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Abstract

Dust coagulation is the first step of planet formation. However, several theoretical problems
still remain in dust coagulation models. One of the main problems is the radial drift barrier,
which is a problem that dust grains with a size of 1 m quickly fall onto the central star and
no planetesimal can form. In addition, laboratory experiments and numerical simulations
found other problems: the fragmentation and the bouncing problems. The former is that
dust grains experience high speed collisions resulting in collisional disruption, and the latter
is that dust grains collide but sometimes bounce and do not form larger bodies. By contrast,
astronomical observations have evidenced the grain growth in protoplanetary disks, which
are the birthplace of extra-solar planets. It has been shown that protoplanetary disks pos-
sess millimeter-sized dust grains. Thus, we have to construct the dust coagulation theory
overcoming the theoretical problems to explain the formation of planetary systems being
consistent with the disk observations.

This thesis aims to elucidate the dust coagulation process by introducing porosity evo-
lution of dust aggregates. In protoplanetary disks, dust grains stick to each other to form
porous structure. These clusters are called dust aggregates. Dust grains are thought to
form extremely porous aggregates in protoplanetary disks. However, compression mecha-
nisms to form compact planetesimals are still uncertain. For example, it has been shown
that collisional compression is inefficient to compress highly porous aggregates. Therefore,
compression mechanisms other than collisions are required to explain planetesimal forma-
tion.

In this thesis, we introduce static compression of porous dust aggregates. First, we
perform numerical simulations of dust aggregates and derive the compressive strength of
porous dust aggregates. The derived compressive strength has a form of P = (Eroll/r3

0)φ3,
where Eroll is the rolling energy, r0 is the monomer radius, and φ is the filling factor of dust
aggregates. We also analytically derive the formula and confirm the results of the numerical
simulations. In addition, the derived formula smoothly connects to the results of laboratory
experiments of relatively compact silicate aggregates.

Next, in order to introduce the static compression to dust coagulation in protoplanetary
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disks, we consider two origins of static compression, which are due to gas drag and self-
gravity. As a result, we show the overall porosity evolution of dust aggregates in protoplane-
tary disks: dust grains coagulate to form fluffy aggregates, and then they are compressed by
the gas-drag pressure and their self-gravity to form planetesimals. The size and mass of the
planetesimals are consistent with comets in the solar system, which are believed to be the
remnants of planetesimals. Moreover, we found that icy aggregates are free from the three
problems of planetesimal formation, which are the radial drift, fragmentation, and bouncing
problems. In this way, the proposed scenario is the first coherent theory of dust coagulation
from grains to planetesimals.

Finally, to investigate the observational properties of porous dust aggregates, we cal-
culate the opacities of porous dust aggregates. We find that the opacities of porous dust
aggregates are characterized by the product of the aggregate radius and the filling factor,
except for the case where the aggregate radius is similar to the wavelength. The results sug-
gest that the aggregate radius and the filling factor mostly degenerate in observations. They
also suggest that the millimeter-wave emission of protoplanetary disks, which has been in-
terpreted as the emission from compact millimeter-sized grains, can be interpreted as the
emission from the extremely porous dust aggregates. In addition, we also derive the analyt-
ical expressions of the absorption and scattering opacities of porous dust aggregates, which
will greatly reduce the computational costs to calculate the opacity. Moreover, we find a
difference in absorption opacity between compact and highly porous aggregates caused by
the interference, which occurs when aggregate radius is similar to observation wavelengths.
Using the difference, we propose a way to distinguish between compact grains and fluffy
dust aggregates in expected future observations.
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Chapter 1

Background

Planets are believed to form by coagulation of dust grains in circumstellar disks around
young stars. The disks are called protoplanetary disks. When young stars form, dust grains
are as tiny as 0.1 µm. In protoplanetary disks, dust grains are believed to stick to each other
due to molecular force and form kilometer-sized planetesimals. They further stick due to
their gravity, and finally form planets. However, how dust grains coagulate and grow to
planetesimals is still unknown: there are mainly three problems in planetesimal formation,
which are the radial drift, the fragmentation, and the bouncing problems. The first problem
is that when dust grains coagulate to form 1 meter sized bodies, they quickly fall onto the
central star and thus no planetesimals can form (e.g., Adachi et al., 1976; Weidenschilling,
1977). The second is that collisional energy of dust grains is so large that they are disrupted
in protoplanetary disks (e.g., Blum & Münch, 1993). The third is that dust grains collide
other grains and sometimes do not stick but bounce (e.g., Zsom et al., 2010).

By contrast, observations of protoplanetary disks suggest grain growth. Sub-mm obser-
vations suggest that the maximum size of dust grains is 1 mm at least in the outer part of the
disk (e.g., D’Alessio et al., 2001). From a viewpoint of dust dynamics in disks, 1 mm-sized
grains have to radially migrate inward due to the same mechanism of the radial drift barrier.

In order to explain planetesimal formation, several ideas have been proposed (e.g., Jo-
hansen et al., 2007; Okuzumi et al., 2012; Windmark et al., 2012a). However, there has been
no conclusive scenario of planetesimal formation.

One of the promising scenarios is to introduce porosity evolution on dust coagulation.
Porous dust aggregates possibly overcome the radial drift barrier due to the rapid growth
(Okuzumi et al., 2012) and overcome the bouncing due to their porous structure (Wada et al.,
2008), and icy aggregates can overcome the fragmentation problem due to their stickiness
(Wada et al., 2009).
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However, the fluffy growth scenario also has problems. Once dust grains form porous
aggregates, the aggregates are not effectively compressed by collisions, but their filling fac-
tor becomes ∼ 10−5 (Okuzumi et al., 2012). This is inconsistent with the properties of
planetesimals, which are believed to be compact. In addition, there has been no obser-
vational evidence on highly porous aggregates. The link between porous aggregates and
observations is still missing.

Therefore, finding other mechanisms to compress the aggregates to form planetesimals
is a way to construct a coherent scenario of planetesimal formation. Moreover, the grow-
ing dust aggregates must be consistent with observations of protoplanetary disks. In this
thesis, we will introduce static compression as a new compression mechanism of porous
dust aggregates. In addition, we investigate the observational properties of the porous dust
aggregates.

As an introduction to this thesis, in this chapter, we first introduce the three problems in
planetesimal formation. Next, we also introduce the observational results to be explained.
Then, we explain the strategy of this thesis toward the planetesimal formation theory. In
Chapter 1.1, we denote the basic dynamics of dust grains in protoplanetary disks to intro-
duce the radial drift barrier. In Chapter 1.2, we introduce the laboratory experiments and
the numerical simulations of dust collisions to introduce the bouncing and fragmentation
problems. In Chapter 1.3, we introduce the porosity evolution and explain the problem
for compression of porous dust aggregates. In Chapter 1.4, we introduce the results of the
observations of protoplanetary disks, which illustrate the grain growth. The planetesimal
formation model has to explain the observations. In Chapter 1.5, we describe the goals
and the strategy of this thesis, which are to construct a successful scenario of planetesimal
formation by introducing the static compression.

1.1 Dust dynamics: introducing the radial drift barrier

Dust grains, which are the seeds of planets, commonly spread in the Universe. In the region
of dense molecular clouds, stars are formed by gravitational collapse (Larson, 1969). At
this stage, dust grains inside the clouds are also contracted and form larger bodies because
of their high density, which yields to planets. If dust grains collide each other with suffi-
ciently low velocities, they stick to form larger bodies. Their collision frequency strongly
depends on the spatial density of dust grains. In molecular-cloud phase, however, the col-
lision frequency of grains is too low to make larger bodies in a free-fall timescale (Ormel
et al., 2009; Ossenkopf, 1993). Therefore, the birthplace of planets should be more dense.
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The protoplanetary disks are good cradles of dust coagulation.

In this section, we review theoretical modelings of dust growth and dynamics in proto-
planetary disks. For the modeling, we first describe the disk model that we use. Then, we
derive the dynamics of gas and dust grains in the disk. In the derivation of the dynamics, we
introduce the radial drift barrier and explain possibilities to overcome the barrier.

1.1.1 Protoplanetary disks

The gas of molecular cloud cores has an angular momentum in their collapsing phase. Thus,
the gas does not fall in spherical symmetry, but form a disk-like structure. This disk is
believed to become a protoplanetary disk. The formation process of protoplanetary disks in
the context of star formation is currently under debate (e.g., Machida et al., 2010). Thus, we
do not proceed to the formation process of the disk, but use a simple model of disk structure.

Protoplanetary disks have been usually modeled with simple power-law density and tem-
perature distributions. Here, the gas surface density Σ is taken to be Σ = Σ0(R/1AU)−p and
temperature to be T = T0(R/1AU)−q. Hayashi et al. (1985) proposed a minimum mass solar
nebula model (MMSN), where the solid distribution corresponds to the averaged planet-
mass distribution in our solar system. The dust temperature is derived by balancing between
the heating by stellar radiation and the cooling by blackbody radiation at each location. In
the MMSN model, Σ0 is usually taken to be Σ0 = 1700 g cm−2, the surface density power
to be p = 1.5, T0 to be T0 =280 K, and the temperature power to be q = 1/4. The dust
mass fraction is usually assumed to be 1/100 of the gas, which is the value in the interstellar
medium.

However, the temperature distribution is not appropriate for protoplanetary disks in star-
forming regions. Protoplanetary disks are optically thick at infrared wavelengths, and thus
the radiation from the central star does not penetrate into the disk midplane. As a result,
the midplane temperature is considered to be much lower than the MMSN model. Chiang
& Goldreich (1997) proposed the two-layered model, where the disk is composed of the
surface layer which is directly irradiated by the central star and the midplane which is in-
directly heated by the surface layer (see Appendix of Tanaka et al. 2005 for the analytical
expressions). This model well reproduces the observed SEDs of protoplanetary disks (Chi-
ang et al., 2001; D’Alessio et al., 2001). Figure 1.1 represents the temperature at the disk
midplane and the disk surface (Chiang et al., 2001). The model of TBB corresponds to the
optically thin disk model. We note that, in the two-layerd model, the midplane temperature
is remarkably lower than the surface temperature. This greatly affects the dust coagulation
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3. RESULTS

3.1. Flaring Index
Figure 4 displays the behavior of the Ñaring index,

c 4 d ln H/d ln a. We conceptually divide the disk into three
annular regions, as was done in CG97 (see their ° 2.3.2). In

FIG. 4.ÈFlaring index, c 4 d ln H/d ln a, for our reÐned standard
model. As was done in CG97 (see their ° 2.3.2), we divide the disk into three
annular regions depending on the optical depth of the disk interior. In
region I, the interior behaves as a blackbody ; c increases from its Ñat disk
value of 1.125 B 9/8 to its asymptotic Ñared value of 1.275 B 9/7 as the
disk thickness becomes increasingly larger than the stellar radius. In region
II, the disk interior becomes optically thin to its own reprocessed radi-
ation ; c increases as interior grains enhance their temperatures to compen-
sate for the inefficiency with which they reradiate. In region III, the interior
is transparent to radiation from the surface and cools quickly with increas-
ing distance, causing c to decrease.

the region marked ““ I,ÏÏ the disk interior is opaque to both
its own reprocessed radiation and to radiation from the
surface. Here c increases from its Ñat disk value of
1.125 B 9/8 to its asymptotic value of 1.275 B 9/7 as the
Ðrst two terms on the right-hand side of equation (5) grad-
ually dominate the last term. In region II, the disk interior
remains opaque to radiation from the surface, but is opti-
cally thin to its own reprocessed radiation. Here c steeply
rises with a because grains in the disk interior equilibrate at
relatively high temperatures to compensate for the relative
inefficiency with which they reradiate the incident energy.
Finally, in region III, the interior is transparent to radiation
from the surface (i.e., the inability of the inte-&Si

i
T
s
[ 1) ;

rior to absorb the incident energy causes c to decrease.

3.2. Disk Temperatures
Figure 5 exhibits temperature proÐles for the surface (T

ds
)

and for the interior The temperatures of grains in the(T
i
).

surface layer vary slightly with their sizes ; in Figure 5, we
have chosen to plot for the size bin containing the mostT

dsluminous grains, i.e., the logarithmic size interval that
absorbs the greatest fraction of incident stellar radiation.
For our choices of grain composition and size distribution,
these dominantly absorbing grains have radii r B 0.1È0.7
km. For reference, we also overlay in Figure 5 the tem-
perature of an imaginary blackbody sphere, which isTBB,
naked before half of the stellar hemisphere.

These temperature proÐles are largely similar to those
found in the simpler model presented in CG97 and help to
justify the approximations made there. At a given distance,

FIG. 5.ÈTemperature proÐles for the surface and for the interior in our
reÐned standard model. The temperatures of grains in the surface layer
depend on their sizes ; here, the curve marked represents the size bin,T

dsr B 0.5 km, containing the most luminous grains. The discontinuity in T
dsat a B 6 AU marks the water condensation boundary in the surface,

outside of which ice coats silicate cores ; the discontinuity in atH2O T
dsa B 0.05 AU marks the silicate condensation boundary in the surface. For

reference, the temperature of a spherical blackbody, which is naked before
half of the stellar hemisphere, is shown as a dashed line.

R

Fig. 1.1 The temperature distributions at the disk midplane and at the surface layer. Ti
represents the temperature at the disk midplane, Tds at the disk surface, and TBB where the
temperature is determined by blackbody radiation. The figure is originally from Fig.5 of
Chiang et al. (2001).
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in protoplanetary disks, such as coagulation efficiency, location of the snowline, and the
scale height of the disk.

As a fiducial case, in this thesis, we adopt the surface density of the MMSN model,
where Σ0 = 1700 g cm−2 and p = 1.5, and adopt the temperature profile of that of Chiang
et al. (2001) at the midplane.

1.1.2 Gas dispersal

The protoplanetary disks are thought to be accretion disks. The source of viscosity is be-
lieved to be the turbulent motion because of the magneto-rotational instability (Balbus &
Hawley, 1991). In the modeling of disks, the viscous accretion usually modeled with α
parameter such that

ν = αcshg, (1.1)

where cs is the sound speed and hg is the disk scale height (Lynden-Bell & Pringle, 1974;
Shakura & Sunyaev, 1973), which we will discuss later. The accretion timescale can be
estimated to be

tdiff ∼ R2

ν
. (1.2)

The timescale depends on the radius of the disk. If we take the value of α ∼ 10−3 and the
disk radius to be a few tens of AU, the dispersion timescale of the disk is ∼ 106 years.

However, the mechanisms of the disk dispersion is still uncertain. Several mechanisms
to explain the disk dispersal have been proposed, which are the viscous accretion (Lynden-
Bell & Pringle, 1974), photoevaporation, stellar encounters, or the disk wind (see the review
by Hollenbach et al., 2000). In the viewpoint of observations, infrared observations suggest
that the dispersal timescale is between 106 and 107 years (Hernández et al., 2007). Figure
1.2 shows that the disk frequency for each star in star clusters. The disks are detected at
infrared wavelengths. The result shows that the protoplanetary disks have a dissipation
timescale of a few × 106 years.

Here, we focus on dust coagulation in disks. The observational results suggest that the
planet formation have to be completed within a few Myr.

1.1.3 Dynamics of gas particles and dust grains

In this section, we briefly summarize the motion of dust grains and disk gas. The dynamics
of dust grains is strongly affected by the disk gas. If dust grains are small enough, they are
strongly coupled to the gas. Thus, the dynamics of small grains are the same as that of the
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Figure 2
Evolution of protoplanetary disks—fraction of sun-like stars with detectable near-IR excess as a function of
time (Hernández et al. 2007b; J. Hernández, private communication). Protoplanetary disks have a range of
lifetimes, and most sun-like stars have lost their disks by 6 Myr.

with age (Carpenter et al. 2006, Hernández et al. 2007a), as is accretion of gas onto the star (Calvet
et al. 2005a).

The fraction of sun-like stars with near-IR disk emission decreases from ∼100% to 0% over
6 Myr (Haisch, Lada & Lada 2001; Hernández et al. 2007b; see Figure 2), implying that such
disks have a range of lifetimes from 1–6 Myr (Meyer et al. 2007). The protoplanetary disks of
more massive stars have shorter lifetimes than those of sun-like stars, because few A stars have
protoplanetary disks by 3–5 Myr (Carpenter et al. 2006, Hernández et al. 2007b); conversely, later
spectral types are more likely to host protoplanetary disks at later times (Young et al. 2004, Low
et al. 2005, Megeath et al. 2005, Scholz et al. 2007). Although near-IR observations probe the inner
"1 AU of the dust disk, this dust is thought to have been dragged in by gaseous accretion disk
processes, and its disappearance is usually considered to be synonymous with the disappearance
of the gas, although the correspondence of accreting gas and near-IR excess is not so strict (e.g.,
Lada et al. 2006).

The process of protoplanetary disk dispersal is rapid compared with the stellar lifetime, because
very few stars are observed having intermediate levels of near-IR excess. However, some stars
without near-IR excess (from dust at "1 AU) still possess mid-IR excess (from dust at a few
astronomical units) (e.g., McCabe et al. 2006), and a new paradigm is being forged that envisages
the disks cleared from the inside-out (Calvet et al. 2005b). Even so, just 10% of disk-bearing
stars are seen in a transitional phase (Sicilia-Aguilar et al. 2006, Cieza et al. 2007, Hernández
et al. 2007a), illustrating the pace of the clearing process. The rapid change in disk properties at
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Fig. 1.2 The disk frequency for each star clusters against their ages. This figure represents
the dissipation timescale of protoplanetary disks. The figure is taken from Fig.2 of Wyatt
(2008).
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disk gas. When dust grains coagulate to form larger bodies, they become decoupled from
the gas, and thus their motion becomes different from the gas. In calculating the force acting
on grains with a relative velocity v, there are two physical regimes (e.g., Adachi et al., 1976).
If the dust radius is smaller than the mean free path of the gas, a < λmfp, the gas behaves as
particles at a scale of the dust grains and the drag force is called Epstein drag. If a> λmfp, the
drag force is determined by calculating the fluid flow, which is called Stokes drag. The drag
force in these two regimes is described with the stopping time of dust grains, ts ≡ mv/Fdrag,
which represents the timescale to stop the relative motion of the dust grains against the gas.
The stopping time is given by

ts =



3m

4ρgvthA
(a <

9

4
λmfp)

3m

4ρgvthA

4a

9λmfp
(a >

9

4
λmfp)

(1.3)

where the dust radius is a, the dust mass m, the thermal velocity of dust grains vth =
√

8/πcs,
and λmfp the mean free path of the gas. The coupling efficiency between the grains and the
gas is described with Stokes number, St, which is the stopping time of dust grains normal-
ized by dynamical timescale. Thus, the Stokes number is defined as St= tsΩK.

Next, we derive the basic motions of dust and gas. For simplicity, we assume that the
dust to gas mass ratio is much less than unity. The basic equations of motions of the dust
grains and gas are given by

dud
dt
= −ud − ug

ts
−Ω2

KR, (1.4)

dug
dt
= −ρd

ρg

ug− ud
ts
−Ω2

KR− 1
ρg
∇P, (1.5)

where ud is the velocity of dust grains, ug the velocity of disk gas, ΩK the Keplerian fre-
quency, R the position vector, ρd the spatial dust density, ρg the spatial gas density, and P

the gas pressure. Both dust grains and gas fluid have almost Keplerian rotational motion.
Thus, we use cylindrical coordinate (R,φ,z) and simplify the equations by retaining only the
lowest order terms. We obtain the equations of motion of dust grains as (e.g., Nakagawa
et al., 1986)

∂vd,r

∂t
= −vd,r − vg,r

ts
+2
vK(vd,φ− vK)

R
, (1.6)
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∂vd,φ

∂t
= −vd,φ− vg,φ

ts
− 1

2
v2K
R
, (1.7)

∂vd,z

∂t
= −vd,z− vg,z

ts
−Ω2

Kz, (1.8)

and for the gas,

∂vg,r

∂t
= −vg,r − vd,r

ts
+2
vK(vg,φ− vK)

R
− 1
ρg

∂P
∂R
, (1.9)

∂vg,φ

∂t
= −vg,φ− vd,φ

ts
− 1

2
v2K
R
, (1.10)

∂vg,z

∂t
= −vg,z− vd,z

ts
−Ω2

Kz− 1
ρg

∂P
∂z
. (1.11)

Hereafter, we remove the subscript d for dust velocity.

Next, we proceed to the structure of the gas in protoplanetary disks. In the vertical
direction, disk gas is thought to reach hydrostatic balance. The density distribution in the
vertical direction is obtained by considering steady state in Eq.(1.11) and the temperature is
isothermal in the vertical direction, which is

ρg =
Σg√
πhg

exp[−(z/hg)2]. (1.12)

hg ∼ cs/ΩK is the gas scale height, where cs is the sound speed of the gas.

In the same manner, we obtain the radial motion of the gas. The disk gas is rotating
around the central star with almost the Keplerian speed. Due to the pressure gradient, how-
ever, the rotational velocity of gas vg,φ is slightly less than the Keplerian speed vK. From
Eq.(1.10), the radial force balance of the gas can be written as

v2g,φ

R
=
v2K
R
+

1
ρg

dP
dR
. (1.13)
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Integrating the equation in z direction and substituting the surface density and temperature
distribution, we obtain

vg,φ ≡ vK(1−η) ≃ vK
1−

1
2

c2
s

v2K

R
Σg

dΣg
dR

 , (1.14)

where we introduce a dimensionless parameter η, which represents the sub-Keplerian mo-
tion. Here, we assume that η≪ 1. η can be rewritten as η = (p/2)(h/R)2, which means that
η corresponds to the square of the aspect ratio of the disk. The value of η is only ∼ 0.004,
for example. In spite of this small value, this motion greatly affects the motion of dust grain,
which will be discussed later.

1.1.4 The radial drift barreir

Next, we proceed to the radial motion of dust grains. As discussed earlier, the disk gas
rotates around the central star with sub-Keplerian speed. This is because the gas feels the
pressure. By contrast, dust grains do not feel such pressure, and thus they rotate with the
Keplerian speed if there is no gas. This velocity difference between dust grains and the disk
gas decelerates the dust grains. As a result, dust grains radially migrate onto the central star.
From Eq.(1.6) and Eq.(1.14), the radial drift velocity is given by

vr =
St−1vg,r −ηvK

St+St−1 . (1.15)

Figure 1.3 shows the radial drift timescale, which is the orbital radius divided by the
radial drift speed (e.g., Adachi et al., 1976). We assume that the MMSN model at 5 AU.
When dust grains are small enough or large enough, the drifting timescale is longer than the
disk dispersal timescale, which is an order of 106 years. However, the minimum drifting
timescale of particles where St= 1 is ∼ 1000 years. This timescale is much less than the disk
dispersal timescale, which is ∼ 106 years. Therefore, in the coagulation process, dust grains
have a size where they migrate onto the central star.

Next, to estimate the dust growth timescale, we briefly summarize the source of velocity
differences in protoplanetary disks. Dust grains have thermal velocity. The Brownian mo-
tion induces collisions of dust grains. The Brownian-motion-induced velocity is given by

∆vB =

√
8(m1+m2)kBT
πm1m2

, (1.16)

where m1 and m2 represent the masses of colliding two dust grains (e.g., Weidenschilling,
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Fig. 1.3 The radial drift timescale against solid mass at 5AU in the MMSN model. The
shortest timescale corresponds to St ∼ 1.

1977).

The differential motions in radial and azimuthal direction are given by ∆vr = vr(St1)−
vr(St2) and ∆vφ = vφ(St1)− vφ(St2), where St1 and St2 represent the Stokes numbers of col-
liding dust grains, respectively. The azimuthal velocity of dust grains against the disk gas
vφ is given from Eq. (1.15) as

vφ = − ηvK
1+St2

(1.17)

The differential settling velocity ∆vz = vz(St1)− vz(St2) is given from Eq. (1.8) and Eq.
(1.11) by

vz = − St
1+St

ΩKz, (1.18)

where z is the vertical height from the midplane.

The dust grains are also stirred by gas turbulence. The gas turbulent motion is well
modeled by Ormel & Cuzzi (2007). The relative velocity between dust grains that have the
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Stokes numbers St1 and St2 due to the gas turbulence is given by

∆vt =



δvgRe1/4
t ΩK (ts,1≪ tη)

Ctδvg
√

St1 (tη≪ ts.1≪Ω−1
K )

δvg
(

1
1+St1

+ 1
1+St2

)1/2
(1≪ St)

(1.19)

where Ret is the turbulent Reynolds number, tη the turnover time of the smallest eddies and
Ct a numerical factor of order of unity (see also Okuzumi et al. 2012).

Here, let us discuss the timescales of dust growth and radial drift. The drift timescale is
defined as

tdrift ≡ R
vr
. (1.20)

The growth timescale is also defined as

tgrowth ≡ m
ṁ
=

m
ρdπa2∆v

, (1.21)

where ∆v is the summation of velocity difference between dust grains and gas. We take
∆v =

√
∆v2B+∆v

2
r +∆v

2
φ+∆v

2
t +∆v

2
z . Figure 1.4 represents the both timescales. When the
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Fig. 1.4 The comparison of timescales between the dust drift and growth.
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dust grains are sufficiently small or large, tgrowth < tdrift. This means that dust grains can
grow before they fall onto the central star. However, when dust grains have their mass of
103−9 g, which correspond to 10 cm to 100 m in dust radius, tgrowth is larger than tdrift. In
other words, meter-sized solid bodies radially migrate to the central star before they grow to
planetesimals. This obstacle to form planetesimals is called the radial drift barrier (Adachi
et al., 1976; Weidenschilling, 1977).

In the following, we discuss possibilities to overcome this barrier.

1.1.5 Gravitational instability to form planetesimals

When dust grains coagulate to form mm or cm-sized bodies, dust grains gradually sediment
onto the midplane of the disk. The large grains form the thin dust layer, which has been
thought to be the birthplace of planetesimals because of gravitational collapse. At Earth
orbit, Nakagawa et al. (1981) showed that it takes 3× 103 years to form the thin dust layer
and 5×103 years to form planetesimals as a fragments of gravitational instabilities.

However, turbulent motion prevents the formation of thin dust layer. Weidenschilling
(1980) pointed out that the dust layer itself causes the turbulence to break the dust layer.
When dust grains are dense enough for gravitational instability, the dust spatial density is
much higher than that of gas. Because the gas molecules can not freely get into the dust
layer, the dust grains rotate with Keplerian speed. On the other hand, the disk gas keeps to
rotate with sub-Keplerian speed. Thus, the dust and gas have a shear motion. This motion
triggers the Kelvin-Helmholz instability to break the dust layer. The forming condition of
planetesimals by gravitational instability has been investigated by several authors (Sekiya,
1998; Youdin & Shu, 2002). Sekiya (1998) suggested that formation of planetesimals by
gravitational instability is unlikely but it could be possible if the composition is different
from solar composition. Johansen et al. (2007) proposed that locally overdense region of
grains can form planetesimals. However, the uncertain points are how to form initial meter-
sized bodies and how to prevent the disk turbulence which diffuses the locally over dense
regions. In this way, the formation of planetesimals by gravitational instability is still under
debate.

1.1.6 Direct coagulation to overcome the radial drift barrier

When the disk turbulence is strong enough, dust grains are stirred up by the disk-gas turbu-
lence. When the dust grains are small enough to couple to the gas, the distribution of dust
is the same as the gas. However, if dust size is large, dust grains are decoupled from the gas
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and has different distribution from the gas. The coupling efficiency depends on the dust size
and mass. Considering the balance between being stirred up by the disk gas and the gravity
onto the midplane, the dust grains also has a Gaussian distribution with dust scale height hd

(Brauer et al., 2008; Dubrulle et al., 1995; Youdin & Lithwick, 2007). The dust scale height
is given by

hd = hg

(
1+

St
α

1+2St
1+St

)−1/2

. (1.22)

Here, let us estimate the growth timescale. The spatial density of dust grains is estimated
to be

ρd ∼ Σd

hd
. (1.23)

If the dominant velocity source of collisions is caused by turbulent motion of the disk gas
and the Stokes number is much less than unity, St≪ 1, the velocity of dust grains is

∆vt ∼
√

St αcs. (1.24)

Using that hd ∼ hg
√
α/St ∼ (cs/ΩK)

√
α/St, we obtain

∆vt ∼ StΩKhd (1.25)

Assuming that the gas drag law is Epstein regime, which is equivalent to a< λmfp, we finally
obtain the growth timescale as

tgrowth ∼
(
Σg

Σd

)
Ω−1

K . (1.26)

This equation has a strong conclusion. The growth timescale does not depend on turbulent
strength or surface density, but depends on the dust-to-gas mass ratio. On the other hand,
the drift timescale can be written as

tdrift ∼ R
St ηvK

, (1.27)

when St < 1. To overcome the radial drift barrier, we have to reduce tgrowth less than tdrift

when St ∼ 1. This happens when the dust-to-gas mass ratio is higher.

Brauer et al. (2008) used numerical simulations of dust coagulation and suggested that
if the initial dust-to-gas-mass ratio is higher than the interstellar medium, dust grains can
grow to planetesimals. This is due to the growth timescale depends on the dust-to-gas-mass
ratio.

Another possibility is to consider the case that the gas drag law changes from Epstein to
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Stokes regime. In the discussion above, we assume that the grain radius is much less than
the mean free path of gas. The assumption is valid if we consider dust grains have the same
internal density as the material density. However, if dust grains form aggregates and their
effective radius becomes larger than the mean free path, the situation changes. If we assume
the Stokes regime as a gas drag law, the growth timescale is given by

tgrowth ∼
λmfp

a

(
Σg

Σd

)
Ω−1

K . (1.28)

This equation suggests that a large radius causes a rapid growth of dust aggregates and it
may overcome the radial drift barrier.

Okuzumi et al. (2012) considered the growth of porous dust aggregates based on numer-
ical modeling of dust aggregates. When the Stokes number is around unity, the aggregate
radius is larger than the mean free path of the gas, and thus the gas drag law changes from
Epstein to Stokes regime. This results in the rapid growth of dust aggregates to overcome the
radial drift barrier. In their scenario, however, the dust aggregates are too fluffy compared
to planetesimals. We will review the porosity evolution later in this chapter.

In addition, Windmark et al. (2012a) and Dra̧żkowska et al. (2013) suggested that the
bouncing behavior can help to form planetesimals. We will also discuss this point later in
this chapter.

1.2 Dust microphysics: introducing the fragmentation and
bouncing barriers

For simplicity, grains have been considered to be always spherical and to have a constant
internal density. In coagulation of dust grains, however, dust grains are no longer grains
with an uniform density but construct an aggregated structure. In this section, we review the
process of the aggregation of dust grains in astronomical environments.

1.2.1 Fractal growth of aggregates

There are two-limiting cases of dust cluster growth models: particle-cluster aggregation
(PCA or BPCA) and cluster-cluster aggregation (CCA or BCCA). BPCA is created by
adding each constituent particle from a random direction, while BCCA is made by sticking
with the same-sized cluster from a random direction. These clusters are often characterized
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by the gyration radius rg. The gyration radius is calculated by

rg =

√√√
1
N

N∑

k=1

(xk − x)2, (1.29)

where N is a number of monomers, xk the position vectors, and x the position of the center of
coordinate. The fractal dimension of clusters D f is defined such that the gyration radius of
the clusters and the number of monomers N have a relation of N ∝ r

D f
g or D f ≡ ∂ lnrg/∂ ln N.

Mukai et al. (1992) examined the fractal dimension of BPCA and BCCA, and found that
D f ≈ 3 for BPCA and D f ≈ 2 for BCCA. Several authors applied these two limits of clusters

19
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26
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15
M

Fig. 1.5 A number of monomers against the normalized gyration radius. Two lines repre-
sents the BCCA and BPCA cases. This figure is taken from Fig. 2 of Mukai et al. (1992).

to dust coagulation in the Universe (Blum, 2004; Kempf et al., 1999; Ormel et al., 2007;
Ossenkopf, 1993). In planet formation, however, the dominant process depends strongly on
the physics of dust coagulation. Dust grains are sticking each other with van der Waals force
or some electric force. To determine the structure evolution of dust aggregation, modeling
including the sticking force is required.
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1.2.2 Monomers in contact

The forces between two micron-sized bodies have an importance on several fields of studies.
The basic theory of two elastic bodies in contact was first derived by Hertz. The Hertz theory
formulated the displacement of two elastic bodies in contact when external force is exerted.
We consider two spherical bodies, which have radii R1 and R2, Young’s moduli E1 and E2,
the Poisson ratios ν1 and ν2, and the radius of contact surface is a. Figrue 1.6 represents
the two-dimensional view of the contact surface of the two monomers in contact. Here, we

r0

δ
2a

Fig. 1.6 The monomers in contact. The contact surface has a radius a, the monomer has a
radius r0, and the displacement δ.

assume that the two monomers have the same radius and physical properties. The contact
surface has a radius a and the monomers has a displacement δ. The monomer radius r0, the
displacement δ, and the radius of the contact surface a have a relation of

(r0−δ/2)2+a2 = r2
0. (1.30)

Assuming that δ≪ r0,
a =

√
r0δ. (1.31)

By Hooke’s theory, the repulsive force of the elastic body is given by a description
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with the Young’s modulus and the displacement. Applying the Hooke’s theory to a volume
including the contact surface, when the force is exerted, the force F and the displacement δ
has a relation of

δ

a
∼ F

Ea2 . (1.32)

Using Eq. (1.31) and Eq. (1.32), we obtain

F =
4E∗R1/2

3
δ3/2, (1.33)

where R = R1R2/(R1+R2) and E∗ = ((1−ν1)2/E1+ (1−ν2)2/E2)−1. See Dominik & Tielens
(1997) for the derivation of the factor.

When the two bodies have an attractive force, whose surface energy is γ, it can balance
with the repulsive force. Johnson et al. (1971) expand the Hertz theory with the adhesion
force, with the surface energy γ (hereafter, JKR theory). The binding energy is given by

Us = −2πa2γ (1.34)

Thus, the adhesion force is given by

Fs =
dUs

dδ
= −2πγR. (1.35)

The repulsive force and the adhesion force can balance with a certain contact radius. We
represent the contact radius and the displacement in the equilibrium with a = a0 and δ = δ0.
Using the Eqs. (1.33) and (1.35), the equilibrium contact radius is given by

a0 =

(
9πγR2

2E∗

)1/3

. (1.36)

At the equilibrium, the displacement δ is δ0 = a2
0/(3R) (see Dominik & Tielens, 1997, for

the derivation of the factor). The pull-off force required to separate the two monomers is
derived as Fc = 3πγR. At the moment of separation, δ ≡ δc = (9/16)1/3δ0. The JKR theory
gives the basic understanding of the interaction between astronomical grains.

Here, we revisit some important quantities to consider the interaction of monomers.
Chokshi et al. (1993) derived the kinetic collisional energy below which the two grains can
stick each other. The critical energy is given by

Estick = 0.4×Fcδc ≈ 9.6× γ
5/3R4/3

E∗
. (1.37)
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Once the two monomers stick together, larger energy is required to separate these two
monomers. The total energy required to break the contact is given by

Ebreak = 1.8×Fcδc ≈ 43× γ
5/3R4/3

E∗
. (1.38)

In addition, two monomers in contact can have a tangential force. Using the JKR theory,
Dominik & Tielens (1997) and their collaborators (Chokshi et al., 1993; Dominik & Tielens,
1995) formulated the interaction between two spherical elastic bodies with adhesion force.
Their formulation provides us a basic physics between astronomical grains.

The relative motion between monomers in contact has 4 degrees of freedom. Figure 1.7
illustrates the 4 degrees of freedom. There is one in normal direction, two in rolling and
sliding motion, and the other for twisting motion.

(a) normal

n1

n2

x1

x2

(b) sliding

n1

n2

x1

x2

(c) rolling

n1

n2

x1

x2

(d)twisting

x1

x2

⇣
⇠ �

Fig. 1.7 Geometry of the four modes of deformation between two monomers in contact
(Wada et al., 2007). x1 and x2 are the position vectors of the monomers. n1 and n2 are the
normal vectors in the direction to the other monomer before deformation. ζ and ξ are the
displacements of sliding and rolling motions and φ is the displacement degree in twisting
motion.

Here, we focus on the rolling motion, which is represented in Fig. 1.7(b). For small
motions around the contact area, the monomers make deformation. This leads to asymmetric
pressure to produce a friction force against the tangential motion. The resultant torque is
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given by

M = 4Fc

(
a
a0

)3/2

ξ, (1.39)

where ξ is the linear displacement on the contact area (see Dominik & Tielens, 1995, for
derivation).

For a small motion, the energy does not dissipate. However, the particles are made up
of molecules, and thus the surface is not totally smooth. When a particle makes tangential
motion on the contact surface, it feels a friction force because of the roughness. Figure
1.8 represents the rolling motion of the monomers in contact. When the two particles roll

Fig. 1.8 Schematic drawing to illustrate the microscopic view of the rolling friction.

over each other, new contacts are made at the leading edge and some contacts are lost at the
trailing edge. The critical displacement where the new contacts are made is defined as ξcrit.
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The required torque to start rolling motion is

Mcrit = 4Fc

(
a
a0

)3/2

ξcrit. (1.40)

The restored energy is given by Mcrit(ξcrit/2R) where (ξcrit/2R) is the rotational degree in
radian. The factor (a/a0) does not change seriously in the deformation, and thus we assume
that the factor is unity. Thus, the required energy to start rolling motion is then

eroll = 4Fcξcrit
ξcrit

2R
= 6πγξ2crit. (1.41)

The rolling energy Eroll, which is the energy required to roll 90 degrees, is derived by cal-
culating the energy to rotate the length of πR,

Eroll = 12π2γRξcrit (1.42)

This energy is useful for later discussions.

1.2.3 Basic equations for numerical simulations

Based on the concept of Dominik & Tielens (1997), Wada et al. (2007) formulated the basic
equations of numerical simulations of dust aggregates. Here, we follow Wada et al. (2007)
to introduce the basic equations.

They introduced the normal and tangential forces using a potential energy for each case.
The potential energy for normal motion is given by

Un = 4×61/3


4
5

(
a
a0

)5

− 4
3

(
a
a0

)7/2

+
1
3

(
a
a0

)2Fcδc. (1.43)

Using the potential energy, the force acting on the particle 1 due to the contact with the
particle 2 is given by

Fn,1 = −∂Un

∂x1
. (1.44)

Figure 1.7 shows the schematic illustration of the normal and tangential motions. In the
same manner as discussed above, the sliding, rolling, and twisting potential energies are
given by

Us =
1
2

ks|ζ |2, (1.45)
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Ur =
1
2

kr|ξ|2, (1.46)

Ut =
1
2

kt|φ|2, (1.47)

where ζ and ξ are the displacements of sliding and rolling motions and φ is the displacement
degree in twisting motion represented in Figure 1.7. The spring constants ks,kr,kt are given
by

ks = 8a0G∗, (1.48)

kr =
4Fc

R
, (1.49)

kt =
16
3

G∗a3
0, (1.50)

where G∗ = (2−ν1)/G1− (2−ν2)/G2 and G1 and G2 are the shear moduli of each monomer.

When the tangential motion of the particles exceeds some critical points, the motion
does not obey the above equations of the elastic regime, but of the inelastic regime. We
discussed this point for the rolling motion in the previous section. In the formulations of
Wada et al. (2007), the force is treated as continuos friction. The critical displacements of
each force are given by

ζcrit =
2− ν
16

a0. (1.51)

φcrit =
1

16π
. (1.52)

The displacement ξcrit is a free parameter, which is related to the surface roughness of the
molecules, and thus it is expected to have an order of ∼ 1 Å. Dominik & Tielens (1995)
set it to be 2 Å, although Heim et al. (1999) suggested ξcrit = 32 Å from their laboratory
experiments of silica particles. We note that the critical displacement of the rolling motion
is still under debate.

Dust grains in protoplanetary disks are believed to be composed of mixture of ice, sili-
cate, organics, and some other materials. Due to the difficulties to reproduce the dust grains
in protoplanetary disks, laboratory experiments usually have used silica (SiO2) particles.
Heim et al. (1999) experimentally confirmed the linear relation between the particle radius
and the pull-off force, expected from JKR theory as shown in Figure 1.9. They also mea-
sured the rolling friction and obtained the critical displacement ξcrit = 32 Å. This value is
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of the size dependence of adhesion forces is the one of
Ando and Ino, who measured forces between flat tips
and submicron-sized asperities [22]. As predicted by the
JKR and DMT models, they found a linear increase of
the adhesion by increasing the size of the asperity. One
objective of this paper is to experimentally verify the
linear relation between the adhesion force and radius for
small and hard particles. This is particularly important
for most industrial powders and aerosols which consist
of small grains. In addition, for irregular particles the
asperities which form the actual contact usually have
small contact radii.
For our experiments we chose spherical silica !SiO2"

particles with particle radii between 0.5 and 2.5 mm
(Bangs Inc., Carmel, California, USA) because silicates
are among the most abundant cosmic substances. To
measure the adhesion force between two solid particles,
silica microspheres were glued with epoxy heat resin
(Epikote 1004, Shell) to a microscopy slide and to the
ends of AFM cantilevers (Digital Instruments, Santa Bar-
bara, California, USA, V-shaped, made of silicon nitride,
190 mm long, 0.6 mm thick) (see inset in Fig. 1). Spring
constants of cantilevers were determined by measuring
their resonance frequency before and after adding small
end masses [23] as described previously [24].
All experiments were done in a specially developed

setup (for details, see Ref. [24]). To obtain the force
acting between two particles, the cantilever deflection
was measured and multiplied with the spring constant.
The deflection of the cantilever was determined by the
change in position of a laser spot reflected off the free end
onto a position sensitive device (United Detectors, UK,

FIG. 1. Pull-off force versus reduced particle radius obtained
from direct force measurements between silica microspheres.
Each data point (solid circles) is an average value from seven
adhesion measurements obtained with one pair of microspheres.
The dashed line represents the best linear regression fit and
gives a pull-off force of 26 nN at vanishing particle radius.
The best linear fit to the data points through the origin of the
diagram has a slope of 0.176 N#m (dotted line). The inset
shows a SEM image of a silica microsphere glued to the end of
an AFM cantilever. The scale bar indicates 3 mm.

active area 30 3 5 mm2). The advantage of a position
sensitive device over the usually used split photodiode is
the significantly larger dynamic range which also keeps a
high sensitivity [25].
Cantilevers were fixed to a movable cantilever holder.

The experimental procedure was started by positioning the
particle on the cantilever a few mm above a particle on
the glass slide. Positioning was done with a micrometer
stage under optical control (precision 0.5 mm) by the
use of two microscopes with long-distance lenses which
were mounted mutually perpendicular. Then, the particle
on the glass slide was moved towards the other particle
using a 15 mm range piezoelectric translator (Queensgate,
DPT-CS, England) until contact was established. The
translator stage was equipped with integrated capacitance
position sensors with an accuracy of 1 nm. After contact
had been established, the glass slide-particle unit was
moved away from the cantilever-particle unit. At the
point of separation, the pull-off force was determined.
Complete force curves were usually taken in 20 s time
intervals. This leads to typical relative velocities between
the particles of 0.5 mm#s which we regard as quasistatic.
The position of the sample and the deflection of the
cantilever were recorded with a digital oscilloscope (12-bit
effective resolution). All experiments were done at room
temperature. After the experiments, the particle radii were
measured using a scanning electron microscope (SEM).
Figure 1 shows our measured adhesion forces versus

reduced particle radii. A regression analysis showed
that, within the experimental errors, the adhesion force
increases linearly by increasing reduced radius R. Ex-
trapolating to zero radius, a linear fit gives a negligible
force of !26 6 6" nN (dashed line in Fig. 1). In this
respect, the results agree with predictions of the DMT
and JKR models. Hence, continuum theories are still ap-
plicable although adhesion-induced particle deformations
are of the order of interatomic distances only [26]. The
adhesion force does not depend on the previously applied
load (0–600 nN), ambient air pressure !102 105 Pa", or
humidity (10%–40%). Hence, the capillary force due
to a condensed meniscus of water is negligible at such
low humidity, as was observed before [15,27]. From
our measured normalized adhesion force of F#R !
$0.176 6 0.004!stat" 6 0.026!syst"% N#m (dotted line
in Fig. 1), a surface energy of g ! $0.0186 6
0.0004!stat" 6 0.0028!syst"% J#m2 is calculated with
the JKR model and g ! $0.0140 6 0.0003!stat" 6
0.0021!syst"% J#m2 with the DMT model. Here, the
statistical error is the uncertainty of the slope of the dotted
line in Fig. 1. The systematic error is due to the un-
certainty of determining the spring constants of the
cantilevers. The values of the surface energy are slightly
lower than g ! 0.025 J#m2 which has been determined
from the elastic behavior of a silica powder [28] or
g ! 0.040 J#m2 as measured by a modified surface force
apparatus [29]. Although the proportionality between
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Fig. 1.9 The laboratory experiment performed by Heim et al. (1999). The pull-off force
versus the reduced radius of the monomers.

one order of magnitude higher than the theoretically expected value, ξcrit = 2 Å (Dominik &
Tielens, 1995).

1.2.4 The fragmentation behavior

Dust grains can be disrupted by high-speed collisions. Blum & Münch (1993) performed
experiments on dust collisions of silica particles and the critical velocity for the disruption is
a few m/s. This is significantly lower than the typical collisional velocity in protoplanetary
disks, which is a few tens of m/s. Therefore, dust grains are disrupted before forming larger
bodies. This is called the fragmentation barrier. The critical velocity for the fragmentation
has been discussed both by numerical simulations and laboratory experiments.

Dominik & Tielens (1997) performed a series of two dimensional numerical simulations
of colliding aggregates of monomers. As a result, they formulated a recipe of collisions of
aggregates as follows. When the effective kinetic energy is below 5Eroll, the results are
sticking or bouncing without visible restructuring of the aggregates.. When Eeff > 5Eroll, by
contrast, some visible restructuring occurs. Finally, when Eeff > Ebreak, the outcome of the
collision becomes catastrophic disruption. The results are often quoted as DT recipe, which
is summarized in Table 1.1.

The formulation is revisited by Wada et al. (2007) as described above. The reformu-
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Table 1.1 DT recipe

Energy Collisional Outcome
Eimp ≈ 5Eroll First visible restructuring
Eimp ≈ nkEroll Maximum compression
Eimp ≈ 3nkEbreak Loss of one particle
Eimp > 10nkEbreak Catastrophic distruption

lation enables heavier numerical simulations of collisions of aggregates because the intro-
duction of the potential energies ensure the energy conservation in the case of no dissipa-
tion. Although Dominik & Tielens (1997) performed numerical simulations with roughly
40 particles, Wada et al. (2007) did it with ∼2000 particles. In addition, Wada et al. (2008)
performed 3D numerical simulations with BCCA clusters composed of ∼4000 particles.
They confirmed that the criteria that was proposed by Dominik & Tielens (1997) is consis-
tent with their 2D and 3D simulations. We discuss the results of numerical simulations on
porosity evolution in Sec. 1.3.

Collisions of dust aggregates have also been investigated by laboratory experiments.
If a particle or an aggregate hit another with some speed higher than a critical velocity,
they are disrupted. Poppe et al. (2000) performed laboratory experiments and suggested
that maximum velocity that two aggregates stick is one order of magnitude higher than the
results of previous theoretical work (Chokshi et al., 1993; Dominik & Tielens, 1997). They
suggested that the deviation is explored by the fact that the previous theoretical work had
assumed a smooth surface and ignored a small roughness.

Although silica particles have been used in laboratory experiments, some theoretical
studies of aggregate collisions (Dominik & Tielens, 1997; Wada et al., 2007, 2008) have
shown that icy aggregates can grow through their mutual collisions when the collisional
velocity is less than ∼ 30 m s−1 in the cases of head-on collisions. Paszun & Dominik
(2006) pointed out the importance of the off-set collisions, and Wada et al. (2009) studied
the criteria of the net growth including the cases of off-set collisions. The net growth is
defined as the target aggregate gain some amount of mass through the collisional event. As
a result, they derive the critical velocity for net growth as v= 50 m s−1 for ice and v= 6 m s−1

for SiO2. More recently, Wada et al. (2013) have included the high mass ratio collisions,
and they derived the critical velocities as

vcrit = 80×
(

r0

0.1 µm

)−5/6

m s−1 for ice, (1.53)
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and

vcrit = 8×
(

r0

0.1 µm

)−5/6

m s−1 for silicate, (1.54)

where r0 represents the monomer radius. Therefore, icy aggregates are candidates to over-
come the fragmentation barrier.

1.2.5 Bouncing behavior

Laboratory experiments have shown that collisions of dust aggregates sometimes lead to
bouncing. Güttler et al. (2010) pointed out that if the colliding speed is too low to be
disrupted and too high for sticking, the two aggregates bounce. The bouncing has been re-
produced in several laboratory experiments (Blum & Münch, 1993; Weidling et al., 2012).
Zsom et al. (2010) introduced the bouncing barrier in planet formation theory and claimed
that the steady-state size distribution is achieved by bouncing barrier. More recently, Wind-
mark et al. (2012a,b) showed that the bouncing barrier can be avoided by introducing a
little amount of large bodies or by considering a high velocity tail in Maxwellian velocity
distribution.

By contrast, the bouncing behavior was first reproduced in numerical simulations by
Wada et al. (2011). They pointed that the bouncing behavior is reproduced when the coordi-
nate number is 6 or more. This critical number corresponds to the filling factor of 0.3. Thus,
the bouncing barrier is not a problem when the filling factor is lower than ∼ 0.3. Therefore,
if we consider fluffy dust aggregates, the bouncing is no longer a problem in planetesimal
formation.

1.3 Porosity evolution of dust aggregates

Using the basic physics of dust interaction, the porosity (or volume) evolution has been in-
vestigated by numerical simulations, and also by laboratory experiments. With low-speed
collisions, dust grains stick and no restructuring can occur. The very first stage of dust co-
agulation leads the aggregates to be very fluffy because of the low-speed collisions. The
aggregation leads to very open structure with fractal dimension of D f = 1− 2. Laboratory
experiments have confirmed the open structure as shown in Figure 1.10 (Wurm & Blum,
1998). The construction of BCCA structure has also been confirmed by numerical simula-
tions (Okuzumi et al., 2009; Suyama et al., 2008; Wada et al., 2007, 2008).

The next step of the dust coagulation is compression. Aggregate collisions have shown
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formalism described above versus the aggregates’ radii of
gyration (Fig. 4). The computer simulations of BPCA and
BCCA growth processes are shown as solid lines. Labora-
tory data points represent clusters from BCCA computer
studies very well. Since the radius of gyration and the
number of constituent particles were determined indepen-
dently, this agreement between theory and experiment jus-
tifies the choice of Eq. (12). It can also be seen that the
correction factor cR must be lower than œ3/2. Otherwise,
the data would not fit the curves for small constituent
particle numbers where the aggregate structures are almost
independent from the aggregation model. This supports
the significance of the orientation process of settling parti-
cles described above.

The slope of the simulated BCCA curve in Fig. 4 obtains
a value of Df P 1.95 for large clusters and describes the
fractal dimension of the growth process. A least-squares
fit of the data of the experimentally generated aggregates
larger than P5 em results in a value of Df P 1.91 which
is in good agreement with the simulations. Therefore, the
aggregates can be regarded as BCCA clusters.

4. AGGREGATE–AGGREGATE COLLISIONS

4.1. Fractal Cluster Production
FIG. 3. Examples of aggregates observed in the dust jet extracted

from the turbomolecular pump. As can be seen in the figure, the dust To estimate the mean collision velocities of the growing
clusters are highly irregular, filamentary aggregates. The monomers are fractal clusters and to understand the overall collisional
monodisperse SiO2 spheres with 1.9 em diameter. self-interaction of a dust cloud, we had to model the aggre-

gation process in the TMP and to compare the model
results to the temporally resolved observations of the mean

with no difference in the behavior of small and large aggre-
gates. This deviation from the symmetry between the verti-
cal and the horizontal axis can be understood as a preferred
orientation of the aggregates as they sediment relative to
the gas in rest. With this drag-induced asymmetry, we
yield a correction factor for the radius of gyration of
cR 5 1.14.

Besides the extrapolation from two to three dimensions
for the radius of gyration of the aggregates, data must be
corrected for the number of the hidden particles. Monte
Carlo simulations of ballistic aggregation processes provide
relations between the projected area sa of an aggregate
and its constituent particle number N (Ossenkopf 1993).
For the BCCA process which is responsible for the growth
of aggregates in the TMP as we will see later, one
obtains

FIG. 4. Comparison between the mass–size relation of computer-
generated clusters (full lines) and our laboratory aggregates (diamonds).sa 5H 15.2 N 2/3 exp(22.86/N0.096) : N # 20

0.692 N0.95(1 1 0.301/ln(N)) : N . 20.
(12)

BPCA and BCCA represent the two standard growth scenarios, the
ballistic particle–cluster aggregation (BPCA) with fractal dimension
Df 5 3.00 and the ballistic cluster–cluster aggregation (BCCA) with

For the characterization of our laboratory aggregates, we Df 5 1.95. The agreement between our laboratory aggregates and the
BCCA simulation is obvious.plotted the constituent grain number as derived by the

Fig. 1.10 Dust aggregates observed in laboratory experiments by Wurm & Blum (1998).
The monomers are SiO2 particles with 1.9 µm diameter.

to be not effective to compress the fluffy dust aggregates. Ormel et al. (2007) performed the
pioneering work on porosity evolution in protoplanetary disks. They used BPCA and BCCA
limits and interpolation between them. In their interpolation, the compressed aggregates
assumed to be have a fractal dimension of 3. However, Okuzumi et al. (2009) performed
numerical simulations of aggregate collisions with various mass ratios and have shown that
the Ormel model does not reproduce the porosity evolution. They have shown that collisions
of similar size aggregates lead them to have fractal dimension around 2.

About the collisional compression, Wada et al. (2008) and Suyama et al. (2008) found
that the aggregates which are compressed by collisions have a fractal dimension of 2.5.
Figure 1.11 shows the results of internal density evolution of dust aggregates with constant
collisional velocity. Because they stick to the same-sized cluster, the initial density evolution
is on the line of BCCA (dashed line). At a critical point, the density evolution deviates from
the BCCA line because of the collisional compression. However, the fractal dimension
of compression is 2.5, which is inefficient to compress the aggregates. This means that
the collisional compression is not as effective as expected in Ormel et al. (2007). Suyama
et al. (2008, 2012) investigated the porosity evolution through collisions, and confirmed that
collisions hardly compress the aggregates.
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Fig. 5.—Density evolution of growing aggregates in the simulations for various impact velocities and critical rolling displacements. We set vimp ¼ 0:27, 0.54, 1.1, 2.2,
and 4.4 m s"1 and !crit ¼ 2, 8, 168. The solid lines show the densities of the resultant aggregates in our simulations, and the dashed lines indicate the densities of BCCA
clusters. Filled circles indicate the critical number of particles Ncrit to start compression, as estimated from eq. (17) with b ¼ 0:5.

Fig. 6.—Average number of particles in spheres of radii r, N̄in, inside resultant aggregates withN > Ncrit. Left, Case of vimp ¼ 0:54m s"1 and !crit ¼ 2 8; right, case of
resultant aggregates formed by collisions with vimp ¼ 2:2 m s"1 and !crit ¼ 8 8. The dotted lines, dashed lines, and solid lines represent aggregates with N ¼ 4096, 8192,
and 16384, respectively. Since the vertical axis is N̄in divided by (r/r1)

2:5, the horizontal slope indicates N̄in / r 2:5, which means that the compressed aggregates have the
fractal dimension of 2.5. The filled circles show the scale of the radius of gyration. In the range of 4r1 < r < rg, N̄in is approximately proportional to r2:5 for all aggregates,
which indicates that the aggregates have the fractal dimension of 2.5.

Fig. 1.11 The internal density or the filling factor evolution of sequential growth of dust ag-
gregates with a constant collision speed by Suyama et al. (2008). The critical displacement
is ranging in ξc = 2,8,16 Å.
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Using the porosity evolution model depending on mass ratio (Okuzumi, 2009) and the
compression model investigated by Suyama et al. (2008, 2012), Okuzumi et al. (2012) in-
cludes the collisional compression model to perform coagulation simulations in a proto-
planetary disk. Figure 1.12 shows that the porosity evolution of dust aggregates at 5 AU in
protoplanetary disks. As a result, the coagulation and collisional compression process hasThe Astrophysical Journal, 752:106 (18pp), 2012 June 20 Okuzumi et al.
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Figure 10. Temporal evolution of the weighted average mass 〈m〉m and the
internal density ρint(〈m〉m) at orbital radii r = 5 AU (upper panel) and 20 AU
(lower panel). Shown at the top of the panels is the aggregate radius a(〈m〉m)
at each orbital radius. The triangles, circles, diamonds, and square mark the
sizes at which Eimp = Eroll, a = λmfp, ts = tη , and Ωts = 1, respectively.
At r = 20 AU, dust growth stalls due to the radial drift barrier (cross symbol)
before reaching Ωts = 1.
(A color version of this figure is available in the online journal.)

addition, we use the fact that fractal aggregates with df ≈ 2
have a mass-to-area ratio which is comparable to their con-
stituent monomers. This means that the stopping time of the
aggregates is as short as the monomers and is hence given by
Epstein’s law. Thus, the impact energy is approximated as

Eimp ≈ m

4
∆v2

t ≈ 3
8
m

(
δvgRe1/4

t Ω
ρgvth

)2(3m

4A

)2

. (23)

Furthermore, using the definitions for ρg , vth, and Ret, we
have ρgvth = (2/π )ΣgΩ and Ret = αDΣgσmol/(2mg) for
the midplane. Substituting them into Equation (23) and using
δvg = √

αDcs and m/A ≈ m0/(πa2
0) = 4ρ0a0/3, we obtain

Eimp ≈ 3π2

32
√

2
α

3/2
D mc2

s

(
Σgσmol

mg

)1/2(
ρ0a0

Σg

)2

. (24)

Thus, the impact energy is proportional to the mass. We define
the rolling mass mroll by the condition Eimp = Eroll. Using
Equation (24), the rolling mass is evaluated as

mroll ≈ 32
√

2
3π2

Eroll

c2
s α

3/2
D

(
mg

Σgσmol

)1/2( Σg

ρ0a0

)2

∼ 10−4 g
(

αD

10−3

)−3/2(
T

100 K

)−1( Σg

100 g cm−2

)3/2

×
(

Froll

10−3 dyn

)(
ρ0

1 g cm−3

)−2(
a0

0.1 µm

)−1

, (25)

where we have used that Eroll = (πa0/2)Froll (see Section 2.3.1).
Using the relations a ≈ (m/m0)1/2a0 and ρint ≈ (m/m0)−1/2ρ0
for df ≈ 2 aggregates, the corresponding radius and internal
density are found to be

aroll ∼ 1 cm
(

mroll

10−4 g

)1/2

, (26)

ρint, roll ∼ 10−5 g cm−3
(

mroll

10−4 g

)−1/2

. (27)

The triangles in Figure 10 mark the rolling mass at r = 5 AU
and 20 AU predicted by Equation (25). The analytic prediction
well explains when the decrease in ρint terminates.

The density evolution is more complicated at m > mroll,
where collisional compression is no longer negligible (i.e.,
Eimp > Eroll). At r = 5 AU, the internal density is approxi-
mately constant until the stopping time reaches Ωts = 1, and
then decreases as ρint ∝ m−1/5. At r = 20 AU, by contrast, the
density is kept nearly constant until m ∼ 102 g (a ∼ 102 cm),
and then decreases as ρint ∝ m−1/8.

As shown below, the density histories mentioned above can be
directly derived from the porosity change recipe we adopted. Let
us assume again that aggregates grow mainly through collisions
with similar-sized ones (m1 ≈ m2 and V1 ≈ V2). In this case,
the evolution of ρint at Eimp ) Eroll is approximately given by
Equation (14). Furthermore, we neglect the term (2V

5/6
1 )−4 in

Equation (14) assuming that the impact energy is sufficiently
large (which is true as long as Ωts < 1; see below). Given these
assumptions, the internal density of aggregates after collision,
ρint = 2m1/V1+2, is approximately given by

ρint ≈
(

3
5

)3/2( Eimp

N1+2bEroll

)3/10

N
−1/5
1+2 ρ0, (28)

where N1+2 = 2m1/m0. Since the impact energy Eimp ≈
m1(∆v)2/4 is proportional to N1+2(∆v)2, Equation (28) implies
that

ρint ∝ (∆v)3/5m−1/5, (29)

where we have dropped the subscript for mass for clarity.
Equation (29) gives the relation between ρint and m if we
know how the impact velocity depends on them. Explicitly,
if ∆v ∝ mβρ

γ
int, Equation (29) leads to

ρint ∝ m(3β−1)/(5−3γ ). (30)

In our simulation, the main source of the relative velocity
is turbulence. The turbulence-driven velocity depends on ts as
∆vt ∝ ts at ts * tη and ∆vt ∝ √

ts at tη * ts * tL(=Ω−1)

10

Fig. 1.12 The internal density evolution of dust aggregates at 5 AU in orbital radius
(Okuzumi et al., 2012).

been revealed as follows. The initial growth is fractal, and the fractal dimension is approxi-
mately equal to 2. This means that initial growth is dominated by collisions of similar size
clusters and thus they form BCCA-like aggregates. Next, when the impact energy exceeds
the critical energy, which is Eroll in this case, the collisional compression becomes effective.
Combining the facts that the fractal dimension of the collisional compression is 2.5 and the
relative velocity depends on the Stokes number, the internal density keeps constant during
the collisional compression regime. The filling factor is as low as 10−5, which is not consis-
tent with planetesimals, which are believed to have a high density, ∼ 1 g cm−3. This result
has a strong conclusion: once dust aggregates get high porosity, collisional compression is
insufficient to compress the aggregates.

Therefore, one of the purposes of this paper is to find a way of the density evolution
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toward the compact planetesimals by introducing some kinds of compression mechanisms
other than collisions.

1.4 Dust growth evidenced by astronomical observations

In this section, we will briefly review the observational results of protoplanetary disks, es-
pecially focusing on grain growth.

1.4.1 Dust opacity

Dust opacity depends on their grain size and composition. In the interstellar medium, dust
grains are believed to have power-law size distribution with a−p and p=3.5, where a is grain
radius. The maximum radius is thought to be sub-micron size (Mathis et al., 1977). In
protoplanetary disks, by contrast, dust grains are thought to be larger than the ISM. Thus,
the dependence of dust opacity on thier size is essential to understand the emission from
protoplanetary disks.

The size dependence has been studied by Miyake & Nakagawa (1993). They used Mie
theory to calculate the optical properties of spherical dust grains. Figure 1.13 shows the
opacities of dust grains with size distribution with p = 3.5 and different maximum radius.
They found that the opacity decreases with increasing maximum grain radius at short wave-
lengths. Also, the slope of the opacity at long wavelengths changes to be flatter with in-
creasing maximum grain radius.

D’Alessio et al. (2001) also investigated the size and compositional dependence, such
as with and without ice particles in order to reproduce the observed SEDs of protoplanetary
disks. They found that many general features of protoplanetary disks can be explained with
disk models with power-law size distributions of grains with p ∼ 2.5− 3.5, and maximum
radius of amax ∼ 1 mm. This suggests that the size distribution of dust grains in protoplan-
etary disks are completely different from the ISM, where p ∼ 3.5 and the maximum size is
sub-micron size.

1.4.2 Observations of protoplanetary disks

Pre-main sequence stars often possess circumstellar disks around themselves. IRAS satel-
lite have detected infrared excesses on pre-main sequence stars (Rucinski, 1985). These
infrared excesses have been interpreted as emission from disks (Adams et al., 1987; Calvet
et al., 1991; Kenyon & Hartmann, 1987). On the other hand, Beckwith & Sargent (1991);
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Fig. 1.13 The absorption mass opacity of dust grains per gram of gas (Miyake & Naka-
gawa, 1993). The different lines represent the different maximum grain radius. The size
distribution is assumed to have a power of −3.5.
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Beckwith et al. (1990) performed continuum observations at 1.3 mm wavelengths of pre-
main sequence stars. Circumstellar disks are thought to be optically thin at 1 mm, thus they
brought a great insight onto dust grains in disks. Combining the multi-wavelength data, the
overall evolution of protoplanetary disks has been revealed.

Focusing on grain growth, we pick up the millimeter-wave observations of protoplan-
etary disks. Figure 1.14 is the typical spectral energy distribution of protoplanetary disks.
Beckwith et al. (1990) derived spectral indices of some circumstellar disks. The spectral
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FIG. 6.ÈCosine of critical inclination angle for disk models with M
d
\

0.046 yr~1 ; a \ 0.01). The surface is deÐned soM
_

(M0 \ 3 ] 10~8 M
_the extinction of the central star produced by the disk is for dustA

V
\ 30,

abundances and optical properties described in ° 2 and di†erent distribu-
tions of grain sizes : mm (solid line), 1 cm (dotted line), and 10 cmamax \ 1
(dashed line). The upper panel corresponds to p \ 3.5 and the lower panel,
to p \ 2.5. For comparison we also show for ISM dust, with ingredientsk

cand optical properties from Draine & Lee (1984), p \ 3.5, kmamax \ 0.25
(dot-dashed line).

FIG. 7.ÈSED of the model with M
d
\ 0.046 M

_
, M0 \ 3 ] 10~8 M

_yr~1, cosi \ 0.65, AU, for ISM-dust (dotted line) and for the dustR
d
\ 100

model adopted in this paper, with p \ 3.5 and mm (solid line). Theamax \ 1
points represent the median observed SED and the errorbars are the quar-
tiles. The observed Ñuxes are normalized at j \ 1.6 km. For the mm wave-
lengths we also show the median Ñuxes without normalization (crosses)
(normalization is a reasonable procedure for optically thick emission, but
since the mm Ñux could have an important contribution from optically
thin region, the true mm median would be something between the normal-
ized and the nonnormalized Ñuxes). The contribution of the UV and
optical excess emission produced in an accretion shock is not included in
the model SEDs.

at j \ 0.8 km than the opacity corresponding to a larger
value of (see Table 1). This implies that they require aamaxmuch smaller disk mass than we do to reproduce the width
of the dark lane of the image and its aspect ratio. Assuming
that the disk is optically thin and the Ñux at 1.3 mm scales
with disk mass and the absorption coefficient, using the
values given in Table 1 we infer mJy for theirF1.3 mm D 0.01
model D. Thus, mm observations resolving the binary
system would be very important to deÐne whether this is a
very low-mass disk with ISM type of dust or a moderate-
mass disk with a much smaller fraction of small grains than
the ISM dust, as we suggest here.

5. DISK MM-WAVE FLUXES AND MASSES

Much of what is known or estimated about T Tauri disks
comes from analyses of mm and sub-mm wavelength emis-
sion. The Ðrst observational arguments in support of grain
growth were made to explain observed spectral indices in
this wavelength regime (BSCG; BS91). Our previous
models (Paper II) with ISM dust could not explain the
observed mm-wave Ñuxes. In this section we discuss our
detailed model results for disks with larger grains in this
wavelength region.

In principle, disk masses and aspects of grain properties
can be derived from long-wavelength Ñuxes and spectral
slopes. The analysis is particularly easy when the disk is
optically thin. In this case the observed Ñux is proportional
to the disk mass, absorption coefficient at the wavelength of
observation, and the source function at this wavelength. At
long wavelengths the source function is expected to have a
Rayleigh-Jeans wavelength or frequency dependence, so
that the Ñux is then where k is theFl P M

d
kST T/c2l2il,Boltzmann constant, c is the speed of light, and ST T is a

mass-weighted disk mean temperature. The spectral index
is the product of the intrinsic dependenced log Fl/d log l

of the dust opacity times the Rayleigh-Jeans distribution.
Unfortunately, optical depth e†ects cannot be ignored in
general and the source function may not have a Rayleigh-
Jeans form if the dust temperature is too low (BS91), so in
general detailed models must be used to compare with
observations.

To make this comparison we constructed model
sequences of Ðxed disk mass with di†ering dust properties.
The stellar luminosity, stellar mass, and radius are Ðxed as
before at 0.9 0.5 and 2 (see ° 3). We assumed aL

_
, M

_
, R

_Ðxed mass accretion rate yr~1 and aM0 \ 3 ] 10~8 M
_Ðxed outer radius of in our basic sequence.R

d
\ 100 AU

Changing the disk mass in our models then requires us to
change the a parameter accordingly. Since the viscous
heating in the outer disk in the basic sequence is small, so
that the temperature distribution is controlled by irradia-
tion, this is roughly equivalent to adopting a constant vis-
cosity parameter and varying instead to change the diskM0
mass. The disk masses in each sequence are M

d
\ 0.023

0.046 and We assume initially that theM
_

, M
_

, 0.092 M
_

.
disks are viewed pole-on and discuss the e†ects of changing
the inclination angle later.

Figure 10 shows the 1.3 mm Ñux versus n for several
sequences of disk models of Ðxed mass (connected points).
The spectral index n is given by

n \ log (F0.769 mm) [ log (F1.3 mm)
log (1.3 mm) [ log (0.769 mm)

. (5)

Fig. 1.14 The median SED of T Tauri stars with disks. The figure is taken from D’Alessio
et al. (2001).

index α such that Fν ∝ να between at 1.3 mm and 2.7 mm in wavelengths is significantly
lower than the interstellar medium, where α ∼ 2 (e.g., Schwartz, 1982). Note that the spec-
tral index α is related to the opacity slope β with β = α−2 if the medium is optically thin.

The spectrum at millimeter wavelengths is strongly affected by grain size. As already
discussed, D’Alessio et al. (2001) showed that the maximum grains size should be larger
than 1 mm at least to explain the observed spectral index. Figure 1.15 shows the spectral
index as a function of the maximum size of grain radius. To explain the low spectral index,
the maximum grain size should be larger than 1 mm.
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FIG. 3.ÈUpper panel : Mass absorption coefficient at j \ 1.3 mm as a
function of the maximum grain radius The solid line corresponds toamax.p \ 3.5 and the dotted line to p \ 2.5. The horizontal dashed line rep-
resents the frequently adopted opacity at 1.3 mm from BS91. Middle panel :

calculated between j \ 0.769 and 1.3 mm for theb \ d log (il)/d log (l),
same cases as the upper panel. The horizontal dashed line is b \ 1. L ower
panel : albedo at 1.3 mm for the same cases shown in the upper panel.

For optically thin regions, the emergent Ñux calculated
including scattering is similar to the Ñux calculated
assuming the dust is purely absorbing. For optically thick
regions, with the Ñux for a pole-on diskql,0 ? 1/(1 [ ul),is smaller by a factor roughly 1 [ ul/[(1 [ ul)1@2 ] 1]

than the purely absorbing case, consis-M[3(1 [ ul)]1@2 ] 1N
tent with the discussion in MN93. For intermediate optical
depths (e.g., the behavior of the emergent Ñuxql,0 D 1),
cannot be described by analytic expressions.

4. RESULTS

4.1. Disk ““ Photosphere ÏÏ and Hidden Central Stars
Figure 1 shows that grain growth a†ects the opacity at

both small and large wavelengths. For a Ðxed mass of dust,
increasing tends to increase the mm-wave opacity (foramaxat the same time as it decreases the opacity atamax [ mm)
the characteristic wavelength of the stellar radiation, j D 1
km. This has important e†ects on the disk temperature dis-
tribution and thus the disk structure.

Figures 4 and 5 show the midplane temperature T
c
,

surface density &, and the height of the ““ irradiation
surface ÏÏ as a function of radius, and the SEDs of pole-onz

s(i \ 0¡) disks, for di†erent grain size distributions and the
same disk mass accretion rateM

d
B 0.046 M
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, M0 \ 3

] 10~8 yr~1 and the typical central star propertiesM
_mentioned in ° 3. The height is deÐned to be where thez

smean optical depth to the stellar radiation is unity (using
the mean opacity listed in Table 1) and represents wheres

P
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most of the stellar radiative energy is deposited (see Paper
II). The height of this surface decreases when the grain sizes
increases. Thus, the fraction of stellar radiation intercepted
by the disk decreases, resulting in a colder disk than what
would be expected for smaller grains. The mass surface
density of the outer disk is & D 1/R for R [ 10 AU, thus the
disk mass is dominated by the contribution of the outer
radii. Since the present models have all the same disk mass,
they also have the same surface density for AU.R Z 10

In Paper II we showed that if the disk has ISM dust well
mixed with the gas, then a large fraction of the classical T
Tauri stars should have their central star extinguished with

mag (30% of all objects with an outer disk radiusA
V

[ 30
AU). Also, the two-layer models of Chiang &R

d
\ 100

Goldreich (1997, 1999) implies a similar large fraction of
highly extinguished central stars. As discussed in Paper II,
this fraction is too high in comparison with estimates from
current observational surveys in the Taurus molecular
cloud complex. The decrease in the optical and near-
infrared dust opacity with increasing results inamax(optically and geometrically) thinner disks, and thus the
fraction of highly extinguished stars predicted for a random
distribution of viewing inclinations decreases. Figure 6
shows the cosine of the critical angle such that cosi
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random distribution of disk rotation axes to the line of
sight, for mm and p \ 3.5, 20% of the T Tauri starsamax \ 1
with disks with a typical radius AU, should beR
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D 100

extincted by their disks with an mag, while forA
V

[ 30
cm and p \ 2.5 only D6% of T Tauri shouldamax \ 10

have mag. Because the fraction of such disk-A
V

[ 30
obscured sources in Taurus is estimated to be not more
than about 15% (Paper II), it is clear that the models with
grain growth are in much better agreement with the current
observational constraints.

The SEDs of the models show that the larger the fraction
of big grains, the smaller the mid- and far-IR Ñuxes. On the
other hand, the mm Ñuxes increases with untilamax amax D 1
mm, and decreases with for larger grains, reÑectingamaxthe behavior of the opacity shown in Figure 3. In the
next section we show how the SED of a disk model with a
larger fraction of big grains than the ISM dust compare to
observations.

4.2. Median SED
Figure 7 shows the spectral energy distributions (SEDs)

for two disk models, both with M
d
\ 0.046 M

_
(M0 \ 3

] 10~8 yr~1, a \ 0.01, AU) and a centralM
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R
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star with and KM* \ 0.5 M
_

, R* \ 2 R
_

, T* \ 4000
and an inclination angle cos i \ 0.65.4 We(L * \ 0.9 L
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),

adopt the distance to Taurus of 140 pc (Kenyon,
Dobrzycka, & Hartmann 1994). One of the models has
ISM-dust and the second model has dust with the abun-
dances and optical properties described in ° 2, and amax \
1 mm, p \ 3.5. The main di†erence between both models
are that the ISM-dust disk model has larger far-IR and
smaller mm-wave Ñuxes than the grain growth model. Both
models are compared to the median SED for the T Tauri stars
in the Taurus-Auriga molecular cloud ( from Kenyon
& Hartmann 1995 ; see Paper II). The SED for the

4 We use cos i \ 0.65 instead of 0.5 for the average inclination to
account for the occultation in edge-on systems, which would drop out of
the observational samples due to weak optical and infrared emission.
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FIG. 3.ÈUpper panel : Mass absorption coefficient at j \ 1.3 mm as a
function of the maximum grain radius The solid line corresponds toamax.p \ 3.5 and the dotted line to p \ 2.5. The horizontal dashed line rep-
resents the frequently adopted opacity at 1.3 mm from BS91. Middle panel :

calculated between j \ 0.769 and 1.3 mm for theb \ d log (il)/d log (l),
same cases as the upper panel. The horizontal dashed line is b \ 1. L ower
panel : albedo at 1.3 mm for the same cases shown in the upper panel.

For optically thin regions, the emergent Ñux calculated
including scattering is similar to the Ñux calculated
assuming the dust is purely absorbing. For optically thick
regions, with the Ñux for a pole-on diskql,0 ? 1/(1 [ ul),is smaller by a factor roughly 1 [ ul/[(1 [ ul)1@2 ] 1]

than the purely absorbing case, consis-M[3(1 [ ul)]1@2 ] 1N
tent with the discussion in MN93. For intermediate optical
depths (e.g., the behavior of the emergent Ñuxql,0 D 1),
cannot be described by analytic expressions.
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4.1. Disk ““ Photosphere ÏÏ and Hidden Central Stars
Figure 1 shows that grain growth a†ects the opacity at

both small and large wavelengths. For a Ðxed mass of dust,
increasing tends to increase the mm-wave opacity (foramaxat the same time as it decreases the opacity atamax [ mm)
the characteristic wavelength of the stellar radiation, j D 1
km. This has important e†ects on the disk temperature dis-
tribution and thus the disk structure.
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most of the stellar radiative energy is deposited (see Paper
II). The height of this surface decreases when the grain sizes
increases. Thus, the fraction of stellar radiation intercepted
by the disk decreases, resulting in a colder disk than what
would be expected for smaller grains. The mass surface
density of the outer disk is & D 1/R for R [ 10 AU, thus the
disk mass is dominated by the contribution of the outer
radii. Since the present models have all the same disk mass,
they also have the same surface density for AU.R Z 10
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obscured sources in Taurus is estimated to be not more
than about 15% (Paper II), it is clear that the models with
grain growth are in much better agreement with the current
observational constraints.

The SEDs of the models show that the larger the fraction
of big grains, the smaller the mid- and far-IR Ñuxes. On the
other hand, the mm Ñuxes increases with untilamax amax D 1
mm, and decreases with for larger grains, reÑectingamaxthe behavior of the opacity shown in Figure 3. In the
next section we show how the SED of a disk model with a
larger fraction of big grains than the ISM dust compare to
observations.
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Dobrzycka, & Hartmann 1994). One of the models has
ISM-dust and the second model has dust with the abun-
dances and optical properties described in ° 2, and amax \
1 mm, p \ 3.5. The main di†erence between both models
are that the ISM-dust disk model has larger far-IR and
smaller mm-wave Ñuxes than the grain growth model. Both
models are compared to the median SED for the T Tauri stars
in the Taurus-Auriga molecular cloud ( from Kenyon
& Hartmann 1995 ; see Paper II). The SED for the

4 We use cos i \ 0.65 instead of 0.5 for the average inclination to
account for the occultation in edge-on systems, which would drop out of
the observational samples due to weak optical and infrared emission.

Fig. 1.15 The opacity index β between 0.769 and 1.3 mm wavelengths. The figure is origi-
nally from Fig.3 of D’Alessio et al. (2001).

More recently, radio interferometer observations resolved protoplanetary disks. An-
drews & Williams (2005) compiled millimeter observations toward Taurus-Auriga region
and derived disk properties. The spectral index is derived to be α = 2.0± 0.5. This is a
strong evidence of grain growth. Figure 1.16 shows the summary of previous work on ob-
taining the spectral index. Many authors have observed to derive the spectral index and
proven that α = 2.0− 3.0 (Andrews & Williams, 2007; Guilloteau et al., 2011; Isella et al.,
2009; Ricci et al., 2010a,b), which corresponds to opacity index is β= 1.0−2.0 at millimeter
wavelengths.

In addition, some observations have revealed radial profiles of dust-grain size. Isella
et al. (2010) and Pérez et al. (2012) have analyzed the radial profile of the spectral index α.
Their best fit model of Pérez et al. (2012) has shown that the maximum grain size monoton-
ically increases in outer region of the disks with the distance from the central star as shown
in Figure 1.17.

1.4.3 Theoretical explanation of low β

Although many observations protoplanetary disks suggest that dust grains grow to 1 mm-
sized grains at least, holding millimeter-sized dust grains in the outer part of the protoplan-
etary disks is theoretically challenging. Because the timescale of radial drift is shorter than
the growth timescale in the outer region of protoplanetary disks, millimeter-sized dust grains
quickly fall onto the central star. This is the same mechanisms as the radial drift barrier. Due
to the coupling efficiency of dust grains and disk gas depends on orbital radius, the most de-
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Fig. 5.— Left panel: Spectral index between 1.1 and 3 mm plotted against the flux at 1.1 mm (scaled for a common
distance of 140 pc) for disks around single stars (or wide binaries) with spectral types early M to K in nearby star forming
regions. The dashed lines mark the typical sensitivity limits of the surveys in Taurus, Ophiuchus, Lupus, Chamaeleon
and Orion Nebula Cluster. Right panel: The grey area illustrate the range of predictions for global dust evolution models
without radial drift (Birnstiel et al., 2010b), the two arrows illustrate the evolutionary trajectories in the first few million
years as predicted by the global models including the effect of radial drift (solid line) and including pressure traps in the
gas distribution to slow the rate of drift (dashed line, Pinilla et al., 2012b).

⇠ 1 mm for the vast majority of the disks. Within the rel-
atively small samples investigated so far, the distribution
of spectral indices is consistent with being the same for
nearly all the regions probed so far. The general picture
that is emerging from this comparison is that dust appears
to quickly grow to large sizes, but then it needs to be re-
tained in the disk for a relatively long time, comparable to
the disk lifetime. The only region where there may be a hint
for possibly different distribution of spectral index values is
Chamaeleon, where Ubach et al. (2012) derived a range of
� values between 0.9 and 1.8 for 8 disks. Chamaeleon is
among the oldest regions in the sample (albeit still young
with an estimated median age of ⇠ 2 Ma Luhman, 2007).
It is possible that the different values of ↵ in Chamaeleon
could be an indication for a time evolution of the grain size
distribution, with a loss of mm/cm sized pebbles relative to
smaller grains. This suggestion will be tested when statisti-
cally significant samples in younger and older star forming
regions are observed with ALMA.

Following Birnstiel et al. (2010b) and Pinilla et al.
(2012b), we show in Fig. 5 the prediction of global grain
evolution models in disks. Birnstiel et al. (2010b) found
that the measured 1.1–3 mm spectral indices can be well
reproduced by models with reasonable values for parame-
ters regulating grain fragmentation, gas turbulence and disk
structure. However, these models are able to explain only
the upper envelope of the measured fluxes (i.e. the most
massive disks in the sample). There is a large population
of disks that are difficult to reconcile with the model pre-
dictions: those with low millimeter flux and low spectral
index (low-mass disks containing a substantial amount of

large grains). This discrepancy cannot be solved by simply
reducing the mass of the disk models, as disks with lower
surface densities would hardly grow grains (Birnstiel et al.,
2010b), as can be seen by the fragmentation and drift lim-
ited growth in Equations 8 and 9, which show that the max-
imum grain size depend on the dust and gas surface density,
respectively.

Pinilla et al. (2012b) investigated the effect of time evo-
lution on these modeling results, finding that while the ra-
dial drift process would progressively reduce the disk mass,
evolving over a few Ma the models to lower 1 mm fluxes,
the drift and fragmentation processes will more efficiently
remove the large grains from the disk, resulting in a steep
increase of ↵ which would not be consistent with the ob-
servations. Pinilla et al. (2012b) showed that the drift of
large particles needs to be slowed down, but not halted com-
pletely, in order to explain the observed distribution in a
framework of disk evolution. In this context, it is important
to point out that no correlation has so far been found be-
tween individual stellar ages and ↵ (e.g. Ricci et al., 2010a).

Several mechanisms have been proposed to slow down
the radial drift of large grains. For example in MHD sim-
ulations of disks with zonal flows (Johansen and Klahr,
2005; Johansen et al., 2009; Uribe et al., 2011), the pres-
sure field in the disk would be modified and this may be
a viable mechanism to create local pressure maxima that
could efficiently trap large grains. Another possibility that
has been explored by some authors is that very large grains
are injected very early in the outer disk, then their migra-
tion is impaired as they are decoupled from the gas (e.g.
Laibe et al., 2012). This scenario would require the forma-
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Fig. 1.16 Spectral index β between 1.1 and 3 mm plotted against the flux at 1.1 mm for disks
around single stars, which is scaled for a common distance of 140 pc (Testi et al. 2014).
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Figure 4. Left: dust opacity spectral slope, β, vs. radius, inferred from multi-wavelength observations of the AS 209 disk. Black line: best-fit β(R), colored areas:
confidence interval constrained by our observations. Vertical dashed lines indicate the spatial resolution of our observations, error bar in top-left corner indicates
additional systematic uncertainty on β(R) arising from amplitude calibration uncertainty. Right: dust opacity (normalized at 300 GHz) for amax between 0.1 and 10 cm.
Note that the power-law assumption, κν ∝ νβ , breaks down for (sub-)millimeter-sized grains.
(A color version of this figure is available in the online journal.)

use of the Bayesian approach upon which our modeling is
based. Since the result of the MCMC algorithm is a fully
sampled posterior probability distribution function (PDF) for
all the model parameters, we construct a PDF of the product
Σλ × Bλ(Tλ)/Bλ(T ) at each radius R and for each wavelength.
Random samples of these PDFs are taken at each wavelength,
the slope of the line through points {x = log(λ), y =
log[Σλ ×Bλ(Tλ)/Bλ(T )]} at a radius R, is computed. This slope
corresponds to one random sampling of ∆β(R). Hence, the
PDF for ∆β(R) is constructed by performing a large number
of random samples. The peak of this PDF is the best-fit value
of ∆β at radius R. Confidence intervals are derived from the
region of the PDF that contains 68.3%, 95.5%, and 99.7% of all
samples at equal probability (1σ, 2σ , and 3σ ).

Figure 4 presents the constraints on the radial variation of β
obtained from our multi-wavelength observations. The values
of β allowed by our observations are significantly different than
βISM ∼ 1.7, for R ! 70 AU. Furthermore, we find a gradient
on β(R) inconsistent with a constant value at the 10σ level.

5.2. Radial Variations of amax

To derive Equation (3), the assumption of κλ ∝ λ−β must
be satisfied. We caution that for amax ∼ 0.1–1 mm this
approximation may break down (Draine 2006), as illustrated
in Figure 4 (right). Therefore, rather than inferring amax(R)
from β(R), we constrain it directly by fitting a specific dust
opacity κλ to the constraints on the product κλ × Σλ × Bλ(Tλ)
at each radius. With a knowledge of T (R), and for a fixed set
of dust properties (composition and grain-size distribution), we
estimate the values of amax and Σ that satisfy Equation (2), now
written as

κλΣλ(R)
Bλ(Tλ(R))

Bλ(T (R))
= κλ(amax(R))Σ(R), (4)

where the right-hand side corresponds to our model (with pa-
rameters amax and Σ) and the left-hand side has been constrained
by our multi-wavelength observations (i.e., we have a PDF for
the product κλ × Σλ(R) × Bλ(Tλ(R))/Bλ(T (R))).

At each radius R, we constructed a two dimensional grid of
parameters {amax, Σ}. At each point in the grid, we compute

the product κλ(amax) × Σ at each wavelength. We then find
the probability that such measurement will have occurred
(given our observational constraints on the left-hand side of
Equation (4)), and construct the likelihood function of the
parameters {amax, Σ}. Best-fit values for amax and Σ are found
by maximizing the likelihood; confidence intervals are obtained
from the marginalized likelihoods.

Figure 5 presents our constraints on amax(R) and Σ(R) for
two representative values of q. The same composition presented
in Section 4 is assumed, however a different dust mixture will
influence the derived amax(R). For a composition that includes
updated oxygen abundances (Asplund et al. 2009), a smaller
amax(R) is inferred (×2 smaller), well within the uncertainties
of this derivation given other unknown parameters (e.g., particle-
size distribution slope). Across the disk, grains have grown at
least up to ∼0.5 mm, with small grains present in the outer disk
and large grains in the inner disk.

We compare our observational constraints with theoreti-
cal models of grain growth, employing the approximations
presented in Birnstiel et al. (2012) for the evolution of
amax with radius. Since the true Σ(R) profile constrained by
our observations depends on the assumed value of q (see
Figure 5), these theoretical prescriptions will depend on q as
well. Our observational constraints on amax are consistent with
a radial drift limited grain population, where the head-wind
felt by dust particles makes them spiral toward the star. A
fragmentation-dominated population, where the turbulent rel-
ative motion of particles causes collisions that either grow or
fragment these grains, seems incompatible for standard values
of the turbulence parameter (αt = 0.01; Shakura & Sunyaev
1973), fragmentation threshold velocity (ut = 10 m s−1; Blum
& Wurm 2008), and 100:1 gas-to-dust ratio. These curves repre-
sent barriers that prevent further size increase, hence, the smaller
of the two is considered the upper limit to growth. However, the
parameters that go into deriving the fragmentation limit are
very uncertain, while the physics and parameters in radial drift
are better established. Either no fragmentation barrier exists
(for a low-turbulence disk, αt ! 0.001, the maximum colli-
sion speed never reaches the fragmentation threshold velocity
in AS 209, making fragmentation impossible) or the gas-to-dust
ratio is ∼10× larger, allowing for the fragmentation-limited
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Fig. 1.17 The best fit model of the radial distribution of β of a protoplanetary disk AS209
(Pérez et al., 2012).
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coupled grain size also depends on the orbital radius (see Eq.(1.3)). For example, the radial
drift barrier at 5 AU occurs when dust grains have 1 m-sized. This corresponds to at 50 AU
with 1 mm-sized dust grains. Because the observations represent the outer disk, the low-β
problem is a good test bed of the radial drift problem.

Many explanations have applied to the mystery of the grain growth. Pinilla et al. (2012)
proposed that if the disk gas has density irregularities, the pressure bumps can prevent the
millimeter grains from falling onto the central star. They have shown how large the am-
plitude of gas density is required. However, mechanisms are uncertain such as the origin
of these density perturbation and the timescale during which bumps are maintained. Ricci
et al. (2012) tried to explain the millimeter-wave observations by including optically thick
regions. They proposed the potential explanations of millimeter-wave observations by opti-
cally thick sub-regions, where the particles are concentrated.

1.4.4 Opacity of porous dust aggregates

As discussed in the previous sections, dust grains can form porous aggregates in protoplane-
tary disks. Opacity of porous dust aggregates has also been studied. To calculate the optical
properties of porous dust aggregates, Draine (1988) proposed a discrete-dipole approxima-
tion method, which is by replacing the constituent particles as dipoles. However, DDA
takes a huge computational cost. Kozasa et al. (1992) investigated the optical properties of
BCCA and BPCA aggregates. They compared the results derived from the discrete dipole
approximation (DDA) and the Mie theory with effective medium theory (EMT). EMT is
expected to greatly reduce the computational cost but is not as accurate as DDA. The re-
sults show that the absorption cross section is reproduced by the effective medium theory
within a factor of 1.3. However, the scattering cross section at short wavelengths is not
reproduced by the EMT. At short wavelengths, the results of EMT deviates from the results
of DDA. In contrast, EMT reproduces the results of DDA at long wavelengths. Shen et al.
(2008, 2009) also compared the DDA and EMT, and show that EMT approximation provide
a good approximation with an error in 20% in the case of absorption cross section.

In the previous calculations by DDA, a number of monomers is less than 105 because of
a limit of computational costs. However, dust aggregates that we discuss in this thesis have
larger number of monomers. Thus, we use EMT to calculated the opacity of dust aggregates
in Chapter. 4. Although the accuracy of EMT in the case of a large number of monomers has
not been confirmed yet, this would be a first step to calculate the opacity of highly porous
aggregates.
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1.5 This thesis: introducing the static compression

The ultimate goal is to reveal the dust coagulation in planetesimal formation, which is the
first stage of planet formation. There have been three major problems in planetesimal for-
mation, which are radial drift (Adachi et al., 1976), fragmentation (Blum & Münch, 1993),
and bouncing (Zsom et al., 2010) problems as discussed in this chapter. Recently, several
authors have proposed that highly porous aggregates can avoid these barriers: the rapid
growth to avoid the radial drift (Okuzumi et al., 2012), sticky ice to overcome the frag-
mentation (Wada et al., 2009), and fluffy structure which does not make bouncing behavior
(Wada et al., 2008).

The problem of the porous aggregation is that the result of the porosity evolution is not
consistent planetesimals. Figure 1.18 summarizes the problems and filling factor evolution
in previous studies. In this figure, we do not plot the fragmentation barrier because icy ag-
gregates can avoid the complete disruption (Wada et al., 2009). Thus, we consider the region
beyond the snowline in protoplanetary disks. The fractal growth with collisional compres-
sion avoids the bouncing and radial drift barriers. However, they are not compressed by
collisions to make compact planetesimals, whose internal density is ∼ 1 g cm−5 (Okuzumi
et al., 2012). Therefore, in order to create planetesimals, we have to consider other mecha-
nisms to compress the fluffy aggregates to kilometer-sized planetesimals.

In this thesis, we are aiming to tackle this problem by introducing another mechanism
of compressing porous dust aggregates: static compression. To introduce the static com-
pression in porosity evolution of dust aggregates, we investigate the compressive strength
of porous dust aggregates in Chapter 2. We will formulate the compressive strength both
numerically and analytically.

Next, we will apply the formula to the porosity evolution in protoplanetary disks in
Chapter 3. As origins of the static compression, we consider the pressure due to gas drag
and self-gravity of dust aggregates. The dust aggregates are possibly compressed by ram
pressure of the disk gas because the dust aggregates have relative velocity against the disk
gas. The velocity increases as dust aggregates grow and become decoupled from the gas.
Therefore, the gas-drag compression is expected to be effective when the dust aggregates
are mostly decoupled from the gas. In addition, when the dust aggregates grow and their
mass becomes massive enough, the aggregates no longer support their structure against their
own gravity. Then, the aggregates are expected to be compressed due to their self-gravity.
We will show that the dust aggregates are successfully compressed to form compact and
massive objects, which are consistent with planetesimals. Moreover, we will show that the
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Fig. 1.18 The filling factor (or porosity) evolution of dust aggregates in previous studies.
The filling factor is plotted against aggregate radius. The black solid line shows the com-
pact growth (e.g., Hayashi, 1981). The gray solid line shows the fractal growth without
compression (Zsom et al., 2011). The orange solid line shows the fractal growth with colli-
sional compression (Okuzumi et al., 2012). The yellow regions represent the bouncing and
radial drift barriers.
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aggregates successfully overcome the three problems in planetesimal formation.
Finally, we calculate the observational properties of the fluffy dust aggregates expected

to be observed in protoplanetary disks in Chapter 4. We will show that the aggregate radius
and the filling factor generally degenerate in opacity, except for the resonance and scattering
opacity at long wavelengths. This means that the observed emission of protoplanetary disks
could be from fluffy dust aggregates. We will also propose a way to distinguish between
porous aggregates and compact grains from radio-wave observations.

In Chapter 5, we summarize this thesis and discuss the future work.



Chapter 2

Static compression of porous dust
aggregates

A part of this chapter has been published as Kataoka, A., Tanaka, H., Okuzumi, S., &Wada,

K. 2013a, A&A, 554, A4 (Kataoka et al., 2013a).

In protoplanetary disks, dust grains coagulate with each other and grow to form aggre-
gates. While these aggregates grow by coagulation, their filling factor φ decreases to φ≪ 1;
however, comets, the remnants of these early planetesimals, have φ ∼ 0.1. Thus, static com-
pression of porous dust aggregates is important in planetesimal formation. However, the
static compressive strength has only been investigated for relatively high-density aggregates
(φ > 0.1). We investigate and find the compressive strength of highly porous aggregates
(φ≪ 1). We performed three-dimensional N-body simulations of aggregate compression
with a particle-particle interaction model. We introduced a new method of static compres-
sion: the periodic boundary condition was adopted, and the boundaries move with low speed
to get closer. The dust aggregate is compressed uniformly and isotropically by themselves
over the periodic boundaries. We empirically derive a formula of the compressive strength
of highly porous aggregates (φ ≪ 1). We check the validity of the compressive strength
formula for wide ranges of numerical parameters, such as the size of initial aggregates, the
boundary speed, the normal damping force, and material. We also compare our results to
the previous studies of static compression in the relatively high-density region (φ > 0.1)
and confirm that our results consistently connect to those in the high-density region. The
compressive strength formula is also derived analytically.
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2.1 Introduction

Planetesimal formation is a key issue in the study of how planets form in protoplanetary
disks (Hayashi et al., 1985; Weidenschilling & Cuzzi, 1993). However, the collisional
growth of the dust from submicron-sized dust to kilometer-sized planetesimals is still un-
known.

In the growth process, one of the most important but unresolved problems is to deter-
mine the internal structural evolution of dust aggregates. The internal structure of dust is
important in planetesimal formation because the dynamics of dust aggregates in protoplan-
etary disks are determined by coupling of gas and dust, in other words, the size and internal
density of dust aggregates. In the early stage of dust coagulation in protoplanetary disks, the
collision energy of the aggregates is too low to cause collisional compression (Blum, 2004;
Okuzumi et al., 2012; Ormel et al., 2007; Zsom et al., 2011, 2010). As a result, the internal
mass density ρ decreases to ρ < 1.0 g cm−3.

Both theoretical and experimental studies have shown that mutual collisions lead dust
aggregates to have their fractal dimension D ∼ 2, which is so-called ballistic cluster-cluster
aggregation (BCCA) (Blum & Wurm, 2000; Kempf et al., 1999; Krause & Blum, 2004;
Meakin, 1991; Paszun & Dominik, 2006; Smirnov, 1990). The dust aggregates would be
gradually compacted or disrupted in coagulation because of the increase in impact energy.
This compaction has been investigated with numerical N-body simulations that consider
particle-particle interactions (Dominik & Tielens, 1997; Paszun & Dominik, 2008, 2009;
Seizinger et al., 2012; Suyama et al., 2008, 2012; Wada et al., 2007, 2008, 2009).

In most previous studies investigating dust growth in protoplanetary disks, dust grains
have been assumed to have constant internal mass density for simplicity (Birnstiel et al.,
2010a; Brauer et al., 2008; Nakagawa et al., 1981; Tanaka et al., 2005). However, dust
porosity evolves during dust growth in real protoplanetary disks. In recent dust coagulation
calculations, porosity evolution has been considered to be based on experimental and the-
oretical results (Okuzumi et al., 2012, 2009; Ormel et al., 2007; Zsom et al., 2011). These
results also suggest that ρ decreases as ρ≪ 0.1g cm−3.

In the most recent work, the dominant coagulation mode has been shown to be similar-
size collisions of dust aggregates though dust grains have size distribution (Okuzumi et al.,
2012). As a result, their fractal dimension is approximately equal to two, and their internal
mass density ρ has been shown to become 10−5 g cm−3 (equivalent to be the filling factor φ=
10−5 for ice particles with a density of 1.0 g cm−3). Such fluffy dust aggregates are believed
to become planetesimals. Since comets in our solar system, which would be remnants
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of planetesimals, have their internal mass density of ∼ 0.1 g cm−3 (A’Hearn, 2011), dust
aggregates must be compressed from ρ≪ 0.1 g cm−3 to ρ ∼ 0.1 g cm−3 in protoplanetary
disks.

Compression at dust aggregate collisions has been investigated in previous studies. When
collisional impact energy exceeds the critical energy, dust aggregates are compacted by their
collision (e.g. Dominik & Tielens, 1997; Suyama et al., 2008; Wada et al., 2007, 2008,
2009). However, the collisional compression is not effective at compressing dust aggregates
(Okuzumi et al., 2012).

One of the other compression mechanisms in protoplanetary disks is static compression
by disk gas or self-gravity. The static compressive strength of dust aggregates has been
investigated both experimentally and numerically (Güttler et al., 2009; Paszun & Dominik,
2008; Seizinger et al., 2012). However, the compressive strength has been examined only
relatively compact aggregates with ρ & 0.1g cm−3 because their initial aggregates are bal-
listic particle-cluster aggregation (BPCA) clusters. Because ρ decreases to ρ≪ 0.1g cm−3,
at least in the early stage of dust growth, we need to reveal the static compressive strength
with ρ≪ 0.1g cm−3.

In this work, we investigate the static compression of highly porous aggregates with ρ <
0.1g cm−3 by means of numerical simulations and an analytical approach. It is challenging
to perform numerical simulations of the static and uniform compression of highly porous
aggregates. Because such porous aggregates have low sound speed, we have to compress
them at a much slower velocity than in the case of compact aggregates, as is shown in our
simulations. Such a slow compression of the fluffy aggregates costs much computational
time.

In previous numerical studies of static compression, a dust aggregate is compressed by
a wall moving in one direction (Paszun & Dominik, 2008; Seizinger et al., 2012). However,
this method has disadvantages when reproducing uniform and isotropic compression. There
are also side walls that do not move. These side walls also obstruct the tangential motion
of monomers in contact with the walls, causing artificial stress on the aggregate, which
restructures them. Moreover, since they measure the pressure with the force on the moving
wall, the side walls may affect the pressure measurement. In the present work, we develop
a new method reproducing static compression. Instead of the walls, we adopt periodic
boundary conditions and the boundaries get closer to each other. With these slowly moving
periodic boundaries, the aggregate is compressed uniformly and naturally. The periodic
boundary condition also enables us to represent a much larger aggregate than inside the
computational region. This saves on computational time remarkably.



40 Static compression of porous dust aggregates

This paper is organized as follows. We describe the model of our numerical simulations
in Section 2.2. We show the results of our simulations and find the compressive strength
in Section 4.3. We confirm the obtained static compressive strength formula analytically in
Section 2.4, and present our conclusion in Section 4.6.

2.2 Simulation setting

We performed three-dimensional numerical simulations of the compression of a dust aggre-
gate consisting of a number of spherical monomers. As the initial aggregate, we adopted
a BCCA cluster. In this method, we solved interactions between all monomers in contact
in each time step. Interactions between monomers in contact are formulated by Dominik
& Tielens (1997) and reformulated by using the potential energies by Wada et al. (2007).
We used the interaction model proposed by Wada et al. (2007) in this work. We briefly
summarize the particle interaction model and material constants (see Wada et al. (2007) for
details). Moreover, we describe the additional damping force in normal direction and the
simulation setting in this section. In our simulations, the aggregate is gradually compressed
by its copies over the moving periodic boundaries. This is an appropriate method of simu-
lating uniform and isotropic compression. We also describe the boundary condition in this
section. Since we do not have walls to measure the pressure in the periodic boundary condi-
tion, we use a similar manner of pressure measurement in molecular dynamics simulations.
We also introduce the method of pressure measurement below.

2.2.1 Interaction model

We calculate the direct interaction of each connection of particles, taking all mechanical
interactions modeled by Dominik & Tielens (1997) and Wada et al. (2007) into account.
The material parameters are the monomer radius r0, surface energy γ, Young’s modulus
E, Poisson’s ratio ν, and the material density ρ0. Table 2.1 lists the values of the material
parameters for ice and silicate.

We perform N-body simulations with ice particles except for one case with silicate par-
ticles. In protoplanetary disks, ice particles are the most dominant dust material beyond the
snowline. Moreover, the computational time required for calculating ice particles is less
than for silicate. Thus, we adopt ice particles in most simulations. We also treat a silicate
case to compare with a previous study (Seizinger et al., 2012).

The critical displacement still shows a discrepancy between theoretical (ξcrit = 2 Å) and
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Table 2.1 Material parameters in our simulation

Material ice silicate
(same as Seizinger et al. (2012))

Monomer radius r0 [µm] 0.1 0.6
Surface energy γ [mJ m−2] 100 20
Young’s modulus E [GPa] 7.0 2.65

Poisson’s ratio ν 0.25 0.17
Material density ρ0 [g cm−3] 1.0 2.65

critical rolling displacement ξcrit [Å] 8 20

experimental (ξcrit = 32 Å) studies (Dominik & Tielens, 1997; Heim et al., 1999). We note
that the experimental studies used silica particles. We adopt the same parameter as in Wada
et al. (2011), ξcrit = 8 Å as a typical length for ice particles, and ξcrit = 20 Å for silicate
particles to compare with Seizinger et al. (2012).

The parameter ξcrit is related to strength of rolling motion. The rolling motion between
monomers is crucial in compression. The rolling energy Eroll is the energy required to rotate
a particle around a connecting point by 90 degrees. The rolling energy can be written as

Eroll = 6π2γr0ξcrit (2.1)

(see Wada et al. (2007) for details). In the case of ice monomers, for example, Eroll =

4.74×10−9 erg for ξcrit = 8Å.

We use a normalized unit of time in our simulations. For ice particles, the normalized
unit of time is

t0 = 0.67


ρ1/2

0 r7/6
0

E∗1/3γ1/6

 = 1.37×10−10 s, (2.2)

where E∗ = 2(1− ν2)/E. t0 is a characteristic time, and approximately represents the oscil-
lation time of particles in contact at the critical collision velocity (see Wada et al. (2007) for
details).

2.2.2 Damping force in normal direction

The normal force between two monomers is repulsive when the monomers are close or at-
tractive when they are stretched out. Thus, normal oscillations occur at each connection.
For realistic particles, these oscillations would dissipate because of viscoelasticity or hys-
teresis in the normal force (e.g. Greenwood & Johnson, 2006; Tanaka et al., 2012). For such
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damping of normal oscillation, we add an artificial normal damping force to the particle in-
teraction model, following the previous studies (Paszun & Dominik, 2008; Seizinger et al.,
2012; Suyama et al., 2008).

Assuming that two particles in contact have their position vectors x1 and x2, respectively,
the contact unit vector nc is defined as

nc =
x1− x2

|x1− x2| (2.3)

(see Figure 2 in Wada et al. (2007)). We introduce a damping force between contact particles
in normal direction, defined as

Fdamp = −kn
m0

t0
nc · ur, (2.4)

where kn is the damping coefficient in normal direction and m0 the monomer mass. The
adopted value of kn is on the order of 0.01. To show that the result is independent of the
normal oscillation damping, we perform N-body simulations with the damping factor kn as
a parameter.

The timescale of damping is

τdamp ∼ t0
kn
∼ 102t0, (2.5)

for kn = 0.01, it is much shorter than the simulation timescale, which is typically ∼ 107t0. We
show that the obtained compressive strength is independent of the artificial normal damping
force in our simulations (see Section 2.3.4).

2.2.3 Uniform compression by moving boundaries

We adopt the periodic boundary condition in our simulations. The aggregate in the compu-
tational region is surrounded by its copies, as shown in Figure 2.1. Initially, we set a cubic
box whose sides are periodic boundaries with a size of L larger than the aggregate. Thus,
the initial BCCA cluster is detached from its neighboring copies over the periodic bound-
aries. In our simulations, we gradually move the boundaries to the center of the aggregate to
get closer to one another. As a result, the aggregate sticks to the neighboring copies and is
compressed by them in a natural way. Therefore, the aggregate in the computational region
corresponds to a small part of a whole large aggregate. In other words, although the number
of particles in numerical simulations are limited because of computational cost, the periodic
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L

L

Fig. 2.1 Schematic drawing of the periodic boundary condition. Each box illustrates a
boundary box with a side length L for all directions. When the boundary starts to get
closer, the aggregate sticks to the neighboring aggregates over the boundary and is com-
pressed by them. It should be noted that this picture is illustrated in the 2D direction, but
our simulations are performed in 3D.

boundary condition enables us to investigate a large aggregate, such as a ∼ cm-sized dust
aggregate in protoplanetary disks.

Another advantage of the periodic boundary condition is that we do not need to introduce
the wall for compression. In the previous N-body simulations of static compression, dust
aggregates are compressed by using the wall against the dust aggregate (Paszun & Dominik,
2008; Seizinger et al., 2012). The wall itself may have some artificial effects on such exper-
iments. For example, the wall moves in one direction and thus this may be different from
isotropic compression. Besides, wall-particle interaction is different from particle-particle
interaction, so it must be treated carefully. In contrast, the periodic boundary condition
does not need walls for compression because a dust aggregate is compressed by the neigh-
boring aggregate over the periodic boundary. In addition, the periodic boundaries in three
directions make it possible to compress the aggregate isotropically. We calculate not only
the interactions of particles in contact inside the computational region but also the interac-
tions of the particles in contact across the periodic boundaries. Thus, no special treatment
of interactions, which is wall-particle interactions in the case of simulations with walls in
previous studies, is required when a particle crosses the periodic boundaries.

The computational cubic region has length L, and the coordinates in x, y, and z directions
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are set to be −L/2 < x < L/2, −L/2 < y < L/2, and −L/2 < z < L/2, respectively. We adopt
periodic boundary conditions for all directions to reproduce a part of a large aggregate,
where L decreases with time t, L = L(t). The initial size of the box L0 is adopted as the
maximum size of the dust aggregate in x, y, and z directions.

With the settings above, we move the boundaries of the computational region toward the
center of the region with a constant strain rate. The velocity at the boundary is given by

vb = −Cv

t0
L(t), (2.6)

where Cv is a dimensionless parameter (we call Cv the strain rate parameter hereafter).
Owing to this definition of the boundary speed, the aggregate is compressed at a constant
strain rate independent of the region scale L.

The box size decreases with the constant rate Cv in three directions. This corresponds
to isotropic compression. Since dL

dt = 2vb, the box size is written as

L = L0 exp
(
−2Cv

t
t0

)
. (2.7)

Therefore, the whole time of compression is t0/Cv. Typically we chose Cv = 3×10−7 so the
compression time is ∼ 0.5 ms.

When a particle crosses a periodic boundary, the velocity should be treated carefully
to reproduce the quasi-static compression with periodic boundary condition. Figure 2.2
illustrates how to calculate the velocity of particles across the periodic boundary. When a
particle goes out of the computational region across the boundary at x= L/2, we relocate the
particle to the opposite side (i.e., from the boundary at x = −L/2). In that case, the position
of the particle in x direction is converted as

x 7−→ x−L (2.8)

Since the two boundaries at x = −L/2 and x = L/2 have a relative velocity of 2vb, the x-
component of the velocity vx of the particle is also converted as

vx 7−→ vx+2vb. (2.9)

Owing to the conversion of vx, the velocity of particle against the boundary that the particle
crosses does not change before and after the crossing. For a particle across the boundary at
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Fig. 2.2 Schematic drawing to illustrate how the particle velocity is calculated when a par-
ticle crosses a periodic boundary. For simplicity, we consider this situation in a 2D field,
but we actually calculate this in a 3D situation. We consider that a dust particle is close
to the boundary in the left figure. In the next time step, the particle crosses the boundary
(dashed circle in the right figure). We put the particle on the other side of the boundary as
expressed in Equations (2.8) and (2.10). The velocity component is converted as expressed
in Equations (2.9) and (2.11). This treatment reproduces the isotropic compression in the
velocity field well.

x = −L/2, the position and the velocity are converted as

x 7−→ x+L (2.10)

vx 7−→ vx−2vb. (2.11)

We also have the same treatments for particles across the boundaries at y = ±L/2 and z =

±L/2.

We introduce the constant strain rate at the boundaries for scaleless discussion. However,
the initial aggregate is not moving. As the simulation starts, if all the particles in the aggre-
gate are not moving, only the particles close to the boundaries have initial velocity. This is
not a constant strain rate. To reproduce the scaleless constant strain rate initially, therefore,
we first give all monomers the velocity smoothly connected to the boundary speed. The
initial velocity is expressed as

u(r) = vb× r
L0/2

, (2.12)

where r is the position vector of the monomers.
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2.2.4 Pressure measurement

In previous studies, a dust aggregate is enclosed by walls, and the pressure is calculated by
measuring the force exerted on the walls by the dust aggregate. In this work, a dust aggregate
is compressed by themselves because of the periodic boundary condition. Therefore, we
introduce another method of measuring the pressure on the aggregate. We calculate the
pressure of the dust aggregate in the standard way in molecular dynamics simulations using
the virial theorem as follows (e.g., Haile, 1992).

We consider a virtual box that encloses the aggregate under consideration. We define
the force acting from the walls of the virtual box on the particle i as Wi, and the sum of the
forces from other particles on the particle i as Fi. The equation of motion of the particle i is
given by

m
d2ri

dt2
=Wi+Fi. (2.13)

We take a scalar product of both sides of the equation with ri and take a long time average
of both sides with time interval τ. The lefthand side becomes

m
1
τ

∫ τ

0
ri · d

2ri

dt2
= m

1
τ

[
ri · dri

dt

]τ

0
−m

1
τ

∫ τ

0

dri

dt
· dri

dt
dt. (2.14)

The first term on the righthand side vanishes in the limit of τ→∞. We define the taking-a-
long-time average in t as ⟨⟩t. Taking a summation of all particles and a long time average of
Equation (2.13), we obtain

〈 N∑

i=1

1
2

m
(
dri

dt

)2〉

t

= −1
2

〈 N∑

i=1

ri · (Wi+Fi)
〉

t

. (2.15)

We define the average of the stress in three directions as pressure P. Thus, the first term on
the righthand side is related to P. The pressure is an average of all forces acting on the wall
from all particles. Using the normal vector n of the wall surface directed outward, the force
received by the wall that has an area dS is PndS . Therefore,

〈∑

i

ri ·Wi

〉

t

= −
∫

S
Pn · rdS = −3PV. (2.16)

This equation is obtained by taking surface integral as

∫

S
n · rdS =

∫

V
div rdV =

∫

V

(
∂x
∂x
+
∂y

∂y
+
∂z
∂z

)
dV = 3V. (2.17)
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The translational kinetic energy K, averaged over a long time, is given by

K =
〈 N∑

i=1

1
2

m
(
dri

dt

)2〉

t

. (2.18)

Using K and P, Equation (2.15) gives an expression of P as

P =
2
3

K/V +
1
3

〈∑

i

ri ·Fi

〉

t

/V. (2.19)

We define the force from particle j on particle i as fi, j. Force Fi can be written as a summa-
tion of the force from another particle as

Fi =
∑

j,i

fi, j. (2.20)

Using fi, j = − f j,i, we finally obtain the pressure measuring formula as

P =
2
3

K/V +
1
3

〈∑

i< j

(ri− r j) · fi, j

〉

t

/V. (2.21)

The first term on the righthand side of the equation represents the translational kinetic energy
per unit volume, and the second term represents the summation of the force acting at all
connections per unit volume. This expression is useful for measuring the pressure of a dust
aggregate under compression. We do not need to put any artificial object, such as walls, in
simulations because Equation (2.21) is totally expressed in terms of the summation of the
physical quantities of each particle, which are the mass, the position, the velocity, and the
force acting on the particle. In our calculations, we take an average of pressure for every
10,000 time steps, corresponding to 1000 t0 because we set 0.1 t0 as one time step in our
simulation.

As mentioned in Section 2.2.2, the adopted damping force corresponds to rapid damping
of normal oscillations. Thus, the kinetic energy of random motion rapidly dissipates. This
corresponds to the static compression, and thus the compressive strength is determined by
the second term of Equation (2.21). We note that this process corresponds to the isothermal
compression. In addition, this process is not applicable to the rapid compression.
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2.3 Results

The top three panels of Figure 2.3 show snapshots of the evolution of an aggregate under
compression in the case where N = 16384, Cv = 3× 10−7, kn = 0, and ξcrit = 8 Å. The top
three panels have the same scale but different time epochs, which are t = 0, 1× 106t0, and
2×106t0. The white particles are inside the computational region enclosed by the periodic
boundaries, while the yellow particles are in the neighboring copy regions. (For visualiza-
tion, we do not draw particles on the front and backsides copy regions.) The bottom three
panels represent the projected positions onto the two-dimensional plane for the correspon-
dent top three figures. We confirm that the dust aggregate is compressed by their copies
from all directions. As the compression proceeds, the aggregate of white particles is com-
pressed by the neighboring aggregate of yellow particles. We focus on how high pressure is

t=0 (φ=0.0003) t=1×106t0 (φ=0.002) t=2×106t0 (φ=0.01)

(µm) (µm) (µm)

(µ
m

)

(µ
m

)

(µ
m

)

Fig. 2.3 Snapshots of the evolution of an aggregate under compression in the case of N =
16384. The top three figures are 3D visualizations. They have the same scale with different
time epochs. The white particles are inside a box enclosed by the periodic boundaries. The
yellow particles are in neighboring boxes to the box of white particles. For visualization,
we do not draw the copies on the back and front sides of the boundaries but only 8 copies of
the white particles across the boundaries. Each bottom figure represents projected positions
onto 2D plane of all particles in each corresponding top figure. The gray points in the bottom
figures correspond to the positions of the white particles in the top figures, and the yellow
points correspond to those of the yellow particles in the top figures. Scales are in µm.
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generated by quasi-static compression in numerical simulations. Our numerical simulations
have several parameters: the size of the initial BCCA cluster, the compression rate, the nor-
mal damping force, and the critical displacement (corresponds to the rolling energy). We
investigate the dependence of the pressure on these parameters, by performing several runs
with different parameter sets. Although we assume ice aggregates in most runs, we also
investigate cases of silicate aggregates to compare them with previous studies.

2.3.1 Fiducial run: obtaining the compressive strength

We put a BCCA cluster as the initial aggregate. For each set of parameters, we randomly
create ten BCCA clusters following Okuzumi et al. (2009), and take arithmetic averages of
the ten simulations of the different initial clusters. The pressure is measured using Equation
(2.21) at each run. We define the filling factor of an aggregate as

φ =
V0N

V
, (2.22)

where V0 is the monomer volume, N the number of monomers of the aggregate, and V the
volume enclosed by the boundaries, which has a length of L. The filling factor also can be
written as φ = ρ/ρ0. Figure 2.4 shows that the measured pressure as a function of the filling
factor φ(t). The parameters of the simulations are N = 16384, Cv = 3×10−7, kn = 0.01, and
ξcrit = 8 Å. The corresponding Eroll is 4.74× 10−9erg for ξcrit = 8 Å. Each colored line in
Figure 2.4(a) shows each simulation with the different initial shape of the aggregate. Figure
2.4(b) shows the arithmetic average of the pressure measured in ten different runs. Each line
shows in different ranges of φ. The lowest φ is determined with the largest size of the initial
boundary boxes of the ten runs. We find that the compressive strength is reproduced well
by

P = P0φ
3, (2.23)

where P0 = 4.74×105 Pa. We analytically discuss why the compressive strength is propor-
tional to φ3 in Section 2.4. In the high-density region (φ & 10−1), the measured strength
deviates from the line of P = P0φ

3. This is because the dissipation mechanism changes
in the high-density region (see Section 2.3.4). The deviation in the low-density region
(φ . 3×10−3) is partly caused by a finite boundary speed (or compression rate) as discussed
in the next section. Another reason for the deviation in the low-density region is related to
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Fig. 2.4 (a) Pressure P in [Pa] against filling factor φ. The ten thin solid lines show the
results for the initial BCCA clusters with different initial random numbers and thick solid
line shows the arithmetic average of the ten runs. (b) Pressure P in [Pa] against filling factor
φ. Same as the thick solid line in (a) plotted with a dotted line of Equation (2.25). The
parameters are N = 16384, Cv = 3×10−7, kn = 0.01, and ξcrit = 8 Å.
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the density of the initial BCCA cluster. The filling factor of BCCA φBCCA is estimated as

φBCCA =
V0N

VBCCA
=

(
3
5

)3/2

N−1/2, (2.24)

where we use the radius and the volume of a BCCA cluster, rBCCA =
√

5/3N1/2r0 and
VBCCA = (4π/3)r3

BCCA, respectively (e.g., Suyama et al., 2008). For N = 16384, we obtain
φBCCA ∼ 3× 10−3. In the early stage of compression, φ is lower than φBCCA because the
initial BCCA clusters are apart from each other. This space between BCCA clusters would
also cause the deviation from the line of P = P0φ

3.

We now discuss the coefficient P0 of the compressive strength. Wada et al. (2008) show
that Eroll is important in the collisional compressive strength. Thus, Eroll is expected to also
be important in the static compressive strength. Considering that the characteristic volume
is the monomer’s volume ∼ r3

0, we suppose P0 = Eroll/r3
0, based on dimension analysis.

Therefore, the compressive strength can be written as

P =
Eroll

r3
0

φ3. (2.25)

We analytically discuss and confirm this equation in Section 2.4. We also plot this equation
in Figure 2.4(b). This figure clearly shows that the result is well fit by Equation (2.25).

We show that compressive strength is proportional to ξcrit, which is proportional to the
rolling energy Eroll in Section 2.3.5. We also confirm that Equation (2.25) is applicable to
the case of different r0 in the silicate case.

2.3.2 Dependence on the boundary speed

To statically compress the aggregate, we should move the boundary at a low enough velocity
not to create inhomogeneous structure. Figure 2.5 shows the dependency on the strain rate
parameter. Each line shows the average of ten runs. The fixed parameters are N = 16384,
kn = 0.01, and ξcrit = 8 Å. The strain rate parameter Cv is equal to 1 × 10−7, 3 × 10−7,
1× 10−6, 3× 10−6, and 1× 10−5. The higher Cv, the higher pressure in the low density
region is required for compression. This is mainly caused by the ram pressure from the
boundaries with high speed.

When the compression proceeds and the density becomes higher to reach the line of
Equation (2.25), the pressure follows the equation. From Figure 2.5, Cv = 3×10−7 creates
a sufficiently low boundary speed. The boundary speed can be calculated as a function of
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Fig. 2.5 Pressure P in [Pa] against filling factor φ with different strain rate parameter Cv.
Each line shows the average of ten runs of the fixed strain rate: Cv = 1×10−7,3×10−7,1×
10−6,3×10−6,1×10−5. The other parameters are the same for every ten runs : N = 16384,
kn = 0.01, and ξcrit = 8 Å. The dashed line is Equation (2.25).

φ. Using Equation (2.6) and φ = (4/3)πr3
0N/L3, the velocity difference between a boundary

and the next boundary, vd, can be written as

vd = |2vb| = 2
Cv

t0


4
3πr

3
0N

φ


1/3

. (2.26)

In the case of Cv = 3× 10−7, vd = 12.7, 5.9, and 2.7 cm/s for φ = 10−3, 10−2, and 10−1,
respectively.

Here, we discuss the velocity difference of boundaries, comparing with the effective
sound speed of the aggregates. The effective sound speed can be estimated as

cs,eff ∼
√

P
ρ
∼

√
Eroll

ρ0r3
0

ρ

ρ0
∼

√
Eroll

m0
φ. (2.27)

where we use Equation (2.25). Using the rolling energy of ice particles, cs,eff is given by

cs,eff ∼ 1.1×103φ cm/s. (2.28)

Therefore, in the case of Cv = 3×10−7, vd is not low enough in the beginning of the simula-
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tion, where the aggregate has a low filling factor. However, the boundary velocity difference
reaches lower than the effective sound speed when φ & 10−2.

2.3.3 Dependence on the size of the initial BCCA cluster

To confirm that Equation (2.25) is valid in the lower density region, we perform the sim-
ulations with the different number of particles, which is equivalent to the different sizes
of the initial dust aggregates. Figure 2.6 shows dependence on the number of particles of
the initial BCCA cluster. The initial numbers of particles are 1024, 4096, and 16384. The
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Fig. 2.6 Pressure P in [Pa] against filling factor φ with a different number of particles N.
Each line shows the average of ten runs of the fixed number of particles: N = 1024,4096,
and 16384. The other parameters are Cv = 3×10−7, kn = 0.01, and ξcrit = 8 Å in the case of
N = 1024,4096, and Cv = 1×10−7, kn = 0.01, and ξcrit = 8 Å in the case of N = 16384. The
dashed line is Equation (2.25).

other parameters are Cv = 3× 10−7, kn = 0.01, and ξcrit = 8 Å in the case of N = 1024 and
N = 4096, and Cv = 1×10−7, kn = 0.01, and ξcrit = 8 Å in the case of N = 16384. We chose
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lower Cv in the case of N = 16384 to investigate the strength in lower φ region. Each line
represents the average of ten runs for each simulation as in Figures 2.4(b) and 2.5. We draw
the averaged line from lower φ than in Figure 2.5. In such a low φ region, we consider that
the pressure is zero for some runs because the aggregate is isolated from the copies of the
aggregate over the periodic boundaries. Except for the initial deviation in low φ, all lines
show good agreement with Equation (2.25) where φ . 0.1. The result agrees in lower φ for
runs with larger N. Therefore, we conclude that the formula Equation (2.25) is valid for
φ . 0.1.

2.3.4 Dependence on the normal damping force

As described in Section 2.2.2, we adopt the normal damping force to reduce the normal
oscillations in addition to Wada et al. (2007). To confirm that this damping factor does
not affect the simulation results, we set the damping factor kn as a parameter. Figure 2.7
shows dependence of pressure on the normal damping factor kn. The fixed parameters are
N = 16384 Cv = 3× 10−7, and ξcrit = 8 Å. Each line represents the result of one run for
kn = 0,10−2, and 101, respectively. This figure clearly shows that the normal damping force
does not affect the simulation results.

As mentioned in Section 2.3.1, the compressive strength in the low-density region (φ .
0.1) is expected to be determined by the rolling motion. To confirm this, we calculate
the total energy dissipations of all motions, which are normal damping, rolling, sliding,
and twisting. Figure 2.8 shows the dissipated energy for each mechanism, the dissipated
energies in the case without the normal damping and those in the case of kn = 0.01.

The dissipated energy in the case of kn = 10 is indistinguishable from those in the case
of kn = 0.01, and thus we do not plot them. The dissipation energy of the sliding force is less
than 10−9 erg, so it is not depicted in this figure. The dissipation by the rolling and twisting
is almost the same in the cases with and without the normal damping. Thus, we confirm
that the normal damping does not affect the compressive strength, although it dissipates
the energy of the normal oscillations. Aside from the normal dissipation, the dominant
dissipation mechanism is the rolling motion. This clearly shows that the static compression
is determined by the rolling motion of each connection, as mentioned in Section 2.3.1.
Where φ & 0.1, the energy dissipation by twisting motion occurs. This is why Equation
(2.25) is valid until the filling factor reaches 0.1 as mentioned in Section 2.3.1. In the high-
density region, where φ & 0.1, another formulation is required but that is beyond the scope
of this paper.
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Fig. 2.7 Pressure P in [Pa] against filling factor φ with different normal damping force. We
put the same ten initial conditions varying the normal damping force with kn = 0, kn = 10−2,
and kn = 101. Each line shows the result of one run. The other parameters are N = 16384,
Cv = 3×10−7, and ξcrit = 8 Å.
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Fig. 2.8 Energy dissipation of each dissipation mechanism in [erg] against filling factor φ.
The solid lines show the result in the case without the normal damping and the dashed lines
in the case of kn = 0.01 The other parameters are the same as the fiducial run. The results in
the case of kn = 10 are not plotted because they are the same as those in the case of kn = 0.01
and indistinguishable. The dissipation mechanisms are normal damping, rolling, sliding,
and twisting. The dissipation energy by sliding motion is less than 10−9 erg,
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2.3.5 Dependence on the rolling energy

We also investigate the dependence of the compressive strength on ξcrit. Since Eroll is pro-
portional to ξcrit, we investigate the dependence on the rolling energy in this section. Figure
2.9 shows the dependency on ξcrit. We vary ξcrit with 32, 16, 8, 4, and 2 Å. The fixed param-
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ξcrit = 2Å
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Fig. 2.9 Pressure P in [Pa] against filling factor φ with different critical displacement, ξcrit.
We put the same ten initial conditions varying ξcrit with ξcrit = 32,16,8,4, and 2 Å, re-
spectively. Each line shows the average of ten runs. The other parameters are N = 16384
Cv = 3×10−7, and kn = 10−2.

eters are N = 16384, Cv = 3× 10−7, and kn = 10−2. This result shows that the compressive
strength is almost the same in the low-density region. This is because the periodic boundary
creates the additional voids as discussed in Section 2.3.1, so we should not focus on the low-
density region. The lines in the case of ξcrit = 2,4, and 8 Å are on the corresponding lines
of Equation (2.25) where φ . 0.1. The line in the case of ξcrit = 16 Å has a little deviation,
and in the case of ξcrit = 32 Å it has a deviation from their corresponding lines of Equation
(2.25). The reason the lines in the case of ξcrit = 16,32 Å deviate from the corresponding
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lines of Equation (2.25) is that the dissipation energy is dominated not by rolling motion but
by a twisting motion as indicated in Figure 2.10. This figure shows that dissipated energy of
each dissipation mechanism. We show the results of the cases with ξcrit = 8, 16, and 32 Å.
The normal damping is not contribute to the compressive strength as discussed in Section
2.3.4, and thus we focus on the rolling and twisting motions.

When ξcrit ≤ 8Å, the dissipation energy is dominated by rolling motion. For ξcrit = 32Å,
on the other hand, the dissipation energy is dominated by a twisting motion. For ξcrit =

16Å, the dissipation energy of rolling and twisting motion is comparable, and making it
the marginal case. Thus, the reason Equation (2.25) is not valid when ξcrit ≥ 16Å is that
the twisting motion is the dominant mechanism for determining the compressive strength.
Therefore, we conclude that Equation (2.25) is valid when ξcrit ≤ 8Å.

2.3.6 Fractal structure

We also investigate how the fractal structure of the dust aggregate changes. Figure 2.11
shows how many particles are inside the distance rin for four snapshots. We select one run
from the case with N = 16384, Cv = 3× 10−7, kn = 10−2, and ξcrit = 8 Å. Each snapshot is
when φ = 0.003,0.01,0.03 and 0.1, respectively. We take a particle as an origin and count
the number of particles inside r < rin, where r is the length from the origin. Then we set
the computational region as an origin for all the other particles inside and take an average
of them. We obtain the same trend in several runs in the cases of different shapes of initial
aggregates.

We also count particles beyond the periodic boundaries. In high rin, N ∝ r3
in because of

copies over the periodic boundary distributed as a fractal dimension of three. Therefore,
where N(r < rin) & 16384, N must be N ∝ r3

in. However, it is almost out of the range of
Figure 2.11. Figure 2.11 shows the number of particles in calculation, which is N = 16384.
The results over this line are affected by the periodic boundary condition and those below
this line is in computational region. Thus, the results below the line represents the fractal
structure inside the computational region and are not the artificial effect of the periodic
boundary condition.

Since the initial aggregate is a BCCA cluster, N is proportional to r2
in. In the case of

φ = 0.003, which is equivalent to φ of the initial BCCA cluster, N ∝ r2
in as shown in Figure

2.11. When the fractal dimension is three, N can be written as

N(r < rin) =
φV(r < rin)

V0
= φ

(
rin

r0

)3

, (2.29)



2.3 Results 59

10−2 10−1 100
10−8

10−7

10−6

10−5

10−4

ξcrit = 32ÅNormal
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Fig. 2.10 Energy dissipation of each dissipation mechanism in [erg] against filling factor φ.
Each panel represents the case of different ξcrit, which are 32, 16, and 8 Å, corresponding to
Figure 2.9.
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Fig. 2.11 Number of particles inside the radius rin against normalized radius rin/r0. This
figure represents the fractal structure of the compressed aggregates in our simulation for
various φ. We set a particle as an origin and count the number of particles inside r < rin,
where r is the distance from the origin to each particle’s center. Then we count the same
correlation of all particles as an origin and take their average (similar figure of Figure.7
in the paper of Wada et al. (2008)). Each line shows the result at the different time steps.
The solid thick lines represents the structure of fractal dimension D = 2, and dashed lines
represent D = 3 for each corresponding φ. The dotted line shows the number of particles in
calculation. The region below this line corresponds to inside the periodic boundaries.
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where V(r < rin) = (4/3)πr3
in. We also plot this equation for each φ in Figure 2.11, with good

agreement on a large scale, while maintaining N ∝ r2
in on a small scale.

Therefore, the structure evolution in the static compression is as follows. Initially,
N ∝ r2

in because the aggregate is a BCCA cluster. As compression proceeds, the fractal
dimension D becomes three on a large scale, while it is two on a small scale. The transit
scale from D = 2 to D = 3 becomes smaller as compression proceeds until D = 3 on any
scale. This structure evolution means that the static compression reconstructs the aggregate
first on a large scale when keeping the small-scale BCCA structure. This is the reason the
rolling motion determines the compressive strength, as discussed in Section 2.4.

2.3.7 Silicate case : Comparison with previous studies

The compressive strength has been investigated in the previous study (Seizinger et al., 2012).
To investigate the connection of compressive strength from the low-density to the high-
density regions, we perform simulations in the case of silicate with the same parameters
of Seizinger et al. (2012). Figure 2.12 shows compression in the case of silicate whose
monomer size is 0.6 µm. The parameters are N = 16384, Cv = 3× 10−7, and kn = 0.01.
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Fig. 2.12 Pressure P in [Pa] against filling factor φ. This figure is same as Figure 2.4 but for
the case of silicate particles (r0 = 0.6µm).
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Figure 2.12(a) shows the results of ten runs with different initial aggregates and Figure
2.12(b) shows their average. Using the rolling energy of silicate, which is Eroll = 1.42×10−8

erg, we also plot the line of Equation (2.25) in Figure 2.12(b). Since t0 is given by 1.71×
10−9 sec for silicate aggregates, vd becomes 4.01 cm/s for φ = 10−2 with Cv=3 × 10−7.
This vd is larger than cs,eff (= 0.77 cm/s when φ = 0.01) for silicate aggregates, allowing
the numerical results shown in Figure 2.12 to deviate from the line of Equation (2.25) in
the low φ region. When vd = cs,eff , φ = 3.4× 10−2, the compressive strength should obey
Equation (2.25) when φ & 3.4× 10−2. In the case of silicate, computational time is huge
compared with ice particles. We take a relatively high value of the boundary speed to save
on computational time. Therefore, the result deviates from Equation (2.25) in the low-
density region because of the high velocity. In other words, the compression is not static in
the low density region. In the high-density region, on the other hand, the result is in good
agreement with Equation (2.25), suggesting that Equation (2.25) is applicable to aggregates
consisting of silicate particles with different r0.

Figure 2.13 compares our simulation results and Equation (2.25) in the low-density re-
gion (φ < 0.1) with the results of Seizinger et al. (2012) and the fitting formula to experi-
ments (Güttler et al., 2009). This figure corresponds to Figure 4 in Seizinger et al. (2012).
They performed similar N-body simulations to ours but using a BPCA aggregate composed
of silicate particles as an initial condition. The compressive strength of our simulations
shows good agreement with the same interaction model in Seizinger et al. (2012) with a
little discrepancy: φ = 0.24 at P = 300 Pa in our simulations and φ = 0.21 at P = 300 Pa
in Seizinger et al. (2012). The discrepancy, 13% in φ, may be caused by the difference in
the initial aggregate or the pressure measurement method. The fitting formula of Güttler
et al. (2009) suggests φ = 0.17 at P = 300 in the experiments. The discrepancy from our
simulations is 29 % in φ. In applicable uses of the static compression formula, we focus on
obtaining φ with a given P.

2.4 Understanding the compressive strength formula

In this section, we analytically derive the compressive strength and confirm Equation (2.25).
First, we consider the structure of a fluffy aggregate in static compression in our simulations.
As described in Section 2.2.3, we adopt the periodic boundary condition and put a BCCA
cluster as the initial condition. This corresponds to a large aggregate that filled up with
BCCA clusters three dimensionally. As compression proceeds, the initial BCCA cluster is
compressed but the aggregate keeps smaller BCCA structure as confirmed in Section 2.3.6.
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Fig. 2.13 The filling factor φ against pressure P in [Pa]. This figure is same as Figure
2.12, but plotted with a linear scale of φ and reversal of xy axis to compare with previous
studies (see Figure 4 in Seizinger et al. (2012)). The dotted line is the result of numerical
simulations in the high-density region (φ & 0.1) in Seizinger et al. (2012) and the thin solid
line is the fitting formula proposed by Güttler et al. (2009). Our results consistently connect
to the previous simulations in the high-density region.
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Therefore, the aggregate in static compression always consists of BCCA clusters on some
scale and filled up with them. Figure 2.14 illustrates the aggregate in static compression.
The enclosed lines depict BCCA clusters on a small scale.

Fig. 2.14 Schematic drawing of compression of a dust aggregate consisting of a number of
BCCA clusters. The left figure shows a dust aggregate consisting of many BCCA clusters
and the BCCA clusters are distributed three dimensionally. Each enclosed line represents
each region dominated by the BCCA clusters. The central figure is a BCCA cluster, re-
ceiving pressure from the next clusters. The BCCA cluster has a large void depicted in the
central figure, and thus the void would be compressed, as expressed in the right figure. The
required energy to compress the void is the energy to rotate the connection of monomers in
contact. Therefore, the compression can be determined by the rolling motion of monomer
connection on the connecting point of the subclusters.

Next, we consider why the compressive strength can be determined by the rolling energy.
The internal mass density and the volume filling factor of the aggregate are equal to those of
the BCCA clusters. Compression of the whole aggregate proceeds by compression of each
cluster. Therefore, the compressive strength of the whole aggregate would be determined by
BCCA clusters. The righthand panel of Figure 2.14 illustrates compression of one of BCCA
clusters. The pressure on the BCCA cluster is exerted by neighbor clusters, which causes the
compression of the BCCA cluster. The BCCA cluster can be divided further into two smaller
subclusters because BCCA clusters are created by cluster-cluster aggregation. A large void
exists between the two smaller clusters, and they are connected with one connection of
monomers in contact. The compression of the BCCA cluster occurs by crashing the large
void, which only requires rolling the monomers at the connection.

We now estimate the compressive strength. In static compression, the aggregate is com-
pressed by external pressure. Each BCCA cluster feels a similar pressure, P. Using the
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pressure, the force on the BCCA cluster is approximately given by

F ∼ P · r2
BCCA. (2.30)

Since the crashing of the large void is accompanied by the rolling of a pair of monomers
in contact, the work required for the crashing is given by so-called the rolling energy of
monomers, Eroll (Dominik & Tielens (1997) or see Equation (2.1) for its definition). There-
fore, the required force to compress the aggregate satisfies

F · rBCCA ∼ Eroll. (2.31)

Substituting Equation (2.30), we further obtain the required pressure to compress the aggre-
gate as

P ∼ Eroll

r3
BCCA

. (2.32)

The radius of the BCCA clusters can be written by using the physical values of the
whole aggregate. The internal density of the BCCA cluster is dependent on its radius. The
BCCA cluster has the fractal dimension of two, and its radius is approximately given by
rBCCA = N1/2r0, where N is the number of constituent monomers in the BCCA subcluster.
The internal density of the BCCA cluster is evaluated as

ρ ∼ Nm0

r3
BCCA

∼
(
rBCCA

r0

)−1

ρ0. (2.33)

Using equations (2.32) and (2.33), we finally obtain the required pressure (or the compres-
sive strength) as

P ∼ Eroll

r3
0

(
ρ

ρ0

)3

. (2.34)

This is the same as Equation (2.25) obtained from our numerical simulations.

In addition, the discussion above is applicable to the case that the constituent cluster is
not BCCA but sub-clusters which have a fractal dimension of D f . In this case, the sub-
cluster radius is described as rcluster = N1/D f r0. Thus, the internal density is

ρ ∼ N1−3/D f ρ0 ∼
(
rcluster

r0

)D f (1−3/D f )

ρ0. (2.35)

Therefore, the compressive strength in the case that the sub-cluster has a fractal dimension
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of D f is written as

P ∼ Eroll

r3
0

(
ρ

ρ0

)−3/D f (1−3/D f )

. (2.36)

2.5 Summary

We investigated the static compressive strength of highly porous dust aggregates, whose
filling factor φ is lower than 0.1. We performed numerical N-body simulations of static
compression of highly porous dust aggregates. The initial dust aggregate is assumed to
be a BCCA cluster. The particle-particle interaction model is based on Dominik & Tie-
lens (1997) and Wada et al. (2007). We introduced a new method for compression and
adopted the periodic boundary condition in order to compress the dust aggregate uniformly
and naturally. Because of the periodic boundary condition, the dust aggregate in the com-
putational region represents one part of a large aggregate, and thus we could investigate the
compression of a large aggregate. The periodic boundaries move toward the center, and the
distance between the boundaries becomes small. To measure the pressure of the aggregate,
we adopted a similar manner to the one used in molecular-dynamics simulations. As a result
of the numerical simulations, our main findings are as follows.

• The relation between the compression pressure P and the filling factor φ can be written
as

P =
Eroll

r3
0

φ3, (2.37)

where Eroll is the rolling energy of monomer particles and r0 the monomer radius.
We defined the filling factor as φ = ρ/ρ0, where ρ is the mass density of the whole
aggregate, and ρ0 is the material mass density. Equation (2.37) is independent of the
numerical parameters: the number of particles, the size of the initial BCCA cluster,
the boundary speed, and the normal damping force. We confirmed that Equation
(2.37) is applicable in different Eroll and r0. We also analytically confirmed Equation
(2.37).

• Equation (2.37) is valid where φ . 0.1 in the high-density region. In the low-density
region, we confirmed that Equation (2.37) is valid for φ & 10−3 in the case of N =

16384. From the results of different initial sizes of the aggregates, Equation (2.37) is
valid in the lower density region in the case of the larger aggregates.

• The initial BCCA cluster has a fractal dimension of two in the radius of the cluster,
although the whole aggregate has a fractal dimension of three because of the periodic
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boundary. As compression proceeds, the fractal dimension inside the radius of the
initial BCCA cluster becomes three, while the fractal dimension on a smaller scale
keeps being two. This means that the initial set up, which is that the fractal dimension
on a large scale is three and that on a small scale is two, reproduce the structure of
a dust aggregate well in static compression as a consequence. This also supports the
compressive strength being determined by BCCA structure on a small scale.

• The static compression in the high-density region (φ& 0.1) has been investigated in the
silicate case in previous studies (Seizinger et al., 2012). We performed the numerical
simulations in the silicate case and confirmed that our results are consistent with those
of previous studies in the high density region.

The compressive strength formula allowed us to study how static compression affects
the porosity evolution of dust aggregates in protoplanetary disks. In applications to dust
compression in protoplanetary disks, we use the compressive strength formula to obtain
φ with a given P. Moreover, the obtained compressive strength would be applicable to
SPH simulations of dust collisions. This application of the static compression process is
important future work. In this work, we did not study shear or tensile strengths, but they are
also worth investigating in future work.



Chapter 3

Planetesimal formation via fluffy
aggregates

A part of this chapter has been published as Kataoka, A., Tanaka, H., Okuzumi, S., &Wada,

K. 2013b, A&A, 557, L4 (Kataoka et al., 2013b).

Several barriers have been proposed in planetesimal formation theory: bouncing, frag-
mentation, and radial drift problems. Understanding the structure evolution of dust ag-
gregates is a key in planetesimal formation. Dust grains become fluffy by coagulation in
protoplanetary disks. However, once they are fluffy, they are not sufficiently compressed by
collisional compression to form compact planetesimals. We aim to reveal the pathway of
dust structure evolution from dust grains to compact planetesimals. Using the compressive
strength formula, we analytically investigate how fluffy dust aggregates are compressed by
static compression due to ram pressure of the disk gas and self gravity of the aggregates in
protoplanetary disks. We reveal the pathway of the porosity evolution from dust grains
via fluffy aggregates to form planetesimals, circumventing the barriers in planetesimal for-
mation. The aggregates are compressed by the disk gas to a density of 10−3g/cm3 in coag-
ulation, which is more compact than is the case with collisional compression. Then, they
are compressed more by self-gravity to 10−1g/cm3 when the radius is 10 km. Although the
gas compression decelerates the growth, the aggregates grow rapidly enough to avoid the
radial drift barrier when the orbital radius is . 6 AU in a typical disk. We propose a fluffy
dust growth scenario from grains to planetesimals. It enables icy planetesimal formation in
a wide range beyond the snowline in protoplanetary disks. This result proposes a concrete
initial condition of planetesimals for the later stages of the planet formation.
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3.1 Introduction

Planetesimals, the seeds of planets, are believed to form by coagulation of dust grains in pro-
toplanetary disks. How micron-sized dust grains grow to kilometer-sized planetesimals has
been an unsolved problem in the complete planet formation theory; the intermediate-sized
bodies are believed to be poorly sticky (Zsom et al., 2010), easily disrupted by collisions
(Blum & Wurm, 2008), or liable to fall quickly onto the central star (Adachi et al., 1976;
Weidenschilling, 1977).

Several possibilities have been proposed to overcome these barriers (Garaud et al., 2013;
Johansen et al., 2007; Lambrechts & Johansen, 2012; Pinilla et al., 2012; Ros & Johansen,
2013; Windmark et al., 2012a). However, there has not yet been any coherent scenario
explaining planetesimal formation from dust grains that avoids all of the barriers.

The internal structure evolution is a key to understanding how dust coagulation forms
planetesimals. Figure 3.1(a) and (b) show the schematic diagram of the structure evolution
previously considered. Dust grains become porous aggregates composed of sub-micron
monomer particles by coagulation in protoplanetary disks, as illustrated in Fig.3.1(a) (Blum
& Wurm, 2000; Kempf et al., 1999; Krause & Blum, 2004; Meakin, 1991; Paszun & Do-
minik, 2006; Smirnov, 1990). When the dust aggregates become massive, they are gradually
compacted or disrupted in dust-dust collisions because of the increase in the impact energy,
as illustrated in Fig.3.1(b)(Dominik & Tielens, 1997; Okuzumi et al., 2012; Paszun & Do-
minik, 2008, 2009; Suyama et al., 2008, 2012; Wada et al., 2007, 2008, 2009).

Growth via fluffy aggregates has been proposed to be one possible scenario to over-
come the barriers in Okuzumi et al. (2012). They have shown that fluffy aggregates rapidly
coagulate to avoid the radial drift problem. On the other hand, although the aggregates are
compressed by dust-dust collisions, their internal density remains ρ ∼ 10−5g/cm3 (Okuzumi
et al., 2012; Suyama et al., 2008). This is not consistent with the fact that planetesimals are
believed to have ρ ∼ 0.1g/cm3 as well as comets, the remnants of planetesimals (A’Hearn,
2011). Therefore other mechanisms to compress the fluffy aggregates are required.

In this paper, we introduce the static compression of aggregates due to ram pressure of
the disk gas and self-gravity in protoplanetary disks, as illustrated in Fig.3.1(c) and (d). We
use the compressive strength of porous aggregates numerically derived by Kataoka et al.
(2013a) to obtain the porosity (equivalent to the internal density) of dust aggregates. We
show how much the dust aggregates are compressed by the disk gas and by self-gravitational
compression in their growth. Moreover, we investigate whether the growth is rapid enough
to avoid the radial drift barrier by comparing the dust growth and radial drift timescale.
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(a) Hit-and-stick

(b) Collisional compression

(c) Gas compression

(d) Self-gravitational compression

gas flow

gravitational force

Fig. 3.1 Schematic drawing to illustrate dust growth via fluffy aggregates. (a) The dust
aggregate hits another aggregate to be stick. This reduces dust density and occurs in a very
early stage of dust growth. (b) When the collisional speed is high enough to disrupt the dust
aggregates, they are compressed. (c) Dust aggregates have a velocity difference against gas,
and they feel the ram pressure by the gas. The ram pressure statically compresses the dust
aggregates. (d) When the dust aggregates become so massive that they do not support their
structure, they are compressed by their own self-gravity.



72 Planetesimal formation via fluffy aggregates

3.2 Method: introducing static compression to planetesi-
mal formation

The compressive strength of a highly porous dust aggregate, P, is given by (Kataoka et al.,
2013a)

P =
Eroll

r3
0

(
ρ

ρ0

)3

, (3.1)

where ρ is the mean internal density of the dust aggregate, r0 the monomer radius, ρ0 the
material density, and Eroll the rolling energy, which is the energy for rolling a particle over
a quarter of the circumference of another particle (Dominik & Tielens, 1997; Wada et al.,
2007). In this paper, we adopt ρ0 = 1.0 g/cm3, r0 = 0.1 µm, and Eroll = 4.74× 10−9 erg ,
which correspond to icy particles. Eroll is proportional to the critical displacement, which
has an uncertainty from 2 Å to 30 Å (Dominik & Tielens, 1997; Heim et al., 1999). For later
discussion, we note that the dust density is proportional to E1/3

roll and thus the uncertainty little
affects the resulting dust density.

When a dust aggregate feels a pressure that is higher than its compressive strength, the
aggregate is quasi-statically compressed until its strength equals the pressure. We define the
dust internal density where the compressive strength equals a given pressure as an equilib-
rium density ρeq. Using Eq.(3.1), we obtain ρeq as

ρeq =


r3

0

Eroll
P


1/3

ρ0. (3.2)

We consider a source of the pressure to be ram pressure of the disk gas or self-gravity of the
aggregate.

We obtain ram pressure of the disk gas as follows. We consider a dust aggregate of mass
m and radius r, which is moving in the disk gas with velocity v against the gas. The pressure
Pgas against the aggregate can be defined as the gas drag force divided by the geometrical
cross section: Pgas ≡ Fdrag/A, where Fdrag = mv/ts, A = πr2, and ts is the stopping time of
the aggregate. While the pressure has both compressive and tensile components, we assume
that the pressure is compressive. Thus, we obtain the pressure as

Pgas =
mv
πr2

1
ts
. (3.3)

The typical gas drag law is adopted to obtain ts and v. The gas drag law is the Epstein
regime, when the dust radius is less than 4/9 times the mean free path of gas. On the
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Fig. 3.2 Equilibrium dust density at 5AU in an MMSN disk. The blue thick solid line repre-
sents the equilibrium density of gas pressure, where the ram pressure of gas is equal to the
compressive strength of the dust aggregate. The thin dotted lines represent the component
of gas ram pressure, which is induced by the velocity difference between gas and dust, such
as Brownian motion, radial drift motion, azimuthal motion, and turbulent motion. The red
solid line represents the equilibrium density of self-gravity. The blue and red shaded region
represents where the compressive strength of the dust aggregate is lower than the pressure of
gas or self-gravity, so these aggregates are compressed until their density becomes the equi-
librium density. We also plot the dust growth path without static compression (Okuzumi
et al., 2012).
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other hand, it is the Stokes regime if the Reynolds number is less than unity (see Eq.(4) in
Okuzumi et al. (2012), for example). When the Reynolds number exceeds unity, the gas drag
law changes as a function of Reynolds number (see Eq.(8a) to Eq.(8c) in Weidenschilling
(1977)). The drag force is determined by the relative velocity of the gas and dust. The
relative velocity is induced by Brownian motion, radial drift, azimuthal drift, and turbulence.
We use the closed formula of the turbulence model (Ormel & Cuzzi, 2007) and assume the
turbulent parameter αD = 10−3, except for the strong turbulence case, where αD = 10−2.

We assume the minimum mass solar nebula (MMSN), which was constructed based on
our solar system (Hayashi, 1981). At a radial distance R from the central star, the gas-
surface density profile is 1700 g/cm2× (R/1AU)−1.5 and the dust-to-gas mass ratio is 0.01.
The temperature profile adopted is 137 K× (R/1AU)−3/7, which corresponds to midplane
temperature (Chiang et al., 2001). This is cooler than optically thin disk models to focus on
the dust coagulation in the midplane.

We also calculate the self-gravitational pressure as follows. Although the gravitational
pressure has distribution in the aggregates, we simply assume a uniform pressure inside the
aggregates. We define the force on the dust aggregates as F =Gm2/r2, and the area A = πr2.
Thus, the self-gravitational pressure is

Pgrav =
Gm2

πr4 . (3.4)

We note that the equilibrium density of self-gravitational compression depends only on dust
mass and internal density and not on the disk properties.

3.3 Results: planetesimal formation via fluffy aggregates

First, we calculate the equilibrium density of dust aggregates in a wide range in mass,
where their compressive strength is equal to the gas or self-gravitational pressure. Fig-
ure 3.2 shows the equilibrium dust density against dust mass at 5 AU in the disk. If the
gas or self-gravitational pressure is higher than the compressive strength, the dust aggregate
is compressed to achieve the equilibrium density because the strength is higher in denser
dust aggregates. In other words, the equilibrium density represents a lower limit of the dust
density in the disk. We also plot the collisional growth path without static compression
(Okuzumi et al., 2012); the dust aggregates initially grow with a fractal dimension of 2,
and when the impact energy of dust-dust collisions reaches the rolling energy, the internal
density becomes almost constant. The evolutional track should trace the higher density of
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the growth with collisional compression and the equilibrium density of static compression.
Therefore, we conclude that dust growth is initially fractal, and then the gas compression
becomes effective before collisional compression occurs at 5 AU in the disk.

Figure 3.3 shows the pathways of the dust growth in mass-density space at 5 and 8 AU
from the central star. Here, we assume that the dust aggregates have no mass or volume dis-
tribution. The first growth mode is hit-and-stick, where the fractal dimension is 2. As dust
aggregates become massive, the gas compression becomes effective. Once gas compres-
sion occurs, the equilibrium density is higher in more massive aggregates until the Stokes
number (i.e., the stopping time normalized by the orbital timescale) becomes unity; conse-
quently, the aggregates always keep the equilibrium density in coagulation. The gas com-
pression remains effective until the dust aggregates grow so massive that self-gravitational
compression is more effective than gas compression. The self-gravitational compression is
effective when the mass is ∼ 1011 g. Once the gravitational compression is effective, the
density increases with the mass of the power of 2/5. However, the gas compression makes
the dust density almost constant because of the constant velocity difference of the gas and
dust of the head wind in azimuthal direction. Therefore, the final stage is determined by
self-gravitational compression. We find that the dust aggregates should be compressed to a
density of 0.1 g/cm3 when their mass is ∼ 1018 g.

The density and mass of the final product are close to comets, which are considered
to be the remnants of planetesimals. We also plot the properties of several comets that
are well known in the density and mass in Fig. 3.3 (A’Hearn, 2011). The comets have a
mass of ∼ 1016 g and an internal mass density of ∼ 0.1 g/cm3. There is a two-orders-of-
magnitude discrepancy in mass between the final product of our calculation and the comets.
The mass of comets would be finally determined by collisional fragmentation or melting of
planetesimals.

We estimate the dust growth timescale by coagulation and the radial drift timescale. As-
suming that aggregates have no mass or volume distribution, the growth time is defined as
m/ρdπr2∆v, where ρd is the spatial mass density of dust aggregates and ∆v is the velocity
difference between the dust aggregates, which is assumed be the root mean square of Brow-
nian motion and turbulent motion (see Eq. (32) in Okuzumi et al. (2012)). For the velocity
induced by turbulence, we use the velocity difference of dust and gas as dust-dust veloc-
ity for simplicity. We include the dust sedimentation by considering the dust scaleheight
(Brauer et al., 2008). The drift timescale is defined as the orbital radius divided by the radial
drift velocity. We define the dust aggregates as where the drift timescale is less than 30
times the growth timescale drift to the central star (Okuzumi et al., 2012).
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Fig. 3.3 Pathways in the planetesimal formation in the minimum mass solar nebula model.
The gray line shows the constant density evolutional track, which corresponds to the com-
pact growth. The black, green, blue, and red lines are the evolutional track through dust
coagulation via fluffy aggregates. Each line represents different mechanisms of dust coag-
ulation, which are hit-and-stick, collisional compression, gas compression, and self-gravity
compression. The red shaded region represents where the radial drift timescale is less than
the growth timescale, which is equivalent to radial-drift region. The brown squares indicate
the properties of comets, and the triangles represent their upper limit. The radii of dust ag-
gregates for 1 µm, 1 cm, 1 m, 100 m, and 10 km are also written. (Top left): for 5 AU in
orbital radius. (Top right): for 8 AU in orbital radius. The cross point represents where the
dust falls onto the central star. (Bottom left): for 5 AU in strong turbulence model where
αD = 10−2. (Bottom right): for 8 AU in two times as massive as MMSN model.
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We show that the revealed pathway still overcomes the radial drift problem. Figure 3.3
also illustrates the region where the dust aggregates radially drift inward before they grow.
Even when the dust aggregates become massive and their Stokes number is unity, the dust
growth time is still shorter than the drift at 5 AU. In the outer radius of the disk (e.g., at
8 AU), the dust aggregates drift inward before growth (top right of Fig. 3.3). However, if
the disk is two times as massive as MMSN, the dust aggregates successfully break the radial
drift problem (bottom right of Fig. 3.3). Therefore, the fluffy dust can grow to planetesimals
more inside in protoplanetary disks.

Fluffy dust also breaks through the bouncing barrier. Solid bodies have been shown to
bounce in some situations (Güttler et al., 2010). However, both numerical simulations and
experiments have shown that highly porous aggregates do not bounce when φ . 0.15 (Kothe
et al., 2013; Langkowski et al., 2008; Seizinger & Kley, 2013; Wada et al., 2011). Thus, the
bouncing is not a major difficulty for the growth of highly porous aggregates.

The fragmentation barrier is not a serious problem when considering icy particles. The
dust aggregates are not significantly fragmented and grow through collisions as long as
their collision velocity is < 60 m/s (Wada et al., 2009). The collisional velocity becomes
maximum when the Stokes number is unity. It is the square root of αD times the sound
speed of gas. In the case of αD = 10−3, the maximum velocity is ∼ 17 m/s at 5AU, so the
dust aggregates can avoid significant disruption. In the case of αD = 10−2, on the other hand,
the velocity reaches ∼ 54 m/s, comparable to the critical velocity. Thus, we should carefully
discuss the fragmentation in strong turbulent disks. We note that the turbulent velocity is
lower than the original MMSN model, where the temperature is determined by the balance
between the stellar radiation and the reemission for each position. This is because we focus
on the midplane, where the temperature is lower; thus the velocity is also lower than the
irradiated surface.

However, when considering silicate particles, it is difficult to break through the frag-
mentation barrier. Inside the snowline, the ice is sublimated and the dominant material is
silicate particles. The critical velocity of fragmentation of silicate is ∼ 6 m/s (Wada et al.,
2009). Thus, the silicate planetesimal formation is still an open question.

In the final stage of coagulation, the runaway growth begins. We estimate the dust mass
where the dust-dust collision velocity induced by turbulence exceeds the escape velocity
of the dust. When the dust becomes as massive as ∼ 1015 g, the runaway growth starts.
The dust internal density is still as small as ∼ 10−2, which means that the geometrical cross
section is larger than the compact case. This will make the runaway growth faster, but the
whole scenario does not change, as shown in the N-body simulations (Kokubo & Ida, 1996).
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3.4 Planetesimal-forming region

We have shown that the dust aggregates grow before falling onto the central star by compar-
ing the growth and drift timescales at 5 AU and 8 AU. Here, we discuss overall picture of
the coagulation and the radial drift of dust aggregates in a protoplantary disk. At the inner
orbital radius such as 5 AU, dust aggregates can grow at almost the same orbital radius. At
the outer orbital radius such as 8 AU, however, dust aggregates radially migrate when they
grow as large as m∼ 109 g as shown in Fig. 3.3. Because the growth timescale is shorter than
the drift timescale at smaller orbital radius, the aggregates can grow before falling onto the
central star when the orbital radius becomes small enough to avoid the radial drift barrier.

Here, we define the critical orbital radius such that the growth timescale is shorter than
the drift timescale for all mass range of dust aggregates. The overall picture is as follows.
Dust grains that locate inside the critical orbital radius and outside the snowline form plan-
etesimals with direct coagulation via fluffy dust aggregates. Dust grains outside the critical
orbital radius start coagulation until their radial drift timescale becomes shorter than the
growth timescale. Then, they radially migrate until the orbital radius becomes shorter than
the critical orbital radius. Once they reach inside the critical radius, they grow again to
form planetesimals. In the proposed scenario, therefore, planetesimal can form between the
snowline and the critical radius.

The location of the snowline and the critical orbital radius depends on the disk model. In
the adopted model in this paper, when the condensation temperature is set to be 170 K, the
snowline locates at 0.65 AU, and the critical orbital radius is located at ∼ 7 AU from Fig. 3.3.
The parameter which determines the snowline is the temperature: the higher temperature of
the disk, the larger orbital radius of the snowline. On the other hand, the main parameters
which determine the location of critical orbital radius are the temperature and the disk mass:
more massive and cooler disk is expected to have larger critical radius. The dependence of
the planetesimal forming region on the disk parameters should be tested in future work.

The planetesimal distribution strongly affects the final locations of planets. In the pro-
posed scenario, the orbital distribution of planetesimals is between the snowline and the
critical orbital radius, which depends on the properties of the protoplanetary disk. Combin-
ing the proposed scenario and the planet formation theories from planetesimals, we will be
able to reveal the formation process of our solar system and exoplanets.
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3.5 Conclusions

Our main findings of this chapter are as follows:

• We introduced static compression of dust aggregates in protoplanetary disks. As
sources of the compression, we considered gas-drag compression and self-gravity
compression. By equalizing the compressive strength (Kataoka et al., 2013a) and
pressure of the gas-drag and the self-gravity, we derived the equilibrium internal den-
sity of dust aggregates.

• Combining the initial fractal growth and the collisional compression model (Okuzumi
et al., 2012), we revealed the overall filling factor evolution in dust coagulation in pro-
toplanetary disks as follows. After the initial fractal growth, where the dust aggregates
have the filling factor φ ∼ 10−4, dust aggregates are compressed by the gas-drag pres-
sure before the onset of the collisional compression. The aggregates coagulate further
keeping the equilibrium filling factor with gas-drag pressure. When the aggregates
obtain a mass of ∼ 1012 g, the self-gravity compression becomes effective and the
aggregates form relatively compact (φ ∼ 0.1) objects. The filling factor and the mass
of the final objects are similar to the expected properties of planetesimals.

• We have shown that on the pathway of the planetesimal formation, the dust aggregates
avoid the radial drift barrier at a certain orbital radius. This is because the growth
timescale is always shorter than the drift timescale. The region where the aggregates
are free from the radial drift barrier is inside the critical orbital radius, which is the
maximum radius where the growth timescale is always shorter than the drift timescale.
The critical orbital radius is ∼ 7 AU in the adopted model.

• The aggregates overcome the fragmentation barrier outside snowline because of the
high critical velocity of catastrophic disruption of ice particles (Wada et al., 2013,
2009). The snowline in this paper located at 0.65 AU. The planetesimal formation
inside the snowline is still an open question because of the fragmentation barrier of
silicate particles. In addition, the aggregates do not face the bouncing barrier because
of their fluffiness (Wada et al., 2008)

In conclusion, we revealed a pathway of the porosity evolution of dust aggregates to form
planetesimals by introducing the static compression. We also showed that icy aggregate
growth on the pathway is free from the radial drift, the fragmentation, and the bouncing
barriers. The region of planetesimal formation is between the snowline and the critical
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orbital radius, which are 0.65 AU and 7 AU in the adopted disk model. This scenario can
provide the orbital distribution of planetesimals as a concrete initial condition of the later
stages of planet formation.



Chapter 4

Opacity of fluffy dust aggregates

A part of this chapter has been published as Kataoka, A., Okuzumi, S., Tanaka, H., &

Nomura, H., 2014, A & A, 568, A42 (Kataoka et al., 2014).

Dust grains coagulate to form dust aggregates in protoplanetary disks. Their porosity
can be extremely high in the disks Although disk emission may come from fluffy dust ag-
gregates, the emission has been modeled with compact grains, We aim to reveal the mass
opacity of fluffy aggregates from infrared to millimeter wavelengths with the filling factor
ranging from 1 down to 10−4. We use Mie calculations with an effective medium theory.
The monomers are assumed to be 0.1 µm sized grains, which is much shorter than the wave-
lengths that we focus on. We find that the absorption mass opacity of fluffy aggregates
are characterized by the product a× f , where a is the dust radius and f is the filling factor,
except for the interference structure. The scattering mass opacity is also characterized by
a f at short wavelengths while it is higher in more fluffy aggregates at long wavelengths.
We also derive the analytic formula of the mass opacity and find that it reproduces the Mie
calculations. We also calculate the expected difference of the emission between compact
and fluffy aggregates in protoplanetary disks with a simple dust growth and drift model. We
find that compact grains and fluffy aggregates can be distinguished by the radial distribution
of the opacity index β. The previous observation of the radial distribution of β is consis-
tent with the fluffy case, but more observations are required to distinguish between fluffy or
compact. In addition, we find that the scattered light would be another way to distinguish
between compact grains and fluffy aggregates.
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4.1 Introduction

Optical properties of dust grains have been investigated by many authors to understand the
emission from various kinds of astronomical objects. In protoplanetary disks, dust grains
are important not only as the emitter of radiation, but also as the seeds of planets. The size
of dust grains increases by coagulation from submicron size to millimeter size or larger. A
number of radio observations suggest that dust grains have been grown to millimeter-sized
grains in protoplanetary disks (Andrews & Williams, 2005; Guilloteau et al., 2011; Isella
et al., 2009; Ricci et al., 2010a,b; van der Marel et al., 2013).

The silicate feature at 10 µm is evidence of grain growth (e.g., van Boekel et al., 2005).
The infrared observations suggest that the size of silicate dust grains is spreading from
0.1 µm to a few µm. The infrared emission is expected to come from the surface region of
protoplanetary disks. Tiny grains are kinematically well coupled to the disk gas and thus
stirred up to the disk surface. Thus, we do not obtain information of dust grains larger than
the micron size from infrared observations. In addition, infrared scattered light images of
protoplanetary disks are less luminous than expected from other observations. This may
infer the presence of large compact grains or porous aggregates at the disk surface (Mulders
et al., 2013).

The opacity index at submillimeter wavelengths is used as another clue of grain growth
(Beckwith & Sargent, 1991; Beckwith et al., 1990; Miyake & Nakagawa, 1993). The most
striking evidence of dust growth is the opacity index β, where κν ∝ νβ; β is estimated from
observed flux slope α, where Fν ∝ να. If the dust emission is optically thin, the dust slope
has a relation of β = α− 2. The index β is typically from 1 to 0 in protoplanetary disks,
which means grain growth in protoplanetary disks (Andrews & Williams, 2005; Lommen
et al., 2010; Pérez et al., 2012). The recent observations using radio interferometers have
revealed the radial profile of β. Pérez et al. (2012) made a model fit of β and suggested that
β is different between in the inner and outer part of the disk. Thus, the dust grains in the
inner part of the disk are expected to grow to a larger size.

Although the protoplanetary disk emissions are usually modeled with compact dust
grains, recent numerical simulations have shown that dust grains coagulate to form fluffy
structure, especially in the case of icy dust aggregates. With low speed collisions, dust
grains form fluffy aggregates. However, it has been shown that fluffy dust aggregate are
not easy to be compressed. Wada et al. (2008) and Suyama et al. (2008, 2012) investigated
collisional compression of icy dust aggregates, and Okuzumi et al. (2012) performed co-
agulation simulations including the collisional compression. They revealed that the initial
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fractal growth stops when the collisional energy exceeds the rolling energy. They derived
that the achievable lowest filling factor is ∼ 10−5(mroll/10−4 g), where mroll is the aggre-
gate mass when the impact energy is equal to the rolling energy. Moreover, Kataoka et al.
(2013a,b) introduced the static compression of dust aggregates. They showed that the filling
factor decreases to as low as 10−4 even when considering the effects of the static compres-
sion. However, the porosity evolution of icy dust aggregates has not been confirmed by
laboratory experiments yet.

The icy and fluffy aggregates are expected to overcome theoretical problems in planetes-
imal formation. Fluffy aggregates are expected to overcome the radial drift barrier (Kataoka
et al., 2013b; Okuzumi et al., 2012) and the bouncing barrier (Wada et al., 2011). Moreover,
if particles are composed of ice, the dust aggregates overcome the fragmentation barrier
because they are sticky (Wada et al., 2013, 2009).

Dust coagulation has also been investigated in laboratory experiments. As an analog
to silicate dust grains, which are expected to be dominated inside the snowline in proto-
planetary disks, silica particles have been used in laboratory experiments. Conditions for
bouncing and fragmentation have been studied in laboratory experiments (Blum & Wurm,
2008; Zsom et al., 2010) and some scenarios for planetesimal formation breaking through
the bouncing barrier have been proposed (Dra̧żkowska et al., 2013; Windmark et al., 2012a).
From the viewpoint of porosity evolution, silicate dust aggregates are expected to be less
fluffy than icy dust aggregates because the surface energy of silicate is lower than ice.
Microgravity experiments have confirmed the hit-and-stick process of forming fluffy dust
aggregates (Kothe et al., 2013). However, further growth concerning compression is still
uncertain in laboratory experiments. Zsom et al. (2011) performed numerical simulations
of dust coagulation of silicate particles, using the hit-and-stick model proposed by Okuzumi
et al. (2009). They showed that the filling factor of dust aggregates can reach 10−3 before
the onset of compaction. 1

Observational constraints of porosity of dust aggregates in protoplanetary disks are im-
portant. However, studies of interpreting disk observations have assumed f ≥ 0.1 (e.g.,
Birnstiel et al., 2010b), which is relatively compact compared with the extremely porous
aggregates, whose filling factor is 10−4, as discussed above. In this paper, as a first step
to constrain the porosity of dust aggregates in protoplanetary disks, we investigate optical
properties of dust aggregates including the extremely porous aggregates.

Opacity of porous aggregates has been investigated by several theoretical methods. In

1Zsom et al. (2010) obtained less fluffy aggregates than Zsom et al. (2011) because Zsom et al. (2010)
adopted the porosity model proposed by Ormel et al. (2007), which is not as accurate as the model of Okuzumi
et al. (2009).
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the context of explaining cometary dust, scattering properties of BPCA and BCCA aggre-
gates have been studied (Kimura et al., 2003, 2006; Kolokolova et al., 2007). The number of
constituent particles was limited to ∼ 60000 (∼ 10−10 g in mass if the particle size is 0.1 µm),
and the opacity was only studied at infrared wavelengths. In the context of explaining the
interstellar silicate feature, in addition, the effects of monomer shapes on optical properties
at infrared wavelength have been also studied (Min et al., 2003, 2005, 2007). In this paper,
we examine the absorption and scattering mass opacities of dust aggregates at wavelengths
ranging from 1 µm to 10 cm. The aggregates have a size ranging from micron to kilometer
and a filling factor ranging from 1 to 10−4.

One of the popular methods for calculating the mass opacity of porous aggregates is
the discrete dipole approximation (DDA) (Draine & Flatau, 1994; Min et al., 2006). This
calculation takes a huge computational time for large aggregates. To investigate the opac-
ities of highly porous aggregates for a wide size range, the method would not be suitable.
In this paper, we aim to reveal the mass opacity of fluffy aggregates from infrared to mil-
limeter wavelengths with the filling factor ranging from 1 down to 10−4. Thus, we use the
effective medium theory (EMT). This method is fast in calculation but inaccurate in some
parameters. Kozasa et al. (1992) have shown that EMT reproduces the absorption opacity
of BCCA and BPCA clusters, whose constituent monomers are up to 1024, within a error
of a factor of two. The EMT is also known to be accurate for porous aggregates whose
constituent particles are small compared with the wavelength of incident radiation (Shen
et al., 2008; Voshchinnikov et al., 2005). Because the dust aggregates considered in this
paper are highly porous aggregates consisting of submicron-sized monomers, EMT would
be a good approximation for calculations in this paper. We note that the scattering opacity
derived with EMT largely deviates from the actual value in some parameter space (Shen
et al., 2009). The accuracy of EMT in a large parameter space should be tested in the future
work.

This paper is organized as follows. We describe the composition of dust grains and the
calculating method of mass opacities in Section 4.2. We show the results of the absorption
and scattering mass opacities of highly porous aggregates by using Mie theory with EMT
in Section 4.3. We derive analytic formulae to reproduce the results in Section 4.4. Then,
we construct a simple dust growth and drift model in protoplanetary disks and propose
a method to distinguish compact and fluffy aggregates in radio observations by using the
slope at millimeter wavelengths, the so-called dust β, in Section 4.5. Finally, we summarize
and discuss the previous observations with porous aggregates in Section 4.6.
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4.2 Method

Here, we briefly summarize the definitions of optical properties following Bohren & Huff-
man (1983, hereafter BH83) and Miyake & Nakagawa (1993). We consider a particle or an
aggregate with radius a and internal mass density ρ. The radius of an aggregate represents
the characteristic radius, defined as a =

√
5/3ag, where ag is the gyration radius (Mukai

et al., 1992). We define the size parameter x as

x =
2πa
λ
, (4.1)

where λ is the wavelength. We also define the relative refractive index mmat as

mmat = nmat+ ikmat, (4.2)

where nmat and kmat are the real and imaginary parts of the refractive index of the assumed
material, respectively.

4.2.1 Dust grains: monomers

We consider a dust aggregate, which consists of a number of monomers. The monomers are
assumed to be composed of silicate, organics, and water ice without any void structure. The
mass fractional abundance is set to be consistent with Pollack et al. (1994), where ζsilicate =

2.64× 10−3, ζorganics = 3.53× 10−3, and ζice = 5.55× 10−3. The grain densities of silicate,
organics, and ice are taken to be 3.5 g cm−3, 1.5 g cm−3, and 0.92 g cm−3, respectively. The
mean internal density is therefore 1.68 g cm−3. The resultant volume fractions are 8 % of
silicate, 26 % of organics, and 66 % of water ice. We use the refractive index of astronomical
silicate from Weingartner & Draine (2001), organics from Pollack et al. (1994), and water
ice from Warren (1984).

Here, we discuss the structure of a monomer composed of various materials. We assume
that the monomer has a core-mantle structure, where silicate components are inside and ice
and organics cover the silicate core. This assumption is reasonable because the condensation
temperature of silicates is much higher than those of ices and organics. 2 The collisional
and static compression and fragmentation velocity are determined by the surface material of
monomers, which is expected to be ice or organics. Therefore, the structure and fluffiness of

2The material properties of organics, such as surface energy and Young’s modulus, are still uncertain, but
it is considered to be similar to those of ice (e.g., Kudo et al., 2002).
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the aggregates are expected to be similar to icy aggregates (Kataoka et al., 2013b; Okuzumi
et al., 2012).

The effective refractive index of the mixture can be derived from dielectric functions.
By using Maxwell-Garnett rule without voids, the effective dielectric function is obtained
as

ϵmix =
Σ f jγ jϵ j

Σ f jγ j
, (4.3)

where
γ j =

3
ϵ j+2

, (4.4)

and f j and ϵ j represent the volume filling factor and the dielectric function of each species.
The dielectric function is related to the refractive index as ϵ = m2.

Figure 4.1 shows the real and imaginary part of the effective refractive index of the
mixture. For simplicity, we use n and k for the real and imaginary parts of the effective
refractive index, respectively. We use this effective refractive index as the material refractive
index in the following discussion.
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Fig. 4.1 The complex refractive index of the mixture of silicate, organics, and water ice.

The simplified fractional abundance based on Pollack et al. (1994) has been widely used
in several papers (e.g., D’Alessio et al., 2001; Isella et al., 2009; Pérez et al., 2012; Ricci
et al., 2010a,b; Tanaka et al., 2005). Some recent studies use the dielectric functions of
carbonaceous material (Zubko et al., 1996) instead of organics (Li & Greenberg, 1997; Pol-
lack et al., 1994). In protoplanetary disks, the carbonaceous materials would interact with
other species to produce organics. Thus, we use the dielectric function of organics based
on Pollack et al. (1994) in this paper. However, the optical properties of organics in pro-
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toplanetary disks have large uncertainties because astronomical organics may be different
from laboratory data.

4.2.2 Aggregates of monomers

To calculate the opacity of fluffy aggregates, we use the effective medium theory again. In
the case of the mixture of monomers and voids, Maxwell-Garnett theory is applicable to
obtain the effective dielectric function as

ϵeff =
1+2 f F
1− f F

, (4.5)

where
F =
ϵmix−1
ϵmix+2

, (4.6)

ϵmix is the effective dielectric function of the mixture, and f is the volume filling factor of
the aggregate.

We will investigate the mass opacity of dust aggregates for a wide range of the dust
radius a and the filling factor f . We adopt the Mie calculation with the effective medium
theory described above. Voshchinnikov et al. (2005) show that the EMT is a good ap-
proximation when the inclusions are smaller than the wavelengths of radiation. Here, the
monomer size is 0.1 µm while the wavelengths are larger than 1 µm. Thus, the EMT would
be a good approximation in the calculations in this paper. The filling factor is expected to
decrease to f ∼ 10−4 and the dust radius grows from micron to kilometer (Kataoka et al.,
2013b). Therefore, we will investigate the mass opacity in such parameter space.

We note that we do not choose a set of a and f where both a and f are too small. In the
porosity evolution scenario proposed by Kataoka et al. (2013b), the dust aggregates grow as
fractals in the very early stage of the coagulation. This stage corresponds to the lower limit
of a and f . In this paper, we consider a set of a and f where a f ≥ 0.1µm.

4.2.3 Mass opacity

We use the Mie calculation with the effective medium theory to calculate dimensionless ab-
sorption and scattering coefficients Qabs and Qsca. Then, we obtain absorption and scattering
mass opacities defined as

κabs =
πa2

m
Qabs, (4.7)
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κsca =
πa2

m
Qsca. (4.8)

We note that the mass opacities are given per gram of dust. To obtain the mass opacities per
gram of gas, one should divide the mass opacities by the dust-to-gas mass ratio.

4.3 Results

4.3.1 Absorption mass opacity

The absorption mass opacity of porous dust aggregates strongly depends on their size and
filling factor. In protoplanetary disks, radio emission at millimeter wavelengths provide
optically thin emission, in other words, directly reflects the opacity. Therefore, we aim to
reveal what properties of dust aggregates determine the mass opacity.

Figure 4.2 shows the dependency of the mass opacities of dust aggregates on the dust
radius a and the filling factor f . Figure 4.2 (b) shows the mass opacity of different dust
radius while the filling factor is fixed at unity (i.e., compact growth). The absorption mass
opacity from optical to infrared wavelengths decreases as the aggregate size increases, and it
has an enhancement because of the interference at the millimeter wavelengths depending on
the aggregate size. This trend is well-known as the grain-growth effects on the dust opacity.
Figure 4.2 (c) shows the mass opacity of different filling factors while the dust radius is
fixed at a = 1 mm. The mass opacity strongly depends on the filling factor but cannot be
characterized by one parameter. Figure 4.2 (d) shows that the mass opacity when both a and
f change but a f remains constant. The mass opacity is almost the same in this case. This
result suggests that the optical properties of fluffy dust aggregates are characterized by a f .

Here, we introduce a new parameter a f , where a is the dust radius and f is the filling
factor. Keeping a f constant corresponds to the constant mass-to-area ratio of the dust aggre-
gates because (mass-to-area ratio) ∼ (a3 f )/(a2) ∼ a f . We already find that the mass opacity
is characterized by a f in the case of a f = 0.1 µm in Fig. 4.2 (d). Next, we investigate
whether the mass opacity is characterized by one parameter a f in the wide range of a f .

Figure 4.3 shows the mass opacity where a f is fixed for each panel: a f has values of
1 µm, 10 µm, 100 µm, 1 mm, and 1 cm. This figure clearly shows that the absorption mass
opacity is almost the same in the cases of the same a f . For example, dust aggregates that
have a size of 10 m and a filling factor of 10−4 are optically equivalent to 1 mm compact
grains except for the interference structure. We will show the reason why the absorption
mass opacity is characterized by a f in Section 4.4.
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Fig. 2. Absorption mass opacities for each dust radius and filling factor. (a) The parameter space in the volume filling factor f against the dust
radius a to investigate the mass opacity. The dotted lines correspond to (b) (c) and (d). (b) The absorption mass opacity when the dust radius a
changes while f = 1. (c) When the dust filling factor changes while a = 1 mm. (d) When both a and f change while a f keeps constant. The
constant a f corresponds to the same mass-to-area ratio of the dust aggregates.

mass opacity from optical to infrared wavelengths decreases as
the aggregate size increases, and it has an enhancement because
of the interference at the millimeter wavelengths depending on
the aggregate size. This trend is well-known as the grain-growth
e↵ects on the dust opacity. Figure 2 (c) shows the mass opacity
of di↵erent filling factors while the dust radius is fixed at a = 1
mm. The mass opacity strongly depends on the filling factor but
cannot be characterized by one parameter. Figure 2 (d) shows
that the mass opacity when both a and f change but a f remains
constant. The mass opacity is almost the same in this case. This
result suggests that the optical properties of flu↵y dust aggre-
gates are characterized by a f .

Here, we introduce a new parameter a f , where a is the dust
radius and f is the filling factor. Keeping a f constant corre-
sponds to the constant mass-to-area ratio of the dust aggregates
because (mass-to-area ratio) ⇠ (a3 f )/(a2) ⇠ a f . We already
find that the mass opacity is characterized by a f in the case of
a f = 0.1 µm in Fig. 2 (d). Next, we investigate whether the mass
opacity is characterized by one parameter a f in the wide range
of a f .

Figure 3 shows the mass opacity where a f is fixed for each
panel: a f has values of 1 µm, 10 µm, 100 µm, 1 mm, and 1 cm.
This figure clearly shows that the absorption mass opacity is al-
most the same in the cases of the same a f . For example, dust
aggregates that have a size of 10 m and a filling factor of 10�4

are optically equivalent to 1 mm compact grains except for the
interference structure. We will show the reason why the absorp-
tion mass opacity is characterized by a f in Section 4.

That the absorption mass opacity is characterized by a f is
a very naive result for observations: the filling factor cannot be
measured because it is degenerated with the dust radius. There-
fore, to derive both the filling factor and the dust radius sepa-
rately, we should find another clue rather than the general behav-
ior of the absorption mass opacity. We find two di↵erences which
might be ways to distinguish between a and f : the interference
structure of the absorption mass opacity and the scattering mass
opacity at long wavelengths. We discuss the interference first and
will discuss the scattering mass opacity later in this section.

The only di↵erence in the absorption mass opacity between
the compact and flu↵y cases if a f is the same is the interference
structure, which appears when the size parameter x is close to
unity. In the case of a f =1 mm, for example, the absorption mass
opacity in the compact case is one order of magnitude higher
than the flu↵y cases. This is a way to distinguish between com-
pact grains and flu↵y aggregates in protoplanetary disks. We will
discuss the reason why the interference structure is unique only
in the compact case in Section 4, and also discuss the feature as
a way to distinguish between compact and flu↵y aggregates by
using the dust opacity index � in Section 5.
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Fig. 4.2 Absorption mass opacities for each dust radius and filling factor. (a) The parameter
space in the volume filling factor f against the dust radius a to investigate the mass opacity.
The dotted lines correspond to (b) (c) and (d). (b) The absorption mass opacity when the
dust radius a changes while f = 1. (c) When the dust filling factor changes while a = 1 mm.
(d) When both a and f change while a f keeps constant. The constant a f corresponds to the
same mass-to-area ratio of the dust aggregates.
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Fig. 3. The absorption mass opacity in cases of di↵erent a f . Panel (a) shows the parameter space of f and a in the cases of (b) to (f). The mass
opacities are shown in the cases of (b) a f = 1 µm, (c) a f = 10 µm, (d) a f = 100 µm, (e) a f = 1 mm, and (f) a f = 10 mm.

3.2. Scattering mass opacity

We also calculate the scattering mass opacity by using Mie cal-
culations. Figure 4 shows the scattering mass opacities in the
case of a f = 0.1 µm, 1 µm, 100 µm, and 1 mm. This figure sug-
gests that the scattering mass opacity is not characterized by a f
at the longer wavelengths. At the shorter wavelengths, the mass
opacity corresponds to the geometric cross section. In the com-
pact case, the mass opacity scales as ��4 at the longer wave-
lengths. On the other hand, in the flu↵y case, the mass opacity
scales as ��2 at the inter mediate wavelengths, then scales as ��4

at the longer wavelengths. We will come back to this point with
a physical explanation in Section 4.

As shown in Figure 4, the scattering mass opacity of the
flu↵y aggregates is expected to be higher than the compact case
at the longer wavelengths even when the absorption mass opacity
is almost the same. Thus, we investigate the ratio of sca against
abs. Figure 5 shows the ratio in each case corresponding to Fig.
4. In the case of compact and a f = 0.1 µm, the scattering mass
opacity is less than absorption. On the other hand, the scattering
mass opacity dominates the absorption mass opacity in flu↵y
cases when a f = 0.1 µm. This greatly a↵ects the infrared ob-
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Fig. 4.3 The absorption mass opacity in cases of different a f . Panel (a) shows the parameter
space of f and a in the cases of (b) to (f). The mass opacities are shown in the cases of (b)
a f = 1 µm, (c) a f = 10 µm, (d) a f = 100 µm, (e) a f = 1 mm, and (f) a f = 10 mm.



4.3 Results 91

That the absorption mass opacity is characterized by a f is a very naive result for obser-
vations: the filling factor cannot be measured because it is degenerated with the dust radius.
Therefore, to derive both the filling factor and the dust radius separately, we should find
another clue rather than the general behavior of the absorption mass opacity. We find two
differences which might be ways to distinguish between a and f : the interference struc-
ture of the absorption mass opacity and the scattering mass opacity at long wavelengths. We
discuss the interference first and will discuss the scattering mass opacity later in this section.

The only difference in the absorption mass opacity between the compact and fluffy cases
if a f is the same is the interference structure, which appears when the size parameter x

is close to unity. In the case of a f =1 mm, for example, the absorption mass opacity in
the compact case is one order of magnitude higher than the fluffy cases. This is a way
to distinguish between compact grains and fluffy aggregates in protoplanetary disks. We
will discuss the reason why the interference structure is unique only in the compact case in
Section 4.4, and also discuss the feature as a way to distinguish between compact and fluffy
aggregates by using the dust opacity index β in Section 4.5.

4.3.2 Scattering mass opacity

We also calculate the scattering mass opacity by using Mie calculations. Figure 4.4 shows
the scattering mass opacities in the case of a f = 0.1 µm, 1 µm, 100 µm, and 1 mm. This
figure suggests that the scattering mass opacity is not characterized by a f at the longer
wavelengths. At the shorter wavelengths, the mass opacity corresponds to the geometric
cross section. In the compact case, the mass opacity scales as λ−4 at the longer wavelengths.
On the other hand, in the fluffy case, the mass opacity scales as λ−2 at the intermediate
wavelengths, then scales as λ−4 at the longer wavelengths. We will come back to this point
with a physical explanation in Section 4.4.

As shown in Figure 4.4, the scattering mass opacity of the fluffy aggregates is expected
to be higher than the compact case at the longer wavelengths even when the absorption mass
opacity is almost the same. Thus, we investigate the ratio of κsca against κabs. Figure 4.5
shows the ratio in each case corresponding to Fig. 4.4. In the case of compact and a f =

0.1 µm, the scattering mass opacity is less than absorption. On the other hand, the scattering
mass opacity dominates the absorption mass opacity even at the infrared in fluffy cases when
a f = 0.1 µm. This greatly affects the infrared observations of dust grains. For example,
Pagani et al. (2010) reported that dust grains in dense interstellar medium is composed of
micron-sized grains (and not 0.1 µm) because of the high scattering efficiency observed
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Fig. 4. Same as Figure 3 but for scattering mass opacities.

servations of dust grains. For example, Pagani et al. (2010) re-
ported that dust grains in dense interstellar medium is composed
of micron-sized grains (and not 0.1 µm) because of the high scat-
tering e�ciency observed by the Spitzer space telescope. Thus,
they infer that the monomer size must be micron. However, fig-
ure 5 suggests that even if the monomers are 0.1 µm in size, the
aggregates of 0.1 µm sized monomers represent the high albedo
and thus might account for the observed high e�ciency of scat-
tering.

Figures 5 (c) and (d) show the scattering mass opacity in the
case of a f = 100 µm and 1 mm. The scattering mass opacity at
the millimeter wavelengths is ten times larger than the absorption
mass opacity in the compact case, and it is tens of times larger
in the flu↵y cases. This suggests that the millimeter continuum
emission is dominated not by direct thermal emission, but by
scattered emission in transition disks if the dust aggregates are
grown to have a millimeter size. Moreover, determining the ratio
of the scattering mass opacity over the absorption mass opac-
ity at the millimeter wavelengths is a way to characterizing the
porosity of the dust aggregates.

4. Analytic formulae of the opacities

In the previous section, we used the Mie calculations to obtain
the mass opacity. In this section, we derive the analytic formu-
lae of the mass opacity and compare them to the results of Mie
calculations. By deriving analytic formulae, we explain why the
mass opacity can be characterized by a f . In addition, the analytic

formulae would be a computationally less expensive method to
calculate the opacity of large aggregates.

4.1. Approximation of refractive index

When we consider flu↵y aggregates, the filling factor satisfies
f ⌧ 1. If f ⌧ 1, from Eq. (5) and ✏ = m2, we obtain

n ' 1 +
3
2

f Re(F), (9)

k ' 3
2

f Im(F), (10)

to the first order of f . From these equations, we obtain that n �
1 / f and k / f in the case of flu↵y aggregates where f ⌧ 1.
We check the validity of the relations in Appendix A.1.

We do not assume f ⌧ 1 when deriving the analytic formu-
lae. After deriving the formulae, we assume f ⌧ 1 and use the
relations of n� 1 / f and k / f to explain why the mass opacity
is characterized by a f .

4.2. Absorption mass opacity

We derive the approximated formulae of Qabs in three limited
cases, illustrated in Fig. 6: (1) x ⌧ 1, (2) x � 1 and optically
thin (kx ⌧ 3/8) media, and (3) x � 1 and optically thick (kx �
3/8) media. We note that the absorption mass opacity is Qabs
divided by the mass-to-area ratio of the aggregates.
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Fig. 4.4 Same as Figure 4.3 but for scattering mass opacities.
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Fig. 5. The ratio of scattering mass opacity over absorption mass opacity sca/abs in the cases of a f = 0.1 µm, 1 µm, 100 µm, and 1 mm. Each
panel shows the cases with the same a f , but the filling factor ranges are in f = 1, 10�1, 10�2, 10�3, and 10�4.

4.2.1. x ⌧ 1

When the dust radius a is much smaller than the wavelength �,
the opacity goes into Reyleigh regime. This corresponds to x =
2⇡a/� ⌧ 1. In this case, Qabs can be written as

Qabs ' 4x Im
 

m2 � 1
m2 + 2

!
=

24nkx
(n2 � k2 + 2)2 + (2nk)2 . (11)

(see Eq. (5.11) in BH83). The imaginary part k of the refractive
index is much smaller than the real part n (see Fig. 1 and Fig.
A.1). So, we can approximate Qabs as

Qabs ' Qabs,1 ⌘ 24nkx
(n2 + 2)2 . (12)

This equation explains the fact that the absorption mass opac-
ity is characterized by mass-to-area ratio or a f . At the longer
wavelengths, n is almost unity while k / f . Using f / m/a3,
we obtain that kx is proportional to m/a2, which is mass-to-area
ratio. Since abs is Qabs divided by mass-to-area ratio, abs is in-
dependent of dust properties.

4.2.2. x � 1 and optically thin

When the dust radius a is much larger than the wavelength �,
the opacity goes into geometric optics regime. In this regime,
the optical properties can be understood by tracing the ray inside
the material. The fraction of energy that transmits the material is

1�exp(�↵⇠) where ↵ = 4⇡k/�, and ⇠ is the path of the ray inside
the material. If ↵⇠ < 1, the incident light is weakly absorbed by
the material because it is optically thin on the ray. We set the
length ⇠ = 2a, the diameter of the sphere. Thus, the condition
↵⇠ < 1 corresponds to kx < 1.

In the limit of a � � (or equivalently x � 1) and optically
thin, we obtain

Qabs ' Qabs,2 ⌘ 8kx
3n

⇣
n3 � (n2 � 1)3/2

⌘
, (13)

(see Eq. (7.2) in BH83).
We note that if n = 1, which is usually satisfied in the case

of flu↵y medium, Qabs yields

Qabs = Qabs,1 = Qabs,2 =
8kx
3
. (14)

This equation is also characterized by the mass-to-area ratio
or a f because k / f and x / a. We also note that the ana-
lytic formula between optically thick and thin regimes should be
changed when Qabs is unity. Thus, we define optically thin as
kx ⌧ 3/8.

4.2.3. x � 1 and optically thick

In the limit of a � � (equivalent to x � 1) and optically thick
(kx � 3/8), on the other hand, the absorption coe�cient is de-
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Fig. 4.5 The ratio of scattering mass opacity over absorption mass opacity κsca/κabs in the
cases of a f = 0.1 µm, 1 µm, 100 µm, and 1 mm. Each panel shows the cases with the same
a f , but the filling factor ranges are in f = 1,10−1,10−2,10−3, and 10−4.
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by the Spitzer space telescope. Thus, they infer that the monomer size must be micron.
However, figure 4.5 suggests that even if the monomers are 0.1 µm in size, the aggregates of
0.1 µm sized monomers represent the high albedo and thus might account for the observed
high efficiency of scattering.

Figures 4.5 (c) and (d) show the scattering mass opacity in the case of a f = 100 µm and
1 mm. The scattering mass opacity at the millimeter wavelengths is ten times larger than the
absorption mass opacity in the compact case, and it is tens of times larger in the fluffy cases.
This suggests that the millimeter continuum emission is dominated not by direct thermal
emission, but by scattered emission in transition disks if the dust aggregates are grown to
have a millimeter size. Moreover, determining the ratio of the scattering mass opacity over
the absorption mass opacity at the millimeter wavelengths is a way to characterizing the
porosity of the dust aggregates.

4.4 Analytic formulae of the opacities

In the previous section, we used the Mie calculations to obtain the mass opacity. In this
section, we derive the analytic formulae of the mass opacity and compare them to the results
of Mie calculations. By deriving analytic formulae, we explain why the mass opacity can
be characterized by a f . In addition, the analytic formulae would be a computationally less
expensive method to calculate the opacity of large aggregates.

4.4.1 Approximation of refractive index

When we consider fluffy aggregates, the filling factor satisfies f ≪ 1. If f ≪ 1, from Eq.
(4.5) and ϵ = m2, we obtain

n ≃ 1+
3
2

f Re(F), (4.9)

k ≃ 3
2

f Im(F), (4.10)

to the first order of f . From these equations, we obtain that n−1 ∝ f and k ∝ f in the case
of fluffy aggregates where f ≪ 1. We check the validity of the relations in Appendix 4.7.1.

We do not assume f ≪ 1 when deriving the analytic formulae. After deriving the formu-
lae, we assume f ≪ 1 and use the relations of n−1 ∝ f and k ∝ f to explain why the mass
opacity is characterized by a f .
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4.4.2 Absorption mass opacity

We derive the approximated formulae of Qabs in three limited cases, illustrated in Fig. 4.6:
(1) x ≪ 1, (2) x ≫ 1 and optically thin (kx ≪ 3/8) media, and (3) x ≫ 1 and optically
thick (kx≫ 3/8) media. We note that the absorption mass opacity is Qabs divided by the
mass-to-area ratio of the aggregates.

x≪ 1

When the dust radius a is much smaller than the wavelength λ, the opacity goes into
Reyleigh regime. This corresponds to x = 2πa/λ ≪ 1. In this case, Qabs can be written
as

Qabs ≃ 4x Im
(
m2−1
m2+2

)
=

24nkx
(n2− k2+2)2+ (2nk)2 . (4.11)

(see Eq. (5.11) in BH83). The imaginary part k of the refractive index is much smaller than
the real part n (see Fig. 4.1 and Fig. 4.15). So, we can approximate Qabs as

Qabs ≃ Qabs,1 ≡ 24nkx
(n2+2)2 . (4.12)

This equation explains the fact that the absorption mass opacity is characterized by mass-to-
area ratio or a f . At the longer wavelengths, n is almost unity while k ∝ f . Using f ∝ m/a3,
we obtain that kx is proportional to m/a2, which is mass-to-area ratio. Since κabs is Qabs

divided by mass-to-area ratio, κabs is independent of dust properties.

x≫ 1 and optically thin

When the dust radius a is much larger than the wavelength λ, the opacity goes into geometric
optics regime. In this regime, the optical properties can be understood by tracing the ray
inside the material. The fraction of energy that transmits the material is 1−exp(−αξ) where
α = 4πk/λ, and ξ is the path of the ray inside the material. If αξ < 1, the incident light is
weakly absorbed by the material because it is optically thin on the ray. We set the length
ξ = 2a, the diameter of the sphere. Thus, the condition αξ < 1 corresponds to kx < 1.

In the limit of a≫ λ (or equivalently x≫ 1) and optically thin, we obtain

Qabs ≃ Qabs,2 ≡ 8kx
3n

(
n3− (n2−1)3/2

)
, (4.13)

(see Eq. (7.2) in BH83).
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(a) x<1

(b) x>1, optically thin

(c) x>1, optically thick

Fig. 4.6 The three limiting regime. (a) When x ≪ 1, the opacity goes into the Rayleigh
regimes. (b) When x≫ 1 and is optically thin (kx≪ 3/8), the opacity goes into the optically
thin geometric regime. (c) When x≫ 1 and is optically thick (kx≫ 3/8), the opacity goes
into the optically thick geometric regime.
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We note that if n = 1, which is usually satisfied in the case of fluffy medium, Qabs yields

Qabs = Qabs,1 = Qabs,2 =
8kx
3
. (4.14)

This equation is also characterized by the mass-to-area ratio or a f because k ∝ f and x ∝ a.
We also note that the analytic formula between optically thick and thin regimes should be
changed when Qabs is unity. Thus, we define optically thin as kx≪ 3/8.

x≫ 1 and optically thick

In the limit of a≫ λ (equivalent to x≫ 1) and optically thick (kx≫ 3/8), on the other hand,
the absorption coefficient is described as

Qabs ≃ Qabs,3 ≡
∫ π/2

0
(1−R(θi)) sin2θidθi, (4.15)

where the reflectance R(θ) is written as

R(θi) =
1
2

(∣∣∣∣∣
cosθt −mcosθi
cosθt +mcosθi

∣∣∣∣∣
2
+

∣∣∣∣∣
cosθi−mcosθt
cosθi+mcosθt

∣∣∣∣∣
2)
, (4.16)

and
sinθt =

sinθi
m

(4.17)

(see Eq. (2.71), Eq. (7.5), and Eq. (7.7) in BH83). This regime is valid at shorter wave-
lengths (see Appendix 4.7.3 for the optical depth of the aggregate). As shown in Appendix
4.7.2, Qabs,3 ∼ 1− 0.1× f , and thus Qabs,3 ∼ 0.9 for compact case and Qabs,3 ∼ 0.99 for
f = 0.1. These values are regarded as unity in application to astronomical observations.
Therefore, Qabs,3 ∼ 1 for most cases: the absorption cross section yields the geometric cross
section. Because Qabs,3 has no dependency on f and a, κabs is characterized by a f .

Analytic formula of absorption mass opacity

Combining the three limiting regimes, we obtain the analytic formula of the absorption mass
opacity of dust aggregates as

Qabs =


Qabs,1 (x < 1)

min(Qabs,2,Qabs,3) (x > 1)
. (4.18)
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Fig. 7. The comparison of Mie calculations and the analytic formulae. The dotted lines show where x = 1 and kx = 3/8. (a) The mass opacity in
the case of a f = 0.1 µm and f = 1. (b) a f = 0.1 µm and f = 10�2. (c) a f = 1 mm and f = 1. (d) a f = 1 mm and f = 10�2.

have approximately the same phase. If x � 1, by contrast,
scattered waves with scattering angle ✓ > ✓max ⇠ 1/x cancel
out because of the phase di↵erence. Thus, the radiation within
the solid angle of ⇡✓max/4⇡ is scattered. With the condition that
✓max ⇠ 1/x and that Qsca,2 is smoothly connected to Qsca,1 at
x = 1, we obtain

Qsca ' Qsca,2 ⌘ 1
x2 Qsca,1. (21)

Using the same discussion in the previous section, we obtain
Qsca,2 / x2(n�1)2 / a2 f 2. This is again characterized by a f . We
note that the optical depth of the aggregate is unity when Qsca is
unity. Thus, the optical depth becomes unity where x(n � 1) ⇠ 1
because n � 1 > k.

4.3.3. x � 1 and optically thick

When x � 1 and the medium is optically thick, Qsca + Qabs = 2.
Therefore, in the same manner of the absorption mass opacity,
we obtain

Qsca ' Qsca,3 ⌘
Z ⇡/2

0
(1 + R(✓i)) sin 2✓id✓i, (22)

(see Eq. (7.5) and Eq. (7.6) in BH83).
As discussed in Section 4.2.3, the integrated reflectance is

⇠ 0.1⇥ f . Thus, Qsca,3 ⇠ 1+ 0.1⇥ f . This is regarded as Qsca,3 ⇠
1. Thus, the scattering mass opacity also goes to the geometric
cross section at shorter wavelengths and is characterized by a f .

4.3.4. Analytic formula of scattering mass opacity

Combining the three limiting regimes, we obtain the analytic for-
mula of scattering mass opacity as

Qsca =

(
Qsca,1 (x < 1)
min(Qsca,2,Qsca,3) (x > 1)

. (23)

Figure 8 shows the comparison of scattering mass opacity ob-
tained with the Mie calculation and the analytic formula. Figures
8 (a) and (b) show the case of a f = 0.1 µm, but the filling fac-
tor is f = 1 and f = 0.01, respectively. The analytic formula in
both cases reproduces the Mie calculation. Figures 8 (c) and (d)
show the case of a f = 1 mm, but the filling factor is f = 1 and
f = 0.01, respectively. In this case, the analytic formula repro-
duces the Mie calculation except for the interference structure
because we assume that all the amplification by interference is
damped when x > 1 and optically thin, which corresponds to
Qsca = Qsca,2. However, the di↵erence of the mass opacity be-
tween the analytic and Mie calculations is less than one order.
Except for the interference structure, the analytic formula repro-
duces the Mie calculation even in the case of scattering mass
opacity.

As already shown in Fig. 4, the scattering mass opacity is
proportional to ��2 at the intermediate wavelengths and ��4 at
the longer wavelengths in flu↵y cases. This can be explained
by Qsca,2. If x = 2⇡a/� is less than unity, which occurs at the
longer wavelengths, Qsca = Qsca,1 and thus scales as ��4 becasue
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Fig. 4.7 The comparison of Mie calculations and the analytic formulae. The dotted lines
show where x = 1 and kx = 3/8. (a) The mass opacity in the case of a f = 0.1 µm and f = 1.
(b) a f = 0.1 µm and f = 10−2. (c) a f = 1 mm and f = 1. (d) a f = 1 mm and f = 10−2.

Figure 4.7 shows the absorption mass opacities calculated with both the Mie calculation
and the analytic formula. The absorption mass opacity of Figs. 4.7 (a) and (b) are the same
because a f = 0.1 µm but only the filling factor is different ( f = 1 and f = 0.01), as shown in
the previous sections (see Fig. 4.3). Figure 4.7 (a) shows the case of a f = 0.1 µm and f = 1
(compact). The whole wavelengths in this panel satisfy x < 1, and thus Qabs ≃ Qabs,1. The
analytic formula greatly reproduce the Mie calculations. Figure 4.7 (b) shows the case of
a f = 0.1 µm and f = 0.01 (fluffy). In this case, a= 10 µm, and thus x= 1 at λ= 2πa≃ 63 µm.
We use Qabs = Qabs,1 for x > 1 and Qabs = Qabs,2 for x < 1 and connect them at x = 1. This
also reproduces the Mie calculation.

Figures 4.7 (c) and (d) show the case of a f = 1 mm, but the filling factor is 1 and 0.01,
respectively. The absorption mass opacity of Figs. 4.7 (c) and (d) are almost the same except
for the interference structure. The interference structure corresponds to where x > 1 and
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kx < 3/8, the optically-thin geometric optics regime. We note that the difference between
the Mie calculation and the analytic formulae is the interference structure. In Fig. 4.7 (c),
which is the compact case, the real part of the refractive index is greater than unity. Thus,
Qabs has an enhancement because of the interference. In Fig. 4.7 (d), which is the fluffy
case, on the other hand, the real part of the refractive index is almost unity and thus no
enhancement appears and smoothly connects to x < 1 region at the longer wavelengths.
From the analytic formula, we conclude that the interference structure only appears in the
compact cases because n is still larger than unity when x > 1 and kx < 3/8.

4.4.3 Scattering mass opacity

In the same manner of obtaining the analytic formula of the absorption mass opacity, we
also derive the analytic formula of the scattering mass opacity. In addition, by using the
analysis, we explain why the mass opacity can and cannot be characterized by a f .

x≪ 1

When x≪ 1, in the Rayleigh regime, Qsca can be written as

Qsca ≃ 8
3

x4
∣∣∣∣∣∣
m2−1
m2+2

∣∣∣∣∣∣
2

, (4.19)

(see Eq. (5.8) in BH83). At the longer wavelengths, n− 1≪ 1 and k≪ 1. Therefore, the
equation can be approximated to

Qsca ≃ Qsca,1 ≡ 32
27

x4
(
(n−1)2+ k2

)
. (4.20)

As shown in Appendix 4.7.1, (n− 1) > k at the longer wavelengths. Therefore, Qsca,1 ∝
x4(n−1)2. By using x ∝ a and (n−1) ∝ f , we obtain Qsca,1 ∝ a4 f 2. This is not characterized

by a f . When we consider two aggregates whose a f is the same, the aggregate that has
the larger radius has the larger scattering mass opacity at the longer wavelengths although
Qabs is same. In other words, the scattering efficiency at the longer wavelengths is a way to
determine the filling factor of fluffy aggregates.

x≫ 1 and optically thin

If x ≪ 1, the scattering mass opacity of an aggregate is regarded as the sum of the scat-
tering mass opacity of each monomer because the scattered waves from all the constituent
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monomers have approximately the same phase. If x≫ 1, by contrast, scattered waves with
scattering angle θ > θmax ∼ 1/x cancel out because of the phase difference. Thus, the radia-
tion within the solid angle of πθmax/4π is scattered. With the condition that θmax ∼ 1/x and
that Qsca,2 is smoothly connected to Qsca,1 at x = 1, we obtain

Qsca ≃ Qsca,2 ≡ 1
x2 Qsca,1. (4.21)

Using the same discussion in the previous section, we obtain Qsca,2 ∝ x2(n−1)2 ∝ a2 f 2. This
is again characterized by a f . We note that the optical depth of the aggregate is unity when
Qsca is unity. Thus, the optical depth becomes unity where x(n−1) ∼ 1 because n−1 > k.

x≫ 1 and optically thick

When x ≫ 1 and the medium is optically thick, Qsca +Qabs = 2. Therefore, in the same
manner of the absorption mass opacity, we obtain

Qsca ≃ Qsca,3 ≡
∫ π/2

0
(1+R(θi)) sin2θidθi, (4.22)

(see Eq. (7.5) and Eq. (7.6) in BH83).
As discussed in Section 4.4.2, the integrated reflectance is ∼ 0.1× f . Thus, Qsca,3 ∼

1+0.1× f . This is regarded as Qsca,3 ∼ 1. Thus, the scattering mass opacity also goes to the
geometric cross section at shorter wavelengths and is characterized by a f .

Analytic formula of scattering mass opacity

The limiting regime in the case of x≪ 1 reproduce the results in the case x ≤ 1. The same
discussion is applicable to x ≫ 1. Therefore, combining the three limiting regimes, we
obtain the analytic formula of scattering mass opacity as

Qsca =


Qsca,1 (x < 1)

min(Qsca,2,Qsca,3) (x > 1)
. (4.23)

Figure 4.8 shows the comparison of scattering mass opacity obtained with the Mie calcu-
lation and the analytic formula. Figures 4.8 (a) and (b) show the case of a f = 0.1 µm, but
the filling factor is f = 1 and f = 0.01, respectively. The analytic formula in both cases
reproduces the Mie calculation. Figures 4.8 (c) and (d) show the case of a f = 1 mm, but the
filling factor is f = 1 and f = 0.01, respectively. In this case, the analytic formula reproduces
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Fig. 8. Same as Fig. 7, but for scattering mass opacity.

Qsca,1 / x4. However, in the case of flu↵y aggregates, we find
the region where x > 1 and optically thin, and therefore Qsca =
Qsca,2 = Qsca,1/x2. This is the reason why the scattering mass
opacity at the intermediate wavelengths in flu↵y cases scales as
��2.

5. Implications for opacity evolution in
protoplanetary disks

The index of the dust opacity � has been widely used as an in-
dicator of the dust growth. In this section, we will show how �
changes as aggregates grow and drift both in compact and flu↵y
cases. Then, we propose a detection method of flu↵y aggregates
in protoplanetary disks by using the opacity index �.

5.1. Fluffy dust growth and opacity evolution

Before starting the discussion of �, we discuss the general mass
opacity change as dust grains grow to flu↵y aggregates in proto-
planetary disks. We adopt a flu↵y dust growth model proposed
by Kataoka et al. (2013b). In this model, they reveal the overall
porosity evolution from micron-sized grains to kilometer-sized
planetesimals through direct sticking. In the coagulation, icy par-
ticles are sticky and thus they are not disrupted or bounced, but
grow to a larger size (Wada et al. 2009, 2011, 2013). Moreover,
the large radius of flu↵y aggregates enables them to grow rapidly
to avoid the radial drift barrier (Okuzumi et al. 2012; Kataoka

et al. 2013b). Thus, the model is a complete scenario of growing
path from dust grains to planetesimals by direct sticking.

Figure 9 shows the internal density evolution at 30 AU in or-
bital radius in a minimum mass solar nebula model, proposed by
Kataoka et al. (2013b). We note that the figure shows the local
porosity evolution, but dust aggregates start to drift inward once
they grow to be decoupled from the gas. We discuss the radial
drift later in this section. The turbulent parameter ↵D is set to
be 10�3 and the mean internal density is set to be 1.68 g cm�3.
The picture of the overall porosity evolution is as follows. As
the dust grains first coagulate to form flu↵y aggregates, the fill-
ing factor decreases to f ⇠ 10�4. Once the collisional compres-
sion becomes e↵ective, the density keeps constant. Then, the gas
compression and the self-gravity compression make the dust ag-
gregates compact.

The open circles represent the characteristic dust radius a,
while the dotted lines show the lines of constant a f . From this
figure, the dust aggregates in the initial growth stage is opti-
cally the same. The initial growth is expected to be fractal. The
dust aggregates coagulate with aggregates of similar sizes, and
thus the fractal dimension is expected to be 2 (Okuzumi et al.
2012). Thus, the mass-to-area ratio of the aggregates keeps con-
stant. In other words, a f keeps the same value. Therefore, the
initial growth is indistinguishable with no growth in the absorp-
tion mass opacity. After the initial growth, when the compression
mechanisms become e↵ective, the opacity is expected to change
because the mass-to-area ratio changes.
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Fig. 4.8 Same as Fig. 4.7, but for scattering mass opacity.
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the Mie calculation except for the interference structure because we assume that all the am-
plification by interference is damped when x > 1 and optically thin, which corresponds to
Qsca =Qsca,2. However, the difference of the mass opacity between the analytic and Mie cal-
culations is less than one order. Except for the interference structure, the analytic formula
reproduces the Mie calculation even in the case of scattering mass opacity.

As already shown in Fig. 4.4, the scattering mass opacity is proportional to λ−2 at the
intermediate wavelengths and λ−4 at the longer wavelengths in fluffy cases. This can be
explained by Qsca,2. If x = 2πa/λ is less than unity, which occurs at the longer wavelengths,
Qsca = Qsca,1 and thus scales as λ−4 becasue Qsca,1 ∝ x4. However, in the case of fluffy
aggregates, we find the region where x > 1 and optically thin, and therefore Qsca = Qsca,2 =

Qsca,1/x2. This is the reason why the scattering mass opacity at the intermediate wavelengths
in fluffy cases scales as λ−2.

4.5 Implications for opacity evolution in protoplanetary
disks

The index of the dust opacity β has been widely used as an indicator of the dust growth. In
this section, we will show how β changes as aggregates grow and drift both in compact and
fluffy cases. Then, we propose a detection method of fluffy aggregates in protoplanetary
disks by using the opacity index β.

4.5.1 Fluffy dust growth and opacity evolution

Before starting the discussion of β, we discuss the general mass opacity change as dust
grains grow to fluffy aggregates in protoplanetary disks. We adopt a fluffy dust growth
model proposed by Kataoka et al. (2013b). In this model, they reveal the overall porosity
evolution from micron-sized grains to kilometer-sized planetesimals through direct sticking.
In the coagulation, icy particles are sticky and thus they are not disrupted or bounced, but
grow to a larger size (Wada et al., 2013, 2009, 2011). Moreover, the large radius of fluffy
aggregates enables them to grow rapidly to avoid the radial drift barrier (Kataoka et al.,
2013b; Okuzumi et al., 2012). Thus, the model is a complete scenario of growing path from
dust grains to planetesimals by direct sticking.

Figure 4.9 shows the internal density evolution at 30 AU in orbital radius in a minimum
mass solar nebula model, proposed by Kataoka et al. (2013b). We note that the figure shows
the local porosity evolution, but dust aggregates start to drift inward once they grow to be
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Fig. 4.9 The internal density evolution at r = 30 AU in the minimum mass solar nebula
model (see Kataoka et al. 2013b for more details). The solid line represents the evolution.
The black, green, blue, and red lines are in the coagulation phase of hit-and-stick, colli-
sional compression, gas compression, and self-gravitational compression, respectively. The
dotted lines show the a f =(constant) lines, where a f = 0.1 µm, 10 µm, 1 mm, and 10 cm,
respectively.
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decoupled from the gas. We discuss the radial drift later in this section. The turbulent
parameter αD is set to be 10−3 and the mean internal density is set to be 1.68 g cm−3. The
picture of the overall porosity evolution is as follows. As the dust grains first coagulate
to form fluffy aggregates, the filling factor decreases to f ∼ 10−4. Once the collisional
compression becomes effective, the density keeps constant. Then, the gas compression and
the self-gravity compression make the dust aggregates compact.

The open circles represent the characteristic dust radius a, while the dotted lines show
the lines of constant a f . From this figure, the dust aggregates in the initial growth stage
is optically the same. The initial growth is expected to be fractal. The dust aggregates
coagulate with aggregates of similar sizes, and thus the fractal dimension is expected to be
2 (Okuzumi et al., 2012). Thus, the mass-to-area ratio of the aggregates keeps constant. In
other words, a f keeps the same value. Therefore, the initial growth is indistinguishable with
no growth in the absorption mass opacity. After the initial growth, when the compression
mechanisms become effective, the opacity is expected to change because the mass-to-area
ratio changes.

Figure 4.10 shows the mass opacity change, corresponding to open circles in Fig. 4.9.
The first three cases are degenerated in mass opacity because a f is the same. Once the
compression becomes effective, the mass opacity changes as expected in the dust growth.
For example, when dust aggregates grow to have their radius of a = 12.6 cm, they have
almost the same opacity as 10 µm compact grains. We note that the interference structure
does not appear as aggregates grow because the filling factor is typically f ∼ 10−4 in this
growth scenario.

4.5.2 Dust opacity index beta

We define β as an opacity slope between 1 mm and 3 mm. Here, we use a f again because
optical properties are characterized by a f . We note that a f = a in the case of compact
grains ( f = 1). We consider several cases for calculating dust β where the filling factor f

is fixed in each case. Calculating β, we consider a grain size distribution with a power law
as n ∝ (a f )−2 between a minimum and a maximum size, (a f )min and (a f )max, respectively;
(a f )min is chosen to be 0.1 µm. Figure 4.11 shows how the absorption mass opacity κabs

at 1 mm and β changes as the aggregate size increases. The compact case in this figure
corresponds to Fig. 3 in Ricci et al. (2010b). The red line shows the compact case, while
green and blue lines are fluffy cases. The lines in the cases of f < 10−2 are indistinguishable
from the line of f = 10−2, and thus we do not plot them. The absorption mass opacity has
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velocity and the disk model). Here, we briefly summarize the
model. At a radial distance r(t) from the central star, the gas-
surface density profile is 1700(r/1AU)�p g cm�2 where we use
p = 1 in this paper. We note that the gas-surface density does not
change with time to clarify the e↵ects of dust growth and drift
(e.g., Okuzumi et al. 2012). The initial dust-to-gas mass ratio
is 0.01. The adopted temperature profile is 137(r/1AU)�3/7 K,
which corresponds to midplane temperature (Chiang et al. 2001).
This is cooler than optically thin disk models to focus on the dust
coagulation in the midplane. The value of �v is assumed be the
root mean square of Brownian motion and turbulent motion (see
Eq. (32) in Okuzumi et al. 2012). The di↵usion coe�cient ↵D
is taken to be 10�3. For the velocity induced by turbulence, we
denote the velocity di↵erence of dust and gas as dust-dust ve-
locity for simplicity. We determine the dust scaleheight from the
balance between sedimentation and turbulent di↵usion (Brauer
et al. 2008). The filling factor is fixed to be unity in the compact
case and changes as a function of the orbital radius in the flu↵y
case following Kataoka et al. (2013b).

Figure 12 shows the dust growth and drift paths. The dashed
lines show the paths of growing dust aggregates and the colored
dotted and solid lines represent isochrones at t = 105 and t = 106

years. The isochrones represent the radial grain/aggregate-size
distribution at the specific time. The size of dust aggregates in-
creases with a decreasing orbital radius. This is caused by two
e↵ects: dust growth and drift. For example, on the line of the
isochrone at 105 years in the compact case, shown in Fig. 12 (a),
the dust growth determines the aggregate size beyond ⇠ 30 AU.
At 30 AU or larger in orbital radius, dust growth is faster at
the inner part of the disk than the outer part because the growth
timescale is proportional to the Keplerian period (e.g., Okuzumi
et al. 2012). At the orbital radius less than 30 AU, the maxi-
mum size is determined by the drift motion. The aggregates grow
so large that they are decoupled from the gas, and drift inward.
Therefore, the aggregate size at orbital radius less than 30 AU
corresponds to the maximum size determined by the radial drift.

Figure 13 shows the radial � distribution for both compact
and flu↵y cases at the isochrones shown in Fig. 12. In the com-
pact case, � increases to around � ⇠ 2.7 at 40 AU in the range
of 10 AU at t = 105 years and at 150 AU in the range of 20 AU
at t = 106 years. This means that protoplanetary disks have a
specific radius where � is greater than �ISM = 1.7 in the com-
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Fig. 13. The radial � distribution for compact and flu↵y cases. Each line
corresponds to the same line in Fig. 12.

pact case. In the flu↵y case, on the other hand, � is always equal
to or less than �ISM = 1.7. Therefore, if the radial � distribu-
tion always has a value of �ISM = 1.7 or less, it means that the
millimeter emission comes from flu↵y aggregates.

5.4. Silicate feature

In the inner part of the disk, ice particles are expected to be sub-
limated and there are dust aggregates whose constituent parti-
cles are made of silicate. Micron-sized silicate grains show the
broad feature at 10 µm. The feature is used as a signature of grain
growth (e.g., van Boekel et al. 2005). To show how the porosity
a↵ects the silicate feature, we also calculate the silicate feature
of flu↵y aggregates. In this section, we change the material con-
stant: we assume pure silicate monomers. The material density
is taken to be ⇢mat = 3.5 g cm�3 and the refractive index is taken
from Weingartner & Draine (2001).

Figure 14 shows the absorption mass opacity in cases of sil-
icate aggregates. Each panel shows the mass absorption opaci-
ties where a f is constant. When a f = 0.1 µm, the broad silicate
feature is seen at around � = 10 µm and does not significantly
change as the aggregate size increases from 0.1 µm to 1 mm. In
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Fig. 4.11 (a) The absorption mass opacity at λ = 1mm against (a f )max. The red, green, and
blue lines show the cases of f = 1,10−1, and 10−2. The lines in the cases of f < 10−2 are
indistinguishable from the line of f = 10−2. The aggregate size distribution is assumed to
be n ∝ (a f )−2 where f is fixed in each case. (b) The β, the opacity slope between 1 mm and
3 mm, against (a f )max.

a strong bump around a0,max ∼ 1mm. This bump corresponds to the interference structure
where the size parameter x ∼ 1. On the other hand, the fluffy cases does not show such a
bump because there is no interference. The bump of the mass opacity results in a bump of
β in the compact case. The dust β increases up to ∼ 2.7 in the compact case, but there is no
bump in fluffy cases. In other words, β is always equal to or less than βISM = 1.7 in fluffy
cases.

From this result, the difference in the absorption mass opacity between compact and
fluffy dust appears in the intermediate size, which is between 0.1 mm and 1 mm.

4.5.3 Radial profile of β

The radial size distribution of dust aggregates is determined by both dust growth and drift.
In protoplanetary disks, the dust growth timescale strongly depends on orbital radius. In the
inner part of disks, dust grains coagulate faster than in the outer part because of the shorter
Keplerian period. Thus, dust aggregates have a larger size at the inner part and smaller at the
outer part when considering only dust growth. When dust aggregates grow to larger sizes,
they start to drift inward. Thus, the size where the aggregates start to drift is the maximum
size of the aggregates at each orbital radius. The maximum size also depends on an orbital
radius: the maximum size is larger in the inner part and smaller in the outer part. Combining
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both effects of dust growth and drift, the radial profile of the size of dust aggregates is
expected to be smaller in the outer part and larger in the inner part. Observationally, the
radial profile of β have the information of the radial size distribution.

To obtain the radial profile of β, we adopt the following simple dust growth and drift
model. We assume that there are initially 0.1 µm sized dust grains in the entire disk. We
trace the growth and drift motion of each set of dust grains initially located at each orbital
radius.

To calculate the time evolution of dust mass M = M(t) and the orbital radius r = r(t) at
each orbital radius, we assume that dust grains have a monodisperse distribution at each or-
bital radius. Under this assumption, the dust growth and drift is described by (e.g., Okuzumi
et al., 2012)

dM(t)
dt
= ρdπa2∆v (4.24)

and
dr(t)

dt
= −vr(M(t)), (4.25)

where ρd is the spatial dust density, a the dust radius, ∆v the relative velocity of dust grains
or aggregates, and vr(M(t)) the drift velocity. We use the disk model of Kataoka et al.
(2013b) (see also Okuzumi et al. 2012 for the definitions of the dust velocity and the disk
model). Here, we briefly summarize the model. At a radial distance r(t) from the central
star, the gas-surface density profile is 1700(r/1AU)−p g cm−2 where we use p = 1 in this
paper. We note that the gas-surface density does not change with time to clarify the effects
of dust growth and drift (e.g., Okuzumi et al., 2012). The initial dust-to-gas mass ratio is
0.01. The adopted temperature profile is 137(r/1AU)−3/7 K, which corresponds to midplane
temperature (Chiang et al., 2001). This is cooler than optically thin disk models to focus on
the dust coagulation in the midplane. The value of ∆v is assumed be the root mean square of
Brownian motion and turbulent motion (see Eq. (32) in Okuzumi et al. 2012). The diffusion
coefficient αD is taken to be 10−3. For the velocity induced by turbulence, we denote the
velocity difference of dust and gas as dust-dust velocity for simplicity. We determine the
dust scaleheight from the balance between sedimentation and turbulent diffusion (Brauer
et al., 2008). The filling factor is fixed to be unity in the compact case and changes as a
function of the orbital radius in the fluffy case following Kataoka et al. (2013b).

Figure 4.12 shows the dust growth and drift paths. The dashed lines show the paths
of growing dust aggregates and the colored dotted and solid lines represent isochrones at
t = 105 and t = 106 years. The isochrones represent the radial grain/aggregate-size distri-
bution at the specific time. The size of dust aggregates increases with a decreasing orbital
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Fig. 14. The absorption mass opacity for silicate aggregates in cases of di↵erent a f . The mass opacities are shown in the case of (a) a f = 0.1 µm,
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the cases of a f = 1-10 µm, the silicate feature becomes weaker
as a f increases. The absorption mass opacity of porous aggre-
gates ( f  0.1) is independent of the aggregate size as long as
a f is constant, as is also shown in the case of icy aggregates.
The small di↵erences between the cases of f = 1 and f  0.1

derive from the interference as well as the icy aggregates. Thus,
except for the interference, the silicate feature disappears as a f
increases.
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Fig. 4.12 The gray dashed lines represent the paths of the growth and drift of dust aggregates
at each initial orbital radius. The solid and dotted lines represent the radial size distribution
of dust aggregates at the specific time. (a) The compact case, where the red dotted line
shows the isochrone at t = 105 years and the red solid line shows at t = 106 years. (b) The
fluffy growth case, where the blue dotted line shows the isochrone at t = 105 years and the
blue solid line at t = 106 years.

radius. This is caused by two effects: dust growth and drift. For example, on the line of
the isochrone at 105 years in the compact case, shown in Fig. 4.12 (a), the dust growth
determines the aggregate size beyond ∼ 30 AU. At 30 AU or larger in orbital radius, dust
growth is faster at the inner part of the disk than the outer part because the growth timescale
is proportional to the Keplerian period (e.g., Okuzumi et al., 2012). At the orbital radius less
than 30 AU, the maximum size is determined by the drift motion. The aggregates grow so
large that they are decoupled from the gas, and drift inward. Therefore, the aggregate size
at orbital radius less than 30 AU corresponds to the maximum size determined by the radial
drift.

Figure 4.13 shows the radial β distribution for both compact and fluffy cases at the
isochrones shown in Fig. 4.12. In the compact case, β increases to around β ∼ 2.7 at 40
AU in the range of 10 AU at t = 105 years and at 150 AU in the range of 20 AU at t = 106

years. This means that protoplanetary disks have a specific radius where β is greater than
βISM = 1.7 in the compact case. In the fluffy case, on the other hand, β is always equal to or
less than βISM = 1.7. Therefore, if the radial β distribution always has a value of βISM = 1.7
or less, it means that the millimeter emission comes from fluffy aggregates.
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Fig. 4.13 The radial β distribution for compact and fluffy cases. Each line corresponds to
the same line in Fig. 4.12.
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Fig. 14. The absorption mass opacity for silicate aggregates in cases of di↵erent a f . The mass opacities are shown in the case of (a) a f = 0.1 µm,
(b) a f = 1 µm, (c) a f = 3 µm, and (d) a f = 30 µm.

the cases of a f = 1-10 µm, the silicate feature becomes weaker
as a f increases. The absorption mass opacity of porous aggre-
gates ( f  0.1) is independent of the aggregate size as long as
a f is constant, as is also shown in the case of icy aggregates.
The small di↵erences between the cases of f = 1 and f  0.1

derive from the interference as well as the icy aggregates. Thus,
except for the interference, the silicate feature disappears as a f
increases.
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Fig. 4.14 The absorption mass opacity for silicate aggregates in cases of different a f . The
mass opacities are shown in the case of (a) a f = 0.1 µm, (b) a f = 1 µm, (c) a f = 3 µm, and
(d) a f = 30 µm.

4.5.4 Silicate feature

In the inner part of the disk, ice particles are expected to be sublimated and there are dust
aggregates whose constituent particles are made of silicate. Micron-sized silicate grains
show the broad feature at 10 µm. The feature is used as a signature of grain growth (e.g., van
Boekel et al., 2005). To show how the porosity affects the silicate feature, we also calculate
the silicate feature of fluffy aggregates. In this section, we change the material constant: we
assume pure silicate monomers. The material density is taken to be ρmat = 3.5 g cm−3 and
the refractive index is taken from Weingartner & Draine (2001).

Figure 4.14 shows the absorption mass opacity in cases of silicate aggregates. Each
panel shows the mass absorption opacities where a f is constant. When a f = 0.1 µm, the
broad silicate feature is seen at around λ = 10 µm and does not significantly change as the
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aggregate size increases from 0.1 µm to 1 mm. In the cases of a f = 1-10 µm, the silicate
feature becomes weaker as a f increases. The absorption mass opacity of porous aggregates
( f ≤ 0.1) is independent of the aggregate size as long as a f is constant, as is also shown in
the case of icy aggregates. The small differences between the cases of f = 1 and f ≤ 0.1
derive from the interference as well as the icy aggregates. Thus, except for the interference,
the silicate feature disappears as a f increases.

4.6 Summary and discussion

We calculated the mass opacity of fluffy dust aggregates expected to be in protoplanetary
disks. The wavelengths are in the range of 1 µm < λ < 1 cm and the filling factor in the
range of 10−4 < f < 1. The assumed composition is the mixture of silicate, organics, and
water ice (Pollack et al., 1994). We used the Mie calculation with the effective medium
theory to calculate the mass opacity of fluffy aggregates. Our main findings are as follows.

• The absorption mass opacity of dust aggregates is characterized by a f , where a is the
dust radius and f is the filling factor. The absorption mass opacity is almost indepen-
dent of the aggregate size when a f is constant. This makes it difficult to distinguish
between fluffy aggregates and compact grains in observations. The only difference
of the absorption mass opacity between compact grains and fluffy aggregates where
a f is the same appears as the interference structure in the compact case at the size
parameter x ∼ 1.

• The scattering mass opacity at short wavelengths is also characterized by a f , but not
at long wavelengths. The scattering mass opacity at the long wavelengths is higher in
more fluffy aggregates even if a f is the same. The scattering mass opacity scales as
λ−2 at intermediate wavelengths and scales as λ−4 at the longer wavelengths.

• We also derived the analytic formulae of the absorption and scattering mass opacities,
connecting the three limiting cases, which are the Rayleigh regime, the optically-thin
geometric regime, and the optically-thick geometric regime. The analytic formulae
reproduce the results of the Mie calculations. The formulae are expected to greatly
reduce the computational time to calculate the opacity of large fluffy aggregates. By
using the analytic formulae, we analytically showed that the absorption mass opacity
is characterized by one parameter a f except for the interference structure. We also
showed that the scattering mass opacity at the shorter wavelengths is also character-
ized by a f , but not at the longer wavelengths. Thus, the fact that the mass opacity is
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characterized by a f is valid even out of the range investigated in the Mie calculation
in this paper and is also applicable to other materials.

• The opacity index β is a good way to distinguish between fluffy aggregates and com-
pact grains at observations of protoplanetary disks. If we assume the compact grain
growth, with increasing grain size, the opacity index β increases to ∼ 2.7 and then
decreases. If we assume fluffy aggregate growth, the index βmonotonously decreases
from its initial value βISM = 1.7 (see Fig. 4.11). If dust grains are compact in proto-
planetary disks, the radial distribution of the index β should have a peak of ∼ 2.7 (see
Fig. 4.13).

• We also calculated the absorption mass opacity of silicate aggregates at around λ =
10 µm. The opacity of fluffy aggregates has the 10 µm feature as well as compact
silicate grains. The silicate feature is also appropriately characterized by a f .

In this paper, as a first step, we use the effective medium theory. Voshchinnikov et al.
(2005) have shown that EMT is a good approximation when considering small inclusions.
We considered 0.1 µm sized monomers and the wavelength ranges from 1 µm to 10 cm.
Because the monomer size is less than the wavelengths, EMT would be a good approxima-
tion. However, the validity of EMT at infrared, especially at short wavelengths, is somewhat
marginal because the wavelengths are close to the monomer size. Thus, the validity of the
effective medium theory should be further tested by future work.

We proposed that the radial profile of β is a way to distinguish between compact grains
and fluffy aggregates. Pérez et al. (2012) have put a constraint on the radial β distribution by
observing a protoplanetary disk AS 209 with VLA, SMA, and CARMA. They found that β
has a lower value inside the disk rather than the constant β in the whole disk. It is consistent
with the model of Fig. 4.12, where the grain size is distributed because of the difference of
growth time and the maximum grain size is limited by radial drift. The results of Pérez et al.
(2012) also prefer the fluffy growth scenario to the compact because there is no signature
that β is large as β ∼ 3. However, the observation has little information about β in the outer
part of the disk because of the sensitivity limitation at the longer wavelengths. Thus, to
clearly determine whether the emission comes from compact grains or fluffy aggregates,
we need higher sensitivity at the longer wavelengths. Moreover, to reject the possibility of
β > βISM, we need a high spatial resolution to resolve 20 AU bump in the compact case at
t = 106 years. This observation is challenging, but would be a good target of ALMA.

The fact that the scattering mass opacity at the longer wavelengths cannot characterized
by a f is another way to distinguish between compact grains and fluffy aggregates. Here,
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we propose the polarization observation of the millimeter continuum emission. The scat-
tered light is expected to be linearly polarized, and thus by comparing the intensity and the
polarized intensity, the ratio of the scattering and absorption mass opacity can be directly
observed. Although the polarized emission depends on the disk geometry and has many
uncertainties, it would be a good target in the next phase of ALMA.

In addition, Mulders et al. (2013) proposed that to interpret the low effective albedo
of protoplanetary disks, there are large particles at the outer disk surface and they should
be porous structures to be stirred up to the surface. However, we showed that the infrared
scattering opacity is determined by a f In addition, the coupling efficiency of aggregates
to the disk gas is also determined by a f . Thus, the optical and kinematical properties are
degenerated. Therefore, the porous aggregates would not help to interpret the observations
of the low effective albedo.

4.7 Appendix: refractive index of fluffy aggregates

In this section, we confirm the validity of the assumptions used to derive the analytic formula
in Section 4.4.

4.7.1 (n−1) > k at the longer wavelengths

Figure 4.15 shows the comparison of n−1 and k when f = 1,10−1,10−2,10−3, and 10−4. We
confirm that the refractive index always satisfies n−1 > k at the longer wavelengths in any
value of f . Moreover, we also confirm that (n−1) ∝ f and k ∝ f when f < 1.

4.7.2 Reflectance

We define the integrated reflectance as

R ≡
∫ π/2

0
R(θi) sin2θidθi. (4.26)

When the medium satisfies x≫ 1 and is optically thick, Qabs and Qsca are written as Qabs =

Qabs,3 = 1−R and Qsca = Qsca,3 = 1+R. We assume that R≪ 1, and therefore Qabs and Qsca

are unity in Section 4.4. Figure 4.16 shows the integrated reflectance R. Roughly speaking,
R ∼ 0.1× f and thus we can assume that Qabs and Qsca are unity in the regime.
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4.7.3 Optical thickness inside the material

We discuss the optical thickness inside the medium by considering whether kx is greater
than 3/8. Figure 4.17 shows kx in the case of a f = 0.1 µm,10 µm, and 1 mm. We confirm
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Fig. 4.17 kx against wavelengths when a f = 0.1 µm,10 µm, and 1 mm. The solid lines
represent the compact cases while the dashed lines fluffy cases.

that if a f is the same, kx is almost the same at all wavelengths. In the case of a f = 0.1 µm,
the medium is totally optically thin. In the case of a f = 10 µm, the medium is optically thin
at the longer wavelengths and marginally optically thick when λ . 10−2 cm. In the case of
a f = 1 mm, the medium is optically thin at the longer wavelengths and optically thick when
λ . 6×10−2 cm.



Chapter 5

Conclusions

5.1 Summary and conclusions

This thesis aimed to reveal a pathway of the dust coagulation in protoplanetary disks which
is free from the three main barriers in dust coagulation, which are the radial drift, frag-
mentation, and bouncing barriers. It has been shown that dust grains coagulate to form
extremely porous structure in protoplanetary disks, which are not compressed by collisions
of themselves.

In Chapter 2, we derived the compressive strength of porous dust aggregates. For numer-
ical simulations, we adopted the particle-particle interaction model formulated by Dominik
& Tielens (1997) and developed by Wada et al. (2007). As a result, we find that the com-
pressive strengths of porous aggregates is given by

P =
Eroll

r3
0

φ3, (5.1)

where φ is the filling factor, Eroll the rolling energy of monomer particles, and r0 the
monomer radius. We confirm that this formula is valid when the filling factor φ is lower
than ∼ 0.1. In addition, this formula is also analytically derived and confirmed.

In Chapter 3, we introduced the static compression to planetesimal formation. As
sources of the static compression, we introduced the ram pressure of the disk gas and the
self-gravity. As a result, we found the overall filling factor evolution from dust grains to
planetesimals as follows. First, dust grains coagulate with low-speed collisions to form
highly porous structure. When the filling factor comes to 10−4, the static compression by
ram pressure of the disk gas becomes effective. The dust aggregates continue to coagulate
keeping the internal density such that the compressive strength is equal to the ram pressure
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of the gas. When the mass of the aggregates reaches 1011 g, the self-gravity compression
becomes more effective than the ram pressure of the gas. Then, the aggregates continue to
coagulate with their compressive strength being equal to the self-gravitational pressure. The
final products are 10 km-sized bodies with filling factor of 10−1, which are similar to comets
in our solar system, which are believed to be the remnants of planetesimals.

Moreover, the revealed evolution path overcomes the three barriers of planetesimal for-
mation, which are the radial drift, fragmentation (for icy particles), and bouncing problems.
Thus, this theory is proposing the first coherent planetesimal formation scenario from grains.

FIgure 5.1 illustrates the conclusions of the proposed scenario in this thesis. In our sce-

snow line
at midplane

~0.7AU ~7AU orbital 
radius

rocky aggregates
→fragmentation

icy aggregates
→net growth in collisions 

tdrift >tgrowth
→ grow before radially drift

tdrift <tgrowth

fragmentation

radial drift

Planetesimals can form
by this study

central star

Fig. 5.1 The illustration of the planetesimal forming region in protoplanetary disks by pro-
posed scenario in this thesis. Fragmentation represents the fragmentation barrier, which can
be avoided beyond the snowline. Radial drift represents the radial drift barrier, which can
be avoided inner region where growth timescale is less than the drifting timescale.

nario, fragmentation barrier is overcomed by considering icy aggregates. Thus, the scenario
is applicable to the region beyond the snowline. The location of the snowline is still under
debate. In the MMSN model (Hayashi, 1981), the temperature is calculated by assuming
that the disk is optically thin. In this case, the snowline is at 2.7 AU. However, protoplane-
tary disks are thought to be optically thick. Thus, the midplane temperature is expected to
be lower than MMSN. For example, the interior temperature in the model of Chiang et al.
(2001) is even less than 170K at 1 AU. In the adopted model, the snowline locates at ∼ 0.7
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AU.

The outer radius where the proposed scenario is applicable is determined by the balance
between the dust growth and drift timescale. In the outer region in disks, the dust aggregates
radially drift before they grow to planetesimals. The critical radius inside which the dust
aggregates can form planetesimals is sensitive to disk parameters. In the adopted model, the
critical radius is ∼ 7 AU. In this thesis, we demonstrated that more massive disk has larger
critical outer radius to form planetesimals.

In Chapter 4, we calculated the optical properties of extremely porous aggregates. We
found that the absorption cross section of extremely porous aggregates are characterized
by a f , where a is the dust radius and f is the filling factor. The scattering cross section
is, on the other hand, characterized by a f at the shorter wavelengths but larger in more
porous aggregates at the longer wavelengths. We also derived the analytical expressions of
the absorption and scattering opacities. The expressions greatly reduce the computational
time to calculate the opacities. In addition, we proposed a method to distinguish between
extremely porous aggregates ( f < 0.1) and compact grains, in which we use the radial profile
of spectral index at millimeter wavelengths. This kind of observations is expected to be
performed in the coming ALMA era.

5.2 Outlook

In this thesis, we have revealed a pathway of planetesimal formation via fluffy dust ag-
gregates and found possible differences in opacity between fluffy aggregates and compact
grains. We will further proceed the theory to construct a planet formation theory to explain
the formations of our solar system and exoplanets. Toward the planet formation theory, we
have to construct a formation theory of planets from dust grains. Moreover, the forming pro-
cess should be confirmed by observations of protoplanetary disks and should be consistent
with information of our solar system. To achieve the three goals, which are the planet forma-
tion theory from dust grains, observational evidence of growth process, and the consistency
with our solar system, we are planning three future works as follows.

5.2.1 Planet formation from dust grains

We have shown that we can obtain a planetesimal distribution which depends on the initial
properties of protoplanetary disks by introducing static compression. This has a strong
influence on the later stage of planet formation from planetesimals to planets. The later stage
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always assumed a planetesimal distribution as an initial condition and calculate coagulation
by N-body simulations (e.g., Kokubo & Ida, 1998) or statistical approach (e.g., Inaba et al.,
2001). However, the resultant protoplanets or planets strongly depend on the initial size and
orbital distribution of planetesimals (e.g., Kobayashi et al., 2011). Thus, initial planetesimal
size and orbital distributions are quite important for the subsequent planet formation.

To obtain the planetesimal distribution, we will run a series of simulations of dust co-
agulation with porosity evolution. This kind of simulations have been done with Monte
Carlo method (i.e., Zsom et al., 2010) or statistical method (i.e., Okuzumi et al., 2012).
Because the statistical approach with the volume averaging method (Okuzumi et al., 2009)
computationally costs much less than the Monte Carlo, we use the statistical approach. To
trace the porosity evolution, we use the same kind of calculaions of Okuzumi et al. (2012),
who performed the coagulation simulations with collisional compression. We will intro-
duce the static compression to the coagulation simulations to reveal the time evolution of
the planetesimal distribution. We will also introduce the effects of the gravitational focusing
in statistical approach (e.g., Kobayashi et al., 2011). The gravitational focusing enables us
to trace the runaway and oligarchic growth stage. In this way, we can complete the overall
simulations from dust grains to planets.

Obtaining the planetesimal distribution is unique compared with other scenarios. For
example, planetesimal formation by streaming instability (e.g., Johansen et al., 2007) does
not introduce the size distribution and coagulations because of the huge computational costs.
In addition, the instability is expected to be suppressed in turbulent disks. For another
example, the direct coagulation by mass transfer (e.g., Dra̧żkowska et al., 2013) has only a
few planetesimals and they do not obtain the statistical planetesimal distribution. Compared
with these theories, the proposed scenario has an advantage that planetesimal distribution
can be obtained by numerical approach and thus easily connect to later stage of planet
formation.

5.2.2 Testing the porosity evolution theory in protoplanetary disks with
radio observations

Observational tests of the proposed theory must be performed. One way to test the theory is
observations of protoplanetary disks, where the dust coagulation is ongoing. Protoplanetary
disks have been observed at multi wavelengths from infrared to millimeter wave. Although
planetesimals are too large to observe in protoplanetary disks, dust grains whose radius is
micron to millimeter is observable in these observations. In the previous studies of dust
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coagulations, dust grains are assumed to be spherical. For example, Dullemond & Dominik
(2005) or Birnstiel et al. (2012) calculated the expected SED by dust coagulation. However,
the dust coagulation or the radial drift is too rapid to explain the observed SEDs. The
most important discrepancy between theories and observations is spectral index at sub-mm
wavelengths. Although observations have indicated that dust grains has a size of 1 mm at
least, the dust grains can not grow to mm-sized bodies because of the radial drift.

We have already shown that porous dust aggregates can avoid the radial drift. There-
fore, proposed scenario has a possibility to explain the observed spectrum. To compare the
theory with observations, we will run a radiative transfer calculations of the results of nu-
merical simulations of dust coagulations with porosity evolution as discussed in the previous
section. Because small grains greatly affect the observational spectrum, we will introduce
the fragmentation effects. Then, we will try to explain the SEDs by changing the initial
conditions or the fragmentation effects.

We will also challenge to obtain the observational evidence of fluffy dust aggregates. As
discussed in Chapter 4, the compactness of dust aggregates is difficult to observe but we can
distinguish between compact and fluffy dust aggregates by observing the radial distribution
of the opacity slope. Therefore, we are planning to obtain the continuum at 1 mm and 3
mm band of a protoplanetary disk with a spatial resolution as high as 10 AU scale. The
resolution at the bands is achievable with ALMA. Thus, using continuum observations of
ALMA, we will observationally evidence the existence of fluffy dust aggregates.

5.2.3 Thermal history of meteorites in our solar system

One of the advantage of planet formation as a research field compared to other astronomical
fields is that we can obtain information of formation of our solar system as an example of
planet formation. However, the formation of our solar system occurred 45 billion years ago
and thus we cannot directly obtain the information of the formation process. One of the
most striking trace is the thermal history of meteorites. For example, many chondrites have
experienced aqueous alteration. This process is believed as an evidence of heating events
inside the parent asteroids, or planetesimals. However, it is difficult to avoid the aqueous
alteration inside icy planetesimals, and thus explanations of chondrites without aqueous
alteration is still on debate.

The heating source of planetesimals is the radioactive decay of Aluminum inside the
planetesimals. When the cooling timescale is longer than the heating timescale, the plan-
etesimals possess some heat and the temperature increases. This heating mechanism helps
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aqueous alteration. The thermal history of planetesimals has been investigated assuming
planetesimals as an initial body (e.g., Wakita & Sekiya, 2011). However, the planetesimals
are temporal objects on the dust coagulation from dust grains to planets. Because we re-
vealed the coagulation process from grains to planetesimals, we can apply the theory to
reveal the thermal history of planetesimals. As a result, we can trace the coagulation and
thermal evolution inside dust aggregates simultaneously.

One of the advantages of our theory is that fluffy dust aggregates may avoid aqueous
alteration because the pressure inside the aggregates are too low to contain water but ice is
expected to sublimate. This can potentially explain the planetesimals without aqueous alter-
ation beyond the snowline. Although there are still many obstacles to explain the formation
of our solar system to be consistent with current observations of meteorites, the proposed
scenario of planetesimal formation can add a new insight into our solar system formation
with investigating the thermal history of solid bodies in protoplanetary disks.
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