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Abstract

In the investigation of the transport phenomena in a magnetic confined plasma, neoclas-
sical transport theory, which describes the transport processes of charged particles by
Coulomb collisions in a torus configuration, has played an important role. Neoclassical
transport theory in a tokamak has been studied in detail from the beginning of fusion
research, and it has been regarded as being a well-established theory.

Recently, however, it has been found that the conventional neoclassical transport
theory cannot be applied to some parameter regimes in the improved confinement
plasma experiments. Particularly, in a reversed magnetic shear discharge which accom-
panies an improved confinement region called the internal transport barrier (ITB), the
observed ion thermal temperature 7; and the safety factor ¢ around the magnetic axis
sometimes become much higher than those in a normal magnetic shear configuration
with no improvement of core plasma confinement. In a reversed shear configuration, the
ion orbit width in the minor radial direction becomes wider, and the conventional neo-
classical transport theory, which is based on the small orbit width (SOW) approxima-
tion, is not valid in the near-axis region. In fact, the observed ion thermal conductivity
in reversed shear configuration discharges is sometimes below the standard neoclassical
transport level around the magnetic axis.

In this dissertation, a new formulation of neoclassical transport theory which cor-
rectly reflects the finite orbit width (FOW) effect of the particle orbits appearing around
the magnetic axis is constructed, and it is applied to the numerical calculation of the
ion thermal conductivity near the magnetic axis. The contents consist of three parts as

follows:

1. As the basis of the transport analysis, a precise investigation of particle orbits near
the magnetic axis is shown. In the near-axis region, there appear characteristic
orbits with a relatively wide width called Potato orbits. A clear classification
of these non-standard particle orbits, which have not been properly treated in
the conventional studies of neoclassical transport, is established. It is shown
that the conventional neoclassical transport theory should be largely modified




by considering the effect of potato particles in the near-axis region.

2. To include the orbital properties of potato particles in neoclassical transport the-
ory, Lagrangian approach of transport analysis is adopted. In this approach, the
transport equations are derived based on the reduced drift kinetic equation de-
scribed in a Lagrangian representation, in which three constants of motion (COM)
along each particle orbit in the collisionless limit (the particle energy £, the mag-
netic moment y, and the averaged poloidal flux surface position (¢)) are chosen
as the independent variables in the phase space. The transport coefficients are
obtained by integrating information of the background field along the exact or-
bit of each particle. Therefore, Lagrangian formulation can correctly include the

FOW effect to neoclassical transport.

3. Using the Lagrangian transport theory, the ion thermal conductivity y; around
the magnetic axis is calculated numerically. In the calculation, the orbital prop-
erties of potato orbits are correctly reflected. It is found that the resultant y; is
lower than that predicted by conventional neoclassical transport theory. The La-
grangian approach can explain the reductive tendency of y; near the magnetic axis
found both in recent experiments and in other transport simulations using the 6 f
Monte Carlo method. An advanced numerical calculation method of parallelized

computing by Message Passing Interface (MPI) is adopted in the calculation.

The advanced point in this work is that we develop the Lagrangian transport theory
so as to be applicable to the numerical calculation in realistic cases for the first time.
We introduce a model collision operator which is suitable to handle in analysis and
also retain the important property of momentum conservation of the collision opera-
tor. Applying the model collision operator enables us to treat the transport caused by
the like-species particle collisions in the Lagrangian formulation, which is not correctly
treated in previous studies on the Lagrangian transport theory using simple Lorentz
approximation collision operator. We also derive the explicit expression of the Jacobian
in the COM space (&, i, () for the first time which is essential to apply the formula-
tion to numerical calculations. The numerical method of integration in the (£, 1) space,
of which the integral region cannot be given analytically, is proposed by applying the
Monte Carlo integration method. The numerical method enables us to calculate trans-
port coefficients in a quantitatively correct way with including the FOW effect of potato
orbits.

The formulation of the Lagrangian transport theory shown in this dissertation can
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reproduce the results of the standard neoclassical theory in the region away from the
axis. We can see quantitatively how the presence of potato particles affects neoclassical
transport as approaching to the magnetic axis. It is shown that the region in which
x: reduces from the standard neoclassical level expands outward from the magnetic
axis as the potato width becomes wider in a reversed magnetic shear configuration,
in which the ¢-factor around the axis is relatively higher than that in a normal shear
configuration. Therefore, it is found that Lagrangian transport analysis including the
FOW effect is really important to consider the transport phenomena in a reversed shear
‘configuration, which attracts much attention in these days.

In this study, the effectiveness of the Lagrangian approach in transport analysis
with the FOW effect is demonstrated for the first time. We believe that this work have
made a breakthrough to utilize Lagrangian approach in various transport problems in

plasmas.
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Chapter 1

Introduction

Recently, neoclassical transport in the core region of tokamaks has attracted much
attention again. It is well-known that there appear non-standard guiding-center orbits
near the magnetic axis called “potato” orbits[1]. Typical orbit width of potato particles
is as large as (q%p?R,)'/3, where q is the safety factor, p is the Larmor radius, and R,
is the major radius, respectively. In recent tokamak experiments in reversed magnetic
shear configuration accompanied by the internal transport barrier (ITB)[2, 3, 4, 5], the
measured ion thermal conductivities in the core region sometimes become lower than
those predicted by a conventional neoclassical transport theory[2, 5, 6, 7]. In fact, the
standard neoclassical transport theory(8, 9] constructed in the small-orbit-width (SOW)
approximation is not applicable to the near-axis region, and the orbital properties of
potato particles should be considered in analyzing transport in this region. Then, several
transport theories have been presented to include the effect of potato particles(10, 11,
12, 13, 14}, and Monte Carlo simulations (so called the ¢ f-method)[15, 16, 17, 18, 19]
have also been carried out to calculate the ion thermal conductivity x; in the near-axis
region. However, there exist differences in the resultant y; depending on the models
used in analytical calculations, and neoclassical transport theory in the near-axis region

has not been completed yet.

Neoclassical transport theory has usually been discussed in an Eulerian representa-
tion. Then, the extension of the theory to the near-axis region has also been discussed
in an Eulerian manner. However, to include nonlocal orbital properties in the transport
theory, Lagrangian formulation[20, 21, 22] has been found to be suitable for a collision-
less (banana-regime) plasma. In this approach, transport phenomena are described by
a reduced drift-kinetic equation in the phase space of three constants-of-motion (COM)
along each collisionless particle orbit in an axisymmetric system. The previous works

have proven that Lagrangian formulation can reproduce the results obtained from the
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standard Eulerian formulation built in the SOW limit in the region away from the

magnetic axis.

The present article is the first practical application of the Lagrangian formulation to
the near-axis region in which the finite-orbit-width (FOW) effect becomes really impor-
tant. To utilize Lagrangian transport theory, we improve the treatment of like-particle
collision term in the formulation to retain the momentum conservation property. It is
also shown that our formulation with the model collision operator is suitable to numer-
ical calculation. In contrast to the other Lagrangian approaches using some analytical
approximations, our calculation reflects quantitatively correct properties of all types of
particles appearing around the magnetic axis. It is found that the ion thermal conduc-
tivity x; obtained by the Lagrangian transport theory becomes significantly lower than
that predicted by the conventional Eulerian theory. It is shown that the reduction of y;
from the standard neoclassical level occurs in the range of a typical potato orbit width
from the magnetic axis r < 2(2¢%p*R,)'/%. Therefore, the modification of neoclassical
transport theory is really important in a reversed shear configuration since potato width
is proportional to ¢*/3, and the g-factor becomes large near the axis in this configura-
tion. Our result can explain the reductive tendency of x; found in the recent results of
both Monte Carlo simulations and experimental diagnostics in the core region.

This dissertation is organized as follows. In Chapter 2, the analysis of guiding-center
orbits is reviewed[23], and the classification of orbit types in the COM space is presented.
The reduced kinetic equation and collision operator in the COM space are derived in
Chapter 3, and the transport equation is obtained by solving the kinetic equation[24].
We also discuss how to compare the neoclassical fluxes between Lagrangian and Eulerian
representations. Transport coefficients including the ion thermal conductivity in the
near-axis region are calculated numerically in Chapter 4. The comparison between
the ion thermal conductivity calculated by our formulation and those obtained from
experiments or other Monte Carlo simulations is shown in Chapter 5. Finally in Chapter
6, the summary of this dissertation is given. Main results and future studies relating to

this thesis are discussed.



Chapter 2

Particle orbit near the magnetic axis

2.1 Introduction

As a beginning of this chapter, let us look back briefly the conventional analysis on
particle orbit and see what is the problem when considering neoclassical transport
in the region near the magnetic axis. Particle orbits in tokamaks have already been
investigated in detail for the region away from the axis. For example, a radial width of
a trapped particle, or a “banana width”, is approximated in the conventional analysis
as[25]

Ay ~ \/Eppr (2‘1)

where ¢ = r/R, is the inverse aspect ratio and p, = mv/eB, is the poloidal Larmor

radius. The fraction of trapped particles is given as

fe~me (2.2)

These characteristic Quantities can be written by local values such as € and p, when an
instant radial position of a particle r is assumed to be much larger than the banana
width of the orbit A,; A,/r < 1. According to Eq. (2.1), a banana width seems
to be infinity on the magnetic axis because p, x 1/B, « 1/r. However, equations
(2.1) and (2.2) are invalid near the axis. Actually, both the banana width and the
fraction of banana particles are finite on the magnetic axis as found by Stix[26]. The
typical orbit width of trapped particles passing near the magnetic axis, which are called
”potato” particles[1], is ~ (¢%p2Ry)'/3, where g is the safety factor and p = mv/eB, is
the gyroradius.

This invalidity in orbit analysis is also responsible for the reason why the standard

neoclassical transport theory[8, 9] cannot be applied to the near-axis region. In a simple
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estimation, the neoclassical diffusion and thermal conductivity D and y are given as[27]
D,x ~ fivess A} o< €3/ up?, (2.3)

where v sy = v/ f? is the effective collision frequency for banana particles. These coeffi-
cients seem to go to infinity on the axis. However, this estimation is obviously incorrect
because the actual orbit properties neat the axis are not evaluated properly. In this
way, it has been recognized that a detailed investigation about the properties of parti-
cle orbits is important and constitutes the basis of the neoclassical transport theory for
the near-axis region. The most important point in analyzing particle orbits near the
magnetic axis is to take account of the finiteness of orbit width, since in this region the
ordering A,/r < 1 is not valid.

As we will see in this chapter, there appears various types of particle orbits which
are characteristic in the near-axis region. To make a clear classification of such orbits,

we introduce two signs with respect to particle motions :

o = —L, (2.4)
|v) |
]
= —_, 25
oo 7 (2.5)

where v) is the velocity component parallel to the magnetic field. The poloidal angular
velocity 4 is defined as

f=v-Vo= (V“ + Vd) - Vo, (26)

where v, is the sum of the grad-B, curvature, and E x B drift velocities. Conventionally,
orbit topology is classified as “passing” or “trapped” depending on whether the sign of
parallel velocity o reverses along an orbit or not. However, particle orbits passing near
the magnetic axis are strongly affected by the grad-B and curvature drifts, and there
appear new types of orbit. We show later that all these orbit types can be properly
classified by counting the number of turning points of both o and o,.

In connection with the Lagrangian transport theory in §3, we show in this chapter
two classifications of orbit types in the space of constants of motion (COM). One can
make a set of COM (zy, 29, 23), where zj, 25, 23 are independent, arbitrary functions
of well-known three constants of motion of particles in an axisymmetric, collisionless
system : the particle energy £, the magnetic moment x, and the canonical angular
momentum F.

For a detailed understanding on orbit properties near the axis, we first use in §2.2
a familiar choice of COM : (21, 22, 23) = (v,&s,7s), where v is the particle velocity, r

4




is the minor radius at which the orbit crosses the mid-plane Z = 0, and & = vy /v is
the cosine of the pitch angle on that point. Particle orbit analysis in this space has
been investigated by Chu [28] and Egedal[29]. In the present paper, a simple analytic
expression of the boundary for each type of orbit is given.

Our Lagrangian transport theory is deireloped in the COM space (&, p, (r)) proposed
by S. Wang [22], where (r) is the bounce-averaged radial position of a particle. The
classification of particle orbits in this space is shown in §2.3. This description is more
convenient and physically more understandable than that in the former choice of COM
in utilizing it for Lagrangian formulation. In the (&, p, (r)) space, the classification of
orbit types proposed here becomes important.

2.2 Analysis of orbits near the magnetic axis

Let us consider an axisymmetric configuration like a tokamak. Coordinates are chosen
as in Fig. 2.1; r is the minor radius, ¢ the toroidal angle, and 6 the poloidal angle. A
general axisymmetric magnetic field is written as B = IV({ + V({ x V%, where I = RB,
and v is the poloidal flux. For simplicity, we assume that the magnetic surfaces have
concentric circular poloidal cross sections and that the safety factor ¢ is constant. Then
the poloidal flux can be written as v = (Bor?)/(2q), where By = I /R, is the magnetic
field strength on the magnetic axis R = Ry. Note that we take j- B > 0, where j is the

plasma current density. In an axisymmetric system, there are three constants of motion

as follows:
mu? .
&= - +e® : Total energy of a particle, (2.7a)
2
p= T;LZL Magnetic moment, (2.7p)
I
Pe=y - % : Canonical angular momentum, (2.7¢)

where ® is the electrostatic potential and Q2 = eB/m is the gyrofrequency. Particle
motion averaged with respect to gyrophase is described by the guiding-center equations
of motion. To the lowest order in p/L, where p is the gyroradius and L the gradient

scale length of the magnetic field, they are written as

vV = ’U“b + —b‘ x (uVB + mvﬁb - Vb), (2.8)
mS)
dy) p
— - 2p. 2.9
g7 —b-VB, (2.9)

where b is the unit vector parallel to the magnetic field. The E x B drift is neglected in
the orbit analysis here. The second term on the right-hand side of Eq. (2.8) represents
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Figure 2.1: Coordinate system.

the drift velocity v;. Using the large-aspect-ratio and low-3 approximations, we can

write
B ~ Be g (1 — ecosb) (2.10a)
~ l4ecosf ’ '
1 2, L oY),
vy ~ XN (’U” + ivl) z, (2.10b)
where 2y = eBy/m. From these expressions, the poloidal angular velocity is written as
) — 1 q 2, 19
9 =V- vo = q—R—O [’U” d 7‘_&)0 (U" -+ —Q'UJ_) COSQ] y (211)

which shows that the contribution of v, to § increases proportional to 1 /r near the
magnetic axis. Particle orbits can be analyzed with the three constants of motion and
Egs. (2.8) - (2.11).

Examples of orbits near the axis numerically calculated by Egs. (2.8) and (2.9) are
shown in Figs. 2.2 — 2.5. In these figures, orbits of hydrogen ions with £ = 10keV
are plotted, where other parameters are given as Ry = 4m, ¢ = 3, and By, = 4T,
respectively. The arrows in these figures represent the direction of the particle motion.
In the calculations, the minor radius of the starting point r, on the mid-plane Z = 0
and the cosine of the pitch angle of velocity at that point & = v /v are given as initial
conditions. Orbit types are classified below according to the number of turning points
of o and o0y defined in Eqgs. (2.4) and (2.5), respectively.
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Figure 2.2 shows the orbits of passing particles. Both the signs o) and o4 are constant
over the orbits. The radial displacement of a passing orbit (|r(# = 0) — r(6 = 7)) has
a minimum value for the particles with £, = +1, as in the orbits B and D. From the
equation of conservation of P, and noting the fact that v = £v for such particles, one
can find that the minimum displacement is 2¢gp. On the other hand, A and C are the
passing orbits which have the maximum radial displacement starting from the same
positions as in B and D. As shown later in Fig. 2.6, these particles are on the boundary
to other types of orbit. Though the maximum displacement of passing orbit near the
axis becomes as large as (¢>p?R,)Y/3, most of the passing particles still have a small
displacement of the order of gp.

Figure 2.3 shows banana orbits. We identify banana orbits with those which have
two turning points for each of o and 0y, and then do not encircle the magnetic axis. The
banana width, which is measured on the mid-plane, increases when the orbit is close
to the magnetic axis, but it remains finite even if the orbit passes through the axis.
The orbit E in Fig. 2.3 represents the widest banana orbit. To obtain the maximum
banana width, let us consider a particle which starts from the magnetic axis r, = 0 with
& = vjp/v < 0. If the particle has the turning point at (r,6) = (r1, 7), then 6 =0 on
that point. Therefore, from Eq. (2.11), we obtain

q 2 1, ) qg pB ( 7'1)
r=—-——>"1vj +=v ~ — — |14+ =]. 2.12
T o ( It v m Ry (212)

where v; and v,; are the parallel and perpendicular velocities at r = r; respectively,

and we use an approximation vﬁl < v%, on the turning point. On the other hand, from

the conservation of £ and F; at » = 0 and r;, we have

v B B
lo , #5o Yr , HDo
—_t— = — 1 2.13
2 + m 2 ‘+ m ( +R{)) (2.13)
Qo’f'%
= — . 2.14
Vjo U~ 3R, (2.14)

Solving Egs. (2.12) - (2.14), we obtain

= (2¢°p*Ro)Y3, (2.15)
3 g 1/3
& = (ZRO) . (2.16)

Note that we take p = v/} here and hereafter. Solving similar equations for constants
of motion concerning (r, 8) = (ry,7) and (A,,0), we obtain the maximum banana width
Ap,

A, = 2r; = 2(2¢°0* Ro) 3. (2.17)
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Lin, Tang, and Lee [15] showed a similar result, but it has different numerical factors.
It is because they used v}, = 0 as the condition of the turning point of §. As shown in
Fig. 2.3, the positions of v; = 0 and § = 0 tend to deviate from each other on a banana
orbit passing near the magnetic axis. Therefore, using § = 0 as the poloidal turning
condition is more correct in the orbit analysis.

Figure 2.4 shows orbits of a typical type appearing near the magnetic axis. These
particles have a constant o) but 0y changes twice on the orbits. They are located on the
inside or the outside of the torus and are poloidally trapped. We name those orbits with
o) = +1 “outer-circulating” (solid lines), and those with oy = —1 “inner-circulating”
(dashed lines). Note that this criterion is reversed for electrons, or when the direction
of the parallel current is anti-parallel to the magnetic field. The maximum width of
outer-circulating orbit A,. can be obtained by solving the equations of motion for the
particle with (r,, &) = (0,0), which corresponds to the orbit G. The result is

Doc = (4¢°0"Ro)'/2. (2.18)

On the other hand, the widest inner-circulating orbit H corresponds to the inner part
of the widest banana orbit E in Fig. 2.3. Thus we obtain

Aic =T = (2q2p2R0)1/3. (219)

The minimum width of circulating orbits is zero. Such particles are stagnated on the
mid-plane, and move only in the toroidal direction. Stagnation occurs when a particle

satisfy § = 0 and 7 = 0 on the mid-plane, and by solving Eq. (2.11) we have

Ty = ﬂ(l + €2) : stagnation condition. (2.20)

2
Note that the domain of r, is extended to negative values, where r;, < 0 represents the
starting point of a inner-circulating orbit (r, ) = (|rs|, 7).

A remarkable difference between outer- and inner-circulating orbits is the region in
which each type of orbit can exist. Like the orbit J, inner-circulating orbits can exist
only in the regién —A;. < rs <0 enclosed by the widest one; the orbit H. On the other
hand, outer-circulating orbits can exist away from the axis r, > A, like the orbit I.
Orbits like I are conventionally classified as “deeply-trapped” banana, but in fact they
have no turning point of o and can move freely in the toroidal direction.

Figure 2.5 shows orbits which encircle the magnetic axis but are magnetically trapped,
i. e., oy changes twice on these orbits. We divide these orbits further into two types.
One type consists of the orbits which have four turning points of o like the orbit L in

8




Table 2.1: Classification of particle orbits.

Orbit type Turning points of o, 0y | Sign of o
Passing 0o, O + or —
Banana 2, 2 +
Outer-circulating 0o, 2 +4
Inner-circulating 0o, 2 —4
Kidney 2 , O +
Concave-kidney 2 , 4 +

% For ions. The sign is opposite for electrons.

Fig. 2.5. The other consists of the orbits which have no turning point of oy like the
orbit M. We name the former “concave-kidney” to distinguish it from the latter called
“kidney” by Chu [28]. Concave-kidney orbits have a larger radial displacement than
kidney orbits.

The summary of the classification of orbits is shown in Table 2.1. Orbits are clearly
classified by the number of turning points of oy and oy. One can see that all the orbits
which are poloidally trapped (banana, inner-circulating, and outer-circulating orbits)
have two turning points of o,.

In the classification shown here, the terminology “potato orbit” is not used. Orig-
inally, potato orbits are defined as those which have a typical orbit width A, ~
(¢?0*Ry)'/?[1]. We have shown that various types of orbits have this characteristic
width, for example A,, A, and A;.. Then it is difficult to make a mathematically spe-
cific criterion for potato orbits. In this text, therefore, we use the classification defined
in Table 2.1 to mention a specific orbit type, and “potato orbit” is used as a generic

term referring to typical orbits near the magnetic axis with A, ~ (¢?p?Ro)'/3.




0.1} A
Py B
zm | 7 s \\ '\
/
0.0 —(— -------- ({ } ‘>
\¢C \\ // /
\\ DN _ 2
\\ -
0.1
3.9 4.0 4.1
R (m)

Figure 2.2: Orbits of passing particles. Solid lines represent co-passing orbits (v > 0)
and dashed lines counter-passing orbits (vy < 0). The maximum radial displacement
of passing orbit near the axis is shown by the orbit A or C, which is as large as ~
(¢?p*Ry)'/®. However, most of the passing orbits have a small radial displacement ~ 2¢gp
as shown by the orbits B and D.

0.2¢r

0.1}
Z (m)
0.0

3..9 4.0 4I.1 4‘.2 4.3
R (m)

Figure 2.3: Orbits of banana particles. The circles and the bars marked on these orbits
represent the turning points of the sign o, (poloidal angular velocity) and o (parallel
velocity), respectively. Near the magnetic axis, these two kinds of turning point tend
to deviate from each other. The orbit E is the widest banana of which the radial width
is A, given by Eq. (2.17).
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3.9 4.0 41 4.0
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Figure 2.4: Orbits of outer-circulating particles (solid lines) and inner-circulating par-
ticles (dashed lines). The sign o) is positive for outer-circulating orbits, while it is
negative for inner-circulating orbits. Orbits G and H are the widest ones for outer- and
inner-circulating orbits, respectively. Inner-circulating orbits exist only in the region
enclosed by the orbit H. Outer-circulating orbits can exist away from the magnetic axis
like the orbit I.

. i . :
3.8 4.0 4.2
R (m)

Figure 2.5: Orbits of concave-kidney L and kidney M. Only concave-kidney particles

have four turning points of oy, while oy changes twice on both types of orbit.
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2.3 Classification in the (v,&;,r;) space

In this section, we classify orbit types in the (v, &, rs) space, where r, and &, is defined
in §2.2. This set of COM is often used to classify orbit types, and a similar set of COM
is used in the Lagrangian formulation of transport theory by Zaitsev et al.[21].

The regions and the boundaries in the (rg, &) plane for each type of orbit of ions
with £ = 10keV in the model configuration used in §2.2 are shown in Fig. 2.6, and
the regions near the origin and near the concave-kidney region are magnified in Figs.
2.7 and 2.8, respectively. In Figs. 2.6 — 2.8, negative r, means the crossing points of
particle orbits on the mid-plane Z = 0 at the inside of the torus; (r,8) = (|rs|, 7). The
extension of r,; to the negative region makes it convenient to express boundaries of orbit
types. A similar expression is used in a paper by Egedal[29].

The points (rs,&s) which correspond to the orbits A to M in Figs. 2.2 — 2.5 are
plotted in Figs. 2.6 — 2.8. Note that there are two different points in the (r,, &) plane
corresponding to the same one orbit, because any orbit crosses the mid-plane twice. In
Fig. 2.6, the points E, G and H correspond to orbits with maximum width for banana
A,, outer-circulating A,., and inner-circulating A,., respectively. We newly distinguish
the region of concave-kidney (vi) from the region kidney (v). This distinction becomes
important in the next section in which orbits are classified in the (&, u, (r)) space.

In the case of a simple model configuration used here, boundaries of orbit types can
be solved analytically. Dotted lines in the circulating regions in Fig. 2.6 correspond to
the orbits stagnated at Z = 0 and r, given by Eq. (2.20). The other boundaries are
given as follows. ‘

First, the boundary b1 which lies between the outer-circulating and co-passing re-
gions and between the inner-circulating and counter-passing regions is obtained from

equations like (2.13) and (2.14) for a particle passing through the magnetic axis. The

1| Ro R2¢2
=2 | (14 e) £ S 4) (146 +e
& Q[qpe( + €) \/(q2p2 )( + €5 + €2)

where ¢, = r,/Ry and we choose — for 2¢gp < r, < A,. (the boundary of the outer-

result is

, (2.21)

circulating region) and + for —A;. < r, < —2¢p (the boundary of the inner-circulating
region). We have used the large-aspect-ratio approximation and the terms higher than
O(€?) have been neglected. This equation also represents the boundary between the
banana and concave-kidney regions E-G at A, < r; < A, in Fig. 2.8.

Second, to obtain the boundaries between the concave-kidney and kidney regions
G-X in Figs. 2.6 and 2.8, let us consider a concave-kidney particle which starts from
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Figure 2.6: The regions and the boundaries for each type of orbit in the (r;, ;) plane,
where r, is the minor radius at which orbits cross the mid-plane Z =0, and & =y /v at
that point. Negative r; means the inside of the torus. The regions (i) — (vi) correspond to
(i) passing, (ii) banana, (iii) outer-circulating, (iv) inner-circulating, (v) concave-kidney,
and (vi) kidney, respectively. Dotted lines given by Eq. (2.20) in the circulating regions
correspond to the stagnated orbits with » = 6 = 0. Dash-dotted lines b1 are given by
Eq. (2.21). Solid line b2 enclosing the region (ii) is given by Eq. (2.27). Dashed line
b3 is given by Eq. (2.28). Pairs of the same marks B, D, etc. correspond to the orbits
in Figs. 2.2 — 2.5. (See also Figs. 2.7 and 2.8 for some orbits not shown here.)
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Figure 2.7: A magnification of the region Figure 2.8: The regions of concave-
near the origin in the (r,, &) plane in Fig. kidney (v) and kidney (vi) at ; > 0. The
2.6. Pairs of marks correspond to the or- boundary G-X between these two regions
bits in Figs. 2.2 - 2.5. plotted by the dotted line is given by Eq.

(2.26). Other lines and marks are defined

in the same way as in Fig. 2.6.

the point (r, Z) = (75,0) and turns at (r;, §;). The equations of the constants of motion

are written as
2

v B v? B

s , #Do It , #Do

—_— —_ == —_— —_ ) .22

5 +—(1 —¢) 5 + —(1 — & cosby), (2.22)
Q()’I”S Qo’l‘t (223)

T 2R, T 2qRy
where the subscripts s and t mean the values at the points » = r, and r, respectively.
From the condition = 0 at (r¢,0;), we obtain

2
| costy = —= St (fft = (<0 (2.24)
Combining Egs. (2.22) - (2.24), we obtain
1- 62 — Cs
( 52) & + 3¢ — (ﬁs -0 ) &+ (( 52)) = 0. (2.25)

The necessary condition for a concave-kidney particle to exist is that Eq. (2.25) has real
solutions for &. Therefore, the boundaries G-X in the (r,,&;) plane are approximately
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given by the discriminant of Eq. (2.25) (neglecting O(¢}) term),

Ry ) 3(62 — <)
: - s =0. 2.26
p=i1(6-3md) - i (220)
Third, solving equations for a particle which passes the mid-plane Z = 0 with £ = 0,
we obtain
4qp 2gp
3 2 _2¢,(1 — )€+ == = 0. 2.27
&R b~ ( )€ R (2.27)

This equation, which corresponds to the boundary b2 in Figs. 2.6 and 2.8, has two real
solutions &, > 0 in the region r, > 1.5(¢%p?R,)"/®. One solution represents the boundary
between the banana and outer-circulating regions, while the other corresponds to the
boundary between the kidney and passing regions. As shown in Fig. 2.8, the kidney
region is very narrow and then the latter solution is almost the same as the upper
boundary of the banana region b3 at r; > A,. In particular, away from the magnetic
axis, two solutions of Eq. (2.27) are approximated as & =~ gp/rs ~ 0 and & ~ /2¢;,
which give the conventional representation of the banana region.

Finally, the upper and lower boundaries of the banana region b3 are obtained from
equations for a particle which has the turning point § = 0 at (r,8) = (r;, 7). Taking
re = ;. (x > 1) and using the approximation r;/Ry < 1, these boundaries (7, &;) can

be given in terms of z as

re = 2(1 £ 273/2) A,

1/3 2.28
& = ( (i‘[?,)o) (:!:2$1/2 -+ %) , ( )

where we choose + (—) for the upper (lower) boundary. When z >> 1, these equations
result in & ~ +./2¢,. Applying these equations to = < 1, they represent the boundary
E-X in Figs. 2.6 and 2.8. In Fig. 2.6, three boundaries, which are given by Egs. (2.20),
(2.26), and (2.28), respectively, converge on the point X at r, < 0. This point is given
by solving Eq. (2.28) for |rs| = r; as

2 2 1/3 1/3
q°p°Ro qp
= |- — | = 2.29
[TS, 53] [ ( 2 ) 3 (4RO) ] bl ( )
and another pair to the point X at r; > 0 is written as
2.2 1/3
q°p°Ro 2qp
= . 2.30

Let us discuss the results of this section. As shown in Eq. (2.16), the banana region
has the finite fraction |§| (~ 0.16 for the parameters used in Figs. 2.2 — 2.5) on the
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magnetic axis. We can see from Fig. 2.6 that a considerable fraction of particles which
have been regarded as bananas are actually identified as outer-circulating particles.
Within |rs] < 2¢p (~ 2cm), nearly half of particles are circulating ones. The deviation
of the banana-passing boundary from the conventional expression in Eq. (2.2) can be
seen for r < A, (~ 20cm). Since & and A, increases with gp, the modification on orbit
classification is significant for high energy particles and in high-q configurations. It is
also noted that because p./p; \/W <« 1 for the two species with the same energy,
the modification on the particle orbits near the axis is more important for ions than
that for electrons.

In recent approaches of extending neoclassical transport theory to the near-axis re-
gion, the main modification is to take account of potato particles in solving the transport
equation. In the (rg, &) plane, we find that any particle which has one of a pair of points
(rs, &) around the origin in the range about |r,| < (¢?p*R)Y/? and |¢,| < (gp/Ro)'/? has
this characteristic orbit width. Therefore, potato orbits are not only banana orbits
passing through near the magnetic axis but consist of many types of orbit appearing
around the origin in the (r,, &) plane in Fig. 2.6, and all of them will contribute to the
neoclassical transport near the axis. Therefore, recent studies for extension of neoclas-
sical transport theory[10, 11, 12, 13, 14| are insufficient in that they do not consider
inner-circulating and kidney orbits.

As concerns Lagrangian transport theory, there are some difficulties in using the
set of COM (v,&;,rs) in practice, though Zaitsev et al.[21] have attempted to. The
position r, jumps when a particle changes from passing to banana particle, and from
inner-circulating to concave-kidney particles. Such a discontinuity is unfavorable to
construct transport equations. Moreover, since there are two values of r, for each orbit
and the difference between them is large for potato particles, the transport equation in
the Lagrangian representation is not simply connected to the transport phenomena in
real spaée if 23 is taken as r,. Though the classification of orbit types in the (v, &, 75)
space is a useful way in itself, it does not seem to be suitable to apply to Lagrangian

formulation in the region near the magnetic axis.

2.4 Classification in the (£, u, (r)) space

In this section, the region of each orbit type in the (£, u, (r)) space is investigated as a
basis of the Lagrangian transport theory in §3.

Let us consider a transformation from Cartesian coordinate system (z;, v;) to (2;, Z;) =
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(€, 1, (r),0,(,¢). In axisymmetric systems with drift approximation, the toroidal angle
¢ and the gyrophase ¢ can be neglected, and the guiding-center position is described
by the minor radius r and the poloidal angle . Three constants of motion are defined

as

L o
& = S + e®, (2.31a)

2

_ mwi
= S (2.31b)

1 db

ry = — Qr—, 2.31c
"= =42 (2319

where v, is the velocity perpendicular to the magnetic field lines, and the integral in
Eq. (2.31c) is carried out along one poloidal circuit of an orbit. The poloidal bounce
time 7, is given by

de

= ¢ —. 2.32
n=$5 | (232)

We can also use the poloidal flux surface label ¢ and (%) instead of » and (r) for a
radial coordinate when it is convenient. In fact, we use (¢) in the derivation of the
Lagrangian transport equation in §3. In this section, however, we choose (r) to describe
orbit properties in the COM space because of the convenience of analysis.

Note that the definition of the orbital integral is different according to orbit types.
For passing orbits and kidney orbits, § varies monotonously in time. Then the orbital

integral of a function F'(r,#) along these orbits is defined as

2
j[ For0)% — o, / Fr,0)%. (2.33)
6 0 6

where r is a function of (£, u, (r), 0) and depends on orbit types. On the other hand, as
shown in §2.2, banana, outer-circulating, and inner-circulating orbits have two turning
points of oy at which § = 0. Writing one of the turning points § = 6, (0 < 4, < ), the
orbital integral is defined as

de +9t
]{ r,0)— Z o) / (2.34)
ogg==+1
for banana and outer-circulating orbits, and
27 —04 de
j{ (r, 9)— = Z 09/ F(r,0)— (2.35)
ogp==1 Ot

for inner-circulating orbits. Note that the integrand F' depends on the sign oy through

r = r(%;,6; 09) as shown in Fig. 2.9, where oy (not o)) indicates the inner or outer part
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Figure 2.9: Orbital integrations along
inner- and outer-circulating particle or-
bits. The circles and + represent turning
points and signs of oy, respectively. For

a given (&, u, (r)), there are two solutions

Figure 2.10: Orbital integration along a
concave-kidney particle orbit. The bars
represents the turning points of o), and
other marks are used in the same mean-

ing as in Fig. 2.6.

for the particle position r(6) which are
distinguished by oy = +1.

of a circulating (or a banana) orbit. For concave-kidney orbits, there are four turning
points 6 = +6;, 46, (7/2 < 61y < 6 < 7) at which 9 = 0 as shown in Fig. 2.10.
Therefore the orbital integral is defined as |

df L R S
f—_@w_m{ f+/ f+/ ?y (2.36)
0 2

—011 041 0 12 6 T—0¢2 0

where 0y(# = 0) is +1 for ions and —1 for electrons in the present configuration.
Next, let us show the region of each orbit types in the (&, u, (r)) space. Here, we
introduce the normalized magnetic moment )\ as

.UBO

B (2.37)

In Fig. 2.11, we classify the orbit types in the ({r), A\¢) plane for hydrogen ions with
& = 10keV, where the configuration is set in the same way as in §2.3. Since some
parts of regions are overlapped one another in the ({(r), Ao) plane, regions are shown
separately in three figures. Figures 2.11(a) and (b) show regions of orbits which have
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positive and negative o, respectively. Since banana particles take both signs of 0|, its
region appears on both figures. In Fig. 2.11(c), the kidney and concave-kidney regions
are shown. To compare with the classification in the (7, ;) plane, three characteristic
points E (=H), G, and X, which correspond to the orbits with the same marks in Fig.
2.6, are plotted in Fig. 2.11.

In the ({r), Ao) plane, these boundaries are obtained by a numerical method. How-
ever, in the present configuration with a constant-g profile, boundaries /1 and I2 in Figs.
2.11(a) and (b) can be obtained analytically. These lines correspond to the upper bound-
ary of the outer-circulating region, and the upper boundary of the inner-circulating
region which connects to the lower boundary of the banana region, respectively. From
Eq. (2.20), they are written as

)\0=2(1:I:-<T—>) 1—(@)2 1- 1—(2>2 , (2.38)
Ry ap ()

where we choose + (—) for the boundary I1 (I2). In the limit (r) > gp, Eq. (2.38)
results in A\ = 1 &+ (r)/Ry and agree with the conventional description for the banana
region. Because any orbits on the boundary Eq. (2.38) are stagnated on the mid-plane

Z = 0, their averaged position are given by (r) = |r,| from Eq. (2.20). Then, positions
of the points E (=H) is given analytically as

2/3
[{r), o] = [(2q2p2Ro)1/3, 1 —Z— (%) ] : (2.39)

and the point X is also given as

[(r), Ao] = [(ﬁi—@)l/g , {1 - (%)2/3} : {1 - 2—11-/3 (%)2/3}] . (2.40)

To obtain the position of G, which corresponds to the outer-circulating orbit with max-
imum width A,. = (4¢%p?R,)'/3, we need to calculate its average position numerically.

It is given by
G:  [{r), ] = [x(4*p*Ro)'3, 1], (2.41)

where the numerical factor is xy ~ 0.6. We find that x is almost independent of particle
energy and ¢ factor in the case of a constant-q profile. The dependency of regions on
particle energy £ and magnetic field configuration appears through ¢p and R, in Egs.
(2.38) to (2.41). Then, the points E, G, and X move outward in the (r)-direction for
higher energy particles and in a high-q configuration such as a reversed shear configu-

ration.
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From Egs. (2.39) and (2.41), one finds that potato particles correspond to those

appearing around

({r), M) ~ ((¢?p*Ro)*"*,1 £ (gp/Ro)'?) (2.42)

in the ((r), Ao) plane. For the convenience of notation, we introduce a typical minor

radius
1p = 2(2¢°p}Ro)'?, (2.43)

where p;p = m;vi/e;By. In later, we will show that the neoclassical transport coeffi-
cients are largely modified in the central region 0 < r < r, by the presence of potato
orbits.

There are no particles in the region above the boundary l1. In particular, counter-
passing and inner-circulating particles, i. e., particles with oy = —1 = const, do not exist
in the region above the boundary [2. Therefore, there is a limitation on the minimum
value of (r) for a given £, which is obtained from Eq. (2.38) as (r) > gp. This is because
any particle which passes through the magnetic axis has a finite orbit width.

Overlaps of orbit regions occur around the boundary 2. One can see in Figs. 2.11(a)
and (c) that the upper boundary of the co-passing region [3 enters the banana region
and the gap between I2 and [3 corresponds to the kidney region. The kidney region
also overlaps with the concave-kidney region, which is enclosed by the solid curve E-
G-X in Fig. 2.11(c). It is possible that some two orbits, of which orbit topologies
are different between themselves, can simultaneously have the same &, x4 and (r). The
overlap of region in the (£, i, (r)) space has not been noticed in the previous works.
However, we should take account of these overlaps in the Lagrangian formulation of
transport theory even if we apply it to the region away from the magnetic axis, because
the overlaps between the kidney, co-passing, and banana regions still remain there. In
overlapped regions, particle orbits cannot be identified only by the value (£, , (r)), and
the criterion in Table 2.1 should be adopted to identify them.

As approaching /2, a banana (or a concave-kidney) orbit bifurcates into a kidney and
a counter-passing (kidney and an inner-circulating) orbit as shown in Fig. 2.12. Such
barely-transit particles are almost stagnated at (r,6) = ({r), 7). We call the solid-line
part of [2 “the transition boundary” hereafter. There is the other type of stagnated
particles appear on the boundary /1. They are outer-circulating particles stagnated at
(r,0) = ({r),0) and move only in the toroidal direction. Conventionally, such particles
have been regarded as banana particles in the limit v = 0, but in fact stagnation occurs
when 6 becomes zero on Z = 0 plane, and stagnated particles have finite v;. Note that on
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Figure 2.11: The regions and the boundaries for each type of orbit in the ({r}, Ao) plane.
Orbit types are abbreviated as B : banana, P+ : co-passing, P- : counter-passing,
OC : outer-circulating, IC : inner-circulating, K : kidney, and CK : concave-kidney,
respectively. Figures (a) and (b) show the regions for orbits with oy = +1 and o = 1,
respectively. In Fig. (c), the kidney region (the shaded region) and the concave-kidney
region (enclosed by the boundary E-G-X) are shown. There is an overlap of orbit regions
between co-passing and banana orbits in Fig. (a) (the shaded region). In Fig (c), the
kidney region overlaps with the co-passing, banana, and concave-kidney regions. No
particles can exist in the region above the boundary /1. The solid-line part of [2 up to
the X point in Fig. (b) is the transition boundary.
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the dashed-line part of /2 ( the left side from the circle mark in Fig. 2.11(b)), bifurcation
of orbit types does not occur. This boundary corresponds to inner-circulating orbits

with zero-width like outer-circulating particles at /1.

Though the overlapping of the regions is complicated, there are advantages in using
the set of COM (&, i, (r)). First, the physical meaning of the flux which is described
in the Lagrangian formulation with z;3 = (r) (or (¢)) is more understandable than that
with 23 = r,. In the (&, p, (r)) space, particle flux in the (r)-direction describes the
change of the averaged position of particles. It is also practical to choose (r) as the
position-like variable in that (r) is the most suitable value to represent the lowest-order
approximation of the particle position. Second, in the collisionless limit, the change of
COM is continuous in the (&, i, (r)) space even when a particle crosses the transition
boundary. This is because, as mentioned above, 8 becomes zero as a particle approaches
the transition boundary /2, and then the averaged position of such a transit particle
converges on the stagnation point (r,6) = ({r),7). On the other hand, r, changes
discontinuously at the transition boundary as mentioned in §2.3. Last, any orbit is
represented by a point in the (€, i, (r)) space, while there are a pair of points for each

orbit in the (v, &, ;) space.

Finiteness of orbit width appears on the region of each orbit type. In the zero-width
limit, banana particles exist in the range 1 — (¢) < Ao < 1+ (¢), where (¢) = (r)/Ro. In
reality, however, this simple analysis is not valid for the tegion 0 < (r) £ rp in which
potato orbits appear. Moreover, the existence of outer- and inner-circulating particles
can be found only if the finiteness of orbit width is considered, and they have not
been treated in the conventional neoclassical transport theory, nor in the recent studies
treating the near-axis region. However, it will affect transport around the axis because
some of them have large orbit width of O(A,).

To illustrate the diffusion process of particle in the ({r), A¢) plane, images of particle
loci in this plane are shown Figs. 2.13(a) and (b), where only the pitch-angle scattering
is assumed as the effect of collisions. In Fig. 2.13(a), two ion particle loci are shown for
the case away from the magnetic axis. One describes the change from co-passing (P+)
to banana (B) through kidney (K), and the other is the locus from counter-passing
(P-) to banana (B). Note that co-passing particles cannot change into banana particles
directly. The diffusion process is more complicated for particles passing near the mag-
netic axis. In the ((r), \o) plane, all particles which appear around (r) ~ (g?p?R,)*/
and Ao — 1| ~ (gp/Ry)*/® (the region around the points E (=H), G, and X) have the
same characteristic orbit width as potato orbits A, ~ (r) ~ (¢*p?R,)*/3. In Fig. 2.13(b),
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three loci of ion particles passing through such a “potato region” are shown. A counter-
passing particle (P-) enters the concave-kidney region (CK) via the inner-circulating
region (IC). There are two ways for a concave-kidney particle to change into banana:
(i) It changes into kidney (K) at the boundary G-X first, and then enters the banana
region (B) at 12, or (ii) directly changes into banana by crossing the boundary G-E. It
is also possible for a concave-kidney particle to enter the co-passing region (P+) via the
kidney region like the locus (iii).

Concluding remarks.

The existence of potato particles will affect neoclassical transport largely. We show
that potato particles consists of varied types of orbits, that is, banana, outer-circulating,
inner-circulating, kidney, and concave-kidney particles. The orbital properties of potato
orbits are correctly accounted only in the analysis with consideration of finiteness of
orbit width of them. By Lagrangian approach, we construct a proper transport theory
which can include the FOW effect of potato particles in the next chapter. In the
formulation, the contribution of various types of orbit to neoclassical transport can be

evaluated in a unified way.
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Figure 2.12: Transition in orbit types. (a) A banana orbit changes into a kidney or
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a counter-passing orbit according to the position on which the transition occurs. (b)

Similarly, a concave-kidney changes into a kidney or an inner-circulating orbit.
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Figure 2.13: Particle loci (for case of ions) in the ({r), o) plane. Abbreviations of
orbit types are the same as used in Figs 2.11. The change in orbit types for particles
away from the magnetic axis is shown in Fig. (a), while Fig. (b) shows the change
for particles passing near the axis, that is, for potato particles. In the ({r), \o) plane,

particle loci are essentially continuous on any boundaries of orbit types.
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Chapter 3 .

Lagrangian transport theory

3.1 Introduction

As we have shown in §2, particle orbit properties are largely modified in the near-axis
region from that predicted from conventional orbit analysis in the SOW limit. Since the
standard neoclassical transport theory[8, 9] have been established based on the SOW
limit analysis, it cannot be applied directly to the region near the magnetic axis. The
main issue in modifying neoclassical transport theory is how to treat the FOW effect
of potato orbits, of which width is as wide as A, ~ (¢?p?Ry)'/?. Since the potato width
is comparable to an instantaneous radial position of particle » ~ A,, the conventional
technique to solve the drift kinetic equation is not valid, in which transport phenomena
are assumed to be localized on each magnetic flux surface.

To treat neoclassical transport near the axis, one needs an ingenious method to
reflect both the properties of wide-width particle orbits and information of the back-
ground field along each particle orbit in solving the drift kinetic equation. To deal with
this problem, we adopt here a new approach; Lagrangian transport theory. It is based
on a Lagrangian description rather than the conventional Euler description on which
the standard neoclassical transport theory is based. Let us see briefly the history of
progress in Lagrangian transport theory.

The innovative work on Lagrangian transport theory in magnetic confinement sys-
tems was first presented by Bernstein and Molvig in 1983[20]. They pointed out that
neoclassical transport in the low-collisionality banana regime is essentially Lagrangian
in nature, in which orbital properties of banana orbits with a finite width is the cause
of enhancement of transport level in the direction across the flux surfaces over that of
classical transport. In the Lagrangian point of view, a banana center position in an

axisymmetric system is a constant of motion (COM) in the collisionless limit. The dif-
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fusion process is described as a consequence of small perturbation of the banana center
position by collisions. The Lagrangian formulation established by them contains the
FOW effect by nature. It is because the diffusion rate of particles are evaluated with the
consideration of real orbit, while in the standard Eulerian approach each particle orbit
is approximated to be stuck on a magnetic surface. To demonstrate applicability of
the -Lagrangian formulation, they have derived the Lagrangian transport equation in a
toroidally symmetric system with simple Lorentz approximation collision operator. The
resultant Lagrangian transport equation have been shown to reproduce the transport
coefficients obtained from the Eulerian neoclassical theory by Hinton and Hazeltine[8].
The formulation by Bernstein and Molvig has been established in a set of canonical
variables of COM. Zaitsev et al.[21] and Wang[22] have developed the Lagrangian for-
mulation in a non-canonical variables of COM. The sets of COM they adopted are
shown in §2. Using non-canonical variables makes it convenient for numerical solution
and physical interpretation than canonical variables.

An application of Lagrangian approach has been shown in analysis of resonance
particle transport in weekly-asymmetric systems. Yavorskij et al.[30] have derived
the Lagrangian formulation of ripple-trapped fast ions. Wang et al.[31] have applied
Lagrangian approach for superbanana transport of a helical system in the ultralow
collisionality regime. In these articles, the diffusion process in the COM space not only
caused by collisions, but also by breaking of one of three invariants, have been discussed.

Though Lagrangian formulation has been found to be a useful tool to treat the
FOW effect, there has been no practical application for a transport calculation in a case
where the FOW effect really becomes important. Analytical solution for the Lagrangian
transport coefficients has been obtained only in the case of the SOW limit. We show
here an ingenious formulation of the Lagrangian approach in the case of near-axis region
to treat the FOW effect of potato particles. The main difficulties lies in application
of Lagrangian formulation are the treatment of orbit-averaged collision operator and
- the consideration of the region of each orbit type in the COM space (zi, 29,23). By
introducing a model collision operator which is suitable to handle analytically, we derive
the transport equation applicable both in the near-axis region and in the conventional
SOW limit. In the next chapter, this formulation will be found to suitable for numerical
calculation. By reflecting the results of the orbit analysis shown in §2, Lagrangian
transport coefficients including the effect of potato particles are calculated properly.
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3.2 Kinetic equation in Lagrangian formulation

3.2.1 Reduction of the kinetic equation

Consider an axisymmetric configuration. We use the magnetic coordinate system (v, 8, ¢),
where ¢, 0, ( are the poloidal flux, the poloidal angle, and the toroidal angle, respec-
tively. The electromagnetic field is represented as B = IV(+V({xVy and E = —V®(v),
where I = RB; and we assume that the field is time-independent. There are three con-
stants of motion along a guiding-center orbit in an axisymmetric configuration : &, u,
and Pg shown in Egs. (2.7a-c). The start point of Lagrangian formulation of neoclas-
sical transport theory is the drift kinetic equation in an Eulerian representation in the

(Xa 8) ,U,) space,
0fa
ox

where "= d/dt, x is the guiding-center position and C,; is the collision operator between

0 .
B—Zfa(x,é',u, t)+x- = Cab, (3.1)

particle species a and b. Note that Eq. (3.1) is independent of the gyrophase ¢. We
change the independent variables in Eq. (3.1) into three constants of motion in the
collisionless limit (23, 29, 23), and the other three variables (Z4, Z5, Zs). One can choose
an arbitrary set of independent variables (z,Z). In this paper, we choose (24, %5, Z) =
(0, ¢, ¢) where ¢ is the gyrophase, while 2; = £, z; = u, and z3 = (¢) instead of .. (¢)
represents the averaged radial position of a particle orbit. The orbit average operator

for any function a(z,z) is defined as

1 do -
<a) = 47T2Tp ?d@kﬁ CL(Z, Z)a (32)
where
do
= - 3.3
Tp g (3.3)

is the poloidal period of an particle orbit. Note that the integral is carried out along
one poloidal circuit of the particle orbit. Note also that we can use z; = (r) as in §2.4
instead of () when it is convenient. By using the set of variables (z,z), Eq. (3.1) is

transformed into

9 .0f,
o fa(2,0,8) + 6=

where the property 9/0¢ = 0/9¢ = 0 is used.

We introduce here an ordering parameter 4, as

= Cop, (3.4)

Se=vlr, <« 1, (3.5)
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where ¢/ is a typical collision frequency. This assumption corresponds to the condition
that the plasma is in the low-collisionality banana regime. In Eq. (3.4), 0f/0t and Cj
are assumed to be O(4.) so that the variables (€, u, (¢)) can really be the constants of
motion through the lowest order in é.. Expanding f, with 4., the lowest part becomes
. % _

00

where we omit the subscript a. On the other hand, from the conservation of volume in

0, (3.6)

the phase space, one has

10 ( dz\ 10 [, di |

where J,(z, 0) is the Jacobian of the transform (x,v) — (z,%). Since dz/dt = 0 to O(4?),

one obtains

T16] = Jo(€, . (1)), (3.8)
Next, by using Eq. (3.7), O(8}) part of Eq. (3.4) can be written as
0 10 db 10 Oz
Eifo(Z,t) t T (Jzazfl) AT (JZB_V 'F(fo)) ; (3.10)

where the right hand side is derived from the fact that the collision term can be written
in the divergence form in the velocity space C(f) = V, - I'(f). The last procedure is to
take the orbit average of Eq. (3.10). It yields

of 10 0z — _
%" T.0z (Jc<g'r(f)>) =C, (3.11)
where f = f, is used to emphasize that f is a function of (&, i, (v),t), and
J(€, 1, () = 4x2Jor, | (3.12)

is the Jacobian in the (&, i1, (1)) space. The collision term is also averaged over a particle
orbit. Thus we obtain a reduced drift-kinetic equation in the (£, i, () space.

3.2.2 Jacobian

Here, we derive the explicit form of the Jacobian J, defined in Eq. (3.12). First, consider
the transform from Cartesian coordinate system (x,v) to the guiding-center variables
(¥,6,¢,E, p, ). The Jacobian of the transform is[32]

1 B,

T= B Ve

(3.13)
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where B, = B[1 + (v;/2)b - V X b]. By changing ¢ to its orbit averaged value (), we
obtain the set of variables (z,z) = (&, u, (),0, (, ¢). Therefore, the Jacobian J, can be
written as J, = J|0¢/0(y)|. To determine J,, we use the conservation of P,. Taking
orbit average of both sides of Eq. (2.7c), it becomes

I I
Y= qu =) - <§U||> : (3.14)
Differentiating both sides by (¢’), we have
o (I oY o /1
12 ()| 77 =2~ 2 () (819)

Note that all partial derivatives in Eq. (3.15) are taken with £, u, and 6 being kept
constant. Next, by using the equation of guiding-center motion[32], one obtains

_v.vguB- VO, 0 (1
0=v.Vo8= B* [l 81/) Q’U” . | (3.16)
Then, combining Egs. (3.13), (3.15) and (3.16) yields
1
J, = _ 1 —4,], 3.17
where 5 !
0, = ——{( = . 3.18
a7 (@) (318)

Thus one can confirm that J,|§| = J, in Eq. (3.8) is independent of §. Finally, combining
Egs. (3.12) and (3.17), we obtain the Jacobian in the (&, u, (1)) space

47
Jc= —TTLETP‘].*(S*L (319)

In a numerical calculation, the poloidal period 7, can easily be determined. As
concerns d,, it should be noted that, from Eq. (3.14),

I Iv”
2’/

where (¢,0) = ((¢),6*) is the position at which a particle crosses its averaged flux

(3.20)

Y

((),0%)

surface ¢ = (). We call it “the averaging point” of an orbit. Then, Eq. (3.18) is
interpreted as

, (3.21)

5 _ ( o o ) Iy
((#),6%)

oy o8) @

where 06*/0(v) represents the displacement of the averaging point. Fortunately, it
can be estimated that 1 — 4, ~ 1 for almost all particles as shown in Appendix A.
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Though we retain the term 1 — 4, in the derivation of transport equation hereafter, it
is approximated to be unity in the numerical calculations.

An important property of J. arises from the factor 7, for particles which are stagnated
on Z = 0 plane. Remember that there are two types of stagnated orbits. One type
is the outer-circulating orbit stagnated at (,0) = ((3),0) (on the {1 boundary in Fig.
2.11(a)), and the other is stagnated orbit at (¢, 8) = ((¢), 7) (on the transition boundary
[2 in Fig. 2.11(b)). Approaching the /1 boundary, orbits resemble a pendulum motion
in the Z direction with a infinitesimal oscillation. Therefore, 7, remains finite on /1.

On the other hand, 7, goes infinity when approaching the transition boundary. Then,

we have
lim J. = finite, (3.22a)
p—11 ,
lim J. = oo (3.22b)
pu—12

We have shown that, in the (£, i, (¢)) space, there are some overlaps in regions of
orbit types. Then, J.(z) and f(z) are generally multi-valued functions of z depending
on the orbit types. We introduce the sign o; to indicate the orbit type of each particle.
The notation J,(z) and f(z) implicitly mean that they also depend on oy; J. = J.(z;0¢),

etc.

3.2.3 Collision operator

To obtain transport equations in the (£, i, (¢)) space, we need to evaluate the change

rate of COM by collisions. First, consider the collision term in Eulerian representation[33]

_ ﬂ 3,/ ’ afa(v) / % afb(vl)
Car = Ko /dvU(v v)-[ ) - e )
where
I Vv
Ulv) = M—W,
eleZln A
Ka 8me2m?2

Substituting Eq. (3.23) into the averaging operator Eq. (3.2), we obtain the exact

description of the orbit-averaged collision term|[22]

~ 10

Co= 7o |2 (AL +D- 25 | (3.24)
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where

A = —Kab%‘; <% -/d3v'U(v -v')- é%—,ﬁ(z')> : (3.253)
8 _ )
D = K, <5—‘Z’ / d3v’fb(z')U(v—v')-a—‘Z,>, (3.25b)

Note that z’ in Eq. (3.25) is a functional depending on 6

2 = (&1, (¥)) = (€1, () +9'(2,E,1,9)),

where ¢/ arises from the finiteness of particle orbit width. In this sense, the averaged
collision term Eq. (3.24) has a non-locality. Moreover, since Eq. (3.24) is a integro-
differential function, it is not suitable to solve analytically or calculate numerically.
Cohen et al.[34] have examined a general procedure to use the averaged collision oper-
ator in a form like Eq. (3.24). In this approach, however, it has been shown that the
implicit part of transport coefficients, which are associated with the perturbed distri-
bution function gi(defined later in Eq. (3.53)), can be solved only approximately by
using a variational principle. Then, we need an approximated collision operator in the
Lagrangian formulation which is suitable to solve the perturbed distribution function
g easily.

From here on, we consider only the ion transport because the FOW effect near the
magnetic axis is important for ions. We neglect the ion-electron term C). since it is
smaller than the ion-ion term Cj; by a factor y/m./m;. An easy approximation for
collision term is the Lorentz operator, which had been used in the fundamental study
of the Lagrangian formulation by Bernstein and Molvig[20], but it does not conserve
momentum. It is well-known that the momentum conservation property of like-species
collisions plays an important role in transport theory. Therefore, we use here a model
collision operator which conserves the parallel momentum locally so that the transport
equation may reproduce the result obtained from the Eulerian formulation in the SOW
limit. ‘

The model collision operator is given in the following form [35]

_1/1-6

C'L(fz) - EE . (’U2| — VV) . —8—f, + ViwfiM, (326)

ov T;

where u;) is a functional of f;, and f;)/ is a local Maxwellian. Collision frequency v; is
defined as

_ /A

= 3
47ic;

y(ci), (3.27)

Vi

31




where ¢; = v/vy,; and

. niZietln A
= S (3.28a)
3m3/2e3m2vd,,
1 1
= |1-— — 3.28b
y(c) ( 202) U(c) + 2ch (¢), ( )
2 / ¢ 2
U(e) = — | dre ™. (3-28c)
o=
Here, u; is determined in order to conserve the parallel momentum
/ dov|Ci(fi) = 0. (3.29)
Then, substituting Eq. (3.26) into this equation yields
Uil = Qn?kl / dovyy f;, (3.30)
where
K, = / dee™ ¢™y(c). (3.31)
0

It is convenient to rewrite Eq. (3.26) in the divergence form, by noting dfs/0v =
—(mv/T) fu,

Citf) =555 | (VO = Tt ) | (3.52)

where V(v) = v?l — vv and w = v’b — yyv. Since V-v = 0 and w - v = 0, the model
collision operator Eq. (3.32) also conserves particle number and energy.
Finally, by taking the orbit average of Eq. (3.32), we obtain the orbit-averaged

model collision operator

Cufy = 2 g mlen () [<% V- gvf> o <m;ffi"% -wfiM>] . (3.39)

J 0z 2
We neglect here the variation of »; along an ion orbit because, though typical ion

orbit width becomes as large as A, ~ r, there, experiments show that density and
temperature profiles near the axis are flat. Note also that we neglect the variation of v
along a particle orbit in averaged collision terms. To ensure this approximation, it it

assumed that

4d
ekl 3.34
£ lareldm , (3.39)
where e, = Z;e, and v is evaluated as
3
v= 2~ e (] (3.35)
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In Eq. (3.33), we need to evaluate 9z/dv. It is immediately shown that

o€

8_V = myv,
Bu _omvy
o ~ B

We also need the expression of d(x)/0v. This factor is important in the Lagrangian
formulation, because it measures the rate of excursion in average radial position of a
particle by a scattering in the velocity space. 9()/0v can be obtained by taking partial
derivative on both sides of Eq. (3.14). It gives

oY) I 0 /Iy
v ‘5b+za:<—g‘>
L I, (%0 w0 ow) 0\ /Iy
= Qb+(8v8£+8v8u+ Bv a<¢>><n > (3.36)

In a previous work[22], this factor is treated approximately as a step-function

oY)

— = —5b (Banana),

a?z‘b (3.37)

N 0  (Passing),

in the SOW limit. However, the estimation above needs some explanations. Note that
(1) /Ov can be decomposed as a;v + asb. Since V-v = w - v = 0, we need to retain
only the b component of the derivative. Noting Eqgs. (3.18) and (3.20), we obtain

(1- 5*)% _ —éu — Ab. (3.38)
where
__em 9 /Iy
A"’__Iau<§2>' (3.39)

For the convenience of notation, we introduce a factor ~ as follows

0 I

—;—%—Z = —v(z, 0; at)ﬁb. (3.40)
Later, it is shown that we do not need the explicit form of A. to calculate transport
coefficients as pointed out in Ref. [20], and the estimation in Eq. (3.37) works well in

the SOW limit.
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3.3 Neoclassical transport equation in Lagrangian for-

mulation

3.3.1 Derivation of transport equation

We now expand the reduced drift kinetic equation (3.11) by a small ordering parameter

5y = % <1, (3.41)

where A, is a typical orbit width and L is a typical gradient scale length of plasma
pressure. Though A, for ions becomes larger in the near-axis region, the condition
(3.41) can be satisfied since L also becomes large there.

The orderings we put in Eq. (3.11) is as follows. 0f/0t is assumed to be O(6?) as
is often called “transport-ordering”. For the parallel flow, we put a plausible ordering
that w;)/vis ~ O(6). Concerning partial derivatives 9/0z, 0/0€ and 0/0u are treated
as O(489), while 8/0(s)) ~ O(48}). Collision operator is then expanded in &, as C =
CO +6,CH +62C@ ... With the expansion f = fo+ & f1 + 62 f2-- -, the O(8)) part of
Eq. (3.11) for ion becomes

07y L0 Jen [/n \, Ou\ Of] _
Ci 7 (fio) = T o 2 [< = V35, o =0. (3.42)

Because (9€£/0v)-V = 0, only u-derivative appears in Eq. (3.42). Then, any distribution
function f;, independent of 4 is the solution of this equation. However, we adopt here
the averaged collision operator of its exact form shown in Eq. (3.24) for C_’i(o). The
details of calculation is shown in Appendix B. The solution of f;, becomes the local

3/2
r _ m; £ — Ciq)
fio =1 (27TT~) exp [— T } ) (3.43)

Maxwellian

where 7;, T; and ® are defined as functions of ().
The definition of 7; is not equal to the flux-surface averaged density n;(¢’) used in the

Eulerian transport theory. First, consider the particle number per unit () as follows

N = Y [ dedudde.n whion. (3.44)
Then, 7;((¢)) is defined as
_ dy
n; = —= N; An , 3.45
Vs () A ((¥)) (3.45)
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where V is the volume enclosed by a 1) = const surface, and the numerical factor A, is

(o) = 5 (22) / S [durew |- (240

If () is away from the magnetic axis and the orbit width is narrow, A, — 1 and
then one can easily find that 7;({y)) ~ n;(¢)) there. When approaching (y) — 0,
however, )\, becomes large because the integral region in the (£, 1) plane is small there.

given by

Note that AN; is nearly proportional to \;! near the axis, assuming that the density
profile in the real space is flat in the range r < r,. This assumption is valid when
considering the core region with ITB. Then, it is a simple and plausible assumption
that 72;((¢))) ~ n;(v» = (¥)), even in the near-axis region. We check the validity of this
assumption in Appendix E.

Before proceeding to the O(8;) equation, let us consider the order expansion of the
momentum-restoring term in Eq. (3.33). Since u; and f;), vary along a particle orbit,

we expand it as

M — I B()’u,,” — .
T Awory BIOT(<¢))sz( z) + Ay(2,9) fio(2). (3.47)

Here, u;((¢)) is the lowest-order approximation of u;; chosen properly so that A
becomes O(47). The reason why we expand it in this way is an analogy with the fact that,
in Eulerian representation, the neoclassical flux in the radial direction is proportional
not to (u;))y, but to (Ju;)/B)y known as the flux-friction relation[9], where (- - - ),, means
the flux-surface average. Then, substituting Eq. (3.47) into Eq. (3.33) yields

~ry _ 10 Ju[/0z oz \ Of; miBOU_i|]<IBZ -
G = 75 73 [<5v“'v'§> 9z~ LT, \Bav ") 0

—-my <% WA||> f,-(,] : (3.48)

Now consider the O(4}) equation of the reduced drift kinetic equation C’i(o) (fa) =
—CY(fi), or written it down explicitly,

L P A Y R, (B, O
Joop |"\"B Jou | T “Zop" M\ o)
mldiol [ Iy
T < fo|.  (3.49)

To solve Eq. (3.49) for f;;, it is rewritten in terms of driving forces Fy as

C(O) fﬂ sz Z kaak (3.50)

°k1
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where

dln n; €; dd

Fo= + 3.51a
YT ) T ) (3.512)
dInT;
F = ) 3.51b
* T W) (3.51b)
m{iols) ,
= T 17 3.51
& 1T, (3:51¢)
and
ay = —-JCI/,;,U<%’U”>, (352&)
Qz = — (012 - 3) JeVipt <gy’vn>, (3.52b)
1
a3 = Ju,,u< ;”> (3.52¢)
Introducing the perturbed distribution function gx(&, u, (¥)) which satisfies
~(0) fio By
' =7 5 3.53
C’L (gk) T, 8[1, ) ( )
fi1 can be expressed as
. 3
fa = ngFk~ (3.54)
k=1

Thus the first order equation is found to have a similar form to that by Bernstein et
al.[20], though we successfully include the momentum-restoring term by introducing an
additional driving force F3.

Next, consider O(62) part of the reduced kinetic equation

O (o () + € () + €0 ()] = 0

0f 1 0 , p[/I 5\ Ofo miQioui||<I2’Y>‘.
ot J5(¢)J i[<917>3<¢)+ Iy T; Q; fo

Do\ Ofa] 10, Tym o Ofa
+ <Q, U“> “ou ] J. G,uJCV'u [< B v”> ou

Iy > dfin 7 }
+{ = ) = +m () fio]| =0. 3.55
<Qi 1) By T o) o (3.55)
By taking a moment with £ and u, we obtain the continuity equation in the (1) direction
N L2 =0, (3.56)
3(1/)) '
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where the ion particle flux J! is given as

3

Ji = (St + Si) Fy. (3.57)

k=1
In deriving Eq. (3.56), the boundary condition in the (£, 1) plane explained in Appendix
C is used. An important feature is that the transport coefficients are separated into the

explicit and implicit parts, 557 and S;'.jc”, respeqtively. They are given as follows

n o= _{Vieﬁi‘<£72>,f_¢0}, (3.58a)
T =—{wg<§f>(ﬁ—g>ﬁ}, (3.58D)
Sis = —{Vz'e%<lgj>,fio}, | (3.58c)
W= {%,%qf},  (3.584)

where the inner-product is defined as {a,b} = ), [ d€duJ. ab. The explicit part can be
obtained only from the lowest-order distribution function fy. This is totally different
from the situation in the conventional Eulerian approach, in which the lowest-order
local Maxwellian f,; bears no flux. For the implicit part, one need the solution of Eq.
(3.53) for gx. The solution is shown in the next subsection. The physical meaning of the
implicit part is interpreted as a correlation between test particles disposed according to
fo and the field particles f; which represents the deviation of background distribution
from f;. On the other hand, the explicit part represents the transport caused by
collisions of two particles both of which are disposed according to f, but have different
density and temperature corresponding to the averaged position (i) of each particle.
Thus the separation of the explicit and implicit part reflects physical mechanics of
transport phenomena. A more detailed discussion can be found in Ref. [20, 34]. In
the next subsection, however, it will be shown that we can calculate the transport
coefficients only in the form of the total ones : Sj, = S5f + Sy

To obtain the energy transport equation, the moment to be taken is [ dEduJ.W,
where W = £ — ¢;®((¢)). Define here

=Y [ dgdutw fo, (3.59)

which is the sum of the kinetic energy of particles with the same (). The use of partial

integrals yields the energy conservation equation

0 0 3. .
0. - 1 _zT______iz
9%+8WJ%+2A4 e;J;

dd

piont (3.60)
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where J: represents the conductive ion heat flux

3
2 = ) (Sg+ SiFs | (3.61)
k=1

P () o
2 2
Sy = — {I/zeﬁz <(Il_i/y2> , (012 — :—;) ﬁo} , (3.62b)
2
B = {Vie% <Iﬂj> , (C - —> sz} (3.62c)

i _ {% %}_ (3.62d)

The right hand side of Eq. (3.60) describes work done by the radial ion current.

where

ex __  __
521_

3.3.2 Properties of transport coefficients

An important property of the transport coefficients S is the symmetry of the implicit
part Sji* = S;. This can be shown by as follows. First, integrating both sides of Eq.

(3.53) by u yields
J Vi mvﬁ 3g,
Q= — Y u—=, 3.63
? f 0 < B > a/"' ( )
where the integral constant is zero from the boundary condition. Then, one obtains

im 89
ik = E /d&iuaja—ﬂk
2
v; [ T 3!]3’ 09k
= déduJ,— ( — = 3.64
Z/ g fi0< B >Maﬂ O ( )

This equation is symmetric in j and %, therefore implicit coefficients are symmetric.

One can also find that the explicit part has a symmetry Sj3 = S57. Then, it is

natural to seek the third flux which satisfies the symmetry S5; = Si3;

3
Ji= (S5 + S F. (3.65)
k=1 '
Now we show that the proper definition of the third flux is

Ji= .
3 T; " dw

(3.66)
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Noting that (- --), means the flux-surface average, we have

2w
Ji o= 47r2/ _db I dE'dy/ —>— B. (V) i
0

B-Vo; w2l

Y=(¥)
ar? (791 o N
- 5 [ 5 a [ e dasw) — oy Bt i)

4r? (" df I ol
T m?J, B-VOQ de'd d'p)‘

Next, distribution function is expanded as

0
O'||/B*l/i[l,,a—u,fi.

ofi 0 |z dfio F Iy 3fio 8fil
L~ | fo— Ay | = , 3.67
ou = B [f 0~ Mgy T ] eon 3(9) T (3.67)
where
I I
A¢s¢—<w>=§—<§> (3.68)

represents the deviation from an instantaneous particle position to its averaged flux-
surface, and we use the relation dA,/0u = —9(¢))/du. Using Egs. (3.15) and (3.16),
and changing the order of integrals, we have

; 47T, v [dBIvy 0
T = —Z/dﬁdu L= T,,f =7

9 Qi ou
vl 12’7 3f10 I’U” 8fi1
= —E : ; . 3.69
p /dé’dch { e < Q; > oY) v o /" ou (3.69)
Note here that the implicit coefficients S¥7* are written as follows, by its definition,
im a3 Ogx I Un 3gk
= = = E 3.70

Then, comparing Eqs. (3.69) and (3.70), one finds that the explicit coefficients for Ji
are given as follows

I’y\ .
gf = _{Vie_i< Qz> sz} 13’ (3.718.)
exr /’l/ 12’7 3 r ex
5= {ul () (4-5) ff=s5 (3715)

53 = 0. (3.71c)

Thus we obtain the 3 x 3 symmetric coefficients for both explicit and implicit parts.
To close transport equations, we must eliminate the additional driving force Fj
introduced to include the parallel momentum balance. For this purpose, we choose u;

_ Qio Iui||
= . 3.72
il Io(h2)¢< Q " ( )

as follows
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The factor (h?),, where h = By/B, is needed to retain the ambipolarity in the SOW
limit, as shown in Appendix D. By using this definition, Eq. (3.65) can be solved for
F3. 1t yields

Fy = —B(S13Fy + Sysky), (3.73)
K av )
g = 1I() Pio - <h2>¢ — 533 ' (3.74)
T dyp
where Sy, = S5 + S} is the total transport coefficients. Finally, neoclassical fluxes are

rewritten in the following form

Jf _ An A F (3.75)
J3/Ti Asr Ay Fy
where
An = Su - BSh, (3.76a)
A=Ay = Sig— BS135, (3.76b)
Agy = Sy — BS%,. (3.76¢)

Thus the resulting transport matrix A;; in the Lagrangian formulation is shown to be
Onsagar-symmetry as in the Eulerian formulation.

Next, let us calculate the total coefficients S;;. The perturbed distribution functions
g, are needed to calculate the implicit part. From Eq. (3.63), we obtain

9gr _ _Uyo/%) -

op (mv ||/B>f (3.772)
ng . 3 I’yv”/Q

NG 2) (ma[B) (&7
dgs (Ivn/ﬂ)

From here on, we use the approximation I(¢)) = Iy = RyoBy, which corresponds to the
low-3 plasma. For j ,k =1 or 2, using Eq. (3.39) yields

o I2 Vill <hv”(1—Ac)>2 3\ T2
= oy sy (MR <hvﬁ> (2-3) Ho

_ 37rI nzpzoqRo /

. 37r10nipi0qRo_
= SRS, | (3.78)
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where z = exp(—£/T;), Ao = uBo/€, and 7, = T,vmi/qRy, respectively. We call S’jk the
normalized transport coefficients. In the equation above, the terms which are propor-

tional to A, and A? are exactly canceled. In a similar way, one has

Sjg = — Z/dmd)\ofpci ((312 - g)a_ y(Ci))\o (<h> - <<’;Z;”2>> ) y (379)

—. h 2
im Z / dzdror,c(c) o ”"> . (3.80)

Note that Eq. (3.78) differs from Eq. (3.79) only by the factor (1—4,)~! ~ 1. Therefore,
this difference is neglected in the final calculations, and the approximation S;3 = 513

and Sp3 = S;2 are used. As a complement, we define

= (8BoKidV ., o\
B = (37qu0 E iRl 533) (3.81)

so that Eq. (3.73) can be rewritten as F3 = —3(S13F1 + SasF).
In the SOW limit, (hv)? = 0 for banana particles, while (hv))? ~ (hv}) for passing

ones. Therefore transport coefficients other than Ss;3 are determined mainly by the
banana part. Because of this separation of the contribution to transport between banana
and passing, the approximation of 9(¢))/dv as in Eq. (3.37) used in Ref. [22] ends up
in the same result as the SOW limit of Egs. (3.78) to (3.80). However, by using the
exact solution for Sj;, we can include the contribution for neoclassical transport not
qualitatively, but quantitatively, from all the orbit-types of particles appearing in the
near-axis region. The magnitude of contribution of each particle is evaluated by the
factor (h) — (hv))?/(hvf).

In the present analysis, we improved the treatment of collision term to retain the
momentum conservation low. Since we consider only the ion-ion self-collisions here, J*
must vanish in the SOW limit. It is shown in Appendix D that A;; and A;; become
zero in this limit, and therefore J! vanishes intrinsically. Thus the Lagrangian transport
theory applied to the region away from the axis, where potato particles do not appear
and the SOW limit is valid, reproduces the results of the conventional Eulerian transport

theory.

3.3.3 Comparison with Eulerian transport theory

The representation of fluxes in Egs. (3.56) and (3.60) from the Lagrangian formula-
tion are different from those in the standard neoclassical transport theory based on the
Eulerian representation. The former describes the change in N; and Q; which are func-
tions of averaged particle position (), while the latter describes the change in n; and
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p; = n;1; through radial fluxes averaged on a magnetic surface 1. Then, the comparison
of the neoclassical fluxes between these two representations is not straightforward. Let
us consider this problem here.

_As a preparation, we introduce a normalizing factor for Q; as follows

M) = ;mT.V'Q.—l

37, 27rT , 1%
= 5 V / D / dEdpJ.W exp [_f] , (3.82)

where V' = dV/dy(¢ = (¢>) A, has a similar property to ), appearing in Eq. (3.45).
The particle flux and the heat flux are redefined as

r, = Ji/V, (3.83a)
G = JiV, (3.83D)

so that they represent fluxes per unit cross-section. Note that ¢; differs from its general
definition in Eulerian representation by I';7; since we adopt F;, = dInT;/d(y) as a
driving force rather than the pressure gradient. Then the conservation equations of

particle and energy are rewritten as follows
on; A, O
—— +
ot V' oY)

9 (3 A 0 [, 3 4o
i (370) + gt |V (s grn)] = engg oo

where we assume that the time variation of A, and ), are slow compared with those of

(V'T) = 0, (3.84)

N; and Q;. These equations have the same dimensions as those of a standard Eulerian
representation[8]. In the SOW limit, A, and A, becomes unity, and Eqgs. (3.84) and
(3.85) reduce to the Eulerian representation.

As will be shown in §4.3 , A, and ), is nearly unity around the region (r) ~ r, though
the finiteness of the potato width significantly affects the transport coefficients there.
Only in the region (r) < gp; they become much larger than unity. Then, the qualitative
difference in I'; and ¢; between two representations are not so much significant as far as

we are interested in the neoclassical transport around (r) ~ r,.

3.3.4 Ion heat flux

As the end of this chapter, we define here the ion thermal conductivity to compare the
result with the standard Eulerian theory. In Eulerian transport theory, the ion heat

flux is expressed as follows
4 d

4 _ _por i 3.86
T nix; drlnT ( )
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where x; is the ion thermal conductivity in the r direction. Here, ¢; in the form as
above is the result of (i) neglecting ion-electron collisions, and (ii) I'; = 0 because of the
momentum conservation in ion-ion self-collisions. In the Lagrangian approach, however,
the condition I'; = 0 is not intrinsic. In reality, the momentum-restoring term S3F3 in
Ji cannot exactly cancel Sy F; + S12F3, especially in the region near the magnetic axis.
This is because of the non-local nature of the Lagrangian formulation, and partially
because only the lowest order expansion of %; is included. In the present calculation,

we rewrite the transport equation in Eq. (3.75) to eliminate F}

{r) o

g Sz - d

% _ 21epe)_p,0 % yp 3.87

T Syt N gyt (387)
2 92 a2 '

r) 300 | & Sty

o _ _ Sip 3.88

X 32m {(€)?r; [522 5'11} ’ (3.88)

where q, pio, and 7; are evaluated at » = (r), and we change here the radial coordinate
from () to (r). The ion heat conductivity Xf") defined in this way is to be compared
to x} in the next chapter, though I‘§r> does not vanish here.

It is well-known that x7 o« ¢%p%/(¢%/?7;) in the Eulerian theory, while the apparent
dependence of x{” is ¢2p2,/({€)?r;). However, 5;; away from the magnetic axis is found

to be proportional to /(¢), and Xf") has the same dependency as x; there.
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Chaptér 4

Numerical calculation of ion thermal

conductivity

4.1 Definition of collisionless regime

In this chapter, we calculate the ion thermal conductivity in the near-axis region. As
a preparation, let us reconsider the definition of the collisionless regime in which La-
grangian approach is valid.

Usually, the collisionless (or banana) regime is defined as follows

7, ~ qRo , ngf - _Vi,
’Uthi\/t_f €
v;q Ry '
= 0, ~ < 1, 4.1
¢ Veni€®/? ( )

since banana particles exist in the range |vj| < vy/e. In an Eulerian representation,
collisions cause diffusion only in the velocity space, and then the collisionless regime
can be defined as above. In Lagrangian representation, however, collisions bring about
diffusion directly in the (y) direction through the factor 9(1)/0v,. This fact means
that the effect of scattering on each particle differs according to this factor.
Remember here that, as mentioned in §3.3.2, transport coefficients can be obtained

by using the estimation that

I
o) g (banana), (4.2)
gl 0 (well — passing).

In the near-axis region, potato particles can be assumed to have d()/0v ~ —I/9
like bananas. The transition of orbit topology of a potato particle occurs when their
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averaged radial position changes as large as its orbit width A, ~ r,, or

I (qpio s
A¢~Q—O(R0) : (4.3)

To change (¢) as large as A, pitch-angle scattering of the magnitude

5 S\
Ay ~ Ay / a(;p”) = (qéoo) Vthi

is needed. Therefore, on the analogy of Eq. (4.1), the effective collision frequency for

potato ions can be defined as

1 2/3
= (q—;’f-’i-) . (4.4)
i 70
On the other hand, 7, for potato particles is estimated as
R 1/3
7pet o I R° . (4.5)
Vthi qpio
From Eq. (4.4) and (4.5), we obtain
opt = yeld frg"t <1
Z2(n;ByR2)*/5
} L 4.6
e T, > (e )1 (4.6)

where T; (keV), 7; (10*m~3) and m, is the mass of proton. For example, if B, = 4T,
Ry = 4m and 7; = 1 x 10**’m~3 for hydrogen ion, then 7T; > 5keV is needed for the
collisionless assumption. Note that the criterion Eq. (4.6) corresponds to that from the
usual definition of 4. in Eq. (4.1) evaluated at r ~ r, as mentioned in Ref. [18].

In reality, barely-transit potato particles have much longer 7, than the estimation in
Eq. (4.5). Then, particles around the transition boundary /2 in Fig. 2.11 may break the
collisionless assumption ¢, <« 1. Treating these collisional particles in the Lagrangian
transport theory like the banana-plateau transition in the standard Eulerian theory[8|
is not considered here. Therefore, our calculation corresponds to the collisionless limit

of neoclassical transport.

4.2 Numerical method

Numerical calculation of transport coefficients in Eqgs. (3.78) to (3.80) is implemented
by using a Monte Carlo integration method. We developed a numerical calculation

code “NEQO” in order to obtain transport coefficients in the Lagrangian formulation. In
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the calculation, test particles are generated randomly and uniformly in the phase space
(x, M), where z and )\, are defined in §3.3.2. The particles are distributed in the range
Timin < T < Tmaz a0d Aomin < Ao < Aomaz, Where the upper and lower boundaries are
chosen so that test particles cover the whole region in which orbits can exist. Next, the
orbit of each test particle is traced from a guess starting point r; = (r)+9d, and 8 = O or 7,
and adjust J, so that the calculated averaged position of all test particles lie on the same
magnetic surface r = (r). Remember here that there are some overlaps in the region of
each orbit type in the COM space as discussed in §2.3. Therefore, if there are two or
three types of orbit for a given set of (z, Ao, (r)), we must find all these orbits by varying
the guess starting point around (r) and oy. Then these orbits are counted separately.
Finally, all the functions in the integrand of the normalized transport coefficients Sy,
which we write Fj(z, Ao, (r); 0¢) here, are calculated by tracing each particle orbit, and

transport coefficients at (r) are given as

. (Zmaz — Tmin)(Aomaz — Aomin)
Sjk((r>) — ]31_{1100 mazx min NOmao: Omin ZZ ij(xn, /\On, <T>;0tn)7 (47)
n=1 o¢

where N is total number of test particles and (z,,, Aon, (7); 01,) is the position of n-th test
particle in the phase space. If there is no particle orbit corresponds to (z,, Aon, (7)), then
Fj is evaluated as zero for such particles. (Note that the total number N includes such
miss-shot particles.) The functions F}; consist of the poloidal period 7,, and averaged
functions such as (h), (hy))?, and (hvﬁ). These values are easily calculated numerically.
Note that we approximate 1 — 4, = 1 so that S;; = S13 and Sy2 = Sas.

To reduce the numerical error in transport coefficients, we adopt a technique of the
stratified sampling in the implementation of Monte Carlo integration. The (z, \o) plane
is divided into several cells, and the integration is carried out in each cell. Because the
main contribution to transport coefficients comes from banana and kidney particles,
more particles are distributed to the cells in the range 1 — () < Ao < 1+ ().

High-performance computing using parallelized cluster system is an interesting topic
in recent numerical science. We use a 12-node PC cluster system with MPI (Message
Passing Interface) programming to reduce the calculation time. Since Monte Carlo
method is suitable to parallelized calculation, the parallelization efficiency of the NEO
code is as good as 95% of the theoretical maximum. To obtain transport coefficients on
a given (r) with the relative error lower than 1073, it takes about 1 x 10° test particles
and about one day in this system.

In Figs. 4.1 and 4.2, examples of test particle distribution in the (z, A¢) plane for
(ry = 0.105m and (r) = 0.25m are shown. One finds a similarity between Figs. 4.1 and
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2.11 though the scale of the horizontal axis are different between these figures. This
apparent similarity can be understood by noticing the dependence of potato width
A, ~ (¢*p*Ro)'/® on particle energy. Figure 4.1(a) correspond to the situation that A,
for thermal energy particles (z ~ 0.4) becomes 0.1m. For lower energy particles (z ~ 1),
A, « p*?* is smaller than (r) = 0.105m, and then the banana region lies in the range
1 —(e) < Ao < 1+ (€) like in the conventional SOW limit analysis. On the other hand,
for energetic particles (z ~ 0), gp is comparable to their averaged position (r) = 0.105m,
and then energetic particles appear as inner- and outer-circulating particles.

In the case of away from the axis as in Fig. 4.2, A, becomes comparable to (r) =
0.25m only for very high-energy particles, and most part of particles in the range 1—(¢) <
Ao < 1+ (e) is the conventional banana particles. However, it should be noted that,
even in the region away from the axis, the kidney region exists between the boundaries
of the passing and banana regions. Kidney orbit can be considered as a transition
state between banana and passing. Since such transition particles will significantly
contribute to radial transport, one cannot neglect the existence of kidney in a transport
calculation. The adoption of Monte Carlo integration method enables the NEO code to
evaluate correctly all the types of orbit to transport coefficients in any configuration.
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Figure 4.1: The marker distribution in the (i, Ay) plane at (r)

with the co-passing region in Fig. (b).
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Figure 4.2: The marker distribution in the (i, \y) plane at (r) = 0.25m. The mark of

each orbit type is the same as in Fig. 4.1.
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4.3 Numerical results of y;

As a example, we calculate the ion thermal conductivity Xf”) under the conditions
By = 4T, g = 3, T, = 20keV and 7; = 1 x 10®m~3. The radial electric field d®/dr is
neglected. In this case, typical potato particles appear in the region (r) < r, = 0.246m.
According to Eq. (4.6), the plasma is well in the collisionless regime. The calculation
result of sz: which is defined by Eq. (3.88), is plotted in Fig. 4.3. For a comparison,
X+ by a standard Eulerian theory in the banana regime[8] is also plotted. Note'that X;
is plotted by regarding r as (r).

A significant reduction in Xf") can be seen in the region (r) < r,. The main reason
of the reduction of X,m in Lagrangian approach is that potato particles, which mainly
contribute to the radial transport, cannot exist in the region (r) < r, when observed
in the COM space (&, p, (r)) as is shown in Figs. 2.11 and 4.1. The FOW effect is thus
included in the calculation by reflecting the real population of potato particles neat the
magnetic axis.

In Fig. 4.4, )\, defined in Eq. (3.82) is plotted. One can see that )\, becomes
much larger than unity only on the inner-most point (r) = 2gp;0 = 0.03m in this case.
As mentioned in §3.3.3, simple comparison of x; between Lagrangian and Eulerian
formulations is possible as long as A\, = 1. Then it can be said that the reduction of the
ion thermal conductivity occur not only when it is observed in the (r)-coordinate, but
also in the real space around r ~ r,. On the other hand, it can be an underestimation
that x;7;/¢°p% ~ 0.1 at (r) = 0.03m because it is almost the same level as the classical
transport x; ~ p% /7, and also because of A, > 1 there. ‘

In Fig. 4.4, we also plot A;;/A which is approximately the ratio of I'; to g;. Away
from the axis it is almost zero and then I'; can be neglected, while it becomes finite
around (r) ~ 7,/2. It is the FOW effect that cause the finite particle flux by ion-
ion collisions. Since the electron particle flux is negligible compared to the ion flux,
radial electric field E, will develops to satisfy ambipolarity I'; = 0 + O(y/m./m;) [17].
In our present calculation, however, the ambipolar electric field cannot be calculated
correctly, because it requires to solve dE, /dt from the particle flux equation, which in
turn affects transport coefficients A;x((r),t) through the orbit-squeezing effect of potato
particles[36]. It is a future work to determine neoclassical £, in the core region.

Next, to investigate the degree of contribution from each orbit type to transport
coefficients, we plot in Figs. 4.5(a) and (b) the factor Hy = (h) — (hv))?/(hv{) for
& = 20keV ions at (r) = 0.12m and (r) = 0.30m, respectively. Since the normalized
transport coefficients S, contains H |, one can see that not only banana particles but also
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all the potato particles, that is, kidney, concave-kidney, outer-circulating, and inner-
circulating particles appearing around the transition boundary, contribute the radial
transport to the same degree at (r) = 0.12m in Fig.4.5(a), where all the particles above
have a potato nature. On the other hand, in the region away from the magnetic axis as
in Fig. 4.5(b), H| is almost unity for banana particles, and zero for passing particles.
In such a case the approximation shown in Eq. (3.37) by Wang[22] works well. In the
numerical calculation used here, the factor H is evaluated without any approximation
by using the Monte Carlo integration method. |
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Figure 4.3: The ion thermal conductivity normalized by ¢*p2)/7;, in the case 7; = 20keV,
g =3, and n; = 1 x10?°m~3. Solid line is the calculation result of the NEO code. Dashed
line is from the standard Eulerian theory by Hinton and Hazeltine[8].

0 01 02 03
<Ir>[m]

Figure 4.4: Dependence of )\, defined in eq. (3.82) (solid line) and the ratio of transport
matrix components A,;; /A, (dashed line) on (r).
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Figure 4.5: Hy = (h) — (hv)*/(hv?) vs. A, for ions with £ = 20keV at (a) : (r) = 0.12m,
and (b) : (r) = 0.30m, respectively. The dotted lines are the position of the transition
boundary Ay = 1 — {¢). Abbreviations of the orbit types are the same as used in Fig.
2.11.
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4.4 Dependency on the safety factor ¢

As mentioned previously, the FOW effect on neoclassical transport is expected to be
significant in a reversed magnetic shear configuration because the potato width A, ~
(¢2p®Ry)"/® becomes large in this configuration. To examine the dependency of the ion
thermal conductivity on the g-profile, we calculate Xf-” in two case, normal and reversed
shear configurations. The profiles of ¢, 7;, and T; given in the calculation are shown in
Fig. 4.6. In these cases, the potato width r, cannot be given by the analytical solution
in Eq. (2.43), and then it is numerically obtained by searching the widest orbit which
passes on the magnetic axis. The numerical results of Xm

3

and the position of r, are
shown in Fig. 4.7.

One can see that r, becomes larger in the reversed shear configuration, and the
radial position within which the reduction of Xf”) from the standard neoclassical level
is seen moves outward according to r,. Therefore, we conclude that r, well represents
the radial position where the FOW effect of potato orbits becomes important.

In recent experiments, the g-factor sometimes becomes very large, ¢ ~ 100 for exam-
ple, around the magnetic axis[37]. The NEO code can be applied to any configuration
like such an extreme case. As concerning the validity of the Lagrangian transport
theory, the situation is favorable in reversed magnetic shear configurations, which are
often accompanied with ITB. Because the ion temperature is high and the plasma pres-
sure profile is almost flat inside the ITB in general, two parameters . and J, given by
Egs. (3.5) and (3.41) respectively, satisfy the assumption that they should be much
smaller than unity. Therefore, Lagrangian approach will be a useful tool to considering
neoclassical transport in the reversed shear configuration. Note that however, simple
comparison of y; between Eulerian and Lagrangian representations is not valid in the
region (r) < gp; as mentioned in the previous section. Therefore, if gp;o is comparable
to r,, or gpio ~ Rp, more consideration must be paid to interpret the result of the
Lagrangian theory. This is the case for the transport of energetic alpha particles in a

strongly reversed shear configuration.
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Figure 4.6: Profiles of the safety factor ¢, the ion density n, and the ion temperature

T used in the calculation of Xf’) in Fig. 4.7. The value on the magnetic axis are
no = 5.0 x 10"m! — 3], and Ty, = 5.0keV, respectively.
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Figure 4.7: The ion thermal conductivity calculated by the NEO code in a normal shear

configuration (a) and in a reversed shear configuration (b). The widest banana orbit
width r, in Fig.(a) is about 0.08m, while it becomes 0.18m in Fig. (b).
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Chapter 5 .

Comparison with other experiments

and simulations

The reductive tendency of x; around the magnetic axis is the common feature in recent
simulation results and also in recent tokamak experiments. Our le also shows a similar
dependence on (r) to these simulations as shown in §4. Here, we compare our result
with these results.

Let us make a brief review for the §f method here. The 6 f Monte Carlo simulation
has been developed as an ingenious method to study kinetic phenomena in plasmas.
It has been first proposed as a numerical method of solving nondiffusive, nonlinear
gyrokinetic problems such as ion-temperature-gradient (ITG) driven instability[38]. In
the 6 f method, particle distribution function is separated as f = f, + 0f, where f; is
set as a known function and only the df part is to be solved numerically. Comparing
with the full-f particle simulation, the numerical noise level is reduced by a factor of
10f/ fol®.

Chen and White[39] established the rigorous formalism of the § f method in colli-

sional systems. In the formalism, the particle weight w satisfies the relation

wg =0f, | (5.1)

where ¢ is the marker particle distribution function. The weight is recognized as a
new dimension of an extended phase space (x,v,w). The time development of §f is
described by calculating dw/dt along each marker orbit. With the use of linearized
collision operator for f algorithm in which f, is set as a local Maxwellian fy, [40, 41],
the 6f method has first been applied to neoclassical transport simulation by Lin et
al.[15]. However, they used the nonlinear weighting scheme[42] which is not suitable in

diffusive systems where the assumption g ~ f is not a good approximation.
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To resolve this problem, Hu and Krommes|[43], and Wang et al.[16] have extended
the formalism of Chen and White by using the two-weight scheme which is accurate in
collisional systems. The marker phase space is extended to (x,v,w, p), where the new
weight p satisfies

pg = fu | (5.2)

in the two-weight scheme. The evolution of §f is then described by calculating both
dw/dt and dp/dt along each marker orbit. '

A further development of the §f method has been made by Brunner et al.[44],
who pointed out the problem of weight spreading. It is caused by the implementation
of collision operator in Monte Carlo simulation, and leads to an increasing noise in
evaluating 6 f. They proposed a solution to reduce the weight spreading, which have
been applied in recent nonlocal neoclassical transport simulations in the near-axis region
by Wang et al.[17] and Bergmann et al.[18].

The linearized kinetic equation for weights w and p are given as follows[16],

Dw ya

—b-t— = fM [—Vd'VfM+PfM]7 (5.33.)
Dp _ P .
Dt fMVd Vs (S'Sb)
where
D 0 ;

represents the time derivative along each marker orbit and Crp is the test particle
collision operator, which is implemented numerically as a random kick in the velocity
space. In Eq. (5.3a), Pf) represents the field particle collision operator which is defined

so as to satisfy the conservation lows for collision operator as follows

/(CTP + PfM)dV = 0, (5.53.)
/ (Crp+ Pfu)vdv = 0, (5'.5b)
/(CTP + PfM)v2dv = 0. (5.5C)

In the 6f method, the FOW effect on neoclassical transport is correctly included by
retaining the drift term v, -V in Eq. (5.4).

We show in Figs. 5.1 and 5.2 the ion thermal conductivity obtained from the 4 f
simulations in Ref. [16] and in Refs. [15, 18], respectively. In Fig. 5.1, the potato
width r,, 2, and 3r, are also plotted. In Fig. 5.2, the result by Lin et al.is plotted by
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using a analytic formula based on a simple random-walk model which represents well

the tendency of their simulation,

Xy [1 N (_)3} exp [_ (7)] , (5.6)

where xsnin is from the standard neoclassical transport theory by Chang and Hinton[45].

Bergmann et al.also make a fitting formula for their simulation result,

| Xt);n =1- [1 = (3—:;)2] (5.7)

in the range r < 3r,. A slight difference of the definition of r, between ours by Eq.

(2.43) and in Ref. [18] is negligible in evaluating r,.

One can see in Figs. 5.1 and 5.2 the reductive tendency of resultant x; in the near-
axis region from the level of the standard neoclassical transport theory. Comparing
these 0 f simulations with our result using the Lagrangian transport theory shown in
Figs. 4.3 and 4.7, however, there is a difference in that the reduction of x; compared to
the standard neoclassical value begins at r ~ ,, in our calculation, while it begins from
somewhat more outer position r ~ 2r, in the other simulations. It must be noted here
that the radial coordinate is not equivalent between the Lagrangian approach which
describes fluxes as a function of averaged radial position (r), and the §f simulation
which uses the minor radius » in the real space. However, we have already shown in
§3.3.3 that Lagrangian and Eulerian representations of transport coefficients are almost
equivalent as long as A, and )\, are close to unity. Therefore, it can be said that
the difference in the dependency of x; on r, is not caused mainly by the difference of
these two representations. This may be caused by the differences of the profiles, of the
treatment of collision terms, and of the numerical algorithms used in each calculation.
More detailed comparison between the Lagrangian formulation and ¢ f simulations will
be done in a future work.

Note also here that, in Fig. 5.2, the theoretical evaluation of y; in the Eulerian
approach by Shaing et al.[10], which was proposed to extend standard theory to the
region near the magnetic axis, yields a contradicting result which goes infinity at the
magnetic axis. As we will see below, it has been shown that the ion thermal conductivity
becomes lower in the near-axis region than the standard neoclassical level in many
experiments. Then, usual Eulerian approach to include the FOW effect of potato orbits
near the magnetic axis is found to fail in explaining the experimental results. An

insufficiency in Eulerian approach is in the treatment of particle orbit near the axis,
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in which they only consider orbits which intersect the magnetic axis when solving the
drift-kinetic equation. (See Appendix of Ref. [10].)

Recently, Wang et al. have carried out a § f simulation including the self-consistent
radial electric field[17]. In the simulation, the time development of the radial electric
field £, = —d®/dy has been solved simultaneously according to the governing equation

from Poisson’s equation and the continuity equation,

2
(IVY[?) + 4mngmic® < “;‘2' >] a{% = —4mel. (5.8)

The intrinsic ambipolarity well-known in the standard neoclassical transport theory in
tokamaks breaks by the FOW effect of ions, and E,, converges to the solution for Eq.
(5.8) with I'; = 0 which gives the self-consistent ambipolar electric field[46]. In Fig.
5.3(a), the heat and energy fluxes (¢; and ¢; + 2.5I';T;, respectively) calculated with or
without radial electric field are shown. In both cases, one can see that the calculated
energy flux is smaller than that from the standard neoclassical theory in the near-axis
region r < r, as in the Lagrangian transport theory. In the case with £, the particle
flux I'; converges to zero, and then the heat flux and the energy flux becomes almost the
same value. Another effect of £, is significant in a large density gradient case shown
in Fig. 5.3(b). In the presence of large sheared electric field, each particle orbit is
modified strongly, which is known as the orbit squeezing[36, 47]. The calculated heat
flux seems to be well estimated by the standard neoclassical theory modified by the
orbit squeezing factor S in Fig. 5.3(b), which represents the orbit squeezing effect on
transport for conventional banana orbits. Note that the deviation of the calculation
result from the modified neoclassical theory becomes large in the region r < r, asin a
small gradient case. It is because the squeezing factor does not adequately express the
squeezing effect of potato orbits. It is a future work to examine whether the Lagrangian
transport theory can properly show the ambipolar electric field and the orbit squeezing
effect or not, which is important to apply the Lagrangian transport theory for a large
density gradient case as in the ITB layer.

Next, Let us see the results of experimental diagnostics of the ion thermal conduc-
tivity near the magnetic axis. The reductive tendency of x; in the near-axis region
has already been found in the early experiments of reversed magnetic shear discharges
to investigate the formation of ITB. The formation of ITB is believed to be a conse-
quence of the suppression of microinstability and its accompanied anomalous transport
by sheared E x B flows formed around the magnetic surface on which g¢-profile has a
minimum point[48, 49]. When anomalous transport is suppressed, the radial transport
will drop to the level predicted by neoclassical transport theory which gives the mini-
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mum transport level in toroidal confinement systems. As one can see in Figs. 5.4 — 5.6,
however, the observed ion thermal conductivity sometimes becomes lower than that of
the standard neoclassical theory. In these figures, the position of the widest potato
width r, evaluated from the experimental data is plotted. Observed x; goes below the
standard neoclassical level within the region r < 1 ~ 1.5r,, which is the same tendency
found in both the calculation using the Lagrangian transport theory in §4 and the 4 f
simulations shown here. Note that, as one can see from Figs. 5.4 — 5.6, there seems no
correlation between the position of the g,,;, surface and the position where x; becomes
lower than the standard neoclassical level. This fact is natural because the mechanism
of ITB formation is irrelevant to the modification of neoclassical transport by potato
particles. It can be said that it is the factor r, that separates the core plasma into
two characteristic region concerning neoclassical transport: one is the region in which
conventional neoclassical transport theory in the SOW limit is valid, and other is the
region in which potato particles and its finiteness of orbit widths affect the transport.
Lagrangian transport theory has proved the reductive tendency of y; near the magnetic

axis by considering the FOW effect of potato orbits around the axis.
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(W. X. Wang et al., Plasma Phys. Control. Fusion 41, 1091 (1999), Fig. 5)
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Figure 5.1: The ion thermal conductivity profile calculated by 6f simulation in Ref.
[16]. The blue lines are the position of r,, 2r,, and 3r,. Two analytical evaluations of
X: are also shown (theory 1 : Ref. [8], theory 2 : Ref. [45]).

(A. Bergmann et al., Phys. Plasmas 8, 5192 (2001), Fig. 5)
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Figure 5.2: The comparison of x; obtained from é f simulations by Bergmann et al.[18]
and the fitting formula for the result of Lin et al.[15], and the analytic solution by Shaing
et al.[10]. x; is normalized by the value from the standard neoclassical theory[45], and

the minor radius is normalized by 7,.
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(W. X. Wang et al., Phys. Rev. Lett. 87, 055002 (2001), Figs. 4 and 5)
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Figure 5.3: (a): Ion heat and energy fluxes obtained by the Jf simulation with or

without the self-consistent radial electric field for the small density gradient plasma|[17].

(b): Ion heat flux for the large density gradient plasma with the radial electric field. The

solid lines in the both figures are from the standard neoclassical transport theory[45],
and the dotted-dashed line in Fig. (b) is the modified standard neoclassical heat flux
which takes account of the orbit squeezing effect[47].
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(F. M. Levinton et al., Phys. Rev. Lett. 75, 4417 (1995), Fig. 5(b))
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Figure 5.4: The ion thermal diffusivity profile before and after a transition into the
ERS (Enhanced Reversed Shear) mode in TFTR[2]. The position of r, is estimated
by assuming ¢ = 3 = const though ¢(0) ~ 4 and ¢, ~ 2 at r/a = 0.35 from the
diagnostics. The dashed line is from the standard neoclassical transport theory[45].

(D. R. Baker et al., Phys. Plasmas 8, 1565 (2001), Fig. 12 (c))
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Figure 5.5: The ion thermal conductivity profile from a experiment in NCS (Negative
Central magnetic Shear) dischargé in DIII-D[7], which is evaluated by the TRANSP
code[50]. The g-profile is almost flat in the NCS region p < 0.4, and r, is evaluated by
the approximation ¢ = 2. The dashed line is from the standard neoclassical transport

theory[45].
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(C. M. Greenfield et al., Phys. Plasmas 7, 1959 (2000), Fig. 10)
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Figure 5.6: The ion thermal conductivity profile from a experiment in NCS (Negative
Central magnetic Shear) discharge in DIII-D[51]. The g-profile is weakly reversed-
sheared with g(r = 0) ~ 2 and the ¢,,;, surface being at p ~ 0.5. The dashed line is
from the standard neoclassical transport theory[45]. The positions of r, plotted by the

blue lines are evaluated according to the ion temperature on each time.
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Chapter 6
Summary

Neoclassical transl;ort phenomena in the region near the magnetic axis of a tokamak
have been studied. First, we have shown that there appear various types of particle or-
bits near the magnetic axis (fat banana, kidney, inner-circulating, and outer-circulating
orbits), which had not been treated properly in the conventional neoclassical transport
theory. They are often called potato orbits in a generic term, which have a relatively
wider orbit width A, ~ (¢*p*Ry)'/? than that of banana orbits appears away from the
' magnetic axis. We have investigated the precise properties of particle orbits and have
made a clear classification for those orbits appearing around the axis.

In the near-axis region, standard neoclassical transport theory based on the small-
orbit-width (SOW) approximation is not valid because the finiteness of potato orbits
affects significantly the transport near the magnetic axis in a low-collisionality plasma.
To construct a new transport theory applicable to this region, we have adopted La-
grangian approach of neoclassical transport analysis. Comparing to the conventional
Eulerian approach, the Lagrangian formulation contains the finite-orbit-width (FOW)
effect by nature, in which both the properties of wide-width particle orbits and infor-
mation of the background field along each orbit are reflected.

Though the Lagrangian transport theory had been proposed to treat nonlocal trans-
port phenomena in a low-collisionality plasma, the previous works had only proved that
the Lagrangian transport theory could reproduce the result of the standard Eulerian
transport theory away from the axis. It is because there had been a difficulty in appli-
cation of this approach in practice to a case in which the FOW effect is really important
as in the near-axis region. Then, we have improved the treatment of the orbit-averaged
self-collision term by introducing a model collision operator which is suitable to both
analytical formulation and numerical calculation. By using the model collision operator,

we have solved the reduced drift kinetic equation in the phase space of the constants of
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motion (COM) (&, i, (¥)), and have obtained the Lagrangian transport equations which

is valid both in the regions near and away from the magnetic axis.

To utilize the Lagrangian formulation to calculate transport coeflicients near the
magnetic axis, we have developed the numerical calculation code (the NEO code) using
a Monte Carlo integration method which can correctly evaluate the transport coefficients
with the FOW effect. It has been shown that the resultant ion thermal conductivity
x; is smaller than that obtained from the standard neoclassical transport theory in the
region (r) < r, = 2(2¢*p*Ry)'/? in a constant-q configuration. We have also shown that
the direct comparison of x; between Eulerian and Lagrangian representations is possible
as long as the factor A, is nearly unity, which is the case in the region (r) > gp. As
concerning the g-profile, we have demonstrated that the region in which the reduction
of x; from the standard neoclassical level is seen becomes broader as the typical potato
orbit width r, becomes wider in a reversed magnetic shear configuration, in which
g-factor near the magnetic axis is larger than in a normal shear configuration. We
have found that the reductive tendency of x; in the range (r) < r, is consistent with
the results of recent tokamak experiments and other transport simulations using 4 f
method. Thus it has been shown that the Lagrangian neoclassical transport theory
gives one a correct and useful method to treat the transport phenomena including the

FOW effect in the near-axis region.

Finally, let us remark on some subjects on the Lagrangian approach of the transport
analysis in future. First, in the calculation of transport coefficients shown in this thesis,
we have neglected the radial electric field. However, it has been shown in the recent 4 f
simulations that the FOW effect produces non-vanishing ion particle flux in the radial
direction even if only the ion-ion self-collisions are considered, and the ambipolar radial
electric field can be determined as in non-axisymmetric systems such as stellarators. On
the other hand, the presence of the radial electric field affects the transport by modify-
ing the population of each orbit type and the orbit width by the orbit-squeezing effect.
Therefore, an iterative calculation is needed to obtain the self-consistent radial electric
field in the NEO code, which takes much calculation time. In this point of view, the
direct simulation using ¢ f method is convenient to calculate neoclassical fluxes with the
self-consistent electric field. However, one advantage in the Lagrangian approach over
0 f simulation is that one can evaluate separately the contribution of the diagonal and
off-diagonal components of the transport matrix on the neoclassical fluxes. Therefore,
the Lagrangian transport theory will help our understanding of neoclassical transport

phenomena in a realistic configuration in which both the density and temperature gra-
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dients are present.

Another point is the consideration of the external sources of the particle, momentum,
and energy. In the formation of the reversed shear configuration with ITB in experi-
ments, it is known that some strong heatings on the core plasma are needed. Therefore,
for utilizing the Lagrangian formulation to analyze the core transport of plasma with
ITB, the source terms must be considered for completeness.

We will further investigate transport phenomena near the magnetic axis by using
both the Lagrangian transport analysis and the §f method, and then contribute to a

more comprehensive understanding of neoclassical transport with the FOW effect.
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Appendix A

Estimation of /.

From the definition of §,, we have to evaluate

g 06 0
b= | — — | o, Al
(75 3wm) (A1)
where o, = Iv/Q evaluated at the averaging point (v,0) = ({1}, 6*). The difficulty lies
in the evaluation of 06*/0(¢). First, let us consider the case for orbits which have the

turning points of 4, that is, for banana, concave-kidney, outer-circulating, and inner-
circulating orbits. The averaging point of these orbits can be approximated by the
turning points. Therefore, from the equation of 6 in Eq. (3.16), da. /0y = 1 must be
satisfied on the averaging point. Then, we have

75 (50
90 oy \ 99

~ . A.
oy~ (aa*) (8.2)
00 \ oY
Substituting Eq. (A.2) into (A.1), we have
, (8B 8B 0B®B
M\ 5= — = s
'\ oy v 80 oy2 (A3)

,0B 8?B 0B [(8B\’ uB 2muf)
uB +mvﬁ uB

muj %m + /LW —aE

Note that Eq. (A.3) is evaluated at the averaging point. Since v ~ 0 at the turning

point of 6, one can see that §, ~ 0 for banana and outer-, inner-circulating orbits.

As concerns kidney orbits, we can evaluate 96*/0(v)) by approximating the averaging

point by the turning point of v. Then one also finds that 4, can be neglected for kidney
orbits.

For passing particles, we cannot determine the averaging point 6* in a simple way

as above. However, for well-passing particles, 00*/0(¢) in Eq. (A.1) can be negligible,
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and one can estimate

Oa, 10B qp

0p =~ WNCY*E%NW,

(A.4)

which is negligible when considering (r)y ~ 1> gqp.
Thus the approximation 1 — §, ~ 1 is ensured for all types of orbit.
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Appendix B

Derivation of the lowest order

distribution function

Here, the procedure of deriving the O(4})-th distribution function fo is explained. This
is an intelligible example for readers to understand how to take a moment in the (€, u)
space.

Instead of the model collision operator Eq. (3.33), the exact operator (3.24) is used
in the reduced drift kinetic equation of the O(4}) part,

19

COU) = 75+ |9 (ARta) +0- £ o)) | =0, (B.1)

where A and D are defined in Eq. (3.25). Note that the derivative 0/0z is treated as
9/0E or 9/du here and hereafter, because 9/9(¢)) is assumed to be O(4;). Multiplying
J.In fy and integrating in the (£, ;1) plane, one has

0 _ _ o -
0 = GZ/dfdu—a;- [JclnfO (Afo—l-D"a—zfo)]
2rK 0. -1 do N

X@~U(V—~V,)-(—(?E-ilnf_o—a—z'%lnfé), (B.2)

ov ov 0z ov’

where the partial integral has been performed, and the orbit averaging operator and
the Jacobian J, are explicitly written down in the second term.

Physically, collisions bring about random scatterings of particles in the (&, i, ()
space. We should note here that there is a limitation in (&, i, ()) space within which
particles can exist. Then, the random-walk of particles by collisions is limited within
this existence region, and no particle can cross the boundary. Therefore, the vector
Afo+ D-38fy/0z in the first term of Eq. (B.2) must be parallel to the boundary in
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the (&, i, (¢)) space, and thus the first term vanishes. (See also Appendix. C for more
details of the integral region in the (£, 1) plane.)

As mentioned in §3.2.3, z’ can be written as 2’ = (&, 1/, (¥) = () + ). In the
lowest order, the deviation 15’ can be neglected. By using this approximation, the

integral [ d®v' is transformed to the (z, ) space as

= %s0— 0ys(c’ - sy - ). (B3)

m2| 6’|

/ d*' =b-V6 / d€'dy'd¢’'de’ d¢'d{+)

where we have used Eq. (3.17) for the Jacobian in the (z,%) space.

Substituting Eq. (B.3), and changing the order of integration [ df, we have

2m
/ o> / b - VOdEduds
0

0,0t/

't 1’1 6||1_5L|“/8 ; Oz
x [ d€'dy'd : Zinfy-—-U-F=0, B.4
[ demiae o o1 e oy (B-4)
where
/ _ 0z 0 2 oz 0
F(v,v', () = o= 5-In fo(z) = == - = In fo(2). (B.5)

Interchanging (£, 1) with (£/,4') in Eq. (B.4) and combining the resultant equation

with the original one, we have

PR , — —
0=/ d@Z/b Vé)d&'dudqﬁ/dé‘du’dqﬁ’lllelallllélf*lfof(’)F.U.F. (B.6)
0

o0’

From the definition of U one finds

F.U(w)-F = 133 [(Fw)® — (F-w)?] >0, (B.7)

where w = v — v/. The equality is satisfied only when F and w are parallel. Therefore,
from Eq. (B.6), F must satisfy
Fx(v—-v)=0 (B.8)

for any (v, v’). Considering the case of v/ = 0 yields

_ 0 Vla
Fxv = m(vb—g—— 55 )lnfoxv—O.

& 9 In fo = 0. (B.9)
op
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Then f, is independent of x. Returning to Eq. (B.8), one has

(v —v') x (vﬁlnfo—v'ilnfé) =0

o€ 5 oc’
=~ (va')(%lnfo—@lnfé)zO
d ., = 1

Therefore, one finds f; = N({¢))exp(—&/T). By considering radial electric field
®(1)), we must change integral variable £ with W = & — e®(¢p = (¢)). The same
procedure from Eq. (B.2) yields the zero-th order distribution function

£~ ()
() } ’ (B-11)

where the normalized factor N = 7i(m/27T)%? is defined so that Eq. (B.11) reproduce
the local Maxwellian fj, in the SOW limit of the standard Eulerian theory.

Fol& s (0)) = () (#«m)/ exp [—
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Appendix C

Integral in the (£, u) plane

In the derivation of transport equations, integrals in the (£, 1) plane appear. We prove
some properties used in the integral here. Consider an integral of a function F

S [ de [ ane,m o0 rE,mwya, (C.1)

where J. and F' also depend on the orbit type o;. Integral region in the u direction is
shown in Fig. C.1. pu;, uo and u3 correspond to the boundaries /1, /2 and /3 in Fig.
2.11, respectively. The kidney region is laid between u; and p3, and it is overlapped
with a part of the banana and co-passing regions. The integral path in p is taken in
the direction of arrows in Fig.C.1.

To use Gauss’s theorem to take moments of the reduced kinetic equation (3.55),
some boundary conditions are needed. First, consider the boundary x = 0. Here,
noting that all the integrand having the form 9/0p in Eq. (3.55) are proportional to
p. Then the surface integral vanishes there. Second, consider the boundary u3, where
a co-passing particle moves into a kidney region. This transition occurs continuously,
since the difference between kidney and co-passing orbits is only that the former has
turning point of v and the latter does not. Then, we have

lim J.(p;00 = P+) = lim J.(y;0; = K). (C.2)

p—us B3

Therefore, the surface integral is canceled at u3; between co-passing and kidney, since
any physical value in the integrand F is also continuous on the boundary.

On the boundary ., a banana particle bifurcates into a kidney or a counter-passing
particle as shown in Fig. 2.12. At the limit u4 = u,, the particle is stagnated at
(r,0) = ({r), n). All the values contained in the integrand F are then evaluated at the
stagnation point. On the other hand, Jacobian J. becomes infinity at u, as is pointed
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out in Sec. §3.2. Noting that the kidney and counter-passing orbit at the boundary
correspond to outer- and inner-sections of a banana orbit and J. « 7,, we have

Jim Je(u; 00 = B) = lim [Je(p; 00 = K) + Je(; 00 = P-)J. (C.3)
Therefore, the integrand F for each orbit type are required to be continuous on the
boundary so that the surface integral on the boundary p; can be canceled between
banana, counter-passing and kidney, otherwise the integral will diverge.

The last condition is on the p = u; corresponding to stagnated outer-circulating
orbits. In Eq. (3.55), one can see that all the terms within the 9/0u operator have
v) in the averaged operator (---). As mentioned in §2.2, v is not exactly zero for the
stagnated outer-circulating orbits when particle orbits are solved strictly. Then, there
remains a small contribution from the surface integral in the y direction when one takes
the moment of Eq. (3.55) to obtain Eqgs. (3.56) and (3.60). Strictly speaking, however,
this contribution must be vanished since no particle can go across the boundary y; in
the COM space as pointed out in Appendix. B, and in fact it vanishes in the SOW
limit, since stagnated condition is v = 0 in this limit. The small contribution on the
17 boundary may remain because we solve the drift kinetic equation order by order.
Therefore, the contribution from the surface integral to ON;/0t and 0Q; /0t is considered
to be of the order higher than O(éZ), and then it is negligible.

As a consequence, the perturbed distribution function g, must have continuous
derivative dg;/Ou on the boundary u, and ps. This fact is used in Eq. (3.77).

Figure C.1: Integral path in the u direction. Abbreviations of orbit types are the same
as used in Fig. 2.11.
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Appendix D

Transport coefficients in the SOW

limit

To show that the particle flux J! vanishes in the SOW limit, consider the transport
coefficients S;; and Si away from the magnetic axis. We assume a model magnetic
field B = By(1l — €cosf) as in Sec. II. Orbit types considered here are passing and
banana in a usual sense, and the factor |1 — 4.| becomes unity in this limit. From the
definition of the normalized transport coefficients Egs. (3.78) and (3.80), one has

Ss3 = Su+ Z/diﬂd}\o?pciy(c)%(h)- (D.1)

Since § = vjb - V4 in the SOW limit, the integral above can be calculated as
_ 2Utm 1) dd By
Uzt / dzdXoTpciy(c)ho(h) = q TRo / dec? exp~ y(c) / dAoMo WE

_ 2B0 / )\0 )\0
B- ve 1— Xo/h

"ll

Therefore, we obtain

+ 8BoK, dV
3mqRy dy

Ss3 = Sn —(h?)y, (D.2)

where we have used the flux-surface average

Ldv [ do .,

(h?)
YT ordy J, B-V0O

Combining Egs. (3.81) and (D.2) yields

8 =255 (D.3)




Since A;; o< S11(1—/351;) and Ay o« Si5(1—B3S51), the transport matrix components A
other than Ay, vanish intrinsically. Therefore, ion particle lux does not appear in the
Lagrangian formulation in the SOW limit when only the ion-ion collision is considered.

Note here that, in the SOW limit, Eq.(3.78) for S;; becomes the same form as
Eq. (80) in Ref. [52] since (hvj) = 0 for bananas in this limit. Then, the ion thermal
conductivity obtained from our formulation reproduces the result from the Eulerian for-
mulation in the SOW limit. Though this property has already been proved by Bernstein
et al, we succeed in introducing the momentum-conservation nature in the Lagrangian

formulation.
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Appendix E

Relation between the particle
distributions in Lagrangian and

Eulerian representations

In Lagrangian formulation, definitions of the particle density and the temperature are
different from those in Eulerian representation. In §3.3.1, it is that 7;((¢)) ~ n;(v)
even in the near-axis region. Here we discuss the relation between two representations
and show some examples of the ‘density and the temperature profiles by numerical
calculation.

The distribution function in the COM space f(€, i, (1)) can be understood as[53]

FE W) = (F(Em1,0)
_ —1— f -‘%.(’f[s,u,ws,u,wxe),e], (B.1)

where f(€, u,v,0) is the usual distribution function in the Eulerian representation. By
differentiating the both sides along the particle orbit, one easily finds the inverse relation

f(‘g, £ ¥, 0) = f[ga M, Y- A¢]a (EZ)

where A, is defined in Eq. (3.68).
In the Lagrangian transport theory, the lowest-order distribution function f, is given
by Maxwellian in the COM space

fo="n (%) o2 exp [_5 —Tefi} , (E.3)

where 7, T, and ® are given as functions of (¢). Using Eq. (E.2), we can calculate the
particle density ng(v), 6) and the temperature Tx(1,6) in the usual Eulerian represen-

tation when the plasma particles are loaded according to the distribution function in
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the COM space. They are given as

n(0,0) = [ Pofol€ - A, (E.4a)
Tp(,6) = E,j—E PoE T, b — Ay), (E.4b)

where we neglect the perturbed distribution f;, fa, --- for the simplicity. From these
equations, it is expected that

~N ——

() L:(w) T(()) ‘w=<w>

with §, being the ordering parameter of the gradient scale length of 7 and 7" defined in

~ O(&) (E.5)

Eq. (3.41). Therefore, as we assumed in the main text, the the differences of the density
and the temperature between Lagrangian and Eulerian representations are expected to
be small as long as the assumption 6, < 1 is valid.

Now we show some numerical calculation results of ng and 7. The numerical
method used here is similar to the Monte Carlo integration shown in §4. Test particles
are randomly generated in the phase space (£, u,r,6), and then the averaged position
(r) of each particle is calculated by tracing the orbit. From given 7i({r)) and T'({r)), the
integrand in Egs. (E.4a) and (E.4b) are evaluated.

The first example is for the small gradient case 6, < 1 with a constant-g profile(q =
3). The profiles of 7; and T; are given as the same as in Fig. 4.6 with 7;(0) = 5x 101%m~3
and T;(0) = 10keV. The typical potato width r, defined in Eq. (2.43) is about 0.20m in
this profile. Figure E.1 is the numerical calculation results of ng and 7%. Only a slight
difference can be seen in the density and temperature profiles between the Eulerian and
the Lagrangian representations, that is, n((r)) ~ ng(r = (r),0) and T'((r)) ~ Tg(r =
(r),6). Then, the assumption made in §3.3.1 on 7;((?)) is confirmed, even in the region
r ~ qp; where )\, and )\, becomes much larger than unity.

We also check the particle distribution in the velocity space (vj,v.) in the Eule-
rian representation. In the small gradient case, the calculated distribution function
f(r,0,v),v,) almost resembles the local Maxwellian. A distinctive feature can be seen
as the gradient becomes steeper. We calculate the particle distribution in a reversed
magnetic shear configuration as in Fig. 4.6 with more steep gradients for 7 and 7" than
those given in the previous case. In this case, J, for typical potato particles is about 0.5.
Even in this case, calculated ng and T are almost the same as given 77 and 7. However,
as shown in Fig. E.2, the distribution function shows a remarkable asymmetry with v.
In Fig. E.2(a), negative-v; particles in the range |vj/v| < /e draw banana orbit with
(r) > r, while (r) < r for positive-v; bananas. Then particle density in the negative-y
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region becomes smaller than that in the positive-v; region. A similar explanation can
be given for the asymmetry in Fig. E.2(b) by considering the average position for co-
and counter-passing orbits.

The asymmetry of the particle distribution in the velocity space shows the non-
locality essentially contained in Lagrangian representation, and gives the physical de-
scription how the explicit part of transport is driven in the Lagrangian formulation.
In the conventional Eulerian transport theory, the lowest order distribution function is
given by a local Maxwellian, and then it bears no particle and thermal fluxes. On the
other hand, in the Lagrangian formulation, the lowest order distribution function f,
which is Maxwellian in the COM space, gives an asymmetric distribution in the velocity
space on a local point. Then the pitch-angle scattering term in the model collision op-
erator (the first term in Eq. (3.26)) brings about a flux in the velocity space which flows
from the high-density side toward the low-density side. In Fig. E.2(a) for example, the
positive-v; banana particles diffuse into the negative-v| region and consequently change
their averaged position () outward. Thus the explicit part of the fluxes in the (%)
direction are arisen from the lowest order distribution fo.

Note here that we have neglected the perturbation of the particle distribution f;
in the numerical calculation of nyp and Tg, and that there also exist the implicit part
of the fluxes which are determined from fi. The main role of the implicit part in the
Lagrangian formulation is to cancel the particle flux I'; through Si7', which acts as the

momentum restoring term for the pitch angle scattering operator.
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Figure E.1: Profiles of the ion density n, and the temperature 7 in the usual Eulerian
representation for a small gradient configuration. np and Ty are normalized by 7(0)
and T'(0), respectively.
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Figure E.2: Particle distribution function f(v),v

)at (a) : # = 0 and (b) : 7 on

r = 0.10m in a large gradient configuration. The scales vy and v, are normalized by v;,.

A remarkable asymmetry can be seen in the range |v/v| < 4 r/R, in which particles

are bananas.
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