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Abstract

In this thesis, a feedforward controller which performs agile attitude control of flex-
ible spacecraft reducing the residual vibration at the end of maneuver is proposed
and evaluated first. The feedforward controller is a preshaping profiler composed
of a pair of sinc functions which generates a system input command profile. The
sinc function has an ideal attenuation performance in frequency domain. Therefore,
the combined pair of sinc functions still have a good attenuation at high frequencies
region. Then, improvements for longer maneuver distance are attempted. The modi-
fied sinc function-based profilers show better performances from a viewpoint of longer
maneuver distances, i.e. agility, at the minimum cost of residual vibrations.
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Chapter 1

Introduction

1.1 Motivations

The recent evolution of advanced space missions such as deep space observation, earth

observation, or disaster monitoring has been forwarded to higher “pointing accuracy”

and higher “agility” in contradiction to the complexity of the structural design of the

mission equipment required for the highly functionalized mission. The basic features

which allow an efficient attitude maneuver are the spacecraft “pointing accuracy” and

“agility”. Pointing accuracy represents the attitude stability after the maneuver. Fine

pointing accuracy is realized by reducing the residual vibration where the vibration

is induced during the maneuver motion and some remains after the maneuver. Thus

the fine pointing accuracy can be rephrased as low residual vibration. Agility repre-

sents the rotational motion of the spacecraft with the fastest angular rate or shortest

maneuver duration. The rotational motion is realized by attitude control actuators

which are dimensioned according to the spacecraft’s inertia and required maneuver

performance etc. However every spacecraft has some limited resources, i.e. dimen-

sional capability or mass capability or power consumption capability. Therefore the

agility, meaning the flexibility and the ability to quickly move the satellite, becomes

constantly constraint of the mission. The pointing accuracy and agility would some-

times be contrary requirements. If an agile motion is realized, then flexible structural

modes of the spacecraft tend to be excited after the maneuver motion, and vice versa.
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Considering current situation of the needs for highly functionalized scientific ob-

servations, global environmental issues, or international security affairs, the demands

for fine pointing and high agility will be getting stronger in the future. On the other

hand, structural design for such the high-performance observation equipment tends

to be complicated, e.g. large deployable antenna, large extendable telescope, or syn-

thetic aperture radar (SAR). Thus, in contradiction to structural design being more

complicated, demands for higher performances on pointing accuracy and agility are

getting stronger and stronger for recent space applications. Nevertheless, looking

around the conventional control algorithms, it is difficult to find the optimal control

algorithm which realizes fine pointing and high agility when applied to spacecraft with

complicated flexible structures. That is why this thesis deals with flexible spacecraft

rest-to-rest maneuver in fine pointing accuracy and agile motion.

The difficulties in applying the conventional methods to an actual flexible satellite

are as follows:

• Satellite with large flexible structures contains many structural modes with

various mode shapes.

• It is difficult to predict high-mode frequencies.

Therefore, not only multi-mode system but also the presence of unknown high-order

flexible modes should be considered in high-accuracy controller design for actual satel-

lite application.

The methods presented in this thesis are control algorithms of flexible spacecraft

especially for high-speed rest-to-rest maneuver with minimal residual vibration at the

end of maneuver. The controllers are feedforward controllers composed of sinc func-

tions as the base function. It is demonstrated that these controllers show the highest

performances among conventional controllers concerning the balanced performance

of pointing accuracy and agility when applied to flexible spacecraft rest-to-rest ma-

neuver. The feature of the sinc function-based feedforward controller is that the sinc

function itself has an ideal attenuation above a certain boundary frequency. Therefore

when it is applied as the base function of a controller, the characteristic frequencies
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of the flexible structures and the controller can be designed well separately. The

concept of sinc function-based controller is a new one, therefore the original sinc

function-based profiler is patented in Japan [1], North America [2, 3, 4], and Euro-

pean countries [5, 6].

As previous satellite programs, World View-1 and 2 (US), and Pleiades (France,

Fig. 1-1, [7, 8, 9]) are heritage satellites which perform high-speed rest-to-rest ma-

neuvers. Those satellites have relatively rigid structures, therefore major effects of

pointing performance degradation by structural flexible modes are not expected un-

less extremely high pointing accuracy is required after the end of maneuvers. Look-

ing at domestic programs, ETS-VI and ETS-VIII (Fig. 1-2, [10, 11, 12, 13]) has

been launched and being used for experimental on-orbit evaluation of attitude con-

trollers for flexible spacecraft. The main purpose of the experiment is evaluation of

modern control theory such as H-infinity or gain-scheduling. ASTRO-G (Fig. 1-3,

[14, 15, 16, 17, 18, 19]) was a satellite planned to perform high-speed rest-to-rest ma-

neuvers with control moment gyros (CMGs), unfortunately the ASTRO-G program

was terminated due to the deployable antenna’s technical feasibility reason during

critical design phase. One of the methods presented in this thesis, nil-mode-exciting

profiler (NME profiler), is a controller developed for the ASTRO-G mission.

Brief explanations why feedforward (not feedback), smooth (not on-off), and sinc

function (not other trigonometric function or polynomial expression)-based profilers

are proposed in this thesis for flexible spacecraft rest-to-rest maneuvers are shown

hereafter.

• Why feedforward (not feedback) ?

Letting Laplace transform of the plant be P (s) and the feedback controller

be C(s), a block diagram of the feedback control system is shown in Fig. 1-4

and the transfer function of its input-output relation is given as X = PC
1+PC

R,

where R(s) is input and X(s) is output. On the other hand, block diagram of

a feedforward control system representing the feedforward controller as C(s) is

shown in Fig. 1-5 and the transfer function is given as X = PCR. There is

only a difference of the 1 + PC in the denominator. However control stability
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Figure 1-1: Pleiades.

Figure 1-2: ETS-VIII.
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Figure 1-3: ASTRO-G.

is always required for a stable control of a closed-loop control system, so the

feedback controller must be designed to meet the control stability. The control

stability usually limits the controller’s highest frequency. Theoretically, there

is no upper limit on characteristic frequency of a feedforward control system.

Based on such the reason, feedforward controllers have been chosen in this thesis

for better frequency characteristics, i.e. for faster responses.

Note that an outer loop feedback controller would be also required for an actual

application for feedforward controllers because of the existence of modeling

errors and/or disturbances as shown in Fig. 1-6 where C2(s) is the outer feedback

controller and T (s) is a disturbance torque.

• Why smooth (not on-off) ?

If a control target is known and there is no modeling error, then on-off type

controllers such as ZV or ZVD shaper or convolution of the input shapers will

be optimal solutions for fine pointing accuracy and high agility. However actual

applications have some modeling errors and have some unknown high-order

flexible modes. The smooth type controllers presented in this thesis have higher

robustness against the modeling errors in frequency domain and the existences of

unknown high-order flexible modes, though the numerical expression of smooth

type tends to be more complicated compared to on-off type.
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Figure 1-4: Feedback controller.

Figure 1-5: Feedforward controller.

Note that the force commands generated by the methods presented in this thesis

are smoothly shaped; hence, these methods cannot be used for on-off actuator

moves such as thruster moves, but can be used for smooth actuator moves such

as reaction wheel (RW) or control moment gyro (CMG) moves.

• Why sinc function (not trigonometric function or polynomial expression) ?

As mentioned above, the sinc function has been selected because it has an ideal

low-pass filter shaped frequency characteristic.

Figure 1-6: Feedforward controller with outer loop for modeling error.
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1.2 Literature Review and Discussion

Many researchers have studied this subject, and all the proposed feedforward con-

trol algorithms can be categorized, on the basis of the shape of the input command

waveform, as either on-off or smooth. The algorithm presented in this thesis is a

smooth-type controller in which the duration is relatively longer than that of con-

ventional algorithms, but the residual vibration is much smaller. Therefore, this new

algorithm is especially suitable for a mission that requires very high pointing accu-

racy at the end of maneuvers, but does not require rapid motion. For example, this

algorithm is suitable for a satellite carrying a scientific telescope because such a satel-

lite is often required to establish a fine and stable attitude for performing scientific

observations immediately after attitude maneuvers.

Input commands are usually given in terms of physical quantities such as force

(torque) or position (angle); the method presented here uses force (torque) input. The

on-off controller for rest-to-rest maneuvers is implemented by convolving a sequence

of impulses (an input shaper) with a step function. The input shaper consists of a

series of impulses such that the vibration caused by the first impulse will be cancelled

by that caused by the second or later impulses, so there will be no residual vibration

at the end of the input command [20, 21, 22] as shown in Fig. 1-7. The earliest

appearance of an input shaper which meets the constraints of the zero vibration (ZV)

shaper was in the method of posicast control developed by O. J. M. Smith in the

late 1950s [20, 21]. Various methods for incorporating robustness against modeling

errors have been presented [22, 23, 24, 25, 26, 27, 28, 29]. At least a couple of

forces, one for acceleration and the other for deceleration, are required for a rest-to-

rest motion, but conventional input shapers only include positive impulses; therefore,

time-optimal controllers with force input commands for rest-to-rest motions have

been developed [30, 31, 32]. Smooth controllers are implemented by a smooth curve

of trigonometric functions or polynomial expressions as input commands [33, 34, 35,

36, 37, 38, 39, 40, 41].

Various comparisons have been made between on-off and smooth controllers [33,
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Figure 1-7: Concept of ZV shaper.

34, 39, 42, 43, 44]. Hybrid-type controller which is generated by a convolution of an on-

off and a smooth, e.g. S-curve smoothed on-off command convolved with input shaper,

has been proposed for multimode systems [44, 45, 46]. The most difficult aspect in

establishing a suitable algorithm for rest-to-rest maneuvers of a satellite with flexible

structures is to achieve maneuvers with minimum excitation of structural vibrations.

If the target system contains only a few flexible modes, without any modeling errors

in structural frequency and damping ratio, a conventional algorithm such as a zero-

vibration (ZV) shaper will be the best solution since it achieves the maneuver with

the minimum residual vibration and in the shortest time [20, 21, 22]. However,

actual satellite systems with large flexible structures, such as solar array paddles or

large deployable antennas, contain many structural modes with various mode shapes.

Generally, low-mode frequencies are easy to predict by structural analysis, but high-

mode frequencies are difficult to predict, especially when the flexible appendage has

a complicated shape like a solar array paddle or deployable antenna. Table 1.1 shows

examples of analyzed frequencies and coupling vectors of major flexible modes with

modal masses larger than 1% of the total mass or total moment of inertia (MOI)

of a solar array paddle. In such cases, input shapers that eliminate these modes

can be built by convolving multiple input shapers. However, the modeling errors
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Table 1.1: Flexible parameters of a solar array paddle. The masses larger than 1%
are indicated by boldface.

of high-order flexible modes, which are usually larger than modeling errors of low-

order modes, might cause excitation of residual vibrations, even though the mass

of high-order modes is relatively small (Table 1.1). Therefore, if the target satellite

is equipped with a large flexible structure, and the satellite mission requires highly

accurate pointing performance at the end of maneuvers, vibration reduction of high-

order modes, especially in the presence of unknown higher modes, is a key factor in

high-accuracy controller design.

The characteristics of the conventional profilers can be summarized as follows.

Input shaper for single-mode systems can be expanded to multi-mode systems using

convolution, but, not effective for systems with unknown flexible modes. Optimal

smooth profilers like strict solution for a simple system or minimizing weighted func-

tion profiler would be effective for a given system which includes specific number of

modes, i.e. relatively simple system, but, not effective for multi-mode systems like ac-

tual satellite or system with unknown flexible modes. Low-pass filter shaped smooth

profilers like smooth curve of trigonometric functions would be effective and robust

for multi-mode systems or systems with unknown flexible modes. Note that ramped

sinusoidal is used as typical smooth profiler in this thesis because it shows better

attenuation as shown in Fig. 1-8 and 1-9. Figure 1-8 shows time profiles of a ramped

sinusoidal command and a versine command. Figure 1-9 shows fast Fourier trans-

forms (FFT) of those commands. The characteristics of those conventional profilers
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Figure 1-8: Ramped sine and versine.
Figure 1-9: FFTs, ramped sine and ver-
sine.

Table 1.2: Comparison of input shapers and smooth profilers.

Type of system
Single-mode Multi-mode System with

Type of profiler system system unknown mode

Input shapers Good Good No good
Optimal smooth profilers Good No good No good
LPF shaped smooth profilers Good Good Good

are summarized in Table 1.2.

1.3 Overview of Thesis

The following is a brief account of the rest of the contents of this thesis. Chapter 2

provides definitions of dynamics model simplified for the evaluation of the essence of

the proposed methods and boundary conditions required for rest-to-rest maneuvers.

Chapter 3 introduces the original sinc function-based profiler and its characteristics in

frequency domain. The approach taken here is to generate smooth force profiles that

have been shaped to reduce excitation energy at the frequency above a certain thresh-

old level corresponding to the system’s lowest structural mode. By suppressing the

energy at frequencies above the lowest structural mode, all the structural modes will

not be excited during and after the maneuver. Chapter 4 compares command shaping

10



techniques for controlling residual vibration after the end of maneuver with single-

mode systems. Some typical on-off type input shapers and smooth type profilers are

applied as conventional methods. It is demonstrated that the sinc function-based

profiler shows the second smallest residual vibration among the methods. Chap-

ter 5 provides comparison with two-mode systems which include unknown high-order

mode. The feature of the sinc function-based profiler presented in this thesis is higher

attenuation level compared to the conventional methods. Therefore, in the presence

of unknown higher modes, the original sinc function-based profiler shows the smallest

residual vibrations compared to all other profilers

Chapter 6 introduces a new performance index, i.e. maneuver distance. Agility

can be quantified once the input torque is restricted to some upper limit. Then com-

parison of agility performances of each conventional method discussed in the previous

chapters is made in this chapter. Then Chapter 7 proposes new sinc function-based

profilers for high-agility rest-to-rest maneuvers. Instead of relaxing the attenuation

ability in higher frequency region, well balanced performance of agility and residual

vibration can be obtained.

Chapter 8 presents an example of application of the proposed method to actual

satellite program called ASTRO-G for which the NME profiler has been originally

developed. Experimental test to verify the effectiveness of the proposed NME profiler

is introduced in Appendix D.
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Chapter 2

Problem Statement

2.1 Single-Mode System

To study the problem of reducing residual vibrations of rest-to-rest maneuvers, a two

mass, one spring model is used here as a simple representation of the dynamic system

(Fig. 2-1). The lumped masses represent the inertias of the moving parts, while the

spring represents the stiffness of the structure and transmission elements.

m1ẍ1 = −k (x1 − x2) + u

m2ẍ2 = k (x1 − x2)
(2.1)

where x1 and x2 are the positions of body 1 and body 2, respectively, and u is the

input force (torque) applied to body 1. This system can also be represented in the

state-space form as

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(2.2)
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Figure 2-1: Single-mode system composed of two masses and one spring in which an
input force u is applied to mass 1.

where

x =
[
x1 x2 ẋ1 ẋ2

]T

A =


0 0 1 0

0 0 0 1

−k/m1
k/m1

0 0

k/m2
−k/m2

0 0

 , B =


0

0

1/m1

0


C =

[
1 0 0 0

]
The natural frequency of the free-free system is given as

ω =

√
k

m1

+
k

m2

(2.3)

Boundary conditions of rest-to-rest maneuver are given as

x1(0) = x2(0) = 0

ẋ1(0) = ẋ2(0) = 0

x1(tf ) = x2(tf ) = 1

ẋ1(tf ) = ẋ2(tf ) = 0

(2.4)

where tf is the time at the end of the maneuver.
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2.2 Two-Mode System

A three-mass, two-spring model is used here as a simple representation of the dy-

namic system under study (Fig. 2-2). The lumped masses represent the inertias of

moving parts, while the springs represent the stiffness of the structure and transmis-

sion elements. Generally, a satellite, which contains multiple flexible modes, consists

of known lower modes and unknown higher modes. Therefore, a two-mode system

(three-mass, two-spring model) can be useful for simplifying the problem. The equa-

tions of motion for this two-mode system are

m1ẍ1 = k1 (x2 − x1)− k2 (x1 − x3) + u

m2ẍ2 = −k1 (x2 − x1)

m3ẍ3 = k2 (x1 − x3)

(2.5)

where x1, x2, and x3 are the positions of body 1, body 2, and body 3, respectively, and

u is an input force (torque) applied to body 1. This system can also be represented

in the state-space form as

ẋ(t) = Āx(t) + B̄u(t)

y(t) = C̄x(t)
(2.6)

where

x =
[
x1 x2 x3 ẋ1 ẋ2 ẋ3

]T

Ā =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−k1 + k2
m1

k1
m1

k2
m1

0 0 0

k1
m2

− k1
m2

0 0 0 0

k2
m3

0 − k2
m3

0 0 0


, B̄ =



0

0

0
1

m1

0

0


C̄ =

 1 0 0 0 0 0

0 0 1 0 0 0


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The natural frequencies of the free-free system are given by

ωL =

√
b−

√
b2 − 4c

2
: Low −modefrequency

ωH =

√
b+

√
b2 − 4c

2
: High−modefrequency

(2.7)

where

b =
k1 + k2
m1

+
k1
m2

+
k2
m3

c =

(
1

m1m2

+
1

m2m3

+
1

m3m1

)
k1k2

In the following chapters, the high-mode natural frequency ωH is assumed to be

unknown. Boundary conditions for a rest-to-rest maneuver are

x1(0) = x2(0) = x3(0) = 0

ẋ1(0) = ẋ2(0) = ẋ3(0) = 0

x1(tmnv) = x2(tmnv) = x3(tmnv) = 1

ẋ1(tmnv) = ẋ2(tmnv) = ẋ3(tmnv) = 0

(2.8)

where tmnv is the time at the end of the maneuver, i.e., the duration of the maneuver.

The displacement vector
[
x1 x2 x3

]T
: = x̃(t) in (2.5) can be transformed into

decoupled modal coordinates
[
η1 η2 η3

]T
: = η(t), as follows

x̃(t) = Φη(t) (2.9)

where Φ is the modal matrix formed by stacking the mass-orthonormalized eigenvec-

tors as columns, and η(t) is the vector of modal amplitudes ηi(t). Thus, the equations

of motion (2.5) are transformed to the mass-normalized modal equations of motion,

as follows

η̈1 = C1u

η̈2 + ω2
Lη2 = C2u

η̈3 + ω2
Hη3 = C3u

(2.10)
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Figure 2-2: Two-mode system composed of three masses and two springs in which an
input force u is applied to mass 1.

where C1, C2, and C3 are constants, given by
C1

C2

C3

 = ΦT


1

0

0

 (2.11)

Unless otherwise indicated, the following studies are based on the assumption of

nominal system with unit mass (m1 = m2 = 1); unit stiffness for the low mode

(k1 = 1); an unknown high mode having mass m3 = 0.1; and the nominal stiffness of

the unknown high mode k2 is set to 0.67; it corresponds to ratios of the high-mode

and low-mode frequencies (ωH/ωL) of 2.0, where ωL is 1.37 rad/s (0.218 Hz) and ωH

is 2.74 rad/s (0.436 Hz). This value is chosen because a ratio between the range of 2.0

and 3.0 is a kind of typical one of the ratio of 2nd-mode to 1st-mode frequencies of an

actual flexible structure and the ratio of 2.0 induces a typical and easy-to-understand

results of conventional input shapers.
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Chapter 3

A New Preshaping Profiler (NME

Profiler)

3.1 Introduction

This chapter presents a feedforward input-torque profiler for a single-axis rest-to-rest

maneuver of a spacecraft. Using this profiler, a torque profile can be generated for the

spacecraft to achieve a rest-to-rest maneuver with reduced residual vibration at the

end of the maneuver. This preshaping profiler is called a nil-mode-exciting (NME)

profiler [47].

Compared to other algorithms, the algorithm presented here proposes a better

solution in terms of roll-off performance in the frequency domain. Therefore, this

algorithm shows high robustness against frequency errors in the presence of unknown

high modes at the expense of maneuver duration. A recent paper [44] has shown

that, in a comparison between input shapers (input-shaped step commands) and S-

curves (a kind of smooth command), “S-curves are poor alternatives for applications

requiring rapid motion.” That is true, but if mild motion or slow motion would be

acceptable for the application, a smooth controller might be a better alternative

to input shapers. The smooth controller presented in this chapter proposes a slow

motion but fine pointing accuracy with smaller residual vibrations in the presence of

unknown high modes compared to other algorithms having identical durations; this is
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demonstrated in Chapter 5. The recent paper [44] has also shown that “only systems

with a wide range of problematic and uncertain high modes should be driven with

input-shaped S-curve commands. In the absence of such special conditions, an input-

shaped step command can eliminate vibration much faster than an S-curve.” This

special case exactly corresponds to the target system assumed in this thesis; that is,

“a satellite with large flexible structures with unknown higher modes requiring highly

accurate pointing performance at the end of maneuvers” is assumed to be a suitable

system to which this new algorithm should be applied.

3.2 A Sinc Function-Based Preshaping Profiler

The sinc function is defined by

sinc (ωst) =
sin (ωst)

ωst
=

sin
(

2π
Ts
t
)

(
2π
Ts
t
) (3.1)

Theoretically, this function itself has no frequency response above frequency ωs. The

continuous Fourier transform of the sinc function is rectangular:

∫ ∞

−∞

sin (ωst)

ωst
e−iωstdt = rect(fs) (3.2)

where

fs = ωs/2π = 1/Ts

The time profile of a sinc function is shown in Fig. 3-1, and its fast Fourier transform

(FFT) appears in Fig. 3-2.

If a controller is composed of the sinc function, the frequency responses of the

controller and the frequencies of the spacecraft’s flexible structural modes can be

separated in the frequency domain by setting ωs to a value sufficiently lower than

that of the lowest flexible mode:

ωs < ωL (3.3)
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Figure 3-1: Sinc function (3.1) in the time domain with Ts= 10 s.

Figure 3-2: Sinc function (3.1) in FFT with Ts= 10 s.
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Here, the right-hand term ωL is the lowest flexible structural mode of the spacecraft.

The following input-torque profiler is proposed:

u(t) = A · w(t) · f(t) (3.4)

where f(t) is expressed as a pair of sinc functions:

f(t) = sinc (ωst− π)− sinc (ωst− 3π) (3.5)

The sinc function’s characteristic frequency ωs is expressed by

ωs =
2π(

tmnv/2

) (
=

2π

Ts

)
(3.6)

In (3.4), A is a constant that is calculated from a required maneuver angle. The

window function w(t) is the Hamming window, which is expressed as

w(t) =

 0.54 + 0.46 cos

{
2π

tmnv

(
t− tmnv

2

)}
for 0 ≤ t ≤ tmnv

0 for t < 0, tmnv < t

(3.7)

In Fig. 3-3, the upper panel shows the pair of sinc functions with 2π offset and reversed

signs, as expressed by the first-term and the second-term of (3.5). The middle panel

shows the window function used to truncate the summed sinc functions (3.7), and the

lower panel shows the summed sinc functions multiplied by the window function (3.4).

The Hamming window is chosen because of its better balance of low sidelobe level

and high frequency resolution, compared to other conventional window functions.

The conversion of the function f(t) in (3.5) to the Laplace domain yields

F (s) = sinc(s)
(
e−0.5Ts − e−1.5Ts

)
= sinc(s) · e−0.5Ts

(
1− e−Ts

) (3.8)

Equation (3.8) can be interpreted as the product of three functions—a sinc function,

a delay of half a period, and a negative ZV shaper—for an undamped system [20, 21,

22, 24]. In the time domain, this product represents the convolution of the baseline

function, sinc(ωst), with a sequence of impulses, i(t), given by
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Figure 3-3: NME profiler for Ts= 10 s. Top: Pair of sinc functions with 2π offset and
reversed signs (3.5). Middle: Window function (3.7) used to truncate the summed
sinc functions. Bottom: Summed sinc functions multiplied by the window function
(3.4).

sinc(ωst) =
sin (ωst)

ωst
(3.9)

and

i(t) = δ (t− 0.5Ts)− δ (t− 1.5Ts) (3.10)

Figure 3-4 shows this convolution. It is clear that this smooth profile can be

considered as an input-shaped function in which the baseline function is sinc(ωst)

and the input shaper is  Aj

tj

 =

 0 1 −1

0 0.5Ts 1.5Ts

 (3.11)

It is noted that although a ZV shaper is usually designed for a system whose vibration

period is equal to the value of Ts used to form the command, the command duration

for this method is determined in a different way and it is explained later in this

chapter.

Figure 3-5 shows the magnitudes of the Fourier transforms of sinc(ωst), i(t), and

f(t), scaled for display purposes. This provides a general interpretation of the convo-

lution process of the two functions sinc(ωst) and i(t). Figure 3-6 shows the magnitudes

23



of the Fourier transforms of f(t) in (3.5) and u(t) in (3.4), illustrating the effect of

window functioning.

This profiler is a smooth input-torque profiler of a sinc function convolved with a

negative ZV shaper and multiplied by a window function. The sinc function has low-

pass filter characteristics with a roll-off frequency fs(= 1/Ts), while the negative ZV

shaper is a multinotch filter with a cut-off frequency fs(= 1/Ts) and its harmonics,

so the frequency characteristic of the convolved smooth curve appears as in Fig. 3-

5. Because of the truncation by the window function with time length ±1.5Ts, the

frequency characteristic of the applied sinc function is slightly rounded from an ideal

rectangular shape.

Note that Figs. 3-5 and 3-6 represent the FFT of a force (torque) input command,

not a position (angle) command. Therefore, in those figures, there is no energy at 0

Hz because the accumulated acceleration forces for a rest-to-rest motion will always

be cancelled by an equivalent amount of accumulated deceleration forces at the end

of the motion.

The boundary frequency cycle of the sinc functions Ts(= 2π/ωs) is determined as

half period of a maneuver duration tmnv, and tmnv should be determined considering

the relation between the frequency of the lowest structural frequency mode ωL and the

boundary frequency of this profiler. The boundary frequency of this profiler, when Ts

is 10 s (i.e., maneuver duration is 20 s), is shifted from the boundary frequency of the

sinc functions itself (0.1 Hz) to 0.174 Hz (period of 5.747 s) because of the truncation

effect by the window function as shown in Fig. 3-6. Therefore, tmnv in relation to the

frequency cycle of the lowest structural mode TL should be determined as

tmnv (= 2Ts) ≥
20

5.747
TL ∼= 3.48TL (3.12)

where TL is the vibration cycle of the lowest flexible structural mode, and is given by

TL =
2π

ωL

Considering potential effects by the modeling errors of the flexible modes, tmnv used

in this study will be set to four times the lowest mode vibration cycle,
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Figure 3-4: Convolution of a sinc function (3.9) (Ts=10 s) with a series of impulses
(3.10). Top left is the original sinc function, top right shows the impulses, and bottom
right is the convolution.

Figure 3-5: FFT of the baseline sinc function (dotted line), the sequence of impulses
used as the shaper (dashed line), and the resulting shaped baseline (solid line) (Ts=10
s).
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(a) Linear (b) Semilog

Figure 3-6: FFTs of the shaped baseline (solid line) and the window functioned result
(dashed line) (Ts=10 s).

tmnv (= 2Ts) ≡ 4TL (3.13)

For example, if the lowest structural mode ωL is 0.4π rad/s (so the vibration cycle

TL is 5 s), the maneuver duration tmnv will be 20 s (four times the vibration cycle of

5 s).
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Chapter 4

Comparison of Preshaping

Profilers for Single-Mode Systems

4.1 Introduction

Three criteria will be used here to evaluate command shaping profilers [42]. First, the

profiler duration will be compared. The time required for the system to move depends

on the duration of the profiler and the duration of the profiler is a lower bound on

the maneuvering time. Second, the residual vibration resulting from a filtered step

command will be compared. Finally, the robustness of the preshaping profilers to

uncertainties in the system model will be examined. Each of the preshaping profilers

will be used to shape the input to a simple harmonic oscillator shown in Fig. 2-1.

In order to evaluate the second and third performance criteria, three step responses

(here, rest-to-rest maneuver responses) will be determined for each profiler. One is the

response when the system model is perfect. The other two are the responses when k,

spring constant of the model, is varied from the nominal value of 1.0 to 0.8 and 0.6. All

the systems will have no damping so that two quantities can clearly be observed: the

time at which the profiler finishes and the residual vibration amplitude. The design

parameters used to generate the preshaping profilers in this comparison consist of

the system frequency and, in case of EI shapers, the limit on the tolerable level of

residual vibration, V , and, in case of low-pass filters, the stopband, the passband, the
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passband ripple, the stopband attenuation, and the filter number. For each of the

following profilers, it is attempted to select the design parameters so that the best

possible performance is obtained.

4.2 Minimum Time Control for Rigid Body

For a “rigidized” model of the nominal system shown in Fig. 2-1, the equation of

motion is simply

(m1 +m2) ẍ = u (4.1)

The boundary conditions for a rest-to-rest maneuver are given as

x(0) = 0

x(tf ) = 1
(4.2)

Solving the rest-to-rest, time-optimal control problem of rigid body with boundary

conditions of (4.2) and applying the symmetry about t2(= tf/2), the time-optimal

bang-bang control input is given as

u(t) = us(t)− 2us(t− 1.41421) + us(t− 2.82843) (4.3)

Figure 4-1 shows input command and responses of the rigid-body minimum time

controller. The input command is applied as input force of u in Fig. 2-1 and ver-

tical axis of the responses represents position of m1 mass. The time duration is

short (2.828s) but residual vibration is significant because no vibration reduction is

considered.

4.3 ZV/ZVD Time-Optimal Shaper

Smith [20, 21] proposed an input shaper, zero vibration (ZV) shaper which was derived

from constraint equations of multi-impulse responses. Singer and Seering [22, 48]
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Figure 4-1: Shaped command and responses of Minimum time controller for Rigid
Body
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Figure 4-2: Shaped command and responses of ZV Time-Optimal shaper

proposed an input shaper, zero vibration and derivative (ZVD) shaper with robustness

to modeling errors of the system frequency by adding a new constraint regarding the

system natural frequency. The input shapers like ZV or ZVD shaper consist of a

series of impulses, so the input shaper itself cannot be applied to an actual system if

the system’s input command is defined as forcing input. Liu and Wie proposed an

approach for computing time-optimal control inputs for uncertain flexible spacecraft’s

rest-to-rest maneuver with constant-force actuators based on ZV and ZVD shaper

techniques [30, 31]. Figures 4-2 and 4-3 show input commands and responses of the

ZV time-optimal controller and the ZVD time-optimal controller, respectively. The

residual vibration is reduced in the ZVD time-optimal controller (5.866s) responses

compared to the ZV time-optimal controller (4.218s) at a cost of time duration.
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Figure 4-3: Shaped command and responses of ZVD Time-Optimal shaper
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4.4 One-hump/Two-hump EI Time-Optimal Shaper

Singhose et al. [23] proposed an alternate robustness constraint which generates more

insensitivity by abandoning the requirement of zero residual vibration at the modeling

frequency i.e. ω/ω0 = 1. By limiting the residual vibration to some small value, V ,

rather than forcing it to zero, the robustness can be improved without increasing the

shaper duration. Shapers designed with this approach are called extra-insensitive (EI)

shaper. Singhose et al. [32] proposed an approach for computing time-optimal control

inputs for uncertain flexible spacecraft’s rest-to-rest maneuver with constant-force

actuators based on EI shaper techniques. Figures 4-4 and 4-5 show input commands

and responses of the one-hump EI time-optimal controller (V=5%) and two-hump

EI time-optimal controller (V=5%), respectively. The time durations of ZVD time-

optimal (5.866s) and one-hump EI time-optimal (5.902s) are nearly equivalent, but

the residual vibration in frequency error case is smaller in one-hump EI time-optimal

than ZVD time-optimal at a cost of residual vibration in exact case, i.e. k = 1.

The residual vibration is reduced in two-hump EI time-optimal controller (7.770s)

responses compared to one-hump EI time-optimal controller at a cost of time duration.

The degree of freedoms of the constraint conditions for ZVD shaper and one-hump

EI shaper are the same, hence the time durations are nearly equivalent between those

shapers. The same relationship can happen between ZVDD and two-hump EI or

ZVDDD and three-hump EI.

4.5 Input-shaped Rigid Body Commands with

ZV/ZVD/One-hump EI shapers

Smith [20, 21] proposed an input shaper, the zero-vibration (ZV) shaper, which was

derived from constraint equations of multi-impulse responses, as follows. Aj

tj

 =

 0.5 0.5

0 0.5T

 (4.4)
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Figure 4-4: Shaped command and responses of One-Hump EI Time-Optimal shaper
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Figure 4-5: Shaped command and responses of Two-Hump EI Time-Optimal shaper
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where

T =
2π

ω

is the period of the undamped vibration (ω =
√
2 from (2.3)).

Singer and Seering [22, 48] proposed an input shaper, ZVD shaper with robustness

to modeling errors of the system frequency by adding a new constraint regarding the

system natural frequency as follows.

 Aj

tj

 =

 0.25 0.5 0.25

0 0.5T T

 (4.5)

Singhose et al. [23] proposed an alternate robustness constraint that generates

more insensitivity by abandoning the requirement of zero residual vibration at the

modeling frequency, i.e., ω/ω0 = 1. By limiting the residual vibration to a small value

V, rather than forcing it to zero, robustness can be improved without increasing the

shaper duration. Shapers designed with this approach are called extra-insensitive

(EI) shapers. A one-hump EI shaper is given as follows.

 Aj

tj

 =

 1 + V

4

1− V

2

1 + V

4

0 0.5T T

 (4.6)

Input shapers like ZV, ZVD, and EI consist of a series of impulses, so the input

shaper itself is not suitable for actual system use. The rigid-body minimum-time

commands given in (4.3) convolved with ZV, ZVD, or EI shapers are used here as

input-force commands.

Figures 4-6, 4-7, and 4-8 show input commands and responses of the rigid-body

minimum time commands (4.3) shaped with ZV, ZVD and EI shapers (V=5%),

respectively. Durations of each controller are slightly longer than the same type time-

optimal controllers, but residual vibrations are slightly smaller than the same type

time-optimal controllers.
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Figure 4-6: Shaped command and responses of Rigid Body command shaped with
ZV shaper
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Figure 4-7: Shaped command and responses of Rigid Body command shaped with
ZVD shaper
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Figure 4-8: Shaped command and responses of Rigid Body command shaped with
One-hump EI shaper
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4.6 Input-shaped Rigid Body Commands with

ZVDDD/Three-hump EI/ZVDDDDDD shapers

Expanding the constraint equations of multi-impulse responses of ZVD shaper and

one-hump EI shaper by adding the higher order derivatives regarding the system nat-

ural frequency, ZVDDD shaper, three-hump EI shaper and ZVDDDDDD are given

[22, 25]. Figures 4-9, 4-10, and 4-11 show input commands and responses of the rigid-

body minimum time commands (4.3) shaped with ZVDDD, three-hump EI shapers

(V=5%) and ZVDDDDDD, respectively. Durations of ZVDDD and three-hump EI

are twice or more than ZVD type or one-hump EI type controller, but residual vibra-

tions are less than half of ZVD type or one hump EI type controller. The duration

of ZVDDDDDD is 18.379 s, but the residual vibration is significantly smaller than

others.

4.7 Elliptic Low-pass Filter

So far, the durations of the profilers are evaluated as maneuver durations, but re-

garding Infinite Impulse Response (IIR) low-pass filter, the filtered command will

continue infinitely so the duration to settle within 2% of its steady state value (2%,

0-to-peak) is evaluated as the maneuver duration. The elliptic filter was designed

with a passband at 50% of the anticipated natural frequency, and 1 dB ripple and

40 dB attenuation in the stopband. The elliptic filter is applied to the rigid body

command. Figure 4-12 shows responses of the elliptic filter.

4.8 Ramped Sinusoidal

Meckl and Seering proposed smooth input functions from either versine functions or

ramped sinusoids [35, 36, 37]. A ramped sinusoidal curve can be used as a character-

istic function for a rest-to-rest maneuver since the smooth transitions in slope at the

beginning and end tend to reduce excitation energy at higher frequencies. To achieve
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Figure 4-9: Shaped command and responses of Rigid Body command shaped with
ZVDDD shaper
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Figure 4-10: Shaped command and responses of Rigid Body command shaped with
Three-hump EI shaper
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Figure 4-11: Shaped command and responses of Rigid Body command shaped with
ZVDDDDDD shaper
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Figure 4-12: Responses of Elliptic Low-pass filter

a swift maneuver, the fundamental ramped sinusoidal function and its harmonics are

selectively added to approximate a square wave [36, 37]. The input commands of a

15-term series of ramped sinusoidal curves and the responses are shown in Figs. 4-13

and 4-14.

4.9 NME Profiler

Figure 4-15 shows input commands and responses of the NME profiler which was

proposed in the Chapter 3. The duration is approximately 18 s, but the residual

vibration is very small.

4.10 Discussion on Single-Mode System

Table 4.1 lists the duration, residual vibration (peak-to-peak) of exact model, and

residual vibration (peak-to-peak) of model with k=0.6 (frequency lowered by 22.54%)

for each of the shapers and filters discussed. Figure 4-16 shows comparison of dura-

tions versus residual vibrations at k=0.6.
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Figure 4-13: Shaped command and responses of Ramped Sinusoidal (L=15, tmnv=10
s)
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Figure 4-14: Shaped command and responses of Ramped Sinusoidal (L=15, tmnv=18
s)
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Figure 4-15: Shaped command and responses of NME profiler (Ts=8.886 s)
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Table 4.1: Simulation results for comparison (Single-Mode System)

ZVDDDDDD shaper shows the smallest residual vibrations among all the pro-

filers compared, although maneuver distance will be turned out to be very short in

Chapter 6. The NME profiler shows the second smallest residual vibrations among

the profilers. This chapter assumed a known single-mode system which represents

a simple system rather than complicated systems that this thesis deal with, so two-

mode system with known lower mode and unknown higher mode, which represents

the most simplified complicated system, will be introduced in the next chapter.
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Figure 4-16: Comparison of durations vs. residual vibrations (k=0.6) (Single-Mode
System)
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Chapter 5

Comparison of Preshaping

Profilers for Two-Mode Systems

with an Unknown High Mode

5.1 Introduction

The previous chapter assumed a known single-mode system which represents a simple

system rather than complicated systems that this thesis deal with, so two-mode sys-

tem with known lower mode and unknown higher mode, which represents the most

simplified complicated system, is introduced in this chapter.

The same criteria introduced in Chapter 4 will be used here to evaluate command-

shaping profilers, where residual vibrations of the mass of the body (m1) are evaluated

as the residual vibrations.

Each preshaping profiler will be used to generate input-force commands to the two-

mode harmonic oscillator shown in Fig. 2-2. The two-mode system consists of unit

masses (m1 = m2 = 1); unit stiffness for the low mode (k1 = 1); and an unknown high

mode having mass m3 = 0.1, which is 10% of the low-mode mass m2. The assumption

of the unknown high-mode mass m3 being 0.1 (10%) is suggested from Table 1.1. The

effective mass of the lowest mode of x -axis translational motion is 62.28% of a total
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mass, and the effective masses of the higher modes are 19.85% (32% of the lowest-

mode mass), 7.15% (11% of the lowest-mode mass), 4.93% (8% of the lowest-mode

mass), etc. Therefore, it is realistic to assume that the unknown high-mode mass will

be 10% of the low-mode mass. The low-mode frequency ωL is known, but the high-

mode frequency ωH is assumed to be unknown here; therefore, preshaping profilers

compared in this chapter are designed only to eliminate the low-mode vibration.

To evaluate the second and third performance criteria, three shaped-command

responses will be determined for each profiler. The three cases will be the responses

when the stiffness of the unknown high mode k2 is set to 0.67, 1.54, and 2.76; these

correspond to ratios of the high-mode and low-mode frequencies (ωH/ωL) of 2.0, 3.0,

and 4.0, respectively. The low-mode and high-mode frequencies are given by (2.7)

as 0.21811 Hz and 0.43563 Hz when k2 is 0.67, 0.21924 Hz and 0.65703 Hz when k2

is 1.54, and 0.21955 Hz and 0.87834 Hz when k2 is 2.76. None of the systems will

have damping; hence, two quantities can clearly be observed: the time at which the

profiler finishes and the amplitudes of residual vibrations.

The design parameters used to generate the preshaping profilers in this comparison

consist of the system frequency, and in the case of EI shapers, the limit on the tolerable

level of residual vibration V, and in the case of ramped sinusoidal profilers, maneuver

duration and the number of harmonics of the fundamental ramped sinusoidal function.

For each of the following profilers, the design parameters are selected such that the

best possible performance is obtained.

5.2 Minimum Time Control for Rigid Body

Ignoring the unknown high-mode mass m3 in Fig. 2-2 and considering a “rigidized”

model of a two-mass one-spring system, the equation of motion is simply

(m1 +m2) ẍ = u (5.1)

The boundary conditions for a rest-to-rest maneuver are
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x(0) = 0

x(tmnv) = 1
(5.2)

Solving the rest-to-rest, time-optimal control problem of a rigid body with the bound-

ary conditions in (5.2), and applying symmetry about t(= tmnv/2), the time-optimal

bang-bang control input is

u(t) = us(t)− 2us(t− 1.41421) + us(t− 2.82843) (5.3)

Figure 5-1 shows the input command and command responses of the rigid-body

minimum-time controller applying the input command (5.3). The input command

is applied as the input force u in Fig. 2-2, and the vertical axes in Fig. 5-1 represent

the positions of mass m1 and mass m3, scaled for display purposes. The duration is

short (2.828 s); but, residual vibrations are significant because no vibration reduction

is applied.

5.3 Input-shaped Rigid Body Commands with

ZV/ZVD/One-hump EI shapers

The ZV, ZVD, and EI shapers used for the convolution are designed to eliminate low-

mode vibrations. Figures 5-2, 5-3, and 5-4 show the input commands and responses of

the rigid-body minimum-time commands (5.3) shaped with ZV, ZVD, and one-hump

EI shapers (V= 5%), respectively.

Residual vibrations occur when ωH/ωL is 2.0 and 4.0. This result can be explained

by the sensitivity curves of residual vibration versus normalized system frequency [22]

shown in Figs. 5-5 and 5-6. Figures 5-5 and 5-6 show the sensitivity curves of ZV,

ZVD, and higher-order ZVD-type shapers on different horizontal scales. The shapers

will cause no vibration when the modeling frequency is correct (ω/ω0 = 1). If this

frequency deviates from the low mode by a factor of 2.0 or 4.0, then the shaper

will induce considerable high-mode vibrations. The same discussion can be applied
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Figure 5-1: Shaped-command responses of a minimum-time controller for a rigid
body (5.1) at three values of stiffness k2 of the unknown high-frequency mode. Top:
positions of massm1. Middle: positions of massm3. Bottom: shaped input command
(5.3).

52



Figure 5-2: Shaped-command responses of a rigid-body command shaped with a ZV
shaper at three values of stiffness k2 of the unknown high-frequency mode. Key to
panels as in Fig. 5-1.
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Figure 5-3: Shaped-command responses of a rigid-body command shaped with a ZVD
shaper at three values of stiffness k2 of the unknown high-frequency mode. Key to
panels as in Fig. 5-1.
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Figure 5-4: Shaped-command responses of a rigid-body command shaped with a one-
hump EI shaper at three values of stiffness k2 of the unknown high-frequency mode.
Key to panels as in Fig. 5-1.
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Figure 5-5: Small residual vibrations as functions of normalized system frequency for
ZV, ZVD, and higher-order ZVD-type shapers.

to the unknown high-mode frequency. The EI shaper generates more insensitivity

to frequency errors by allowing residual vibrations at the modeling frequency and its

harmonics, i.e., at ω/ω0 = 1, 2, 3,… etc.; therefore, the responses show higher residual

vibrations compared to the ZV and ZVD shapers. The lower frequency vibration

contains higher energy; therefore, the residual vibrations are higher at ωH/ωL = 2.0

than at 4.0.

5.4 Input-shaped Rigid Body Commands with

ZVDDD/Three-hump EI/ZVDDDDDD shapers

By adding higher-order derivatives of the system’s natural frequency, the constraint

equations of multi-impulse responses of the ZVD shaper and the one-hump EI shaper

can be expanded to obtain the ZVDDD, three-hump EI, and ZVDDDDDD shapers

[22, 25]. The ZVDDDDDD shaper is selected here for comparisons because its du-

ration is nearly equivalent to that of the NME profiler. Figures 5-7, 5-8, and 5-9

show input commands and responses of the rigid-body minimum-time commands
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Figure 5-6: Full residual vibrations as functions of normalized system frequency for
ZV, ZVD, and higher-order ZVD-type shapers.
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Figure 5-7: Shaped-command responses of a rigid-body command shaped with a
ZVDDD shaper at three values of stiffness k2 of the unknown high-frequency mode.
Key to panels as in Fig. 5-1.

(5.3) shaped with ZVDDD, three-hump EI (V = 5%), and ZVDDDDDD shapers,

respectively. The ZVDDD- and ZVDDDDDD-shaped command responses show re-

ductions in residual vibrations similar to those of ZVD-shaped command responses.

This is because, according to the sensitivity curves shown in Fig. 5-6, the residual

vibrations at ωH/ωL = 2.0, 3.0, and 4.0 are equally reduced among ZV, ZVD, and

higher-order ZVD-type shapers. The same results are found for one-hump EI and

higher-order EI shapers.
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Figure 5-8: Shaped-command responses of a rigid-body command shaped with a
three-hump EI shaper at three values of stiffness k2 of the unknown high-frequency
mode. Key to panels as in Fig. 5-1.
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Figure 5-9: Shaped-command responses of a rigid-body command shaped with a
ZVDDDDDD shaper at three values of stiffness k2 of the unknown high-frequency
mode. Key to panels as in Fig. 5-1.
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Figure 5-10: Shaped-command responses of a ramped sinusoidal (L=15, tmnv=10 s)
at three values of stiffness k2 of the unknown high-frequency mode. Key to panels as
in Fig. 5-1.

5.5 Ramped Sinusoidal

The input commands of a 15-term series of ramped sinusoidal curves and the responses

are shown in Fig. 5-10 when the duration is 10 s and in Fig. 5-11 when the duration

is 18 s. Residual vibrations of 0.5% to 0.7% are found in the 10 s case and 0.4% in

the 18 s case.

5.6 NME Profiler

Figure 5-12 shows input commands and responses of the NME profiler that was

proposed in Chapter 3. Figure 5-13 shows an enlargement of the responses. The
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Figure 5-11: Shaped-command responses of a ramped sinusoidal (L=15, tmnv=18 s)
at three values of stiffness k2 of the unknown high-frequency mode. Key to panels as
in Fig. 5-1.
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Figure 5-12: Shaped-command responses of the NME profiler (Ts=9.170 s) at three
values of stiffness k2 of the unknown high-frequency mode. Key to panels as in Fig. 5-
1.

duration is 18.340 s, but the residual vibrations are very small (0.1%) for all cases.

The period of the residual vibration is approximately 4.6 s; hence, it is found that

the NME profiler does not excite the high-mode frequency, but only the low-mode

frequency.

5.7 Ramped Sinusoidal (Additional Cases)

Although the NME profiler has shown slightly better results, additional cases are

considered because the results for the ramped sinusoidal profiler and the NME profiler

have not shown major differences. Two cases are considered here: when the stiffness
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Figure 5-13: Enlargement; shaped-command responses of the NME profiler (Ts=9.170
s) at three values of stiffness k2 of the unknown high-frequency mode. Top: positions
of mass m1. Bottom: positions of mass m3.

of the unknown high mode k2 is set to 0.310 and 0.270. These correspond to the

frequency of the third harmonics of the fundamental ramped sinusoidal function when

tmnv is 10 s, and to the fifth harmonics when tmnv is 18 s. The frequencies of the i-th

harmonics of the ramped sinusoids have been evaluated by FFT. Figures 5-14 and

5-15 show input commands and responses of the ramped sinusoidal curves when tmnv

is 10 s and 18 s, respectively. The residual vibrations are 4.1% to 4.7% with tmnv =

10 s and 1.6% to 2.3% with tmnv =18 s. In contrast, the NME profiler still shows

residual vibrations of 0.1%.

5.8 Smoothed Rigid-Body Commands convolved

with ZVD Shapers (Hybrid Type)

Singhose et al. [44] suggested that “a reasonable approach for some special types

of multimode systems is to combine input shaping and command smoothing.” This

kind of on-off and smooth hybrid-type profiler might be an effective alternative. The

time-optimal bang-bang command (5.3) is smoothed by an S-curve with a unit rise,

and is described by
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Figure 5-14: Shaped-command responses of a ramped sinusoidal (L=15, tmnv=10 s,
third harmonics) at three values of stiffness k2 of the unknown high-frequency mode.
Key to panels as in Fig. 5-1.
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Figure 5-15: Shaped-command responses of a ramped sinusoidal (L=15, tmnv=18 s,
fifth harmonics) at three values of stiffness k2 of the unknown high-frequency mode.
Key to panels as in Fig. 5-1.
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r(t) =


2 (t/RC)

2 for 0 ≤ t < RC

2

−2 (t/RC)
2 + 4 (t/RC)− 1 for RC

2
≤ t < RC

1 for RC ≤ t

(5.4)

where RC is the rise time of the S-curve. The input commands and the responses

when RC is 1 s are shown in Fig. 5-16. The residual vibrations are smaller than those

of unsmoothed rigid body command shaped with ZVD shaper, but still larger than

NME profiler. Therefore, the duration of bang-bang command is lengthened so as to

be nearly equivalent to that of the NME profiler, and is given as

u(t) = us(t)− 2us(t− 6.5) + us(t− 13.0) (5.5)

Smoothing this lengthened bang-bang command by the S-curve (5.4) with RC is

1 s, the input commands and the responses are shown in Fig. 5-17. The residual

vibrations for all the k2 cases are significantly reduced to equivalent levels of those of

NME profilers.

5.9 Discussion on Two-Mode System

For each shaper discussed in this chapter, Table 5.1 lists the duration and residual

vibration (peak-to-peak) of the model for k2 = 0.67, 1.54, and 2.76. The maximum

forces used in the input commands are also shown in the table just for references.

The maximum force information can be used to check if the input commands do not

exceed a force limit of the actuator, if any. Each controller for the simulations is

designed under the condition of k2 being 0.67, where the low-mode frequency ωL is

known but the high-mode frequency ωH is unknown. However, because the low-mode

natural frequency of the free-free system, given by (2.7), is determined not only by k1

but also k2, even ifm1, m2, m3, and k1 are fixed, the low-mode frequency ωL is slightly

changed from 0.21811 Hz to 0.21924 Hz and 0.21955 Hz according to k2. Therefore,

the ratios of the high-mode and “designed” low-mode frequencies are not exactly 3.0

and 4.0 for k2 being 1.54 and 2.76, respectively. This results in the residual vibration of

67



Figure 5-16: Shaped-command responses of a smoothed rigid-body command (time-
optimal, RC=1 s) shaped with a ZVD shaper at three values of stiffness k2 of the
unknown high-frequency mode. Key to panels as in Fig. 5-1.

68



Figure 5-17: Shaped-command responses of a smoothed rigid-body command (length-
ened, RC=1 s) shaped with a ZVD shaper at three values of stiffness k2 of the unknown
high-frequency mode. Key to panels as in Fig. 5-1.
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1.0% for the ZV shaper when k2 is 1.54, because the ZV shaper is frequency sensitive

(Fig. 5-5). The ZVD and higher-order ZVD-type shapers show nearly equivalent

residual vibrations because of their frequency robustnesses. The EI shapers show

higher residual vibrations compared to the same-order ZVD-type shapers because of

their characteristics. Figure 5-18 compares durations versus residual vibrations at k2

= 0.67. Because of their low-pass filtering characteristics, the smooth-type shapers

produce smaller vibrations than the on-off shapers, especially when k2 is 0.67 or 2.76.

Because Table 5.1 does not show major differences between the smooth-type pro-

filers, additional cases were considered. Table 5.2 shows the same evaluation for the

additional cases involving only smooth-type (and hybrid-type) profilers. The NME

profiler produces smaller vibrations compared to the ramped sinusoidal profilers.

The on-off and smooth hybrid-type profiler: the smoothed bang-bang commands

shaped with ZVD shaper shows small residual vibrations comparable with NME pro-

filer when the duration of the bang-bang command is lengthened to be nearly identical

to NME profiler. In the presence of unknown higher modes, the NME profiler or the

hybrid profiler show the smallest residual vibrations compared to all other profilers,

even when the comparisons are between profilers having nearly equivalent durations.

The assumed two-mode system represents the most simplified system with compli-

cated structures, so the same results can be expected for systems equipped with more

complicated flexible structures.

The effectiveness of the NME profiler can be summarized as follows:

NME profiler is suitable for

1. system with unknown high-order flexible modes1.

2. either distributed parameter system (DPS) or lumped parameter system (LPS)

where most of large flexible structures should be considered as DPS2.

NME profiler is not suitable for

3. system with flexible modes which have given nominal frequencies and a certain

amount of frequency errors.
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NME profiler might not be suitable for

4. system with unknown high-order flexible modes when the ratio of unknown

mode mass to spacecraft total mass is too small1.

The behaviors when NME profiler is applied to the system of 3 or 4 can be presumed

by the comparison on single-mode system shown in Chapter 4, because single-mode

system is the most simplified system of 3.

1 The ratio of unknown mode mass to total mass discussed in this thesis is about 5%

(≃ m3/(m1 +m2 +m3)× 100).

2 In actual design, a DPS which consists of infinite modes is truncated and approxi-

mated by LPS with finite modes, then the existence of unknown modes are inevitable.

In this sense, advantage of the methods presented in this thesis might be confirmed.

This chapter assumed that there is no limitation on the actuator torquing ca-

pability, so agility comparison could not be made. Therefore the discussion will be

expanded to the agility region in the next chapter for more practical performance

improvement.
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Table 5.1: Comparison of simulation results for maneuver durations and vibrations
of mass m1 for on-off and smooth controllers (Two-Mode System).

Table 5.2: Comparison of simulation results for maneuver durations and vibrations
of mass m1 for additional cases for smooth controllers (Two-Mode System).
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Figure 5-18: Correlation of duration and residual vibration for on-off, smooth, and
hybrid controllers at k2 = 0.67 (Two-Mode System).
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Chapter 6

Agility Comparison

6.1 Introduction to Agility Discussion

So far, maneuver duration, residual vibration, and robustness to modeling error for

linear time-invariant (LTI) system have been evaluated in which input force is used

as input and maneuver distance is used as output of the LTI system. For the LTI

system, maneuver distance can be arbitrarily changed by amplifying the input without

changing the shape of waveform. Therefore agility discussion does not appear so far.

However, it is necessary for actual space applications to discuss the agility because

there is always a limitation of actuator maximum output torque which is mainly

determined by resource reasons like mass, dimension, and power consumption. If

agility performance is low, then mission capability with regard to the spatial range of

observations is restricted accordingly. In this sense, agility can be directly connected

to performance measure of the mission success. Thus, agility discussion is introduced

hereafter by limiting the actuator output torque.

6.2 Definition of Agility in This Study

Assuming that, there is three parameters which characterize agility performance:
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
• Maximum force (max |u|)

• Duration

• Distance (|y|)

Here, the maximum force means the largest force which is used during the maneuver,

the duration means the required time to complete the maneuver, and the distance

means the maneuver length realized by the maneuver. Regarding force related pa-

rameters, energy consumption is occasionally used as performance measure but this

thesis applies the maximum force as the force related performance measure.

Then, three ways to evaluate the agility are conceivable as shown in Table 6.1.

Table 6.1: Given conditions and objectives for agility evaluations

Given conditions Objective Remarks

(1) Max force & Duration ⇒ Longer distance (Maneuverability) Major issue in Chap. 7

(2) Max force & Distance ⇒ Shorter duration (Speed of response) Partly discussed in Sec. 7.2

(3) Duration & Distance ⇒ Smaller max force (≡Maneuverability) Same result as (1) [*]

Note [*]

Because the system discussed in this work is LTI system, for any inputs u1, ..., um

and scalars a1, ..., am, the following equality holds: y = f(a1u1 + · · · + amum) =

a1f(u1) + · · ·+ amf(um). For example, if a set of max |u| = 1 and a certain duration

gives distance of y = α, then the set of distance y = 1 and the same duration gives

max |u| = 1/α, this means that the profiler which shows the longest distance in

evaluation (1) must win the smallest max force in evaluation (3) i.e. the evaluations

of (1) and (3) generate equivalent results.

In general, once a profiler is chosen, the shortest duration will be automatically

determined according to the frequencies of the flexible structures. Therefore the

evaluation (2) shown in Table 6.1 will be “partly” discussed in Section 7.2 for the

LTI system as the coefficients of input shaper durations to modal cycle summarized

in Table 7.1 which imply the shortest maneuver durations by each profiler. Here the
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“partly” is used because the maximum force and distance are given in (2) and the

shortest duration is determined by the choice of profiler as mentioned above, so if the

maneuver distance realized by the given maximum force and the profiler’s shortest

duration is shorter than the required distance then the duration should be set longer,

and such cases are not discussed in this thesis.

6.3 New Constraint and New Criteria

In the previous chapters, a sinc function-based profiler, called a nil-mode-exciting

(NME) profiler, was proposed and it was shown that, in the presence of an unknown

high-order flexible mode and for a unit distance rest-to-rest maneuvers, the NME

profiler generates the smallest residual vibrations compared with conventionally de-

signed on-off input shapers or smooth profilers, when identical durations are used.

Only a hybrid-type controller [44], which is made by convolution of a smooth con-

troller and an on-off controller, has shown small residual vibrations comparable with

the NME profiler. The evaluations were made based on performance criteria of “pro-

filer duration,” “ratio of residual vibration amplitude to a unit distance maneuver,”

and “robustness to uncertainty in system frequency.” Because the model is linear

time-invariant, the ratio of resultant residual vibration amplitude to a unit distance

maneuver can also be applied to an arbitrary maneuver distance, then a residual

vibration for the arbitrary maneuver distance can be evaluated by applying the ra-

tio. However, most of actual space applications have restriction of control actuators’

output torques (e.g. maximum reaction wheel torque or maximum control moment

gyro torque), thus there must be a maximum maneuver distance for a “given maneu-

ver duration” and a “given maximum torque.” Actually, the maneuver distance (i.e.

agility performance) is an important performance criterion for a satellite with scien-

tific observation mission which is required a long maneuver distance with a limited

actuators’ torque. Thus, this chapter introduces a new constraint condition and a

new performance criterion as follows:

Constraint conditions :
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(1) A given maneuver duration

(2) A given maximum actuator torque [New]

Performance criteria :

(1) Residual vibrations after the maneuvers

(2) Robustness to uncertainty in system frequency

(3) Maneuver distances [New]

By this new constraint condition, it becomes necessary to discuss how to realize an

efficient use of high frequency components. If there is no limitation of actuators’

torque, a required maneuver distance can be obtained just by amplifying the am-

plitude of the input torque without changing the shape of the input profile. This

means that the profilers realize any required maneuver distances without changing

the frequency responses if there is no limitation of actuators’ torque. However, if

there is a limitation of actuators’ torque, an effective use of high-frequency region

of the controller becomes necessary because the profilers which have shown the best

performances in the Chapter 5 (the NME profiler and the hybrid controller) have

low-pass filter shaped frequency responses, i.e. high frequency is not used. The main

technical contribution of the following chapter beyond the previous chapters is to

discuss such the effective use of high-frequency region of the controller which has not

been discussed sufficiently in conventional papers or our previous work.

The following chapter proposes two kinds of new sinc function-based profilers,

the first one achieves “longer maneuver distances with the smallest residual vibra-

tions” compared with conventional smooth profilers and the second one achieves “the

longest maneuver distances with comparable residual vibrations,” compared with

conventional smooth profilers.

6.4 Comparison of Agilities

For an agility comparison among the NME profiler and conventional on-off and

smooth profilers discussed in Chapter 5, maneuver durations and maneuver distances,

i.e. positions of m1 at the end of maneuvers, are shown in Table 6.2, under the con-
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dition of maximum input torque, u, given by

max |u| = 1 (6.1)

All the maneuver durations are set to be four times as long as the low-mode period

TL(= 2π/ωL), i.e. 4TL= 18.340 s. Actual forcing actuator has some upper limit for

output torque, therefore the condition (6.1) is realistic for the agility comparison of

each profiler. Regarding on-off profilers, the longest maneuver distance is 40.04 by full

acceleration and deceleration, although the largest residual vibration is assumed to

appear. The second longest maneuver distance among the on-off profilers is 30.66 by

acceleration and deceleration command convolved with a zero-vibration (ZV) shaper

[20, 21, 22]. Then, the higher-order ZVD-type shaped commands [22] generate shorter

distances down to 2.29 by ZVDDDDDD shaped command. Figure 6-1 shows the input

command and the command responses of the ZVDDDDDD shaped commands at three

values of stiffness k2 of the unknown high-frequency mode, and the maneuver distance

is 2.29. Regarding the smooth profilers, Figure 6-2 shows the input command and

the command responses of the first-order (L = 1) ramped sinusoids [36, 37] and the

maneuver distance is 19.09. Figure 6-3 shows those of the fifteenth-order (L = 15)

ramped sinusoids and the maneuver distance is 30.89. The above mentioned sinc

function-based profiler (NME profiler) [47, 14] generates the maneuver distance of

14.01 as shown in Fig. 6-4. The hybrid-type profiler [44, 47] for the case of the

S-curve rise time RC = 1 s generates the maneuver distance of 19.37 as shown in

Fig. 6-5.

Here, the maneuver distance by ZVDDDDDD shaped command, 2.29, might be

shorter than expectation although it is an on-off type profiler which is generally as-

sumed to generate agile motion compared to smooth type, but it is reasonable because

the ZVDDDDDD shaped command, shown in Fig. 6-1, has much more switches than

smooth profilers. To verify the assumption that more switches would cause shorter

maneuver distance, two types of input command are considered as shown in Fig. 6-6.

Both commands have same durations, same peak forces, and the total durations of
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Table 6.2: Comparison of simulation results for maneuver durations and distances for
on-off and smooth controllers for three-mass two-spring model (Two-Mode System,
m1 = m2 = k1 = 1, m3 = 0.1, k2 = 0.67).

accelerations and decelerations are also same. The maneuver time is equally divided

into A, B, C, and D. The first command accelerates at A and B then decelerates

at C and D, the second command accelerates at A and C, decelerates at B and D.

Considering maneuver distances by the second-order integral of both the commands,

it is clear that the first command generates longer maneuver distance, actually it is

twice as long as the second command.

6.5 Concept for Higher Agility

The energy of the input force, which is transmitted by an input command, corresponds

to the area of the spectrum of the input command. The more the energy of the input

force is, the longer the maneuver distance will be.

The FFT of the NME profiler shows that the NME profiler has a good attenuation

above a certain frequency as shown in Fig. 6-7. In other words, a longer maneuver
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Figure 6-1: Shaped-command responses of a rigid-body command shaped with a
ZVDDDDDD shaper at three values of stiffness k2 of the unknown high-frequency
mode. Key to panels as in Fig. 5-1.
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Figure 6-2: Shaped-command responses of the ramped sinusoidal (L = 1, tmnv = 4TL)
at three values of stiffness k2 of the unknown high-frequency mode. Key to panels as
in Fig. 5-1.
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Figure 6-3: Shaped-command responses of the ramped sinusoidal (L = 15, tmnv =
4TL) at three values of stiffness k2 of the unknown high-frequency mode. Key to
panels as in Fig. 5-1.
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Figure 6-4: Shaped-command responses of the NME profiler (Ts=9.170 s, tmnv = 4TL)
at three values of stiffness k2 of the unknown high-frequency mode. Key to panels as
in Fig. 5-1.
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Figure 6-5: Shaped-command responses of the hybrid profiler (smoothed command
shaped with ZVD shaper, RC=1 s, tmnv = 4TL) at three values of stiffness k2 of the
unknown high-frequency mode. Key to panels as in Fig. 5-1.
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Figure 6-6: Comparison of agility between 1-swith and 3-switches
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Figure 6-7: FFT of NME profiler Figure 6-8: Concept for high agility

distance can be realized by increasing the energy of input force by relaxing the at-

tenuation level, from less than 10−3 to e.g. less than 10−2, at frequencies higher than

the lowest mode as shown in Fig. 6-8. Here, the unknown high mode can exist at any

frequency higher than the low mode, so the relaxed attenuation level should be a flat

or an inclined line. Level and slope of the line can be calculated from the required

pointing accuracy (See the future work in Section 9.2).
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Chapter 7

Modified Sinc Function-Based

Preshaping Profilers for High

Agility

7.1 Introduction

To realize longer maneuver distances, three kinds of modified sinc function based

profilers are proposed in this chapter as follows.

1: NME profiler convolved with input shapers [49]

2: Sinc function convolved with step function

3: Sinc function with weighted harmonics
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Figure 7-1: FFT - Concept of the NME profiler convolved with input shaper

7.2 NME Profiler Convolved with Input Shaper

Convolving two waveforms in the time domain equals to multiplying their spectra

(i.e. frequency content) in the frequency domain. Using this nature of convolution,

higher agility comparing to the original NME profiler can be achieved by the profiler

convolving an “input shaper designed for the lowest mode” and an “NME profiler

designed for the second lowest mode.” This idea has been proposed in the previous

works [44, 50, 49], and the concept is shown in Fig. 7-1. However this idea will

not always work when better balanced performance of short maneuver duration and

fine pointing accuracy is required. This section proposes a formula which clarifies a

region in which this convolution technique presents better performance compared to

the original profiler.

The duration of the NME profiler is given as

Tnme = nnmeTL (7.1)
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where

TL: Cycle of the lowest mode [s]

nnme: Coefficient of NME profiler duration to modal cycle

and in my previous work [47], it is recommended that nnme should be 4, where some

modeling error margin for the nominal value nnme = 3.48 is considered (refer to (4.1)

and (4.2)).

The duration of the above mentioned profiler given by convolving an input shaper

designed for the lowest mode and an NME profiler designed for the second lowest

mode is given as

Tshaped = nshaperTL + nnmeTH (7.2)

where

TH : Cycle of the second lowest mode [s]

nshaper: Coefficient of input shaper duration to modal cycle

and nshaper is 0.5 for ZV shaper, 1.0 for ZVD shaper, and 1.5 for ZVDD shaper,

according to the order of the constraint conditions, as shown in Table 7.1.

Table 7.1: Coefficients of input shapers and smooth profilers

Type nshaper(nnme)
ZV shaper 0.5
ZVD shaper 1.0
ZVDD shaper 1.5
ZVDDD shaper 2.0
ZVDDDD shaper 2.5
ZVDDDDD shaper 3.0
ZVDDDDDD shaper 3.5
Ramped sinusoids >1.50 + 1.0L, (L=1,3,5, ...)
NME profiler >3.48
Sinc function convolved with step (*1) >2.70
Sinc function with weighted harmonics (*2) >1.30 + 1.0L, (L=1,3,5, ...)

Note:
*1: Introduced in Section 7.3
*2: Introduced in Section 7.4

If the relation between the lowest mode frequency ωL and the second lowest mode
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frequency ωH is given as

p =
ωH

ωL

(> 1) (7.3)

Then the periodical cycle of the lowest mode TL and the second lowest mode TH is

give as

TH =
1

p
TL (7.4)

Here, the relation p is determined by structural parameters and it is out of scope of

this thesis. Just for reference, Table 1.1 shows that the ratios of the flexible mode

frequencies next to each other which correspond to the p are mostly distributed to

the range of 2 to 3.

Substituting (7.4) into (7.2) gives

Tshaped =

(
nshaper +

nnme

p

)
TL (7.5)

To realize shorter maneuver duration by this convolution technique, the required

condition is given as

Tnme > Tshaped (7.6)

Substituting (7.1) and (7.5) into (7.6) gives

nnme > nshaper +
nnme

p
(7.7)

where both sides is divided by nnme(> 0), then the following equation is obtained.

nshaper

nnme

< 1− 1

p
, (p > 1) (7.8)

Since the left-hand side of (7.8) is positive, the shaded area of Fig. 7-2 shows the area

of
nshaper

nnme
which satisfies (7.8).

For example, assuming p of the system being 3, then (7.8) will be
nshaper

nnme
< 2

3
.

Here if nnme is selected as 4, nshaper <
8
3
(≈ 2.667) is required to obtain a shorter

duration by the convolved profiler. According to Table 7.1, this means that the order

of input shaper should be not greater than 2.5, i.e. ZVD-type shaper with equal or
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Figure 7-2: Condition for shorter duration.

lower order than ZVDDDD shaper would realize shorter duration when convolved

with NME profiler designed for the second lowest mode compared to the duration of

NME profiler designed for the lowest mode.

The same discussion can be applied to other types of smooth profilers such as

ramped sinusoids or S-curve. Once the coefficient n of the smooth profiler is deter-

mined, then (7.8) replacing nnme with n will be the required condition for shorter

maneuver duration. The coefficient for each input shaper and smooth profiler is

shown in Table 7.1.
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7.3 Sinc Function Convolved with Step

The profiler proposed in this section is formed by convolving a windowed sinc function,

which has duration of a single period, with a step function as shown in Fig. 7-3. The

convolved command is used as positioning input. Because the convolution does not

shift the frequency characteristic of the original function, the boundary frequency

of the convolved positioning input would be the frequency corresponds to the single

period of the maneuver duration although the previously proposed sinc function-

based profiler (NME profiler) requires two periods of sinc functions: one period for

acceleration and the other period for deceleration. This implies the new profiler has

lower boundary frequency compared with the NME profiler when the same maneuver

durations are used, or the new profiler would generate faster maneuver compared

with the NME profiler when the same boundary frequencies are used. Input-torque

command, hereinafter referred to as “sinc function convolved with step” or “sinc

convolved with step”, is given by the second order differential of the positioning

input given as

u(t) = A · d
2

dt2
{(w(t) · f(t)) ∗ g(t)} (7.9)

where X ∗ Y is the convolution of X and Y , and

f(t) = sinc (ωst− π) (7.10)

w(t) =

 0.54 + 0.46 cos

{
2π

tmnv

(
t− tmnv

2

)}
for 0 ≤ t ≤ tmnv

0 for t < 0, tmnv < t

(7.11)

g(t) =

 0 for t < 0

1 for 0 ≤ t
(7.12)

where tmnv = Ts = 2π/ωs. It is noted that the required duration of this profiler is

half as long as the one of the previously proposed sinc function-based profiler (NME

profiler). Figure 7-3 shows the step function (7.12) at the top, the windowed sinc
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function at the middle, and the convolved positioning input at the bottom.

Here, the Laplace transform of the step function g(t) is 1/s, and the convolution

theorem is given as

L [h(t) ∗ g(t)] = L [h(t)]L [g(t)] = H(s)G(s) (7.13)

Therefore the convolution of a step function g(t) and a function h(t) is equivalent to

the integral of the function h(t). Then (7.9) can be transformed to

u(t) = A · d
2

dt2

{∫ Tf

0

w(t) · f(t)dt
}

= A · d
dt

{w(t) · f(t)} (7.14)

The time profile of (7.9) (or (7.14)) with Ts=10 s is shown in Fig. 7-4, and its fast

Fourier transform (FFT) appears in Fig. 7-5. The FFTs of the NME profiler with

Ts=10 s is also shown in Fig. 7-5 as dashed line. Maneuver durations are 10 s for the

new profiler, 20 s for the NME profiler. The boundary frequency of the spectrum of

the new profiler is higher than that of the NME profiler with duration of 20 s, i.e.

0.174Hz. The frequency of the new profiler has been shifted from the frequency of

the original sinc function, i.e. 0.1Hz, or the frequency of the NME profiler, 0.174Hz.

This is because the width of window function has been changed from 20 s for the

NME profiler to 10 s for this profiler. The inclination of the sidelobe of the spectrum

is –20 dB/dec for the new profiler while –40 dB/dec for the NME profiler. This is

because the new profiler applies the sinc function as rating input while the NME

profiler applies the sinc function as forcing input. Therefore the difference in Laplace

transform’s s-domain between the NME profiler and the new profiler is “s” and the

sidelobe of the new profiler inclines more moderate by –20 dB/dec compared with

the sidelobe of the NME profiler. If the duration of the new profiler is set to be same

as the NME profiler with duration of 20 s, the FFT is given as Fig. 7-6. Both the

maneuver durations are the same (20 s) but the boundary frequency is lower in the

new profiler (0.135Hz) than the NME profiler (0.174Hz). The sidelobe level of the

new profiler is higher than the NME profiler but it is under 10−2, thus significant

vibration reductions can be expected in high frequency region.
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Figure 7-3: Convolution (Ts=10 s)

Figure 7-4: Input command (Ts=10 s)

96



Figure 7-5: FFTs of NME profiler (Ts=10 s) and sinc function convolved with step
(Ts=10 s)
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Figure 7-6: FFTs of NME profiler (Ts=10 s) and sinc function convolved with step
(Ts=20 s)
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Figure 7-7 shows the input command and command responses of the new sinc

function-based profiler applying the input command (7.9) where the constant A is

chosen so as to satisfy the peak force condition (6.1). The input command is applied

as the input force u in Fig. 2-2, and the vertical axes in Fig. 7-7 represent the positions

of mass m1 and mass m3. Maneuver distances and residual vibrations after rest-to-

rest maneuvers by the sinc function-based profilers, the ramped sinusoids [36, 37],

and the hybrid-type profilers [44, 47] are shown in Table 7.2 (two-mode system) and

Table 7.3 (single-mode system) when the peak force condition (6.1) is applied. The

maneuver durations of all the profilers are set to be identical; it is four times as

long as period of the low-order flexible mode, i.e. tmnv = 4TL = 8π/ωL. Table 7.2

shows maneuver distances and residual vibrations of each profiler for frequency error

cases of the unknown high-order flexible mode in two-mode system. Five shaped-

command responses will be determined for each profiler. The first three cases will be

the responses when the stiffness of the unknown high mode k2 is set to 0.67 (nominal),

1.54, and 2.76; these correspond to ratios of the high-mode and low-mode frequencies

(ωH/ωL) of 2.0, 3.0, and 4.0, respectively. Additional two cases: k2 is 0.237 (ωH

is 0.27Hz) and 0.544 (ωH is 0.39Hz) which are determined by peak frequencies of

the FFT of the hybrid controller as shown in Fig. 7-10, are considered because the

residual vibrations for the hybrid controllers and the proposed profiler (sinc function

convolved with step) have not shown major differences.

The maneuver distances of the new profiler, 18.64, for the same peak force con-

dition, are increased by 33% from the NME profiler, 14.01. The residual vibrations

are nearly equivalent among the new sinc function-based profilers, the NME profiler,

and the hybrid controller (ZVD, RC = 5 s), and those are smaller than the residual

vibrations of other profilers. The maneuver distance of the new profiler (sinc function

convolved with step) is the longest among those three profilers. Table 7.3 shows the

same evaluations for frequency error cases in single-mode system for references. Sim-

ilar results are observed in the frequency error cases of single-mode system putting

m3 = 0. These results can be confirmed from a different aspect. Figure 7-8 shows

the FFTs of ramped sinusoids (L = 1, solid line) and sinc function convolved with
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Figure 7-7: Shaped-command responses of the sinc function convolved with step
(tmnv = Ts = 4TL) at three values of stiffness k2 of the unknown high-frequency
mode. Key to panels as in Fig. 5-1.
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Table 7.2: Comparison of simulation results for maneuver distances and residual
vibrations of mass m1 for smooth and hybrid controllers. (Two-Mode System, m1 =
m2 = k1 = 1,m3 = 0.1).

step (dashed line). The spectrum of the ramped sinusoids has some higher peaks in

the range of 0.1 to 0.4 Hz. These peaks may cause larger residual vibrations because

higher spectrum causes higher response. Figure 7-9 shows the FFTs of hybrid con-

troller (ZVD, RC = 5 s, solid line) and sinc function convolved with step (dashed line).

The envelope of the spectrum of hybrid controller is similar or rather partly lower than

that of sinc function convolved with step, however too much low spectrum may cause

shorter maneuver distance. Actually the residual vibration of the hybrid controller

(ZVD, RC = 5 s) is very small, but the maneuver distance, i.e. 14.68 is shorter than

that of sinc function convolved with step, i.e. 18.64. Figure 7-10 shows the FFTs of

hybrid controller (ZVD, RC = 1 s, solid line) and sinc function convolved with step

(dashed line). The spectrum of the hybrid controller has some higher peaks in the

range of 0.2 to 1.3 Hz, thus there might be larger residual vibrations if the frequency

of the unknown high-order flexible mode exists around the frequency range.

As a conclusion of this section, the proposed new sinc function-based profiler

generates the longest maneuver distance with the smallest residual vibration under

the same peak force condition, compared with the previously proposed sinc function-

based profiler (NME profiler) or other conventional profilers.
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Table 7.3: Comparison of simulation results for maneuver distances and residual
vibrations of mass m1 for smooth and hybrid controllers. (Single-Mode System, m1 =
m2 = 1).

Figure 7-8: FFTs of ramped sinusoids (L=1) and sinc function convolved with step.
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Figure 7-9: FFTs of hybrid controller (ZVD, Rc = 5 s) and sinc function convolved
with step.
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Figure 7-10: FFTs of hybrid controller (ZVD, Rc = 1 s) and sinc function convolved
with step.
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7.4 Sinc Function with Weighted Harmonics

The NME profiler uses a pair of sinc functions as a forcing function, given by

f(t) = sinc (ωst− π)− sinc (ωst− 3π) (7.15)

where time domain is defined as t = [0, 2Ts]: twice as long as the period of the

boundary frequency of the sinc function, Ts(= 2π/ωs). Assuming (7.15) as funda-

mental function, j -th harmonics is given by compressing more waveforms into the

same time interval as

fj(t) =

2j∑
m=1

{
(−1)m−1 sin (jωst− (2m− 1)π)

jωst− (2m− 1) π

}
, (j = 1, 2, · · · ) (7.16)

Notice that it has odd symmetry about Ts which makes it particularly convenient

as a forcing function. The harmonics from 1st to 5th order are shown in Fig. 7-11

when Ts is 10 s. If the harmonics could be added so that the resulting function

approximates a square wave, the speed of response would improve considerably, as

long as the resultant frequency spectrum does not contain high energies at system

resonant frequencies.

A least-squares approximation to the square wave can be constructed by minimiz-

ing the square of the error between the desired square wave of height F and a finite

sum of weighted harmonics from 1st to Lth order. The weighting coefficients Aj can

be determined by the minimization problem given as

∫ Tf/2

0

[
F −

L∑
j=1

Ajfj(t)

]2
dt+

∫ Tf

Tf/2

[
−F −

L∑
j=1

Ajfj(t)

]2
dt = min . (7.17)

where Tf is a maneuver duration and Tf = 2Ts. Differentiating with respect to Ai,

∫ Tf/2

0

[
F −

L∑
j=1

Ajfj(t)

]
fi(t)dt−

∫ Tf

Tf/2

[
F +

L∑
j=1

Ajfj(t)

]
fi(t)dt = 0 , (i = 1, 2, · · · , L)

(7.18)
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Figure 7-11: Harmonics at j = 1 to 5 (Ts=10 s)

and rearranging gives:

L∑
j=1

Aj

∫ Tf

0

fj(t)fi(t)dt︸ ︷︷ ︸
Iij

= F

[∫ Tf/2

0

fi(t)dt−
∫ Tf

Tf/2
fi(t)dt

]
︸ ︷︷ ︸

Ii

, (i = 1, 2, · · · , L)

(7.19)

The resulting matrix expression to solve for the Ai is
I11 I12 · · · I1L

I21 I22 · · · I2L
...

...
...

IL1 IL2 · · · ILL




A1

...

...

AL

 = F


I1

I2
...

IL

 (7.20)

where

Iij =

∫ Tf

0

[
2j∑

m=1

{
(−1)m−1 sin (jωst− (2m− 1) π)

jωst− (2m− 1) π

} 2i∑
m=1

{
(−1)m−1 sin (iωst− (2m− 1) π)

iωst− (2m− 1) π

}]
dt

(7.21)
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Figure 7-12: Shaped input (Ts=10 s, L = 5, F = 1)

Ii =

∫ Tf/2

0

[
2i∑

m=1

{
(−1)m−1 sin (iωst− (2m− 1) π)

iωst− (2m− 1) π

}]
dt

−
∫ Tf

Tf/2

[
2i∑

m=1

{
(−1)m−1 sin (iωst− (2m− 1)π)

iωst− (2m− 1) π

}]
dt

(7.22)

Thus, the weighting coefficients Aj are given by

[Aj] = F [Iij]
−1 [Ii] (7.23)

Input-torque command of the least-square fitted sinc function-based profiler, here-

inafter referred to as “sinc function with weighted harmonics” or “sinc with harmon-

ics,” is given as

u(t) =


A

L∑
j=1

Aj · fj(t) for 0 ≤ t ≤ tmnv

0 for t < 0, tmnv < t

(7.24)

The shapes of the resulting forcing function with L=5 and F=1 is shown in Fig. 7-

12. A typical input command and command responses of the two-mode system are

shown in Fig. 7-13, where the peak force condition (6.1) is applied.
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Figure 7-13: Shaped-command responses of the sinc function with weighted harmonics
(L = 5, tmnv = 2Ts = 4TL) at three values of stiffness k2 of the unknown high-
frequency mode. Key to panels as in Fig. 5-1.
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Table 7.4: Comparison of simulation results for maneuver distances and residual
vibrations of mass m1 for smooth and hybrid controllers. (Two-Mode System, m1 =
m2 = k1 = 1,m3 = 0.1).

Maneuver distances and residual vibrations after rest-to-rest maneuvers by the

sinc function with weighted harmonics, other smooth profilers, and hybrid profilers,

where all the profilers include identical durations, are shown in Table 7.4 (two-mode

system) and Table 7.5 (single-mode system) when the peak force condition (6.1)

is applied. According to Table 7.4, the longest maneuver distance, 32.01, can be

achieved by the proposed sinc function with weighted harmonics (indicated as “Sinc

with harmonics” in the Table 7.4 and Table 7.5) with L = 11 as shown in Fig. 7-14.

The maneuver distances of the sinc function with weighted harmonics with L = 11,

32.01, are increased by 128% from the NME profiler, 14.01. The hybrid profiler

generates maneuver distance of 21.87 at the most when RC is 0.2 s as shown in

Fig. 7-15, and it is not expected to make any further improvement of the maneuver

distance even if the RC will be shorter. The same observations are made from the

Table 7.5 which shows comparison for single-mode system. FFTs of the sinc function

with weighted harmonics and the ramped sinusoids with a 5-term (L = 5) are shown

in Fig. 7-16. The spectrum of the sinc function with weighted harmonics has slightly

lower boundary frequencies compared with the ramped sinusoids. The sidelobe of

the sinc function with weighted harmonics inclines at –40 dB/dec while the ramped

sinusoids inclines at –60 dB/dec.
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Figure 7-14: Shaped-command responses of the sinc function with weighted harmonics
(L = 11, tmnv = 2Ts = 4TL) at three values of stiffness k2 of the unknown high-
frequency mode. Key to panels as in Fig. 5-1.
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Figure 7-15: Shaped-command responses of the hybrid profiler (smoothed command
shaped with ZVD shaper, RC=0.2 s, tmnv = 4TL) at three values of stiffness k2 of the
unknown high-frequency mode. Key to panels as in Fig. 5-1.
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Table 7.5: Comparison of simulation results for maneuver distances and residual
vibrations of mass m1 for smooth and hybrid controllers. (Single-Mode System, m1 =
m2 = k1 = 1).

Figure 7-16: FFTs of shaped input of ramped-sinusoids and sinc function with
weighted harmonics (tmnv = 2Ts=20 s, L = 5).
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Table 7.6: Comparison of simulation results for maneuver distances for smooth con-
trollers. (Two-Mode System, m1 = m2 = k1 = 1, m3 = 0.1).

A further comparison of maneuver distances by the sinc function with weighted

harmonics proposed in this section and the ramped sinusoids with identical durations

are shown in Table 7.6. The maneuver distances with respect to each number of terms

L are shown in Fig. 7-17. The proposed sinc functions with weighted harmonics show

longer maneuver distances compared with the ramped sinusoids for each number of

terms L. Assuming the distance at L=11 being 100%, percentages of the maneuver

distances are shown in Fig. 7-18. The curves converge in an exponential manner and

the curve for the proposed profiler becomes 95% with L=5.

Determination of Numbers of Terms (L):

As discussed in the previous work of the ramped sinusoids [37], some directions to

decide the number of terms L of the sinc function with weighted harmonics are shown

as follows. The higher order harmonics are used, the closer the function approxi-

mates a square wave, and the longer the maneuver distance will be. The problem

is that higher harmonics introduce excitation at higher frequencies. This may bring

excitations of frequencies closer to the system resonances. Preferably, any frequen-

cies excited by the forcing function will lie well below the lowest system resonances.

An alternate approach would be to allow excitation frequencies over a wider range,

some exceeding system resonance, while making sure that the actual resonant fre-

quencies are not excited. It is conceivable that the latter effect could be achieved if

the forcing function has a local minimum excitation at the frequency corresponding

to resonance. This requires a trough in the frequency spectrum being at the appro-

priate frequency. A look at the frequency spectra of sums of harmonics will help

an interpretation of the relationship between the spectra and the number of terms
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Figure 7-17: Max. number of terms L vs. maneuver distance when tmnv is 18.340 s
(Two-Mode System)
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Figure 7-18: Max. number of terms L vs. maneuver distance when tmnv is 18.340 s
(Two-Mode System) where the maneuver distance at L=11 corresponds to 100%

115



(L). A comparison of frequency spectra of three different series of sinc functions with

weighted harmonics, the spectra of a 3-term (L=3), a 5-term (L=5), and a 7-term

(L=7) with tmnv(= 2Ts) =20 s, are shown in Fig. 7-19. It is clear that series with

more terms have trough at nearly the same frequencies as series with fewer terms.

Thus, if the system resonant frequency falls in a trough for a series with 3 terms, it

will fall equally well into the trough for a series of 5 terms or 7 terms. This suggests

that, if the profiler proposed in this section is determined in which the system res-

onance occurs in a spectral trough, many terms can be added without detrimental

effects on residual vibration. When more terms are combined to form the forcing

function, more energy can be transferred to the system and the maneuver distance

is correspondingly getting longer. As shown in Fig. 7-19, the regions of frequency

where excitation is minimal have a finite width; they are not merely a single point.

Thus placement of the trough with respect to the system natural frequencies is not

critical. The magnitude of the frequency components higher than the frequency of the

(j+1)/2th trough for the j -term (j=1,3,5,. . . ), i.e. the frequency components higher

than the second trough (0.2 Hz) for 3-term, the third trough (0.3 Hz) for 5-term,

or the fourth trough (0.4 Hz) for 7-term, tapers off by approximately –40 dB/dec as

shown in Fig. 7-19.

The foregoing observations lead to a method for determining the appropriate forc-

ing function for a given set of dynamic model, peak force of actuator, and maneuver

distance. Considering a relationship between system resonant frequency and forcing

function, number of terms L and maneuver duration tmnv are chosen, so that the

command response indicates a residual vibration below a certain threshold level.

As a conclusion of this section, the proposed new sinc function-based profiler,

i.e. the sinc function with weighted harmonics, has been demonstrated that it gener-

ates the longest maneuver distance, compared with the original sinc function-based

profiler (NME profiler) or other conventional profilers. If the forcing function has a

local minimum excitation at the frequency corresponding to the system resonance,

this profiler generates significantly longer maneuver distances with minimal residual

vibrations. This profiler is suitable for a satellite with relatively rigid structure; such
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(a) L = 3 (b) L = 5 (c) L = 7

Figure 7-19: Top-left, middle, right: shaped input of the sinc with weighted har-
monics, Bottom: FFTs of the sinc with harmonics (L=3, 5, and 7, tmnv=2TL=20
s)
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a satellite has fewer critical flexible modes, so that the profiler with the system reso-

nances falling in troughs can be determined easily and a longer maneuver distance is

generated with small residual vibration.

118



7.5 Discussion on Modified Sinc Function-Based

Profilers

This chapter proposed two kinds of sinc function-based smooth profilers to achieve

higher agility: the sinc function convolved with step and the sinc function with

weighted harmonics. Performances of those profilers have been compared with those

of the original sinc function-based profiler (NME profiler) and conventional smooth or

hybrid profilers. The sinc function convolved with step increased maneuver distance

by a factor of 1.33 with the smallest residual vibration under a common peak force

condition, compared with the NME profiler. The sinc function convolved with step

shows the longest maneuver distances among the profilers with the smallest residual

vibrations. The sinc function with weighted harmonics increased maneuver distance

by a factor of 2.28 under a common peak force condition, compared with the NME

profiler. The sinc function with weighted harmonics shows the longest maneuver

distances with comparable or smaller residual vibrations, compared with the ramped

sinusoids or hybrid profilers. Both of the newly proposed sinc function-based profilers

can be used as effective alternatives for appropriate applications; if there are many

unknown high-order flexible modes, the sinc function convolved with step would be

suitable, if there are fewer critical high-order modes, the sinc function with weighted

harmonics would be suitable.

119



THIS PAGE INTENTIONALLY LEFT BLANK

120



Chapter 8

Application to ASTRO-G

8.1 Introduction

So far, two-mode systems with an unknown high-order mode have been used as the

most simplified model of flexible spacecraft. In this section, numerical simulations

are presented to demonstrate the effectiveness of the proposed profiler (NME profiler)

when applied to an actual spacecraft’s flexible model, i.e. ASTRO-G model [15, 16].

The preliminary design of ASTRO-G had been successfully completed and planned

to be launched based on this controller design. However, unfortunately the program

was terminated due to the deployable antenna’s technical feasibility reasons during

critical design phase in 2011.
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8.2 Outline of ASTRO-G Attitude Control Sub-

system

In this section, application to ASTRO-G ACS (Attitude Control Subsystem) is in-

troduced. The mission of ASTRO-G was called as VSOP2 (VSOP: VLBI Space

Observatory Programme) and the satellite includes 4-single-gimbal CMGs with par-

allel gimbal arrangement and 4-skewed RWs as actuators. Missions of VSOP2 are

performed by way of back and forth rest-to-rest high speed maneuvers (switching

maneuvers). The satellite attitude is required to be highly-stable at the end of ma-

neuvers. Figure 8-1 shows on-orbit image of ASTRO-G. This satellite has two kinds

of large flexible appendages, one is large deployable antenna, the other is flexible

solar panel. For the observation mission, a large deployable flexible mesh antenna is

equipped in Astro-G, the antenna’s observation axis exists along +Z direction in the

satellite body coordinate system. Then satellite +Z-axis needs to be kept on a target

celestial body and required a quick rest-to-rest maneuver to change the +Z-axis to

another calibration celestial body.

Figure 8-2 shows functional block diagram of ASTRO-G ACS which consists of

attiude sensors, control actuators, and attitude control electronics (i.e., ACE). Gyro

scopes and optical sensors are used as attitude sensors. CMGs and RWs are used as

control actuators. The ACE includes attitude estimator, NME profiler, torque profiler

/ distributor, CMG gimbal steering law, CMG gimbal controller, RW controller, and

RW distributor. These are realized by software.

NME (nil-mode-exciting) profiler is defined as the preshaping input profiler pro-

posed in Chapter 3 and used for computing control inputs (target attitude profile).

Torque profiler has the function of computing control torque which is required to per-

form the target attitude profile. Decoupling torque needed for avoiding cross-coupled

disturbances is also computed at the same time. Distributor has the function of

distributing the control torque into CMGs and RWs.

Figure 8-3 shows outline of single-gimbal CMG. CMG is a high torque actuator

which generates large torque by the effect of gyroscopic torque. CMG output torque
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Figure 8-1: ASTRO-G on-orbit image

TCMG is expressed as

TCMG = − (ωB + ωG)×Hrotor
CMG

= −ωB ×Hrotor
CMG − ωG ×Hrotor

CMG

(8.1)

where Hrotor
CMG is CMG rotor momentum, ωG is gimbal rate relative to body coordinate

system, and ωB is body rate defined in inertial reference frame. .

CMG gimbal steering law computes CMGs gimbal angle profiles and gimbal rate

profiles which are required to output the control torque distributed. CMG gimbal

controller is a controller for minor feedback loop of gimbal angle and gimbal rate.

RW controller computes feedback control torque of RWs which is required to perform

the satellite motion as target attitude profile and the torque is computed from the

current body angle error and the current body rate error. RW distributor distributes

the control torque into each RWs. The feature of this system exists in the part of

NME profiler that computes optimal profile of feedforward control inputs in which

the character frequencies of the flexible appendages are not excited.

The block diagram of controller for ASTRO-G is shown in Fig. 8-4. It consists

of a feedforward controller of the nil-mode-exciting (NME) profiler and a feedback

controller of C. The input-output relation from the reference signal r and disturbance
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Figure 8-2: ASTRO-G ACS functional block diagram

Figure 8-3: Single-gimbal CMG

124



Figure 8-4: Block diagram of Astro-G controller

w to the measurement output y is given by

y = Gyrr +Gyww (8.2)

where

Gyr = Gyw(J + C
/
s2), Gyw = (I + PC)−1P (8.3)

P denotes the plant transfer function. J denotes the spacecraft moment of inertia.

C is designed so that the closed-loop system is robustly stable and has disturbance

attenuation capability to w. The NME profiler generates feedforward profiles of at-

titude maneuvers. Figure 8-5 shows the frequency range of each influence factors

which consist of frequencies of structural modes and frequencies of controllers. As

shown in Fig. 8-5, ASTRO-G ACS is designed to realize frequency separation between

flexible-modes and controllers. Figure 8-6 shows maneuver sequence of ASTRO-G.

Several times of repeating test maneuvers are performed for model identification prior

to observation maneuvers.

All gimbal axes of CMGs are aligned parallel to Z-axis and steered by symmetrical

gimbal motion called scissors pair steering law. Figure 8-7 shows outline of the gimbal

control. As shown in Fig. 8-7, gimbals are steered by symmetrical motion algorithm.

CMG output torque axis will be time-invariant (normal to gimbal home angle) once

the gimbal home position is determined. Then a continuous output torque profile

along to the axis can be generated.
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Figure 8-5: Frequency distribution of controllers and structures

Figure 8-6: ASTRO-G maneuver sequence
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Figure 8-7: Gimbal control by scissors pair steering law

8.3 Feedforward Algorithm of Rest-to-Rest Ma-

neuvers with CMGs Parallel Gimbal Arrange-

ment

8.3.1 Path Planning of Rest-to-Rest Maneuvers with CMGs

Parallel Gimbal Arrangement

Fundamental principles of satellite body motion are briefly described based on a rigid

spacecraft. Then, path planning of rest-to-rest body motion with CMGs parallel

gimbal arrangement is discussed.

A satellite total angular momentum vector consists of the satellite body angular

momentum and the internal angular momentum such as momentum of reaction wheels

as follows,

H = Iω +Hint (8.4)
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The principle of angular momentum conservation is shown as

dH

dt
= 0 (8.5)

Substituting Eq. (8.4) into (8.5) gives

Iω̇ + Ḣint + ω ×H = 0 (8.6)

Assuming ω×H will be compensated by reaction wheels, so the ω×H is not required to

be considered for the CMG steering algorithm design, then Eq. (8.6) can be simplified

as

Iω̇ + Ḣint = 0 (8.7)

Now a simple equation which represents relation between satellite angular acceleration

vector and CMGs output torque vector NCMG is given as

ω̇ = I−1NCMG (8.8)

Considering the above relationship between CMG torque vector and satellite body

rate, gimbal steering algorithm is described hereafter based on gimbal parallel ar-

rangement. The objective here is to find an optimal way to realize a required rest-

to-rest maneuver minimizing axial coupling torque to the direction normal to CMGs

maneuver axis.

For Astro-G, satellite +Z-axis is required to point at a target celestial body A and

a quick maneuver to change the +Z-axis to another target B (= a calibration celestial

body) is required by a rest-to-rest motion and attitude around Z-axis is allowed to

be free because of ASTRO-G’s one-dimensional radio observation.

As CMGs output torque plane is constrained within a 2-DOF plane in gimbal par-

allel arrangement, here Astro-G’s CMGs output torque plane is constrained within

satellite X-Y plane because CMG’s gimbal axes are parallel to satellite Z-axis. Con-

sidering Eq. (8.8), satellite rotational motion is also constrained within an another
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2-DOF plane as a mapping plane X’-Y’ by Eq. (8.8). Eq. (8.8) is transformed to

X ′ − Y ′ : ω̇ = I−1NCMG (8.9)

Astro-G’s CMG gimbal steering algorithm is based on symmetrical gimbal driving

algorithm that means CMG output torque keeps a time-invariant direction during a

series of rest-to-rest maneuvers. And Eq. (8.9) indicates that if CMG output torque

vector is decided in a certain time-invariant direction, satellite rotational axis is also

determined in a certain time-invariant direction.

Thus, an optimal direction of time-invariant CMG output torque vector in which

satellite can path the way from current +Z direction A to target +Z direction B

according to Eq. (8.9) is introduced as follows.

Current +Z direction A and target +Z direction B are given as Fig. 8-8, then define

blue broken line as it divides A and B symmetrically, green solid line as satellite

rotational axis X’-Y’ plane obtained by a mapping from CMG output torque X-Y

plane by Eq. (8.9). This is how two intersection points of satellite rotational axis

X’-Y’ green solid line and blue broken line are given as α and α′. Line α − α′ is

the only axis which realizes CMG attitude maneuver from current +Z direction A

to target +Z direction B without generating axial coupling torque. The violet solid

line is the shortest path between A and B (i.e. violet solid line is the maneuver path

by the Euler-axis maneuver), however the obtained maneuver around the axis α−α′

is passing through black chain line that is longer path than the Euler-axis maneuver

but there is no axial coupling.

Phase angle θ of CMG output torque which realizes α−α′ axis maneuver without

axial coupling can be determined uniquely as follows.

Define g as a rotated direction of satellite +X direction by θ rotation around +Z-axis,

then g direction unit vector r0g is given as

r0g = [cos θ sinθ 0]T (8.10)
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Figure 8-8: CMG Maneuver Surface
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Define a vector r0h as a mapped vector from r0g by Eq. (8.9).

r0h = I−1r0g (8.11)

Define a satellite current +Z unit vector r0A and target +Z unit vector r0B as

r0A = [0 0 1]T

r0B = Ry(φ)Rx(ϕ)r0A

=


cosφ 0 sinφ

0 1 0

− sinφ 0 cosφ




1 0 0

0 cosϕ − sinϕ

0 sinϕ cosϕ




0

0

1


=

[
cosϕ sinφ − sinϕ cosϕ cosφ

]T
(8.12)

To align r0h identical to line α− α′, length of line segment |h− A| and |h−B| need

to be equal, then the following equation is obtained.

|rhA| = |rhB|

⇔ |r0A − r0h| = |r0B − r0h|
(8.13)

Substituting Eq. (8.11), (8.12) into Eq. (8.13), equation of θ is obtained. Thus CMG

output torque angle θ is solved as

θ = tan−1
[num
den

]
(8.14)

where

num = IxyIyz − IyyIzx + (−IxyIzz + IyzIzx) sinϕ

+
(
(−IxyIyz + IyyIzx) cosφ+

(
I2yz − IyyIzz

)
sinφ

)
cosϕ

den = IxxIyz − IxyIzx + (−IxxIzz + I2zx) sinϕ

+((−IxxIyz + IxyIzx) cosφ+ (−IxyIzz + IyzIzx) sinφ) cosϕ
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Then, the maneuver axis r0h identical to α− α′ axis is given as follows

r0h = I−1r0g

= 1
IxxIyyIzz+2IxyIyzIzx−IxxI2yz−IyyI2zx−IzzI2xy


(
IyyIzz − I2yz

)
cos θ + (IyzIzx − IxyIzz) sin θ

(IyzIzx − IxyIzz) cos θ + (IzzIxx − I2zx) sin θ

(IxyIyz − IyyIzx) cos θ + (IxyIzx − IxxIyz) sin θ


(8.15)

8.3.2 Preshaping Profiler for ASTRO-G

This section presents a maneuvering profiler of satellite body rotation around the

single-axis given in previous section. This profiler is called NME (Nil-Mode-Exciting)

profiler presented in Chapter 3.

It is possible to separate frequency characterictic of ACS (Attitude Control Sub-

system) and flexible structures completely by means of sampling function. To sepa-

rate frequency characteristic of controller and flexible structures, put the frequency

of sampling function ωs as

ωs < ωflex|lowest mode (8.16)

where right-hand term should be defined as the lowest flexible-mode frequency of the

spacecraft.

Angular acceleration profile for back and forth rest-to-rest maneuvers is given as

f(t) = A {g1 (sinc11 + sinc12) + g2 (sinc21 + sinc22)}

= A

{
g1(t)

(
sin (ωs (t− t11))

ωs (t− t11)
− sin (ωs (t− t12))

ωs (t− t12)

)
+ g2(t)

(
−sin (ωs (t− t21))

ωs (t− t21)
+

sin (ωs (t− t22))

ωs (t− t22)

)} (8.17)
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Figure 8-9: Satellite body-angular acceleration (upper), body-rate (middle), body-
angle (lower) profiles of a rest-to-rest maneuver

where, the offset time tij and ωs are expressed as

t11 =
1
4
tmnv

t12 =
3
4
tmnv

t21 = tmnv + tobs +
1
4
tmnv

t22 = tmnv + tobs +
3
4
tmnv

ωs =
2π(

tmnv/2
)

The window functions gk are hamming window which is expressed as

gi(t) =


0.54 + 0.46 cos

(
2π

tmnv

(
t− ti1 + ti2

2

))
for abs

(
t− ti1 + ti2

2

)
≤ tmnv

2

0 for abs

(
t− ti1 + ti2

2

)
>
tmnv

2

i = 1, 2

(8.18)

Figure 8-9 shows one cycle of a back and forth rest-to-rest maneuvering profile

computed from Eq. (8.17).
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8.3.3 CMGs Gimbal Steering Law in Parallel Gimbal Ar-

rangement

In this section, CMGs gimbal guidance law in parallel gimbal arrangement with NME

profiler is introduced. As described in the previous section, f(t) is defined as a time-

profile of scalar values of satellite angular acceleration around maneuver axis r0h,

satellite angular acceleration vector ω̇ is given as

ω̇ = f(t) · r0h
|r0h|

(8.19)

Combining Eq. (8.9), (8.11) into Eq. (8.19), a equation which shows the relation

between NME profile f(t) and CMG output torque vector NCMG is given as

NCMG ≃ f(t)

|r0h|
· r0g (8.20)

Here, CMG total angular momentum vector HCMG is given as

HCMG

=


Hx

Hy

Hz


 =

∑
i

hi(δi) (8.21)

Then, CMG output torque vector NCMG is obtained by time derivative of −HCMG

as follows

NCMG = −dHCMG

dt
= −

∑
i

dhi(δi)

dδi
δ̇i

= −Cδ̇
(8.22)

From Eq. (8.22) gimbal angle rate is computed by Singularity Robust Inverse (SR-

Inverse) [51] as

δ̇ = −CT
(
CCT + ρE

)−1
NCMG (8.23)

Combining Eq. (8.20) and Eq. (8.23), we obtain

δ̇ = − f(t)

|r0h|
· C(t)T

(
C(t)C(t)T + ρE

)−1
r0g (8.24)

134



This is how gimbal angle profile which realizes desired satellite rotational motion

profile ω̇ = f(t) · r0h
|r0h|

can be obtained, where,

f(t) = A

{
g1(t)

(
sin (ωs (t− t11))

ωs (t− t11)
− sin (ωs (t− t12))

ωs (t− t12)

)
+ g2(t)

(
−sin (ωs (t− t21))

ωs (t− t21)
+

sin (ωs (t− t22))

ωs (t− t22)

)}
t = [ 0 to (2tmnv + 2tobs)]

(8.25)

where the constant A can be solved as follows. Relation between maneuver angle

along the Euler-axis Θmnv and maneuver angle along the obtained maneuver axis

(r0h) Θ
′
mnv is shown in Fig. 8-10.

A =
Θ′

mnv∫ tmnv

0

∫ tmnv

0
g1(t)

(
sin(ωs(t−t11))

ωs(t−t11)
− sin(ωs(t−t12))

ωs(t−t12)

)
dt2

(8.26)

Θ′
mnv = cos−1

(
cosΘmnv − e23

1− e23

)
(8.27)

r0h
|r0h|

=


e1

e2

e3

 (8.28)

8.4 Flexible Parameters

ASTRO-G is equipped with three flexible structures: a large deployable flexible mesh

antenna called LDR (Large Deployable Reflector), a solar array paddle called SAP,

and a Ka-band antenna called KaANT, as shown in Figs. 8-11 and 8-11. Dimensional

outline of ASTRO-G is shown in Fig. 8-13.

Table 8.1 shows flexible parameters of the LDR called coupling vector, i.e. trans-

lational and rotational modal masses of each flexible mode. Mode shapes of 1st,

2nd, and 3rd mode are shown in Figs. 8-14, 8-15, and 8-16 which correspond to 1st

in-plane, 1st out-of-plane, and 1st torsional mode.
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Figure 8-10: CMG Maneuver Surface
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Figure 8-11: Outline of ASTRO-G and flexible structures (1/2)

Table 8.2 shows flexible parameters of the SAP. Mode shapes of 1st to 4th mode

are shown in Fig. 8-17 which correspond to 1st out-of-plane, 1st in-plane, 2nd out-of-

plane, and 1st torsional mode.

Table 8.3 shows flexible parameters of the KaANT. Mode shapes of 1st mode is

shown in Fig. 8-18.

8.5 Numerical Simulation

In this section, an example of Astro-G rest-to-rest maneuver in numerical simulation

is shown. Astro-G performs repeating back and forth rest-to-rest maneuvers in which

a same couple of target celestial sources are pointed repeatedly. As shown Fig. 8-6,

on-orbit test maneuver is conducted first before observation maneuver for the purpose

of model identification. The effectiveness of feedforward algorithm introduced in the

previous section has been verified by numerical simulations.

Open-loop dynamics simulations using proposed algorithm are performed for 2.82
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Figure 8-12: Outline of ASTRO-G and flexible structures (2/2)

Figure 8-13: Dimensional outline of ASTRO-G
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Table 8.1: Flexible parameters of LDR

Figure 8-14: Mode shape of LDR (0.273Hz, 1st mode: in-plane 1st)
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Figure 8-15: Mode shape of LDR (0.348Hz, 2nd mode: out-of-plane 1st)

Figure 8-16: Mode shape of LDR (0.835Hz, 3rd mode: torsional 1st)
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Table 8.2: Flexible parameters of SAP. The masses larger than 1% are highlighted
by yellow.

Figure 8-17: Mode shapes of SAP (1st to 4th mode)
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Table 8.3: Flexible parameters of KaANT. The masses larger than 10% are highlighted
by yellow.

Figure 8-18: Mode shapes of KaANT (4.28Hz, 1st mode)
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Table 8.4: Conditions for numerical simulation of repeating rest-to-rest maneuvers

items conditions
maneuver angle 3 [deg]
maneuver time 15 [s]
observation time 15 [s]
CMG rotor momentum 60 [Nms]
frequency of gimbal controller 30 [Hz]
RW max. torque FF: 0.5 [Nm], FB: 0.5 [Nm]
RW delay time 200 [ms]
RW FB crossover 0.01 [Hz]

deg per 15 s rest-to-rest maneuvers in which target +Z direction is X/Y 45 deg di-

rection (different from the axis of principle axes of inertia). Open-loop dynamics

simulation results are shown in Fig. 8-19. In this case, satellite performs forth ma-

neuver from 0 to 15 s, then performs observation from 15 to 30 s, then performs

backward maneuver from 30 to 45 s, then performs observation from 45 to 60 s. As

shown in Fig. 8-19, residual vibrations at the end of each maneuver (15 s and 45

s) are reduced to be acceptable small level. If we apply maximum acceleration and

maximum deceleration torque to maximize maneuver agility without considering flex-

ible modes excitation [52], longer time to start observation is required until excited

flexible-modes will be settle down. Table 8.4 shows the conditions for numerical sim-

ulation of repeating rest-to-rest maneuvers. Top of Fig. 8-20 shows the body angle

errors of repeating maneuvers. Middle of Fig. 8-20 shows the body rate errors of

repeating maneuvers. Bottom of Fig. 8-20 shows the antenna gain-losses which repre-

sent the degradation of antenna gain and are calculated as the function of body angle

errors and flexible-modes displacements. Each errors are verified within acceptable

level. The effectiveness of proposed feedforward algorithm was verified by open-loop

dynamics simulations.
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Figure 8-19: Dynamics simulation of rest-to-rest maneuver, top: body angle, middle:
body rate, bottom: modal displacement and modal rate
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Figure 8-20: Dynamics simulation of repeating rest-to-rest maneuver, top: body angle
error, middle: body rate error, bottom: antenna gain loss
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8.6 Discussion on ASTRO-G Application

An optimal approach for computing feedforward control inputs for flexible spacecraft

2-DOF rest-to-rest maneuvers with CMG cluster in parallel gimbal arrangement has

been investigated based on the proposed profiler approach. The result of numerical

simulation has shown the effectiveness of the proposed algorithm. The residual vi-

bration is reduced to be negligible small level as ideal frequency separation has been

realized between flexible-modes and feedforward controller. An algorithm in which

axial coupling can be avoided has been introduced.

An experimental verification of the NME profiler had been also successfully done

with a simplified flexible structure model by Nakamura [49, 50] which is introduced in

Appendix D. Effectiveness of the proposed NME profiler for ASTRO-G application

has been successfully verified by the combination of the referred tests and numer-

ical simulations. Summary of CMG dynamics characterization test is presented in

Appendix E for reference.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

In Chapter 4, comparisons of sinc function-based smooth profilers to conventional in-

put shapers and digital filtering techniques against single-mode system demonstrates

that conventionally designed input shapers and frequency domain filters are less ef-

fective for command shaping than sinc function-based smooth profilers. The original

sinc function-based smooth profiler, i.e. the NME profiler, were shown to offer per-

formance advantage in terms of vibration reduction although rise time is less shorter

than conventional input shapers although the ZVDDDDDD shaper shows the small-

est residual vibration and the NME shows the second smallest vibration. When

large modeling errors exist, the advantage of the sinc function-based smooth pro-

filer is very significant. These performance advantages are achieved because the sinc

function-based smooth profiler is designed to eliminate high frequency vibrations with

higher attenuation level and have better robustness to modeling errors, compared to

conventional input shapers and low-pass filters.

In Chapter 5, performance of the sinc function-based smooth profiler has been

compared to those of conventional on-off and smooth profilers using two-mode sys-

tem including unknown high mode. The comparisons show that, in the presence of

an unknown high-order flexible mode, conventionally designed on-off input shapers

and smooth profilers are less effective in reducing vibrations than the smooth profiler
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based on sinc functions, even when identical durations are used. Only the smoothed

bang-bang command shaped with ZVD shaper, i.e., hybrid-type profiler, shows sim-

ilar level of small residual vibrations comparable with the smooth profiler based on

sinc functions. When unknown high-order flexible modes with large mass exist, the

advantage of the new smooth profiler is significant (more than an order of magnitude

smaller residual vibration). These performance advantages are achieved because, as

compared to conventional profilers, the new smooth profiler is specifically designed

to eliminate high-frequency vibrations with higher levels of attenuation.

In Chapter 7, three kinds of improved sinc function-based profilers are proposed

and evaluated for achieving higher agility. In Section 7.2, the conventional concept

of convolution between smooth profiler and input shaper has been introduced and

an equation to clarify a range where the convolved shaper has advantage in relation

to command duration has been proposed. In Section 7.3, a new sinc function-based

smooth profiler to achieve higher agility: the sinc function convolved with step func-

tion has been proposed. Performances of the new profiler have been compared with

those of the original sinc function-based profiler and conventional smooth/hybrid

profilers. The sinc function convolved with step increased maneuver distance by a

factor of 1.33 with comparable residual vibration under the same peak force condition,

compared with the previously proposed sinc function-based profiler (NME profiler).

This profiler shows nearly equivalent maneuver distance but smaller residual vibra-

tion, compared with the conventional smooth profiler. In Section 7.4, another new

sinc function-based smooth profiler to achieve higher agility: the least-square fitted

weighted sinc functions has been proposed. Performances of the new profiler have

been compared with those of the sinc function-based profilers mentioned in this the-

sis and conventional smooth/hybrid profilers. The sinc function-based least-square

fitted profiler increased maneuver distance by a factor of 2.28 under the same peak

force condition, compared with the NME profiler. This profiler shows the longest

maneuver distance and comparable or smaller residual vibration, compared with the

ramped sinusoids or hybrid profilers. Both of the newly proposed sinc function-based

profilers can be used as effective alternatives for appropriate applications; if there
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are many unknown high-order flexible modes, the sinc function convolved with step

would be suitable, if there are fewer critical high-order modes, the least-square fitted

profiler would be suitable.

In Chapter 8, application of the proposed method to actual satellite program called

ASTRO-G for which the NME profiler has been originally developed is presented.

The effectiveness of the proposed method is confirmed by numerical simulation using

actual designed flexible parameters of deployable antenna and solar array paddle.

Experimental verifications to evaluate the effectiveness of the proposed algorithm is

also referred in Appendix D. Effectiveness of the proposed NME profiler for ASTRO-G

application has been successfully verified.

Thus, the sinc function-based profilers have been evaluated and performances of

agility, i.e. maneuver distance, and residual vibration have been measured as shown

in Table 9.1, where the criteria are given as follows,

Agility Vibration

A : > 30 < 0.1%

B : 10 to 30 0.1 to 1.0%

C : < 10 > 1.0%

Table 9.1: Comparison of sinc function-based profilers and conventional profilers

Profiler Agility Vibration Feature
ZVDDDDDD shaper C- C- Conventional
Ramped Sinusoidal A- C Conventional
Hybrid-type B B Conventional
NME profiler B A Chapter 3
Sinc convolved with input shaper B B Section 7.2
Sinc convolved with step B+ A Section 7.3
Sinc with harmonics A C Section 7.4

9.2 Future Work

Several additional studies are motivated by this work.
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First, a feedback controller around a reference trajectory generated by a feedfor-

ward controller is being studied. Combining feedforward and feedback controllers, a

robust control system will be established.

Second, as mentioned in Section 6.5, more effective profiler for higher agility and

low-residual vibration might be found by determining a level and a slope of an allow-

able input force spectrum for a pointing accuracy requirement. Concept of this idea

is introduced as follows:

Equations of motion of a multi-mode system are given as,


Iθ̈ +

∑
i

Ciη̈i = T

η̈i + 2ζiωiη̇i + ω2
i ηi + Ciθ̈ = 0

(i = 1, 2, · · · )

(9.1)

(constrained mode model)

Block diagram of this equations are shown in Fig 9-1. Then, transfer function of

torque to angle is given as,

Θ(s)

T (s)
=

1

Is2

{
1

1− 1
I

∑
i

Cis2

s2+2ζiωis+ω2
i

}
(9.2)

Gain of the transfer function is shown in Fig. 9-2. Thus, the effective masses for a

two-mode system, for example, are given as,


m1 +m2 +m3 for ω < ωL

m1 +m3 for ωL < ω < ωH

m1 for ωH < ω

(9.3)

Generalized requirement for pointing stability is given as “Body angle variation

at every T [s] shall be within ∆θ.” Assuming a single frequency vibration of a

rigid body, the allowable angular amplitude and the resulting allowable input torque

amplitude are given in frequency domain as shown in Fig. 9-3 and 9-4 respectively [53].

The allowable input torque for a generalized pointing stability requirement can be

approximated as,
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Figure 9-1: Constrained mode model

Figure 9-2: Gain of input torque to angle (top) and angular acceleration (bottom)
(two-mode system: m1 = m2 = k1 = 1,m3 = 0.1, k2 = 2.76)
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Figure 9-3: Allowable angle spectrum (red: exact, black: approximation) at ∆θ=0.01
deg (0-p), T=0.1 s

max |τ | ≤


2I∆θ

QT
ω for ω <

2

T
I∆θ

Q
ω2 for

2

T
≤ ω

(9.4)

where, Q is resonance magnification, and ∆θ is given as 0-to-peak.

Going back to the concept for higher agility, the level and the slope of the allowable

force at the frequency higher than the known low-mode frequency is given in frequency

domain from a required pointing stability accuracy as shown in Fig. 9-5. The allowable

input torque for the generalized pointing stability requirement can be approximated

as,

AllowableForce =


2I∆θ

QT
ω (+20dB/dec) for ωL < ω <

2

T
I∆θ

Q
ω2 (+40dB/dec) for

2

T
≤ ω

(9.5)
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Figure 9-4: Allowable torque spectrum (red: exact, black: approximation) at
∆θ=0.01 deg (0-p), T=0.1 s

Figure 9-5: Concept for high agility
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Appendix A

Formulations of Conventional

Input Shapers

Each section of this Appendix shows the formulation of each conventional method

which is discussed in this thesis.

A.1 ZV shaper

The earliest appearance of an input shaper which meets the constraints of the zero

vibration (ZV) shaper was in the method of posicast control developed by O. J.

M. Smith in the late 1950s [20, 21]. Singer and Seering proposed an input shaper

which was derived from constraint equations [22]. Generalized impulse response with

amplitude Aj is given by

yj(t) = Aj
ω√
1− ζ2

e−ζω(t−tj) sin
(
ω
√

1− ζ2 (t− tj)
)

(A.1)

where ω is the undamped natural frequency of the plant, ζ is the damping ratio of

the plant, t is time, and tj are the times at which the j -th impulses occur. Using the

trigonometric relation, multi-impulse responses are superposed as
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y1(t) + y2(t) + y3(t) + · · ·+ yN(t)

= B1 sin (αt+ ϕ1) +B2 sin (αt+ ϕ2) +B3 sin (αt+ ϕ3) + · · ·+BN sin (αt+ ϕN)

= Aamp sin (αt+ ψ)

(A.2)

where

Bj = Aj
ω√
1−ζ2

e−ζω(t−tj)

α = ω
√

1− ζ2

ϕj = −ω
√

1− ζ2tj

ψ = tan−1

(∑N
j=1 Bj sinϕj∑N
j=1 Bj cosϕj

)
The amplitude of vibration for a multi-impulse input is given by

Aamp =

√√√√( N∑
j=1

Bj cosϕj

)2

+

(
N∑
j=1

Bj sinϕj

)2

(A.3)

Elimination of vibration after the input has ended requires that the expression for

Aamp equals to zero at the time of the input ends, tN . This is true if both squared

terms in (A.3) are independently zero, yielding

N∑
j=1

Aje
−ζω(tN−tj) sin

(
ω
√

1− ζ2tj

)
= 0

N∑
j=1

Aje
−ζω(tN−tj) cos

(
ω
√

1− ζ2tj

)
= 0

(A.4)

Considering the two-impulse case (N = 2), zero vibration (ZV) shaper can be calcu-

lated from (A.4) based on the assumptions that N = 2, and 0 for the time of the first

impulse (t1) as follows,

 Aj

tj

 =

 A1 A1e
− ζ√

1−ζ2
π

0 0.5T

 (A.5)
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Figure A-1: Residual Vibration vs. Frequency Error (ZV shaper).

where

T =
2π

ω
√

1− ζ2

is the period of the damped vibration.

In order to quantify the residual vibration level for a system, sensitivity curves

are calculated as plots of residual vibration vs. system frequency shown in Fig. A-1,

here the maximum amplitude of the residual vibration after the input has ended as

a percentage of a total amplitude of impulse responses is calculated by

r(ω) =
Aamp∑N

j=1Aj
ω√
1−ζ2

(A.6)

Figure A-1 shows that the ZV shaper is robust for a frequency variation of less

than ±3 percent if acceptable residual vibration of less than 5 percent is required.

A.2 ZVD shaper

Singer and Seering proposed an input shaper with robustness against modeling er-

rors [22, 48]. In order to increase the robustness of the ZV shaper under variations
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Figure A-2: Residual Vibration vs. Frequency Error (ZVD shaper).

of the system natural frequency, a new constraint can be added by the derivatives of

(A.4) with respect to frequency ω, yielding

N∑
j=1

Ajtje
−ζω(tN−tj) cos

(
ω
√
1− ζ2tj

)
= 0

N∑
j=1

Ajtje
−ζω(tN−tj) sin

(
ω
√
1− ζ2tj

)
= 0

(A.7)

Considering the three-impulse case (N = 3), zero vibration and derivative (ZVD)

shaper can be calculated from (A.4) and (A.7) based on the assumptions that N = 3,

and 0 for the time of the first impulse (t1) as follows,

 Aj

tj

 =

 A1 2A1e
− ζ√

1−ζ2
π

A1e
−2 ζ√

1−ζ2
π

0 0.5T T

 (A.8)

The corresponding sensitivity curves calculated by (A.6) is shown as Fig. A-2.

Figure A-2 shows that the ZVD shaper is robust for a frequency variation of less than

±14 percent if acceptable residual vibration of less than 5 percent is required.
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Figure A-3: Residual Vibration vs. Frequency Error (EI shaper).

A.3 EI shaper

Singhose et al. proposed an alternate robustness constraint which generates more

insensitivity by abandoning the requirement of zero residual vibration at the modeling

frequency i.e. ω/ω0 = 1 [23]. By limiting the residual vibration to some small value,

V , rather than forcing it to zero, the robustness can be improved without increasing

the shaper duration. Shapers designed with this approach are called extra-insensitive

(EI) shaper. The EI shaper for undamped systems is

 Aj

tj

 =

 1 + V

4

1− V

2

1 + V

4

0 0.5T T

 (A.9)

Figure A-3 compares the sensitivity curves for ZVD shaper and one-hump EI

shaper when V = 5%. The EI shapers result in low levels of vibration over a wider

range of frequencies than the ZVD shapers, the one-hump EI shaper is robust for a

frequency variation of less than ±20 percent if acceptable residual vibration of less

than 5 percent is required, although less than ±14 percent frequency variation is

allowed for ZVD shapers.
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A.4 Zero Vibration Time-Optimal Control

The methods mentioned in the Appendix A.1 to A.3 focused on vibration reduction

and did not care about time optimal viewpoint. Liu and Wie proposed an approach

for computing time-optimal control inputs for uncertain flexible spacecraft’s rest-to-

rest maneuver with constant-force actuators [30, 31].

Consider a linear model of flexible spacecraft and a bang-bang input with (2n−1)

switches described by

Mẍ+Kx = Gu (A.10)

where x is a generalized displacement vector, M a mass matrix, K a stiffness matrix,

G a control input distribution matrix, and u a control input vector.

In this section, we consider a case with a scalar control input u(t) described by

−1 ≤ u ≤ 1 (A.11)

(A.10) can be transformed into the decoupled modal equations:

ÿ1 + ω2
1y1 = ϕ1u

ÿ2 + ω2
2y2 = ϕ2u

...

ÿn + ω2
nyn = ϕnu

(A.12)

where yi is the i -th modal coordinate, ωi the i -th modal frequency, ϕi the i -th modal

shape, and n the number of modes considered in control design.

The problem is to determine the control input that minimizes the performance index

J =

∫ tf

0

dt = tf (A.13)

subject to (A.11) and (A.12) and given boundary conditions.

The time-optimal control problem of a linear controllable system has a unique solu-

tion, which is bang-bang control with a finite number of switches [54]. For a spring-
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mass dynamical system with n degrees of freedom, the time-optimal bang-bang so-

lution for a rest-to-rest maneuver has, in most cases, (2n-1 ) switches [55], and the

solution is symmetric about tf/2 the middle point of the maneuver. A bang-bang

control input with (2n-1 ) switches can be then described as

u(t) =
2n∑
j=0

Bjus(t− tj) (A.14)

where Bj is the magnitude of a unit step function us(t) at tj.

Consider the rest-to-rest maneuvering boundary conditions for the rigid-body mode

motion, we have the following rest-to-rest maneuvering constraint for rigid-body mode

of y1(t),

ϕ1

2

2n∑
j=0

(tf − tj)
2Bj − y1(tf ) = 0 (A.15)

Substituting (A.14) into the i -th modal equation and solving for the time response

for t ≥ tf where u = 0, we get

yi(t) = − ϕi

ω2
i

2n∑
j=0

Bj cosωi(t− tj)

= − ϕi

ω2
i

[
cosωi(t− tn)

2n∑
j=0

Bj cosωi(tj − tn)

+ sinωi(t− tn)
2n∑
j=0

Bj sinωi(tj − tn)

]
; i = 2, · · · , n

(A.16)

Consider the symmetry of bang-bang input that is symmetric about the midmaneuver

time tn, the 2nd term of (A.16) will be zero and we have the following flexible mode

constraints for no residual structural vibration [i.e. yi(t) = 0 for t ≥ tf ]:

2n∑
j=0

Bj cosωi(tj − tn) = 0 ; i = 2, · · · , n (A.17)

Example 1
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Consider an example shown in Fig. 2-1, the modal equations are obtained by

decoupling as follows,

ÿ1 =
u

2

ÿ2 + ω2
2y2 =

u

2

(A.18)

where ω2 =
√
2 rad/s is the nominal flexible mode frequency.

The boundary conditions for a rest-to-rest maneuver are given as

y1(0) = y2(0) = 0

ẏ1(0) = ẏ2(0) = 0

y1(tf ) = y2(tf ) = 1

ẏ1(tf ) = ẏ2(tf ) = 0

(A.19)

Solving the time-optimal control problem subject to constraints of (A.15) and (A.17)

with boundary conditions of (A.19) and applying the symmetry about t2(= tf/2), we

have the time-optimal bang-bang control input as

u(t) = us(t)− 2us(t− 1.00268) + 2us(t− 2.10893)

−2us(t− 3.21518) + us(t− 4.21786)
(A.20)

The shaped command and responses were shown in Fig. A-4.

A.5 Robust Zero Vibration Time-Optimal Control

Liu and Wie proposed a time-optimal controller of constant-force actuators with

robustness against modeling errors [30, 31]. Consider the symmetry of bang-bang

input that is symmetric about the midmaneuver time tn into (A.16), and taking the

derivative of the equation with respect to i -th modal frequency ωi, we get

dyi(t)

dωi

=
ϕi

ω2
i

cosωi

(
t− tf

2

) 2n∑
j=0

Bj

(
tj −

tf
2

)
sinωi

(
tj −

tf
2

)
; i = 2, · · · , n

(A.21)
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Figure A-4: Shaped command and responses of ZV Time-Optimal shaper
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Letting dyi(t)/dωi = 0 for all t ≥ tf , we have

2n∑
j=0

Bj

(
tj −

tf
2

)
sinωi

(
tj −

tf
2

)
= 0 ; i = 2, · · · , n (A.22)

which is called the first-order robustness constraints.

Similarly, taking the derivative of (A.16) ri times with respect to ωi results in ri-th

order robustness constraints for each structural mode as follows:

2n∑
j=0

Bj

(
tj −

tf
2

)m

sinωi

(
tj −

tf
2

)
= 0 ;

i = 2, · · · , n

m = 1, 3, · · · ≤ ri
(A.23)

2n∑
j=0

Bj

(
tj −

tf
2

)m

cosωi

(
tj −

tf
2

)
= 0 ;

i = 2, · · · , n

m = 2, 4, · · · ≤ ri
(A.24)

Example 2

Consider an example shown in Fig. 2-1, the modal equations and the boundary

conditions are same as Example 1 ((A.18) and (A.19)).

Solving the time-optimal control problem subject to constraints of (A.15), (A.17) and

the first-order robustness constraints of (A.22) with boundary conditions of (A.19)

and applying the symmetry about t2(= tf/2), we have the time-optimal bang-bang

control input as

u(t) = us(t)− 2us(t− 0.7124) + 2us(t− 1.6563)− 2us(t− 2.9330)

+2us(t− 4.2097)− 2us(t− 5.1536) + us(t− 5.8660)
(A.25)

The shaped command and responses were shown in Fig. A-5.

A.6 Low-pass Filter

Conventional low-pass filters such as Butterworth, Chebyshev, and elliptic etc. can

be applied to shape the input to reduce excitation energy at higher frequencies.
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Figure A-5: Shaped command and responses of ZVD Time-Optimal shaper
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Figure A-6: Ramped Sinusoidal Curve

A.7 Sinusoidal Curve

Meckl and Seering proposed S-curve input functions from either versine functions

or ramped sinusoids [35, 36, 37]. A ramped sinusoidal curve, shown in Fig. A-6,

can be used as a characteristic function for a rest-to-rest maneuver since the smooth

transitions in slope at the beginning and end tend to reduce excitation energy at

higher frequencies. The fundamental ramped sinusoidal function and its harmonics

as derived in [35, 37] are selectively added to approximate a square wave in order to

achieve a swift maneuver. A 15-term series of ramped sinusoidal curves are shown in

Fig. A-7.
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Figure A-7: 15-Term Ramped Sinusoidal Curve
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Appendix B

Time-Optimal Bang-bang Control

for Two-mode System

This section presents time-optimal profiler for the two-mode system. The results can

be used as theoretically maximum maneuver distances for the two-mode system.

For one rigid mode and N−1 oscillating modes, where N is the number of lumped

masses, a minimum of 2(N−1)+1 = 2N−1 switches is necessary to bring the system

to rest [37]. Therefore the two-mode system requires, at least, five switches for rest-

to-rest motions. Those switch times must be determined in order to uniquely define

the forcing function. Such a determination is much simpler to make if the three-

mass system is broken into its modal components. The modal equations can be used

to derive expressions for the five switch times in terms of a given maneuver duration

tmnv. Since the resultant forcing function can be considered as a sum of step functions

each delayed in time and alternating in sign and since the system is linear, the total

response is simply the sum of responses for each step. Referring to the lower mode

differential equation

η̈2 + ω2
Lη2 = 1 (B.1)

η2(0) = 0, η̇2(0) = 0
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and solving gives

η2(t) =
1

ω2
L

(1− cosωLt) (B.2)

This expression gives the response to a single step. With the switch times numbered

in ascending order for increasing time
(
ti =

[
0 t1 t2 t3 t4 t5 tmnv

])
, the total

response at time t′ > tmnv is given by

η2(t
′) = 1

ω2
L
{(1− cosωLt

′)− 2 (1− cosωL (t
′ − t1)) + 2 (1− cosωL (t

′ − t2))

− 2 (1− cosωL (t
′ − t3)) + 2 (1− cosωL (t

′ − t4))

− 2 (1− cosωL (t
′ − t5)) + (1− cosωL (t

′ − tmnv))}

(B.3)

where η2(t
′) = 0 for all time t′(> tmnv) implies that no more oscillation occurs at the

end of the move. Simplifying the η2(t
′) = 0 yields:

cosωLt
′ {1− 2 cosωLt1 + 2 cosωLt2 − 2 cosωLt3 + 2 cosωLt4 − 2 cosωLt5 + cosωLtmnv}

+sinωLt
′ {−2 sinωLt1 + 2 sinωLt2 − 2 sinωLt3 + 2 sinωLt4 − 2 sinωLt5 + sinωLtmnv} = 0

(B.4)

For this to be true for all t′, both expressions in brackets must be zero. Thus,

1−2 cosωLt1+2 cosωLt2−2 cosωLt3+2 cosωLt4−2 cosωLt5+cosωLtmnv = 0 (B.5)

−2 sinωLt1 + 2 sinωLt2 − 2 sinωLt3 + 2 sinωLt4 − 2 sinωLt5 + sinωLtmnv = 0 (B.6)

The same result follows for the higher mode, with ωL replaced by ωH :

1−2 cosωHt1+2 cosωHt2−2 cosωHt3+2 cosωHt4−2 cosωHt5+cosωHtmnv = 0 (B.7)

−2 sinωHt1 +2 sinωHt2 − 2 sinωHt3 +2 sinωHt4 − 2 sinωHt5 +sinωHtmnv = 0 (B.8)

The symmetry conditions of the switch times are given as

t3 = tmnv/2

t4 = tmnv − t2

t5 = tmnv − t1

(B.9)

Substituting (B.9) into (B.5) and (B.6), the both equations will be equivalent each

other. The same result follows for the higher mode equations ((B.7) and (B.8)).
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Thus, the constrained time optimization problem for the two-mode system can be

formulated as

−2 sinωLt1 + 2 sinωLt2 − 2 sin (ωLtmnv/2)

+2 sinωL (tmnv − t2)− 2 sinωL (tmnv − t1) + sinωLtmnv = 0
(B.10)

−2 sinωHt1 + 2 sinωHt2 − 2 sin (ωHtmnv/2)

+2 sinωH (tmnv − t2)− 2 sinωH (tmnv − t1) + sinωHtmnv = 0
(B.11)

These simultaneous nonlinear equations, two equations for two unknowns (t1 and t2),

can be solved numerically.

Solving (B.10) and (B.11) numerically for the given maneuver duration tmnv= 6 s,

the time-optimal bang-bang control input is obtained as

u(t) = us(t)− 2us(t− 1.7238) + 2us(t− 2.3285)− 2us(t− 3.0)

+2us(t− 3.6715)− 2us(t− 4.2762) + us(t− 6.0)
(B.12)

where us is step function.

Figure B-1 shows responses of a full acceleration and deceleration command in

which large residual vibrations after the maneuvers are confirmed, whereas Fig. B-2

shows responses of the time-optimal bang-bang input for two-mode system in which

no residual vibration is confirmed at exact value, i.e. k2=0.67.
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Figure B-1: Responses of a full acceleration and deceleration input at three values of
stiffness k2 of the unknown high-frequency mode. Top: positions of mass m1. Middle:
positions of mass m3. Bottom: input command.
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Figure B-2: Responses of time-optimal bang-bang input for two-mode system at three
values of stiffness k2 of the unknown high-frequency mode. Top: positions of mass
m1. Middle: positions of mass m3. Bottom: input command.
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Appendix C

Trade-Off of Window Functioning

Methods

In this Appendix, window functioning methods are compared in relation to Sec-

tion 7.4. Trade-off of those window functioning methods when combined into sinc

function with weighted harmonics is made to find a better method which realizes

preferable frequency characteristic and higher agility.

C.1 Sinc Function withWeighted Harmonics With-

out Window Function

The input torque profile of the sinc function with weighted harmonics without window

function, or equivalently rephrased as “windowed by rectangular window function,”

which has been introduced in Section 7.4 is given as,

u(t) =


A

L∑
j=1

Aj · fj(t) for 0 ≤ t ≤ tmnv

0 for t < 0, tmnv < t

(C.1)

where A is a constant to determine the amplitude of the input torque profile, Aj and

fj(t) are defined in Section 7.4.

Figure C-1 shows the waveform of (C.1), and Fig C-2 shows its jerk. It is confirmed
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Figure C-1: Shaped input before windowing at L = 5 (Ts=10 s)

Figure C-2: Jerk of shaped input before windowing at L = 5 (Ts=10 s)

that the jerk begins and ends at nonzero values. This should be considered for

controller design, because actual actuator h.as some delay time at rise and decay.

C.2 Sinc Function with Weighted Harmonics Win-

dowed before Rectangular Fitting

Another input command, sinc function with weighted harmonics-type, is introduced

and compared in this section. Hamming window is applied to each order harmonics,

then weighted sum is fitted to the rectangular waveform by the minimization problem,
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Figure C-3: Hamming window (Ts=10 s)

i.e. equivalent procedure derived in Section 7.4.

u(t) = A w(t)
L∑

j=1

Aj · fj(t) (C.2)

where

A: Constant which determines amplitude of input torque

w(t): Hamming window function

The window function w(t) is the Hamming window, which is shown in Fig. C-3 and

expressed as

w(t) =

 0.54 + 0.46 cos

{
2π

tmnv

(
t− tmnv

2

)}
for 0 ≤ t ≤ tmnv

0 for t < 0, tmnv < t

(C.3)

The harmonics after windowing from 1st to 5th order are shown in Fig. C-4 when Ts

is 10 s. If the windowed harmonics could be added so that the resulting function

approximates a square wave, the equivalent procedure introduced in Section 7.4 can

be applied hereafter.

A least-squares approximation to the square wave can be constructed by minimiz-

ing the square of the error between the desired square wave of height F and a finite

sum of weighted harmonics from 1st to Lth order. The weighting coefficients Aj can

be determined by the minimization problem given as

∫ Tf/2

0

[
F − w(t)

L∑
j=1

Ajfj(t)

]2
dt+

∫ Tf

Tf/2

[
−F − w(t)

L∑
j=1

Ajfj(t)

]2
dt = min . (C.4)
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Figure C-4: Harmonics after windowing at j = 1 to 5 (Ts=10 s)

where Tf is a maneuver duration and Tf = 2Ts. Differentiating with respect to Ai,

∫ Tf/2

0

[
F − w(t)

L∑
j=1

Ajfj(t)

]
w(t)fi(t)dt−

∫ Tf

Tf/2

[
F + w(t)

L∑
j=1

Ajfj(t)

]
w(t)fi(t)dt = 0

(C.5)

where i = 1, 2, · · · , L, and rearranging gives:

L∑
j=1

Aj

∫ Tf

0

w2(t)fj(t)fi(t)dt︸ ︷︷ ︸
Iij

= F

[∫ Tf/2

0

w(t)fi(t)dt−
∫ Tf

Tf/2
w(t)fi(t)dt

]
︸ ︷︷ ︸

Ii

, (i = 1, 2, · · · , L)

(C.6)

The resulting matrix expression to solve for the Ai is
I11 I12 · · · I1L

I21 I22 · · · I2L
...

...
...

IL1 IL2 · · · ILL




A1

...

...

AL

 = F


I1

I2
...

IL

 (C.7)

where

Iij =

∫ Tf

0

w2(t)fj(t)fi(t)dt (C.8)
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Figure C-5: Shaped input after windowing at L = 5 (Ts=10 s)

Ii =

∫ Tf/2

0

w(t)fi(t)dt−
∫ Tf

Tf/2
w(t)fi(t)dt (C.9)

Thus, the weighting coefficients Aj are given by

[Aj] = F [Iij]
−1 [Ii] (C.10)

Figure C-5 shows input torque waveform at L = 5.

C.3 Trade-Off of Window Functioning Method in

Sinc Function with Weighted Harmonics

Input command of the windowed profiler introduced in Appendix C.2 and response of

two-mode system are shown in Fig. C-6. For each shaper discussed in this Appendix,

Table C.1 lists the duration and residual vibration (peak-to-peak) of the two-mode

system for k2 = 0.188, 0.318, 0.67, 1.54, and 2.76 and Table C.2 lists the duration

and residual vibration (peak-to-peak) of the single-mode system for k = 1.0, 0.8, and

0.6.
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Figure C-6: Shaped command and responses of harmonics after windowing at L = 5
and three values of stiffness k2 in two-mode system

It is confirmed that the maneuver distances are slightly longer in sinc with har-

monics without window function (or rectangular function), and the residual vibrations

are basically smaller in sinc with harmonics without window function.

FFTs plots of sinc with harmonics without window and that with window and

ramped sinusoids at L = 1 are shown in Fig. C-7 and those of at L = 5 are shown in

Fig. C-8. The differences are confirmed as follows:

• The sinc function with harmonics WITHOUT window shows slightly lower

boundary frequency compared to other two profilers.

• The sidelobes of the sinc function with harmonics WITH/WITHOUT window

are −40[dB/dec] whereas −60[dB/dec] for ramped sinusoids.
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Table C.1: Comparison of simulation results for maneuver durations and vibrations
of mass m1 for smooth controllers (Two-Mode System).

Table C.2: Comparison of simulation results for maneuver durations and vibrations
of mass m1 for smooth controllers (Single-Mode System).
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Figure C-7: FFTs of shaped input of ramped sinusoids (black), sinc with harmonics
without window (blue), and sinc with harmonics with window (pink) at L = 1 (Ts=10
s)

• The boundary frequency of the sinc function with harmonics WITH window is

higher than others, but spectrum in higher frequency is lower than others.

Thus, in this thesis, the sinc function with weighted harmonics WITHOUT win-

dow (or rectangular window) has been chosen in Section 7.4 as the profiler for better

balanced solutions of maneuver distance and residual vibration.
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Figure C-8: FFTs of shaped input of ramped sinusoids (black), sinc with harmonics
without window (blue), and sinc with harmonics with window (pink) at L = 5 (Ts=10
s)
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Appendix D

Experimental Verification

Experimental test to verify the effectiveness of the proposed NME profiler and the

modified NME profiler presented in Section 7.2 have been performed by Nakamura [49,

50] using test module with simplified flexible structures. The test configuration is

shown in Fig. D-1.

Transfer functions of the test module and mathematical model are shown in Fig. D-

2. Three flexible modes are confirmed. Residual vibrations versus maneuver duration

based on the test results are shown in Fig. D-3 in case of nominal parameters and

Fig. D-4 in case of frequency modeling errors on the second and third flexible modes

(Note that no frequency errors are considered for the first flexible mode). The tests

are performed on the NME profiler, modified NME profiler presented in Section 7.2,

SMART (Structural Vibration Minimized Acceleration Trajectory), and shaped bang-

bang. The SMART which was designed for hard disk controller [56] is a smooth type

profiler to minimize the jerk of the position profiler. The shaped bang-bang is made by

convolving the three ZV shaper designed for three measured flexible modes and bang-

bang command. The SMART shows the largest residual vibrations in a wide range of

maneuver duration. The shaped bang-bang shows small residual vibrations however

that is because the frequencies for ZV shapers are well adjusted to the measured data.

The NME profiler is confirmed to show the intended performances. The modified

NME profiler shows some improvement for shorter maneuver durations compared to

the NME profiler, using ZV shaper designed based on the measured frequency. If
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Figure D-1: Test module with simplified flexible structures [49]

a modeling error on the first flexible mode is considered, residual vibrations of the

modified NME profiler would be larger.

The effectiveness of the proposed NME profiler and the modified NME profiler

presented in Section 7.2 from the viewpoint of theoretical frequency separation has

been confirmed in this way.
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Figure D-2: Transfer function of test module (blue solid line) and mathematical model
(red broken line) [49]
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Figure D-3: Residual vibration vs. maneuver duration [49]
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Figure D-4: Residual vibration vs. maneuver duration with frequency errors [49]
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Appendix E

Dynamics Characterization Test of

Control Moment Gyro for

ASTRO-G

In this Appendix, summary of dynamics characterization test which has been per-

formed as a part of ASTRO-G ACS design work is presented. The experimental

verification test is to identify dynamical characteristics of the CMG have been per-

formed using engineering model. The test configuration is shown in Fig. E-1.

Examples of test data are shown in Figs. E-2 to E-4 which show measured data

and those errors of gimbal angle, rate, and wheel speed respectively. Red line shows

commanded date and blue line shows measured data. Test for repeating rest-to-

rest maneuver motion are also conducted as shown in Figs. E-5 to E-7. Then, the

measured date have been compared to those of mathematical model as shown in

Figs. E-8 and E-9 to verify the validity of mathematical model. Green line shows

data by mathematical model. The green line shows worse behavior of gimbal motion.

The verification of the mathematical model of ASTRO-G has been successfully done

by this way.
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Figure E-1: CMG dynamics characterization test configuration
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Figure E-2: Top: gimbal angle, bottom: gimbal angle error
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Figure E-3: Top: gimbal rate, bottom: gimbal rate error
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Figure E-4: Top: wheel speed, bottom: wheel speed error
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Figure E-5: Top: gimbal angle, bottom: gimbal angle error
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Figure E-6: Top: gimbal rate, bottom: gimbal rate error
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Figure E-7: Top: wheel speed, bottom: wheel speed error
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Figure E-8: Top: gimbal angle, bottom: gimbal angle error
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Figure E-9: Top: gimbal angle, bottom: gimbal angle error

200



Bibliography

[1] T. Kamiya, K. Maeda, T. Hashimoto, and S. Sakai. 柔軟構造物用姿勢マヌー
バ時における姿勢制御データ生成方法、及びそれを適用した姿勢制御装置, Nov.
2007. Japan Patent No. JP2007302142.

[2] T. Kamiya, K. Maeda, T. Hashimoto, and S. Sakai. Attitude control data creat-
ing method, and attitude control system applying the method, Sep. 2009. U.S.
Patent No. US20090218449.

[3] T. Kamiya, K. Maeda, T. Hashimoto, and S. Sakai. Attitude control data creat-
ing method, and attitude control system applying the method, May 2012. U.S.
Patent No. US8186627.

[4] T. Kamiya, K. Maeda, T. Hashimoto, and S. Sakai. Attitude control data creat-
ing method, and attitude control device applying the method, Nov. 2007. Canada
Patent No. CA2651814.

[5] T. Kamiya, K. Maeda, T. Hashimoto, and S. Sakai. Attitude control data creat-
ing method, and attitude control device applying the method, Feb. 2009. Europe
Patent No. EP2022718.

[6] T. Kamiya, K. Maeda, T. Hashimoto, and S. Sakai. Attitude control data creat-
ing method, and attitude control device applying the method, Nov. 2007. PCT
Patent No. WO2007132793.

[7] B. Girouart and I. Sebbad. Performances of the pleiades-hr agile attitude control
system. In Proceedings of ESA International conference 5th, Spacecraft guidance,
navigation and control systems, pages 497–500, 2003.

[8] A. Thieuw and H. Marcille. Pleiades-hr cmgs-based attitude control system de-
sign, development status and performances. In Proceedings of 17th IFAC Sym-
posium on Automatic Control in Aerospace, volume 17, pages 834–839, 2007.

[9] P. Damilano. Pleiades high resolution satellite : A solution for military and civil-
ian needs in metric-class optical observation. In Proceedings of 15th Annual/USU
Conference on Small Satellites, 2001.

[10] T. Kida, I. Yamaguchi, Y. Chida, and T. Sekiguchi. On-orbit robust control
experiment of flexible spacecraft ets-vi. Journal of Guidance, Control, and Dy-
namics, 20(5):865–872, 1997.

201



[11] T. Kasai, K. Komatsu, and M. Sano. Modal parameter identification of controlled
structures. Journal of Guidance, Control, and Dynamics, 20(1):184–186, 1997.

[12] T. Nagashio, T. Kida, T. Ohtani, and Y. Hamada. Design and flight test results
of robust attitude controller for the ets-viii spacecraft. In Proceedings of the 18th
IFAC World Congress, volume 18, pages 5154–5159, 2011.

[13] T. Ohtani, Y. Hamada, T. Nagashio, and T. Kida. Robust attitude control using
mu-synthesis for the large flexible satellite ets-viii. Journal of Space Technology
and Science, 25(1):27–40, 2009.

[14] T. Kamiya, K. Maeda, and N. Ogura. Preshaping profiler for flexible space-
craft rest-to-rest maneuvers. In IFAC Proceedings of 17th IFAC Symposium on
Automatic Control in Aerospace, pages 283–288. MIT Press, Cambridge, MA,
2007.

[15] T. Kamiya, N. Ogura, K. Maeda, and S. Sakai. Preshaping profiler for astro-g
rest-to-rest maneuvers. Journal of Space Technology and Science, 25(1):41–47,
2009.

[16] T. Kamiya, K. Maeda, and N. Ogura. Flexible spacecraft rest-to-rest maneu-
vers with cmgs parallel gimbal arrangement. In Proceedings of AIAA Guidance,
Navigation, and Control Conference, volume 9, pages 6025–6036, 2009.

[17] T. Kamiya, N. Ogura, and Y. Haruna. Preshaping profiler for astro-g rest-to-rest
maneuvers. In Proceedings of the 7th International ESA Conference on Guidance,
Navigation and Control Systems, 2008.

[18] T. Nakamura, N. Bando, S. Sakai, and H. Saito. Agile and robust attitude con-
trol system for vsop-2 satellite astro-g. In Proceedings of the 10th International
Workshop on Advanced Motion Control, pages 578–583, 2008.

[19] T. Nakamura, N. Bando, S. Sakai, and H. Saito. Vibration suppression effect of
translational motion control for asymmetric flexible satellite. In Proceedings of
the 11th International Workshop on Advanced Motion Control, pages 667–672,
2010.

[20] O. J. M. Smith. Posicast control of damped oscillatory systems. In Proceedings
of the IRE, volume 45, pages 1249–1255, 1957.

[21] O. J. M. Smith. Feedback Control Systems, pages 331–345. McGraw-Hill Book
Inc., 1958.

[22] Neil C. Singer and Warren P. Seering. Preshaping command inputs to reduce sys-
tem vibration. ASME Journal of Dynamic Systems, Measurement, and Control,
112(1):76–82, 1990.

202



[23] W. Singhose, W. Seering, and N. Singer. Residual vibration reduction using
vector diagrams to generate shaped inputs. Journal of Mechanical Design,
116(2):654–659, 1994.

[24] W. Singhose, W. Seering, , and N. Singer. Time-optimal negative input shapers.
ASME J. of Dynamic Systems, Measurement, and Control, 119(2):198–205, 1997.

[25] W. Singhose, L. Porter, T. Tuttle, and N. Singer. Vibration reduction using
multi-hump input shapers. ASME J. of Dynamic Systems, Measurement, and
Control, 119(2):320–326, 1997.

[26] David P. Magee and Wayne J. Book. Filtering schilling manipulator commands
to prevent flexible structure. In Proceedings of American Control Conference,
volume 3, pages 2538–2542, 1994.

[27] William E. Singhose, Neil C. Singer, and Warren P. Seering. Design and imple-
mentation of time-optimal negative input shapers. In ASME WINTER ANNUAL
MEETING, pages 151–7, 1994.

[28] William Earl Singhose. Command Generation for Flexible Systems. Mas-
sachusetts Institute of Technology, Department of Mechanical Engineering, 1997.

[29] T. Singh and S. R. Vadali. Input-shaped control of three-dimensional maneuvers
of flexible spacecraft. Journal of Guidance, Control, and Dynamics, 16(6):1061–
1068, 1993.

[30] Q. Liu and B. Wie. Robust time-optimal control of uncertain flexible spacecraft.
Journal of Guidance, Control, and Dynamics, 15(3):597–604, 1992.

[31] B. Wie and Q. Liu. Comparison between robustified feedforward and feedback for
achieving parameter robustness. Journal of Guidance, Control, and Dynamics,
15:935–943, 1992.

[32] W. Singhose, S. Derezinski, and N. Singer. Extra-insensitive input shapers for
controlling flexible spacecraft. Journal of Guidance, Control, and Dynamics,
19(2):385–391, 1996.

[33] P. H. Meckl, P. B. Arestides, and M. C. Woods. Optimized s-curve motion
profiles for minimum residual vibration. In American Control Conference, 1998.
Proceedings of the 1998, pages 2627–2631. IEEE Publ., Piscataway, NJ, 1998.

[34] R. Eloundou and W. Singhose. Justification for using step-function reference
commands: Comparison to s-curves. In 2nd IFAC Conference on Mechatronic
Systems, volume 5, pages 25–30. Elsevier, Amsterdam, 2002.

[35] P. H. Meckl and W. P. Seering. Experimental evaluation of shaped inputs to
reduce vibration for a cartesian robot. J. Dynam. Systems, Measurement, and
Control, 112(2):159–165, 1990.

203



[36] P. H. Meckl and W. P. Seering. Minimizing residual vibration for point-to-
point motion. Journal of Vibration, Acoustics, Stress and Reliability in Design,
107(4):378–382, 1985.

[37] P.H. Meckl. Minimizing Residual Vibration of a Linear System Using Appropri-
ately Shaped Forcing Functions. Massachusetts Institute of Technology, Depart-
ment of Mechanical Engineering, 1984.

[38] R. L. Farrenkopf. Optimal open-loop maneuver profiles for flexible spacecraft.
Journal of Guidance and Control, 2(6):491–498, 1979.

[39] C. J. Swigert. Shaped torque techniques. Journal of Guidance and Control,
3(5):460–467, 1980.

[40] P.H. Meckl. Control of Vibration in Mechanical Systems Using Shaped Refer-
ence Inputs. Massachusetts Institute of Technology, Department of Mechanical
Engineering, 1988.

[41] M.J. Bell. Near-minimum-time Three-dimensional Maneuvers of Rigid and Flex-
ible Spacecraft. Texas A & M University, 1993.

[42] N. C. Singer, W. E. Singhose, and W. P. Seering. Comparison of filtering methods
for reducing residual vibration. European Journal of Control, 5(2–4):208–218,
1999.

[43] W. Singhose. Command shaping for flexible systems: A review of the first
50 years. International Journal of Precision Engineering and Manufacturing,
10(4):153–168, 2009.

[44] W. Singhose, R. Eloundou, and J. Lawrence. Command generation for flexi-
ble systems by input shaping and command smoothing. Journal of Guidance,
Control, and Dynamics, 33(6):1697–1707, 2010.

[45] K. Grosser, J. Fortgang, and W. Singhose. Limiting high mode vibration and
rise time in flexible telerobotic arms. In Proceedings of Conf. on Systemics,
Cybernetics, and Informatics, 2000.

[46] K. Grosser and W. Singhose. Command generation for reducing perceived lag in
flexible telerobotic arms. JSME International Journal, 43:755–761, 2000.

[47] T. Kamiya, K. Maeda, and S. Sakai. Comparison of preshaping profilers for
reducing residual vibrations after rest-to-rest maneuvers. Journal of Guidance,
Control, and Dynamics, 37(TBD):TBD–TBD, 2014. [In press].

[48] N. C. Singer. Residual Vibration Reduction in Computer Controlled Machines.
Massachusetts Institute of Technology, Department of Mechanical Engineering,
1989.

204



[49] T. Nakamura. Control System Design for Agile Attitude Maneuver of Flexible
Satellite. Department of Electrical Engineering and Information Systems of the
Graduate School of Engineering, The University of Tokyo, 2010.

[50] T. Nakamura, N. Bando, S. Sakai, and H. Saito. 柔軟衛星の高速な姿勢変更のた
めの制振指令値設計. 日本航空宇宙学会論文集 = Journal of the Japan Society
for Aeronautical and Space Sciences, 58(682):309–315, nov 2010.

[51] Y. Nakamura and H. Hanafusa. Inverse kinematic solutions with singularity
robustness for robot manipulator control. Journal of Dynamic Systems, Mea-
surement, and Control, 108(3):163–171, 1986.

[52] T. Saito, K. Maeda, K. Ninomiya, and T. Hashimoto. Rate-profiler based
minimum-time control for spacecraft attitude maneuver. In Proceedings of 15th
IFAC Symposium on Automatic Control in Aerospace, pages 83–88, 2001.

[53] T. Kamiya, T. Kurii, and Y. Kawakatsu. Microvibration management and point-
ing stability analysis of selene satellite. In Proceedings of 16th IFAC Symposium
on Automatic Control in Aerospace, volume 1, pages 141–148, 2004.

[54] H. Hermes and J. LaSalle. Functional analysis and time optimal control. Math-
ematics in Science and Engineering. Elsevier Science, 1969.

[55] G. Singh, P. T. Kabamba, and N. H. McClamroch. Planar, time-optimal, rest-
to-rest slewing maneuvers of flexible spacecraft. Journal of Guidance, Control,
and Dynamics, 12:71–81, 1989.

[56] Y. Mizoshita, S. Hasegawa, and K. Takaishi. Vibration minimized access control
for disk drives. Magnetics, IEEE Transactions on, 32(3):1973–1978, 1996.

205


