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Abstract

High density operation is preferred for a future fusion reactor since the fusion output is
proportional to the density squared. Especially in magnetically confined plasmas, the
energy confinement time increases with density. High density operation is also benefi-
cial for the heat load reduction on plasma facing components called the divertor. At
high density, the radiation loss is increased and the divertor heat load decreases. The
maximum achievable density in a magnetically confined plasma is, however, limited by
a density limit that has been expressed by semi empirical scaling, e.g. the Greenwald
density limit for tokamaks and the Sudo limit for helical plasmas. The density limit of
the tokamak is often accompanied by current disruption which can inflict much damage
on the reactor and should be avoided. On the other hand, in helical plasmas, where
large plasma current is not needed since the plasma is confined by the magnetic fields
generated by external magnet coils, the radiation loss rapidly increases when the edge
plasma density approaches the Sudo limit and finally, plasma collapses in a relatively
benign manner due to the large radiation loss. Therefore, for the steady state operation
of a fusion reactor, understanding of the physics mechanism of the density limit and the
radiation collapse is quite important. In this study, the temporal evolution of the radi-
ation collapse in helical plasmas of the Large Helical Device (LHD) is studied by using
infrared (IR) imaging Video Bolometers (IRVB). Since the helical plasmas are charac-
terized by a three dimensionally (3D) complicated shape, simple assumptions, such as
e.g. axial symmetry, are not applicable and therefore a 3D approach is necessary. This
thesis is composed of three parts, i.e., the development of the IRVB, the development of
the 3D measurement and the investigation of the radiation collapse.

The IRVB has been developed for the measurement of 2D radiation profile pat-
terns. The IRVB provides a distribution of the incident radiation on an IRVB foil. The
IRVB has the advantage of having a large number of channels in a 2D array. This ad-
vantage is also beneficial for the 3D measurement. For the 3D measurement, in this
study, three improvements have been applied to the IRVB. The first improvement is the
selection of the material for the IRVB foil. The performance of the IRVB depends on
the foil material. In this study the thermal characteristics of foil materials have been
evaluated systematically. As the candidates of the foil material, Au, Pt, Ta, W were
examined. These were illuminated by a He-Ne laser and their thermal characteristics
were evaluated. Among these candidates Pt shows the best characteristics in the si-
multaneous achievement of high sensitivity and fast time response. According to the
test results Pt has been selected. The second improvement is the foil calibration. The
IRVB measurement as an absolute measurement requires a knowledge of the distribu-
tion on the foil of 3 foil parameters. However because two of the three parameters, foil
thickness and emissivity, had not been evaluated, the IRVB measurement mainly served
as a qualitative measurement. To evaluate the distribution of these two parameters,
a new calibration technique has been developed. The calibration technique evaluates
the effective thickness and effective emissivity distribution on the foil with a compari-
son between the 2D temperature which is measured from the laser illuminated foil, and
the calculated 2D temperature using a Finite Element Method (FEM). The evaluated
distribution of the effective foil thickness and the effective emissivity made possible for
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the first time a quantitive measurement using an IRVB. The third improvement is the
calculation of a projection matrix and the design of the fields of view of the IRVBs. The
3D measurement requires a 3D knowledge of the relation between each IRVB channels
signal and 3D space. To obtain the relation, a calculation is made of the contribution
of the radiation from each plasma volume element to the field of view of each IRVB
channel. The fields of view of the IRVBs are designed to complete the coverage of the
plasma using the calculated fields of view.

In this study two methods have been developed for the 3D radiation profile mea-
surement. The first one is an algebraic reconstruction of the radiated power density from
the IRVB images. For the algebraic reconstruction, Tikhonov regularization with the
criterion of minimum Generalized Cross Validation (GCV) is employed as the reconstruc-
tion technique. The reconstruction has been numerically and experimentally examined.
The simulated radiation profile using the EMC3-EIRENE code has been used as a nu-
merical phantom in a numerical test of the reconstruction and has been reproduced
with the reconstruction process. In reconstruction tests with experimental data which
are taken before and after the plasma collapse, reconstruction results have responded
to changes in the plasma condition. The first application to plasma measurements of
a challenging 3D reconstruction has been performed. The reconstruction provides 3D
radiation profiles as a quantitive 3D measurement. The time resolution of the 3D mea-
surement is 20ms and the spatial resolution is roughly 5cm. Although a quantitative
understanding of the reconstructed profile can be obtained by this algebraic reconstruc-
tion, a quantitative discussion of the reconstructed profiles relative to the changes in the
plasma is still difficult. Therefore, another method of 3D model fitting has been devel-
oped to quantitatively investigate the physics mechanisms of the radiation collapse. Nine
parameters have been selected to characterize the radiation profile, i.e. semi major and
minor radius of radiation region, the center of radiation region, the width of radiation
region, radiation intensity, the asymmetric factor for inboard-outboard asymmetry, the
asymmetric factor for toroidal asymmetry, the local peaking factor and the specific size
of the local peak. Using these nine parameters, the radiation is fitted to the model to
minimize the mean square error between an experimental IRVB image and a synthetic
IRVB image which is calculated from the model. The model fitting quantifies the tem-
poral evolution of the radiation profile as the changes in the nine parameters. The time
resolution of the model fitting is 40ms.

The developed 3D measurements have been applied to the study of the radiation
collapse. Results of the model fitting show significant changes in the evolution of the
radiation structure as model parameters change, during radiation collapse over a time
period of 300 ms. The radiation region is minor radially localized before radiation
collapse as the first step of the structure changes and the radiation region shrinks and
radiation from the inboard side is significantly enhanced during radiation collapse. With
changes in the radiation structure which are obtained by model fitting, it is possible to
define the initiation of the radiation collapse, which has been difficult to define until now
by using only the total radiation from the resistive bolometer.

To clarify the detail of the observed structure changes by the model fitting, alge-
braic reconstruction with Tikhonov regularization is also applied to the radiation mea-
surement for the same plasma discharge. A result of the algebraic reconstruction shows
that the inboard enhancement initiates at the vertically elongated cross section and then
it is extended to the other poloidal cross sections along the Last Closed Flux Surface
(LCFS). The inboard side of the vertically elongated cross section is at the nearest point
to the wall.

The radiation structure of carbon II (426.7nm) and III (464.7nm) emission at the
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timing of the shrinking and the inboard enhancement has also been investigated using
a visible imaging spectrometer. The measurement result of the imaging spectrometer
shows the carbon emission peak moves inward from the x-point and ergodic region
towards the LCFS at that timing. It indicates that the shrinking and the inboard
enhancement is related to the electron temperature. To clarify the relation, the electron
temperature profile and the radiation profile which is obtained from the model fitting
have been compared before and during the radiation collapse.

The comparison has provided a scenario of how the radiation structure changes
during the radiation collapse as follows: When the electron temperature reduces, the
radiation region starts to concentrate as the first step. As a second step, enhancement
of the radiation from the inboard side and shrinking of the radiation region occur si-
multaneously. As a third step, the radiation region crosses the LCFS and the radiation
power reaches a peak. Finally, the radiation region is concentrated at the center of the
plasma. In this scenario, asymmetry in the radiation structure plays an important role.
When the parallel transport is large enough, this kind of asymmetry cannot appear. To
discuss the asymmetry, the mean free path at the plasma edge is investigated. At first,
the mean free path decreases linearly with the electron density. This relation is changed
before the initiation of the asymmetry. In this phase, the mean free path suddenly drops
nonlinearly with increasing electron density. This behavior indicates that the asymmetry
during radiation collapse is related to the reduction in parallel transport.

In this thesis, the IRVB measurement has become a quantitive measurement and
is related to the 3D plasma space using a projection matrix calculation, through three
improvements. Two methods for quantifying the 3D radiation structure have been devel-
oped with the improved IRVB measurement. In addition to a 3 dimensional tomography
method, a nine parameter model quantifies the characteristics of the changes in the ra-
diation structure during radiation collapse and algebraic reconstruction shows radiation
collapse is initiated at the inboard side of the vertical cross section. Several events during
the radiation collapse evolution have been observed for the first time from the model
parameters and algebraic reconstructed profiles. By relating these events, a scenario for
the radiation collapse has been obtained. That is the main result of this thesis. The
developed IRVB improvement and 3D measurement techniques will also be applicable
in the future to enhancing the understanding of radiation collapse and other radiation
phenomena.
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1 Introduction

1.1 Energy

1.1.1 Primary energy

The population of the world has doubled in the last 50 years [1]. Because the population
and energy consumption are strongly correlated, an increase in the population will result
in an increase in the energy consumption by simple logic. The energy consumption is
also correlated with the ratio of the population between developing countries and ad-
vanced countries. In several advanced countries, the energy consumption per population
is more than 10 times larger than that of developing countries[2] [3]. This indicates
that the people who can be free to use energy, are just the people who live in advanced
countries. Currently, the population of the advanced countries accounts for only about
17 % of the world [4] [5]. However, the predictable economic advancement in the devel-
oping countries will provide a significant growth in energy consumption. In the aspect
of the energy production, the total primary energy supply has a high proportion of fossil
fuels such as oil. The amount of deposits of fossil fuels is not close to being exhausted.
However, when underground resources are exhausted at producing locations which are
easy to handle, the cost of recovering underground resources becomes enlarged as the
amount of deposits becomes smaller, because the recovery is usually performed in in-
creasing order of difficulty. Additionaly, the cost of the transportation of resources or
transmission of electrical energy are also becomes enlarged under the same situation, be-
cause transportation from distant places or foreign countries is needed in this situation.
Therefore, the cost of power generation and transmission from underground resources
becomes larger the more it is used. The same problem also applies to renewable energy,
such as a solar power generation. renewable energy has a low power generation per area.
Therefore, when all of the suitable place for a renewable energy plant are occupied, the
plant will have to be placed in other places with extra costs. Current primary energies
have the above problem without any advancement of technology. To handle the expected
increase in the demand for energy in the future, a resource of energy which is not globally
localized to specific regions and has a high power generation per area is preferred as a
future energy resource.

1.1.2 Fusion

A candidate for the future energy resource is plasma fusion. Plasma fusion provides
the high energy particles with a fusion process between two ionized light atoms. Several
combinations of atoms are considered as fuels of the fusion process. A combination of the
atoms which is attracting the most attention from researchers is deuterium and tritium.
The process is described as

2
1D +3

1 T −→4
2 He(3.5MeV ) + n(14.1MeV ). (1-1-1)

In this reaction, the energy generated by fusion is distributed to the produced neutron
and He atoms by the fraction of their weight. The high energy neutron is collected as
a heat source to generate electricity. Because deuterium and tritium can be derived
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from marine water, the fuel of the fusion is not localized to a specific area. The fusion
process also does not require a large area. Therefore fusion potentially has large power
generation from a small area. Therefore, in principle, a plasma fusion reactor is a good
solution for handling future energy demands.

In a plasma fusion reactor, the fusion process takes place in a magnetically confined
plasma. The fusion process is not available in ordinary conditions such as at room
temperature, due to the mutual repulsion of the nuclei of atoms. Therefore a large
number of atoms are confined in a small space by a magnetic field, and heated up by
several energy sources to make an extreme condition which makes the fusion process
available. For the achievement of a confined plasma with extreme conditions, many
plasma confinement devices have been developed and produced usefull results.

The confinement of plasma in a small space is achieved by the magnetic field.
Charged particles such as ions, have a characteristic to move along a magnetic field line.
With this characteristics and closed field lines, devices for magnetic confinement confine
the plasma. There are two prominent types of the magnetic confinement devices. The
two types of devices have different methods of generating a magnetic field and different
limitations on the increase of the plasma density which is favorable to fusion.

Tokamaks

Tokamak type devices are the mainstream of magnetic confinement devices. Tokamak
devices confine the plasma using a magnetic field produced by the currents through
poloidal coils and the plasma. Tokamak devices have a simple axially symmetric struc-
ture. These currents make twisted magnetic field lines which are required to confine the
plasma without the instability of electric and magnetic fields. The main devices among
tokamaks are JET, JT-60, T-3 and TFTR. Tokamak devices have an advantage in the
capability of the enhancement of the ion temperature and have shown many significant
results, such as observed ion temperature of 45keV in JT-60 [6]. Tokamak devices employ
confine the plasmas using plasma current, which is usually driven by a toroidal electric
field induced by ramping up the current through a center solenoid coil. Therefore, the
long production of the plasma current only by induction is difficult. However, other
mechanisms of plasma current drive, created by a pressure gradient (called bootstrap
current), injection of neutral beams or electromagnetic waves, have been found to be
considerable to the extent making a long burning reactor design possible. Because the
current drive efficiency in the plasma is decreased with high plasma density, there is a
problem that the efficiency of tokamak devices becomes lower of high plasma density.

Helical devices

Helical type devices have a large difference with tokamak devices in the method of
generating the twisted magnetic field. Helical devices have twisted helical coils. The
helical coils directly makes the twisted magnetic field. Therefore, helical devices do not
have the limitation on the steady state operation due to the field generation. LHD in
Japan is the main helical device. Because helical devices do not require plasma current
for confinement, the plasma density in helical devices does not have a limitation by the
plasma current. The plasma density is mainly limited by the density limit with radiation
collapse which is described in Section 1.2.2.
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1.2 Radiation

When the plasma is well confined by magnetic fields, radiation is one of major paths for
energy loss from the plasma. Therefore, the total radiation power which is estimated
from the measured data of the local radiation measurement, provides important infor-
mation for studies of the power balance of the plasma between input power and power
loss.

The local radiation power from an impurity is proportional to the electron density,
the density of the impurity [7] and the cooling rate of the impurity which is a parameter
depending on the electron temperature. The radiation measurement also provides in-
formation on the impurity behavior. This information is significantly useful for studies
on impurity transport in the plasma. Additionally, the radiation is related to several
behaviors and phenomena of fusion plasmas, such as radiation collapse. Radiation mea-
surement is essential to understand these phenomena.

1.2.1 Radiation sources from plasma

Bremsstrahlung

When a charged particle is accelerated in a Coulomb field, radiation is emitted from the
charged particle. This kind of radiation can be emitted from plasmas in fusion devices.
For a full understanding of this process, quantum treatment is required. However, it can
be treated classically with Gaunt factors which are corrections between classical results
and quantum results.

The emission of power from a mono energetic electron accelerated by impact with
an ion Coulomb field can be given as

dW (b)

dω
=

{
= 8Z2e6

3πc3m2ν2b2
(b << v/ω)

= 0 (b >> v/ω)
, (1-2-1)

where b is the impact parameter which is defined as the length between the ion and the
path of the electron, Z is the charge of the ion, e is the elementary charge, c is the light
speed, m is the mass of thye electron and ν is the typical frequency. As an extension,
the total emission power per unit time, unit volume and unit frequency range is given
with the electron density, ne, and the ion density, ni, as

dW

dωdV dt
= neni2πν

∫ ∞
bmin

dW (b)

dω
bdb. (1-2-2)

Line radiation

In fusion plasma, many ions, atoms, molecules and electrons populate the whole space,
these particles can be excited by interactions between these. When an excited ion or
atom is deexcited, a photon is emitted which has the specific energy according to the
energy gap between the excitation state and the end of the deexcitation process. The
emission is called line radiation. The emission process and the excitation process are
held in equilibrium for each excitation state in steady state plasma. The line radiation
has a specific energy which depends on the species of the radiator and its charge state.
Therefore the line radiation can be used for the identification of impurity species and
their behavior.

In the LHD case, the line radiation from impurities is the strongest radiation
source. Without any impurity injection, carbon and oxygen are the major radiators
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from the plasma. Especially, because carbon is produced from carbon divertor plates
which are striked with the plasma and easily enhanced with plasma discharges, carbon
is important to control the plasma.

1.2.2 Radiative phenomena and operation

Plasma detachment

As a protection for components of a magnetic confinement device against the incident
heat flux from the plasma, a divertor plate is employed at points striked by the plasma.
The divertor plate is made from materials which have high heat resistance, such as
carbon. However, as the plasma energy become high, the heat flux is enhanced. In the
future, there are concerns that the heat flux will become unmanageably large with any
materials. Therefore, reducing the heat flux is required to achieve future fusion devices.

An approach for the reduction is plasma detachment. The concept of the plasma
detachment is to diffuse/dissipate the energy of the heat flux before approaching divertor
plate. The process is achieved by several procedures.

Radiation collapse

The radiation collapse is a disruptive phenomena in the plasma. When radiation col-
lapse occurs in a plasma, radiation power from the plasma is significantly increased and
then the plasma is terminated. In helical devices, the density of the plasma is limited by
the radiation collapse. When the electron density approaches the “Sudo density limit”
nse = (PB/a2R)0.5, the plasma is terminated by radiation collapse. Therefore, radia-
tion collapse which plays a role as the proximate cause of the termination should be
understood to achieve high density operation in helical devices.

1.2.3 Requirement for radiation measurement

These radiation phenomena and operation are important to achieve fusion devices. The
radiation power from impurities in plasmas depends on the electron temperature and
their density. Carbon is a major radiator of fusion devices which have carbon com-
ponents such as LHD. The carbon emission mainly emanates from regions which have
lower electron temperature around 100eV , such as the ergodic edge region. The ergodic
edge region is completely three dimensional. Therefore a good understanding of these
radiation phenomena requires 3D measurements.

1.3 Tomography

1.3.1 Tomography

Tomography, which is the image reconstruction from projections, is a major field of
the inverse problem study. The background of the tomography is Radon theory, which
shows that the exact reconstruction is possible from omni-directional projections. Stan-
dard tomography is performed on the basis of the analytical inversion of the integral
transform [8] [9]. As the field of computer science becomes larger, the tomography has
been rapidly developed and extended as the technology of Computed Tomography (CT)
with discretized numerical techniques. The advancement of the computer has made
complicated techniques available such as matrix decompositions and fast iterative pro-
cedures of large size. Nowadays, tomography is an essential tool for an observation when
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direct measurement is impossible. Tomography is widely used not only in the medical
field but also in various scientific measurements.

1.3.2 Tomography in plasma studies

Around the 1980s, tomography started to be applied for the measurement of plasma
properties in fusion devices. A lot of tomography measurements including the research
with 2D imaging using neutron detector arrays in JET, have been perfomed and pro-
vided useful results [10]. Generally, the tomography measurement in fusion devices does
not have complete angle measurement, due to strong limitations on the installation of
measurement instruments. Therefore the tomography measurement in fusion devices
easily is ill-conditioned. A large segment of tomography measurements in fusion devices
is also performed as a passive measurement of the emission from plasma, unlike the
active measurements such as X-ray transmission CT and Magnetic Resonance imaging
(MRI).

1.4 Purpose of study

For future fusion devices, high density operation is required. However the plasma density
is limited by radiation collapse in helical devices. Understanding radiation collapse is
important for the achievement of high density operation in fusion devices. The purpose
of this study is the development of a 3D measurement for the evolution of the radiation
structure during radiation collapse such as how the radiation evolves and where the
evolution is initiated.
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2 IRVB measurement

2.1 Radiation measurement

For a measurement of the radiation from the plasma, there are several candidates of mea-
surement instruments. In this thesis, candidates should be chosen with a consideration
of their characteristics and the target of the measurement.

2.1.1 Measurement instrument

2.1.2 Resistive bolometer

The bolometer is a kind of calorimeter. A resistive bolometer detects the temperature
rise on the metal absorber as a change of resistance of a meander resistor which is placed
behind of the absorber. The incident radiation power on the absorber is estimated from
the change of resistance. The change of the resistance is obtained from the current on a
Wheatstone bridge circuit.

When the radiation power irradiates the absorber, the temperature rise from the
background temperature is given as

dT

dt
=

PRB
CρdSRB

− T

τc
, (2-1-1)

where T is the temperature rise from the background temperature on the absorber,
d is the thickness of the absorber, PRB is the total incident radiation power, C is a
specific heat capacity, ρ is the density, SRB is the area of the absorber and τc is the time
constant of temperature rise and decay on the absorber. with the Equation 2-1-1, the
power density of the incident radiation is given as

PRB
SRB

= CρdSb(
dT

dt
+
T

τc
). (2-1-2)

The power density can be calculated using the temperature change on the absorber.
The sensitivity of the resistive bolometer depends on Cρd. The C and ρ depends on the
material of the absorber. When the absorber material is fixed, small d provides high
sensitivity. However, the upper limit of the measurement range in terms of the wave
length of radiation is determined by ρd. For measurement of plasma radiation which
has X ray emission, d should be determined with a consideration of the measurement
range. Current resistive bolometers for the radiation measurement from high tempera-
ture plasma use a gold absorber with a thickness of several micro meter to measure a
large part of the radiation which includes X-rays.

The incident power on the resistive bolometer is determined as a line integrated
value of the emission from the plasma along a sight line. The resistive bolometer is
mainly used for the total radiation estimation from the line integrated power. The re-
sistive bolometer is often used with a 1-D array of detectors. The measured data from
multiple arrays of resistive bolometers has also been used in two dimensional tomogra-
phy measurement[1] [2]. However, because several wires with vacuum feedthroughs are
required for every channel, a huge channel array is difficult to realize.
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In LHD, four resistive bolometer arrays have been installed on the outboard side
of 6.5-L diagnostics port (20 channels), the inboard side of the 6.5-L diagnostics port (12
channels), the 8-O diagnostics port (16ch) and the 3-O diagnostics port (4 channels).
One channel of these resistive bolometers is composed of an open detector and a blinded
detector which is used as a reference channel as shown in Figure 2.2. Absorbers for
resistive bolometers are made from 4µm gold foil. The maximum time resolution is
10ms. The sensitivity is 10 µW/cm2 .

2.1.3 AXUVD

The absolute Extreme Ultra Violet photodiode (AXUVD) is a measurement instrument
using photo diodes. When photodiode are illuminated by radiation, the photodiode
generates the charge per second, Q,. The charge, Q, is given as [3]

Q = QE ×Nphotons(λ), (2-1-3)

where QE is the conversion efficiency of the photodiode with a particular wavelength
and Nphotons(λ) is the number of the incident photons per second with the particular
wavelength λ. With the charge, Q, the incident radiation power, P , as a function of the
wave length is given as [3]

P (λ) =
Q× Ep
QE

, (2-1-4)

where Ep is the energy of a photon with the wavelength, λ, in electron volts. The
AXUVD also requires 1-2 wires per channels. Therefore the AXUVD is not suitable for
a huge array.

In LHD, AXUVD are used to measure soft X-ray (SX) and ultra violet (AXUVD)
radiation from impurity ions and MHD activities. Seven 20ch AXUVD arrays are in-
stalled in the 3.5-U (SX ×2 and AXUV ×1), 6.5-U (SX ×2) and 8-O (SX ×2) diagnostic
ports.

2.1.4 IR imaging Video Bolometer (IRVB)

An IR imaging video bolometer[4] is a measurement instruments for the radiation from
plasmas with the pinhole projection principle. The IRVB consists of an aperture, thin
metal foil and IR camera. When the radiation irradiates the IRVB foil through the
aperture, the 2D temperature distribution is formed on the foil. The 2D temperature
distribution is measured by the IR camera. The distribution of incident radiation power
is calculated from the measured 2D teperature distribution. It is useful for the measure-
ment of the radiation intensity and spatial distribution. The IRVB has the advantages
of the large number of channels and simple components in the vacuum vessel. The ad-
vantage in the number of channels is suitable for the 3D measurement in this thesis.
Therefore, the IRVB is chosen as the main measurement instrument in this thesis. The
details of the IRVB are described in the next section.

2.2 IRVB measurement

The concept of the IRVB was proposed by B. J. Peterson [5]. The IRVB had been
manufactured and installed in LHD since the 3rd experimental campaign of LHD(1999-
2000). The number of installed IRVBs in fusion devices has been gradually increased.
IRVBs have been used in LHD[6], JT-60U[7] and KSTAR with the thin bolometer foil
which is made from Au as a screen of the pin-hole projection.
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2.2.1 Heat equation on IRVB foil

When the plasma radiation is incident on the foil through the aperture, a 2D temperature
distribution is formed on the foil and measured by an IR camera which is placed out of
the vacuum vessels. The radiation power which is absorbed by the foil is given in terms
of the temperature distribution on the foil by the following heat diffusion equation.

−Ωrad + Ωbb +
1

κ

dT

dt
=
∂2T

∂x2
+
∂2T

∂y2
(2-2-1)

Ωrad =
Pfoil
ktf

, (2-2-2)

Ωbb =
εσSB(T 4 − T 4

0 )

ktf
(2-2-3)

where T is the two dimensional temperature distribution on the foil, tf is the foil thick-
ness, k is the thermal conductivity, σSB is the Stefan-Boltzmann constant, ε is the
emissivity of the foil, T0 is the back ground temperature and κ is the thermal diffusiv-
ity of the foil. The incident radiation power, Pfoil, on the foil is obtained by solving
Equation 2-2-1 as an output of the IRVB measurement.

2.2.2 Characteristics

As for the mechanical characteristics of the IRVBs, the in-vessel and out-vessel compo-
nents of the IRVB are not connected with any electrical wires. These components are
connected with just the IR camera measurement of the foil. This characteristic sim-
plifies the system and components for IRVBs. The performance of the IRVB, such as
time resolution, strongly depends on the performance of the IR camera. Current typical
IRVBs show time resolutions of 20-40ms.

As for the characteristics on the output of IRVBs, IRVBs provide the integrated
radiation intensity of a large number of channels as a radiation image and the number
of channels can be changed after the measurement within the resolution of the heat
calculation. The integration is performed within the sight of each channel which has a
pyramid beam shape. The characteristics provide large amounts of information on the
plasma radiation, meanwhile, detailed considerations for the radiation structure require
the accurate evaluation of the integration path that is with in the sight of each channel.

2.2.3 Previous IRVB studies in LHD

When solving Equation 2-2-1 to obtain the power distribution of the plasma radiation
on the foil, the foil thickness tf , emissivity ε, the thermal diffusivity, κ, and the thermal
conductivity, k, on the foil are required. However these parameters are not uniform
across the foil. So, the evaluations of these parameter’s distributions are essential to
calibrate the absorbed power from the temperature distribution on the foil. Therefore,
evaluation techniques for foil parameters distribution is required for a quantitive IRVB
measurement. In early IRVB studies IRVB foils were assumed as uniform and typi-
cal foil parameters are used in Equation 2-2-1. This assumption provides error in the
measurement result. Therefore IRVB measurement was mainly used as a qualitative
measurement. As a qualitative measurement, IRVBs are used for qualitative studies
of radiation phenomena. For the study of radiation collapse, IRVB measurement had
shown an asymmetric collapse which started from inboard side of the plasma[9].
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In recent studies, the technique for evaluation on the distributions of several foil
parameters has been developed. The distribution of the thermal diffusivity has been
evaluated with LED illumination [10] and laser irradiation [11]. However, two parame-
ters, foil thickness and emissivity, have not been evaluated for quantitive measurement.
The evaluation of the two parameters is required to acheave a quantitive measurement.

2.2.4 Requirement for IRVB improvement

The measurement range of the photon energy for the IRVB is determined by the ability
of the IRVB to stop high energy photons. An improvement of the ability which is
determined by the foil material and thickness is required for future use on next-generation
fusion devices such as ITER . An improvement on the performance of the IRVB such as
sensitivity is also required for the 3D measurement which is described in a later section.

The Eq. 2-2-1 has four physical parameters of the foil. These parameters affect
the performance of the IRVB. The thermal diffusivity, κ, and thermal conductivity, k,
are determined with respect to the material of the foil as the thermal characteristics.
The two parameters significantly effect the sensitivity and the time resolution of IRVBs.
Therefore, the evaluation and selection of the foil material is very important for IRVB
measurement. A comparison between thin Au and Pt foils has been made [12]. The
study indicates that the Pt foil has higher sensitivity than the Au foil. However, other
foil materials and thickness have not been evaluated systematically. It is necessary to
evaluate and select the best foil material.

The 3D radiation measurement requires absolute values of the incident radiation
power on IRVB foils, in other words, quantitive IRVB measruements are necessary. To
acheve the quantitive measurement, the evaluation of the distribution of the un-evaluated
foil parameters, the foil thickness tf and emissivity ε, are required.

2.3 Flow of study

The purpose of this thesis is the development of 3D measurement tools for the evolution
of the radiation structure during radiation collapse. Because the evolution is expected
as a three dimensional change, measurement data which has the three dimensional in-
formation of radiation is required. The IRVB which can obtain the information from
a three dimensional radiation structure as a two dimensional projection image, is em-
ployed as the main measurement instrument. To obtain three dimensional information
from a two dimensional projection image, accurate understanding of the relation of these
is strongly required. Therefore, in this thesis, improvements of the IRVB measurement
and calculation of fields of view for IRVBs have been carried out to clarify the accu-
rate relation between the three dimensional radiation structure and a two dimensional
projection image. With the relation, two methods for three dimensional analysis, “3D
algebraic inversion” and “3D function model fitting”, have been developed and applied
for investigation of radiation collapse.
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Figure 2.1: Sight lines for resistive bolometers on 6.5L diagnostics port [8]
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Figure 2.2: Picture of the resistive bolemeter array (photo by B. J. Peterson)
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3 Hardware installation and improvement

In this thesis, IR imaging video bolometers (IRVBs) have been used for radiation mea-
surement. The IRVBs have been installed and improved as described in the following
chapter.

3.1 IRVB installation in LHD

3.1.1 LHD

The Large Helical Device (LHD) located at the National Institute for Fusion Science
(NIFS) is the largest helical device in the world. The LHD has been constructed to
demonstrate the high performance of a helical plasma in a reactor relevant plasma regime.

For LHD, a pair of super conducting helical coils with the numbers of the toroidal
and poloidal period l/m = 2/10 is employed to generate the magnetic field. The major
and minor radii of the helical coils are 3.9m and 0.975m, respectively. The major and
minor radii of the plasma are 3.9m and 0.5-0.65m, respectively. The maximum magnetic
field produced by the helical coils is about 3T at R = 3.9m. As heating systems, 8
systems of Electron Cyclotron Heating (ECH) with a total heating capability of 2.5MW,
3 systems of Ion Cyclotron Resonance Heating (ICRH) with total heating capability 3
MW and 5 systems of Neutral Beam Injection (NBI) with a total heating capability of
23MW are installed in LHD. These heating systems are used in combination for each
experiment[1].

Structure of LHD

The LHD has 10 toroidal sections with each having 36 toroidal degrees, and each section
has several diagnostics ports for measurement instruments. All toroidal sections have
upper (U), outer(O) and lower (L) diagnostics port. Additionally, the 1st, 6th, 7th
and 10th sections have a tangential (T) port. Installation locations for measurement
instruments are confined to the inside of these diagnostics ports.

3.1.2 IRVB installation

For previous IRVB measurements, three IRVBs had been installed at the 6-T port,
the 6.5-U port and the 10-O port on the LHD. To enhance the measurement direction
of the IRVB measurement and to increase the number of the IRVB channels for the
development of a 3D tomographic measurement, an IRVB has been installed at the
6.5-L port as described below.

IR camera and IRVB foil for 6.5-L IRVB

The performance of the IRVB depends on the performance of the IR camera and the
thermal characteristics of the IRVB foil. For the 6.5-L IRVB, a “SC655” IR camera
(microbolometer type, manufactured by FLIR, measurement range on wavelength 7.5-
13.5 µm, 50 frames per second with 640 × 480 pixels and 100 frames per second with
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640 × 240). is used as an IR camera with a ZnSe IR window (manufactured by Fuji
I-tec). The IRVB foil is manufactured from a 4µm Pt foil. The horizontal dimension of
the foil is 150mm×110mm. The foil has been constructed with a procedure described in
Section 3.1.3. The magnetic field of the lower diagnostics port is expected to be higher
than that of the outer and tangential port due to nearby superconducting coils. The
“SC655” has a higher resistance to the magnetic field than IR cameras that have an
Indium Antimonide detector type, because IR cameras that have the microbolometer
type do not require any extra mechanical cooling. Therefore, the “SC655” IR camera
has been chosen as the IR camera for 6.5-L IRVB.

Magnetic shielding box

The “SC655” IR camera has a higher resistance to the magnetic field than IR cameras
which have mechanical cooling. However the uncovered “SC655” also can not be oper-
ated in an environment which has a high magnetic field. A magnetic shielding box has
been employed to reduce the load of the magnetic field on the IR camera.

The shielding box has been made from electromagnetic soft iron. The external
size of the shielding box is 200 × 200 × 470.The shielding box has a double wall. The
thickness of the inside-wall is 10mm and outside-wall is 6mm. For IRVB measurement,
all components of the IR camera are confined in the shielding box.

In-vessel components

The IRVB foil which plays the role of the screen of the pin-hole projection and an
aperture plate which plays the role of the pin-hole has been assembled in a metal pipe as
in-vessel components. The aperture plate has been designed in later section 4.2.2. The
metal pipe has been installed on a flange in the 6.5-L diagnostics port.

Setting for 6.5-L IRVB

The shielding box has been placed on a supporting rack which is fixed to the floor.
The IR camera see the IRVB foil from inside of the shielding box with a gold mirror
(φ100mm). Figure 3.10 shows a drawing of the setting of the 6.5-L IRVB.

Control system for 6.5-L IRVB

For the IRVB measurement, the IRVB should be remotely controlled from the control
room of the LHD. The obtained data should also be transferred to the control room.
Figure 3.12 shows the control system for the 6.5-L IRVB. The shielding box which
confines the IR camera components is placed at the 6.5-L diagnostic port. The obtained
signal is transferred by optical fiber with electric-optical conversion by a media link
convertor which is also confined in the shielding box. Optical fibers are connected to
an optical fiber assembly which is placed near the 6-T diagnostic port and has a direct
connection to the control room. The transferred optical signal is converted to the electric
signal with a media link convertor and introduced to a PC for control in the control room.

3.1.3 Construction of IRVB foil

An IRVB needs a thin metal foil as a screen of the pin-hole projection. IRVB foils are
constructed by the following process. The IRVB foil is made from a thin Pt foil which is
chosen by a selection described in Section 3.2. Regarding the 6.5-L IRVB, the dimensions
of the Pt foil are 150mm×110mm×0.0025mm. The foil is sandwiched by copper frames
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for housing, which are shown in Figure 3.14. The thickness of each copper frame is 2mm,
therefore the heat capacity of copper frame is much larger than that of the foil. The
copper frames play the role as a heat sink to provide the boundary condition that the
frame temperature is constant. The foil and copper frames are blackend to approximate
their surface to an ideal blackbody using the carbon spray “Aerodag G” (manufactured
by Acheson) The spray contains fine carbon particles and the isopropyl alcohol as a
carrier. The blackened foil is illuminated using a 500W light to evaporate the isopropyl
alcohol. This foil is used as an IRVB foil.

3.1.4 Foil calibration

For the IRVB measurement, data of the foil parameters are required. The foil parameters
are not same as the typical values of the foil material, because of the forming processes
of the thin foil reduces the thermal conductivity and the blackening processes provides
high emissivity and less thermal conductivity. When typical values are used for the foil
parameters, the resulting measurement can have a large error.

IRVB foils also have non-uniformity of their parameters on the foil. This non-
uniformity is also introduced in the construction process, such as blackening by carbon
spray introducing irregularity on thickness of the deposited carbon, stretching in the
forming process of the foil leads to non-uniformity of the thickness and small holes.
The non-uniformity results in errors in the results of IRVB measurement with miss-
evaluation on the terms of Equation 2-2-1 as described on Section 2.2.4. The non-
uniformity should be evaluated as effective foil parameters to avoid the miss-evaluation.
In previous research, the uniformity is evaluated just for the foil thickness. However, the
evaluation technique is a rough estimation with an assumption that the temperature on a
foil pixel foil is not affected by the thickness on the adjacent pixel. The emissivity, which
plays an important role in the loss of heat from a thin foil, is also not evaluated in the
evaluation. This assumption and the lack of the evaluation provide a possibility of error
in the IRVB measurement. To solve these non-typical and non-uniformity parameters
problems, a new evaluation technique for the non-uniformity of the foil parameters is
developed and applied on the foil as described later in Section 3.3, as a foil calibration
which calibrates between the temperature distribution and the incident radiation on the
foil.

3.1.5 IR camera and window calibration

In IRVB measurement, the incident radiation power on the foil is calculated from the
temperature distribution measured by an IR camera. When an object is heated up, the
object radiates the radiation which power is depending on the temperature, T , and the
emissivity of the object. When the object has the emissivity which is close enough to 1,
i.e. the object is a black body, the spectral radiant power, Ebλ, from object is based on
the following Plancks-law Equation [2] [3].

Ebλ =
2πhc2

0

λ5(exp( hc0λkT )− 1)
, (3-1-1)

where h(= 6.6256× 10−34J · · · ) is the Planck constant, k(= 1.3805× 10−23J/K) is the
Boltzmann constant, and c0(2.998× 108m/s) is the light speed in vacuum. The spectral
radiant power, Ebλ is the radiation power from a black body as a function of wavelength.
The total radiation power from the object is obtained with following Stefan-Boltzmann
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law Equation.

Pobj =

∫ ∞
0

Ebλdλ = σT 4. (3-1-2)

The σ(= 5.67 × 108W/(m2 · K)) is the Stefan-Boltzmann constant. The IR camera
converts the obtained total radiation power from the object into a digital level which is
in arbitrary units. When the temperature of the object is calculated from the digital
level, a transformation coefficient to the temperature from digital level is required. The
obtained radiation by the IR camera changes with the distance from the object and the
attenuation ratio of the path between the object and the IR camera as

Pcam =
PobjDA

4πl2
, , (3-1-3)

where Pcam is the obtained radiation by the IR camera, D is the attenuation ratio which
is integrated over the whole path of the IR radiation, A is the area of the lens of the IR
camera. The transformation coefficient depends on the distance from the object and IR
camera and the emissivity of the object and the attenuation ratio of the path. The IR
camera calibration is carried out to obtain the transformation coefficient with the same
measurement setting with the actual IRVB measurement.

In the IR camera calibration, the temperature of a blackbody calibration source
[M345 Blackbody calibration source, manufactured by MICRON ] which is shown in
Figure 3.16 is measured by an IR camera while changing the temperature considering
the temperature range of the actual IRVB measurement. The surface of the calibration
source can be assumed to have the same condition as the IRVB foil which surface is
blacken by carbon. The distance between the IR camera and the calibration source is
fixed at the same distance with the actual measurement and an IR window is placed
in front of the IR camera. Figure 3.17 shows an IR calibration result for the 6.5-L
IRVB with an IR camera (SC655 IR camera, manufactured by FLIR) and ZnSe IR
window(IR window, manufactured by Fuji-Ideck). The distance between the IR camera
and the IR window is 295mm and between the IR window and the calibration source
is 1,689mm. The digital level of the plots, I, in Figure 3.17 are curve-fitted with the
following quadratic function and fitting coefficients a0, a1 and a2.

I = a0T
2 + a1T + a2 (3-1-4)

In this case, the obtained coefficients are a0 = 0.7812, a0 = −320.88 and a2 = 40924. The
transform function into temperature from the digital level is obtained with a quadratic
formula using these fitting coefficients as

T =
−a1 +

√
a2

1 − 4a0a2

2a0
. (3-1-5)

The obtained transform function is used in the actual IRVB measurement.

3.1.6 Incident power analysis from IR camera image

In IRVB measurement, the power density of incident radiation on the IRVB foil is calcu-
lated from a sequence of IR camera images which have a digital level as their unit. This
calculation has several following processes, and these processes are carried out with the
foil part in the IR camera image by the software IDL. At first, a noise filtering process
is applied on the digital level of every IR camera pixel. A discrete Fourier-transform
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is performed on the time evolution of the digital level at a camera pixel using an FFT
routine as

G(k) =

N−1∑
i=0

I(i)exp(−j 2πki

N
) (0 5 k 5 N − 1), (3-1-6)

where G(k) is Fourier spectrum, I(i) is digital level on the pixel, i is the index of the
frame number, k is the frequency, N is the total number of samples and j is an imagi-
nary number. To remove the noise spectrum from the Fourier spectrum, the following
Butterworth filter of 5th order is applied with the Nyquist frequency, fn = 50Hz. The
kernel of the filter, K(k) and the filtered digital level are obtained as

K(k) = 1/(1 + (k/50)10), (3-1-7)

If (i) =
1

N

N−1∑
k=0

K(k)G(k)exp(j
2πki

N
), (3-1-8)

Secondly, the filtered digital levels, If (i), with the IR camera pixel are resampled with
IRVB pixels which have the dimensions 5mm × 5mm (for 6.5-U and 6.5-L IRVB) or
2.5mm × 2.5mm square (for 6-T and 10-O IRVB). For the 6.5-L IRVB, the digital level
image with camera pixels (200×100 camera pixels) is converted into a digital level image
with IRVB pixels (15 × 11IRVB pixels). Thirdly, the image of the filtered digital level
with IRVB pixel is converted into an image of the 2D temperature distribution using
Equation 3-1-5 and the transform coefficients described in Section 3.1.5. Finally, the
power density of the incident radiation on the foil is calculated from the 2D temperature
distribution. This calculation is based on Equation 2-2-1. Equation 2-2-1 can be written
with a discretization process and Crank-Nicolson method as

Pfoil(x,y,t) =− ktf (
T(x−1,y,t) − 2T(x,y,t) + T(x+1,y,t)

2∆x
+
T(x,y−1,t) − 2T(x,y,t) + T(x,y+1,t)

2∆y
)

+ ε(x,y)σSB(T 4
(x,y,t) − T

4
0 )

+
ktf(x,y)

κ(x,y)
(
T((x,y,t+1)) − T(x,y,t)

∆t
),

(3-1-9)

where T(x,y,t) is temperature on the foil, x and y are indices of the IRVB pixel, t is an
index of time, ∆X and ∆Y are the pixel size of the IRVB with horizontal and vertical
dimensions, respectively and ∆t is the time step of the IRVB measurement. Equation
2-2-1 can’t be applied directly to pixels on the foil edge, because of the temperature
on the outside of the foil is not measured. Equation 2-2-1 is applied to edge pixels
with an assumption that the temperature on the outside of the foil is the background
temperature, T0.

3.2 Improvement for IRVB (foil material)

In the IRVB measurement, the material and the thickness of the foil have a large influence
on the performance of the IRVB such as the sensitivity and the time resolution. In a
previous study, Au was chosen as the foil material. However, Au has a high neutron
cross-section which leads to transmutation to Hg, therefore it is not suitable for the
IRVB foil in a fusion reactor. Therefore, the foil material for the IRVB foil should be
re-considered. The foil material has not been evaluated systematically. In this section,
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candidates of the IRVB foil material have been evaluated and the best material among
candidates has been selected to improve the performance of the IRVB.

3.2.1 Requirement for foil

IRVB foils must absorb high energy photons from plasma radiation. When photons
entered an IRVB foil, photons lose their population as they move through in the direc-
tion of the thickness with the energy exerted on the foil. The attenuation ratio on the
population of photons with the pathway length, depends on the foil material and the
energy of the incident photons [5]. Therefore, the foil material and the thickness of the
foil is should be chosen with consideration of the photon energy from the plasma radia-
tion. The inverse of the sensitivity of the imaging bolometer with the absorbed energy
is given by the noise equivalent power density (NEPD)In terms of the foil materials, the
sensitivity depends on the thermal conductivity, k, thermal diffusivity, κ, and foil thick-
ness, tf . Also the foil temperature rise, ∆T , and the time constant for the temperature
rise/decay, τ , with incidence radiation are related by the following equation with the
case of weak radiation cooling.

1

SIRV B
∝ κ

ktf
∝ ∆T

τ
, (3-2-1)

The equation indicates higher ∆T and lower τ gives higher sensitivity on the IRVB.
Therefore, evaluation of ∆T/τ provides useful information to select the best foil material
which provides the highest sensitivity of the IRVB. Normally, ∆T and τ can be calculated
from k and κ which are obtained from a material database. However, in IRVB foil, k
and κ can be changed by the manufacturing process of the IRVB foil. Therefore the
foil material should be experimentally evaluated. In this section, candidates of the foil
material are evaluated with ∆T and τ .

3.2.2 Candidates of foil materials

In this study, Pt, Ta and W are employed as candidates for IRVB foils. Typical phys-
ical parameters of these materials are described in Table 3.1. However, these physical
parameter can be changed in manufacturing process of the foils. Therefore, these ma-
terials should be evaluated experimentally as manufactured foils. Criteria for selection
of candidates are higher melting temperature than the expected and planned working
temperature for the IRVB, high ∆T

τ which is a rough index for the sensitivity of the
IRVB foil and fine ability to stop high energy photons [4].

Table 3.1: Typical parameters of candidates for IRVB foil

Thermal conductivity Melting temperature Heat capacity Density Thermal diffusivity
(W/m ·K) (K) (J/kg ·K) (kg/m3) (m2/s)

Au 318 1064.4 129 19.3 0.127

Pt 71.6 1772.0 133 21.45 0.029

Ta 57.5 2996 140 16.6 0.020

W 173 3410 133 19.3 0.132
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3.2.3 Making of samples for thermal characteristics evaluation

15 small foils are made with the following process, as samples for evaluation from the
candidates with different thickness to evaluate their thermal characteristics. The nominal
thickness of the small foils are Au (1.0, 2.5, 3.0, 5.0, 7.0, 10.0 µm), Pt (1.0, 2.5, 5.0,
7.5, 10.0 µm), Ta (5.0, 7.5, 10.0 µm) and W (10.0 µm). Dimensions of the small foils
are 2cm × 2cm. Small foils are cut out from large metal foils which have 20cm x 20cm
dimensions. A measurement of the thickness of these small foils has been carried out
using two methods.

Measurement for foil thickness (average and local)

One of these methods is a measurement of the mean thickness by the weight of the foil.
The weight of the small foils is measured by a micro balance. The mean thickness, tf ,
of the foil is calculated as;

tf =
m

A
, (3-2-2)

where m is the measured weight of the foil and A is the area of the foil. The mean
thickness, tf , is used as the foil thickness in this section.

As another measurement method for the foil thickness, local thickness measure-
ment using (Scanning electron microscope) SEM is carried out to evaluate the local
variation of the thickness of the foil. In this measurement, the cross section of the foil
remaining from the process of cutting out the small foils is used. The cross section
of the foil is placed with a 45 degree mounting angle on the SEM stage and observed
using SEM. The thickness of the cross section is observed in the SEM image. This local
measurement is carried out at three points on every foil.

Attenuation thickness

The attenuation length which is the thickness where the total number of the incident
photons dropped to 1/e(= 63.2%) is depends on the foil material. When the maximum
absorbable photon energy for foils is defined as the maximum photon energy having less
than 36.8% of the incident photons penetrate the foil, as is shown as Figure 3.18, the
maximum energy for each foil sample can be calculated as Table 3.2. This parameter
should also be considered in comparison among the candidate IRVB foils.

The small foils are mounted in copper gaskets as shown in Figure 3.19, and then
small foils are blackened with carbon spray, “Aerodag G” (manufactured by Acheson).
The small foils are placed on the copper frame to make the small foil array as shown in
Figure 3.20. These mounted foils are used as the evaluation samples in this section.

3.2.4 Measurement of heat characteristics

The small foil array is placed in a vacuum chamber which is evacuated to less than 0.1
mTorr to remove the heat conduction cooling of the foil by air. Sample foils in the small
foil array are heated with a chopped HeNe laser and their temperature measured by an
IR camera to measure the thermal characteristics of the sample foil. The power of the
HeNe laser is 12.5mW at the foil surface, the wave length is 633nm and the diameter
of the laser spot is 1mm. The HeNe laser is chopped by a mechanical shutter with a
pulse in Figure 3.23. The period of laser chopping is 12s (6s irradiation and 6s chopped).
The used IR camera is an “OMEGA” IR camera (microbolometer type, manufactured
by INDIGO, measurement range in wavelength 7.5-13.5 µm, 30 frame per second and
120× 160 pixels). The IR camera is calibrated with the same procedure as described in
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Table 3.2: List of the evaluation samples. Thickness of the evaluated foils, tf , (a) nom-
inal, (b) average (from weight), (c) local (from SEM), (e) Thermal conduc-
tivity, k, (f) thermal diffusivity, κ, of the foil and (g) maximum energy of
stoppable photon.

Metal Foil thickness(µm) (e)k (f)κ (g)Photon energy

(a)Nom. (b)Ave. (c)Loc. (d)Var. W/(m ·K) ×10−6m/s KeV

Au 1 0.83 1.2 ±0.2 318 127 5.24

Au 2.5 0.96 2.3 ±0.5 ,, ,, 5.52

Au 3 2.7 2.5 ±0.3 ,, ,, 8.35

Au 5 4.88 6.5 ±1.1 ,, ,, 17.5

Au 7 7.14 6.5 ±1.5 ,, ,, 20.5

Au 10 12.2 11.5 ±1.1 ,, ,, 25.2

Pt 1 0.91 0.9 ±0.2 71.6 25.1 5.52

Pt 3 0.72 1.3 ±0.2 ,, ,, 4.98

Pt 5 4.69 7.8 ±1.8 ,, ,, 17.9

Pt 7.5 7.21 7.3 ±1.2 ,, ,, 21.2

Pt 10 10.2 7.2 ±2.0 ,, ,, 24.4

W 10 8.32 7.6 ±0.2 173 67.4 20.2

Ta 5 4.46 4.8 ±0.3 57.5 24.7 15.6

Ta 7.5 8.18 13.1 ±2.0 ,, ,, 18.2

Ta 10 6.79 9.8 ±3.3 ,, ,, 17.3

Section 3.1.5. The IR camera is placed in front of a ZnSe IR window on the chamber
at room temperature as shown in Figure 3.21. The IR camera signal is calibrated every
experiment using a small carbon plate with an electrically heated wire which is shown
in Figure 3.22.

Temperature measurement on center of foil

When the chopped laser is incident on the foil center, the foil temperature is rapidly
changed. The change of the temperature on the foil center is measured by an IR cam-
era. Figure 3.23 shows a pulse of the incident laser and the temperature rise from the
background temperature on the foil center. Curve fitting is performed on the measured
temperature change, Tc, with the following equation using a least square method with
software the EXCEL (manufactured by Microsoft).

Tc(t) = ∆T (1− exp(−
√
t

τ
)). (3-2-3)

This curve fitting provides two parameters, the time constant, τ , and the temperature
rise, ∆T , as the thermal characteristics. This heating, measurement and curve fitting
are carried out 20 times for each sample foil. The obtained parameters are used for
comparison of the thermal characteristics in this section.

Foil temperature with laser irrradiation

With the incident laser power on the foil surface, the heat diffusion equation on the foil
can be written with polar coordinates as
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{
ρc∂T1∂t = ∂

r∂r (ktfr
∂T1
∂r ) + Plaser (r ≤ r1)

ρc∂T1∂t = ∂
r∂r (ktfr

∂T1
∂r ) + Plaser (r1 < r)

, (3-2-4)

B.C. 
(r = r1) T1(r1) = T2(r1)

(r = r2) T2(r2) = T0

(r = r1) ∂T1(r1)
∂r = ∂T2(r1)

∂r

. (3-2-5)

T1: Temperature of foil inside laser spot
T2: Temperature of foil outside laser spot
T0: Background temperature (= Temperature of the gasket)
ρ: Density of foil (kg/cm3)
c: heat capacity of foil ((J/kg ·K) )
Plaser: Laser power density at foil surface(W/cm2)
r1: Radius of laser spot
r2: Radius of gasket
tf : Thickness of foil

When the foil temperature is in steady state, Equation 3-2-4 is written asT1(r) = Plaser
4ktf

(r2
1 − r2) +

Plaserr
2
1

2ktf
ln r2

r1
+ T0 (r ≤ r1)

T2(r) =
Plaserr

2
1

2ktf
ln r2

r1
+ T0 (r1 < r)

, (3-2-6)

Temperature rise, ∆T , can be written with Equation 3-2-6 and r=0 (center of laser spot)
as

∆T = T1(0)− T0 =
Plaser
4ktf

(r2
1) +

Plaserr
2
1

2ktf
ln
r2

r1
(3-2-7)

3.2.5 Comparison and selection

Figure 3.24 and Figure 3.25 show the temperature rise, ∆T and time constant of the
temperature rise/decay at the center of the foil versus foil thickness, respectively. Error
bars in these figures are defined as the standard deviation of the measurement results
with 20 measurements on each sample. For the same material, thinner foils show a higher
temperature rise, ∆T , than thicker foils. For the same thickness foil, the Ta foil has the
largest temperature rise among the candidates. Ta has the smallest thermal conductivity,
k, among the candidates without the influence of carbon coating. Therefore, these results
are consistent with Equation 3-2-7. The time constant, τ , of each material is in order
from the shortest to the longest, Au,Pt,Ta, and W foil. However there is no observed
strong dependence of the foil thickness up on the time constant. The index of the
sensitivity of the IRVB foil, ∆T/τ , is also evaluated. Figure 3.26 shows the index of
sensitivity of IRVB foil versus maximum energy of the stoppable photon by sample foils
which is determined by foil material and thickness. For the same stoppable energy, Pt
foil has the largest value of ∆T/τ in all regions of the evaluated range on the stoppable
energy. This behavior is consistent with theoretical prediction. Figure 3.27 shows k/κ
which is proportional to ∆T/τ as shown in Equation 3-2-1. In experimental results, the
value of ∆T/τ for the Pt foil is larger than twice that Au which is the conventional foil
material. This result indicates, when foil thickness is determined with the target photon
energy of the radiation, the Pt foil provides a larger sensitivity for the IRVB which is
twice the conventional one without the dependence on the target photon energy. With

28



the results of this comparison, the conclusion is that Pt is the best material among the
evaluated candidates and it provides more than twice as much sensitivity for the IRVB.
Pt is used in the following section as the foil material.

3.3 Improvement for IRVB (foil calibration)

When the incident radiation power on the foil is calculated using the 2D temperature
distribution, 2D distributions of the foil parameters are necessary which are the foil
thickness, tf , and the foil emissivity, ε, with the resolution of IRVB pixel. As a calibration
between the incident power of radiation and the 2D temperature distribution, evaluation
of the distribution of the foil parameters are carried out as described by the procedure
in this section [6]. Because the foil is not considered as a multi layered foil in Equation
2-2-1 with two dimension, the effective thickness and the effective emissivity for the 2D
calculation are required. The effective thickness and the effective emissivity are defined
as parameters at which a pure Pt foil shows the same heat response with the evaluated
foil. The foil calibration described in this section provides the effective thickness and
the effective emissivity. In this calibration, the foil is divided into IRVB pixels or pixels
which have the twice size of the IRVB pixel, and an assumption that the thicknesses and
emissivity of these pixels are uniform in each pixel, is employed. In this section, a foil
has the dimension with 9cm × 7cm × 2.5µm(nominal value), and pixels having double
the IRVB pixel size are used for the description of the calibration procedure.

3.3.1 Calibration experiment

The foil calibration is carried out in a vacuum chamber which is evacuated to less than
0.1 mTorr to remove the heat conduction cooling of the foil by air. The evaluated foil is
placed in the chamber and irradiated with a laser. The laser is a HeNe laser. The power
of the HeNe laser is 11.5mW at the foil surface, the wave length of the laser is 633nm and
the diameter of the laser spot is about 0.6mm. When a 2D temperature distribution is
formed on the foil, the temperature distribution is measured by a IR camera which is a
SC4000 camera (manufactured by FLIR, Indium Antimonide detector type, wavelength
of 3-5µm, 420 frame per second and 320 × 256 pixels). The laser irradiation points
are located on the center of the each pixel. The blue crosses in Figure 3.28 show the
irradiation points and the red numbers show the irradiation point numbers.

3.3.2 Calibration flow

Figure 3.30 shows the calibration flow chart. This calibration procedure has three steps.
As a first step, the 2D temperature distribution on the evaluated foil under laser irra-
diation is measured by the IR camera and curve fitted to a fitting function with three
fitting parameters at all irradiation points. The fitting function is following modified
Gausian function.

T (r) = T0 + ∆T exp(
−(r/w)2α

2
) (3-3-1)

The ∆T is the peak temperature of temperature distribution, r is the distance from the
laser spot, w is the width of the peak and α is a shape factor.

As a second step, the temperature distribution is simulated using a finite element
method (FEM) by changing the foil thickness in the FEM model. A curve fitting is
performed to the simulated temperature distribution with the same fitting function and
two fitting parameters and a fixed α which is obtained in the first step. The obtained
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fitting parameters are compared between the simulated temperature and measured one
to estimate the effective foil thickness at all irradiation points. As a third step, the
same procedure as the second step is carried out but changing the foil emissivity to
estimate the effective emissivity. The second and third steps are repeated as an iteration
with feedback of the estimated distribution of the effective thickness and the effective
emissivity into the FEM model until the estimated parameters converge to a distribution.

3.3.3 Comparison for foil parameters estimation

FEM model

In this calibration, the simulated temperature distribution with a 2D FEM model is
employed for the comparison with the measured temperature distribution. All FEM
analyses are carried out with the software ANSYS(developed by ANSYS). The FEM
model is divided as described in Figure 3.28. The divisions are not the elements for the
FEM analysis, the FEM analysis is performed with much smaller elements than the ones
described in Figure 3.28. The foil thickness and the emissivity of the FEM model are
changed individually for each division described in Fig.2. As the boundary condition of
the FEM model, the temperature at foil edge and environment temperature for radiation
simulation is fixed to room temperature (300K). The thermal conductivity of the foil is
assumed as that of pure Pt, 71.6 W/m ·K. The initial thickness and emissivity is set as
2.5µm and 0.91 before the iterative calculation. The laser irradiation is simulated as a
surface load. .

Comparison for thickness estimation

In the second step, described above with the 1st iteration, the foil temperature with laser
irradiation is simulated using the initial emissivity with slight changes of the thickness.
The simulated temperature is curve fitted to obtain the fitting parameters ∆T and w,
at all irradiation points. The foil thickness at each irradiation point is estimated from
these data by means of linear fitting in Figure 3.31(left), which shows the relation of
∆T/w with 1/ktf . Next, the FEM analysis was conducted using the obtained thickness
distribution with a slight change of the emissivity. Figure 3.31(right) shows the relation
of ε with the peak width w. A liner fitting is performed to this plot and projected
the measured w on the line to estimate the emissivity at the irradiation point. The
estimated distribution of the emissivity is given to the FEM model. The processes
described above are reiterate until the estimated parameters converged to a distribution.
The coefficients of determination between the nth estimated distribution and (n− 1)th
estimated distribution is used as a criteria of the convergence. When the coefficient is
larger than 0.95, the calibration analysis is judged as convergent.

3.3.4 Evaluated distribution of foil parameters

Figure 3.32 and Figure 3.33 show the behavior of the estimated effective thickness and
effective emissivity. It shows that the estimated parameters converged with 5 iterations.
When the evaluated distributions of effective parameters are given to the FEM model,
the temperature distribution with the incident laser power is reproduced as Figure 3.34.
It shows the calculation with the evaluated effective parameters well reproduces the
measured temperature. Figure 3.35 and Figure 3.36 shows a 2D profile of the evaluated
effective thickness and the effective emissivity. These figures show that the foil thickness
and emissivity evaluated by this calibration do not correspond to the nominal values
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because the FEM model did not take the influence of carbon coating and structural
damage on thermal conductivity into account, and nominal thickness can have large
error with manufacturing process of the foil. However, effective thermal response of
the foil for the measurement of incident power distribution can be assessed with the
estimation as shown in Figure 3.34. These results indicate that the evaluated effective
parameters can be used as the calibration factor between the incident power and the
formed temperature distribution. In the following chapters, this calibration is performed
to evaluate the effective thickness and the effective emissivity on IRVB foils.

3.4 Imaging spectrometer

An imaging spectrometer is a spectrometer with a two dimensional detector array. The
imaging spectrometer has been installed on the 7-O diagnostics port in LHD with the
direction viewing the divertor plasmas. It has also been used for radiation measurement
to identify the difference in behaver of radiation among impurities and fuels. The imaging
spectrometer has a total of 130 fibers array (10 × 13). Radiation from the plasma is
focused on each fiber by a lens unit. The array provides a 130 channel array as in Figure
3.36. The radiation focused on the fiber is transmitted to a spectrometer and analyzed
with each spectrum. The output of the imaging spectrometer had never been calibrated
by any absolute calibration. In this study, an absolute calibration has been carried out.
The detail of the absolute calibration is described in the next chapter. The calibrated
imaging spectrometer is supplementarily used to measure radiation collapse.

3.4.1 Calibration analysis for imaging spectrometer

In this thesis, the imaging spectrometer which is installed in the 7-O diagnostics port
is used to support the developed 3D measurement for radiation collapse. Measurement
data of the imaging spectrometer is absolutely calibrated with the following processes.

In imaging spectrometer measurement, measured data by the imaging spectrom-
eter is outputted as a digital level which is an arbitrary unit on the CCD image. The
digital level should be converted to incident radiation power on the lens with a calibra-
tion factor. A calibration analysis has been carried out to obtain the calibration factor.
To take reference data for the calibration analysis, emission from an integrating sphere
is measured by the imaging spectrometer as shown in Figure 3.38. The calibration data
is taken with an exposure time for the CCD of 5s, known incident power for every wave-
length Pcalib,λ and no diaphragm on the incident power. The measured data by the
imaging spectrometer is obtained as a raw data image which is shown in Figure 3.39. In
the Figure, the data of the channel appears as a spot. The X axis of the image is wave-
length and the Y axis is the index of the channel for the imaging spectrometer. Using
pixels in the image, the digital level of the i-th channel with a wavelength is written as

Qj,λ =

∑aj+∆a
a=a0

∑bλ+∆b
b=b0

S(a,b)

∆λ∆a
, (3-4-1)

where S(a,b) is the digital level at the pixel (x, y) = (a, b), aj and bj are the edge pixel of
the spot for the j-th channel, ∆a is the width of the spot with the unit of the pixel, ∆λ is
the width of the spot with the unit of wavelength and Qj,λ is the mean digital level of the
j-th channel and wavelength λ. The unit of Qj,λ is the digital level per nm(wavelength).
When the general calibration factor between the incident power Pλ and Qj,λ with a 1s
exposure time, a wavelength and no diaphragm is defined as A(j,λ), it can be given as
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∆tcalibPcalib,λ = A(j,λ)Q(calib,λ), (3-4-2)

A(j,λ) =
∆tcalibPcalib,λ
Q(calib,λ)

, (3-4-3)

where ∆tcalib(= 5s) is the exposure time for the calibration experiment. Equations 3-4-4
and 3-4-5 can be rewritten as a specific calibration factor Aexp(j,λ) for each experiment,
as

∆texpPexp,λ = Aexp(j,λ)Qexp,λ, (3-4-4)

Aexp(j,λ) =
A(j,λ)∆λ

∆texpDslit
=

∆tcalibPcalib,λ∆λ

∆texpDslitQ(calib,λ)
, (3-4-5)

where ∆texp is the exposure time for an experiment and Dslit is the diaphragm effect by
the slit. The specific calibration factor is calculated with each experimental setting and
used for the conversion to the radiation power from the digital level.

3.5 Summary of chapter

To develop a 3D measurement, the following improvements in hardware of the IRVB
have been carried out.

A new IRVB was installed at the 6.5-L diagnostics port in LHD. To improve IRVB
performance, candidates of the IRVB foil material (Pt, W, Ta ,Au) are evaluated in their
thermal characteristics with laser irradiation. The evaluation indicates Pt has the best
thermal characteristics among candidates and provides twice the sensitivity of Au which
was the material for previous IRVB measurements.

To acheave quantitive IRVB measurment, a foil calibration technique for the foil
thickness and the emissivity has been developed. The technique provides a distribution
of the parameters and makes the quantitive measurement available.
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Figure 3.1: Location of diagnostics ports in LHD. U-ports are placed on opposite side of
L-ports.
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Figure 3.2: A poloidal cross section of the LHD at φ = 0◦
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Figure 3.3: Outline drawing for 4 IRVB Fields of view(FoV)

Figure 3.4: FoV for 6.5-L IRVB
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Figure 3.5: FoV for 6.5-U IRVB

Figure 3.6: FoV for 6-T IRVB
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Figure 3.7: FoV for 10-O IRVB
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Figure 3.8: Drawing of 6.5-L shielding box
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Figure 3.9: Drawing of invessel components for 6.5-L IRVB
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Figure 3.10: Drawing of setting for 6.5-L IRVB
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Figure 3.11: Picture of 6.5-L IRVB
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Figure 3.12: System diagram for 6.5-L IRVB

42



Figure 3.13: Thin metal foil for IRVB foil

Figure 3.14: Copper frame for foil housing
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Figure 3.15: Blackened foil by carbon spray

Figure 3.16: Blackbody calibration source
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Figure 3.17: IR camera calibration result with IR camera (SC655) for 6.5-L IRVB

Figure 3.18: Maximum energy of absorbable photon versus foil thickness
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Figure 3.19: Mounted small foil with copper gasket
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Figure 3.20: Array of blackend small foils

Figure 3.21: Setting for measuement of heat characteristics
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Figure 3.22: Small heat source for IR camera calibration

Figure 3.23: Chopped laser pulse at foil surface
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Figure 3.24: Temperature rise from room temperature with laser irradiation versus foil
thickness
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Figure 3.25: Time constant of temperature rise/decay with laser irradiation versus foil
thickness
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Figure 3.26: Index of sensitivity of IRVB foil versus maximum energy of stoppable photon

Figure 3.27: Theoretical value of thermal characteristics
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Figure 3.28: Irradiation points on the evaluated foil

Figure 3.29: Setting for foil cariblation setting
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Figure 3.30: Foil calibration flow chart

Figure 3.31: Estimation from fitting parameters. For thickness (left) and emissivity
(right), at irradiation point 32(foil center). ∆Tm and wm are measured
values. tfe and εe are estimated values.
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Figure 3.32: Distribution of the evaluated effective thickness on the IRVB foil

Figure 3.33: Distribution of the evaluated effective emissivity on the IRVB foil
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Figure 3.34: Temperature distribution with laser irradiation. Measured tempera-
ture(black), calculated temperature with evaluated parameters using new
calibration technique(red) and calculated temperature with evaluated pa-
rameters using conventional technique(blue)
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Figure 3.35: Estimated distribution of effective thickness
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Figure 3.36: Estimated distribution of effective emissivity
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Figure 3.37: Field of view and channels for 7-O imaging spectrometer. Red and yellow
lines are magnetic field lines. Black line is X point. Black dashed line is
LCFS.

Figure 3.38: Comparison between calibration and experiment
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Figure 3.39: Raw data image of imaging spectrometer
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4 Three dimensional tomographic analysis
for radiation measurement

In this chapter, tools for 3D radiation measurement are developed for utilizing IRVBs for
investigating the radiation collapse. IRVBs can observe the radiation integrated along
the sight of each channel which has a pyramid beam shape. Measuring the 3D profile of
the radiation source from the IRVB data requires accurate relations between these with
a consideration of the broadened lines of sight. In the following sections, a measurement
system with IRVBs is designed and examined. A complicated procedure of calculating
the projection matrix between the 3D helical object and IRVB pixels is established with
regard to the fields of view of the IRVBs and used for appropriating the geometrical
layout of IRVBs. With a selected geometry, numerical tools for 3D tomography are
developed in two approaches, that is, a straightforward algebraic approach of imaging
and a parametric model fitting approach for feature extraction. The effectiveness of the
tools is examined on some simulated projection data and also on typical experimental
data of LHD. The simulation code EM3-EIRENE is used as a standard. A method of
relative calibration among IRVBs is contrived for successfull 3D tomography.

4.1 EMC3-EIRENE impurity behavior model

EMC3-EIRENE is a code for simulating three dimensional edge transport in the equilib-
rium state of LHD plasma. The EMC3-EIRENE is a combination of the EMC3 code [1]
and the EIRENE [2] code. EMC3 handles the fluid equations of electrons and ions with
their energy and momentum. The EIRENE code is the transport code of neutral parti-
cles and based on the Boltzmann equation with collisional reactions such as ionaization
and recombination. The EMC3-EIRENE code can handle the behavior of particles and
facing components under the magnetic field.

In LHD, the EMC3-EIRENE code is used for the simulation of impurity transport
outside of the last closed flux surface (LCFS). The simulation provides several plasma
parameters and the emission from an impurity, such as the electron temperature and the
radiation from carbon with each charge state. Since the results of this simulation code
have a spatial resolution finer than the plasma voxels which are defined in Section 4.2, the
resolution is reduced to that of the plasma voxels. Also, in this thesis, the total emission
profile of carbon is used as a numerical phantom of the tomographic reconstruction test
and given a role as a standard of the radiation profile. In Figure 4.15 (Section 4.4)a
typical phantom is shown on its 2D profile in the vertical poloidal cross section of LHD
with the voxellation of 3D image region which is described in the next section. The
simulated profile has been calculated in the region without the divertor leg under the 3.9
m magnetic axis configuration, with an upstream electron density of 3.98×1019m−3, and
an upstream electron temperature of 1.51×102eV . The narrow structure observed in the
boundary region of plasma is an important test target for developing the tomographic
imaging system in both hardware and software.
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4.2 Measurement system with IRVBs in LHD

When 3D imaging is performed with measurement data that have information on the
spatially integrated profile of the object, the solution space and the observation space
should be defined. In the IRVB system of LHD, the solution space is a region of interest
defined in the LHD plasma, and the observation space is defined on the pixels of the
IRVB foils. The two spaces are correlated through a matrix called the projection matrix,
whose elements relate each plasma-voxel to each IRVB pixel. The projection matrix is
equivalent in substance to the fields of view (FoVs) of the IRVBs. From the standpoint
of numerical analysis, the measurement system is composed of these three parts.

4.2.1 Region of interest and voxellation

The region of interest in LHD plasma is divided into voxels having the following dimen-
sions in cylindrical coordinates: major radial, R, 5 cm (54 divisions); vertical, Z, 5 cm
(52 divisions); toroidal, φ, 1◦ (360 divisions) for a total of 1,010,880 voxels. This division
provides voxels of approximately cubic shape with about 5-centimeter sides. The width
of the thinnest part of the LHD edge ergodic region can be covered nearly by one of
these voxels. When the fields of view of the four IRVBs installed separately in LHD are
combined into a single 3D tomography system, assumptions are applied to the plasma
structure with an additional purpose of decreasing the size of the image reconstruction.

Firstly, the helical periodicity of the plasma structure is assumed in the toroidal
direction. In addition, the radiation source S(r, φ, z) in plasma is assumed to repeat
itself every half period of magnetic field (18 degrees toroidally) with a symmetry of

S(r, φ, z) = S(r, π/5− φ,−z) (4-2-1)

Under this assumption, the fields of view of IRVBs located at different toroidal posi-
tions can be combined in image reconstruction as if all of them exist in a single half
field period. Secondly, plasma-voxels in the region where no plasma is expected, such
as near the wall, is neglected by masking. The mask in each poloidal cross section
is an ellipse which will cover the radiation region expected from the EMC3-EIRENE
simulation. The total number of plasma-voxels is decreased to 323,760 by the masking
and furthermore, to 16, 188(= 323, 760/20) by the above assumptions of periodicity and
symmetry. Plasma behaviors consistant with the assumptions appear in EMC3-EIRENE
simulations. However, it has been reported that the assumptions are invalidated in some
plasma conditions of LHD such as discharges in which magnetic islands appear. There-
fore the above design of the region of interest cannot be applied to plasmas in such
kinds of discharges particularly with magnetic island configulations. In this thesis, the
plasma voxellation in the region of interest, which is relieved by masking and with the
assumptions, is used for 3D measurement.

4.2.2 Calculation of projection matrix for IRVBs

For the 3D measurement with the IRVB system, it is required to obtain a projection
matrix that correlates the region of interest with the IRVB pixels, which are defined on
the IRVB foils. Because each IRVB has a field of view with a pyramid beam, which is
introduced by a small aperture, the projection matrix cannot be handled simply as a
line integration along the sight path. The projection matrix is calculated as illustrated
in Figure 4.2 [4].

Firstly, the volumes of all the plasma-voxels seen by each IRVB pixel are calculated
as in Figure 4.2(a). In the present IRVB installations on LHD, the FoV of each pixel goes
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through a square aperture with 4mm or 8mm sides. The FoV is calculated by tracing
the sight-line every 1cm step, from the center of pixel to the center of aperture until
the line hits the first wall. The width of the FoV after passing through the aperture is
calculated as

w(i) = lap
i∆x− xc

l(ap−pix) − xc

xc =
lap−pixlpix
lpix + lap

,

(4-2-2)

where lap is the length of the aperture side, lpix is the length of the IRVB pixel side, lap−pix
is the distance between the aperture and the foil, ∆x(= 1cm) is the step size of tracing,
and i is the index of the step. When the small FoV volume of size (w(i) × w(i) ×∆x)
is in a plasma voxel, the volume is judged as a seen volume. This calculation requires
that the small FoV volume is sufficiently smaller in size than the plasma voxel in order
to provide sufficient accuracy. The width w(i) will become larger with the step number,
i. When w(i) become larger than ∆x, the FoV is divided into pieces with equal vertical
and horizontal widths. Secondly, the solid angles from the obtained small FoV volumes
to each IRVB pixel are calculated as in Figure 4.2(b). The purpose is to estimate what
percentage of the total emission at the small volume reaches the IRVB pixel. Because
some portion of the view from the seen voxel to the IRVB pixel is blinded by the aperture
edge, the solid angle Ω is calculated by removing the blinded angles.

After the first and second steps are carried out for all the IRVB pixels, the element
of the projection matrix which defines the influence of the emission from the n-th plasma
voxel to the m-th IRVB pixel is obtained as

hm,n =
∑
k

Vk,m,nΩk,m,n

4π
, (4-2-3)

where Vk,m,n is the volume of the k-th small FoV volume, Ωk,mn is the solid angle from
the k-th volume to the m-th IRVB pixel and k is the volume index on the inside of
the n-th voxel. When ∆x is small enough, the projection matrix is determined by the
aperture and pixel sizes, lap, lpix, the distance between aperture and foil, the position
of the aperture, and the position of the foil. Projection matrices are calculated for the
four installed IRVBs and combined in a single matrix with the assumption of helical
periodicity and symmetry given by Equation 4-2-1.

The projection matrix so-obtained provides two pieces of information. One of
these is the information about the influence of the emission at each plasma-voxel on
each pixel of the four IRVBs and is useful for tomographic analysis. The other is the
information about the total number of non-visible plasma-voxels, which are defined as
voxels that cannot be measured by any IRVBs. When the n-th plasma-voxel is non-
visible, the projection matrix has a property of

hn =
∑
m

hm,n = 0, (4-2-4)

since all the elements of the n-th column are zero. This equation means that no IRVB
has a FoV on the n-th plasma-voxel.

4.2.3 FoV design using projection matrices

Using Equation 4-2-4 as a criterion, the FoVs of four IRVBs have been designed to
diminish the number of non-visible plasma-voxels. When a 3D radiation distribution is
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reconstructed from IRVB images, it is desirable that all the plasma-voxels in the region
of interest are seen by at least one IRVB. The FoVs have been designed with the following
procedure. The projection matrix for each IRVB has been calculated repeatedly with
small changes in the aperture position and also in the distance between the foil and the
aperture. In this calculation, the sizes of aperture and pixel and the positions of foil
were fixed. The combinations of the aperture position and the foil-aperture distance
have been selected to make the total number of non-visible voxels nearly zero in the
combined projection matrix. For the selected combinations, the FoV of each IRVB and
the combined FoV are demonstrated in Figures 4.3 - 4.4 and Figure 4.5 in a binary plot
discriminating the non-visible voxels.

In these figures and in the subsequent figures, the 3D distribution in LHD is
plotted in a lexicographical sequence of poloidal cross sections with one degree increment
of toroidal angle, starting with φ = 0.5◦ at the upper left corner (vertical cross section)
and ending with φ = 17.5◦ at the lower right corner (horizontal cross section). The left
and right sides of the cross section are the inner and outer sides of the torus, respectively.
In Figure 4.5, one finds that a few voxels are still non-visible (black). These remaining
non-visible voxels are in the walls and do not have any significant influence on the image
reconstruction. Figure 4.6 shows the distribution of the total number of sight-lines that
pass through each voxel. The total number was obtained by counting non-zero elements
in the corresponding column of the projection matrix of each IRVB and by summing the
counts over four IRVBs. It is observed that the sight-lines are dense in the core region
of torus and sparse in the boundary region. The selected FoVs have been used in the
IRVB measurement.

4.3 Nonparametric inversion by algebraic methods

As an analysis tool for the 3D radiation measurement, the algebraic method of tomo-
graphic inversion has been developed. For this analysis, the measument system described
in Section 4.2 is employed as a 3D tomographic imaging system. The tomography system
provides 3,196 measurement data as pixel values of four IRVBs, from which a 3D radi-
ation profile is obtained on 16,188 plasma-voxels. Therefore, the system of tomography
is specified with a projection matrix having a large size of 3, 196× 16, 188.

4.3.1 Linear equation for inversion

When the source, sn, at the n-th voxel is measured with a system which has an influence,
hm,n, from the n-th source voxel to the m-th measurement data, the obtained data pm
is expressed as

pm =
∑
n

hm,nsn. (4-3-1)

The inverse calculation is a procedure to obtain a source profile from the measurement
data and used in various fields such as medical CT [5]. Let us adopt an N-dimensional
vector S, an M-dimensional vector P, and an M × N dimensional matrix H whose
elements are sn, pm and hm,n respectively. Then, Equation 4-3-1 can be conveniently
expressed in the following form:

HS = P. (4-3-2)
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S =

 s1
...
sN

 ,P =

 p1
...
pM

 , H =

 h1,1 · · · h1,N
...

. . .
...

hM,1 · · · hM,N

 (4-3-3)

In the case of the measurement system of the IRVBs, S is a plasma radiation profile
descretized with the plasma-voxels, P is a set of signals on IRVB pixels and H is the
projection matrix. Equation 4-3-2 can be considered as a linear equation for unknown S.
When the number of unknowns, N , is smaller than the number of equations, M , it is said
that the linear equation is “overdetermined”. With the opposite condition, it is said that
the linear equation is “underdetermined”. Generally, an underdetermined equation is
difficult to be “solved”. In this thesis, the tomography with the measurement system of
IRVBs is an underdetermined problem as far as the algebraic method are concerned. In
this chapter, the least squares approach [5], [6] is described only for the underdetermined
case of M < N .

4.3.2 Tikhonov regularization

Least squares method

With respect to Equation 4-3-2, the mean of the squared errors is written as

Λ(S) ≡ (1/M)‖HS−P‖2 = (1/M)(HS−P)T (HS−P) = (1/M)[ST (HTH)S−2PTHS+PTP]
(4-3-4)

for a projection matrixH and a data vector P that are disturbed with errors in evaluation
and measurement, respectively. Because the source profile S that minimizes the square
error Λ(S) is required in the least squares method, let us differentiate the objective
function Λ(S) with the vector S:

∂

∂S
Λ(S =

2

M
(HTHS−HTP). (4-3-5)

For the right side to be equal to a zero vector, we have

(HTH)S = HTP. (4-3-6)

which is the so-called normal equation in the least squares method. If the inverse matrix
(HTH)−1 existed, the least squares solution Ŝ would be given as Ŝ = (HTH)−1HTP
. However, whenever the linear equation 4-3-2 is underdetermined with M < N , the
inverse (HTH)−1 does not exist as detHTH = 0; the solution of Equation 4-3-5 is
indefinite. This situation leads us to the Tikhonov idea of minimization under constraint.

Pseudo-inverse solution and TSVD

The Singular Value Decomposition (SVD) of H is given as

H = UΣV T , (4-3-7)

U = [u1,u2, · · · ,uM], (4-3-8)

V = [v1,v2, · · · ,vM], (4-3-9)

Here U is an M × M matrix whose column vectors ui (left singular vectors) are or-
thonormal with uTi uj = δi,j , and V is an N ×M matrix whose column vectors vi (right
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singular vectors) are orthonormal with vTi vj = δi,j . The matrix Σ is a diagonal ma-
trix with diagonal elements σi (singular values), which are arranged in descending order
(σ1 ≥ σ2 ≥ · · · ≥ σM ≥ 0). When H is a square matrix and fully ranked, the solution of
Equation 4-3-2 can be obtained as

Ŝ = H−1P. (4-3-10)

However the inverse matrix H−1 never exists for the non-square matrix H. A generalized
method is to adopt the pseudo-inverse matrix H+ and to write the solution as

Ŝ+ = H+P. (4-3-11)

Here, H+ is produced from the SVD of H as

H+ = V ΞUT . (4-3-12)

where Ξ is a diagonal matrix whose diagonal elements are the reciprocals of the singular
values, 1/σi, and zeros for σi = 0 (smaller than the computer epsilon in practice).
Equation 4-3-11 can be written as a series expansion of the following form:

Ŝ+ =

M+∑
i=1

uTi P

σi
vi, (4-3-13)

where M+ is the number of non-zero diagonal elements of H+. It is noted that the
orthonormal vectors vi work as the bases of the source profile Ŝ+, and that the inner
products uTi P are the components of P in the directions of ui, that is, the orthonormal
vectors ui work as the bases of the projection data P. So, the expansion coefficients
uTi P/σi may be interpreted as the solution in U − V space that has been generated
by the SVD of the projection matrix H. Additionally, it is known that Ŝ+ is the least
squares minimal norm solution of the linear equation HS = P.

Apparently, this pseudo-inverse solution Ŝ+ is weak on the measurement noise
which is implicitly contained in P. When the noise is explicitly written by replacing P
with P + e, Equation 4-3-13 becomes

Ŝ+ =
M+∑
i=1

uTi (P + e)

σi
vi =

M+∑
i=1

uTi P

σi
vi +

M+∑
i=1

uTi e

σi
vi. (4-3-14)

The second term in the right side, which represents the effect of noise, tends to increase
when the singular value σi decreases faster than uTi e with the increase of i . Particularly,
in the pseudo-inverse solution, which uses all the singular values larger than the computer
epsilon, the noise will easily be enhanced. Therefore, the ratio of the maximal and
minimal singular value, σ1/σM , namely the condition number, is a useful parameter
to guess the strength of noise enhancement in the inversion. From this viewpoint on
Equation 4-3-13, truncating the solution Ŝ+ with an appropriate cut-off term number
Mc instead of M+(Mc < M+) looks useful to get a good effect of noise suppression.
This method of inversion is called the method of truncated SVD (TSVD)[7].

Advance to Tikhonov regularization

Another approach to avoid the noise effect is to take a formulation of minimization under
constraint. Let us consider that a cost function φ(S) should be minimized under the
constraint that the mean of the squared errors (1/M)‖HS−P‖ is equal to a constant.
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One may imply that the constant corresponds to the magnitude of the noise contained
in the measurement data P. With respect to the underdetermine equation HS = P, this
determination of the solution is called the regularization. The solution so-regularized s
obtained by minimizing the following Lagrange function Λ(S) in place of Equation 4-3-4:

Λ(S) = (1/M)‖HS−P‖2 + γφ(S), (4-3-15)

where γ is an unknown positive-valued constant. Contrary to the Lagrange theorem, the
unknown constant is attached to the second term in inverse problem theory and called
the regularization parameter. As the value of γ is increased, the effect of regularization
becomes larger. Also, the cost function φ(S) is often called the penalty function. When
the squared norm ‖S‖2 is chosen for φ(S), the regularization is called the Tikhonov
regularization [8]. The solution is obtained as follows.

∂

∂S
Λ(S) =

∂

∂S
[

1

M
‖HS−P‖2 + γ‖S‖2] =

2

M
(HTHS−HTP) + 2γS, (4-3-16)

For the right side to be a zero vector, we have an equation

(HTH +MγI)S = HTP. (4-3-17)

where I is the N-dimensional identity matrix.
In contrast to Equation 4-3-6, the inversion of the coefficient matrix in this ex-

tended normal equation becomes meaningful owing to the added identity matrix term.
Therefore, we obtain the solution

Ŝ = (HTH +MγI)−1HTP. (4-3-18)

With the singular decomposition of H in Equation 4-3-7, the solution can be rewritten
in the form of a series expansion

Ŝ =
M∑
i=1

wi(γ)
uTi P

σi
vi (4-3-19)

with

wi(γ) =
1

1 +Mγ/σ2
i

. (4-3-20)

In comparison with Equation 4-3-13, the meaning of Equation 4-3-19 is clear. From
the definition of the singular value series in SVD, it is noted that, with the increase of
i, wi(γ) decreases monotonically with the singular value σi. Accordingly, the Tikhonov
solution in Equation 4-3-19 is a modification of the truncated SVD solution, using the
window function wi(γ). When the coefficient matrix H is ill-conditioned with a large
condition number σ1/σM , wi(γ) decreases rapidly as a function of i and, as a result, the
large-i terms where the noise contained in P is enhanced otherwise are well truncated.
The same effect of noise suppression is obtained when the regularization parameter γ is
increased. While the singular value series σi of H is the property of the measurement
system of IRVBs, the regularization parameter γ should be appropriately chosen for a
good regularization of the solution. To choose the optimal value of γ, the Generalized
Cross Validation (GCV) is effective as a criterion [9]. The GCV is given by

GCV (γ) =
ε2(γ)

[1− 1
M

∑M
i=1wi(γ)]2

. (4-3-21)
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where ε2 denotes the mean square error between the projection data P (the set of IRVB
images) and the projection of the reconstructed profile Ŝ , that is,

ε2(γ) =
1

M
‖HŜ−P‖2. (4-3-22)

As a function of γ, GCV (γ) takes a minimum when the monotonical decrease of ε2(γ)
is compensated by a faster decrease of the denominator. The value of γ minimizing
GCV (γ) provides the optimal reconstruction Ŝ in a statistical sense. The Tikhonov
regularization with the criterion of minimum GCV is the standard method of inversion
and has also been used for nuclear fusion research [10] [11] [12].

Equation 4-3-19 also means that, as well as the pseudo-inverse and TSVD regu-
larizations, the Tikhonov regularization keeps the linearity of Ŝ as a function of the data
vector P. Once the SVD of H is achieved, the calculation of Ŝ is direct (not iterative)
and easy for the change of P, that is, for the purpose of pursuing the time evolution of
plasma. On the other hand, the linearity allows the reconstructed emissivity profile to
take negative values. To avoid the appearance to negative values, it is necessary to use
nonlinear methods such as the maximum entropy method [13] and the Hopfield neural
network [14], which need iterative procedures of calculation.

Within the scheme of linearity, the Tikhonov regularization can be extended by
introducing the Laplacian matrix. The identity matrix, I, is replaced by the Laplacian
matrix C as φ(S) = ‖CS‖2, which is a direct evaluation of the roughness of the recon-
structed profile. While ‖S‖2 and the entropy function lead to a sort of smoothing due
to the properties of the convex function, the minimization of the roughness leads to an
effective smoothing (a good statistical stability) of the reconstructed profile. The Lapla-
cian matrix C is calculated with regard to the geometry of the 3D reconstruction region
in LHD. When the Laplacian matrix is used, the Tikhonov regularization is often called
the Phillips regularization. With the penalty function φ(S) = ‖CS‖2, the Tikhonov
solution in Equation 4-3-18 becomes

Ŝ = (HTH +MγCTC)−1HTP. (4-3-23)

With A = HC−1, this solution is rewritten as

Ŝ = C−1(ATA+MγI)1ATP. (4-3-24)

Then, with the singular value decomposition

HC−1 = UΣV T (4-3-25)

the solution can be rewritten as

Ŝ =
M∑
i=1

wi(γ)
uTi P

σi
C−1vi (4-3-26)

with

wi(γ) =
1

1 +Mγ/σ2
i

. (4-3-27)

It should be noted that the singular values σi and vectors ui and vi are those of HC−1,
and that the bases of the solution are changed from vi toC−1vi, which are not orthonor-
mal in general. The linearity of the solution with respect to the measurement data
is conserved. The Phillips regularization has also been applied to 2D tomography by
tangential view in the Textor tokamak [15], [16] and LHD [17].
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In this thesis, the study focuses on the linear regularization of Tikhonov-Phillips
for the first success of the 3D tomography of LHD plasma. The negative values that
may appear in the reconstructed profile should rather be advantageous for revealing the
deficiencies in calculating the projection matrix, H, and in calibrating the system of
IRVBs.

4.4 Development of algebraic methods for 3D tomography

In this chapter, the 3D tomographic inversion with Tikhonov-Phillips regularization
is examined on numerical phantoms. The Laplacian matrix C is extended for image
reconstruction in the 3D helically bounded region of interest, and a numerical technique
is developed to get the inverse matrix of C, which is very large in size.

4.4.1 Test of Tikhonov regularization with identity matrix

The algebraic method of Tikhonov with the identity matrix is examined on the image
reconstruction of large size with respect to the 3D tomography system of IRVBs. Using
the projection matrix calculated in Section 4.2, the software is tested on some numerical
phantoms of simple 3D structure and with a simulated profile from EMC3-EIRENE.
The flow of the numerical simulation is as follows.

Step1 Projection from a given 3D profile
As the first step, projection images, Po, are calculated from a given model profile
So as

Po = HSo. (4-4-1)

To simulate the projection data P, at four IRVBs, each of the calculated projection
images is corrupted with a zero-mean additive Gaussian noise which has a stan-
dard deviation as large as 10 percent of the mean value of projection image. The
values of standard deviation are comparable with those observed in actual IRVB
measurement without plasma discharge.

Step2 Reconstruction from projection images (tomographic inversion)
As the second step, tomographic inversion from the projection images is carried out
with the Tikonov regularization method. The reconstructed profile Ŝ is compared
with the original profile of the phantom So The accuracy of reconstruction is
evaluated with a normalized error δ2(γ) which is defined as

δ2(γ) =
‖Ŝ− So‖2

‖So‖2
. (4-4-2)

Step3 Projection from the reconstructed profile
As the third step, 4 IRVB images P̂ are calculated from the reconstructed profile Ŝ
as P̂ = HŜ and compared with the original projection Po and the noise corrupted
data P. The recovered projection P̂ should be similar to the original Po and also
fit the data P in a reasonable manner. The reconstructed and original projections
should be matched for reasonable calculations. Fitting to the data is evaluated in
the mean square error ε2(γ) and the GCV, which are given by Equations 4-3-21
and 4-4-2. The value of regularization parameter, γ, minimizing the GCV is chosen
as its optimal value.
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The uniform, tube, thin tube and core radiation profile shown in Figure 4.8 have
been employed as phantoms Po. A profile produced by the EMC-3 EIRENE simulation
code of impurity behavior and shown in Figure 4.9 has also been employed as another
phantom. Figures 4.10-4.13 shows the results of the inversion for the regularization
parameter, γ, that has been optimized with GCV. These reconstructed profiles have
a large number of positive and negative artifacts due to the ill-condition of Equation
4-3-2. However, these profiles are similar to the original profiles in features such as the
location of the strongest radiation and the outline of the 3D structure. Table 4.1 shows
an evaluation of the reconstruction results. Since the error between the projections
of the model and the reconstructed profile is small enough, it can be stated that the
calculations have been achieved reasonably. However, the normalized reconstruction
errors δ2 are large and evaluated as around 0.80. The total radiation is reproduced with
around 10 percent error.

In these simulations, the criterion of minimum GCV has worked well. It has been
found that the value of γ chosen with GCV provides reasonable reconstruction for the
IRVB tomography system in LHD. Figure 4.7 shows the behavior of GCV (γ), ε2(γ)
and the normalized reconstruction error δ2(γ) in reconstructing the EMC3-EIRENE
phantom. While ε2(γ) monotonically decreases with γ, GCV (γ) is minimized for a
value of γ. The γ value corresponds closely to the minimum of δ2(γ), which provides the
best reconstruction of the original profile. This result shows that the GCV is effective
for the optimization of γ. The SVD of the matrix H has been achieved with the function
“LA SV D” of the software IDL. The condition number was 3.96× 106.

Table 4.1: Results of reconstruction in numerical tests of Tikhonov regularization. Ta-
ble elements are reconstruction error δ2, projection error between original
and reconstructed ε2, total numbers of negative voxels and positive voxels
in the reconstructed profile, total radiation power in original (model) and
reconstructed profile.

4.4.2 Laplacian matrix for regularization

The Tikhonov regularization can be extended with the Laplacian matrix C (Phillips reg-
ularization) in order to suppress noisy artifacts in the reconstructed profile. The matrix
C for the 3D tomography system in LHD is calculated with the following procedure.

Laplacian matrix calculation

In Figure 4.14, the essential part of the Laplacian matrix in the 2D case is shown as a
visual map in the real space. Each center pixel has −4 and its four adjacent pixels have
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1. This essential form is modified into 3D form for 3D tomography. The 3D form has −6
at the center voxel and 1 at its six adjacent voxels as in Figure 4.15. When the voxels
are scanned sequentially along R, Z and φ axes in the 3D reconstruction region of LHD,
the k-th voxel is given a value ∆k as follows:

∆k


= −6 (k = 936r + 18z + φ)
= 1 (k = 936r + 18z + φ± 1)
= 1 (k = 936r + (18± 1)z + φ)
= 1 (k = 936(r ± 1) + 18z + φ)
= 0 (otherwise)

(4-4-3)

for the integer indices r = 0 ∼ 53, z = 0 ∼ 51, and φ = 0 ∼ 17 in the directions of
the major radius R, the vertical coordinate Z, and the toroidal angle φ, respectively.
Here we have 936 = 52 × 18 in relation to the Z − φ scan. The 3D reconstruction
region is helically twisted and outlined by masking. Whenever the adjacent voxel goes
outside of the region corresponding to the r and z ranges, the center voxel is added with
1. Additionally, when the adjacent voxel with φ ± 1 goes outside of the reconstruction
region, a voxel at z = 52 − z is added with 1 using the toroidal symmetry, which is
expressed by Equation 4-2-1.

From the resultant series of voxel values ∆k , we have the matrix C of 3D Laplacian
operation. Its original is a 50, 544-dimensional square matrix Co with the following
elements coi,j :

coi,j


= −6 (j = i)
= 1 (j = i± 1)
= 1 (j = i± 18)
= 1 (j = i± 936)
= 0 (otherwise)

(4-4-4)

for i = 1 ∼ 50, 544, as illustrated in the upper part of Figure 4.16. Then, this original
matrix is modified according to the masking which was described in Section 4.2. When
the k-th voxel is masked in the real space of LHD, both the k-th column and row are
masked and cut off as in the lower part of the same figure. If any element in the masked
k−th column has a positive value, the diagonal element on the row to which the positive-
valued element belongs is added with 1. With this procedure, the 16, 188-dimensional
square matrix of the 3D Laplacian operation has been produced for the helically twisted
volume of the LHD plasma.

Inverse of Laplacian matrix

Equations 4-3-25 and 4-3-26 indicate that the modification into the Phillips regulariza-
tion needs the inverse matrix of the 3D Laplacian matrix C obtained above. However
the Laplacian matrix is a huge matrix (16, 188× 16, 188), the calculation of the inverse
matrix easily has a computational error. Therefore, two methods are examined.

The first method is a direct calculation of C−1. The calculated C−1 is provided for
the SVD in Equation 4-3-25 and used again for calculating the expansion bases C−1vi
in Equation 4-3-26.

The second method is an inverse calculation with the Cholesky decomposition
[18]. In general, a matrix of the form ATA is symmetric and positive definite. Thus, the
matrix CTC in Equation 4-3-23 can be decomposed to the Cholesky form

CTC = RTR, (4-4-5)
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where R is an upper triangular matrix. With this relation, the solution in Equation
4-3-23 becomes

Ŝ = (HTH +MγRTR)−1HTP. (4-4-6)

This equation is formally the same as Equation 4-3-23, having the matrix R in place of
C. Analogically, the SVD

HR−1 = UΣV T (4-4-7)

allows one to rewrite the right side of Equation 4-4-6 as

Ŝ =
M∑
i=1

wi(γ)
uTi P

σi
R−1vi (4-4-8)

with

wi(γ) =
1

1 +Mγ/σ2
i

. (4-4-9)

Here, it should be noted that the singular values σi and the singular vectors ui and vi
are those of HR−1; they are different from only those of HC−1 in Equation 4-3-25 but
also those of H in Equation 4-3-17. The GCV expression in Equations 4-3-21 and 4-3-22
remains valid for the inversion problems that are defined with the new matrices HC−1

and HR−1.
Based on Equation 4-3-23, the solutions in Equations 4-3-26 and 4-4-8 are the

same as long as the inverse matrices C−1 and R−1 and the related SVDs are accurately
calculated. One expects that a significant difference in computational accuracy may
appear between C−1 and R−1 as the size of the N ×N matrices C and R becomes large.
While the Laplacian matrix C tends to be ill-conditioned, it is expected that the upper
triangular matrix R remains so well-conditioned that the inverse R−1 is easily calculated.
Comparison has been made using the software IDL. The Cholesky decomposition of CTC
and the calculation of C−1 and R−1 have been carried out using the LA CHOLDC
function and the LA INV ERT function, respectively. The inverse calculation has been
examined on the normalized square errors, which are defined as

ε2
1 =
‖C−1C − I‖2

‖I‖2
, ε2

2 =
‖R−1R− I‖2

‖I‖2
(4-4-10)

using the Frobenius norm of matrix. Results of calculation show ε2
1 = 0.36 and ε2

2 =
5 × 10−15, that is, a failure and a success in calculating the inverses C−1 and R−1, re-
spectively. Hereafter, the second method using the Cholesky decomposition is employed
for the Phillips regularization of image reconstruction. The condition number of the
matrix HR−1 was 1.35× 1015.

4.4.3 Effect of Laplacian matrix in numerical simulation

To evaluate the effect of adopting the Laplacian matrix, the same numerical test of
inversion as in Section 4.4 has been carried out.

Numerical simulation

The model profiles and the noise-corrupted projection data in Section 4.4 have been
employed again. Figure 4.17-4.19 and Table 4.2 show the results of the inversion for
the values of γ which have been optimized with the criterion of minimum GCV. The
reconstructed profiles have a remarkable tendency in reconstruction quality. The re-
constructed profiles of uniform and core models in Figure 4.17(a) and Figure 4.18(d)
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are fine and show the high reproducibility of the original profiles with much decreased
reconstruction error and with higher fidelity to the projection data. A similar improve-
ment is observed also on the tube model. On the thin tube model and on the simulated
model of EMC3-EIRENE, however, the reconstructed profiles are smoothly broadened.
In spite of a good effect of diminishing noisy artifacts, the spatial resolution is lowered
and insufficient to recover the narrow profiles. The values δ2 and ε2 are similar with
those of the tests using the identity matrix. The behavior indicates that the inversion
technique with the Laplacian matrix is suitable for smooth and broad profiles.

Table 4.2: Results of reconstruction in numerical tests of Tikhonov regularization with
Laplacian matrix. Table elements are reconstruction error δ2, projection error
ε2, total numbers of negative and positive voxels in reconstructed profile, total
radiation powers in original (model) and reconstructed profiles.

4.5 Parametric inversion by function model fitting

3D tomographic imaging with the above algebraic methods provides a quantitive mea-
surement of the distribution and intensity of radiation. When the 3D measurement is
applied to the measurement of the evolution of radiation structure, local changes having
structures larger than artifacts can be identified. However, the evolution of 3D radiation
structure is completely three dimensional, and a global understanding of the evolution is
difficult, being disturbed by the artifacts which haphazardly appear. Therefore, the least
squares fitting of a 3D function model with few parameters is developed as an alternative
method to characterize the spatial evolution of the radiation structure. The fitting is
not made to the algebraically reconstructed 3D profile but to the measured IRVB images
directly. The fitting technique is a useful technique of computed tomography, which is
represented by the series expansion model fitting well known in nuclear fusion studies.
When we build up a 3D function model suitable for the helical structure of LHD plasma,
the parameter estimation is nonlinear and has to be iteratively achieved.

The calculated projection matrix enables the calculation of synthetic IRVB images
from a given 3D radiation profile. For the synthetic images to match well with the
measured IRVB images, the 3D function model must be similar to the actual profile of
the radiation in the plasma discharge. In this section, a function model is built up and
an iterative procedure of parameter estimation is investigated as an effective tool of 3D
measurement. The technique is used to trace the evolution of the 3D radiation structure
in parameters during the radiation collapse in LHD.
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4.5.1 Model parameters

To have an effective modeling and to handle the model fitting with short calculation
time, the total number of model parameters should be minimized. In this model fitting,
the following parameters are employed.

Figure 4.20 shows a radiation profile simulated by the EMC3-EIRENE code. The
simulated profile shows an elliptic shape. Therefore, an ellipse is employed as the base
shape of the model. To produce the elliptic shape, the following 5 parameters are intro-
duced into the model.

a: Semi-major radius of ellipse (m)
b: Semi-minor radius of ellipse (m)
w:Width of radiation region
R: Center of ellipse(m) (in the major radial direction)
c: Radiation intensity (W/cm3)

The simulated profile also shows asymmetry between the inboard and outboard side.
The previous study indicates that the radiation collapse has such asymmetry. There-
fore, a parameter is introduced to describe the asymmetry.

γin−out: Asymmetric factor (inboard and outboard)

The simulated profile also shows strong or broad radiation around the X-points. A pa-
rameter for peaking is introduced.

γpeak: Peaking factor
dX : Location of peak

Figure 4.21 shows the total radiation intensity at each poloidal cross section in the simu-
lated profile. The total radiation is not uniform with toroidal angle. It indicates that the
radiation profile has toroidal asymmetry. Therefore, a parameter for toroidal asymmetry
is introduced.

γtoroidal: Asymmetric factor (Toroidal)

These nine parameters are employed for the model.

4.5.2 Definition of 3D function model

The radiation model is defined with the above nine parameters as the following equations
with the cylindrical coordinate system of the LHD (r, z, φ),

Smodel(r, z, φ) =



0 (PP (r, z, φ) < (1− w)2)

c(1 + γin−outcos(
(r−R)π
2(R−re)))(1+

γpeakXX(r, z, φ))(1 + γtoroidalcos(2φ))
((1− w)2 ≥ PP (r, z, φ) ≥ 12)

0 (12 < PP (r, z, φ))

(4-5-1)

XX(r, z, φ) = exp(−((r −R)cos(φ)− (z ± a(1− dXw))sin(φ))2

2(dXwa)2
), (4-5-2)
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PP (r, z, φ) =
((r −R)cos(φ)− zsin(φ))2

b2
+

((r −R)sin(φ)− zcos(φ))2

a2
, (4-5-3)

where re is the innermost location of the ellipse on the r−axis. a, b, R, w, γin−out, γpeak,
γtoroidal, dX and c are used as free parameters.

4.5.3 Procedure of 3D function model fitting

To estimate model parameters from four measured IRVB images, an iterative method
has been developed in a least squares scheme. The least squares scheme is carried out
with scanning in each discretized space of two parameters with all possible regression to
handle the function model which is too complecte to handle with a gradient method. The
function model fitting is carried out regarding the normalized square error ε2n between

each measured IRVB image, Pmeasured, and the corresponding IRVB image, P
(i)
model, from

the 3D radiation model, S
(i)
model, in the i-th iteration. The ε2n is given as

ε2n = ‖( Pmeasured

pmeasured,max
−

P
(i)
model

p
(i)
model,max

‖2, (4-5-4)

where the normalization factors pmeasured,max and p
(i)
model,max are the maximum values

of Pmeasured and Pmodel. The model parameters are so few that their values can be
determined even from one IRVB image. The model fitting procedure is shown in Figure
4.22 and executed sequentially for each of IRVBs by taking into account the intensity gaps
among 4 IRVBs. The obtained values of each model parameter are averaged afterwards.
The details are as follows.

Step1 Nine model parameters [a0, b0, Rcenter,0, w0, γin−out,0, γpeak,0, γToroidal,0, dX,0, c0] are

set to initial values, and the initial model S
(0)
model and the corresponding P

(0)
model are

calculated with these initial parameter values.

Step2 Two model parameters are chosen and scanned the discretized parameter space
to minimize the square error ε2n while the other parameters are fixed to the initial
values. This 2-parameter search is carried out individually for other 2-parameter
sets except c.

Step3 ε2n is calculated for the obtained set of eight parameters [a1, b1, Rcenter,1, w1 , γin−out,1, γpeak,1, γToroidal,1, dX,1]
through the “Step 2”. When the ε2n is smaller than the its initial value, the eight
model parameters are renewed. Otherwise, eight parameters are adjusted to mini-
mize ε2n on the straight line between the initial parameter values and the obtained
ones in eight dimensional space.

Step4 The remaining parameter c is scanned and chosen to minimize the “un-normalized”
mean square error

ε2 = ‖Pmeasured −Pmodel‖2, (4-5-5)

because c influences just the radiation intensity. Then, one arrives at a renewed

model S
(1)
model and the corresponding P

(1)
model

Step5 The above whole process is repeated using the obtained values of nine parameters
for the initial values in “Step 1”, until all parameters converge.

In this flow, the parameters [a, b, Rcenter, w, γin−out, γpeak, γtoroidal, dX ] are free from the
influence of c. Therefore, this least squares procedure is handled as a function model
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fitting with 8 + 1 model parameters. In this model fitting, the resulting paramters are
quasi-optimal due to the instability in the solution. The instability grows as the number
of free paratemers is increased. In the measurement of the time evolution of radiation, to
suppress the influence of the instability, this model fitting is carried out for each IRVB
and then the results are averaged over four IRVBs and also over the sequence of the
timing.

4.5.4 Validation of function model

The function model fitting is validated with the radiation profile simulated by the EMC3-
EIRENE code. The result of the fitting test is shown in Figure 4.23. The reconstructed
profile in Figure 4.23 (b) is similar to the original profile displayed in Figure 4.23 (a)
in features such as asymmetry and shape. In fine structures, there are differences. One
finds that the reconstructed profile is similar to the smoothed original profile, which is
displayed in Figure 4.23 (c). In other words, the modeling succeeds in a kind of feature
extraction. This good behavior is attributed to the small number of model parameters.
When the number of parameters is increased, the fine structure of the radiation profile
may tend to be recovered, but an excessive increase may lower the effect of feature
extraction.

For example, in the model in Equation 4-5-6, let us take the γin−out term and add
higher order terms of the cosine function as

(1+γin−out,1stcos(
(r −R)π

2(R− re)
)+γin−out,2ndcos(2

(r −R)π

2(R− re)
)+γin−out,3rdcos(3

(r −R)π

2(R− re)
)+·)

(4-5-6)
in order to recover the details in the in-out asymmetry of the profile. Figures 4.24 shows
the changes of the normalized mean square error ε2n and the Akaike information criterion
(AIC) [19] with the order number n, respectively, in two of the IRVBs. In disregarding
a constant term, AIC is defined here as

AIC(n) = Mlnε2n + 2(n+ 9 + 1), (4-5-7)

and evaluated for each IRVB. Then, M is the number of pixels of each IRVB. Figure
4.24(a) indicates that the increase of n leads to the monotonical decrease of ε2n, which
means higher fidelity to the measured IRVB images. Meanwhile, AIC is minimized for
the 3rd and 7th order. This result suggests that the 3rd and 7th order is best and that
the true radiation profile possesses a detailed structure in the γin−out cosine expansion.
However, the lowest order is employed hereafter as it is suitable for characterization of
the radiation structure.

4.6 Projection matrix calculation for imaging spectrometer

The imaging spectrometer described in Section 3.4 can be used for estimating the pa-
rameters of 3D function model in Equation 4-5-1. When the function model is fitted to
the measurement data of the spectrometer, calculation of a projection matrix is required
concerning the peculiar geometry and FoV of the spectrometer. The method of calcula-
tion is similar to that for a single IRVB, which is described in Section 4.2.2. Instead of
the aperture of an IRVB, the imaging spectrometer has a round lens unit to expand the
FoV. So, the calculation has been carried out by following a little different procedure.

At first, an assumption is employed to handle a cone beam sight with cubic ele-
ments. The imaging spectrometer has a fiber array as a channel array. The sight of each
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channel has a cone beam shape, the fiber crosssection being expanded by the lens unit.
The assumption is that the cone beam shape of the sight is a quadrangular pyramid
with the same volume. Under this assumption, the projection matrix for the imaging
spectrometer can be calculated with a procedure similar to that of the IRVBs.

The sight is calculated by tracing a line with every 1cm step from the center of
the lens unit until they hit the first wall, with a direction defined by the positions of a
fiber and the lens unit. The side width of a cross section on the quadrangular pyramid,
ws(n) at the n-th step of the tracing is given as,

ws(n) =

√
(n∆x

c4050lf − llens
2x4050

)2π (4-6-1)

where ∆x(= 1cm) is the step size of the tracing, c4050(= 1, 200) is the magnification
of the lens unit at a typical distance x4050(= 4, 050mm), lf is the radius of the fiber
core and llens is the radius of the lens unit. When a small volume of the FoV step
(ws(n) × ws(n) × ∆x) is in a plasma voxel, the volume which is a part of the plasma-
voxel is judged as a seen volume. When ws(n) is larger than ∆x, the FoV is divided
equally vertically and horizontally in the same way described in 4.2.2. The solid angle
from the center of the seen volume to the lens is calculated as shown in Figure 4.25.
A element of the projection matrix is calculated as Equation 4-2-3. The calculated
matrix is used for fitting the function model to the measurement data of the imaging
spectrometer.

4.7 Experimental inversion from IRVB images and relative
calibration

4.7.1 Experimental inversion by Tikhonov regularization

In the inversion from experimental data of IRVBs, the algebraic method of Tikhonov has
been examined. With the procedure of calculation in Section 4.4 except step 1, IRVB
images observed in two specific cases of discharge have been analyzed. One is a set of four
IRVB images with edge localized radiation, which was obtained in an equilibrium state of
the plasma before radiation collapse. Another is a set of images with core concentrated
radiation, which was obtained after radiation collapse. Figures 4.26 and Figure 4.27 show
raw images, background subtracted images and final digitalized images in two cases. The
pixel numbers in the digitalized images, that is, the numbers of projection values, are
36 × 28(= 1, 008) in 10-O port, 36 × 28(= 1, 008) in 6-T port, 26 × 20(= 520) in 6.5U
port, and 30× 22(= 660) in 6.5L port. The total of these pixel numbers is the number
of projection values M in the reconstruction analysis.

Figures 4.28-4.29 show the results of the experimental inversion by the Tikhonov
regularization method with the identity matrix. In comparison between the recon-
structed profiles in two cases, it can be confirmed that the Tikhonov method succeeds in
revealing a meaningful difference between the profiles before and after collapse. However,
some strange structures are observed in the edge region. For example, the reconstructed
profile after the collapse has high radiation peaks on the outboard side of the horizontal
cross section (φ = 17.5◦) and at the lower edge of the vertical cross section (φ = 0.5◦). As
the high peak at φ = 17.5◦ is observed also in the numerical test with the core radiation
phantom as in Figure 4.8(d), it might be spuriously produced by the ill-condition of the
equation and the layout of sight-lines which are few in the boundary region. However,
the high peak at φ = 0.5◦ is not observed in the numerical test. In addition, there are a
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larger number of negative artifacts than in the numerical test. These new artifacts that
appear in experimental results may be attributed to the intensity gaps in IRVB signals.
In other words, some IRVB signals are enhanced with a factor which comes from the
unrefined setting and environment of IRVBs, for example, the reflection of IR emission
by components that exist between the IRVB foil and the IR camera. To evaluate the
factor, a relative calibration has been carried out as described below.

Relative calibration among IRVBs

For experimental data analysis, the projection data P should have consistency among
the IRVBs. The four IRVBs had already been calibrated in each component of the
IRVB such as the IR camera and the bolometer foil. However, some IRVBs showed
smaller or larger intensity in comparison to the intensity expected from the projection
matrix H. In other words, IRVB signals are enhanced by a factor for each IRVB. To
evaluate the factor, a relative calibration has been carried out as follows. The relative
calibration is a matching between the intensity ratio among experimental IRVB images
(6.5-U, 6.5-L, 6-T and 10-O) and the intensity ratio among model IRVB images. As the
experimental images, the images after radiation collapse are employed. A model which
has been optimized by the procedure of 3D function model fitting described in Section
4.5 is employed. Figures 4.30 - 4.31 show an example of the set of experimental IRVB
images and model images for relative calibration. The total intensity of each of IRVB
images, Pk, is calculated from the model profile with the following equation,

Pk =
∑

Pk,j . (4-7-1)

where k is the camera index and j is the pixel index of the IRVB. The total intensity
of the corresponding experimental IRVB image, Pexp,k is also calculated with Equation
4-7-1. If the model and experimental radiation profiles have similar structures, the IRVB
images should have similar shapes and strength ratios of Pk among IRVBs. The relative
calibration factors, fk, are calculated using these total intensities as

fk =
P k,model/P 1,model

P k,exp/P 1,exp

. (4-7-2)

In this study, images of the 6.5-U IRVB are used as the reference images for
calculating P 1,model and P 1,exp as reference images. The fk is calculated in several
discharges and averaged for each IRVBs. The calculated factors are as follows.

f1 = 1.00 (for 6.5-U IRVB)
f2 = 2.07 (for 6.5-L IRVB)
f3 = 1.048 (for 6-T IRVB)
f4 = 1.23 (for 10-O IRVB)
With this relative calibration, the IRVB image P is corrected by multiplying these

factors to the experimental IRVB images. Figures 4.32-4.33 and Figures 4.34-4.35 show
the calibrated IRVB images and the results of Tikhonov reconstruction for the same
discharge and timing as those in Figures 4.28-4.29. In the reconstructed profiles, the
spurious high peak at the lower edge of the vertical cross section almost disappeared
while the negative values are weakened with a significant decrease of the number of
negative values. The relative calibration is applied to all the subsequent experimental
reconstructions.

78



4.7.2 Effect of Laplacian matrix in experimental inversion

The Tikhonov regularization with the Laplacian matrix has also been examined in image
reconstruction from experimental data. The IRVB images calibrated above have been
employed again as the test data. Figures 4.36-4.37 show the reconstructed profiles before
and after radiation collapse. In comparison with Figures 4.33 and 4.35, it is seen that the
reconstructed profile after collapse looks better in a smoothed and centralized radiation
profile, and that the profile before collapse has some helical structures broadened in both
positive and negative values. Improvement of spatial resolution is a remaining subject
of numerical analysis study.

4.8 Summary of chapter

To define the relation between the 3D radiation structure and the 2D IRVB images,
a projection matrix has been calculated with geometrical consideration under the as-
sumption of the toroidal periodicity and symmetry of the LHD plasma. With respect
to four pyramid beam cameras, which are set in separate positions in the helical torus,
the difficulty of calculation has been overcome, and a method of calculation has been
established. Using the calculated projection matrix, the fields of view of four IRVBs have
been designed to get good coverage of the whole plasma region. For the appropriated
fields of view, the numerical technique of 3D tomographic imaging has been developed
and examined in two approaches algebraic and model fitting toward the primary target
of measuring the radiation collapse.

The standard algebraic method of Tikhonov and its extension with the Laplacian
matrix have worked reasonably in both numerical simulation and experimental data
analysis with the statisitical criterion of minimum GCV. A method of calculating the
Laplacian matrix has been developed for the 3D boundary of a helical plasma, and the
matrix inversion of large size has been achieved using the Cholesky decomposition. The
Tikhonov regularization of the original form has proved advantageous to get a spatial
resolution good enough for resolving the narrow radiation profile of LHD plasma in the
equilibrium state. Adopting the Laplacian matrix has brought an effective diminishment
of noisy artifacts with a loss of resolution. The linearity of the algebraic methods that
allows the reconstructed images to have negative values has rather been useful to detect
the deficiency of the measurement system and has lead to the relative calibration of
IRVBs, which is a key-point of this tomographic imaging with IRVBVs.

A practical 3D function model has been designed with regard to the 3D helical
structure of radiation, which has an elliptic shape in the poloidal cross sections and
toroidal asymmetry in the half period of magnetic field. The iterative procedure of the
model fitting to IRVB images has worked well in numerical simulation on the EMC3-
EIRENE phantom, for which the modeling has been checked with AIC. The modeling
is expected to provide a useful characterization of the 3D radiation structures and their
evolution. The established method of calculating the projection matrix has been ap-
plied to the imaging spectrometer for the purpose of the characterization by a spectral
measurement.

The 3D imaging techniques developed and examined are applied to the analysis
of LHD experiment data in the following chapter.
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Figure 4.1: Voxel grid with cylindrical coordinates: major radial, R, 5 cm (54 divisions);
vertical, Z, 5 cm (52 divisions); toroidal, φ, every 1◦ (360 divisions)

80



Figure 4.2: Projection matrix calculation. (a) Volume calculation for seen voxel, (b)
Solid angle calculation from seen voxel to IRVB pixel).
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Figure 4.3: Selected FoVs of four IRVBs: (a) 6-T IRVB, (b) 10-O IRVB. Visible plasma
voxel (green), non-visible plasma-voxel (black) and masked region (white).
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Figure 4.4: Selected FoVs of four IRVBs: (c) 6.5-U IRVB, (d) 6.5-L IRVB.
Visible plasma-voxel(green), non-visible plasma-voxel(black) and masked
region(white).
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Figure 4.5: Combined FoV of four IRVBs. Visible plasma-voxel(green), non-visible
plasma-voxel(black) and masked region(white)

Figure 4.6: Total number of sight-lines that pass through each plasma-voxel
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Figure 4.7: Behaviors of GCV (red), projection error ε2(γ) (blue) and reconstruction
error δ2(γ) (black) with changing γ. Result of Tikhonov regularization for
EMC3-EIRENE phantom.
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Figure 4.8: Phantoms for numerical test: (a) Uniform phantom, (b) Tube phantom,
(c) Thin tube phantom, (d) Core phantom. Profiles are displayed in three
poloidal cross sections with (φ = 0.5◦, φ = 9.5◦, φ = 17.5◦).

Figure 4.9: EMC3-EIRENE phantom for numerical test
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Figure 4.10: Profiles reconstructed by Tikhonov regularization: (a) Uniform phantom,
(b) Tube phantom. Negative values are not shown.
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Figure 4.11: Phantoms reconstructed by Tikhonov regularization: (c) Thin tube phan-
tom, (d) Core phantom. Negative values are not shown..
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Figure 4.12: EMC3-EIRENE simulated profile reconstructed by Tikhonov regulariza-
tion; positive values (upper) and negative values (lower).
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Figure 4.13: Comparison between original EMC3-EIRENE profile (upper) and recon-
structed profile (lower) for toroidal angles (φ = 0.5◦, φ = 9.5◦, φ = 17.5◦).
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Figure 4.14: Essential part of 2D Laplacian matrix (visual map in real space)

Figure 4.15: Essential part of 3D Laplacian matrix (visual map in real space)
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Figure 4.16: Masking of Laplacian matrix for 3D tomography
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Figure 4.17: Tikhonov reconstruction with Laplacian matrix: (a) Uniform phantom, (b)
Tube phantom. Negative values are not shown and never appear for uniform
phantom.
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Figure 4.18: Tikhonov reconstruction with Laplacian matrix: (c) Thin tube phantom,
(d) Core phantom. Negative values are not shown.
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Figure 4.19: EMC3-EIRENE phantom reconstructed by Tikhonov regularization with
Laplacian matrix; positive values (upper) and negative values (lower).
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Figure 4.20: Radiation profile calculated by EMC3-EIRENE (data by M. Kobayashi)

Figure 4.21: Total radiation power in each poloidal cross section; its change with toroidal
angle (EM3-EIRENE simulation).
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Figure 4.22: (a) Procedure of parameter scanning with 3D radiation model for one IRVB
image. Red cross indicates location of minimum in iteration. (b) flow of
iterative calculation for parameter scanning with 3D radiation model and
IRVB images.
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Figure 4.23: Test of model fitting tomography; (a) EMC3-EIRENE phantom, (b) result
of reconstruction, (c) smoothed profile of phantom, which are displayed for
toroidal angles φ = 0.5◦, 9.5◦, 17.5◦.
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Figure 4.24: Behavior of AIC in 3D function model fitting. (a) Change of normalized
square error ε2n and (b) change of AIC with number of γin−out terms, n. M
is the number of pixels in each IRVB..
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Figure 4.25: Projection matrix calculation for imaging spectrometer. (a) Volume calcu-
lation for seen voxel, (b) Solid angle calculation from seen voxel to IRVB
pixel.

100



Figure 4.26: IRVB images before radiation collapse (]1217876.02s). Raw images (up-
per), background subtracted images (middle), and digitalized images to be
analyzed for image reconstruction (lower).
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Figure 4.27: IRVB images after radiation collapse (]1217876.52s). Raw images (upper),
background subtracted images (middle), and digitalized images to be ana-
lyzed for image reconstruction (lower)
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Figure 4.28: Reconstructed profile before radiation collapse (]1217876.02s), which is ob-
tained from experimental IRVB images by Tikhonov regularization (without
relative calibration); positive values (upper) and negative values (lower).
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Figure 4.29: Reconstructed profile after radiation collapse (]1217876.52s), which is ob-
tained from experimental IRVB images by Tikhonov regularization (without
relative calibration); positive values (upper) and negative values (lower).
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Figure 4.30: Experimental IRVB images for relative calibration, which have been mea-
sured in ]121787 discharge at 6.5s (after collapse)
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Figure 4.31: Synthetic IRVB images for relative calibration, which are calculated from
the 3D function model.
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Figure 4.32: Calibrated IRVB image before radiation collapse (]1217876.02s) (upper)
and projections of reconstructed profile with Tikhonov regularization
(lower).
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Figure 4.33: Tikhonov reconstruction from calibrated IRVB images before radiation col-
lapse (]1217876.02s); positive values (upper) and negative values (lower).
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Figure 4.34: Calibrated IRVB images after radiation collapse (]1217876.52s) (upper) and
projections of reconstructed profile with Tikhonov regularization (lower).
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Figure 4.35: Tikhonov reconstruction from calibrated IRVB images after radiation col-
lapse (]1217876.52s); positive values (upper) and negative values (lower).
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Figure 4.36: Tikhonov reconstruction (Lapalacian matrix) from calibrated IRVB images
before radiation collapse (]1217876.02s); positive values (upper) and nega-
tive values (lower).
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Figure 4.37: Tikhonov reconstruction (Lapalacian matrix) from calibrated IRVB images
after radiation collapse (]1217876.52s); positive values (upper) and negative
values (lower).
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5 Investigation into radiation collapse

In this chapter, radiation from the plasma has been measured with the procedures men-
tioned in the preceding Chapter.

5.1 IRVB measurement during radiation collapse

Figure 5.2-5.4, 5.8-5.11 and 5.15-5.18 shows sequences of IRVB images which were taken
in collapse discharges with the magnetic axis of 3.6m, 3.75m and 3.9m. These images
have been smoothed with a [3 × 3] (for 6.5-U and 6.5-L IRVB images) and [5 × 5] (for
6.5-U and 6.5-L) averaging window to be easier to understand. These IRVB images show
changes on the images before and during collapse. For example, just before a drop of
the stored energy IRVB images show fine structure especially on 6.5-U and 6.5-L IRVBs.
However, the origin of these changes can not be directly explained by these images,
because IRVB images are obtained by line integrated FoVs.

5.2 Application of 3D measurement to radiation collapse

5.2.1 Evolution of nine parameters with 3D model fitting

To investigate the changes of the radiation structures during radiation collapse, the
model parameter fitting which is described at Section 4.5 has been applied to the mea-
sured IRVB images which are shown in Section 5.1. Figures 5.21-5.28 the show results
of the model fitting for the IRVB images. Several parameters show significant changes
during radiation collapse. For example, Figures 5.23, 5.26, 5.29 and 5.30 show that the
local enhancement of the radiation starts from the inboard side clearly and the evolution
of the inboard/outboard asymmetry property γin−out. γin−out is significantly increased
from a specific timing. It indicates radiation from the inboard side is significantly en-
hanced, in addition to a decrease in the semi major radius, a, together with a strong
increase in c at almost the same timing. The enhancement of the inboard radiation in
γin−out is consistent with previous research that shows strong radiation from the inboard
side is obtained during radiation collapse [9]. This behavior is also obtained with other
magnetic configurations as Figure 5.31. It indicates that regardless of the magnetic
configuration, the inboard enhancement appears at a specific timing during radiation
collapse. Therefore, the γin−out can be used to define a reference timing for the evo-
lution of radiation collapse to investigate the evolution. In this study the initiation of
the inboard enhancement is defined as the reference point and the initiation of radiation
collapse.

Other parameters also show interesting structural changes during radiation col-
lapse in Figures 5.21-5.27 . Parameter w shows the time evolution of the width of the
radiation region. The width is reduced before radiation collapse and increased during
radiation collapse. It indicates that the radiation region is concentrated just before ra-
diation collapse. Semi major and minor radii, a and b, show that the radiation shape
changed into a circle from an ellipse during radiation collapse. The center of the ra-
diation region, Rcenter, shows the center shifts to the outboard side from the inboard
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enhancement, especially in the case of the magnetic axis of 3.9m. Base radiation inten-
sity c indicates that the base radiation is increased before radiation collapse, and the
magnitude of the peaking, γp, indicates that the radiation is strongly concentrated at a
peak during radiation collapse. The toroidal asymmetric parameter γToroidal also shows
a specific behavior. Sometimes γToroidal increases before the inboard enhancement and
decreases after that, suggesting that the 3D structural changes interestingly. The be-
havior indicates that the radiation from the vertically elongated cross section is slightly
enhanced before radiation collapse.

5.2.2 Evolution of reconstructed radiation profile (Tikhonov regularization)

In the last subsection, the results of the 3D model fitting show the characteristics and
timings of the evolution of the 3D radiation structure during radiation collapse. However,
the 3D model for the model fitting has several restrictions on the description of the 3D
radiation structure, because the 3D model has only low order components as model pa-
rameters. Especially, when initiation points of the observed asymmetry features (toroidal
and in-out) are localized, understanding of the features is difficult. Therefore, to investi-
gate the observed characteristics, the 3D algebraic inversion is applied in analysis of the
same discharges as a 3D measurement with less parametric restriction, in other words
allowing a more subtle observation. Figure 5.32-5.33 shows the reconstructed profiles
by the 3D algebraic inversion (Tikhonov regularization) during radiation collapse. In
Figure 5.32-5.33, the radiation profiles in the whole torus are obtained with a repetation
of 18 toroidal degrees which is calculated by the 3D algebraic inversion. Reconstructed
profiles show the same tendency with the results of the 3D model fitting and show im-
portant details on the evolution of radiation structures which can not be or are difficult
to observe in the 3D model fitting. Figure 5.33 clearly shows the radiation from the in-
board side is enhanced and then the radiation region shrinks. Additionally, as in Figure
5.34 at a timing of 6.00-6.02s the inboard enhancement appears from the inboard side of
the vertically elongated cross section and then the inboard enhancement extends to hor-
izontally elongated cross section. This behavior indicates that the inboard enhancement
is initiated at the inboard side of the vertically elongated cross section. In LHD, this
location is the nearest point to the wall of the vacuum vessel. Figure 5.34 also shows
that the extension of the inboard enhancement is along the LCFS of the plasma. These
observed behavior of the asymmetries provide enhanced understanding of the model fit-
ting result, such as the evolutions of γToroidal and γin−out. In the case of the magnetic
axis of 3.75m, the same tendency is also observed in Figure 5.32. Especially, the recon-
structed profiles clearly show when the inboard enhancement occurs, radiation structure
along the LCFS. Observed evolutions in radiation structures by the 3D model fitting
and 3D algebraic inversion indicate that the asymmetries of the radiation structure play
an important role in the radiation collapse.

5.2.3 Carbon emission structure

To investigate the carbon emission during the radiation collapse as a main radiator, the
CIII(464.7nm) and CII(426.7nm) emissions are measured by the imaging spectrom-
eter at LHD port 7-O. Figure 5.35 -5.36 shows how the radiation structure changes in
CIII(464.7nm), CII(426.7nm), Hγ and Hβ during radiation collapse with a collapse
discharge (] 121787). The figures show the following sequence. At 5.80s, the emission
of Hβ is the strongest emission among four measured emissions and all emissions con-
centrate around an X point. At 5.95s, the intensity of CIII(464.7nm) is increased as
compared with Hβ around the X-point. At 6.10s (timing of the inboard enhancement),
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Hβ and Hβ do not show large changes, but the peak locations of CIII(464.7nm) and
CII(426.7nm) emission move to near the LCFS from around the X-point. This behavior
of the C emission is consistent with the observed behavior of radiation structure by 3D
algebraic inversion (radiation structure is along the LCFS). However peak locations of
the CIII(464.7nm) and CII(426.7nm) emission are slightly further out than the ex-
pected locations from the reconstructed profiles. Therefore, it indicates the possibility
that the main radiators are carbon with higher charge states than CIII. At 6.25s (after
the shrinking phase), CIII(464.7nm) and CII(426.7nm) emission disappeared and the
Hβ and Hβ emission moves into the core region because of the electron temperature
decrease and/or loss of carbon source from walls.

5.2.4 Evolution of plasma parameters during radiation collapse

Electron temperature profile

The emission from carbon depends on the cooling rate which is a function of the electron
temperature Te. Therefore the observed change in radiation structures with carbon
impurities during radiation collapse indicates the electron temperature is changed at the
same timing.To investigate the relation between the evolution of radiation structures and
the electron temperature profile, a comparison between the evolution of the optimized
model in the model fitting and the measured profile of the electron temperature by a
Thomson scattering diagnostics has been carried out.

Figure 5.37 shows the evolution of the 3D model profile at a horizontally elongated
cross section and the Te profile at the same location. The figure shows that the Te
profile and the radiation region coinstantaneously shrink. Especially at 6.1s which is the
observed timing of the carbon emission moving from the imaging spectrometer, the Te
profile shows shrinking clearly.

Mean free path of electron

The measured evolutions of the radiation structure indicate that the asymmetry in the
radiation structure plays an important role in the radiation collapse. The measured
asymmetry is obtained even inside the LCFS during radiation collapse. When electrons
in the plasma can freely move, this kind of asymmetry should not occur. To investigate
these asymmetries in radiation structures, the mean free path (MFP) of electrons has
been investigated using theThomson scattering diagnostics. The mean free path of
electrons is given by the thermal velocity of the electron and the electron-ion collision
frequency, The thermal velocity of electrons, vthe, is given as

vthe = 5.9× 107T 0.5
e (5-2-1)

where Te is the electron temperature, The electron-ion collision frequency, νei, is given
as

νei = 2× 10−6ZnelnΛ

T 1.5
e

(5-2-2)

where Z is the charge number of ion (=1), ne is the density of electron and lnΛ is the
Coulomb logrithm (=20). The mean free path λe is given as

λe = vthe/νei (5-2-3)

The evolution of the mean free path at the plasma edge before radiation collapse has
been investigated, Figure 5.38 (lower) shows the relation between the mean free path and
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the electron temperature at the plasma edge which is defined before collapse to include
99 percent of the stored energy of the plasma, At first, the mean free path is linearly
related with the electron density during steady state phase. This relation is changed
before the radiation collapse, In this phase, the mean free path suddenly drops with
increasing electron density. The mean free path at which this drop occurs is defined by
a 30% gap between the linear extrapolateion and the dropping value. The definition is
shown in Figure 5.38.

Figure 5.39 shows how λe,cng, is changed with different magnetic axis configura-
tions. The figure indicates that when the mean free path is decreased to 1.5 − 7m, the
change in density dependence is obtained. The timing of this change is before the asym-
metry initiation. At the timing of the change, the electron temperature Te is around
100 − 200eV and the electron density is close to the Sudo-density limit. These results
indicate the possibility that when the mean free path loses its linear dependence, the
asymmetry of radiation structures can no longer be canceled along magnetic field lines
by the parallel transport of electrons.

5.3 Summary and scenario of radiation collapse

In this chapter, the developed 3D measurements have been applied to measurement of
radiation collapse. Results of 3D measurements indicate that the radiation structures
have asymmetries during radiation collapse and these asymmetries start from the inboard
side of the vertically elongated cross section where the plasma is closest to the wall. To
investigate these asymmetries, the temperature and the mean free path of the electrons
have been investigated. By these measurements, several events have been obtained
during radiation collapse. With these events, a scenario of radiation collapse with a
density ramp up is obtained as follows.

Phase 1 The temperature and the mean free path of electrons drop with increasing
electron density and the mean free path loses its linear dependence on density.

Phase 2 When the mean free path become lower than around λchg, the enhancement of
the radiation from the inboard side of the vertically elongated cross section starts.
The width of the radiation region is decreased. The radiation intensity start to
increase.

Phase 3 The inboard enhancement is extended to the horizontally elongated cross sec-
tion along the LCFS with decreasing mean free path.

Phase 4 The inboard enhancement covers the whole torus. The radiation region start
to shrink.

Phase 5 The radiation region crosses into the LCFS

Phase 6 The total radiation power reaches a peak.

Phase 7 The radiation region is concentrating and peaking in the core region.
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Figure 5.1: Evolution of stored energy, electron density and total radiation power during
discharge ]120928.

Figure 5.2: Measured 6.5-U IRVB images with collapse discharge (]120928) under the
3.6m magnetic axis configuration.
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Figure 5.3: Measured 6-T IRVB images with collapse discharge (]120928) under the 3.6m
magnetic axis configuration.

Figure 5.4: Measured 10-O IRVB images with collapse discharge (]120928) under the
3.6m magnetic axis configuration.
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Figure 5.5: Evolution of mean intensity for each IRVB during discharge ]120928.

Figure 5.6: Evolution of mean intensity for each IRVB during discharge ]120928. (6.5-L
is not available during this discharge)

120



Figure 5.7: Evolution of stored energy, electron density and total radiation power during
discharge ]121835.
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Figure 5.8: Measured 6.5-L IRVB images with collapse discharge (]121835) under the
3.75m magnetic axis configuration.

Figure 5.9: Measured 6.5-U IRVB images with collapse discharge (]121835) under the
3.75m magnetic axis configuration.
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Figure 5.10: Measured 6-T IRVB images with collapse discharge (]121835) under the
3.75m magnetic axis configuration.

Figure 5.11: Measured 10-O IRVB images with collapse discharge (]121835) under the
3.75m magnetic axis configuration.
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Figure 5.12: Evolution of mean intensity for each IRVBs during discharge ]121835.

Figure 5.13: Evolution of mean intensity for each IRVBs during discharge ]121835.
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Figure 5.14: Evolution of stored energy, electron density and total radiation power during
discharge ]121787.
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Figure 5.15: Measured 6.5-L IRVB images with collapse discharge (]121787) under the
3.9m magnetic axis configuration.

Figure 5.16: Measured 6.5-U IRVB images with collapse discharge (]121787) under the
3.9m magnetic axis configuration.
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Figure 5.17: Measured 6-T IRVB images with collapse discharge (]121787) under the
3.9m magnetic axis configuration.

Figure 5.18: Measured 10-O IRVB images with collapse discharge (]121787) under the
3.9m magnetic axis configuration.
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Figure 5.19: Evolution of mean intensity for each IRVBs during discharge ]121787.

Figure 5.20: Evolution of mean intensity for each IRVBs during discharge ]121787.
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Figure 5.21: Time evolution of obtained model parameters for a collapse discharge (]
120928) under the 3.6m magnetic axis configuration.
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Figure 5.22: Time evolution of 3D model for a collapse discharge (] 120928) under the
3.6m magnetic axis configuration.
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Figure 5.23: Time evolution of 3D model at 0, 9.5, 17.5◦ poloidal cross sections for a
collapse discharge (] 120928) under the 3.6m magnetic axis configuration.
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Figure 5.24: Time evolution of obtained model parameters for a collapse discharge (]
121835) under the 3.75m magnetic axis configuration.
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Figure 5.25: Time evolution of 3D model for a collapse discharge (] 121835) under the
3.75m magnetic axis configuration.
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Figure 5.26: Time evolution of 3D model at 0, 9.5, 17.5◦ poloidal cross sections for a
collapse discharge (] 121835) under the 3.6m magnetic axis configuration.
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Figure 5.27: Time evolution of obtained model parameters for a collapse discharge (]
121787) under the 3.9m magnetic axis configuration.
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Figure 5.28: Time evolution of 3D model for a collapse discharge (] 121787) under the
3.6m magnetic axis configuration.
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Figure 5.29: Time evolution of 3D model at 0, 9.5, 17.5◦ poloidal cross sections for a
collapse discharge (] 121787) under the 3.6m magnetic axis configuration.
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Figure 5.30: Time evolution of width of the radiation region (shot number 121787).

Figure 5.31: Time evolution of asymmetry property with inboard and outboard side
(]120928, ]121835 ,]121787). Red line is timing for initiation of inboard
enhancement.
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Figure 5.32: Time evolution of reconstructed radiation profile by 3D algebraic inver-
sion (Tikhonov regularization) for a collapse discharge (] 121835) under the
3.75m magnetic axis configuration. Point of view is located above torus.
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Figure 5.33: Time evolution of reconstructed radiation profile by 3D algebraic inversion
(Tikhonov regularization) for a collapse discharge (] 121787) under the 3.9m
magnetic axis configuration. Point of view is located above torus.
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Figure 5.34: Initiation of in-out asymmetry during radiation collapse for a collapse dis-
charge (] 121787) under the 3.9m magnetic axis configuration. Red circle
is location of extending of inboard enhancement. Point of view is located
above torus. Purple lines are LCFS.
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Figure 5.35: Time evolution of CIII(464.7nm), CII(426.7nm), Hγ and Hβ emission
structure in a collapse discharge (] 121787) under the 3.9m magnetic axis
configuration. Broken lines are LCFS and solid line is X-point trace.
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Figure 5.36: Time evolution of CIII(464.7nm), CII(426.7nm), Hγ and Hβ emission
structure in a collapse discharge (] 121787) under the 3.9m magnetic axis
configuration. Broken lines are LCFS and solid line is X-point trace.
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Figure 5.37: Time evolution of model radiation structure and the electron tempera-
ture(blue: 100eV, orange: 200eV) at φ = 18.
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Figure 5.38: Evolution of the mean free path (upper) at the edge which is defined to have
99 percent energy of the plasma. Blue cross is experimental data. Blue line
is fitted line for the steady plasma phase. The Red line is the fitted line for
the dropping phase. Relation between the mean free path and the electron
density at the edge (lower).
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Figure 5.39: The mean free path, lambdae,cng (upper), the normalized electron density
(middle) by the Sudo density limit and the electron temperature (lower),
from when the relation between the mean free path and the electron density
is changed with different magnetic axis configurations.
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6 Summary

In this thesis, two 3D tomographic radiation measurements have been developed using
improved IRVB measurement.Consequently, 3D tomography measurement of radiation
for fusion study has been established for the first time. The measurement results provide
a new scenario of radiation collapse.

1 Improvement of the IRVB measurement (foil material selection)
The performance of the IRVB depends on the thermal characteristics of IRVB foil
material. To improve the performance of the IRVB measurement, the selection of
the foil material has been carried out. In this selection, as the candidates of the
foil material, Au, Pt, Ta, W were employed. These candidates were illuminated
by a He-Ne laser and their thermal characteristics were evaluated. The evaluation
indicated that Pt had the best thermal characteristics and it provides a sensitivity
which is twice as large as that of Au which is the prior foil material. Therefore Pt
has been selected as the IRVB foil material.

2 Improvement of the IRVB measurement (Development of foil calibration)
The IRVB measurement as an absolute measurement requires the distribution on
the foil of 3 foil parameters. However because two of the three parameters, foil
thickness and emissivity, had not been evaluated, the IRVB measurement was
mainly performed as a qualitative measurement. To evaluate the distribution of
the two parameters, a new calibration technique has been developed with compar-
ison between a Finite Element Method (FEM) analysis and the actual foil. The
calibration technique evaluates the effective thickness and effective emissivity dis-
tribution on the foil. The evaluated distribution of the effective foil thickness and
the effective emissivity made possible for the first time a quantitive measurement
using an IRVB.

3 Calculation of projection matrix
The 3D measurement requires a 3D knowledge of the relation between each IRVB
channels signal and 3D space. To obtain the relation, a projection matrix is cal-
culated with the contribution of the radiation from each plasma volume element
to the field of view of each IRVB channel. The fields of view of the IRVBs are
designed to have complete coverage of the plasma using the calculated projection
matrix.

4 Tikhonov regularization
As a 3D tomographic radiation measurement, 3D reconstruction with Tikhonov
regularization with the statistical criterion of minimum GCV has been carried out
with s huge and complicated helical geometry, and applied to a plasma measure-
ment for the first time. The reconstruction has been numerically and experimen-
tally examined. The simulated radiation profile using the EMC3-EIRENE code
has been used as a numerical phantom in a numerical test of the reconstruction
and has been reproduced with the reconstruction process. In reconstruction tests
with experimental data which are taken before and after the plasma collapse, re-
construction results have responded to changes in the plasma condition.
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5 3D function model fitting
To evaluate the characteristics for the evolution of the 3D radiation structure
which are difficult to evaluate with the Tikhonov regularization result, a 3D func-
tion model fitting has been developed. The model for the model fitting has been
designed with consideration of the radiation shape, as well as inboard-outboard,
local peaking and toroidal asymmetries. Model parameters are optimized with
a criterion of minimum mean square error between an experimental IRVB image
and a synthetic IRVB image which is calculated from the model. The model fitting
quantifies the radiation structure changes as changes in nine model parameters.

6 Elucidation of radiation structure evolution during radiation collapse
The developed 3D measurements have been applied to measurements of radiation
collapse. The 3D model fitting provides information on the global evolutions in
the radiation structures and their timing. More detailed evaluation for the evo-
lution by the reconstruction with Tikhonov regularization has been carried out.
Several events during the radiation collapse evolution have been observed from
these measurement. Especially, these measurements indicate that toroidal and
inboard-outboard asymmetries of the radiation structure play important roles dur-
ing radiation collapse. The radiation structure can be seen from any view points
and cross sections by 3D measurements. Comparison between Thomson scattering
measurement data and the measured 3D radiation structure indicates that these
obtained events are related to the electron temperature and the mean free path
of the electron. When the mean free path at the plasma edge drops below a liner
dependence on density which depends on the confinement of plasma, the mean
free path suddenly drops and then the paralell transport becomes low. As a result,
the growing of the asymmetries is possible and then radiation collapse occurs. By
relating these events, a scenario for the radiation collapse has been obtained. That
is the main result of this thesis. The developed 3D measurement techniques and
improvement in the IRVB will also be applicable in the future to enhancing the
understanding of radiation collapse and other radiation phenomena.
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