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ABSTRACT

Signature

Takako Kato, Ph.D.

Collision Processes of Low Charge Ions with Atoms

in Fusion Plasma

Shi-Yang Zou , Ph.D.
The Graduate University for Advanced Studies

Collision processes of low charged ions with neutral atomic particles at low to in-
termediate energies play vital roles in various fields of applied physics such as plasma
physics, astrophysics, and radiation physics. In ion-atom collisions, several inelastic
processes can take place in addition to elastic scattering. Among these processes, ex-
citation of target, electron capture, and ionization (the ejection of electrons from the
target) are considered to be dominant in the energy range concerned fusion research.
There is an amount of effort to fully understand the dynamics of ion-atom collisions
from both the experimental and theoretical perspectives. As a result of these ex-
tensive experimental and theoretical investigations, most of the elastic and inelastic
processes involving bound states of target and projectile ions are well described by
current theories. However, ionization remains a challenge even for the most basic
processes such as proton-hydrogen system especially at low energy. The discrepancy
in ionization cross sections between two recent experiments [ 4* is as large as a factor

of six. Reasonably reliable theoretical studies [*~° predicted about 20% higher value

*Bracketed references placed superior to the line of text refer to the bibliography.




than those of experiments ®7 at the peak of ionization cross section, and there is a
considerable disagreement among theoretical cross sections at low keV energies. The
energy dependence of theoretical and experimental results are also different. In the

present work, we have aimed to provide more insight into such unresolved problems.

Heavy-particle atomic collision is a complex quantum-mechanical problem. It
involves interaction of many states both from the discrete and continuum parts of
the energy spectrum and also strong couplings of many reaction channels. Obviously,
the understanding of the collisional dynamics of ion-atom system would represent
a considerable advance of our basic knowledge on atomic interactions, in general.
Besides, this knowledge is essential for the understanding and interpretation of a large
variety of phenomena taking part in many non-equilibrium plasmas. The importance
of heavy-particle collisions in fusion research applications and the challenges for theory

have motivated me to carry out this research.

In the first part of my research, I studied electron emission in H*+H(1s), He**+H(1s)
and He*(1s)+H™ collisions at low energy (below 20 keV/amu), using the electron
translation factor corrected molecular orbital close-coupling approach. Selection of
the collision partners and energy range studied here ties closely with the application in
fusion plasma experiments. Full convergence of ionization cross sections as a function
of H} or HeH?* molecular basis size was achieved by including up to twenty bound
states, and more than three hundred continuum states. The results obtained by our
calculation are compared with the available experimental data and various theoret-
ical models. Excellent agreement with the recent experiments is found for the total
ionization cross sections (TICS) where the experimental values are available. This
study shows that for the ionization in He?*+H(1s) and/or Het(1s)+H™ collisions, the
higher-level ladder climbing processes (i.e. excitation via a sequence of upper levels)
are dominant as compared to direct mechanism, in which the electron is liberated
by one step promotion. On the contrary, in the Ht+H(1s) collision process, H(1s) is
ionized directly, and the higher levels, especially 2pm,, act as a temporary trap of the

ionization flux.

The second part of this thesis is devoted to the calculation of spectral profiles
of Li?* ions emitted in magnetically confined plasma. In magnetic confined plasmas,
Li%* ions are populated by three kinds of mechanism; excitation from the ground state,

electron-ion recombination from Li** and charge exchange with neutral hydrogen and
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Li**. The nl-resolved population densities of exited Li* ions are calculated up to
n = 20 using a collisional-radiative model including the charge exchange process.
Since reliable cross sections for charge exchange processes in Li3*+H(1s) collision are
available, instead of attempting recalculations of charge transfer process, I adopt them
from the recent literatures. In the calculation, the radiative transition probabilities
and wavelengths of Li?* ions are computed by diagonalizing the Hamiltonian including
interactions with the magnetic field. This study shows that 1) spectral profiles emitted
by excitation, recombination and charge exchange are quite different from each other,
which is due to the different n and I[-distributions of the rate coefficients of such
basic atomic processes (i.e. excitation, recombination and charge exchange); and 2)
in order to interpret properly low temperature spectra, the Zeeman effect has to be

accounted for, especially for ion temperature diagnostics.

In summary, I have treated heavy-particle atomic collisions which are typical in
plasma, obtaining new cross sections for charge transfer, excitation and ionization at
low energies. The detailed discussions are made to collisions involving the partially
or fully ionized main component of fusion plasmas (hydrogen and helium). Based on
a detailed computation for spectral profiles of Li?* ions, I have analyzed the spectra

of hydrogen-like lithium measured from magnetic confinement fusion plasmas.
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1.0 Introduction

The collision processes of lowly charged ions with neutral atomic particles have
challenged theoretical and experimental physicists for nearly seventy years. The con-
stant interest in ion-atom collision processes is motivated both by the fundamental

and practical reasons.

The heavy-particle atomic collision is an extremely complex quantum-mechanical
problem. It involves interaction of many states both from the discrete and continuum
parts of the energy spectrum and includes strong couplings of many reaction channels.
Obviously, the understanding of the collisional dynamics of ion-atom system would
represent a considerable advance of our basic knowledge on atomic interactions, in
general. Besides, this knowledge is very much at the heart of a large number of
application in such areas as magnetically or inertially confined fusion plasmas, laser
systems, partially ionized gases and plasmas, chemical systems, surface interactions,
channelling and energy loss in solids, energy and ionization balance in the earth’s
atmosphere, astrophysical studies on a broad front, and a host of other examples

(see, e.g., Refs. 8710 and references therein).

These important applications and other issues of interest continue to capture
the attention of experimental and theoretical physicists, and keep the field instan-
taneously developing. As a result of extensive experimental and theoretical investi-
gations, most of the elastic and inelastic processes involving bound states of target
and projectile ions are well understood by current methods. However, the ionization
remains a challenge even for the most basic processes such as proton-hydrogen system
especially at low energy. At keV energies, the total ionization cross sections obtained
by experimental studies of Pieksma et al. 12 were found to be quite larger than the
recent measurements of Shah et al. [!! below 10 keV/amu, and to decrease much less
rapidly with the energy decrease. At the lowest energy considered (1 keV/amu), the
cross sections of Pieksmaet al (@ exceed the values by Shah [l by ~ 6 times. Numbers
from experiments [®7 and recent theoretical studies®® disagree by 20% at the peak
of ionization cross section. In the present work, we have provided more insight into

the previously unresolved problems.

Before moving on to the details of my research, it is a suitable point to briefly

describe some important applications of heavy-particle atomic collisions as illustra-




tions, and summarize the experimental and theoretical methods for investigations of

lowly charged ion-neutral atomic particle collision processes’.

1.1 Important applications of heavy-particle atomic
collisions

Several areas of research, bringing important practical implications, have con-
stantly stimulated particular investigations of low charged ion collision processes.
Among the various applications of heavy-particle atomic collisions, the controlled
thermonuclear fusion programme certainly has the dominant place. Controlled ther-
monuclear fusion for the isotopes of hydrogen in a high temperature plasma offers
the prospect of a major source of energy with low environmental impact and virtu-
ally inexhaustible supplies of fuel. Over the past few decades a steady progress was
seen towards practical realization based on schemes in which the plasma is heated
during magnetic confinement. Attention has also been directed towards heating and
inertial confinement by energetic laser or particle beams. While both these general
approaches involve many atomic physics problems 1'% in this thesis the scopes will

be limited to aspects of magnetic confinement fusion.

Presently, neutral beam injection (NBI) has evolved to a very reliable heating
technique operating successfully at almost all major fusion experiments. For heating
by hydrogen neutral beams, the fast hydrogen atoms pass through the magnetic con-
fining fields and undergo electron removal in collisions with the plasma constituents.
Charge transfer

H*+H—-H+H' (1-1)
and ionization
H"+H—-Ht+H" +e (1-2)

in collisions with plasma protons are important in this context. The resulting fast
protons are then trapped in the confining field and give up their energy in further

collisions with the plasma constitutes.

LAlthough the D and T isotopes of hydrogen are of great relevance than H in fusion research,
most experimental measurements have been made with ions or atoms of H. For this reason and,
since isotope effects do not arise for most of the processes considered, reference will generally be
made to H in this discussion k




The effectiveness of neutral beam heating can be strongly influenced by collisions
with multiply charged impurity ions. High values of cross sections for both charge
transfer

X9 + H — XDt gt (1-3)

and ionization
X% +H—- X" +H +e (1-4)

can seriously modify the energy deposition profiles. In addition, electron capture into
high n states which then decay radiatively can lead to substantial cooling of plasma,
which is undesirable.

There is another aspect of the thermonuclear fusion programme, which is con-
cerned with low charged ion-neutral atom collision processes. Power and particle
control are the most promising concepts in magnetic confinement fusion experiments,
which rely upon atomic processes to transfer the power and momentum from the
plasma edge to the plasma facing components 15, The symmetrical resonant charge
transfer processes such as HY — H collisions are of particular importance in edge plas-
mas modelling, since they have large cross sections in the ~1 eV - 500 eV energy range
of interest. Moderately exothermic charge transfer processes involving partially ion-
ized impurity ions may also take place very effectively through curve crossing leading
to the selective population of a limited number of excited states. Excited product
states decay radiatively, and thereby cool the plasma. In present devices, additional
magnetic fields allow the edge plasma to flow into the divertor region where it un-
dergoes neutralization in collision with the divertor plates. The resulting neutrals
are either pumped away or undergo further collisions. Charge transfer and ionization
collisions are important in determining the degree of recycling of hydrogen and other

species together with associated energy losses.

In further connection with the controlled thermonuclear fusion research, let us
also mention the charge exchange recombination spectroscopy (CXRS). In this tech-
nique, which has been used extensively with both H heating beams and dedicated H
probes 6 for diagnostics of fully ionized species (e.g. He?*, C%F, O®*), spectroscopic
observations are made of the decay of the H-like excited products formed by the state

selective electron capture,

X*t + H — X@®V*(n, 1) + HY, (1-5)




Local ion densities, ion temperatures and plasma rotational velocities can be deduced
from studies of the Doppler-broadened line profiles. In combination with the impurity
pellet injection, CXRS has been extended to a study of particle transport in magnet-
ically confined plasmas. As an example of such approach, Khlopenkov et al 17 have
used the tracer-encapsulated solid pellet (TESPEL), the lithium hydride tracer cov-
ered by polystyrene ((CgHs),), to measure the diffusion coeflicient of light impurities
on a middle size device (i.e. the Compact Helical System (CHS)).

Another important practical motivation for the active study of ion-atom collision
processes is the search for powerful lasers in the EUV and soft X-ray regions 187201,
Line emission in these spectral regions can be produced by electronic transitions in
the excited highly charged ions. The charge exchange process between ions and a
neutral atom leading to a preferential population of highly excited levels, has been
proposed as an effective mechanism for creation of inverted population. However,
to obtain stimulated radiation in the EUV and X-ray regions one needs a very high
density of excited particles. Within the ion beam approach to the problem, it is very
difficult to achieve such densities. In plasmas produced by high power laser radiation,
however, it is relatively easier to obtain the necessary density of inverted population

[21] (22 and N®* ion in

. The inverted populations of C5* ion in capillary discharge
Z-pinches 23 were also reported, and the pump mechanism was attributed to the
charge exchange reactions between the strong plasma jets (from pinch instabilities)

and the lower charged residual plasma.

1.2 Experimental methods for studies of collisions involving
H atoms

A brief summary of the main experimental techniques used in collision studies
involving H atoms is appropriate since, unlike stable gases such as Hy, or He, well
characterized targets of atomic hydrogen have had to be specially developed to fa-
cilitate accurate cross section measurements. Few of the measurements are absolute
and most rely on normalization of relative cross sections to other data. The main

techniques are:

1. Crossed beam methods employing highly dissociated thermal energy hydrogen

beams.




The modulated crossed beam technique pioneered by Fite et al 4 provided most
of the early data on charge transfer and ionization but the accuracy is severely
limited by poor signal to background ratios. The crossed beam coincidence
counting technique incorporating time of flight (TOF) spectroscopy developed
by Shah and Gilboday [© provides high sensitivity and accuracy. Studies of
electron capture into excited states in X% — H collisions have been carried out
by using photon emission spectroscopy (PES), first by Ciric et al 2% with intense
ion beams and hydrogen beams of high density from the Wood’s tube discharge
source. While of low sensitivity, the method provides results of moderate to

high accuracy.

. Furnace target methods

In this approach, first used by Lockwood and Everhart (26 the primary ion
beam is passed through highly dissociated hydrogen contained within a tungsten
tube furnace. Many measurements of total electron capture cross sections have
since then been based on this approach. Energy loss studies by Park et al (27
have provided data on direct excitation and ionization of H while translational
energy spectroscopy (TES) (involving measurements of either energy gain or
loss), first used by McCullough et al ]| has provided data on state-selected

electron capture in Xt — H collisions.

. Fast intersecting beam methods

In this approach, a target beam of fast H atoms, usually produced by electron
capture neutralization of an H* beam, is arranged to collide with the primary
ion beam in an ultra-high vacuum region. While the use of keV energy beams
facilitates collision product detection through particle counting, low signal levels
and high signal to background ratios make such measurements difficult. Account
must also be taken of the excited state population of the H atoms. Kim and
Meyer * arranged the beams to control the H(n) state populations. Several
experiments using a merged beam configuration have provided data for collision
at very low c.m. energies. These include measurements by Newman et al. 1%
of H" — H(1s) charge transfer down to c.m. energies of 0.1 eV and studies by

Koch and Rayfield ! of electron removal in H — H(n) collisions for n = 44 to

50 in the c.m. energy range 0.4-61 eV.




1.3 Theoretical methods for studies of heavy-particle
atomic collisions

Historically, the theoretical tool box used to study heavy-particle atomic collisions

was divided into two broad compartments,

1. close-coupling methods based on an expansion of the wavefunction in terms of
a set of functions chosen to describe the electronic coordinates of the colliding

atomic systems, and

2. perturbartive methods such as a truncated Born series.

The first approach was generally believed to be valid for low- to intermediate-energy
collisions (i.e. v < vy where v is the collision velocity and v,; is the electron orbital
velocity), and the second for high energy collisions (i.e. v > ve). In high-energy,
heavy-particle collisions, ionization is generally the dominant channel, followed by
target excitation processes. In contrast, in low- to intermediate-energy heavy-particle
collisions, it is not possible to single out a dominant channel in general, because often
many inelastic channels strongly couple with one another, exchanging flux and phase
in a complex manner. As just one illustration, the major inelastic cross sections in
H + H* collisions are shown in Fig. 1.1. It is apparent that certain electron capture,
excitation, and ionization cross sections have the same magnitude at £ > 5 keV, so
that one process can be expected to significantly influence the others. Thus, without
simultaneous inclusion of all important channels, an accurate determination of the
transition probabilities is impossible. This is where non-perturbative scheme such as

close-coupling method is indispensable.

The theoretical methods commonly used to study heavy-particle atomic collisions
and the connections between them are given in Fig.1.2. It is not my intention to
discuss the details of various theoretical models for ion-atom collisions here, but
rather to refer the readers to the excellent review article on the topic by Kimura and
Lane B and also the monograph of Bransden and McDowell 2. The strengths and
weakness of these methods were reviewed there. In the present thesis, I will focus
particularly on the ionization processes in HT+H(1s) and He**+H(1s) collisions at

low energies, and the spectroscopy of Li*' ions in a magnetically confined fusion

plasma.
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Figure 1.2 Schematic outline illustrating relations among the major theoretical
models which are commonly used in ion-atom collision investigations [l. AO: atomic
orbital close-coupling proposed by Bates [33; AO+: atomic orbital plus pseudo states
close-coupling firstly proposed by Fritsch and Lin [4; MO: molecular orbital close-
coupling originally proposed by Massey and Smith 5. ETF: electron translation
factor ¥%; AO-MO matching: atomic orbital- molecular orbital matching method,
which is originally proposed by Kimura and Lin 3738, and Winter and Lane [ L-Z:
Landau-Zener model 4% 41: Demkov: Demkov model 42; UDWA: unitarized distorted
wave approximation [*37%6; VPS: Vainstein-Presnyakov-Sobel’'man method proposed
by Vainshtein et al. [47:48),




To give a concise guide, the structure of this thesis is summarized below. In
the first part of my research, I have carried out the study on the electron emission
in Ht+H(1s), He?*+H(1s) and He*(1s)+H™ collisions at low energy range (below
20 keV/amu), using the electron translation factor corrected molecular orbital close-
coupling approach. Selection of the collision partners and energy range studied here
ties closely with the application in fusion plasma experiments. Full convergence of ion-
ization cross sections as a function of Hi or HeH?* molecular basis size was achieved
by including up to twenty bound states, and more than three hundred continuum
states. The present results are compared with the available experimental data and
various theoretical models. An excellent agreement with the recent experiments is
found for the processes where the experimental values are available. This study shows
that in the ionization in He?*+H(1s) and/or Het(1s)+H* collisions, higher-level lad-
der climbing processes (i.e. excitation via a sequence of upper levels) are dominant
than a direct mechanism (i.e. electron is liberated by one step promotion). On the
contrary, for the ionization in H*+H(1s), H(1s) is ionized directly, and the higher
levels, especially 2pm,, act as a temporary trap of the flux.

The second part of this thesis devotes to calculation of the spectral profiles of
Li%* ions emitted in magnetically confined plasma, where the excited Li’* ions are
populated by excitation from the ground state, electron-ion recombination from Li3*,
and charge exchange with neutral hydrogen and Li**. The nl-resolved population
densities of exited Li** ions are calculated up to n = 20 using a collisional-radiative
model including the charge exchange process. As the reliable cross sections for charge
exchange processes in Li**+H(1s) collision are already available, we adopt them from
the recent literatures. In the calculation, the radiative transition probabilities and
wavelengths of Li** ions are computed by diagonalizing the Hamiltonian including
interactions with the magnetic field. This study shows that 1) spectral profiles emitted
by excitation, recombination and charge exchange are quite different from each other,
which is due to the different n and I-distributions of the rate coefficients of these
basic atomic processes (i.e. excitation, recombination and charge exchange); and 2)

in order to interpret properly low temperature spectra, the Zeeman effect has to be

accounted for, especially for ion temperature diagnostics.




PART I

Ionization in Low Energy Ion-Atom Collisions
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2.0 Ionization: Current Status in Slow Ion-atom Collisions

In a collision of an ion with a neutral atom or molecule, the atomic process that
involves the largest transfer of energy is ionization or, more specifically, the ejection
of a free electron from the target. This process accounts for a large fraction of
the energy loss of ions in materials. In such diverse fields as radiation damage and
radiation biology, studies of the interaction of solar wind with the upper atmosphere,
magnetic and inertial confinement fusion studies, plasma physics, and stellar physics,
data on the cross sections for ionization of various targets are necessary. This process

is the main subject of the first part of the thesis.

2.1 Experimental studies of ionization in slow ion-atom
collisions

Comparing to numerous theoretical works for describing the ionization of atomic

hydrogen by H* and/or He?* ions,

H" +H(ls) — HY'+H'+e (2-1)
He?* + H(1s) — He*" +H" +e (2-2)

only few experiments were performed over the past decades. That is because the
H™ — H and/or He®" + H systems are difficult for experimental investigation due to
the problems in making and characterizing the atomic hydrogen target(?. At low
energies, the difficulty also comes from making and controlling high current and low

velocity proton (and/or a-particle) beams.

The pioneering experiments due to Fite et al. [ measured the ionization cross
section at 0.04-40 keV /amu, using the modulated crossed-beam technique. Protons in
beam were arranged to intersect a thermal energy beam of highly dissociated hydrogen
from a tungsten tube furnace source. By chopping the beam at fixed frequency,
signals arising from the process in question could be distinguished from those arising
from collisions in the background gas by their specific frequency and phase. The

measurements provided the ratio of the cross sections in H to those in Hy. Cross

sections for Eq. (2-1) were determined by reference to the sum of previously measured
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cross sections for charge transfer and ionization in H™ + H, collisions. Yet the results
of Ref. 19 were found considerable higher than the general accepted data of Ref.
[7l. Measurements based on the modulated crossed-beam technique have also been
carried out by Gilbody and Ireland B9 in the energy range 50-400 keV. In this case,
cross sections for Eq. (2-1) were determined by reference to known cross sections for

the ionization of Hy by proton impact.

The first experimental studies of differential cross section in collision (2-1) due
to Park et al were based on an analysis of the differential energy-loss spectra in the
passage of protons through highly dissociated hydrogen within a tungsten tube fur-
nace. Cross sections in the energy range 25-200 keV were normalized to the theoretical

estimates of the cross section for excitation of the n = 2 states of H by proton impact.

A crossed-beam method incorporating time-of-flight analysis and coincidence count-
ing of the collision products was firstly used by Shah and Gilbody 6] to study H + H
ionization in the intermediate- to high energy region. Cross sections obtained in the
energy range 38-1500 keV were declared with very small experimental uncertainties.
In their experiments, a momentum-analyzed beam of protons from an accelerator ad-
justable in energy 38-1500 keV (in 1998, 1.25 keV was reached as the bottom limit)
was arranged to intersect (at right angles) in a high vacuum region a thermal energy
beam of highly dissociated hydrogen. Slow ions and electrons formed as collision
products in the crossed beam region were extracted by transverse electric field and
separately counted by particle multipliers. Product H' ions arising from collisions
with Hy or other background gas species were recognized by their characteristic times
of flight to multiplier. The required H' ions from the ionization process (1-2) could
be distinguished from those arising from the charge transfer process

H*+H—>H+H' (2-3)

by counting the H ions with the electrons from the same ionizing events. Later, this
approach was extended by Shah et al. to low Il (1.25-9.4 keV) and intermediate (7 (9-
95 keV) energy region. Cross sections for ionization (2-1) obtained in the wide energy
range, about 1.25-1500 keV, with very small experimental uncertainties, have, for the
first time, allowed a detailed appraisal of theoretical predictions. The same approach
was also used by Shah and Gilbody (¢ and Shah et al. 5Y to study ionization process

in He** + H collisions. Cross sections obtained in the wide energy range, 18.4-2200

keV/amu, were found with very small experimental uncertainties again.
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Experimental studies by Pieksma et al. 14, focusing on the identification of saddle-
point electrons, produced the total ionization cross sections at 1-6 keV/amu, which
were found to follow a v? dependence on the collision velocity near the threshold
(521 In the experiments, a pulsed stabilized proton beam is crossed with a partially
dissociated thermal hydrogen beam. The atomic hydrogen beam is produced by a
RF discharge source. Electrons are detected by means of a magnetic time-of-flight
(TOF) spectrometer, which can collect essentially all electrons ejected in the forward
hemisphere as long as the approximate transmission condition ksinf < 0.42(a.u.)
is satisfied, where k is the electron velocity and 6 is the ejection angle with respect
to the symmetry axis of the spectrometer. As an example, for § = 90° electrons
with energies up to 2.4 eV are collected; for § = 30° this shifts to 9.6 eV. The RF
source in use caused a severe background of slow electrons appearing as a constant
term in the recorded TOF distributions, which was suppressed by subtracting the
TOF measured with RF source switched off. However, a complete suppression was
considered to be impossible 2. Further, the difference spectrum is corrected for the
constant background of uncorrelated RF source electrons. In addition, the electron
spectrum of ionizing H* — H, collisions has to be corrected for. Integrating over the
ejected electron velocity, total ionization cross sections are then obtained, which were
found to be two times higher than that of ref. !l at 6 keV/amu, and to decrease much
more rapidly with energy decreasing. The discrepancy between the values of Ref. 2
and [ are as large as the factor of ~ 6 at the lowest energy considered (1 keV/amu).

The available experimental data for ionization (2-1) are summarized in Fig. 2.1
together with some theoretical calculations. It can be seen that the results of these
experiments are only in very rough general accord. Thus the theoretical values play an
important role to recommend a set of cross sections for applications and to understand

the collision dynamics.

Besides, the ejected electron energy, momentum and/or angular distributions are
highly interesting to clarify the role of saddle-point ionization. The “Saddle-point”

(571 in which electrons

ionization mechanism was firstly suggested by Olson et al.
stranded on or near the saddle point of the electronic potential between the positive
target ion and the receding projectile emerge with roughly half the projectile veloc-
ity. The subject is full of controversial issues. Early experiments, which measured

the energy distribution of the electrons for proton collisions with helium atoms in

the energy range of tens to hundreds of keV, drew conflicting conclusions (768l The
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Figure 2.1 Total ionization cross sections of proton-hydrogen system: panels (a)
and (b) are for low and high energy regions respectively. Solid squares, experiments
of Fite et al. [*; Open circles, experiments of Gilboday and Ierland (591 Solid circles,
experiments of Shah et al. 167: Open squares, experiments of Pieksma et al. [;
Blue dash-doted lines, hidden crossing with radial decoupling promotion mechanisms
[521. Red dash-dotted lines, hidden crossing results of without radial decoupling mech-
anisms @; Magenta dashed lines, 3CAO results of McLaughlin et al. [»5%; Magenta
dotted lines, 2CAO results of Toshima ; Cyen dash-dotted lines, 2CAO + pseu-
dostate results of Fritsch and Lin ®4; Red solid lines, CDW-EIS results of Crothers
and McCann 59 Black solid lines, MO results of Zou et al. 1%
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controversy regarding the saddle-point electrons involved ion-atom collisions, where
the projectile velocity was above the “matching” velocity (i.e., the average speed of
the target’s valence electron). Early quantum mechanical calculations [ and the
later ones 13 7% 7 based on the triple-centered close-coupling approximation revealed
the importance of describing the electron probability saddle point in the calculation
of total ionization cross sections for ion-atom collisions involving projectile velocity
below the matching velocity. Hidden crossing theory (%52 also predicts that saddle-
point electrons comprise a large fraction of the total ionization cross section. However,
the recent quantal calculations based on the numerical solving of Schrodinger in mo-
mentum space 727! and based on molecular-orbital close-coupling method with
large scale basis setsl®®l, all show that the contribution from saddle-point emission
to the total ionization is small even down to low keV energies. In the recent years,
the novel technique of cold target recoil-ion momentum spectroscopy (COLTRIMS)
allows experimentalists to map out the full momentum distributions of the ejected
electrons. COLTRIMS experiments have been performed on helium or neon target
with different projectiles /#7771 and the ejected-electron momentum distributions ap-
pear to depend strongly on the system studied. Recent reliable measurement [ for
the total ionization cross sections shows that saddle-point ionization is found not to

be important down to 1.25 keV in H — H collision.

2.2 Theoretical studies of ionization in slow ion-atom
collisions

The proton-hydrogen collisions, in particular for impact ionization, are a proto-
type of the break up of three charged particles, which has been extensively studied
theoretically in the past decades (see Refs. [1:310:56] and references therein). It is not
my intention to discuss the numerous studies of proton-hydrogen collisions here, but

rather to briefly describe some of the important works to show a simple map of this
field.

The first attempt at calculating ionization cross sections in slow p-H collisions

78],

was performed by SethuRaman et al. They employed the electron translation

factor (ETF) modified molecular orbital as zero-order basis to compute the first-

order couplings, and then solved the system in the perturbation approximation. It
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is a sensible thing to do if the cross section is small (i.e. if the coupling is weak).
In such an approach, they calculated the energy distributions of ejected electron at
collision energies 50-500 eV, but the total ionization cross sections were not presented.
Later, Thorson and his coworkers (7782 have studied extensively the base of ETF-
modified molecular orbital close-coupling approach. They took into account suitable
electron translation factors based on the molecular state switching functions in order
to correct the asymptotic behavior of nonadiabatic couplings. Thorson et al. also
gave a formulation of molecular basis close-coupling expansion, in which the flux loss
from the truncated basis space has been accounted for. However, the observable

quantities, total ionization cross sections, are still not presented by them.

Winter and Lin %83 proposed a triple center atomic state expansion method for
describing ionization at low energies. This method accounts for the mechanism in
which the electron is not removed until it is asymptotically located at the point of
unstable equilibrium between the nuclei (the third center-saddle point). Further, elab-
oration of the triple-center atomic orbitals method by McLaughlin ef al. 53] showed

[69.83] for all energies considered.

a good agreement with the previous method of Ref.
Both these calculations predict values larger than the experimental cross sections of
Refs. 17 but the discrepancy is the smallest at the lowest energy region which
they considered. The values obtained by Fritsch and Lin 54 in their double-center
46 atomic-state-plus-pseudostate (AO+) calculations (which were extended down to
4 keV/amu) were found to be smaller, on the opposite, but they also exhibit closer
agreement with the experiment in the lowest energy region. Kuang and Lin further
developed the two-center atomic orbital plus pseudostates expansion method [84,85]
ionization cross sections reported from them are ~ 10% higher than the experimental
data 67 at maximum of ionization cross sections. Later, a very detailed study of
the two-center atomic orbital expansion approach by Toshima  provided the ioniza-
tion cross sections at the energy range 1-800 keV/amu, which were found to be 20%
higher than the experiments of Shah et al ®7 at the peak of ionization cross section.
In the three calculations above 48485 motion of electron, in the double continuum
of the target and the projectile, is represented by a large set of L* functions with

(86]

positive eigenvalues, which may cause double-counting *®!. Recently two more calcu-

lations 3 claimed that they are in good agreement with Toshima  and about 20%

higher than the experimental values &7 at the maximum. The cross sections from
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Toshima [ agree well with the measured data of Ref. (Ul at energies 4-10 keV /amu,

but decrease more rapidly than those of Ref. [l below 4 keV/amu.

Pieksma et al. 2 calculated the velocity distributions of ejected electrons and total
ionization cross sections based on the hidden-crossing model with the contributions
from T-type crossing (connected with the saddle-point ionization mechanism) and
S-type crossing (associated with the transition from quasi-molecular to united-atom
behavior). In their work, the additional low-energy contributions from radial decou-
pling mechanism proposed by Ovchinnikov and Macek, which involve the decoupling
of electron on nuclear motion within the united-atom limit, were also considered.
At that time, the calculations of Pieksma et al came in below the available exper-
imental data 1@ and decreased more rapidly with the decreasing energy. Later, the
contributions of radial decoupling mechanism were recalculated in a recent paper of
Pieksma et al 2. The new values include the contributions from this recalculated
radial decoupling mechanism, and therefore they are in a better agrevement with the
experimental values of Ref. 12, but disagree with the more recent experimental data
by Shah [, The cross section data in Ref. [U decrease much more rapidly than those
of Pieksma et al, both for the calculated 2 and measured 2 values, but agree well

with the old version of hidden crossing calculations 2.

The one-electron ion-atom collision system He?t —H also captures many interests,
which is the simplest asymmetric system. Total ionization cross sections of Winter 7o)
by triple-center atomic orbital expansion were found to agree well with the measured
datal® 5! above 40 keV/amu, but to decrease much slowly with the energy decreasing
and to be higher by two times than that of Refs. 65! at 18.4 keV/amu. The classical
trajectory Monte Carlo simulation studies®”87 8% resulted a different peak position
of ionization cross sections on incident energy. At low energy side (v < 2 a.u.),
the ionization cross sections lie at the half of experimental values %%, Errea et
al. proposed a triple-center molecular orbital expansion method for investigation of
ionization of atoms by heavy particle, where the continuum states were represented
by a set of Gaussian states center on the internuclear axis. Their results were found
to be in good agreement with those of Shah et al. 65U but to oscillate at E ~ 10
keV/amu. Hose °® employed a multichannel perturbed-stationary-state propagator

method to study the collision of H(1s) + He*". In his description, the continuum

states are represented by the L? pseudostates of the linear combination of atomic
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orbitals type. Ionization cross sections of Hose *were found to be less satisfactory

compared to experimental data 651,

Direct solution methods of the time-dependent Schrodinger equation for the elec-
tron system, but with the classical trajectory description of the nuclear motion, have
also been used to investigate the ejected electron spectrum during ion-atom collision
[73.91] " However, their calculations provide mainly the momentum distribution of the
ejected electron, and were done for the prototype proton-hydrogen system, whereas
the momentum distribution experiments are only available for the multi-electron sys-
tems such as p+He or p+H, " 7 due to the difficult in making H atom target. Thus

a quantitative comparison between these calculations and experiment is not possible

in present.
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3.0 Molecular Orbital Close-Coupling Theory

Since the pioneering work of Bates et al 2 and Ferguson and McCarroll 19394,
molecular orbital (MO) expansions have been employed in close-coupling processes,
when the impact velocity v, is regarded as small, relative to the orbital velocity of the
active electron v,. These MO wavefunctions are exact solutions for the Hamiltonian
in which the nuclear motion is neglected. Hence, the relative motion of the nuclei is
an perturbation causing the transition between adiabatic (or stationary) states. The
extensive study of the MO method over past decades by several groups has demon- *
strated its applicability to a wide class of atomic collisions. It has been very successful

in interpreting qualitatively (and quantitatively) various experimental findings.

The MO method, however, possesses an intrinsic problem, since the system scat-
tering wavefunction is expanded in terms of adiabatic MOs, and does not generally
satisfy the correct asymptotic boundary conditions, which specify (in the separated-
atom limit) that the bound electron is moving either with the projectile or with the
target. This translation motion of the electron is not accounted for in the conven-
tional MO method (i.e., known as the perturbed stationary state (PSS) method [33]),
It results in nonadiabatic coupling matrix elements which do not vanish asymptoti-
cally. Further, the resulting coupled equations are not Galilean invariant; i.e., they
depend on the origin of the coordinates. To avoid these defects in the conventional
MO method, ‘electron translation factors (ETFs)‘ were first introduced by Bates and
McCarroll B8, In their description, each MO is assumed to translate exactly the same
way as does its corresponding atomic orbital (AO) in the separated-atom limit, and
the basis functions are chosen as

1 t 1
(I)j = X?’B exXp (:Flaﬁ ’I-") €exXp l:—l/ (Ej -+ 'é’UQ)dtI:| (3—1)
0

However, this makes the basis function non-orthogonal, and while it is acceptable
at large internuclear separations, where the electron is expected to be well localized
around one or the other center, at short internuclear separations the electron motion

has a molecular nature and each electron is shared by both nuclei.

To overcome this general criticism, the “molecular aspect” of electron motion has

to be incorporated into the ETF. This can be done by constructing MO-ETF using

the local propagation velocity for an electron in an molecular orbital 9], Basing on
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Figure 3.1 Coordinates for the one-electron-two nuclei system. O is an external
origin. CMN is the center of mass of the two nuclei A and B. CM is the center of
mass of the whole system. 7, is a vector from the geometric center (G) of the nuclei
to the electron. It is assumed that M4 > Mp.

this idea, the theory of near-adiabatic (slow) collisions has been formulated by Delos,
Thorson and others 8%%! correctly taking into account the translational motion of
electrons with the nuclei. A complete derivation of the coupled equations is presented
in the review article by Delos %I, Here I survey the main results to provide a simple,
and I hope clear, relation between those equations and physics behind, with a loss of

some rigor in the mathematical derivation.

3.1 Full quantum close-coupled equations

Consider the one-electron two-nuclei system described in Fig. 3.1, A is a projectile
with charge Z4 and mass My, which collides with a target of charge Zp and mass

Mg, (in what follows I assume M4 > Mp). R is the nuclear coordinate taken from
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A to B. The electronic coordinate can be chosen as 7, which connects the center of
mass of the two nuclei with the electron, or 7, which connects the geometric center

of the nuclei with the electron.

The total Hamiltonian for the two nuclei and one electron, after subtracting off

the center of mass contribution, can be written in atomic units as

1oy, 1 Za Zp  ZaZ
H=—5ﬁv§——v2—i——’3+ A

(3-2)

where V, means the gradient with respect to 7 holding R fixed, and Vr means a

gradient with respect to R holding 7 fixed. The masses are defined by

_ MsMp
#= M4+ Mg

1 1 1

_— + _—
m me M At M, B
where m, is the mass of electron, and r; (i = A, B) is the distance between the nucleus

i and the electron. The Schrodinger equation takes the form
U(7, B) = EV(7, R) (3-3)

and the wave function ¥ can be expanded in the adiabatic basis set of electronic wave

functions,

—»

FaR Z‘Pk 7R Flc é) (3_4)

where (7, R) are the electronic wave functions and Fk(ﬁ) are the nuclear wave

functions.

The electronic Hamiltonian is given by

[—Z—A—+§E} =T+V (3-5)
TA B

her = ——Vz

2m

The set of electronic wave functions {y(7, R)} consists of eigenfunctions of the elec-

tronic Hamiltonian which obey the eigenvalue equation

—

heor(T, R) = ex(R)@x(F, R). (3-6)

In general, the electronic potential energy €, depend only upon the internuclear dis-

tance R = |R| and electronic wave function ¢y is a function of internuclear vector R.
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However, if 7 is expressed in coordinates rotating with the axis R, ¢k again depends
only upon R = |R|.

Inserting Eq. (3-4) into the Schrodinger equation, multiplying on the left by an
electronic function and integrating over all electronic coordinates, this results into a
set of coupled differential equations for the nuclear wave function Fk(ﬁ),

{51; [(—NR)? +2P - (—iVg) + B] + u} F(R) = —EF(R) (3-7)

where P and B are the first and second derivative coupling matrices given by
Por(R) = (o (7, B)| — iV rlon(7, R)) (3-8)

and
Byi(R) = (w7, B)| — iVilon(7, B)) (3-9)
The potential energy matrix U is given by: Upk(R) = (& + (ZaZB/R))0kx-
Equations (3-7) can also be written in an alternative form. Using the closure

relation of MO wavefunctions, B(R) can be eliminated in favor of P, and Eqs. 3-7

become

{.2% (%) +B] + u} F(R) = EF(R). (3-10)

In a finite set of states, the closure relation is not exact, but it should be sufficiently

accurate for most purposes.

Tt is well known that the individual terms in the expansion Eq. (3-4) do not
satisfy the scattering boundary conditions 8.96] and several difficulties appear in Egs.
(3-10) (or (3-7)) which are evident upon calculations of the matrix elements of the

first derivative coupling matrix P.

1. The first derivative coupling matrix P does not vanish asymptotically as R — .

This is because in the calculation of matrix elements of v R, the electronic
coordinate is held fixed with respect to the geometric center of the nuclei rather
than with respect to either nucleus. It is shown that as R — oo, ﬁk:k(R) —
const which is not necessarily to be zero. Physically, this represents the motion
of the atomic orbitals relative to center of mass of the nuclei as R changes.
These findings do not allow a scattering theory to be formulated, since boundary

conditions are not obeyed.
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2. The first derivative coupling term P also contains fictitious “origin dependent”

couplings.

This is evident when one calculates the nonzero P matrix between states with
different parity (g,u), which is the result of the inappropriate formulation of
the theory. This is particularly important in the ground state manifold of HD™,
where the only contribution to the matrix P is fictitious. Calculations of P
matrix show a non-negligible contributions between the states 1sog and 2poy,
whose order of magnitude is much too large. These contributions are eliminated

in the corrected theory described below.

The common source of the above problem is the lack of a proper formulation
of the asymptotic coupling between the electronic motion and the motion of nuclei.
To elaborate on this point, we note that the coupling matrix P represents the total
change of the basis functions with respect to the nuclear coordinate R. The effect of

the coupling matrix P can be divided into two parts,

1. Rotation, distortion, polarization, which result in physical change of the basis

set functions with R.

2. Translational motion of the electron along with one atomic nucleus.

The first part is responsible for nonadiabatic transitions. Couplings originating from

the second part are not physical, as shown by Thorson and his co-workers [& 7% 80 9]

Steps to overcome this problem have been taken into account by incorporating an
ETF into the MO basis functions,

exp [i(m/p)(=iV r) - Sxlex (3-11)

where

S= LU+ V- Uk + VF (3-12)

f = f(7 ﬁ) ! is a switching function which varies smoothly as a function of elec-
tron position 7 typically it may approach —1 near nucleus A and +1 near nucleus

B, and these limiting values must hold as R — co. The mass asymmetry factor A

Tn general, switching function f can be a function of internuclear vector E. In the studies
presented here, the switching function f is taken only as a function of internuclear distance R.
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is given by A = (M4 — Mg)/(Ma + Mg) (note that 0 < A < 1 since My > Mp).
Here exp [i(m/p)(—iVr) - 5k]¢x may be called as “ETF-modified MO” wave func-

tions, which satisfy the scattering boundary conditions by the individual terms.

With the aid of Eq. (3-11), the expansion of total wave function on the MOs now
is replaced by the ansatz:

U, B) = expli(m/u)(=iVr) - Slon(7, R)Fi(R) (3-13)
k
To obtain coupled equations for the heavy-particle wave function Fj k(ﬁ), let us put Eq.
(3-13) in the Schrodinger equation (3-3) and multiply by {pi exp [—i(m/p) (=iVRg) - Sw]:

> {pw| exp [—i(m/p)(—iV ) - 5] (H — E) exp [i(m/u)(—iVR) - Filler) =0 (3-14)
k

Here the integration implied by the angular brackets is only over the electronic coor-

dinates, and operators exp [¢(m/ 11)(£iV g) - 8] act implicitly on both ¢ and Fj.

If we express the Hamiltonian in powers of m/u and neglect terms of order (m/ u)?
(=~ 107° for H?*) and higher powers, and also neglect terms of order m/p which are
proportional to derivatives of the switching function or related factors [e.g., (f*—1)],
a new set of coupled equations for the Fy(R) is obtained

[ (%0 + P+ +us[a- @& A beci) = ERG)  (319)

where P and U are as before, and the matrices R, A are given by

Aur(R) = ilow (7, B)|[het, Slon(, B)) (3-16)
= i(ew — ) {ow (7, R)|310(7, R)) (3-17)
Api(R) = (ow( RV (F R~ (m/w) - V(7 - Rlee(7, R))  (3-18)

The most important modification produced by the ETF’s in these equations is the
replacement if the nonadiabatic couplings P by the corrected coupling P+A in the
kinetic-energy term. The term A — (2u) *A - A is much smaller [, which describes
the reduced-mass effects on electron binding energies ~ (m/p)e; and can be neglected
for nearly all scattering problems. Thus the coupled equations (3-15) can be simplified

as

{i (=% +B+A] + u} F(R) = EF(R), (3-19)
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which has the same form as (3-10).

The solution of Eq. (3-19) is performed in two steps. First, Eq. (3-6) is solved
to get the basis set functions {¢;} and the potential energies € as a function of
the internuclear coordinate. This is done by transforming the problem into prolate
spheroidal coordinates in which the electronic Hamiltonian is separable 7 (see also
Appendix A). In the second step, Egs. (3-7) is converted to a radial equation by
transformation to a rotating coordinate system, and expansion of the wave function
in symmetric-top eigenfunctions followed by integration over the angular coordinates,
as explained, e.g., in Refs. 19 and 2. The resulting nuclear wave function G(R) is
a function of the magnitude of the nuclear coordinate only. The radial equation is

then solved to obtain the wave function, the transition amplitude and so forth.

Consider that electronic transitions seldom involve the transfer of more than one
or two units of angular momentum while typically the collisional angular momentum
of the heavy particles is very large. Classically this means that angular momentum
transfer to the electron system has nearly negligible deflection effect on the heavy
particles, i.e. the collision occurs in a plane and the heavy particle angular momentum
K is approximately conserved. Then the differential equation for the heavy-particle

wave function G(R) is given by

1[ . d  or, arl L K(E+1 K(K+1) 0o . o
— | —i— P
{m[ igg TP AY e LT R [P® + A®] ¢ G(R)

= [1E — U(R)] G(R) (3-20)

where PE+AF and P®+A® are the radial and angular parts of corrected nonadiabatic
coupling term P+A, defined by Eqs. (B-9) and (B-10). For more details see Appendix
B.

3.2 Semi-classical close-coupled equations

The ion-atom collision system is essentially described by two parameters, namely
the de Broglie wavelengths of the proton and the electron, and in particular the
magnitude of these wavelengths relative to typical atomic dimensions. The de Broglie
wavelength of the proton is very small in comparison to the size of an atom, and for

this reason a very large number of partial waves contribute to the cross sections,
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Figure 3.2 The definition of impact parameter.

typically thousands, even at collision velocities of a few keV/amu. Partial wave
expansions are thus very heavy as a means of calculating the cross sections, and
one is forced to use other methods. The very small de Bréglie wavelength of the
proton does however admit a major simplification of practical importance, namely
the relative motion of the heavy particles may be treated classically. In the case of the
electron, the de Broglie wavelength is comparable to atomic dimensions and therefore
the motion of the electron must be treated quantum mechanically. This semi-classical
approach, i.e. treating the relative motion of the heavy particles classically and the

electronic motion quantum mechanically, is adopted hereinafter.

Within the semi-classical impact parameter picture, a projectile of charge Z4 and
mass M 4 collides with a target of charge Zg and mass Mp. The heavy particles move
along rectilinear (or curvilinear) trajectories so that their equation of relative motion

is R(t) = b+ ¥t, where b is the impact parameter and ¥ is the collision velocity. -

The vectors b and @ define the collision plane. In general, the vectors 74, 75 and 7
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(the position vector of the electron with respect to the center-of-mass of the target
and the projectile) lie outside this plane. Let us note that the Hamiltonian is now
time-dependent, that is

He _Ly2_Za_Zp ZaZs
2 T

TA B + R(t) ’ (3—21)

and we are required to solve the time-dependent Schrodinger equation,
.d i
H - i U(7,t) = 0. (3-22)

After the trajectory is specified, the internuclear potential energy term Z4Zp/R(t) is
just a (time-dependent) parameter multiplied by the unit matrix in this Hamiltonian,
(3-21), and it can be eliminated by adjusting the phase of the wave function by the
factor exp [ * Z,Zp/R(t')dt'. Then the time evaluation of this system is described by

ih%\y(ﬁ £) = ha(F, B() U (7, 1), (3-23)

where h,; is the Hamiltonian of the electron system defined as before.

We expand the state vector ¥ in an ETF-modified molecular basis set,
— ¢ ' m'v2 1
V(7 t) = Z an(t)on (7, R) exp [iU - 5] exp [—z/ (en(t )+ —8—) dt} (3-24)

where 7 = dR/dt is the relative nuclear velocity. Substituting Eq. (3-24) in the
time-dependent Schrédinger equation, Eq. (3-23), then multiplying by
©r exp (—0 - k)

and integrating over electron coordinates yields the coupled equations for the coeffi-

cients ay(t); after expanding those in powers of velocity U, one obtains
d t g by t ! ! '
jdar(t) _ S5 (P + A)inan(t) exp | —i (en(t ) — exlt )) dt (3-25)
dt =

(up to the first order), where P is the nonadiabatic couplings and A is the correc-
tions rising from ETFs. They are very same as those in full quantum-mechanical
formulation, (3-8) and (3-16).

Although in the present context the quantum and classical trajectory description

are developed as separate frameworks, the relationship between the two approach
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has be studied in detail 2. The quantum-mechanical form of the coupled equations
can be reduced to the classical trajectory form by the systematic use of semiclassical
approximations. These approximations define the strength and the limitations of the

classical trajectory method.

The solutions of Eqgs (3-25) are found by similar procedure for solving Egs. (3-19):
i) firstly to find the basis wave functions by solving the eigenvalue problem of Eq.
(3-6), ii) then to separate the “radial” from the “angular” terms by transforming to
molecular body fixed rotating frame; iii) finally to integrate the resulted equations

mw => [R(PR + AR) 4+ RO(P® + A@)]k an(t)

dt i

« exp [—z’ / t (enlt)) — ex(t)) dt'] , (3-26)

where O is the angle between relative velocity and internuclear axis © = Z(, R), and
the radial PF + AF and angular P® + A® coupling terms are defined as before (see
Appendix B).

Before we move on to solve the close-coupled equations (3-26), a subtle point
associated with the ETF’s modified molecular orbital expansion approach needs to
be discussed. This is the non-Hermitian Hamiltonian matrix (P+A) in Eq. (3-26). In
any calculation, we need to replace the full Hilbert space spanned by the true discrete
and continuum states with a truncated subspace. As a result, certain operators in
the equations of motion cannot be fully represented, and unless great care is taken
they may not even be accurately represented within the truncated subspace. This
is true in particular for the propagator itself. Thus, a theory should consider the
flux loss from the truncated subspace, and then, in contrast with the exact close-
coupled equations, the close-coupled equations for the wave function in the truncated
subspace are necessarily non-unitary, i.e. they should not conserve probabilities. Our
locally non-Hermitian Hamiltonian matrix (]3 + A) allows us to consider the escape
of electron from the subspace spanned by the truncated basis. Importantly, the flux
loss effects decrease with the basis size increase, and the probability conservation is
satisfied approximately on a sufficiently large basis set. By implementing the ETF’s,

the basis sets of relatively small size can be considered as complete with sufficient

accuracy. In the present studies, I find the probability conservation is better than
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1 x 1073 with a basis set including 10 bound states and 11 continuum partial waves

(for proton-hydrogen system).

3.2.1 Perturbative solutions of close-coupled equations

The close-coupled equations, Eq. (3-25), can be solved by numerical integration
in full dimension, but also possibly using a perturbation approach. Accounting for
the fact that all the discrete-continuum couplings are very weak (see Sec. 4.1), we

could thus construct a faster algorithm for ionization problems.

Let us now consider a system which contains n-bound states plus one continuum

state, then the time-dependent Schrodinger equations for n + 1-channels reads,

(:ll 0 Clg(t) oot Cln(t) Nle (t) ay
az CQI (t) 0 ot an(t) Nze (t) a9
ih| | = : S : S (3-27)
Qn Crma (t) Cn2(t) e 0 Ry (t) Qn
Qe €l (t) €2 (t) cee Nen(t) 0 Qe

where o is the ionization amplitude, and € stands the continuum state energy. Matrix

elements N;(t) are

Ralt) = rt)exp |- [ REGREL]

—to
, where (t) denotes the coupling from é-th bound state to continuum e. Suppose
the ionization probability is small, we then solve Eq. 3-27 in a first-order perturbation
approximation for transition amplitudes. Finding first the n x n bound state solutions

a;(t), we see that

adlto) = Y /_ : o (£) exp [—% (e:(t) — ) dt’] ai(t)dt (3-28)

—to

The phase factor above rapidly oscillates with ¢, which makes the results small, and
the method of Eq. (3-28) applicable. Hence we can calculated at once the ionization
cross sections for whole energy distribution € of ejected electron, changing only the
couplings k¢ (t). In general, the method of Eq. (3-28) is ~ 100 times faster than that
of solving the differential Eq. (3-27).

Although the perturbation solutions reproduce the final state amplitudes much

faster, it should be noted that the accuracy decreases with the transition probability
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increasing. In a collision with E > 5 keV/amu, ¢ < 0.1 Ry, and b ~ 1.0, the
ionization probability can be higher than 0.1 even 0.2 in some case (p — H system).
Since integration of differential equations (3-26) in our case is tractable, we prefer
to solve Eq. (3-26) directly to ensure that no important interactions are missing. -
A Runge-Kutta-Vener method with 107 accuracy has been employed in the present
study, to keep the overall numerical inaccuracy confined to cross sections smaller than

1073 after integrating the transition probabilities over all impact parameters.

Once the final-state amplitude ay(t = +00) has been calculated with proper ini-
tial conditions, we can then define the probability of excitation/or ionization to the
molecular state k as

Py(E,b) = |ax(t = +00)[, (3-29)

and the corresponding individual cross section is
Qr(E) = QW/Pk(E, b)bdb. (3-30)

In ionization problems, P,(E,b) is the ionization probability and Qx(E) is the partial
ionization cross section. They are labelled by the ejected electron energy ¢, and two
more spheroidal prolate quantum numbers ), and . Hence the differential ionization

cross section is determined by summing Q(e, A, u; E) over quantum numbers A, u,

do
_d: = ZQ(ea >‘) o E)= (3_31)
Asp
and the total ionization cross section,
o= [ g (3-32)
de

is obtained by integrating the energy distribution of ejected electrons.

3.3 Discretization of continuum

The key component in describing electron emission in ion-atom collisions is an
adequate representation of the continuum. To be more specific, in order to calculate
accurate ionization, excitation and capture cross-sections it is necessary to describe

the electron in the double continuum of the target and the projectile. A pragmatic
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approach to this problem is to represent the continuum by a large set of L? functions
with positive eigenvalues. By including enough of these non-physical pseudostates a
good approximation to the continuum wavefunctions is ought. Such an approach is

not however without its difficulties. In particular:

e Positioning:

On which center should the pseudostates be placed? On the target? On the

projectile? On both centers? Or on a third center?

e Double-counting;:

If pseudostates are placed on both centers is the basis now over-complete? This

must be certainly true in the limiting case of an infinite number of pseudostates.

e Linear dependence:

There is no rigorous test to ensure that the pseudostate basis is free from linear

dependence which becomes more likely as the basis gets very large.

e Convergence:

For a given collision system and a given set of bound states there is no a priori
determination of the number of pseudostates required for convergence. Thus
it is not possible to know whether structures in the cross sections are physical

features or due to the basis set.

In a recent series of very detailed coupled-channel pseudostate calculations using
an even-tempered basis, Kuang and Lin 84,85 have concluded that in order to calcu-
late excitation cross sections all the pseudostates should be centered on the target,
so called Bound Bound Continuum-Target (BBC-T), and conversely, in order to cal-
culate the capture all the pseudostates should centered on the projectile, so called
Bound Bound Continuum-Projectile (BBC-P). This indicates that pseudostates on

both centers engender over-completeness.

However even these large scale asymmetric calculations can produce spurious oscil-
lations in the cross sections for weaker transitions-see, for example, figure 1 of Kuang
and Lin 84, A shoulder at 40 keV in the 1s-3d cross sections appears in proton-

hydrogen collisions when 56 pseudostates are used. This feature is absent when 154

pseudostates are used (see figure 2 of Kuang and Lin 4).
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This example is taken not to denigrate the pseudostate approach, but merely to
point out that attempting to represent what is in effect an infinite number of partial
waves, by a finite basis set, and indeed trying to represent the infinite range Coulomb
potential by a series of short range potentials, has inherent difficulties. It is also
appropriate to question whether an asymmetric expansion, however large, can truly
model the three-body nature of the collision. What is certain is that the symmetry
of the Hamiltonian under reflection in the electronic co-ordinate ¥ — —7, is not

preserved by such an expansion.

To avoid these inherent difficulties of L? pseudostate expansion, I have chosen
the exact continuums as basis functions in the close-coupled equations (3-25) and/or

(3-19). Then the expansion of total wave function reads
U B(D) = 3 ol Ban(t) + / (. R)ad(t)de. (3-33)
0

As stated in the Appendiex A, the molecular eigenstates ¢, (and @) are labelled
by two more quantum numbers ), u, in addition to energy. Bound states are de-
noted @(nAu; 7 é), with energy eigenvalues e(nAu; R) < 0, and continuum states
d(eA; T R) with continuous eigenvalues ¢ > 0. At each R these wave functions
satisfy the orthogonality relations

(BN 's B)p(n s R)) = Sumbxabuu
(BeXNW; R)|p(npu; R)) = 0 (3-34)
(B(EX s B)lg(eu; R)) = 6(€ — €)8radun

and the closure relation

o0
Z ‘pn)\u(ﬁ R)(Pn)\u ('Fla R) + Z / (Pe)\p(f: R)(pa\u(f’, R)d€ = 5(F_ F') (3'35)
nip A 0 )

Here the prolate spheroidal quantum numbers A, p are analogous to spherical po-
lar quantum number [, m. Expanding in the eigenstates of one-electron diatomic
molecule, the difficulties related to pseudostate expansion such as “positioning”,

“double-counting” and linear dependence of basis functions are completely avoided.

The energy of continua electrons is explicitly included in the equations of motion

via the coupling terms in Eqs. (3-26), whilst the total ionization cross section requires

a formal integration over the whole continuum. Therefore, we need to revert to a
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discrete sampling scheme as described further. This work assumes the electronic
continuum basis states are “simple” in certain ways, namely vary smoothly without
displaying any “fine structure” of the sort associated with Feshbach resonances (and
arising from the mixing with specific alternative physical configurations). Then the
continuum states can be interpolated well by the B-spline, |

o7, R) = Z Bl(e)¢i(7, R). (3-36)

Thus the close-coupled equations (3-26) are solved firstly on a specific knot sequence
of B-spline, and integrated over continuum energies in the exact equations. In the

present study, 4-th order B-spline with equally spaced logarithm knots is employed.

Our study and also previous works in literature 1829 find couplings with con-
tinuum states to be generally weak, and the full close-coupled equations 3-26 can be
partitioned into separate groups. Each group contains the strongly coupled symme-
try allowed discrete states (cf. Table 4.1) and several partial waves for continuum
electron with the same energy; these are coupled by weak radial or angular interac-
tions. Truncation in the partial wave expansion of the continuum electron is based
on a rapid decrease of the couplings with the increasing angular momentum number
(~ 3 orders of magnitude for ejected electron with 1=5). Therefore, we calculate the
differential ionization cross sections at a certain set of separate energy points, inter-
polate these with B-splines, and finally integrate the spline function over the whole
continuum analytically. Thus the convergence in the number of continuum states
can be controlled through the convergence of B-spline interpolation. Ionization cross
sections decrease rapidly with the ejected electron energy increase, and the necessary
number of interpolation points derives from the number of B-spline terms which can
accurately represent this function shape. The differential cross sections (see Fig. 4.15)
already vary smoothly with free electron energies on the 32 point grid (checked also

with 64, and 128 points), yielding sufficiently converged and accurate results.
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4.0 Study of Ionization in H(1s)4+H" collision

7199 This short statement is

“To understand hydrogen is to understand all physics
easily extended to summarize the motivation of studying proton-hydrogen collisions,
in particular, for impact ionization which is a prototype of the break up of three
charged particles. However, discrepancies are still quite large among experiments [1,2]
and among theories 3. The energy dependence of theoretical and experimental
results are also different. I will concentrate on this fundamental problems in this

chapter.

4.1 Potential curves and couplings

Figure 4.1 shows electronic energy €x(R) versus R for 21 molecular states of Hy .
Since the collision Hamiltonian is rigorously centrosymmetric for p-H system, the state
vector ¥ in Eq. (3-23) is composed of noninteracting g (gerade) and u (ungerade)
components (indicated by red and blue lines respectively in Fig. 4.1), and thus there
are corresponding sets of g and u close-coupled equations 3-26. If index “1” designates
the initial states in each set (1so, or 2po,, respectively), then the initial conditions

for Eqs. (3-26) (corresponding to “proton A plus atom B”) is
a(t = —o0) = 1/v2634, (4-1)

and (for given energy E and each impact parameters b) the final-state amplitudes

ax(E,b) is computed.

To compute the ionization cross sections, we have carried out systematic calcula-
tions with basis sets A, B, and C, as listed in Table 4.1. Comparing the numerical
results with different basis sets allows us to study the convergence of ionization cross
sections with the basis size. In addition, some selected calculation have been done on
the ungerade component of basis set C without 2pm, (set D) to understand the role
of upper levels in the ionization dynamics. The continuum component is common in
the basis sets A (direct ionization), B, C (indirect ionization), and D, which contains

32 energies below 1.0 Ry for each partial wave; then the total continuum states are

accounted for up to 352. Within the straight-line approximation, we have solved the
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Figure 4.1 Electronic energy ¢,(R) (a.n.) versus R, for 21 molecular states of H;



Table 4.1 Molecular basis sets of calculations for H* + H(1s) collision.

Gerade Ungerade Number of
Sets basis states basis states all states
continuum: lesag) lepoy), |epma)
ledoy,), |edmg) lefou), |€fmu)
legoy), legmg) |ehow), |ehmy)
5 partial waves, 6 partial waves, 11x32
for 32 energies  for 32 energies =352
and bound: all above, plus  all above, plus
A: |1s0,) [2poy) 354
B: all above, plus  all above, plus
|3dmy) |2p7ry,)
13dog) |3poy)
|2s04) |3p7y) 360
C: all above, plus  all above, plus
|4dmy) |4fo.) 362
D: - all above, minus
|2p7,) 1196
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coupled differential equations, Eq. (3-26), for 100 impact parameters arranged in
0.0 — 10.0 a.u. at 32 collision energies from 0.1-10 keV /amu.

Employing the ETF’s of Ref. 1% we have computed the nonadiabatic coupling
for both discrete to discrete and discrete to continuum transitions. The corrections
arising from ETF’s exactly cancel the spurious asymptotic couplings and produce
substantial reductions in the size and effective range of most coupling matrix elements.
Since the discrete-discrete couplings have been discussed in detail by Kimura et al.

(1011 we only show the discrete-continuum couplings in Figs. 4.2 and 4.3.

The ETF-corrected couplings from 1so, and 2po, to the lowest partial waves
are plotted in Figs. 4.2 and 4.3 for the ejected electron energies ¢ = 0.01 and 1.0
Ry, respectively. It can be seen that the corrected couplings are significant only for

the first two or three partial waves and their range is less than 10 a.u., whereas the

uncorrected perturbed stationary state (PSS) theory predicts large couplings to 30-40
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Figure 4.2 Couplings to the lowest partial waves for final electron energies € = 0.01

Ry from the 1s0,(a panel) and 2po, (b panel) states in Hj molecule, where H(rad) and

H(ang) are the radial and angular coupling operators with ETF-corrections added,

respectively.
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continuum and an envelope of PSS couplings that has a range of 40 a.u.(see also Ref.
[102]) " The strongest coupling from 2po, is (2po,|H(ang)|epm) caused by rotation of
the quasi-molecule, and it exceeds the radial coupling of 2po,, (2po,|H(rad)|epo),
by 40% at the maximum. However, for the 1so, coupling, (1so,|H(rad)leso) also

dominates the other couplings from 1so,.

The energy dependence of couplings (1so,|H (rad)|eso) and (2po,|H (rad)|epo)
are shown in Fig. 4.4. The couplings from 2po, are much sensitively dependent on
the energy of continua electron than those from 1so,; the size of couplings from 2po,
is reduced by about factor of two with the continua electron energy increase from
0.01 Ry to 1.0 Ry; however couplings from 1so, are changed only by ~ 25% in size,
see also Figs. 4.2 and 4.3. The sensitive energy dependence of couplings from 2pa,
is understood by the potential curve of 2po,: near the united atom limit, 2po, lies
about 1.0 Ry below the ionization limit, in contrast to the 4.0 Ry deep potential of
1sa,. Then the change of couplings in size is analogous to the potential curves of
bound states, as indicated in Eqs. B-9 and (B-10).

Referring to Figs. 4.2, 4.3 and 4.4, we can say that ETF’s simultaneously and
systematically reduce the couplings from discrete state to all continuum states, and
the couplings are significant only for small internuclear separations. Considering
the potential curves of 1so,, 2po, and the corresponding couplings, we may predict
tentatively without detailed numerical calculations: (i) ionization cross sections of
2po, electrons are much larger than those of 1so, electrons, (ii) ionization is mainly

caused by close collisions.

4.2 Tonization probabilities

Collision history [molecular-state probability vs time] of po and pm ionization
channels is shown in Fig. 4.5 at collision energy E = 2 keV /amu for impact param-
eter b = 1.0 a.u. and final electron energy ¢ = 0.01 Ry. The state probabilities,
P(b), oscillate with collision time vt which shows the electron transition in molecular
states. The magnitude of oscillation decreases with vt increasing and becomes stable
after propagating over a sufficiently long period. Ionization probabilities with basis
set A are higher than those of basis set C, by ~ 30% in po channel, and by one

order of magnitude in pr channel. This is due to the important flux loss from 2po,
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Figure 4.5 Collision history [molecular-state probabilities vs weighted time (v x t)]
for the po (upper panel) and pr (lower panel) ionization channels. Collision energy
is E = 2 keV/amu, impact parameter b = 1.0 a.u, and the ejected electron energy
¢ = 0.01 Ry. Dashed lines, basis set A; dotted lines, set B; solid lines, set C; dash
dotted lines, set D.
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to 2pm,. The two states 2po,, 2pm, are degenerated in the united-atom limit and
strongly coupled by the rotation of quasi-molecule. Since couplings to continuum
states are significant only for small internuclear separation R, an excitation to 2pm,
does not reduce the energy gap to continuum much. Thus the strong angular coupling
(2po,|H(ang)|2pm,) efficiently depopulates the initial state 2po, and eliminates the
maximum appearing in set A near vt =3.5 a.u. To confirm this point, a calculation is
done on the basis set D in which 2pm, has been removed, and the results are shown as
dash dotted lines in this figure. We can see that the upper levels except 2pm, increase
the ionization probability to po channel by ~ 25% and decrease the ionization in p7
channel by ~ 40% comparing to set A. However, 2pm, produces much stronger effect
than all the others. In this figure, Fig. 4.5, we also plot the ionization probabilities
with the basis set B, which is difficult to distinguish from values of set C by eyes.
It means that the calculations are already converged with the basis set including 5
bound states and 6 continuum partial waves for ungerade component at the low keV

energies.

Figures 4.6 and 4.7 show the weighted ionization probabilities P(b)b of u compo-
nents as a function the impact parameter b at the ejected electron energies € = 0.01,
0.1 and 1.0 Ry with the collision energies F =2 and 4 keV/amu, respectively. Area
below each curve is proportional to the value of partial cross section. From these
two figures, it can been seen that only po or pm channel is important for electron
emission in this energy range. The ionization probabilities decrease rapidly with the
ejected electron energy increasing and with the collision energy decreasing. With the
ejected electron energy increasing from 0.1 Ry to 1.0 Ry, the ionization probabilities
drop down by one order of magnitude at the maximum of bP(b) for collision energies
E =2 or 4 keV/amu. Peak of ionization probabilities shifts to the left hand side (i.e.
to small impact parameters) with continua electron energy increasing. At the top
panel in Fig. 4.6 or 4.7, ¢ = 0.01 Ry, ionization to po channel predominates others,
while at the bottom panel, ¢ = 1.0 Ry, the pr channel is the most important. It
should also be noted that distribution of ionization probabilities in channels depends
on the collision energy E; prm electron ionization probability is order of magnitude
higher than that of po at E = 2 keV/amu and by factor of two at E = 4 keV/amu

for e = 1.0 Ry. At low keV energies, ionization mainly produces slow electrons in po

channel by the relative long-range interactions, while the fast electron can only be
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Figure 4.8 Weighted ionization probability bP(b. E) as a function of ejected elec-
tron velocity v, and impact parameter b at a collision energy E = 4 keV/amu (i.e.
V,/2 = 0.28 a.u.). In this figure, calculations are carried out with basis set C.

produced by the close collision through the angular coupling mechanism, as shown in

the bottom panel of figures 4.6 and 4.7. The fast free electrons are in 7 states.

The distribution of ionization probability bP(b, E) is shown in Fig. 4.8 as a func-
tion of ejected electron velocity v, and impact parameter b for a collision energy E' = 4
keV/amu. It can be seen that the bP(b, E) peaks at v, =~ 0.31 a.u, b~ 1 a.u. and
decreases rapidly with the increase of impact parameter b and final electron velocity
v,. lonization probabilities are negligibly small for b > 3 a.u., and most of electron
emissions take place as a results of close collisions with b ~ 1 a.u. The distribution
of ejected electron is antisymmetric, a fast electron tail at v, ~ 1 a.u. can be found,
which is produced only by collisions with b ~ 1 a.u. Let us note at the moment that
the mean radius of hydrogen atom is 1.0 a.u. and the half of collision velocity is

about V,/2 = 0.28 a.u. at E = 4 keV/amu. Thus the ionization is mainly caused by
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Figure 4.9 Same as Fig. 4.8 except E = 10 keV/amu (v.e. V,/2 = 0.45 a.u.).

“head on” (on electron) collisions and results a free electron with half of the collision
velocity, i.e. v, >~ V,/2.

For a collision energy E = 10 keV /amu, we have plotted the ionization probability
bP(b. E) against the electron velocity v., and impact parameter b in Fig. 4.9. The
maximum of bP(b, E) is near v, ~ 0.40 a.u., b ~ 1.2 a.u. on the final electron velocity
and impact parameter plane. Now the half of collision velocity V,,/2 is about 0.45
a.n., and ejected electron velocity v, is slightly smaller than V},/2, on the opposite to
Fig. 4.8. Spectra of the electrons emitted in ion-atom collisions have been recognized
with peaks corresponding to soft electrons v, ~ 0, electron capture to the continuum
ve =~ V,, and binary encounter collisions v, ~ 2V}, and perhaps an additional peak
corresponding to the “saddle point” electrons v, ~ V,/2 252 Although the electron
distributions in Figs. 4.8 and 4.9 peak near v, ~ V;/2. there is no linear response
to V, for electron velocity v, at the peak, say v, > V,/2 at the collision energy
E = 4 keV /amu and v, < V,,/2 at E = 10 keV/amu. Thus the maxima of ionization
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Figure 4.10 Weighted ionization probabilities bP(b, E') as a function of impact
parameters b and collision velocities Vp. In this figure, the ejected electron energy is
¢ = 0.1 Ry, i.e. v, ~ 0.32 near the maximum of bP(b, F') in the final electron velocity
space. This calculation is performed on the basis set C.

probabilities in Figs. 4.8 and 4.9 should not be considered as a “saddle point” electron
emission. With the collision energy increase, an amount of slow electrons can be
produced by a collision with large impact parameter b > 3, as shown in this figure.
These soft electrons are in pr state. The height of fast electron tail increases to ~ 35%
of the peak, comparing to 20% in Fig. 4.8, at E = 4 keV /amu.

Figure 4.10 shows the ionization probability distribution as a function of collision
velocity Vp and impact parameter b for the given final electron energy ¢ = 0.1 Ry,
i.e. v, =~ 0.32 a.u. near the peak of bP(b) in Figs. 4.8 and 4.9. Ionization probability
increases with collision velocity increasing not only in magnitude, but also in the
effective range of impact parameter b. At a relatively high collision energy, electrons
can be ejected by a long-range interaction, in contrast to the slow collision emitting

electrons only through “head on” collisions.
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4.3 Tonization cross sections

As mentioned above, target excitation and charge transfer are important processes
in the collision energy range below 10 keV/amu, which may influence the hydrogen
ionization cross sections. Hence we compared our results with various calculations
and experiments, namely for the excitation and capture into 2s and 2p levels of
atomic hydrogen in Fig. 4.11. Our results are in good agreement with the measured
data [193:1%4 for collision energies between 1 and 7 keV/amu for target excitation
or capture to projectile. Yet, at higher energies, our calculated 2p excitation cross
section increases more quickly than the measured values of Barnett %% (cf. Fig.
4.11). The agreement with the double-center close-coupling calculations of Toshima
[ is better than 20% in all cases. A very good agreement for electron capture to the
projectile is found in case of the previous calculations by Kimura [01]; for instance
the cross section at 5 keV in Ref. 1 agrees with our result within 5% for 2s charge
transfer, and within 6% for 2p charge transfer. These are the upper bounds for all
ejected electron energies; e.g. the 6% difference for 2p charge transfer corresponds to
the ejected electron energy € = 0.01 Ry, and it decreases to only 1~ 2% difference at
e = 1.0 Ry.

Transitions between discrete states, which occur at large values of R in fact do
cause a slower convergence of the capture/excitation cross sections. This particular
case, however, does not influence our ionization cross sections, because the ETF-

corrected couplings to the ionization continuum practically vanish at large values of

R.

The total ionization cross sections computed with the basis sets A, B, and C are
shown in Fig. 4.12: g components in the upper panel, and v components in the
lower panel. The corresponding ratios of TICS’s with different basis set are plotted
in Fig. 4.13. From the two figures, it is clearly seen that in case of g components the
upper levels incorporated in basis set C enhance the total ionization cross sections by
~ 2 times at the collision energies above 2 keV/amu. This means that the dominant
mechanism for ionizing a 1so, electron does not involve direct excitation by a single
impulse, but a “ladder-climbing” process in which the electron is gradually detached
in a series of small impulses, and electron does not come out with large amounts of

excess energy. However, the case of u components is completely different, TICS’s with

basis set C are much smaller than those of basis set A below 6 keV/amu, at E = 2
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keV /amu with the discrepancy up to factor of 2.5. In this case, the upper levels are
a trap instead of a step stone. As stated in Sec. 4.1, ionization is driven by short
range couplings and takes place only at small internuclear separations. The potential
curves of bound states, especially near the united atom limit, play an essential role
in interpretation of ionization dynamics. 1so lies at far below of any other bound
or continuum states, but the excitation to an upper lying state significantly reduces
the energy distance to the continuum, and thus effectively enhances the interaction
with continuum states. In u family, the strongly coupled states 2pm, and 2po, are
degenerated in the united atom limit, therefore excitation to 2pm, does not reduce
the potential much. The strong angular coupling (2pm,|H (ang)|2po,) introduces an
important flux loss to 2po, and decreases ionization probabilities, see also Fig. 4.5.
Then the completely different roles of upper levels in ionization of g and u electrons
is determined by the potential curves of bound states in Hj at the united-atom limit.
The difference between basis sets B and C is rather small, the ratios of TICS’s differ

from unit not larger than a few percent.

Fig. 4.14 shows the total ionization cross sections which we computed using the
basis set C in comparison with the various theoretical calculations and the available
experimental data. Our cross sections are one time smaller than those of the triple-
center atomic orbital close-coupling calculations of Ref. [} above; they exhibit closer
agreement at collision energies lower than 1.5 keV/amu. The hidden crossing calcu-
lation including S and T promotions and the radial decoupling mechanism (52 is 30%
higher than our results at 10 keV /amu. Their cross section decreases more slowly with
the energy decreasing, and thus at 1 keV/amu the difference from our calculations is
as high as a factor of 6. Yet, our values are in better agreement with the hidden cross-
ing method including only S and T promotions [?, with the discrepancies better than
30% in usual. This holds except for the collision energy below 2 keV /amu, where the
hidden crossing calculations decrease faster, and the cross sections of Ref. [ are by a
factor of two smaller than the present results at 1 keV/amu. Our calculations agree
well with the two center close-coupling calculation of Toshima [ in the range 4-10
keV/amu, but Toshima’s values become smaller than us and dropped much faster
below 4 keV/amu. The present results are also compared with the measurements of
Pieksma et al. @ and Shah et al. . Our values come at 25% below the measured

cross sections of Ref. 1 at 6 keV /amu, and decrease much more rapidly with collision

energy decreasing, the discrepancies up to a factor of 6 at lowest considered collision
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energy 1 keV/amu. However, our results are in an excellent agreement with the recent
experimental data of Shah et al. 1, since they lie within the experimental error bars
in the entire energy range considered. Such an agreement should be expected when
the important direct and indirect ionization mechanisms are all included, boundary
conditions treated properly, and the numerical accuracy of all calculations sufficiently

maintained.

The total ionization cross section in p-H system were already plotted in Fig. 2.1 for
a broader energy range 0.1-1000 keV /amu, in which various calculations are compared.
TICS’s from Toshima [ are 20% higher than the experimental values %7 around
E = 100 keV/amu, and they are in a good agreement at the high energy region.
Triple center close-coupling calculations 1'% predicted the cross sections at low to
intermediate energies to be larger than the measurement data L7 up to a factor of 2,
and they decrease much faster at collision energies above 50 keV /amu. They are also
found to oscillate with collision energies. CDW-EIS, the continuum distorted wave
eikonal initial state approximation, is a high energy theory by Crothers and McCann
3% who obtained their cross sections in a good agreement with the measurements
by Shah et al. 167 for energies above 25 keV/amu. All the above theories predicted
TICS’s decreasing much more rapidly than our results and the experimental data [
below 1.5 keV/amu.

The accurate total ionization cross sections by the ETF-modified close-coupling
expansion in Fig. 4.14 is not the only principal result of this section. In Fig. 4.15,
we plot the single-differential cross sections as a function of ejected electron energies
e and collision energies E. Cross sections of g and u components are shown in the
upper and lower panels respectively. Ionization cross section decreases rapidly with
the final electron energy increasing and collision energy decreasing. Ilonization is
significant only when collision energies E is above 3 keV/amu for g components and
1 keV /amu for u components. At a collision energy F = 10 keV/amu, the differential
cross sections of € = 0.01 Ry is about two orders of magnitude greater than that of
e = 1.0 Ry. Differential cross section do/de of u components is about one order of
magnitude greater than that of g components at their maxima. We have projected the
differential cross sections do/de on the bottom plane in this figure. There is a region
in the two projections in which for a constant do/de the ratio of €¢/E is a constant.

It shows that a small amount of electrons gains energies from incident protons in a

single impulse, and those electrons come out with large excess energy. Such process
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is analogous to electron capture to continuum in which the projectile transfers a part
of its kinetic energy to the target in a constant rate and results free electron with
Ve ~ Vp.

Fig. 4.16 shows the distribution of partial ionization cross sections as a function
of collision energy. The energy of ejected electron is taken as e = 0.01 Ry. This figure
represents our previous statement that the ionization cross sections are significant
only for two or three channels either for g components or for © components. In case
of g components, so, do and dr are the important channels below 4 keV/amu, but the
partial ionization cross sections of so channels increase much more rapidly than the
other two, and exceed them by order of magnitude at E=10 keV/amu. The channels

po, pm and fr are important in the case of u components, and the partial ionization

cross sections of pm and po are almost the same at the highest energy considered, 10
keV/amu.
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5.0 Study of Ionization in He’* + H(1s) collisions

5.1 Potential curves and couplings

Figure 5.1 shows electronic energy e;(R) versus R for 21 molecular states of HeH*.

Now the initial condition is replaced by
ak(t = ——OO) = 51k, (5—1)

where index “1” designates the initial states, which is 2po for He>™ + H collision.
To compute the ionization cross sections, we have carried out systematic calculations
with basis sets A and B, as listed in Table 5.1. Comparing the numerical results with
different basis sets allows us to study the convergence of ionization cross sections
with the basis size. The continuum component is common in the basis sets A (direct
ionization), and B (indirect ionization), which contains 32 energies below 2.0 Ry for
each partial wave; then the total continuum states are accounted for up to 352. Within
the straight line approximation, we have solved the coupled differential equations, Eq.

(3-26), for 100 impact parameters ranged in 0.0 — 10.0 a.u. at 32 collision energies
from 1-16 keV/amu.

Employing the ETF’s of Ref. [1% we have computed the nonadiabatic couplings
for both discrete to discrete and discrete to continuum transitions. The corrections
arising from ETF’s exactly cancel the spurious asymptotic couplings and produce
substantial reductions in the size and effective range of most coupling matrix elements.
Since the discrete-discrete and discrete-continuum couplings have been discussed by
Kimura et al 1% and Rankin et al. 19 respectively, these couplings are not shown
in detail here. Rather as an survey of some of the results and as an illustration, see
Figs. 5.2 and 5.3.

The energy dependence of couplings (eso|H(rad)|1so) and (epo|H (rad)|2po) can
be seen from Figs. 5.2 and 5.3. The couplings both from 2po and 1so are much less
sensitively dependent on the energy of continua electron than those of Hf system; the
size of couplings from 2po is reduced by about one-third with the continua electron
energy increase from 0.02 Ry to 1.0 Ry; couplings from 1so are changed only by

~ 10% in size. The less sensitive energy dependence of couplings is still analogous to

the potential curves of bound states, as indicated in Egs. B-9 and (B-10).
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Table 5.1 Molecular basis sets of calculations for He*t + H(1s) collision. -

Molecular Limiting Number of
Sets basis states atomic levels all states

continuum: leso)
lepar), |epm)
ledo), |edm)
lefo), [efr)
lega), |egm)
leho), |ehm)
11 partial waves, 11x32
for 32 energies =352

and bound: all above, plus  all above, plus
A: |2po) H(1s) + He*" 353

B: all above, plus
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Figure 5.4 Charge transfer cross sections for He?* +H(1s) — He™ (2p)+H™ collision
at low energies. In the figure, solid squares: measured data of Hoekstra et al 1%;
solid circles: measured data of Hoekstra et all'®”); upward triangles: measured data of
Ciric et all'®8; crossing symbols: results of MO expansion with common translation
factors by Errea et al [199; solid lines: present results.

5.2 TIonization cross sections

Charge transfer cross sections of present study are shown in Fig. 5.4 for the colli-
sion He?* + H(1s) — He*(2p) + H*, and in Fig. 5.5 for the collision He™ (1s) + HT —
He?* 4 H(1s) at low- to intermediate-energy region. The very good agreement with
experimental results 19197 can be found for both collisions, and a good agreement is

also seen as compared to other theoretical calculations (199] The good charge transfer

cross sections support partly the ionization cross sections, since the direct compar-

ison to measured data is limited (experimental values are not available below 18.4
keV/amu).
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from this study with basis set 3 (with contributions through intermediate states)

I note that the charge transfer transition probabilities in He**+H(1s) — He'*(2p)+
H™ and He"(1s) + HY — He®* + H(1ls) were found to oscillate very quickly below
1 keV/amu, and the interaction region is also large due to the energy degeneracy
among H(1s) and He"(n = 2). So the calculation is quite heavy for the low energy
part especially below 1 keV/amu. In the above calculations 400 impact parameters in
the range 0 — 15.0 are employed, and further checked by calculation on 1000 impact
- parameters in the same range. Resulted cross sections are plotted in Figs. 5.4 and 5.5.
To avoid the heavy calculations for slow collisions, the total ionization cross sections

are calculated for energies above 1 keV/amu, which are more practicaly important.

Total ionization cross sections of atomic hydrogen by slow He** are shown in Fig.

5.6, and compared with the experimental values of Shah et al BY. Unfortunately,




66

the measured ionization cross sections are not available at low energies, and my
calculation can not be easily extended to that high energy range. And hence, the
quantitative comparison is limited. Although the energy ranges of my calculation
and experimental data do not overlap, we can still point out that the trend of the
calculated results is similar to the measured data. They connect smoothly near 18
keV/amu. The total ionization cross sections from calculation with basis set « are
much smaller than those from converged basis set 3. Here excitation via a sequence of
higher levels, which may be called as indirect ionization, is the dominant mechanism
for liberating the bound electron from hydrogen atom during the collision with He?".
It is completely different from the case of ionization of hydrogen atom by proton,

where the direct ionization is much more important. The difference is due to the

complex interference between the intermediate states and the initial states.
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6.0 Conclusion

In the first part of the thesis, I have provided accurate single-differential and total
ionization cross sections on proton-hydrogen collision system at 0.1-10 keV/amu. The
close-coupling expansion with ETF’s modified Hj molecular states was used. It is
the first calculation using this method for the ionization problem, based on the direct
evaluation of all couplings between the bound and continuum states. The results are
in an excellent agreement with the recent experiments of Shah et al. [ but differ

from the other measurements by Pieksma et al. (.

From a methodological point of view, we show that the appropriate ETF’s not only
exactly cancel the spurious asymptotic behavior of nonadiabatic couplings, but also
systematically reduce the size and effective range of most coupling matrix elements.
With the ETF-corrected molecular basis, the accurate ionization cross sections can
be obtained by a calculation in a small region of configuration space and coordinate
space. For H system in the range 0.1-10 kev/amu, a good convergence has been

achieved with a basis including 10 bound states and 11 continuum partial waves.

In addition, we find that the upper levels play a completely different role in H ion-
ization for the g and u components. In case of g components, an excitation sequence
via upper levels is the dominant mechanism for the ionization, which enhances the
total ionization cross sections (as compared to the direct ionization process) by more
than two times at the collision energy E =10 keV/amu. In case of u components,
the excitation to upper levels reduces the total ionization cross section significantly,
especially the excitation to 2pm, molecular state. Since the total ionization cross
section is mainly decided by u components, we conclude here that the upper levels
are a “trap” on the way of electron going to ionization continuum, in contrast the
general recognized “ladder”. Using the ETF-modified MOCC method, we have a tool
to examine the role of each molecular state in the ionization process in a systematic
way.

Within the same approach, collision system of atomic hydrogen by slow He?*
was also treated at the energy range 1-16 keV/amu. A good convergence has been
achieved with a basis including 12 bound states and 11 continuum partial waves at 32
continua electron energies, which resulted in accurate charge transfer and ionization

cross sections. The present electron capture cross sections in He** + H(1s) are found
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to be in a very good agreement with the experimental values 251061071101 ang other
theoretical calculations. Although the energy range of this study does not overlap
with the experiment of Ref. !, the calculated ionization cross sections tie smoothly
with the experimental ones from below, at about ~ 18 keV/amu. It is found that the
indirect ionization is a more important mechanism than the direct process, which is

dominant in the p — H system. The present method is readily applicable to further

physical systems of interest, such as p + Li and/or He + Li.




PART II

Charge exchange recombination spectroscopy
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7.0 Review of Charge Exchange Spectroscopy
and Pellet Injection

Charge exchange recombination spectroscopy (CXRS) is based on the atomic pro-
cess in which a fully ionized ion (A?") captures an electron from a hydrogen atom
present in a neutral heating beam, results in a lower charged ion (A“9~Y*) in an
excited state (nl), and then this excited ion (A9 Y*(nl)) decays through photon
emission. The emitted photons carry the information about the spatial and veloc-
ity distributions of fully ionized A?" ions. The technique has been widely used to
diagnose the ion temperature, the plasma rotation, the radial electric field and so
on (see references 117115 and references therein). Recently, in combination with the
impurity pellet injection, CXRS has been extended to a study of particle transport
in magnetically confined plasmas. Several successful experiments have been reported
from Heliotron E 111 CHS 7 and LHD 19 plasmas based on lithium pellet injec-
tion. The injected lithium pellet ablates near the plasma center, depositing exotic
impurities which are predominated by fully ionized Li** in a localized region. From
the time dependent behavior of the line emisson of hydrogen-like lithium, Li%* or
Li III, the diffusion coefficient of the ions is obtained as well as plasma parameters.

Details of the lithium pellet injection experiments are given in [17> 111116,

In the experiments mentioned above, the visible lines of Li III (n =5 — n = 4) is
observed, and high resolution spectral profile data are given in Ref. 1. Examples
of the observed profiles are shown in Figs. 7.1 and 7.2 (squares and other symbols).
These profiles are obtained during neutral beam injection (NBI) and after the turn
off of NBI, respectively. It is seen that the observed spectral profiles strongly de-
pend on whether NBI is present or not; the location where the lines are emitted.
The line width and the peak wavelength change significantly for different conditions.
Besides the difference in ion temperatures, these differences should reflect differences
in the population mechanisms of the upper level of this line. The objective of the
present study is to establish the theoretical basis for interpretation of the spectral

data obtained in such experiments.

It would be natural to expect that, during NBI, the Li?* ions are populated mainly

by charge exchange reaction with the neutral H atoms in the heating beam:

Lt +H® — Li**(nl)+H". (7-1)
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Figure 7.1 Comparison with theoretical (solid line) and experimental (squares)
spectral profiles during neutral beam injection. Experimental data were taken by
Kondo et al. 11, The line positions and intensities for the charge exchange com-
ponent are shown with the vertical lines. The line profiles assuming only statistical
weight I-distribution are shown by the dash-dotted lines. The dashed line is the best
fit with the neglect of the Zeeman effect. The numbers in the figure are the positions
where the spectra are measured, i. e., center (a) and edge (b). Ion temperatures
are T; = 200 4 14 eV in the center and T; = 80 & 9 eV in the edge by theoretical
calculations with 2T magnetic field (solid lines).
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theoretical fit (solid lines).
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When the neutral beam is turned off, the plasma temperature drops rapidly, radiative

recombination is expected to be the dominant populating mechanism:
Li*f +e — Li**(nl) + hv. (7-2)

Whether NBI is present or not, electron collisional excitation/deexcitation is always

an important populating mechanism:
Li2*(n'l) +e- — Li**(nl)+e". (7-3)

For a correct interpretation of the observed profiles like those in Figs. 7.1 and 7.2,
besides the ion temperature and the populating mechanism, we also have to take
account of: (i)the presence of fine structure which is large enough to affect the profile
of the line between these highly excited states, (ii) the Zeeman effect and motional
Stark line splitting which arise from the strong magnetic field in the plasma, (iii)
the background line emission produced by electron collisional excitation, Eq. (7-
3), of the ground-state Li* ions in the plasma periphery, and (iv) the presence of
secondary low-energy H atoms in the vicinity of neutral beam in the plasma. From
these considerations, we decided 1) to conduct an accurate Zeeman effect calculation
and 2) to construct a collisional-radiative (CR) model in which these three (charge

exchange recombination, radiative recombination and electron collisional excitation)

population mechanisms are taken into account.
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8.0 Line Splitting and Broadening in Magnetic Field

Let us now consider the effect of an external magnetic field on single-electron
atoms. In this chapter, we shall restrict ourselves to the special case of a low Z
ion (i.e. Li**(nl)) in a time-independent homogeneous magnetic field B 1. Thus the
state of an electron can be described by the Pauli approximation, and the Hamiltonian
reads

H=Hy,+X+W (8-1)

where H, is the non-relativistic Hamiltonian, ¥ is the spin-orbit interaction energy,
and W is the interaction energy with the magnetic field B. We put S for the spin
operator, L for the orbital angular momentum, in atomic units, and take our z-axis

along the magnetic field. We then have the explicit form of ¥ and W as,
5 = %oﬂzﬁfj g (8-2)
W = poB- (E + gsg) ; (8-3)

where o and p are the fine structure constant and the Bohr magneton, respectively.
The Lande factor g, is exactly 2 in the Dirac theory. We consider the operator
(X + W) as a perturbation to the nonrelativistic Hamiltonian (Hp) and find the

perturbed eigenfunctions and eigenvalues 2. This procedure will be discussed below.

Besides Ez’ J, = (E +5 ). is exactly constant of motion. Thus the eigenstates
of (Hy + X + W) are labeled with the quantum numbers n, I and m (eigenvalue of
J,). The general wave function with these quantum numbers can be written as a
superposition of two linearly independent spin wave functions. We take for these two
independent states the two eigenstates of the field-free Hamiltonian (Hp + X). We
denote these two eigenstates and their eiegnvalues by u., u_ and E, E_, respectively.
They are the eigenstates of the total angular momentum operator J: (J=L+5)

with inner quantum number j =1 + % and j =1— %, respectively. We further define

11f B is uniform over distances of the order of several atomic radii 0.52917 x 10~® cm, and over
time of the order of many atomic time unit 2.4189 x 10717 sec., the results are almost the same as
for an exactly uniform B.

2The interaction energy with magnetic field is rather weak in general, say 3 T, and one obtains
Zeeman splitting of the order of 3 wave-numbers ~ 1A for visible light. Then the perturbation
method could describe the system to high accuracy.
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a dimensionless parameter £ by

Byg
~Zr0 -4
¢ AE’ (8-4)
where
AE=FE, - FE_. (8-5)

The explicit matrix representation of the operator W in terms of u; and u_ can be

written in the form

1
E= §(E++E_)—|~E', u=auy +bu_ (8-6)

E’, a and b are given by the eigenvalue equation (with g;=2)

2m(l+1) \/ (I+5)2—m?2
SRS pIES a_E (a (8-7)
V32 -m? 2ml b AE \ b
3 2041 —§ +¢ 20+1

The two possible eigenvalues E’ are obtained by solving the determinant equation as,

1
Em =+ — \[ Eém + 52} (8-8)

The normalized eigenfunctions corresponding to these two eigenvalues are then given

=AFE

by
a=4 s(1+7), 2(1 —~) for the higher level, 9)
4= =4/ %(1 -7), b =4/ 2(1 +4) for the lower level,
where
- 1+&%
1+ 855 + 8

Once the eigenfunctions and eigenvalues of the total Hamiltonian (Ho + X + W)
are known, the radiative transition probabilities between these Zeeman levels are
calculated. The line distribution of Li’?* n = 5 — n = 4 transition are plotted in Figs.
1 and 2, where the upper levels are populated by the charge exchange recombination

and radiative recombination, respectively.
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9.0 Collisional-Radiative Model

In this chapter, we explain the kinetic equations and summarize the atomic data.

9.1 Kinetic equations

Let us consider minor impurity species, lithium in the present case, in a plasma
which is composed of protons and electrons as major constituents. This plasma is in
a magnetic field and heated by NBI. The population density of Li**(4) is determined
by collisions with electrons and protons, by spontaneous radiative decay and by the
interaction with hydrogen atoms in the beam. The rate equation for the population

density of the Li?*(z) state is given by

dnTiQ = D nCin(i) + 3 Ajn(5)} — {D_ neCiyn(i) + ) Ayn(i)}
i i>i i i<i
—I—{neam+ -+ nHﬁer} — {neSm(z)}, (9—1)

where n., ny and ny are the densities of electron, fully ionized Li3* ions, and
neutral hydrogen in the heating beam, respectively. Cj; is the collisional excita-
tion/deexcitation rate coefficient and Aj; is the radiative transition probability from
state j to 3. .S; is the rate coefficient for electron impact ionization from the ¢ state.
a; is the rate coefficient for recombination, Li*T +e~ — Li**, both by radiative and
three-body recombination. S; is the rate coefficient for charge exchange recombina-
tion of eq.(7-1). Proton collisions are included in the model for angular momentum
changing transtions within the same n. The proton temperature is assumed equal to
the electron temperature. In the text, i (or 5) is the index of Li** levels, and i = 1 is
used to label the ground state Li?*(1s).

According to the quasi-steady-state assumption 1177123 the densities of electrons,
Li%*, Li%*(1s) and H atoms are uncoupled. Thus the population density of Li** in

an excited state 7 may be expressed as a sum of the three components,
’I’l(’L) = neEin(l) +n.Ring + nHGin—i» 12> 2, (9-2)

where E;, R; and G; may be called the effective population coefficients. The first

term represents the contribution from the population flux originating from the ground




7

state ions by electron collisional excitation, the second term the flux originating from
radiative recombination and three-body recombination of the fully ionized ions, and
the last term the flux coming from charge exchange recombination. Substituting eq.
(9-2) to eq. (9-1), the following three sets of equations for E;,R;, and G; are obtained,
Ot YuneCiiBy 4 3 A (9-3)
Y neSi+ E#j neCij + Ei>j Aij

B - o; + Z;.# neCiiRj + ;5 Aj R (0-4)

NeSi + Y5 eCij + s Aij
G - B+ 3254 1eChiGs + 51 Aii G (9-5)

NeS; + 355 MeCij + 2 i Aij ’

where the primed sums extend only over excited states. Solving the three sets of

equations with i > 2, we obtain the nl-resolved population densities of excited states.
Putting Eqgs. (9-3) and (9-2) into the collisional-radiative model (9-1), then the

rate equations for the ground state can be rewritten in terms of E;, R; and G;, viz.

dn(1)

= —neSefrn(1) + NeOesny + Npfessn+ (9-6)
= —neSen(l) + neagny (9-7)
with
Sess = Si+ Y Ci;— Y [Ej(neCin + Ap)] (9-8)
=2 Jj=2
Qer = on+ Y [R;(neCy + Aj) (9-9)
j=2
Bers = B+ Y _[Gi(nCi + Ap)] (9-10)
=2
and
Sy = Sets (9-11)
n
Qe = Qeff+ ;;,Beff. (9-12)

Here, S, and o, are called collisional-radiative ionization and recombination rate
coefficients, respectively, and represent the effective rate coeflicients for ionization
and recombination of the plasma. When n,.S.n(1) = nen4, ionization and recom-

bination are balanced.
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9.2 Atomic data

The accurate atomic data are essentially important to analyze the spectra. In
our CR model in eq. (9-1) we included the nl resolved states up to n = 20. Thus
a complete set of atomic data up to n = 20 are necessary for this CR calculation.
However, accurate atomic data are not easy to obtain even for an H-like system. In
this work, the electron-impact excitation (n;l; — nslf) data are calculated by the
Coulomb-Born-Exchange (CBE) approximation for 1s < nl; ,ngly < 5g, by n=3
scaling law for 1s < n;l; < 4f and 6s < nfly, and by Mewe’s semi-empirical formula
24 for transitions between high-lying states with 6s < nl. The CBE calculation
is carried out with the use of the ATOM code ['? and compared with the results
by other methods of distorted wave (DW) [126:127 and the R-matrix with pseudo-
state (RMPS) 1128, Figure 9.1 shows examples of comparisons of the scaled collision
strengths Z2() for the 1s-2s and 1s-5s transitions, where Z is a charge of H-like ions
and  is a collision strength. The calculations by CBE and DW are in good agreement
with each other, say within 10% from threshold to high energy limit. However the
results by RMPS for 1s — ns transitions are quite different from our results in low
energy region; the discrepancy can be as large as by a factor of 2 near the threshold.

The more detailed comparison is given in Ref. 129130,

The | — mizing collisions by electrons and ions are important to determine the
spectral profiles, and the corresponding rate coefficients are estimated by the Jacobs’
formula 131, The ionization rate coefficients from the ground state and all the excited
states are estimated by Lotz’s empirical formula '32. The collisional de-excitation and
three-body recombination rate coefficients are derived from the detailed balance rela-
tion using the excitation and ionization rate coefficients. The spontaneous radiative
processes for all the allowed transitions and one forbidden transition, 2s(25) —1s(%5),
are included. Radiative recombination rate coefficients are obtained from the detailed

balance principle from the photo-ionization cross sections 133,

The direct charge exchange recombination rate coeflicient to a state i is given as

B; = voy,

where v is the particle velocity of the beam and o; is the state-selective charge ex-

change cross section. Data for the state-selective cross sections are taken from the
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Figure 9.1 Scaled Electron-impact excitation collision strength Z2Q for the (a)
1s — 2s and (b) 1s — 5s transitions in hydrogen-like ions. The open squares with line
denote the results by the ATOM code (123 the solid circles, Hullac code 1%]; the
upward and downward triangles, Clark et al. (1996)[!?7; the open circles, Badnell et
al. (1997)0128




80

recent literatures 134 up to n = 5. For extending the data to highly excited states,

we assume an n~° dependence with n higher than 5.
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10.0 Spectra of Li** Ions in Magnetic Field

In this chapter, we show the calculated line intensities and compare to the exper-
iment.

10.1 Calculated line intensities

In our calculation the line intensity can be separated into three components, as
I = EiAjinen(l) + R Ajineny + GiAjinany, (10-1)

where the three terms represent the effective contributions from the ground state
n(1), the ion n, through recombination, and the ion n, through charge exchange,
respectively. Then the spectra can be determined for arbitrary beam particle flux
densities ny and arbitrary ion abundance n(1) and n,. Since we solved CR model
with resolved nl sublevels, we can estimate the line intensities between nl — n'l’
transitions by different three population mechanisms. The temperature dependence
of the three population coefficients (E;, R; and G; divided by statistical weights) for
5l-state are shown in Figs. 10.1(a), (b) and (c).

Figure 10.2 shows line intensity ratios for Li?* ions An = 1 transitions (}_;, nl —
(n — 1)I') to the resonance line (2p — 1s) at 7. = 500 eV and n. = 10" cm™?,
where excitation, recombination, and charge exchange components have been plotted
separately. We take the density and the kinetic energy of H atoms to be n, = 10~°n,
and Ej, = 25 keV/amu. The intensity ratios including these three components are
also shown as the sum. In this figure, line intensities are normalized by Lyman o
emission. From Fig. 10.2, one can see that the ratios I(An = 1)/I(2p — 1s) of the
excitation component decrease sharply with principal quantum number n. Although
the excitation from the ground state populates np states more than other states, the
line intensities for An = 1 are mainly emitted from the states with larger angular
momentum. For example, the intensity for n = 5 — 4 is dominated by the 5f — 4d
and/or 59 — 4f transitions. The ratio of charge exchange components decreases
more slowly with n than that of the excitation components; that is because the nl

distribution of charge exchange cross section over principal quantum number n and

angular quantum number [ for the beam energy Ej = 25 keV/amu are broader than
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Figure 10.1 The temperature dependence of population coefficients i,};, R;, G;)
divided by statistical weights for 5/ at E; = 25 keV/amu and n, = 107°n,. The
solid quadrangles are for 5s; the circles, 5p; the upward triangles, 5d; the {lm\ nward
triangles, 5f; the open circles, 5g. E;/g:. Ri/g: and G;/g; are shown in (a), (b) and
(¢) respectively.
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Figure 10.2 Line intensity ratios of Li III ions from An = 1 transitions and nor-
malized on Lyman o vs principal quantum number of upper levels. The upper levels
are populated by excitation (circle), recombination (upperward triangle) and charge
exchange (downward triangle). The sum of these three components are for ionization
equilibrium (square).

that of excitation from the ground state. From Fig. 10.2, we can see the line intensity
ratios I(An = 1)/I(2p — 1s) including three components in ionization equilibrium
with nj,/n. = 107° are almost the same as the charge exchange component. Charge

exchange is the main mechanism for producing excited H-like Li ions in the NBL

The Li III emission lines from n = 5 to n = 4 transitions are in the visible range
(~ 4499 A) and they are often measured with high resolution spectroscopy. In order
to estimate the spectral line profiles of ions in magnetic confined plasmas, we need to
know the population densities of the resolved magnetic sublevels. After calculating
the population densities of nl states by our CR model, we assume population densities

are equal over the magnetic quantum number m. Thus the population density of Li*t
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Figure 10.3 Spectral line profiles produced by excitation in magnetic field B=2
T, where the ion and electron temperatures are 1 eV and 500 eV, respectively. In
the figures, (a) and (b) are spectral profiles observed in parallel and perpendicular
directions to magnetic field, respectively.

in an excited magnetic sublevels (nlm) can be computed. In this section, we take

magnetic field strength B = 2 T, and the quantization axis along the magnetic field.
Figures. 10.3, 10.4 and 10.5 show the spectral profiles, where the upper levels are

populated by excitation from the ground state, by electron-ion recombination and by
charge exchange with the H atoms in the beam, respectively. In these Figures, panels
(a) and (b) show Zeeman splitting spectra observed in the perpendicular and the
parallel direction to the quantization axis, respectively. We plotted spectral profiles
by 55— 4p, 5p—4s, 5d—4p, 5f —4d and 5g — 4f transitions separately and the sum of

them as indicated in Figures. The various Zeeman components are convoluted with
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Figure 10.4 Spectral line profiles produced by radiative recombination in magnetic
field B=2 T, where the ion and electron temperatures are 1 eV and 10 eV, respectively.
In the figures, (a) and (b) are spectral profiles observed in parallel and perpendicular
directions to magnetic field, respectively.
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Figure 10.5 Spectral line profiles produced by charge exchange in magnetic field
B=2 T, where the ion and electron temperatures are 1 eV and 500 eV, respectively.
The kinetic energy of H atoms in beam is 25 keV/amu. In the figures, (a) and (b) are
spectral profiles observed in parallel and perpendicular directions to magnetic field,
respectively.
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a Gaussian profile,
1 (A= Xo)?
P\ = e
W=7 =

where )\ is the photon wavelength and Ap is the Doppler width,

) (10-2)

Ap = 4.634 x 107°X0\/T; /A, (10-3)

where T} is the ion temperature measured in eV, and A; is the atomic mass number.
A very low ion temperature T; = 1 eV, corresponding Doppler width 0.079A, is used
in order to show the Zeeman effect on line shapes. Excitation spectra are mainly
contributed by 5s — 4p, 5f — 4d and 5g — 4f transitions. Most of the recombining
lines come from 5g — 4f transition and also from 5f — 4d. Charge exchange spectra
are contributed by 5s — 4p, 5d —4p, 5f — 4d and 5g — 4 f transitions which are peaked
at 4498.85A and 4499.15A for observing in the perpendicular direction, and peaked
at 4498.75A and 4499.25A for measuring in the parallel direction. In excitation
and charge exchange spectra, there is a weak peak at 4498.3A  which originates
from a 5d3/2 — 4p1/2 transition. In recombination spectra, the peak (5d3/2 — 4p1/2)
is absent. The rather broader distribution of charge exchange spectra is due to the
broader distribution of charge exchange cross sections over the angular momentum
quantum number I. The spectra observed in the parallel direction to the magnetic
field is broader than that observed in the perpendicular direction. This is because
one can see only the ¢ components along the quantization axis. In many cases, I-
distributions according to the statistical weights are assumed 'l In this chapter
we have taken into account the realistic [-distributions for different atomic processes
(excitation, recombination and charge exchange) and found that the line profiles are
much different from those following the statistical weights. The wavelength at the

peak is also different from that by statistical weights. More detailed comparisons are
shown in Ref. [129],

10.2 Comparison with the experiment

The comparison of our calculation with experimental measurements are shown in
Figs. 7.1 and 7.2, where the experimental data are those measured from the Heliotron

E plasma "1, In these figures, the various Zeeman components are convoluted with
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a Voigt profile,

Y ©  exp(—T?)
P(X,Y)d\ = dTd\ 10-4
(X,Y) 7r\/7_r)\D/0 (X —T)2+Y? ’ (10-4)
where
Y = ('/2)/Xp,

X = (A - A0)/>‘Da
T = (V=X)/ o,

where T' is the Lorentzian factor which is dominated by the instrumental width in
the experiment. Because the experimental system is designed for measuring spectra
emitted by high temperature ions, the instrumental width slightly varies with pixels.
At the moment, we take I" equal to the average instrumental width 0.4 A. Tt is also
hard to decide the direction of the sight line with respect to the magnetic field, since
the experiment was carried out on a helical type system. For simplicity, we assume

the sight line is perpendicular to the magnetic field.

The spectra measured during the NBI are shown in Fig. 7.1 by squares. The
ion temperature are obtained from fitting the calculated spectra profiles with the
experimental measurements. The best fitted curves are shown by the solid lines in
Fig. 7.1. We obtained the ion temperature (7;) to be 200+14 eV in the center plasma
(Fig.7.1(a)), and 80 £ 9 eV in the edge plasma (Fig.7.1(b)). The measured electron
temperature is above 400 eV in the center and 200 & 10 eV in the edge . The
derived ion temperatures are lower than the electron temperatures during the NBL
The Doppler broadening due to ion temperature is too broad to separate the Zeeman
splitting.

After the neutral heating beam is turned off, the plasma temperature drops rapidly
and radiative recombination becomes a dominant atomic process for producing H-like
Li ions. In this case, the ion temperature should be low, and these recombining spec-
tra are considered to be good for investigating Zeeman effect on line shapes. In Fig.
7.2, we plot the spectra of H-like Li ions, which are emitted from the center and
the edge plasma, respectively. The asymmetric experimental line shapes are clearly
seen; this is due to the atomic fine structures, which are dependent on the population

density distribution over the angular momentum quantum number /. The asymme-

try is dependent on the electron temperature which determines the I-distribution of
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the radiative recombination rate coefficients as shown in Fig.10.1(b). Now, we have
two free parameters: electron temperature which accounts for the asymmetry of line
shapes, and ion temperature which accounts for the line width. We optimize the two
parameters to get the best agreement with the experimental results. Then we obtain
that the electron and ion temperatures are T, = 30 £ 5 eV and T; = 8 £ 2 eV in the
center plasma, and T, = 10 £ 2 eV and T; = 5 £ 1 eV in the edge plasma. In the
figure, we also plot the spectra with the Zeeman effect ignored by the dashed line.
In this case, we need T; = 15 eV in the center and T; = 10 eV in the edge to fit
the experimental measurements. Thus we get the higher ion temperature by about
a factor 2 if we do not take into account the Zeeman effect. The ion temperature

derived by us is also lower than the electron temperature in this recombining phase.

Let us note at this point that the wavelength at the peak of the charge exchange
spectra and of excitation spectra are shifted in the shorter wavelength than that of
the recombing spectra by 0.1A and 0.2A | respectively. Line widths of the charge
exchange spectra and of the excitation spectra are wider than that of the recombi-
nation spectra. This wavelength shift and spectral broadening are considered due to
the difference of the I-distributions of charge exchange, excitation and recombination

processes as shown in Fig. 10.1.

The spectral fitting with the assumption of the statistical weight [-distribution
population densities is widely practiced to obtain ion temperatures from measure-

(111] " The line profile assuming the statistical weight I-

ments such as in Ref.
distribution and without the Zeeman splitting are also shown in Fig. 7.1 and 7.2
by dash-dotted lines. Since the I-distributions of radiative recombination are fairly
close to those of statistical weights, the radiative recombination spectra are in good
agreement with the profiles obtained from the statistical weight distribution assump-
tion. The charge exchange recombination spectra, however, are significantly different
from the statistical weight spectra, i.e. they are broader than the latter and locate
at the shorter wavelength side. These results show that we have to take into account
the population mechanism and the Zeeman effect properly to obtain the correct ion

temperatures from the spectral profiles.

In the above discussions, the direct excitation have been neglected for the plasma

after the trun-off of NBIL. From Fig. 10.1, we could see that the effective population

coefficients of radiative recombination and excitation are of the same order of mag-
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nitude for electron temperature at tens of eV. Thus, if an emission originating from
excitation is comparable with radiative recombination, one must have the density
ratio of H-like Li?*(1s) ions to fully ionized Li** ions to be nearly equal to unity.
The plasma, however, should be recombining from a high temperature plasma, in
which the density of Li*t ions is much higher than that of Li**(1s) ions. Even in the
ionization balance, the abundance Li** ions is still almost one order of magnitude
higher than of H-like Li%*(1s) ions at electron temperature T, = 20 eV 1% So the

contribution from the direct excitation can be neglected safely.

We estimate here the motional Stark effect arising from the interaction with the
confined magnetic field. Although Li?>* ions as impurities in plasma do not move
directionally, we assume they are moving perpendicular to the magnetic field with
the thermal velocity. The maximum of the Stark splitting for Li** ions with ion
temperature of one hundred eV is 0.894 cm™' of the outer components, nl = 4,
n2 = 0 and nl = 0, n2 = 4, (nl and n2 are the quantum numbers in a parabolic
coordinate) for n = 5 in a magnetic filed B = 2 T. The minimum of Zeeman splitting
is 0.934 cm™!, which is still stronger than the motional Stark effects. Thus we may

say that the motional Stark effects are not important in our case.

One more important fact is to be noted here: in our fitting procedure, we had to
shift whole the calculated spectrum toward the shorter wavelength by 0.15 A with
respect to the measured one. Since the shift does not depend either on the location

or on weather the neutral heating beam is turned on or off. We do not have any

explanation and suggest an error in the wavelength calibration of the spectrometer.
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11.0 Conclusion

We have presented the detail calculation of line profiles of H-like Li ions in a
magnetic confined plasma. In our calculation, the population densities of nl resolved
states of H-like Li ions are separated into three components, depending on excitation
from the ground state, electron-ion recombination and charge exchange with neutral
hydrogen. The energy levels and transition probabilities of the H-like system are

calculated by diagonalizing the Hamiltonian with the magnetic interaction included.

Our calculations provide a fairly good description of the measured spectra [t
and we obtained the ion temperatures from the spectral profiles measured during
NBI and after NBI turned off. Ion temperature derived by ignoring the Zeeman
effect is two times higher than that obtained by including the Zeeman broadening.

The present method is readily extended to He-like or Li-like ions.




APPENDIX A
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APPENDIX A One-electron Diatomic-Molecular Orbital

The Hamiltonian of one electron moving in the field of two fixed charges Z4 and
Zp is given by Eq.(3-5), that is

Lo Za 2 o)

hel = -
2m TA B

In the prolate spheroidal coordinates this equation is separable, and we obtain:

o
7o 21Q(g)=0 (A-2)
-i(g‘z _ 1)i __¥ Rz £ — 22— 1) +A] X(E,R) =0 (A3)
| d¢ ¢ -1 " ’
(L)l Rz 0 —A} Y(m,R) =0, (Ad)
| dn dn  1—n? - ’ ’

where ¢ is the energy parameter, i.e. € = —2c?/R? (discrete state) or € = 2¢*/R?
(continuum state), Z, and Z_ are charge parameters given by Z, = Zp + Z4 and
Z_ = Zg — Z4. Here p and A are the separation constants. Solution of Eq. (A-
2) gives Q(¢) = exp(ium)/v/2r. Finally, the electronic bound- and continuum-state

wave function

can then be factorized and written as
k(€ m, ¢; R) = Ch(R) Xk (&, R)Yi(n, R) exp(ipm)/Ver (A-5)

where Ci(R) is the normalization constant, and functions X;(§, R) and Yi(n, R) de-
scribe the quasi-radial and quasi-angular motions of electron, respectively. The index
 labels the component of electronic angular momentum on the R axis. Several meth-
ods have been developed through the years which can treat these kinds of differential
equations (A-2,-3,and -4) in which the separation constant A and energy constant c
are R dependent, e.g. Refs. [97,98,1357139]

The bound state wave functions both X (¢, R) and Y (n, R) can be expanded in a

97,135,138, 139])

suitable power series (there are several possibilities -see Refs. [ , obtaining

recursion relations for the coefficients and solving them by matrix or infinite continued
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fraction methods. In the present study, the “radial” wave function A(§, R) is expanded

in
X(&,R) = (€2 — 1)*(€ +1)7 exp(— th n D (A-6)
with
o=R/2c—pu—1
and the “angular” wave function M (n, R) is expanded in
Y (n,R) = exp(—cn) Y diP}'(n). (A-7)

I=p

Here P/ (n) denotes the associated Legendre polynomials. The obtained three term
recursion relations for g, and d; are then solved by infinite continued fraction method.
Using this method it was possible to obtain the potential curves with accuracy better
than 10 significant digits. To compute the electronic wave functions and couplings
simply, the function Y (5, R) is written as

Y(n,R) = fiPl(n). (A-8)
I=p

The same procedure can be used to calculate the separation constant and the
angular wave function for the continuum states. However, the radial part must be
calculated numerically. Integration starts from £ = 1 with |[A({ = 1, R)| < 400 to a
sufficient larger value of £na.x Where X (€, R) is accurately matching the asymptotic

boundary condition,

RZ, A
X(£ = oo, R) — Cl—gsin(cﬁ B2 tn(20) - 2+ 6, (A-9)

where d,, is the phase shift for the radial function.

I would like to note that A represents the eigenvalue of the constant of separation,

which comes from the additional symmetry in two-center Coulomb system. This
symmetry is described by the invariant operator A 137

. R? 92
A=L*—- —4—(A - —3;2—) R(cos#; — cosfy) — p?

, wWhere L is the orbital angular momentum of electron. At the united-atom limit

R =0, A reduces to —L? and the corresponding eigenvalue is therefore A = —A(A+1).
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Finally, one sees that these one electron diatomic orbitals are labelled by two more
quantum numbers ), p, in addition to energy. Bound states are denoted ¢(nAu; 7 E),
with energy eigenvalues e(nAy; R) < 0, and continuum states ¢(eAu; 7; ﬁ) with con-
tinuous eigenvalues € > 0. At each R these wave functions satisfy the orthogonality

relations

(N R)|p(nd; R)) = Sundxabu
(BeXNW; R)|p(n; B)) = 0 (A-10)
(BN R)|d(edu; R)) = 6(¢ — €)8xadup-

The prolate spheroidal quantum numbers X, i are analogous to spherical polar quan-
tum number [, m. Numerical calculations show the orthogonality relations are sat-
isfied better than 8 significant digits for R < 40 for the wavefunctions used in this

work.
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APPENDIX B Separation of Angular Couplings

Here I apply the separation of angular couplings to the MO expansion, and derive
the radial Schrodinger equation. This separation is made possible by transforming
the coordinate system from a space-fixed coordinate system to a molecular-rotating

coordinate system 132 %],

Let ¥ = (z,y,z) be the coordinate of electron in the space-fixed frame, while

7 = (z',y/, 2’) denotes the same vector in the rotating molecular frame. The relation

between them is

' = xcosOcos® +ycosOsin® — zsinO (B-1)
y = —zsin®+ycosd (B-2)
2 = rsin®cos® + ysinOsin® + zcosO. (B-3)

Here (©, ¢) are the usual spherical polar angles of the vector R in the space-fixed
frame. In spherical polar coordinates, the gradient —i{VR (keeping 7 fixed) can be

written
—iV g = Er(—i0/OR)ay: + Eo[R™(—i0/00)sy.] + 85[(Rsin ©) ' (—i8/0P)ay:] (B-4)

where €r, €0 and &p are the unit vectors of the spherical polar system at R (they
coincide with the 2/, ' and 9/, respectively). Using Eq. (B-1) the components of this

operator can be rewritten

—i(8)0R)zy; = —i(0)OR)wyy (B-5)
—i(8)00)ay; = —i(0)8O)gryy — Ly (B-6)
—i(0)0®)ay, = —i(8)0D)gnyr + [5inOLy — cosOL,], (B-7)

where L, . are the components of the electronic orbital angular momentum oper-
ator.

The P is therefore expressed as [

Pui = PEEr + Py + Poya, (B-8)
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where

PE. = (pw|(—i0/0R)|ex)
P8, = —R Ypw|Lyler)
Poy = +R_1(<Pk'|ffm'|90k>—uk (B-9)

(and I have assumed that ¢, is an eigenstate of L, with eigenvalue yuzh).

The corresponding form for A is obtained simply by expressing the vector § in

terms of its components on the z’, ¥/, 2’ axes:

Age = ilew — e){pwls|or)
ARe = ilew — e) (w52 |n)
Apr = ilew — ) (owlsyler)- (B-10)

Given the components of P and A by Egs. (B-9) and (B-10), we can construct
explicit solutions to the close-coupled equations (3-19) for inelastic scattering in a
finite manifold of molecular electronic states. Equations (3-19) can be reduced to

one-dimensional (radial) equations by using a partial wave expansion.

Partial wave expansion in symmetric-top eigenfunctions takes the form:

F(R) =R Y Gi™®Th,6,9) (B-11)

J=Ay My=J

Here it is assumed that the electronic basis state ;. is the eigenstate of L, with

eigenvalue A;. The functions Tf}fm satisfy the differential equations

2
— | (sin @)_1i sin @——a— + (sin®)~2 (—8— — 1Ay cos 9) - Az] T%\h = J(J-I-l)T/J\}“VIJ

00 00 od
(B-12)
and 5
—io= T, = MU T, (B-13)

where J is the total angular momentum, and M its (lab frame) z-axis component,

and Ay, the figure-axis component. In this representation, the angular components of
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P+A couple states ¢y, with different A, but are diagonal in J, M, and a system of

coupled radial equations arises for each J, which may be written as

{i [——z’—d— + PR +AR}2 + [J(J+ D~ A-k] 1+ i D - Q]} Gy (R)

24 dR 2uR?
=[1E - U(R)]| Gy (R), (B-14)
where

Dui = (P& + ADy)? + (P + A%y) (B-15)

and
Qi = 6(Aw, Ak )R Y(JFA) (J 2+ A+ 1)V [(PE+AD) £i( PR +AR,)] (B-16)

with
Puk = R~ x| Lot 1) (B-17)

The remainder of P® has been absorbed in the rotational kinetic energy. Q which
couples states whose A values differ by +1, is the angular or “Coriolis” coupling; D
is diagonal in A(Ay = A;) and represents a small correction to the rotation kinetic

energy.

Equations (B-14) can be reduced to a more conventional form,

{i I:_i_fl___i_PR_i_AR 2+K(K+1)1+ K(K+1) [P(—)+A9]}G(R)

24 dR 2uR? uR
= [1E — U(R)] G(R),(B-18)

by taking into account that the angular momentum of heavy particles K is much
greater than that of electron system (A), ie., K = J > A.
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