the former. Therefore, in contrast to the BO and CO+ radicals,

the core correlation in the CN radical reduces the summation of the other SNO spin

densities.
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Table 2.8: SNO contributions to spin density (in a.u.) at the C center in the CN
radical. The values in parentheses indicate the SON of SOSNO. For the CASSCF

calculations, only the two largest active spaces are compared.

Method
Contribution of Sum of the other SNO

Total
SOSNO contributions

CASCI(9e,8o) 0.8223 (0.9948) 0.0103 0.8326

CASCI(9e,16o) 0.6373 (0.9501) 0.0480 0.6823

DMRG-CASCI(9e,28o) 0.5312 (0.9439) 0.0922 0.6235

DMRG-CASCI(13e,30o) 0.5278 (0.9440) 0.0822 0.6099

DMRG-CASSCF(9e,28o) 0.4706 (0.9364) 0.0604 0.5310

DMRG-CASSCF(13e,30o) 0.4800 (0.9372) 0.0194 0.4996

We also provide a brief comment here with regard to the FC term for the N center.

For the CASCI calculations, the FC term of the N center is completely wrong, even

the sign, and this remains unchanged with changes in the active space. Although the

DMRG-CASSCF(9e,28o) calculation can give the correct sign of the FC term, the error

of the result with respect to the experimental value is as large as 76.92%. The DMRG-

CASSCF(13e,30o) calculation improves the FC term to some degree, but the value is

still far from the experimental result with an error of up to 54.92%. In addition, the CC

results are very close to that obtained with the DMRG-CASSCF(13e,30o) calculation.

Spin-dipole term. The calculated SD terms are also presented in Table 2.7. For

the DFT calculations, all three functionals largely overestimate the SD terms for both

the C and N centers, with errors of approximately 33.00 and 47.00%, respectively. For

the CC calculations, the SD term for the C center calculated by CCSD appears better

than that calculated by CCSD(T), where the errors are 17.78 and 26.00%, respectively.

The SD term for the N center calculated by CCSD and CCSD(T) were comparable

and the error with respect to the experimental data is approximately 32.00%. For the

CASCI calculations, the SD terms for the C and N centers converge smoothly with

respect to the active space and the core correlation does not affect the SD terms; the

SD term for the C center increases with enlargement of the active space, while that

for the N center decreases. Finally, the errors of the SD terms calculated by DMRG-

CASSCF(13e,30o) relative to the experimental values were similar to those obtained by

the CCSD calculations.

2.4.3 AlO radical

The AlO radical is best characterized as somewhere between Al++O−− with the un-

paired electron in the Al s orbital, and Al+O− with the unpaired electron in the O sp
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hybrid orbital polarized away from the metal. Therefore, the spin density will be ex-

tremely sensitive to the balance in the treatment of these two configurations. This leads

to the difficulties in the characterization of the HFCCs for AlO, both experimentally and

theoretically. Electronic polarization in the AlO radical can easily arise in the matrix

environment during experimental measurement. Knight and Weltner [116] reported the

experimental FC terms for the Al center as 766, 899, and 920 MHz in Ne, Ar, and Kr

matrices, respectively. Yamada et al. [117] later reported the experimental gas-phase

value to be 738 MHz. The value for the Ne-matrix is thus closest to the gas-phase value.

The experimental dielectric constants of Ne, Ar, and Kr matrices are 1.10, 1.75, and

1.85, respectively; therefore, the FC term for the Al center increases with the dielec-

tric constant of the matrix. According to Grein’s theoretical explanation [91, 92], the

large values for the FC term in Ar and Kr matrices result from the dominance of the

Al++O−− configuration, which enhances the spin density at the Al center. Knight el

al. [108] first used the CI method with the Dunning’s double zeta with polarizations

(DZP) basis set to evaluate the FC term for Al in AlO, and the result was in reason-

able agreement with the experimental values. However, in a later work, CI calculations

using much larger uncontracted and contracted basis sets gave completely incorrect val-

ues [90]. These authors also determined that the MRCI-SD was not very effective to

accurately characterize the HFCCs for the AlO radical. Although DFT calculations can

give a qualitatively correct FC term for Al, the agreement with experiment was still far

from perfect [12, 90]. Recently, the OO-MP2 and CC methods were also employed by

Kossmann and Neese [103]. However, none of these methods provided results that are

comparable to the experimental values, even for CCSD(T). The OO-MP2 results were

too high, while the CC counterparts were too low. It is generally desirable to have the

wavefunction, which provides appropriate mixing of the Al+O− and Al++O−− config-

urations; therefore, the AlO radical is a multireference case [93]. It is thus interesting

to assess the performance of the DMRG method for the evaluation of the A tensor for

the AlO radical. We have used the IGLO-III [118] and EPR-III basis sets for Al and O,

respectively. The total number of AOs is 84 and the results are summarized in Table

2.9. For comparison, this table also includes the experimental data of recent gas-phase

[117] and Ne-matrix [116] measurements as well as the CCSD and CCSD(T) results from

Kossmann and Neese [103], where the same basis sets and geometry were used.

Fermi contact term. For DFT calculations, the B3LYP functional enormously un-

derestimates the FC term for the Al center. Although the other functionals reduce

this underestimation, the error from the gas-phase value is still large at approximately

11.00%. The failure of CCSD has been confirmed with an error as large as 35.69%. The

perturbative triples correction improved upon the CCSD result to some extent, but the
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Table 2.9: HFCCs (in MHz) for the 2AlO molecule. The IGLO-III and EPR-III
basis sets were used for Al and O, respectively. The total number of AOs is 84. For
comparison, the CCSD and CCSD(T) results from Kossmann and Neese’s work were

also adopted, where the same basis sets and geometry were used (see Table 2.2).

Method

27Al 17O

A(K;c) A
(K;d)
11 A(K;c) A

(K;d)
11

CASCI(9e,8o) 830.31 −47.94 9.56 36.41

CASCI(9e,16o) 765.57 −48.32 3.81 38.77

DMRG-CASCI(9e,21o) 727.98 −47.31 −0.71 42.56

DMRG-CASCI(15e,28o) 670.79 −46.37 −2.07 45.64

DMRG-CASCI(21e,31o) 682.79 −46.39 1.57 45.48

DMRG-CASCI(15e,33o) 702.80 −46.41 −3.16 45.26

DMRG-CASCI(21e,36o) 708.32 −46.49 1.61 45.13

CASSCF(9e,8o) 830.07 −47.63 −1.27 37.30

DMRG-CASSCF(15e,28o) 629.25 −53.07 −42.28 49.16

DMRG-CASSCF(21e,31o) 887.02 −54.58 −28.35 46.48

DMRG-CASSCF(15e,33o) 573.08 −54.74 −57.34 55.55

DMRG-CASSCF(21e,36o) 712.65 −54.04 −35.04 52.21

B3LYP 512.21 −59.97 8.17 66.22

TPSS 656.79 −56.10 9.52 59.91

BP86 653.71 −56.86 14.21 59.60

CCSD a 482.02 −57.13 18.14 63.86

CCSD b 482.40 −57.20 18.10 63.80

CCSD(T) b 565.30 −56.20 19.30 58.90

Exp − gas-phase c 738 −56 n/a

Exp − Ne-matrix d 766 −52 2 50

a Present work
b Kossmann and Neese, Ref. [103]

c Ref. [117]
d Ref. [116]

result (error 23.40%) was still far from experimental values. The failure of CCSD(T)

can be attributed to the multireference character of the AlO radical discussed earlier.

For the DMRG calculations, inclusion of the 3d polarization shells is insufficient to

achieve accuracy; therefore, the Al 4d polarization in active space was also included

(see Table 2.1 for details). With the CASCI calculation, the FC term for the Al center

was non-monotonically dependent on the active spaces; as the size of the active space

was increased, the FC term first decreased and then slowly increased. The result of the

DMRG-CASCI(13e,36o) calculation (error 4.02%) is in reasonable agreement with the

gas-phase value. For the CASSCF calculation, there is no improvement of the FC term
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calculated by CASCI if the CAS only consists of full valence shells. The FC term for

the Al center is quite sensitive with further enlargement of the active space. The FC

terms are too low without core correlation; however, the FC terms are too high with

core correlation but without Al 4d polarization. Good agreement with the gas-phase

value with an error of 3.43% was obtained when all these orbitals were included in the

active space.

Table 2.10 presents the SNO contributions to the total spin density at the Al center.

We only compare the spin densities calculated with the four largest active spaces. The

CASCI results are considered first. The SOSNO spin density slowly increases with en-

largement of the CAS, while the summation of the other SNO contribution seems to

remain unchanged. The increase of total spin density then follows the increase of the

SOSNO spin density. Although the SOSNO spin densities from the DMRG-CASCI

calculations are generally comparable to the total spin density from the gas-phase mea-

surement (0.634 a.u. [117]), the calculated total spin densities are lowered by the neg-

ative contributions from the other SNOs, which leads to the underestimation of the

DMRG-CASCI calculations. We now discuss the DMRG-CASSCF spin density. With-

out the core orbitals in the active space, i.e. CAS(15e,28o) and CAS(15e,33o), the total

spin densities are too low relative to the gas-phase value, due to the largely negative

contributions of the other SNOs. In contrast, the total spin density from the DMRG-

CASSCF(21e,31o) calculation is too high relative to the gas-phase value, as a result of

the high SOSNO spin density. When the core orbitals and Al 4d polarization shell are

taken into account, i.e. CAS(21e,36o), the SOSNO spin density is close to the gas-phase

value and the summation of other SNO contributions is relatively small. Consequently,

the total spin density in this case is comparable to that of the gas-phase measurement.

Figure 2.2 presents the spatial distribution of the SOSNO spin density for the AlO

radical. The largest CAS, i.e. CAS(21e,36o), provides an FC term for the Al center that

is in excellent agreement with the gas-phase value, and the spatial distribution has peaks

with medium height. In the presence of 4d polarization but without core correlation,

i.e. CAS(15e,33o), the distribution plot has the highest peaks around the O center,

while the peak at the Al center is the lowest. The features are opposite for the case

of CAS(21e,31o). This figure indicates that the difference in the SOSNO spin density

between CAS(15e,33o) and CAS(21e,36o) is smaller than that between CAS(21e,31o)

and CAS(21e,36o), which implies that the SOSNO spin density is more significantly

affected by the polarization shell than by the core correlation.
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Figure 2.2: Spin density distribution of SOSNO for the AlO radical. The geometry
of the AlO radical (in a.u.) is: O(0.000, 0.000, 0.000) and Al(0.000, 0.000, 3.057). The
results were calculated using the DMRG-CASSCF(15e,33o), DMRG-CASSCF(21e,31o),

and DMRG-CASSCF(21e,36o) procedures.

Table 2.10: SNO contributions to spin density (in a.u.) at the Al center in the AlO
radical. The values in parentheses indicate the SON of SOSNO. Only the four largest

active spaces are compared.

Method
Contribution of Sum of the other SNO

Total
SOSNO contributions

DMRG-CASCI(15e,28o) 0.6191 (0.9262) −0.0436 0.5754

DMRG-CASCI(21e,31o) 0.6236 (0.9264) −0.0385 0.5850

DMRG-CASCI(15e,33o) 0.6459 (0.9292) −0.0430 0.6029

DMRG-CASCI(21e,36o) 0.6513 (0.9306) −0.0436 0.6076

DMRG-CASSCF(15e,28o) 0.6491 (0.9331) −0.1095 0.5396

DMRG-CASSCF(21e,31o) 0.7296 (0.9625) 0.0312 0.7609

DMRG-CASSCF(15e,33o) 0.5710 (0.9376) −0.0794 0.4915

DMRG-CASSCF(21e,36o) 0.6259 (0.9482) −0.0146 0.6113

Concerning the FC term for the O center, none of present methods except the DMRG-

CASCI calculations can correctly reproduce the Ne-matrix value. However, the agree-

ment of the DMRG-CASCI results with the Ne-matrix value can be attributed to for-

tuitous error cancellation. In addition, the results obtained by CC calculations are

comparable to those obtained with the DMRG-CASSCF(21e,36o) calculation.

Spin-dipole term. We first discuss the SD term for the Al center. For the DFT

calculations, the SD terms are very close to the gas-phase value when using the BP86

and TPSS functionals, while that with the B3LYP functional gave an overestimation with

an error of 7.09%. Similarly, the SD term calculated by the CCSD method is comparable
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with the gas-phase value and has an error of 2.02%. For the DMRG calculation, the SD

term for the Al center is less sensitive to the active space. All DMRG-CASCI calculations

largely underestimate the SD term, where the errors relative to the gas-phase and Ne-

matrix values are approximately 16.00% and 10.00%, respectively. Interestingly, all

DMRG-CASSCF results fall between the gas-phase and Ne-matrix values. In the case

of the O center, both DFT and CC approaches largely overestimate the Ne-matrix value

with the largest error up to 32.44% (for the B3LYP functional). Similarly to the Al

center, the SD term for the O center is underestimated by the DMRG-CASCI calculation.

Finally, the result with DMRG-CASSCF(21e,36o) is very close to the Ne-matrix value

with an error of 1.46%.

2.4.4 Vinyl radical

In this subsection, we will consider the performance of DMRG method for Fermi contact

prediction of vinyl radical. For the 2A′ ground state, the unpaired electron is located in

the 8a′ orbital which is an in-plane sp hybrid. The vinyl radical, therefore, is designated

as σ radical. Briefly, the FC values of vinyl radical have been previously evaluated using

several conventional methods, such as DFT [119], MR-SCI [120] , and CC [121, 122]. In

the present calculations, we have used the EPR-III basis set for both C and H atoms.

The total number of AOs is 113. We herein focus on the FC term of C atoms; therefore,

we included a large number of orbitals of C atoms in active space, while only 1s orbitals

of H atoms were taken into account (see Table 2.1). It is difficult to properly chose active

orbitals from HF orbitals for this molecule; therefore, we employed the orbitals obtained

from RASSCF/ANO-L calculation (see Sec. 2.3 for details) as the initial orbitals for

DMRG calculations. Because we used different basis sets for preparing initial orbitals

and DMRG calculation, we have not presented the DMRG-CASCI results. We also

provided the DFT (B3LYP, TPSS, and BP86 functionals), UHF, as well as CCSD results

for comparison. All results are summarized in Table 2.11.

We first discuss the FC terms of both C centers. It is obvious that the UHF method

largely overestimates these FC terms. For three DFT calculations, while their results

for C1 center are in reasonable agreement with experimental value, they significantly

underestimate the FC term of C2 center with smallest and largest error of up to 27.01%

(for TPSS functional) and 61.08% (for BP86 functional), respectively. The similar

situation was observed for the CCSD calculation. The errors of CCSD results from

experimental values are 4.84% and 29.88% for C1 and C2 centers, respectively. The

DMRG-CASSCF(15e,33o) calculation provided the FC terms of both C centers in good

agreement with experimental values. The errors are 3.21% and 12.49 % for C1 and C2

centers, respectively.
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Table 2.11: Fermi contact values (in MHz) of 2A′ state of C2H3 radical using EPR-III
basis set, where the total number of AOs is 113.

Method C1 C2 H1 H2 H3

DMRG-CASSCF(15e,33o) 311.21 −27.11 21.14 158.03 101.59

UHF 479.40 −116.56 −37.44 193.94 138.91

B3LYP 324.59 −12.05 55.29 173.55 112.14

TPSS 314.72 −17.59 60.97 181.30 109.47

BP86 293.77 −9.38 49.06 173.69 112.57

CCSD 316.12 −16.90 39.00 157.13 96.83

Exp.a 301.54 −24.10 38.67 184.80 110.97

a Taken from Ref. [121]

We now discuss the FC terms of three H centers. Although all absolute values of HF

results are reasonable, the sign of FC term of H1 center is different from that of exper-

imental values. All the DFT calculations provide the FC terms of H2 and H3 centers

in good agreement with experimental values, however, they overestimate the FC term

of H1 center. In contrast to DFT, the CCSD method gives an accurate FC term for

H1 center, while the FC terms for H2 and H3 centers of this method are far away from

experimental values. The DMRG-CASSCF(15e,33o) calculation underestimates the FC

terms of all H centers. The large discrepancy between DMRG results and experimental

values seems to arise because we only included the H 1s orbital in active space. In order

to get more accurate FC terms for H centers, we should include more orbitals of H atom

in active space.

2.4.5 Accuracy of DMRG method for HFCC prediction

The quality of a DMRG wavefunction is dependent on the number of renormalized basis

states M , and variationally converges to an exact description with increasing M . A more

accurate DMRG wavefunction requires a larger M , which implies greater computational

cost. Therefore, it is useful to reveal the convergence of HFCCs calculated by the DMRG

method with respect to M .

Table 2.12 presents the differences in DMRG energy as well as total discarded weight

between the last two DMRG sweeps in DMRG-CASSCF calculations with the largest

active spaces for each system studied in this work. The total discarded weights of the

last DMRG sweep is also provided. From this Table, we can see that the change in

DMRG energy measured in the last two sweeps is negligible.
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Table 2.12: The different in DMRG energy as well as total discarded weight between
last two DMRG sweeps for DMRG-CASSCF calculations with largest active spaces for
each system studied in this work. The total discarded weight of last DMRG sweep is

also included.

Molecules
DMRG-CASSCF Deviation of Deviation of total Total

calculations energies (mEh) discarded weight discarded weight

BO DMRG-CASSCF(13e,30o) 0.00143 6.96157× 10−6 3.69354× 10−6

CO+ DMRG-CASSCF(13e,30o) 0.00066 7.77564× 10−6 4.65225× 10−6

CN DMRG-CASSCF(13e,30o) 0.00132 1.36235× 10−5 8.14189× 10−6

AlO DMRG-CASSCF(21e,36o) 0.00249 4.73789× 10−5 1.60101× 10−5

C2H3 DMRG-CASSCF(15e,33o) 0.00105 3.66949× 10−5 3.36053× 10−5

Let us illustrate the convergence of DMRG results with increasing calculation level. We

have chosen the CN radical as an example for this purpose. DMRG calculations with

M = 128, 256, and 1024 for CAS(13e,30o) were performed. The MOs from the DMRG-

CASSCF(13e,30o) calculation with M = 512 was used as the orbital basis for the other

calculations. To maintain consistence between the different DMRG calculations, the

CASCI procedure was conducted with the same orbital basis. Table 2.13 presents the

convergence of the total electronic energy, FC term, and SD term for the C center with

respect to M . The energy with M = 512 is converged to 0.604 mEH when compared

to that of M = 1024. The FC term significantly decreases when going from M = 128

to 256 (approximately 13.00 MHz) and seems to be convergent with larger values of M .

This situation also happens to the SD term.

Table 2.13: The total discarded weight, total energy, and HFCCs at the C center
at different number of renormalized states M for CN radical. Only the first element is
presented for the SD term. The active space is CAS(13e,30o). The convergent MOs of
the DMRG-CASSCF(13e,30o) calculation with M = 512 were used as a reference for
the other DMRG calculations and only the CASCI procedure was performed for these

calculations.

M
Total

Energy (Eh)
FC term SD term

discarded weight A(K;c) (MHz) A
(K;d)
11 (MHz)

128 1.16877× 10−4 −92.570 835 576.80 −53.18

256 2.78911× 10−5 −92.575 539 563.79 −52.97

512 8.14189× 10−5 −92.577 510 561.95 −52.92

1024 1.35497× 10−6 −92.578 114 559.44 −52.86

∞ −92.578 276 558.99a −52.85a

a Linear extrapolation from two points at M = 512 and 1024 of HFCCs vs the total discarded weight
(see Figure 2.3)

In Figure 2.3, we plotted the total energy, FC term, and SD term vs the discarded

weights at different values of M . We excluded the data with M = 128 for extrapolation.
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It is known that the least-square fitting represents a near direct proportionality between

the total energy and total discarded weight [64, 70] as shown in upper panel of Figure

2.3. The extrapolation estimates the DMRG energy at M = ∞ to be −92.578 276Eh;

therefore, the DMRG energy at M = 512 (see Table 2.13) is found to be accurate to

0.766mEh. The HFCCs vs total discarded weight, however, are non-linear as shown in

the middle (FC term) and lower (SD term) panels of Figure 2.3. Although the number

of points from available data is not sufficient to generally extrapolate the FC and SD

terms at M = ∞, we have attempted to linearly extrapolate from last two points (at

M = 512 and 1024). We then obtained the approximate estimations of the FC and SD

terms at M = ∞ to be 558.99 MHz and −52.85 MHz, respectively. Errors of FC and

SD terms at M = 512 (see Table 2.13) from these approximate estimations are 0.53%

and 0.13%, respectively.

Generally, due to the non-linearity of HFCCs vs total discarded weight, it is not feasible

to provide the general trend for convergence of HFCCs with respect to M . However,

from above approximate estimation of HFCCs at M = ∞ we found that the results at

M = 512 are reliable.

2.5 Conclusion and outlook

In summary, DMRG calculations were performed to predict the HFCCs of 4 2Σ diatomic

radicals (BO, CO+, CN, and AlO) and vinyl (C2H3) radical. The HFCCs of the less

electronegative centers (B, C, and Al) obtained were in excellent agreement with the

experimental values. The present work not only provides some insight into the accuracy

of HFCC predictions using the DMRG method, but also serves as the benchmark for

further work. It should be emphasized that the DMRG algorithm used herein was

considered as a near-FCI method and the electron correlation effects were systematically

investigated using the CAS-type procedures, i.e. CASCI and CASSCF. At this point, we

are able to answer the two questions addressed in the introduction. (i) Our assessment

shows that the active space method has the potential to accurately describe the HFCCs,

but the active space must be addressed by the construction of active orbitals. Generally,

the FC term is particularly sensitive to the choice of active space. Moreover, the DMRG

method is also suitable to deal with multireference cases such as the AlO radical. (ii)

It is necessary to correlate the core electrons to correctly obtain the spin density at the

nucleus; therefore, the core orbitals should be included in CAS. At the same time, the

inclusion of polarization shells is necessary to describe the dynamical correlation, which

provides the appropriate spin-polarized effects.
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Figure 2.3: Total energy (upper panel), FC term (middle panel), and SD term (lower
panel) vs the total discarded weight for DMRG calculations of CN radical at M = 256,

512, and 1024.
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Most CASCI calculations provided FC terms that were in poor agreement with the

experimental values, while reasonably accurate results were obtained when the orbital

optimization procedure was employed with the same CAS. This situation can be at-

tributed to the nature of the one-particle basis in which the DMRG calculations were

performed. The canonical HF orbitals were used as the orbital basis for the DMRG-

CASCI calculation, whereas the DMRG calculation in conjunction with the CASSCF

procedure was conducted with much more compact orbitals that were obtained through

the orbital optimization procedure. The SD term is generally less sensitive to the level

of theory, as well as the size of the active space, than the FC term. The SD terms cal-

culated using the DMRG-CASSCF approach with the largest active spaces were better

to some extent than those calculated using conventional methods in most cases.

The assessment for the convergence of HFCCs with respect to the number of renor-

malized states M was also performed. We found that the HFCCs vs total discarded

weight did not yield a linear relation, while energies were in direct proportional to total

discarded weights. Although Boguslawski et al. [83] has recently claimed that reliable

reference spin densities can be obtained even if the total energies are not converged

with respect to M , the conclusion for HFCCs, which are calculated from spin density,

is questionable. This is because the nature of HFCCs is different from that of total spin

density, especially the FC term, which is the direct numerical measure of spin density

at the position of nucleus. Despite this fact, we have attempted to estimate the HFCCs

at M = ∞ by linear extrapolation from two points at M = 512 and 1024. Errors of

HFCCs at M = 512 from these approximate estimations are negligible for our test cases.

Finally, we have explored the reliability of the DMRG method for the HFCC prediction

of diatomic radicals. For molecules with more complicated structure, the active space

must be sufficiently large to capture the electron correlation effect, which implies ex-

pensive computation. Therefore, the combination of the DMRG method with another

multireference dynamical correlation model is useful to obtain accurate HFCCs. To ac-

curately predict the HFCCs of species that contain heavy elements requires consideration

of the relativistic effects, including the scalar and spin-orbit coupling effects.
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3.1 Introduction

As mentioned in Chapter 1, both electron correlations and relativistic effects are impor-

tant for the accurate prediction of HFCCs for heavy molecules. In framework of modern

quantum chemical calculation of HFCCs, while the relativistic DFT methods have been

widely used [17–24, 27], there have been only a few studies employing the relativistic

ab initio wavefunction methods [16, 25, 26, 28]. Generally, from the theoretical point of

view, it is highly desirable to provide a computational scheme including both high-level

correlations and relativistic effects for HFCC prediction.

The 4c-DMRG has been very recently developed by Knecht, Legeza, and Reiher [123];

however, it is still far from practical applications, especially for the isotropic HFCC that

requires the core correlation. Therefore, the 2c approaches are still useful to provide a

32
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good balance between computational cost and accuracy for isotropic HFCC calculations.

As a continuation of the previous work given in Chapter 2, we have evaluated the HFCCs

of molecules containing heavy elements using the DMRG-CASSCF in combination with

the quasi-relativistic DKH transformation.

The quasi-relativistic DKH transformation can decouple the large and small components

of the Dirac spinors in the presence of an external potential by repeating unitary trans-

formations. The main advantage of DKH transformation is that the DKH Hamiltonian

is variationally stable. In addition, the DKH transformation can be easily incorporated

into any electron correlation methods. Recently, a numerous methods for higher-order

unitary transformations have been developed, such as the exponential-type transforma-

tion [124], the generalized transformation [125], the infinite-order transformation [126],

and the arbitrary-order transformation [127–129]. The DKH method therefore becomes

one of the most successful tools in relativistic quantum chemistry. Along with the success

of the DKH transformation for energy-related calculations, this method has been also

widely applied to calculate molecular properties, such as magnetic shielding constants

[130–132], nuclear magnetic resonance spin-spin coupling constants [133], Mössbauer

electron density [134, 135], electric field gradients [136, 137], magnetizabilities [138], and

HFCCs [23–25]. These studies have shown that the so-called “picture change” error

(PCE) has a pronounced effect on molecular properties even for light molecules. While

the higher-order DKH transformations have been applied to investigate the PCE cor-

rection for electric field gradient, Mössbauer electron density, and magnetic shielding

constants; the DKH treatment for HFCCs was used only up to the second order. More-

over, Seino et al. [139] has shown that the higher than second-order corrections are

necessary to calculate the expectation value of δ (r −R) operator with reliable accuracy.

A similar statement was also recently made by Malkin et al. [17]. Thus, going beyond

the second order is necessary to get the calculated HFCCs close to those of 4c calculation

and experiment. In present work, we have employed the DKH transformation up to the

third order (DKH3) for hyperfine coupling (hfc) operator.

The object of this study entails two new technical points: (i) the initial derivation and

implementation of the DKH3 transformation for hfc operator, (ii) the assessment on the

performance of the DMRG in combination with the DKH transformation for isotropic

HFCC calculations.

For test cases, we have applied our DMRG-CASSCF/DKH3 method to characterize the

HFCCs of doublet radicals containing fifth-row elements: Ag, PdH, and RhH2. Be-

cause the spin density around the vicinity of Ag nuclei is dominated by the outermost

5s orbital, the evaluation of isotropic HFCC of Ag atom does not require a lot of ef-

fort. Recently, several works using ab initio calculations, such as QCISD/IORAmm,
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MP2/IORAmm [26], and MCDF [16] accurately predicted the isotropic HFCC of Ag.

Therefore, in order to validate our derivation and implementation, we have first eval-

uated the isotropic HFCC of Ag atom at different levels of DKH transformation and

active space. Previous studies showed that PdH and RhH2 are quite important in

catalyses; therefore, understanding their electronic and magnetic properties is appeal-

ing and necessary. In these radicals, the unpaired electron is located in the σ orbitals

containing predominant 4dσ and 5s metal character and small amount of H 1s. The

reliable accuracy in characterization of isotropic HFCC for these metal centers is thus

expected to require the high-order correlation and core-level spin-polarization effects.

Although the calculations of EPR g−tensors have been carried out by many works us-

ing both DFT and ab initio methods, the calculated HFCCs for PdH radical were only

published by Belanzoni and coworkers [19] using DFT/ZORA and by Quiney and Be-

lanzoni [15] using DHF. The isotropic HFCC of Pd center was largely underestimated

by DHF. More reasonable result can be provided by DFT/ZORA; however, the error

from experimental value is still large. Quiney and Belanzoni have attributed the fail-

ure of DHF to the strong configuration mixing of the Pd orbitals, which is incapable

to describe by single-configuration model like HF [15]. Thus, it is interesting to assess

our DMRG-CASSCF/DKH3 scheme to characterize the isotropic HFCC of Pd center

in PdH radical. To our best knowledge, the calculation of EPR parameters for RhH2

radical has not been reported yet. Moreover, the experimental value is still controversial.

Zee, Hamrick, and Weltner [140] have first measured the EPR parameters of RhH2. In

their experiment, the Rh atom was vaporized by laser radiation, and then the vapor

was deposited with argon matrix containing hydrogen. Recently, Hayton and colleagues

[141] have measured again the EPR parameters of RhH2 by depositing Rh atoms from

thermal sources into hydrocarbon matrices. Although their results were close to those

in the work of Zee et al., they suggested that the observed spectrum is assigned to Rh

atoms instead of RhH2 complexes. They also suggested that EPR parameters measured

by Zee et al. may not result from the reactions of ground state atoms but from those of

thermally or/and electronically excited Rh atoms formed in the laser plume. Therefore,

it is quite valuable to have the calculated results using high-level theory in order to

verify the experimental value.

The chapter is organized as follows. The background of theory used in this study is

presented in Sec. 3.2 followed by the computational details in Sec. 3.3. Results and

discussion are given in Sec. 3.4. Conclusions are drawn in Sec. 3.5.
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3.2 Theoretical background

3.2.1 Direct DKH transformation for general property operator

We first introduce the direct scheme of DKH transformation for general property opera-

tor proposed by Wolf and Reiher [142]. The general electromagnetic 4c operator X can

be written as follows

X(4) = X(4)
e +X(4)

o . (3.1)

The operators with the superscript (4) are in the 4c picture. The operator X
(4)
e is even,

i.e., block-diagonal operator, while the operator X
(4)
e is odd, i.e., off-diagonal operator.

In general, the operators X
(4)
e and X

(4)
o are the electric and magnetic property operators,

respectively. In the direct scheme, the unitary transformation U only depends on an

external potential V but not on property operator X, i.e., U = U(V ). The DKH

property operator is then obtained by directly applying the unitary transformation U

to the property operator X(4),

X
(4)
DKH∞ = UX(4)U+ = · · ·U2U1U0X

(4)U+
0 U

+
1 U

+
2 · · · , (3.2)

with the free-particle Foldy-Wouthuysen (fpFW) transformation defined as

U0 =

(
Ap ApRp

−ApRp Ap

)
, (3.3)

and operators Ap and Rp given by

Ap =

√
Ep +mc2

2Ep
, (3.4)

Rp =
cσp

Ep +mc2
= Kpσp, (3.5)

Ep = c
√
p2 +m2c2, (3.6)

where σ denotes a 3-vector, whose elements consist of the standard (2× 2) Pauli ma-

trices. Wolf and Reiher [142] have argued that if the DKH property operator up to

nth order in V is sought for, one has to apply all unitary transformations up to Un. In

other words, the DKH transformation of property operator follows the n rule instead of

familiar (2n+ 1) rule. However, to be consistent with previous works [23–25], the DKH

order for property operator has been defined to be the same as that for Hamiltonian in

the present work. This definition has been recently used by Seino et al. [132, 139]. The
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DKH operator X(4) up to the third order (DKH3) then reads

X
(4)
DKH3 = U2U1U0X

(4)U0U1U2. (3.7)

In the present work, we employed the exponential parameterization of the unitary trans-

formation Un = exp (Wn), which was proposed by Nakajima and Hirao [124], for U1 and

U2. After doing mathematics, the diagonal blocks of DKH property operators, which

are exactly the same as those obtained by Wolf and Reiher [142], read

X
(4)
e,1 = Ap

(
X(4)
e +RpX

(4)
e Rp

)
Ap + βAp

{
Rp, X

(4)
o

}
Ap, (3.8)

X
(4)
e,2 = X

(4)
e,1 +

[
W1, X

(4)
o,1

]
, (3.9)

X
(4)
e,3 = X

(4)
e,2 +

1

2

[
W1,

[
W1, X

(4)
e,1

]]
+
[
W2, X

(4)
o,1

]
, (3.10)

with the first-order off-diagonal block

X
(4)
o,1 = βAp

[
Rp, X

(4)
e

]
Ap +Ap

(
X(4)
o −RpX(4)

o Rp

)
Ap. (3.11)

The odd operators W1 and W2 are familiar perturbation-independent operators param-

eterizing the standard unitary transformation U1 and U2, respectively:

W1(p, p′) = β
O1(p, p′)

Ep′ + Ep
, (3.12)

W2(p, p′) = β
[W1(p, p′), E1(p, p′)]

Ep′ + Ep
. (3.13)

Operators E1 and O1 are given by

E1 = ApV Ap +ApRpV RpAp, (3.14)

O1 = ApRpV Ap +ApV RpAp. (3.15)

3.2.2 Direct DKH transformation for magnetic operator

The 4c magnetic operator describing the interaction between the electron spin and ex-

ternal magnetic field is given by

X =

(
0 σA

σA 0

)
, (3.16)

where A is vector potential of the external magnetic field. We subtitute 4c operator

3.16 into Eqs. 3.8−3.10. Because magnetic operator 3.16 is odd, only terms related to

X
(4)
o are nonzero. After doing mathematics, we finally obtain the upper diagonal block
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of DKH3 magnetic operator as follows

X
(2)
e,1 = Hmag +H+

mag, (3.17)

X
(2)
e,2 = Xe,1 −

(
AṼ A

)
Hmag +

(
ARṼ RA

)
R−2
p Hmag

−
(
ARṼ RA

)
H+

mag +
(
AṼ A

)
R2
pH

+
mag

−H+
mag

(
AṼ A

)
+H+

magR
−2
p

(
ARṼ RA

)
−Hmag

(
ARṼ RA

)
+HmagR

2
p

(
AṼ A

)
, (3.18)

X
(2)
e,3 = Xe,2 +

(
ARṼ RA

)
H+

mag

(
AṼ A

)
+
(
AṼ A

)
Hmag

(
ARṼ RA

)
+
(
AṼ A

)
R2
pH

+
magR

−2
p

(
ARṼ RA

)
+
(
ARṼ RA

)
R−2
p HmagR

2
p

(
AṼ A

)
−
(
AṼ A

)
R2
pH

+
mag

(
AṼ A

)
−
(
AṼ A

)
HmagR

2
p

(
AṼ A

)
−
(
ARṼ RA

)
H+

magR
−2
p

(
ARṼ RA

)
−
(
ARṼ RA

)
R−2
p Hmag

(
ARṼ RA

)
+
(
ARṼ RA

)
R−2
p

(
ARṼ RA

)
R−2
p Hmag −

(
ARṼ RA

)
R−2
p

(
ARṼ RA

)
H+

mag

+
(
ARṼ RA

)(
AṼ A

)
Hmag −

(
ARṼ RA

)(
AṼ A

)
R2
pH

+
mag

−
(
AṼ A

)(
ARṼ RA

)
R−2
p Hmag +

(
AṼ A

)(
ARṼ RA

)
H+

mag

+
(
AṼ A

)
R2
p

(
AṼ A

)
Hmag +

(
AṼ A

)
R2
p

(
AṼ A

)
R2
pH

+
mag

−H+
magR

−2
p

(
ARṼ RA

)(
AṼ A

)
+H+

magR
−2
p

(
ARṼ RA

)
R−2
p

(
ARṼ RA

)
−H+

mag

(
AṼ A

)
R2
p

(
AṼ A

)
+H+

mag

(
AṼ A

)(
ARṼ RA

)
+Hmag

(
ARṼ RA

)(
AṼ A

)
−Hmag

(
ARṼ RA

)
R−2
p

(
ARṼ RA

)
+HmagR

2
p

(
AṼ A

)
R2
p

(
AṼ A

)
−HmagR

2
p

(
AṼ A

)(
ARṼ RA

)
−
(
AṼ A

)(
ARṼ RA

)
R−2
p Hmag +

(
AṼ A

)(
ARṼ RA

)
H+

mag

+
(
AṼ A

)(
AṼ A

)
Hmag −

(
AṼ A

)(
AṼ A

)
R2
pH

+
mag

−
(
ARṼ RA

)(
ARṼ RA

)
R−2
p Hmag +

(
ARṼ RA

)(
ARṼ RA

)
H+

mag

+
(
ARṼ RA

)(
AṼ A

)
Hmag −

(
ARṼ RA

)(
AṼ A

)
R2
pH

+
mag

+H+
mag

(
AṼ A

)(
AṼ A

)
+H+

mag

(
AṼ A

)(
ARṼ RA

)
−H+

magR
−2
p

(
ARṼ RA

)(
AṼ A

)
−H+

magR
−2
p

(
ARṼ RA

)(
ARṼ RA

)
−HmagR

2
p

(
AṼ A

)(
AṼ A

)
−HmagR

2
p

(
AṼ A

)(
ARṼ RA

)
+Hmag

(
ARṼ RA

)(
AṼ A

)
+Hmag

(
ARṼ RA

)(
ARṼ RA

)
, (3.19)
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where

AṼ A = Ap
V (p, p′)

Ep + Ep′
Ap, (3.20)

ARṼ RA = ApRp
V (p, p′)

Ep + Ep′
RpAp, (3.21)

and

Hmag = ApKp (σp) (σA)Ap, (3.22)

H+
mag = Ap (σA) (σp)KpAp. (3.23)

The superscript (2) in Eqs. 3.17−3.19 means that the DKH operators are in 2c picture.

Using the relation

(σa) (σb) = a · b + iσ · (a× b) , (3.24)

we have

(σp) (σA) = p ·A + iσ · (p×A)

= [p ·A] + A · p + iσ · [p×A]− iσ · (A× p) , (3.25)

(σA) (σp) = A · p + iσ · (A× p) . (3.26)

Herein, square brackets mean that the operator p only acts on the vector potential

A, but not on the wavefunction. It is easy to show that the first term in Eq. 3.25

vanishes. In fact, this term will vanish if we invoke the Coulomb gauge ∇ ·A = 0 [86].

From Eqs. 3.25 and 3.26, it is easy to decompose the magnetic operator into various

contributions. The terms being linear in σ represent the spin contribution, while the

other terms represent the orbital contribution.

Substituting Eqs. 3.22 and 3.23 into Eqs. 3.17-3.19 and using the relations 3.25 and

3.26, we obtain the DKH transformation for magnetic operator. For example, the first

order of DKH magnetic operator reads

X
(2)
e,1 =ApKpiσ [p×A]Ap −Apiσ {Kp (A× p)− (A× p)Kp}Ap

+Ap {KpA · p + A · pKp}Ap. (3.27)

Neyman et al. [30] neglected the second term in Eq. 3.27 in their implementation.

Thereafter, Malkin et al. [31] confirmed that the contribution of this term is completely

negligible. In the NR limit (c→∞), the kinetic factors Ap → 1 and Kp → (2c)−1. The

NR operator can be then obtained.
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It is worth mentioning that although the expression of third order is relatively long, its

computational cost is comparable to that of second order.

3.2.3 Hyperfine coupling operator

In the case of hfc operator, the vector potential created by nucleus N is given as follows

AN = µN ×∇GN , (3.28)

where µN is the magnetic moment of nucleus N and

GN =

∫
χN (R−RN )

r−RN
dR. (3.29)

Here r and R are the electronic and nuclear distributions, respectively, and χN is the

funtion related to nuclear magnetization distribution, which is usually assumed to be

the same as the nuclear charge distribution in quantum chemical calculations [25, 143].

Herein, we use the Gaussian nucleus model

χ(R−RN ) = (ηN/π)3/2 exp
(
−ηN (R−RN )2

)
. (3.30)

The nuclear exponent ηN is taken from database reported by Visscher and Dyall [144].

The additional integral [A× p] was implemented. However, we numerically found that

the total contribution of the terms related to this integral is negligible not only at the

first order, but also at higher orders. Thus, we will not discuss it hereafter. In the

present work, we only consider the SR effects, so that the orbital contribution, which is

related to the inner product [A · p], is also neglected.

Using vector potential 3.28, the third term of Eq. 3.25 reads [86]

h
(σ)
hfc = iσ [p×AN ] = hiso + hani, (3.31)

where the first and second terms in Eq. 3.31 are the isotropic (iso) and anisotropic (ani)

contributions, respectively:

hiso =
2

3
(iσ · µN ) (p · ∇GN ) , (3.32)

hani = −
[
(µN · p) (iσ · ∇GN )− 1

3
(iσ · µN ) (p · ∇GN )

]
. (3.33)
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The HFCCs are then determined by the second derivative of the expectation value of hfc

operators with respect to the electron spin and nuclear spin. For instance, the isotropic

HFCC for nucleus N is given by

Aiso(N) = 〈ψ|
∂2X iso

DKHn

∂s∂µN
|ψ〉 , (3.34)

where X iso
DKHn is the DKHn isotropic operator.

3.3 Computational details

The DMRG code developed by our group [70] was employed to obtain the active-space

wavefunction. The active spaces used in this work are presented in Table 3.1. The

number of spin adapted renormalized states M was set to 512 in all DMRG calculations,

unless otherwise noted. We have implemented the spin adaptation of Zgid and Nooijen

[67] in our DMRG code; therefore, the number of actual bases that are not spin adapted

is much larger than M (approximately twice). In the present work, the primitive ANO

basis sets [95, 96] were used for all elements and have the following numbers of exponents:

21s18p13d6f for metal (Ag, Pd, and Rh), and 8s4p3d for H.

Table 3.1: Active orbitals.

Molecule Active space Active orbitals

Ag

CAS(19e,18o) 4s4p4d 5s5p5d

CAS(37e,32o) 3s3p3d 4s4p4d 5s5p5d 6d

CAS(37e,39o) 3s3p3d 4s4p4d 5s5p5d 6d 4f

PdH

CAS(21e,20o) Pd: 3s 4s4p4d 5s5p5d H: 1s

CAS(21e,32o) Pd: 3s 4s4p4d 5s5p5d 6d 4f H: 1s

CAS(37e,40o) Pd: 3s3p3d 4s4p4d 5s5p5d 6d 4f H: 1s

RhH2

CAS(21e,21o) Rh: 3s 4s4p4d 5s5p5d H: 1s

CAS(21e,33o) Rh: 3s 4s4p4d 5s5p5d 6d 4f H: 1s

CAS(37e,41o) Rh: 3s3p3d 4s4p4d 5s5p5d 6d 4f H: 1s

The molecular geometry of PdH was taken from experiment, re(Pd−H) = 1.529Å [19].

Because there is no available experimental geometry for the RhH2 radical, we have

adapted it from the MRCI-SD calculation reported by Balasubramanian and Liao [145]:

re(Rh−H) = 1.510Å and θe(H−Rh−H) = 84◦ for the ground state 2A1.
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For comparison, the HFCCs were also calculated using the DFT/ZORA method with

three functionals: the hybrid-GGA functional B3LYP, meta-GGA functional TPSS, and

pure-GGA functional BP86. The orca code [99] was used for this purpose.

In the present work, we use the same definitions of DKH order for both Hamiltonian

and hfc operator; therefore a non-redundant notation DKHn was used instead of DKHn-

DKHn (the first for Hamiltonian and the second for hfc operator). The finite nuclear

(FN) model described by Gaussian distribution (Eq. 3.30) was used for all DMRG

calculations.

3.4 Results and discussion

3.4.1 Ag atom

We have first evaluated the isotropic HFCC of the Ag atom in order to assess our

derivation and implementation. The isotropic HFCC of the Ag atom as a function of

DKH order and active space is presented in Figure 3.1.

Let us consider the correlation effects. Because the convergent behavior of isotropic

HFCC with respect to active space at different DKH orders is similar, we only discuss

the results at the DKH3 level. Obviously, the isotropic HFCC smoothly converges with

respect to the size of active space. The DMRG-CASSCF(19e,18o) largely underesti-

mates the isotropic HFCC. When the active space is up to CAS(37e,32o), including

the extra core orbitals and one 6d shell, the calculated value compares reasonable with

experimental value. With further extending the active space by polarization 4f shell,

the isotropic HFCC slightly increases and is in excellent agreement with experimental

value.

Next, we discuss the relativistic effects. Lower panel of Figure 3.1 presents the percentage

errors of calculated results relative to the experimental value at different DKH orders

using DMRG-CASSCF(37e,39o) calculation. Although the DKH1 level improves the

isotropic HFCC upon the NR level, its result is still far from experimental value. This

means that the wavefunction as well as magnetic operator at DKH1 level is insufficient

to obtain the accurate result. Our observation is consistent with many previous works

[130–133, 135, 139]. When the DKH level goes from the first to second order, the error

significantly decreases from 30.05% to 4.48%. Finally, the correction from third order

pushes the result quite close to experimental value.

In general, the performance of DMRG-CASSCF/DKH method at different levels of

DKH order and active space for the prediction of isotropic HFCC for the Ag atom has
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Figure 3.1: Upper panel: the isotropic HFCC of Ag atom at different levels of DKH
transformation and active space. Lower panel: the percentage error relative to exper-
imental value from DMRG-CASSCF(37e,39o) calculation as a function of DKH order.

been assessed. The error of the DMRG-CASSCF(37e,39o)/DKH3 result relative to the

experimental value was found to be only 0.58%. Hereafter, we will only use the DKH3

level fo theory to calculate the isotropic HFCC of PdH and RhH2.

3.4.2 PdH radical

We now consider the PdH radical. All theoretical results calculated in this work are

summarized in Table 3.2, along with experimental values in Ar and Ne matrices. For

comparison, the results reported by Belanzoni and coworkers are also presented. In
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experiment and Belanzori et al. works, the parallel component A‖ and the perpendicular

component A⊥ were provided; therefore, in order to extract the Aiso and Aani, we used

the following formulas:

Aiso =

(
A‖ + 2A⊥

)
3

, (3.35)

Aani =

(
A‖ −A⊥

)
3

. (3.36)

Table 3.2: HFCCs (in MHz) of the Pd center in the PdH radical.

method Aiso(Pd) Aani(Pd)

BP86/ZORA a −910 29

DHF b 552 −7

B3LYP/ZORA −1207.92 40.07

TPSS/ZORA −1295.90 38.27

BP86/ZORA −1358.05 34.84

DMRG-CASSCF(21e,20o)/DKH3 −842.02 40.82

DMRG-CASSCF(21e,32o)/DKH3 −895.35 45.89

DMRG-CASSCF(37e,40o)/DKH3 −867.36 38.68

expt − Ne matrixc −857 (4) 16

expt − Ar matrixc −823 (4) 22

a Quiney and Belanzoni, Ref. [15],
b Belanzoni et al., Ref. [19],

c Taken from Ref. [146].

We mainly focus on the isotropic HFCC of the Pd center. According to the results re-

ported by Belanzoni and coworkers, the DHF terribly underestimates the isotropic HFCC

of the Pd center, while more reasonable result can be obtained using BP86/ZORA.

The present DFT/ZORA calculations, however, significantly overestimate the isotropic

HFCC of the Pd center with the smallest and largest errors relative to Ne matrix value

up to 40.84 % (for B3LYP functional) and 58.46 % (for BP86 functional). One of the

reasons for the overestimation of DFT/ZORA results is the neglect of FN effect. Previ-

ous studies [23, 24, 147] have shown that FN effect reduces the isotropic HFCC of Ag

atom by 2.9 %; therefore, the correction of FN effect may not be large enough to get

the isotropic HFCC of Pd in good agreement with experimental value.

For DMRG-CASSCF calculations, the result of CAS(21e,20o) is in good agreement with

experimental values with an error of 1.75 % relative to the Ne-matrix value. However,

when active space is enlarged to CAS(21e,32o), the isotropic HFCC of the Pd center

increases. According to Filatov et al. [26, 28], the increase of isotropic HFCC is due

to the contraction of the atomic inner shell electrons toward the nucleus under effect
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of electron correlation. With further increasing the active space to CAS(37e,40o), the

isotropic HFCC of the Pd center decreases and is close to Ne-matrix value with an eror

of 1.21 %. This means that the DMRG-CASSCF(37e,40o) has captured the higher-order

correlation, which is required for the realistic accuracy of the isotropic HFCC of the Pd

center as expected.

Regarding the anisotropic HFCC, all the methods used in present work largely overesti-

mate its values. The results of DFT are close to those of DMRG-CASSCF. Similarly to

isotropic HFCC, the variation of anisotropic HFCC with respect to active space is also

non-monotonous.

3.4.3 RhH2 radical

All theoretical and experimental values are collected in Table 3.3. In experiment, only

the absolute values of HFCCs were reported; therefore, we also present the absolute

values of isotropic HFCCs for consistency. It would be valuable to adapt the HFCCs

measured in the Ar matrix containing the methane (CH4) molecules [148]. In such

complex, the dipole interaction between RhH2 and CH4 affects the ground state orbitals

of RhH2. Thus, the observed EPR spectrum was assigned to the excited states of RhH2

[148].

Because the DMRG-CASSCF(37e,41o)/DKH3 calculation with M = 512 has not fin-

ished yet, the results with M = 256 are reported instead. From the CAS(37e,40o)

calculation for PdH in the previous Subsection, we found that the deviation of the re-

sult with M = 256 from that with M = 512 is less than 2.00 %. Thus, we believe that

the results with M = 256 are reliable.

Table 3.3: HFCCs (in MHz) of the Rh center in the RhH2 radical.

method |Aiso| Ax
ani Ay

ani Az
ani

B3LYP/ZORA 196.59 11.98 −22.91 10.92

TPSS/ZORA 182.87 12.77 −20.02 7.24

BP86/ZORA 192.97 9.04 −24.02 14.97

DMRG-CASSCF(21e,21o)/DKH3 431.06 36.55 −48.92 12.36

DMRG-CASSCF(21e,33o)/DKH3 344.46 22.59 −21.20 −1.38

DMRG-CASSCF(37e,41o)/DKH3 a 297.96 20.77 −39.56 18.79

expt − Ar matrixb 268(±20) 12 −20 8

expt − CH4/Ar matrixc 309(±20) 13 −28 15

a M = 256.
b The results measured in the Ar matrix, Ref. [140].

c The results measured in the Ar matrix containing the CH4 molecules, Ref. [148].
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We mainly discuss the isotropic HFCC of the Rh center. For DFT/ZORA calculations,

the results are less sensitive to the functional. All functionals largely underestimate the

isotropic HFCC of the Rh center with the relative errors of around 28.00 %. Similarly to

the case of PdH, the inclusion of the FN effect in DFT calculations might not improve

upon the calculated value.

For the DMRG-CASSCF/DKH3 calculations, the isotropic HFCC of the Rh center is

smoothly converged with respect to the size of active space. The result of CAS(21e,21o)

is much higher than the experimental value with an error relative to the average exper-

imental value of 60.82 %. The inclusion of 6d and 4f shells in the active space, i.e.,

CAS(21e,33o), leads to a significant reduction in the relative error (28.35 %). From the

results of these two active spaces, it is found that including only the inner shell 3s is

not sufficient to obtain the result comparable to the experimental value. With enlarging

the active space to CAS(37e,41o), the error relative to the average experimental value

decreases to 11.18 % and the result is close to the upper limit (297.96 MHz compared to

288 MHz). When the FN effect is accounted for, the isotropic HFCC is nonlocal, and not

only depends on the spin density at the nucleus position, but also on the spin density in

the vicinity of nucleus. Thus, the inclusion of the 3p3d inner shells, i.e. CAS(37e,41o),

might lead to a proper description of the spin density in the vicinity of the Rh center.

Obviously, the result of the DMRG-CASSCF(37e,41o)/DKH3 calculation falls between

the values in the case with and without the presence of CH4, in other words, between

the ground and excited state values. Thus, although it is not straightforward to compare

the theoretical value, which corresponds to the gas-phase value, with the value measured

in inert gas matrices, we might be able to believe that the experimental isotropic value

reported by Zee et al. [140] resulted not from the excited states as doubted by Hayton

et al. [141], but from the ground state.

We now briefly discuss the anisotropic HFCC of the Rh center. The experimental

anisotropic HFCCs were extracted using the formula: Aiani = |Ai| − |Aiso|, where

i = x, y, z. According to Zee et al. [140], the experimental anisotropic HFCCs are

meaningless because of the uncertainty in the x−component [Ax = 280(±60) MHz]. If

the upper limit of Ax was used, Axani, A
y
ani, andAzani would be 52 MHz, −40 MHz, and

−12 MHz, respectively. For all DFT/ZORA calculations, the anisotropic HFCCs are

in good agreement with the average experimental values. This good agreement is also

found for the UHF/DKH3 results (not shown here). For DMRG-CASSCF/DKH3 cal-

culations, the anisotropic HFCCs are seemingly sensitive to the active space and fall in

the range between the average and upper limit values.
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3.5 Conclusion

In summary, we have newly developed a computational scheme including the high-level

electron correlation effects as well as the SR effects for the accurate prediction of isotropic

HFCC of heavy molecules. For electron correlation, we employed the DMRG method

in framework of the CAS model. The orbital-optimization procedure, i.e., DMRG-

CASSCF, was employed to obtain the compact orbitals required for the accuracy of

the isotropic HFCC as shown in Chapter 2. For the SR effects, we have derived and

implemented the DKH hfc operators up to third order by using the direct transformation

scheme. The FN model was used for all DMRG calculations.

As test cases, we have evaluated the HFCCs for 4d transition metal radicals: Ag atom,

PdH, and RhH2. Good agreement between the isotropic HFCC values obtained from

DMRG-CASSCF/DKH3 and experiment was found. In order to verify the convergence

of the isotropic HFCC of the Rh center in RhH2 radical with respect to active space,

the calculation with larger active space is being performed.

It is worth emphasizing that the HFCCs of PdH and RhH2 were measured in inert gas

matrices. According to Filatov and Cremer [26, 28], the effect of the inert gas matrices

on the experimental values may reach as much as 6−10 %. Because there are no available

gas-phase values for these radical in literatures, the results from high-level theory, as

used in this work, can serve as the benchmark data.
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4.1 Introduction

The approaches based on DFT have been widely used for calculations of g−tensors due

to their low computational requirements; however, they have some major disadvantages

as follows. The exchange-correlation functionals appropriate for prediction of g−tensors

are system-dependent. The use of DFT calculations for properties like g−tensors thus

requires the careful validation for a given functional. Moreover, a general unsolved

question in DFT calculations of magnetic properties is the uncontrollable dependence of

the exchange-correlation potential on the paramagnetic current induced by the magnetic

field. Thus, the calculation of molecular g−tensors using ab initio wavefunction methods

is still highly desirable.
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In the present work, two technical approaches for g−tensor calculations based on CASSCF

method have been implemented: the first- and second-order perturbation approaches.

For the first-order perturbation approach, we employed the QDPT method. For the

second-order perturbation approach, we has implemented analytical response theory,

referred to as CP-CASSCF, that is equivalent to untruncated SOS expansion within

active space. The orbital relaxation under the effect of perturbation, which is the so-

called perturbation-induced orbital relaxation, is also considered in this work. As a first

step before employing the DMRG-CASSCF method for g−tensor calculations, which

will be reported in Chapter 5, the FCI level of theory has been used to fully treat the

correlation in active space. It is important to remind that the first-order perturbation

approach (denoted QDPT herein) includes all orders of SOC effects, while the second-

order perturbation approach (denoted CP herein) only includes the first-order (linear)

SOC effects.

There are two main purposes of this study: (i) deriving and implementing the analytical

response theory for CASSCF method to calculate the molecular g−tensors; (ii) making a

comparison between the performance of first- and second-order perturbation approaches,

which was already reported for DFT methods.

The chapter is organized as follows. The background of theory used in this study is

presented in Sec. 4.2 followed by the computational details in Sec. 4.3. Results and

discussion are given in Sec. 4.4. Conclusions are drawn in Sec. 4.5

4.2 Theoretical background

4.2.1 Introduction to molecular g−tensors

The interaction with the external magnetic field B is parameterized by the follwing

effective spin Hamiltonian

Heff = µBB · g · Seff, (4.1)

where µB is the Bohr magneton, g is the molecular g−tensor, and Seff is an effective spin

operator. Effective spin, which is a fictitious angular momentum, is used to represent

the group of degenerate levels that split after application of an external magnetic field.

On the other hand, the molecular Hamiltonian in presence of an external magnetic field

is given by

H = HBO +HSO +HZe. (4.2)
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Here, HBO is the Born-Oppenheimer (BO) Hamiltonian, HSO is the SO operator, and

HZe is the Zeeman operator that can be decomposed into the spin-Zeeman (SZ) HSZ

and orbital-Zeeman (OZ) HOZ operators,

HZe = HSZ +HOZ. (4.3)

The forms of operators HSZ, HOZ, and HSO will be provided in Subsections 4.2.4 and

4.2.5.

The molecular g−tensors can be obtained by comparing the effective spin Hamiltonian

(Eq. 4.1) and the molecular Hamiltonian (Eq. 4.2). In the next sections, we will provide

two different ways to evaluate the molecular g−tensors from the molecular Hamiltonian.

4.2.2 Analytical response theory

Formalism of g−tensors

In analytical response theory, both SO and Zeeman operators are considered as per-

turbation. The g−tensor is defined by the second derivative of molecular energy with

respect to electron spin and magnetic field,

gkl =
1

µB

∂2 〈ψ|H|ψ〉
∂Bk∂Sl

, (4.4)

where k, l = x, y, z. Because the derivation of g−tensor formula from Eq. 4.4 was already

provided in literature [38, 149], we only provide the resultant formula:

gkl =
1

µB
D(α−β) ∂

2hSZ

∂Bk∂Sl
+

1

µB

∂D(α−β)

∂Bk

∂hSO

∂Sl
, (4.5)

where D(α−β) is the spin density in atomic orbital (AO) basis, and hSZ
µν = 〈µ|HSZ|ν〉

and hSO
µν = 〈µ|HSO|ν〉 are SZ and SO integrals in AO basis, respectively. In Eq. 4.5,

the first term describes the SZ contribution, while the second term is the cross term

between the OZ and SOC contributions. Note that the reduced mass correction (RMC)

and the gauge correction (GC) have not been included. According to Bolvin [54], the

RMC can be included in the scalar relativistic term, which will be provided later. Also,

the gauge-dependent error can be reduced by the choice of proper origin.

The evaluation of the first term is trivial because it only requires the unperturbed

spin density. The second term, on the other hand, requires the calculation of the first

derivative of the spin density.
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The AO spin density from the CASSCF wavefunction is given by

D(α−β)
µν =

∑
IJ

∑
pq

C∗ICJc
∗
pµcqνD

(α−β)
IJ,pq , (4.6)

where

D
(α−β)
IJ,pq =

〈
I|E−pq|J

〉
, (4.7)

and E−pq = â+
pαâqα − â+

pβ âqβ. Taking derivative of spin density (Eq. 4.6), we have

∂D
(α−β)
µν

∂Bk
=
∑
IJ

∑
pq

(
∂C∗I
∂Bk

CJ + C∗I
∂CJ
∂Bk

)
c∗pµcqνD

(α−β)
IJ,pq

+
∑
IJ

∑
pq

C∗ICJ
(
U∗pnc

∗
nµcqν + Uqnc

∗
pµcnν

)
D

(α−β)
IJ,pq . (4.8)

Here, we have employed the rotation matrix U defined as

∂cpµ
∂Bk

= Upncnµ. (4.9)

In the case of magnetic properties, the perturbation is purely imaginary and Hermitian;

therefore, U is a purely imaginary and Hermitian matrix, i.e.,U∗pq = −Upq,

Upq = −Uqp.
(4.10)

Also, we have the following relation

∂C∗I
∂Bk

= −∂CI
∂Bk

. (4.11)

According to Eq. 4.8, to evaluate the first order derivative of spin density, we have to solve

the CP-CASSCF equations to obtain the first derivatives of CI and MO coefficients. In

the present work, we follow the derivation proposed by Yamaguchi and coworkers [150].

We would keep in mind that the external perturbation in the case of g−tensors is the OZ

operator HOZ. Hereafter, we will employ the operator V̂ for the external perturbation

for convenience.
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MO part of CP-CASSCF equation

We first focus on the MO part. The variational condition in MO space requires a

symmetric Lagrangian matrix at convergence

εpq − εqp = 0. (4.12)

Thus, the CP equation for MO coefficients can be obtained by differentiating Eq 4.12

∂εpq
∂Bk

− ∂εqp
∂Bk

= 0. (4.13)

The Lagrangian is defined by

εpq =
∑
IJ

C∗ICJε
IJ
pq , (4.14)

where the so-called bare Lagrangian is given by

εIJpq = εIJ [0]
pq +

∑
m

DIJ
qmV

p
m

=
∑
m

DIJ
qmh

p
m +

∑
mrs

DIJ
qmrsv

pr
ms +

∑
m

DIJ
qmV

p
m. (4.15)

Here, ε[0] is the unperturbed Lagrangian and V is the perturbation in MO basis, i.e.,

V p
q = 〈p| V̂ |q〉. The reduced density matrices are defined by

Dp
q =

∑
IJ

C∗ICJD
IJ
pq =

∑
IJ

C∗ICJ 〈I|Epq|J〉 , (4.16)

Dpr
qs =

∑
IJ

C∗ICJD
IJ
pqrs =

∑
IJ

C∗ICJ 〈I|EpqErs − δqrEps|J〉 . (4.17)

Taking derivative of Lagrangian (Eq. 4.14), we obtain

∂εpq
∂Bk

=
∑
IJ

C∗ICJ
∂εIJpq
∂Bk

. (4.18)

To obtain Eq. 4.18, we have used the relation 4.11. Substituting Eq. 4.15 into Eq. 4.18

and using the relation 4.10, we obtain the final equation for first derivative of Lagrangian

as follows:

∂εpq
∂Bk

=
∑
rs

Urs

(
δprε

[0]
qs + Y pr

qs

)
+ V p[B]

q . (4.19)
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Here, the 4-indices matrix is given by

Y pr
qs =

∑
mnrs

(Dq
sh

p
r +Dqm

sn v
pm
rn ) , (4.20)

and we have defined

V p[B]
q =

∑
µν

c∗pµcqν
∂Vµν
∂Bk

. (4.21)

Finally, subtituting Eq. 4.19 into Eq. 4.13, we obtain the CP equation for MO part

∑
rs

Urs

(
δprε

[0]
qs − δqrε[0]

ps + Y pr
qs − Y qr

ps

)
= −V p[B]

q + V q[B]
p . (4.22)

The spin density matrices vanish unless both indices p and q in Eq. 4.8 are active. In

addition, the interaction through the perturbation within the active space will be treated

by CI part. Thus, the rotation matrix U can be decomposed into core-active and active-

virtual contributions. It is expected that the contribution of core orbitals to molecular

g−tensors is small [51, 53]. Therefore, we have neglected the core-active rotation by

introducing a frozen core approximation in the current implementation.

CI part of CP-CASSCF equation

We now derive CP equation for CI part. The variational condition for CI part is

∑
J

CJ (HIJ − δIJE0) = 0. (4.23)

The CP equation for CI part is derived by differentiating the variational condition 4.23

with respect to magnetic field Bk subject to the normalized constrain

∂

∂Bk

[∑
J

CJ (HIJ − δIJE0)− θ

(
1−

∑
K

C∗KCK

)]
= 0, (4.24)

where θ is a Lagrangian multiplier. The derivative of second parentheses in Eq. 4.24 is

zero because of the relation 4.11; therefore, we obtain

∑
J

∂CJ
∂Bk

(HIJ − δIJE0) +
∑
J

CJ
∂HIJ

∂Bk
= 0. (4.25)
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Here, the so-called bare Hamiltonian is given by

HIJ = H
[0]
IJ +

∑
pq

DIJ
pq V

p
q

=
∑
pq

DIJ
pq h

p
q +

1

2

∑
pqrs

DIJ
pqrsv

pr
qs +

∑
pq

DIJ
pq V

p
q , (4.26)

where H
[0]
IJ is the unperturbed bare Hamiltonian. Using the definition 4.9, we obtain

∂hpq
∂Bk

=
∑
n

(
U∗pnh

n
q + Uqnh

p
n

)
, (4.27)

∂vprqs
∂Bk

=
∑
n

(
U∗pnv

nr
qs + Uqnv

pr
ns + U∗rnv

pn
qs + Usnv

pr
qn

)
, (4.28)

and

∂V p
q

∂Bk
=
∑
n

(
U∗pnV

n
q + UqnV

p
n

)
+ V p[B]

q . (4.29)

Subtituting Eqs. 4.27−4.29 into Eq. 4.25 and using the relation 4.10, the resultant CP

equation for CI part is

∑
J

∂CJ
∂Bk

(HIJ − δIJE0) = −
∑
J

CJ
∑
pq

DIJ
pq V

p[B]
q . (4.30)

Generally, by solving Eqs. 4.22 and 4.30 we obtain the first derivatives of MO and CI

coefficients, and then obtain the first derivative of spin density.

4.2.3 Quasi-degenerate perturbation theory

Formalism of g−tensors

If we suppose that the SOC effects have already been included in the wavefunction,

the Zeeman energy is regarded as the first-order perturbation. According to Kramers

theorem, for a molecule containing an odd number of electrons, all states remain at

least two-fold degenerate in the absence of external magnetic field. Such a pair of states

forms a Kramers doublet {Φ, Φ̄}, in which the states are connected to each other by the

time-reversal symmetry, i.e., Φ = KΦ̄, where

K =

n∏
p=1

−iσy(p)K0(p). (4.31)
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Here, p = 1, 2, ..., n refers to the action of the operator on the p-th electron and K0 is the

operator converting a wavefunction into its complex conjugate., i.e., ψ∗ = K0ψ. From

Eq. 4.31, we obtain K2 = −1.

The Zeeman energy splitting in the basis of a Kramers doublet can be defined as

∆EZe =

(
〈Φ|HZe|Φ〉

〈
Φ|HZe|Φ̄

〉〈
Φ̄|HZe|Φ

〉 〈
Φ̄|HZe|Φ̄

〉) . (4.32)

On the other hand, the energy splitting induced by the spin Hamiltonian 4.1 is

∆Eeff =
µB
2

∑
k

Bk

(
gkz gkx − igky

gkx + igky −gkz

)
. (4.33)

The factor 1/2 arises from the relation Seff = 1/2 σ; where σ is a 3-vector of 2× 2 Pauli

matrices. The components of g−tensors are then obtained by requiring that both energy

differences calculated from Eq. 4.32 and 4.33 are equal. Thus, the resulting formulas of

g−tensor matrix elements are

gkx =
2

µB
Re 〈Φ| ∂HZe

∂Bk

∣∣Φ̄〉 =
2

µB
Re
〈
Φ̄
∣∣ ∂HZe

∂Bk
|Φ〉 ,

gky = − 2

µB
Im 〈Φ| ∂HZe

∂Bk

∣∣Φ̄〉 =
2

µB
Im
〈
Φ̄
∣∣ ∂HZe

∂Bk
|Φ〉 , (4.34)

gkz =
2

µB
Re 〈Φ| ∂HZe

∂Bk
|Φ〉 =

2

µB
Im
〈
Φ̄
∣∣ ∂HZe

∂Bk

∣∣Φ̄〉 .
The wave functions of Kramers doublet {Φ, Φ̄} that include the SOC effects can be

obtained either variationally, or by QDPT approach as we have done so in this work.

QDPT wavefunction

Supposing we have pre-calculated the wavefunctions of several one-component (1c) non-

relativistic or SR electronic states

∣∣ΨSM
I

〉
=
∑
i

CiI |Φi〉 , (4.35)

where S is the total spin quantum number, M is the projection onto the z-axis (M =

−S, ..., S), and {|Φi〉} is the determinant basis (CI space). These wavefunctions are the

eigenfunctions of the spin-independent BO Hamiltonian HBO. When the SO operator

is turned on, the molecular Hamiltonian is spin-dependent. In QDPT method, the SOC

effect is accounted for by constructing a matrix representation of molecular Hamiltonian
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in the basis of states {ΨSM
I }〈

ΨSM
I |HBO +HSO|ΨS′M ′

J

〉
= δIJδSS′δMM ′EI +

〈
ΨSM
I |HSO|ΨS′M ′

J

〉
, (4.36)

where EI is the eigenvalue of BO state I. By diagonalizing matrix 4.36, the eigenvalues

yield SOC-corrected state energies, and the eigenvectors represent the relativistic 2c

wavefunctions, which can be used for property calculations.

In practical QDPT calculations, the number of states used as basis for construction of

matrix 4.36 is limited, and truncation errors are thus introduced.

4.2.4 Direct DKH transformation for Zeeman operators

Following the derivation of DKH transformation for magnetic operators using direct

scheme provided in Chapter 3, the resultant equations for the DKH Zeeman operator

up to the second order reads

H
(2)
Ze,1 = Hmag +H+

mag, (4.37)

H
(2)
Ze,2 = H

(2)
Ze,1 −

(
AṼ A

)
Hmag +

(
ARṼ RA

)
R−2
p Hmag

−
(
ARṼ RA

)
H+

mag +
(
AṼ A

)
R2
pH

+
mag

−H+
mag

(
AṼ A

)
+H+

magR
−2
p

(
ARṼ RA

)
−Hmag

(
ARṼ RA

)
+HmagR

2
p

(
AṼ A

)
, (4.38)

where

AṼ A = Ap
V (p, p′)

Ep + Ep′
Ap, (4.39)

ARṼ RA = ApRp
V (p, p′)

Ep + Ep′
RpAp, (4.40)

and

Hmag = ApKp (σp) (σA)Ap, (4.41)

H+
mag = Ap (σA) (σp)KpAp. (4.42)
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The superscript (2) in Eqs 4.37 and 4.38 means that the DKH operators are in 2c picture.

The kinetic energy Ep and kinetic factors Ap and Kp are defined by

Ep = c
√
p2 +m2c2, (4.43)

Ap =

√
Ep +mc2

2Ep
, (4.44)

Kp =
c

Ep +mc2
. (4.45)

Using the relation (σa) (σb) = a · b + iσ · (a× b), we obtain, for example, the DKH1

Zeeman operator

H
(2)
Ze,1 =ApKpiσ [p×A]Ap −Apiσ {Kp (A× p)− (A× p)Kp}Ap

+Ap {KpA · p + A · pKp}Ap. (4.46)

Herein, square brackets mean that the operator p only acts on the vector potential A,

but not on the wavefunction. As mentioned in Chapter 3, the second term in Eq. 4.46

will be neglected.

In the case of g−tensors, the vector potential created by external magnetic field B is

given by

A =
1

2
(B× r) . (4.47)

Therefore, we obtain

Ap =
1

2
(B× r) p =

1

2
B (r× p) =

1

2
LB, (4.48)

iσ [p×A] = i
σ

2
[B (p · r) + r (p ·B)− (B · p) r− (r · p) B] = σ ·B. (4.49)

To obtain Eq. 4.49, we have used p · B = 0 and p · r = 3. Subtituting Eqs. 4.48 and

4.49 into Eq. 4.46, we obtain

H
(2)
Ze,1 = µB

ge
2
ApRp (σ ·B)Ap +

µB
2

[ApRp (L ·B)Ap +Ap (L ·B)RpAp] . (4.50)

The factor ge/2 was introduced in order to account for small quantum-electrodynamic

effects. The first term in Eq. 4.50 is the SZ interaction HSZ and the second term is the

OZ interaction HOZ.

In the NR limit (c → ∞), the kinetic factors Ap → 1 and Kp → (2c)−1. The usual NR

operator can then be obtained.



Chapter 4. Molecular g−tensors from CP-CASSCF and QDPT-CASSCF 57

4.2.5 Flexible nuclear screening spin-orbit approximation

In this subsection, we will briefly introduce the central idea of FNSSO approximation.

In the quasirelativistic theory at the Breit-Pauli (BP) level, the SO operator can be

written as a simple sum of one- and two-electron contributions and reads

ĤSO = Ĥ1el-SO + Ĥ2el-SO =
∑
i

ĥ(i) +
1

2

∑
i

∑
j 6=i

ĝ(i, j). (4.51)

The evaluation of SO matrix elements using the full SO operator is often too expensive

to be practical. In order to simplify the evaluation, the mean-field approximation was

introduced [151]

ĤSO ≈ ĤMF =
∑
i

f̂i · ŝi, (4.52)

where f̂ is a Fock-like operator.

The Fock-like matrix elements can be formally rewritten as

fij = f1el
ij + f2el

ij , (4.53)

and we may define quantity

Q
(µ)
ij =

f
1el(µ)
ij − f (µ)

ij

f
1el(µ)
ij

=
−f2el(µ)

ij

f
1el(µ)
ij

, (4.54)

where µ is one of the three spatial components. This quantity represents the ratio of the

two- and one-electron parts of the Fock matrix elements, i.e., the degree of screening of

the one-electron SO interactions caused by the corresponding two-electron interactions.

The Qij quantities are therefore referred to as screening parameters. A new effective

one-electron SO Fock operator is then defined based on the screening parameters in two

different ways. Firstly, the general 2-dimensional screening parameters can be used to

define the operator with the relation

f
FNSSO2D(µ)
ij = f

1el(µ)
ij

(
1−Q(µ)

ij

)
, (4.55)

or, secondly, the screening effect can be approximated using 1-dimensional screening

parameters, and the operator is defined as

f
FNSSO1D(µ)
ij = f

1el(µ)
ij

(
1−

√
Q

(µ)
ii Q

(µ)
jj

)
. (4.56)
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Thus, once we know the screening parameters, which actually can be tabulated, the SO

matrix elements can be obtained. For more details about this methodology, reader is

referred to Ref. [84].

Note that all the formulas and arguments given above apply equally well to both BP

and DKH formalisms.

Table 4.1: Active orbitals and geometries for small radicales used in this work.

Radical Active space Active orbitals Bond length [Å] and angles [◦]

BO CAS(9e,8o) B 2s2p; O 2s2p 1.212a

CO+ CAS(9e,8o) C 2s2p; O 2s2p 1.150a

CN CAS(9e,8o) C 2s2p; N 2s2p 1.172a

AlO CAS(9e,8o) Al 3s3p; O 2s2p 1.618a

BS CAS(9e,8o) B 2s2p; S 3s3p 1.620a

CO−2 CAS(17e,12o) C 2s2p; O 2s2p C–O 1.233; O–C–O 137.60b

H2CO+ CAS(11e,10o) C 2s2p; O 2s2p; H 1s H–C 1.112; C–O 1.195; H–C–O 118.76b

H2O+ CAS(7e,6o) O 2s2p; H 1s H–O 0.997; H–O–H 1.09.17b

NF2 CAS(19e,12o) O 2s2p; F 2s2p N–F 1.340; F–N–F 103.57b

NO2 CAS(17e,12o) O 2s2p; N 2s2p N–O 1.199; O–N–O 134.28b

O2 CAS(12e,8o) O 2s2p 1.235c

NH CAS(6e,5o) N 2s2p; H 1s 1.053c

NF CAS(12e,8o) N 2s2p; F 2s2p 1.343c

NCl CAS(12e,8o) N 2s2p; Cl 3s3p 1.643c

NBr CAS(12e,8o) N 2s2p; F 3s3p 1.808c

NI CAS(12e,8o) N 2s2p; I 3s3p 2.007c

S2 CAS(12e,8o) S 3s3p 1.931c

PH CAS(6e,5o) P 3s3p; H 1s 1.453c

SO CAS(12e,8o) S 3s3p; O 2s2p 1.518c

SeO CAS(12e,8o) Se 4s4p; O 2s2p 1.677c

PdH CAS(11e,15o) Pd 4d5s5p5d; H 1s 1.529d

CdH CAS(3e,11o) Cd 5s5p5d6s; H 1s 1.781d

HgH CAS(3e,11o) Hg 6s6p6d7s; H 1s 1.766d

RhH2 CAS(11e,8o) Rh 4d5s; H 1s Rh–H 1.510; H–Rh–H 84.00e

IrH2 CAS(11e,8o) Ir 5d6s; H 1s Ir–H 1.540; H–Ir–H 91.90f

a Ref. [98]
b Ref. [49]
c Ref. [35]
d Ref. [19]
e Ref. [145]
f Ref. [152]
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4.3 Computational details

The active spaces and molecular geometries for small molecules used in the present work

are collected in Table 4.1. The geometries of light and heavy diatomic 2Σ radicals were

taken from experiments reported in Ref. [98] and Ref. [19]; and those of light polyatomic

2Σ radicals were adapted from MP2 calculations reported by Brownridge et al. [49].

Because there are no available experimental geometries for RhH2 and IrH2 radicals, we

adapted them from MRCI-SD calculations reported by Balasubramanian and coworkers

[145, 152]. We also used the optimized geometries for diatomic 3Σ radicals provided by

Patchkovskii and Ziegler [35]. The ANO-RCC-TZP basis set [153, 154] was used for all

radicals studied herein.

The effect of quartet states is expected to be very small for light doublets. Their role

was tested for heavy radicals and was found to be also negligible compared to the

contribution of the doublet states. Thus, the quartet states were not considered in all

QDPT calculations. In order to investigate the influence of pertubation-induced orbital

relaxation, we employed two notations: CP-CI and CP-CAS. In the former, only the

CP equation of CI part is solved; while in the later, the perturbation-induced orbital

relaxation is accounted for too.

Throughout this work, the gauge-origin is taken as the center of electronic charge [155]

to reduce the gauge-dependent error.

4.4 Results and discussions

4.4.1 Test cases: main group radicals

We first validate our implementation by calculating the g−tensors for small radicals.

Here we consider two test sets: 10 2Σ and 10 3Σ radicals. The non-relativistic Hamil-

tonian and BP SO operator were used for these test cases. We will mainly focus on the

performance of methods rather than the detailed analyses of calculated g−tensors.

Doublet radicals

Let us begin with discussing the set of doublet radicals. All calculated results are

presented in Table 4.2 along with the experimental values. For comparison, the SOS-

MRCI results by Brownridge et al. [49] and the CP-MRCI results by Neese [51] were also

adapted for comparison. For diatomic radicals, only the ∆g⊥ component is reported.
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From a comparison of the CP-CI and CP-CAS results, we found that the effect of

the perturbation-induced orbital relaxation on g−values is generally small, although

with exceptions in case of some diatomic radicals. The perturbation-induced orbital

relaxation reduces the absolute value of CP-CI results in most cases. The largest effect

was observed for the CN radical, where the magnitute of ∆g⊥ was reduced from −1732

to −1553 ppm.

Table 4.2: ∆g values (ppm) for 10 2Σ radicals.

Radical ∆g
CP-CASSCF QDPT-CASSCF SOS-MRCI CP-MRCI

expt a

CP-CI CP-CAS 10 states 30 states Ref.[49] Ref. [51]

BO

∆g⊥

−1118 −980 −375 −1143 −1735 −1482 −1100

CO+ −2088 −1889 −479 −2109 −2015 −2094 −2400

CN −1732 −1553 −1812 −1721 −1715 −1702 −2000

AlO −1102 −1124 353 −1122 −1530 −1761 −1200

BS −5356 −5194 −6169 −5331 −7740 −8455

CO−2 ∆gxx 1911 1606 1518 1664 655 700

∆gyy −3455 −3328 −3509 −3437 −5080 −4800

∆gzz −391 −446 −497 −391 −1110 −500

H2CO+ ∆gxx 4889 4995 5074 5138 5840 4600

∆gyy 1081 1281 1045 1082 240 −800

∆gzz 114 117 4 143 300 200

H2O+ ∆gxx 18 1 22 31 15 46 200

∆gyy 11540 11558 11529 11532 16025 11287 18800

∆gzz 4400 4068 4387 4390 4210 4178 4800

NF2 ∆gxx −398 −447 11 −31 −470 −100

∆gyy 5927 5765 5990 5941 5985 6200

∆gzz 3577 3510 3468 3553 3220 2800

NO2 ∆gxx 4403 4297 3517 4036 3400 3900

∆gyy −8207 −8059 −8158 −8216 −11830 −11300

∆gzz −360 −377 −485 −344 −440 −300

a Experimental values taken from Refs. [38, 49]

For the QDPT-CASSCF calculations, we used two values of number of roots: 10 and 30.

The convergence of the g−tensors with respect to the number of roots for polyatomic

radicals is more rapid than that for diatomic radicals. The results from CP-CI and

QDPT with 30 roots are comparable to each other. This means that the higher-order

SOC effects are negligible for these test radicals.

Let us compare our CASSCF results with those from the MRCI and experiment. Because

the QDPT results are quite close to the results from the CI part of CP-CASSCF, we

only discuss the CP-CASSCF results.
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For BO, both MRCI calculations significantly overestimate the absolute value of ∆g⊥,

while our CP-CASSCF results are consistent with the experimental value.

For CO+ and CN, the ∆g⊥ calculated by CP-CI agree well with the MRCI results and

seem to be comparable to the experimental values. The perturbation-induced orbital

relaxation reduces the ∆g⊥, leading to worse agreement with errors of 21.29 % for CO+

and 22.35 % for CN.

For AlO, the perturbation-induced orbital relaxation has a minor effect on g−tensors.

It is well known that the AlO radical is a difficult case [39, 49, 52]. Our results are,

however, quite close to the experimental value. The error was found to be only 6.33 %.

It is possible that this good agreement resulted from an error cancellation.

For BS, our CP-CASSCF result is less negative than the MRCI and experimental values.

The error of CP-CAS result relative to the experimental value is up to 38.57 %.

For CO−2 , the ∆gxx and ∆gyy values determined by CP-CASSCF are more positive and

less negative than the experimental values, respectively. The reasonable agreement was

only observed for ∆gzz.

For H2CO+, the SOS-MRCI significantly overestimate the ∆gxx, while that from CP-

CASSCF is in good agreement with the experimental value (errors of 6.28 % for CP-CI

and 8.28 % for CP-CAS).

For H2O+, the ∆gyy value of CP-CASSCF calculation is far from that of experiment.

According to previous studies [39, 49, 52], the ∆gyy component of H2O+, which is

dominated by the excitation of electron from doubly occupied σ to singly occupied

oxygen lone pair orbital, is quite sensitive to the level of theory. Interestingly, the ∆gyy

of H2O+ calculated by the CP-CI is quite close to that calculated by the CP-MRCI.

Neese has attributed the failure of the CP-MRCI for the case of H2O+ to the lack of the

perturbation-induced orbital relaxation. However, we have found that the effect of the

perturbation-induced orbital relaxation on the ∆gyy of H2O+ is negligible.

For NF2, all components of ∆g calculated by the CP-CASSCF are close to those cal-

culated by the SOS-MRCI. Good agreement with the experimental value was found for

∆gyy with an error of around 7.00 %.

For NO2, the CP-CASSCF ∆gxx and ∆gzz seem to agree well with the experimental

value, while the CP-CASSCF ∆gyy is less negative.
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Triplet radicals

Let us now turn to the test set consisting of ten 3Σ radicals. The calculated and exper-

imental values are collected in Table 4.3. For comparison, the results from the linear

response CASSCF (LR-CASSCF) by Engström et al. [156], the SOS-MRCI and mul-

tireference spin-orbit configuration interction (MRSOCI) by Tatchen et al. [55], as well

as the CP-MRCI by Neese [51] were adapted. To be consistent with previous theoretical

results, we presented the ∆g⊥ in ppt instead of ppm, which was used above for doublet

molecules.

Obviously, the effect of perturbation-induced orbital relaxation on g−tensors is much

smaller than that for the doublet radicals. The largest change was observed for SeO

radical, in which the ∆g⊥ value increases about 5.00 % under perturbation-induced

orbtial relaxation.

Our results are generally consistent with the LR-CASSCF results except for the case of

SO, for which the CP-CASSCF provides much higher values. This large inconsistency

originates mainly from the difference in re(S−O) used in the present (1.518 Å) and

previous (1.481 Å) calculation.

We now compare our CP-CASSCF results with the MRCI and experimental values. We

will only focus on the results with perturbation-induced orbital relaxation.

Table 4.3: ∆g⊥ values (ppt) for 10 3Σ radicals.

Radical
CP-CASSCF LR-CASSCF SOS-MRCI MRSOCI CP-MRCI

expt a

CP-CI CP-CAS Ref. [156] Ref.[55] Ref. [55] Ref. [51]

O2 2.9 2.9 3.0 2.5 2.7 2.9

NH 1.2 1.2 1.5 1.3 1.3 1.3 1.7

NF 1.8 1.7 2.1 1.8 1.8 2.0

NCl 4.4 4.4 4.1 4.4 4.8 5.4

NBr 16.0 16.7 14.3 16.4 19.3

NI 35.3 36.6 31.0

S2 13.0 12.9 11.2 12 12.9 14.5

PH 3.6 3.6 4.0 3.8 3.8 3.9 4.5

SO 5.9 6.0 4.1 3.6

SeO 25.2 26.7 32.7

a Experimental values taken from Ref [35]

First of all, O2 is one of the well-studied test cases of a triplet radical. While the

MRCI results are lower than the experimental value, excellent agreement is found for

the CASSCF results.
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For NH, NF, NCl, and NBr, it is interesting that our CP-CASSCF results are quite

close to that from the MRCI caculations. Because the SOS-MRCI and MRSOCI results

are comparable to each other, it is possible to conclude that the higher-order SOC

contribution is negligible in these systems. The theoretical results are smaller than the

experimental values with the largest error for NH (∼ 29 %).

For NI, our CP-CASSCF result is in reasonable agreement with the experimental value.

As previously shown by Malkin et al. [31] the higher-order SOC effects are non-negligible

for this radical and the agreement of CP-CASSCF result is questionable.

For S2, all CP-CASSCF and MRCI results are consistent with each other. The effects of

higher-order SOC are small and good agreement with the experimental value was found.

For PH, our CP-CASSCF result is a bit lower than the MRCI results and significantly

lower than the experimental value with an error of 20.00 %.

For SO, it is unfortunate that our CP-CASSCF largely overestimates the ∆g⊥ with an

error of up to 66.67 % relative to the experimental value.

Finally, for SeO, CP-CASSCF provides the result that is in reasonable agreement with

the experimental value. However, similarly to NI, the higher-order SOC effects play an

important role for this radical [31], and this agreement might be fortuitous.

In summary, we have assessed our implementation to evaluate the g−tensors for two test

sets containing main group radicals: 10 2Σ and 10 3Σ radicals. It has been shown that

our results generally agree well with MRCI results, especially for triplet radicals. Good

agreement with the experimental values has been found in many cases. We do not aim

to provide the highly accurate data for these test cases. Rather, we want to validate

our approach, formulation and implementation, especially for the new CP-CASSCF

implementation.

4.4.2 Transition metal hydrides and dihydrides

In this subsection, we will evaluate the g−tensors for selected hydride and dihydride rad-

icals, namely PdH, CdH, HgH, RhH2, and IrH2. While the characterization of g−tensors

for three hydrides was already published, this is the first time to present the ab initio

calculations of g−tensors for the two dihydrides.
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Picture change error

We define the relativistic notation A–B–C, in which the A, B, and C symbols stand

for the BO Hamiltonian (DKH2 for all calculations), the SO operator (BP, DKH1, or

DKH2), and the Zeeman operator (NR, DKH1, or DKH2), respectively. We next define

the quasi-relativistic (qrel) levels as follows

+ qrel-1: DKH2–BP–NR,

+ qrel-2: DKH2–DKH1–NR,

+ qrel-3: DKH2–DKH1–DKH1,

+ qrel-4: DKH2–DKH2–DKH2.

See Subsection 4.2.4 for the detailed derivation of the DKH Zeeman operator. Comparing

the qrel-2 and qrel-3 values, we will be able to figure out the PCE of the Zeeman operator.

Let us first consider the effect of the qrel-level on the g−tensors of these radicals. The

QDPT-CASSCF method, in which the number of roots was set to 10 for PdH radical

and to 30 for others, was used. All calculated results are summarized in Table 4.4.

Table 4.4: ∆g values (ppt) for hydrides and dihydrides at different quasi-relativistic
(qrel) levels. See the text for the definition of the qrel levels.

Radical ∆g qrel-1 qrel-2 qrel-3 qrel-4

PdH
∆g‖ −17.7 −16.9 −17.3 −17.3

∆g⊥ 261.4 256.3 255.8 256.7

CdH
∆g‖ −1.3 −1.0 −1.1 −1.0

∆g⊥ −55.4 −47.2 −47.3 −48.3

HgH
∆g‖ −73.1 −21.4 −21.6 −23.6

∆g⊥ −495.1 −251.3 −251.4 −264.2

RhH2

∆gxx −64.2 −61.9 −62.4 −62.8

∆gyy 722.9 712.4 711.6 713.2

∆gzz 846.6 834.4 833.6 835.4

IrH2

∆gxx −344.2 −323.6 −324.1 −326.2

∆gyy 1475.4 1448.6 1447.5 1450.1

∆gzz 1198.7 1188.8 1187.8 1188.8

The qrel-1 value is significantly different in comparison with the value at the qrel-4 level,

which is the highest qrel level used in this work. The largest effect was observed for HgH,

where the qrel-1 ∆g⊥ is almost twice as big as that of the qrel-4 level. This confirms the
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well-known conclusion that only scalar relativistic wavefunction is insufficient and rela-

tivistic level of SO operator needs to go beyond the BP level to accurately characterize

g−tensors of radicals containing heavy elements.

On the other side, the qrel-2 and qrel-3 levels provide the values that are comparable to

the qrel-4 value. The negligibility of the PCE for the Zeeman operator is reflected by

very small deviation between the qrel-2 and qrel-3 values. In general, the DKH2 wave-

function in combination with the DKH1 SO operator is sufficient for reliable predictions

of g−tensors for heavy molecules studied herein.

Interestingly, the change in ∆g−values when the relativistic level of the SO operator

goes from BP to DKH1 is more significant for CdH and HgH than for RhH2 and IrH2.

The SOC in the formers are dominated by coupling between p orbtials, while that in

the laters is dominated by coupling between d orbitals. Because the relativistic effects

are stronger when the orbitals localize closer to the nucleus, this explains the observed

behavior.

First-order versus second-order perturbation treatments

For light radicals studied in Subsection 4.4.1, SOC is relatively weak. Thus, the higher-

order SO contributions are negligible. That is the reason why g−tensors obtained by

CP- and QDPT-CASSCF are close to each other. It is well known that the SOC in-

creases significantly with larger nuclear charge; therefore, it is interesting to compare

the performance of CP- and QDPT-CASSCF for the heavy radicals.

To this end, we have evaluated the g−tensors using CP- and QDPT-CASSCF with the

qrel-4 level. For CP-CASSCF, both CP-CI and CP-CAS calculations were performed.

For QDPT-CASSCF, we have used two numbers of roots, 10 and 30, except for PdH,

where only 10 roots were used. All calculated results are presented in Table 4.5 along

with the experimental references. For comparison, the recent results from the single-

reference 4c-CI calculations reported by Vad and coworkers [58] are also taken into

account.

First of all, because the main contribution to the ∆g⊥ value of PdH is due to 12Π

state characterized by (dPd → σ) excitation, it is known to be the difficult case for

single-reference methods [52]. This statement is supported by the large overestimation

of CCSD(T) calculation (454.1 ppt) carried out by Bolvin [54]. Also, the inclusion of

the triples in CI treatment is necessary to obtain a comparable value as seen from Table

4.5. The perturbation-induced orbital relaxation slightly affects the g−values. Our CP-

and QDPT-CASSCF ∆g⊥ values are quite close to each other and comparable to the



Chapter 4. Molecular g−tensors from CP-CASSCF and QDPT-CASSCF 66

Table 4.5: ∆g values (ppt) for hydride and dihydride using CP- and QDPT-CASSCF.
The very recent 4c-CI results are also presented for comparison.

Radical ∆g
CP-CASSCF QDPT-CASSCF 4c-CIa

exptb

CP-CI CP-CAS 10 states 30 states CISD CISDT

PdH
∆g‖ −0.2 −0.2 −17.3 −49.3 −25.0 −37.3

∆g⊥ 248.9 247.8 256.7 480.8 325.0 290.6

CdH
∆g‖ 0.0 0.0 −1.0 −1.0 1.6 −1.6 −5.3

∆g⊥ −45.7 −43.0 −48.3 −48.3 −55.74 −56.1 −49.9

HgH
∆g‖ −0.1 −0.1 −23.2 −23.6 −20.0 −21.7 −26.3

∆g⊥ −203.1 −182.4 −257.9 −264.2 −220.0 −232.0 −174.0

RhH2

∆gxx 12.7 12.1 −58.5 −62.8 −52.3

∆gyy 961.5 960.3 717.5 713.2 678.6

∆gzz 1077.9 1076.8 839.4 835.4 860.6

IrH2

∆gxx 21.0 21.2 −283.2 −326.2 −454.2

∆gyy 3629.9 3658.1 1433.7 1450.1 1712.6

∆gzz 3333.5 3359.5 1198.6 1188.8 661.6

a Ref. [58].
b Ref. [157] for hydrides and Ref. [140] for dihydrides.

experimental value. The relative error of QDPT-CASSCF result is 11.48 %. For the

parallel component, our QDPT-CASSCF value is less negative than the values from

4c-CI calculations and experiment.

Although Cd is a transition metal atom, the d orbital do not contribute to the bonding

description of CdH radical and the main contribution to the ∆g⊥ results from the first

excited state 12Π characterized by (σ → π) excitation [52]. As seen from Table 4.5,

the effect of the perturbation-induced orbital relaxation is small. The CP-CI ∆g⊥ value

seems to be close to that of QDPT-CASSCF. The increasing number of roots in QDPT

calculation does not change the g−values. Generally, all theoretical results agree well

with the experimental values.

It is known that the electronic character of HgH is similar to that of CdH, the behavior

of results for HgH is, however, more complicated. The ∆g⊥ is reduced by about 10.00

% under the perturbation-induced orbital relaxation, leading to good agreement with

the experimental value (error of 4.83 %). Our QDPT-CASSCF provides the ∆g⊥ that

is more negative in comparison with the experimental value. With increasing number of

roots, the value slightly increases. This situation was also obtained by Ganyushin and

Neese [57]. Those authors showed that the dynamical correlation can greatly improve

upon the calculated value. On the other side, the ∆g‖ values from QDPT-CASSCF
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calculations are less sensitive to the number of roots and seem to be consistent with the

experimental value. In general, our QDPT-CASSCF results are fairly comparable with

the 4c-CI results.
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Figure 4.1: Dependence of ∆g⊥ component from QDPT-CASSCF calculations for
CdH and HgH radicals on the SO-scaling factor λ. The black-dashed line indicates the
second-order perturbation treatment, which includes only first-order SOC effects. The

black circle dot indicates the ∆g⊥ value from CP-CI calculation.

Comparing the CP-CI and QDPT results, it is found that the higher-order SOC effects

for CdH radical are negligible, while they become important for HgH radical. In order to

clarify this statement, we employed the so-called SO-scaling analysis proposed by Malkin

and coworkers [31]. In this analysis, the SO integrals are scaled by a factor λ such that

λ = 0 corresponds to SR calculation, and λ = 1 correspond to full SO calculation. The

dependence of ∆g⊥ for CdH and HgH on the SO-scaling factor λ is shown in Figure

4.1. The equations from the regression analyses are also provided. The plot for CdH, in

which the linear prefactor is almost twenty times larger than the quadratic prefactor, is

nearly linear. This explains why the result from the CP-CI calculation including only

first-order SOC effects are quite consistent with that from QDPT calculation. Regarding

the plot of HgH, the non-linear behavior is more pronounced. The quadratic prefactor

is only three times smaller than the linear prefactor. The inclusion of higher-order SOC

effects is thus necessary for the calculation of ∆g⊥ value of HgH. Note that the value

obtained by neglecting the quadratic contribution at λ = 1 (−197.1 ppt) agrees very

closely with the CP-CI value (−203.1 ppt), which is indicated by the black circle dot

in Figure 4.1. This supports the reliability of QDPT value. Thus, the good agreement

with the experimental value of CP-CAS value may be fortuitous.
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Figure 4.2: Dependence of ∆g−values from QDPT-CASSCF calculations for RhH2

(upper panel) and IrH2 (lower panel) radicals on the SO-scaling factor λ.

We now discuss the results for RhH2 and IrH2. Generally, the perturbation-induced

relaxation in CP-CASSCF insignificantly affects the CP-CI results. Increasing the num-

ber of roots only slightly changes the QDPT-CASSCF results. Difference between the

results from CP- and QDPT-CASSCF calculations are quite large, especially for IrH2,

where the ∆gyy and ∆gzz components from the CP-CASSCF calculations are three times

larger than those from QDPT-CASSCF.

For RhH2, the CP-CASSCF calculations significantly overestimate the g−values, the

QDPT-CASSCF results, on the contrary, agree well with the experimental values. The

smallest and largest errors from the QDPT-CASSCF calculations with 30 roots are
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2.86 % (for ∆gzz component) and 20.70 % (for ∆gxx component). For IrH2, the CP-

CASSCF results are clearly unacceptable. Reasonable agreement can be found for

QDPT-CASSCF results. They are, however, still far from the experimental values. The

largest error from QDPT-CASSCF calculation with 30 roots is up to 79.84 % (for ∆gzz).

Similarly to the case of HgH, the dynamical correlation is expected to be necessary for

the accuracy of the g−tensor calculation for IrH2.

In order to investigate the large inconsistency between CP- and QDPT-CASSCF cal-

culations, the g−values of RhH2 and IrH2 as functions of the SO-scaling factor λ are

plotted in Figure 4.2. For RhH2, the dependence of g−values on the SO-scaling factor

displays the appreciable curvatures. The quadratic prefactor even clearly exceeds the

linear one in the case of ∆gxx. For IrH2, the regression analyses, which are insufficient at

second-order, are up to third-order for the proper curve fitting. The most complicated

behavior is also observed for the ∆gxx component, where the third-order perfactor is

more than three times larger than the linear one. Generally, the linear term is insuffi-

cient to describe the behavior. Thus, the higher-order SOC effects are required for the

accurate characterization of the g−tensors for these radicals.

Finally, it would be useful to provide the origin of the anisotropy of the g−tensors. To

this end, we analyze the state contributions to the OZ part of the g−values. In this

analysis, the OZ part is constructed by allowing the 1c ground state to interact only

with the 1c excited state of interest. One has to bear in mind that the cross terms

between the excited states are neglected; therefore, the total contribution is generally

not the sum over the one-state contributions. The consistency can be obtained if the

SOC effects are relatively weak and the contributions of the cross terms almost vanish.

The symmetry of RhH2 and IrH2 is C2v, where the C2 axis coincides with the z−axis.

The ground state of these radicals was found to be 12A1 [145, 152]. The y−component

of the OZ part then results from the coupling of the ground state 2A1 via L̂y with

the excited states 2B1; whereas, the z−component originates from the coupling of the

ground state 2A1 via L̂z with the excited states 2A2. Table 4.6 presents the analysis of

the most important contributions of excited states to y− and z−components of the OZ

part, ∆gOZ
yy and ∆gOZ

zz . Obviously, two lowest excited states 12B1 (dxz → dx2−y2) and

12A2 (dxy → dx2−y2) dominate the y− and z−components of the OZ part, respectively.

There are also small contributions of the higher excited states. These contributions have

the same order of magnitude but opposite signs; therefore, they cancel out each other.
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Table 4.6: Analysis of the most important contributions (more than 5 ppt) to the
OZ part of the g−values for RhH2 and IrH2. State symmetry and excitation energies

[cm−1] are also reported.

Radical State ∆E ∆gOZ
yy ∆gOZ

zz

RhH2

12A1

12A2 5203 0.0 903.5

12B1 5790 799.4 0.0

22A2 52888 0.0 6.0

22B1 52168 6.4 0.0

42A2 61090 0.0 −8.5

42B1 60684 −7.3 0.0

IrH2

12A1

12A2 4976 0.0 1566.6

12B1 4642 1745.3 0.0

22A2 59871 0.0 21.6

22B1 60311 20.6 0.0

42A2 68924 0.0 −27.2

42B1 69092 −23.9 0.0

Perfomance of SO integral approximations

We now compare the performance of the following SO integral approximations: FNSSO,

SNSO, and ENC. All calculations were carried out using QDPT-CASSCF with 10 roots

for PdH and 30 roots for other molecules. The errors (in %) of calculated values relative

to the experimental values are given in Figure 4.3. For diatomic radicals, only the errors

of ∆g⊥ component are presented.

The relative errors of SNSO is seemingly close to those of FNSSO except for ∆gxx

component of RhH2, where the relative error of FNSSO (20.00 %) is almost two times

smaller than that of SNSO (36.76 %). While FNSSO and SNSO provide negligible errors

for ∆g⊥ of CdH, the error obtained from ENC is relatively big (33.27 %). Also, the ENC

badly fails in the case of RhH2, especially for ∆gxx component with an error up to 104.80

%. For HgH and IrH2 radicals, the errors of ENC are comparable to those of FNSSO

and SNSO.

In general, the trend is similar for all SO integrals. FNSSO performs best among three

SO integral approximations considered herein. The ENC performs better for heavier

radicals like HgH and RhH2 than for lighter radicals like CdH and RhH2. This is because

the contribution of two-electron part of SOC is less important for heavier radicals.
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Figure 4.3: Errors (in percent) relative to the experimental values of QDPT-CASSCF
results obtained with different SO integrals: FNSSO, SNSO, and ENC.

4.5 Conclusion

We have newly implemented the CP-CASSCF method, which is equivalent to an un-

truncated SOS expansion within the active space, for calculating molecular g−tensors.

As the first step before employing the DMRG method, the FCI has been used to fully

treat the correlation in active space. The perturbation-induced orbital relaxation was

also taken into account. In the current implementation, only active-virtual rotation is

considered, while the core-active rotation is neglected by introducing a frozen core ap-

proximation. In principle, the CP-CASSCF equation can be applied to any multiplicity.

Our CP-CASSCF was tested to evaluate the g−values for a series of small light radicals,

including both doublets and triplets. Our results are quite consistent with the MRCI

results and comparable to the experimental values, especially for triplet radicals. The

effect of the perturbation-induced orbital relaxation is generally small except for some

light doublet radicals.

For comparison, the QDPT approach was also employed. For light radicals, the results

obtained from CP-CASSCF and QDPT-CASSCF with sufficiently large number of roots

are close to each other. This is because the SOC effects in these radicals are relatively

weak. For PdH radical, which is known to be difficult for single-reference methods like

2c-CCSD(T) or 4c-CI, both CP- and QDPT-CASSCF provide results in good agreement

with the experimental value. The inconsistency between CP- and QDPT-CASSCF re-

sults is pronounced for RhH2 and IrH2, where the higher-order SOC effects become

important. The SO-scaling analysis was employed to understand the origin of the in-

consistency.
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In general, we have calculated the molecular g−tensors for several small molecules.

Further comparisons need to be performed in order to reveal the advantages and disad-

vantages of these two approaches. Working on this issue is in progress.



Chapter 5

New approach to g−tensors using

coupled-perturbed DMRG

method: formulation

5.1 Overview of DMRG method

The DMRG algorithm consists of a set of sweeps over the k MOs assigned to an 1D

quantum lattice of sites. At every step of the one-dot algorithm, the lattice is concep-

tually divided into three parts: a left block consisting of sites 1 · · · i − 1, a single dot

consisting of site i, and a right block consisting of sites i + 1 · · · k. The left and right

blocks are each associated with M many-body states, denoted by {|li−1〉}, and {|ri〉},
respectively. The single dot is associated with the complete Fock space of its respective

orbital {|ni〉} = {| 〉 , |↑〉 , |↓〉 , |↑↓〉}.

The DMRG wavefunction in terms of many-body quantum states reads

|Ψ〉 =
∑

li−1niri

cni
li−1ri

|li−1niri〉 , (5.1)

where the left and right basis states, {|li−1〉} and {|ri〉}, are of the forms

|li−1〉 =
∑

n1···ni−1

Ln1 · · ·Lni−1 |n1 · · ·ni−1〉 , (5.2)

|ri〉 =
∑

ni+1···nk

Rni+1 · · ·Rnk |ni+1 · · ·nk〉 . (5.3)

73
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Here, the Ln and Rn are the renormalization matrices, which satisfy the orthogonality

conditions

∑
n

Ln+Ln = 1, (5.4)∑
n

Rn+Rn = 1. (5.5)

The DMRG wavefunction (Eq. 5.1) can be rewritten in the matrix product state (MPS)

ansatz, which is known as the canonical form of the DMRG wavefunction,

|Ψ〉 =
∑
n1···nk

Ln1 · · ·Lni−1CniRni+1 · · ·Rnk |n1 · · ·nk〉 , (5.6)

where Cn is a coefficient matrix, which gives the expansion coefficients of wavefunction

in superblock {li−1}{ni}{ri}. |n1 · · ·nk〉 denotes Slater determinant in an occupation

number form; and ni is the occupation number of orbital i.

The coefficient matrix Cn can be viewed as a flattened vector c, which satisfies the

normalization condition cc+ = 1. The DMRG wavefunction at each site is an eigenstate

of the Schrödinger equation

Hc = Ec, (5.7)

where the Hamiltonian matrix elements in the superblock basis are written as

H
li−1niri
l′i−1n

′
ir
′
i

= 〈li−1niri| Ĥ
∣∣l′i−1n

′
ir
′
i

〉
(5.8)

The key procedure of DMRG algorithm is the unique way of selecting the renormalized

states. Once c is determined from Eq. 5.7, the density matrices of left and right block

can be constructed,

DL = TrR
[
CnCn+

]
, (5.9)

DR = TrL
[
Cn+Cn

]
. (5.10)

Let us define the eigenvector of left and right density matrices as lµ and rµ, we have

DLlµ = lµσµ, (5.11)

DRrµ = rµσµ. (5.12)

The renormalization matrices Ln and Rn are then obtained from the M eigenvectors

with largest weights (σ1 ≥ σ2 ≥ · · · ≥ σM ). This procedure is termed decimation.



Chapter 5. Molecular g−tensors from CP-DMRG method: formulation 75

5.2 Analytical respone DMRG method for g−tensors

We recall the resultant formula of g−tensors derived from analytical response theory

gkl =
1

µB
D(α−β) ∂

2hSZ

∂Bk∂Sl
+

1

µB

∂D(α−β)

∂Bk

∂hSO

∂Sl
, (5.13)

where k, l = x, y, z. See Section 4.2.2 for the meaning of notation. To obtain the second

term, which is the cross term of OZ and SOC contributions, we need to evaluate the

first derivative of the spin density with respect to magnetic field.

Hereafter, we will use the “first-order” instead of the “first derivative” for convenience.

Also, the superscripts [0] and [1] will be used to denote the zeroth order and first order

with respect to magnetic field, respectively.

We would like to note that in this Chapter, we only focus on the first-order CI part,

which is obtained from analytical DMRG method, whereas the first-order MO part is

the same as that described in Chapter 4.

5.2.1 First-order spin density

The spin density reads

D(α−β)
pq = 〈Ψ| Ê(−)

pq |Ψ〉 , (5.14)

where Ê
(−)
pq = â+

pαâqα − â+
pβ âqβ is the spin density operator; p, q are the spatial orbital

labels; and |Ψ〉 is the DMRG wavefunction. The first-order spin density is then obtained

as

D(α−β)[1]
pq =

〈
Ψ[1]|Ê(−)

pq |Ψ
〉

+
〈

Ψ|Ê(−)
pq |Ψ[1]

〉
. (5.15)

The perturbation expansion of renormalization matrices Ln and Rn, and coefficient

matrix Cn are given by

Ln = Ln[0] + Ln[1] + · · · , (5.16)

Rn = Rn[0] + Rn[1] + · · · , (5.17)

Cn = Cn[0] + Cn[1] + · · · . (5.18)
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The first-order DMRG wavefunction (Eqs. 5.6) can be then explicitly written as follows∣∣∣Ψ[1]
〉

=
∑
n1···nk

{ Ln1[1] · · ·Cni[0] · · ·Rnk[0] + · · ·

+ Ln1[0] · · ·Cni[1] · · ·Rnk[0] + · · ·

+ Ln1[0] · · ·Cni[0] · · ·Rnk[1]} |n1 · · ·nk〉 , (5.19)

where the zeroth-oder Ln[0], Rn[0], and Cn[0] are determined from unperturbed DMRG

equation (Eq. 5.7).

Subtituting Eq. 5.19 into Eq. 5.15, we obtain the first-order spin density

D(α−β)[1]
pq = c[1]+E(−)

pq c[0] + c[0]+E(−)
pq c[1] + c[0]+E−[1]

pq c[0], (5.20)

where E
(−)
pq is the spin density operator in the superblock basis, 〈li−1niri| Ê(−)

pq

∣∣l′i−1n
′
ir
′
i

〉
.

Note that there is the additional contribution E
−[1]
pq . This is the first-order change in the

spin density operator due to the first-order change in the renormalization matrices Ln[1]

and Rn[1]. This quantity is constructed in the similar way to the first-order change in

Hamiltonian, which will be discussed later. Generally, to obtain the first-order DMRG

spin density, the first-order renormalization and coefficient matrices Ln[1], Rn[1], and

Cn[1] need to be evaluated.

5.2.2 First-order coefficient matrix

In the superblock basis, the external perturbation operator V̂ , which is the OZ operator

in the case of g−tensors, is described by a matrix V with elements

V
li−1niri
l′i−1n

′
ir
′
i

= 〈li−1niri| V̂
∣∣l′i−1n

′
ir
′
i

〉
, (5.21)

and molecular Hamiltonian is of the form

H = H[0] + V, (5.22)

where H[0] is the unperturbed BO Hamiltonian.

The first-order coefficient matrix can be obtained by solving the coupled-perturbed

DMRG (CP-DMRG) equation, which is analogous to CP-CI equation described in Chap-

ter 4. We can write down the perturbation expansion of DMRG equation (Eq. 5.7) for
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each site (
H[0] + ∆H[1] + V[1] + · · ·

)(
c[0] + c[1] + · · ·

)
=
(
E[0] + E[1] + · · ·

)(
c[0] + c[1] + · · ·

)
, (5.23)

where we have introduced the first-order change in Hamiltonian ∆H[1]. This arises from

the fact that Hamiltonian in the superblock basis depends on the renormalized matrices

Ln and Rn, so that the first-order change in these matrices leads to the change in the

Hamiltonian.

In DMRG algorithm, the Hamiltonian is expressed as the matrix product of operators

on the left, right, and single dot blocks. The general form of the Hamiltonian reads

H = OL ·OR ·O∆, (5.24)

where operators OL, OR, and O∆ act on the left, right, and single dot blocks, respec-

tively. The first-order change in Hamiltonian ∆H[1] is then obtained by

∆H[1] =
(
O

[1]
L ·O

[0]
R ·O∆ + O

[0]
L ·O

[1]
R ·O∆

)
. (5.25)

Note that the operator on the single dot (O∆) is unchanged during DMRG sweeping.

The first-order operators are constructed through the blocking step similarly to the

zeroth-order operators. The renormalization transformation for the first-order operator

at a given block configuration in a left → right sweep is given by

R
[
O

[1]
L∗

]
= Ln[0]O

[1]
L∗L

n[0] + Ln[1]O
[0]
L∗L

n[0] + Ln[0]O
[0]
L∗L

n[1], (5.26)

where the notation L∗ means the extended left block, i.e. the left block plus the single

dot. Analogous expressions holds for the right → left sweeps and operator O
[1]
R .

For the molecular g−tensors, where the V̂ [1] is the angular momentum operator L̂, the

first-order energy E[1] =
〈
Ψ[0]

∣∣ V̂ [1]
∣∣Ψ[0]

〉
is zero. This is because the interaction of an

electronic state with itself through the angular momentum operator vanishes, i.e., it is

forbidden by symmetry.

Finally, gathering the first-order term in Eq. 5.23 and enforcing the intermediate nor-

malization through the projector QC = 1− c[0]c[0]+, which ensures that c[1]+ · c[0] = 0,

we obtain the first-order CP-DMRG equation as follows:(
H[0] − E[0]1

)
c[1] = −QC

(
∆H[1] + V[1]

)
c[0]. (5.27)
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5.2.3 First-order renormalization matrix

According to Dorando and coworkers [85], the first-order eigenvectors lµ and rµ of density

matrices, which are used to construct the first-order renormalization matrices in the

similar way to the zeroth-order renormalization matrices, are first obtained from response

equations. In order to derive response equations for eigenvectors of density matrices,

we write the eigenvalue equation for density matrices, i.e., Eqs. 5.11 and 5.12, in the

perturbation expansion as follows(
D

[0]
L + D

[1]
L + · · ·

)(
l[0]
µ + l[1]

µ + · · ·
)

=
(
l[0]
µ + l[1]

µ + · · ·
)
σµ, (5.28)(

D
[0]
R + D

[1]
R + · · ·

)(
r[0]
µ + r[1]

µ + · · ·
)

=
(
r[0]
µ + r[1]

µ + · · ·
)
σµ, (5.29)

where the first-order density matrices D
[1]
L and D

[1]
R are given by

D
[1]
L = TrR

[
Cn[1]Cn[0]+

]
+ TrR

[
Cn[0]Cn[1]+

]
, (5.30)

D
[1]
R = TrL

[
Cn[1]+Cn[0]

]
+ TrL

[
Cn[0]+Cn[1]

]
. (5.31)

We can set up response equation for eigenvectors of density matrices from Eqs. 5.28 and

5.29, (
D

[0]
L − σµ1

)
l[1]
µ = −QLD

[1]
L l[0]

µ , (5.32)(
D

[0]
R − σµ1

)
r[1]
µ = −QRD

[1]
R r[0]

µ , (5.33)

where the projectors QL and QL are defined similarly to QC , i.e.,

QL = 1−
M∑
µ=1

lµ
[0]lµ

[0]+, (5.34)

QR = 1−
M∑
µ=1

rµ
[0]rµ

[0]+. (5.35)

The first-order eigenvectors of density matrices are obtained by using the explicit Rayleigh-

Schrödinger expressions as follows

lµ
[1] = −

∑
ν=M+1

l
[0]
ν D

[1]
L l

[0]
µ

σ
[0]
ν − σ[0]

µ

l[0]
ν , (5.36)

rµ
[1] = −

∑
ν=M+1

r
[0]
ν D

[1]
R r

[0]
µ

σ
[0]
ν − σ[0]

µ

r[0]
ν . (5.37)

Nakatani and coworkers [158] have very recently proposed another approach to obtain
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the first-order renormalization matrices, which are transformed directly from the first-

order coefficient matrices. Reader is referred to Ref. [158] for the detailed formulation.

Once the first-order renormalization matrices Ln[1] and Rn[1] are obtained, the first-order

change in Hamiltonian ∆H[1] (Eq. 5.25) and the first-order spin density operator E
[1]
pq

can be computed.

5.3 Implementation

Supposing the standard DMRG calculation has been converged, the zeroth-order wave-

function Cn[0], zeroth-order renormalization matrices Ln[0] and Rn[0], and zeroth-order

operators O
[0]
L and O

[0]
R were stored. Note that the perturbation operator V[1] is con-

structed in the similar way to Hamiltonian operator in standard DMRG sweep. The full

sweep algorithm to evaluate the first-order spin density is summarized as follows:

1. Set all O
[1]
L , O

[1]
R = 0.

2. Star a sweep left → right. At each block configuration:

• Solve CP-DMRG equation (Eq. 5.27) with current ∆H[1] and V[1].

• Construct first-order renormalization matrices Ln[1] and Ln[1] from first-order

eigenvectors of density matrices (Eqs. 5.36 and 5.37).

• Update all O
[1]
L (Eq. 5.26) and construct first-order change in Hamiltonian

∆H[1] (Eq. 5.25).

• Renormalize the perturbation V[1] using zeroth-oder renormalization matrix

L
[0]
n .

• Construct and store first-order spin operator E
−[1]
pq .

3. Reverse the sweep right → left, analogous to the left → right sweep.

4. Loop to step 2 until convergence.

5. Evaluate the first-order spin density (Eq. 5.20) using converged c[1] and E
−[1]
pq .
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J. Chem. Phys. 138, 22418 (2013).

6.1 Introduction

The molecular orbitals (MOs) are a key concept in quantum chemistry to interpret the

role of electrons in chemical bondings and reactions [159, 160]. They represent the

behavior of one electron moving in the effective potential to which Coulomb interactions

with many other electrons are averaged out. The effective mean field description is

formulated in the Hartree-Fock (HF) theory as a result of using a single determinant

as the model wave function in which electron correlation is dismissed in the solution

of many-electron Schrödinger equation [161, 162]. In addition to the shapes of MOs,

the orbital energies play a central role to characterize molecular electronic structures.

The energy levels and associated canonical MOs are determined as eigenspectrum of the

one-electron effective Hamiltonian or the so-called Fock operator that includes the mean

field interaction potential. The density functional theory (DFT) calculations [163–167],

80
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the workhorse approach of quantum chemistry, also heavily rely on the orbital picture

for the analysis of bonding nature and fundamentally the formulation of the underlying

Kohn-Sham (KS) theory[166].

The HF orbitals are in a general sense conveniently used as the optimal one-electron

basis for post-mean-field calculations. However, their optimality as the basis is brought

into question when they are applied to highly-correlated electronic systems, such as rad-

icals and transition metal complexes [25, 103, 168–182]. The spin contamination is often

observed in these systems. It significantly deteriorates the quality of the subsequent

second-order Møller-Plesset perturbation (MP2) correction [183] which does not incor-

porate any orbital relaxation. The HF reference tends to make odd electrons or hole too

delocalized because of neglecting electron correlation.

Various approaches to optimize orbitals in the presence of electron correlation have

been developed to rectify the resultant correlated descriptions. Brueckner orbitals were

introduced as a set of relaxed orbitals for which the single excitation coefficients are zero

in the full configuration interaction (CI) expansion [184, 185]. The concept of Brueckner

orbitals was incorporated into coupled-cluster (CC) theory and led to the algorithms

called the Brueckner CC (BCC) theory [186–194]. They find the rotation of orbitals

that makes single excitation amplitudes vanishing in the cluster expansion, virtually

accounting for the singles contributions in an infinite order. As an alternative to BCC,

the variational optimization of orbitals to minimize the CC energy has been investigated

by several works and is known as the orbital-optimized CC (OCC) [195–205]. It may

be appealing in the sense that the orbital response contribution can be removed to CC

gradients [206].

The KS equation describes the quantum mechanism of non-interacting fictitious electrons

moving in the KS potential which mainly involves dynamic electron correlation effects.

The KS description is known to be less spin-contaminated [207–213] and yield chemically

reasonable energy levels [214–217], relative to the uncorrelated HF counterparts. Also,

the KS orbital energies has shown to be similar to quasi-particle band structure, and the

band calculations with the exchange correlation potentials in the local density (LDA) or

generalized gradient (GGA) approximations produce accurate valence bands [218, 219].

The interpretations of one-electron KS orbitals and energies for chemical applications

have been presented by several works [214–217, 220–227]. The KS energies can be linked

to the electron addition and removal energies by the many-body perturbation treatment

with the GW approximation, which considers a system of quasi-particles associated with

the non-local and energy(or frequency)-dependent self-energy [218, 228–232].

The self-energy operator in the Dyson equation of the propagator theory or the one-

electron Green’s function theory is the oldest realization of the correlated one-body
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potential [233–236]. The Dyson equation accounts for relaxation and correlation ef-

fects, and its solutions occur when the frequencies ω, dependences of the self energy

Σ(ω), correspond to electron binding energies. The associated Dyson orbitals are am-

pltides that help to measure the pole strength of an ionization. The complication of

Dyson’s theory, however, arises because of the built-in frequency dependence. The next

step along this path was recently taken by Bartlett, showing Σ(ω) can be reduced to a

frequency-independent yet non-local ‘self-energy’, which is provided from ‘ab initio’ solu-

tions of CC or MP theory [237–239]. In connection to KS theory, the optimized effective

potential (OEP) method has been extensively studied to develop improved exchange-

correlation potentials, which permit orbital dependence [240–246]. Also, the linking of

the one-particle OEP functionals and many-body wave functions was investigated in the

development of ab initio DFT methods by Bartlett et al., deriving the local one-body

correlation potential [247–249]. His recent work showed that there is little need for a

post DFT GW if the local correlation potential is correctly described [238, 239].

Multiconfigurational self-consistent field (MCSCF) method is a widely-used model for

treating static electron correlation, which is accounted for by the selected CI expansion

of many-electron wave function, dealing with only chemically-related correlation space

[250–253]. Multireference description is directly modeled by selection of correlated or-

bitals and electrons that are incorporated into the active correlation space. In the MC-

SCF calculations, the variational parameters of expansion for both CI and orbitals are

optimized by energy minimization. The resulting orbitals are viewed as the mean-field

representations of the statically-correlated wave function. Recently, the density ma-

trix renormalization group method [254–257] is combined with the MCSCF approach,

enabling to handle much larger-size active space than is possible with the traditional

algorithm [258–261].

In the present work, we will explore an alternative approach to consider the orbital

relaxation under the influence of dynamic correlation at the MP2 level. The efficient

implementation of the orbital-optimized MP2 (OO-MP2) method has recently been stud-

ied by several groups [25, 103, 168–175]. Head-Gordon et al. developed the OO-MP2

approach in conjunction with the scaled opposite-spin treatment [262], which offers a

radical computational saving [168–171]. It demands only fourth-order cost while involves

an empirical factor for the scaled opposite-spin approximation to the MP2 energy. The

resolution-of-identity (RI) approximation to the required Coulomb integrals also en-

hances the efficiency. The OO-MP2 with the RI approximation was implemented by

Neese et al. as an algorithm that minimizes Hylleraas functional with respect to orbital

rotations [25, 103, 172]. Improvement in accuracy at the cost of OO-MP2 was achieved

by its combination with spin-component scaling treatment [263]. The optimized orbitals

were shown to offer improved performance of MP2 for open-shell systems, especially
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in the prediction of molecular hyperfine coupling constants [25, 103]. Bozkaya et al.

reported a Lagrangian-based approach to the second- and third-order OO-MP methods,

introducing the formulation based on the minimization of the MP2 or MP3 Λ-functionals

[173–175].

In our approach, a correlated one-body (Fock-like) Hamiltonian of the MP2 theory is

derived through the canonical transformation theory (CT), which has been developed

by one of the authors and his coworkers [264–271]. In the CT approach, the dynamic

correlation is described by a similarity transformation of the molecular Hamiltonian Ĥ

using an unitary operator eÂ with the anti-Hermitian excited operator Â = −Â†:

ˆ̄H = eÂ
†
ĤeÂ . (6.1)

The CT is closely related to Kutzelnigg and Mukherjee’s general unitary transforma-

tion methods [272–274]. In this study, the cluster operator Â is modeled with the use

of the double-substitution amplitudes of the MP1 wave function, whose analytic form

is given in canonical orbital basis. The mean-field approximation to ˆ̄H [Eq. (6.1)] is

introduced, which systematically reduces high-rank operators into one-body ones. Op-

timized orbitals are then obtained as eigenfunctions of the Schrödinger equation of the

one-body MP2 Hamiltonian. A key feature in our theory is that orbital energies are

also optimized, arising in a natural form as associated eigenvalues. Using these cor-

related orbitals and orbital energies in the canonical orbital representation, we repeat

the evaluation of the MP1 amplitudes, subsequently updating the correlated one-body

descriptions. The orbital optimization is achieved in the light of finding a self-consistent

field instead of energy minimization. Related to this study, we previously reported the

approach that uses the F12 transcorrelation factor [275–278] for Â, achieving a general

two-body form of the explicitly-correlated effective Hamiltonian [279].

The chapter is organized as follows. We will give the detail of our theory in Section 6.2.

The numerical performance will be shown in Section 6.3. The present study focuses on

only closed-shell systems. Finally, we summarize our study in the Section 6.4.

6.2 Theory

6.2.1 Mean-field (one-body) approximation

A central physical technique exploited in our approach is a systematic way of reduc-

ing high-rank many-body operators into an effective one-body form. Let us begin by

introducing the mean-field (MF) or one-body approximation to general-rank operators.
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Given that a many-body operator is expanded into a sum of normal-ordered operators

on the basis of Wick’s theorem, the MF approximation to it is obtained by neglecting the

two-rank normal-ordered operators or higher. For example, two-body and three-body

operators in the orthonormal spin-orbital basis, labeled by {p, q, r, s, t, u}, are written in

the MF form as,

âprqs
MF
==⇒ γpq â

r
s + γrs â

p
q − γps ârq − γrq âps − γpqγrs + γpsγ

r
q (6.2)

âprtqsu
MF
==⇒

(
γrsγ

t
u − γruγts

)
âpq −

(
γrqγ

t
u − γruγtq

)
âps −

(
γrsγ

t
q − γrqγts

)
âpu

+
(
γpqγ

t
u − γpuγtq

)
ârs −

(
γpsγ

t
u − γpuγts

)
ârq −

(
γpqγ

t
s − γpsγtq

)
âru

+
(
γpqγ

r
s − γpsγrq

)
âtu − (γpuγ

r
s − γpsγru) âtq −

(
γpqγ

r
u − γpuγrq

)
âts

− 2
(
γpqγ

r
sγ

t
u − γpsγrqγtu − γpuγrsγtq − γpqγruγts + γpsγ

r
uγ

t
q + γpuγ

r
qγ

t
s

)
(6.3)

where âpq , â
pr
qs, and âprtqsu are the one-, two-, and three-body second-quantized operators,

respectively: âpq = â†pâq, â
pr
qs = â†pâ

†
râsâq, â

prt
qsu = â†pâ

†
râ
†
t âuâsâq. The constant γpq is an

element of the reduced one-body density matrix, given by

γpq = 〈Ψ0| âpq |Ψ0〉 . (6.4)

In this study, we consider the reference Ψ0 to be a single Slater determinant. The density

matrix elements are then diagonal and those elements γpp correspond to the occupancy (0

or 1). The multireference generalization was investigated by Kutzelnigg and Mukherjee

[280, 281].

We hereafter use the following notation for indices: {p, q, r, . . .} refer to general spinless

orbitals, {i, j, k, . . .} to occupied spinless orbitals, {a, b, c, . . .} to virtual spinless orbitals,

and {σ, τ, λ} to spin indices. Einstein’s convention is used to present the summations

over repeated indices.

The spin-free analogue of Eqs. (6.2) and (6.3) is written as

Êprqs
MF
==⇒ Dp

q Ê
r
s +Dr

sÊ
p
q − 1

2D
p
sÊ

r
q − 1

2D
r
qÊ

p
s −Dp

qD
r
s + 1

2D
p
sD

r
q (6.5)

Êprtqsu
MF
==⇒

(
Dr
sD

t
u − 1

2D
r
uD

t
s

)
Êpq − 1

2

(
Dr
qD

t
u − 1

2D
r
uD

t
q

)
Êps − 1

2

(
Dr
sD

t
q − 1

2D
r
qD

t
s

)
Êpu

+
(
Dp
qD

t
u − 1

2D
p
uD

t
q

)
Êrs − 1

2

(
Dp
sD

t
u − 1

2D
p
uD

t
s

)
Êrq − 1

2

(
Dp
qD

t
s − 1

2D
p
sD

t
q

)
Êru

+
(
Dp
qD

r
s − 1

2D
p
sD

r
q

)
Êtu − 1

2

(
Dp
uD

r
s − 1

2D
p
sD

r
u

)
Êtq − 1

2

(
Dp
qD

r
u − 1

2D
p
uD

r
q

)
Êts

− 2Dp
qD

r
sD

t
u +

(
Dp
sD

r
qD

t
u +Dp

uD
r
sD

t
q +Dp

qD
r
uD

t
s

)
− 1

2

(
Dp
sD

r
uD

t
q +Dp

uD
r
qD

t
s

)
(6.6)

where the one-, two-, and three-body spin-free excitation operators Êpq , Êprqs and Êprtqsu

are defined by Êpq = â†pσâqσ, Êprqs = â†pσâ
†
rτ âsτ âqσ, and Êprtqsu = â†pσâ

†
rτ â
†
tλâuλâsτ âqσ, and
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the spin-free one-body density matrix is given by

Dp
q =〈Ψ0| Êpq |Ψ0〉 = γpαqα + γpβqβ (6.7)

Hereafter, all formulas will be written in the spin-free form.

Given the molecular Hamiltonian:

Ĥ = hpqÊ
q
p + 1

2g
pr
qs Ê

qs
pr (6.8)

where hpq and gprqs are one- and two-electron integrals, respectively, it is well-known that

the HF approximation can be simply derived by inserting the MF form of Êqspr [Eq. (6.5)]

to Ĥ [Eq. (6.8)]. This leads to the one-body Hamiltonian given as

Ĥ
MF
==⇒ ĤHF = C + F̂ (6.9)

with the Fock operator F̂ = fpq Ê
q
p , where fpq and C are the Fock matrix and a constant,

respectively:

fpq = hpq + 2gpiqi − g
pi
iq , (6.10)

C = − 2gijij + gijji . (6.11)

The expectation value 〈ĤHF〉 certainly gives an expression of the HF energy.

6.2.2 One-body MP2 Hamiltonian

We now proceed to the introduction of the correlated one-body effective Hamiltonian.

In this study, the dynamic correlation at the MP2 level of theory is incorporated into the

Hamiltonian. On the basis of the CT theory [264–271], the reduction of the MP2 theory

to the one-body description is formulated by modeling the one-body MP2 (OB-MP2)

Hamiltonian as:

ĤOB-MP2 = ĤHF +
[
Ĥ, ÂMP1

]
1

+ 1
2

[[
F̂ , ÂMP1

]
, ÂMP1

]
1
, (6.12)

where [. . .]1 denotes that the commutator involving high-rank operators is replaced by its

MF approximation [Eqs. (6.5) and (6.6)] in terms of one-body operators and constants

only. The amplitude ÂMP1 is the anti-Hermitian doubly-excited operator given in the

canonical orbital basis as:

ÂMP1 = 1
2T

ab
ij (Êabij − Ê

ij
ab) , (6.13)
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with the spin-free form of the MP1 amplitude

T abij =
gabij

εi + εj − εa − εb
. (6.14)

where εi is the orbital energy of the canonical orbital i. The OB-MP2 Hamiltonian

[Eq. (6.12)] is derived by truncating the Baker-Campbell-Hausdorff expansion of the CT

Hamiltonian [Eq. (6.1)] and is correct through the second order in perturbation. Also

note that it bears some resemblance to the second-order Hylleraas functional.

Let us write the OB-MP2 Hamiltonian as

ĤOB-MP2 = ĤHF + V̂OB-MP2 (6.15)

where V̂OB-MP2 is the perturbative one-body potential associated with MP2 electron

correlation and takes the following general one-body form as

V̂OB-MP2 = C ′ + V̂ (6.16)

with V̂ = vpq Ê
q
p . The working tensor contraction expressions for the evaluation of V̂ and

C ′ are given as follows:

V̂ = 2T
ab
ij

[
f ia Ω̂

(
Êbj

)
+ νipab Ω̂

(
Êpj

)
− νaqij Ω̂

(
Êbq

)]
+ 2f iaT

ab
ij T

bc
jk Ω̂

(
Êkc

)
+ fac T

ab
ij T

cb
il Ω̂

(
Êlj

)
+ fac T

ab
ij T

cb
kj Ω̂

(
Êki

)
− fki T abij T

ab
kl Ω̂

(
Êjl

)
− fpi T

ab
ij T

ab
kj Ω̂

(
Êpk

)
+ fki T

ab
ij T

ad
kj Ω̂

(
Êdb

)
+ f ikT

ab
ij T

cb
kj Ω̂

(
Êca

)
− fac T abij T

cd
ij Ω̂

(
Êbd

)
− fapT abij T

cb
ij Ω̂

(
Êpc

)
, (6.17)

and

C ′ =− 4T
ab
ij ν

ij
ab + 4fki T

ab
ij T

ab
kj − 4f caT

ab
ij T

cb
ij , (6.18)

where T
ab
ij = T abij − 1

2T
ab
ji and the symmetrization operator Ω̂

(
Êpq
)

= Êpq + Êqp . At the

end, we rewrite ĤOB-MP2 [Eqs. (6.12) and (6.15)] in a similar form to Eq. (6.9) (for ĤHF)

as follows:

ĤOB-MP2 = C̄ + ˆ̄F (6.19)
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with ˆ̄F = f̄pq Ê
q
p . The elements f̄pq and C̄ are perturbed analogues of the Fock matrix fpq

[Eq. (6.10)] and C [Eq. (6.11)] of the HF theory and are given as

f̄pq = fpq + vpq , C̄ = C + C ′ . (6.20)

This indicates that the perturbation matrix vpq serves as the correlation potential, which

additively alters the uncorrelated HF picture, and the central energy operator is replaced

by the correlated Fock operator ˆ̄F . The MO coefficients and energies can be redetermined

by the matrix diagonalization of f̄pq , which gives rise to orbital relaxation in the presence

of dynamic correlation effects. Note that 〈Ψ0|ĤOB-MP2|Ψ0〉 is identical to the MP2

energy when using the HF wave function (with the HF orbitals) for Ψ0.

6.2.3 Implementation

In our approach, the fully relaxed orbitals are obtained by repeatedly diagonalizing

the correlated Fock matrix f̄pq [Eq. (6.20)] until the self-consistency or equivalently the

Brillouin condition (f̄ ia = 0) is satisfied. A sketch of our implementation is as follows:

1. Set up starting canonical MOs ψp and orbital energies εp, which may be guessed

from HF or KS calculations.

2. Transform one- and two-electron integrals from atomic orbital (AO) basis to MO

basis.

3. Evaluate the MP1 amplitude T abij [Eq. (6.14)] followed by f̄pq and C̄ [Eqs. (6.20)].

The total electronic energy is given by Eelec = 2f̄ ii + C̄.

4. Diagonalize the correlated Fock matrix f̄pq . The transformation matrix Upq and

the updated orbital energies εp are obtained as eigenvectors and eigenvalues, re-

spectively.

5. Update MOs by the linear transformation: ψp ←
∑

pq Upqψq. The new orbitals as-

sociated with the Nelec/2 lowest eigenvalues are treated as occupied orbital states.

6. Repeat the steps 2-5 until convergence.

Note that the denominator of the MP1 amplitude [Eq. (6.14)] is altered by the updated

orbital energies in our approach, whereas it is fixed with use of the HF orbital energies

in the previous OO-MP2 implementations. The computational cost of each iteration

scales as O(N5), which is the same scaling as the ordinal MP2 calculation including the

four-index integral transformation. It might be interesting to explore a possibility to
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construct the correlated Fock matrix in AO basis using the AO integral driven algorithm

in a similar fashion to the direct SCF method.

6.3 Results and discussions

In this paper, unless otherwise noted, all the geometries were optimized by the DFT using

the B3LYP functional [282] with aug-cc-pVDZ basis sets [283–287]. The DFT, HF, MP2,

and CC singles, doubles, and perturbative triples (CCSD(T)) [288] calculations with the

restricted closed-shell treatment were performed using the gaussian 09 program package

[102]. The OO-MP2 calculations with the Resolution-of-Identity approximation (OO-

RI-MP2) [25, 103, 172] were carried out with the orca program package[99] (version

2.8). The frozen-core approximation was used for all the MP2, OO-RI-MP2, OB-MP2,

and CCSD(T) calculations.

6.3.1 Reaction energies

We first assessed the performance of the OB-MP2 method for thermochemical applica-

tions, having 25 reactions of the second-row element molecules (Table 6.1) as a bench-

mark set. In this benchmark, the accuracy of the OB-MP2 prediction of reaction energies

is examined by comparing it with those measured for the MP2 and OO-RI-MP2 calcu-

lations. The reference data were calculated at the CCSD(T) level. Two levels of the

basis sets cc-pVDZ and cc-pVTZ [283, 283–287] were tested.

Figure 6.1 shows the deviations of the reaction energies of MP2, OO-RI-MP2, and OB-

MP2 from the CCSD(T) counterparts. The errors of MP2, OO-RI-MP2, and OB-MP2

are of the same sign in most cases. The statistical errors are summarized in Table 6.2.

The mean absolute deviation (MAD) values of OB-MP2 are marginally smaller than

those of MP2 and OO-RI-MP2 by 0.5 and 0.2 mEh, respectively, for cc-pVDZ and by

0.5 and 0.6 mEh, respectively, for cc-pVTZ.

For a further test, we combine the the F12 explicit correlation[275–278] with the OB-MP2

method through the canonical transcorrelated Hamiltonian, which was recently derived

by Yanai and Shiozaki.[279] The aug-cc-pVXZ/OptRI (X=D and T) basis sets[289]

were used for the complementary auxiliary orbital basis (CABS) space[290] in the F12

treatment. Figure 6.2 shows the errors of the reaction energies obtained by OB-MP2

with F12 (termed OB-MP2-F12) relative to the reference CCSD(T)/cc-pVQZ data. As

shown in Table 6.3, the root mean square (RMS) drops from 8.2 to 5.9 mEh with the

increasing level of basis sets from cc-pVDZ to cc-pVTZ. With the cc-pVDZ basis, the
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Table 6.1: Benchmark set of 25 reactions.

No. Reaction

1 H2 + F2 → 2HF

2 F2O + H2 → F2 + H2O

3 H2 + H2O2 → 2H2O

4 H2 + C2H2 → C2H4

5 HCN + NH3 → N2 + H2O

6 CO + H2O → CO2 + H2

7 N2O + H2 → N2 + H2O

8 CO + H2 → CH4 + H2O

9 CO + H2 → CH2O

10 2H2 + O2 → 2H2O

11 C2H4 → C2H2

12 CH4 + O2 → CO + H2 + H2O

13 CH4 + F2 → CH3F + HF

14 CH4 + O2 → CH3Cl + HCl

15 H2 + O2 → H2O

16 2H2O2 → 2H2O + O2

17 N2 + 3 H2 → 2NH3

18 CH2=C → C2H2

19 H2 + Cl2 → 2HCl

20 HCN + H2O → CO + NH3

21 CO + NH3 → HCN + H2O

22 C2H2 + HF → C2H3F

23 C2H2 + HCl → C2H3Cl

24 CH4 + O2 → CH3OH

25 CO + H2 → CH3OH

F12 treatment had a certain impact on the reduction of basis set errors, with the MADs

of 10.6 and 6.2 mEh for OB-MP2 and OB-MP2-F12, respectively. The MADs of OB-

MP2/cc-pVTZ with and without the F12 correction resulted in a more or less similar

value: 4.2 and 4.1 Eh, respectively. This indicates that the basis set description is nearly

convergent at the cc-pVTZ level. The MADs of OB-MP2-F12 with the cc-pVDZ and

cc-pVTZ basis sets are comparable to those of MP2 and OO-RI-MP2 with the cc-pVQZ

basis sets.

Overall, the improvement upon the MP2 reaction energies from the orbital optimization

in the OB-MP2 and OO-RI-MP2 methods was not of great significance. This indicates

that the influence of orbital relaxation seems to be negligible on reaction energies for the
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Figure 6.1: Deviations of the reaction energies of the MP2, OO-RI-MP2, and OB-
MP2 methods with the cc-pVDZ (upper panel) and cc-pVTZ (lower panel) basis sets

from the CCSD(T) reference data.
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Figure 6.2: Errors of the reaction energies of the OB-MP2-F12 method with the
cc-pVDZ and cc-pVTZ basis sets in comparison with the CCSD(T)/cc-pVQZ values.

test systems consisting of the closed-shell main group molecules. A similar observation

was also reported by Neese et al. [172] in the previous assessment of the OO-RI-MP2.
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Table 6.2: Statistical deviations of MP2, OO-RI-MP2 and OB-MP2 reaction energies
from CCSD(T) reference data with the cc-pVDZ and cc-pVTZ basis sets. Maximum
absolute deviation (MAX), difference between maximum and minimum absolute devi-
ations (∆Max-Min), root mean square (RMS), and mean absolute deviation (MAD) are

shown in Eh.

MP2 OO-RI-MP2 OB-MP2

cc-pVDZ

∆Max-Min 0.0125 0.0218 0.0161

MAX 0.0128 0.0221 0.0161

RMS 0.0060 0.0069 0.0061

MAD 0.0051 0.0048 0.0046

cc-pVTZ

∆Max-Min 0.0120 0.0228 0.0147

MAX 0.0126 0.0230 0.0148

RMS 0.0059 0.0071 0.0059

MAD 0.0050 0.0049 0.0044

Table 6.3: Statistical performance (in Eh) against the reaction energies calculated
with CCSD(T)/cc-pVQZ for the reaction set in Table I.

MP2 OO-RI-MP2 OB-MP2 OB-MP2 OB-MP2-F12 OB-MP2-F12

(basis sets) (cc-pVQZ) (cc-pVQZ) (cc-pVDZ) (cc-pVTZ) (cc-pVDZ) (cc-pVTZ)

∆Max-Min 0.0120 0.0202 0.0333 0.0169 0.0189 0.0158

MAX 0.0126 0.0209 0.0342 0.0169 0.0190 0.0158

RMS 0.0060 0.0066 0.0063 0.0058 0.0082 0.0059

MAD 0.0051 0.0047 0.0106 0.0041 0.0062 0.0042

6.3.2 Ionization potentials and electron affinities

The Koopmans’ theorem states that in the closed-shell Hartree-Fock theory, the ioniza-

tion potential (IP) and the electron affinity (EA) are equal to the negatives of the highest

occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO)

energies, respectively [291]. It is well-known that this theorem is no longer applicable for

the Kohn-Sham (KS) calculations using approximate exchange-correlation functionals

[219, 224, 225, 292–294]. The molecular energies are poorly predicted by DFT calcula-

tions and strongly dependent on exchange-correlation functionals. Recent DFT studies,

however, showed that accurate orbital energies can be provided by the generalized KS

methods using the long-range corrected (LC) functionals [224, 225, 231, 232, 295, 296].

Let us here show a brief discussion to get insights into the analytic relation between
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Table 6.4: Test molecules and reference IP and EA values (in eV) used for benchmark
calculations. The values obtained at the CCSD(T)/cc-pVTZ level of theory are used

for reference where experimental data are not available.

Test molecule Exp. IPs a
EAs

Exp. CCSD(T)

group A

Be 9.323 −0.900

Mg 7.646 −0.653

Ca 6.113 0.025

Na2 4.892 0.430

Li2 5.113 0.327

K2 4.062 0.497

group B

NaCl 9.200 0.730

NaBr 8.300 0.790

LiCl 10.010 0.580

LiBr 9.310 0.640

Ne 21.565 −29.097

Ar 15.760 −14.319

HF 16.030 −3.449

CO2 13.773 −4.524

H2O 12.610 −3.279

NH3 10.070 −3.110

CH4 14.400 −3.280

C2H2 11.400 −3.740

a The experimental values are taken from Ref.[297].

HOMO and LUMO energies versus IPs and EAs of OB-MP2, respectively. Our formu-

lations will be expressed using canonical HF orbitals instead of OB-MP2 orbitals. This

is just for clarity to reduce complexity of expressions but would not alter the essence of

the consequences. The HOMO and LUMO energies of the OB-MP2 theory are then in

turn written as

εOB-MP2
HOMO = εHF

HOMO + 2T
ab
ihg

ih
ab (6.21a)

εOB-MP2
LUMO = εHF

LUMO − 2T
al
ijg

ij
al (6.21b)

which are derived from the h-th and l-th diagonal elements of the Fock matrix [Eq.

(6.20)] where h and l refer to the HOMO and LUMO, respectively.
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Figure 6.3: Reference IPs versus minus HOMO energies (−εHOMO) from HF, B3LYP,
LC-wPBE, and OB-MP2 calculations as well as IPOB-MP2 [Eq. (6.22a)] for alkali metals
(upper panel) and non-metallic molecules (lower panel). The straight line represents
perfect correlation of measurements. The values in the parentheses inside the plots are

the experimental IPs in units of eV (see Table 6.4 for details).

The IP and EA of the MP2 method are derived from a direct difference between the

energy expressions of the neutral and ionized states [298, 299] as follows,

IPOB-MP2 = −εOB-MP2
HOMO + 2T

ah
ij g

ij
ah (6.22a)

EAOB-MP2 = −εOB-MP2
LUMO − 2T

ab
il g

il
ab (6.22b)

where the same set of the HF orbitals are used for the neutral and ionized states just as

assumed in the Koopmans’ theorem. This analysis reveals that the Koopmans’ theorem

does not hold true for the OB-MP2 method, i.e. IPOB-MP2 6= −εOB-MP2
HOMO and EAOB-MP2 6=
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−εOB-MP2
LUMO . Despite this fact, it is worth investigating to what extent the correlation

effects considered in OB-MP2 calculations affect the prediction of IPs and EAs with use

of orbital energies. It should be underscored that in the OO-MP2 formalism [25, 103,

168–175] the definition of the orbital energies is conceptually not unique.

Table 6.5: Subtraction of refernce IPs from minus HOMO energies calculated by
the HF, B3LYP, LC-wPBE, and OB-MP2 methods and the values of IPOB-MP2 [Eq.

(6.22a)]. The units are in eV. The reference values are given in Table 6.4.

Molecules −εHOMO
HF −εHOMO

B3LYP −εHOMO
LC-wPBE −εHOMO

OB-MP2 IPOB-MP2

Group A: alkali metals

Be −0.908 −3.002 −0.405 −0.178 −0.237

Mg −0.760 −2.350 −0.151 −0.092 −0.154

Ca −0.792 −1.920 −0.164 0.009 −0.091

Na2 −0.355 −1.342 0.204 0.189 0.135

Li2 −0.190 −1.477 0.368 0.361 0.305

K2 −0.501 −1.147 0.006 −0.154 −0.180

MAD 0.584 1.873 0.216 0.164 0.184

RMS 0.638 1.980 0.255 0.196 0.197

Group B: non-metallic molecules

NaCl 0.329 −2.991 −0.004 1.891 1.383

NaBr 0.599 −2.346 0.513 2.045 1.560

LiCl 0.202 −3.181 −0.120 1.792 1.284

LiBr 0.229 −2.800 0.130 1.675 1.191

Ne 1.440 −6.302 −3.196 3.715 3.275

Ar 0.299 −4.155 −0.843 1.854 1.293

HF 1.449 −4.950 −1.692 3.659 3.253

CO2 0.988 −3.428 −0.359 3.601 1.456

H2O 1.099 −4.197 −0.885 3.039 2.681

NH3 1.513 −2.862 0.416 3.134 2.814

CH4 0.369 −3.682 −0.466 1.684 1.301

C2H2 −0.298 −3.313 −0.142 1.713 1.271

MAD 0.734 3.684 0.731 2.484 1.897

RMS 0.891 3.829 1.133 2.617 2.060

Two groups of molecules were constructed for the benchmarks; the group A consists

of 6 alkali metals, and the group B is the so-called non-metallic group consisting of 4

alkali metal halides, 2 noble gases, and 6 small covalent compounds. Table 6.4 shows the

details of test molecules and corresponding reference values. The experimental IPs and

EAs in units of eV have been adapted from Ref.[297]. The vertical EAs calculated at the

CCSD(T)/cc-pVTZ level of theory are used as the reference where experimental data
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are not available The negative value of EAs means that the anionic state is unbound.

We performed the calculations of orbital energies on these molecules using the cc-pVTZ

basis sets except for the K2 molecule using the 6-31G basis sets [300]. In addition,

IPOB-MP2 and EAOB-MP2 were evaluated with the optimized OB-MP2 orbitals through

Eqs. (6.22a) and (6.22b), respectively.
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Figure 6.4: Reference EAs versus minus LUMO energies (−εLUMO) from HF, B3LYP,
LC-wPBE, and OB-MP2 calculations as well as EAOB-MP2 [Eq. (6.22b)] for alkali metals
(upper panel) and non-metallic molecules excluding Ar and Ne gases (lower panel).
The straight line represents perfect correlation of measurements. The values in the
parentheses inside the plots are the experimental or vertical CCSD(T) EAs in units of

eV (see Table 6.4 for details).

Figure 6.3 presents the correlations between the experimental IPs and the minus HOMO

energies of HF, B3LYP, LC-wPBE [301–303], and OB-MP2, as well as the values of

IPOB-MP2. The deviations of the calculated IPs from the experiments are shown in
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Table 6.5. With the minus HOMO energies, B3LYP underestimated the IPs enormously.

The OB-MP2 in general overcorrected the HF orbital energies. The prediction of the

OB-MP2 theory was quite accurate for the alkali metals [group A] (the largest error

0.279 eV (5.5%) for Li2), where the minus HOMO energies of HF underestimated the

IPs with the MAE of 0.584 eV. The IPs of the non-metallic molecules [group B] were

overestimated with the values of −εOB-MP2
HOMO , while they were obtained to a good accuracy

by the Koopmans’ theorem with the HF orbitals. The values of IPOB-MP2 [Eq. (6.22a)]

generally reduced the overestimation of the OB-MP2 orbital energies, and thus the

results for the non-metallic group were improved from the MAD of 2.484 eV (−εOB-MP2
HOMO )

to the MAD of 1.897 eV (IPOB-MP2). The degree of this error reduction, however, does

not seem to be so significant, implying that minus HOMO energies of OB-MP2 are

relatively a good approximation to IPOB-MP2. The long-range correction in LC-wPBE

was confirmed to give HOMO energies in good agreement with the experimental IPs.

In the case of the alkali metal group, the OB-MP2 predictions were rather accurate

compared to the LC-wPBE counterparts.

The correlations between the reference EAs and predictions from HF, DFT, as well as

OB-MP2 theories are shown in Figure 6.4. The errors of calculated EAs from the ref-

erence are summarized in Table 6.6. Although the HF theory is widely recognized to

give poor LUMO energies, the minus LUMO energies of the present HF calculations

showed rather good agreement with the reference EAs, especially for non-metallic sys-

tems [group B]. The B3LYP calculations largely overestimated the EAs in most cases

except for Na2 molecule. Using either the minus LUMO energies or Eq. (6.22b), the

OB-MP2 predictions of the EAs for non-metallic group were more accurate than those

for alkali metal group. The minus LUMO energies of the OB-MP2 theory underesti-

mated the reference EAs for both test groups, while this underestimation was reduced

by using EAOB-MP2 to some extent.

The MADs and RMSs of EAOB-MP2 were approximately less than half those of −εOB-MP2
HOMO .

The LC-wPBE functional provided the negative of LUMO energies in good agreement

with reference EAs, as likewise observed in the IP calculations. Interestingly, for the

group B, the minus LUMO energies of OB-MP2 were somewhat comparable to those

of the LC-wPBE functional, and OB-MP2 using EAOB-MP2 outperformed LC-wPBE in

the calculation of the EAs.

Overall, the results of OB-MP2 for computing IPs and EAs were found to be quite

encouraging although the results contained some outliers. The accuracy of the predic-

tion using orbital energies is in general improved by using IPOB-MP2 [Eq. (6.22a)] and
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EAOB-MP2 [Eq. (6.22b)] instead, notably for EAs. Although the orbital energies of OB-

MP2 theory do not satisfy the Koopmans’ theorem, they provide a good estimation of

IPs and EAs.

Table 6.6: Subtraction of reference EAs from minus LUMO energies calculated by
the HF, B3LYP, LC-wPBE, and OB-MP2 methods and the values of EAOB-MP2 [Eq.

(6.22b)]. The units are in eV. The reference values are given in Table 6.4.

Molecules −εLUMO
HF −εLUMO

B3LYP −εLUMO
LC-wPBE −εLUMO

OB-MP2 EAOB-MP2

Group A: alkali metals

Be −0.459 2.297 0.151 −0.640 −0.274

Mg −0.345 1.546 0.007 −0.474 −0.210

Ca −0.645 0.992 −0.270 −0.862 −0.516

Na2 −0.497 1.076 −0.283 −0.579 −0.312

Li2 −0.492 −0.678 −0.210 −0.563 −0.300

K2 −0.496 0.957 −0.310 −0.556 −0.360

MAD 0.489 1.258 0.205 0.612 0.329

RMS 0.497 1.365 0.229 0.624 0.342

Group B: non-metallic molecules

NaCl −0.257 1.306 −0.189 −0.303 −0.218

NaBr −0.280 1.313 −0.205 −0.328 −0.231

LiCl −0.299 1.058 −0.251 −0.336 −0.246

LiBr −0.313 1.079 −0.262 −0.358 −0.253

Ne −0.804 5.740 1.998 −1.421 −0.645

Ar −0.651 3.767 0.556 −0.944 −0.212

HF −0.403 2.893 0.186 −0.660 −0.198

CO2 −0.243 3.787 0.839 −0.727 0.393

H2O −0.572 2.640 −0.015 −0.787 −0.183

NH3 −0.612 2.317 −0.189 −0.782 −0.162

CH4 −0.609 2.099 −0.285 −0.750 −0.143

C2H2 −0.346 3.110 0.393 −0.535 0.142

MAD 0.449 2.592 0.447 0.661 0.252

RMS 0.484 2.915 0.678 0.730 0.286

6.3.3 Orbital energy levels: octahedral FeH2+
6

In transition metal systems, a large amount of short-range Coulombic interaction arises

from a number of electrons locally packed in atomic d-block space. Dynamic correlation

associated with this type of interaction plays a significant role in determining their chem-

ical picture in qualitative terms. The electron correlation is ignored in HF calculations,
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so that, as is widely recognized, the chemical characterization using HF orbitals are not

good for metal complexes. It is thus of great interest to illustrate how the OB-MP2

method alters the one-electron interpretation of the electronic structure of transition

metals.
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Figure 6.5: Energy levels of the valence orbital states (1ag, 1eg, t2g, t1u, 2eg, and
2ag) of FeH2+

6 in the closed-shell singlet state 1Σ with various bond lengths: R(Fe-
H) = 1.35, 1.40, 1.45, and 1.50 Å, calculated by the (a) HF, (b) PBE, and (c) OB-MP2
methods. (d) The 3D plots of the MOs from the OB-MP2 calculation. The bonding 1a1g
and 1eg orbitals and the nonbonding t2g (dxy, dyz, dzx) orbitals are doubly-occupied.

The bonding t1u and anti-bonding 2eg and 2a1g orbitals are empty states.

For the performance test, we examined the orbital energy levels of FeH2+
6 , an elemental

octahedral coordination complex. It has H atoms as all the ligands along the x-, y-, and

z-axes, so that the ligands only have σ-type interaction with the metal. In the ligand field

theory (LFT), this metal-ligand interaction is characterized by MOs with eg symmetry,

which are involved with the dx2−y2 and dz2 orbitals of the Fe atom (Fig. 6.5(d)). The

rest of the d-block orbitals, dxy, dxz, and dyz, corresponding to t2g symmetry, are of the

nonbonding character in this system. The eg orbitals are directly affected by the ligand

field, splitting to the stabilized bonding (1eg) and destabilized antibonding (2eg) states,

while the t2g orbitals have no overlap with ligands. With this interaction structure, the

LFT predicts the energy ordering of these MOs as ε1eg < εt2g < ε2eg .

We performed the OB-MP2 calculations on the FeH2+
6 molecule in the closed-shell singlet

state 1Σ with the cc-pVDZ basis sets. The strength of the ligand field was varied by

changing the length of the Fe-H bonds under the Oh symmetry: R(Fe-H) = 1.35, 1.40,

1.45, and 1.50 Å. Figure 6.5 presents the orbital energy levels of OB-MP2 as a function

of the bond length, along with the HF and PBE [10, 11] results for comparison.

With all the three methods, the antibonding 2eg orbitals were shown to be higher in

energy than the 1eg and t2g orbitals, in accordance with the LFT description. With

increasing the bond length, namely with lessening the ligand field, the energy level of

the bonding 1eg orbitals grows increasingly higher in all cases. In the HF case, it crosses
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the level of the nonbonding t2g orbitals and can have a higher energy than t2g. This

is a surprising contradiction to the orbital picture of LFT. In the OB-MP2 and PBE

calculations for all the tested bond lengths, we observed that the 1eg orbitals is stabilized

relative to the t2g orbitals owing to the metal-ligand interaction. The OB-MP2 and

PBE orbitals associated with d-block then resulted in the same energy ordering as the

LFT prediction. This reveals the role of electron correlation in delivering a qualitative

accuracy to the orbital picture.

Because the t2g orbitals of FeH2+
6 are classified as nonbonding by symmetry, the effects

of the ligand field on them cannot be accounted for by the LFT. As shown in Fig. 6.5, the

OB-MP2 and PBE results presented a clear dependence of the t2g orbital energies on the

bond lengths. Note that the SCF calculations using the hybrid B3LYP and PBE0 [304]

functionals failed to converge for this system. The difference in the t2g orbital energy

between R(Fe-H) = 1.35 and 1.50 Å is 0.0390 and 0.0238 Eh for OB-MP2 and PBE,

respectively, while that for HF is 0.0183 Eh. This means that the electron correlation

enhances the ligand effects on the t2g orbitals. These orbital descriptions certainly go

beyond the classical interpretation of coodination bonds based on the LFT.

6.3.4 Orbital energy levels: linear CoNO

As another test case, we examined the orbital energy levels of the linearly-coordinated

CoNO molecule, which has σ- and π-type metal-ligand interactions. The HF, B3LYP

and OB-MP2 calculations were carried out with the equilibrium geometry (R(Co-N) =

1.556 Å and R(N-O) = 1.171 Å). The following is the resulting valence configurations

each written in increasing orbital energy order:

HF: (. . .) δ4 3σ∗2 2π4 4σ∗0 2π∗0

B3LYP: (. . .) 2π4 3σ∗2 δ4 4σ∗0 2π∗0

OB-MP2: (. . .) 2π4 δ4 3σ∗2 4σ∗0 2π∗0

where (. . .) denotes the lower-lying occupied orbitals, whose energy ordering was common

among the three models.

Figure 6.6 displays the shapes of the occupied valence orbitals 3σ∗, δ and 2π. The

energies of these orbitals are shown in Table 6.7. The 3σ∗ orbital is constructed from

the metal dz2 and the ligand σ(NO) orbitals and is antibonding with respect to Co and

NO. The δ orbitals are of nonbonding character, locally residing in the atomic dxy and

dx2−y2 orbitals of Co. The 2π orbitals associated with dzx, dyz and π∗(NO) are bonding

with respect to Co and NO. Experimental evidence indicates that the NO ligand is one
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of the strongest π-acceptor [305, 306]. The antibonding π∗(NO) is in favor of accepting

metal d electrons, thus playing a role in the form of the stable π-type metal-ligand

bonding. The energy of this 2π orbitals is thus considered to be the lowest of these

three [306]. The correlated orbitals of OB-MP2 as well as B3LYP provided the orbital

description in accordance with this speculation, whereas the HF orbitals failed to capture

it.

O=N–Co
z

 ( )*2 , , (NO)
zx yz
d dπ π

 ( )2 2,
xy x y
d dδ

−

 ( )2

*3 , (NO)
z
dσ σ

Figure 6.6: The 3D plots of the 2π (dzx, dyz, π
∗(NO)), δ

(
dxy, dx2−y2

)
and

3σ∗ (dd2 , σ(NO)) orbitals of the CoNO molecule. They are doubly-occupied in the
HF, B3LYP, and OB-MP2 calculations. Co, N, and O atoms are shown in purple, blue,

and red, respectively.

Table 6.7: Orbital energies (in Eh) of the occupied orbital states 2π (dzx, dyz, π
∗(NO)),

δ
(
dxy, dx2−y2

)
and 3σ∗ (dd2 , σ(NO)) (shown in Fig. 6.6) of CoNO from the HF, B3LYP,

and OB-MP2 calculations.

orbital state
orbital energies

HF B3LYP OB-MP2

3σ∗ (dd2 , σ(NO)) −0.422 4 −0.213 6 −0.538 6

δ
(
dxy, dx2−y2

)
−0.448 3 −0.195 5 −0.630 3

2π (dzx, dyz, π
∗(NO)) −0.287 8 −0.236 4 −0.656 5

6.4 Conclusion

We have developed the effective one-body (or Fock-like) Hamiltonian which is perturbed

with electron correlation at the MP2 level on the basis of canonical transformation.
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The mean-field approximation was used to reduce a high-rank representation of many-

electron correlation into the one-body potential. Orbital descriptions including energy

levels are optimized by repeatedly diagonalizing the one-body MP2 (OB-MP2) Hamil-

tonian, where the amplitudes of transformation based on the MP1 wave function are

concomitantly updated, including their denominators. When using HF orbitals, the ex-

pectation value of the OB-MP2 Hamiltonian, regarded as an orbital-dependent energy

functional, reproduces the MP2 energy. The orbital energies arise as an intrinsic output

of OB-MP2. This makes a strong contrast with OO-MP2, which does not have the

canonical form of orbital picture. Thus, in the prevous OO-MP2 method, the denomi-

nators of the MP1 wave function are kept fixed using HF orbital energies.

The importance of including MP2-level correlation into the orbital (or mean-field) pic-

ture was highlighted in the illustrative calculations of reaction energies, ionization po-

tentials and electron affinities from the Koopmans’ theorem, and orbital energy levels of

coordination complexes. The comparison of the MP2 and OB-MP2 calculations on reac-

tion energies of closed-shell main group systems showed that the refinement associated

with orbital optimization is rather minor. Our implementation based on the spin-free

formalism is limited to the applications to the the closed-shell systems. Orbital opti-

mization is considered to be effective for open-shell radical organic molecules, where the

unrestricted-orbital variants of OB-MP2 should come into play. The ionitzation poten-

tials and electron affinities of OB-MP2 were much better than those of B3LYP and in

many cases comparable to those of the LC functional. The HF calculations of metal

complexes yielded spurious valence energy levels, whereas OB-MP2 offered a qualitative

improvement on them. Linear response or single CI formalism can be incorporated into

the OB-MP2 Hamiltonian as an extension to calculate excited states at the MP2 level

in a similar spirit of the CIS(D) [307] or CC2 [308] methods. Grimme’s spin-component

scaling factors might improve the description of the OB-MP2 potential [Eqs. (6.17) and

(6.18)]. Another extension is to incorporate our one-body potential into the DFT calcu-

lations, developing a type of the double hybrid approach that combines MP2 and DFT

at a deeper level than B2PLYP [309] and others. The developments along these lines

are the subject of active investigation.



Chapter 7

General Conclusions

Generally, it is doubtless that the molecular EPR spectroscopy is one of the most power-

ful tools for investigating electronic and structural features of paramagnetic molecules.

Beside experimental measurements, theoretical interpretations are also important not

only for explaining what governs the observed spectra, but also for predicting parameters

that are not easy to measure in experiment.

Although DFT has been extensively used due to its low computational requirements,

it has some critical disadvantages. The most well-known problem of DFT is that the

exchange-correlation functionals appropriate for prediction of molecular properties are

system-dependent. In other words, the use of DFT calculations for molecular properties

thus requires careful validation for a given functional and molecule. Moreover, a general

unsolved question in DFT calculations of magnetic properties is the dependence of the

exchange-correlation potential on the paramagnetic current induced by the magnetic

field. Thus, the use of ab initio wavefunction methods for calculations of molecular

magnetic properties is highly desirable. Based on this motivation, presented thesis is

devoted to develop and/or assess new ab initio quantum chemical methods for accurate

predictions of molecular EPR parameters: HFCCs and g−tensors. We particularly focus

on the ab initio DMRG method, which has been shown to be successful for the prediction

of molecular properties in large-scale multireference states.

The calculations of isotropic HFCCs, which require correlation of core electron, is known

to be most demanding for modern theoretical methods. Apart from the electron correla-

tion, relativistic effects also play an important role in the accurate prediction of isotropic

HFCCs. Only a few computational schemes including both high-level correlations and

relativistic effects were published so far, such as QCISD/IORAmm [26], QCISD/NESC,

CCSD/NESC [28], and MCDF [16].

102
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Regarding the molecular g−tensors, there are generally two different computational

approaches employing first-order and second-order perturbation theory. In framework

of ab initio wavefunction methods, both these approaches are usually based on the state

expansion, which is practically truncated. There were several studies reporting methods

that are equivalent to the untruncated expansion, such as LR-CASSCF [48], CP-MRCI

[51], analytical CC [53], variational SO-CASSCF [57], and single-reference 4c-CI [58].

However, these methods are expensive and thus impractical for predicting the g−tensors

for larger molecules. The DMRG based methods, such as analytical DMRG [85] or 4c-

DMRG [123], are therefore expected to be helpful.

In Chapter 2, DMRG calculations were performed to predict HFCCs of 4 2Σ diatomic

radicals (BO, CO+, CN, and AlO) and vinyl (C2H3) radical. From the results, two

technical points can be summarized as follows. (i) The active space method has the

potential to accurately describe the HFCCs, but the active space must be addressed

by the construction of active orbitals. Generally, the FC term is particularly sensitive

to the choice of active space. Moreover, the DMRG method is also suitable to deal

with multireference cases such as the AlO radical. (ii) It is necessary to correlate the

core electrons to correctly obtain the spin density at the nucleus; therefore, the core

orbitals should be included in CAS. At the same time, inclusion of polarization shells is

necessary to describe the dynamical correlation effects, which provide the corresponding

polarization.

In Chapter 3, we have newly developed a computational scheme, referred to as DMRG-

CASSCF/DKH3, for the accurate prediction of HFCCs of heavy molecules. As test cases,

we have evaluated the HFCCs for 4d transition metal radicals: Ag atom, PdH, and RhH2.

Good agreement between the isotropic HFCCs obtained from DMRG-CASSCF/DKH3

and experiment in inert gas matrices was found. Because there are no available gas-

phase values for these radicals in literatures, the results from high-level theory, as used

in this work, can serve as benchmark data.

In Chapter 4, we have newly implemented the CP-CASSCF method for calculating

molecular g−tensors. As the first step before employing the DMRG method, FCI has

been used to fully treat the correlation in active space. The perturbation-induced orbital

relaxation was also taken into account. We have tested our implementation by evaluat-

ing the g−values for a series of small radicals including light doublet and light triplet

radicals, as well as heavy doublet hydrides and dihydrides. For light molecules, our

results are quite consistent with the MRCI results and comparable to the experimental

values, especially for triplet radicals. For comparison, the QDPT approach was also

employed. The inconsistency between CP- and QDPT-CASSCF results is pronounced
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for heavy radicals, where the higher-order SOC effects become important. Further com-

parisons for larger molecules need to be performed in order to reveal the advantages and

disadvantages of these two approaches. Working on this issue is in progress.

In Chapter 5, we formulated the CP-DMRG method for g−tensor calculations. Unlike

the FCI method, the evaluation of first-order spin density requires not only the first-

order wavefunction obtained by solving the CP-DMRG equation, but also the first-order

spin density operator originating from the first-order renormalization bases. Details of

algorithm and implementation were provided. The CP-DMRG is believed to be the

useful tool to evaluate the molecular g−tensors of large organic radicals, where SOC is

expected to be weak.

Apart from EPR parameter calculations, we presented our new development on the effec-

tive one-body (or Fock-like) Hamiltonian, which is perturbed with electron correlation

at the MP2 level on the basis of canonical transformation in Chapter 6. Orbital descrip-

tions including energy levels are optimized by repeatedly diagonalizing the one-body

MP2 (OB-MP2) Hamiltonian, where the amplitudes of transformation based on the

MP1 wave function are concomitantly updated, including their denominators. Numeri-

cal performance is illustrated in molecular applications for computing reaction energies,

applying Koopman’s theorem, and examining the effects of dynamic correlation on en-

ergy levels of metal complexes. Our implementation based on the spin-free formalism is

limited to the applications to the closed-shell systems so far . Extending this method for

the open-shell systems and applying to the EPR parameter calculations are appealing

and interesting.
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[73] G. K.-L. Chan, M. Kállay, and J. Gauss, J. Chem. Phys. 121, 6110 (2004).

[74] G. K.-L. Chan, J. Chem. Phys. 120, 3172 (2004).

[75] J. Hachmann, W. Cardoen, and G. K.-L. Chan, J. Chem. Phys. 125, 144101

(2006).

[76] J. Hachmann, J. J. Dorando, M. Avilés, and G. K.-L. Chan, J. Chem. Phys. 127,

134309 (2007).

[77] T. Yanai, Y. Kurashige, E. Neuscamman, and G. K.-L. Chan, J. Chem. Phys.

132, 024105 (2010).

[78] Y. Kurashige and T. Yanai, J. Chem. Phys. 135, 094104 (2011).

[79] Y. Kurashige, G. K.-L. Chan, and T. Yanai, Nature Chem. 5, 660 (2013).

[80] M. Saitow, Y. Kurashige, and T. Yanai, J. Chem. Phys. 139, 044118 (2013).
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[135] L. Bučinský, S. Biskupič, and D. Jayatilaka, J. Chem. Phys. 133, 174125 (2010).

[136] F. Neese, A. Wolf, T. Fleig, M. Reiher, and B. A. Hess, J. Chem. Phys. 122,

204107 (2005).

[137] R. Mastalerz, G. Barone, R. Lindh, and M. Reiher, J. Chem. Phys. 127, 074105

(2007).

[138] T. Yoshizawa and M. Hada, Chem. Phys. Lett. 458, 223 (2008).

[139] J. Seino, W. Uesugi, and M. Hada, J. Chem. Phys. 132, 164108 (2010).

[140] R. Van Zee, S. Li, Y. Hamrick, and W. Weltner Jr, J. Chem. Phys. 97, 8123

(1992).

[141] L. J. Hayton, B. Mile, and P. L. Timms, Phys. Chem. Chem. Phys 4, 5739 (2002).

[142] A. Wolf and M. Reiher, J. Chem. Phys. 124, 064102 (2006).

[143] J. Autschbach, ChemPhysChem 10, 2274 (2009).

[144] L. Visscher and K. G. Dyall, At. Data and Nucl. Data Tables 67, 207 (1997).



Bibliography 112

[145] K. Balasubramanian and D. W. Liao, J. Phys. Chem. 92, 6259 (1988).

[146] L. B. Knight Jr, S. Cobranchi, J. Herlong, T. Kirk, K. Balasubramanian, and

K. Das, J. Chem. Phys. 92, 2721 (1990).

[147] Z. Zhang and N. Pyper, Mol. Phys. 64, 963 (1988).

[148] R. Van Zee, S. Li, and W. Weltner Jr, J. Am. Chem. Soc. 115, 2976 (1993).

[149] J. Autschbach and T. Ziegler, Coord. Chem. Rev. 238, 83 (2003).

[150] Y. Yamaguchi, J. D. Goddard, Y. Osamura, and H. F. Schaefer, A new dimension

to quantum chemistry: analytic derivative methods in ab initio molecular electronic

structure theory (Oxford University Press New York, 1994).

[151] B. A. Hess, C. M. Marian, U. Wahlgren, and O. Gropen, Chem. Phys. Lett. 251,

365 (1996).

[152] K. Balasubramanian and D. Dai, J. Chem. Phys 93, 7243 (1990).
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[154] B. O. Roos, R. Lindh, P.-Å. Malmqvist, V. Veryazov, and P.-O. Widmark, J. Phys.

Chem. A 109, 6575 (2005).

[155] A. Luzanov, E. Babich, and V. Ivanov, J. Mol. Struct.: THEOCHEM 311, 211

(1994).

[156] M. Engström, B. Minaev, O. Vahtras, and H. Ågren, Chem. Phys. 237, 149 (1998).
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