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Abstract

Small molecules that have the ability to alter the biological response of a cell or disease state

are of significant interest as drug candidates. One approach to the design of such molecules

using kernel methods is through a map of molecules to a feature space induced by a kernel,

where the predictions of the molecular properties are made in a linear manner. The forward

mapping helps guide the synthesis of new molecules. Another more direct approach is to

solve the so-called pre-image problem, i.e., to reconstruct a corresponding molecule (aka

pre-image) from its feature space representation. The inverse mapping is of central impor-

tance for the design of new molecules with desired properties. In this thesis, we address two

problems in drug design: (I) the forward problem of predicting molecular properties, where

we propose a new graph kernel that induces a feature space amenable to the prediction of

molecular properties, and (II) the inverse problem of designing new molecules that possess

properties required for drug candidates, where we develop a population-based Monte Carlo

method to solve the pre-image problem for the molecules. Our respective contributions to

these problems are summarized as:

(I) Forward problem of predicting molecular properties

The measurement of molecular similarity is an essential part of predicting molecular prop-

erties. Graph kernels provide good similarity measures between molecules. A conventional

graph kernel is based on counting common subgraphs of a specific type in molecular graphs.

This approach suffers from two primary limitations: (i) only exact subgraph matching is



ii

considered in the counting operation, and (ii) most of the subgraphs will be less relevant to

a given task. In order to address these limitations, we propose a new graph kernel as an ex-

tension of the subtree kernel initially proposed by Ramon and Gärtner (2003). The proposed

kernel tolerates an inexact match between subgraphs by allowing matching between atoms

with similar local environments. In addition, the proposed kernel provides a method to as-

sign an importance weight to each subgraph according to the relevance to the task, which

is predetermined by a statistical test. These extensions lead to promising improvements in

classification and regression tasks for predicting a wide range of pharmaceutical properties

from the chemical structure of molecules.

(II) Inverse problem of designing new molecules

The de novo design of new molecules that yield desired properties has the potential to sub-

stantially reduce both the time and cost involved in drug development. Recent developments

in graph kernels have enabled us to apply well-established machine learning techniques to

molecular data which are internally represented as graphs. However, in order to allow for

the design that generates new molecules as a result, it is necessary to solve the pre-image

problem for molecules. Unlike the traditional method proposed in Bakır et al. (2004), which

is formulated as a nonlinear combinatorial optimization problem, we express the pre-image

problem as a sampling problem for molecular graphs. Here, we are not only interested in

optimal molecules, but also in near-optimal molecules which are often considered to be

good candidates for further chemical synthesis. Therefore, we develop a population-based

Monte Carlo method for sampling structurally diversified molecules near the pre-images,

which possess good drug-likeness. The key to an efficient sampling method is to use the

update of a population by evolutionary operators for the structural alteration of molecules.

Furthermore, to penalize non-drug-like molecules, we use the knowledge of drug-likeness

commonly considered by medicinal chemists. The effectiveness of the proposed method is
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illustrated through experiments to find corresponding molecules from given image points in

a feature space induced by a graph kernel.
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Chapter 1

Introduction

1.1 Background

A primary goal in drug development is to identify new molecules that possess suitable prop-

erties required for drug candidates. It is estimated3–5 that there are in excess of 1060 or-

ganic molecules below 500 Da of possible interest for drug development. A comprehensive

synthesis of molecules is not feasible strategy due to this vast chemical space. Therefore,

computer-aided molecular design (CAMD) has the potential to substantially reduce both the

time and cost involved in the trial-and-error experiments of drug development. The use of

quantitative structure–activity relationships, known as QSARs,6,7 is a promising approach

to CAMD. The first step in this approach is to build a forward QSAR model for predicting

biological activities or molecular properties from the structural information of a molecule.

A forward QSAR can be established using many different model equations (e.g., multi-

ple linear regression, partial least squares, support vector regression, etc.). Once a model

is built, we next invert the QSAR, i.e., now searching for molecules of interest under the

model. This is referred to as the inverse problem.

The most commonly used solution to the inverse problem is virtual screening. In this ap-

proach, molecules in a database are evaluated using a forward QSAR to identify molecules
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Figure 1.1 Illustration of the pre-image problem in kernel methods. An image point Ψ in the
feature space F is mapped back to the input space G.

possessing desired properties. However, virtual screening can only identify molecules present

in the database, i.e., it cannot suggest new structural molecules that yield better properties

than known molecules. De novo design solves this problem by building molecules from

scratch so as to optimize a scoring function. While the scoring is based on a QSAR model,

other factors such as drug-likeness and synthetic accessibility can be used as well. Methods

for designing new molecules include graphical enumeration8–10 and stochastic optimiza-

tion11–16 in the context of inverse QSAR. The exhaustive enumeration of chemical struc-

tures with given constraints is often computationally demanding. In addition, at present, this

approach can generate only treelike (acyclic) molecular graphs. A stochastic approach such

as simulated annealing, genetic algorithms, or tabu search solves a nonlinear combinatorial

optimization problem for chemical structures, where one may be interested in only optimal

solutions of the problem.

Kernel methods17–20 provide a principle framework for solving the forward and inverse

problems in CAMD. The recent development of graph kernel functions21 has made it pos-

sible to apply kernel methods to various machine learning tasks in chemical informatics,22

where graphs are used to describe the chemical structure of the molecules.23 Once a suitable

kernel function k on a set G of molecular graphs is defined, the kernel approach to molecules
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works successfully for well-established machine learning methods (e.g., support vector ma-

chine, logistic regression, K-means clustering, etc.). The basic idea behind the kernel ap-

proach is to implicitly map molecular graphs in the input space G into the high dimensional

feature space F via a possible nonlinear map ϕ : G → F such that for every G,G ′ ∈ G it

holds that k(G,G ′) = ⟨ϕ(G),ϕ(G ′)⟩ where ⟨·, ·⟩ denotes the inner product. The forward

mapping ϕ is of primary importance in predicting the molecular properties.24–26 We next

invert the forward mapping ϕ, i.e., the inverse mapping ϕ−1 from the feature space F back

to the input space G. This is known as the pre-image problem. The pre-image problem is of

central importance for the design of new molecules with desired properties.2,27 Many graph

kernels21 for solving the forward problem exist, yet solutions2,28 to the inverse problem are

relatively limited due to its ill-posed nature; it is non-convex, nonlinear, and combinatorial.

We describe kernel methods to address the forward and inverse problems in detail below.

1.1.1 Forward Problem of Predicting Molecular Properties

The definition of an appropriate similarity function between molecules is of crucial impor-

tance for many applications in chemical informatics. Common applications include QSAR

model construction to predict biological activities from structural information of molecules.

The quantitative structure-activity relationship models rely on the similarity property princi-

ple,29 which states that structurally similar molecules tend to have similar properties. There-

fore, the QSAR model, derived using an appropriate similarity function, will help guide the

synthesis of new molecules.

Graphs are often used as a natural mathematical abstraction to describe the chemical

structure of molecules.23 A molecule is translated to a labeled graph (or molecular graph),

in which vertices correspond to atoms and edges correspond to covalent bonds between the

atoms. The vertices are labeled with element types (e.g., carbon, oxygen, etc.) while the

edges are labeled with bond types (e.g., single, double, etc.). Measurement of the similarity
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between the molecular graphs requires a method by which to transform any molecular graph

G to a feature vector ϕ(G). Classically, molecular graphs are transformed into molecular

descriptors,30 which can be thought of as numerical representations that are encoded so as to

capture the relevant aspects of structural information of molecules. A unique dictionary30

of molecular descriptors lists more than 3,300 descriptors. Popular choices for them in-

clude extended-connectivity fingerprints31 (ECFPs). The similarity between the molecular

descriptors is then measured by a similarity metric, e.g., the Tanimoto coefficient.32 To date,

the molecular descriptors are widely applied due to their computational efficiency. However,

such a transformation ϕ may cause some loss of structural information of molecules due to

the limited dimensional feature space of the molecular descriptors.

Alternatively, molecular graphs can be compared directly in a potentially high or infinite

dimensional feature space without the need to perform the explicit transformation, ϕ. This

is possible when using a positive definite kernel19,20 k on a set G of molecular graphs. The

symmetric function k : G×G→ R is said to be a positive definite kernel on G if and only if∑
i,j∈{1,...,n} cicjk(Gi,Gj)⩾ 0 for all n ∈N, G1, . . . ,Gn ∈ G, and c1, . . . ,cn ∈R. For such k,

it is known that a map ϕ : G→ F into a reproducing kernel Hilbert space (RKHS) F exists,

such that k(G,G ′) = ⟨ϕ(G),ϕ(G ′)⟩ for all G,G ′ ∈ G. We suppose that the feature map

ϕ(G) = k(·,G) ∈ F of a kernel function k is of substantially the same class as the feature

vector of a molecular descriptor. A difference is whether the feature space is defined explic-

itly or implicitly. The convolution kernel33 provides a framework to construct a wide class

of kernel functions for structured objects such as molecular graphs, where each object is

implicitly decomposed into a set of subgraphs, and the kernel between the objects is defined

as the sum of kernel values among the subgraphs. Following this framework, various graph

kernels have been proposed in the literature, see Vishwanathan et al..21 These graph kernels

differ with respect to the choice of the subgraph types used to represent the structured ob-

jects, such as walks,24,34 shortest paths,35 cycles,36 and trees.1,26 Mahé et al. 37 introduced
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two extensions to remove tottering walks and to increase the number of different atom la-

bels using the Morgan algorithm. Ralaivola et al. introduced three normalized variants38

(Tanimoto, MinMax, and Hybrid) of the non-tottering walk kernels. Subsequently, the ef-

ficient computation schemes for the random walk kernel39 and the subtree kernel40 were

developed.

The above graph kernels all have two primary limitations. First, these graph kernels

rely on exact subgraph matching where a successful match between subgraphs requires

strict correspondence in terms of structure and vertex/edge labels. This means that if two

subgraphs differ by only a single atom label, then the two subgraphs are considered to be

completely different. The requirement for an exact match may reduce the expressivity of

the resulting graph kernels. In an effort to address this problem, the elastic tree kernel41

has been proposed for labeled ordered trees, which allows matching between vertices with

different labels. Other similarity measures for inexact matching of subgraphs have been

introduced in the optimal assignment kernel.42 Second, when the number of distinct sub-

graphs is significantly large, the numerous irrelevant subgraphs for a given task overwhelm

the contributions of the relatively few relevant subgraphs. This problem, which is known

as the curse of dimensionality, adversely affects the generalization ability of the prediction

models built on graph kernels.43 Possible solutions to this problem include decreasing the

contribution of larger subgraphs,44 using prior knowledge to select relevant subgraphs,45–47

and increasing the specificity of matching between subgraphs based on consideration of

neighborhood information.42,48

To tackle the above limitations, we propose a new graph kernel, called the atom envi-

ronment (AE) kernel, as an extension of the subtree kernel initially proposed by Ramon

and Gärtner.1 The AE kernel regards atoms as vertices labeled with information about the

local atom environment. The atom environment labels are derived using an extension49 of

the Burden approach50,51 and a variant31 of the Morgan algorithm.52 The AE kernel tol-
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erates an inexact match between subgraphs by allowing matching between atoms having

similar local environments. In addition, the AE kernel provides a method for assigning an

importance weight to each subgraph according to the overall statistical significance of the

constituent atoms for a given task.

1.1.2 Inverse Problem of Designing New Molecules

In this section we consider the inverse problem of reconstructing a corresponding molecular

graph from its feature space representation induced by a graph kernel. This is known as the

pre-image problem.

Let k be a kernel function on a set G of molecular graphs. The kernel k induces an RKHS

F, called the feature space, and a map ϕ : G→ F such that k(G,G ′) = ⟨ϕ(G),ϕ(G ′)⟩ for

all G,G ′ ∈ G. Given an image point Ψ in F as an expansion in terms of known molecules

{G1, . . . ,GN} ⊆ G, i.e., Ψ =
∑N
i=1αiϕ(Gi), the pre-image problem amounts to finding a

corresponding molecular graph G∗ ∈ G such that Ψ = ϕ(G∗). However, the map ϕ is not

CnH2n+2
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Table 1.1 The Number of Molecules with Given Structural Constraints.
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surjective in general. In this case, it is natural to find an approximate pre-image G∗ such

that

G∗ = argmin
G

∥Ψ−ϕ(G)∥2 . (1.1)

This is a hard combinatorial optimization problem since there are at least 1060 possible

organic molecules3–5 (see Table 1.1). A general learning-based framework for finding pre-

images is reported in ref 27.

Methods to solve the pre-image problem for molecules include combinatorial enumer-

ation28 and stochastic optimization.2 Fujiwara et al. 28 proposed an enumeration algorithm

for treelike chemical structures with given path frequencies using the branch-and-bound

method. Enumeration of chemical structures with given constraints is often computation-

ally prohibitive.28 In addition, at present, this approach can generate only treelike (acyclic)

chemical structures. Bakır et al. 2 proposed a stochastic optimization algorithm for finding

a corresponding chemical structure from a given image point in F induced by the random

walk kernel.24 The stochastic optimization approach suffers from local minimum trapping,

requiring restarts with a new initial guess, and therefore may miss potentially important

molecules. Moreover, this approach delivers only local optimal solutions (molecules) of the

problem.

In CAMD, medicinal chemists are not only interested in optimal solutions, but also in

their neighboring suboptimal solutions. This means that molecules near the optimal solu-

tions are often considered as good candidates for further chemical synthesis since the desir-

ability (e.g., potency, stability, synthesizability, drug-likeness, etc.) of the optimal solutions

is usually insufficient. Therefore, the pre-image problem can be expressed as the problem of

generating molecular graphs from a target distribution. This is different from the optimiza-

tion problem (eq 1.1) where only local optimal solutions are of interest. The formulation of

the sampling problem begins by defining a target distribution on the molecular graphs as a
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Boltzmann distribution at temperature t

G∗ ∼ π(G)∝ exp{−(||Ψ−ϕ(G)||2 +ηR(G))
/
t},

where R(G) is a regularization function to penalize non-drug-like molecules and η controls

the strength of the regularization. In Chapter 4, we will draw molecular graphs from π(G)

using a population-based Monte Carlo method.53–55

1.2 Outline of the Thesis

This thesis is organized into three remaining chapters, followed by a conclusion.

Chapter 2 discusses graph kernels for molecules that can be naturally represented using

a graph. First, a short introduction to kernel methods is given, followed by the neces-

sary notation regarding graphs and trees required for the graph kernel definitions. Finally,

state–of–the–art graph kernels for molecules are presented.

Chapter 3 proposes a new graph kernel to address the forward problem as an extension

of the subtree kernel initially proposed by Ramon and Gärtner.1 First, the basic idea for

extending the subtree kernel is given. Then, two extensions, called the inexact match ex-

tension and the importance weight extension, are introduced. The differences in relation

to previous research are then discussed. Atom labels with information regarding the lo-

cal atom environment are derived. The computation of the proposed kernel is presented

thereafter. Finally, application to classification and regression tasks for predicting various

pharmaceutical properties from the structure of molecules is described.

Chapter 4 develops a population-based Monte Carlo method for sampling structurally

diversified molecules with good drug-likeness. First, the basic idea for the development

of the sampling method is given. Then, evolutionary operators (i.e., mutation, crossover,

and exchange) for the structural alteration of molecules are introduced. Next, a molecu-
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lar fragment database required for the mutation operation is prepared. In order to penalize

non-drug-like molecules, existing knowledge of drug-likeness commonly used by medici-

nal chemists is introduced. Finally, the effectiveness of the proposed sampling method is

demonstrated by pre-image reconstruction experiments.



Chapter 2

Kernel Methods for Molecules

This chapter describes the extension of kernel methods to handle structured data such as

chemical structures through the convolution kernels proposed by Haussler.33 We begin with

a brief introduction of kernel methods, followed by a description of graph representations

of chemical structures, and a review of existing graph kernels.

2.1 Kernel Methods

Traditionally, machine learning algorithms (e.g., support vector machine, logistic regres-

sion, K-means clustering, etc.) have been well developed for the linear case. However,

real-world problems often require nonlinear algorithms to detect the complex patterns that

allow for the successful prediction of properties of interest. The use of a positive definite

kernel19,20 allows the extension of linear algorithms to nonlinear algorithms (Figure 2.1).

The symmetric function k :G×G→R on the domain G is said to be a positive definite kernel

if and only if
∑
i,j∈{1,...,n} cicjk(Gi,Gj)⩾ 0 for all n∈N,G1, . . . ,Gn ∈ G, and c1, . . . ,cn ∈R.

For such k, it is known that a map ϕ : G→F into a (usually high-dimensional) feature space

F exists, such that k(G,G ′) = ⟨ϕ(G),ϕ(G ′)⟩ for all G,G ′ ∈ G. In F, the complex patterns

can be found as linear relations. Here, substituting k(G,G ′) for ⟨ϕ(G),ϕ(G ′)⟩ is crucial

for implicitly mapping the input data into F without ever knowingϕ(·). Any linear machine
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Figure 2.1 The idea of kernel methods. This approach maps the training data in the in-
put space G into a high-dimensional feature space F via the feature map ϕ : G → F,
and applies linear machine learning algorithms such as SVM, which depend on the in-
ner product ⟨ϕ(G),ϕ(G ′)⟩ between data points ϕ(G) and ϕ(G ′). Using the kernel trick
k(G,G) = ⟨ϕ(G),ϕ(G ′)⟩, it is possible to apply them without explicitly mapping ϕ.

learning algorithm formulated as an inner product in F can be turned into a nonlinear one

by the kernel substitution, k(G,G ′) = ⟨ϕ(G),ϕ(G ′)⟩. This approach is called the kernel

trick. Next we review the nonlinear extension of support vector machines (SVMs) using the

kernel trick.

Let us consider a typical binary classification task in chemical informatics as illustrated

in Figure 2.1. The goal is to construct a discriminant function to predict whether a new

input molecule is effective against a disease. Here, any molecule G in the set G of all

molecules can be transformed into a feature vector ϕ(G) ∈ Rp containing molecular prop-

erties (e.g., molecular weight, molecular hydrophobicity, polar surface area, etc.). Suppose

we are given the training data set D = {(ϕ(Gi),yi) ∈ X×Y}ni=1 where X is the nonempty

set of p-dimensional feature vectors and Y ∈ {+1,−1} is the set of class labels whose value

takes either the presence (+1) or absence (−1) of efficacy against the disease. Assume that

D is separable, i.e., there exists a discriminant function f : G→ Y,

f(G) = sgn(⟨w,ϕ(G)⟩+b), (2.1)

where the weight vector w ∈ Rp and the shift coefficient b ∈ R are parameters. SVM
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determines the hyperplane, which separates the two classes with the largest margin, by

solving the constrained optimization problem

minimize
w,b

1
2
||w||2 subject to yi(⟨w,ϕ(Gi)⟩+b)⩾ 1 for all i= 1, . . . ,n. (2.2)

Note that ||w||−1f(Gi) is the distance from the point ϕ(Gi) to the hyperplane H(w,b) :=

{ϕ(G)|⟨w,ϕ(G)⟩+b = 0}. The condition yi(⟨w,ϕ(Gi)⟩+b) ⩾ 1 ensures that the margin

distance is at least 2||w||−1. Consequently, minimizing ||w|| subject to the constraints max-

imizes the margin of separation. To address this problem one can solve it in dual space, as

follows. The Lagrange function of eq 2.2 is given by

L(w,b,α) =
1
2
∥w∥2 −

n∑
i=1

αi(yi(⟨w,ϕ(Gi)⟩+b)−1), (2.3)

where αi ⩾ 0 is a Lagrange multiplier. L has to be minimized with respect to w and b and

maximized with respect to αi. At the saddle point, the derivatives of L with respect to the

variables w and b must be equal to zero,

∂

∂b
L(w,b,α) = 0 and

∂

∂w
L(w,b,α) = 0,

which leads to
n∑
i=1

αiyi = 0 (2.4)

and

w =

n∑
i=1

αiyiϕ(Gi). (2.5)

Substituting eq 2.4 and eq 2.5 into the Lagrangian eq 2.3, we obtain the so-called dual
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optimization problem

maximize
α∈Rn

W(α) =

n∑
i=1

αi−
1
2

n∑
i,j=1

αiαjyiyj
⟨
ϕ(Gi),ϕ(Gj)

⟩
subject to αi ⩾ 0 for all i= 1, . . . ,n and

n∑
i=1

αiyi = 0.

Using eq 2.5, the decision function (eq 2.1) can be written as

f(G) = sgn
( n∑
i=1

yiαi ⟨ϕ(G),ϕ(Gi)⟩︸ ︷︷ ︸
k(G,Gi)

+b
)

. (2.6)

Equation 2.6 can be expressed in terms of the kernel k using the kernel trick k(G,Gi) =

⟨ϕ(G),ϕ(Gi)⟩. The kernel trick allows us to handle the feature vectors ϕ(G) in the very

high-dimensional feature space with no need to perform the explicit transformation, ϕ. To

deal with structured data such as chemical structures, many graph kernels have been devel-

oped, as described in Section 2.3. For further information on kernel-based machine learning

please see the literature.17–20

2.2 Representing Chemical Structures

Let us represent the chemical structure of a molecule by a labeled directed graph,G=(V,E),

as shown in Figure 2.2. The graph G is described by a set of vertices V = {vi}
n
i=1 of size

n = |V| representing the atoms in the molecule and a set of edges E = {(u,v)} ⊆ V×V

representing the covalent bonds. Let ΣV,ΣE be the sets of vertex labels and edge labels,

respectively. In the case of labeled graphs, there is also a set of labels Σ = ΣV∪ΣE with a

labeling function ℓ : V∪E→ Σ that maps vertices and edges to corresponding element types

and bond types, respectively. For directed graphs, each edge (u,v) is oriented and is a pair

of the initial vertex u and the terminal vertex v. It is assumed that for every edge (u,v)
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Figure 2.2 A chemical structure (left) can be modeled as a labeled directed graph (right).

belonging to E in G, the corresponding opposite edge (v,u) also belongs to E, i.e., G is

symmetric. Such symmetric directed graphs can be viewed as undirected graphs. Note that

VG and EG will be used to refer to the vertex and edge sets, respectively, of a specific graph

G. We also define a function describing the outgoing neighbors (children) of a vertex v as

N(v) = {u|(v,u) ∈ E}.

A rooted tree T = (VT ,ET ) is a directed acyclic graph with a single designated root, in

which the edges have a natural orientation away from the root. The size |T | of the tree T is

the number of vertices in T , i.e. |T | = |VT |. The height h of the tree T is the length of the

longest path from the root to any other vertex. Note that a vertex in G may appear several

times in the tree-pattern, but sibling vertices in the tree-pattern must correspond to distinct

vertices in G (see Figure 2.3).

v1

v2 v3

v4

v5v6

v7

v8v9

v10

v11

v12

v13

(b) Subtree patterns(a) Molecular graph

v2

v3 v1 v5 v1v11v8v1

v6

v1

v7

Figure 2.3 A molecular graph (left) and subtree patterns up to the height h= 2 rooted at the
node v1 (right). Note that the vertex v1 appears at a height of 2 again.
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2.3 Graph Kernels

The traditional application of machine learning with the kernel method only considers data

represented in a single row of a table. However, there are many potential machine learning

applications, where this is not the natural representation. For example, such applications

include the classification of molecules internally represented as graphs. The best known

framework to construct kernels for structured data is the convolution kernel proposed by

Haussler.33 Following this framework, various graph kernels have been proposed over the

last decade (see Figure 2.4) and applied successfully to various machine learning tasks in

chemical informatics, including the establishment of QSARs. These graph kernels differ

with respect to the choice of the subgraph types used to represent the structured objects,

such as walks,24,34,37,39 paths,35 trees,1,26,40,56 cycles,36,57 and subgraphs.42,48
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Shortest-path Kernel
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Figure 2.4 The research efforts on graph kernels over the last decade.

2.3.1 Convolution Kernels

The basic idea of the convolution kernels33 is that each structured object is decomposed into

a set of parts, and the kernel between the objects is defined as the sum of the kernel values
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Figure 2.5 A schematic concept of the convolution kernel between the molecular graphs G
and G ′.

among the parts (see Figure 2.5).

Let G,G ′ ∈ G be the molecular graphs and let S(G),S(G ′) be sets of parts extracted

from G,G ′. Given an extraction rule, we can define the sets S(G) and S(G ′) of parts. The

convolution kernel of G and G ′ is then defined as

kconv(G,G ′) =
∑
s∈S(G)

∑
s ′∈S(G ′)

w(s)w(s ′)kparts(s,s ′), (2.7)

where the function w(s) returns a weight for the part s and kparts(s,s ′) is the kernel func-

tion between two parts s and s ′. Equation 2.7 is guaranteed to be a valid kernel if kparts

is a positive definite kernel. It should be noted that the weight function is not defined in

the original definition.33 The convolution kernel is very general and can be used for many

different structured objects (e.g., amino acid sequences, chemical structures, metabolic net-

works, etc.). To construct a convolution kernel for specific structured objects, we have to

design the extraction rule of parts and the kernel function on the parts.

We next describe two established graph kernels: random walk kernels and subtree ker-

nels.
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2.3.2 Random Walk Kernels

The idea of the random walk (RW) kernel24,34 is to randomly walk on two graphs and

compare the label sequences resulting.

Consider a random walk on a graph G, which starts at vertex x1 ∈ VG with initial prob-

ability ps, goes from xi−1 to xi with transition probability pt, and ends with probability

pq. The random walk can be represented as a sequence of the vertices traversed of length l,

x = (x1,x2, . . . ,xl). The vertex sequence x in G has probability

p(x|G) = ps(x1)
( l∏
i=2

pt(xi|xi−1)
)
pq(xl).

Let us define a label sequence by another alternating sequence of vertex labels and edge

labels

h = (h1,h2, . . . ,h2l−1) ∈ (ΣVΣE)
l−1ΣV.

We then obtain the label sequence associated with x

hx = (ℓ(x1)ℓ(x1,x2),ℓ(x2), . . . ,ℓ(xl−1)ℓ(xl−1,xl),ℓ(xl)).

The probability of the label sequence h is the sum of probabilities of all vertex sequences

that generate h

p(h|G) =
∑

x
I(h ∼= hx) ·

(
ps(x1)

l∏
i=2

pt(xi|xi−1)pq(xl)
)

,

where I(h ∼= hx) is the indicator function that returns 1 if h and hx are equal and 0 otherwise.

Next, we define a kernel kz between two label sequences h and h ′. Suppose we are

given two valid kernels kv between vertex labels and ke between edge labels. The kernel
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for the label sequences of equal length is given by the product of the label kernels

kz(h,h ′) = kv(h1,h1
′)
l−1∏
i=1

ke(h2i,h2i
′)kv(h2i+1,h2i+1

′).

For the label sequences h and h ′ of different lengths, kz(h,h ′) = 0. Finally, the random

walk kernel is given by the expectation of kz over all possible h and h ′

kRW(G,G ′) =
∑

h

∑
h ′

kz(h,h ′)p(h|G)p(h ′|G ′).

This kernel is positive definite for valid kv and ke.

The RW kernel exploits an infinite dimensional feature space, spanned by random walks,

on molecular graphs. In consequence, the RW kernel gives an alternative to explicit vector

representations of molecules (molecular descriptors). However, Gärtner et al. 34 indicated

the limited expressiveness of the RW kernel based on linear features. To alleviate this limi-

tation, Gärtner et al. 34 proposed subtree kernels, as described in the next section.

2.3.3 Subtree Kernels

In this section we describe the subtree (ST) kernel initially proposed by Ramon and Gärtner 1

and later extended by Mahé and Vert.26 Following Mahé and Vert,26 we start by describing

the concept of tree-patterns in a graph. Let G = (VG,EG) be a graph, and let T = (VT ,ET )

with VT = (w1, . . . ,w|T |) be a rooted tree with a designated root w1. A |T |-tuple of ver-

tices (v1, . . . ,v|T |) ∈ V
|T |
G is said to be a tree-pattern of G with respect to T , denoted by
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(v1, . . . ,v|T |) = pattern(T), if and only if


∀i ∈ {1, . . . , |T |}, ℓ(vi) = ℓ(wi),

∀(wi,wj) ∈ ET , (vi,vj) ∈ EG∧ ℓ((vi,vj)) = ℓ((wi,wj)),

∀(wi,wj),(wi,wk) ∈ ET , j ̸= k⇔ vj ̸= vk.

(2.8)

With the set of all possible tree-patterns ofG= (VG,EG) with VG = (v1, . . . ,v|VG|) arranged

in T ,

PT (G) = {(va1 , . . . ,va|T |)|(a1, . . . ,a|T |) ∈ {1, . . . , |VG|}|T |∧ (va1 , . . . ,va|T |) = pattern(T)},

(2.9)

the ST kernel of graphs G and G ′ is given by

kST,h(G,G ′) =
∑
T∈Th

µ(T)
∑

p∈PT (G)

∑
p ′∈PT (G ′)

I(p ∼= p ′). (2.10)

A set Th of all trees up to height h is considered. We assume that Th includes the elements

of isolated vertices. For each tree T ∈ Th, the sets of tree-patterns PT (G) and PT (G
′) in-

clude all tree-patterns occurring in G and G ′, which can be arranged in a given tree T . Each

tree-pattern pair (p,p ′) ∈ PT (G)×PT (G
′) is compared by the indicator function I(p ∼= p ′)

that determines their isomorphism to be one if p and p ′ are isomorphic, and zero otherwise.

In this case, I(p ∼= p ′) always returns one because both PT (G) and PT (G
′) include isomor-

phic tree-patterns. Therefore, the ST kernel counts the weighted number of co-occurrences

of tree-patterns in G and G ′. Each tree-pattern with respect to T has a weight µ(T) depend-

ing on the tree structure. A typical weight is a function of the tree size |T |, for example,

µ(T) = λ2|T |, and assigns smaller weights to larger tree-patterns, where λ is a nonnegative

weight factor that is less than one. Alternative weights have been defined as functions of the

structural complexity of the tree.26
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2.3.4 Other Graph Kernels

There have been various graph kernels proposed in the literature (see Vishwanathan et al. 21).

In this section, we discuss several important kernels in chemical informatics.

Walk-based kernels, one of the first graph kernels, have been independently proposed

by Kashima et al. 24 and Gärtner et al..34 Unfortunately, random walks on a graph include

tottering between two neighboring vertices, which is otherwise known as an immediate re-

visiting of a vertex. Such tottering walks are likely to be uninformative. Mahé et al. 37

introduced the second-order Markov model to filter tottering walks. Path-based graph ker-

nels35 have been proposed to invalidate the effects of tottering. Another extension37 is to

increase the number of different vertex labels using the Morgan index. In the label en-

richment, contextual structural information around each vertex is embedded into the vertex

label. Subsequently, Vishwanathan et al. 39 employed fast methods for solving Sylvester

equations as well as conjugate gradient and fixed point iteration methods to speed up walk

based kernels.

Ramon and Gärtner 1 defined kernels through the comparison of subtrees instead of

walks on the graphs. This alleviates the limited expressiveness of linear features generated

by random walks. The subtree kernel was later refined by Mahé and Vert.26 Subsequently,

the Weisfeiler-Lehman (WL) subtree kernel40 was developed to provide an efficient ker-

nel computation. The WL subtree kernel scales up to large labeled graphs. It uses the

Weisfeiler-Lehman isomorphism test, which consists of iterative multiset-label determina-

tion, label compression, and relabeling steps.

Horváth et al. 36,57 proposed cyclic pattern (CP) kernels, which are based on the idea of

mapping graphs to the sets of cyclic patterns and tree patterns, which are compared with

the intersection kernel. Menchetti et al. 48 proposed weighted decomposition kernels based

on comparing local neighborhoods of vertices. The optimal assignment (OA) kernel,42

another graph kernel comparing local neighborhoods, arises from finding the best match
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between substructures of graphs. However, the OA kernel is not positive semidefinite in

general.58 Vishwanathan et al. 21 suggested a possible remedy to this problem based on an

approximation of the tropical semiring.

Other kernels, motivated by applications in chemical informatics, include fingerprint

kernels38,59 where a molecular graph G is represented by a vector ϕ(G) indexed by a set

of molecular fragments as illustrated in Figure 2.6, i.e., sequences of atom types and bond

types up to a given length. The fingerprint kernels are normalized by three variations of the

Tanimoto kernel designed by analogy with the Tanimoto coefficient.
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Figure 2.6 Given a molecule graphG, the traditional fingerprint is defined as a binary vector
ϕ(G) such that it indicates the presence or absence of predefined particular substructures in
G.



Chapter 3

Atom Environment Kernels for
the Forward Problem

3.1 Basic Idea

In this section we introduce two extensions to the ST kernel. The first extension, referred

to as the inexact match extension, relaxes the requirement for exact tree-pattern matching

by allowing matching between atoms with similar local environments, and the second ex-

tension, referred to as the importance weight extension, introduces a tree weight function to

adjust the contribution of each tree-pattern according to the overall statistical significance

of the constituent atoms for a given task. For the inexact match extension, we alter the defi-

nition of tree-patterns by omitting the first condition for the exact atom label matching from

eq 2.8 as


∀(wi,wj) ∈ ET , (vi,vj) ∈ EG∧ ℓ((vi,vj)) = ℓ((wi,wj)),

∀(wi,wj),(wi,wk) ∈ ET , j ̸= k⇔ vj ̸= vk.

This alters the definition of the set PT (G) in eq 2.9. Suppose we are given a tree-level kernel

ktree(p,p ′) to measure the similarity between tree-patterns p and p ′. The AE kernel is then
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given by the weighted sum of ktree(p,p ′) over all possible pairs of tree-patterns induced

from G and G ′

kAE,h(G,G ′) =
∑
T∈Th

∑
p∈PT (G)

∑
p ′∈PT (G ′)

w(p)w(p ′)ktree(p,p ′), (3.1)

where Th is a set of trees up to height h, and w(p) is a weight associated with the tree-

pattern p. In the following section we provide the constructions of the tree-level kernel

ktree(p,p ′) and the tree weight function w(p).

3.2 Inexact Match Extension

Consider a specific form of the tree-level kernel ktree(p,p ′) between tree-patterns p and p ′

ktree(p,p ′) =
∏

(v,v ′)∈A(p,p ′)

katom(er(v),er(v ′)).

The atom-level kernel katom(er(v),er(v ′)) measures the soft similarity between atoms v and

v ′ through the atom environment labels er(v) and er(v ′). The atom environment label er(v)

captures the local environment of each atom v in the molecular graph. As will be shown in

section 3.5.1, er(v) ∈ Rd (d = 2 in the present study) is derived from the modified Burden

matrix49 of a neighboring substructure of a topological radius r centered at atom v. The

tree-level kernel ktree(p,p ′) measures the similarity of p and p ′ as the product of the atom-

level kernels over a set A(p,p ′) = {(p[i],p ′[i])}
|p|
i=1 of the aligned atom pairs of p and p ′,

where p[i] is the ith element of a tuple p.

We construct a compactly supported (CS) kernel for katom by multiplying the Gaussian

kernel with a width parameter γ by a Wendland function60

katom(er(v),er(v ′)) =ψd,c

(
∥er(v)− er(v ′)∥

θ

)
exp(−γ∥er(v)− er(v ′)∥

2
). (3.2)
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Figure 3.1 Plots of the Gaussian kernel with a width parameter of γ = 0.1 (solid line) and
the CS kernels ψ(θ)

2,c ×Gaussian with respect to (a) the smoothing parameter c and (b) the
cut-off distance θ.

This construction has been proposed in a general machine learning context to yield a sparse

Gram matrix without destroying the positive definiteness of any RBF kernel.61 The Wend-

land functions ψd,c are defined for the dimension d of input variables and the smoothing

parameter c, and tend to zero when the L2 distance ||er(v) − er(v ′)|| is beyond a cut-off

distance θ. With this construction, katom can smoothly decay to zero at θ without losing

positive definiteness.62

More specifically, the Wendland functions are defined as

ψd,c(z) = I
cψ⌊d/2⌋+c+1(z), c= 0,1,2, . . . ,

with the truncated polynomial

ψs(z) = (1−z)s+ =


(1−z)s, 0 ⩽ z < 1,

0, z⩾ 1,
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and the integral operator

I[f](z) =

∫∞
z

xf(x)dx, z⩾ 0,

where ⌊·⌋ denotes the largest integer less than or equal to the argument, and Ic indicates the

I-operator that is applied c times and transforms the function ψs to a smoother function.

These functions are positive definite on Rd for d ⩽ 2s− 1. We can compute the functions

ψd,c for d= 2 and c= 0,1,2 directly by the explicit form63

ψ2,0(z) = (1−z)2
+,

ψ2,1(z) = (1−z)4
+(4z+1),

ψ2,2(z) = (1−z)6
+(1+6z+ 35

3 z
2).

In Figure 3.1 the Gaussian kernel and the modified kernels with compact support using the

Wendland functions for d = 2 with varying c and θ are shown. Since c is irrelevant to the

sparsity of ψd,c as shown in Figure 3.1, we fix c= 0 in this thesis.

The compact support property of katom eliminates the redundant matches between atoms

that have intrinsically different local environments. This will ensure the detection of pairs

of chemically meaningful tree-patterns in two molecular graphs.

3.3 Importance Weight Extension

Another important consideration is to determine the weight w(p) of a tree-pattern p. We

assign an importance weight to each tree-pattern according to the overall statistical signifi-

cance of the constituent atoms for a given classification or regression task.

In the case of a classification task, the chi-square (χ2) statistic is used to measure the

statistical significance of the atoms. Each atom v is characterized by another atom environ-

ment label ar(v)∈Z. As described later herein, ar(v) encodes information on a neighboring
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Table 3.1 Two-way Contingency Table of Atom Environment Label a and Class Label ca

c ¬c
∑

row

a A B A+B

¬a C D C+D∑
column A+C B+D N

a The rows symbolize the presence and absence of the atom environment label a and the
columns are the class labels (positive class c and negative class ¬c).

substructure of a topological radius r centered at atom v using a Morgan type algorithm.31

Using a two-way contingency table (Table 3.1), where the rows signify the presence and ab-

sence of the atom environment label ar(v) = a and the columns are the class labels (positive

class c and negative class ¬c), the association of a with the class labels can be evaluated

with the χ2 statistic

χ2(a) =
N(AD−BC)2

(A+C)(A+B)(B+D)(C+D)
,

whereA is the number of samples in which a and c co-occur, B is the number of samples in

which a occurs without c, C is the number of samples in which c occurs without a,D is the

number of samples in which neither c nor a occurs, and N is the total number of (training)

samples. The value of χ2(a) indicates the importance of atoms that have atom environment

label a for the task of interest. Thus, the χ2 statistic allows the identification of atoms with

the ability to distinguish between two class labels. The weight of tree-pattern p is then given

by

w(p) =
∏
v∈p
ŵ(ar(v))

with

ŵ(ar(v)) =


λα, if χ2(ar(v))⩾ τ,

λβ, otherwise,
, 0< λβ ⩽ λα < 1, (3.3)
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where τ is a χ2 threshold. Once τ is given, the significant atoms satisfying χ2(ar(v)) ⩾ τ

are determined and have weight λα, and the other atoms have a relatively small weight λβ.

The importance weight w(p) is expressed as the convolution of weight ŵ(ar(v)) over the

constituent atoms. The binarized atomic weights allows for easy visualization of significant

atoms in a specific molecule, as seen in later.

In the case of a regression task, Welch’s t-test is used to assess the statistical significance

of each atom with atom environment label a. Given two groups 1 and 2 of observations

from molecules with and without a, the association of a with the task can be assessed by

the t-statistic

t(a) =
|ȳ1 − ȳ2|(

var(y1)/n1 +var(y2)/n2
)1/2 ,

where ȳi, var(yi), and ni are the sample mean, sample variance, and sample size in the

group i. Using t(a) instead of χ2(a) in eq 3.3, the tree weights for regression can be

determined in the same manner as above.

For each tree-pattern p, we denote the number of atoms found to be significant and less

significant as nα(p) and nβ(p), respectively. The AE kernel then becomes

kAE,h(G,G ′) =
∑
T∈Th

∑
p∈PT (G)

∑
p ′∈PT (G ′)

λ
nα(p)+nα(p

′)
α λ

nβ(p)+nβ(p
′)

β

∏
(v,v ′)∈A(p,p ′)

katom(er(v),er(v ′)).
(3.4)

The atom-level kernels preserving positive definiteness are closed under tensor product and

non-negative linear combinations.64 The AE kernel is therefore positive definite.

In the case of unsupervised learning tasks, including cluster analysis and principal com-

ponents analysis, the AE kernel could be applied by using prior knowledge on the impor-

tance of the atoms. In the case where a given pharmacophore set (e.g., hydrogen-bond

acceptor and donor, hydrophobic, etc.) is used, if an atom plays the pharmacophore role,

the atom is given a higher weight λα. Alternatively, subject to a uniform weight λα = λβ in
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eq 3.4, the AE kernel can perform unsupervised learning tasks while we still benefit from

the importance weight extension.

3.4 Relation to Previous Research

In this section we highlight the differences between the AE kernel (eq 3.1) and the ST kernel

(eq 2.10). These kernels are both composed of two building blocks: the tree-level kernel

and the tree weight function.

The ST kernel relies on the tree-level kernel I(p ∼= p ′), where a successful match be-

tween tree-patterns p and p ′ requires strict correspondence in terms of structure and ver-

tex/edge labels. The AE kernel relaxes the requirement for an exact match of the vertex

labels. Instead of I(p ∼= p ′), the AE kernel uses the tree-level kernel ktree(p,p ′) with com-

pact support. The ktree(p,p ′) tolerates an inexact match between p and p ′ satisfying the

condition: ∥er(v)− er(v ′)∥ < θ for all (v,v ′) ∈A(p,p ′). The property of compact support

eliminates redundant tree-pattern matches.

Another difference lies in the method used to determine tree weights. In the ST ker-

nel, the tree weight function µ(T) only depends on the tree structure; for example, µ(T)

decreases as the size or complexity of the tree increases. In the AE kernel, the tree weight

function w(p) also decreases as the tree size increases. However, this decrease is allevi-

ated by an increase in the number of relevant atoms for the task of interest. In section 3.7,

we demonstrate how these extended building blocks improve the performance in predicting

various pharmaceutical properties of molecules.
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3.5 Atom Environment Labels

3.5.1 Continuous Labels

The atom environment label er(v) ∈R2 is derived from a modified Burden matrix49 (Figure

3.2) of a neighboring substructure of a topological radius r centered at atom v. The n×n

matrix B = (Bij) for a substructure of size n is given by

Bij =


Zi+0.1∆i+0.01πi, if i= j,

0.4dij−1, if i ̸= j,

where for the ith atom, Zi is the atomic number, ∆i is the number of non-hydrogen neigh-

bors, πi is the number of π electrons, and dij is the length of the shortest paths between

the ith and jth atoms. We modify the off-diagonal elements representing edges between the

center atom v and another atom to increase the centrality of v in the neighboring substruc-

ture; that is, the off-diagonal element Bij is multiplied by 2 if the atom v corresponds to

either the ith or the jth atom. This modification is necessary to distinguish between atom v

and atoms of the neighboring substructure. The atom environment label is then defined as

the concatenation of the smallest eigenvalue emin and the largest eigenvalue emax of B, i.e.,

er(v) = (emin,emax)
t. Among the eigenvalues obtained from B, the smallest and the largest

n1 n2 n3

n1

n2

n3

N

N

O

v

(a) substructure centered at v (b) modified Burden matrix

v

B =

v 6.31 0.80 0.80 0.80

0.80 6.20 0.20 0.20

0.80 0.20 6.10 0.20

0.80 0.20 0.20 7.21

n1

n2

n3

Figure 3.2 The modified Burden matrix of a substructure centered at v.
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have been empirically demonstrated to reflect structural relevant aspects of molecules.51

The smallest eigenvalue reflects the topology of a molecule and on the other hand the largest

eigenvalue reflects the atom types.

3.5.2 Discrete Labels

Another atom environment label ar(v) ∈ Z is generated in order to capture information on

a neighboring substructure of a topological radius r centered at atom v using a variant31

of the Morgan algorithm52 (Figure 3.3). The variant algorithm consists of r iterations. An

initial integer code is first assigned to each atom in such a way that the atomic properties

are packed into a single integer value using a hash function. At each iteration, a new integer

code of each atom v is generated by combining the current codes of all neighbors and the

atom of interest. After r iterations, the final integer code of each atom v is returned as the

atom environment label ar(v). The hashed integer code leads to a saving of computational

cost and a reduction of memory use. The following atomic properties are considered for

N

O

 -1328236284

220377303

220377303

-239404313

-1450736094

17181724

N

O

N

O

220377303 -1450736094

17181724

-239404313

N

O

 1022668881

-470492063

926516505

-1494989054

1022241019

-270010704

(a) assignment of initial atom identifiers

(b) generation of new atom identifiers

encoded information

#neighbors : 3, (valence − #hydrogens) : 3

atomic number : 6, atomic mass : 12, atomic charge : 0

#hydrogens : 0, whether the atom is in ring : 1

Figure 3.3 In the ECFP algorithm, (a) the assignment of initial atom identifiers, computed by
encoding seven atomic properties, (b) the generation of new atom identifiers by performing
one iteration.
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the assignment of the initial codes: the number of bonds to heavy atoms, valence minus the

number of hydrogens, the atomic number, the atomic mass, the atomic charge, the number

of attached hydrogens, and a binary value indicating whether the atom is in a ring.

3.6 Kernel Computation

3.6.1 Recursive Algorithm

In this section, we derive the recursive formula for computing the AE kernel without enu-

merating tree-patterns by following Mahé and Vert.26 LetG=(VG,EG) andG ′=(VG ′ ,EG ′)

be two graphs. We first define the set of subsets of neighborhood matching of vertices v and

v ′ by

M(v,v ′) ={R⊆N(v)×N(v ′)

|(∀(u,u ′),(w,w ′) ∈ R : u ̸=w∧u ′ ̸=w ′)

∧ (∀(u,u ′) ∈ R : (ℓ(v,u) = ℓ(v ′,u ′)))}.

The AE kernel starts by comparing vertices pairwise in G and G ′ and then recursively

compares their children h times

kAE,h(G,G ′) =
∑
v∈VG

∑
v ′∈VG ′

kh(v,v ′), (3.5)

where ki, i= 0, . . . ,h, is defined as

ki(v,v ′) =


ŵ(ar(v))ŵ(ar(v

′))katom(er(v),er(v ′)), i= 0,

k0(v,v ′)
[

1+
∑

R∈M(v,v ′)

∏
(w,w ′)∈R

ki−1(w,w ′)

]
, i= 1, . . . ,h.

(3.6)

The derivation of this recursive formula is presented in the Appendix A.
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3.6.2 Complexity

Enumerating all possible matches M(v,v ′) of neighbors of vertices v and v ′ constitutes the

main computational bottleneck of the AE kernel. This is due to the unordered nature of

tree-patterns induced from molecular graphs. Let d be an upper bound on the out-degree of

vertices in the molecular graphs considered herein. The number of operations to compute

ki(v,v ′) in eq 3.6 is then bounded above by
∑d
r=1 r(dPr)

2 = O(d2d) where dPr is the num-

ber of r-permutations of d. Thus, the worst-case complexity of the AE kernel of G and G ′

up to tree height h is

O(|VG| · |VG ′ | ·h ·d2d). (3.7)

In the case of molecular graphs, the factor d2d will be reduced significantly because most

vertices have an out-degree of less than four, and the size of M decreases because of the

mismatch in the continuous atom environment label and the edge label. The degree of

mismatch between the continuous atom environment labels to be tolerated is controlled by

the cut-off distance θ of the CS kernel (eq 3.2).

3.7 Experiments

To demonstrate the effectiveness of the proposed kernel, we performed retrospective exper-

iments using support vector machines (SVMs) on eleven classification tasks and one regres-

sion task. The data sets used herein are summarized in Table 3.2. The baseline methods

to be compared are the subtree (ST) kernel initially proposed by Ramon and Gärtner,1 the

extended subtree (EST) kernel proposed by Mahé and Vert,26 the Weisfeiler-Lehman sub-

tree (WLST) kernel proposed by Shervashidze and Borgwardt,40 the extended random walk

(ERW) kernel proposed by Mahé et al.,37 the optimal assignment (OA) kernel proposed

by Fröhlich et al.,42 and the extended-connectivity fingerprint (ECFP).31 ECFPs are most

commonly used in a wide variety of applications31 in chemical informatics. We compared
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the effectiveness of the AE kernel and the baseline methods in terms of prediction perfor-

mance and computational efficiency. We reported the area under the ROC curve (AUC)

for classification and the squared correlation coefficient (R2) between the observed and pre-

dicted values for regression using Monte Carlo cross-validation (MCCV), in addition to the

runtime required for the Gram matrix computation.

3.7.1 Experimental Settings

The following MCCV procedure was performed in all of the experiments:

1. The data set was randomly divided into a learning set DL consisting of 90% of the

data and a test set DT consisting of the remaining 10%.

2. A prediction model based on an SVM with adjustable parameters was constructed to

maximize the mean AUC for classification and the mean R2 for regression over a 10-

fold cross-validation on DL. Application of this model to the test set DT yields the

AUC for classification and the R2 for regression.

3. In order to avoid erroneously high accuracy resulting from a lucky partition, the ran-

dom division of the data into the sets DL and DT was repeated 20 times, and the

mean and standard deviation of the performance metrics over the 20 iterations were

evaluated.

We trained the SVMs with a regularization parameter C for classification and SVMs with an

ϵ-insensitive loss function for regression using the LIBSVM implementation.65 The param-

eters of the SVMs and the kernels were optimized using the 10-fold cross-validation in step

2. The regularization parameter C was chosen from {2n|n ∈ N,−10 ⩽ n ⩽ 14} for SVM

classification and regression. The loss function parameter ϵ for SVM regression was chosen

from {0.1,0.5,1.0,σ/10,σ/5}, where σ is the standard deviation of the response values in

DL. For the AE kernel, the best parameters were found by an exhaustive grid search over
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the following grid points: for the tree-patterns, the tree height h ∈ {0,1,2,3,4} and the topo-

logical radius r∈ {1,2,3} of the local environment around each atom; for the CS kernels, the

cut-off distance θ ∈ {0.05,0.10,0.20, . . . ,1.40}, the width parameter of the Gaussian kernel

γ ∈ {0.1,0.5,1.0}, and the smoothing parameter c = 0; and for the tree weights in the clas-

sification task, the tree weight factors (λα,λβ) ∈ {(x,y) ∈ {0.1,0.2, . . . ,0.9}2|x⩾ y} and the

χ2 threshold τ ∈ {1.3233,1.6424,2.0723,2.7055,3.8415,6.6349}, the values of which cor-

respond to the 25%, 20%, 15%, 10%, 5%, and 1% significance levels for the χ2 distribution

with one degree of freedom. In the case of the regression task, the Student’s t-statistic was

used to determine the tree weights at the same significance levels as the χ2 thresholds. Each

component of the atom environment label er(v) was standardized to zero mean and unit

variance within each learning set DL. In the case of the ST kernel, the tree weight function

was given by µ(T) = λ2|T |. For the EST kernel, the kernel type was chosen from the set

{size-based,branching-based,until-N branching-based}. The tree weight factor λ was cho-

sen from {0.1,0.2, . . . ,0.9} for the ST and EST kernels. For the ST, EST, and WLST kernels,

we varied the tree height as h ∈ {0,1,2,3,4}. It should be noted that the tree height follows

from our definition. The termination probability for the ERW kernel was chosen from {0.01,

0.05,0.1,0.2, . . . ,0.9}. For the EST and ERW kernels, the number of the Morgan index iter-

ations was chosen from {1,2,3}. In the case of the ST, EST, WLST and ERW kernels, each

atom was labeled with the element type (e.g., carbon, oxygen, etc.) while each edge was

labeled with the bond type (single, double, triple, or aromatic). The topological distance for

the OA kernel was chosen from {1,2,3} and all other parameters were set to default values.

For the ECFP, the maximum diameter was chosen from {4,6}, and information relating to

multiple occurrences of substructures was retained. It should be noted that the maximum

diameter is essentially equal to twice the tree height number, h, of the tree-patterns.
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In a similar manner38 to the Tanimoto coefficient,32 the kernels were all normalized as

k̃TA(G,G ′) =
k(G,G ′)

k(G,G)+k(G ′,G ′)−k(G,G ′)
.

The similarity between M dimensional fingerprints X = (xi) and Y = (yi) was measured

using the MinMax kernel,38 a variant of the Tanimoto coefficient

k̃MM(X,Y) =

M∑
i=1

min(xi,yi)

M∑
i=1

max(xi,yi)
.

Gram matrices ((k̃TA(Gi,Gj))i,j and ((k̃MM(Xi,Xj))i,j on each data set were then passed to

the SVM solver of LIBSVM.

We measured the runtime of the Gram matrix computation on the 12 data sets to conduct

an efficiency comparison of the AE kernel and the baseline methods. The measure does

not involve the learning phase to optimize kernel parameters. In order to perform a fair

comparison, we fixed the maximum diameter of the subgraphs used to represent chemical

structures to be six, which is corresponds to a tree height of three. In the case of all of the

tree-based kernels (AE, ST, EST, and WLST), we set the tree height to three. We used a

topological distance of three for the OA kernel and a maximum diameter of six for the ECFP.

The tree weight factor has less influence on the runtime and was set to 1.0 for the AE, ST,

and EST kernels. Each of the other parameters was set to the most frequent value within

the optimized values found on the 12 data sets. Specifically, we employed the following

parameters: for the AE kernel, the topological radius r = 1, the cut-off distance θ = 0.5,

and the width parameter of the Gaussian kernel γ = 0.1; for the EST kernel (the until-N

branching-based kernel), the number of the Morgan index iterations was set as one; for the

ERW kernel, a termination probability of 0.2 was used and the number of the Morgan index

iterations was also one.
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The AE and ST kernels were implemented in C++ using the OpenBabel toolbox.66,67

The EST and ERW kernels were computed using the ChemCpp toolbox.68 We used a Mat-

lab implementation69 for the WLST kernel and a Java implementation70 for the OA kernel.

ECFPs were generated using the Pipeline Pilot software.71 All our experiments were con-

ducted on an Intel Xeon X5570 2.93GHz system with 32GB of main memory.

3.7.2 Data Sets

The 12 data sets on mutagenicity, carcinogenicity, blood-brain barrier penetration, bioavail-

ability, bioactivity, and aqueous solubility of chemical compounds, summarized in Table

3.2, are used. The aqueous solubility data set is a regression task.

In the mutagenesis data set72 (MUTAG), the task of interest is to learn a classifier to

Table 3.2 Basic Information of the Data Sets Used Hereina

samples

abbrev. #pos. #neg. description

MUTAG 125 63 mutagenic effect on a bacterium

MM 129 207 carcinogenicity, male mice

FM 143 206 carcinogenicity, female mice

MR 152 192 carcinogenicity, male rats

FR 121 230 carcinogenicity, female rats

BBB 276 139 blood-brain barrier penetration

BIO 159 106 human oral bioavailability

BZR 157 149 benzodiazepine receptor ligands

COX2 148 155 cyclooxygenase-2 inhibitors

DHFR 124 269 dihydrofolate reductase inhibitors

ER 181 265 estrogen receptor ligands

SOL 1025 aqueous solubility
a #pos.: number of positive samples, #neg.: number of negative samples.
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predict whether each of the 188 aromatic and heteroaromatic nitro compounds is able to

cause DNA to mutate. The Predictive Toxicology Challenge data set73 contains compounds

labeled according to carcinogenicity in rodents and is divided into male mice (MM), female

mice (FM), male rats (MR), and female rats (FR). In the blood-brain barrier (BBB) data

set,74 the objective is to predict BBB penetration of a set of 415 compounds. The Yoshida

data set75 (BIO) classifies the 265 compounds according to their oral bioavailability. The

Sutherland data set76 deals with the binding activity of compounds at the benzodiazepine

receptor (BZR), cyclooxygenase-2 (COX2), dihydrofolate reductase (DHFR), and estrogen

receptor (ER). The aqueous solubility data set77 (SOL) contains 1025 compounds with the

aqueous solubility values in 20–25◦C expressed in log mol/L. For reasons of computational

efficiency, all hydrogen atoms were removed from each compound.

3.7.3 Results and Discussion

In Table 3.3 a performance comparison of the AE kernel against the standard graph kernels

(ST, EST, WLST, ERW, and OA) and molecular fingerprint (ECFP) for the 12 data sets,

is shown. It can be seen that the AE kernel outperforms the other methods on 9 of the 11

data sets for classification. The AE kernel achieved a mean AUC value of 0.777 over the

11 data sets, whereas ST, EST, WLST, ERW, OA, and ECFP demonstrated lower values

of 0.717, 0.751, 0.740, 0.744, 0.721, and 0.728, respectively. These improvements are

significant with p-values of 9.8×10−4, 9.8×10−4, 2.9×10−3, 2.0×10−3, 9.8×10−4, and

9.8×10−4 for ST, EST, WLST, ERW, OA, and ECFP, respectively, using a Wilcoxon paired

two-sided test. The AE kernel performed best on the remaining data set for regression. The

best parametrization of the AE kernel for each data set is shown in Table 3.4. It is worth

mentioning that, with respect to AUC, the ECFP gives competitive performance compared

to the other methods on the activity data sets (BZR, COX2, DHFR, and ER), which contain

compounds with low structural diversity, but poor performance on the carcinogenicity data
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sets (MM, FM, MR, and FR), which contain compounds with high structural diversity. This

is due to the circular substructures that are used for the ECFP to represent the chemical

structures. The circular substructures are suitable to discriminate changes in functional

groups between molecules with the same scaffold, yet have difficulty capturing changes in

molecular topology between molecules with different scaffolds. On the other hand, graph

kernels based on walks and subtrees are able to capture them successfully.
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Table 3.4 Parametrization of the AE Kernel with the Best Performancea

parameters

data set tree-pattern CS kernel tree weight

MUTAG h= 4,r= 2 γ= 0.1,θ= 1.40 τ=−,λα = 0.3,λβ = 0.3

MM h= 2,r= 2 γ= 0.1,θ= 0.50 τ= 2.7055,λα = 0.8,λβ = 0.4

FM h= 2,r= 1 γ= 0.1,θ= 0.50 τ= 1.6424,λα = 0.5,λβ = 0.2

MR h= 1,r= 1 γ= 0.5,θ= 0.50 τ= 2.0723,λα = 0.7,λβ = 0.4

FR h= 4,r= 3 γ= 1.0,θ= 0.80 τ=−,λα = 0.2,λβ = 0.2

BBB h= 0,r= 1 γ= 1.0,θ= 0.20 τ= 6.6349,λα = 0.8,λβ = 0.3

BIO h= 0,r= 1 γ= 0.1,θ= 0.05 τ= 2.7055,λα = 0.6,λβ = 0.1

BZR h= 3,r= 1 γ= 0.5,θ= 0.05 τ=−,λα = 0.5,λβ = 0.5

COX2 h= 0,r= 1 γ= 0.1,θ= 1.20 τ= 1.6424,λα = 0.3,λβ = 0.2

DHFR h= 2,r= 1 γ= 0.1,θ= 0.20 τ= 3.8415,λα = 0.4,λβ = 0.2

ER h= 4,r= 1 γ= 1.0,θ= 1.00 τ= 6.6349,λα = 0.2,λβ = 0.1

SOL h= 1,r= 1 γ= 1.0,θ= 1.30 τ= –,λα = 0.3,λβ = 0.3
a For each data set, the parametrization with the best performance is shown. For the

tree-patterns, h is the tree height, and r is the topological radius of the local environment
around each atom. For the CS kernels, γ is the wide parameter of the Gaussian kernel, and
θ is the cut-off distance. Finally, for the tree weights, in the case of 11 data sets (excluding
the SOL data set), τ is the threshold of the χ2-statistic, and in the case of the SOL data set,

τ is the threshold of the t-statistic, and λα and λβ are the tree weight factors.

In order to evaluate the individual contributions of the inexact match extension and the

importance weight extension to the improvements seen, we compared the AE kernel, the

two reduced variants of the AE kernel, and the ST kernel in terms of AUC (Figure 3.5). The

variants are: (i) the restricted AE kernel using only the inexact match extension where the

restriction λα = λβ is imposed in eq 3.4, and (ii) the other restricted AE kernel using only

the importance weight extension where exact matching is used instead of katom in eq 3.4

for atoms labeled with element types. The figure reveals that, with many of the data sets,

obvious improvements are observed through the combination of both of these extensions.
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Figure 3.5 Contributions of the two extensions to the improvement of the classification
performance for each data set. The best AUC values for each data set of the AE kernel
using both extensions (dark shaded bars), the restricted AE kernel using only the inexact
match extension (light shaded bars), the other restricted kernel using only the importance
weight extension (hatched bars), and the subtree kernel as a baseline (open bars), are shown.
Error bars indicate the standard deviation of the AUC.

We discuss the contribution of each extension in detail next.

One contribution to the improvements arises from the inexact match extension. Fig-

ure 3.6 shows the pairwise similarity matrices of atoms between compounds 1 and 2 in

the DHFR data set using the ST kernel (Figure 3.6a) and the AE kernels (Figure 3.6b–e)

with varying topological radius r and cut-off distance θ. The exact atom matching in the

ST kernel causes redundant matches (Figure 3.6a), where paired atoms have the same ele-

ment types but are located in different structural environments. In comparison, the inexact
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atom matching in the AE kernel eliminates such redundant matches by considering the lo-

cal environment er(v) of each atom v while cutting off the similarity of atoms v and v ′ if

the distance ||er(v)− er(v ′)|| is larger than the cut-off distance θ (Figure 3.6b–e). Through

comparison of parts b and c or d and e of Figure 3.6, we find that the decrease in θ reduces

the number of non-zero elements in the similarity matrix. This implies that a large value

of θ allows exchange between atoms of different elements. In the DHFR data set, the ex-

change occurs in 0.4% and 10.6% of all atom pairs at the cut-off distances θ = 0.20 and

1.20, respectively. The matching behavior of atoms also depends on the topological radius

r. Comparison of parts b and d or c and e of Figure 3.6 shows that the measurable similarity

between the atoms is finer with increasing r. The graded similarity yields a reasonable as-

signment of atoms from one molecule to those of another by applying an appropriate cut-off

distance θ. We note that inexact matching allows the inclusion of reduplicate assignments

among atoms with similar local environments and the exclusion of undesirable assignments

among atoms with different local environments. As a result, the inexact matching leads to

the identification of pairs of chemically meaningful tree-patterns.

The other contribution to the improvements arises from the importance weight exten-

sion. In Figure 3.7 the examples of relevant atoms for prediction of the BBB penetration

is shown. The hydrophobic regions of compound 3 and the carboxyl group of compound 4

were recognized as relevant to the task. This is in agreement with prior knowledge that po-

larity is inversely correlated with the BBB permeability, whereas hydrophobicity is directly

correlated with the BBB permeability. It can be seen from Figure 3.5 that, on 8 out of the 11

data sets, additional increases in AUC, which correspond to the changes from light shaded

to dark shaded bars, are obtained by applying the importance weight extension to the AE

kernel using only the inexact matching extension. The AUC on the remaining data sets was

almost unaffected by the importance weighting. A possible solution is to use different atom

environment labels, which encode another substructural features (e.g. pharmacophore fea-
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43
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Figure 3.7 Examples of relevant atoms for the task of predicting the BBB penetration as
determined from the χ2 test. The relevant atoms are enclosed by broken lines. Compound
3 penetrates the BBB, but compound 4 does not. All of the kernel parameters are set to the
optimized values shown in Table 3.4.

tures). As a result, the importance weighting discloses relevant tree-patterns for the given

tasks to the AE kernel, leading to improved performance.

Table 3.5 lists the runtimes to compute the Gram matrix for each data set. In terms

of runtime, the AE kernel was competitive with the ST and EST kernels. In comparison,

the WLST kernel outperformed the other methods over all data sets. On smaller data sets

excluding the SOL data set, the ECFP was competitive with the WLST kernel, but was

approximately three times slower than the WLST kernel on the SOL data set. The ERW

and OA kernels were slower than the other methods for all of the data sets. In Figure 3.8

the time taken to compute the 1025× 1025 Gram matrix for the SOL data set at different

tree heights, h, is shown for the AE kernels with the cut-off distances θ = 0.05, 0.20, and

0.50 and the ST kernel. The runtimes of both kernels grow linearly with respect to the tree

height, h, which is consistent with the complexity given in eq 3.7, but the AE kernel is

more efficient at lower cut-off distances (θ= 0.05 and 0.20). The decrease in θ shortens the

runtime of the AE kernel; this is due to redundant matches of atoms being eliminated with

decreasing θ, as shown in Figure 3.6.
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Figure 3.8 Average runtimes in seconds over 10 runs to compute the 1025× 1025 Gram
matrix on the SOL data set at different tree heights h. We compare the AE kernels with the
cut-off distances θ= 0.05 (solid line), 0.20 (dashed line), and 0.50 (dashed-dotted line) and
the ST kernel (dotted line).

3.8 Concluding Remarks

We tailored a new graph kernel to molecules by extending the subtree kernel. Firstly, we

permitted inexact tree-pattern matching, while eliminating redundant tree-pattern matches.

As a result, the inexact match extension enhanced the identification of pairs of chemically

meaningful tree-patterns in two molecular graphs. Secondly, we introduced the tree weight

function to assign an importance weight to each tree-pattern according to the statistical sig-

nificance for the task of interest. The importance weight extension alleviated the problem of

the curse of dimensionality by decreasing the contribution of less significant tree-patterns for

the task. As demonstrated, the combination of the two extensions successfully contributed

to the improvement of performance for the classification and regression tasks of predict-

ing various pharmaceutical properties. The proposed kernel showed comparable or better

prediction performance compared to the standard graph kernels and molecular fingerprint.
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In future work, we intend to extend the proposed kernel. One possible extension is

to allow matching between tree-patterns built on two root vertices and their descendants

that contain gaps.41 The flexible tree-pattern matching will capture new relevant aspects of

molecules and progressively enrich the feature space induced by the resulting graph kernel.

Chemically inspired extensions include matching between molecular fragments (referred to

as bioisosteres78), which are structurally distinct yet biologically equivalent. It is necessary

to condense the structure of molecules for the bioisostere matching, such that their phar-

macophoric features are emphasized using a graph reduction method.79,80 Another possible

extension is to incorporate stereochemical information, such as chiral centers and cis-trans

isomers, into the graph kernel.81

Interesting related research ideas include the application of the proposed kernel in board

games like Go, Shogi, and Checkers. In board games, each board status can be represented

by a graph. The proposed kernel could enable us to match with better computer opponents.



Chapter 4

Fragment Assembly Monte Carlo
Methods for the Inverse Problem

In this chapter, we are concerned with the problem of reconstructing a corresponding molec-

ular graph (aka pre-image) from its feature space representation induced by a graph kernel,

known as the pre-image problem.

4.1 Basic Idea

The pre-image problem is of central importance for the design of new molecules with de-

sired properties.2,27 In order to address the pre-image problem, we propose a new sam-

pling method for chemical structures, called the fragment assembly Monte Carlo (FAMC)

method. The proposed method was inspired by two different Monte Carlo methods: the

fragment assembly method82–90 for de novo protein structure prediction, which is based on

the replacement of residue fragments, and the evolutionary Monte Carlo method91 for ef-

ficient sampling, which incorporates powerful interactions used in genetic algorithms. The

FAMC method is based on a population-based Monte Carlo method with evolutionary op-

erators (i.e., mutation, crossover, and exchange) for the fragment-based structural alteration

of molecules.
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Let kAE,h be the atom environment (AE) kernel on a set G of molecular graphs. The

AE kernel kAE,h induces a map ϕ : G → F into a feature space F such that k(G,G ′) =

⟨ϕ(G),ϕ(G ′)⟩ for all G,G ′ ∈ G. Given an image point Ψ in F as an expansion in terms

of known molecules {G1, . . . ,GN} ⊆ G, i.e., Ψ =
∑N
i=1αiϕ(Gi), the pre-image problem

reduces to finding a corresponding molecular graphG∗ ∈ G such that Ψ=ϕ(G∗). However,

no such G∗ exists for many Ψ ∈ F since the map ϕ is not surjective.92 A relaxation of the

pre-image problem is to find an approximate pre-image G∗, such that the squared distance

of Ψ and ϕ(G) is minimized,

G∗ = argmin
G

(∥Ψ−ϕ(G)∥2 +ηR(G)) =: argmin
G

H(G), (4.1)

where R(G) is a regularization function to penalize non-drug-like molecules using knowl-

edge of drug-likeness commonly used by medicinal chemists, and η controls the strength of

the regularization. We denote the energy function for a molecular graph G by H(G). Using

the normalized AE kernel k̃AE,h, we can rewrite H(G) as

H(G) = −2
N∑
i=1

αik̃AE,h(Gi,G)+ηR(G)+C, (4.2)

where C=
∑N
i,j=1αiαjk̃AE,h(Gi,Gj)+1 is a constant independent of G.

As mentioned previously, in computer-aided molecular design, medicinal chemists are

not only interested in computationally optimal molecules, but also in their neighboring sub-

optimal molecules since the suboptimal molecules are often expected to be good candidates

for further knowledge-based prioritization. Therefore, we state the pre-image problem as a

sampling problem. This is different from the optimization problem (eq 4.1) where only op-

timal solutions are of interest. The formulation of the sampling problem begins by defining



4.1 Basic Idea 51

T
em

p
er

at
u

re
t1

t2

t3

t4

MC Step

tm

...

Figure 4.1 A graphical representation of the FAMC method with the parallel tempering
scheme. The algorithm works by evolving a population of molecules in parallel, where a
different temperature ti is assigned to each molecule.

a target distribution of interest

G∗ ∼ π(G)∝ exp{−H(G)/t}.

This is the Boltzmann distribution with energy function H(G) given by eq 4.2 at tempera-

ture t. To sample structurally diversified molecules near optimal solutions, we then conduct

a random sampling from π(G) using the FAMC method. The FAMC method proceeds by

evolving a population of molecules in parallel, where a different temperature is assigned

to each molecule (Figure 4.1). The population is updated by mutation (partial structure

alteration using a molecular fragment database), crossover (partial structure swapping be-

tween two molecules), and exchange (whole structure swapping between two molecules)

operators (Figure 4.2). Of these operators, the crossover operator typically used in genetic

algorithms93,94 specifically causes powerful interactions among the molecules in the popu-

lation,91 as will be demonstrated in Section 4.5. If the crossover operator is not used, FAMC

follows the parallel tempering53–55 (PT) algorithm.
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Let G = {G1,G2, . . . ,Gm} denote a population where Gi is a molecular graph called an

individual andm is the population size. A set ofm different temperatures, t= {t1,t2, . . . ,tm},

are given and ordered as t1 > t2 > · · ·> tm. Each individualGi in the population has a tem-

perature ti for i = 1, . . . ,m. The corresponding Gibbs distribution for each individual Gi

is

πi(Gi) =
1

Zi(ti)
exp{−H(Gi)/ti},

where Zi(ti) is the normalizing constant, Zi(ti) =
∑

{Gi}
exp{−H(Gi)/ti}. By letting the

lowest temperature tm = t, πm corresponds to the target distribution π(G). In FAMC, the

target distribution of the population G is defined as the augmented Boltzmann distribution

π(G) =
1
Z(t)

exp
{
−

m∑
i=1

H(Gi)/ti

}
,

where Z(t) =
∏m
i=1Zi(ti).
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Figure 4.2 Evolutionary operations for the structural alteration of molecules. Mutation:
partial structural alteration using a molecular fragment database. Crossover: partial struc-
tural swapping between two molecules. Exchange: whole structural swapping between two
molecules.
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4.2 Evolutionary Movements in Chemical Space

In this section we describe the evolutionary operators (i.e., mutation, crossover, and ex-

change) for the structural alteration of molecules.

Mutation

The mutation operation is achieved by a Metropolis–Hastings step. An individual Gk is

first selected at random from the current population G. Gk is then mutated to G ′
k by the

following procedure (Figure 4.3):

1. The selected Gk is decomposed into a set S(Gk) of all possible fragments subject to

the fragment constraints that the fragments consist of 4–18 heavy atoms and any ring

bond cannot be broken. The decomposition is performed using GASTON,95–97 an

N
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"
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Figure 4.3 A graphical illustration of the mutation operation on molecules. Consider the
transition from a molecule Gk to G ′

k. The operation involves five steps. (1) The molecule
Gk is decomposed into a set S(Gk) of fragments. LetNdec be the number of the decomposed
fragments. (2) A fragment is selected at random with probability 1

Ndec
from S(Gk). This is a

candidate to be renewed in Gk. (3) Neighbors of the selected fragment are retrieved from a
molecular fragment database prepared in advance. Let Nnbr be the number of the retrieved
neighbor fragments. (4) A fragment for replacement is randomly selected with probability

1
Nnbr

from the neighborhoods. (5) A new candidate molecule G ′
k is generated by swapping

the selected fragment of Gk with the neighboring fragment in the database.
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efficient graph-based substructure mining algorithm. Let Ndec be the number of the

decomposed fragments.

2. A fragment is selected at random with probability 1
Ndec

from S(Gk). This is a candi-

date to be renewed in Gk.

3. The ϵ-neighborhoods of the selected fragment are retrieved out of a molecular frag-

ment database prepared in advance. The neighborhoods are identified by a fast sim-

ilarity search of Morgan fingerprints (ECFP-like fingerprints) stored in a succinct

multibit tree.98,99 The number Nnbr of the neighborhoods depends on a given thresh-

old ϵ for the Tanimoto similarity metric.32 Let Nnbr be the number of the retrieved

neighbor fragments.

4. A fragment for replacement is then randomly selected with probability 1
Nnbr

from the

neighborhoods.

5. A new candidate molecule G ′
k is generated by swapping the selected fragment of Gk

with the neighboring fragment in the database.

Accordingly, a new population is proposed as G ′ = {G1, . . . ,G ′
k, . . . ,Gm}, and it is accepted

with probability min(1,rm), according to the Metropolis–Hastings rule, where

rm =
π(G ′)T(G|G ′)

π(G)T(G ′|G)
= exp{−(H(Gk

′)−H(Gk))
/
tk}
NdecNnbr

N ′
decN

′
nbr

. (4.3)

N ′
dec and N ′

nbr are computed in the backward step from G ′ to G. Here, the transition prob-

ability T(G ′|G) is asymmetric, i.e., T(G ′|G) ̸= T(G|G ′). It should be mentioned that, in

the following experiments, we imposedNdecNnbr/N
′
decN

′
nbr = 1 on the above equation due

to the low sampling efficiency which is caused by an imbalance between Nnbr and N ′
nbr.

The imbalance is attributed to the heterogeneity of the fragment database. This problem of

breaking the detailed balance will be discussed in Section 4.6.
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Crossover

First, two parent individuals,Gi andGj (i ̸= j), are selected from the current population G=

{G1, . . . ,Gi, . . . ,Gj, . . . ,Gm} according to a roulette wheel selection procedure.100 Without

loss of generality, we assume H(Gi) ⩾ H(Gj). Two new offspring individuals are then

generated from the two parent individuals by the following procedure (Figure 4.4):

1. The selectedGi andGj are decomposed into two sets, S(Gi) and S(Gj), of all possible

fragments, respectively, subject to the fragment constraints. The decompositions are

performed using GASTON.

2. A list is given of similar fragment pairs between S(Gi) and S(Gj). The list is obtained

by finding similar fragment pairs from all possible fragment pairs between S(Gi)
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Figure 4.4 A graphical illustration of the crossover operation on molecules. Consider the
generation of two new offsprings G ′

i and G ′
j from one molecular pair Gi and Gj (i ̸= j). The

operation involves four steps. (1) The two molecules Gi and Gj are decomposed into two
fragment sets S(Gi) and S(Gj), respectively. (2) A list of similar fragment pairs between
S(Gi) and S(Gj) is given. Let Npair be the number of pairs. (3) One pair is randomly
selected with probability 1

Npair
from the fragment pair list. (4) Two new offspring G ′

i and G ′
j

are generated by swapping the paired fragments in Gi and Gj.
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and S(Gj) for a given similarity threshold ϵ. The similarity is measured using the

Tanimoto coefficient and Morgan fingerprints. Let Npair be the number of the pairs.

3. One pair is randomly selected with probability 1
Npair

from the fragment pair list.

4. Two new offspring, G ′
i and G ′

j , are generated by swapping the above-selected paired

fragments in Gi and Gj.

As a result, a new population is proposed as G ′ = {G1, . . . ,G ′
i, . . . ,G

′
j , . . . ,Gm}, and it is

accepted with probability min(1,rc), according to the Metropolis–Hastings rule, where

rc =
π(G ′)T(G|G ′)

π(G)T(G ′|G)
= exp{−(H(Gi

′)−H(Gi))
/
ti−(H(Gj

′)−H(Gj))
/
tj}
Npair

N ′
pair

.

N ′
pair is computed in the backward step. In this case, the transition probability T(G ′|G) is

asymmetric.

Exchange

The exchange operation is used to swap individuals between parallel tempered chains.

Given the current population G and the corresponding temperature ladder t, (G, t) = {G1,t1,

. . . ,Gm,tm}, we first select two adjacent individuals Gi and Gj at random and then attempt

(Gi, ti) (Gj, tj)

(Gi, tj)(Gj, ti)

N

N

O

N

N

O

O N

O

S

O N

O

S

Figure 4.5 A graphical illustration of the exchange operation on molecules. This operation is
conducted by swapping neighboring chains randomly chosen from the molecule population.
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to move (G, t) = {G1,t1, . . . ,Gi,ti,Gj,tj, . . . ,Gm,tm} to (G ′, t) = {G1,t1, . . . ,Gj,tj,Gi,ti,

. . . ,Gm,tm} (see Figure 4.5). This move is accepted with probability min(1,re), according

to the Metropolis-Hastings rule, where

re =
π(G ′)T(G|G ′)

π(G)T(G ′|G)
= exp{(H(Gi)−H(Gj))(

1
ti
−

1
tj
)}.

Here, the transition probability T(G ′|G) is symmetric.

Algorithm

In summary, using the evolutionary operations described above, the FAMC algorithm works

as follows. Given an initial population G = {G1,G2, . . . ,Gm} and a temperature ladder t =

{t1,t2, . . . ,tm}, FAMC iterates over the following two steps:

1. Apply either the mutation or crossover operator to the current population with proba-

bility qm and 1−qm, respectively. qm is called the mutation rate.

2. Apply the exchange step. An individual Gi is first selected at random from G and is

subjected to exchange with one of its neighbors. This operation is iterated Nm times.

4.3 Preparation of Molecular Fragments

We prepared a database for the mutation operation containing over four million molecu-

lar fragments. The database was prepared as follows (Figure 4.6): molecular fragments

are extracted from all compounds in the ChEMBL database101 (release 17) using GAS-

TON,95–97 subject to the fragment constraints. We then removed duplicated and undesirable

fragments. That is, we first removed molecules with reactive, toxic, and otherwise undesir-

able structural motifs102–104 (e.g. aldehydes, Michael acceptors, imines, etc.) and then

filtered the remaining molecules for their fragment-likeness.105,106 The resultant molecu-

lar fragments were converted to Morgan fingerprints (similar to ECFP fingerprints31) using
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Figure 4.6 Procedure for the preparation of molecular fragments. Molecular fragments with
attachment points are extracted from the compounds in the ChEMBL database and subse-
quently filtered to remove fragments with undesirable substructures or properties.

the RDKit,107 which were stored in a succinct multibit tree98,99 for fast similarity search-

ing. They were also converted to the SMILES chemical structure line notations108,109 using

OpenBabel,66,67 which were then stored in a NoSQL database110 for fragment structure

retrieval.

4.4 Regularization of Molecules

We collected a set R of rules to identify non-drug-like molecules from the literature102–104,111–113

(see Figure 4.7). In order to penalize non-drug-like molecules sampled from the target dis-

O

N C N
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Michael acceptor Acrylonitrile

Carbodiimide Disulfide

Phenantrene HOBT ester

(a) undesirable substructures (573 rules) (b) undesirable properties (21 rules)

molecular weight > 500

#(HB donors) > 5

#(HB acceptors) > 10

log P > 5

#(rotatable bonds) > 10

polar surface area > 140

Figure 4.7 A set of (a) undesirable substructures and (b) undesirable properties commonly
used by medicinal chemists. This set is used to penalize non-drug-like molecules.
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tribution π(G), we give a regularization function

R(G) =
∑
r∈R

M(G,r),

whereM(G,r) is 1 if the molecule G matches the rule r and 0 otherwise.

4.5 Experiments

We demonstrate the effectiveness of the FAMC method by conducting experiments to find

corresponding molecules from given image points in the feature space F induced by the AE

kernel. The pre-image reconstruction capability of the FAMC method is then presented.

The efficiency of the crossover operation is also evaluated.

4.5.1 Experimental Settings

Molecular Reconstruction

We first performed a simple experiment to reconstruct a corresponding molecule G∗ ∈ G

such that Ψ= ϕ(G∗) from a given image point Ψ in F.

The reconstruction capability of the FAMC methods were tested with four different im-

age points, ΨA, ΨB, ΨC, and ΨD,

ΨA = ϕ

(
N

O

S

H2N O

O )
, ΨB = ϕ

(
N

Cl

N

S
O

O )
,

ΨC = ϕ

(
N

N

S

H2N O

O

F

F F
F

)
, ΨD = ϕ

( S
O

O

F O

O

)
.
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These four image points were implicitly mapped from the four COX-2 inhibitors by the AE

kernel, respectively.

Molecular Interpolation

In addition, we performed an alternative experiment to design intermediate molecules be-

tween two known COX-2 inhibitors. This experiment was conducted by considering the

image point ΨA+D,

ΨA+D = 0.5ϕ
(

N
O

S

H2N O

O )
+0.5ϕ

( S
O

O

F O

O

)
.

This image point is defined by a linear combination of the two COX-2 inhibitors.

Algorithm Settings

In all of the simulations, the FAMC scheme was implemented using the following settings:

FAMC was run for 10,000 iterations with a population size of 32. The initial individuals in

the population are all set to the molecular graph of toluene, . The inverse temperature

ladder was configured as {1,5,9, . . . ,125}. The strength η of molecular regularization is set

to a large value of 10000. The similarity threshold ϵ is set to 0.38. The mutation rate qm

was chosen from {0.75,1.00}. Setting qm = 1.00, FAMC is reduced to parallel tempering

(PT). All of the AE kernel parameters used herein were set to the optimized values which

were obtained when building the forward prediction model on the COX-2 data set (see Table

3.4). The simulation results were analyzed over the 10,000 sampling points in the chain with

sampled molecules (1/t= 125).

The FAMC algorithm was coded in C++ using the OpenBabel toolbox.66,67 The simula-

tions were conducted on an Intel Xeon X5570 2.93GHz system with 32GB of main memory.
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The communication between the processors was achieved using the Open Message Passing

Interface114 (Open MPI), which is an open source MPI implementation.

4.5.2 Results and Discussion

Molecular Reconstruction

We present the simulation results for the molecular reconstruction experiments.

Figure 4.8 shows the time series plots of the squared distance of each target point to

the corresponding sample points in F. In all cases, the distance tended to zero until at

least 6,000 iterations. The achievement of zero distance indicates that the molecular re-

construction is complete. It can also be seen from the figure that the chain with the lowest

temperature fluctuates around the given image point after the achievement of zero distance.

In all experiments, FAMC was run for 10,000 iterations within 14 hours. The hot spot of
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Figure 4.8 Time series plots of the squared distance between four target points and the
corresponding sampling points in F. We consider four target points, (a) ΨA, (b) ΨB, (c) ΨC,
and ΨD. The red arrow indicates the position where an exact pre-image was found.
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FAMC, where the most time was spent during the execution, is the neighbor retrieval from

the fragment database, which is performed in the mutation operation. The time taken for the

retrieval could be reduced by clustering fragments into groups (more details in Section 4.6).

In Figure 4.9 the importance of the crossover operator is shown by comparing the sim-

ulation results of FAMC with crossover (qm = 0.75) and PT without it (qm = 1.00). In

all experiments, FAMC succeeded in reconstructing the pre-image more quickly than PT.

Unfortunately, PT failed in two cases (Figure 4.9c and d). The success of the crossover

operator arises from powerful interactions among molecules in the population. As a result,

the crossover operator is beneficial to find the pre-images for molecules in FAMC.

Figure 4.10 displays the time-series sequence of sampled molecules resulting from the

10,000 iterations of FAMC. Here, the sampled molecules were projected into the chemical

space obtained by the kernel ISOMAP.115,116 This figure shows that, despite starting from

the distant solution (i.e., ), the chain of sampled molecules succeeded in reaching the pre-

image point for any four experiments. Furthermore, as shown in Figure 4.11, the sampled

molecules exhibit considerable structural diversity while sharing some structural features
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with the target molecule, and also maintaining drug-likeness.

Molecular Interpolation

We present the simulation results for the design of intermediate molecules between the two

COX-2 inhibitors.

Trajectory plots of molecules both in F and G, sampled by FAMC, are shown in Figure

4.12. As shown in Figure 4.12a, the squared distance of the target point ΨA+D to every

sample point ϕ(G) never reaches zero. One explanation for the failure is that no exact

pre-image exists in the limited chemical space of drug-like molecules. Figure 4.12b shows

the transition of the sampled molecules in the chemical space dimensionally reduced by the

kernel ISOMAP.115,116 Once the sample sequence reached a near-optimal solution, it re-

mained within the region between the two COX-2 inhibitors. Figure 4.13 shows that FAMC

samples structurally diversified molecules with good drug-like characteristics, in which the

structural features of the two COX-2 inhibitors are intricately intertwined. The molecular

interpolation approach has potential applications to drug design. For example, if we sup-

pose there are two molecules with different desired properties, intermediate molecules are
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ΨA+D and every sample point in F. Note that the distance never reached zero. (b) A sam-
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Figure 4.13 Structurally diversified molecules sampled so as to synthesize the structural
features of the two COX-2 inhibitors.

expected to be promising candidates possessing both properties.

In comparison to previous research2,28 into graph enumeration and optimization, the

proposed method has the following characteristics: (i) it is designed to generate not only op-

timal molecules but also structurally diversified molecules near the optimal molecules. (ii)

The generated molecules have good drug-like properties to be acceptable for the common

structural filters and physicochemical filters that were unconsidered in previous research.

4.6 Concluding Remarks

We developed a population-based Monte Carlo method to solve the pre-image problem for

molecules. All simulation results demonstrated the effectiveness of the proposed method

to sample structurally diversified molecules near the pre-images, which possess good drug-

like characteristics. The effectiveness of the proposed method was due to two main reasons.

For efficient sampling, we used evolutionary operators of the genetic algorithms for effi-

cient structural alteration of molecules. Simulation with the crossover operator led to faster

reconstruction of given pre-images than those without it. In addition, in order to penalize
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non-drug-like molecules, we used the knowledge of drug-likeness commonly considered by

medicinal chemists.

One possible extension to the FAMC method is to satisfy the detailed balance condition

while improving computational efficiency. What matters here is the heterogeneity of the

fragment database for mutation. The heterogeneity causes an imbalance between Nnbr and

N ′
nbr in eq 4.3. In order to compensate the imbalance, it is necessary that the fragments

are uniformly distributed across the database. We intend to redesign the database such that

Nnbr =N
′
nbr by the following steps: The fragments are first mapped into two-dimensional

grid cells using the self-organizing map117 (SOM). We then build a uniform database by

adding dummy fragments to each cell such that the number of fragments is equal in all

cells. If a dummy fragment is chosen for replacement in a mutation trial, the trial is al-

ways rejected. Another important extension is to penalize molecules with difficult synthetic

accessibility.118



Chapter 5

Conclusions

The primary aim of this thesis was to develop a data-driven method for the de novo de-

sign of new molecules that yield suitable properties required for drug candidates. De novo

design remains a computationally challenging problem due to the ill-posed nature (i.e., non-

convex, nonlinear, and combinatorial) of the problem, which, if solved, could help acceler-

ate the development of new drugs. The major hurdles for de novo design are: the accurate

prediction of molecular properties of interest and the efficient exploration of the chemical

space of possible molecules with good drug-likeness and synthetic accessibility. Failure

to overcome these hurdles could require costly efforts to synthesize and test new complex

molecules, which ultimately may not have the desired properties. In this thesis, we de-

veloped a kernel-based strategy to address these hurdles. The strategy involved two steps.

First, we embedded molecules into a feature space amenable to the prediction of molecu-

lar properties. This embedding was achieved by defining a new graph kernel specialized

for molecules. Second, we designed target molecules through the reconstruction of corre-

sponding molecules (aka pre-images) from an image point in the prepared feature space,

reflecting desired properties. This so-called pre-image problem is of central importance to

de novo design. We expressed the pre-image problem as a sampling problem in order to

retrieve structurally diversified molecules near the pre-images. We next summarize each

step in the de novo design strategy and sketch some directions for future work.
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To construct a feature space where it is easy to predict molecular properties, we tailored

a new graph kernel to molecules by extending the existing subtree kernel.1 The proposed

kernel tackled two primary limitations of conventional graph kernels: (i) only exact sub-

graph matching is considered in the counting operation, and (ii) most of the subgraphs will

be less relevant to a given task. The proposed kernel first permitted an inexact tree-pattern

matching, while eliminating redundant tree-pattern matches. As a result, the inexact match

extension enhanced the identification of pairs of chemically meaningful tree-patterns in two

molecular graphs. In addition, we introduced the tree weight function to assign an im-

portance weight to each tree-pattern according to the statistical significance of the task of

interest. The importance weight extension alleviated the problem of the curse of dimension-

ality by decreasing the contribution of less significant tree-patterns to the task. The proposed

kernel either outperformed, or was at least competitive with, existing standard graph kernels

and molecular fingerprints over all the learning tasks we considered.

To suggest new molecules with desired properties, it is necessary to solve the pre-image

problem. Unlike a traditional method proposed in ref 2 which relies on nonlinear combina-

torial optimization, we expressed the pre-image problem as a sampling problem, where we

are interested not only in optimal molecules, but also in near-optimal molecules. Therefore,

we developed a population-based Monte Carlo method for sampling structurally diversified

molecules with good drug-likeness near the pre-images. The key to efficient sampling was

to use the update of a population by evolutionary operators for the structural alteration of

molecules. In addition, in order to penalize non-drug-like molecules, we used the knowledge

of drug-likeness commonly considered by medicinal chemists. The effectiveness of the pro-

posed method was illustrated through experiments to find pre-images for several molecules.

Inherently, the synthetic accessibility has to be evaluated for sampled molecules, but we

leave this for future work.
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An important extension to this work that is yet to be developed is to construct a pipeline

between the forward prediction of chemical properties and the inverse prediction of chem-

ical structure designs. A promising line of research for this future work is to devise the

energy function (eq 4.2). Given a forward prediction model built by, for example, the sup-

port vector regression

ŷ(G) =
∑
G ′∈SV

αik̃AE,h(G,G ′)+b,

we can define an alternative energy function of the form

Hr(G) = (y∗− ŷ(G))2 +γR(G),

where y∗ ∈ R is set to the desired value of the output variable of interest. Similarly, if

ŷ(G) is a support vector machine classifier, we have the energy function for classification

problems

Hc(G) = −y∗ŷ(G)+γR(G),

with a given class label y∗ ∈ {−1,1}. Furthermore, given two regression models ŷA(G) and

ŷB(G), we have the energy function for multi-objective problems

Hm(G) = α(y
∗
A − ŷA(G))

2 +(1−α)(y∗B − ŷB(G))
2 +γR(G),

where y∗A,y∗B ∈ R are desired property values and α is a weighting coefficient in the range

0⩽α⩽ 1. We can then design new molecules with desired properties by sampling molecules

from the target distribution with the energy function Hr(G) for regression problems, Hc(G)

for classification problems, or Hm(G) for multi-objective problems.

We believe that our contributions have the potential to explore new avenues in data-driven

drug design.



Appendix A

Derivation of the Recursive
Formula

We derive the recursive form (eq 3.5) of the AE kernel (eq 3.1) using the recursive nature

of tree construction. Let G = (VG,EG) and G ′ = (VG ′ ,EG ′) be two molecular graphs. We

first restrict PT (G) to tree-patterns rooted at a specified vertex v, i.e.,

P
(v)
T (G) = {(va1 , . . . ,va|T |)|(a1, . . . ,a|T |) ∈ {1, . . . , |VG|}|T |

∧ (va1 , . . . ,va|T |) = pattern(T)∧va1 = v}.

With this set of tree-patterns, the AE kernel in eq 3.1 between G and G ′ with respect to any
tree T ∈ Th up to height h can be rewritten as

kAE,h(G,G ′) =
∑
T∈Th

∑
p∈PT (G)

∑
p ′∈PT (G ′)

w(p)w(p ′)ktree(p,p ′)

=
∑
v∈VG

∑
v ′∈VG ′

(∑
T∈Th

∑
p∈P(v)

T (G)

∑
p ′∈P(v ′)

T (G ′)

w(p)w(p ′)ktree(p,p ′)

)

=
∑
v∈VG

∑
v ′∈VG ′

(∑
T∈Th

∑
p∈P(v)

T (G)

∑
p ′∈P(v ′)

T (G ′)∏
(u,u ′)∈A(p,p ′)

ŵ(ar(u))ŵ(ar(u
′))katom(er(u),er(u ′))

)
.



71

The term in brackets in the above equation corresponds to kh(v,v ′) in eq 3.5, i.e.,

kh(v,v ′)=
∑
T∈Th

∑
p∈P(v)

T (G)

∑
p ′∈P(v ′)

T (G ′)

∏
(u,u ′)∈A(p,p ′)

ŵ(ar(u))ŵ(ar(u
′))katom(er(u),er(u ′)).

(A.1)

For ki, where i= 0, . . . ,h, k0 is reduced to

k0(v,v ′) = ŵ(ar(v))ŵ(ar(v ′))katom(er(v),er(v ′)). (A.2)

For ki, with i = 1, . . . ,h, A(p,p ′) in eq A.1 always includes the pair (v,v ′) of root vertices

as the first element. Taking the kernel value k0(v,v ′) out of the product in eq A.1, we have

ki(v,v ′) = k0(v,v ′)

(∑
T∈Ti

∑
p∈P(v)

T (G)

∑
p ′∈P(v ′)

T (G ′)

∏
(u,u ′)∈A(p,p ′)
∖(ua1 ,u ′

a1
)

k0(u,u ′)

)
. (A.3)

In the above equation, all pairs of children of the root vertices v and v ′ appear in the first

element of A(p,p ′)∖(ua1 ,u ′
a1
). In other words, the term in brackets in eq A.3 compares all

pairs of downstream tree-patterns from the root vertices v and v ′ with respect to T ∈ Ti−1.

Thus, eq A.3 becomes

ki(v,v ′) = k0(v,v ′)

×

[ ∑
R∈M(v,v ′)+∅

∏
(w,w ′)∈R

( ∑
T∈Ti−1

∑
p∈P(w)

T (G)

∑
p ′∈P(w ′)

T (G ′)

∏
(u,u ′)∈A(p,p ′)

k0(u,u ′)

)]

(A.4a)

= k0(v,v ′)

×

[
1+

∑
R∈M(v,v ′)

∏
(w,w ′)∈R

( ∑
T∈Ti−1

∑
p∈P(w)

T (G)

∑
p ′∈P(w ′)

T (G ′)

∏
(u,u ′)∈A(p,p ′)

k0(u,u ′)

)]
.

(A.4b)
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In eq A.4a, we take the empty set ∅ as a special case out of M(v,v ′). The product∏
(w,w ′)∈R is one if R= ∅, in order to treat unbalanced trees in the AE kernel. On the other

hand, under the convention that the product is 0 if R= ∅, the AE kernel treats only balanced

trees. It is straightforward to obtain eq A.4b from eq A.4a for the unbalanced trees. The

term in parentheses in eq A.4b corresponds to ki−1(w,w ′) in eq 3.6. With eq A.2 for i= 0

and eq A.4b for i > 0, the derivation of the recursive formula is complete.
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Roman Symbols

G an input space (or chemical space).

F an RKHS (or feature space).

VG a set of vertices including in molecular graph G.

EG a set of edges including in molecular graph G.

G a molecular graph, G= (VG,EG).

u,v vertices, u,v ∈ VG.

(u,v) the edge between two vertices u and v, (u,v) ∈ EG.

T a rooted tree, T = (VT ,ET ).

PT (G) a set of all possible tree-patterns of G arranged in T .

p a tree-pattern, p ∈ PT (G).

Th a set of all trees up to height h.

h the height of tree T , i.e., the length of the longest path from the root to any other

vertex.

A(p,p ′) a set of the aligned atom pairs of p and p ′.
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M(v,v ′) a set of subsets of neighborhood matching of vertices v and v ′.

N(v) an outgoing neighborhood set of vertex v.

S(G) a set of parts extracted from molecular graph G.

ar(v) ∈ Z the atom environment label derived from a neighboring substructure of a topo-

logical radius r centered at vertex v using a variant of the Morgan algorithm.

er(v) ∈ R2 the atom environment label derived from a neighboring substructure of a topo-

logical radius r centered at vertex v using an extension of the Burden approach.

r the topological radius for atom environment labels.

I(p ∼= p ′) the indicator function determines the isomorphism of tree-patters p and p ′.

kAE,h(G,G ′) the AE kernel of molecular graphsG andG ′, considering all trees up to height

h.

k̃AE,h(G,G ′) the normalized AE kernel.

katom(er(v),er(v ′)) the atom-level kernel of atom environment labels er(v) and er(v ′).

kconv(G,G ′) the convolution kernel of molecular graphs G and G ′.

ktree(p,p ′) the tree-level kernel of tree-patterns p and p ′.

w(p) a weight of tree-pattern p.

ŵ(ar(v)) a weight associated with the atom environment label ar(v) of vertex v.

G a population ofm molecular graphs, G = {G1,G2, . . . ,Gm}.

t a set ofm different temperatures, t = {t1,t2, . . . ,tm}.

H(G) the energy function for molecular graph G.
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R(G) the regularization function to penalize non-drug-like molecules.

Greek Symbols

γ the width parameter of the Gaussian kernel.

λα a weight of significant atoms.

λβ a weight of the other atoms.

ϕ a feature map.

ψd,c(·) a Wendland function for the dimension d of input variables and the smoothing

parameter c.

ΣV a set of vertex labels.

ΣE a set of edge labels.

Σ a set of vertex and edge labels, ΣV∪ΣE.

τ the threshold of χ2 statistic for the determination of significant atoms.

θ the cut-off distance for the CS kernel.

η the strength of the regularization to penalize non-drug-like molecules.

π(G) a target distribution of interest.

Ψ an image point in F for the pre-image problem.

Other Symbols

N the set of all natural numbers.

R the set of all real numbers.
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Z the set of integer numbers.

Acronyms / Abbreviations

AE atom environment.

AUC area under the ROC curve.

CP cyclic pattern.

CS compactly supported.

ECFP extended-connectivity fingerprint.

ERW extended random walk.

EST extended subtree.

MCCV Monte Carlo cross-validation.

OA optimal assignment.

RKHS reproducing kernel Hilbert space.

ROC receiver operating characteristic.

RW random walk.

ST subtree.

WLST WeisfeilerLehman subtree.

FAMC fragment assembly Monte Carlo.



References

[1] Ramon, J.; Gärtner, T. Expressivity versus efficiency of graph kernels. In Proceedings
of the 1st International Workshop on Mining Graphs, Trees and Sequences (MTGS
2003) [Online], Cavtat-Dubrovnik, Croatia, September 22–23, 2003; Washio, T., De
Raedt, L., Eds.; University of Osaka, Institute for Scientific and Industrial Research
Web site. http://www.ar.sanken.osaka-u.ac.jp/MGTS-2003CFP.html (accessed Octo-
ber 1, 2013).

[2] Bakır, G. H.; Zien, A.; Tsuda, K. Learning to find graph pre-images. Lecture notes in
computer science 2004, 253–261.

[3] Bohacek, R. S.; McMartin, C.; Guida, W. C. The art and practice of structure-based
drug design: A molecular modeling perspective. Med. Res. Rev. 1996, 16, 3–50.

[4] Anonymous, The numbers game. Nat. Rev. Drug Discov. 2002, 1, 929.

[5] Dobson, C. M. Chemical space and biology. Nature 2004, 432, 824–828.

[6] Hansch, C.; Maloney, P. P.; Fujita, T. Correlation of biological activity of phenoxy-
acetic acids with hammett substituent constants and partition coefficients. Nature
1962, 194, 178–180.

[7] Kubinyi, H. Drug research: myths, hype and reality. Nat. Rev. Drug Discovery 2003,
2, 665–668.

[8] Kier, L. B.; Hall, L. H.; Frazer, J. W. Design of molecules from quantitative structure-
activity relationship models. 1. Information transfer between path and vertex degree
counts. J. Chem. Inf. Comput. Sci. 1993, 33, 143–147.

[9] Skvortsova, M. I.; Baskin, I. I.; Slovokhotova, O. L.; Palyulin, V. A.; Zefirov, N. S.
Inverse problem in QSAR/QSPR studies for the case of topological indexes character-
izing molecular shape (Kier indices). J. Chem. Inf. Comput. Sci. 1993, 33, 630–634.

[10] Faulon, J.-L.; Churchwell, C. J.; Visco, D. P. The signature molecular descriptor. 2.
Enumerating molecules from their extended valence sequences. J. Chem. Inf. Com-
put. Sci. 2003, 43, 721–734.

[11] Brown, N.; McKay, B.; Gilardoni, F.; Gasteiger, J. A graph-based genetic algorithm
and its application to the multiobjective evolution of median molecules. J. Chem. Inf.
Comput. Sci. 2004, 44, 1079–1087.



References 84

[12] Douguet, D.; Thoreau, E.; Grassy, G. A genetic algorithm for the automated gener-
ation of small organic molecules: Drug design using an evolutionary algorithm. J.
Comput.-Aided Mol. Des. 2000, 14, 449–466.
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