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Abstract

Writing parallel programs has been proven over the years to be a difficult task, requiring
various specialized knowledge and skills. Recent years, how to process large scale data
efficiently becomes a crucial problem in practice. Traditional parallel programming models
and frameworks like MPI, OpenMP, have been widely used to write efficient parallel pro-
grams for many years. However, for data-intensive processing, programming under these
frameworks usually directly leads to overly complex, non-portable, and often unscalable
code.

High level data-intensive parallel programming frameworks such as MapReduce become
very popular in data intensive processing and analysis, which are actually based on a few
specialized algorithmic skeletons, e.g., Map and Reduce functions. Many researchers and
programmers implement various of algorithms on data mining, machine learning or nature
language processing, using MapReduce-like frameworks. Despite the success of MapReduce-
like frameworks, developing efficient parallel programs is still a challenge. The main diffi-
culties are two folded.

The first difficulty is the programmability of these frameworks. The programming interface
is restricted to a few higher order functions so that it is difficult to represent various algo-
rithms in such a high abstraction level. There are many research papers explaining how to
transform a classic parallel algorithm to MapReduce, which also confirms our observation
that programming under such a programming model is still a non-trivial task.

The second one is that optimization for certain parallel programs developed by MapReduce
is difficult. To measure and adjust the performance of MapReduce programs usually causes
lots of efforts, not only because of the complex software/hardware environments (clusters
containing thousands of computers) but also because of the large amount of input data. The
static analysis and optimization is also not easy because of the in-black-box processes of
MapReduce.
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An ideal programming model is that users just need to write specifications of their problems
in a natural (even naive) way, but the programming framework can produce efficient code
for parallel executing.

The main contribution of this thesis is that we have developed a high-level programming
framework for resolving above problems, based on program transformation. The objective
is to introduce a simple, expressive, and flexible programming interface for representing al-
gorithms in a structural way and the underlying optimizing mechanism of the framework can
automatically transform the high-level structural programs to efficient and scalable parallel
programs.

Under the programming model of our framework, users write clear specifications of their
problems in terms of structural recursions in sequential manner, without any concern of ef-
ficiency or parallelism. Then the structural recursions will be transformed to parallel imple-
mentations of algorithmic skeletons by the techniques of program calculation. Moreover,
this programming framework enforces deterministic semantics of programs and thus can
simplify composing, optimizing, porting, reasoning about, debugging, and testing parallel
programs.

Inside this framework, we provide several libraries that support writing efficient parallel pro-
grams in Java or other popular languages. We show that many problems which are difficult
to be expressed by MapReduce can be easily implemented in our framework. Experimental
results show that using our framework, users can easily write efficient parallel programs to
deal with large input data.
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Chapter 1

Introduction

1.1 Background

Nowadays, efficiently processing and analyzing terabytes of data from the Internet highly
relies on parallel computing. However, distributed/parallel programming is generally con-
sidered as a difficult task, especially when the targeting environment is a large cluster of
computers. For example, programs written in conformation with many widely used paral-
lel programming models like Message Passing Interface (MPI [105]), Threading Building
Blocks (TBB [73]), or multi-threaded languages like Java and C#, can be extremely difficult
to understand and debug.

Recently, high level parallel programming models and frameworks such as MapReduce
[43] and Pregel [90], have become popular in data-intensive computing. They provide high-
level programming models to simplify the parallel programming. For example, MapRe-
duce is based on two specialized algorithm skeletons, i.e., the Map and Reduce functions.
Programmers only need to implement their algorithms in terms of Map and Reduce; the
MapReduce framework then automatically execute user-programs in parallel. MapReduce
and MapReduce-like frameworks are widely used in both industry and academic research.
In particular, Hadoop [5] is a famous open-source implementation of MapReduce. Spark
[133] is a fast in-memory MapReduce-like framework, which is implemented in the JVM
based functional language Scala [109].

Despite the success of MapReduce-like programming models, developing efficient MapRe-
duce programs is still a challenge. The main difficulties are considered as follows.
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Firstly, the programming model is limited to a few specified basic skeletons (two functions
in the case of MapReduce). The restriction on the expressiveness of such skeletons affects
the programmability a lot. For example, implementing many algorithms in MapReduce,
even ones have already been developed in Pthreads or MPI, still need a lot of efforts because
of the restrictions of MapReduce programming model.

Secondly, there is a big gap between the programming model and the algorithms of indi-
vidual problems. Taking the MapReduce as an example again, using Map and Reduce is
not a natural way to describe the problem’s specification. MapReduce Programming model
requires programmers to develop divide & conquer algorithms that must fit its massive par-
allel execution manner. Particularly, MapReduce is not easy to use for many problems on
graphs, therefore several particular frameworks especially for graph analysis are developed
[56, 90, 118]. Moreover, the programming interface of MapReduce is considered being
low-level and rigid [50, 87, 111, 133]; programming with it is difficult for many users.

Thirdly, optimization is difficult for certain programs. Measuring and adjusting the per-
formance of MapReduce programs usually needs lots of efforts, not only because of the
complex software/hardware environments (clusters containing thousands of computers) but
also because of the large amount of input data. The static analysis and optimization is also
not easy because of the in-black-box processes of MapReduce.

Skeletal parallel programming based on algorithmic skeletons [9, 44, 82, 112] gives a sys-
tematic way to construct or derive efficient parallel programs using generic and expressive
program patterns or structures, a.k.a, skeletons. Algorithms can be represented as a sequence
of skeletons or compositions of skeletons. Optimizations can be done by transforming an
inefficient representation (program) to an efficient one by using algorithmic skeletons as the
underlying building blocks to represent the programs [2, 33, 41, 96, 101]. However, the
studies on skeletal parallel programming do not provide optimal solutions for the particular
domain of data intensive parallel processing. Instead, they are more like interesting in theo-
retic discussions but do not have much practical use, as Murray Cole said, skeletal parallel
programming still “remains absent from mainstream practice" [38].

This thesis is a study on constructing a high-level programming framework for resolving
the above problems using a calculational approach. The objective is to introduce a simple,
expressive, and flexible programming interface for representing algorithms in a structural
way, and to enable the underlying optimizing mechanism of the framework to automatically
transform the high-level structural programs into efficient and scalable parallel programs.
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Our framework is suitable not only for dealing with problems on lists or sets (like MapRe-
duce does), but also for dealing with many important optimization problems on graphs.

1.2 High-Level Parallel Programming Models

High-level parallel programming approaches, e.g., skeletal programming [34] and MapRe-
duce [43], tend to rely on a relatively high level of abstraction of parallelism and implemen-
tation. High-level parallel programming frameworks can help users get rid of hard work
on implementing miscellaneous details such as spawning a thread or maintaining a critical
section between several threads.

Skeletal Parallel Programming. Skeletal parallel programming is a well-known high-
level parallel programming approach that has been well-documented in the literatures [4, 7,
34, 38, 61, 112]. It observes that many parallel algorithms can be characterized and classi-
fied by their adherence to one or more generic patterns of computation and interaction. Such
generic patterns are called algorithmic skeletons which can be abstracted and provided as
a programmer’s toolkit [27, 34, 95]. A program runs on machines with different architec-
tures can be represented as a unique specification by skeletons that transcend architectural
variations. The underlying implementations of these skeletons can be specialized to address
performance issues in different hardware/software environments.

Algorithmic skeletons are polymorphic higher-order functions representing common paral-
lelization patterns, and they are implemented in parallel [34]. Users can use such skeletons
to compose parallel programs without considering low-level parallelism or implementation.
Algorithmic skeletons can be used as building blocks of parallel and distributed applications
by integrating them into a sequential language. The algorithmic skeletons are in two cat-
egories: task-parallelism skeletons and data-parallelism skeletons. Note that in this thesis,
when we mention algorithmic skeletons, we are only talking about data-parallelism skele-
tons.

For data-intensive computing, usually, the parallel programs are firstly developed and tested
with small data on a single machine or a small computer-cluster, and then deployed onto
computer clusters which may contain tens of thousands of computers and process hundreds
of thousands of terabytes data. Parallel programs are required to have good scalability and
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Fig. 1.1 Parallel Data-processing Flow of MapReduce

can be easily debugged, tested and tuned by using small instances of input.

MapReduce. MapReduce [43] is a programming model for data-intensive distributed par-
allel computing. It becomes now de facto standard for large scale data analysis and has
emerged as one of the most widely used platforms for data-intensive distributed parallel
computing.

Many algorithms can be represented by using two functions Map and Reduce in MapReduce
programming model. However, MapReduce model is still considered being too low-level
and rigid [50, 87, 111, 133], thus many higher level frameworks are built upon it. Sawzall
[111], Pig Latin [50], DryadLINQ [132], and Hive [127] offer high-level languages with
SQL-like syntax for Map-Reduce-like environments.

Automatic optimization of MapReduce programs is an important problem and studied by
[63, 75]. These studies more or less using the traditional database query optimization ap-
proaches. For example, Pig [50] has query optimizers for generating logic plan, physic
plan and also MapReduce-execution plan. Manimal [75] is a framework which can ana-
lyze MapReduce programs (Java code) and apply appropriate optimizations. Usually, these
optimizations can achieve better performance but do not change the algorithmic complex-
ity. However, [63, 75] are either ad hoc or domain-specific optimizations. They are quite
difficult to be ported to another programming environment. Domain-independent fusion op-
timization is still necessary for different domain-problems. As an important part, this thesis
studies algorithmic approaches to automatically constructing and optimizing MapReduce
programs.
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1.3 Automatic Parallelization and Optimization by Program
Calculation

Program calculation [10, 15] (also called calculational programming) is a style for achiev-
ing transformational program development. In program calculation, we derive efficient
programs by a set of program transformation laws. For example, the map function is a
higher-order function that is defined as follows:

map f [ ] = [ ]

map f ([a]++xs) = [ f (a)]++map f xs.

In the above definition, [ ] denotes an empty list, [a] denotes a singleton list that consists of
an element a, and ++ denotes the concatenation of two lists. The map function takes two
arguments: a function f and an input list, and it applies the function f to each element in
the list. We also use (map f ) to denote a map function parametrized by a f .

Given two differently parametrized map functions, for example, (map sqrt) and (map sqr)

and an integer list [1,2,3,4]. (map sqrt ◦map sqr) [1,2,3,4] means we first compute the
square of each element in the input list, then let the result, i.e, a new list [1,4,9,16] be the
input of (map sqrt). Then (map sqrt) computes all square roots of elements in the list and
we get result [1,2,3,4]. The total work of the computation contains two loops: (map sqr)

consumes a list and outputs a list; (map sqrt) consumes the output of first one and produces
a list as its output.

On the other hand, we have the following theorem on map, named map−map fusion theo-
rem [15]. For any two functions f and g, the following equation holds [15]].

map f ◦map g =map ( f ◦g)

According to this theorem, from (map sqrt ◦map sqr), we can derive a new program:
map sqrt◦ sqr. The total work of map sqrt◦ sqr function is 4 times of invocation of the
composed function sqrt◦ sqr in one iteration, which is much more efficient than (map sqrt◦
map sqr) for large input data because the load time of large data is a crucial factor for perfor-
mance. This theorem identifies a useful idiom in transformational program development and
it provides a high-level program transformation rule for a high-level programming language
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containing map as a primitive construct.

Program calculation is a special form of program transformation, which is based on high-
level program transformation rules, namely calculational laws. It reduces the difficulty of
writing efficient algorithms. Users just need to represent computations in a direct (even
naive) way, and we can apply calculational laws to generate efficient programs, under certain
necessary conditions.

To be more specific, in our framework, programmers can represent their algorithm in a
natural way simply by writing structural recursions on particular data structures. Structural
recursion is a fundamental part of the definition of functions in type theory, and also in func-
tional programming languages. Structural recursions on lists and trees are used to construct
parallel programs which are studied in [13, 36, 58, 68, 92]. Structural recursions act as com-
putation specifications of users’ problems. Then our framework transforms specifications
to efficient parallel programs by the calculation rules deterministically. For example, the
following transformation indicates how we transform a user-program (sqr_sum function in
pure functional style) to a MapReduce version parallel-sqr_sum.

The square_sum function is defined as following structural recursion form:

sqr_sum [] = 0
sqr_sum [a] = sqr a

sqr_sum (x++y) = sqr_sum x+ sqr_sum y.

Here, users give a function sqr and an associative binary operator + for sqr_sum. Our
framework then generates a MapReduce program sqr_sumMapRed which is a parallel version
of sqr_sum.

sqr_sumMapRed = reduce (+)◦ (map sqr)

There have been many studies on formalizing effective calculational laws [11, 12, 39, 40,
53, 102, 116], deriving nontrivial algorithms [14, 15, 17, 18, 26, 121], and automating calcu-
lations [42]. Unlike the traditional fold-unfold approach [107] to program transformation on
arbitrary programs, the calculational approach imposes restrictions on program structures,
resulting in some suitable calculational forms such as homomorphisms and mutumorphisms

that enjoy a collection of generic algebraic laws for program manipulation [110].

In such transformational computations, parallelism is not a part of the problem specifica-
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Fig. 1.2 Overview of Our Calculational Framework for High-level Parallel Programming

tion. Users just need to consider how to represent their problems/algorithms in the form
of structural recursions. The whole picture of the calculational approach to parallel pro-
gramming for data intensive processing is summarized in Figure1.2. In our framework, the
programming interface is defined as structural recursion functions on lists. The framework
will transform the specifications to intermediate representations (by using algorithmic skele-
tons) which represent efficient parallel algorithms. Finally, intermediate representations are
implemented for different hardware environments.

For optimization problems on graphs, we transform graphs to a special form of trees (tree
decompositions of graphs) and then trees are represented by lists, so that we can apply a
similar parallelization approach to such lists.

1.4 Contributions and Organization of the Thesis

The main contribution of this thesis is a high-level parallel programming framework for
data-intensive computing. Our framework can generate efficient parallel programs for pro-
cessing large data sets. In other words, the optimization mechanisms of this framework are
particularly suitable for the operations performed on large data sets, and only work with
data-parallelism skeletons like map, reduce, or scan.



8 Introduction

We have developed several libraries [85–87, 129] that support efficient parallel process-
ing over various data structures such as lists, sets, trees and graphs. Generally, the frame-
work provides a simple programming interface that parallelism is not user-concerned. It
can perform light-weight program transformations to produce efficient and scalable parallel
programs. Moreover, this programming framework enforces deterministic semantics that
simplifies composing, optimizing, porting, reasoning about, debugging, and testing parallel
programs. Finally, for a class of NP-hard optimization problems on graphs, we provide pro-
gramming methodologies that allow users programming in an algorithmic and easy way to
obtain exact or approximate solutions.

The organization of this thesis is as follows. Chapter 1 is the introduction of this thesis.
The other chapters are grouped into three parts. In the first part (Chapters 2 and 3 ), an ap-
proach to resolving problems of the data model list is introduced. In Chapter 2, algebras for
various data structures and homomorphisms on the algebras are introduced. Our high-level
parallel programming principle is based on the structures of data and algebras for such data
structures. There are deep relationships between the algebraic data structures and the com-
putations (i.e., the problem specifications as well as the algorithms) defined on them. We
make use of the mathematical properties (e.g., associativity, commutativity, distributivity
and fusibility of the operators inside the definitions of algebras) of these algebras to con-
struct programs and also we can transform/optimize programs thanks to these properties. In
Chapter 3, we introduce our calculational approaches to resolving programming problems
that are based on the data model of lists (also for sets).

In the second part (Chapters 4 and 5), our contributions on resolving programming prob-
lems for some combinatorial optimization problems on graphs are introduced. In Chapter 4,
we introduce our approach to parallel programming on graphs that can be represented as a
special form of trees by which we can represent a large graph as a tree and applying efficient
dynamic programming algorithms on such tree to resolve many NP-hard optimization prob-
lems [25, 114]. Tree decompositions act as a bridge that brings the unstructured graph data
into our framework. In Chapter 5, we introduce our approximation approach to resolving
optimization problems on graphs, which makes our framework practically useful.

Implementations, evaluations and conclusions are covered in the last part (Chapters 6 and
7). In Chapter 6, we explain the implementation of several libraries inside our framework.
Finally, a summary of this thesis and an outline of future work are given in Chapter 7.



Chapter 2

Algebraic Data Structures and Program
Calculation Laws

In this chapter, firstly, we will introduce notations, operators, and their properties used
throughout the thesis. Then, we will introduce algebras, structural recursions on lists [13,
15, 37, 66, 68, 104], and trees [52, 54, 101, 103, 123], a.k.a, their homomorphisms and the
calculational laws of them.

Structural recursion is a fundamental part of the definition of functions in type theory, as
well as in functional programming languages. Structural recursion is algorithmic, which in-
dicates the way of computing on algebraic data types. They can be understood and analyzed
locally and easy to be mapped to parallel computations. There are several algebraic laws for
optimizing the compositions of structural recursions, which has been shown in the theory of
Constructive Algorithmics [10, 14, 120, 122].

Structural recursions discussed in this thesis are also called homomorphisms because their
computation structures and their processing data structures are closely related to each other.
We do not distinguish the phrase structural recursion and homomorphism in this thesis.

2.1 Basic Notations

In this section, we introduce necessary preliminaries and notations used in this thesis.
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2.1.1 Functions

The notations we use to formally describe algorithms are based on the functional program-
ming language Haskell [16].

Function application can be written without parentheses, i.e., f a equals f (a). Functions
are curried and function application is left associative, thus, f a b equals ( f a) b. Function
application has higher precedence than operators, so f a⊕b = ( f a)⊕b.

Binary operators can be used as functions by sectioning as follows: a⊕ b = (a ⊕) b =

(⊕ b) a = (⊕) a b. The identity element of a binary operator ⊕ is represented by ı⊕. We
use the operators ◦ and a over functions: by definition, ( f ◦g) x = f (g x) and ( f a g) x =

( f x,g x). The maximum and minimum operators are denoted by arrows ↑ and ↓.

x ↑ y = x≥ y ? x : y

x ↓ y = x≤ y ? x : y

Two binary operators≪ and≫ are defined by a≪ b = a, and a≫ b = b, respectively.

Definition 2.1 (Right Inverse). A function f ◦ : B→ A is said to be a right inverse of an-

other function f : A→ B if f ◦ f ◦ ◦ f = f holds.

2.1.2 Sets

A set is denoted by a pair of curly brackets, for example, a denotes a set that consists an
element a, and 1,2,3 denotes a set that consists of 1, 2, and 3. The empty set is denoted
by /0. All subset of A is denoted by 2A that itself is a set. Basic operators on sets: ∩, ∪
and ×, are defined as: A∩B := {a | a ∈ A∧ a ∈ B}, A∪B := {a | a ∈ A∨ a ∈ B}, and
A×B := {(a,b) | a ∈ A∧b ∈ B}. The size of a set S is denoted by |S|.

2.1.3 Graphs

Formally, a graph G = (V,E) is a set of vertices V and a set of edges E formed by unordered
pairs of vertices. Usually, we use n denoting |V | and m for |E|. Unless especially mentioned,
all graphs in this paper are assumed to be finite, simple and undirected. We also assume the
graphs under consideration are connected, since otherwise, the techniques being discussed
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here can be applied to find solutions for each connected component, which can then be easily
combined into a solution for the entire graph. For a vertex v ∈V ,let NG(v) = {u|(u,v) ∈ E}
be the (open) neighbors of v. The closed neighborhood of a vertex v ∈ V in G is NG[v] :=
NG(v)∪{v}. When there is no ambiguity, we use N(v) instead of NG(v). We say H = (W,F)

is a subgraph of G=(V,E), denoted H ⊆G, if both W ⊆V and F ⊆E. An induced subgraph
is one that satisfies (x,y) ∈ F for every pair x,y ∈W such that (x,y) ∈ E. We denote the
induced subgraph of G with vertices X ⊆V as G[X ].

In graph theory, a tree T (I,F) is an acyclic graph that I ⊂ N∪{0}, and any two vertices
are connected by exactly one simple path. In a tree, the number of vertices are one plus the
number of edges, i.e., |I|= |F |+1.

2.2 Theory of Lists

Firstly, we will introduce an algebra of lists and then we explain a special form of structural
recursion on list. At last we will introduce basic program calculation theorems on lists.

2.2.1 Algebraic Data Type of Lists

Lists are sequences of elements, we use the following algebra of [14] to represent them.

Definition 2.2 (Algebraic Data Type of List [14]). The algebraic data type of lists is de-

fined with two constructors: ++ (concatenation) and [·] (singleton).

data List α = [ ]

| [·] α

| (List α)++(List α)

Here, [·] α , or abbreviated as [α], represents a singleton list of element α . For two lists x and
y, x++y represents the concatenated list consisting of elements of x followed by those of
y. For example, a list of three elements n1, n2, and n3 is represented by [n1]++[n2]++[n3],
and can also be abbreviated as [n1,n2,n3]. The notation α : x = [α]++x shows the head of
a list is an element α and rest part is a list [x]. The operator ++ has the associativity, a.k.a,
for any lists x, y, and z, two concatenations x++(y++z) and (x++y)++z form the same
list.
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As an abstract data type, a list is a finite ordered collection of values, where the same value
may occur more than once. A set is a finite unordered collection of values, where every
element does not have duplication. A multiset or a bag is a special set that may contain
multiple copies of a value.

2.2.2 List homomorphism

List homomorphism is a special form of structural recursion, which has a close relationship
with parallel computing and they have been studied intensively [37, 60, 68].

Given a list, a list homomorphism on it is defined as follows.

Definition 2.3 (List homomorphism). Function h is said to be a list homomorphism, if

and only if there is a function f and an associative binary operator⊙ such that the function

h is defined as follows.
h [ ] = ı⊙
h [x] = f x

h (xs++ys) = h xs⊙h ys.

Note that ı⊙ is the unit of ⊙. Since h is uniquely determined by f and ⊙, we write h =

([ f ,⊙]).

For instance, the function that sums up the elements in a list can be described as a list
homomorphism ([id,+]):

sum [ ] = 0
sum [x] = x

sum (xs++ys) = sum xs+ sum ys.

When function h is a homomorphism, the computation of h on a list, which is a concatena-
tion of two shorter ones, can be carried out by computing h on each piece in parallel and
then combining the results.

Before introducing the homomorphism theorems, we should provide the definitions of left-
wards function and rightwards function.
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Definition 2.4 (Leftwards function). Function h is leftwards if it is defined in the following

form with function f and operator ⊕,

h [ ] = ı⊕
h [x] = f x

h ([x]++xs) = x⊕h xs.

Definition 2.5 (Rightwards function). Function h is rightwards if it is defined in the fol-

lowing form with function f and operator ⊗,

h [ ] = ı⊗
h [x] = f x

h (xs++[y]) = h xs⊗ y.

Here, the binary operators ⊕ and ⊗ need not to be associative. Below are two well-known
theorems for homomorphisms [53].

Theorem 2.1 (The First Homomorphism Theorem). Any homomorphism can be written

as the composition of a map and a reduce:

([ f ,⊙]) = reduce (⊙)◦map f .

This theorem says that any list homomorphism can be decomposed to a map and a reduce,
each of which is suitable for efficient parallel implementation.

Theorem 2.2 (The Third Homomorphism Theorem). Function h can be described as a

list homomorphism, if and only if it can be defined by both leftwards and rightwards func-

tions. Formally, there exists an associative operator ⊙ and a function f such that

h = ([ f ,⊙]).

if and only if there exist f , ⊕, and ⊗ such that

h ([a]++x) = a⊕h x

h (x++[b]) = h x⊗b.

The third homomorphism theorem is an important and useful theorem for automatic deriva-
tion of list homomorphisms [53, 103], because it gives a necessary and sufficient condition
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for the existence of a list homomorphism. As will be seen later, our parallelization algorithm
is mainly based on the third homomorphism theorem.

List homomorphisms fit well with MapReduce, because their input can be freely divided to
sub-lists which can be distributed among machines. Then on each machine the programs are
computed independently, and the final result can be got by a merging procedure. Therefore,
if we can derive an efficient list homomorphism to solve a problem, we can solve the prob-
lem efficiently with MapReduce, enjoying its advantages such as automatic load-balancing,
fault-tolerance, and scalability.

2.2.3 Basic Parallel Skeletons On Lists

Map and Reduce. The skeletons map and reduce are two most commonly used algorith-
mic skeletons.

Definition 2.6 (Map). For a given function f , the function of the form ([[·]◦ f ,++]) is a map

function, and is written as map f .

map f [ ] = [ ]

map f [a] = a

map f (x++y) = (map f x)++(map f y)

Definition 2.7 (Reduce). The function of the form ([id,⊙]) for some ⊙ is a reduce function,

and is written as reduce (⊙).

reduce (⊕) [ ] = ı⊙
reduce (⊕) [a] = a

reduce (⊕) (x++y) = (reduce (⊕) x)⊕ (reduce (⊕) y)

Zipwith and Scan. The skeleton zipwith is an extension of map, and scan is an extension
of reduce.

Definition 2.8 (Zipwith). For a given function f , the function zipwith takes two lists of

the same length, and applies f to every pair of corresponding elements of the two lists to
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produce a new list.

zipwith f [ ] [ ] = [ ]

zipwith f [a] [b] = [ f a b]

zipwith f (x++y) (u++v) = (zipwith f x u)++(zipwith f y v)

Note that the length of x and u (also y and v) must be the same.

The skeleton zip is a specialization of zipwith to make a list of pairs.

zip = zipwith(λ x y.(x,y))

The skeleton scan holds all values generated in reducing a list by reduce (we assume that
input is a non empty list).

Definition 2.9 (Scan).

scan (⊕) [a] = [a]

scan (⊕) (x++y) = (scan (⊕) x)⊕′ (scan (⊕) y)

where
sx⊕′ sy = sx++map((reduce(≫)sx)⊕)sy

The function scan is very useful in algorithm design and is also a primitive operator in
lots of parallel computations [19, 20, 59]. For example, lexical analysis, quick sort, and
regular-expression matching can be implemented by using scan.

2.2.4 Basic Program Calculation Laws on Lists

Lemma 2.3 (Fusion law of list homomorphism[14]). Let g and ([ f ,⊕]) be given. If there

exists ⊙ such that for any x and y the equation

g(x⊕ y) = g x⊙g y

holds, then

g◦ ([ f ,⊕]) = ([g◦ f ,⊙]).

Proof. The lemma is proved by induction on the structure of lists.
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Lemma 2.4 (Map-map fusion [15]). The following equation holds for any functions f and

g.

map g◦ map f =map (g◦ f ).

Proof. We can prove the lemma by substituting map g and map f = ([[·]◦ f ,++]) to Lemma
2.3, for the function g and the homomorphism([ f ,⊕]) in the lemma, respectively.

This lemma is useful because we can fuse a sequence of map into only one map; we can
write a program step by step with many maps, and we can get efficient program by fusing
them by Lemma 2.4.

2.3 Theory of Trees

In this thesis, we mainly focus on two kinds of algebraic data structures: lists and trees. In
this section, the theory of trees is briefly reviewed.

2.3.1 Algebraic Data Type of Trees

The algebraic data type of trees is given as follows.

Definition 2.10 (Algebra Data Type of Tree [14]). The algebraic data type of trees is de-

fined with two constructors Leaf for leaves and Node for internal nodes as follows:

data Tree α = Leafα

| Node α [Tree α].

The Leaf is the constructor for leaves, and holds an element of type α . The Node is the
constructor for internal nodes and takes two parameters: the value of the node (in type of
α), a list of subtrees (in type of Tree α) In this thesis, we mainly deal with binary trees, in
which internal nodes have at most two children.

Definition 2.11 (Algebra Data Type of Binary Tree [14]).

data BTree α β = Leaf α

| BNode(BTree α β ) β (BTree α β )
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The BNode is the constructor for internal nodes and takes three parameters in this order: the
left subtree, the value of the node, and the right subtree. The value of the node has type β .

2.3.2 Tree Homomorphisms

For binary trees, the following binary-tree homomorphism (or tree homomorphism for
short) is given by [122, 124].

Definition 2.12 (Tree Homomorphism). Given two functions kl and kn. A function h is

called tree homomorphism (or simply homomorphism), if it is defined in the following form.

h (Leaf a) = kl a

h (BNode l b r) = kn (h l) b (h r)

Many computations on trees can be specified in the form of tree homomorphism. For exam-
ple, function hightbtree that computes the hight of a binary tree can be defined as follows:

hightbtree (Leaf a) = 1
hightbtree (BNode l b r) = 1 + (hightbtree l) ↑ (hightbtree r).

2.4 Related Work

Using list homomorphisms to develop divide-and-conquer paradigm are studied by [13, 37,
95, 125]. Using the three well-known homomorphism theorems for systematic development

of parallel programs are studied by [37, 53, 60, 68, 71]. It has been shown in [65, 104] that
homomorphisms can be automatically developed for solving various kinds of problems.

Matsuzaki et al. [93] has proposed the ternary-tree representation for binary trees, in which
three special nodes are introduced for the flexibility of structures. Morihata et al. [103]
developed automatic parallelization approach based on third homomorphism theorem and
applied it on trees.



Chapter 3

Calculational Approach to Constructing
Parallel Programs on Lists

In this chapter, the calculational approach to resolving programming problems that based on
the data model of lists (also for sets) is introduced. The main contribution of this work is a
novel programming model and its framework for systematic programming over MapReduce,
based on theorems of list homomorphisms [13, 37, 65].

3.1 Functional Formalization of MapReduce

MapReduce can be seen as a special case of skeletal programming model that only use two
skeletons: Map and Reduce. Map and Reduce skeletons are related to data-parallelism.
This thesis uses the capital MAP and REDUCE to denote the Map and Reduce, in order to
distinguish them from the higher order functions map and reduce of functional programming
languages.

In the MapReduce programming model, parallel computations are represented in the paradigm
of a parallel MAP processing followed by a REDUCE processing 1. Figure 1.1 shows the
typical data-processing flow of MapReduce.

MapReduce computation mainly consists of three phases: MAP, SHUFFLE & SORT, and

1The REDUCE processing can be done in parallel or sequentially.
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REDUCE2. In the MAP phase, each input key-value pair is processed independently and a
list of key-value pairs will be produced. Then in the SHUFFLE & SORT phase, the key-
value pairs are grouped based on the key. Finally, in the REDUCE phase, the key-value
pairs of the same key are processed to generate a result.

To make the discussion precise, we introduce a specification of the MapReduce program-
ming model in a functional programming manner. Note that the specification in this thesis
is based on that in [83] but is more detailed. In this model, users need to provide four func-
tions to develop a MapReduce application. Among them, the fMAP and fREDUCE functions
performs main computation.

• Function fMAP.
fMAP :: (k1,v1)→ [(k2,v2)]

This function is invoked during the MAP phase, and it takes a key-value pair and
returns a list of intermediate key-value pairs.

• Function fSHUFFLE.
fSHUFFLE :: k2→ k3

This function is invoked during the SHUFFLE&SORT phase, takes a key of an in-
termediate key-value pair, and generate a key with which the key-value pairs are
grouped.

• Function fCOMP.
fCOMP :: k2→ k2→{−1,0,1}

This function is invoked during the SHUFFLE&SORT phase, and compares two keys
in sorting the values.

• Function fREDUCE.
fREDUCE :: (k3, [v2])→ (k3,v3)

This function is invoked during the REDUCE phase, and it takes a key and a list of
values associated to the key and merges the values.

A functional specification of the MapReduce framework can be given as follows, which

2For readability, we use MAP and REDUCE to denote the phases in MapReduce, and fMAP and fREDUCE
for the parameter functions used in the MAP and REDUCE phases. When unqualified, map and reduce refer
to the functions of Haskell.
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Fig. 3.1 System Overview of Screwdriver

Listing 3.1 Programming Interface for List Homomorphism
1 public abstract class ThirdHomomorphismTheorem<T,S> {
2 public abstract S fold(List<T> values);
3 public abstract List<T> unfold(S value);
4 ...
5 }

accepts four functions fMAP, fSHUFFLE, fCOMP, and fREDUCE and transforms a set of key-
value pairs to another set of key-value pairs.

MapReduce :: ((k1,v1)→ [(k2,v2)])→ (k2→ k3)→ (k2→ k2→{−1,0,1})
→ ((k3, [v2])→ (k3,v3))→{(k1,v1)}→ {(k3,v3)}

MapReduce fMAP fSHUFFLE fCOMP fREDUCE input

= let sub1=mapS fMAP input

sub2=mapS (λ (k′,kvs). (k′,map snd (sortByKey fCOMP kvs)))

(groupByKey fSHUFFLE sub1)

in mapS fREDUCE sub2

Function mapS is a set version of the map function: i.e., it applies the input function to
each element in the set. Function groupByKey takes a function fSHUFFLE and a set of a
list of key-value pairs, flattens the set, and groups the key-value pairs based on the new
keys computed by fSHUFFLE. The result type after groupByKey is {(k3,{k2,v2})}. Function
sortByKey takes a function fCOMP and a set of key-value pairs, and sorts the set into a list
based on the order decided by fCOMP.
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3.2 Implementing List Homomorphisms on MapReduce

In this section, how to use list homomorphism wrapping MapReduce is discussed. A li-
brary named Screwdriver have been implemented in our work [87], which is built on top of
Hadoop, purely in Java. As shown in Figure 3.1, Screwdriver consists of three layers: the
interface layer for easy parallel programming, the homomorphism layer for implementing
homomorphism, and the base layer of the MapReduce engine (Hadoop).

The highest layer of Screwdriver provides a simple programming interface and generates a
homomorphism based on the third homomorphism theorem. Users specify a pair of sequen-
tial functions instead of specifying a homomorphism directly: one for solving the problem
itself and the other for an inverse of the problem. Consider the summing-up example again.
A right inverse sum◦ of the function sum takes a value (the result of sum) and yields a
singleton list whose element is the input value itself. The functional definition of sum◦ is:
sum◦ s = [s].

Listing 3.1 shows the Java programming interface provided in our framework, where users
should write a program by inheriting the ThirdHomomorphismTheorem class. The func-
tion fold corresponds to the sequential function that solves the problem, and the function
unfold corresponds to the sequential function that computes a right inverse. In a functional
specification, the types of the two functions are fold :: [t1]→ t2 and unfold :: t2→ [t1].

To utilize the third homomorphism theorem, users are requested to confirm that the two
functions satisfy the following conditions. Firstly, the function unfold should be a right
inverse of the function fold. In other words, the equation fold ◦ unfold ◦ fold = fold should
hold. Secondly, for the fold function there should exist two operators ⊖ and ⊕ as stated in
Theorem 2.2. A sufficient condition for this second requirement is that the following two
equations hold respectively for any a and x.

fold([a]++x) = fold([a]++unfold(fold(x))) (3.1)

fold(x++[a]) = fold(unfold(fold x)++[a]) (3.2)

Note that we can use some tools (such as QuickCheck [32]) in practice to verify whether
Equations 3.1 and 3.2 hold or not.
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Under these conditions, Screwdriver automatically derives a list homomorphism from the
pair of fold and unfold functions. A list homomorphism ([ f ,⊕]) that computes fold can be
obtained by composing user’s input programs, where the parameter functions f and ⊕ are
defined as follows:

f a = fold ([a])

x⊕ y = fold (unfold x++unfold y).

In the second layer, Screwdriver provides an efficient implementation of list homomor-
phisms over MapReduce. In particular, the implementation consists of two passes of MapRe-
duce. Before we go to the details of implementation, we firstly discuss the parallel data
structure for long lists or sets that we are dealing with.

3.2.1 Data Models of Lists

In shared memory environments, lists, sets or multisets are quite often used and have many
kinds of implementations. Such as LinkedList, ArrayList and HashSet in Java collection
library.

In the context of data-intensive computing, typically in MapReduce, the data model for lists
and sets are file-based. Lists and sets are stored in the plain files and each element is a
record in the file. Files are distributed in a distributed file system like Google File System
(GFS) [51]. In the distributed file system, a large file will be split to smaller chunks. Sets
can be easily implemented as a set of records because we do not need to consider the order
of elements. However, the elements of a list has a fixed order that need to be carefully
manipulated during processing. In a distributed computing environment, manipulating a
global list among multiple computing nodes are quite different with that is under a shared
memory environment.

We have two ways to manipulate a long list that distributed over multi-chunks. The first way
is that we represent each element of a list as an (index,value) pair where index is an integer
indicating the position of the element. For example, a list [a,b,c,d,e] may be represented
as a set {(3,d),(1,b),(2,c),(0,a),(4,e)}. Note that the list can be restored from this set
representation by sorting the elements by their indices. Such indexed pairs permit storing
data in arbitrary order on the distributed file systems. In Screwdriver, we represent each
element of a list as such (index,value) pair.
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In the second way, particularly in the environment of MapReduce, for simplicity of discus-
sion, we suppose the input data are stored as a list of records in one binary file (could be
very huge) in the distributed file system (DFS). Each record of the file represents an element
of input list. If the size is larger than a threshold, the input file will be split to several splits
by DFS (each split is called a chunk in the DFS) and distributed to several DataNodes, and
the DFS knows the offsets of each splits [43, 51], which can be seen as the indices of the
splits. When data are loaded to multiple mappers, users of MapReduce cannot control which
mapper to load which splits. In order to keep the total order of computation, the output of
each mapper must be associated with the offset of its input, so that when merging the results
from mappers, the order can be carefully manipulated by making use of such offsets and the
sorting function.

3.2.2 A MapReduce Algorithm for Implementing Homomorphisms

For the input data stored as a set on the distributed file system, Screwdriver computes a list
homomorphism in parallel by two passes of MapReduce computation. Here, the key idea of
the implementation is that we group the elements consecutive in the list into some number
of sublists and then apply the list homomorphism in parallel to those sublists.

In the following, we summarize our two-pass implementation of homomorphism ([ f ,⊕]).
Here, hom f (⊕) denotes a sequential version of ([ f ,⊕]), comp is a comparing function



3.2 Implementing List Homomorphisms on MapReduce 25

defined over the Int type, and const is a constant value defined by the framework.

homMR :: (α → β )→ (β → β → β )→{(Int,α)}→ β

homMR f (⊕) = getValue◦MapReduce ([·]) gSHUFFLE comp gREDUCE

◦MapReduce ([·]) fSHUFFLE comp fREDUCE

where
fSHUFFLE :: Int→ Int

fSHUFFLE k = k/const

fREDUCE :: (Int, [α])→ (Int,β )

fREDUCE (k,as) = (k,hom f (⊕) as)

gSHUFFLE :: Int→ Int

gSHUFFLE k = 1

gREDUCE :: (Int, [β ])→ (Int,β )

gREDUCE (1,bs) = (1,hom id (⊕) bs)

getValue :: {(Int,β )}→ β

getValue {(1,b)}= b

First pass of MapReduce. The first pass of MapReduce divides the list into some sublists,
and computes the result of the homomorphism for each sublist. In the MAP phase, we just
wrap each key-value pair into a singleton list. Then in the SHUFFLE&SORT phase, we
group the pairs so that the set-represented list is partitioned into some number of sublists
and sort each grouped elements by their indices. Finally, we apply the homomorphism to
each sublist in the REDUCE phase.

Second pass of MapReduce. The second pass of MapReduce computes the result of the
whole list from the results of sublists given by the first pass of MapReduce. Firstly in the
MAP phase, we do exactly as in the first pass. Then in the SHUFFLE&SORT phase, we
collect the intermediate results into a single set and sort them by the their indices. Finally,
we reduce the intermediate results using the associative operator of the homomorphism. By
the getValue function, we picked the result of the homomorphism out from the set (of single
value).

Implementation Issues. In terms of the parallelism, the number of the MAP tasks in the
first pass is decided by the data splitting mechanism of Hadoop. For one split data of the
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input, Hadoop spawns one MAP task which applies fMAP to each record. The number of the
REDUCE tasks in the first pass of MapReduce should be chosen properly with respect to the
total number of the task-trackers inside the cluster. By this number of REDUCE task, the
parameter const in the program above is decided. In the REDUCE phase in the second pass
of MapReduce, only one REDUCE task is invoked because all the sub-results are grouped
into a single set.

3.3 An Accumulative Computation Pattern on MapReduce

There are many problems that are difficult to be expressed in MapReduce model. As an
example, consider the elimSmallers problem of eliminating all the smaller elements of a list
to produce an ascending list (if an element is less than someone in the previous, it is smaller).
For instance, given a list [11,15,8,9,20,25,12,23] , then 8, 9, 12 and 23 are smaller ones,
and thus the result is [11,15,20,25]. A recursive function that solves this problem can be
defined as follows, in Haskell [16].

elimSmallers [ ] c = []

elimSmallers (x : xs) c = (if x < c then [ ] else [x])++

elimSmallers xs (if x < c then c else x)

In this function, recursively, numbers of input are compared with an accumulative parameter
c (with initial value−∞). The accumulative parameter c always holds the current maximum
value and is used in the next recursion. If the head element is larger than c then it is appended
to the tail of the result, and otherwise dropped. In functional programming, such kind
of computation pattern with accumulative parameters is called accumulative computation
[69, 72].

The recursive function elimSmallers clearly describes the computation (in O(n) work, n is
the length of input), but it cannot be easily mapped to MapReduce, because in the recur-
sive function elimSmallers, every inner step of the recursion relies on the current maximum
value, which is computed at the outer step. Such kind of recursive functions do not cor-
respond to a simple divide-and-conquer algorithm. Developing an O(n) work MapReduce
algorithm for elimSmallers needs to resolve such computational dependency and avoid un-
necessary and expensive I/O, which is not easy for many programmers. There are many
applications (e.g., the prefix-sum/scan related problems [20]) in similar computation pattern
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with elimSmallers and thus are also difficult to be resolved in MapReduce.

In this section, we propose a new accumulation framework for simplifying MapReduce pro-
gramming on accumulative computations that cannot be expressed by using map and reduce

functions in only one iteration of MapReduce processing. The programming interface 3 is
designed to help users define recursive functions in the accumulative form, and then efficient
and scalable MapReduce solutions can be automatically gained.

3.3.1 Accumulative Computations

Accumulative computation [69] plays an important role in describing a computation on
an ordered list from left or right, when a later computation depends more or less on this
computation. The data dependency can be captured by using an accumulative parameter
that holds and delivers some information through the whole computation.

The accumulate skeleton [69] abstracts a typical pattern of recursive functions with an ac-
cumulative parameter, which can be defined as a function h in the following form.

h [ ] c = g c

h (x : xs) c = p (x,c)⊕h xs (c⊗q x)

This definition provides a natural way to describe computations with data dependencies and
can be understood as follows.

• If the input list is empty, the result is computed by applying some function g to accu-
mulative parameter c.

• If the input list is not empty and its head and tail parts are x and xs respectively, then
the result is generated by combining the following two values using some binary oper-
ator ⊕: the result of applying p to x (head value) and c (the accumulative parameter),
and the recursive call of h to xs (the rest part of the input list) with its accumulative
parameter updated to c⊗q x.

Because h is uniquely defined by g, p, ⊕, q, and ⊗, so we write h with special parentheses
[[ ]] as:

3The accumulate skeleton has been implemented using MPI that is more flexible in programming model
and does not have same constants as MapReduce has.
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h xs c = [[g, (p,⊕), (q,⊗) ]] xs c.

Note that (p,⊕) and (q,⊗) correspond to two basic recursive forms foldr and foldl [53]
respectively. The elimSmallers discussed in the introduction can be also written as follows.

elimSmallers xs c = [[g, (p,⊕), (q,⊗) ]] xs c

where g c = []

p (x,c) = if x < c then [ ] else [x]

⊕=++

q = id

⊗= ↑

Since the function h in the above form represents the most natural recursive definition on
lists with a single accumulative parameter, it is general enough to capture many algorithms
[69] as seen below.

Scan. Recall to the Definition 2.9. Given a list [x1,x2,x3,x4] and an associative binary
operator⊙with an identity element ı⊙, a function scan computes all its prefix sums yielding:

[ı⊙, x1, x1⊙ x2, x1⊙ x2⊙ x3, x1⊙ x2⊙ x3⊙ x4].

(Note that the head element of output is the unit of ⊙, a bit different with scan in Definition
2.9). The function scan can be defined in terms of accumulate by giving an initial value ı⊙
to the accumulative parameter c:

scan [ ] c = [·] c

scan (x : xs) c = ([·]◦ snd)(x,c)++scan xs (c⊙ (id x)).

The scan in Definition 2.9 only consider about non-empty list as input. Here, if the input is
an empty list then scan will return a singleton list containing the unit of ⊙.

Line-of-Sight Problem. The well known line-of-sight problem [20] is that given a terrain
map in the form of a grid of altitudes and an observation point, find which points are vis-
ible along a ray originating at the observation point. For instance, we use a pair (d,a) to
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represent a point, where a is the altitude of the point and d is its distance from the observa-
tion point. The function angle (d,a) = a/d computes the tangent of an angle. If the list is
[(1,1),(2,5),(3,2),(4,10)], then the point (3,2) is invisible. The function los [74] solves a
simplified line-of-sight problem which counts the number of visible points.

los xs c = [[g, (p,+), (q,↑) ]] xs c

where g c = 0
p (x,c) = if c≤ angle x then 1 else 0
q x = angle x

Maximum Prefix Sum Problem. Intuitively, the maximum prefix sum problem is to com-
pute the maximum sum of all the prefixes of a list. Given a list [3,−4,9,2,−6] the maximum
of the prefix sums is 10, to which the underlined prefix corresponds. We can define a func-
tion mps that solves this, in terms of accumulate.

mps xs c = [[ id, (snd,↑), (id,+)]] xs c

Tag Matching Problem. The tag matching problem is to check whether the tags are
well matched or not in a document, e.g., an XML file. There is an accumulative function
tagmatch introduced by [74] for the tag matching problem.

tagmatch xs cs = [[ isEmpty, (p,∧), (q,⊗) ]] xs cs

where
p (x,cs)

= if isOpen x then True

else if isClose x then
notEmpty cs ∧ match x (top cs)

else True

q x = if isOpen x then ([x],1,0)
else if isClose x then ([ ],0,1)
else ([ ],0,0)

(s1,n1,m1)⊗ (s2,n2,m2)

= if n1 ≤ m2 then (s2, n2, m1 +m2−n1)
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Listing 3.2 Scan Representation
1 public class Scan<T> {
2 public AssociativeBinaryOP<T> oplus;
3
4 public Scan(AssociativeBinaryOP<T> op) {
5 this.oplus = op;
6 }
7 }

else (s2++drop m2 s1, n1 +n2−m2, m1)

3.3.2 The Programming Interface for Accumulation

We provide two parallel skeletons scan and accumulate in our framework. These two skele-
tons and related binary operators are represented as Java classes, in the object-oriented style.

Scan Interface. Listing 3.2 shows the representation Java class for scan. Users need to
define the associative binary operator to create an instance of the scan computation. There
is an example of an associative binary operator Plus in Listing 3.3, which returns the sum
of two integers. The evalute method takes two arguments and returns one value. The
id method returns the identity element. To execute a scan on MapReduce cluster, users
need to write the client codes like Listing 3.3. The Java class ScanExample extends
ScanMRHelper and overrides the method createScanIns which creates an instance
of the scan computation. In the main function, the method runScanMR which takes two
arguments — one is an instance of scan, and the other is the args (the input, output paths
given by users) from main, — will execute the scan computation on the Hadoop cluster.

Accumulation Interface. An accumulate can be defined by implementing the abstract
class Accumulation (as shown in Listing 3.4). There are five functions/operators ac-
cording to the definition of the accumulate, and an accumulative parameter c. The Java
class MapReduceExample (Listing 3.5) which extends MRAccHelper shows how to
write the client code. Similarly to scan, the method createAccuIns needs to be over-
ride, in which an instance of accumulate is created. In the main function, the runAccMR
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Listing 3.3 An Example of Using the Scan Programming Interface
1 public class ScanExample extends MRScanHelper<Int> {
2 // type Int is a wrapping class for Java int
3 public class Plus extends AssociativeBinaryOP<Int> {
4 public Int evaluate(Int a, Int b) {
5 return new Int(a.val + b.val);
6 }
7 public Int id() {
8 return new Int(0);
9 }

10 }
11
12 @Override
13 public void createScanIns() {
14 // instance an scan computation
15 this.scan = new Scan(new Plus());
16 }
17
18 public static void main(String[] args) throws Exception {
19 // Create and run on MapReduce
20 int res = runScanMR(new ScanExample(), args);
21 System.exit(res);
22 }
23 }

Listing 3.4 Accumulation Representation
1 public abstract class Accumulation<T0, T1, T2> {
2 public T1 c;
3 public UnaryFunction<T1, T2> g;
4 public AssociativeBinaryOP<T2> oplus;
5 public AssociativeBinaryOP<T1> otimes;
6 public BinaryOperator<T0, T1, T2> p;
7 public UnaryFunction<T0, T1> q;
8 }
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Listing 3.5 An Example of Using the Accumulation Programming Interface
1 public class MapReduceExample extends MRAccHelper<Int,Int,

IntList> {
2 public void createAccuIns( ) {
3 //instance an accumulate computation
4 this.accumulate = new ElimSmallers(new Int(50));
5 }
6 public static void main(String[] args)
7 throws Exception {
8 //Create and run on MapReduce
9 int res = runAccMR( new AExample(), args);

10 System.exit(res);
11 }
12 }
13 }

method should be invoked to execute the accumulate. The Listing 3.6 shows an example to
define the elimSmallers computation.

3.4 A Generate-Test-Aggregate Parallel Programming Pat-
tern on MapReduce

The Generate-Test-Aggregate (GTA) programming pattern and powerful fusion optimiza-
tion [45, 46] have been proposed as an algorithmic way to synthesize MapReduce programs
from naive specifications (GTA programs) in the following form.

aggregate◦ test◦generate

A GTA program consists of a generate that generates a bag of intermediate lists, a test

that filters out invalid intermediate lists, and an aggregate that computes a summary of
valid intermediate lists. A GTA program in this form can be transformed into a single list
homomorphism, if these components meet the condition of GTA fusion optimization.

As an example, consider the well-known 0-1 Knapsack problem: fill a knapsack with items,
each of certain value vi and weight wi, such that the total value of packed items is maximal
while adhering to the weight restriction W of the knapsack. This problem can be formulated
as:
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Listing 3.6 Difination of Accumulation for ElimSmallers
1 public class ElimSmallers extends Accumulation<Int, Int, IntList> {
2
3 public ElimSmallers(Int x) {
4 c = x;// new Int(50);
5
6 oplus = new AccociBinaryOP<IntList>() {
7 @Override
8 public IntList evaluate(IntList left, IntList right) {
9 if (left == null || left.get() == null)

10 left = new IntList(new ArrayList<Int>());
11 if (right != null && right.get() != null
12 && right.get().size() > 0) {
13 left.get().addAll(right.get());
14 }
15 return left;
16 }
17 @Override
18 public IntList id() {
19 return new IntList();
20 }
21 };
22
23 otimes = new AccociBinaryOP<Int>() {
24 @Override
25 public Int evaluate(Int left, Int right) {
26 if (right.get() < left.get())
27 return left;
28 else
29 return right;
30 }
31 @Override
32 public Int id() { // id * x = x
33 return new Int(Integer.MIN_VALUE);
34 }
35 };
36
37 g = new UnaryFunction<Int, IntList>() {
38 @Override
39 public IntList evaluate(Int obj) {
40 return new IntList();
41 }
42 };
43
44 p = new BinaryOperator<Int, Int, IntList>() {
45 @Override
46 public IntList evaluate(Int x, Int c) {
47 ArrayList<Int> val = new ArrayList<Int>();
48 if (x.get() < c.get()) {
49 return null;
50 } else {
51 val.add(x);
52 return new IntList(val);
53 }
54 }
55 };
56
57 q = new UnaryFunction<Int, Int>() {
58 @Override
59 public Int evaluate(Int da) {
60 return da;
61 }
62 };
63
64 }
65 }
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maximize
n
∑

i=1
vixi

subject to
n
∑

i=1
wixi ≤W , xi ∈ {0,1}

However, designing an efficient MapReduce algorithm for the Knapsack problem is diffi-
cult for many programmers because the above formula does not directly match MapReduce
model. Moreover, designing an algorithm for the Knapsack problem with additional condi-
tions is even more difficult.

The theory of GTA has been proposed [45, 46] to remedy this situation. It synthesizes effi-
cient MapReduce programs (i.e., parallel and scalable programs) for a general class of prob-
lems that can be specified in terms of generate, test and aggregate in a naive way by
first generating all possible solution candidates, keeping those candidates that have passed
a test of certain conditions, and finally selecting the best solution or making a summary of
valid solutions with an aggregating computation. For instance, the Knapsack problem could
be specified by a GTA program like this: generate all possible selections of items, keep those
that satisfy the constraint of total weight, and then select the one which has the maximum
sum of values. Note that directly implementing such an algorithm by MapReduce is not
practical, because given n items, the naive program will generate O(2n) possible selections.
The theory of GTA gives an algorithmic way to synthesize from such a naive program to a
fully parallelized MapReduce program that has O(n) work efficiency 4.

To get a better grasp of the meaning of all this, let us review several important concepts.

Definition 3.1 (Semiring). Given a set S and two binary operations ⊕ and ⊗, the triple

(S,⊕,⊗) is called a semiring if and only if

• ⊕ is an associative and commutative operator with an identity element ı⊕,

• ⊗ is associative operator with an identity element ı⊗ and ⊗ distributes over ⊕,

• ı⊕ is a zero of ⊗.

For example, a set of bags of lists forms a semiring (*[A]+, ⊎, ×++ ) with the bag union
and the cross concatenation for any element type A. In the theory of GTA, the distributivity
plays an important role in optimization.

4The efficient MapReduce program only produces O(n) intermediate data.
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Similar to the connection between monoid and list homomorphism, a semiring is naturally
connected to a special recursive function on bags of lists.

Definition 3.2 (Semiring homomorphism). Given an arbitrary semiring (S,⊕,⊗) and a

function f :: A → S, the function shom :: *[A]+ → S is a semiring homomorphism from

(*[A]+,⊎,×++ ) to (S,⊕,⊗), iff the following hold.

shom (x⊎ y) = shom x⊕ shom y

shom (x×++ y) = shom x⊗ shom y

shom * [a]+ = f a

shom * + = ı⊕
shom * [ ]+ = ı⊗

Since shom is uniquely determined by f , ⊕ and ⊗, we write shom= ({ f ,⊕,⊗}).

Since a semiring homomorphism consumes a bag of lists and produces a value, it is used
as an aggregator in the GTA program. An example of semiring homomorphisms is the
aggregator maxsum f using the max-plus semiring (Z,↑,+) to find the maximum among
f -weighted sums of lists in a given bag:

maxsum f (x⊎ y) =maxsum x ↑maxsum y

maxsum f (x×++ y) =maxsum x+maxsum y

maxsum f * [a]+ = f a

maxsum f * + =−∞

maxsum f * [ ]+ = 0

Here, ↑ is an operator that chooses the maximum of two operands. Readers can check
whether maxsum f actually computes the maximum f -weighted sum of a given bag of lists,
by using the facts that every bag can be decomposed into a union of singleton bags and that
every singleton bag of a list can be decomposed into a cross-concatenation of singleton bags
of singleton lists. For example, *[1,2,3], [2,3]+ = *[1,2,3] +⊎ * [2,3]+ = (*[1] +×++ * [2] +
×++ * [3]+)⊎ (*[2] +×++ * [3]+).

Now, let us introduce a class of generators that have good fusibility with semiring homo-
morphisms.

Definition 3.3 (Semiring Polymorphic Generator [45]). A polymorphic function over semir-

ings (S,⊕,⊗)
generator⊕,⊗ :: (A→ S)→ [A]→ S
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is called a semiring polymorphic generator.

The semiring polymorphic generator is parameterized by semirings, and given different
semirings it does different computations. Particularly, using the semiring (*[A]+,⊎,×++ ) of
bags of lists, the function generator⊎,×++

(λa.* [a]+) :: [A]→ *[A]+ is a generator that can be
used in the GTA program. For example, abstracting the semiring in the generator sublists,
we get sublists = sublists′⊎,×++

(λa. * [a]+) where

sublists′⊕,⊗ f [ ] = ı⊗
sublists′⊕,⊗ f [x] = ı⊗⊕ f x

sublists′⊕,⊗ f (xs++ys) = sublists′⊕,⊗ f xs⊗ sublists′⊕,⊗ f ys.

Moreover, we have the following powerful theorem for fusing such a generator with an
aggregator (semiring homomorphism).

Theorem 3.1 (Semiring Fusion [45]). Given a semiring polymorphic function generator⊕,⊗ ::
(A→ S)→ [A]→ S and a semiring homomorphism ({ f ,⊕,⊗}) to (S,⊕,⊗), the following

holds.

({ f ,⊕,⊗})◦generator⊎,×++
(λa. * [a]+) = generator⊕,⊗ f

The left-hand side of the equation is a GTA program (without any tester): the generator
is written as generator⊎,×++

(λa. * [a]+), and the aggregator is written as ({ f ,⊕,⊗}). In
this program, an exponential number of intermediate lists are possibly generated by the
generator and consumed by the aggregator, so that the total cost would be exponential in
the length of the input list. On the other hand, the right-hand side is usually an efficient
program without such an exponential blow-up, because it does not use the computationally
heavy operator×++ and rather uses a (possibly) light operator⊗. For example, the theorem
says that the program maxsum (λa.a)◦ sublists for computing the maximum of sums of all
sublists of a certain list is equivalent to program sublists′↑,+ (λa.a). This is easily verified
because the latter program computes the sum of all positive numbers and it is clearly the
maximum sum of all sublists.

Another important concept in GTA is filter embedding, which fuses an aggregator of semir-
ing homomorphisms and a tester of a specific filter form:

Definition 3.4 (Homomorphic Tester [45]). If a test is a filter with a predicate (defined

by composing a function ok and a list homomorphism ([ f ,⊙])), namely, test = filter (ok ◦
([ f ,⊙])), we call it a homomorphic tester.
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For example, in a GTA program for the knapsack problem, the tester to filter out item-
selections with too much total weights is a homomorphic tester:

removeInvalidSelection= filter ((≤ w)◦ ([getWeight,+])).

Here, the homomorphism ([getWeight,+]) computes the total weight of the given list, and
the judgment (≤ w) compares it with the weight limit to find invalid ones.

The filter embedding works as follows:

Theorem 3.2 (Filter Embedding [45]). Given a homomorphic tester filter (ok◦ ([ f ,⊙])) in

which the list homomorphism is to (M,⊙) and a semiring homomorphism ({ f ,⊕,⊗}) to

(S,⊕,⊗), there exists a lifted semiring (SM,⊕M,⊗M), a lifted function f M and function

postprocessok such that the following holds.

({ f ,⊕,⊗})◦filter (ok◦ ([ f ,⊙])) = postprocessok ◦ ({ f M,⊕M,⊗M})

This filter embedding is useful because we can remove the tester between the generator and
aggregator so that we can fuse them by using the semiring fusion. Interested readers can
read the paper [45, 46] for details.

According to the theory of GTA, i.e., the combination of filter embedding and semiring
fusion, a GTA program consisting of those components can be eventually transformed to an
efficient program postprocess ◦ generator⊕M,⊗M f M. For example, the naive solution of
Knapsack problem will generate O(2n) intermediate candidates and thus costs O(n2n), but
the efficient final program costs only O(n).

3.4.1 The GTA Programming Interface

Our library is implemented in Scala [109] and provides an easy-to-use programming inter-
face for users to write GTA expressions using the GTA components i.e., generators, testers,
aggregators. Shown as Figure 3.2, the library can automatically transform a user-specified
GTA program to an efficient MapReduce program and execute it. The transformation has
two phases: in the first phase, a user-specified GTA program is transformed to an instance
of MapReduceable that is a Scala trait adapting the list homomorphism to the MapReduce,
and its definition is shown in Listing 3.7. Then the MapReduceable is used by a MapRe-
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Fig. 3.2 The GTA Program Transformation

Listing 3.7 MapReduceable is the Scala trait of Almost-List-Homomorphism
1 trait MapReduceable[A,M,+R] extends ListHomomorphism[A,M]{
2 override def f(a:A):M
3 override def combine(l:M,r:M):M
4 def postProcess(a:M):R
5 }

duce driver-program that invokes the f (for mapping) method and combine (for reducing)
method in MAP and REDUCE phase computing, respectively.

The Scala trait MapReduceable has three methods, f corresponding to the function f of the
list homomorphism, combine corresponding to the binary operator ⊙, and a newly intro-
duced method postProcess which is applied on the output of the REDUCE processing as a
final processing 5. The MapReduceable can be used in any MapReduce engine or parallel
frameworks that provides MapReduce style APIs. A fully scalable MapReduce program
can be written simply by using the f in the MAP processing and combine in the REDUCE
processing.

The library provides a top level class named GTA for wrapping the GTA programming en-
vironment. Every GTA expression must be defined inside the scope of the GTA class. The
user should extend GTA to write his GTA program in terms of GTA expressions.

A GTA expression (in Scala) is written as:

val gta= generate(...) filter(...) aggregate(...).

5Such an extended list homomorphism is called an almost list homomorphism [35, 67]
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val gta is a GTA object (MapReduceable) that can be executed in parallel. For "(...)"s, the
user should choose proper parameters respectively to the generator, tester, and aggregator.
Here, to make this more readable, we give the formal definition of the GTA expression in
extended Backus–Naur form (EBNF).

expr = genTerm, spl, { filtTerm, spl }, aggTerm ;
genTerm = 'generate', '(', GeneratorCreater, ')' ;
filtTerm = 'filter', '(', Predicate, ')' ;
aggTerm = 'aggregate', '(', Aggregator, ')' ;
spl = ? white space characters ? | ' . ' ;

Here the generate, filter and aggregate are three keywords (actually, they are Scala func-
tions). Each of them has an argument that is an instance of GeneratorCreater, Predicate
or Aggregator, respectively. Note that one GTA expression may have multiple testers in-
side. A single-line GTA expression is allowed to be written on multiple lines such that each
line is one or more terms and with a ' . ' between any two terms.

To get a concrete image what GTA programming looks like, let us look at an example of
computing the maximum sum of all segments (contiguous sublists) of an integer list shown in
Listing 3.11. We will explain the details of allSegments and maxSum later in Section 3.4.2.

To make the programming easier, we have predefined commonly used generators, testers
and aggregators in the library. Users can compose various of programs by these genera-
tors, testers and aggregators. Table 3.1 list some especially useful ones. In the table, there
are four generators, which, given a list, can generate all sublists (sublists), all prefix lists
(prefixes), all continuous segments (segments), or paint colors (attach some information) on
each element (coloring). Each tester in the table tests whether the sum (length, or its mod
of some k) of a list is equal to (or less / more than) a constant value c. The aggregaters are
for aggregating the generated lists to compute the maximum sum (maxSum), minimum sum
(minSum) , maximum probability (maxProbability) or the list that is the solution of above
aggregations (select). Here we simply list their generic names; concrete examples (using
more appropriate names, according to the context) are given in the following sections.



40 Calculational Approach to Constructing Parallel Programs on Lists

Table 3.1 Some Predefined Generators, Testers, and Aggregators

G T A
sublists sum =, ≥, ≤ c maxSum
prefixes length =, ≥, ≤ c minSum
segments sum % k = c maxProbablity
coloring length % k = c select

Listing 3.8 A GTA program sloving the 0-1 Knapsack problem, which computes the
possible maximum total value

1 .../* omitted */
2 val allSelects = new AllSelects[KnapsackItem]
3 val withLimit_100 = new WeightLimit(100)
4 object maxTotalVal extends MaxSum[KnapsackItem] {
5 def f(a: KnapsackItem): Int = a.value
6 }
7 /* GTA expression */
8 val gta = generate(allSelects) .
9 filter (withLimit_100) .

10 aggregate (maxTotalValue)
11 println( "The maximum total value is " +
12 gta.postProcess(input.map(gta.f).reduce(gta.combine))
13 )

3.4.2 Solving Problems with GTA

We will use the Knapsack problem and its variants as examples to show how to use the GTA
library. In each example, we show how to choose proper generators, testers, and aggregators
to resolve the problem. Usually, one GTA program can be written in only a few lines of Scala
code, by making use of the GTA components provided in the library.

The 0-1 Knapsack problem First, recall the 0-1 Knapsack problem in the beginning of
Section 3.4. We can apply the GTA algorithm that first generates all possible candidates,
then filters them using the predicate of weight limitation, at last computes the total value
of every remained candidate and chooses the one that has the maximum total value. This
problem can be programmed by using allSelects, maxTotalValue (a modified maxSum

for Knapsack problem,) and WeightLimit, as shown in Listing 3.8. The final output of
this program is the maximum total value of all the candidates. The Listing 3.9 shows an-
other GTA-Knapsack program that gives the best selection (the one with maximum total
value under the weight limitation). In this program we use a selectiveAgg in the GTA
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Listing 3.9 A GTA program sloving the 0-1 Knapsack problem, which gives the best
selection

1 ... /* omitted */
2 val bagAgg = new BagAggregator[KnapsackItem]
3 val selectiveAgg = new SelectiveAggregator(maxTotalVal, bagAgg)
4 /* GTA expression */
5 val gta = generate(allSelects) .
6 filter (withLimit_100) .
7 aggregate (selectiveAgg)
8 println( "The best selection is " +
9 gta.postProcess(input.map(gta.f).reduce(gta.combine))

10 )

Listing 3.10 Extended 0-1 Knapsack Problem
1 ...
2 val allSelects =new AllSelects[KnapsackItem]
3 val withLimit_100 =new WeightLimit(100)
4 val lessThan_10_items =LengthLimit[KnapsackItem](9)
5 object maxTotalVal extends MaxSum[KnapsackItem] {
6 def f(a: KnapsackItem): Int = a.value
7 }
8 /* define a GTA */
9 val gta = generate(allSelects) .

10 filter (withLimit_100) .
11 /* add a new filter */
12 filter (lessThan_10_items) .
13 aggregate (maxTotalValue)
14 println( /* x is input, postProcess returns the result*/
15 gta.postProcess(x.map(gta.f).reduce(gta.combine))
16 )

expression, which aggregates the selections to one (not just computes the total value). The
implementation of SelectiveAggregator aggregator will be explained later in Section
6.3.

At a glance, the cost of the GTA algorithm is exponential in the number of items because it
seems that an exponential number of candidates are generated. However, the GTA library
optimizes the naive process and the real cost is just linear with the number of items (and
quadratic with respect to the capacity of the knapsack).

Variants of the Knapsack problem A more complex example, the multi-constraint Knap-

sack problem, is shown in Listing 3.10. Here, new constraint on the maximum number of
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Listing 3.11 A GTA program which computes the Maximum-Segment-Sum problem
1 package Examples
2 import GTAS._
3
4 object userApp extends GTA[Int] with App {
5 /* Spark job configuration */
6 def ctx(contex:SparkContext,input:spark.RDD[Int]) = {
7 /* GTA expression */
8 val gta=generate(allSegments) aggregate (maxSum)
9 /* compute using the Spark-MapReduce API.*/

10 val rst=input.map(gta.f).reduce(gta.combine(_, _))
11 println("rst")
12 }
13 }

items in a knapsack is given: the predicate LengthLimit checks the length of the given list
in a similar way to WeightLimit. Conceptually, an arbitrary number of testers can be used
in a GTA expression. More constraints can be introduced, for example, not only check the
exact length but also we can check whether the length (or summation) is less/more than a
constant value c, or the length mod k is equal to or less/more than c. Still, we can add an-
other constraint on the minimum number of items in a knapsack to extend the problem more.
In all above examples, we are asked to compute the best solutions (the maximum/minimum
one), and we also can find the kth-best solution by slightly extending these GTA programs.
Examples of kth-best problems can be found in the package of our Library.

The examples presented below use more complex generators, testers, and aggregators.

Maximum segment sum problem Let us consider the famous maximum segment sum
(mss for short) problem [13, 36, 67, 104, 106, 116]: given a list of integers, find the maxi-
mum sum of its all segments (contiguous sublists). This is a simplified problem of finding
an optimal period in a history of changing values.

The GTA algorithm for mss is simple. First, choose allSegments as the generator that
generates all the segments [67] of the input list. Then choose maxSum as the aggregator to
compute the maximum sum of all segments. Only a few lines of Scala code are needed for
this problem. Listing 3.11 shows the GTA program for mss problem.

The mss problem has many variants. For example, the segment should only contain at most
one negative number, or the maximum sum has to be divisible by 3. Similar to extend Knap-
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Listing 3.12 ViterbiTest is the implementation of a tester, which tests if a transition is
valid or not

1 abstract class ViterbiTest[E, Mark] extends Predicate[(E,Mark), Mark]
{

2
3 type MarkedTs = (E,Mark)
4 def isTrans(a: Mark): Boolean
5 def postProcess(a: Mark) = isTrans(a)
6 def combine(l: Mark, r: Mark): Mark
7 def f(a: MarkedTs): Option[Mark] = Some(a._2)
8 val id: Mark
9 ...//omit others

10 }

Listing 3.13 MaxProdAggregator is the aggregator for computing the maximum proba-
bility

1 abstract class MaxProdAggregator[T] extends Aggregator[T, Double] {
2 def plus(l: Double, r: Double) = l max r
3 def times(l: Double, r: Double) = l * r
4 def f(a: T): Double
5 val id: Double = 1.0
6 val zero: Double = 0.0
7 }

sack problems, more additional predicates can be used to resolve extended mss problems.

Viterbi algorithm More complex problems can also be encoded by GTA. The Viterbi
algorithm [128] is a dynamic programming algorithm for finding the most likely sequence
of hidden states, i.e., the Viterbi path, from a given sequence of observed events. In detail,
given a sequence of observed events E = (x1,x2, ...,xn), a set of states S = (z1,z2, ...,zk)

in a hidden Markov model [113], probability Pyield(xi | z j) of event xi ∈ E being caused by
state zj ∈ S, and probability Ptrans(zi | z j) of state zi appearing immediately after state zj, the
algorithm computes the most likely sequence of (z1,z2, ...,zn) formalized as follows.

argmax
Z∈Sn+1

(
n

∏
i=1

Pyield(xi | zi)Ptrans(zi | zi−1))

In [46], the GTA approach to compute above specification is introduced as follows. First,
we remove the index i−1 in the specification. To this end, we let the expression range over
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Listing 3.14 A GTA program for Viterbi algorithm, which runs on the Spark cluster
1 object ViterbiSpark extends GTA[Action, Tuple2[Action, (Weather,

Weather)],Id]{
2 ...
3 val gta = generate(assTransGen) filter (viterbiTest) aggregate(

viterbiAgg)
4 val rst = gta.postProcess(x.map(gta.f(_).get).reduce(gta.

combine(_, _)))
5 println("The result = " + rst)
6 System.exit(0)
7 }

pairs of hidden states in S×S and introduce a predicate trans to restrict the lists of state
pairs. Intuitively, trans(p) is true if and only if the given sequence p of state pairs describes
consecutive transitions,

((z0,z1),(z1,z2), . . . ,(zn−2,zn−1),(zn−1,zn)),

and is false otherwise. By introducing a function,

prob(x,(s, t)) = Pyield(x | t)Ptrans(t | s),

the above expression can be transformed into the following equivalent one:

argmax
p∈(S×S)n

trans(p)=True

( n
∏
i=1

prob(xi, pi)
)

Now, we are ready to build a Generate-Test-Aggregate algorithm. Given a set of marks (in
regard to the Viterbi algorithm, the mark is the product set S×S.), the generator MarkingGenerator
associates all possible marks to elements of the given list. For example, given S = {s1,s2}
and x = [x1,x2], MarkingGenerator can generate

* [(x1,(s1,s1)),(x2,(s1,s1))],

[(x1,(s2,s1)),(x2,(s1,s1))],

[(x1,(s1,s2)),(x2,(s1,s1))],
...
[(x1,(s2,s2)),(x2,(s2,s2))] +.
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The implementation of MarkingGenerator will be discussed in Section 6.3.

Among those associations, we want to take only those with valid transitions. To this end,
trans is implemented as ViterbiTest in Listing 3.12. The method f extracts the mark,
i.e., the associated pair of states (a pair of states corresponds to a transition between states,
and the type of pair is Trans[State]). The method combine appends two valid tran-
sitions, (s, t) and (u,v), to make a new valid transition, (s,v), if t = u. It returns a special
value for invalid transitions, otherwise. The method postprocess finally checks whether
the input list has a valid transition or not.

The aggregator ViterbiMaxProdAggregator in Listing 3.13 computes the maximum
probability by using the semiring ([0,1],max,×) of the real numbers between 0 and 1. For
simplicity, it computes not the Viterbi path but the Viterbi score (the maximum probability).
The method f extracts the value from the marked element. The other parts are straightfor-
ward implementation of the semiring. Finally, the above components are composed into
the GTA program as shown in Listing 3.14. Similar to the knapsack problem, this pro-
gram is optimized into a linear-cost parallel algorithm on run-time. It is worth noting that
we can compute the Viterbi path by replacing the aggregator with another one based on a
semiring [57].

3.5 Related Work

The research on parallelization via derivation of list homomorphisms has gained great inter-
est [37, 120, 135]. The main approaches include the function composition based method [30,
49, 71], the third homomorphism theorem based method [59, 104], and the matrix multipli-
cation based method [117].

Algorithmic skeletons for parallel programming have been well studied from 1989 [33], and
a lot of frameworks have been developed to provide those algorithmic skeletons [9, 27, 27,
81, 95]. In particular, scan is a very useful skeleton because it enables us to reuse the partial
results in reduce. For example, a set of maximum marking problems [17] on lists can be
resolved by using scan skeletons. The matching of a regular expression over a single large
document in parallel has been resolved by [79] using accumulative skeletons. With the scan
or accumulate computations, we can extend the technique to retrieve substrings.

The accumulate as an algorithmic parallel computation pattern has been implemented by



46 Calculational Approach to Constructing Parallel Programs on Lists

using MPI [74] and now is a part of the Sketo library[95] that provides a simple program-
ming interface and efficient parallel implementation. To the best our knowledge, there is no
other MapReduce implementation for the accumulative computing.

Automatic optimization of MapReduce programs is an important problem and studied by
many people such as [63, 75]. These studies more or less using the traditional database
query optimization approaches.

GTA proposed by [45, 46] is a new approach to systematic development of efficient par-
allel programs and/or list homomorphisms in which features of semirings are maximally
exploited to connect naive designs and efficient implementations, so that it dramatically
simplifies the development of efficient parallel algorithms. However, there is a lack of im-
plementations that can support practical MapReduce programming. Our work is a continua-
tion of previous research on GTA with the goal of making it work for common MapReduce
frameworks.

There are also several high-level domain specific languages built upon MapReduce (Hadoop),
such as Google’s Sawzall [111], Apache Pig Latin [50]. They wrap MapReduce (Hadoop)
and provide optimization functionalities, but they do not have optimizations similar to GTA
fusion. For example, Pig has query optimizers for generating logic plan, physic plan and
also MapReduce-execution plan; Manimal [75] is a framework which can analyze MapRe-
duce programs (Java code) and apply appropriate optimizations. We believe that GTA can
be imported into the designs of these languages as a primitive optimization choice.

Emoto et al. implemented the Generators of Generators (GoG) library [47], which basically
is a limited version of GTA framework. It is specialized to a few specific generators and a
limited class of predicates, but is equipped with more powerful optimization. Furthermore,
it is implemented in Fortress, and has no focus on MapReduce.



Chapter 4

Calculational Approach to Constructing
Parallel Programs on Graphs

There are many realistic problems on huge graphs such as analyst of social networks like
Facebook, Twitter. It is a crucial problem that how large scale graphs can be efficiently
analyzed. Many frameworks are proposed for this goal [56, 90]. However, there is a class
of combinatorial optimization problems that are important in practice but are NP-hard, such
as Maximum Weighted Independent Set problem, Target Set Selection problem, Influence

Maximization problem and etc. These problems are hard to be computed directly regard-
less using parallel frameworks like MapReduce or Pregel. However, if we could transform
graphs to a special form of trees called tree decompositions[114] of graphs, then there exist
efficient dynamic programming algorithms (in polynomial time [6, 22, 131]) on such special
form of trees for those NP-hard problems.

In this chapter, our main concern is: assume we can obtain sufficient tree decompositions
of large graphs, how to resolve a class of combinatorial optimization problems by using
the existing polynomial-time DP algorithms, and how to automatically synthesis efficient
parallel programs.

We mainly resolved the following two problems. The first one is how to represent the
parallel data structure for tree decompositions, so that we can store a very large tree de-
composition (e.g., a tree decomposition with millions of nodes and requires one terabytes
disk storage space) in a distributed file system like HDFS and do parallel computation on it.
The second problem is how to do efficient parallel tree reduction/contraction in a distributed
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parallel environment such as a Hadoop cluster.

4.1 Tree Decomposition of Graph

There are many problems on graphs which are important in practice but difficult to compute.
However, many graph problems can be solved efficiently if the graph is a tree, because these
problems often require only a bottom-up or top-town traversal of the nodes with constant
work at each node.

Intuitively, tree decompositions [114] of graphs answer the question “How much does a
given graph resemble a tree?" — tree decompositions of graphs exploit the “tree-like” struc-
ture for graphs.

Definition 4.1 (Tree decomposition [114]). A tree decomposition of a graph G = (V,E) is

a pair ({Xi, i ∈ I},T ) where Xt ⊆ V, I = {1, ...,n}, and T = (I,F) is a tree such that the

following conditions are satisfied:

• the union of the subsets Xt equals the vertex set V (1≤ i≤ n), i.e.
⋃

i∈I Xt =V ;

• for every edge (v,u) ∈ E, there is a i ∈ I with u,v ∈ Xt; and

• for every v ∈ V , if Xi and X j contain v for some i, j ∈ {1,2, ...,n}, then Xk also

contains v for all k on the (unique) path in T connecting i and j. In other words, the

set of nodes whose subsets contain v form a connected subtree of T .

The subsets Xi are often referred to as bags of vertices. The width of a tree decomposition
({Xt , t ∈ I},T ) is maxt∈I|Xt | − 1. The treewidth ω(G) of G is the minimum width over
all tree decompositions of G. We use UBD(G) denoting the upper-bound of width of the
tree decompositions of G, and use LBD(G) to denote the lower-bound. Obviously, ω(G) ≤
LBD(G)≤UBD(G)≤ n holds. 4.1 shows an example of a tree decomposition of width two.

A nice tree decomposition is a special tree decomposition, defined as follows.

Definition 4.2 (Nice Tree Decomposition). A nice tree-decomposition T is a tree decom-

position represented as a rooted binary tree. Each node of T contains exactly k+1 vertices.

Each node belongs to one of the following three types:

• Leaf — a node with no child.
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Fig. 4.1 An example of a tree decomposition of width two: blue circles (big circles) denote the bags; red
dashed lines connect the same vertices between adjacent bags.

• Replace — a node i has only one child j, and there exists a u ∈ Xi but/∈ X j, and also

there exists a v ∈ X j but v /∈ Xi.

• Join — a node i has two children: j1, j2, and Xi = X j1 = X j2 .

Given a tree decomposition of width w−1 for G, one can obtain in linear time a nice tree

decomposition for G with the same width and with O(wn) nodes. Figure 4.2 shows an
example of nice tree decomposition of a graph. Figure 4.3 shows examples of replace node
and join node. Using nice tree decompositions, the DP algorithms can be easier to explain
[22, 24].

4.2 Parallel Computation on Tree Decompositions of Graphs

The tree contraction algorithms are very important parallel algorithms for efficient tree ma-
nipulations. It was first introduced by Miller and Reif [99], and later extended with an
optimal and practical algorithm on EREW-PRAM developed by Abrahamson et al. [1].
Furthermore, implementations on hypercubes have been developed [97, 98]. Much effort
has been devoted to developing tree homomorphisms for various problems, such as queries
on trees [21, 34], dynamic programming [31], etc. [48, 59, 77, 89].

The original tree contraction algorithm of [99] consists of two primitive operations called
rake and compress. Figure 4.5 shows examples. The rake operation merges a leaf with its
parent, and the compress operation merges an internal node that has only one child with
its child. Several tree contraction algorithms have been developed under the assumption
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Fig. 4.2 A Graph G, A Tree Decomposition of G and A Nice Tree Decomposition of G.

of binary trees. The shunt contraction algorithm developed by Abrahamson et al. [1] uses
two symmetric operations instead, namely contractL and contractR, which are successive
calls of the rake operation followed by the compress operation. The contractL operation is
applied to a node whose left child is a leaf, and removes two nodes and two edges from
the tree as shown in Figure 4.4. The contractR operation is symmetric to the contractL

operation.

4.2.1 Transforming Trees to Zippers

A zipper is a list whose elements are contexts that are left after a walk [103] on a binary
tree. Figure 4.6 shows a zipper on a binary tree in this view. All the subtrees in a zipper
have a uniform structure: each subtree has a hole and the hole is either the left child or the
right child of the root node. A hole indicates the spot where the subtree was split. Because
for each subtree one of its child is a hole, we omit the holes in Figure 4.6.

For a tree, if the order of the children of a node is not significant during the computation,
we can consider the hole is always the rightmost child of a node.
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Fig. 4.3 A Replace Node and A Join Node in Nice Tree Decompositions.

Fig. 4.4 The contractL operation

The data type for the tree elements in the zipper can be defined as:

data Tree′ b = Node′ b [Tree′ b] | Leaf ′.

As a tree decomposition is usually not a binary tree, we extend the definition of zipper on
binary trees to that on arbitrary rooted-trees. For a zipper on a tree decomposition, the
elements in the list are trees with one hole. The zipper structures for trees can be specified
in the following type.

type Zipper b = [Tree′ b].

We use function walk to construct a zipper from a tree.

walk :: Tree→ Zipper
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(a) rake (b) compress

Fig. 4.5 The rake and compress Operations

Fig. 4.6 An example of a zipper on a bianry tree, which expresses a path from the root to the black leaf. The
path is shown in the blue (thicker) line.

To restore a zipper to a tree (not necessarily the original one), we use a leftward combination
on the zipper to fill the hole of the previous element as the rightmost child.

z2t :: Zipper→ Tree

z2t [] = Leaf

z2t ([Node′ b ts]++ l) = Node b (ts++z2t l ).

By using zippers, we may map a function on a tree to another function on a zipper structure
which actually can be seen as a list.

4.2.2 Partition Binary Trees by Zippers

We discuss in detail about how to partition a tree decomposition to a zipper-based structure
and how to apply parallel algorithms on the zipper-based structures.

There are two goals in partitioning a tree: one is to partition a tree evenly, so that the tree can
be computed in parallel with good load balance; the other is to minimize the dependencies
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Fig. 4.7 An example of a hierarchical zipper: the subtrees in red dotted rectangles are partitioned to new
zippers pointed by the arrows; the id of a subtree is shown on its top.

Listing 4.1 The Programming Interface For Botton-up Dynamic Programming Al-
gorithms on Tree Decompositions.

1 public interface Homomorphism<T,R,E> {
2
3 public R unit();
4
5 public R compute(T tree);
6
7 public R combine(R r1, R r2);
8
9 public E extract(R result);

10
11 public boolean isHierarchyIrrelevant();
12
13 public boolean isSiblingIrrelevant();
14 }

between partitioned trees so that communication between processors can be decreased. To
achieve the two goals in partitioning a general tree, we extend the zipper for binary trees to
a hierarchical zipper for general trees. Figure 4.7 gives an example of a hierarchical zipper.

Our idea is: to keep a uniform structure, we only choose the leftmost child or the rightmost
child when selecting a path from the root to a leaf node; if the size of a subtree in a zipper
is larger than a threshold, we partition the subtree again to a new zipper. Such recursive
partition forms a hierarchical zipper (see 4.7) which is a tree. Each node in the tree is a
zipper.

Path selection strategy Here, we describe two strategies in walking downward from the
root node to a leaf node.

The first strategy is called Random strategy. We randomly pick the leftmost child or the
rightmost child as the next node in the path. In this strategy, we don’t need preprocessing
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on the tree.

The second strategy is Maximum descendants strategy. Each time, we choose the child node
with the maximum number of descendants. This strategy can decrease the height of the
resultant hierarchical zipper tree in most cases. However, this strategy needs preprocessing
on the tree: for each node, we need to record the size of the tree rooted at the node, i.e. the
number of descendants.

Deciding threshold In our partition, we limit the size of each subtree to a threshold T .
The threshold T is decided by: T = N/(P∗2), where N is the number of tree nodes, and P

is the number of processors and T is the threshold value.

Underlying implementation We describe our underlying implementations of the hierar-
chical zipper.

Each subtree in the hierarchical zipper has an id in the form of X-Y. X is the id of the zipper
the subtree belongs to and Y is its index in the zipper. The id of a zipper is the same with the
subtree the zipper is partitioned from. We add a T to the head of an id for easy description.
For example, in Figure 4.7, the id T1-2-1 means the subtree is the first element in the zipper
for subtree T1-2.

Each subtree has a flag which records whether a subtree is the last element in a zipper. This
flag is used in the combination of the results of subtrees in a zipper. The combination is
finished if the result of the last subtree in the zipper has been combined, For example, in
Figure 4.7, the flag for subtree T3-1 is false because T3-1 is the first element in the zipper.

Each subtree has a flag in which each bit records whether a subtree is the last element in
its zipper. This flag is used in the results combination process for a zipper. If the result of
the last element in the zipper has been combined, the combination is finished. For example,
in Figure 4.7, the flag for subtree T3-1 is 1-0 which means T3-1 is not the last element in
zipper T3 but subtree T3 is the last element in the zipper.

All the subtrees are stored in a list in a post-order traversal of the hierarchical zipper. The
partitioned subtrees (in red dotted rectangles) are not collected. For example, the subtrees
in Figure 4.7 are stored as [T1-2, T1-2-1 ,T1-2-2 ,T2, T3-1, T3-2].
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4.2.3 Programming Interface for Parallel Algorithms on Hierarchical
Zippers

To implement a parallel algorithm on the hierarchical zipper, our library provides the follow-
ing four functions. For a class of bottom-up dynamic programming algorithms, computation
can be easily expressed in this programming interface, e.g Maximum Weighted Independent

Set Problem, Minimum Weighted Vertex Cover Problem and Minimum Weighted Dominating

Set.

compute :: Tree′→ B.

Function compute computes and returns the intermediate result of a subtree. Here, Tree′ is
the type of an element in Zipper (i.e., a subtree), B is the type of the intermediate result of a
subtree.

combine :: B→ B→ B.

Function combine merges the results of two subtrees.

recover :: B→ B→ B.

Function recover recovers from the combined result of a zipper to the final result ( of its
original subtree).

extract :: B→ A.

Functionextract computes the final result of the complete tree from the result of a hierarchi-
cal zipper. Here A is the type of final result for the problem.

When we design algorithms on zipper, we usually compute auxiliary information to help
to combine subtrees. For example, the height example in [103] computes the height of a
subtree as its first result and the depth of the hole as its second result. For a subtree t with
height h, the result of the subtree compute t is (h,1). However, if we partition the subtree to
another zipper z and combine the results of all the subtrees, i.e. reduce combine z, the result
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tuple will be (h,x). Here, x is the final depth of the hole, which equals the size of subtrees
in the zipper. Thus, we need a recover function to guarantee that the result on zipper can be
recovered to the result on the subtree.

On the other hand, when a subtree is partitioned to a zipper, the root node of the subtree
becomes the root node of the first subtree in the zipper (see node a1 in 4.7). As the hole
is always in the root node and the first subtree contains the root node, we can recover the
result from the result on zipper and the result of the first subtree in the zipper.

We give the Java-style implementations of them as follows. Listing 4.1 shows the Java
Interface for representing the bottom-up dynamic programming algorithms. Users can use
the five auxiliary functions to define a algorithm on tree structure, which will be computed in
a bottom-up fashion on an input tree-decomposition. For example, the MIWS problem can
be implemented by defining functions of this interface according to Section 4.3.2. Listing
4.2 shows first four functions of the MIWS-solving program.

4.2.4 Representations of MapReduce Programs

The parallel algorithm on hierarchical zipper consists of a map process and a reduce process.

Map. In the map process, we perform the compute function on each subtree and passes
the intermediate results to the reduce process.

Reduce. In the reduce process, we group the received intermediate results by zipper id
and sort the elements in each group by index. In each group, we apply the combine function
on intermediate results with consecutive indices. If all the results in a group have been
combined, we use the recover function to recover the result and sent the result to the reduce
process. The reduce process is repeated until the result of the top-level zipper has been
computed. Then the extract function is performed to compute the final result.

Apply to MapReduce. We show how to apply the parallel algorithm to the MapReduce
model in an iterative manner. We divide the MapReduce passes (rounds) into a working pass
and iterative passes. The iterative pass repeats until the top-level zipper has been computed.
In the following, we summarize the two kinds of MapReduce passes.



4.2 Parallel Computation on Tree Decompositions of Graphs 57

Here, K is the type of the subtree id. The split function splits an id into a zipper id and an
index, and return them in a pair with the zipper id as the first result. The comp function will
return 1 if the first argument is greater than the second, 0 if the two arguments are equal and
−1 otherwise.

The Working Pass of MapReduce. The first pass of MapReduce is called the working

pass, which computes the results of all the subtrees and combines parts of the results. The
input to the MAP phase is a list of key-value pairs of ids and subtrees, while the fMAP1

function takes one pair and performs compute on the subtree. In the SUFFLE&SORT phase,
the fSHUFFLE function is used to group results by zipper id and the fCOMP function is used to
sort the elements in each group by index. Finally, the REDUCE phase combines the results
in each group (refer to the formalization in Section 3.1).

The processing of working pass in MapReduce can be represented as follows:

MapReduce fMAP1 fSHUFFLE fCOMP fREDUCE

where
fMAP1 :: (K,Tree′)→ [(K,B)]

fMAP1 (k, t) = [(k,compute t)]

fSHUFFLE :: K→ K

fSHUFFLE k = fst (split k)

fCOMP :: K→ K→{−1,0,1}
fCOMP k1 k2 = comp (snd (split k1)) (snd (split k2))
fREDUCE :: (K, [B])→ (K,B)

fREDUCE (k,as) = (k, recover (reduce combine as))

Iterative Processing. Other passes of MapReduce except the first one are iterative passes.
The iterative passes combine remaining parts of the results. In an iterative pass, the MAP
phase does no computation and the other two phases are the same as in the working pass.
The iterative pass of MapReduce can be represented as:

MapReduce ([·]) fSHUFFLE fCOMP fREDUCE.
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Result extraction When all the MapReduce passes end, we get a result key-value pair
(k,b). Then the extract function is applied to compute the final result, which is represented
as:

extract ◦ snd.

4.3 On Resolving Maximum Weighted Independent Set Prob-
lem

In this section we introduce our solution for an important graph problems Maximum Weighted

Independent Set problem, by using the techniques we have introduced in this chapter.

We assume each vertex in a graph is assigned with an int weight value. Given an undirected
graph G = (V,E) , an independent set S is a subset of V that satisfies the condition: for any
two virtices u,v in S, there is no such an edge (u,v) ∈ E.

The Maximum Weighted Independent Set problem is to find an independent set with the
maximum total weight, which is defined as follows.

Definition 4.3 (Maximum Weighted Independent Set Problem). For an undirected graph

G = (V,E), find an independent set S that the sum of weight of all vertices in S is maximum.

4.3.1 A Generate-Test Algorithm for Combinatorial Problems on Graphs

First, we express an algorithm for the MWIS problem in the form of the generate-test (a.k.a
brute force) algorithm. We use g(vs,es) to represent an instance of graph with vertices vs

and edges es. We use function w(v) denotes the weight of v. Given a graph g(vs,es), we can
generate all subsets of vs and test whether a subset is a valid independent set, and then find
the one with maximum sum of weight. We have defined the following functions to do so.

Function generate ::V→ [V ] lists all the possible selection sets and it is similar with function
allSegments in Chapter 3.4.2.

Function test accepts two parameters: es of a graph g and one of its selection set xs, and
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decides whether xs is an independent set.

test :: E→V → Bool

test es xs = not (any (λ x.member x es) [ (u,v) | u← xs,v← xs])

Here, not :: Bool→ Bool and any :: (a→ Bool)→ [a]→ Bool are standard Haskell [16]
functions.

Function weight computes the total weight of all the selected vertices in a selection set.

weight :: V → Int

weight xs = reduce (+)◦ (map w) xs

The mwisgt function finds the one with the maximum weight of all the independent sets.

mwisgt :: V → Int

mwisgt vs =maximum [weight xs | xs← generate vs, test es xs]

Here, function maximum :: [a]→ a returns the maximum element of a list, which is a stan-
dard Haskell function.

In this example, if compute the MWIS problem on graph G = (V,E) naively as the above
algorithm, it will take O(2|V |) time and actually not practical. An automatic optimization
mechanism is developed by applying program transformation.

4.3.2 A Bottom-up Algorithm on Tree Decompositions

Using bottom-up dynamic programming algorithms on tree decompositions to solve MWIS
has been discussed in [24, 62]. We first follow the idea and derive a bottom-up function
mwis on tree decomposition using the functions that we have defined in Section 4.3.1. We
define gbt as the induced subgraph of g on vertices in bt .



60 Calculational Approach to Constructing Parallel Programs on Graphs

mwis :: Tree→ [(V, Int]

mwis (Leaf bt) = [(xs,weight xs) | xs← generate bt , test esbt xs]

mwis (Node bt children) = [(xs,weight xs+(reduce(+)◦map(inherit xs) [t ′ | t ′← children]))

| xs← generate bt , test esbt xs]

where
inherit xs t ′ =maximum[(value′−weight(intersection xs xs′))

| (xs′,value′)←mwis(t ′),consistent(xs,xs′)].

Function mwis returns a list of tuples of selection set xs and its corresponding weight sum.
Using graph in Figure 4.8 as the input, if we run function mwis on leaf b0, it first generates
all the possible selection sets of vertices in node b0, then tests if they are independent sets in
the induced graph gb0 . For example, on leaf b0: mwis (Leaf b0) = [([],0),([1],1),([2],2)].
Similarly, on leaf b1 : mwis (Leaf b1) = [([],0),([4],4),([5],5)].

Function consistent checks whether the same vertices appearing in two different nodes have
the same selecting states. For each independent set xs, we choose the consistent selection
set which maximizes the contributed weight in each of its children.

consistent(xs,ys) = case intersect xs ys of
xs → True

ys → True

_ → False

Carrying out function mwis on node b2, similar to the procedure on a leaf node, first gener-
ates and tests all the possible independent sets in the induce graph gb2 , then function inherit

is used to pass up the weight contributions of the vertices in its child nodes.

mwis (Node b2 [b0,b1]) = [([ ],2+5),([2],2+5),([3],3+1+5),([4],1+4)].

Finally, we can compute the maximum sum by as follows:

valuemwis tree=maximum ((map snd)(mwis tree)).
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If the treewidth is w, there are at most 2(w+1) many generating marking ways on each node,
and there are O(|V |) many nodes in a tree decomposition. The MWIS problem can be solved
in O(|V | ·2(w+1)) time using the bottom-up algorithm.

4.3.3 The Parallel Algorithm on Zippers

In the bottom-up algorithm, we need to remember the selecting state xs in the root of current
subtree, which is used for the further computation of ancestors (testing consistent condition).
While on zippers, as shown in figure 4.9, we should remember the marking way of the
leftmost and the rightmost subtree roots, for the leftward and rightward merging of partial
results in the zipper.

We first duplicate the selecting state at the root of each subtree:

mwis′ tree= [(xs,xs,value)|(xs,value)←mwis tree].

We modify the bottom-up function mwis on tree decomposition T to get a leftward sequen-
tial function mwisup on t’s corresponding zipper.

mwisup = mwis′ ◦ z2t

mwisup[(Node
′ bt children)] = mwis′(Node bt children)

mwisup([a]++ ls) = [(xsa,xs′ls,valuea + valuels−weight (intersect xsa xs′ls)) |
(xsa,xs′a,valuea)←mwisup a,

(xsls,xs′ls,valueb)←mwisup ls,

consistent xs′a xsls]

If the root of the rightmost subtree of zipper is considered as the root of its original tree
decomposition, similar to mwisup, we can compute the Maximal-Weighted-Independent-
Set in rightward manner (similarly to mwisup([a] ++ ls), we can get mwisdown(ls++[a])

from mwisdownls and mwisdowna). When a function can be evaluated in both leftward and
rightward manners, the third homomorphism theorem guarantees the existence of a parallel
algorithm.

We, therefore, construct a parallel algorithm in the following way, with the definition of
associative operator ⊙ and also the mwispar function as follows.
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mwispar = mwis′ ◦ z2t
mwispar[(Node

′ bt children)] = mwis′(Node bt children)

mwispar(a++b) = mwispar a⊙mwispar b

= [(xsa,xs′b,valuea + valueb

− weight (intersect xs′a xsb) |
(xsa,xs′a,vlauea)←mwispar a,

(xsb,xs′b,valueb)←mwispar b,

consistent xs′a xsb]

Then maximum sum can be computed by valuemwis defined as follows:

valuemwis tree=max ((map thd )(mwispar(walk tree))).

For each subtree, we can use function mwis′ to compute the partial results in parallel. Inde-
pendent sets of two successive lists can be merged, if the selecting states of the rightmost
root of the left list and the leftmost root of the right list are consistent. Listing 4.2 shows a
Java implementation of the MIWS-solving program.

If there are p processors, and the size of zipper is n, it takes O(|V | · 2(w+1)/p) time to
compute the result of sub-list in parallel. A merging of two sub-list result takes O(22(w+1))

many computations. It takes O((nlogn)/p · 22(w+1)) in the merging procedure. From the
practical view, the merging procedure is much faster, as the size of the pairs of selecting
state can be largely reduced with the consistent condition.

4.3.4 Evaluation

We implemented a shared memory version of MapReduce using Java multi-thread, to eval-
uate our parallel algorithm for MWIS problem. Results are averaged over 5 tries.

Experiment Environment. All experiments are performed on a Linux (Ubuntu 12.04
64-bit) compute equipped with 8GB of RAM and two processors each with 4 cores (In-
tel®Xeon®CPU E5620 @2.40GHz).
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Graph Data. For experiments on the Maximum Weighted Independent Set problem, our
input is a partial k-tree generated by keeping 100% of the edges from a random 10-tree on
100,000 nodes. The 10-tree has 100,000 nodes and 999,945 edges.

We use an open-source tool, INDDGO [62], to construct tree decomposition of the graph.
After construction, the tree decomposition of the graph has 72,523 nodes. The height of the
tree decomposition is 22 and the maximum degree is 149.

Results. We compare our approach (MWIS-par) with a Java-implemented sequential pro-
gram (MWIS-seq) using the dynamic programing algorithm described in [62]. The running
time result of this experiment is shown in 4.10.

The speedup over the sequential program (MWIS-seq) is shown in 4.11. From the figure we
can see that, the parallel algorithm for the MWIS problem achieves a nearly linear speedup
over the sequential version.

The memory overhead of this experiment is shown in 4.12. As the number of subtrees
increases with cores and we need to duplicate the selecting state at the root of each subtree
for merging partial results in zipper both leftward and rightward, our approach requires more
memory as the cores increases.

4.4 Related Work

Graph parallelization, especially on large scale graphs, has been studied intensively in recent
years. In data-intensive computing domain, Pregel [90] is a bulk synchronous message
passing abstraction in which all vertex-programs run simultaneously in a sequence of super-
steps. GraphLab [88] is an asynchronous distributed shared-memory abstraction in which
vertex-programs have shared access to a distributed graph with data stored on every vertex
and edge. Gonzalez et al. [56] showed that the natural graphs commonly found in the
real-world have power-law degree distributions, which challenge the assumptions made by
these abstractions. So they proposed the PowerGraph [56] abstraction which exploits the
Gather-Apply-Scatter model of computation to factor vertex-programs over edges, splitting
high-degree vertices and exposing greater parallelism in natural graphs.

Tree contraction, which was first proposed by Miller and Reif [100], is a useful framework
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for developing parallel programs on trees, and many computations have been implemented
on it. However, parallel tree contraction is hard to use, because it requires a set of oper-
ations that satisfy a certain condition [103]. To this end, Matsuzaki et al. [91] proposed a
systematic method of deriving efficient tree contraction algorithms from recursive functions
on trees.

Tree reductions are often implemented with a tree contraction algorithm. Matsuzaki et
al. [94] developed a code generation system based on tupled-ring property to automati-
cally transform user’s recursive reduction programs with annotations into parallel programs.
Emoto and Imachi [48] proposed a MapReduce algorithm for tree reductions and imple-
mented it on Hadoop.

Parallel skeletons provide parallelizable computational patterns in a concise way and con-
ceal the complicated parallel implementations from users. Skillicorn [123] first formalized
a set of binary-tree skeletons. Matsuzaki et al. [93] proposed an implementation of these
parallel tree skeletons on binary trees on distributed systems, to help programmers to sys-
tematically derive efficient parallel programs using tree skeletons.
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Listing 4.2 The Java Implementation of Botton-up Dynamic Programming Algorithms for MWIS
Problem.

1
2
3 public List<MWISTriple> unit() { return unit; }
4
5 public List<MWISTriple> compute(MWISNode tree) {
6 MWISSolver mwis = new MWISSolver(graph,tree);
7 mwis.solve();
8 List<MWISTriple> items = new ArrayList<MWISTriple>();
9 for(Entry<Set<Integer>,Integer> entry: tree.dptable.

entrySet()){
10 List<Pair<Integer,Boolean>> list = new ArrayList<

Pair<Integer,Boolean>>();
11 Set<Integer> indenpentSet = entry.getKey();
12 for(Integer vertex: tree.getData()){
13 list.add(new Pair<Integer,Boolean>(vertex,

indenpentSet.contains(vertex)));
14 }
15 items.add(new MWISTriple(list,CollectionUtils.clone(

list),entry.getValue()));
16 }
17 return items;
18 }
19
20 public List<MWISTriple> combine(List<MWISTriple> r1, List<

MWISTriple> r2) {
21 List<MWISTriple> items = new ArrayList<MWISTriple>();
22 for(MWISTriple t1:r1){
23 for(MWISTriple t2:r2){
24 if(consistent(t1.second, t2.first)){
25 int value = t1.third+t2.third-GraphUtils.

computeVertexWeightSum(getIntersection(t1
.second, t2.first), graph);

26 items.add(new MWISTriple(t1.first,t2.second,
value));

27 }
28 }
29 }
30 return items;
31 }
32
33 public Integer extract(List<MWISTriple> result) {
34 int max = Integer.MIN_VALUE;
35 for(MWISTriple triple : result){
36 if(triple.third > max)
37 max = triple.third;
38 }
39 return max;
40 }
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Fig. 4.8 A Weighted Graph and Its Tree Decomposition. The Weight of Each Node is Same as Its Id.

Fig. 4.9 An Example to Show Computation on a Zipper.
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Chapter 5

A Practical Approximation Approach to
Optimization Problems

Polynomial time dynamic programming (DP) algorithms on tree decompositions of graphs
[6, 22, 114] give us a possible way to resolve NP-hard problems on large input data sets.
However, to obtain a tree decomposition (with a small enough width) of a graph is a prob-
lem in practice: it is a NP-complete problem to determine whether the treewidth of a graph
is at most k [6, 114], and general graphs do not have bounded treewidth. Thus these DP
algorithms are theoretically interesting but impractical in most cases. In this chapter, we in-
troduce our approach of how to make these DP algorithms practical. We have invented a new
way to put the DP algorithms introduced in [6, 22, 114] into practice. We have successfully
resolved the Target Set Selection (TSS) problem by this approximation approach.

5.1 The Target Set Selection Problem

In social networks, individuals’ behavior can influence others’, which can be seen in the
adoption of everyday decisions in public affairs, fashion, movie-going, and consumer be-
havior. This is so called "word-of-mouth" effects that the information migrates in a popula-
tion through an influential network.

The viral marketing is such kind of marketing technique that imitates the diffusion process
of "word-of-mouth" by intention. In viral marketing, a fundamental problem is to select a
minimum initial “seed" set from the network such that the entire network adopts the products
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promoted to the seed [78]. This problems can be defined as an optimization problem named
the Target set Selection problem on graphs. Informally, the target selection problem is:
given an undirected graph G(V,E), and a threshold function t : V → N∪{0} showing the
minimum number of activated neighbors to activate the vertex, find a smallest set of vertexes
that can activate all vertexes in V .

An inactive vertex can be activated when |Nactive(v)| ≥ t(v). Once a vertex becomes active it
never falls back to inactive state 1. The diffusion process is represented as a chain of subsets
as follows.

A[0]⊂ A[1]⊂ ·· · ⊂A[z],

where A[i] denotes the set of active vertexes, A[z] = V . A[i+ 1] = {u|u ∈ A[i] or t(u) ≤
|Nactive(u)∩A[i]|}. A[0] = S. For i = 1 . . .m, we say that S can activate A[i] in time step i.

TSS problem is proved NP-Complete and hard to approximate in that no polynomial ap-
proximation factor exists [28, 29, 78].

Many exact algorithms [8, 28, 84] have been proposed to resolve the TSS problem for some
special graphs. For graphs with bounded treewidth [6, 114], an exact dynamic programming
(DP) algorithm [8] is given in time complexity of |V |O(w), where w is the treewidth of the
input graph. For the complete graphs (cliques) [108], a linear algorithm is given, and for
trees, a polynomial-time DP algorithm is discussed [29]. Unfortunately, it is difficult to
use these exact algorithms to deal with large graphs in practice. For example, for the DP
algorithm in [8], the target large social networks usually do not have bounded treewidth.
Moreover, computing the treewidth of a general graph is NP-hard [6, 114], and even if we
can compute the treewidth it may be too large for practical use. This calls for good heuristic
algorithms to solve the TSS problem [119].

In this chapter, we show, as far as we are aware, the first extension of the exact DP algorithm
[8] to a novel practical heuristic algorithms for solving the TSS problem. The key ideas are a
graph reduction algorithm to reduce the input graph without changing the size of the perfect
target set, and an approximation algorithm to use a partial k-tree to approximate a graph.
More specifically, we first apply the graph reduction algorithm to reduce the input graph. If
the threewidth of the reduced graph is small enough, we apply the exact DP algorithm to
compute an optimal perfect target set. Otherwise, we approximate the graphs by generating
a partial k-tree and apply the exact DP algorithm to compute the result.

1We only refer to monotone processing. Non-monotone processing is also discussed in [78].
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Fig. 5.1 An example of TSS problem under the deterministic threshold model

Our practical implementation is in sharp contrast to the study in [8] whose interest is in
theoretical complexity of the DP algorithm.

5.1.1 Formal Definition of TSS

Formally, the Target set selection problem can be defined as follows. Given an undirected
graph G(V,E), for each v ∈V , let deg(v) denote the degree of v, and t : V →N be a function
where t(v) represents the threshold value of v for 1 ≤ t(v) ≤ deg(v). Let N(v) denote the
neighbors of v, and let Nactive(v) denote the active neighbors of v. Initially, the states of
all vertices are inactive. Then set the state of vertexes in the target set (seeds) S to be
active. The inactive vertexes can be activated if any of them has active neighbors no less
than its threshold value. The goal is to find a minimum S that can activate V . Let n = |V |,
then z ≤ n− 1. Note that S is not necessarily unique. In other words, there may be some
sets Sx ⊆ V,x ∈ {0,1, . . .} that all of them can active V , and |Si| = |S j|,Si ∩ S j ̸= /0, i, j ∈
{0,1, . . .}.

As an example, if we assign the following threshold values to the vertexes in graph of Figure
5.1a like a : 1, b : 3, c : 2, d : 4, e : 1, then if we choose d as the seed then it can active
all other vertexes like Figure 5.1b: d firstly actives {a,e}, then {a,d,e} can active {b},
at last {b,d} can active c. Obviously, the perfect target set for this graph (with the given
thresholds) is {d}.

For TSS problem we have the following observation [108].

Observation 1 (Terminated). Let PS be a perfect target set of G. Then, ∀u,v,{u,v} ⊆ PS,
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{u} cannot activate {v}, and vice verse.

This observation means that using any one vertex in a perfect target set PS, we cannot
activate a set of vertexes which contain any other vertex that are also in PS, otherwise these
two cannot exist in PS simultaneously.

5.1.2 An Extension of the TSS Problem

We can extend the TSS problem to a more general version as follows.

Definition 5.1 (An Extension to TSS). For a graph G(V,E) with thresholds of all vertexes,

a set V ′ ⊆V , find a minimum set S⊆V , so that S can active V ′.

This is a variant of original TSS problem. It makes sense when we do not intend to active
the whole population in the network but a set of targeted customers (vertexes). However,
we can not just simply remove other vertexes to make it be a TSS problem (otherwise the
connection information of targeted customers in the network will be lost). Moreover, the
initial seeds are not limited to these targeted customers. This variant TSS (VTSS) is at least
as hard as TSS (let V ′ =V , this problem is reduced to TSS).

5.2 Using Treewidth-Bounded Partial Graphs to Approxi-
mate TSS

We propose a new approach based on dynamic programming to resolve the TSS problem on
large scale social networks under the deterministic linear threshold model. Our approach is
based on the following observation.

Observation 2. For a graph G(V,E), if H(V,EH) is a partial graph of G and a set S⊆V is

a perfect target set of H, then S is also a target set of G.

For a graph G(V,E), an integer k and thresholds of every vertex as input, we firstly generate
a bounded treewidth partial graph H(V,E ′), where E ′ ⊆ E that means we only remove some
edges of G but keep all vertices. The treewidth of H is guarantied to be k according to our
algorithm. Then we apply an exact algorithm on H to compute the target set S′ which is a
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subset of V . We show that S′ can active V in both H and G, thus S′ is an approximation of
target set S for graph G. The soundness of this approach is given by Observation 2.

Our solution for TSS contains three modules. The first module mainly contains a reduction
algorithm that reduces a large graph G(V,E) to a subgraph graph GR(VR,ER) where VR ⊂
V,ER ⊂ E and get a set of vertices P,P ⊆ V\VR, such that if SR is a perfect target set of GR

then SR∪P must be a perfect target set of G. We use this algorithm as pre-processing.

The second one contains an algorithm that, given an integer k and a graph G(V,E), it finds
a partial k-tree H(V,EV ) form G(V,E). Based on our experiments on real-world social
networks, in many cases, the H(V,EV ) obtained by this algorithm contains high percentage
of edges of G, even with k = 2 or k = 3. We formalize this problem as the Maximum Partial

K-Tree problem.

The third module contains a DP algorithm that computes the exact target set of a sub k-
tree with bounded threshold. This algorithm is based on the DP algorithm proposed by [8].
Originally, the DP algorithm in [8] is impractical algorithm, we made some modifications
and make it practical under the condition that the thresholds are bounded by a small value.

The three modules are explained as follows.

5.2.1 Graph Reduction for TSS

Data reduction [6, 23] is a polynomial-time preprocessing, which is a core tool in the de-
velopment of fixed-parameter algorithms. In order to simplify the problem, we apply some
useful data reduction rules on an input graph G, so that we can reduce G to smaller/simpler
subgraphs and the target set for G can be obtained form those subgraphs.

On TSS problems we have some simple observations which are meant for later reference
throughout this chapter. These observations are straightforward and do not need proofs.

Observation 3 (Terminated). Let S be a perfect target set of G. Then ∀u,v,{u,v} ⊆ S that

{u} cannot activate {v}, vice versa.

Using any one vertex in a perfect target set PS, we cannot activate a set of vertices which
contains any other vertex that also in S, otherwise these two cannot exist in PS simultane-
ously.
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Fig. 5.2 Structure “a vertex connects to a t(x)=1 vertex"

H1 u

1

1

1

v H2
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Non-adjacent vertices with the same open neighbourhood (such two vertices are so-called
twins) are interchangeable in any target set.

Observation 4 (Twin Exchange). Let G = (V,E) denote a graph and let u,v ∈ V denote

two twins of G with t(u) ≥ t(v). In addition, let S denote a target set with v ∈ S and u /∈ S.

Then, S′ := (S\{v})∪{u} is a target set for G.

A clique K in a graph is a critical clique if all its vertices have the same closed neigh-
bourhood and K is maximal with respect to this property. Observation 4 indicates that
non-adjacent vertices with the same open neighbourhood are interchangeable in any target
set.

We introduce two parameter-independent reduction rules.

Reduction Rule 1. Let G = (V,E) denote a graph, and let T be an empty set. ∀u ∈ V , if

t(u) > deg(u), add u to T , delete u form G and decrease the thresholds of all its (original)

neighbors by one. For any rest vertex v in graph G, if t(v) ≤ 0, then delete v and decrease

the thresholds of all its neighbours by one.

Repeatedly apply rule 1 until no more vertex can be removed, we get a smaller graph H
which is a subgraph of G, and any perfect target set PS in H is also a perfect set for G.

For graphs contains structures like Figure 5.2, we can apply following reduction rule.
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Reduction Rule 2. Let G=(V,E) denote a graph. ∀(x,u)∈{(x,u)|(x,u)∈E, and t(x)= 1,

N(u)∩N(x) = /0}, delete x from G. Then ∀v ∈ N(x)\{u} add an edge (v,u).

We can apply the reduction rule 2 on a graph G to remove all the vertices initially with
degree one, and find a set T which belongs to a perfect target set. Then we use T to active
a set of vertices. Finally, T and Active[T ] can be removed form the graph G. After such
reduction, we get the graph G may become not connected. We can repeatedly apply this rule
on all the connected components of G until no more degree-one vertex can be found. The
merge of all sets of T when we apply the reduction rule 1 contains a partial perfect target set
and rest parts of this perfect target set distributed in the connected components of reduced
G. The reduction rule 1 can be applied exhaustively in linear time.

The reduction rule 1 is a more general rule. Similar rule appears in [108]. However in our
context, it cannot be directly applied on a graph without applying rule 2. Because initially,
there is no such a vertex in the input graph, which satisfies the condition t(v)> deg(v).

For graphs contains structures like Figure 5.3, we can apply following reduction rule.

Reduction Rule 3. In graph G = (V,E), if ∃(u,v),u ∈ V,v ∈ V,(u,v) /∈ E such that J :=
N(u)∩N(v) is not empty, and ∀x ∈ J ,deg(x) = 1. Then delete v and J form G (assume

θu ≥ θv), for every vertex y ∈ N(v)\J add an edge (x,u).

For graphs contains structures like Figure 5.4, we can apply following reduction rule.

Reduction Rule 4. For a connected graph G = (V,E), if ∃u ∈ V,v ∈ V are twins. Then if

u can active v, then delete v and J form G (assume θu ≥ θv), for every vertex y ∈ N(v)\J
add an edge (x,u).

According to Observation 4, [108] introduces another reduction rule that can reduce a criti-
cal clique in the input graph.

Definition 5.2 (Critical Clique). A clique K in a graph is a critical clique if all its vertices

have the same closed neighbourhood and K is maximal with respect to this property.

Reduction Rule 5. Let S denotes a perfect target set of G, let K be a critical clique in G,

and let NG(K) denotes the neighbors of K in G. If NG(K) cannot active K then there must

exist a set SK ⊆ K such that SK ⊆ S. We can remove SK and decrease the threshold of all

v ∈ N(SK) by one. Also, we remove the set Active[Sk] before removing SK .
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Fig. 5.4 Structure “twins that can be reduced"

Table 5.1 Reduction of subgraphs of facebook-sg

Total E VLCC ELCC Vreduced
|Vreduced |
|VLCC|

×100% Ereduced
|Ereduced |
|ELCC| ×100%

100,000 15,534 17,392 1,751 11.27% 3,606 20.73%
500,000 281,061 336,826 47,429 16.87% 103,084 30.60%
2,000,000 1,526,297 1,819,949 251,774 16.50% 544,428 29.91%
10,000,000 7,562,368 9,819,124 1,530,535 23.09% 3,986,513 40.46%

SK is part of some perfect target of G. Note that NG(K) separates K from the rest of G.
If activating all vertices in NG(K) is not enough to activate all vertices of K, then every
target set of G has to contain some vertices of K. By Observation 4 (Twin Exchange), we
can assume without loss of generality that those vertices have the highest thresholds among
all vertices of K. SK can be computed in linear time [108]. The rule 5 can be applied in
O(n(n+m)) time [108].

For social networks, after applying reduction rule 1 - 5 , the remained part usually becomes
several several orders of magnitude smaller than the population size without affect the exact
solutions of TSS.

Table 5.1 shows the result of some experiments on the facebook-sg that is from The Koblenz

Network Collection[76]. This time we also took subgraphs of facebook-sg and evaluated on
them.

In Table 5.1, the column |Vreduced |
|VLCC|

× 100% and |Ereduced |
|ELCC| × 100% show the results that after

reduction, the remained graphs have only small parts of edges and vertices compared with
original graphs.
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Our strategy is firstly use above reduction rules to reduce a large (connected) graph as small
as possible (may be not connected any more). Meanwhile, we get a set of vertices that must
belongs to some perfect target set. Then each connected component of rest part of the input
graph can be analyzed independently.

5.2.2 The Maximum Partial K-Tree Problem

For an arbitrary graph G, its treewidth is unknown and difficult to compute, that makes the
linear/polynomial time DP algorithms like [6, 8, 22, 114] being impractical. Even in case
we could efficiently compute the treewidth of a large graph, if the treewidth is large than 20,
those DP algorithms are still impractical because of the huge constant factor [115]. Such
problem is a fundamental roadblock to making the tree decomposition based DP algorithms
like [8] being practical. Our approach is reducing G to be a partial k-tree by only removing a
few edges, with a small k (e.g., k is 3 is a good choice for many social networks). Procedure
1 indicates the details of the algorithm.

The input is a graph G(V,E) and an integer k and we assume k ≤ |V |. First, we find top k

vertices which have maximum degree in graph G, and add them to H, then apply a function
cliqueH on them making them a clique. Here the function cliqueG(S) means that add edges
to each pair vertices of S in the graph G, and make S be a clique (that induces a complete
graph). If an edge added to H during applying cliqueH , connected two vertices that are not
connected in graph G, then we remember it to a set R and will remove it form H after the
procedure is finished. After that, we continue choosing some vertex v ∈G\H and a k-clique
Clqk in H, then adding v to H and applying cliqueH(Clqk∪{v}) to add some new edges to
H.

Function commEdges(clqH ,G) computes the common edges of the complete graph induced
by a clq in H and graph G. We can add all other vertices of G to H one by one in such an
order that we always choose a new vertex v that make sure the commEdges(clqH ,G) is
maximal. Finally, we remove all edges of H, for each of which there is no such an edge
between two vertices in G.

Because any partial k-tree has bounded tree k, we can obtain its tree decomposition of
width k. For real-world social networks, our greedy algorithm can find quite nice partial
graphs that contains most high percentage of edges of original graphs, even with very small
k/. Table 5.2 shows evaluation of this algorithm on a social network facebook-sg. The
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Procedure 1 A greedy algorithm to find a partial k-tree inside a graph

Input: a graph G(V,E) and an integer k ≤ |V |.
Output: a partial H(VH ,EH), and ω(H)≤ k,VH =V , and EH ⊆ E.

1: function GROW(G,k)
2: find k vertices Clq0 = {v1, ...,vk} that argmax

v ∈ V\VH

∑
k
i=1(d(vi))

3: VH ←Clq0
4: EH ← /0
5: R← /0
6: cliqueH(Clq0)
7: for all eH ∈ EH but eH /∈ E do
8: R← R∪{eH}
9: end for

10: while |VH |<V do
11: find a v∈G\H and a k-clique clqk in H that argmax

v ∈ V\VH

commEdges({v}∪clqk,G)

12: VH ←VH ∪{v}
13: cliqueH({v}∪ clqk)
14: for all eH ∈ EH but eH /∈ E do
15: R← R∪{eH}
16: end for
17: end while
18: H remove all the edges that are also in R
19: return H(V,E ′)
20: end function

data set of facebook-sg contains 59,216,214 vertices, 92,522,012 edges stored in a text file
and it describes friendship relations between users of the social network Facebook. It was
collected in April of 2009 through data scraping from Facebook. We took first 50,000
3,000,000 edges (column Total E and Total V, representing subgraphs of the network) of the
file and find out the largest connect component (LCC) in them. Then we applied the greed
algorithm on each largest connect component and found a partial 3-tree, respectively. The
column of Percentage is the percentage of the edges that each 3-tree contains, i.e |Ek|

|Elcc| ×
100%. We also computed the upper bound of treewidth of each LCC. For those very large
subgraphs (last four rows) the upper bound of treewidth will take too long time to compute
by the tools we have, so that we remain them being unknown.

We can generate the k-trees very efficiently by an optimized version of Procedure 1. Figure
5.5 shows the running time of this algorithm, using different size subgraphs of the facebook-

sg as input.
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Table 5.2 Evaluation of Grow on subgraphs of facebook-sg.

Total E Total V VLCC ELCC Ek K Percentage TW upper-bound
50,000 46,071 5,574 6,220 6,115 4 98.31% 5
100,000 91,235 15,534 17,392 17,123 3 98.45% 5
150,000 134,681 42,019 50,251 48,923 3 97.36% 14
200,000 177,029 63,121 77,178 74,550 3 96.59% 18
400,000 350,546 199,534 240,957 231,913 3 96.25% 116
500,000 438,084 281,061 336,826 322,077 3 95.62% 116
800,000 698,725 528,425 626,447 599,066 3 95.63% unknown
1,000,000 871,572 701,006 828,324 793,904 3 95.84% unknown
2,000,000 1,710,774 1,526,297 1,819,949 1,530,535 3 94.10% unknown
3,000,000 2,531,088 2,343,853 2,821,078 2,347,001 3 93.20% unknown

Fig. 5.5 The running time of the partial k-tree generating algorithm

Since we can use small k to generate a partial k-tree and get its tree decomposition, the DP
algorithm on this tree decomposition can be efficient enough for large graphs.

For many social networks, even let k = 2 or k = 3 the partial k-tree still contains more than
90% edges and keeps similar important properties such as average degree and average local
clustering coefficient. Table 5.3 shows the comparison of properties of generated 3-trees
and the original input graphs. The input graphs are some connected components of the
facebook-sg.

5.2.3 An Exact Algorithms for Computing TSS

When we get a partial graph H(V,EH) (with bounded treewidth k) of G(V,E), we can com-
pute the exact TSS SH on the tree decomposition of H. The target set SH can active H thus
it also can active G.
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Table 5.3 Comparison of properties of generated 3-trees and the original input graphs.

Input(V/E) d̄ d̄3−tree
d̄3−tree

d̄ ×100% C̄ C̄3−tree
C̄3−tree

C̄ ×100%
1,984/2,167 2.18 2.15 98.25% 0.057 0.052 91.83%
5,574/6,220 2.23 2.20 98.44% 0.081 0.074 92.26%
15,534/17,392 2.23 2.18 97.72% 0.081 0.068 84.23%
63,121/77,178 2.24 2.18 97.21% 0.086 0.082 95.03%
528,425/626,447 2.45 2.35 96.00% 0.159 0.150 94.69%

Our exact algorithm is inspired by [8] and we improved the original algorithm and makes it
practical for large graphs with threshold values that the upper bound of threshold values is
small (typically, less than 10).

Before we introduce the DP algorithm, let us firstly introduce some preliminaries.

The DP algorithm is based on a nice tree decomposition (Definition 4.2). The input is a nice
tree decomposition T (I,X) of a graph G and threshold values for each vertex of G. If X is
the root node of a subtree, the vertices in X are called boundary vertices of GX .

Definition 5.3 (Threshold Vector). Let GX denotes a subgraph of G, and it is induced by

a tree τ rooted by the node X. A vector tv ∈ [n]w, [n] = {0,1,2, ...,n} is called a threshold

vector for X (also for GX ).

The DP algorithm needs to consider different threshold assignments to the boundary ver-
tices. For a graph G, without any limitation, the possible values of threshold are in [0,n].
Let T be the set of all possible threshold vectors, then |T |= (n+1)w. If we give a bound of
the threshold values b, then |Tb| = (b+ 1)w. We only consider the cases that the bound of
the threshold values b is small, otherwise our algorithm becomes quite inefficient for large
graphs.

Definition 5.4 (Activation Order). Let [n] denotes the set {0,1, ...,n}. X is a node of tree

(X = {v,u, ...}). Let A is a function A = {a0,a1, ...}, an activation order ai is a function

ai : X → [w−1] that maps a set of vertices X to [w−1].

For an activation process constrained by a j, if a j(u)> (or <,=)a j(v) means vertex u must
be activated after (or before, same as) v. A is the set of all activation orders of set X .

Definition 5.5 (The Information Table). The boundary vertices of GX constrained by an

activation order A, corresponding to a perfect target set of GX represented as OPT GX [T,A].
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The algorithm computes the perfect target set form bottom to up through the nice tree de-
composition T . For each leaf node L, it computes a table OPT GL [T,A] by brute-force that
means find all possible combinations of vertices with threshold values under every activation
order. It will take (d +1)O(w) time for each leaf node.

Then for replace nodes and join nodes we do the following operations (follows the descrip-
tions of [8]), respectively.

Replace Nodes Suppose X is a replace node with child Y in T . Suppose GX is obtained
by adding a new boundary vertex u to GY , and removing another boundary vertex v from
the boundary (but not from GX ). By the second condition of Definition 4.2, u can only be
adjacent to other boundary vertices of GX . Let d denote the number of these neighbors of u

in GX , and assume that they are ordered. Also, let Gi
X , for i = 0, ...,d, denote the subgraph

of GX obtained X by adding the edges between u and and all of its neighbors in X , up-to
and including the ith neighbor. The table OPTGX is actually obtained by computing OPTGi

X

in increasing values of i, letting OPTGX := OPTGd
X
.

When i = 0, u is isolated, and thus it must be included in any perfect target set when it has
threshold greater than 0. For any threshold vector T for X , let T uv denote the threshold
vector for Y obtained by setting: T uv(w) := T (w)∀w ̸= v, and T uv(v) := T (u). For an order
A for X , let Auv denote the set of all orderings A’ for Y with A′(w) := A(w) for all boundary
vertices w ̸= u,v. We allow A′(v)A(u). According to the above, when X is a replace node
we get for i = 0, we apply the following rule.

Operation Rule 1 (Replace Nodes Step-1 [8]).

OPTGX [T,A] = min
A′∈Auv

{
OPTGY [T

uv,A′], if T (u) = 0
OPTGY [T

uv,A′]∪{u}, if T (u) ̸= 0

Now if i > 0, then Gi
X is obtained from Gi−1

X by connecting u to some boundary vertex
w ∈ X . For any threshold vector T , let T denote the threshold vector obtained by setting
T u−(u) := maxT (u)−1,0, and all remaining thresholds the same. Define T w− similarly.
Since the edge {u,w} can only influence v if A(w) < A(v), and vice versa, we have the
following rule.
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Operation Rule 2 (Replace Nodes Step-2 [8]).

OPTGi
X
[T,A] =


OPTGi−1

X
[T,A], if A(w) = A(u)

OPTGi−1
X
[T u−,A], if A(w)< A(u)

OPTGi−1
X
[T w−,A], if A(w)> A(u)

Join Nodes Let X be a join node with children Y and Z in T . GY and GZ are two
subgraphs who share the same boundary vertices Y = Z, GX is obtained by taking the union
of these two subgraphs. This means that there is no edge between V (GY )\Y and V (GZ)\Z
in GX . For a boundary vertex v ∈ X ,let NG[X ](v) denote the set of boundary vertices that are
connected to v in GX . For v∈X , and an activation order A, let A≤ v be the set of all boundary
vertices u such that A(u)< A(v). Given an order A, and a pair of threshold threshold TY and
TZ , define the threshold vector TY ⊕A TZ as the vector T where a coordinate T (v) for v ∈ X

is defined by
T (v) := TY (v)+TZ(v)−|NG[X ](v)∩A≤v|.

We thus can compute OPTGX [T,A] using the following equation:

Operation Rule 3 (Join Nodes[8]).
OPTGX |[T,A] = min

TY⊕ATZ=T
OPTGY |[TY ,A]∪OPTGZ |[TZ,A].

Apply the above rules until the T only remains the root node, then in the table OPT |[T,A]
all perfect target sets can be found.

5.2.4 Implementation and Evaluation for the Target Set Selection Prob-
lem

We have implemented all algorithms introduced in this chapter, in Java. Parallel implemen-
tation for TSS can be done in the similar way as described in Chapter 4, but it is not finished
yet at the current stage.

Experiment Environment. All experiments are performed on a Linux (Ubuntu 12.04
64-bit) compute equipped with 8GB of RAM and two processors each with 4 cores (In-
tel®Xeon®CPU E5620 @2.40GHz).
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Table 5.4 Small data sets (subgraphs of facebook-sg)

ID InputE InputV LCCE LCCV
1 2,000 1,710 662 663
2 5,000 4,505 839 840
3 5,000 4,505 839 840
4 10,000 9,048 2,167 1,984
5 10,000 9,048 2,167 1,984
6 20,000 18,142 3,395 3,054
7 20,000 18142 3,395 3,054
8 50,000 46,071 6,220 5,574

Graph Data. We use a data set facebook-sg[55] form the real-world social network Face-
book. The data is gathered by The Koblenz Network Collection[76]. This network describes
friendship relations between users of the social network Facebook. It was collected in April
of 2009 through data scraping from Facebook and contains 59,216,214 vertices, 92,522,012
edges. The adjacency matrix of the network in space separated values format, with one edge
per line.

Results. We firstly evaluate our algorithm on some small data sets that are a cut of first
sever lines of the data set facebook-sg. Then we find a largest connected component (LCC)
for each subgraph as the input. Table 5.4 lists the subgraphs and their largest connected
components.

We compared the target sets computed by our algorithm and that computed by using algo-
rithm in [119]. We set the bound of threshold values to be 3. Table 5.5 shows the comparison
2. The first column shows the 3-trees we generated has how much percentages of edges of
input graphs. The column |T SA| is the size of target set computed by our algorithm. The
column |T SB| is the size of target set computed by algorithm of [119]. On these small data
sets, the fist several data set (from No.1 to No.3) two algorithms can both find the exact
solution (as the size equals to 1), but on other cases, our algorithm performs significantly
better than the algorithm of [119] (the size is between 38% to 57% of [119]).

We also evaluate our algorithm on bigger data sets that generated in similar way of Table
5.4. These data sets contain 500,000 to 2,000,000 edges, listed in Table 5.6. The target sets
we computed are around 1% percent of all population. Currently, our algorithm find larger

2We generate 3-trees of the largest connected components.
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Table 5.5 Comparison of results of our algorithm and [119](on data sets of Table 5.4)

ID |E3−t |
|LCCE |% |T SA| |T SB| |T SB|

|T SB|%
1 100% 1 1 100%
2 100% 1 1 100%
3 100% 1 1 100%
4 96.4% 3 8 38%
5 98.6% 3 8 38%
6 97.24% 9 14 64%
7 98.38% 6 14 43%
8 96.03% 16 28 57%

Table 5.6 Evaluation on big data sets (subgraphs of facebook-sg)

ID InputE InputV T S |T S|
|V | % Time (sec.)

1 500,000 438,084 1,710 1.03% 663
2 1,000,000 871,572 4,505 1.02% 840
3 1,500,000 1,710,774 4,505 1.02% 1,340
4 3,000,000 2,531,088 9,048 1.14% 1,984

target sets compared with [119] and take more time.

5.3 Related Work

Arnborg et al. [6] showed that many NP-hard problems posed in monadic second-order
logic can be solved in polynomial time using dynamic programming techniques on input
graphs with bounded treewidth. Many problems on graph, such as graph optimization prob-
lems (e.g., Minimum Vertex Cover, Maximum Weighted Independent Set), can be solved via
tree decomposition using bottom-up dynamic recursive algorithms. Many researchers have
investigated possibility for applying treewidth in innovative ways to help solve their prob-
lems [3, 8, 62, 80, 130]. Sullivan et al. [126] was the first one to parallelize algorithms for
optimization problems. Their task-oriented bottom-up dynamic programming approach is
shared-memory environment centered and is hard to be imported to MapReduce-like frame-
works thus hardly handle larger datasets that beyond the capacity of a single machine. How-
ever, since the parallelization of their approach is only on the leaf nodes, the performance
would be very inefficient if the shape of the tree decomposition is ill-balanced.

Many existing algorithms [8, 28, 84] for TSS are not practical for large graphs. Recently
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[119] gives a good heuristic algorithm that is quite efficient and scales well, but no algorith-
mic guaranty is given. Exact algorithms of the Target set selection problem are given for
some special cases. An exact dynamic programming (DP) algorithm algorithm for graphs
with bounded treewidth is given by [8], in time complexity of |V |O(w), where w is the
treewidth of the input graph. Chen [28] gives a polynomial-time DP algorithm for trees.
The problem for the DP algorithm in [8] is that large scale social networks usually do not
have bounded treewidth or the treewidth is too large for practical use, and also, computing
the treewidth of a general graph is NP-hard [114].



Chapter 6

Implementation and Evaluations

In this chapter the details of implementation of libraries in our framework are introduced.
For programming with list homomorphisms, accumulation and GTA, we provide user friendly
programming interfaces respectively. The experimental results on large clusters or maulti-
core machines are given.

6.1 List Homomorphism Wrapper of MapReduce

We provides an efficient implementation of list homomorphisms over MapReduce. In par-
ticular, the implementation consists of two passes of MapReduce.

6.1.1 Manipulation of Ordered Data

The computation of a list homomorphism relies on the order of elements in the input list,
while the input data of MapReduce are given as a set of records stored in the distributed file
system. We have to represent a list as a set.

As we have explained in Section 3.2.1, in Screwdriver, we represent each element of a list as
a pair of (index,value) where index is an integer indicating the position of the element. For
example, a list [a,b,c,d,e] may be represented as a set {(3,d),(1,b),(2,c),(0,a),(4,e)}.
Note that the list can be restored from this set representation by sorting the elements in
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terms of their indices. Such indexed pairs permit storing data in arbitrary order on the
distributed file systems

6.1.2 Implementing Homomorphism by Two Passes of MapReduce

For the input data stored as a set on the distributed file system, Screwdriver computes a list
homomorphism in parallel by two passes of MapReduce computation. Here, the key idea of
the implementation is that we group the elements consecutive in the list into some number
of sublists and then apply the list homomorphism in parallel to those sublists.

In the following, we summarize our two-pass implementation of homomorphism ([ f ,⊕]).
Here, hom f (⊕) denotes a sequential version of ([ f ,⊕]), comp is a comparing function
defined over the Int type, and const is a constant value defined by the framework.

homMR :: (α → β )→ (β → β → β )→{(Int,α)}→ β

homMR f (⊕) = getValue◦MapReduce ([·]) gSHUFFLE comp gREDUCE

◦MapReduce ([·]) fSHUFFLE comp fREDUCE

where
fSHUFFLE :: Int→ Int

fSHUFFLE k = k/const

fREDUCE :: (Int, [α])→ (Int,β )

fREDUCE (k,as) = (k,hom f (⊕) as)

gSHUFFLE :: Int→ Int

gSHUFFLE k = 1

gREDUCE :: (Int, [β ])→ (Int,β )

gREDUCE (1,bs) = (1,hom id (⊕) bs)

getValue :: {(Int,β )}→ β

getValue {(1,b)}= b

First pass of MapReduce: The first pass of MapReduce divides the list into some sub-
lists, and computes the result of the homomorphism for each sublist. Firstly in the MAP
phase, we wrap the key-value pair into a singleton list. Then in the SHUFFLE&SORT
phase, we group the pairs so that the set-represented list is partitioned into some number of
sublists and sort each grouped elements by their indices. Finally, we apply the homomor-
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phism to each sublist in the REDUCE phase.

Second pass of MapReduce: The second pass of MapReduce computes the result of
the whole list from the results of sublists given by the first pass of MapReduce. The MAP
phase is the same as the MAP in the first pass. Then in the SHUFFLE&SORT phase, we
collect the intermediate results into a single set and sort them by the their indices. Finally,
we reduce the intermediate results using the associative operator of the homomorphism.

Finally, by the getValue function, we extract the final result from the set (of single value).

6.1.3 Implementation Issues

In terms of the parallelism, the number of the MAP tasks in the first pass is decided by the
data splitting mechanism of Hadoop. For one split data of the input, Hadoop spawns one
MAP task which applies fMAP to each record. The number of the REDUCE tasks in the
first pass of MapReduce should be chosen properly with respect to the total number of the
task-trackers inside the cluster. By this number of REDUCE task, the parameter const in the
program above is decided. In the REDUCE phase in the second pass of MapReduce, only
one REDUCE task is invoked because all the intermediate results are grouped into a single
set.

6.1.4 Experiments and Evaluation

We evaluated the scalability of programs implemented by Screwdriver, the overhead of our
framework compared with native Hadoop programs, and the overhead of the non-trivial
parallel program compared with sequential program.

We configured clusters with 2, 4, 8, 16, and 32 virtual machines (VM) inside the Edubase-

Cloud of National Institute of Informatics. Each VM has one CPU (Xeon E5530@2.4GHz,
1 core), 3 GB memory, and 5 GB disk space. We installed Hadoop (version 0.20.2.203) on
each VM. Three sets of programs are used for the evaluation: SUM computes the sum of
64-bit integers; VAR computes the variance of 32-bit floating-point numbers; MPS solves
the maximum-prefix-sum problem for a list of 64bit-integers. We both implemented the
programs with the Hadoop APIs directly (SUM-MR, VAR-MR, MPS-MR), and with our
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Screwdriver (SUM-LH, VAR-LH, MPS-LH). Also a sequential program is implemented
(MPS-Seq). The input for SUM and MPS was a list of 108 64bit-integer elements (593
MB), and the input for VAR is a list of 108 32bit-floating-point numbers (800 MB). Note
that the elements of lists are indexed (each element has a 64bit-integer index), stored in the
Avro data format, and put in the HDFS.

The experiment results are summarized in Fig. 6.1 and Table 6.1. Note that the relative
speedup is calculated with respect to the result of 2 nodes. The execution of the parallel
programs on our framework and on Hadoop failed on 1 node, due to the limitation of disk
space for the intermediate data.

All the programs achieved good scalability with respect to the number of nodes: the speedup
ratios for 32 nodes against 2 nodes are more than 10 times. This shows that our frame-
work does not spoil the strong advantage of MapReduce framework, namely scalable data

processing. For the summation problem, the SUM-LH program on our framework cannot
use combiner due to the limitation of Hadoop’s implementation, so SUM-MR which uses
combiner doing local reductionism can run almost twice faster. for almost all MapReduce
programs combiners usually can increase performance very much. So we will work on to
let our framework taking full use of data-locality. And we think it will bring notable per-
formance improvement. Besides this, two-passes MapReduce processing and sorting with
respect to the keys, which are unnecessary for the summation problem. In other words,
with these overheads we can extend the MapReduce framework to support computations on
ordered lists.

Finally we discuss the execution times for the maximum-prefix-sum problem. Although
the parallel program on our framework MPS-LH shows good scalability (as well as MPS-
MR), it ran slower on 32 nodes than the sequential program MPS-Seq. We consider this
is a reasonable result: first, in this case of the maximum-prefix-sum problem, the parallel
algorithm becomes more complex than that of sequential one, and in particular we produced
(large) intermediate data when doing parallel processing on our framework but it is not the
case for sequential processing. Second, the test data is not large enough, so the sequential
program can still handle it. Because the limitation of our cloud, we cannot test large enough
data. An important work to improve the performance in future is to make use of data locality
to optimize the parallel execution.
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Fig. 6.1 Time Consuming of Applications with Different Numbers of Computing Nodes.

6.2 Implementation of The Accumulation Library Based
on MapReduce

6.2.1 A Two-pass MapReduce Algorithm for Accumulation

From the diffusion theorem [70, 74], an accumulative function h = [[g, (p,⊕), (q,⊗) ]] can
be transformed into the following compositional form using the parallel skeletons scan,

Table 6.1 Execution Time (second) and Relative Speedup w.r.t. 2 Nodes

Program 1 node 2 nodes 4 nodes 8 nodes 16 nodes 32 nodes
SUM-MR NA (NA) 304 (1.00) 156 (1.95) 75 (4.05) 50 (6.08) 26 (11.69)
SUM-LH NA (NA) 628 (1.00) 309 (2.03) 166 (3.78) 93 (6.75) 61 (10.30)
VAR-LH NA (NA) 723 (1.00) 321 (2.25) 189 (3.82) 111 (6.50) 69 (10.45)
MPS-LH NA (NA) 635 (1.00) 311 (2.04) 169 (3.76) 93 (6.78) 62 (10.24)
MPS-MR NA (NA) 621 (1.00) 304 (2.04) 163 (3.81) 91 (6.82) 61 (10.22)
MPS-Seq 37 NA (NA) NA (NA) NA (NA) NA (NA) NA (NA)
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map, reduce and zip.

h xs c = reduce (⊕) (map p as)⊕g b

where
bs++[b] =map (c⊗) (scan (⊗) (map q xs))

as = zip xs bs

In this form, map (c⊗) (scan (⊗) (map q xs)) can be firstly computed to get bs++[b], then
zip xs bs to obtain as, and finally reduce (⊕) (map p as)⊕ g b to get the result. However,
directly doing in this way will generate a lot of intermediate data such as bs++[b], as (these
are much bigger than the input), so that it is uncomputable in the MapReduce-like environ-
ments where input data are usually in terabytes. The previous MPI implementation [74]
was based on this form but using a fusion technique to avoid generating large intermediate
data, but mapping that fusion to MapReduce is difficult because MapReduce lacks flexi-
ble communication/synchronization mechanisms as MPI. So we developed a new “fusion"
algorithm on MapReduce to efficiently compute the above compositional form.

6.2.2 The MapReduce Implementation for General Accumulation

Our approach is to divide the computation into two MapReduce phases and restrain the
data transportation between the two. Suppose input list xs is split to p sublists, i.e., xs =

chk1 ++chk2 ++ . . .chkp. The kth split chkk has m elements [xk
1,x

k
2, ...,x

k
m] and its offset is

segk. Our two-pass MapReduce algorithm (shown in Figure6.2) actually avoids generating
large intermediate data and thus it is efficient. We introduce the details in the following
paragraphs.

The First MapReduce Job. There are p Map tasks spawned for each split, in the first
MapReduce job. In general, for each sublist chkk (k∈ [1, p]), the first MapReduce computes:

mapRedmap chkk = reduce (⊗) (map q chkk).

We do the above computation during Map phase and just use one reducer to collect the result.
In detail, each Map task iterates over the elements of its input and applies the following fMAP

function on each input record (xk
i , _ ) (i ∈ [1,m]).



94 Implementation and Evaluations

fMAP (xk
i , _ ) = ( (0,segk) , q(xk

i ))

Different with general MapReduce applications, here once the fMAP function was applied
on an input pair (xk

i , _ ), the output did not be emitted immediately, but aggregated to a value
vk: vk = ı⊗⊗q(xk

1)⊗q(xk
2)⊗ ...⊗q(xk

m). After the iterations, each Map task emits only one
key-value pair: ( (0,segk) , vk). Here the key itself is a pair consisting of a constant value 0
and the offset segk. The outputs of Map tasks are grouped (by the constant value) and sorted
by the offset.

In the reduce phase we only spawn one reducer. We use a special group function that
groups records by first element of keys, so that the reducer collects all ( (0,segk) , vk))

(k ∈ [1, p]) and sort them by the offsets segk. Then the reducer just emits a key-value pair
([v1,v2, ...,vp], _ ) (the key is a list and value part is useless) to the distributed file system.
The fREDUCE function is defined as follows.

fREDUCE (0, [v1,v2, ...,vp] ) = ([v1,v2, ...,vp], _ )

Then the final result of the first MapReduce is a list that contains p elements, say vs =

[v1,v2, ...,vp], and vs is guaranteed being in the correct order.

The Second MapReduce Job. After the first MapReduce, we initialize the second MapRe-
duce: each second-Map task reads vs = [v1,v2, ...,vp] (the result list of the first reducer1)
from HDFS, in addition to the same input data as the first Map task. After initialization, in
general, for each sublist chkk each Map task in the second MapReduce computes:

mapRedmap chkk =map p (zip chkk ws)

where
ws =map (vk ⊗) (scan (⊗) (map q chkk))

vk = reduce (⊗) [c,v1,v2, . . .vk−1].

The only one Reduce task in the second MapReduce computes:

mapRedred ss = (reduce (⊕) (ss))⊕ g(vp)

where
ss = [s1,s2, . . .sp]

1We use the DistributedCache function of Hadoop to implement such initialization.
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vp = reduce (⊗) [v1,v2, . . .vp].

In detail, each Map task computes in a loop sk = p(xk
1,w

k)⊕ p(xk
2,w

k ⊗ q(xk
1))⊕ ...⊕

p(xk
m,w

k⊗q(xk
1)⊗q(xk

2)...⊗q(xk
m−1)), where wk = c⊗ v1⊗ ...⊗ vk−1.

The output of a Map task is a nested key-value pair whose key is the same (0,segk), and the
value is (vk,sk). The fMAP function is defined as follows:

fMAP ((xk
i , _ ) = ( (0,segk) , p(xk

i ,w
k⊗q(xk

i−1)) ).

Similar to the first pass MapReduce, the outputs of all Map tasks are grouped/sorted, and
we spawn a single reducer in the second MapReduce. The final result is s1⊕ s2⊕·· ·⊕ sp⊕
g(c⊗ v1⊗ v2⊗·· ·⊗ vp). The fREDUCE function is defined as follows:

fREDUCE (0, ss) = (reduce (⊕) (ss++g(vp) ), _ ).

Here ss = [s1,s2, . . .sp], and vp = reduce (⊗) [v1,v2, . . .vp].

A Running Example for Simulating the Accumulation Procedure. As a concrete ex-
ample, let us demonstrate the above algorithm to compute the elimSmallers problem on a
two-nodes cluster. An input list is given as [11,15,8,9,20,25,12,23], the initial value of
parameter c = −∞, and the list is split to two (with the offset 0 and 10, respectively). The
processing is represented in the Table 6.2, step by step.

6.2.3 Discussions on Efficiency

Our two-pass MapReduce algorithm for accumulate [[g, (p,⊕), (q,⊗) ]] has two parallel
Map phases and two sequential Reduce phases, and it only generates p intermediate data
(v1,v2, ...,vp) and duplicates them p times through networks (copied to p Map tasks using
parallel-copy). Consider that p i.e., the number of input splits, is not a very huge value (for
1 TB data, if the chunk size of HDFS is 128MB then the p is 7813), so that if all vk and sk

are in small constant size, then the two Reduce phases will not be bottlenecks and also the
communication cost is low. This algorithm has been proved to be efficient and scalable by
our evaluations. However, there is still a restriction on operators⊗ and⊕, in practice. Under
the assumption that the input data are larger than the storage capability of any single node in
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Table 6.2 An Running Example for Simulating the Accumulation Procedure

node1 node2

input 0 : [11,15,8,9] 10 : [20,25,12,23])
1st Map −∞ ↑ 11 ↑ 15 ↑ 8 ↑ 9 = 15 −∞ ↑ 20 ↑ 25 ↑ 12 ↑ 23 = 25

output = ((0,0),15) output =((0,10),25)
1st Reduce emit directly

output = ([15,25],_) N/A
2nd Map p(11 ↑ −∞) ++ p(15 ↑ 11) +

+ p(8 ↑ 15) ++ p(9 ↑ 15) =
[11,15]

p(20 ↑ −∞) ++ p(25,↑ 20) +
+ p(12 ↑ 25) ++ p(23 ↑ 25) =
[20,25]

output =((0,0),(15, [11,15])) output=((0,10),(25, [20,25]))
2nd Reduce [11,15] ++[20,25] ++g(−∞ ↑

15 ↑ 25)
output =([11,15,20,25],_) N/A

the cluster, that⊗must not be ++ (or any other that has similar effect), otherwise in the Map
phases of the first MapReduce job, the result of vk = ı⊗⊗ q(xk

1)⊗ q(xk
2)⊗ ...⊗ q(xk

m) may
be too large to be stored in the DistributedCache nor be transported via networks, unless
function q can filter out (returns an empty list) most of the elements of the input. If ⊗ is
not ++ but ⊕ is ++ , then whether the accumulate is efficient depends on the size of sk.
Here sk = p(xk

1,w
k)⊕ p(xk

2,w
k⊗ q(xk

1))⊕ ...⊕ p(xk
m,w

k⊗ q(xk
1)⊗ q(xk

2)...⊗ q(xk
m−1)), and

wk = c⊗ v1⊗ ...⊗ vk−1. For function p, if it can filter out most of its input then using only
one reducer in the second MapReduce will not be a big problem, otherwise we have to do
special optimization for such case by using multiple reducers.

The Optimized MapReduce Implementation for Specialized Accumulation. If the emit-
ted intermediate data are small enough, then they can be efficiently transferred to one re-
ducer via network otherwise the computation will be very costive or the data are too large
to be manipulated by only one reducer.

In order to improve the performance for some special cases such that (in the Map phase of
the second MapReduce job), sk = p(xk

1,w
k)++ p(xk

2,w
k⊗q(xk

1))++ ...++ p(xk
m,w

k⊗q(xk
1)⊗

q(xk
2)...⊗q(xk

m−1)) is a long list (suppose the input is split to p sublists), we have optimized
the implementation. We do not group all output of Map phase to one reducer but use multiple
reducers instead. The number of reducers can be adjusted to fit the practical problems
and data. Same as the general case in Subsection 6.2.2, output of Map are sorted by segk

(k ∈ [1, p]), but grouped to t reducers. Intuitively, let r = p/t, reducerk receives [sk∗r+1,
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Table 6.3 Data Sets for Evaluating Examples on Hadoop Clusters with Different Number of
Working Nodes

Program Input Length Input Size
scan (+) 5000 × 220 9.77 GB
elimSmallers 5000 × 220 9.77 GB
los 5000 × 220 10.54 GB
tagmatch 5000 × 220 9.77 GB
mps 5000 × 220 9.77 GB

sk∗r+2 ..., s(k+1)r], and emits sk∗r+1 ++sk∗r+2 . . .++s(k+1)r, (k ∈ [0,r− 1)). The reducert

receives [sp−r+1, sp−r+2 ..., sp] and reads [v1, ..., vp] from DistributedCache, and computes
w = c⊗v1⊗v2⊗·· ·⊗vp. At last the reducert emits sk∗r+1++sk∗r+2 . . .++s(k+1)r ++g(w),.
Each output from the t reducers contains part of the final result.

The Optimized Implementation for Scan. The scan skeleton is a special case of accu-
mulate: scan = [[ [·], ([·]◦ snd,++), (id,⊗) ]], i.e., g = [·], p = [·]◦ snd, ⊕=++ , and q = id.
The MapReduce implementation of scan can be optimized and efficiently computed, if ⊗
is not ++ . Because the result of scan is s1 ++s2 ++ · · ·++sp we do not need the Reduce
phase in the second MapReduce, and just let each mapper emit (segk,sk) (k ∈ [1, p]). The
segk denotes the offset of sublist handled by the kth mapper, so that these pairs can be sorted
by segk and form the final result.

6.2.4 Experiments and Evaluations

We evaluated the performance and scalability of the example programs with manually gen-
erated data sets shown in Table 6.5. We configured Hadoop (cdh3u5) clusters with up to
32 virtual machines (VMs) inside the EdubaseCloud system at National Institute of Infor-
matics. Each VM has 2 CPUs (a CPU is one core of the Xeon E5530@2.4GHz), 6 GB
RAM. The total parallel-task slots in Hadoop are configured to be equal to the total number
of CPUs in the cluster 2.

2We made this configuration in order to simplify the analysis of scalability. In fact, optimizing the config-
urations of the Haddop cluster, e.g., allowing more mappers running simultaneously in each VM, can obtain
much better performance.
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Table 6.4 Large Data Sets for Comparing Two Kinds of Implementation: with/without Using
our Framework

Input Data Length Size
Numbers 1×105× 220 195.32 GB
Pairs 1×104× 220 233.21 GB
Tags 1×105× 220 195.32 GB

Scalability. The experiment results are summarized in Figures 6.3 and 6.4. Letting the in-
put data be fixed size (shown as Table 6.3) while increasing the working nodes of the cluster
(i.e., increasing VMs), all programs have almost twice speedup when the number of CPUs
increases from 8 to 16. This indicates that parallel programs written with our framework
have good scalability. When the number of CPUs keeps increasing, the running-time be-
comes shorter and approaches to a constant value which is the time of fixed sequential parts
computation and system overhead of Hadoop. As a summary, the relation between speedup
(y) and number of CPUs (x) approximately fits to a linear curve y = Ax+B, e.g, in case of
scan (+), A = 6.49×10−2, B = 0.779.

In Comparison with Vanilla Hadoop Programs Finally we discuss the programmability
and relative efficiency by comparing the programs written by using our framework and those
written by directly using the Hadoop API. As mentioned before, programs written by using
our accumulate API will be transformed to programs that are exactly equivalent to those
manually written by using vanilla Hadoop (i.e., without using our framework). The com-
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parison we gave just shows the benefits that how much our framework saves programmers
efforts and low overhead of the high-level abstraction in our framework.

For each problem in Table 6.5, we made a new version using only vanilla Hadoop, which
implemented the same two-phases MapReduce algorithm in Section 6.2.1. Table 6.5 shows
the comparison of length of source code and running times of the two classes of programs
(on the same 64-CPU cluster). The source code is formatted by the Eclipse code formatter,
and counted by using Google CodePro Analytix 3. We used much larger data sets listed in
Table 6.4 as input for the evaluation.

In Table 6.4, the column Lines(vanilla) is for the lengths of programs implemented without
using our framework, and the column Lines is for the lengths of programs implemented by
using our framework. The column Time(vanilla) and the column Time are running times of
the two versions.

The results show that all vanilla Hadoop programs are much longer than programs written
by using our accumulate API (3.2 – 5.6 times longer). The system overhead caused by the
generic abstraction and wrapping of Hadoop API can be almost negligible. In addition, pro-

3https://developers.google.com/java-dev-tools/codepro/
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Table 6.5 In Comparison of Length of Code and Performance to Vanilla Hadoop Programs
(Using the Data Sets Listed in Table 6.4)

Problems Lines (vanilla) Lines Time (vanilla) Time
scan (+) 163 29 1995 s 1988 s
elimSmallers 368 107 2012 s 2013 s
los 348 81 1583 s 1587 s
tagmatch 346 107 2902 s 2903 s
mps 347 75 1793 s 1791 s

Listing 6.1 The Scala trait Monoid is the implementation for algebraic monoids
1 trait Monoid[T] extends BaseType {
2 def combine(l: T, r: T): T
3 def id: T
4 }

grams implemented by using our framework can still handle a larger input data set (nearly
20 times larger compared to each data set in Table6.3) very well.

Generally, the main difficulty for a Hadoop programmer to implement a MapReduce algo-
rithm for problems such as elimSmallers, is about finding the scalable divide-and-conquer
algorithm. Furthermore, even when he knows the algorithm, the implementation of the
cumbersome Hadoop code is still probably very time consuming.

6.3 Implementation of The GTA Framework

We chose Scala to implement our library not only because it is a functional language with
a flexible syntax and strong type system, but also because of its performance and porta-
bility (Scala is JVM based so it is compatible with most popular Java systems). We used

Listing 6.2 The Scala trait Semiring is the implementation for algebraic semirings
1 trait Semiring[S] extends BaseType {
2 def times(l: S, r: S): S
3 def id: S
4 def plus(l: S, r: S): S
5 def zero: S
6 }
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Listing 6.3 The Scala trait Morphism implementats a function f mapping type M to
type S

1 trait Morphism[M, +S] extends BaseType {
2 def f(in: M): Option[S]
3 }

Listing 6.4 The Scala class ListHomo is the implementation for list homomor-
phisms

1 abstract class ListHomomorphism[A,M]
2 extends BaseType with Monoid[M] with Morphism[A,

M]{
3 /* given an input list x, the list-homomorphism can run on it

*/
4 def run(x: List[A]):M
5 = x.filter(f(_)!=None).foldLeft(id)((l,a) => combine(l,f(

a).get))
6 /* ... omitted */
7 }

Spark [133] as the MapReduce engine because it is implemented in Scala and can be seen
as an alternative to the Hadoop [5] framework.

6.3.1 System Architecture

The GTA library provides a domain-specific language style programming interface. All the
users have to do is writing a regular Scala program consisting of GTA expressions. Each
GTA expression actually defines a list homomorphism. The Scala class MapReduceable

adapts list homomorphisms to MapReduce, as we have described in Section 3.4.1. The

Listing 6.5 The Scala trait Aggregator is the super class of all semiring homomor-
phisms

1 trait Aggregator[A, S] extends Semiring[S] with Morphism[A, S] {
2 def singleton(a: A): Option[S] = f(a)
3 def bagUnion(l: S, r: S): S = plus(l, r)
4 def nilBag: S = zero
5 def crossConcat(l: S, r: S): S = times(l, r)
6 def bagOfNil: S = id
7 }
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Listing 6.6 MaxSum can be used to instance an aggregator that computes the max-
imum sum of a bag of lists

1 abstract class MaxSum[T] extends Aggregator[T, Int] {
2 def plus(l: Int, r: Int) = l max r
3 def times(l: Int, r: Int) = l + r
4 def f(a: T): Int
5 val id: Int = 0
6 //zero is -infty
7 val zero: Int = Int.MinValue
8 }

architecture of the library has three levels as Figure 6.5. The top level is the programming
interface by which users write their scripts consisting of GTA expressions. The second level
is the GTA fusion/transformation level. The scripts of GTA expressions are compiled to
instances of MapReduceable (i.e., list homomorphisms). The third level is the MapReduce
driver program that is the adapter of the GTA library to a MapReduce engine. The driver
program tries to make use of the maximum parallelism of the engine. For example, if there
are n computing nodes and each has a split of the input data, the driver program spawns
n MAP processes simultaneously. Then, after MAP phase, n local-REDUCE processes
will be spawned, and finally one global REDUCE process is spawned. In the future, such
scheduling could be made more flexible for better parallel execution performance.

6.3.2 Algebraic Data Structures and Building Blocks of GTA

We have defined the necessary algebraic structures for GTA, as Scala traits/classes such as
Monoid (Listing 6.1), Semiring (Listing 6.2), Morphism (Listing 6.3), and ListHomomorphism
(Listing 6.4). The building blocks (generators, testers, and aggregators) of GTA are con-
structed by using such basic algebraic structures. For example, the ListHomomorphism[A,M]
is constructed from Monoid[M] and Morphis[A,M] 4 (by using the Scala mix-in class compo-
sition mechanism).

Aggregator By definition, aggregator is a semiring homomorphism. The library has a
generic Scala trait Aggregator[A,S] (Listing 6.5) which is the super class of all aggrega-
tors. The Scala trait Aggregator[A,S] is constructed form Semiring[S] and Morphism[A,S].

4Here, BaseType is designed for serialization and also it hides some implicit type conversions.
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Listing 6.7 SelectiveAggregator is used to make an aggregator that finds the solu-
tion

1 // assumption: S1 is selective: i.e., outerCombine(a, b) = a or
b

2 class SelectiveAggregator[I,S1,S2] (selector:Aggregator[I,S1],
3 producer:Aggregator[I,S2])
4 extends Aggregator[I,(S1,S2)] {
5 def plus(l:(S1,S2), r:(S1,S2)) = {
6 val v1 = selector.plus(l._1, r._1)
7 if (v1 == r._1) r
8 else l
9 }

10 def times(l:(S1,S2), r:(S1,S2)) = {
11 val v1 = selector.times(l._1, r._1)
12 val v2 = producer.times(l._2, r._2)
13 (v1, v2)
14 }
15 def f(a: I) = (selector.f(a), producer.f(a))
16 val id = (selector.id, producer.id)
17 val zero = (selector.id, producer.id)
18 }

Here, the type parameters A and S indicate the semiring homomorphism is of type *[A]+→ S.
Its methods plus and times correspond to the operators of a semiring, and zero and id are
their identity elements, respectively. For example, the abstract class MaxSum (Listing 6.6) is
an aggregator that is used for finding the maximum among weighted sums of lists in a given
bag. The method f determines the weights.

The generic Scala class SelectiveAgg (Listing 6.7) is used to make an aggregator that
can be used to produce the solution. For example, in the example of GTA-Knapsack,

Listing 6.8 Predicate and FinitePredicate
1 /*
2 * Predicate is an almost-listhomomorphism
3 * whose postProcess returns Boolean */
4 trait Predicate[M,T] extends MapReduceable[M,T,Boolean]
5
6 /* FinitePredicate is Predicate on finite monoid*/
7 trait FinitePredicate[M,T] extends Predicate[M,T]
8 with Finite[T]
9

10 trait Finite[T] extends Iterable[T] with Countable[T]
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Listing 6.9 WeightLimit extends Predicate, testing if the total weight of a list is
beyond the limitation

1 /*
2 * tests if the total weight is <= the limit w
3 */
4 object WeightLimit (w : Int) extends Predicate[KnapsackItem, Int

]{
5 def postProcess(t: Int) = t <= w
6 def combine(l: Int, r : Int) = (l + r) min (w+1)
7 def f(i: KnapsackItem) = (i.weight) min (w+1)
8 val id = 0
9 }

Listing 6.10 GeneratorCreater can be used to define a polymorphic generator
1 trait GeneratorCreater[I,A,P[_]] extends BaseType{
2 def gen[S](s:Aggregator[A,S]):MapReduceable[I,P[S],Any]
3 }

maxTotalValue computes the maximum sum, in order to find a solution (a set of items)
which has this maximum sum, we can use a selective aggregator:

val getSolution = new SelectiveAggregator(maxTotalValue, new BagAggregator[KnapsackItem]).

SelectiveAgg tuples two aggregators together, the first one is the selector and the second
one produces solutions.

Listing 6.11 allSelects is a generator which produces "all selects" of an int-list
1 object allSelects extends GeneratorCreater[Int,Int,Id]{
2 def makeGenerator[S](s:Aggregator[Int, S]) = new

MapReduceable[Int,Id[S],S]{
3 override def f(i: Int):Id[S] = Id(s.plus(s.f(i),

s.id))
4 override def combine(l: Id[S], r: Id[S]): Id[S] =

Id(s.times(l, r))
5 override def postProcess(a: Id[S]): S = a
6 override val id: Id[S] = s.id
7 }
8 }
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Listing 6.12 Prefixes is a genric Scala class for generators which produce "all pre-
fixes"

1 class Prefixes[K] extends GeneratorCreater[K,K,Pair] {
2 def makeGenerator[S](s: Aggregator[K,S]) =
3 new MapReduceable[K, Pair[S], S] {
4 def f(i: K) = Pair[S](s.plus(s.id, s.f(i)), s.plus(s.

zero, s.f(i)))
5 def combine(l: Pair[S], r: Pair[S]):Pair[S]=
6 Pair[S](s.plus(l.l, s.times(l.r, r.l)), s.

times(l.r, r.r))
7 val id: Pair[S] = Pair[S](s.zero, s.id)
8 def postProcess(a: Pair[S]): S = a.l
9 }

10 }

Tester The library implements homomorphic testers that can be specified by the list ho-
momorphism ([ f ,⊕]) and the judgment function ok. Thus, a tester is represented by a spe-
cialized MapReduceable named Predicate, and its postProcess method always returns
a boolean value, as shown in Listing 6.8 5. For example, the Scala class WeightLimit in
Listing 6.9, is a tester that checks whether the total weight of a given list is less than a given
value w. It checks this condition by computing the sum of weights (in the form of a list ho-
momorphism ([ f ,+])) and comparing the sum with w. Since we do not need an exact value
of the total weight greater than w, the implementation uses the cut-off by min(w+1). The
reason why we use the cut-off will be explained later in Section 6.3.3.

Generator By Definition 3.3, a generator is a polymorphic list homomorphism parame-
terized by a semiring. In the library, we define a generic class named GeneratorCreater

(shown in Listing 6.10) which has a generic (polymorphic) function to produce an instance
of MapReducable:

gen[S](s : Aggregator[A,S]) : MapReduceable[I,S,P[S]].

The generic function gen[S] takes an aggregator (SemiringHomomorphism) as its parame-
ter, and produces an instance of MapReduceable.

Four type parameters appear in gen function. The type parameter I is determined from the
input list (of type List[I]). A and S correspond to the type parameters of the aggregator

5FinitePredicate is explained in Section 6.3.3
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Listing 6.13 Segments is a genric class for generators which produce "all seg-
ments"

1 class Segments[I] extends GeneratorCreater[I,I,T4] {
2 def makeGenerator[S](s: Aggregator[I, S]) = new MapReduceable[I

,T4[S],S]{
3 override def f(i: I) = new T4(s.f(i), s.plus(s.id, s.f(i)),
4 s.plus(s.id,s.f(i)), s.plus(s.

zero,s.f(i)))
5 override def combine(l: T4[S], r: T4[S]): T4[S] = {
6 val ss = s.plus(s.plus(l._1, r._1), s.times(l._2, r._3))
7 val tails = s.plus(r._2, s.times(l._2, r._4))
8 val inits = s.plus(l._3, s.times(l._4, r._3))
9 val all = s.times(l._4, r._4)

10 /* T4 is a type of four-tuple: (T,T,T,T)*/
11 new T4( ss , tails, inits, all)
12 }
13 override val id: T4[S] = new T4(s.zero,s.zero,s.zero, s.id)
14 /*The 1st element of the four-tuple is the result*/
15 override def postProcess(a: T4[S]): S = a._1
16 }
17 }

(Aggregator[A,S]). The fourth type parameter P is used for the data type of the output, i.e.,
the result of the list homomorphism is of a higher-order type P over S. For example, P[S]
can be Id[S] (equivalent to S), Pair[S] (equivalent to (S,S)), or Triple[S] (equivalent to
(S,S,S)), etc. Thanks to the expressive Scala syntax, such generic programming techniques
can express complex type relations inside the polymorphic generator. By extending the
GeneratorCreater, one can define a generator by implementing the function gen. (No-
tice that gen is a generic function such that the instance of MapReduceable can only be
produced by the methods of s whose type is Aggregator[A,S].) Therefore, the Scala class
GeneratorCreater is functionally equal to the function generator⊕,⊗ :: (A→ S)→ [A]→
S.

As an example, the generator sublists (actually, sublists′) can be implemented as the
Scala object allSelects shown in Listing 6.11, which simply implements the definition.
The function gen has slightly different type compared to the definition in Definition 3.3
6, because we are focusing on generators whose computation patterns are suitable for the
MapReduce model, while the original definition has no assumptions on computation pat-
terns.

6The equivalent of this gen is actually generator′⊕,⊗ :: (A→ S)→ [A]→ P[S]
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Listing 6.14 MarkingGenerator is a generic class for generators which generate
new sequences with marks on each element

1 class MarkingGen[EV,ST](val states:Set[ST])extends
2 GeneratorCreater[E,Tuple2[EV,(ST, ST)],Id]{
3 val marks=for(x <- states ; y <-states) yield (x,y)
4 type Marked=Tuple2[EV, (ST, ST)]
5 def makeGenerator[S](s:Aggregator[Marked,S])= new

MapReduceable[E,Id[S],S] {
6 def f(i:E): Id[S]=(s.zero /: marks) {
7 (z:S,mk:Mark)=>s.plus(z, s.f((i, mk)))
8 }
9 def combine(l:Id[S],r:Id[S]):Id[S]=s.times(l,r)

10 val id:Id[S]=s.id
11 def postProcess(a:Id[S]):S=a
12 }
13 }

The generic function gen returns an instance of MapReduceable[I,P[S],S] whose com-
putation consists of a list homomorphism from [I] to P[S] and a postProcess from P[S]

to S. We designed such an interface so that users can feel comfortable writing genera-
tors like Prefixes shown in Listing 6.12. Prefixes is a generic Scala class used for
instancing a generator which takes a list xs = [x0,x2, ...,xn] as input and produces all pre-
fixes of xs. The standard definition of function inits [13, 68], which computes inits xs =

[[x0], [x0,x1], ..., [x0,x1,x2, ...,xn], is as follows.

inits = f st ◦ inits′

inits′ [ ] = *[( , [ ])]+
inits′ [x] = (*[[ ]] +⊎ * [x]+,*[ ] +⊎ * [x]+)
inits′ (xs++ys) = inits′ xs⊙ inits′ ys

(*[a]+,*[b]+)⊙ (*[c]+,*[d]+) = (*[a] +⊎(*[b] +×++ * [c]+),*[b] +×++ * [d]+).

The GTA Prefixes is just a polymorphic version of inits. The methods f, combine, and
id in Prefixes are defined by using plus and times of the parameter Aggregator[K,S].
The generator Surfixes to produce all suffixes can be implemented in a similar way as
Prefixes. The generator Segments in Listing 6.13 is similar to allSelects and Prefixes,
but more complex because of its intermediate data structure. The type of intermediate
data is a four-tuple type T4[T] = (T,T,T,T). The details of how to construct a list ho-
momorphism segs that produces all segments can be found in [67]. The GTA generator
Segments is a polymorphic version of segs, similar to Prefixes. The implementation of
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Fig. 6.5 Architecture of Our GTA Library

MarkingGenerator is almost the same as that of allSelects. The difference is that its
method f sums up all possible associations of marks in which the type Marked[Elem,Mark]
is the pair of the list element and the mark (like painting colors on the input so that the
MarkingGenerator can be seen as a coloring generator.).

Combined with various testers and aggregators, these generators can express a lot of prob-
lems. More examples can be found in the source code of our library.

6.3.3 Semiring Fusion and Filter Embedding

The GTA fusion progress can be described as a deterministic automaton (see Figure 6.6).
When generate is invoked (by being given a polymorphic generator as the parameter), an
instance of GEN is created. GEN has two methods, filter and aggregate, and it keeps
the polymorphic generator. When filter is invoked, it composes the new predicate with
the previous one. When the method aggregate is invoked, it embeds the predicate into
current aggregator to form another aggregator with the lifted semiring (filter embedding),
and substitutes it in the polymorphic generator to produce a final MapReduceable instance
(semiring fusion).

An introduction to semiring fusion and filter embedding is given in [45, 46]. Unlike semiring
fusion, which simply involves replacing an inefficient semiring with an efficient one in the
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Fig. 6.6 Automaton of GTA Fusion

polymorphic generator, filter embedding is rather more complicated and thus we should
discuss how it is implemented.

Filter tupling Every filter clause in a GTA expression introduces a Predicate that
is to be involved in the fusion. We can combine all the list homomorphisms together and
create a new one that computes them all at once. Tupling two list homomorphisms into one
is simple [134]. Let hh = ([ f1,⊙1])

a
([ f2,⊙2]). We have:

hh [ ] = (ı⊙1 , ı⊙2)

hh [a] = ( f1 a , f2 a)

hh (x++y) = hh x⊙hh y

where (hx1,hx2)⊙ (hy1,hy2) = (hx1⊙1 hy1 , hx2⊙2 hy2) .

As a result of the tupling, multiple filter clauses can be merged to one. We fuse this
composed filter (a Predicate) together with generator and aggregator, to form the final
GTA MapReduceable object.

Lifted semiring In practical filter embedding, the carrier set M of a monoid (M,⊙) should
be finite in order to guarantee the efficiency of the final program that uses the semiring
lifted by M. The key point of implementing the lifted semiring is to define a Scala class
that can wrap the finite monoid and semiring. In order to define the operators ⊕M and
⊗M, the elements of the set M must be enumerated in constant time. Thus, we defined
FinitePredicate to resolve this problem. In order to guarantee that the final GTA program
is efficiently computable, the composed filters must be instances of FinitePredicate (or
its subclasses).
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Fig. 6.7 Finite Predicate

Finite monoid and finite predicate In our implementation, a finite monoid is a monoid
whose domain is a finite set. We can use the Countable and Iterable traits in Scala to
define such a set. An object that inherits Countable must implement a count method.
Iterable requires all its concrete subclasses to implement an iterator. We defined a Scala
class named FinitePredicate (Listing 6.8). It is a Predicate with a finite domain. Fig-
ure 6.7 shows the class inheritance. To guarantee that the final program has a linear cost,
the filter clauses in a GTA expression have to be under the constraint: all the filters take
FinitePredicate as their parameters.

The rest of filter embedding is to use the tupled tester together with the aggregator in
order to construct the lifted semiring (Definition 3.2) [45, 46]. We use a Map data structure
to denote the domain of monoid (SM,⊙M), where the keys (index) of the Map are elements
in set M and thus ⊙M can be defined. Interested readers can find details in the source code.

6.3.4 Serialization

For MapReduce frameworks like Spark and Hadoop, the outputs of MAP and REDUCE need
to be serialized for saving in the file system or being transfered through networks. The data
structures of the input/output data should be serializable, and thus a serialization framework
which supports generic programming is needed. The intermediate data structures produced
by GTA also need to be serialized for fault tolerance.
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Table 6.6 Comparison of Naive and GTA Knapsack Programs

length naive (ms) GTA (ms)
8 47 24
12 106 27
16 271 53
20 6838 65
24 OutOfMemoryError 52

Fig. 6.8 Execution Time of GTA Programs on Single CPU

6.3.5 Performance Evaluation of Our GTA Framework

We evaluated our GTA library on sequential and parallel (distributed) models, and results
proved the efficiency and scalability of GTA programs.

The algorithmic efficiency of our GTA library is evaluated by running a GTA-Knapsack
program in a sequential model. The machine we used had a 2 GHz Intel Core Duo CPU
(two cores) with 2 GB RAM, and the Java VM heap size was set as: JAVA_OPT S =

−Xmx1024m −Xms256m. The Scala version was 2.9.2-final. The knapsack items were
generated and kept in memory, and the range of weights was (0, 10], the capacity of the
knapsack (W ) was 100.

The first test case compared the GTA-Knapsack program with a naive-Knapsack program
which implemented the brute-force algorithm: generated all sublists, then filtered them and
finally made max-sum on the rest ones . Table 6.6 compares the running times. Obviously,
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Fig. 6.9 Execution Times of GTA-Knapsack Program for Different W (64 CPUs)

the GTA-Knapsack was much faster than the naive one. The optimized dynamic program-
ming solution for the 0-1 Knapsack problem can run in O(nW) time, which is theoretically
faster than our GTA-Knapsack (O(nW2) time in sequential, and O((p+n/p)W2) in parallel
[45]). But without careful optimization, a dynamic programming solution could be even
slower. A notable superior point of our GTA library is that its optimization is transparent to
programmers.

The second experiment evaluated the GTA-Knapsack program with different size of input
data. The running time of GTA-Knapsack was linear with the increasing of input data
size (from 1×104 to 1×105). Figure 6.8 shows the linear algorithmic efficiency of GTA-
Knapsack.

Cloud computing environment Our MapReduce clusters are built on the Edubase-Cloud
(at the National Institute of Informatics, Japan). Edubase-Cloud is a cloud computing envi-
ronment similar to Amazon EC2. We have authority to use up to 32 virtual-machine (VM)
nodes. Each VM has two single-core CPUs (Intel® Xeon® X5650), 6 GB RAM, and 30 GB
of hard disk space. We configured Spark-clusters (Spark-0.7.0) with 8, 16, 24, 32, 40, 48,
56, and 64 CPUs. During the experiments, testing data sets were generated and cached in
the memmory of the cluster.
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Fig. 6.10 Speedup of GTA-Knapsack on Spark Clusters

Knapsack problem and its variants First, we prepared testing-data sets as randomly
generated Knapsack items, in order to illustrate scalability of the programs. The size of
input data was form 1× 107 (10 million) to 1× 108 (100 million). Figure 6.9 compares
the performance of GTA-Kampsack programs with different capacity limitations W . The
results show that the larger W is, the slower the processing becomes. Figure 6.10 plots the
linear speedup of GTA-Knapsack versus the number of CPUs. We tested it by using three
different sets of input data.

Maximum segments sum (MSS) The input data for MSS and its variants were randomly
generated signed-integers. The size of testing-data was form 1× 107 to 1× 108. We eval-
uated a GTA MSS and two extended-GTA-MSS programs: MSS-E1 requires that a valid
segment should be shorter than 100. MSS-E2 requires that number of even integers in any
valid segment must be less than 100. The results of execution times are shown in Fig-
ure 6.11. The GTA MSS is very efficient because it does not have a filter term so that
the GTA fusion in it does not make complex intermediate tables, and the operators used in
the REDUCE phase are + and ↑. Given 100 million integers as its input, the GTA MSS
can finish in around 1 second. Figure 6.11 shows the liner execution times of MSS-E1 and
MSS-E2, with the increasing of input data size.

Vitirbi Algorithm The experiments on the Vitirbi algorithm were done in a similar man-
ner to above experiments. We used a program generating all input data under a simulated
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Fig. 6.11 Execution Times of GTA-MSS Programs on Spark Cluster (64 CPUs)

HMM model. Figure 6.12 shows the execution times for different numbers of CPUs.
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Fig. 6.12 Execution Times of GTA Vitirbi Programs on Spark Cluster ((64 CPUs))



Chapter 7

Conclusion

7.1 Summary of the Thesis

We have developed a high-level programming framework that supports efficient parallel
processing of various data structures such as lists, sets, trees, and graphs. The framework
provides a simple programming interface that parallelism is not user-concerned. It can do
light-weight program transformations to produce efficient and scalable parallel programs.
Moreover, it enforces deterministic semantics and simplifies composing, optimizing, port-
ing, reasoning about, debugging, and testing parallel programs.

In the first part of this thesis, we have studied the structural recursions on lists, and trees.
We introduced how to transform such structural recursions to efficient parallel programs that
are implemented by algorithmic skeletons such as MapReduce. The automatic optimization
mechanism makes it possible that the users do not need to pay cautions about parallelism or
scalability.

In the second part, we have introduced the approach to mapping graphs to tree decomposi-
tions and the approach to making efficient parallel programs on those tree decompositions.
Many NP-hard problems have polynomial time DP algorithms on their tree decompositions,
theoretically. To make the DP programming being efficient, the width of the tree decompo-
sition should be as small as possible. For piratical use, e.g, to analyze a social network, the
width of the tree decompositions must be kept in 20 [64], otherwise the constant factor of the
DP algorithms will be too large. However, arbitrary graphs do not have bounded treewidth
and so that those efficient DP algorithms are usually not practically useful. The solution we
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have given in this thesis is that we generate a partial graph of the input graph with bounded
treewidth, so that an approximate solution can be obtained form this partial graph. Our
approach wraps the complexity of DP programming on tree decompositions by providing
simple programming interface. The experimental results show that we can systematically
develop efficient programs from specifications of problems.

We have also proposed the general design of libraries with optimization capabilities based
on the calculational approach in our theories. The implementation of the program transfor-
mation is lightweight in the sense that it does not need deep analysis of code of programs.
The specifications are deterministically mapping to parallel skeletons. Our programming
framework has already been used in practice to handle difficult problems1.

7.2 Future Work

Firstly, we have shown some strategies to derive efficient parallel programs from simple
(naive) but clear specifications for a class of problems. However, the specifications must be
represented in the form of structural recursions on lists or trees, and must use the provided
(also restricted) associative operators of our framework. The third homomorphism theo-
rem is a key idea to develop such associative operators. In practice, how to automatically
deriving binary associative operators for list homomorphisms is still a open problem.

Secondly, we have made some efforts to develop a sophisticated DSL embedded in Scala
in our framework, which is in the form of generate-test-aggregate. For problems on lists
and graphs, many computations can be specified in GTA form. However, for more general
cases, a uniform embedded domain specific language for high-level parallel programming
is demanded. We still need to make more efforts on extending GTA to more general cases.

Thirdly, our results on the Target Set Selection Problem show the profits of our approxima-
tion approach. However, the approximation factor is difficult to analyze and thus it is not
given. In the future, we are going to do more theoretical analysis on the algorithmic guar-
antees. Furthermore, we will try to extend our current approximation approach to resolve a
more general class of optimization problems.

1We have some reports that show some programmers use our library to resolve their realistic problems in
USA. We public our libraries as free and open-source projects that hosted in GitHub and Google Code.
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