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ABSTRACT OF THE DISSERTATION

by

Md. Ashad Alam

in

Department of Statistical Science

The Institute of Statistical Mathematics

The Graduate University of Advanced Studies

Tokyo 190-8562, Japan.

In kernel methods, choosing a suitable kernel is indispensable for favorable results.

While cross-validation is a useful method of the kernel and parameter choice for super-

vised learning such as the support vector machines, there are no well-founded methods,

have been established in general for unsupervised learning. We focus on kernel principal

component analysis (kernel PCA) and kernel canonical correlation analysis (kernel CCA),

which are the nonlinear extension of principal component analysis (PCA) and canonical

correlation analysis (CCA), respectively. Both of these methods have been used effectively

for extracting nonlinear features and reducing dimensionality.

As a kernel method, kernel PCA and kernel CCA also suffer from the problem of kernel

choice. Although cross-validation is a popular method of choosing hyperparameters, it is

not applicable straightforwardly to choose a kernel and the number of components in kernel

PCA and kernel CCA. It is important, thus, to develop a well-founded method for choosing

hyperparameters of the unsupervised methods.

In kernel PCA, it is not possible to use cross-validation for choosing hyperparameters

because of the incomparable norms given by different kernels. The first goal of the disserta-

tion is to propose a method for choosing hyperparameters in kernel PCA (the kernel and the

number of components) based on cross-validation for the comparable reconstruction errors

of pre-images in the original space. The experimental results of synthesized and real-world

datasets demonstrate that the proposed method successfully selects an appropriate kernel

and the number of components in kernel PCA in terms of visualization and classification

errors on the principal components. The results imply that the proposed method enables

the automatic design of hyperparameters in kernel PCA.
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In recent years, the influence function of kernel PCA and a robust kernel PCA has been

theoretically derived. One observation of their analysis is that kernel PCA with a bounded

kernel such as Gaussian is robust in that sense the influence function does not diverged,

while for kernel PCA with unbounded kernels for example polynomial the influence func-

tion goes to infinity. This can be understood by the boundedness of the transformed data

onto the feature space by a bounded kernel. While this is not a result of kernel CCA but

for kernel PCA, it is reasonable to expect that kernel CCA with a bounded kernel is also

robust. This consideration motivates us to do some empirical studies on the robustness of

kernel CCA. It is essential to know how kernel CCA is effected by outliers and to develop

measures of accuracy. Therefore, we do intend to study a number of conventional robust

estimates and kernel CCA with different functions but fixed parameter of kernel.

The second goal of the dissertation is to discuss five canonical correlation coefficients

and investigate their performances (robustness) by influence function, sensitivity curve,

qualitative robustness index and breakdown point using different type of simulated datasets.

The final goal of the dissertation is to extract the limitations of cross-validation for the

kernel CCA, and to propose a new regularization approach to overcome the limitations of

kernel CCA. As we demonstrate for Gaussian kernels, the cross-validation errors for kernel

CCA tend to decrease as the bandwidth parameter of the kernel decreases, which provides

inappropriate features with all the data concentrated in a few points. This is caused by

the ill-posedness of the kernel CCA with the cross-validation. To solve this problem, we

propose to use constraints on the 4th order moments of canonical variables in addition

to the variances. Experiments on synthesized and real world datasets including human

action recognition for a robot demonstrate that the proposed higher-order regularized kernel

CCA can be applied effectively with the cross-validation to find appropriate kernel and

regularization parameters.
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Chapter 1

Introduction

Methods using positive definite kernel (PDK), kernel methods play an increasingly promi-

nent role to solve various problems in statistical machining learning such as, web design,

pattern recognition, human action recognition for a robot, computational protein function

perdition, remote sensing data analysis and in many other research fields. Due to the ker-

nel trick and reproducing property, we can use linear techniques in feature spaces without

knowing explicit forms of either the feature map or feature spaces. It offers versatile tools to

process, analyze, and compare many types of data and offers state-of-the-art performance.

Nowadays, PDK has become a popular tool for the most branches of statistical ma-

chine learning e.g., supervised learning, unsupervised learning, reinforcement learning,

non-parametric inference and so on. Many methods have been proposed to kernel meth-

ods, which include support vector machine (SVM, Boser et al., 1992), kernel ridge re-

gression (KRR, Saunders et al., 1998), kernel principal component analysis (kernel PCA,

Schölkopf et al., 1998), kernel canonical correlation analysis (kernel CCA, Akaho, 2001,

Bach and Jordan, 2002), Bayesian inference with positive definite kernels (kernel Bayes’

rule, Fukumizu et al., 2013), gradient-based kernel dimension reduction for regression

(gKDR, Fukumizu and Leng, 2014), kernel two-sample test (Gretton, 2012) and so on.

During the last decade, unsupervised learning has become an important application area

of the kernel methods. There are two most powerful tools of unsupervised kernel methods,

namely kernel principal component analysis (kernel PCA) and kernel canonical correlation

analysis (kernel CCA) (Schölkopf et al., 1998, Akaho, 2001). Using these two methods,

we are able to extract effective nonlinear features by high dimensional embedding of data
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based on the reproducing kernel Hilbert space (RKHS). They have also closed connection

with many unsupervised dimensional reductions and manifold learning techniques (Izen-

man, 2008, Chapter 16). Kernel PCA and kernel CCA have been applied in different areas

of statistical machine learning such as reduction of dimensionality, image processing, fea-

ture extraction, de-noising, statistical shape analysis, novelty detection, pre-processing of

regression and classification (Mika et al., 1999, Kwok and Tsang, 2003, Arias et al., 2007,

Zheng et al., 2010, Hardoon et al., 2004, Huang et al., 2009a, Alzate and Suykens, 2008).

In all of the above areas, kernel PCA and kernel CCA have been used with an arbitrary

choice of the kernel and the number of features. The results are in fact very sensitive to

both the choice of the kernel and the number of features of RKHS. As a kernel method,

kernel PCA and kernel CCA also suffer from the problem of kernel choice. To the best of

our knowledge, however, a well-founded technique for choosing the parameters has not yet

been established.

The cross-validation (CV) approach is popularly used for choosing parameters of kernel

methods, such as the bandwidth parameter in Gaussian kernel, especially in supervised

learning. For SVM, the cross-validation is one of the most popular and useful ways of

choosing the kernel and parameters (Arlot, 2010, Woen and Perry, 2009, Stone, 1974).

In the case of standard linear PCA, the algorithm can be formulated as minimization for

self-regression with reduced rank, and cross-validation approaches have been proposed for

choosing the number of components (Krzanowski, 1987, Wold, 1978). The k-fold CV

has been used for classical CCA (Liang, 1995). Note that it is not possible to apply the

leave-one-out CV (LOOCV) with canonical correlation value, since the correlation is not

computable with one data. While the CV with the canonical correlation value has been

used for choosing the bandwidth in kernel CCA (Suetani et al., 2006), where very dense

data from a chaotic dynamics are discussed, it is not easy in general to obtain reliable

canonical correlation values by the k-fold CV for small data points.

The result of kernel PCA obviously depends on the choice of the kernel. It is often the

case that the kernel has some parameters like the popular examples shown in Table 2.1.

In such a case, these parameters may have a strong influence on the results. To depict the

influence, using wine dataset we show the plots of the first two kernel principal components

with different values of inverse-bandwidth parameters in the Gaussian RBF kernel, and

2
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degree and constant in the polynomial kernel (see Section 3.3 and Figure 3.2). From the

figures, we see that in both the kernels the results of kernel PCA depend strongly on the

parameters, and an appropriate choice is indispensable for the method to give reasonable

low-dimensional representation of data.

In kernel CCA with Gaussian RBF kernel, we need to select a proper inverse bandwidth

and a regularization parameter. It is also well known each hyperparameter has the influence

on the result of kernel CCA. A guideline to select the regularization parameter has been

proposed by Hardoon et al. (2004) and a heuristic technique has been also used for choosing

the bandwidth (Hardoon and Shawe-Taylor, 2009).

It is known that CCA and kernel CCA can be regarded as an alternating regression

problem (Breiman and Friedman, 1985, Shawe-Taylor and Cristianini, 2004). CV using

correlations or prediction error depends on the data concentration. When the data are con-

centrated in only a few extreme points with perfect or nearly perfect correlations, on the

one hand, the CV error will be very small which satisfies the objective of kernel CCA

(maximum correlation of canonical variate) but on the other hand, the canonical variates

do not follow any well-posed distribution. In classification problems, we can use CV based

on classification rates, but the smallest classification error does not correspond to the high

correlated features of kernel CCA, in general.

For kernel CCA, however, the cross-validation approach based on the prediction error

does not necessarily choose a good parameter in general. We demonstrate this problem

using an example of the nutrimouse dataset for the Gaussian RBF kernel (see the Chapter

5). In Figures 5.1 we show eight scatter plots of the first canonical variates using eight

inverse bandwidths together with the cross-validation errors. As we see, the larger value

of inverse bandwidth provides smaller error (≈ 0), but the solution are ill-posed: high

correlation is achieved by the features with most data concentrating on a few points. This

example illustrates that a straightforward application of cross-validation for choosing a

kernel is not appropriate. It is expected that the variance constraints on the kernel CCA do

not regulate sufficient for a large variety of nonlinearity given by different kernels.

Although cross-validation is a popular method for choosing hyperparameters, it is not

applicable straightforwardly to choose a kernel of kernel PCA and kernel CCA. It is im-

portant, thus, to develop a well-founded method of designing a kernel of unsupervised
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kernel methods. The main goal of the dissertation is to design a kernel and robustness for

unsupervised kernel methods.

1.1 Designing kernel for unsupervised kernel methods

Selection of hyperparameters (kernel and the number of features) of kernel PCA is not

a straightforward task because each kernel provides an individual norm in corresponding

feature space. So, we are not able to choose them based on a performance with the norms

of the feature spaces. In Chapter 3, we propose a method for choosing an optimum kernel

and the number of features through the LOOCV based on pre-image performance, which

is an approximate inverse image of a point in the feature space. To this ends, we extract the

pre-image of a test point projected onto the subspace in RKHS using a pre-image method

of each feature space. We then evaluate the reconstruction error based on this pre-image.

As in the leave-one-out cross-validation, each data set is regarded as a test point and the

average error is computed. The kernel and the number of features corresponding to the

minimum error is chosen as the optimum ones.

As the kernel PCA, selection of the kernel and the number of features for kernel CCA

is also a challenging problem. We are not able to extract the kernel CCA fruitfully by

LOOCV. Canonical correlation analysis is the generalization of regression analysis with

multiple response variables. So, it is possible to use mean square error like as regression

analysis to apply LOOCV. By this result, we have observed that for small bandwidth of

Gaussian RBF kernel, the most of data points are accumulated but for a few extreme points.

In this situations, the CV error is very small. Moreover, the CV values highly to depends

on bandwidth in finite samples.

Kernel CCA is given by the second order statistics (e.g., variance) of the canonical

variates; this would suffice for a complete statistical description of a Gaussian distribu-

tion, but not in general. With the rich function classes given by positive definite kernels,

we need much stronger constraint to regulate the canonical variate sufficiently to make the

cross-validation applicable. The kernel CCA subject to the higher-order constraints is pro-

posed to select the tuning parameters using the cross-validation technique. We demonstrate

the effectiveness of the proposed higher-order regularized kernel CCA, combined with the
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cross-validation, in measuring the relationship and extracting effective features for classifi-

cation using various synthesized and real world problems (see Chapter 5).

1.2 Robustness of unsupervised kernel methods

The influence function (IF) of kernel PCA has been theoretically well-known. Kernel PCA

with a bounded kernel such as Gaussian is robust in the sense that the influence function

does not diverge, while it is not robust with unbounded kernels for example polynomial (IF

goes to infinity). This can be understood by the boundedness of the transformed data onto

the feature space by a bounded kernel (Huang et al., 2009b, Suykens et al., 2010). While

this is not a result of kernel CCA, it is reasonable to expect that kernel CCA with a bounded

kernel is also robust. This consideration motivates us to do some empirical studies on the

robustness of kernel CCA. It is essential to know how kernel CCA is affected by outliers and

to develop measures of accuracy. Therefore, we intend to study a number of conventional

robust estimates and kernel CCA with different functions, but fixed bandwidth of Gaussian

RBF kernel and Laplacian kernel (see Chapter 4).

1.3 Scope of the research

Kernel PCA and kernel CCA are most useful and fundamental unsupervised statistical pat-

tern recognition techniques as well as preprocessing techniques for supervised learning:

regression analysis and classification analysis to predict from massive amounts of data.

Both of these techniques are also used in unsupervised learning to extract significant and

anomaly structure of high dimensional datasets. Kernel CCA is also used as a constrast

function of independent component analysis, an important method of unsupervised learn-

ing. An additional important application area of kernel CCA is stochastic processes to

learn the dynamic nature of the processes. The proposed two methods provide a way of

automatic findings the hyperparemtes of the kernel PCA and kernel CCA. It is expected

that our research would be a great impact on the area of statistical machine learning.
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1.4 Outline and summary of the contributions

Chapter 1: The motivation of designing the kernel and robustness for unsupervised kernel

methods are presented in the first chapter.

Chapter 2: A review of important and useful results of functional analysis and PDK is

given in this chapter.

Chapter 3: This chapter discusses the limitations of kernel PCA and provides a new method

for choosing hyperparameters in kernel PCA (kernel and the number of components)

based on CV for the comparable reconstruction errors of pre-images in the original

space. The proposed method has been applied to synthesized and a number of real

world datasets.

Chapter 4: This chapter treats the performances of five canonical correlation coefficients

in the different types of distribution using influence function, sensitivity curve, qual-

itative robust index and breakdown point.

Chapter 5: This chapter discusses the CV for kernel CCA with its limitations, and pro-

vides a new 4th order moment regularization approach for kernel CCA. The proposed

method demonstrates for synthesized and real world problems, including human ac-

tion recognition for a robot.

Chapter 6: A conclusion and further aspects of research are discussed in the final chapter.
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Chapter 2

Preliminary of Functional Analysis and

Kernel

Functional analysis is an abstract branch of mathematics where the vector spaces are in

general infinite dimensional and not all operators on them can be represented by matrices

unlike the linear algebra. An abstract approach starts with a set of elements satisfying

certain axioms. For example, in linear algebra we use it in connection with fields, rings

and groups, but in functional analysis it in connection with abstract spaces (inner product

space, Hilbert spaces, Banach spaces etc.,). An abstract space is a set (unspecified) of

elements satisfying certain axioms. The different sets of axioms provide different abstract

spaces.

Functional analysis has a history of more than one century and nowadays its results

have been used in a number of areas: mathematics, statistics, robust statistics and statistical

machine learning. Some basic definitions and results are summarized in this chapter, which

are frequently used to reproducing kernel Hilbert space (RKHS) and its methods. The fun-

damental references of this chapter are: Hille (1972), Reed and Simon (1980), Kreyszig

(1989), Cucker and Smale (2002), Schölkopf and Smola (2002), Berlinet and Thomas-

Agnan (2004), Shawe-Taylor and Cristianini (2004), Bishop (2006), Steinwart and Christ-

mann (2008), Hofmann et al. (2008), Gärtner (2008), Fukumizu et al. (2009), King (2009),

Fasshauer (2011), Steinwart and Scovel (2012) and Fukumizu et al. (2013).



Functional Analysis and Kernel

2.1 Inner product space

In calculus, the notions of convergence and continuity can be formulated in terms of dis-

tance between two numbers or between two vectors, where the objects are very simple

(R or Rn). In functional analysis, we consider more general spaces, which contain more

complicated objects than numbers and vectors e.g., functions and so on. To find a distance

between two complicated objects, we need a new notion of distance that lead a new notion

of convergence and continuity. These again lead to new arguments surprisingly similar to

those we have already seen in calculus. Now the question, is it possible to develop a general

theory of distance where we can prove the results (we need once and for all)? We have a

positive answer and the theory is called the theory of metric spaces. By inducing general

conditions on the distance function, we are able to develop a general notion of distance,

which can be applicabled even on complicated objects. Using metric space theory, we can

formulate and prove results about convergence and continuity once and for all.

Metric space is a set with a metric on it. We can generalize it by a notion of nearness

(open set is sufficient). Simply imagine small open balls around a point to measure nearness

without mentioning distances, which leads to the idea of a topological space. The funda-

mental notion of topological space is based on the collection of all open sets (complement

is closed set) instead of metric. The field of topology is an abstract study that evolved as an

independent discipline in response to certain problems of classical analysis and geometry.

It provides a unifying theory that can be used in many diverse branches of mathematics.

The metric and topology are defined on an abstract set, which may or may not be a

vector space. To make a relation between algebraic and geometric properties of an abstract

set, we need to define a metric in the special form, say norm. A norm is nothing but a

metric on the vector space, which is combined the algebraic structure and metric concepts.

It can be given more useful and important metric spaces (Kreyszig, 1989).

In a normed space we can do vector addition and scalar multiplication of a vector just

like the elementary vector algebra, but still we cannot do two useful operations: vector

dot product and orthogonality of two vectors. It is possible to fill this gap using the inner

product. A vector space together with an inner product is called an inner product space.

Definition 2.1.1 (Inner product space) Let V is a vector space (real or complex). The
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inner product of the V is a continues mapping ⟨, ⟩ : V × V → F, that has the following

four properties, where F is a scaler field ofV:

CI1 (Positive definite)

⟨x, x⟩ ≥ 0, ⟨x, x⟩ = 0⇔ x = 0.

CI2 (Anti-symmetric (Hermitian))

⟨x, y⟩ = ⟨y, x⟩, ∀ x, y ∈ V.

For a real vector space (Symmetric).

⟨x, y⟩ = ⟨y, x⟩, ∀ x, y ∈ V.

CI3 (Homogeneity)

⟨ax, y⟩ = a⟨x, y⟩, ∀a ∈ F.

CI4 (Cumulative (addition))

⟨x + y, z⟩ = ⟨x, z⟩ + ⟨y, z⟩, ∀x, y, z ∈ V.

The pair (V, ⟨, ⟩) is called inner product space.

A metric is a measure of how different the elements of a set are. A norm is a measure

of how large the element is. An inner product is a measure of what degree the elements are

linearly independent.

A useful property of inner products is the Cauchy-Schwarz inequality,

⟨x, y⟩ ≤ ⟨x, x⟩ 1
2 ⟨y, y⟩ 1

2 . (2.1)

This relationship is also sometimes called the Cauchy-Bunyakovskii-Schwarz inequal-

ity.
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2.2 Hilbert space

Hilbert spaces are possibly-infinite-dimensional analogues of the finite-dimensional Eu-

clidean spaces familiar to us. In particular, Hilbert spaces have inner products, so notions

of perpendicularity (or orthogonality) and orthogonal projection are available. Reasonably

enough, in the infinite-dimensional case we must be careful not to extrapolate too far based

only on the finite-dimensional case. Perhaps strangely, few naturally-occurring spaces of

functions are Hilbert spaces.

Definition 2.2.1 (Hilbert space) A Hilbert space is a real or complex inner product space

that is complete under the inner product.

Example 2.2.1 (Sequence spaces) The space ℓ2 is a Hilbert space (real valued) with inner

product defined as

⟨x, y⟩ =
∞∑

i=1

ξiνi, x, y ∈ ℓ2.

Example 2.2.2 Let H is a finite dimensional real vector space of functions with basis

( f1, f2, · · · , fn). Any vector of H can be defined as a linear combination of ( f1, f2, · · · , fn)

in unique way. An inner product ⟨, ⟩H onH is define by the numbers

ki j = ⟨ fi, f j⟩, i, j = 1, 2, 3, · · · , n.

If u1 =
∑n

i=1 u1i fi and u2 =
∑n

j=1 u2 j f j, then

⟨u1, u2⟩H = ⟨
n∑

i=1

u1i fi,

n∑
j=1

u2 j f j⟩H =
n∑

i=1

n∑
j=1

u1iu2 jki j.

The matrix K = (ki j) is called the Gram matrix of the basis. It is a positive definite

matrix. A finite dimensional space endowed with any inner product is always complete and

therefor it is a Hilbert space.

Example 2.2.3 (Lebesgue spaces) Given µ a Lebesgue measure on the set R of real num-

bers and L(a, b) (−∞ ≤ a ≤ b ≤ ∞, abstract set) be the set of all complex measurable
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function over (a, b) such that

∫ b

a
| f (t)|2dµ(t) < ∞.

Identifying two functions f1 and f2 ofL(a, b) which are equal expect on a set of Lebesgue

measure equal to zero, we get a Hilbert space, L(a, b) with inner product

⟨ f1, f2⟩L(a,b) =

∫ b

a
f1(t) f2(t)dµ(t).

Two (or more) Hilbert spaces can be combined to produce another Hilbert space by

taking either their direct sum or their tensor product (new Hilbert spaces from old).

Definition 2.2.2 (Orthogonal complement) LetH is a Hilbet space andV of be a closed

subspaceH then

V⊥ :
{
x ∈ H

∣∣∣∣ ⟨x, y⟩ = 0, ∀y ∈ V
}

is closed subspace and called the orthogonal complement ofV.

Definition 2.2.3 (Orthogonal projection) Let H is a Hilbert space and V be a closed

subspace. Every x ∈ H can be uniquely decomposed

x = y + z, y ∈ V, z ∈ V⊥ i.e.,H = V ⊕ V⊥,

which is called orthogonal projection.

Definition 2.2.4 (Complete orthonormal system) A subset {vi}i∈I of H is called an or-

thonormal system (ONS) if ⟨vi, v j⟩ = δi j (δi j is Kronecker’s delta). It is called complement

orthonormal system (CONS) or orthonormal basis if it is ONS and if

⟨x, v j⟩ = 0, (∀i ∈ I)⇒ x = 0, ∀x ∈ H .

Facts 2.2.1 Any ONS in a Hilbert space can be extended to a CONS.

Definition 2.2.5 (Separable Hilbert space) A Hilbert space is separable if it has a count-

able CONS.
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Theorem 2.2.1 (Fourier series expansion, (Kreyszig, 1989)) Let {vi}∞i=1 is a CONS of a

separable Hilbert space. For each x ∈ H ,

x =
∞∑

i=1

⟨x, vi⟩vi (Fourier expansion)

||x||2 =
∞∑

i=1

|⟨x, vi⟩|2 (Parseval’s equality).

For a general orthonormal system, the Parseval’s equality becomes a Bessel inequality

||x||2 ≥
∞∑

i=1

|⟨x, vi⟩|2.

2.3 Feature space and its drawback

In the beginning (1980s) of statistical machine learning the main goal was not inference (es-

timation) but generalization or a good “predictive” capability Hastie et al. (2009), Schölkopf

and Smola (2002). However, some nonparametric inference methods have been also devel-

oped for inference Fukumizu et al. (2013), Gretton (2012), and so on. For generalization

or a good prediction, We seek to arrive at a function

f : X → Y

based on training data, {(x1, y1), (x2, y2), . . . (xn, yn)}. The goal, a given test set {x′i}ti=1, arrive

at “good” predictions {y′i}ti=1 via f . Define the hypothesis spaceH as the space of functions

to consider for f . The learning problem can then be summarized as finding a method L that

maps a training set to a function of the hypothesis space:

L : (X ×Y)n → H .

Define an unknown probability measure onX andY : µ(dx, dy) but assume that the training

samples {(xi, yi)} ∼ p(x, y) is independent and identically distributed (iid).

We need some measure of “similarity” between elements of the input space X via inner
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product space (tractable learning problem). For this purpose, we need a function that takes

any pair of values x ∈ X and x′ ∈ X a real value returns their “similarity”:

k : X × X → R, (x, x′)→ k(x, x′),

where k refers to as a kernel. This allows us to make statements about how similar the

outputs y with new y′. Similarity measure by inner product

⟨x, z⟩ = Large if x and z similar

= Small if x and z different

For example, Good measure how similar x, z

k(x, x′) = e−
1

2s2 ∥x−x′∥2 ; k(x, x′) =
⟨x, x′⟩
∥x∥∥x′∥ .

We have to seek a space that incorporates inner product by map X into a new space with

some additional structure. Do linear techniques work in nonlinear inputs space? The an-

swer is negative.

Definition 2.3.1 (Input space) The space of all original data is called input space. The

representation space is the set of all possible object descriptions that can occur in a given

problem.

The following basic linear techniques do not work well in nonlinear input space:

• Correlation analysis,

• Linear regression analysis,

• Fisher discriminant analysis,

• Principal component analysis (PCA),

• Canonical correlation analysis (CCA) and so on.

So we need to seek a new space for which linear techniques are worked well, say feature

space.
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2.3.1 Feature space

Definition 2.3.2 (Feature space) Let X is a set and x ∈ X

Φ := X → H , x→ Φ(x)

is a feature map and the vector Φ(x) in H is called feature vector. The space H for all

functions via Φ is called feature space. It is a finite or infinite dimensional vector space.

For example, letX ∈ R be the variable for the duration of earthquake in last two months.

X →



ϕ1(X)

ϕ2(X)

ϕ3(X)

ϕ4(X)


=



X

X2

X3

X4


= Φ(X), ϕi’s are the nonlinear maps.

The map X → H not for only similarity, but also has more features:

• induce a geometric structure that we can leverage (deal with the patterns geometri-

cally),

• linearizing of nonlinear space (linear, but nonlinear in input space),

• the freedom to choose the mapping Φ will enable us to design a large variety of

learning algorithms.

The main argument is that any low-dimensional structure may be more easily discov-

ered when it becomes embedded in the larger spaceH , which could be infinite dimensional

space.

2.3.2 Computational problems of feature space

For high dimensional feature vector Φ(X), we are not able to compute the inner product

⟨Φ(X),Φ(X)⟩. For example, simple, bivariate case up to quadratic transforms

X = (X, Y)→ (X, Y, X2,Y2, XY)
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We have five variables to use linear method (R5). If we consider 3 variables and higher

oder up to cubic transforms

X = (X, Y,Z)→ (X,Y,Z, X2,Y2, Z2, XY, XZ,YZ, X2Y, X2Z, XYZ . . .).

If the input vector X is 100 dimensional and the moments up to the 4th order are used

(
100

1

)
+

(
100
2

)
+

(
100

3

)
+

(
100

4

)
= 4087975 = dim(H).

Computational cost will be expensive on the inner product of the feature space and impos-

sible for infinite dimension.

2.4 Kernel and positive definite kernel

2.4.1 Kernel

The term kernel has a long history. The meaning of the kernel depends on the subjects that

has different meanings in different literatures. In mathematics, the term kernel itself is used

with different meanings, for example, in linear algebra where it is used as a synonym for

the null space. In the beginning of the last century David Hilbert and other researches, the

term kernel has been used as a bivariate function to the field integral operators. The term

kernel has been also used for density estimation in the statistical literature, where the kernel

K : R→ R is an integrable function satisfying
∫

K(x) dx = 1.

The term kernel has been also used as a positive definite kernel (PDK) in the branch

of mathematics since 1950s. The PDK is a large class of kernels, which contains Mercer

kernel and so on. It can be regarded as a generalized dot product. Figure 2.1 presents the

historical background of the kernel in the 20th century.
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Figure 2.1: Background of the kernel in the 20th century.

Definition 2.4.1 (Kernel) Let X be a non-empty arbitrary set. A bivariate function k :

X × X → R is called kernel on X if there exists a Hilbert space, H and a feature map

Φ : X → H such that for all x, x′ ∈ X we have

k(x, x′) = ⟨Φ(x),Φ(x′)⟩.
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In general the kernel may be also defined on the complex field. So, Hilbert space may be

also a complex valued Hilbert space.

Algorithms can be applied in dot product space by considering the kernel as a similarity

measure. We can construct a kernel of several ways as follows:

• straightforward construction of feature map and space,

• using a sequence of functions ( fn : X → F, n ∈ N such that ( fn(x))∞n=1) ∈ ℓ2, ∀x ∈ X,

• using algebraic properties of the set of kernels, k1 and k2,

– sum of kernels on same set (k1 + k2),

– scalar multiplication of kernel (αk)< 0, α ∈ F,

– product of kernel on different set, k1k2

– polynomial of kernel with positive coefficients,

– taking exponential,

• using Taylor series,

• using Fourier series,

• pointwise limit of kernels.

We can define a number of feature maps via a kernel as follows.

• Aronszajn map: Φ : x → k(x, ·), Hk is the associated reproducing kernel Hilbert

space (RKHS) k(x, y) = ⟨k(x, ·), k(y, ·)⟩.

• Kolmogorov map: Φ : x → Xx, Hk = L2(RX, µ), where µ is the Gaussian measure

k(x, y) = E[XxXy].

• Integral map: there exists a set T and a measure µ such that on has Φ : x →

(Γx(t))t∈T ,Hk = L2(T, µ), k(x, y) =
∫
Γ(x, t)Γ(y, t)dµ(t).

• Basis map: given any orthonormal basis ( fα)α∈I of the RKHS associated withH , on

has Φ : x→ ( fα)α∈I ,H = ℓ2(I) and k(x, y) =
∑
α∈I fα(x) fα(y).

When infinite sums are involved like in the Basis map, it is important to specify in which

sense the sum converges. In general the convergence occurs for each pair.
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2.4.2 Advantages of kernel

It is well-known that the feature space suffers the computational problem. In case of high

dimensional data the computational cost becomes very high. Using inner product by the

kernel we can overcome this problem efficiently. First advantage of the kernel is that in

many important special case feature computation will be very inexpensive by k(x, z) =

⟨Φ(x),Φ(z)⟩, where x and z are in the arbitrary set X.

Example 2.4.1 (Quadratic kernel) Let x, z ∈ Rm we have

k(x, z) = [xT z]2 = (
m∑

i=1

xizi)(
m∑

j=1

x jz j) =
m∑

i=1

m∑
j=1

(xix j)(ziz j) = ⟨Φ(x),Φ(z)⟩.

In case m = 3

Φ(x) =



ϕ1(x)

ϕ2(x)

ϕ3(x)

ϕ4(x)

ϕ5(x)

ϕ6(x)

ϕ7(x)

ϕ8(x)

ϕ9(x)



=



x1x1

x1x2

x1x3

x2x1

x2x2

x2x3

x3x1

x3x2

x3x3


Cost for kernel, k(x, z) = O(m) is linear but for ϕ(x) = O(m2) is quadratic.

Example 2.4.2 (Polynomial kernel) Let x, z ∈ Rm using polynomial kernel we have

k(x, z) = [xT z + c]2 = ⟨x, z⟩2 + 2c⟨x, z⟩2 + c2 = ⟨Φ(x),Φ(z).⟩
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In case m = 3

Φ(x) =



ϕ1(x)

ϕ2(x)

ϕ3(x)

ϕ4(x)

ϕ5(x)

ϕ6(x)

ϕ7(x)

ϕ8(x)

ϕ9(x)

ϕ10(x)

ϕ11(x)

ϕ12(x)

ϕ13(x)



=



x1x1

x1x2

x1x3

x2x1

x2x2

x2x3

x3x1

x3x2

x3x3
√

2cx1
√

2cx2
√

2cx3

c


In general dim(H) =

(
m+d

d

)
different features consisting all monomials having degree at

most d with input dimension m.

The second advantage of the kernel is to use non-vectorial data, e.g., text strings or DNA

sequences and so on. Another important advantage is that given a kernel we need neither

the explicit form of the feature map nor the feature space, which are not also uniquely

determined. Moreover, note that a similar construction can be made for arbitrary kernels

and consequently every kernel has many different feature spaces. However, we can always

construct a canonical feature space, namely the RKHSs (see Section 2.5). RKHSs have the

remarkable and important property that norm convergence implies pointwise convergence.

2.4.3 Positive definite kernel (PDK)

Although we have already seen several techniques to construct kernels, in general, we still

have to find a feature space in order to decide whether a given function k is a kernel or

not. Since this can sometimes be a difficult task, we will now present a criterion that

characterizes R-valued kernels in terms of inequalities (positive semi-definite). By the
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definition of positive definite function, if k is a R-valued kernel with feature map Φ : X →

H . The kernel k is symmetric since the inner product in H is symmetric. Moreover, k is

also positive definite since for n ∈ N, α1, α2, . . . , αn ∈ R and x1, · · · , xn ∈ X

n∑
i=1

n∑
j=1

αiα jk(xi, x j) = ⟨
n∑

i=1

αiΦ(xi),
n∑

j=1

α jΦ(x′j)⟩H ≥ 0.

We can check whether a bivariate function is PDK by symmetry and positiveness.

Definition 2.4.2 (Kernel matrix or Gram matrix) Given a kernel k and inputs x1, · · · , xn ∈

X, the square matrix

K := (k(xi, x j))i, j

of order n is called the kernel matrix (Gram matrix) of k with respect to x1, · · · , xn.

Definition 2.4.3 (Positive semi-definite matrix) A real symmetric matrix K satisfying

n∑
i=1

n∑
j=1

αiα jKi j ≥ 0, ∀αi ∈ R (2.2)

is called positive definite kernel. It is said to be strictly positive definite if equality in (2.2)

occurs for α1 = α2 = · · · = αn = 0.

Definition 2.4.4 (Positive definite kernel) A symmetric kernel k(·, ·) defined on a non-empty

spaceX is called positive definite if for arbitrary number of points x1, . . . , xn ∈ X the kernel

matrix (k(xi, x j))n
i, j=1 is positive semi-definite.

In kernel methods, the nonlinear feature map is given by a positive definite kernel,

which provides nonlinear methods for data analysis with efficient computation. It is known

that a positive definite kernel k is associated with a Hilbert space H , called reproducing

kernel Hilbert space (see Section 2.5), consisting of functions on X so that the function

value is reproduced by the kernel (Aronszajn, 1950).

Definition 2.4.5 (Reproducing property) For any function of RKHS, i.e., f ∈ H and a

point x ∈ X, the function value f (x) is given by

f (x) = ⟨ f (·), k(·, x)⟩H , (2.3)
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where ⟨, ⟩H in the inner product ofH , which is called reproducing property.

The reproducing property says that each Dirac functional can be represented by the

reproducing kernel. A Hilbert function space H that has a reproducing kernel k is always

a RKHS (see Section 2.5). Every RKHS has a (unique) reproducing kernel and that this

kernel can be determined by the Dirac functionals.

Definition 2.4.6 (Kernel trick) By replacing f with k(·, x̃) in Eq. (2.3) yields

k(x, x̃) = ⟨k(·, x), k(·, x̃)⟩H for any x, x̃ ∈ X.

To transform data for extracting nonlinear features, the feature map Φ : X → H is

defined by

Φ(x) = k(·, x),

which is regarded as a function of the first argument. The inner product of two feature

vectors is then given by

⟨Φ(x),Φ(x̃)⟩H = k(x, x̃).

This is known as the kernel trick.

The kernel trick serves as a central equation in the kernel methods. By this trick the

kernel can evaluate the inner product of any two feature vectors efficiently without knowing

an explicit form of neither Φ(·) nor H . With this computation of inner product, many

linear methods of classical data analysis techniques can be extended to nonlinear ones with

an efficient computation based on Gram matrices. Once Gram matrices are computed, the

computational cost does not depend on the dimensionality of the original space.

2.4.4 Well-known PDKs and its parameters

Assume k : X × X → R is positive definite kernel. Then for any x, x′ ∈ X, the following

kernels are real valued positive definite kernels on R:
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i. Linear kernel

k0(x, x′) = ⟨x, x′⟩ = xT x′.

It is just used the underlying Euclidean space to define the similarity measure. When-

ever the dimensionality of x is very high, this may allow for more complexity in the

function class than what we could measure and assess otherwise. It has limitation of

linearity.

ii. Polynomial kernel

kP(x, x′) = (xT x′ + c)d, (c ≥ 0, d ∈ N).

Using polynomial kernel it is possible to use the higher order correlation between the

data in the different purposes. This kernel incorporates all polynomial interactions up

to degree d (provided that c > 0). For instance, if we wanted to take only mean and

variance into account, we would only need to consider d = 2 and c = 1. For higher

emphasis on mean we need to increase the constant offset a. Polynomial kernels

only map data into a finite dimensional space. Due to the finite bounded degree such

kernel will not provide us with guarantees for a good dependency measure.

iii. Gaussian radial basis function (RBF) kernel

kG(x, x′) = e−s||x−x′ ||2 , (s > 0).

Many radial basis function kernels, such as the Gaussian RBF kernel map x into an

infinite dimensional space.

iv. Exponential kernel

kE(x, x′) = e(αxT x′), (α > 0).
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v. Laplacian kernel

kL(x, x′) = e−β∥x−x′∥, (β > 0).

• Binomial kernel: Let X := {x ∈ Rd : ∥x∥2 < 1} and α > 0. Then

k(x, x′) := (1 − ⟨x, x′⟩)−α.

Table 2.1: Examples of well-known positive definite kernels and its parameters.
Kernel k(x, x̃) Parameter
Polynomial (⟨x, x̃⟩ + c)d c ≥ 0, d ∈ N
Gaussian RBF e−s||x−x̃||2 s > 0
Exponential e(αxT x̃) α > 0
Laplace e−β∥x−x̃∥ β > 0

Definition 2.4.7 (Stationary kernels) Let κ : Rn → R be a function. Then κ is called a

positive definite function (or function of positive type or Stationary kernels) if

k(x, z) = κ(x − z)

this type of the kernel is called stationary, a stationary kernel. It depends only on the

lag vector separating the two examples x and z but not on the examples themselves. A

stationary kernel of the form ϕ(x−y) is also called a shift invariant (or translation invariant)

kernel. Gaussian and Laplacian kernels are example of stationary kernel.

Definition 2.4.8 (Nonstationary kernels) A kernel is called nonstatinary, which depends

on explicitly on the two examples x and z of k(x, z) . For example Linear kernel and poly-

nomial kernel.
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2.4.5 Valid PDKs and its matrices

Given an arbitrary set X. Assume there exist Φ such that k(x, x′) = ⟨Φ(x),Φ(x′)⟩ (kernel

trick) is a valid PDK, where x , x′ ∈ X. Let x1, x2, . . . , xn ∈ X and c1, c2, . . . , cn ∈ R. Then

n∑
i=1

n∑
j=1

cic jk(xi, x j) =
n∑

i=1

n∑
j=1

cic j⟨Φ(xi),Φ(x j)⟩ = ⟨
n∑

i=1

ciΦ(xi),
n∑

i=1

c jΦ(x) j⟩ = ||
n∑

i=1

ciΦ(xi)||2 ≥ 0

i.e. the symmetric matrix

K = (k(xi, x j))n
i, j=1 =



k(x1, x1) k(x1, x2) . . . k(x1, xn)

k(x2, x1) k(x2, x2) . . . k(x2, xn)
...

... . . .
...

k(xn, x1) k(xn, x2) . . . k(xn, xn)


is positive semidefinite. The kernel matrix K = (k(xi, x j))n

i, j=1 is often called a Gram matrix

in statistical machine learning literature. Symmetry an positive definiteness are not only

necessary for k to be a PDK but also sufficient.

We do not actually need to have a centered Φ but for some methods we do need K

K̃i j = ⟨Φ̃(xi), Φ̃(x j)⟩ = ⟨Φ(xi) −
1
n

n∑
a=1

Φ(xa),Φ(x j) −
1
n

n∑
b=1

Φ(xb)⟩

= ⟨Φ(xi),Φ(x j)⟩ −
1
n

n∑
b=1

⟨Φ(xi),Φ(xb)⟩ − 1
n

n∑
a=1

⟨Φ(Xa),Φ(x j)⟩ +
1
n2

n∑
a=1

n∑
b=1

⟨Φ(xa),Φ(xb)⟩

= Ki j −
1
n

n∑
b=1

Kib −
1
n

n∑
a=1

Ka j +
1
n2

n∑
a=1

n∑
b=1

Kab

= Ki j −
1
n

n∑
b=1

Kib1b j −
1
n

n∑
a=1

1iaKa j +
1
n2

n∑
a=1

n∑
b=1

1iaKab1b j

= (K −K(n−1Jn) − (n−1Jn)K + (n−1Jn)K(n−1Jn))i j,

= (HKH)i j (2.4)

where for all i and j, 1i j = 1, 1n = [1, 1, · · · , 1]T , and H = In − 1
nJn with Jn = 1n1T

n .
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The centered vector of a test point x is defied as

k̃x = [k̃(x, x1), · · · , k̃(x, x1)]T

= kx −
1
n

Jnkx −
1
n

K1n +
1
n2 JnK1n

= H[kx −
1
n

K1n],

where kx = [k(x, x1), · · · , k(x, xn)]T .

Given a set of test points xt
1, · · · xt

L, as in Eq. (2.1), we can define the centered matrix of

order L × n,

K̃t = ⟨Φ(xt
i) −

1
n

n∑
a=1

Φ(xa),Φ(x j) −
1
n

n∑
b=1

Φ(xb)⟩

in terms of the non centered matrix Kt = ⟨Φ(xt
i),Φ(x j)⟩, we have

K̃t = Kt − 1
n

JT
L×nK − 1

n
KtJL×n +

1
n

JT
L×nK

1
2

JL×n,

where JL×n is the L × n matrix with all entries equal to 1.

A good monograph on the theory of positive definite kernels is Steinwart and Christ-

mann, 2008 (Steinwart and Christmann, 2008, Chapter 4). The following sections all un-

specified results are taken from that work.

Theorem 2.4.1 For any set X , ∅ and a real valued function k : X × X → R is a PDK,

i.e., it is symmetric and positive semi-definite, if and only if there is a mapping Φ : X → H

with a scalar product ⟨·, ·⟩ such that

k(x, x′) = ⟨Φ(x),Φ(x′)⟩, ∀x, x′ ∈ X.

Theorem 2.4.2 Let X be a non-empty set and fn : X → F, n ∈ N, be functions such that

( fn(x))∞n=1 ∈ ℓ2 for all x ∈ X. Then

k(x, x′) :=
∞∑

n=1

fn(x) fn(x′), ∀x′ ∈ X, (2.5)
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defines a PDK on X.

Definition 2.4.9 (Restriction of PDK) Let k is a kernel on X, X̃ be a set, and L : X → X̃

be a map. Then k̃ defined by

k̃(x, x′) := k(L(x), L(x′)), ∀x, x′ ∈ X,

is a PDK on X̃. In particular, if X̃ ⊂ X, then k|X̃×X̃ is a PDK.

2.4.6 Properties of PDKs

Theorem 2.4.3 Let k : X × X → C be a PDK,Hc be a C-Hilbert space, and Φ : X → Hc

be a feature map of k. Assume that we have k(x, x′) ∈ R for all x, x′ ∈ X. Then Hr = Hc

equipped with the inner product

⟨z, z′⟩Hr := Re⟨z, z′⟩Hc , z, z′ ∈ Hr,

is an R-Hilbert space, and Φ : X → Hr is a feature map of k.

Theorem 2.4.4 Let X be a set, α ≥ 0, and k, k1, and k2 be PDKs on X. Then αk and k1+ k2

are also PDKs on X.

The preceding theorem 2.4.4 states that the set of PDKs on X is a cone. It is, however,

not a vector space since, in general differences of PDKs are not a PDK.

Theorem 2.4.5 Let k1 be a PDK on X1 and k2 be a PDK on X2. Then k1 · k2 is a PDK on

X1 × X2. In particular, if X1 = X2, then k(x, x′) := k1(x, x′)k2(x, x′), x, x′ ∈ X, defines a

PDK on X.

With the above two theorems, (2.4.4 and 2.4.5) it is easy to construct the non-trivial

kernels. To illustrate this, let us assume for simplicity that X = R. Then for every integer

n ≥ 0, the map kn defined by

kn(x, x′) := (xx′)n,∀x, x′ ∈ X
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is a PDK by the 2.4.2. Consequently, if p : X → R is a polynomial of the for

p(t) = a0 + a1t + . . . + amtm

with non-negative coefficients ai, then

k(x, x′) := p(xx′), x, x′ ∈ X (2.6)

is define a PDK on X by theorem (2.4.4).

Theorem 2.4.6 Let p ≥ 0 and d ≥ 0 be integers and c ≥ 0 be a real number. Then k

defined by k(z, z′) := (⟨z, z′⟩ + c)p, z, z′ ∈ Cd, is a kernel on Cd. Moreover, its restriction to

Rd is a R-valued PDK.

Note that the polynomial kernel defined by p = 1 and c = 0 are called a linear kernel.

Instead of using polynomials for constructing kernels, one can use functions that can be

represented by Taylor series. This is done in the following theorem.

Theorem 2.4.7 (Taylor type kernel) Let ÅC and ÅCd be the open unit balls of C and Cd,

respectively . Moreover, let r ∈ (0,∞) and f : rÅC → C be holomorphic with Talylor series

f (z) =
∞∑

n=0

anzn, z ∈ ÅC

If an ≥ 0 for all n ≥ 0, then

k(z, z′) := f (⟨z, z′⟩Cd ) =
∞∑

n=0

an⟨z, z′⟩nCd , z, z′ ∈
√

rÅCd ,

defines a kernel on
√

rÅCd whose restriction to X = {x ∈ Rd : ∥x∥2 <
√

r} is a real valued

kernel. We say that k is a kernel of Taylor type.

Example 2.4.3 (Gaussian RBF kernel) Let us denote jth component of a complex vector

z ∈ Cd by z j. The complex Gaussian RBF kernel with band width s > 0 is given by

ks,Cd (z, z′) := e−s
∑d

j=1(z j−z̄′j)
2
,
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where d ∈ N and z, z′ ∈ Cd. If we make a restriction ks := (ks,Cd )|Rd×Rd is an R-valued

kernel, which we call the (real) Gaussian RBF kernel with width s. Obviously, this kernel

satisfies

ks(x, x′) := e−s||x−x′ ||22 , ∀x, x′ ∈ R,

where || · || denotes the Euclidean norm on Rd.

Definition 2.4.10 (A family of spaces) Let s > 0 and d ∈ N. For a given holomophic

function f : Cd → C we define

|| f ||s,Cd :=
(
2d s2d

πd

∫ d

C
| f (z)|2e−s2 ∑d

j=1(z j−z̄′j)
2
)
,

whee dz stands for the complex Lebesgue measure on Cd. Furthermore, we write

Hs,Cd :=
{
f : Cd → C

∣∣∣ f holomorphic and || f ||s,Cd < ∞
}
.

Example 2.4.4 (RBF kernel) By considering RBF kernel

k(x, z) = e−
1

2s2 ||x−z||2
= e−

1
2s2 ⟨x,x⟩e

1
s2 ⟨x,z⟩e−

1
2s2 ⟨z,z⟩

= e−
1

2s2 ⟨x,x⟩
[
1 +
⟨x, z⟩

s2 +
1
2!
⟨x, z⟩2
(s2)2 + . . .

]
e−

1
2s2 ⟨z,z⟩

= e−
1

2s2 ⟨x,x⟩
 ∞∑

i=0

1
i!
⟨x, z⟩i
(s2)i

 e−
1

2s2 ⟨z,z⟩

=

∞∑
i=0

1
i!

e−
1

2s2 ⟨x,x⟩ xi

(s)i

zi

(s)i e
− 1

2s2 ⟨z,z⟩

= ⟨Φ(x),Φ(z)⟩,

where

Φ(x) =



ϕ1(x)

ϕ2(x)

ϕ3(x)
...


, ϕi(x) = e−

1
2s2 ⟨x,x⟩ 1

i!si
xi.
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Definition 2.4.11 (Fourier type kernel) Let f : [−2π, 2π] → R be a continuous function

that can be expanded in a pointwise convergent Fourier series of the form

f (t) =
∞∑

n=0

ancos(nt).

If an ≥ 0 holds for all n ≥ 0 then k(x, x′) :=
∏d

i=1 f (xi − x′i) defines a kernel on [0, 2π)d. We

say that k is a PDK of Fourier type.

Theorem 2.4.8 Assume k : X × X → R is positive definite and x, y ∈ X,

1. Positive definiteness implies positivity on the diagonal k(x, x) ≥ 0

2. Cauchy- Schwarz inequality |k(x, y)|2 ≤ k(x, x)k(y, y)

Proof 2.4.1 Positive definiteness implies positive on the diagonal and symmetry i.e.

k(x, y) = k(y, x).

The 2 × 2 gram matrix with entries Ki j = k(xi, x j) is positive. With fact k(xi, x j) = k(x j, xi),

the definition of positive definiteness implies that the eigenvalues of the hermitian matrix

 k(x1, x1) k(x1, x2)

k(x2, x1) k(x2, x2)

 =
 k(x1, x1) k(x2, x1)

k(x2, x1) k(x2, x2)


is non-negative, thus its determinant k(x1, x1)k(x2, x2) − |k(x1, x2)|2 i.e.,

0 ≥ K11K22 − K12K21 = K11K22 − K12K12 = K11K22 − |K12|2

Theorem 2.4.9 (Limits of PDKs are alos a PDK) Let (kn) be a sequence of PDKs on the

set X that converges pointwise to a function k : X×X → R, i.e., limn→∞ kn(x, x′) = k(x, x′)

for all x, x′ ∈ X. Then k is a PDK on X.

To prove we need to show k is symmetric and positive definite.
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For any PDK, via space Φ,H so that kernel trick holds:

f (·) =
m∑

i=1

αik(·, xi), g(·) =
n∑

j=1

β jk(., x j), ⟨ f , g⟩H =
∑
i=1

∑
j=1

αiβ jk(xi, x j),

where m, n ∈ N, αi, β j ∈ R and xi, x j ∈ X

• Symmetry:

⟨ f , g⟩ =
∑
i=1

∑
j=1

αiβ jk(xi, x j) =
∑
i=1

∑
j=1

αiβ jk(x j, xi) = ⟨g, f ⟩.

• Bilinearity:

⟨ f , g⟩ =
∑
i=1

∑
j=1

αiβ jk(xi, x j) =
∑
j=1

β j f (x j) =
∑
i=1

αig(xi).

• Non-negative:

⟨ f , f ⟩ =
∑
i=1

∑
j=1

αiα jk(xi, x j) ≥ 0.

Let us see what happens if we evaluate the inner product of f ∈ H with k(·, xi)

⟨k(·, x), f (·)⟩ =
n∑

i=1

αi⟨k(·, x), k(·, x j)⟩ =
n∑

i=1

αi⟨k(x, x j)⟩ = f (x). (2.7)

The above reproducing property, together with the Cauchy-Schwartz inequality |⟨x, y⟩| ≤

||x||||y||, implies that:

| f (x)|2 = |⟨k(·, x), f ⟩|2 ≤ ⟨k(·, x), k(·, x)⟩⟨ f , f ⟩

which in turn implies that f = 0 if ⟨ f , f ⟩ = 0. Thus the vector space of feature map

Φ(x) = k(·, x) induces with (2.7)

k(x, z) = ⟨Φ(x),Φ(x′)⟩H ,

H as simply a pre-Hilbert space. To make it a true Hilbert space we must take its
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closure, including the set of all limit points for sequences in H defined with respect to

some (induced) norm.

2.4.7 Interplay between PDK, reproducing kernel and Mercer kernel

A kernel can be also defined on the functional viewpoint since each PDK k on a set X is

associated a Hilbert spaceHk of real-valued functions on X.

Definition 2.4.12 (Reproducing kernel) Let X be a non-empty arbitrary set. A bivariate

function k : X × X → R is called reproducing kernel a Hilbert spaceH on X iff

i) for all elements of X, the function k will be inH i.e.,

∀x ∈ X, k(·, x) ∈ H ,

ii) the function k follows reproducing property.

Due to Moore Aronszajn theorem (Aronszajn, 1950), it can be shown that the definition of

positive definite kernel and reproducing kernel are equivalent.

Proposition 2.4.1 The reproducing kernel k(·, x) of a reproducing kernel Hilbert spaceHk

is a positive matrix.

Proof 2.4.2 Let us assume, kx(·) = k(·, x) be the a reproducing kernel Hilbert space Hk.

We have

0 ≤ ||
n∑

i=1

αikxi ||2 = ⟨
n∑

i=1

αikxi ,

n∑
j=1

α jkx j⟩ =
n∑

i=1

n∑
j=1

αiαi⟨kxi , kx j⟩

=

n∑
i=1

n∑
j=1

αiαik(xi, x j).

Hence

n∑
i=1

n∑
j=1

αiαik(xi, x j) ≥ 0.

Theorem 2.4.10 (Moore Aronszajn, 1950) Let k : X×X → R be a positive definite kernel

on a set X. Then, there uniquely exists a RKHSHk on X such that

31



Functional Analysis and Kernel

• k(·, x) ∈ Hk, ∀x ∈ X.

• The subspaceH ofHkandH= Span{k(·, x) : x ∈ X} is dense inHk.

• k is the reproducing kernel onHk , i.e.,

f (x) = ⟨ f , k(·, x)⟩Hk , (∀x ∈ X,∀ f ∈ Hk).

• Hk is the set of functions on X which are pointwise limits of Cauchy sequence in H

with the inner product

⟨ f , g⟩ =
∑
i=1

∑
j=1

αiβ jk(xi, x j)⟩,

where

f (·) =
m∑

i=1

αik(·, xi) and g(·) =
n∑

j=1

β jk(·, x j).

The above theorem tells us one-to 0ne correspondence between PDK and RKHS i.e.,

k ⇔ Hk.

Theorem 2.4.11 (Mercer (1909)) Let X ⊂ Rn, n ∈ N be closed, a strictly positive and

finite Borel measure ν on X and a continuous k : X × X → R satisfying: for any finite of

points {xi}Ni=1 in X and real numbers {ai}Ni=1

N∑
i=1

N∑
j=1

aia jk(xi, x j) ≥ 0,

and

∫
X

∫
X

k(x, x′)2dν(x)dν(x′) < ∞.
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Let Lk : L2
ν(X)→ L2

ν(X) be a integral operator defined as

Lk f (x) =
∫
X

k(x, x′) f (x′)dν(x′), f ∈ L2(ν)

with a countable system of nonnegative eigenvalues {µi}∞i=1 satisfying
∑∞

i=1 µ
2
i < ∞ and

corresponding orthonormal eigenfunctions (ei)∞i=1. Then

k(x, x′) =
∞∑

i=1

µiei(x)ei(x′), x, x′ ∈ X, (2.8)

where the convergence is absolute for each pair (x, x′) ∈ X × X and uniform on each

compact subset of X.

We can define the feature map via the Mercer’s theorem as follows

eν : X → ℓ2, eν(x) = (
√
λiei(x))∞i=1,

where if only N < ∞ of the eigenvalues are strictly positive, then eν : X → RN .

The notion of positive definite kernel was not well-known before the 1950s. Instead,

researchers have been used kernels that satisfy the conditions of Mercer’s theorem, called

Mercer’s kernel. A kernel which satisfied the conditions of Mercer’s theorem implies that

the kernel also satisfied the kernel trick i.e., k(x, x′) = ⟨Φ(x),Φ(x′)⟩ but the converse is not

true. So all Mercer’s kernels are PDKs but all PDKs are not Mercer’s kernels. Mercer’s

theorem is a special case of the basis map. It gives a stronger (uniform) convergence

properties of the kernel representation, but needs additional assumption, namely X has

to be compact and the kernel is continuous. Mercer’s theorem has played a crucial role in

supervised learning, say SVM in which the kernel trick is introduced via Mercer’s theorem.

2.5 Reproducing kernel Hilbert space (RKHS)

It is known (Aronszajn, 1950) that a positive definite kernel k is associated with a Hilbert

spaceH , called reproducing kernel Hilbert space (RKHS), consisting of functions on X so

that the function value is reproduced by the kernel.
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Definition 2.5.1 (Reproducing kernel Hilbert spaces) Let a set X , ∅. A RKHS of a

kernel k,Hk over X is a space of functions f : X → R such that

• The function k is defined as k : X × X → R.

• For every x ∈ X and f ∈ Hk

f (x) = ⟨ f (·), k(·, x)⟩Hk .

where kx = k(·, x) ∈ Hk is a function with fixed x (k has reproducing property).

• Hk = span{k(·, x) : x ∈ X} i.e., k spansHk, where A denotes the completion set of A.

The Reproducing kernel Hilbert spaces (RKHS) of a PDK are in a certain sense the

smallest feature space of this PDK and consequently can serve as a canonical feature space.

Now, we briefly discuss the properties of RKHS.

2.5.1 Properties of RKHS

Reproducing kernel Hilbert spaces have the remarkable and important property that norm

convergence implies pointwise convergence. More precisely, let H be a RKHS, f ∈ Hk,

and ( fi)∞i ⊂ Hk be a sequence with ∥ fn − f ∥H → 0 for i → ∞ (there is a convergence

sequence). Then for all x ∈ X, we have

lim
n→∞

fn(x) = lim
n→∞
δx( fn) = f (x).

Reproducing kernels are actually kernels since the feature map is defined by the kernels.

The reproducing property says that each Dirac functional can be represented by the re-

producing kernel. Consequently, a Hilbert function space that has a reproducing kernel is

always a RKHS. Every RKHS has a (unique) reproducing kernel and this kernel can be

determined by the Dirac functional.

Theorem 2.5.1 Let Hk be a Hilbert function space over X with a reproducing kernel k.

Then Hk be a RKHS over X and Hk is also a feature space of k, where the feature map
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Φ : X → Hk is defined as

Φ(x) = k(·, x), ∀x ∈ X.

Theorem 2.5.2 LetHk be a RKHS over X. Then k : X × X → K defined by

k(x, x′) := ⟨δx, δx′⟩, ∀x, x′ ∈ X,

is the only reproducing kernel onHk. Furthermore, if (ei)i∈I is an orthonormal basis (ONB)

or complete orthonormal system ofHk then for all x, x′ ∈ X, we have

k(x, x′) =
∑
i∈I

ei(x)ei(x′), (2.9)

where the convergence is absolute.

The theorem 2.5.2 tells us, a RKHS uniquely determines its reproducing kernel, which is

actually a kernel. The ONB in the theorem2.5.2 is not necessarily countable. However,

RKHSs over separable metric spaces having a continuous kernel are always separable and

hence all their ONBs are countable. In particular, the RKHSs of Gaussian RBF kernels

always have countable ONBs. A non separable Hilbert space of continuous functions on a

separable topological space has no reproducing kernel.

Theorem 2.5.3 Let X , 0 and k be a kernel over X with the feature space H and feature

map Φ : X → H . Then

Hk := {⟨w,Φ(·)⟩H : w ∈ H} (2.10)

equipped with the norm

|| f ||Hk := inf {||w||H : w ∈ H with f = ⟨w,Φ(·)⟩H } (2.11)

is the only RKHS of k. In particular both definitions are independent of the choice of H

35



Functional Analysis and Kernel

and Φ0 and the operator V : H → Hk defined by

Vw := ⟨w,Φ(·)⟩H , w ∈ H

is a metric surjection, i.e., VÅH = ÅHk , where ÅH and ÅHk are the open unit balls of H

andHk, respectively.

Observations on the theorem 2.5.3: the RKHSHk of a given kernel k as the “smallest”

feature space of k in the sense that there is a canonical metric surjection V from any other

feature space H0 of k onto Hk. The soft margin SVM produce decision functions of the

form x → ⟨w,Φ(x)⟩, where Φ : X → Hk is a feature map of k and w ∈ Hk is a suitable

weight vector. Now, (2.10) states that the RKHS associated with k consists exactly of all

possible functions of this form. Moreover, (2.10) shows that this set of functions does not

change if we consider different feature spaces or feature maps of k. The Theorem 2.5.3

can often be used to determine the RKHS of a given kernel and its modifications such as

restrictions and normalization. To illustrate this let us recall that every C-valued kernel on

X that is actually R-valued has an R-feature space.

Corollary 2.5.1 Let k : X × X → C be a kernel and Hk its corresponding C-RKHS. If we

actually have k(x, x′) ∈ R, then

HkR := inf
{
f : X × X → R

∣∣∣∃g ∈ Hk with Re g = f
}
,

equipped with the norm

|| f ||HkR
:= inf

{||g||Hk : g ∈ Hk with Re g = f
}
, f ∈ HkR ,

is the R-RKHS of the R-valued kernel k.

Given a RKHS,Hk and its kernel k(x, y) on X, then for all x, y ∈ X:

• k(x, x) ≥ 0

• k(y, x) = k(x, y)

• |k(y, x)|2 ≤ k(y, y)k(x, x)

36



Functional Analysis and Kernel

• Let x0 ∈ X. Then the following are equivalent:

– k(x0, x0) = 0.

– k(y, x0) = 0, ∀y ∈ X.

– f (x0) = 0, ∀ f ∈ H .

2.5.2 Representer theorem

Representer theorem implies optimizer is the linear combination of kernels subject to the

sample points

Theorem 2.5.4 (Kimeldorf and Wahba (1971)) Let x1, x2, · · · , xn ∈ X and Hk be a re-

producing kernel Hilbert space with a kernel k : X × X → R, a symmetric positive

semi-definite function of the compact domain. For any function L : Rn → R and any

nondecreasing function Ω : R→ R. If

J∗ = min
f∈H

J( f ) = min
f∈H
{Ω(|| f ||H ) + L( f (x1), . . . f (xn))}

is well-defined, then there are some α1, α2, . . . , αn ∈ R, such that

f (·) =
n∑

i=1

αik(·, xi)

achieves J( f ) = J∗. Further more if Ω is increasing, then each minimizer of J(f) can be

expressed in the form f (·) = ∑n
i=1 αik(·, xi).

Example 2.5.1 LetX be a set and (e1, e2, . . . , en) be an orthonormal basis inH also define

k(x, x′) =
n∑

i=1

ei(x)ei(x′).

Then for any x′ ∈ X

k(·, x′) =
n∑

i=1

ei(x′)ei(·)
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belongs toHk and for any function

φ(·) =
n∑

i=1

λiei(·)

inH , we have

∀x′ ∈ X, ⟨φ, k(·, x′)⟩H = ⟨
n∑

i=1

λiei(·),
n∑

j=1

e j(x′)e j(·)⟩H

=

n∑
i=1

n∑
j=1

λie j(x′)⟨ei(·), e j(·)⟩H

=

n∑
i=1

λiei(x′) = φ(x′)

Any finite dimensional Hilbert space of functions has a reproducing kernel.

Example 2.5.2 Let k(i, j) = δi j (delta function or Kronecker symbol, equal to 1 if i = j and

0 otherwise). Then

∀ j ∈ N, k(·, j) = (0, 0, . . . , 1, . . . , 0) ∈ H (1 at the jth place)

∀ j ∈ N, ∀x = (xi)i∈N ∈ H , ⟨x, k(·, j)⟩H =
∑
i∈N

xiδi j = x j. (2.12)

k is the reproducing kernel ofH .

2.6 Methods based on RKHS

The kernel based methods are developed by combining the kernel trick and representer

theorem, i.e.,

Kernel trick + Representer theorem = Foundation of kernel methods.

A number of kernel methods have been proposed as in the supervised learning, in unsuper-

vised learning, in nonparametric inference and so on.
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2.6.1 Supervised learning

Supervised learning is the main and well-know first type of machine learning. It consists of

input-output pairs. For given a labeled set of input-output pairs D = {(Xi,Yi)}ni=1, the goal

of supervised learning is to learn a function, f : X → Y, where D is a training set with n

training data points. The useful supervised kernel methods on RKHS are as follows:

• Support vector machine for classification (SVM, Boser et al., 1992).

• Support vector machine for regression (Smola and Schölkopf, 1998).

• Kernel ridge regression (Saunders et al., 1998).

2.6.2 Unsupervised learning

Unsupervised learning, knowledge discovery is the second main type of machine learning.

It consists of only input data and arguably more typical of human learning. For given an

inputD = {(Xi)}ni=1 the goal of unsupervised methods are to discover interesting structure in

the data where D is a training set with n data points. Useful unsupervised kernel methods

of RKHS are as follows:

• Kernel principal component analysis (Schölkopf et al., 1998) .

• Kernel canonical correlation analysis (Akaho, 2001).

• Kernel K-mean cluster analysis (Kim et al., 2005).

• Gradient-based kernel dimension reduction for regression (Fukumizu and Leng, 2014).

2.6.3 Nonparametric inference

Nonparametric inference methods on RKHS are the recent developed kernel methods. Non-

parametric inference aims to identify very general processes from the data. The useful

kernel methods of nonparametric inference are as follows:

• Bayesian inference with positive definite kernels (Fukumizu et al., 2013).

• Kernel two-sample test (Gretton, 2012).
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Chapter 3

Automatic Way of Finding

Hyperparameters in Kernel Principal

Component Analysis

3.1 Motivation

Dimension reduction is an essential part of modern data analysis, where we often need to

handle large dimensional data. The purpose of dimension reduction may be visualized,

noise reduction, and pre-processing for further analysis. Among others, the principal com-

ponent analysis (PCA, Pearson, 1901) is one of the most famous methods to reduce the

dimensionality by projecting data onto a low-dimensional subspace with largest variance.

Kernel principal component analysis (kernel PCA, Schölkopf et al., 1998) has been

proposed as a nonlinear extension of the standard PCA, and has been applied to various

purposes including feature extraction, denoising, and pre-processing of regression. Ker-

nel PCA is an example of the so-called kernel methods (Schölkopf and Smola, 2002),

which aim to extract nonlinear features of the original data by mapping them into a high-

dimensional feature space (reproducing kernel Hilbert space, RKHS). This mapping is

called feature map. A number of methods have been proposed as kernel methods, which

include support vector machine (SVM, Boser et al., 1992), a novel multiclass SVM al-

gorithm using mean reversion and coefficient of variance (Premanode et al., 2013), ker-

nel ridge regression (Saunders et al., 1998), kernel canonical correlation analysis (Akaho,
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2001, Bach and Jordan, 2002), Bayesian Inference with Positive Definite Kernels (Fuku-

mizu et al., 2013), Gradient-Based Kernel Dimension Reduction for Regression (Fukumizu

and Leng, 2014) and so on.

It is well known that the performance of a kernel method is highly dependent on the

choice of the kernel. For supervised learning such as SVM and kernel ridge regression,

cross-validation is popularly used for choosing the hyperparameters of a kernel algorithm,

such as parameters in a kernel (e.g., bandwidth of Gaussian RBF kernel), with the objective

function of learning. On the other hand, no well-founded methods have been proposed in

general for unsupervised learning such as kernel PCA and kernel canonical correlation

analysis.

This chapter focuses on kernel PCA and proposes a method for choosing hyperparame-

ters: parameters in a kernel and the number of kernel principal components. In the case of

standard linear PCA, the algorithm can be formulated as minimization for self-regression

with reduced rank, and cross-validation approaches have been proposed for choosing the

number of components (Krzanowski, 1987, Wold, 1978). In contrast, while a similar re-

gression formulation is possible for kernel PCA, the cross-validation approach is not ap-

plicable straightforwardly for choosing a kernel in kernel PCA: the error of the regression

is given by the RKHS norm of the feature space associated with the kernel, and thus the

cross-validation errors are not comparable for different kernels.

As detailed in Section 3.2, the proposed method for choosing the hyperparameters of

kernel PCA uses cross-validation for the reconstruction errors of pre-images in the original

space. The pre-image of a feature vector is defined by an approximate inverse image of the

feature map (Mika et al., 1999). Various methods have been already proposed to calculate

the pre-image of a feature vector, as explained in Section 3.2.1 (Mika et al., 1999, Kwok

and Tsang, 2003, Bakir et al., 2004, Rathi et al., 2006, Arias et al., 2007, Zheng et al.,

2010). In the proposed method, given an evaluation data in the cross-validation, we com-

pute the pre-image of the corresponding feature vector projected onto the subspace given

by kernel PCA, and then evaluate the reconstruction error of the evaluation point. A ker-

nel and the number of components corresponding to the minimum average reconstruction

error are chosen as the optimum ones. We demonstrate the effectiveness of this method

experimentally with various synthesized and real-world datasets.
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3.1.1 Kernel principal component analysis (kernel PCA)

Kernel PCA (Schölkopf et al., 1998) conducts principal component analysis for the feature

vectors. More precisely, given data points Xi ∈ X, i = 1, 2, . . . , n, kernel PCA outputs

a set of principal functions by the following two-step procedure: (i) transform the data

nonlinearly into the feature space H , i.e., Xi 7→ Φ(Xi), (ii) solve the linear PCA problem

for the feature vectors, i.e., solve the directions in H for which the variance of {Φ(Xi)}

along those directions is maximized.

The algorithm of kernel PCA is described as follows (for the detail, see Schölkopf et al.

(1998)). Let Φ̃(X) := Φ(X) − 1
n

∑n
j=1Φ(X j) be the centered feature vector. The estimated

covariance matrix is given by H = 1
n

∑n
i=1 Φ̃(Xi)Φ̃(Xi)T with the centered feature vectors.

The principal directions g ∈ H are given by the unit eigenvectors corresponding to the

largest eigenvalues, and thus the problem is converted to solving the eigenequation

Hg = λ̃g.

By using the kernel trick, this problem is reduced to the generalized eigen value problem

that finds g =
∑n

i=1 αiΦ̃(Xi) such that

Mα = nλ̃α, subject to αT Mα = 1, (3.1)

where M is the n × n centered Gram matrix defined by M = CKC with Ki j = k(Xi,X j)

and C = In − 1
n1n1T

n . Here In is the identity matrix of size n, and 1n is the vector with n

ones. The constraint αT Mα = 1 corresponds to the condition ⟨g j, gh⟩ = δ jh, where δ jh is

the Kronecker’s delta.

Let λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0 denote the ordered eigenvalues of M with associated

eigenvectors α1, . . . αn, where α j = (α1 j . . . αn j)T . The vectors are normalized so that

αT
j Mαh = δ jh. The j-th principal direction g j ∈ H is then given by

g j =
1√
λ j

n∑
i=1

αi jΦ̃(Xi),
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and the j-th principal component of the data point Xi is given by

⟨g j, Φ̃(Xi)⟩ =
1√
λ j

(Mα j)i =
√
λ jαi j.

For a test point X out of the sample, the j-th principal component is similarly given by

⟨g j, Φ̃(X)⟩ = 1√
λ j

n∑
i=1

k̃(X,Xi)αi j,

where k̃(x, y) = k(x, y)− 1
n

∑n
i=1 k(x,Xi)− 1

n

∑n
i=1 k(Xi, y)+ 1

n2

∑n
i, j=1 k(Xi,X j) is the centered

kernel.

3.1.2 Choice of kernel

The result of kernel PCA obviously depends on the choice of the kernel. It is often the case

that the kernel has some parameters like the popular examples shown in Table 2.1. In such

a case, these parameters may have a strong influence on the results. To depict the influence,

using wine data (see Section 3.3) we show the plots of the first two kernel principal compo-

nents with different values of inverse-bandwidth parameter s in the Gaussian RBF kernel,

and degree d and constant c in the polynomial kernel (Figure 3.2). From the figure, we see

that in both the kernels the results of kernel PCA depend strongly on the parameters, and

an appropriate choice is indispensable for the method to give reasonable low-dimensional

representation of data.

It is known that the standard PCA can be formulated as a self-regression or reconstruc-

tion problem; namely, the first r principal components of centered data {Xi}ni=1 ⊂ Rd are

equal to the projections BXi given by the reduced rank regression

min
A,B

n∑
i=1

∥Xi − ABXi∥2 subject to BBT = Ir,

where A and B are d × r and r × d matrices, respectively. Based on this regression for-

mulation, the cross-validation approach (Stone, 1974) has been used for the standard PCA

to choose the number of components (Wold, 1978, Krzanowski, 1987) by minimizing the

above self-regression errors.
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Figure 3.1: Individual reproducing kernel Hilbert space for each kernel of the kernel
principal component analysis (KPCA).

In a similar manner, the kernel PCA can be also formulated as the self-regression of

the centered feature vectors. In fact, it is easy to see that the first r principal directions are

given by

min
f j,g j∈H

n∑
i=1

∥∥∥∥Φ̃(Xi) −
r∑

j=1

f j⟨g j, Φ̃(Xi)⟩
∥∥∥∥2

H
,

where f j, g j ∈ H with ⟨g j, gℓ⟩H = δ jℓ. One might expect that this self-regression formula-

tion could be applied to the cross-validation method for choosing a kernel in kernel PCA.

This is not possible, however, because the above regression error is measured by the RKHS

norm given by the kernel, and thus the errors are not comparable among different kernels.

This problem is shown in the Figure 3.1.

The goal of this chapter is thus to propose a method of choosing a kernel (and the

number of components) in kernel PCA by introducing a criterion comparable for different

kernels (Alam and Fukumizu, 2014).

44



Automatic Way of Finding Hyperparameters in kernel PCA

Figure 3.2: Scatter plots of the first two kernel principal components for wine data: Gaus-
sian RBF kernel is used in the top panel (a) s = 0.05 (b) s = 0.75 (c) s = 1 (d) s = 10, and
polynomial kernel in the bottom (e) c = 0.001, d = 2 (f) c = 10, d = 2 (g) c = 1, d = 3 (h)
c = 1, d = 4.

3.2 Proposed methods

The proposed method for choosing a kernel and the number of component uses cross-

validation by the comparable reconstruction errors in the original space. To evaluate the

errors, we need to solve the pre-image of the feature vectors projected on the subspace

given by the principal directions. We first give a brief review of pre-image methods.

3.2.1 Pre-Image of kernel PCA

While many kernel methods provide their output in the form of feature vectors in the

RKHS, in some problems we want to find a point in the original space. In Mika et al.
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(1999), kernel PCA is applied to a denoising task, in which an image corresponding to the

RKHS vector obtained by kernel PCA is used as a denoised version of the original image.

Given a vector f in RKHSH , it is in general not possible to find a rigorous pre-image,

that is a point X in the original space such that Φ(X) = f holds exactly. We thus define an

(approximate) pre-image of f by the minimizer of

min
Z∈X
∥ f − Φ(Z)∥2H .

In the original paper, Mika et al. (1999) have used the fixed-point iterative method.

Many other approaches have also been proposed to solve the pre-image problem. A non-

iterative approach of distance constraint has been proposed by Kwok and Tsang (2003),

while it is dependent on the choice of neighborhood. An approach of learning a pre-image

map was developed by Bakir et al. (2004). To apply this technique, we need an additional

regularization parameter. Some authors have extended these approaches in different ways

(Rathi et al., 2006, Arias et al., 2007, Zheng et al., 2010). More recently, a two-stage closed-

form approach has been also proposed (Honeine and Richard, 2011). These advanced

methods, however, usually require some tuning parameters. We use the fixed-point method

in our proposed method, since it has a simple form for Gaussian RBF kernel.

We here explain the fixed-point method for solving the pre-image problem in the ker-

nel PCA setting. Let X1,X2, . . .Xn ∈ Rm be the training data for kernel PCA, and g j =∑
i α jiΦ̃(Xi) ( j = 1, . . . , ℓ) be the unit principal directions. The projector onto the subspace

spanned by {g j}ℓj=1 is denoted by Pℓ, i.e., Pℓ f =
∑ℓ

j=1⟨ f , g j⟩g j. Given test point X in the

original space, the feature vector projected onto the principal subspace is given by PℓΦ̃(X).

The pre-image of this vector in the RKHS is defined by the minimizer of

ρ(Z) =
∥∥∥PℓΦ̃(X) − Φ̃(Z)

∥∥∥2

H . (3.2)

It is easy to see that

ρ(Z) =
∥∥∥Φ̃(Z)

∥∥∥2

H − 2⟨Φ̃(Z),PℓΦ̃(X)⟩H +
∥∥∥PℓΦ̃(X)

∥∥∥2

H

= k̃(Z,Z) − 2
ℓ∑

i=1

γik̃(Z,Xi) + Ω, (3.3)
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where γi =
∑

j,h α jiα jhk̃(Xh,X) and Ω is a constant independent of Z.

For Gaussian RBF kernel, Eq.(3.3) is equal to ρ(Z) = 1− 2
∑n

i=1 γie−s∥Xi−Z∥2 +Ω, and by

setting the derivative zero we obtain the fixed-point algorithm:

Zt+1 =

∑n
i=1 γie−s∥Xi−Zt∥2∑n
j=1 γ je−s∥X j−Zt∥2

Xi =

∑n
i=1 aiXi∑n

j=1 a j
, (3.4)

where ai = γie−s∥Xi−Zt∥2 .

In the case of polynomial kernels, the fixed point condition does not derive such an

iterative form as the Gaussian RBF kernel. We thus use the steepest descent method for

Eq.(3.3) in our experiments on polynomial kernels in Section 3.3.3.

3.2.2 Hyperparameters choice

For the objective function of cross-validation, we use reconstruction errors between a test

point X and the corresponding pre-image Z of the projected feature vector PℓΦ̃(X) given by

kernel PCA. The reconstruction errors are measured by the distance of the original space

X = Rm. By this approach, unlike the regression error in the RKHS, we can consider

comparable errors for different kernels. The architecture of the proposed method is given

in Figure 3.3. The algorithm of the kernel choice in kernel PCA is given in Figure 3.4. We

describe the leave-one-out cross validation (LOOCV) for simplicity, but the extension to

the general K-fold cross-validation is straightforward. By a similar algorithm we are able

to select the number of principal components or any other hyperparameters.

In solving approximate pre-images, the fixed-point or the steepest descent method may

be trapped by local minima. To avoid this problem, we use five initial points for the opti-

mization algorithm, and choose the best one. As shown in the next section, the obtained

pre-images give appropriate results.

Note also that the fixed-point method may not work well for a very large inverse-

bandwidth s, since the term of the nearest Xi is dominant in the right hand side of Eq. (3.4)

so that Zt may stay at Xi. In the experiments, we set a reasonable parameter range of s by

checking the kernel PCA results with two components.
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Figure 3.3: Architecture of kernel choice in kernel PCA.

Table 3.1: Computational cost (in second) of the proposed method for synthesized data-2
with different data sizes (n) and the numbers of components (ℓ)

n/ℓ 2 4 6 8 10
100 20.3 20.3 22.3 28.5 29.0
200 86.8 87.0 102 110 152
400 512 549 610 684 896
600 1.54 × 103 1.55 × 103 1.56 × 103 1.63 × 103 2.23 × 103

800 3.39 × 103 3.40 × 103 3.67 × 103 3.51 × 103 4.77 × 103

1000 6.06 × 103 6.51 × 103 6.50 × 103 6.52 × 103 1.07 × 104

3.2.3 Computational cost

To illustrate the computational cost of the proposed method, the CPU time (in second) for

six different sizes of data (n) and five numbers of components (ℓ) using synthesized data-2

are shown in Table 3.1. The CPU time increases as the sample size is larger, since the com-

putation of LOOCV and the optimization of pre-images is heavier for larger samples. The

configuration of the computer is Intel (R) Core (TM) i7 CPU 920@ 2.67 GHz., memory

12.00 GB and 64-bit operating system. We have used ‘kernlab’ package in R program for

implementation of the kernel PCA. The Gaussian RBF kernel is used with inverse band-

width s = 50.
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Input: D = {X1,X2, . . .Xn} in Rm. Parameters {s1, . . . , sT } for kernel ks. Threshold T H.

1. Set h = 1.

2. Do the following steps:

(1) Set i = 1.

(2) Solve kernel PCA for D − {Xi} with kernel ksh (Eq. 3.1).

(3) Compute the approximate pre-image Zh
i for Xi using the fixed-point method

Eq.(3.3). The iteration stops if ∥Zt+1 − Zt∥ < T H.

(4) Compute the reconstruction error Eh
i = ∥Xi − Zh

i ∥2.

(5) i := i + 1.

(6) If i > n, BREAK; otherwise go to (2).

3. Compute the LOOCV error Eh = 1
n

∑n
i=1 Eh

i .

4. h := h + 1.

5. If h > T , END. Otherwise, go to 2.

6. hopt := arg minh Eh.

Output: sopt := hopt.

Figure 3.4: Algorithm of kernel choice in kernel PCA with Gaussian RBF kernel.

3.3 Experimental results

We apply the proposed method for choosing the parameters in a kernel and the number of

principal components in kernel PCA for various datasets. The Gaussian RBF kernel is used,

except Section 3.3.3, where the polynomial kernel is discussed. We use two synthesized and

seven real-world datasets, which are summarized in Table 3.2. For the real-world datasets,

we standardize each variable of data before applying kernel PCA. In solving pre-images,

we take initial values from the uniform distribution on the interval [−1, 1]. The detailed

discussions on the results will be shown in Section 3.4.

3.3.1 Synthesized data

We use two synthesized datasets to illustrate the effectiveness of the proposed method.

Each dataset is of two dimension, and have three clusters.
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Table 3.2: The configuration of datasets for hyperparmeters choice in kernel principal com-
ponent analysis (kernel PCA).

dataset # data Dimension # classes
Synthesized-1 175 2 (3)
Synthesized-2 150 2 (3)
Wine 178 13 3
Diabetes 145 3 3
BUPA 345 6 2
Fertility 100 9 2
Zoo 101 16 7
USPSG-500 500 256 5
Food 961 6 -

Synthesized data-1. 175 data are generated along three circles of different radii with small

noise:

Xi = ri

cos(Zi)

sin(Zi)

 + ϵi, (3.5)

where ri = 1, 0.5 and 0.25, for i = 1, . . . , 100, i = 101, . . . , 150, and i = 151, . . . , 175,

respectively, Zi ∼ U[−π, π] and ϵi ∼ N(0, 0.01 I2) independently.

Synthesized data-2. This is an example taken from Schölkopf and Smola (2002, Chapter

14). The dataset has 150 points, which consists of 50 points from each of three Gaussian

distributions with means (−0.5,−0.1), (0, 0.7) and (0.5, 0.1) and variance 0.1.

We prepare the inverse bandwidth parameters s ∈ {0.05, 1, 5, 10, 25, 50} and s ∈ {1, 5, 10,

20, 50, 100, 200} for synthesized data-1 and synthesized data-2, respectively, and calculate

the LOOCV reconstruction errors by pre-images. To see the variations over sampling, we

generate 100 samples for each case of data 1 and 2, and make box plots. Figure 3.5 shows

(a): scatter plots of a sample of the original datasets, (b): the box plots, and (c,d): the

scatter plots of first two kernel principal components with the best kernel bandwidths (c)

and with other ones (d). We can see by comparing (c) and (d) that the proposed method

chooses a hyperparameter that can separate three clusters clearly, which suggests the effec-

tiveness of the method. Note that kernel PCA does not use the explicit information of the

three clusters, while they are displayed with different colors and markers for visualization

purpose.
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Figure 3.5: Kernel PCA for synthesized data-1 (top) and synthesized data-2 (bottom). (a)
Scatter plot for the two variables of a sample. (b) Box plots of the leave-one-out cross
validation (LOOCV) reconstruction errors for 100 samples. (c, d) scatter plots of the first
two kernel principal components using (c) the best inverse kernel widths (s = 5, 10) and
(d) larger bandwidths s = 50, 200.

3.3.2 Real world problems

We first apply the proposed method to five datasets: wine, diabetes, BUPA liver disorders,

fertility, and zoo, the former three of which are taken from Izenman (2008) and available

at the website of the book, and the latter two are taken from the UCI machine learning

repository (Bache and Lichman, 2013).

As the kernel PCA is an unsupervised method, the evaluation of results is not straight-

forward. Since kernel PCA is often used as a pre-processing technique for regression and

classification, we evaluate the LOOCV classification errors with the k-NN classifier (k = 5)

to see the appropriateness of the hyperparameters chosen by the proposed method. Note

that we do not use the class labels for kernel PCA, but use them only for evaluating the
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classification errors.

We consider a set of inverse bandwidths s ∈ {0.05, 0.10, 0.25, 0.50, 0.75, 1.00, 10.00}

and six numbers of kernel principal components ℓ ∈ {2, 3, 4, 5, 8, 10} for each dataset. The

LOOCV reconstruction errors used in the proposed method and the LOOCV classification

errors for all the hyperparameters are shown in Table 3.3, from which we see that the se-

lected hyperparameters attain the minimum or close to the minimum classification error for

all the datasets. This suggests that the proposed method provides appropriate hyperparam-

eters that maintain the cluster structure effective for the classification tasks.

We next apply the proposed method for larger datasets in dimensionality and sample

size. USPS data (Song et al., 2008) consists of 16×16 grayscale images of handwritten dig-

its, and thus the dimensionality is 256. The original dataset has 2007 images, but we draw

100 images from each of five digits 1, 2, 3, 4, 5, and add Gaussian noise with mean 0 and

standard deviation 0.01. The dataset is referred to as USPSG-500. We take seven inverse

bandwidths s ∈ {0.0001, 0.001, 0.0025, 0.005, 0.0075, 0.01, 0.025} and eight numbers of

kernel principal components ℓ ∈ {2, 4, 8, 16, 32, 64, 128, 256}. The LOOCV reconstruction

errors in the proposed method are shown in Table 3.4, in which the minimum is attained at

s = 0.01 and ℓ = 64. The kNN (k = 5) misclassification rates estimated with LOOCV are

also listed in the table.

We next apply the proposed method to the nutritional value of food, which is not

for classification. The dataset has 961 food items with six nutritional components as at-

tributes (Izenman, 2008, Chapter 7). We consider seven values of inverse bandwidths s ∈

{0.001, 0.1, 0.5, 0.75, 1, 5, 10, 100, 200} and five numbers of components ℓ ∈ {1, 2, 3, 4, 56}.

The results are displayed in Table 3.5. The smallest LOOCV reconstruction error is at-

tained at s = 0.5 and ℓ = 2. Since, unlike classification tasks, it is not straightforward to

evaluate the performance of the proposed method, we show the scatter plots of the first two

kernel principal components using three values of inverse bandwidths s ∈ {0.001, 0.5, 200}

in Figure 3.6.

3.3.3 Polynomial kernel

We use the proposed method for choosing the hyperparameters in the polynomial kernel.

Using wine dataset, we consider seven values of offset parameters c ∈ {0.1, 0.5, 1, 5, 10, 25, 50},
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Figure 3.6: Visualization of the first two kernel principal components of food data (a)
s = 0.001, (b) s = 0.5 and (c) s = 200

two values of degree d ∈ {2, 3}, and four numbers of kernel principal components ℓ ∈

{2, 3, 4, 5}. The results are given in Table 3.6. We observe that the smallest LOOCV recon-

struction error is attained in the area close to the minimum classification error.

3.4 Discussion

While kernel PCA has been applied in various areas of the machine learning, such as di-

mensionality reduction, feature extraction, de-noising, and so on (Schölkopf and Smola,

2002, Rathi et al., 2006, Hofmann, 2007, Zheng et al., 2010, Feng and Liu, 2013), in most

cases the kernel and a number of features are chosen in a heuristic way. Recently, multi-

kernel PCA (Multi-kernel PCA, Ren et al., 2013) has been also proposed, which applies

the combination of multiple kernels instead of choosing one. It is well known, however,

that the multi-kernel approach results in a computationally heavy algorithm, which may

need advanced optimization technique. The method proposed in this paper, in contrast, is

based on the reconstruction errors in the original space, which can be regarded as a natural

extension of the aim of the standard linear PCA. The required computation is simply cross-

validation with a basic optimization algorithm such as the fixed-point or gradient method.

We provide detailed discussions on the experimental results for real-world data sets in

Section 3.3. For classification data sets, we can see from Tables 3.3 and 3.4 that the hyper-

parameter (bandwidth parameter in the Gaussian RBF kernel and the number of principal

components) gives the best or close to best LOOCV classification error: the best for wine
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data, and the second or third best for the other 5 data sets. In all cases, we observe that the

chosen hyperparameters are close to the best parameters for the classification error. These

experimental observations imply that the proposed method gives appropriate hyperparam-

eters, with which the low dimensional features obtained by kernel PCA represent effective

information of data.

From Table 3.5 and Figure 3.6, we can see that the hyperparameter chosen by the pro-

posed method provides the features with a clearer structure than the other two hyperparam-

eters used in (a) and (c). For this data set, Izenman (2008) provides detailed analysis on

the results of kernel PCA with a hand-tuned bandwidth parameter: a meaningful “curve”

structured is observed in the result of two-dimensional kernel PCA. As shown in Figure

3.6, the proposed method automatically chooses such a hyperparameter that accords with

the observation in Izenman (2008).

We can also observe from Table 3.6 that the proposed method chooses the hyperpa-

rameters for kernel PCA with polynomial kernel so that the corresponding LOOCV for

classification error attains the third best. This accords with the observation on the other

cases with the Gaussian RBF kernel, and demonstrates the appropriateness of the proposed

method.

Regarding the computational cost of the proposed method, the proposed method needs

to solve the pre-image problem for each of the data, which may cause a computational issue

for large data set. Table 3.1 shows that the computational time increases roughly quadrati-

cally with respect to the sample size. To reduce the computational cost, it may be possible

to use only a part of data for evaluating reconstruction errors in choosing hyperparameters.
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Table 3.3: Five real-world data sets: leave-one-out cross validation (LOOCV) reconstruc-
tion errors and LOOCV classification errors for inverse bandwidths (s) and the number of
components (ℓ). The minimum values are written in bold fonts, and the classification errors
with the hyperparameters chosen by the proposed method are underlined.

Reconstruction errors Classification errors
s/ℓ 2 3 4 5 8 10 2 3 4 5 8 10

Wine
0.05 3.749 3.846 3.952 3.713 3.893 4.040 5.056 3.933 3.371 2.809 3.371 2.809
0.10 3.418 3.495 3.582 3.560 3.556 3.845 2.247 2.809 3.371 2.247 2.809 3.371
0.25 3.422 3.596 3.531 3.885 3.584 3.733 2.247 2.809 4.494 3.933 5.618 5.618
0.50 3.518 3.603 3.651 3.719 3.790 3.723 3.933 5.057 6.180 5.618 7.303 8.427
0.75 3.789 3.703 3.751 3.858 3.882 3.939 25.281 7.303 6.180 6.180 7.865 9.551
1.00 3.788 3.923 3.883 3.919 3.807 3.825 33.708 30.337 9.551 8.427 9.551 10.674

10.00 4.131 4.070 4.005 4.073 4.119 4.134 39.888 41.573 42.697 41.011 38.764 42.135
Diabetes

0.05 2.343 2.398 2.183 7.591 16.027 20.605 20.690 19.310 19.310 20.000 20.000 20.000
0.10 1.761 1.872 1.795 1.713 4.879 6.913 23.448 19.310 19.310 24.828 24.138 25.517
0.25 1.598 1.467 1.660 1.636 2.066 2.751 20.690 20.000 19.310 20.690 21.379 20.000
0.50 1.505 1.318 1.492 1.476 1.597 1.712 22.069 20.690 20.000 21.379 21.379 21.379
0.75 1.555 1.494 1.560 1.519 1.575 1.716 21.379 20.000 22.069 22.069 22.069 21.379
1.00 1.626 1.617 1.609 1.530 1.647 1.512 20.690 23.448 24.138 20.690 20.000 20.690

10.00 2.362 2.167 2.152 2.098 2.292 2.269 37.241 37.241 40.000 34.483 36.552 37.241
BUPA

0.05 2.964 2.751 2.758 2.190 5.462 5.300 42.319 43.479 40.580 42.029 42.029 42.029
0.10 2.439 2.232 2.325 2.042 4.266 4.838 48.116 46.667 41.739 47.826 48.116 47.826
0.25 2.064 2.042 2.012 2.123 2.175 2.269 50.145 48.696 42.029 50.145 50.145 50.145
0.50 2.138 2.148 2.077 2.238 2.166 2.071 50.145 46.957 44.638 49.855 49.855 49.855
0.75 2.253 2.196 2.147 2.364 2.138 2.241 53.333 42.609 49.855 53.333 53.333 53.623
1.00 2.128 2.177 2.154 2.282 2.256 2.123 50.145 43.189 47.826 50.145 50.145 50.145

10.00 2.464 2.447 2.467 2.427 2.392 2.481 44.058 44.928 44.928 44.058 44.058 44.058
Fertility

0.05 3.955 4.132 4.100 3.911 3.876 3.811 13.000 14.000 16.000 13.000 13.000 13.000
0.10 3.570 3.568 3.560 8.067 3.490 3.428 15.000 11.000 12.000 15.000 15.000 15.000
0.25 3.325 3.330 3.349 3.279 3.442 3.407 11.000 14.000 15.000 11.000 11.000 11.000
0.50 3.601 3.592 3.630 3.713 3.764 3.559 13.000 11.000 11.000 13.000 13.000 13.000
0.75 3.896 3.848 3.911 4.031 3.624 3.673 10.000 10.000 12.000 10.000 10.000 10.000
1.00 3.989 3.936 3.892 3.919 3.774 3.819 12.000 15.000 13.000 12.000 12.000 12.000

10.00 3.678 3.663 3.568 3.714 3.489 3.500 12.000 15.000 13.000 12.000 12.000 12.000
Zoo

0.05 4.581 4.644 5.460 6.051 7.434 5.957 12.871 12.871 13.861 12.871 11.881 11.881
0.10 3.861 3.858 3.816 3.820 4.886 5.369 14.851 11.881 12.871 15.842 16.832 14.851
0.25 3.607 3.615 3.632 3.748 3.863 3.871 19.802 15.842 10.891 17.822 19.802 19.802
0.50 3.572 4.078 3.460 3.637 3.935 3.667 22.772 12.871 11.881 22.772 22.772 21.782
0.75 3.523 3.591 3.801 3.750 3.893 4.140 27.723 27.723 26.733 26.733 24.752 24.752
1.00 3.738 3.853 3.866 3.999 3.896 4.013 24.752 25.743 30.693 22.772 24.752 25.743

10.00 4.013 4.049 3.992 4.024 4.037 4.006 56.436 53.465 48.514 55.446 55.446 56.436
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Table 3.4: USPSG-500: LOOCV reconstruction errors and LOOCV classification errors
(bold numbers indicate the minimum value).

s/ℓ 2 4 8 16 32 64 128 256
Reconstruction errors in the proposed method

0.0001 1139.810 1203.316 1159.02 752.494 134.936 130.678 143.080 534.779
0.001 129.168 129.627 124.333 110.106 143.470 82.734 69.729 203.068
0.0025 42.422 40.708 44.493 38.588 51.707 26.516 92.497 107.448
0.0050 18.967 21.120 22.642 20.010 18.957 20.592 26.828 33.991
0.0075 18.989 15.903 16.963 14.804 14.369 13.909 14.879 17.523
0.010 16.648 15.081 14.161 12.785 12.485 12.444 15.787 14.270
0.025 13.339 13.498 13.149 13.085 13.915 14.173 14.086 14.595

Classification errors (%)
0.0001 32.00 11.20 4.60 2.00 3.00 3.00 3.4 4.0
0.001 31.00 12.20 4.40 2.20 2.80 3.00 3.00 4.20
0.0025 31.40 11.60 4.40 2.60 2.20 3.00 3.20 3.40
0.0050 31.60 11.00 4.60 3.00 1.80 2.40 3.60 4.40
0.0075 28.20 11.40 4.80 3.40 1.80 2.80 3.20 5.20
0.010 31.00 15.20 4.40 3.80 3.00 2.20 2.60 5.00
0.025 45.80 25.40 7.60 5.20 5.60 6.80 5.20 15.60

Table 3.5: LOOCV reconstruction errors for food data.
s/ℓ 1 2 3 4 5 6

0.001 20.226 18.741 18.334 18.361 18.462 13.901
0.1 2.215 2.024 1.977 1.840 1.849 1.956
0.5 1.923 1.738 2.143 2.097 2.034 1.922

0.75 1.817 1.908 1.883 1.891 1.850 1.930
1 1.854 1.844 1.813 1.798 2.050 1.927
5 2.306 2.214 2.128 2.229 2.203 2.238

10 2.380 2.286 2.200 2.239 2.808 2.259
100 1.987 1.982 1.943 2.014 2.088 2.234
200 2.070 2.066 2.097 2.123 2.234 2.192
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Table 3.6: Polynomial kernel for wine data: LOOCV reconstruction errors and the LOOCV
classification errors (bold numbers indicate the minimum value).

ℓ = 2 ℓ = 3 ℓ = 4 ℓ = 5
c\d 2 3 2 3 2 3 2 3

Reconstruction errors in the proposed method
0.1 4.165 3.807 4.059 3.818 4.108 3.821 4.153 3.805
0.5 4.051 3.781 3.978 3.758 4.003 3.768 3.952 3.805
1.0 3.976 3.837 3.888 3.869 3.966 3.709 4.023 3.819
5.0 3.752 3.859 3.759 3.813 4.108 3.803 4.153 3.739
10.0 3.784 3.780 3.740 3.810 4.003 3.762 3.952 3.792
25.0 3.755 3.820 3.709 3.730 3.966 3.768 4.023 3.775
50.0 3.761 3.782 3.735 3.724 3.750 3.777 3.736 3.743

Classification errors (%)
0.1 18.539 17.978 16.292 3.933 15.730 5.056 15.730 4.494
0.5 14.045 17.978 11.798 3.933 11.798 3.933 14.045 4.494
1.0 15.730 16.292 12.360 3.371 11.798 3.933 8.989 3.933
5.0 2.247 3.371 3.933 3.371 3.933 3.371 1.685 3.933
10.0 2.809 1.685 3.371 2.809 1.685 3.371 2.247 2.809
25.0 3.933 3.371 2.809 2.247 4.494 2.247 2.247 2.247
50.0 4.494 3.933 2.809 2.809 4.494 2.247 2.247 2.247
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Chapter 4

Classical, Robust and Kernel Canonical

Correlation Analysis

4.1 Motivation

Canonical correlation analysis (CCA) is a multivariate procedure for assessing the linear

relationship between two sets of variables (or features) (Hotelling, 1936). We refer to it

as a classical CCA. Many statisticians, biometricians, economists, social scientists (Ander-

son, 2000, Press, 1987) and many other researchers apply it in diverse field of knowledge.

But this classical method has a number of limitations, say linear association and model

assumptions. It is also sensitive to outliers. Therefore, there is essential need for increase

robustness, nonlinear association and flexibility of the feature selection.

A number of robust CCA were compared and discussed by Branco et al., (Branco et al.,

2005). Taskinen et al. (2006) obtained influence function and asymptotic distributional

properties of classical CCA based on robust estimates of the covariance matrix (Skocaj

et al., 2004). Many researchers developed a few robust methods of CCA and suggested that

from the viewpoint of robustness and computation the performance of minimum covariance

determinate (MCD) estimator is the best (Branco et al., 2005). In this chapter, we consider

CCA based on MCD estimator as an estimator of class of robust methods.

Because of the linearity assumption classical CCA gives us a naive measurement in case

of nonlinear datasets. Even robust methods can fail to find a worthy relationship in such

type of data. We need to seek such a method that gives us accurate measurements in case of
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nonlinear data. Kernel canonical correlation (kernel CCA) is a such type of powerful tool.

Kernel CCA has been proposed as a nonlinear extension of CCA (Akaho, 2001, Melzer

et al., 2001, Bach and Jordan, 2002). Kernel CCA is thus a nonlinear technique to extract

the effective dependent features and to measure the relationship between two or several

sets of variables in reproducing kernel Hilbert space (RKHS) instead of the original input

space. A similar but different algorithm has been also proposed by Lai and Fyfe (2000).

Over the last decade, kernel CCA has been used for various purposes, including pre-

processing for classification, contrast function of independent component analysis, test of

independence between two sets of variables (Hardoon et al., 2004, Bach and Jordan, 2002,

Huang et al., 2009a, Alzate and Suykens, 2008), and have been applied in many domains

such as genomic data, computer graphics and computer-aided drug discovery (Yamanishi

et al., 2003, Samarov et al., 2011). The theoretical consistency and restricted kernel CCA

has been also discussed (Fukumizu et al., 2007, Hardoon and Shawe-Taylor, 2009, Otopal,

2012).

In recent work, the influence function of kernel principal component analysis (kernel

PCA) and a robust kernel PCA has been theoretically derived (Huang et al., 2009b). One

observation of their analysis is that kernel PCA with a bounded kernel such as Gaussian is

robust in that sense that the influence function does not diverge, while for kernel PCA with

unbounded kernels such as polynomial the IF goes to infinity. This can be understood by

the boundedness of the transformed data in the feature space by a bounded kernel. While

this is not a result for CCA, but for PCA, it is reasonable to expect that kernel CCA with

a bounded kernel is also robust. This consideration motivates us to do some empirical

studies on the robustness of kernel CCA. It is very important to know how kernel CCA is

effected by outliers and to develop measures of accuracy. Therefore, we do intend to study

a number of conventional robust estimate and kernel CCA with different functions, but with

fixed parameters of the kernel in this chapter.

4.2 Classical and robust canonical correlation analysis

Classical CCA can be seen as the problem of finding basis vectors for two sets of variables

such that the correlation between the projections of the variables onto these basis vectors
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Figure 4.1: The system of CCA.

are mutually maximized. The system of classical CCA is given in Figure 4.1.

Let {(Xi,Yi); i = 1, 2, . . . , n} be the training sample from the pair of multivariate vari-

ables (X,Y) with X ∈ Rp and Y ∈ Rq. The classical canonical correlation is to find the

directions α and β so that the correlation between the projections of X onto α and of Y onto

β is maximized such that

ρ = max
α∈Rp,β∈Rq

Cov[αTX, βTY]√
Var[αTX]Var[βTY]

= max
α∈Rp,β∈Rq

αT CovXYβ
T√

αT VarXXα
√
βT varYYβ

(4.1)

where Cov[ ] and Var[ ] be the population covariance and variance matrix respectively.

The classical covariance and correlation matrices as well as eigenvector and values are

highly sensitive to outlying observations as was shown in the context of Classical CCA. The

aim of robust methods is to ensure high reliability and stability of the estimates of statistical

characteristics in the case of deviations from the adopted distribution model assumptions

(Hampel et al., 1986, Huber and Ronchetti, 2009, Marrona et al., 2006). Robustness consid-

eration is necessary in both supervised and unsupervised problems for every data analysis
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technique. An obvious robust approach of canonical correlation is to estimate using robust

sample covariance or correlation matrix.

4.3 Measure of robustness

The basic robustness measures are qualitative robustness, influence function and break-

down point. Their are three main concepts to judge an estimator from the viewpoint of ro-

bust estimation (Huber and Ronchetti, 2009). Qualitative robustness and breakdown point

are the global reliability and influence function is the local reliability concept.

4.3.1 Qualitative robustness

Qualitative robustness measure how much an estimator or test statistic changes with chang-

ing of the distribution. The qualitative robustness means small change of a distribution

impels small change of an estimator or test statistic. An empirical measure of qualitative

robustness has been proposed by Alam et al. (2010).

Definition 4.3.1 (Qualitative robustness index) To measure the effect of contamination

on different estimators at different contamination models we use qualitative robustness

index, QRI:

QRI =
1∑ |ξ(ϵ)

100α − ξ
(ϵ)c
100α|
, (4.2)

where ξ(ϵ)
100α = 100th

α percentile of the simulated sampling distribution of the estimators at

standard model, and ξ(ϵ)c
100α = 100th

α percentile of the simulated sampling distribution of dif-

ferent estimators at contaminated model. We consider α ∈ {0.005, 0.01, 0.025, 0.05, 0.1, 0.5,

0.9, 0.95, 0.975, 0.99, 0.995} for our standard model and contaminated model. The range

of QRI values is [ 1
11 ,∞]. A stable estimator has larger QRI value.

4.3.2 Influence function

The most central concept in Hampel’s fundamental contribution to the theory of robustness

is the influence function (originally termed as influence curve). The influence function
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of an estimator measures how much an individual observation changes the value of the

estimator (Hampel et al., 1986).

Definition 4.3.2 (Empirical influence function (sensitivity curve)). Let us consider an esti-

mator {Tn, n ∈ N} and a sample (X1, X2, · · · Xn−1) of n− 1 observations. Then the sensitivity

curve is defined as

SCn(X) = n[Tn(X1,X2, · · · ,Xn−1,X) − Tn−1(X1,X2, · · · ,Xn−1)]

as a function for X. This is simply a translated and rescaled version of the empirical

influence function.

4.3.3 Breakdown point

Breakdown point measure the smallest amount of contamination that can be caused an

estimator to take on arbitrarily large aberrant values. This concept is most useful in a finite

sample.

Definition 4.3.3 (Finite sample breakdown point). The finite-sample breakdown point ϵ∗

of the estimator Tn at the sample (X1, X2, · · · , Xn) is given by

ϵ∗(Tn : X1, X2, · · · , Xn) :=
1
n

{
m; maxi1,·im supY1,···Ym |Tn(Z1,Z2, · · · Zn)| < ∞}

where the sample (Z1, · · · ,Zm) is obtained by replacing the m data points Xi1 , · · · , Xim by

the arbitrary values Y1, · · · ,Ym.

4.4 Kernel canonical correlation analysis

Given two sets of random variables X and Y, the aim of kernel CCA is to seek functions

in the RKHS, f1(·) ∈ HX and f2(·) ∈ HY , for which the correlation (Corr) of the random
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Figure 4.2: The system of kernel CCA.

variables f1(X) and f2(Y) is maximized. The optimization problem can be represented as

max
f1∈HX , f2∈HY

f1,0, f2,0

Corr(f1(X), f2(Y)). (4.3)

The optimizers f1(·) and f2(· ) are determined up to scale (Bach and Jordan, 2002, Suetani

et al., 2006). A system of kernel CCA is given in Figure 4.2.

Using a finite sample, we are able to estimate the desired functions. Given an i.i.d

sample (Xi,Yi)n
i=1 from a joint distribution FXY , by the representer theorem, we can assume

that the functions have the form f1(·) = ∑n
i=1 ai

XkX(·,Xi) and f2(·) = ∑n
i=1 ai

YkY(·,Yi), where

kX(·,X) and kY(·,Y) are the associated kernel functions. The kernel Gram matrices are

defined by KX := (kX(Xi,X j))n
i, j=1 and KY := (kY(Yi,Y j))n

i, j=1. We need the centered kernel

Gram matrices

MX = CKXC and MY = CKYC,

where C = In− 1
nBn with Bn = 1n1T

n and 1n is the vector with n ones. The empirical estimate
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of (4.3) is then given by

max
f1∈HX , f2∈HY

f1,0, f2,0

Ĉov( f1(X), f2(Y))

[V̂ar( f1(X))]1/2[V̂ar( f2(Y))]1/2
(4.4)

where

Ĉov( f1(X), f2(Y)) =
1
n

aT
XMXMYaY ,

V̂ar( f1(X)) =
1
n

aT
XM2

XaX,

V̂ar( f2(Y)) =
1
n

aT
Y M2

YaY .

It is known that the straightforward implementation with the above Gram matrix expression

causes an ill-posed problem, and thus a regularization approach is needed to construct

a meaningful estimator (Akaho, 2001, Alam et al., 2010). The penalized optimization

problem is given by

max
aX ,aY

1
n

aT
XMXMYbY

subject to ŴX =
1
n

aT
XM2

XaX + κaT
XMXaX = 1,

ŴY =
1
n

aT
Y M2

YaY + κaT
Y MYaY = 1, (4.5)

where κ is a regularized parameter.

The kernel is used in training and predicting. The parameter of this function can be set

to any function of class kernel that computes the inner product in feature space between

two vector arguments. In this chapter, we use fixed hyperparameters, inverse bandwidth

s = 1 of the Gaussian RB kernel, Laplacian kernel, and Polynomial function with c = 1

and d = 2.

4.5 Experimental results

In this section, we address the results of the simulation, influence function and breakdown

plot respectively. We generate multivariate normal (MVN) data by considering two covari-

ance matrices CV M1 and CV M2 that are given below. We also draw data from uniform
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distribution on [−π, π] and take sin and cos function on generated data in different ways.

The first half of the variables are treated as X whereas the rest variables are as Y. We cal-

culate bias, standard error, mean square error, QRI of first canonical correlation at MVN

model and contaminated multivariate Normal (CMVN) models as well as transformed data.

The results are represented in different tables and graphics.

CV M1 =



1.0 0.8702 −0.3657 −0.3896 −0.4931 −0.2263

0.8703 1.0 −0.3529 −0.5522 −0.6456 −0.1915

−0.3657 −0.3529 1.0 0.1506 0.2250 0.0349

−0.3896 −0.5522 0.1506 1.0 0.6957 0.4957

−0.4938 −0.6456 0.22503 0.695 1.0 0.6692

−0.2263 −0.1915 0.03493 0.4957 0.669 1.0


and

CV M2 =



1.000 0.505 0.569 0.602

0.505 1.000 0.422 0.467

0.569 0.422 1.000 0.926

0.602 0.467 0.926 1.000


4.5.1 Simulation results

In this section, we report a simulation study with different population canonical correla-

tion coefficients, ρ. We take five different sample sizes n ∈ {50, 500, 1000, 1500, 2000}

using MVN and CMVN. To perform in simulation study, we consider three experiments as

follows.

Experiment-1 (Data generated from multivariate normal and MVN with 6% contam-

ination). In this experiment, we generate data from the MVN model as an ideal model

and MVN with 6% fixed outliers as contaminated model. We consider five sample sizes

n ∈ {50, 500, 1500, 2000} that are replicated 2000 times. In case of n = 1500 and 2000 we

take fewer replications to avoid much calculation and time. We calculate bias, mean square

error (MSE) and QRI which are given in the Table 4.1 and Table 4.2 respectively.

From Table 4.1, we see in both cases, bias and MSE the performance of classical mea-

sure is undoubtedly better than its counterparts at ideal model, whereas at contaminated

models the situation is opposite, i.e., it is worst. When robust measure and kernel measures

are compared, it is found that the robust measure has clearly the edge over kernel measures
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Table 4.1: Bias and mean square error of simulated data (bold numbers indicate the mini-
mum value).

Bias MSE

Sample Sizes, n Sample Sizes, n

Estimators Model 50 500 1000 1500 2000 50 500 1000 1500 2000

MNV 0.016 0.0023 0.0012 0.0001 0.0004 0.0503 0.0187 0.0115 0.0084 0.0089

CC MVNC 0.6667 0.6628 0.6628 0.6572 0.6527 0.4761 0.4463 0.4463 0.4375 0.4319

MNV 0.0487 0.0038 0.0013 0.0021 0.0011 0.0757 0.0243 0.013 0.0090 0.0095

RC MVNC 0.0473 0.0007 0.0008 0.0013 0.009 0.0734 0.0135 0.0134 0.0150 0.0095

MNV 0.1880 0.0361 0.0137 0.0070 0.0047 0.0494 0.0381 0.0129 0.0086 0.0085

KG MVNC 0.1910 0.0154 0.0156 0.0123 0.0087 0.0486 0.0133 0.0129 0.0120 0.0083

MNV 0.2044 0.1739 0.0602 0.0418 0.0312 0.0229 0.0543 0.0253 0.0088 0.0083

KL MVNC 0.2044 0.0652 0.0654 0.0408 0.0294 0.0418 0.0258 0.0255 0.0166 0.0075

MNV 0.0919 0.0119 0.0051 0.0211 0.0013 0.0470 0.0231 0.0114 0.0084 0.0088

KP MVNC 0.1812 0.0457 0.0456 0.0522 0.0678 0.0479 0.0168 0.0164 0.0147 0.0157

at both models regarding bias, but in terms of MSE all kernel measures, specially KG, show

superior performances. At the contaminated model KG has a smaller MSE than the robust

one at all the sample sizes while at the uncontaminated model it performs better thrice out

of five times.

In Table 4.2, we observe that both robust and kernel methods demonstrate more stable

behavior (bold number indicates the maximum value) than classical methods at all the

sample sizes and the robust one is the best.

Table 4.2: The value of qualitative robustness index.

Sample Sizes, n

Estimates 50 500 1000 1500 2000

CC 0.138 0.136 0.137 0.138 0.140

RC 16.52 3.59 98.76 40.37 42.68

KG 22.34 1.73 40.43 8.37 20.35

KL ∞ 1.12 18.4325 5.36 11.91

KP 0.982 1.27 1.82 1.69 1.31

Experiment-2 (Data generated from multivariate normal and transformation with
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population canonical correlation, PCC = 0.79 and PCC = 0.63).

In this experiment we generate data from CV M1 having first PCC = 0.79 and take

transformation on X-set data by sin(2X1), cos(X2) , sin(3X3) and Y-set data by cos(2Y1),

sin(Y2), cos(3Y3). Similar work is done for CV M2 with first PCC = 0.63 taking transfor-

mations, sin(x1), sin(3x2) and cos(2y1), cos(3y2) for set X and Y, respectively. We sketch

the box plots using first canonical coefficient of 2000 simulated samples for five estimators,

which are represented in Figure 3(a), and Figure 3(b), respectively.

Figure 4.3: Box plots of canonical correlation coefficient of five estimators using population
canonical correlation, PCC = 0.79 and PCC = 0.63.
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Figure 4.4: Scatter plots of (X1,Y1) (top left) and first canonical variates
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Figure 4.5: Scatter plots of (X2,Y2) (top left) and 2nd canonical variates
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From the Figure 4.3 we observe that in both cases of transformed data classical and

robust method fail equally to capture the nonlinear relationship in the data, whereas kernel

CCA, specially KG and KL succeed in detecting the relationship with smaller variation and

greater central values.

Experiment-3 (Generated from uniform distribution). In this experiment, we take

data according to Akaho (2001), but sample size 100. At first θ is computed from the

uniform distribution with range [−π, π]. After that a pair of two dimensional variables X

and Y are generated by X = [θ, sin 3θ] and Y = eθ/4[cos 2θ, sin 2θ]. Figure 4.4 and Figure

4.5 show that the classical method fails completely to address the relationship whereas

robust measure performs better. On the other hand, the kernel method offers us the best

performance, providing linear relationship, especially for first canonical variates. Gaussian

kernel (KG) and Laplacian kernel are found as the best ones in providing us with linear

relationship.

4.5.2 Sensitivity analysis

In this experiment, we perform a simulation study to confirm some aspects of our findings

with the help of sensitivity curves. First, we make 200 samples of size, n = 50, n = 500

and n = 1000 from the MVN using CV M1 and compute sensitivity curve, S Cn(v,Tn; V) for

each of these samples. We also consider an outlier v = 500, 1000, 1500 and 0.5, 0.1, 0.15

for x-set and y-set respectively. That is, the final sample sizes are n = 51, n = 501 and

n = 1001. Box plots of these 200 numbers are given in Figure 4.6(a), for MVN using

CV M1. We repeat the work by taking transformation on each variable as sin(2x1), cos(x2),

sin(3x3) and cos(2y1), sin(y2), cos(3y3) for X-set and Y-set respectively; box plots of the

measures are given in Figure 4.6(b). Both figures uphold acute non-robustness of classical

measure. The robust measure is more affected when data is transformed. KG and KL share

the best performance.

4.5.3 Breakdown analysis

In the experiment we discuss the largest amount of contamination (proportion of atypical

points) in a data set that an estimator may tolerate, i.e., it still gives some information about
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Figure 4.6: Box plots of sensitivity value over 200 samples a) multivariate normal data and
b) transform multivariate normal data.
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the parameter. We generate 250 samples of size 500 from a multivariate normal distribu-

tion using CV M2 and contaminated distribution by 9 times CV M2 with (0, 1, 5, . . . 30%)

contamination. We present the percentage of contamination and the mean squared errors

in horizontal axes and in vertical axes respectively. The different lines correspond to dif-

ferent estimators (C for classical; R, robust; G, Gaussian kernel; L, Laplacian kernel and

P, polynomial kernel). We repeat this work taking transformation on generated variables.

As visible in Figure 4.7(a) and Figure 4.7(b) we observe the effects of replacing several

data values by outliers. From the figures it is evident that in case of linear data, the robust

measure is the best one, closely followed by G and L; but kernel estimators, especially

Laplacian kernel is the best for transforming data.
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Figure 4.7: Breakdown plots for first canonical correlation coefficient.
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Chapter 5

Higher-order Regularized Kernel

Canonical Correlation Analysis

5.1 Motivation

Kernel methods have been successfully used in various data analysis as a technique to

extract nonlinear structure from data with positive definite kernels. The principle is that any

low-dimensional nonlinear structure may be more easily discovered when it is embedded

in a larger, even infinite dimensional space. For this purpose, data are transformed from

the original input space, where linear methods may not work well, into a feature space via

a feature map where linear methods are expected to work better.

To obtain desirable results with kernel methods, in practice, appropriate choice of ker-

nels and other associated parameters in the methods is indispensable. For supervised learn-

ing such as the support vector machine, the cross-validation is one of the most popular and

useful ways of choosing the kernel and parameters (Arlot, 2010, Woen and Perry, 2009,

Stone, 1974). On the other hand, there are no general well-founded methods available for

unsupervised learning such as kernel principal component analysis and kernel canonical

correlation analysis (kernel CCA) (Alam and Fukumizu, 2011), and some heuristics have

been often used for choosing the parameters of kernel CCA (Huang et al., 2009a, Hardoon

and Shawe-Taylor, 2009). In this chapter kernel CCA refer as a standard kernel CCA

The first goal of this chapter to discusses application of the cross-validation approach

to choosing the kernel and its parameters for the standard kernel CCA. The correlation
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value in the standard kernel CCA is not necessarily appropriate for the objective function

for cross-validation. Alternatively, based on the known formulation of CCA (and standard

kernel CCA) as an alternating regression problem (Breiman and Friedman, 1985, Shawe-

Taylor and Cristianini, 2004), it is possible to apply the cross-validation of the prediction

errors for choosing the kernel and parameters. Nonetheless, this approach still has a serious

problem in the standard kernel CCA: it is observed that with the Gaussian RBF kernel the

cross-validation based on the prediction error results in a decreasing function of the inverse

bandwidth, and the obtained features corresponding to a small cross-validation error result

in an ill-posed solution with all the data concentrated with a few points, as demonstrated

in Section 5.2. Such unfavorable results are caused by the fact that the constraints in the

standard kernel CCA are given by the 2nd order statistics (e.g., variance) of the canonical

variates; this would suffice for a complete statistical description of the Gaussian distribu-

tion, but not in general. With the rich function classes given by positive definite kernels,

we need much stronger constraints to regulate the canonical variate sufficiently to make the

cross-validation applicable.

The second goal of this chapter to propose a kernel CCA subject to the higher-order

constraints (see Section 5.4). In the proposed method, not only the 2nd order moment, but

also the 4th order moment of canonical variates is constrained to select the tuning param-

eters using the cross-validation technique. Namely, in addition to the standard constraints

of unit variance, we regulate the 4th order moments close to 3; this value is based on the

theoretical result showing that an one-dimensional projection of high dimensional data is

close to Gaussian random variable (Diaconis and Freedman, 1984). We demonstrate the ef-

fectiveness of the proposed higher-order regularized kernel CCA, combined with the cross-

validation, in measuring the relationship and extracting effective features for classification

using various synthesized and real world problems.

5.2 Cross-validation for the standard kernel canonical cor-

relation analysis

For the standard kernel CCA with Gaussian RBF kernel, we need to select a proper inverse

bandwidth s and a regularization parameter κ. It is well known the parameter s has a strong
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influence on the result of kernel CCA. A guideline to select the regularization parameter

has been proposed by Hardoon et al. (Hardoon et al., 2004) and a heuristic technique has

been also used for choosing the bandwidth (Hardoon and Shawe-Taylor, 2009). To the best

of our knowledge, however, a well-founded technique for choosing the parameters has not

yet been established.

The cross-validation (CV) approach is popularly used for choosing parameters of ker-

nel methods, such as the bandwidth parameter in Gaussian kernel, especially in supervised

learning. Note that it is not possible to apply the leave-one-out CV with canonical corre-

lation value, since the correlation is not computable with one data. While the CV with the

canonical correlation value has been used for choosing the bandwidth in kernel CCA (Sue-

tani et al., 2006), where very dense data from a chaotic dynamics are discussed, it is not

easy in general to obtain reliable canonical correlation values by the k-fold CV for small

data points.

It is known that CCA and kernel CCA can be regarded as an alternating regression

(Breiman and Friedman, 1985, Shawe-Taylor and Cristianini, 2004). It is easy to observe

that the kernel CCA is expressed as

max
f1∈HX , f2∈HY

Corr( f1(X), f2(Y)) = min
f1∈HX , f2∈HY

∥ f1(X) − f2(Y)∥2

under the condition Var[ f1(X)] = Var[ f2(Y)] = 1. With this interpretation, the problem

can be cast into a supervised setting, and we can apply cross-validation of the prediction

errors for choosing the parameters. The CV is then applied in the following manner for

each parameter to be selected. First, calculate the canonical coefficient vectors a−vX and a−vY

based on the v-th training set (T−v) using standard kernel CCA. They give the estimators

f v1 (·) = ∑
i∈T−v a−vX k(·,Xi) and f v2 (·) = ∑

i∈T−v a−vY k(·,Yi). Next, compute the regression error

P̂Ev =
1
|T v|

∑
X j∈T v
∥ f̃ v1 (X j) − f̃ v2 (Y j)∥2,

for the corresponding v-th test set (T v), where f̃1 = f v1/(V̂v[ f1])1/2 and f̃2 = f v2/(V̂v[ f2])1/2

are the normalization of f v1 and f v2 , respectively, by the empirical variance with the training
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data

V̂v[ f1] =
1
|T−v|

∑
i∈T−v

f v1 (Xi)2 −
( 1
|T−v|

∑
i∈T−v

f v1 (Xi)
)2
=

1
|T−v|a

−vT
X M−vX a−vX

and similar V̂v[ f2]. After computing the regression errors in all the candidate parameters,

we choose the one that gives the minimum regression error.

CV using correlation or prediction error depends on the data concentration. When the

data are concentrated in only a few extreme points with perfect or nearly perfect correla-

tion, on the one hand, the CV error will be very small which satisfied the objective of the

standard kernel CCA (maximum correlation of canonical variate) but on the other hand,

the canonical variates do not follow any well-posed distribution. In classification problem,

we can use CV based on classification rates, but the smallest classification error does not

correspond to the high correlated features for the standard kernel CCA, in general.

For the standard kernel CCA, however, the above cross-validation approach does not

necessarily choose a good parameter in general. We demonstrate this problem using an

example of the nutrimouse data (see Section 5.4) with the Gaussian RBF kernel. In Figures

5.1 we show eight scatter plots of the first canonical variates using eight inverse bandwidths,

s ∈ {1, 10, 20, 30, 40, 50, 60, 70}, together with the cross-validation errors. As we see, the

larger values of inverse bandwidth provide smaller errors (≈ 0), but the solution are ill-

posed: high correlation is achieved by the features with most data concentrating on a few

points. This example illustrates that a straightforward application of cross-validation for

choosing a kernel is not appropriate. The constraints of the variance in the kernel CCA

does not regulate sufficient for a large variety of nonlinearity given by different kernels.

In the experimental studies of this chapter, we use only Gaussian RBF kernel, but the

most of the arguments in this chapter apply to other popular nonlinear kernels such as

Lapacian.

5.3 Distribution of a low dimensional projection

The proposed method (see Section 5.4), we regularize the 4th order moment, so that it

is triple of the variance. This is based on the theoretical result by Diaconis and Freed-
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Figure 5.1: Standard kernel CCA: the scatter plots of the 1st canonical variates for the
nutrimouse dataset (liver cells and hepatic fatty acids) using the Gaussian RBF kernel with
eight inverse bandwidths s and fixed regularization coefficient κ = 10−4. The 10-fold cross-
validation errors are also embedded.

man (Diaconis and Freedman, 1984), which shows the characteristics of the projected low

dimensional features from high dimensional data approximately follow the Gaussian dis-

tribution in general. While this result does not directly apply to the standard kernel CCA,

which constructs the projection depending on data, we use it as a guide to define our penalty

on the 4th order moments. By a quantitative analysis, Meckes (2009) has been shown the

situation where orthogonal projections are asymptotically Gaussian.

Theorem 5.3.1 (Diaconis and Freedman (1984)) Given X1, X2, · · · Xn be deterministic vec-

tors in Rm. Suppose that n,m and the Xi depend on a hidden index τ, so that as τ→ ∞, so

do n and m. Suppose that ∃σ ∈ (0,∞) and for all ν > 0,
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1
n

CN
{
j ≤ n :

∣∣∣⟨Xj,Xj⟩ − σ2p
∣∣∣ > νm}

→ 0, as τ→ ∞, (5.1)

1
n2 CN

{
j, k ≤ n :

∣∣∣⟨Xj,Xk⟩ > νm
∣∣∣}→ 0, as τ→ ∞, (5.2)

where CN{A} is stand for cardinality number of a set A. Let T ∈ Um−1 is distributed

uniformly on the sphere, and consider a random measure µT
τ with mass 1

n at the points

⟨T,X1⟩, · · · , ⟨T,Xn⟩. The measure, µT
τ → N(0, σ2) weekly in probability as τ→ ∞.

Theorem 5.3.1 says that one dimensional projections of a large number (approximately

same lengths and nearly orthogonal) of high-dimensional data vectors are close to Gaussian

regardless of the structure of the data. The conditions (5.1) and (5.2) are not too strong; in

particular, even though only m vectors can be exactly orthogonal in Rm , the 2m vertices of

a unit cube centered at the origin satisfy condition (5.2) for rough orthogonality (Meckes,

2009).

Dümbgen and Counte-Zerial (2013) have given necessary and sufficient conditions that

the sequence of distribution, (Fm)m≥ℓ such the most low ℓ-dimensional orthogonal projec-

tions of the probability distribution on m dimensional space F are similar to some distri-

bution G on Rℓ. The limiting distribution is a mixture of centered, spherically symmetric

Gaussian distributions.

Theorem 5.3.2 ( Dümbgen and Counte-Zerial (2013)) The following two statements on

the sequence, (F(m))m≥ℓ are equivalent:

(a1) There exists a probability measure G on Rℓ such that

ΓT F →w,p G as m→ ∞.

(a2) If X1 = X(m) and X2 = X(m) be are independent random vectors with distribution F,
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then

L
(
⟨X1,X1⟩

m

)
→w µ and

⟨X1X2⟩
m

→p 0

as m→ ∞ for some probability measure µ on [0,∞), where L(x) is the distribution

of x.

The limit distribution G in (a1) is a normal mixture, i,e.,

G =
∫
Nℓ,ν µ(dν),

where Nℓ,ν stand for the Gaussian distribution on Rℓ with mean vector 0 and covariance

matrix νIℓ.

A details proof of the Theorem 5.3.1 and 5.3.2 are in Section 2 (Diaconis and Freedman,

1984) and in Section 4 (Dümbgen and Counte-Zerial, 2013), respectively.

5.4 Higher-order regularized kernel CCA (hrKCCA)

We have observed in Section 5.2 that in the standard kernel CCA the 2nd order regular-

ization is not sufficient; for a small bandwidth (large inverse bandwidth) in the Gaussian

RBF kernel, the standard kernel CCA gives high correlation but the resulting features are

not meaningful with most data accumulating at only a few points. We propose to intro-

duce a penalty on the 4th order moments of the canonical variates for a solution to this

ill-posedness.

5.4.1 Method

The 4th order moment of f1(X) and f2(Y) are given by µ4
X = E[( f1(X) − E[ f1(X)])4] and

µ4
Y = E[( f2(Y) − E[ f2(Y)])4], and their empirical estimates are

µ̂4
X =

1
n

n∑
i=1

[(MXaX)i]4 =
1
n

1T f(4)
1 ,

µ̂4
Y = =

1
n

n∑
i=1

[(MYaY)i]4 =
1
n

1T f(4)
Y ,
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where f(4)
1 = [ f̄ (4)

11 , . . . , f̄ (4)
1n ]T with the centered feature values

f̄ (4)
1i = [(MXaX)i]4 = [

n∑
j=1

MXi jaX j]4, i = 1, 2, . . . , n,

and similar for f(4)
2 .

We penalize the 4th order moments, 1
n1T f(4)

1 and 1
n1T f(4)

2 so that they are close to 3:

the motivation is to regulate the distribution of the canonical variates, so that they have

approximately the same kurtosis as the standard normal distribution. This is expected to

reduce the ill-posedness of the standard kernel CCA with the kernel chosen by CV.

The optimization problem of hrKCCA is then given by

max
aX ,aY

1
n

aT
XMXMYbY

subject to

ŴX =
1
n

aT
XM2

XaX + κaT
XMXaX = 1, (5.3)

ŴY =
1
n

aT
Y M2

YaY + κaT
Y MYaY = 1,

µ̂4
X = µ̂

4
Y = 3.

where κ is a regularized parameter. We convert this to a regularization problem

L(aX, aY) =
1
n

aT
XMXMYaY − ν

[
ŴX − 1

]2
− ν

[
ŴY − 1

]2

− λ[µ̂4
X − 3]2 − λ[µ̂4

Y − 3]2, (5.4)

where ν and λ are regularization coefficients. These coefficients are chosen by cross-

validation. For simplicity, we assume the same regularization coefficients for X and Y ,

and set ν = cλ, where c is a fixed trade-off between the 4th order and 2nd order informa-

tion. As we demonstrate in Section 5.5.1, the results of the proposed method are not so

sensitive to the choice of c (Alam and Fukumizu, 2013).

The maximization of Eq. (5.4) can be done with a nonlinear programming method:

gradient based unconstrained methods, or penalty methods (Kelley, 1999). We use the
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steepest ascent method. The gradient of Eq. (5.4) with respect to aX and aY are given by

∇aX L =
1
n

MXMYaY −
4c
n
λ
[
ŴX − 1

]
(M2

X + κMX)aX −
8
n
λ
[1
n

1T f(4)
X − 3

]
MXf(3)

X ,

∇aY L =
1
n

MYMXaX −
4c
n
λ
[
ŴY − 1

]
(M2

Y + κMY)aY −
8
n
λ
[1
n

1T f(4)
Y − 3

]
MYf(3)

Y ,

respectively, where f(3)
1 = [ f̄ 3

11, . . . , f̄ 3
1n]T and f(3)

2 are similarly defined to f(4)
1 . We call this

modified kernel CCA higher-order regularized kernel CCA (hrKCCA).

In a similar manner, the regularization problem to calculate the p-th (p = 1, 2, . . . , n)

canonical variates such that Cov(f(p)
1 (X), f(q)

1 (X)) = 0 if p , q and 1 if p = q having

maximum correlation with f (p)
2 (Y) is then given by

L(aXp , aY p) =
1
n

aT
XpMXMYaY p − ν

[
ŴX − 1

]2
− ν

[
ŴY − 1]2

− λ
[
µ̂4

Xp − 3
]2
− λ

[
µ̂4

Y p − 3
]2
+

p−1∑
i=1

γXia
T
XpMXaXp

i
+

p−1∑
i=1

γYia
T
Y pMYaY p

i
, (5.5)

where aXp and aY p be the pth directions of X and Y, respectively. For simplicity, we assume

the same regularization coefficients for all variables: γX1 = γX2 = . . . = γX(p−1) = γY1 = γY2 ,=

. . . = γY(p−1) = γ. It is possible to select the regularization coefficient γ by cross-validation.

In all experiments, we use γ = λ and λ is selected by cross-validation.

5.4.2 Kernel choice for hrKCCA

The higher-order regularized kernel CCA can be suitably combined with cross-validation

for choosing kernels and parameters. As described in Section 5.2, the leave-one-out or

k-fold cross-validation for small data points are not applicable for kernel CCA. In this

work, we employ the mean square errors to perform the cross-validation for hrKCCA. The

algorithm for selecting the hyperparameters (bandwidth and regularization coefficient) is

described in Figure 5.2, in which only the choice of parameter in the Gaussian kernel is

shown for simplicity, but other parameters can be chosen in a similar way.
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step 1. Input the dataset (Xi,Yi)n
i=1.

step 2. Choose s1, . . . , sL to be L values of the free parameter s in Gaussian kernel.

step 3. Consider C-fold cross-validation, and partition the data into C portions (v =
1, 2, . . . ,C).

step 4. For each ℓ = 1, . . . , L, do the following procedure:

(i) Compute the centered Gram matrices MX and MY using Gaussian RBF kernel
k(Xi,X j) = exp(−sℓ||Xi − Xj||2).

(ii) Optimize Eq.(5.4) based on the training set (T−v) to find the canonical
coefficient vectors a−vX and a−vY . The canonical covariates are f v1 (Xv j) =∑

i∈T−v a−vX k(X j,Xi) and f v2 (Yv j) =
∑

i∈T−v a−vY k(Y j,Yi).

(iii) Evaluate the prediction error ̂PEv(sℓ) = ∥ f̃ v1 (Xv) − f̃ v2 (Yv)∥2 for the vth test set
(T v), where f̃ v1 (Xv) and f̃ v2 (Yv) are normalized by the variance of the training
data.

(iv) Average the C prediction errors: P̂ECV(sℓ) = 1
C

∑C
v=1

̂PEv(sℓ).

step 5. Choose the value of s, ŝCV , that minimizes the prediction error, i.e., ŝCV =

arg minsℓ P̂ECV(sℓ).

Figure 5.2: Algorithm of the higher-order regularized kernel CCA.

5.4.3 Computational issues

In the proposed method, we need to compute the 4th order moments. Since the kernel CCA

has been based on only the 2nd order moments, it is obvious that the time complexity of the

proposed method will be higher than the kernel CCA. The number of iterations for conver-

gence of the algorithm depends on the data; in the extreme case, if we consider the same

dataset for both the variables, we will obtain the perfect correlation with a few numbers

of iterations. The computational time increases linearly in the numbers of iteration, while

in each iteration the computational cost is O(n2) where n is the sample size. Note that we

do not need matrix inversion in the gradient method. To illustrate the computational cost,

the results for three different data sizes and three different numbers of iteration (I) using an

example 3 (E3, details in Section 5.4.1) are tabulated in Table 5.1. The configuration of the

computer is Intel (R) Core (TM) i7 CPU 920@ 2.67 GHz., memory 12.00 GB and 64-bit

operating system. We have used ‘kernlab’ package in R program for implementation of the

standard kernel CCA (KCCA) with fixed regularization coefficient, κ = 10−4. We could
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choose the regularization coefficient by cross-validation, but have fixed it for simplicity.

Table 5.1: Time complexity (in second) for example 3: the proposed kernel CCA with
three numbers of iterations (I) and the standard kernel CCA (KCCA). The Gaussian kernel
is used for the both methods, and n is the sample size.

#I/n 100 500 1000
100 0.44 32.33 272.63
500 2.07 159.90 1219.07

1000 4.14 325.00 2683.19
KCCA 0.11 7.76 73.35

5.5 Experiments

We experimentally verify the effectiveness of the proposed method in extracting the de-

pendent features in comparison with the kernel CCA. We compare the performance of the

proposed method with the original kernel CCA using the synthesized examples and real

world datasets. In addition, the classification results using low dimensional subspace (1

and 2) of the proposed method are compared with other existing classification techniques.

The number of data and dimensions of response (Y) and explanatory (X) variables for all

experimental datasets are given in Table 5.2. In all experiments we fixed the regularization

κ = 10−4.

5.5.1 Synthesized examples

We use four synthesized data which have different marginal distributions and nonlinear

transformations. In the following examples, i and j correspond to ith data point and jth

dimension, respectively.

Example 1 (E1: Gaussian distribution and loge transformation). Given multivariate

normal data, Zi ∈ R12 ∼ N(0,Σ) (i = 1, 2, . . . , 500) where Σ is taken from Johnson and

Wichern (p. 555)(Johnson and Wichern, 2007). We divide Zi into two sets of variables

(Zi1,Zi2), and use the first five variables of Zi as the explanatory variable X, and log transfor-

mation of the absolute value of the remaining seven variables (loge(|Zi2|))) as the response

variable Y.
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Table 5.2: The configuration of datasets along with purposes (estimate of dependence fea-
ture (EDF), measure of association (MA) and estimate of low dimensional space (ELDS))
of all experimental datasets.

Dim.
#o f Data X Y Purpose

E1 500 5 7 EDF
Artificial E2 300 500 500

E3 1000 1000 1000 EDF
E4 200 35 25
Nutrimouse,D1 40 120 21
DBWorld,D2 64 4702 242
Psychological,D3 600 3 5 MA
Carbig,D4 390 3 2

Real data Wine,D5 178 13 3
BUPA,D6 345 6 2
Diabetes,D7 145 5 3
S ub jects,D2 64 4702 2 ELDS
Bodies,D2 64 242 2
KT H Human actions,D8 600 384000 6
UMD, D9 48 6144000 12

Example 2 (E2: Uniform marginal and periodic transformation). We use uniform

[−π, π] marginal distribution, and transform the data by two periodic sin and cos functions

to make X and Y, respectively, with additive Gaussian noise:

Zi ∼ U[−π, π], ηi ∼ N(0, 0.05), i = 1, 2, . . . , 300,

Xi j = sin( j ∗ Zi) + ηi,

Yi j = cos( j ∗ Zi) + ηi, j = 1, 2, . . . , 500.

Example 3 (E3: Laplace marginal, periodic and nonlinear transformation). The pe-

riodic transformation by cosine function for one set of variables Y and the cubic trans-

formation for the other set of variables X are generated from the marginal Laplace [0, 1]

distribution:

Zi ∼ L[0, 1], ηi ∼ N(0, 0.05), i = 1, 2, . . . , 1000,

Xi j = j ∗ Z3
i + ηi,

Yi j = cos( j ∗ Zi) + ηi, j = 1, 2, . . . , 1000.
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For cross-validation in Examples 1-3, we consider six inverse bandwidths for the three

examples, s ∈ {90, 100, 110, 120, 130, 140, 150} for E1, s ∈ {1, 10, 20, 30, 40, 50} for E2,

and s ∈ {1, 25, 40, 50, 60, 75} for E3. The same set λ ∈ {0.50, 0.75, 0.90, 1.05, 1.25, 1.50}

is used for the regularization parameter. The 10-fold cross-validation errors are tabulated

in Table 5.3. The smallest cross-validation errors corresponding to the inverse bandwidth,

s = 130, s = 30, and s = 25 for E1, E2 and E3, respectively, and the same regularization

coefficient λ = 1.05.

To see the influence of the trade-off parameter c for ν = cλ between the variance and

the 4th order moment (see Section 5.4.1), we have visualized in Figures 5.3 the first canon-

ical variates with the three values c = 10, 20, and 30 for all the three examples. We can

observe that the results of the proposed method are not so sensitive to the value of c, if it

is large enough. We thus fix c = 10 in all of the experiments in this paper to reduce the

number of free parameters chosen by CV. We can also see that the standard kernel CCA

corresponding to the smallest cross-validation error provides ill-posed solutions: only two

concentrated points with perfect correlation. In contrast, the proposed method provides

well-posed solutions showing a high correlation (0.988, 0.993 and 0.975) with reasonable

distributions.

Example 4 (E4: Uniform marginal and nonlinear transformation). We demonstrate that

the CV errors of the standard kernel CCA decreases as the inverse bandwidth of Gaussian

kernel increases. We consider a linear set of variables X and nonlinear set of variables Y

having the same uniform [−2, 2] marginal distribution as follows:

Zi ∼ U[−2, 2], ηi ∼ N(0, 0.05), i = 1, 2, . . . , 200,

Xi j = j ∗ Zi + ηi, j = 1, 2, . . . , 25,

Yi j = j ∗ Z2
i + ηi, j = 1, , 3 . . . , 9,

Yi j = j ∗ Z3
i + ηi, j = 2, 4 . . . , 10.

We have generated 100 samples. We take eight inverse bandwidths: s1 = 225, s2 =

250, s3 = 275, s4 = 300, s5 = 325, s6 = 350, s7 = 375, s8 = 400, and calculate the 10-fold

cross-validation errors from each sample. The box plots and line plots (inset) using mean

values for the kernel CCA and the proposed method using two regularization coefficients λ

86



Higher-order Regularized Kernel CCA

Table 5.3: Cross-validation errors of the three examples (E1 − E3) using different inverse
bandwidths s and regularization coefficients λ for the proposed method and standard kernel
CCA (KCCA).

s/λ 0.50 0.75 0.90 1.05 1.25 1.50 KCCA
90 0.015879 0.003996 0.008281 0.004276 0.002858 0.010321 0

100 0.002744 0.006109 0.008728 0.008750 0.008935 0.002094 0
110 0.007011 0.003913 0.003087 0.009613 0.001950 0.004661 0

E1 120 0.002909 0.004651 0.004728 0.000857 0.005236 0.002331 0
130 0.002658 0.001999 0.003187 0.000495 0.003572 0.005274 0
140 0.002853 0.002455 0.001785 0.001812 0.003594 0.003747 0
150 0.005741 0.002104 0.002377 0.003061 0.002092 0.002119 0

1 0.004364 0.002335 0.003014 0.003124 0.004833 0.008518 0
10 0.003215 0.002947 0.002061 0.001261 0.003802 0.001956 0
20 0.001894 0.001439 0.002148 0.001934 0.01192 0.003705 0

E2 30 0.003969 0.002372 0.001939 0.000449 0.001505 0.004887 0
40 0.001111 0.004647 0.003106 0.001947 0.001731 0.004896 0
50 0.003036 0.002635 0.003496 0.004956 0.003544 0.001546 0
1 0.015007 0.066003 0.028483 0.019171 0.027136 0.014781 0.000532

25 0.201227 0.019617 0.017199 0.003252 0.009107 0.003634 0
40 0.106513 0.023754 0.019312 0.008741 0.004017 0.004525 0

E3 50 0.253164 0.034919 0.0205772 0.021162 0.005307 0.005333 0
60 0.467826 0.073340 0.018540 0.006271 0.003427 0.004216 0
75 0.156971 0.027303 0.020168 0.018833 0.045894 0.004159 0

(0.9 and 1.05) are visualized in Figures 5.4. We observe that for the standard kernel CCA,

the cross-validation error is decreasing as the increase of the inverse bandwidth s. From

this observation, the CV does not work for choosing an appropriate bandwidth of the kernel

CCA. On the other hand, the CV error attains the minimum value at a point so that we can

select an appropriate bandwidth parameter for the proposed method.

5.5.2 Real world datasets

We apply the proposed method to real-world data sets. In the first part of this section, we

investigate the relationship between two sets of variables, comparing the proposed hrKCCA

and standard kernel CCA. In the second part of this section, we find low dimensional feature

spaces for classification tasks by the proposed method. The results of the proposed method

are compared with other classification approaches such as the linear discriminate analysis

(LDA), quadratic discriminate analysis (QDA), support vector machine (SVM), decision

tree, Bayesian networks and some exiting human action recognition methods.
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Table 5.4: Cross-validation errors for nutrimouse dataset.
s/λ 0.5 0.75 0.90 1.05 1.25 KCCA
1 1.368060 1.332372 1.224655 1.140264 1.140264 332193.7
10 0.001563 0.001431 0.002952 0.001339 0.003788 0.056211
20 0.000970 0.002959 0.003232 0.002591 0.003366 0.000002
30 0.002536 0.003248 0.001028 0.003605 0.001666 0
40 0.002468 0.001077 0.001874 0.002151 0.001479 0
50 0.001307 0.002300 0.001511 0.002653 0.001892 0
60 0.001120 0.000664 0.001876 0.001058 0.002285 0
70 0.001024 0.001314 0.001569 0.001084 0.002362 0

Dependent features and measure of relationship

Nutrimouse data, D1. Nutrimouse dataset is given by a nutrition study of the forty mice.

It was published by Martin et al. (2007) that has been also used in the ‘CCA’ package of R

program to measure the relationship of two sets of variables: Liver cells and Hepatic fatty

acids. We have already shown the results of the standard kernel CCA with this dataset to

illustrate its limitation in Section 2.

Note that nutrimouse data has more dimension than sample size. It is well known that if

the sample size is smaller than the dimension, we are not able to use linear CCA, in general.

We calculate the 10-fold cross-validation errors for kernel CCA and the proposed method

using regularization coefficient λ ∈ {0.5, 0.75, 0.90, 1.05, 1.25}, and the inverse bandwidth

s ∈ {1, 10, 20, 30, 40, 50, 60, 70}. The results are tabulated in the Table 5.4. We can see that

for the proposed method it is possible to select an appropriate bandwidth and regulariza-

tion coefficient (s = 60, λ = 0.75) corresponding to the smallest CV error, while the kernel

CCA fails to find a good parameter (error goes to 0 as s → ∞). The scatter plots using the

eight inverse bandwidths with the best regularization coefficient λ = 0.75 are also shown in

the Figures 5.5. We can say by comparing this figure with the Figures 5.1 that the proposed

method has a well-posed solution with highly dependent features (the smallest CV error

corresponding to the Figure 5.5(g)).

DBWorld datasets for measure of association, D2. This dataset consists of the subjects

and bodies of emails, which are represented by bag-of-words features. The sample size is

64, and there are 242 dimensional features for subjects, and 4702 features for bodies. The

dataset is available at the UCI machine learning repository (Bache and Lichman, 2013).
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Psychological dataset, D3. This is one of the most well known datasets to measure the

relationship of psychological variables and academic variables; the former consists of the

locus of control, self-concept, and motivation, while the latter of reading, writing, math, sci-

ence, and additional gender variable (http://www.ats.ucla.edu/stat/sas/dae/canonical.htm).

The sample size is 600. With the linear CCA, the relationship is 0.46, which implies weak

linear dependence.

Carbig dataset, D4. Carbig dataset contains various measured variables for automobiles.

It has been used in the MATLAB Statistics Toolbox with 392 data points (without missing

values). To use 10-fold cross-validation, we take 390 data points without first and last

observations.

To measure the association for the above datasets (D2 − D4), we apply the proposed

method with cross-validation. For the cross-validation, we use the inverse bandwidths s ∈

{50, 60, 70, 80, 90}, {30, 40, 50, 60, 70}, and {50, 60, 70, 80, 90} for DBworld, Psychological

and Carbig, respectively; the regularization coefficients are set λ ∈ {0.50, 0.75, 0.90, 1.05,

1.25}, {0.075, 0.090, 0.1}, and {0.01, 0.025, 0.050, 0.075, 0.09, 0.1} for the respective

datasets. The selected parameters are (s, λ) = (20, 1.05), (60, 0.09), and (60, 0.09). The

first canonical correlation of the proposed method are 0.989, 0.985 and 0.998 for datasets

D2, D3 and D4, respectively. The scatter plots of first canonical variates are visualized in

Figs. 5.6 ((a) standard kernel CCA and (b) the proposed method). From this visualization,

on the one hand, we can see that the standard kernel CCA with CV has provided high

dependence features with ill-posed solution, but on the other hand, the proposed method is

able to extract dependent features with well-posed distributions, for all the datasets.

Low dimensional space for classification

In this subsection, we use seven real world datasets for classification from the UCI repos-

itory (Bache and Lichman, 2013): wine, BUPA liver disorders, diabetes, DBWorld for

subjects, DBWorld for bodies, KTH and UMD dataset to estimate low dimensional canoni-

cal features of the input space using the proposed method. We then use the features for the

classification task. For the ℓ-class classification problem, the ℓ dimensional binary vectors

(1, 0, . . . 0), (0, 1, . . . 0), . . . (0, 0, . . . 1) are used for Y to specify the classes. We evaluate

the classification errors by the kNN classifier (k=5) (hrKCCA + kNN) and linear SVM
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(hrKCCA+ S V ML) with the nonlinear features of the data. We use only one or two canon-

ical features for the classification. The sample size and the dimensionality of the datasets

are summarized in Table 5.2.

Wine dataset, D5. The explanatory variable X is 13 dimensional continuous chemical

measurements, and the response variable Y consists of three dimensional binary vectors

corresponding to the three types of wine. The sample size is 178. To apply the 10-

fold cross-validation, we have drawn a random sample of size 170 out of 178. For the

cross-validation in the proposed method, we used six values of the inverse bandwidths s ∈

{0.01, 0.02, 0.03, 0.04, 0.05, 0.06} and five regularization coefficients λ ∈ {0.5, 0.75, 0.90,

1.05, 1.25}. The selected parameters are (s = 0.05, λ = 1.05) applied to the whole dataset.

The first canonical correlation of the proposed method is 0.94. The two dimensional plots

of first canonical variates and the first two canonical variates of X are shown in Figures 5.7

(a(i) and a(ii)), from which we can observe that there is strong dependence between the first

canonical variates (a(i)), and the first two features for X are able to extract a clear cluster

structure of the dataset (a(ii)).

For comparison, we have also applied the standard kernel CCA with heuristic three

choices of the bandwidth, s j =
1

2σ2
j
, ( j = 1, 2, 3): σ1, σ2, σ3 are the median(Gretton et al.,

2008), the minimum(Hardoon and Shawe-Taylor, 2009) and
√

10(Huang et al., 2009a) of

the pairwise distances of the standardized X. The values are s1 = 0.02, s2 = 0.37 and

s3 = 0.05. With these bandwidths, the first canonical variates and the first two canonical

variates of X given by the standard kernel CCA are shown in Figs. 5.7 (b-d), in which the

heuristic choice of bandwidth can extract data structure, but the shape of the clusters is less

clear than the result of the proposed method. Also, the correlation of the first canonical

variates are not so high (0.80, 0.39, 0.85).

We evaluate the classification errors by the kNN classifier (k=5) with the canonical

variates for the data. We split 178 data into 118 for training and 60 for testing (Bache

and Lichman, 2013). The classification error of the proposed method and the standard

kernel CCA with three bandwidths (s1, s2, s3) using only the first canonical variates of X

are 13% and 36.66%, 0%, and 20%, respectively. With the first two canonical variates,

the classification errors are 0 and 0, 0, and 1.66, respectively for the proposed method and

kernel CCA. The results indicate that the canonical variates found by the proposed method
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Table 5.5: Classification errors (%) for wine, BUPA liver disorders and diabetes. One
or two dimensional features are used with the proposed method (hrKCCA+kNN and
hrKCCA+SVM) and the kernel CCA.

Wine BUPA Diabeties
ELD 1 2 1 2 1 2

hrKCCA +kNN 14.04 0 0.58 0 0 0
+S V ML 14.04 0 0.58 0 0 0
s1 34.83 2.81 27.54 24.64 37.24 33.79

KCCA+kNN s2 0 2.81 0 0 2.07 2.07
s3 29.77 2.81 45.79 42.89 20 20
s1 29.21 2.24 53.33 41.45 33.79 17.93

KCCA+SVML s2 2921 2.24 0 0 2.07 0
s3 28.65 2.81 42.03 53.04 20.00 15.86
LDA 1.10 30.10 11.00

Full dimensions QDA 0.60 40.60 9.70
S V MG 1.69 25.22 2.14

have stronger ability for classification.

BUPA liver disorders dataset, D6 and diabetes dataset, D7. For the cross-validation, the

inverse bandwidth s and the regularization coefficient λ are selected from {0.02, 0.03, 0.04,

0.05, 0.06} and {0.09, 0.10, 0.25}, respectively, for D6; {0.009, 0.01, 0.02, 0.03, 0.04, 0.05}

and {0.75, 0.90, 1.05} for D7. The first canonical correlation are 0.94 for D6 and 0.98 for

D7.

Using the low dimensional canonical features (only 1 and 2) obtained by the proposed

method, we evaluate the leave-one-out cross-validation of the misclassification rates for

kNN and linear SVM classifiers (hrKCCA + kNN and hrKCCA + S V ML). In compari-

son, we use the canonical features given by the standard kernel CCA with the same three

heuristic choices of the inverse bandwidth as the ones used for wine data. The CV errors

for D5, D6 and D7 are tabulated in Table 5.5. We also show the leave-one-out misclas-

sification rates with the full dimensions by linear discriminant analysis (LDA), quadratic

discriminant analysis (QDA) and 10-fold cross-validation errors for the nonlinear SVM

(Gaussian kernel, S V MG), which are taken from (Izenman, 2008). We see from this table

that the proposed method is able to give the best results in almost all cases. Note also that

the results of standard kernel CCA strongly depend on the choice of bandwidth parameter,

which contrasts with the proposed method incorporating the cross-validation.
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DBWorld datasets for classification (subjects and bodies)

We have already used the DBWorld email dataset for measuring the relation between

subjects and bodies, but use it again for a different purpose. The dataset is used for clas-

sification: the task is to classify an email between “announcement of conferences” and

“anything else” based on the subjects and bodies. We apply the proposed method as a

preprocessing technique for this purpose.

For the cross-validation, six inverse bandwidths s ∈ {0.03, 0.04, 0.05, 0.06, 0.07, 0.08}

and five regularization coefficients λ ∈ {0.5, 0.75, 0.9, 1.05, 1.25} are used. The chosen val-

ues are s = 0.07 and 0.07 for the subject and body dataset, respectively, and regularization

coefficients λ = 1.25 and 0.75. For these datasets the first canonical correlations are 0.84

and 0.93, respectively. To evaluate the misclassification rates of the classification based on

the canonical features, we split 64 (35, 29) data into 48 (26, 22) and 16 (9, 7) randomly as

by Filannino (Filannino, 2011). The average misclassification rates given by the proposed

method using the first and first two canonical features are shown in Table 5.6. The results

of SVM (linear kernel), SVM-RBF (Gaussian kernel), decision tree (C4.5), and Bayesian

network (K2), using the full dimension, are taken from Filannino (Filannino, 2011). The

canonical features found by the proposed method show better classification ability than all

the other methods. This means the proposed hrKCCA extracts features for classification

effectively with an appropriate choice of parameters.

The scatter plots and index plots (number of data points 1−64 in x-axis and first canon-

ical variate of X in y-axis) of the first canonical variates and the first canonical variate of

the explanatory variable are shown in Figures 5.8 (Subjects, Bodies, BUPA and Diabetes).

As can be seen in the figures, we can extract the data structure properly with only one

canonical variate.

KTH human actions dataset, D8. The human actions video database of KTH dataset

(Schüldt et al., 2004) is used to show the superiority of the proposed method over kernel

CCA as well as other classification methods. This dataset has six types of human actions:

boxing, hand clapping, hand waving, jogging, running, and walking, performed by 25 sub-

jects (training set 1-8, validation set 9-16 and test set 17-25) with four different scenarios:

outdoors, outdoors with scale variations, outdoors with different clothes, and indoors. The

resized video sequence for the experiment is 120 × 160 × 20, i.e. the dimension of X is
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Table 5.6: Classification errors (%) using one dimensional estimated subspace of
DBWorld subject and bodies datasets by the proposed method (hrKCCA+kNN and
hrKCCA+SVML) other exiting methods.

S ub jects Bodies
ELD 1 2 1 2

hrKCCA +kNN 1.25 1.25 1.25 1.25
+S V ML 2.5 1.875 1.875 0.625
SVM:linear k. 2.3437 2.3437
SVM-RBF: Gaussian k. 2.3437 4.6875

Full dimensions Decision tree: C4.5 7.8125 3.1250
Bayesian Network: K2 1.5625 4.6875

384000.

First, we extract a two dimensional subspace using both the standard kernel CCA and

the proposed method to recognize the six human actions only in the outdoor scenario. For

this purpose, we take six heuristic inverse bandwidths for the kernel CCA: mean, median,

minimum, maximum, 0.05 and 3 ×median based on the pairwise distance of standardized

X. The scatter plots of the first canonical variates (upper row) and the first two canonical

variates (lower row) of X are shown in Figures 5.9. From the figures, we can conclude

that the heuristic choice of bandwidths are not able to extract high dependence features or

effective low dimensional subspaces for this recognition task.

For the proposed method, we select the parameters by 10-fold CV. We consider six in-

verse bandwidths s ∈ {0.01, 0.05, 0.10.0.15, 0.20, 0.25} and three regularization coefficients

λ ∈ {0.90, 1.05, 1.25}. The appropriate inverse bandwidth and regularization coefficient are

s = 0.20 and λ = 1.05, respectively. We visualize the scatter plots of the first canonical

variate (upper row) and first two canonical variates of X (lower row) using all six inverse

bandwidths with fixed regularized coefficient λ = 1.05 in Figures 5.10. This visualization

ensures that, the proposed method is able to extract high dependence features as well as an

effective, low dimensional subspace for recognition of human actions. Using this subspace,

both of the classification methods: kNN classifier (k=5) and linear SVM can recognize all

six human actions perfectly (leave-one-out recognition rate is 100%).

Finally, we show the performance of the proposed method in comparison with some

exiting human action recognition methods (Danafar et al., 2010). By the proposed method,

we extract two dimensional subspace using training and test set for all scenarios i.e., X ∈
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Table 5.7: Recognition rate (%) for KTH dataset (all scenarios) by the proposed method
(hrKCCA+kNN and hrKCCA+SVML) and other methods.

Methods Recognition rate (%)
s1 99.1

hrKCCA+kNN s2 99.5
s3 96.8
s1 99.8

hrKCCA+SVML s2 99.5
s3 96.3
Lin et al. 93.4
Danafar et al. 93.1

Full dimensions (Danafar et al., 2010) Schindler and Van Gool 92.7
Schüldt et al. 71.7

R408×384000. We use the proposed method for a fixed regularized coefficient, λ = 1.05 and

three inverse bandwidths, s ∈ {0.01, 0.10, 0.20} (10-fold CV errors using validation set and

only outdoor scenario video are small). The scatter plots of the first canonical variates

(upper row), first two canonical variates of X (middle row) and confusion matrices (lower

row) are shown in Figure. 5.11. In view of the visualization, we can observe that there is

a strong dependence between the first canonical variates and the first two features of X are

able to extract a clear cluster structure of the human actions.

We also evaluate recognition rates for the test set using the estimated subspace by the

kNN classifier (k=5) and SVM. The results of the proposed method along with other meth-

ods are tabulated in Table 5.7. It is remarkable to see that the canonical variates found by

the proposed method have stronger ability for recognition than all the other methods. The

results for the full dimensions are taken from Danafar et al. (Danafar et al., 2010).

The UMD sushi making data, D9
1: In recent, Teo et al. have been used this dataset as

supervised and unsupervised settings with adding language but accuracy rate, 91.67 stile

need to improve (Teo et al., 2012). In the dataset four actors are performed to make sushi,

consist of 12 actions: cleaning (A), cutting (B), drinking (C), flipping (D), peeling (E),

picking-up (F), pouring (G), pressing (H), sprinkling (I), stirring (J) tossing (K), turning

(L), based on different kitchen tool tools. The 48 video sequences are around 30 seconds.

The resized video sequence for our experiment is 480 × 640 × 20, i.e. X ∈ R48×6144000.

1http://www.umiacs.umd.edu/research/POETICON/umd sushi/
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Table 5.8: Recognition rate (%) for UMD dataset by the proposed method (hrKCCA+kNN
and hrKCCA+SVML) and some of the best stat-of-the-art methods of this dataset.

Methods Recognition rate (%)
hrKCCA kNN 100
s ∈ {0.1, 0.5, 1, 10, 50} +SVML 100
STIP+ Bag of Words SVMP 77.08
Action Features+Language SVMP 91.67

Semi-supervised EM 9167

We extract a low dimensional subspace with first two canonical variates of X using eight

inverse bandwidths s ∈ {0.01.0.05, 0.1, 0.5, 1, 5, 10, 50}. We then split first three actors for

training and fourth actor for test. Finally, we evaluate recognition rates for the test set

using the estimated subspace by the hrKCCA+kNN classifier (k=5) and hrKCCA+SVM.

The low dimensional subspace can successfully recognize all 12 actions. The results of

the proposed method and some of the best stat-of-the-art methods are tabulated in Table

5.8. It is remarkable to see that the canonical variates found by the proposed method have

stronger ability for recognition than all the other methods. The rest of results (STIP+ Bag

of Words and Action Features + Language) are taken from Teo et al.(2012).
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Figure 5.3: Scatter plots of 1st kernel canonical variates for the examples (E1 − E3). The
first column for the standard kernel CCA. The final three columns for the hrKCCA, using
different trade-off c for the regularization parameters: ν = cλ. The inverse bandwidth s and
the 4th moment regularization coefficient λ are chosen by the CV.
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Figure 5.4: Box plots and line plots (inset) using mean values of cross-validation errors
of 100 samples for example 3 (bandwidths, s1 = 225, s2 = 250, s3 = 275, s4 = 300, s5 =

325, s6 = 350, s7 = 375, s8 = 400).
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Figure 5.5: Scatter plots of the 1st kernel canonical variates given by the proposed method
for the nutrimouse dataset (liver cells and hepatic fatty acids) using the Gaussian RBF
kernel with eight inverse bandwidths s and fixed regularization coefficient λ = 0.75. The
10-fold cross-validation error is also embedded (see also Table 5.4).
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Figure 5.6: Scatter plots of the first canonical variates of real datasets (Email (D2), Psycho-
logical (D3) and Carbig (D4)) using the parameters chosen by CV for the kernel CCA (a)
and the proposed method (b).
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Figure 5.7: Scatter plots of the first canonical variates (a(i)) -(d(i)) and the first two canoni-
cal variates of the exploratory variables (a(ii) -d(ii)) for the wine dataset. The proposed
method (s = 0.05, λ = 0.1) in (a) and kennel CCA using three heuristic bandwidths
(s1 = 0.02, s2 = 0.073, s3 = 0.05) in (b - d) are shown.
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Figure 5.8: Scatter plots of the first canonical variates (upper row) and one dimensional
index plots (lower row) given by the proposed method for DBWorld subject, bodies, BUPA
liver disorders, and diabetes.

101



Higher-order Regularized Kernel CCA

Figure 5.9: Scatter plots of the first canonical variates (upper row) and the first two canon-
ical variates of X (lower row) using KTH dataset (outdoor scenario only) for the kernel
CCA.
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Figure 5.10: Scatter plots of the first canonical variates (upper row) and first two canoni-
cal variates of X (lower row) using KTH dataset (outdoor scenario only) for the proposed
hrKCCA.
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Figure 5.11: Scatter plots of the first canonical variates (upper row), first two canonical
variates of X (middle row) and confusion matrices (lower row) using KTH dataset for all
scenarios (boxing (B), hand clapping (HC), hand waving (HW), jogging (J), running (R),
and walking (W)) for the for the proposed hrKCCA.
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Chapter 6

Conclusion and Future Research

6.1 Conclusion

First, we discussed the drawbacks of kernel principal component analysis (kernel PCA),

and proposed a method for choosing hyperparameters, optimal kernel (parameters in a

kernel) and the number of kernel principal components, through the LOOCV for the recon-

struction errors of pre-images. We made empirical studies using synthesized examples and

real-world datasets. For evaluation of the proposed method, in addition to visualization, we

used classification errors for the projected data onto the subspace chosen by the method,

if the data set is provided for a classification task. We observed that for all the datasets

classification performances of the kernel PCA chosen by the proposed method is the best

or close to the best among the candidates of hyperparameters. The experimental results

imply that the proposed method successfully provides an automatic way of finding such

hyperparameters that give appropriate low-dimensional representation of dataset.

We applied the proposed method for synthesized and real datasets in the Section 3.3.

The scatter plots of first two kernel principal components for synthesized datasets (with the

best hyperparameter) are visualized in the Figure 3.5 (c). Both the plots show that the pro-

posed method is able to extract the hyperparameters that can separate three cluster clearly

without using the explicit clusters information. We next applied the proposed method to

real datasets. For classification data sets, we can see from the Tables 3.3 (for five real-world

datasets) and 3.4 (USPSG dataset) that the hyperparameter gives the best or close to best

LOOCV classification error. In all cases, we observe that the chosen hyperparameters are
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close to the best parameters for the classification error. For unlabeled dataset, from the

Table 3.5 and the Figure 3.6 we can see that the hyperparameter chosen by the proposed

method provides the features with a clearer structure than the other two hyperparameters.

For this dataset, Izenman (2008) provides detailed analysis on the results of kernel PCA

with a hand-tuned bandwidth parameter: a meaningful “curve” structured is observed in

the result of two-dimensional kernel PCA. As shown in Figure 3.6, the proposed method

automatically chooses such a hyperparameter that accords with the observation in Izenman

(2008). These experimental results suggest the effectiveness of the proposed method.

Second, we compared the performances of five (classical, robust and the standard ker-

nel CCA with three functions) estimators of canonical correlation coefficient that are com-

monly used in the statistical literature. Their performance was investigated through qualita-

tive robustness indices, sensitivity curves and breakdown point in linear, contaminated and

nonlinear simulated datasets. It is found that both classical and robust measure fail com-

pletely to capture nonlinear relationships. All kernel measures, especially the Gaussian

kernel and Laplacian kernel are able to detect nonlinear relationships. The robust measure

is found to be the best and followed closely with kernel CCA for contaminated datasets. On

the other hand, the classical CCA gives the best performance for multivariate normal data

set, but it fails in contaminated and nonlinear datasets. By breakdown plots, we observe

that the breakdown is very high for robust estimator in linear data, but in nonlinear data

kernel methods are better.

Finally, we proposed a kernel CCA method based on the regularization for the 4th

order moments. The proposed method is to overcome the limitations of the standard kernel

CCA: choosing the bandwidth and regularization coefficients are not straightforward, and

the cross-validation approach give undesired distributions of the canonical variates. By

comparing the results of kernel CCA and the proposed method of Figure 5.1, 5.5, 5.5 and

5.6 it is clear that the proposed method provides well-posed solution but standard kernel

CCA. From the Table 5.3, 5.4 and the Figure 5.5 it is confirmed that we can optimize all

the parameters using cross-validation, which provides more well-shaped distribution of the

canonical features of the proposed method. When we apply the proposed method of the

classification datasets, the low dimensional canonical variates provide favorable features of

the classification. From the visualization of the first two canonical variates in Figure 5.7
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and 5.8 we can see clearer data structure of the proposed method. From the Figure 5.9,

5.10, 5.11 and Table 5.7 we see that the proposed method provides better performance over

standard kernel CCA for the both human action datasets.

The experimental results confirmed that the propose approach has, in fact, these favor-

able properties unlike the standard kernel CCA. In the real world datasets, the classification

performance with the data projected to the low dimensional features outperforms the results

of the state-of-the-art methods of the same task.

6.2 Future research

There are also some possibilities to improve both the proposed methods: kernel PCA and

higher order regularized kernel CCA (hrKCCA). For the kernel PCA, first the optimization

such as fixed-point and steepest descent method for computing the pre-image has possibil-

ity of being trapped by local optimum. Applying other pre-image methods to alleviate the

problem will be an important future research. Second, since our method uses the cross-

validation with pre-image optimization, it may be time-consuming for large datasets. One

possible approach is to use a part of data onto evaluating reconstruction errors, and it is also

an interesting future direction to develop a more efficient way of hyperparameter choices of

kernel PCA. Third, the reconstruction errors in the proposed method assume that the orig-

inal space admits a metric, while kernel PCA can be applied to more general data spaces

including non-metric spaces. It is also among our future studies to consider hyperparameter

choices applicable to kernel PCA for non-metric spaces.

For hrKCCA the gradient based method may converse with local optima. It is important

to develop a more sophisticated optimization technique as a future work. Statistical prop-

erties such as asymptotic and robustness will be also among important future directions of

research for this proposed method.

Developing robust kernel PCA and kernel CCA based on robust covariance and cross-

covariance operators are also an interesting direction of future research. A robust kernel

PCA has been derived theoretically based on projection residual error (Huang et al., 2009b).

They have derived influence function of kernel PCA but not for standard kernel CCA. In the

future we will propose the influence function of standard kernel CCA. We are also trying
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to develop robust covariance and cross-covariance operators to apply in kernel PCA and

kernel CCA, respectively.
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