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Abstract

Powdered materials have been ubiquitously existed from the past to the present
of the solar system. For example, in early solar nebula, km-sized bodies so-called
planetesimals are considered to have formed by accretion of µm-sized dust parti-
cles. At present, surface of the Moon and asteroids are covered with crushed rock
powders called regolith. Thermal conductivity of such powdered materials under
vacuum is known to be extremely lower than that of consolidated materials. There-
fore, the powdered material act as a thermal insulator and its thermal conductivity
is one of the essential parameters for thermal evolution of the planetary bodies.

The thermal conductivity of the powdered materials depends on many parame-
ters (gas pressure, particle size and its distribution, porosity, temperature, compres-
sional stress, material composition, particle shape, etc.). At atmospheric pressure,
the effective thermal conductivity is primary determined by conduction and con-
vection of the gas phase. On the other hand, under vacuum condition, the effective
thermal conductivity is determined by the combination of solid conductivity (con-
tribution of the conduction within the particles and across the inter-particle con-
tacts) and radiative conductivity (contribution of the thermal radiation through void
spaces between particle surfaces). Both conductivities vary by orders of magnitude
depending on the parameters. Although their individual effects on the thermal con-
ductivity have tried to be investigated, the integrative understanding on heat transfer
mechanisms in the powdered media is still insufficient. The purpose of this study
is to reveal the heat transfer mechanism in the powdered materials under vacuum
and to develop an integrative thermal conductivity model describing the parameter
dependences. In order to accomplish this purpose, the thermal conductivity of the
powder samples, whose parameters were accurately controlled, was measured under
vacuum, and the parameter dependences were systematically investigated. In this
study, the thermal conductivity for all samples was divided into the solid and radia-
tive conductivities using temperature-dependent thermal conductivity data. Deter-
mination of each contribution helps us to understand the heat transfer mechanism.
Integrating the experimental results, the heat transfer mechanism was discussed and
thermal conductivity model was constructed.

The powder samples used in this study were glass beads of six different sizes
smaller than 1 mm in diameter. Titanium beads, copper beads, and lunar regolith
simulant were also used. The thermal conductivity was measured by line heat
source method under vacuum conditions (less than 0.01 Pa). To control extrin-
sic parameters, temperature and compressional stress, two different experimental
systems were designed. The temperature was controlled from 250 to 330 K in



a thermostatic chamber. Using this experimental system, the solid and radiative
conductivities were derived for all samples, and the dependences on particle size,
porosity, material composition, and particle size distribution were investigated. An-
other experimental system for investigating compressional stress dependence of the
thermal conductivity was developed. Sintered glass beads were also prepared, and
the effect of the sintering on the thermal conductivity was investigated.

The major experimental results and inferred causes are the followings:

1. The solid conductivity of five glass beads larger than 50 µm increased from
0.001 to 0.003 W/mK with increasing the particle size. On the other hand,
glass beads smaller than 10 µm had higher solid conductivity by an order of
magnitude than the larger glass beads. The higher solid conductivity of the
smallest glass beads sample would result from strong adhesive force, which
enhances the contact area between the particles. It was found that the lower
solid conductivity for the larger glass beads samples resulted from the con-
stricted contact area by sub-µm scale roughness observed on the surface of
the larger glass beads.

2. The solid conductivity of the glass beads smaller than 10 µm was strongly
depends on the porosity. It decreased from 0.02 to 0.0007 W/mK with the
porosity increasing from 0.5 to 0.86. This dependence would be explained by
decrease of conduction path within unit volume.

3. As the compressional stress applied on the powders increased, the thermal
conductivity was enhanced without variation of the porosity. The solid con-
ductivities of the glass beads were proportional to 0.29 to 0.35 powers of the
compressional stress. This result supported an idea that the solid conductivity
of the powdered materials is proportional to radius of the contacting area.

4. The thermal conductivity of the sintered glass beads was orders of magnitude
higher than the unconsolidated glass beads. It was found that the thermal con-
ductivity of the sintered powders is characterized by the size of the contacting
parts called necks. It was scaled by the ratio of the neck radius to the particle
radius.

5. The radiative conductivity increased with increasing the particle size. This
result indicated that the radiative conductivity is characterized by the radiative
heat transfer distance scaled by void size between the particles.

6. As the porosity became higher, the radiative conductivity enhanced in the
porosity range higher than 0.6. This can be interpreted as the result of the
larger void size for the higher porosity samples. On the other hand, in the
porosity range less than 0.6, the measured radiative conductivity was scat-
tered, and therefore, the porosity dependence could not be defined in this
porosity regime.



Based on heat transfer mechanisms inferred from the series of the experiments, a
thermal conductivity model of the powdered materials for vacuum condition, which
integratively describes the parameter dependences, was constructed for the first
time. The solid conductivity was modeled as serial and parallel connections of
thermal conductance at the contacts between the equal-sized elastic spheres. From
the experimental results, surface roughness on particles was found to reduce the
solid conductivity. Then, a factor representing the constriction of the contact ra-
dius between rough spheres from that between perfectly smooth spheres was newly
introduced in the solid conductivity model. By comparing the developed solid con-
ductivity model with the experimental data, it was found that the model could give
higher solid conductivity than the experimental values, if assuming the perfectly
smooth particles. The deviation was less than factor of three, which would mean the
effect of the surface roughness. The radiative conductivity was modeled as thermal
radiation between infinitely thin parallel planes. The modeled radiative conductiv-
ity is proportional to distance between the planes. It was scaled by the typical void
length, which was calculated by assuming the homogeneous packing of equal-sized
spheres. A scaling factor correlating the void length to effective radiative trans-
fer distance (distance between the parallel planes) was introduced in the radiative
conductivity model. Comparison between the radiative conductivity model and the
experimental results revealed that, for the smallest glass beads less than 10 µm, the
measured radiative conductivity was higher than the modeled one by a factor of 15.
The smallest glass beads used in this study formed aggregates due to the adhesive
force between the individual particles and large void spaces were found between
the aggregates. The higher radiative conductivity than the model suggested that
the radiative heat transfer dominantly took place through the inter-aggregates large
voids.

As an example of application of the developed thermal conductivity model to
the planetary science, the thermal conductivity of highly porous planetesimal was
estimated and thermal evolution was numerically calculated. As the temeprature
of the planetesimal increases by radioactive heating, the sintering or neck forma-
tion of the dust particles occurs. The resulting consolidated planetesimal would had
different thermal and mechanical properties from the initial unconsolidated state,
whcih could affect subsequent thermal and collisional evolutions. By solving the
heat conduction equation together with equations for the sintering of the particles,
the condition and beginning time for the sitnering of the planetesimal were con-
strained for the first time. As a result of the thermal caclulation, it was found that
the temperature at the center of planetesimals could increase up to the sintering tem-
perature, even if the radius of the planetesimal was as small as 400 meters radius due
to the thermal insulating effect of the powdered materials. After the sintering oc-



curred, the temerature started to decrease because of enhenced thermal conductivity
resulting from the neck formation.

It was also found that time delay between the planetesimal accretion and the be-
ginning of the sintering was more than seventy thousands years, depending on the
accretion age. In the previous study on evolution of the planetesimals, the thermal
and collisional processes had been independently discussed. Because the planetesi-
mals would be expected to acquire strength by the sintering, the collisional outcome
would be different before and after the sintering. Then, the sintering time was com-
pared to the collisional timescale. It was found that the collisional timescale was
faster than the sintering timescale at the orbits of the Earth and Mars. Therefore,
protoplanets would be formed by the collisions between the unconsolidated plan-
etesimals. In the asteroid region, the collisional timescale was comparable with the
sintering timescale. This means that the early collisional evolution of the parent
bodies of the asteroids was dominated by the collisions of the consolidated plan-
etesimals. Thus, this study first presented the temporal relation between the thermal
and collisional process of the planetesimals.
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Chapter 1

Introduction

1.1 Role of powdered materials in planetary evolu-
tion

In the general theory of planetary formation, hypothetical km-sized objects, so-
called planetesimals, were formed by coagulation of µm-sized dust particles in
early solar nebula. Collisional accretion of the planetesimals resulted in the forma-
tion of larger planetary embryos, called protoplanets. Subsequent long-term evo-
lutions of the protoplanets produced the planets seen in the present solar system.
Remnant bodies that were not involved in the planetary growth, or fragments bro-
ken from larger parent bodies are considered to be asteroids and comets in present.
Some fragments are seen as the meteorites whose parent bodies may accommodate
to the current asteroids, satellites, and planets. Figure 1.1 shows a chronological
overview of the planetary evolution.

Planetesimal formation is one of the key issues on the planetary evolution. Al-
though their formation process has been studied, a concrete theory has not been es-
tablished to explain how µm-sized dust particles grew into km-sized objects. In the
nebula, dust particles grew into mm-sized aggregates through mutual hit-and-stick,
and these aggregates settled on the mid-plane of the disk (Weidenschilling, 1980).
Generally, two scenarios have been proposed for the planetesimal formation; mu-
tual collisional growth of the dust aggregates (Wada et al., 2007; Okuzumi et al.,
2012) and gravitational instability of dense dust layers (Youdin and Shu, 2002). In
the former model, the dust aggregates gradually accreted into larger planetesimals
via the mutual collision at low relative velocity (several m/s or higher). In the neb-
ula, solid materials experienced gas drag so that they drifted toward the central Sun.
The drift rate is the highest for meter-sized materials (1 AU in few hundred years,
Weidenschilling, 1977; Chambers, 2006). The planetesimal formation would be
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Figure 1.1: Chronological overview of the planetary evolution. CAI: Calcium-aluminum
rich inclusions; CTTS: Classical T-Tauri star; WTTS: Weak-lined T-Tauri star.
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prevented by this radial drift barrier, because the meter-sized bodies on the way of
the growth were quickly fell onto the Sun. Kataoka et al. (2013) suggested that
the density of icy dust aggregates increases from 10−5 g/cm3 to 10−1 g/cm3 with
increasing the size of the aggregate due to compression by the gas pressure and the
self-gravity. They stated that the planetesimals with such internal density evolution
could avoid the radial drift barrier. However, another problem appears for the rocky
planetesimal. The silicate dust aggregate is poorly sticky and easily disrupted by the
collision (Blum and Wurm, 2008; Wada et al., 2013). Thus, the rocky planetesimal
growth via mutual collision of the silicate dust aggregates is still an open question.

The gravitational instability model allows instantaneous accretion of the km-
sized planetesimals so as to overcome the radial drift barrier and disruption problem
of the silicate dusts. However, turbulent flow in the nebula would mix the dust
particles in the mid-plane and inhibit the gravitational instability. To overcome
the turbulent mixing, local enhancement of dust-to-gas ratio higher than cosmic
abundance is required in the mid-plane of the nebula (Youdin and Shu, 2002).

In any cases, the porous planetesimals consisted of µm-sized dust particles
would be formed, although which scenario is plausible for the planetesimal forma-
tion is still under discussion. Outcome of the collisions between the planetesimals
depends on physical properties of the planetesimal, such as planetesimal size, in-
ternal density, adhesive force between the dust particles, and mechanical strength.
Moreover, these properties could significantly change by thermal processes, which
is described in detail in Section 1.2. Therefore, it is essentially important to un-
derstand physical properties of assemblage of the dust particles for constraining the
evolution of the planetesimals.

After the formation of the solid planetary embryos, collisional disruption of the
bedrock of the planetary bodies and re-accumulation of the impact ejecta produced
surface blanket of fine grains. These grains are observed on the surface of the Moon,
Mercury, and Mars in present, as the so-called regolith. Spacecraft missions have
revealed that asteroids are also covered with the regolith (Carr et al., 1994; Belton
et al., 1994; Miyamoto et al., 2007; Sierks et al., 2011). Because such small bodies
can not re-accumulate the high-speed impact ejecta, alternative mechanism of the
regolith formation on the asteroids was reported by Delbo et al. (2014), in which
the regolith on the small bodies was formed by the breakup of boulders by thermal
fatigue due to diurnal temperature variation.

The surface regolith layer has highly significance from the perspective of sev-
eral kinds of the planetary science and engineering. From the scientific standpoint,
the regolith affects impact cratering, surface and internal temperature, or reflectance
spectrum. Because the regolith layer forms the boundary between planetary inte-
rior and outer space, its thermal, elastic, and electrical properties serve as essential
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information for in-situ exploration of planetary internal structure, such as heat flow,
seismic, and electrical experiments. Thermal and mechanical properties of the sur-
face regolith should be understood for feasibility study of the landing, touchdown,
and night-time survivability.

As mentioned above, powdered materials, such as the dust particles constituting
the initial planetesimals and the regolith covering the planets and asteroids, have
existed universally in the solar system from the past to the present. Understandings
of basic physical properties of the powdered materials are necessary for discussing
the planetary evolution. In this thesis, thermal conductivity of powdered materials
is focused on. It is known that the thermal conductivity of the powdered materials
under vacuum is lower than that of the consolidated materials by several orders of
magnitude. This is of interest to the planetary science as described below.

1.2 Thermal evolution of the planetesimal

Thermal process is one of the most fundamental events in the planetary evolution.
It causes variable physical and chemical processes, such as aqueous alteration, ther-
mal metamorphism, partial melting, metallic core formation, and volcanism. Many
meteorites show the evidence of several degrees of the thermal evolution in the pre-
existing parent bodies or planetesimals.

Several heat sources in the planetesimal are suggested; decay heat of radioactive
isotopes (Urey, 1955), electromagnetic induction heating (Herbert, 1989), and/or
impact heating (Rubin, 1995). The radioactive heating, especially by the decay of
short-lived isotope 26Al, is believed to be the primary heat source for the planetesi-
mals in the early solar nebula (McSween et al., 2002).

Many researchers have been attempted to examine the variety of the thermal
metamorphism of chondritic meteorites by means of numerical thermal calculation
of the planetesimal with 26Al as a main heat source. The mass of the body of interest
is generally assumed to be constant during the thermal evolution. The “formation”
age of the body is defined by the time when attaining the terminal mass. The abun-
dance of the short-lived radioactive isotopes 26Al, which is often defined by the
ratio to the stable nuclide 26Al/27Al, is calculated from the relative time of the plan-
etesimal formation to the condensation age of calcium-aluminum-rich inclusions
(CAIs) in the chondritic meteorites. The CAIs are believed to be the earliest mate-
rials formed in the solar system and their age would represent the age of the solar
system. Pb-Pb dating of CAIs in carbonaceous chondrites (Amelin et al., 2002;
Bouvier et al., 2007) revealed that the CAIs were formed at about 4568 million
years ago (Ma). The ratio 26Al/27Al at the solar system formation was 5.1× 10−5

(Nyquist et al., 2009), which is also constrained from the CAI. The 26Al abundance
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decreased from this value with half-time of 0.73 million years (Myr).
The degree of the temperature rise in the planetesimal is controlled by com-

peting effect between the internal heating efficiency and heat loss timescale to the
surface. As the formation age of the planetesimals is shorter after the CAI for-
mation, the temperature increases more easily because of the more abundant heat
source 26Al. In general, the internal temperature of a larger body becomes higher
than smaller one, because it would take more time to conducting the heat from the
center to the surface. The peak temperature decreases from the center to the surface.

Thermophysical properties, such as thermal conductivity and heat capacity, also
control the heating and cooling efficiency. The lower thermal conductivity con-
tributes to inefficient heat loss, by which the internal temperature becomes higher.
The lower heat capacity reduces the heat energy required to increase the tempera-
ture, and in parallel, enhances the cooling rate.

The thermal conductivity is the most changeable parameter depending on the
material condition. The thermal conductivity of silicate powdered materials under
vacuum is roughly 0.001 W/mK (Wechsler et al., 1972), while the intact rocks have
those about 1 W/mK. If the planetary body contains the unconsolidated powdered
materials, as is the case for the planetesimal, its temperature during the thermal
evolution becomes significantly higher than that of consolidated body, due to the
thermal insulating effect of the less conductive powdered materials.

Figure 1.2 shows the thermal evolution of a body of 1 km in radius formed at
2 Myr after the CAI formation. Four different thermal conductivity values of 1,
0.1, 0.01, and 0.001 W/mK are given. The heat source is the radioactive decay
energy of a short-lived nuclide 26Al. The more detailed information about the cal-
culation method will be shown in Chapter 5. As seen in Figure 1.2, the temperature
profile significantly changes by the thermal conductivity. When giving the thermal
conductivity of 1 W/mK, the temperature remains nearly constant at initial temper-
ature, and such bodies could not evolved thermally. The lower thermal conductivity
makes the peak temperature higher. If the thermal conductivity of 0.001 W/mK is
adopted as a typical value of powdered materials under vacuum, its internal temper-
ature rises higher than 1000 K.

If the planetesimal composed of the dust particles undergoes such high tem-
perature, sintering of the dust particles occurs. The sintering is a phenomenon of
the consolidation of the powdered materials at high temperature below the melting
temperature. As the sintering starts, physical connections between the particles are
formed and the void space between the particles gradually contracts. The resultant
thermal and mechanical properties differ from the original unconsolidated values.
Thus, the sintering is one of the important thermal processes that changes the phys-
ical properties of the planetesimal. Condition for the sintering (size and formation

5
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age of the planetesimal, onset timing of the sintering) is primary controlled by the
initial thermal conductivity of the planetesimal as the assemblage of the powdered
materials.

Table 1.1 shows the some previous works on the thermal evolution model of
small body including the planetesimal, summarized with respet to the heat source,
initial structure, thermal conductivity value, and with or wihtout the sintering. Miyamoto
et al. (1981) analytically calculated the thermal evolution of parent body of the or-
dinary chondrites with internal heat source of 26Al. According to their results, the
chondritic materials were formed in a body of 85 km in radius which was formed
after about 2.5 Myr after CAI formation. The thermal conductivity values for the
parent body was constant at 1 W/mK, a typical value for the silicate rock. They
stated that the ordinary chondrites with different petrologic types came from single
large parent body, in which the degrees of the thermal metamorphism (peak temper-
ature experienced during the thermal evolution) increased with depth. This model
for the origin of the chondrites is called onion-shell model (Figure 1.3).

Yomogida and Matsui (1984) calculated the thermal evolution of the porous
planetesimals, formed from unconsolidated powder materials. Their model took
into account the sintering of powder materials in terms of the reduction of the poros-
ity and the related change of the thermophysical properties. The heat source in their
model included only long-lived isotopes. The thermal conductivity they used was
given as a function of porosity and temperature. For the initial unconsolidated state,
experimental data by Fountain and West (1970) was used, who measured thermal
conductivity of basalt powder under vacuum. As the sintering (reduction of the
porosity) proceeds, they used chondritic meteorite’s data obtained by Yomogida and
Matsui (1983). The modeled thermal conductivity increased from 0.002 W/mK to
3 W/mK by the sintering. Their results indicated that even small body of a few
tens km in radius was heated by several hundred degrees and the temperature dis-
tribution inside the bodies became very homogeneous, due to thermally insulating
effect of powders. The peak temperature was primary restricted by the temperature
at which the sintering and the related thermal conductivity enhancement occurred.
Their model predicted that the chondrite meteorites with different petrologic types
were formed in different sizes of the parent body. This model is called multiple
parent bodies model (Figure 1.3).
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Figure 1.3: Onion shell model (left) and multiple parent body model (right) for ordinary
chondrite parent bodies (Yomogida and Matsui, 1984). In the onion shell model, the petro-
logic types 3 to 6 (numbers in this figure) are originated from single body. The multiple
parent body hypothesis predicts individual parent bodies for different petrologic types.

Akridge et al. (1998) investigated the effect of the surface regolith insulation on
the temperature evolution of ordinary chondrite parent body of 100 km in radius,
with 26Al as the internal heat source. The thermal conductivity of about 0.1 W/mK
was used for the surface regolith, which is higher than that for the lunar regolith
Langseth et al. (1976). Comparison between the thermal models with and with-
out the surface regolith layer revealed that the surface regolith made the internal
temperature more uniform and the cooling rate slower.

Recently, Henke et al. (2012a) modeled the thermal history the porous planetes-
imals consisted of the dust particles including the sintering. The thermal conductiv-
ity used in their model is a function of the porosity, from the experimental data by
Krause et al. (2011) for SiO2 unconsolidated powders and by Yomogida and Matsui
(1983) for the consolidated meteorites. The relation between the thermal conduc-
tivity and the porosity used in their thermal evolution model is shown in Figure 1.4.
As the degree of the sintering increases, the thermal conductivity increases along
the solid curve in this figure. Henke et al. (2012a) showed that initially porous
planetesimals of a few km in radius formed shortly after the CAI formation expe-
rienced high degree of the heating sufficiently to melt at the center. To form the
ordinary chondritic materials by the onion-shell model, a planetesimal of 100 km
radius formed at 2.3 Myr after CAI formation could be appropriate.

As shown above, several values of the thermal conductivity from 0.001 to 1
W/mK have been used in the previous studies. This variation affects the thermal
evolution, as shown in Figure 1.2. For the unconsolidated powdered planetesimals
(Yomogida and Matsui, 1984; Henke et al., 2012a), the thermal conductivity val-
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crosses represent the thermal conductivity of basalt powder obtained by Fountain and West
(1970), whose data were used for the thermal calculation by Yomogida and Matsui (1984).
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ues used in their calculations differed by an order of magnitude (crosses and filled
circles in Figure 1.4). Thus, the thermal conductivity of the unconsolidated porous
planetesimal has not been constrained sufficiently.

1.3 Thermal conductivity of planetary surface regolith

The thermal conductivity of surface regolith layer on terrestrial bodies is of great
interest for understanding their surface and interior thermal state. Crustal heat flow
is a measure of heat production in planetary bodies. It can be estimated as a product
of the thermal conductivity and vertical temeprature gradient in the surface material.
On the Moon, heat flow experiments were conducted in Apollo 15 and 17 Heat Flow
Experiments (Langseth et al., 1972, 1973), and the thermal conductivity of the sur-
face regolith was measured. Heat flow probes were emplaced in drilled borestems
in the regolith layer (Figure 1.5). Langseth et al. (1973) estimated the thermal con-
ductivity of the regolith from temperature increase rate during the heating of the
probes. As a result, they reported that the thermal conductivity of subsurface re-
golith increases with depth; 0.0141 W/mK at 35 cm and 0.0295 W/mK at 233 cm
below the surface. On the other hand, Langseth et al. (1976) estimated the thermal
diffusivity of regolith using the data on annual temperature variations propagating
into the lunar regolith. The deduced thermal diffusivities were independent of the
depth. Assuming the constant density and specific heat of the underground regolith,
they revised the thermal conductivity values between 0.009 W/mK to 0.013 W/mK
dependent on the measurement sites. Keihm and Langseth (1973) reported that the
thermal conductivity of upper few centimeters of the lunar surface regolith is about
0.001-0.0015 W/mK, based on microwave brightness temperature analyses around
the landing sites. These in-situ measurement values are summarized as a function
of depth in Figure 1.6.

The thermal conductivity values deduced by Langseth et al. (1973) are higher
than those by Langseth et al. (1976). They argued that the short-time heater ac-
tivated measurements (Langseth et al., 1973) is sensitive to the regolith material
near the probes, and the derived thermal conductivity was affected by regolith com-
paction during the drilling process. The compaction would enhance the thermal
conductivity, due to increase in the packing density and compressional stress in the
regolith. The thermal conductivity estimated from the annual temperature variations
(Langseth et al., 1976) are dependent on the bulk regolith properties far from the
probes. Grott et al. (2010) showed that if the thermal conductivity of 0.01 W/mK is
true for the undisturbed regolith, the temperature variation during the heating of the
probe can be reproduced by taking account of effect of regolith compaction on the
thermal conductivity according to the compaction model by Pilbeam and Vaišnys

11



Figure 1.5: Photo during Apollo 15 Heat Flow Experiments (AS15-92-12407, http://
www.apolloarchive.com/apollo_gallery.html) and illustration of heat flow
probe (Langseth et al., 1973). Borestem is emplaced in the regolith. A rod in the left hand
of the astronaut is the heat flow probe, which was inserted in the borestem.
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(1973). Then, the thermal conductivity around 0.01 W/mK is recently believed to
be proper value for underground of the lunar regolith layer. The thermal conductiv-
ity of the lunar regolith would increase considerably within several tens centimeters
in depth. The thermal infrared measurements by Diviner onboard the Lunar Re-
connaissance Orbiter also indicated eightfold increase in the thermal conductivity
from 0.001 to 0.008 W/mK within a few tens centimeters depth at lunar equatorial
regions (Vasavada et al., 2012). In the previous studies, the reason of this trend was
deduced to be changes of bulk density (Fountain and West, 1970) and self-weighted
stress (Horai, 1981; Sakatani et al., 2012) with depth.

Beside the Moon, the regolith layer also exists on Mercury, Mars, asteroids, and
comets. Surface temperature variation against the solar thermal radiation is strongly
depends on thermal properties of surface materials. Degree of the periodic variation
in the surface temperature is characterized by thermal inertia defined by the square
root of the product of the thermal conductivity, specific heat, and density. Surface
materials with low thermal inertia (low thermal conductivity) shows wide range of
the temperature variation. For example on the Moon, the surface temperature varies
from 100 K at lunar night to 380 K at lunar noon at Apollo 17 site (Keihm and
Langseth, 1973), due to low thermal inertia about 40 J/m2Ks0.5 (Wesselink, 1948)
of the lunar surface regolith. Thermal infrared measurements of the asteroids re-
veals that the thermal inertia varies widely between the bodies from 10 to 1000
J/m2Ks0.5 (Delbo’ et al., 2007). The thermal inertia depends on the nature of the
surface materials as grain size, porosity, depth of the regolith layer, and larger rock
abundance, all of which serve as key informations for the surface evolution of plan-
etary body. These also help to choose landing and sample-return sites for future
space missions to asteroids. To connect the thermal inertia value to the physical
condition of the surface materials, parametric study on the thermal conductivity of
regolith-like powdered materials is an essential work.

1.4 Purpose of this study

The thermal conductivity of the powdered materials under vacuum is one of the
most important physical parameters in context of the thermal issues of the planetary
bodies. However, heat transfer in the powdered material is complex phenomenon.
Its thermal conductivity depends on many parameters (particle size and its distri-
bution, porosity, temperature, compressional stress, material composition, particle
shape, etc.), and these dependences have not still been understood integratively. A
model of the thermal conductivity of the powdered materials must be established
for application to the planetary sciences, such as the thermal evolution of the plan-
etesimal and the thermal model of the planetary surface layer.
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Table 1.2: Overview of our thermal conductivity measurements. GB: Glass beads. MB:
Metalic beads. RS: Lunar regolith simulant.

Parameter Sample Parameter range
Temperature GB, MB, RS from 250 to 330 K
Particle size GB from 50 to 1000 µm
Porosity GB from 0.49 to 0.86
Compressional stress GB less than 20 kPa
Material type GB, MB -
Particle size distribution GB size ratio = 1:2
Degree of sintering GB neck radius ratio less than 0.3

This study aims at understanding the heat transfer mechanism in the powdered
materials under vacuum and developing an integrative thermal conductivity model
that describes the parameter dependences. In order to accomplish this purpose,
the thermal conductivity of several powder samples, whose dependent parameters
were accurately controlled, was measured experimentally and the parameter depen-
dences were systematically investigated. Integrating the experimental results, the
heat transfer mechanism, which caused the revealed parameter dependences, was
verified. Then, a thermal conductivity model was constructed.

Theoretical background and previous experimental works on the thermal con-
ductivity of the powdered materials are reviewed in Chapter 2. Chapter 3 is the
main part of this thesis, in which the experimental method and results are described.
Table 1.2 outlines the dependent parameters whose effect on the thermal conduc-
tivity were investigated experimentally in this study. The temperature dependence
of the thermal conductivity was measured for all samples used in this study. The
temperature-dependent data was utilized to determine conductive and radiative con-
tributions, which helps us to understand the heat transfer mechanism. In Chapter 4,
an thermal conductivity model is constructed based on the heat transfer mechanism
inferred from the experimental results. The developed thermal conductivity model
is finally applied to calculation of the thermal evolution of planetesimals in Chapter
5. The model is also applied to the surface regolith on the Moon (Appendix A) and
asteroids (Appendix B). Chapter 6 shows summary and conclusion of this thesis.
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Chapter 2

Thermal conductivity of powdered
materials: Review of previous works

2.1 Heat transfer in powdered materials

The thermal conductivity is defined as amount of transported heat per unit time and
per unit area as a result of unit temperature gradient in a material. According to
Fourier’s law of heat conduction,

q =−k
dT
dz

, (2.1)

where k is the thermal conductivity, q is heat flux, and dT/dz is temperature gradi-
ent.

Heat transfer in powdered media attributes three mechanisms listed below.

1. Thermal conduction and convection of gas in void space between the parti-
cles.

2. Thermal conduction within the particles and through contact area between the
particles.

3. Thermal radiation from a particle surface to next one through the void space.

Effective or total thermal conductivity of powdered materials keff can be written by
the sum of these three contributions as (Wechsler et al., 1972),

keff = kgas + ksolid + krad, (2.2)

where kgas, ksolid, and krad are thermal conductivities attributed from the above
mechanisms, respectively. These contributions are named as gas conductivity, solid
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conductivity, and radiative conductivity, respectively. Under vacuum conditions, in
which the gas conductivity can be neglected, Equation (2.2) reduces to,

kvac = ksolid + krad. (2.3)

At relatively high atmospheric pressure, the gas conductivity is dominant. The solid
and radiative conductivities are important only under vacuum.

According to kinetic theory of gas molecules, the thermal conductivity of gas in
free space, k0, is represented by,

k0 =
nv̄λCv

3Na
, (2.4)

where n is number density of the gas molecules per unit volume, v̄ is mean kinetic
speed of the gas molecules, λ is mean free path, Cv is specific heat, and Na is the
Avogadro number. The mean free path of gas molecules is described as a function
of the gas pressure, P, as,

λ =
kBT√
2πθ 2P

, (2.5)

where kB is the Boltzmann constant, T is temperature, and θ is diameter of the gas
molecules. Because the number density n is proportional to P, Equation (2.4) means
that the thermal conductivity of the gas is independent of the gas pressure.

For powdered media, however, it is known that the effective thermal conduc-
tivity decreases with the gas pressure reducing. Experimental results by Huetter
et al. (2008), who measured the thermal conductivity of five sizes of glass beads
as a function of the gas pressure, are shown in Figure 2.1. As the pressure is re-
duced from the atmospheric pressure, the mean free path becomes longer and the
gas density becomes lower. When the mean free path derived theoretically from
Equation (2.5) becomes larger than the void size between the particles, the mean
free path is restricted by the void size. Therefore, the mean free path λ remains
to be a constant. The gas conductivity decreases with the gas pressure decreasing
since the gas density n continues to decrease. If the gas pressure reduces enough so
that the gas conductivity becomes negligible compared to the sum of the solid and
radiative conductivities, the effective conductivity remains constant.

A meaningful dimensionless parameter, which characterizes the behavior of the
gas molecules in porous materials is Knudsen number Kn. It is defined as a ratio of
the mean free path λ to the typical void size L,

Kn =
λ
L
=

kBT√
2πθ 2P

1
L
. (2.6)

For Kn ≪ 1, collision among the gas molecules dominates (viscous flow regime).
Collision between the void wall and the gas molecules becomes dominative when
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Kn ≫ 1 (free molecular regime). The contribution of the gas conduction is negligi-
ble when Kn > 10 (Kaviany, 1998). Therefore, critical gas pressure, below which
the gas heat transfer can be neglected and the thermal conductivity reaches a con-
stant value dominated by the solid conduction and the radiation, can be calculated
as,

Pcrit =
1

10
kBT√
2πθ 2P

1
L
= 7.2×10−4 1

L
. (2.7)

Figure 2.2 shows the critical pressure Pcrit as a function of typical void size L, when
θ = 3.6×10−10 m (nitrogen molecule) and T = 300 K are adopted, In Figure 2.1,
the critical pressure differs by the particle size. This difference can be explained by
the Knudsen number (Piqueux and Christensen, 2009).

2.2 Thermal conductivity of powdered materials un-
der vacuum

When Kn > 10, the effective thermal conductivity is given by the sum of the solid
and radiative conductivity as Equation (2.3). Both solid and radiative conductivi-
ties depend on several parameters. Table 2.1 shows the chronological overview of
the previous experimental studies for the thermal conductivity of silicate powdered
materials under vacuum conditions. In this section, the parameter dependences of
the thermal conductivity under vacuum are reviewed. It should be noted again that
the measured thermal conductivity contains the solid and radiative contributions.

Theoretical background

The solid conductivity is considered to depend on inter-particle contact area and
networks of contacting particles. Since restricted contact area between the particles
acts as strong thermal resistor, the thermal conductivity of the powdered materi-
als under vacuum becomes extremely lower than the consolidated material. The
inter-particle contact area and particle contact network depend on several physical
parameters, such as particle size, applied load, surface roughness, shape of the par-
ticles, elastic modulus of the materials, and porosity. It is quite difficult to modeling
the solid conductivity including the effect of these parameters. Therefore, previ-
ous studies for the solid conductivity had been focused on simple situations such as
spheres of uniform size with regular packing structure.

Halajian and Reichman (1969) modeled the conductivity thorough the contact
between spherical particles packed with the simple cubic lattice. They reported that
the conductivity increases with depth, or applied force, which broads the contact
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area due to elastic deformation of the spheres;

ksolid = km

[
πρmg(1−ν2)

2E

]1/3

z1/3, (2.8)

where km is thermal conductivity of the solid material, ρm is true density of the solid
material, g is the gravitational constant, ν is Poisson’s ratio, E is Young’s modulus,
and z is depth. Their theory predicted that ksolid is independent of the particle size.

The radiative conductivity depends strongly on temperature (Watson, 1964).
The thermal radiation between the particles is often approximated by the radia-
tion between two detached flat plates with small temperature difference. When two
plates have temperature of T and T +∆T , radiative heat flux between the plates is
approximated by the following equation if ∆T ≪ T ,

qrad ∝ (T +∆T )4 −T 4, (2.9)

∝ T 3∆T. (2.10)

The radiative conductivity is defined using the Fourier’s law of heat conduction as,

krad = qrad
L

∆T
, (2.11)

where L is distance between the two plates. From Equation (2.10) and (2.11), the
radiative conductivity is modeled as,

krad ∝ LT 3. (2.12)

For the powdered media, L is representative of the typical void size. Equation (2.12)
suggests that the radiative conductivity is proportional to the temperature cubic.

21



Ta
bl

e
2.

1:
Pr

ev
io

us
st

ud
ie

s
fo

rt
he

th
er

m
al

co
nd

uc
tiv

ity
of

si
lic

at
e

po
w

de
rs

un
de

rv
ac

uu
m

(l
es

s
th

an
1

Pa
).

R
ef

er
en

ce
Sa

m
pl

e
Pa

rt
ic

le
Si

ze
D

en
si

ty
Te

m
pe

ra
tu

re
T

he
rm

al
co

nd
uc

tiv
ity

(µ
m

)
(k

g/
m

3 )
(K

)
(×

10
−

3
W

/m
K

)

W
at

so
n

(1
96

4)
(1
)

G
la

ss
be

ad
s

59
0-

84
0

15
90

-1
82

0
15

0-
35

0
0.

8-
11

.4
25

0-
35

0
15

00
-1

61
0

0.
5-

5.
8

88
-1

25
15

70
-1

63
0

0.
6-

4.
0

53
-7

4
13

80
-1

68
0

0.
8-

2.
2

<
37

11
70

-1
47

0
1.

2-
3.

7
C

ru
sh

ed
gl

as
s

be
ad

s
44

-7
4

58
0-

86
0

1.
9-

3.
2

C
ru

sh
ed

qu
ar

tz
44

-7
4

12
20

-1
46

0
3.

5-
5.

1
<

74
11

00
-1

24
0

3.
0-

5.
1

C
ru

sh
ed

ho
rn

bl
en

de
<

74
11

00
-1

50
0

1.
2-

5.
1

C
ru

sh
ed

ol
iv

in
e

<
74

13
70

1.
5-

6.
5

W
ec

hs
le

r
an

d
G

la
se

r
(1

96
5)

O
liv

in
e

po
w

de
r

20
-

27
0-

30
0

5.
9-

6.
3

C
ho

nd
ri

te
po

w
de

r
20

-
22

0-
44

0
3.

4-
4.

6
Te

kt
ite

po
w

de
r

20
-

28
0

2.
3

B
as

al
tp

ow
de

r
20

-
29

0
1.

8
G

la
ss

be
ad

s
15

0
-

19
0-

30
0

4.
6-

5.
0

50
-

19
0-

30
0

1.
7-

3.
2

1)
Si

nc
e

W
at

so
n

(1
96

4)
di

d
no

ts
ho

w
th

e
di

re
ct

m
ea

su
re

m
en

tr
es

ul
ts

fo
rt

he
ef

fe
ct

iv
e

th
er

m
al

co
nd

uc
tiv

ity
,I

ca
lc

ul
at

ed
it

fr
om

so
lid

A
an

d
ra

di
at

iv
e

B
co

ef
fic

ie
nt

s
(E

qu
at

io
n

2.
13

)w
ith

te
m

pe
ra

tu
re

ra
ng

e
be

tw
ee

n
15

0
an

d
35

0
K

.

22



Ta
bl

e
2.

1:
C

on
tin

ue
d.

R
ef

er
en

ce
Sa

m
pl

e
Pa

rt
ic

le
Si

ze
D

en
si

ty
Te

m
pe

ra
tu

re
T

he
rm

al
co

nd
uc

tiv
ity

(µ
m

)
(k

g/
m

3 )
(K

)
(×

10
−

3
W

/m
K

)

W
ec

hs
le

r
an

d
Si

m
on

(1
96

6)
G

la
ss

be
ad

s
44

-6
2

14
20

19
0-

35
0

0.
6-

1.
7

Pu
m

ic
e

po
w

de
r

44
-7

4
84

0
20

0-
35

0
0.

5-
1.

9
10

-3
7

82
0

16
0-

38
0

0.
6-

2.
1

B
as

al
tp

ow
de

r
44

-7
4

14
30

18
0-

35
0

0.
8-

1.
7

10
-3

7
13

60
17

0-
36

0
1.

2-
2.

1
Q

ua
rt

z
po

w
de

r
1-

10
10

00
16

0-
40

0
2.

4-
4.

3
M

er
ri

ll
(1

96
9)

G
la

ss
be

ad
s

10
-2

0
12

10
32

0-
51

0
1.

2-
4.

9
38

-5
3

11
30

10
0-

50
0

0.
4-

4.
8

12
5-

24
3

14
90

10
0-

49
0

0.
2-

6.
0

Fo
un

ta
in

an
d

W
es

t(
19

70
)

B
as

al
tp

ow
de

r
37

-6
2

79
0

18
0-

37
0

0.
6-

1.
3

88
0

15
0-

36
0

0.
7-

1.
5

98
0

16
0-

36
0

0.
6-

1.
4

11
30

14
0-

37
0

0.
8-

1.
8

13
00

15
0-

36
0

1.
3-

2.
6

15
00

14
0-

36
0

1.
7-

3.
1

23



Ta
bl

e
2.

1:
C

on
tin

ue
d.

R
ef

er
en

ce
Sa

m
pl

e
Pa

rt
ic

le
Si

ze
D

en
si

ty
Te

m
pe

ra
tu

re
T

he
rm

al
co

nd
uc

tiv
ity

(µ
m

)
(k

g/
m

3 )
(K

)
(×

10
−

3
W

/m
K

)

C
re

m
er

s
et

al
.(

19
70

)
A

po
llo

11
sa

m
pl

e
(1

00
84

)
-

12
65

20
0-

40
0

1.
5-

2.
6

C
re

m
er

s
(1

97
1)

A
po

llo
11

sa
m

pl
e

(1
00

84
)

-
16

40
16

0-
40

0
1.

6-
3.

7
19

50
17

0-
41

0
1.

8-
3.

1
C

re
m

er
s

an
d

B
ir

ke
ba

k
(1

97
1)

A
po

llo
12

sa
m

pl
e

(1
20

01
)

-
13

00
17

0-
43

0
1.

1-
3.

5
C

re
m

er
s

(1
97

2a
)

A
po

llo
12

sa
m

pl
e

(1
20

01
)

-
16

40
21

0-
42

0
1.

1-
2.

8
C

re
m

er
s

(1
97

2b
)

A
po

llo
12

sa
m

pl
e

(1
20

01
)

-
19

70
10

0-
43

0
1.

2-
2.

7
C

re
m

er
s

(1
97

2c
)

A
po

llo
14

sa
m

pl
e

(1
41

63
)

-
11

00
12

0-
35

0
0.

7-
1.

7
13

00
11

0-
40

0
0.

7-
2.

4
C

re
m

er
s

an
d

H
si

a
(1

97
3)

A
po

llo
15

sa
m

pl
e

(1
50

31
)

-
13

00
10

0-
41

0
0.

6-
1.

4
C

re
m

er
s

an
d

H
si

a
(1

97
4)

A
po

llo
16

sa
m

pl
e

(6
85

01
)

-
15

00
10

0-
39

0
0.

5-
1.

5
Fo

un
ta

in
an

d
W

es
t(

19
74

)
B

as
al

tp
ow

de
r

74
-1

49
12

50
24

0-
36

0
0.

8-
1.

7
13

90
25

0-
36

0
0.

9-
1.

8
17

50
23

0-
36

0
1.

2-
2.

2
19

00
21

0-
35

0
2.

5-
4.

3
19

50
12

0-
36

0
3.

6-
6.

4

24



Ta
bl

e
2.

1:
C

on
tin

ue
d.

R
ef

er
en

ce
Sa

m
pl

e
Pa

rt
ic

le
Si

ze
D

en
si

ty
Te

m
pe

ra
tu

re
T

he
rm

al
co

nd
uc

tiv
ity

(µ
m

)
(k

g/
m

3 )
(K

)
(×

10
−

3
W

/m
K

)

C
re

m
er

s
(1

97
5)

A
po

llo
14

sa
m

pl
e

(1
41

63
)

-
15

00
10

0-
40

0
0.

8-
2.

6
18

00
10

0-
40

0
1.

2-
2.

8
Fo

un
ta

in
an

d
W

es
t(

19
75

)(
2)

L
un

ar
re

go
lit

h
si

m
ul

an
t

-
12

50
23

0-
40

0
0.

8-
2.

5
15

00
18

0-
44

0
1.

0-
2.

5
17

50
17

0-
40

0
2.

0-
4.

5
18

00
17

0-
40

0
3.

1-
8.

1
Fo

un
ta

in
an

d
W

es
t(

19
78

)(
2)

A
po

llo
15

sa
m

pl
e

(1
50

31
)

-
13

50
29

0-
42

0
2.

2-
4.

5
H

or
ai

et
al

.(
19

80
)

L
un

ar
re

go
lit

h
si

m
ul

an
t

-
14

70
R

oo
m

te
m

p.
2.

1
15

00
2.

1
15

70
2.

7
15

80
2.

1
16

70
2.

1
A

po
llo

17
co

re
sa

m
pl

e
(7

00
02

)
-

17
40

1.
9-

3.
5

A
po

llo
17

co
re

sa
m

pl
e

(7
00

06
)

-
18

00
3.

9-
4.

9

2)
T

he
th

er
m

al
co

nd
uc

tiv
ity

va
lu

es
w

er
e

re
ad

ou
tf

ro
m

th
ei

rg
ra

ph
ic

al
pl

ot
s,

be
ca

us
e

th
ey

di
d

no
tp

lo
tt

he
ex

pe
ri

m
en

ta
lp

oi
nt

s.

25



Ta
bl

e
2.

1:
C

on
tin

ue
d.

R
ef

er
en

ce
Sa

m
pl

e
Pa

rt
ic

le
Si

ze
D

en
si

ty
Te

m
pe

ra
tu

re
T

he
rm

al
co

nd
uc

tiv
ity

(µ
m

)
(k

g/
m

3 )
(K

)
(×

10
−

3
W

/m
K

)

H
or

ai
(1

98
1)

L
un

ar
re

go
lit

h
si

m
ul

an
t

-
17

00
R

oo
m

te
m

p.
8.

8
18

50
10

.9
H

ue
tte

r
an

d
K

oe
m

le
(2

00
8)

B
la

ck
gl

as
s

be
ad

s
10

00
-1

25
0

15
50

R
oo

m
te

m
p.

22
.6

C
le

ar
gl

as
s

be
ad

s
15

.4
H

ue
tte

r
et

al
.(

20
08

)
G

la
ss

be
ad

s
10

0-
20

0
15

50
R

oo
m

te
m

p.
8.

0
25

0-
50

0
8.

0
10

00
-1

25
0

15
.0

20
00

-2
30

0
21

.0
38

00
-4

30
0

39
.0

G
la

ss
be

ad
s

m
ix

tu
re

10
00

-4
30

0
16

10
9.

0

26



Ta
bl

e
2.

1:
C

on
tin

ue
d.

R
ef

er
en

ce
Sa

m
pl

e
Pa

rt
ic

le
Si

ze
D

en
si

ty
Te

m
pe

ra
tu

re
T

he
rm

al
co

nd
uc

tiv
ity

(µ
m

)
(k

g/
m

3 )
(K

)
(×

10
−

3
W

/m
K

)

K
ra

us
e

et
al

.(
20

11
)(

3)
Si

lic
a

po
w

de
r

1.
5

30
0

R
oo

m
te

m
p.

2.
6

32
0

1.
6

48
0

3.
6

58
0

7.
8

10
00

16
.0

-2
1.

0
10

80
21

.0
G

un
dl

ac
h

an
d

B
lu

m
(2

01
2)

(3
)

Si
lic

a
po

w
de

r
25

-5
5

13
40

R
oo

m
te

m
p.

12
.2

11
8-

23
6

12
70

8.
2

24
5-

49
7

13
80

7.
4

42
3-

59
1

13
70

6.
7

86
1-

98
9

13
80

6.
2

3)
T

he
de

ns
ity

w
as

ca
lc

ul
at

ed
fr

om
th

e
vo

lu
m

e
fil

lin
g

fa
ct

or
an

d
po

ro
si

ty
as

su
m

in
g

th
e

tr
ue

de
ns

ity
of

20
00

kg
/m

3
fo

rt
he

si
lic

a.

27



Effect of temperature

Most of the previous studies on temperature dependence of the thermal con-
ductivity of powdered materials showed the increase with the temperature. Figure
2.3 shows an experimental result by Merrill (1969) for the thermal conductivity of
glass beads of 38-53 µm in diameter. The cause of the increase in the thermal con-
ductivity with temperature was considered to be attributed to the enhancement of
radiative conductivity, as represented by Equation (2.12). In the strict sense, the
solid conductivity also depends on the temperature primarily through the thermal
conductivity of solid materials. However, it would be negligible compared with the
stronger dependence of the radiative conductivity, if the solid conductivity is not
significantly larger than the radiative one. Assuming the solid conductivity is inde-
pendent of the temperature, Watson (1964) represented the temperature dependence
of the thermal conductivity as,

k(T ) = ksolid + krad = A+BT 3, (2.13)

where T is the temperature, and A and B are constants representing the solid and
radiative conductivity coefficients, respectively. This equation can well fitted to the
experimental data in Figure 2.3 (solid curves in Figure 2.3).

Determined fitting variables A and B provide meaningful informations about the
solid and radiative conductivities, respectively. In Figure 2.3, A = 4.5× 10−4 and
B = 3.2× 10−11 can be obtained by the fitting. It means that the solid and radia-
tive conductivities of this sample at 300 K are ksolid = A = 4.5× 10−4 W/mK and
krad = B×3003 = 8.6×10−4 W/mK, respectively. The resulting effective thermal
conductivity at 300 K becomes k = ksolid+krad = 1.3×10−3 W/mK. In this manner,
the solid and radiative conductivities of a powdered sample can be estimated inde-
pendently by using the temperature dependence of the thermal conductivity, which
gives essential understanding on heat transfer mechanism in the powdered material.
As shown in Table 2.1, however, the temperature dependence had been measured
only until 1970’s, most of which is concerned with the temperature-dependent ther-
mophysical property of the lunar surface materials. After 1980’s, the temperature
during the measurements was not controlled and was restricted only at room tem-
perature.

Effect of particle size

The particle size dependence has been often tested using artificially-manufactured
glassy spheres. Figure 2.4 shows comparison of the thermal conductivity of glass
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Figure 2.3: Temperature dependence of thermal conductivity of glass beads (38-53 µm in
diameter), measured by Merrill (1969). A solid curve is a regression curve of Equation
(2.13).

and silica beads from Wechsler and Glaser (1965), Wechsler and Simon (1966),
Merrill (1969), Huetter et al. (2008), and Gundlach and Blum (2012) as a function
of the particle diameter at about 300 K. As one can see form this figure, the ther-
mal conductivity values were never definitive and differed by an order of magnitude
even for the same sizes of the beads. Merrill (1969) and Gundlach and Blum (2012)
observed lower thermal conductivity for large particles. On the other hand, the data
from Wechsler and Glaser (1965) and Huetter et al. (2008) appeared to increase
with the particle size. The cause of these differences has not been clear.

Merrill (1969) attempted to get the solid and radiative conductivities as a func-
tion of the particle size using the temperature-dependent thermal conductivity. These
results are shown as a function of the particle diameter in Figure 2.5, together with
the results by Watson (1964). Their results showed that the solid conductivity de-
creased with increasing the particle size, while the radiative conductivity increased.

Theoretically, the radiative conductivity increases with the particle size, because
the typical void size L in Equation (2.12) becomes larger. If packing structure or
porosiy remains constant, the void size, and therefore, the radiative conductivity
is proportional to the particle diameter. This is consistent with the variation of B
with the particle diameter in Figure 2.5. The theory of the solid conductivity by
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Figure 2.4: Thermal conductivity of glass and silica beads compiled from Wechsler and
Glaser (1965), Wechsler and Simon (1966), Merrill (1969), Huetter et al. (2008), and
Gundlach and Blum (2012) as a function of the particle diameter. For Wechsler and Glaser
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Figure 2.5: The solid (top) and radiative (bottom) conductivity of glass beads at 300 K,
cited from Watson (1964) and Merrill (1969).

31



Halajian and Reichman (1969) in Equation (2.8) expects that the solid conductivity
is independent of the particle diameter. This is inconsistent iwth the experimental
results. Gundlach and Blum (2012) stated that the solid conductivity decreases with
the particle diameter if the contact force betwen the particles is adhesive (van der
Waals) force but the self-weight.

Note that the samples used by Watson (1964) and Merrill (1969) had wide range
of the packing density or porosity, especially for Watson (1964) and Merrill (1969),
as shown in Table 2.1. Since the density also affects the thermal conductivity, the
trend shown in Figure 2.4 and 2.5 might represent the effect of not only the particle
size but also the density.

Effect of porosity or bulk density

Fountain and West (1970) measured the thermal conductivity of terrestrial basalt
powders (37-63 µm in diameter) as a function of bulk density ranged from 790 to
1500 kg/m3 under vacuum. Similar experiments using the basalt powders were con-
ducted by Fountain and West (1974) and Fountain and West (1975) for the particle
sizes of 74-149 µm and less than 5 mm, respectively. Krause et al. (2011) mea-
sured 1.5 µm-sized SiO2 powders with porosity ranging from 0.85 to 0.46. Their
experimental results are compared in Figure 2.6 as a function of the porosity at tem-
perature around 300 K. Figure 2.6 shows that the thermal conductivity is reduced
when the porosity increases, in other words, the density decreases. The 1.5 µm
silica powders had higher thermal conductivity by an order of magnitude than the
basalt powders.

Fountain and West (1970, 1974, 1975) determined the solid and radiative con-
ductivities of their samples, using the temperature-dependent data as Merrill (1969).
The results are shown in Figure 2.7. The solid conductivity seems to decrease with
the porosity. The solid conductivity is considered to primary depend on the pack-
ing arrangement of the particles. The porous sample has less number of contacting
particles (coordination number), which reduces the efficiency of the thermal con-
duction. The radiative conductivity also seems to decrease with the porosity. For
the higher porosity, the radiative conductivity is expected to increase because the
void size L in Equation (2.12) becomes larger. This estimation contradicts their ex-
perimental results shown in Figure 2.7. Wechsler et al. (1972) suggested that part
of this increase in the estimated radiative conductivity might be contributed from
temperature-dependent increase in the solid conductivity, primary attributed to the
temperature-dependent thermal conductivity of the composite material (basalt).

Thermal conductivity of lunar regolith samples
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Figure 2.6: Porosity dependence of the thermal conductivity of powdered materials under
vacuum by Fountain and West (1970, 1974, 1975) and Krause et al. (2011). Since the poros-
ity of the basalt powders used by Fountain and West (1970, 1974, 1975) did not defined, it
was calculated from the bulk density assuming the true density of 3000 kg/m3 for the basalt.
The thermal conductivity values obtained at the temperature of 300 ± 35 K are taken from
the figures in the literature. The results by Horai (1981), who measured the same sample as
used by Fountain and West (1975), are also plotted.
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Figure 2.7: Estimated solid (top) and radiative (bottom) conductivities at 300 K for basalt
powders (Fountain and West, 1970, 1974, 1975). Since Fountain and West (1974) did not
show fitting results of Equation (2.13), the values of A and B are determined in this work.
Only approximated curves of the thermal conductivity as a function of the temperature were
shown in Fountain and West (1975), without the data points. Then, eight data points on their
approximated curves were picked up, and the values of A and B were estimated by fitting
Equation (2.13) into these data.
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Lunar regolith samples collected in Apollo missions were measured in laborato-
ries (Cremers et al., 1970; Cremers, 1971; Cremers and Birkebak, 1971; Cremers,
1972a,b,c; Cremers and Hsia, 1973, 1974; Cremers, 1975) with the density range
from 1100 to 1950 kg/m3 as a function of the temperature. Figure 2.8 shows all of
the available thermal conductivity data for the lunar samples. The obtained thermal
conductivity ranges from 0.0005 to 0.0037 W/mK, which is consistent with the esti-
mated values of the upper few centimeters of the lunar surface regolith (Figure 1.6,
Keihm and Langseth, 1973). It should be noted that the higher thermal conductivity
measured in-situ at the deeper depth (≈ 0.01 W/mK Langseth et al., 1973, 1976)
was not reproduced in the laboratory experiments.

The solid and radiative conductivities of the lunar regolith samples are summa-
rized in Figure 2.9. The solid conductivity is scattered from 0.0005 to 0.002 W/mK.
The radiative conductivity at 300 K appears less scattered than the solid conductiv-
ity.

Effect of compressional stress

Fountain and West (1975) and Horai (1981) measured the thermal conductiv-
ity of the same basalt powders as a terrestrial analogue of the lunar soils. Their
results are plotted in Figure 2.6. Horai (1981) observed the thermal conductivities
of 0.0088 and 0.0109 W/mK at the densities of 1700 and 1850 kg/m3, respectively,
which were two times higher than those measured by Fountain and West (1975).
One of the differences between these two experiments was the dimensions of sam-
ple containers. Horai (1981) used the vertically-elongated sample container (2.54
cm in diameter and 6.99 cm long), while Fountain and West (1975), as well as the
other previous works on the basaltic powders and lunar regolith samples (e.g. Foun-
tain and West, 1970; Cremers et al., 1970), used horizontally-elongated containers.
Horai (1981) argued that the higher conductivity resulted from elastic enhancement
of inter-particle contact area by self-weighted stress in the sample. However, de-
gree of thermal conductivity variation due to the compressional stress has not been
verified experimentally.

In our previous works (Sakatani et al., 2012), the thermal conductivity of glass
beads were measured using a vertically-elongated sample container, and effect of
the depth, at which the thermal conductivity is measured, was investigated. Within
the depth from 1 cm to 30 cm, the thermal conductivity of the glass beads increased
with the depth. This result was qualitatively consistent with the Horai’s interpreta-
tion that the self-weighted stress enhances the thermal conductivity.

Horai (1981) obtained the thermal conductivity consistent with the in-situ mea-
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Figure 2.8: Thermal conductivity of Apollo lunar regolith samples at low (top, ρ < 1400
kg/m3), intermediate (middle, 1400 kg/m3 < ρ < 1700 kg/m3), and high (bottom, ρ >

1700 kg/m3) densities, compiled from (Cremers et al., 1970; Cremers, 1971; Cremers and
Birkebak, 1971; Cremers, 1972a,b,c; Cremers and Hsia, 1973, 1974; Cremers, 1975).
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Figure 2.9: The solid (top) and radiative (bottom) conductivity at 300 K for Apollo lunar re-
golith samples as a function of bulk density (Cremers et al., 1970; Cremers, 1971; Cremers
and Birkebak, 1971; Cremers, 1972a,b,c; Cremers and Hsia, 1973, 1974; Cremers, 1975).
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surements of the lunar subsurface regolith (Langseth et al., 1976). This indicated
that the rapid increase of the thermal conductivity of the lunar regolith within sev-
eral tens centimeters depth (Figure 1.6) was essentially caused by the self-weighted
compressional stress in the regolith.

Effect of particle size distribution and particle shape

Huetter et al. (2008) measured the thermal conductivity for a mixture of equal
volumes of three glass beads with different particle sizes (1.0-1.25, 2.0-2.3, and 3.8-
4.3 mm). The thermal conductivity of the mixture was lower than that for the single
particle sizes. They stated that the lower thermal conductivity of the mixture would
come from the smaller pore size between the particles, which made the radiative
conductivity smaller. However, they did not determine the ratio of the solid and
radiative contributions, so that their statement had no strong foundation.

Watson (1964) measured the spherical glass beads and crushed glass powders.
He observed higher thermal conductivity of the crushed glass than the spherical
glass beads. He argued that the irregular shape of the crushed particles provided
larger coordination number, which could enhance the solid conductivity. However,
the packing density of the crushed sample was twice lower than the spherical sample
(Table 2.1). Therefore, his experimental results indicated not only the effect of the
particle shape but also the density.

Issues on the previous works

According to the previous works, the thermal conductivity of the silicate pow-
dered materials under vacuum condition varies significantly from 0.0005 to 0.021
W/mK, depending on the materials, the several parameters characterizing the pow-
dered samples, and the temperature. However, integrative understanding on the
parameter dependences and the heat transfer mechanism has not been established.
For example, the particle size dependence of the thermal conductivity is still be an
open question (Figure 2.4), even though the particle size is one of the fundamental
parameters for characterizing the powdered materials.

Several methods for the thermal conductivity measurements have been utilized.
Because of the less conductive nature of the powdered materials and possible het-
erogeneity of the packed samples, the measurement methods could also affect the
measured values. Steady state methods (e.g. Watson, 1964; Gundlach and Blum,
2012) measure bulk properties of the samples, but it may not be suited for the ther-
mal insulating materials. On the other hand, transient methods (e.g. Fountain and
West, 1970; Krause et al., 2011) measure local parts of the samples near the detec-
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tor, so that the measurements would be affected by the heterogeneity.
The results by Horai (1981) and Sakatani et al. (2012) indicates that the depth

for the thermal conductivity measurement also affects the thermal conductivity.
Since the measurement depth differed by the researchers, the measured thermal
conductivities can not be easily compared.

The inconsistency in the experimental results would arise from several factors;
different methods for thermal conductivity measurements, packing conditions (e.g.
porosity and compressional stress in the samples), or nature of the samples (e.g. par-
ticle shapes or microscopic surface roughness). They can be no longer verified. In
order to understand the heat transfer mechanism experimentally, a systematic series
of the experiments with the same experimental method and condition is absolutely
required. Moreover, the determination of the solid and radiative conductivities con-
tributing to the effective thermal conductivity provides key information for exam-
ining the conductive and radiative heat transfer mechanisms independently. There
were a number of the studies that lacked this information (e.g., Huetter et al., 2008;
Krause et al., 2011; Gundlach and Blum, 2012).
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Chapter 3

Thermal conductivity measurement
of powder samples

3.1 Sample selection

3.1.1 List of the measured sample

In order to investigate heat transfer mechanism in powdered media, it is appropri-
ate to use a sample whose parameters, such as particle size and porosity, are well
controlled. The samples used in this study are listed in Table 3.1.

Despite regolith simulant, powder samples have narrow ranges of the particle
size and spherical shapes. The soda-lime glass beads, manufactured by Fuji Man-
ufacturing Co. Ltd., were used for investigating the dependence on particle size,
temperature, compressional stress, particle size distribution, and degree of sinter-
ing. These glass beads samples are called FGB glass beads. It is known that fine
grains with several µm size can form porous aggregates due to strong adhesive
force against the gravitational force. Therefore, the low-alkali glass beads with 5
µm in mean diameter, manufactured by Potters-Ballotini Co. Ltd., was selected in
order to examine the porosity dependence of the thermal conductivity. This small-
est glass beads sample is called EMB glass beads. The titanium and copper beads,
manufactured by Fukuda Metal Foil & Powder Co. Ltd., were used for the effect
of composite material. Regolith simulant is the same materials Horai (1981) used.
According to his paper (Horai, 1981), this sample was prepared by Dr. W. D. Car-
rier, and consists of crashed basalt powders. Its particle size range is comparable
with that of Apollo 12 soil samples.
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Table 3.3: Composition of FGB and EMB glass beads (%).

Composition Soda-lime glass (FGB) Low-alkali glass (EMB)
SiO2 70.0-73.0 55.5

Na2O+K2O 12.0-16.0 0.5
B2O3 0.0 5.7
Al2O3 1.0-2.5 14.0
CaO 7.0-12.0 23.1

Fe2O3 0.05-0.15 0.2
MgO 2.0-5.0 1.0
others <1.0 0.0

3.1.2 Physical properties of component materials

One of the most fundamental properties for the thermal conductivity of powdered
material is the thermal conductivity of the component material (named material
thermal conductivity). Material thermal conductivity of glass depends on its com-
position and temperature (Ratcliffe, 1963). In order to determine the thermal con-
ductivity of glass used in this study, the soda-lime FGB glass beads and the low-
alkali EMB glass beads were sintered for 24 hours at 1120 K in electrical heating
furnace, and thermal conductivity of each sintered glass plate was measured by line
heat source method (see Section 3.2) within temperature range from 240 to 360 K.
The sintered glass plates had the density of 2480 and 2510 kg/m3, corresponding
to the relative density of 1 and 0.97, for FGB and EMB. The thermal conductivity
measurement results are shown in Figure 3.1. The thermal conductivity of the FGB
and EMB glass increased with the temperature, which is accepted for glassy mate-
rials (Ratcliffe, 1963). Linear approximation of the material thermal conductivity
km with the temperature T gives,

km(T ) = 8.50×10−4T +0.855, (3.1)

for the soda-lime FGB glass, and

km(T ) = 5.10×10−4T +1.406, (3.2)

for the low-alkali EMB glass.
Empirical values of the material thermal conductivity were adopted for the other

samples. For the regolith simulant, a constant material conductivity of 2.5 W/mK,
typical thermal conductivity of basalt rock from Clauser and Huenges (1995), is
used. Metallic materials has higher thermal conductivity than electrically insulating
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Figure 3.1: Material thermal conductivity of FGB (red) and EMB (blue) glass as a function
of temperature. Solid lines represent linear fitting results shown in Equation (3.1) and (3.2)

materials as the glass. It is knwon that thermal conductivity of metals decreases
with increasing the temperature. Approximate expressions of the material thermal
conductivity are made as km = 1587/T + 16.5 for the titanium beads, and km =

9784/T +365 for the copper beads, cited from Nagashima et al. (2008).
Other physical properties are listed in Table 3.2. True density of the particles

was measured by using a pycnometer, for FGB glass, titanium, and copper beads
and regolith simulant. It could not be measured for EMB glass beads, because of
small size of the particles. Poisson’s ratio and Young modulus are reference values
for each material. Emissivity was measured by emissivity measurement device (A
& D AERD, Kyoto Electronics Manufacturing Co. LTD.) on the top surface of the
powder beds.

3.2 Method for thermal conductivity measurements

3.2.1 Principle of the line heat source measurement

There are several ways to measure the thermal conductivity (Presley and Chris-
tensen, 1997a). These methods fall into two broad categories; steady state and non-
steady state methods. One of the advantages of the steady state method is ability to
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estimate the thermal conductivity of bulk material. For guarded hot plate method
(one of the steady state methods), a sample is placed between hot and cold plates,
and the thermal conductivity is determined from heat flow thorough the sample,
temperature difference between the plates, and sample thickness. Gundlach and
Blum (2012) applied this method for measuring the thermal conductivity of pow-
dered media under vacuum conditions, by substituting the halogen lamp heating for
the hot plate of top surface of the sample. However, it is quite difficult to insu-
late powder sample because of its low thermal conductivity (the side of the sample
needs to be surrounded by lower thermal conductivity material than the sample).
Therefore, the steady state method might be inappropriate for measuring the ther-
mal conductivity of low conductive powdered materials.

In non-steady state method, the thermal conductivity of local part in the sample
can be measured. The basic idea of this method is heating the sample locally in-
side the sample or on the surface of the sample, and measuring the time-dependent
temperature variation near the heating region. The thermal conductivity is esti-
mated by comparing the temperature data with theoretical or numerical solutions.
The method which has been often adopted for powdered materials is so-called line
heat source method (Carslaw and Jaeger, 1959). The principle of this method is
reviewed below.

The line heat source method is based on following assumptions: there is an in-
finitely thin and long heat source in a sample, heat diffuses into the sample only
to radial direction from the line heat source, and the sample has infinite dimen-
sions. The temperature field in the sample is represented by following equation of
axisymmetrical heat conduction in circular cylindrical coordinate system,

∂T
∂ t

=
κ
r

∂
∂ r

(
r

∂T
∂ r

)
, (3.3)

where κ is thermal diffusivity of the sample, T is temperature, and r is distance
from the central axis. Initial and boundary conditions are taken as follows;

T = 0 for t = 0 and r > 0 (3.4)

T = 0 for t > 0 and r → ∞ (3.5)

−2πrk
∂T
∂ t

= q for t > 0 and r → 0 (3.6)

where q is heat generation per unit length of the heat source. The first condition rep-
resents thermal equilibrium at t = 0, the second represents no heat flow infinitely far
from the source, and the last represents heat conduction from the line heat source.

With these initial and boundary conditions, solution of Equation (3.3) becomes,

T =
−q
4πk

(
γ + ln

r2

4κt
− r2

4κt
+

r4

64κ2t2 + · · ·
)
, (3.7)
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Figure 3.2: Typical temperature data as a function of natural logarithm of time during the
line heat source measurement. Upper left legend shows temperature variation as a function
of time.

where γ = 0.577 is the Euler constant. If r2/4κt ≪ 1, Equation (3.7) reduces to

T =
−q
4πk

(
γ + ln

r2

4κt

)
. (3.8)

If temperature T1 and T2 are measured at a point r at different times t1 and t2,
respectively, one can obtain the following equation using Equation(3.8),

T2 −T1 =
q

4πk
ln

t2
t1
. (3.9)

Equation (3.9) implies that if the change of temperature at r is plotted as a function
of the natural logarithm of the time, a straight line with the slope of q/4πk can be
observed.

In practice, however, a heating wire with finite diameter and length is used as the
line heat source, the sample has finite dimensions, and there is thermal resistance
between the heat source and the sample. Therefore, the experimental configuration
somewhat differs from the ideal line heat source. Because of this discrepancy, the
temperature typically yields an S-shaped curve as shown in Figure 3.2. This figure
shows the temperature of the heating wire as a function of the logarithm of the heat-
ing time. In the short-time regime, the temperature of the heater increases rapidly,
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which is mainly attributed to thermal resistance between the heating wire and the
surrounding sample (Blackwell, 1954). Nevertheless, after sufficiently long heating
time, the linear relation as in Equation (3.9) can be found. In this linear regime, the
temperature can be written as

∆T =
q

4πk
ln t + c0, (3.10)

where ∆T is temperature rise and c0 is a constant. The thermal conductivity can be
determined from the slope of the linear regime, s, if the heat generation q is known,
as

k =
q

4πs
. (3.11)

If the heating continues more, the relation between the temperature and time begins
to deviate from the linear relation. This means that the heat from the heater gets
to the inner wall of the sample container or top surface of the sample. Therefore,
to determine the thermal conductivity, time range of the linear regime needs to
be constrained. For this purpose, several analytical studies can be found in the
literature, which are summarized by Presley and Christensen (1997a).

The time until the short-time regime ends, in other words, the linear regime
appears, can be roughly estimated as follows, (Jones, 1988).

t ≫ 50bt
2

κ
, (3.12)

where t is heating time, κ is thermal diffusivity of the sample, and bt is distance be-
tween the heat source and a temperature measurement point. The axial heat transfer
can occur due to finite diameter and length of the line heater. This effect can be
neglected if the following equation is satisfied (Blackwell, 1954).

t <
0.0632Lh

2

κ
, (3.13)

where Lh is length of the line heater. Finite volume of the sample causes the heat
absorption or reflection at the sample boundary if the heating time is too long. When
the following equation is satisfied, the effect of the sample boundary is negligible
(Andersson and Bäckström, 1976).

t <
0.25Rs

2

κ
, (3.14)

where Rs is radial extent of the sample from the heater. The linear regime can be
found when Equations (3.12) to (3.14) are satisfied.
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3.2.2 Measurement system and error analysis

In this study, two types of the sample containers to measure the thermal conductivity
by the line heat source method were prepared. Only difference between these con-
tainers is the number of the line heat source sensors in the container. In the sample
container A (Figure 3.3a), single line heat source sensor consisting of a nichrome
wire of 180 µm in diameter and a K-type thermocouple (alumel and chromel wires
have diameter of 50 µm) is mounted. The thermocouple is fixed by glue at the mid-
length point of the nichrome wire, by which the temperature of the nichrome wire
was directly measured. Using this container, the thermal conductivity for all sam-
ples was determined (see below). Note that the line heat source method measures
the conductivity locally around the heat source. Therefore, the measured value is
affected by the local heterogeneity of packing arrangement of the particles. To in-
vestigate the resulting heterogeneity of the thermal conductivity, a sample container
B (Figure 3.3b) with three line heat source sensors was used. The distance between
the sensors of 2 cm is sufficiently larger than the heat transfer distance during the
measurement (see below), and therefore, they do not interfere with each other.

Overview of the measurement system is shown in Figure 3.4. During the mea-
surement, constant current is induced to the nichrome wire with a power supply
device (ADCMT 6242). The heat generation per unit length along the nichrome
wire is calculated by,

q = I2Rh, (3.15)

where I is induced constant current and Rh is electrical resistance per unit length.
The thermocouple wires are connected to a zero degC standard device (ZEROCON,
Coper Electronics Co.), as a reference temperature point of the thermocouple. A
digital multimeter (Keithley 2002) measured the output voltage, from which the
temperature of the nichrome wire was determined.

The appropriate linear fitting regime for this experimental system can be con-
strained by the following manner. The distance between the heat source and the
temperature measurement point, bt in Equation (3.12), corresponds to the radius of
the nichrome wire, 9×10−5 m, because surface temperature of the nichrome wire
was directly measured by the thermocouple. The length of the nichrome heater, Lh

in Equation (3.13), is 0.08 m at the minimum. The radial distant of the sample,
Rs in Equation (3.14), is nominally 0.01 m. The thermal diffusivity κ is unknown
parameter. According to previous experimental studies, the thermal conductivity
of the powder materials under vacuum conditions would be roughly from 10−3 to
10−2 W/mK. Given that the product of the bulk density and the specific heat is
106 J/m3K, one can roughly estimate the thermal diffusivity between 10−9 to 10−8

m2/s. Figure 3.5 shows plots of Equation (3.12), (3.13), and (3.14) as a function
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Figure 3.3: Sample containers for the thermal conductivity measurements with single line
heat source sensor (container A, top) and three sensors (container B, bottom).
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Figure 3.4: Overview of thermal conductivity measurement system.
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The time range above the red curve and below the green or blue curves is appropriate.

of the thermal diffusivity. The linear regime would appear when the time is longer
than that given by red curve (Eq. 3.12). It would be disturbed due to axial heat loss
through the nichrome wire or sample boundary effect, when the time is longer than
green or blue curves (Eq. 3.13 or 3.14). Then, the linear regime can be found above
the red curve and below green or blue curves in Figure 3.5. From these estimates,
the linear fitting regime was nominally fixed between 400 to 1000 seconds.

A protocol of the measurement error estimation for the line heat source method
was summarized by Presley and Christensen (1997b). The thermal conductivity can
be calculated from Equations (3.11) and (3.15) as,

k =
I2Rh

4πs
. (3.16)

If all human errors are assumed to be random, the propagation of the error can be
written as,

δk ≈ ∂k
∂ I

δ I +
∂k

∂Rh
δRh +

∂k
∂ s

δ s. (3.17)

Using Equation (3.16), then the relative error is,

δk
k

=

√(
2

δ I
I

)2

+

(
δRh

Rh

)2

+

(
δ s
s

)2

, (3.18)
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and the maximum relative error is,

δk
k

= 2
∣∣∣∣δ I

I

∣∣∣∣+ ∣∣∣∣δRh

Rh

∣∣∣∣+ ∣∣∣∣δ s
s

∣∣∣∣ . (3.19)

The uncertainty of the induced current comes from accuracy of the current
source device. The relative error of the induced current is 0.05% from a catalog
value.

The error in resistance Rh of the nichrome wire is divided into two sources.
One is the measurement uncertainty of the resistance. The electrical resistance per
unit length was estimated by linear slope of the measured resistance as a function
of the length. The result for 180 µm nichrome wire used in the experiments at
room temperature about 25 degC is shown in Figure 3.6. A slope of the fitting line
represents the Rh value. The fitting error can be taken as the uncertainty of the re-
sistance measurement. From Figure 3.6, the resistance per unit length of the 180
µm nichrome wire Rh is 42.35 (Ω/m), and its measurement error (δRh/Rh)measure

is 0.24%. The other source of the resistance error comes from temperature depen-
dence of the resistance, since the temperature of the nichrome wire varies during
the thermal conductivity measurements, although it was typically less than 5 K.
The relation between the resistance and the temperature can be written as,

Rh(T ) = Rh0[1+β (T −T0)], (3.20)

where T is the temperature, Rh0 is the resistance at a standard temperature T0, and
β is temperature coefficient of the resistance. The value of β was estimated ex-
perimentally. The resistance of the nichrome wire was measured with temperature
sweeping from 360 K to 240 K at the temperature decreasing rate of 10 K/h in
a thermostatic chamber. The temperature of the nichrome wire was measured by
a thermocouple. Figure 3.7 shows the relation between the temperature variation
(T −T0) and relative resistance difference ((Rh−Rh0)/Rh0). The slope found in this
plot is corresponds to β . Then, β = 9×10−5 was obtained. The relative resistance
error due to the temperature variation can be estimated as,(

δRh

Rh

)
temp

= β∆T, (3.21)

where ∆T is temperature variation during the measurement. Then, the error in the
electrical resistance per unit length can be expressed as,

δRh

Rh
=

(
δRh

Rh

)
measure

+

(
δRh

Rh

)
temp

. (3.22)

53



 0

 2

 4

 6

 8

 10

 12

 14

0.00 0.05 0.10 0.15 0.20 0.25 0.30

E
le

ct
ric

al
 R

es
is

ta
nc

e 
(o

hm
)

Length (m)

Data
y = 42.35 (+/- 0.10) x + 0.25 (+/- 0.02)

Figure 3.6: A result of electrical resistance measurement of nichrome wire (180 µm in
diameter) at ambient temperature of 25 degC.

0 × 100

1 × 10-3

2 × 10-3

3 × 10-3

4 × 10-3

5 × 10-3

6 × 10-3

7 × 10-3

8 × 10-3

9 × 10-3

1 × 10-2

 0  20  40  60  80  100  120

(R
h 

- 
R

h0
)/

R
h0

T - T0

data
β = 9e-05

Figure 3.7: Effect of temperature on the electrical resistance of the nichrome wire (180 µm
in diameter). The length of the nichrome wire was 29 cm. The standard resistance and
temperature were chosen as Rh0 = 12.379 Ω/m and T0 = 244 K (see Equation 3.20).
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The uncertainty in the slope s has two sources. One is the deviation of the
data from a straight line. The other is how well the linear regime of the curve
of temperature versus natural logarithm of time is resolved. The former can be
evaluated from the fitting error of the slope, (δ s/s)fitting. The later is more difficult
to quantify. Presley and Christensen (1997b) suggested a way to verify this error.
That is to divide the linear regime of the curve into smaller segments and compare
the resulting slopes with the original one. Here, each of the linear regime was
divided into three equal segments by time. Then, the error can be evaluated as,(

δ s
s

)
segment

=
1
3

∣∣∣∣∣ 3

∑
n=1

sn − s
s

∣∣∣∣∣ , (3.23)

where s is the original slope and sn (n = 1, 2, 3) is the slope of the each segment.
For nominal case, the original slope is taken from the linear fitting between 400 and
1000 seconds, and slope of the each segment sn is that of 400-600, 600-800, and
800-1000 seconds. Then, the total error in the slope is taken as the sum of the two
errors,

δ s
s

=

(
δ s
s

)
fitting

+

(
δ s
s

)
segment

. (3.24)

The protocol for the thermal conductivity and its error determinations are demon-
strated below. As an example data, Figure 3.8 shows temperature data during the
measurement of 90-106 µm glass beads at the temperature about 25 degC. This
data was obtained when the constant current of 0.02 A was induced to the nichrome
wire of 180 µm in diameter, using the sample container A. The sequence of the data
analysis is divided by following steps.

1. Determination of original slope.

The following equation (compared with Equation 3.10) is fitted to the tem-
perature data for time range between 400 to 1000 seconds.

∆T = s ln t + c, (3.25)

The value of slope s and its error are determined. For this example case,
s = 0.600 and (δ s/s)fitting = 0.08% were obtained.

2. Determination of nichrome wire resistance at initial temperature.

Since the thermal conductivity measurement are conducted at several temper-
atures, the electrical resistance per unit length of the nichrome wire at the be-
ginning of the measurement differs from that at room temperature (Rh = 42.35
Ω/m). Using Equation (3.20) and giving Rh0 = 42.35 Ω/m at T0 = 25 degC,
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Figure 3.8: An example data of temperature variation of the nichrome wire during the line
heat source measurement. A current of 0.02 A was induced to the nichrome wire of 180 µm
in diameter. The vertical axis represents the temperature increase from initial temperature.
Data processing method is shown in the text.
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the resistance is corrected to that at the initial temperature. In Figure 3.8, the
initial resistance of the nichrome wire remained Rh0 = 42.35 Ω/m, because
the initial temperature of this measurement was 25.9 degC.

3. Calculating the thermal conductivity of sample.

The thermal conductivity is calculated from Equation (3.16), using the value
of nominal slope s, resistance of the nichrome wire at the initial temperature
Rh, and induced electrical current I. For the case of this example, s = 0.600,
Rh = 42.35 Ω/m, and I = 0.02 A, then the thermal conductivity of k= 0.00225
W/mK can be derived.

4. Evaluation of the error in the resistance.

From the temperature at the beginning and end of the measurements, the re-
sistance error due to temperature variation during the measurements is deter-
mined from Equation (3.21). The temperature increase of 3.3 degC caused
the error of (δRh/Rh)temp = 0.03%. Then, the total error of the nichrome wire
resistance can be calculated from Equation (3.22), as δRh/Rh = 0.24+0.03=
0.27%.

5. Determinations of slopes of small segments and error in the slope value.

The linear regime is divided into three small segments (400-600, 600-800, and
800-1000 s), and the slopes of these segments sn (n = 1, 2, 3) were determined
by the fitting of Equation (3.25). Then, the slope error relative to the original
slope is calculated from Equation (3.23). For the case shown in Figure 3.8,
s1 = 0.605, s2 = 0.594, s2 = 0.598, and then, (δ s/s)segment = 0.17%. The
total error in the slope was estimated from Equation (3.24), as δ s/s = 0.08+
0.17 = 0.25%.

6. Evaluation of the relative error in measured thermal conductivity.

Using the error in I, Rh, and s, the error in the resulting thermal conductivity
is reduced from Equation (3.19), as,

δk
k

= 2×0.05+0.27+0.25 = 0.62%. (3.26)

According to this protocol, the thermal conductivity and its error were deter-
mined for all data. In the most cases, the maximum error source was (δ s/s)segment.
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3.2.3 Protocol for derivation of solid and radiative conductivity

As mentioned in Chapter 2, the thermal conductivity of powdered materials under
vacuum contains two contribution of different heat transfer mechanisms; solid con-
duction through the contact area and thermal radiation between the particle surfaces
through the voids. Both contributions depend on several parameters. To understand
the heat transfer mechanism and the parameter dependences, the solid and radiative
conductivities should be derived from the measured effective thermal conductivity.

Separation of the thermal conductivity into these conductivities was accom-
plished using temperature-dependent data by the similar method by Merrill (1969).
In previous studies (e.g. Merrill, 1969; Fountain and West, 1970; Cremers et al.,
1970), it has been assumed that the temperature dependence of the effective ther-
mal conductivity arises from only the radiative conductivity, which is proportional
to the temperature cubic. This assumption is approximately approved when the
solid conductivity is comparable with or less than the radiative conductivity. In this
study, this method is modified by additinally including the temperature dependence
of the solid conductivity. The solid conductivity is theoretically proportional to the
material thermal conductivity km(T ). Therefore, the effective thermal conductivity
can be written as,

k = ksolid + krad = Akm(T )+BT 3, (3.27)

where A and B are solid and radiative coefficients, respectively, which depends on
the several parameters other than the temperature. Note that the coefficient A in
the following part of this thesis is dimensionless, and differs from a coefficient A
appeared in Watson’s Equation (2.13).

To determine the values of A and B for all samples listed in Table 3.1, the thermal
conductivity was measured as a function of the temperature. For example, Figure
3.9 shows the temperature-dependent thermal conductivity data for EMB-49.5 glass
beads (see also Section 3.4). By fitting Equation (3.27) to the data, the values of
A and B appropriate for this sample are obtained. If constant material thermal con-
ductivity of 1.56 W/mK (estimated from Equation 3.2) is used, A = 0.0120 and B =

6.56×10−11 W/mK4 are obtained, which correspond to ksolid = 0.0187 W/mK and
krad = 0.0018 W/mK at temperature of 300 K. On the other hand, when including
the temperature dependence of the material thermal conductivity as Equation (3.2),
the solid and radiative coefficients are revised to A = 0.0124 and B = 4.28×10−11

W/mK4, corresponding to ksolid = 0.0193 W/mK and krad = 0.0012 W/mK at 300 K.
Because the thermal conductivity of the glassy material increases with the temper-
ature, the radiative conductivity is revised downward by including the temperature
dependence of the solid conductivity.

The solid and radiative coefficients are deduced from the temperature-dependent
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Figure 3.9: Temperature dependence of the thermal conductivity of EMB-49.5 sample and
fitting results of Equation (3.27). A red curve represents a fitting result using temperature-
dependent material conductivity of km = 5.1× 10−4T + 1.406 W/mK (Equation 3.2). A
blue curve shows that using constant material conductivity of km = 1.56 W/mK, which is
calculated at 300 K from Equation (3.2).
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thermal conductivity for all samples. The parameter dependences of the conductive
and radiative contributions are investigated in subsequent sections.
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3.3 Particle size dependence

3.3.1 Experimental method

In order to investigate the particle size dependence of the solid and radiative con-
ductivities, five FGB glass beads (Table 3.1) were measured as a function of the
temperature. Figure 3.10 shows the experimental setup. It is important for the line
heat source method that there is little temperature gradient within the sample and
along the heater line before the measurements. In the experiments in this study, a
vacuum chamber was emplaced in a thermostatic chamber, by which the tempera-
ture can be controlled and maintained uniformly over the system. The use of the
thermostatic chamber enables us to control temperature from low to high temper-
ature without installation of heater and cooler units. The controllable temperature
range was beween −25 and 60 degC, which was restricted by operating temperature
of silicon and Viton O-ring and of the acrylic sample container.

Each FGB sample was filled in the sample container and tapped. The height of
the packed sample was 2 cm above the bottom of the container, or 1 cm above the
line heat source sensor. The density and porosity of the sample was estimated from
volume and mass of the packed sample. The sample was evacuated by a rotary and
turbo molecular pumps down to about 10−2 Pa. At the same time, the temperature of
the system was raised up to 50 degC or 60 degC (the maximum temperature differed
by the measurements). After the temperature equilibrium in the sample, which took
typically 2 days, the constant electric current of 20 mA was induced to the nichrome
wire and its temperature was recorded for 1000 s. Then the thermal conductivity of
the sample and its measurement error were determined by the method described in
Section 3.2. After the measurements at maximum temperature, the same procedure
was repeated at several lower temperatures down to −25 degC.

To investigate the homogeneity of the measured thermal conductivity of the
FGB glass beads, the sample container B was also used (Figure 3.3b).

3.3.2 Results

First, the measurement results by the sample container A are shown. Thermal con-
ductivity of the FGB glass beads at about 25 degC is shown in Figure 3.11. The
effective thermal conductivity increased with the particle size. Figure 3.12 shows
the thermal conductivity as a function of the temperature. The extraction of the solid
and radiative coefficients from these data was addressed, by the method described
in Section 3.2. Curves in Figure 3.12 show weighted least-square fitting results of
Equation (3.27). The material thermal conductivity km for FGB glass beads is given
by Equation (3.1). Table 3.4 shows the best fitting values and errors of A and B.
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Figure 3.11: Thermal conductivity of five kinds of FGB glass beads at temperature around
25 degC as a function of particle diameter. These data were obtained using the sample
container A.
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Figure 3.12: Temperature dependence of the thermal conductivity of FGB glass beads using
the sample container A. Each curve represents the fitting curve of Equation (3.27).
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Table 3.4: Solid and radiative coefficients in Equation (3.27) for FGB glass beads.

Sample Particle diameter Container Solid coefficient Radiative coefficient
(µm) A (×10−3) B (×10−11 W/mK4)

FGB-20 710-1000 A 1.89 ± 0.51 13.9 ± 2.62
B-ch.1 1.78 ± 0.28 13.2 ± 1.54
B-ch.2 2.56 ± 0.53 9.90 ± 2.37
B-ch.3 1.00 ± 0.41 16.1 ± 1.78

FGB-40 355-500 A 1.23 ± 0.18 13.1 ± 1.21
B-ch.1 0.91 ± 0.07 9.53 ± 0.29
B-ch.2 1.19 ± 0.06 8.69 ± 0.27
B-ch.3 2.00 ± 0.22 7.27 ± 0.83

FGB-80 180-250 A 1.21 ± 0.04 5.93 ± 0.20
B-ch.1 1.11 ± 0.18 5.24 ± 0.83
B-ch.2 1.34 ± 0.15 4.16 ± 0.57
B-ch.3 1.42 ± 0.10 5.09 ± 0.52

FGB-180 90-106 A 1.34 ± 0.05 2.76 ± 0.27
B-ch.1 1.17 ± 0.01 3.67 ± 0.31
B-ch.2 1.12 ± 0.01 3.54 ± 0.06
B-ch.3 1.10 ± 0.02 3.98 ± 0.10

FGB-300 53-63 A 0.88 ± 0.02 2.26 ± 0.10
B-ch.1 0.88 ± 0.03 2.87 ± 0.15
B-ch.2 0.90 ± 0.04 2.89 ± 0.21
B-ch.3 1.00 ± 0.04 3.68 ± 0.17
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Figure 3.13: Measurement results using container B (Figure 3.3b). Squares, circles, and
triangles represent the measurements at ch.1, 2, and 3, respectively. For visualization, data
of ch.1 are slided horizontally by −1 K, and for ch.3 by +1 K.

Figure 3.13 shows the thermal conductivity of the five FGB glass beads mea-
sured with the container B. The measured thermal conductivities by the three line
heat source sensors differed by 0.0013 W/mK at maximum. The difference seems
to be larger for glass beads with larger particle size. According to Equation (3.14),
typical length scale affecting the thermal conductivity measurement by the line heat
source measurements for the 1000 seconds heating is from 2 to 5 mm depending on
the measured thermal conductivity. Therefore, local heterogeneity, whose typical
scale was comparable with the particle size, was likely to affect the heat transfer for
the larger beads. The solid and radiative coefficients determined from the measure-
ments in the sample container B are also listed in Table 3.4.

The solid and radiative conductivities at 300 K for the FGB glass beads are
plotted in Figure 3.15,. These conductivities are calculated from ksolid = Akm(T )
and krad = BT 3 using A and B values in Table 3.4. The mean values in the four
measurements are plotted taking lower and higher limits of the vertical errorbars
as minimum and maximum values, respectively. Figure 3.15 shows that the radia-
tive conductivity of the powdered materials increases with the particle size and the
solid conductivity also increases slightly. The increase in the effective thermal con-
ductivity, as shown in Figure 3.11, was attributed primarily to enhancement of the
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Figure 3.14: Correlation between the solid and radiative conductivity at 300 K measured in
the sample container B.

radiative conductivity.
In Figure 3.16, the experimental results in this study are compared with the pre-

vious works on the thermal conductivity of glass or SiO2 beads. The thermal con-
ductivity of the FGB glass beads is higher than that of Merrill (1969) and Wechsler
and Simon (1966), and lower than Wechsler and Glaser (1965), Huetter and Koemle
(2008), and Gundlach and Blum (2012). The positive correlation between the effec-
tive conductivity and the particle size is consistent with Wechsler and Glaser (1965)
and Huetter et al. (2008).
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Figure 3.15: Summary of the particle size dependence of solid (red) and radiative (blue)
conductivity for the FGB glass beads. The points represent the mean values of the four
measurements (the container A and channels 1-3 of the container B). The upper limits of
the vertical errorbars are given by the maximum values within the four measurements and
the lower limits by the minimum values.
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3.4 Porosity dependence

3.4.1 Experimental method

All FGB glass beads samples had porosity around 0.4. In order to vary the porosity
of the powdered materials and to investigate its effect on the thermal conductivity,
EMB glass beads with the particle diameter less than 10 µm were used. Since the
EMB glass beads had adhesive nature, the sample with higher porosity than 0.4
could be prepared.

The most porous sample was prepared in the sample container A (Figure 3.3a
and 3.17) by sieving the EMB glass beads through 53 µm mesh, which produced
the maximum porosity of 0.862. The sample was filled in the container to the top,
and the porosity was determined from the inner volume of the container and sample
weight. The tapping of this sieved sample produced lower porosity of 0.695. By
sieving through 500 µm mesh, the porosity of 0.753 was obtained. The compressed
sample without the sieving had the porosity of 0.495. These packing procedures are
illustrated in Figure 3.18.

In the sample container B (Figure 3.3b), the two samples were prepared by the
53 µm sieve and the compression. The porosities were 0.779 and 0.585, respec-
tively. These samples were used to investigate the heterogeneity in the thermal
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Figure 3.17: Sample container used for investigating porosity dependence of the thermal
conductivity of EMB glass beads.
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Figure 3.18: Overview of packing procedure for controlling the porosity higher than 0.6.
The EMB-49.5 and EMB-58.5 did not sieved and were compressed artificially.

conductivity.

The experimental configuration is the same as shown in Figure 3.10. The sample
was evacuated in the vacuum chamber at low exhaust velocity (about 5 hours down
to 10 Pa), to avoid blowoff of the fine powders. The test procedures are also the
same as those in Section 3.3.
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Figure 3.19: Thermal conductivity of EMB glass beads at temperature of about 25 degC as
a function of porosity. Filled and hollow circles represent the measurement by the sample
container A and B, respectively.

3.4.2 Results

Figure 3.19 and 3.20 show the experimental results. In Figure 3.19, the thermal
conductivities at about 25 degC are plotted as a function of the porosity. The thermal
conductivity of the EMB glass beads decreased from 0.02 to 0.0013 W/mK with
increasing the porosity. For EMB glass beads as well as FGB glass beads, the
thermal conductivity was measured at several temperature as shown in Figure 3.20,
and the temperature-dependent increase in the thermal conductivity was confirmed.

Similar to the FGB glass beads in Section 3.3, the solid and radiative conductiv-
ities are constrained from the temperature-dependent thermal conductivity for EMB
glass beads. Equation (3.27) was fitted to the data in Figure 3.20, using Equation
(3.2) as EMB material thermal conductivity km, The resultant solid and radiative
coefficients, A and B, are listed in Table 3.5.

From these coefficients, the solid and radiative conductivities at 300 K are plot-
ted in Figure 3.21. The solid conductivity showed a decreasing function of the
porosity. When the porosity is higher than about 0.6, the radiative conductivity in-
creased with the porosity. At lower porosity than 0.6, the radiative conductivity
was higher than those at higher porosity. The radiative conductivity became more
dominate as the porosity is higher.
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Figure 3.20: Temperature dependence of the thermal conductivity of EMB glass beads of
different porosities. Each curve represents fitting result of Equation (3.27).

Table 3.5: Solid and radiative coefficients in Equation (3.27) for EMB glass beads samples.

Sample Porosity Container Solid coefficient Radiative coefficient
A (×10−3) B (×10−11 W/mK4)

EMB-49.5 0.495 A 12.4 ± 0.02 4.28 ± 0.87
EMB-58.5 0.585 B-ch.1 5.00 ± 0.08 4.92 ± 0.52

B-ch.2 7.15 ± 0.17 2.34 ± 0.10
B-ch.3 5.57 ± 0.12 12.8 ± 0.96

EMB-69.7 0.697 A 2.20 ± 0.01 1.61 ± 0.26
EMB-75.3 0.753 A 1.51 ± 0.01 1.74 ± 0.22
EMB-77.9 0.779 B-ch.1 1.19 ± 0.01 2.23 ± 0.08

B-ch.2 1.22 ± 0.01 2.03 ± 0.08
B-ch.3 0.93 ± 0.02 2.20 ± 0.10

EMB-86.2 0.862 A 0.40 ± 0.01 2.71 ± 0.04
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Figure 3.21: Solid and radiative conductivity at 300 K as a function of the porosity. Filled
circles represent the measurement by the sample container A. Hollow circles represent the
average of the three measurements by the sample container B, with the vertical errorbars
being the highest and lowest values among the three measurements.
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The radiative conductivity of the EMB-58.5 was significantly scattered. Het-
erogeneous packing of the particles would cause this scattering, since this sample
was not sieved and artificially compressed, as well as EMB-49.5. Moreover, around
this porosity, the radiative conductivity is order of magnitude lower than the solid
conductivity. Therefore, it is difficult to precisely determine the radiative conduc-
tivity. In the subsequent discussion, the radiative conductivities of EMB-49.5 and
EMB-58.5 are not included. Note that the solid conductivity of EMB-58.5 was less
scattered, which indicate that the solid conductivity is less sensitive to the packing
structure.

For the EMB-77.9, the radiative conductivity as well as the solid conductivity
showed good agreement among the three measurements. It means that the samples,
which were sieved and not compressed can be recognized as homogeneous in the
thermal conductivity. Therefore, the results obtained for the sample of EMB-69.7,
EMB-75.3, and EMB-86.2, as well as EMB-77.9, would be reliable.

In Figure 3.22, the effective thermal conductivity of the EMB glass beads is
compared to the results by Krause et al. (2011), who measured spherical SiO2

powders of 1.5 µm in diameter as a function of the porosity. The result obtained
in this study was comsistent with that of Krause et al. (2011). Note that Krause
et al. (2011) did not determine the solid and radiative conductivities of thier sam-
ples. They neglected the radiative conductivity and derived an empirical relation
between the solid conductivity and the porosity by fitting an exponential function to
their data, as ksolid ∝ exp(−5.88ϕ), where ϕ is the porosity. This empirical relation
has been widely utilized in the model calculation of thermal evolution of porous
planetesimals (Henke et al., 2012a; Neumann et al., 2012). This study showed that
the radiative conductivity is not negligible component for the higher porosity. At
the porosity of 0.862, the solid and radiative conductivities were comparable. Fit-
ting of the same function to the solid conductivity obtained in this study results
in ksolid ∝ exp(−8.24ϕ). It means that the solid conductivity model empirically de-
rived by Krause et al. (2011) might overestimate the solid conductivity at the higher
porosity.

3.5 Thermal conductivity of metallic beads and re-
golith simulant

3.5.1 Experimental method

Regolith simulant, titanium and copper beads were measured by the same method
as FGB glass beads using the sample container A. For the measurements of the
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Figure 3.22: Comparison of the effective thermal conductivity obtained in this work and by
Krause et al. (2011).

metallic beads (FMF-Ti and FMF-Cu), the nichrome wire was coated by enamel
for electrical insulating between the wire and the sample. The thermal conductivity
for each sample was measured as a function of the temperature using the same
experimental system as the FGB glass beads (Figure 3.10). The porosity of the
three samples are shown in Table 3.1

3.5.2 Results

The thermal conductivities of the regolith simulant, titanium beads, and copper
beads are plotted as a function of the temperature in Figure 3.23. The measure-
ment results of the FGB-180 glass beads (having comparable size to FMF-Ti and
FMF-Cu) are also displayed. The thermal conductivity of the regolith simulant
slightly increased with the temperature from 0.0040 to 0.0046 W/mK. On the other
hand, for the titanium beads it decreases with the temperature from 0.0359 to 0.0140
W/mK. For the copper beads, it seemed to increase with the temperature.

First, the thermal conductivity of the two metallic beads is duscussed. In Figure
3.23, the fitting results of k = Akm(T )+BT 3 with km = 1587/T + 16.5 and km =

9784/T + 365 for titanium and copper beads, respectively (Table 3.2), are drawn.
The fitting to the data on the titanium beads gives A= 2.08×10−3 and B=−9.04×
10−10 W/mK4. A negative value of the radiative conductivity was estimated, which

74



0.0 × 100

5.0 × 10-3

1.0 × 10-2

1.5 × 10-2

2.0 × 10-2

2.5 × 10-2

3.0 × 10-2

3.5 × 10-2

4.0 × 10-2

 240  260  280  300  320  340

T
he

rm
al

 C
on

du
ct

iv
ity

 (
W

/m
K

)

Temperature (K)

RS
FMF-Ti

FMF-Cu
FGB-180

Figure 3.23: Temperature effect on thermal conductivity of regolith simulant (RS), titanium
beads (FMF-Ti) and copper beads (FMF-Cu). For comparison, the results for glass beads
of 90-106 µm (FGB-180) are also plotted. Solid curves represent fitting results of Equation
(3.27) using the material conductivity of each composition shown in Table 3.2.
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can not be approved. For the copper beads, A = 2.00×10−5 and B = 1.75×10−10

W/mK4 were derived. This radiative conductivity was much higher than that of
the FGB-180 glass beads (B = 2.76× 10−11 W/mK4). Because the emissivity and
resultant radiative transfered energy of the copper beads are lower than the glass
beads (Table 3.2), the higher radiative conductivity would be physically impossible.
It should be mentioned that the metallic beads possibly had the oxidized layer on the
surface. The solid conductivity or thermal conductance at the contacts is sensitive
to the thermal property of the surface material. The oxidized metal has different
thermal conductivity and its temperature dependence from the pure metal. Then, the
use of the material conductivity of km(T ) for the pure metals might be inadequate.

Next, the result for the regolith simulant is described. The solid and radia-
tive conductivities are deduced by fitting of the Equation (3.27) to the temperature-
dependent data. The material conductivity km is taken as a constant of 2.5 W/mK,
as mentioned in Section 3.1. Then, A = 1.47×10−3 and B = 2.63×10−11 W/mK4

were obtained for the regolith simulant. In Figure 3.24, the values of A and B are
compared to those of FGB glass beads, by taking the particle diameter of the re-
golith simulant as the mean diameter of 74 µm. The solid coefficient of the regolith
simulant was slightly higher than that of the glass beads with comparable size. The
cause of this difference is considered to be several factors, such as particle shape and
particle size distribution, whose contributions are difficult to be separated in the cur-
rent status. The radiative coefficient of the regolith simulant was comparable with
that of the glass beads. This consistency indicates that the radiative conductivity
can be characterized by the mean particle size.
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Figure 3.24: Solid (top) and radiative (bottom) coefficients of the regolith simulant (follow
squares) compared with those of FGB glass beads (filled circles). The particle size of the
regolith simulant is set at the mean size of 74 µm. Note that the vertical error bar for the
regolith simulant represents only the fitting error of Equation (3.27). On the other hand,
error bars for the FGB glass beads represent the sample heterogeneity (Figure 3.15).
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3.6 Compressional stress dependence

3.6.1 Experimental method

The stress dependence was measured for the FGB-20 and FGB-180 glass beads
and the regolith simulant. Figure 3.25 shows the experimental configuration devel-
oped newly in this study in order to measure the thermal conductivity with external
compression. The pressing system consisted of six brass blocks and its driving
mechanics. The driving mechanics components were a rotational shaft, rotational
bearings, gears, and an ultrasonic motor. The six brass weights (0.2, 0.4, 0.9, 1.2,
1.5, and 3.3 kg, respectively) were suspended by strings in series above a sample
container and the strings is fixed at the rotational shaft. The weights can be rolled
up and down using the ultrasonic motor. The stress in the sample was controlled
by changing the number of weight superimposed onto the top of the sample. The
line heat source sensor was strung horizontally in the sample container (40 mm
width, 100 mm length, and 60 mm height), 20 mm above the bottom. Two stress
transducers (PGM-02KG, Kyowa Electronic Instruments Co., Ltd.) were mounted
on the bottom and lateral planes of the sample container, which allowed to directly
measure the vertical and horizontal stress in the powder samples.

Sample was poured in the container and packed as densely as possible by tap-
ping the container. Thickness of the sample was 40 mm from the bottom of the
container. The system was evacuated in a vacuum chamber (different chamber from
used in Section 3.3 and 3.4) down to 10−4 Pa. The stress values by the stress trans-
ducers started to decrease just after the evacuation, because of the differential pres-
sure between the front and back sides of the detector plane. The gas was gradually
evacuated from the inside of the stress transducer, and it needed at least 3 days until
the stress value with the transducer on the bottom of the container returned to the
original value. Then, constant current of 40 mA was supplied to the nichrome wire
and its temperature was recorded for 1000 s. The thermal conductivity was deter-
mined by fitting of Equation (3.10) to the temperature data from 400 to 1000 s. At
the same time, the output voltages of the two stress transducers were recorded for
about 30 seconds with a frequency of 1 Hz. Stress value can be calculated by mul-
tiplying a conversion coefficient by the output voltage. The horizontal and vertical
stresses were determined by averaging the recorded stress values.

After the thermal conductivity measurements in the uncompressed state, the
lowest weight was loaded on the sample. The thermal conductivity and the stresses
were measured by the same procedure. Until the all weights were put on the sample,
these procedures were repeated. After that, the weights were turned up and the
measurements were conducted in order. This cycle was repeated three times. All
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Figure 3.25: Experimental configuration for investigating compressional stress dependence
of the thermal conductivity of powdered materials.
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Figure 3.26: Effective thermal conductivity of FGB glass beads and the regolith simulant
as a function of the compressional stress. The horizonal axis represents mean stress values
of vertical and horizontal stresses shown in Figure 3.27. Errors in the compressional stress
are not shown in this figure and the followings, since they are negligible compared to the
measured values (see the text).

measurements were conducted at room temperature (about 22 degC).

3.6.2 Results

Figure 3.26 shows thermal conductivity of the two glass beads and the regolith sim-
ulant as a function of the compressional stress. The horizontal axis represents aver-
aged value of the vertical and horizontal stresses measured by the stress transducers.
Variation in the stress values during the stress measurements for 30 seconds were
within 0.05 kPa, so that errors in the horizontal and vertical stress values would be
negligibly small compared to the measured values. It was found that the thermal
conductivity of the all samples increased with the compressional stress.

In powdered media, it is known that the stress field is heterogeneous due to in-
ternal friction of the particles (Masuda et al., 2006). Figure 3.27 shows relations
between vertical and horizontal stresses. The glass beads and the regolith simulant
had the ratio of the horizontal to vertical stresses about 0.77 and 0.26, respectively.
This might indicate that efficiency of heat transport is different in horizontal and
vertical directions, especially for the regolith simulant. Garrett and Ban (2011)
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Figure 3.27: Relation between vertical and horizontal stresses during the compression tests
for FGB-20 glass beads, FGB-180 glass beads, and regolith simulant.

performed two dimensional finite element simulations and stated that the thermal
conductivity measured by the line heat source apparatus placed in the sample hori-
zontally is represented by the average of the horizontal and vertical thermal conduc-
tivities. Therefore, the averaged value of the vertical and horizontal stresses would
be characteristic quantity of the measured thermal conductivity.

During the compressional tests, the samples would be somewhat densified. Af-
ter finishing all thermal conductivity measurements, sinking of the sample surface
by about 1 mm was observed. This contributes the density increase by about 3% in
consideration of original sample height of 40 mm. Therefore, the effect of densifi-
cation of the samples to the thermal conductivity could be neglected.

When the powdered materials are compressed without re-arrangement of the
packed particles, the particles will be deformed elastically and the contact area
broadens even without significant change of the bulk density. The broadened con-
tacts provide wide heat paths, through which the heat can efficiently flow between
the particles, and therefore, the solid conductivity can increase with the compres-
sional stress. Because of little densification of the samples during the compres-
sional tests, the radiative conductivity would not vary by the compressional stress.
By subtracting the radiative conductivity at 22 degC, which can be estimated from
the values of B for each sample (Section 3.3 and 3.5), from the measured thermal
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Figure 3.28: Solid conductivity of FGB glass beads and regolith simulant as a function of
the compressional stress. The curves represent the fitting curves of Equation (3.28).

conductivity, the compressional stress dependence of the solid conductivity can be
deduced as shown in Figure 3.28. The larger solid conductivity of the FGB-20 glass
beads than the FGB-180 is consistent with the experiments without the compression
(Figure 3.15 in Section 3.3).

If two spheres were compressed by normal force along a line passing through the
centers of the spheres, radius of the circular contact area follows Hertzian theory,
which expects that the contact radius is proportional to the normal force with an
exponent of 1/3. Then, to determine the stress or contact size dependence of the
solid conductivity, following exponential function is fitted to the data in Figure 3.28,

ksolid = ks,0σ p, (3.28)

where σ is the compressional stress in kPa unit, ks,0 and p is fitting variables. The
fitting results are shown in Figure 3.28 and Table 3.6 lists the resultant ks,0 and p.
For the two glass beads, the exponential coefficients of p = 0.29 and 0.35 were
determined. According to the Hertzian contact theory, radius of the contact area
is proportional to contact force or applied stress with an exponent of 1/3, which is
comparable with the exponent of p for the glass beads. This consistency strongly
suggests that the solid conductivity of the glass beads is proportional to the radius
of the contact area between the particles.
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Table 3.6: Fitting parameters of ks,0 and p in Equation (3.28) for two glass beads and re-
golith simulant, from Figure 3.28.

Sample ks,0 p
FGB-20 0.0051 ± 0.0002 0.29 ± 0.01

FGB-180 0.0026 ± 0.0001 0.35 ± 0.01
RS 0.0061 ± 0.0003 0.18 ± 0.02

On the other hand, the regolith simulant has the smaller value of p = 0.17. The
difference between the glass beads and regolith simulant might attribute to irregular
(not spherical) particle shapes of the regolith simulant. Equation (3.28) implies that
the solid conductivity approaches to zero, when no compressional stress including
self-weight is applied. However, in practice, finite contact area exists even for such
a limited case, due to adhesive force between the particles, which contributes the
solid conductivity as an offset value in Figure 3.28. The difference between the
fitting curve and measured conductivity could come from this effect. The contribu-
tion of the adhesive force to the solid conductivity cannot be constrained by current
understandings. If assuming that the solid conductivity of the regolith simulant de-
termined in Section 3.5, ksolid = 0.0037 W/mK, all corresponds to the contribution
of the adhesive force, fitting by Equation (3.28) with including this offset (i.e., fit-
ting by ksolid = ks,0σ p + 0.0037) gives p = 0.36 for the regolith simulant, which is
comparable value with that for the glass beads. The smaller adhesive contribution
makes the resultant value of p lower. Thus, the difference of the stress dependence
might be explained by including the effect of adhesive force on the solid conductiv-
ity.

3.7 Effect of particle size distribution

3.7.1 Experimental method

To investigate the effect of the particle size distribution on the thermal conductivity,
binary mixture of the glass beads of 90-106 µm (FGB-180) and 180-250 µm (FGB-
80) were measured. These mixed samples with the weight ratio of 2:1, 1:1, and 1:2
were prepared. The sample container B shown in Figure 3.3b was used.

The mixed samples were prepared by the following systematic procedure. The
larger FGB-80 glass beads with a given mass were put in the sample container, and
the smaller FGB-180 glass beads were filled on the FGB-80 beads. This sample
container was vertically vibrated using a vibration table (acceleration of about 5 G
and frequency of 22 Hz) for 10 minutes. After the mixing by the vertical vibration,
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Figure 3.29: Thermal conductivity of binary mixtures of FGB-180 and FGB-80 glass beads
at 25 degC. The horizontal axis represents weight fraction of the larger FGB-80 glass beads
relative to the total mass. The sample container B (Figure 3.3b) was used.

the volume and porosity of the sample was determined from the height and total
mass of the packed beds. The thermal conductivity was measured by the same
method described in Section 3.3 as a function of the temperature.

3.7.2 Results

Figure 3.29 shows the thermal conductivity of the binary mixture of the glass beads
at 25 degC as a function of weight fraction of the larger (FGB-80) glass beads. The
mixed samples had the thermal conductivity ranged from 0.0019 to 0.0027 W/mK,
all of which are distributed within the range for the two mono-sized end-members
(FGB-180 and FGB-80). The thermal conductivities obtained by the three sensors
differed by 0.0007 W/mK at maximum, which is comparable with that observed for
mono-sized glass beads (Figure 3.13).

The solid and radiative coefficients were determined from the temperature de-
pendent data (Figure 3.30). These estimated values are listed in Table 3.7 and plot-
ted in Figure 3.31. It was found that both the solid and radiative conductivities were
roughly ranged between those of the two end-members, similar to the case for the
effective thermal conductivity at 25 degC. However, because of the heterogeneity
of the thermal conductivity, the effect of the mixing ratio could not be found out. At
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Table 3.7: Solid and radiative coefficients of the binary mixtures of the FGB-180 and FGB-
80 glass beads obtained by the fitting of Equation (3.27) to the data in Figure 3.30. In the
first column, mixing mass ratio of the FGB-180 and FGB-80 and the bulk porosity of the
sample, ϕ , are shown. The second column represents the line heat sensor channels in the
sample container (Figure 3.3b).

Mixing ratio channel Solid Coefficient Radiative Coefficient
FGB-180:FGB-80 A (×10−3) B (×10−11 W/mK4)

(Porosity ϕ )
0:1 ch.1 1.11 ± 0.18 5.24 ± 0.83

(ϕ = 0.39) ch.2 1.34 ± 0.15 4.16 ± 0.57
ch.3 1.42 ± 0.10 5.09 ± 0.52

1:2 ch.1 1.29 ± 0.06 4.67 ± 0.25
(ϕ = 0.37) ch.2 0.91 ± 0.03 3.48 ± 0.15

ch.3 0.94 ± 0.02 3.87 ± 0.11
1:1 ch.1 1.09 ± 0.06 5.05 ± 0.25

(ϕ = 0.35) ch.2 0.76 ± 0.07 3.83 ± 0.35
ch.3 0.88 ± 0.06 3.76 ± 0.29

2:1 ch.1 0.84 ± 0.10 5.61 ± 0.35
(ϕ = 0.37) ch.2 1.04 ± 0.20 2.74 ± 0.90

ch.3 0.99 ± 0.13 4.18 ± 0.48
1:0 ch.1 0.98 ± 0.02 2.86 ± 0.10

(ϕ = 0.40) ch.2 0.75 ± 0.03 3.54 ± 0.15
ch.3 0.88 ± 0.02 3.16 ± 0.09
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Figure 3.30: Thermal conductivity of binary mixtures of FGB-180 and FGB-80 glass beads
as a function of the temperature. 0:1, 1:2, 1:1, 2:1, and 1:0 in the legend are represent the
mixing ratio of FGB-180 and FGB-80.

least, it could be stated that the solid and radiative conductivities does not become
higher or lower than those of the mono-sized samples.

In Figure 3.32, the solid and radiative conductivities at 300 K of the mixture are
compared with the mono-sized FGB glass beads in terms of the average diameter.
Overall trends of the particle size dependences are not disturbed, even if the particle
size of the mixture is taken as average diameter. It might imply that the thermal
conductivity of the mixture of the different sizes can be characterized by the average
diameter. Note that the bulk porosity of the mixture prepared in this study was
slightly lower than that of the mono-sized glass beads. The lower porosity of the
mixtures would make the solid conductivity higher and the radiative conductivity
lower.

3.8 Thermal conductivity of sintered glass beads

3.8.1 Experimental method

In Section 3.6, it was found that contact radius between the particles is an essential
parameter on the solid conductivity. When the powder beds are heated at high
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Figure 3.31: The solid (top) and radiative (bottom) coefficients as a function of the mixing
ratio, from Table 3.7. The different colors represent the difference in the channels of the
sample container B.
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Figure 3.32: Solid (red) and radiative (blue) conductivity of the binary mixture of the glass
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temperature below the melting point, particles begin to mechanically connect each
other so as to form necks at the contact points of the particles. This irreversible
thermodynamic phenomenon is called sintering. Growth of the neck size would
make the solid conductivity higher than that of unconsolidated powders. In this
section, effect of the sintering on the thermal conductivity is investigated.

The samples used in this experiment were FGB-20, FGB-40, and FGB-80 glass
beads. Each sample was filled in an alumina sample container, in which a line heat
source sensor was mounted (Figure 3.33). The line heat source sensor consisted
of a nichrome wire of 500 µm diameter and three K-type thermocouples fixed by
ceramic glue on the nichrome wire. This packed sample was sintered by heating in
the electrical furnace at atmospheric pressure. The heating temperature and duration
are summarized in Table 3.8. For each FGB glass bead, three sintered samples were
made by changing the heating duration with the sintering temperature maintaining
a constant.

The thermal conductivity for the nine sintered samples was measured under
vacuum condition (10−2 Pa) by the line heat source method. Electrical resistance
of the 500 µm nichrome wire after the sintering was Rh = 6.04 ± 0.03 Ω/m. By
inducing the constant electrical current of 0.25 A, the thermal conductivities were
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Figure 3.33: Sample container (top and left bottom) and experimental setup (right bottom)
for investigating the effect of the sintering on the thermal conductivity.

Table 3.8: Sintering temperature and duration for preparation of sintered glass beads sam-
ples.

Sample Sintering temperature Sintering duration Degree of sintering
(degC) (hour)

FGB-20 672 2.0 low
4.0 medium
8.0 high

FGB-40 645 5.0 low
9.9 medium

20.0 high
FGB-80 640 3.4 low

6.7 medium
14.0 high
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Figure 3.34: A trace of the broken neck on a glass bead.

determined from the temperature data obtained with the three thermocouple, re-
spectively. A time regime from 100 s to 750 s was utilized for the linear fitting. The
thermal conductivity was measured only at room temperature. Only the FGB-20
glass beads sintered at temperature of 672 degC for 8 hours was measured at the
temperature from −25 to 50 degC to estimate effect of the radiative contribution.

After the thermal conductivity measurement, the individual necks of the sin-
tered sample was broken. An original neck part can be observed as a rounded trace
shown in Figure 3.34. For 50 separated particles for every sintered samples, particle
diameter, area of the all traces with clear outline larger than 10 µm in diameter, and
the distance between center of the trace and center of the particle were measured.
The observed region was restricted to the circular area with radius of a half of the
particle radius from the center of the particle, which is about 6.7% of the total sur-
face area of a sphere (Figure 3.35). The radius of the trace was calculated from the
observed area by approximating it as a circle with equal area.

3.8.2 Results

First, the result of the neck observation is described. Figure 3.36 shows the his-
togram of the neck-like traces observed on 50 particles for each sintered sample.
The horizontal axis, trace radius ratio, means the ratio of radius of the traces to that
of the particle. For example, on the sintered FGB-20 glass beads with high degree
of the sintering, the number of the observed traces on 50 particles was 196, which
is too much if the all traces correspond to the necks.
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Figure 3.35: Observed region to find the trace of the necks on the glass beads. Rp represents
the particle radius.

From geometrical consideration, more than one particles can not contact to a
particle within the observed region. Furthermore, the number of the contacting par-
ticles on a particle (coordination number) is averagely 6.24 for randomly packed
spheres (Pinson et al., 1998), and the observed region corresponds to 6.7% of the
whole surface area of a sphere. If the necks are randomly distributed on the parti-
cles, the number of necks observed per particle should 0.418 stochastically. There-
fore, 21 (= 50 × 0.418) necks would be observed. The origin of excess number
of the observed neck-like traces is considered to be originally existing large-scale
roughness and/or dents generated during the breaking of the sintered sample. I as-
sumed that these roughness or dents were smaller than the necks. To extract the
necks from the observed traces, a trace with maximum size on individual particles
was selected. Among them, the larger 21 traces were taken as the neck traces. This
selection gives maximum size of the neck radius. The deduced histogram of the
neck radius ratio is shown in Figure 3.37.

Averaged neck radius ratio and porosity of the sintered samples are shown in
Table 3.9. The error in the neck radius ratio is taken as standard deviation of the neck
radius histogram in Figure 3.37. As a result, the neck radius ratios between 0.075
to 0.30 were attained with the porosity maintaining almost constant around 0.41.
The neck radius ratio became larger when increasing the degree of the sintering, as
expected.

The measured thermal conductivity of the sintered glass beads are also listed
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Figure 3.36: Histograms of the observed neck-like trace sizes on 50 particles. The terms of
low, medium, and high in the legends represent the degree of the sintering (Table 3.8).
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Figure 3.37: Estimated histograms of the neck radius ratio, extracted from Figure 3.36.
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Table 3.9: Average neck radius ratio, porosity, and thermal conductivity of the sintered
samples. Errors in the neck radius ratio represent standard deviation of the estimated neck
size distribution (Figure 3.37). The averaged thermal conductivity values obtained by three
points measurements are shown, taking differences of the averaged thermal conductivity
from maximum and minimum values as superscript and subscript errors, respectively.

Sample Degree of sintering Neck radius ratio Porosity Thermal conductivity
(×10−2 W/mK)

FGB-20 low 0.151 ± 0.08 0.42 8.8+0.8
−0.8

medium 0.188 ± 0.066 0.44 15.5+0.5
−0.5

high 0.300 ± 0.109 0.40 22.8+1.8
−2.3

FGB-40 low 0.109 ± 0.034 0.42 6.9+0.4
−2.3

medium 0.144 ± 0.051 0.41 8.8+0.6
−1.2

high 0.223 ± 0.124 0.40 10.1+0.7
−0.9

FGB-80 low 0.075 ± 0.059 0.41 4.0+0.4
−0.3

medium 0.078 ± 0.029 0.40 5.3+0.8
−0.9

high 0.119 ± 0.036 0.39 9.6+0.2
−0.2

in Table 3.9. Figure 3.38 shows the relation between the neck radius ratio and the
thermal conductivity. It was found that the thermal conductivity increased with the
neck radius ratio for each FGB sample. Although the data had large errors in the
neck ratio, a linear relation between the thermal conductivity and neck radius ratio
independent of the particle size was appeared, which is represented by,

k = 0.671x, (3.29)

where x is the neck radius ratio. The proportionality to the neck radius is consistent
with the finding from the compressional stress dependence for the unconsolidated
glass beads, in which the solid conductivity is proportional to the radius of the
contact area between the particles (Section 3.6).

To investigate the radiative contribution on the effective thermal conductivity of
the sintered glass beads, the temperature dependence of the thermal conductivity of
FGB-20 sintered glass beads with high degree of the sintering, which was prepared
separately from the above experiments. The solid and radiative conductivity were
separated by fitting the Equation (3.27) using Equation (3.1) as material conductiv-
ity km. This gave the solid coefficient A= 0.144±0.003 and the radiative coefficient
B = (3.53± 14.3)× 10−11 W/mK4. The radiative coefficient was consistent with
that of the unconsolidated FGB-20 glass beads (Table 3.4). Since the radiative con-
ductivity at 300 K is about 0.0048 W/mK, the radiative contribution is negligible
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Figure 3.38: Thermal conductivity of the sintered glass beads as a function of the neck
radius ratio. A linear fitting for all data is shown as a solid line.

compared with the solid conductivity. The temperature dependence of the effective
thermal conductivity mainly attributed to that of the solid conductivity. Therefore,
the thermal conductivity data shown in Figure 3.39 approximately represents the
solid conductivity.

3.9 Summary of the experimental results

In this thesis, effects of temperature, particle size, porosity, compressional stress,
particle size distribution, and degree of sintering, on the thermal conductivity of
powdered materials were experimentally examined. The temperature-dependent
data were utilized to derive the solid and radiative conductivities for each sample,
which enabled us to investigate the parameter dependences of each conductivity.

From the experimental results on the compressional stress dependence for the
unconsolidated glass beads and on the neck size dependence for the sintered glass
beads, it was found that the solid conductivity is proportional to the radius of the
contact area between the particles. Another finding from the measurements for the
sintered glass beads was that the solid conductivity can be scaled by the ratio of
the contact radius to the particle radius. Then, the solid conductivity is empirically
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Figure 3.39: Temperature effect on thermal conductivity of highly sintered FGB-20 glass
beads. In this experiment, a thermocouple was fixed only at the center of a nichrome wire
(see Figure 3.33) and the thermal conductivity was measured twice at each temperature. A
fitting result of Equation (3.27) is shown as a solid curve.
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expressed as,

ksolid ∝
rc

Rp
, (3.30)

where rc is the contact radius between the particles, and Rp is the particle radius.
In Figure 3.40, the solid conductivity coefficient A for the five FGB glass beads

and EMB-49.5 glass beads is compared in terms of the particle diameter. It was
found that the solid conductivity differed by an order of magnitude bewteen the
EMB and FGB glass beads. Figure 3.41 shows photographs of the EMB, FGB-20,
and FGB-180 glass beads by scanning electron microscope (SEM). The EMB glass
beads had smooth surfaces. On the other hand, surfaces of the FGB glass particles
were microscopically rough, and degree of the surface roughness seemed to differ
by the samples. When the two spheres contact, existence of the surface roughness
can reduce the contact area from that without the roughenss. The reduced contact
area makes the contact conductance, or the solid conductivity, smaller. Moreover,
the adhesive force between particles is weakened by the surface roughness, because
of separation between the surfaces of the particles (Gregory, 1981; Perko et al.,
2001). The weakened adhesive force would also reduce the contact area. Thus,
the rapid drop in the solid conductivity from the EMB to the FGB glass beads, as
found in Figure 3.40, could be explained by the effects of the surface roughness
and the related weakening of the adhesive force. The particle size dependence of
the solid conductivity for the five FGB glass beads would be affected by the surface
roughness.

As shown in Figure 3.16, the thermal conductivity was greatly scattered by the
researchers, even when the particle size is the same. One of the causes of the scat-
tered values might attribute to the difference in the surface roughness of the particles
they used, if inherent errors from the experimental method and sample preparation
are neglected. As the particles have roguher surfaces, the solid conductivity and
resultant effective thermal conductivity become lower.

The radiative conductivity was dependent on the particle size (Figure 3.15) and
porosity (Figure 3.21). The radiative conductivity of the powdered materials has
been traditionally modeled by thermal radiation between two separated plates, as
described in Section 2.2. The modeled radiative conductivity is proportional to ef-
fective distance for radiative heat transfer (or mean free path of the photon) L in
Equation (2.12) (Merrill, 1969; Gundlach and Blum, 2012), which is characterized
by typical void size between the particles. The void size is proportional to the par-
ticle size when the porosity is constant. Therefore, the radiative conductivity would
be proprotional to the particle size, as found in Figure 3.15. When the particle size
is constant, the void size, and the resultant radiative conductivity, would increase
with the porosity, as found in Figure 3.21. Then, the particle size and porosity de-
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pendences of the radiative conductivity are described in terms of these dependences
of the void size bewteen the particles.
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Figure 3.41: SEM images of the surface of the EMB, FGB-20, and FGB-180 glass beads.
A scale bar of 1 µm is shown at the right bottom of each SEM image.
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Chapter 4

Integrative model of thermal
conductivity of powdered materials

In this chapter, a thermal conductivity model for powdered materials under vacuum
conditions is developed. The conductive and radiative heat transfers are assumed to
take place in parallel, so that the effective thermal conductivity is expressed as the
sum of the solid and radiative conductivities as,

k = ksolid + krad. (4.1)

The solid and radiative conductivities are modeled independently.

4.1 Solid conductivity model

Consider equal-sized spheres packed homogeneously in a cubic container with unit
length and unit cross-sectional area, as shown in Figure 4.1. One-dimensional heat
flow is given from the bottom to the top of the sphere bed. Solid conductivity is
equivalent to bulk thermal conductance of the bed, which can be formulated as NA

parallel connections and NL serial connections of thermal conductance of single
sphere. NA is the number of the spheres per unit area perpendicular to the heat flow
direction, and NL is the number of the spheres per unit length along it. Then, the
solid conductivity model is given by,

ksolid =
NA

NL
H, (4.2)

where H is thermal conductance of single particle. It includes the thermal con-
ductance through inter-particle contact points, H ′

c, and that within a particles, Hp,
as,

H =
1

1
H ′

c
+ 1

Hp

. (4.3)
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Figure 4.1: (a) Illustration of the solid conductivity model. Thermal conductivity can be
formulated by NL serial and NA parallel connections of thermal conductance of unit cell
(b). Hp shows thermal conductance within a particle and H ′

c is total contact conductance,
calculated as parallel connection of single contact conductance Hc. A thermal conductance
model of the unit cell is shown in the right bottom (c).
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Typically for powdered materials, the contribution of Hp is negligible compared
with H ′

c, because H ′
c ≪ Hp. Then, Equation (4.3) can be approximated as,

H ≈ H ′
c. (4.4)

H ′
c is written by parallel connections of the conductance at the contact points, Hc.

Assuming that all contacts have the same thermal conductance (or the same contact
area),

H ′
c =

C
2

2
π

Hc, (4.5)

where C is the number of particles contacting a particle (coordination number).
The factor 2/π comes from correction of the contact conductance to that along the
net heat flow direction (see below). Thus, the solid conductivity of Equation (4.2)
reduces to the following equation.

ksolid =
NA

NL

C
2

2
π

Hc. (4.6)

The number of the spheres in unit volume, N, can be written in terms of particle
radius Rp and porosity ϕ as,

N =
1−ϕ
4
3πR3

p
, (4.7)

For a three-dimensionally homogeneous packing, NL can be expressed as N1/3.
However, at the porosity larger than 0.476, NL becomes smaller than 1/2Rp, which
means that the distance between the two adjacent particle layers along the heat flow
direction becomes larger than the particle diameter. In such a case, any particles
can not contact each other, and the heat can not conduct to the next particles. To
avoid this problem, assume that the gravity acts along the heat flow direction and the
particle layers does not separate vertically. In this situation, the minimum values of
NL is 1/2Rp, equivalent to that of the simple cubic packing structure. In this study,
NL for the face centered cubic structure is adopted,

NL =

√
3

2
√

2Rp
. (4.8)

Then, effect of the porosity on the number of particles is imposed on NA as

NA =
N
NL

=

√
6(1−ϕ)
2πR2

p
. (4.9)

When the porosity increases, NA and the resultant solid conductivity from Equation
(4.6) decrease.
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The coordination number C also depends on the porosity. In this study, a result
of numerical simulation by Suzuki et al. (1980) is used. Their model predicts that
the coordination number C decreases with the porosity ϕ as,

C =
2.812(1−ϕ)−1/3

f 2(1+ f 2)
, (4.10)

where f = 0.07318+2.193ϕ −3.357ϕ 2 +3.194ϕ 3.
The contact conductance Hc depends on size of the contact area. When two

spheres make a contact by external normal force F , the radius of the contact area
follows the Hertzian theory, which predicts that the contact radius rc is written by,

rc,hertz =

[
3
4

1−ν2

E
FRp

]1/3

, (4.11)

where ν is Poisson’s ratio, E is Young’s modulus (Timoshenko and Goodier, 1951).
Beside the external force F , adhesive force can work between the particles, which
also make finite contact area. Johnson et al. (1971) expanded the Hertzian theory
by including the effect of the adhesive force (JKR theory) as,

rc =

[
3(1−ν2)

4E

{
F +6πγRp +

√
12πγRpF +(6πγRp)2

}
Rp

]1/3

, (4.12)

where γ is surface energy of solid materials. When γ = 0, the JKR theory of Equa-
tion (4.12) becomes equivalent to the Hertzian theory of Equation (4.11). The ex-
ternal force F acting on a particle is calculated in terms of the compressional stress
σ as,

F =
σ

N2/3 =

(
4π

3(1−ϕ)

)2/3

R2σ . (4.13)

The factor 1/N2/3 corresponds to mean area (including surrounding void space) of
a particle. When the compressional stress σ in the powdered media attributes to the
self-weight of the particles, it is written as,

σ = ρm(1−ϕ)gz, (4.14)

where ρm is true density of the solid particle, g is gravitational acceleration, and z
is depth.

The contact conductance Hc is estimated by approximating two contacting spheres
by two circular cylinders with radius of Rp contacting with a circular area of πrc

2

(Figure 4.2). When heat flux is given perpendicular to the contact face and Rp is
sufficiently larger than rc, the contact conductance Hc is proportional to the radius
of contacting area, rc, as

Hc = 2kmrc, (4.15)
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Figure 4.2: Isotherm in the two contacting solids. Right figure shows approximated tem-
perature distribution along the center line perpendicular to the contact face.

where km is the thermal conductivity of the contacting material (Cooper et al.,
1969). The proportionality to the radius, not to the area, can be explained as the
following dimensional analysis. The contact thermal conductance is defined as,

Hc =
Q

∆T
, (4.16)

where Q is heat flow through the bodies, and ∆T is the temperature difference across
the contact. The heat flux across the contact is q=Q/πr2

c . The thickness of the ther-
mal boundary layer δ can be scaled by the contact radius rc if horizontal scale of the
solid bodies is sufficiently larger than the contact area (Rp ≫ rc). The temperature
difference ∆T is calculated from the Fourier’s law as,

∆T = q
δ
km

≈ Q
πr2

c

rc

km
∝

Q
rc
, (4.17)

Substituting Equation (4.17) into Equation (4.16), the proportionality of the contact
conductance to the contact radius (Hc ∝ rc) is proved. This theoretical result is
consistent with the experimental results on the compressional stress dependence for
the unconsolidated glass beads and on the neck size dependence for the sintered
glass beads.

Using the contact radius predicted from Equation (4.12), the contact conduc-
tance can be calculated. Note that the JKR and Hertzian theory assumed perfectly
smooth surface of the contacting material. In practice, however, particles have rough
surfaces as shown in Figure 3.41, which would make the contact area smaller than
that for the smooth particles. In order to explain the effect of the surface roughness
on the solid conductivity, I introduce a correction factor ξ for the contact radius.
For the particles with surface roughness, the contact radius reduces to ξ rc (ξ ≤ 1).
For perfectly smooth surface, ξ = 1. Using the corrected contact radius, the contact
conductance Hc is re-written as,

Hc = 2kmξ rc. (4.18)
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This expression for Hc is satisfied when the heat flow direction is perpendicular to
the contact face. In the conduction model of the powdered materials, thermal con-
ductance along the heat flow is lower than Hc, since the contact faces tilt against the
net heat flow directions. Assuming the contact angle relative to the one-dimensional
heat flow direction is randomly distributed surrounding a sphere, the contact con-
ductance is corrected by a factor of 2/π(=

∫ π
0 sinθdθ/

∫ π
0 dθ). For this reason, the

factor of 2/π arose in Equation (4.5).
Using the above equations, one can calculate the solid conductivity by giving the

parameters of km, Rp, ϕ , E, ν , γ , σ , and ξ . One can calculate the solid conductivity
as,

ksolid = 2km(1−ϕ)C
ξ rc

Rp
. (4.19)

The solid coefficient, which is the normalized solid conductivity by the material
conductivity, is then,

A = 2(1−ϕ)C
ξ rc

Rp
. (4.20)

The effect of the porosity comes from the factor (1− ϕ)C. The solid conduc-
tivity is proportional to the ratio of the inter-particle contact radius to the particle
radius. In other words, the solid conductivity is inversely proportional to the parti-
cle size, if the contact size stays constant. This dependence comes from the particle
size dependence of NA(∝ 1/R2

p) and NA(∝ 1/Rp). This feature is consistent with
the experimental result for the sintered glass beads (Figure 3.38 in Section 3.8), by
which the solid conductivity was found to be proportional to the neck radius ratio.

For unconsolidated powdered materials, the particle size dependence of the con-
tact size and the resultant solid conductivity differ by what kinds of the contact force
acts bewteen the particles. If the particles are not adhesive and the contact force is
only the external compressional stress, the contact radius is proportional to the par-
ticle radius from Equations (4.11) and (4.13). In this case, the solid conductivity is
independent of the particle size. Inversely, giving that the particles are adhesive and
external force and/or self-weight are negligible compared to the inter-particle adhe-
sive force, the contact radius is proportional to the particle radius with an exponent
of 2/3 from Equation (4.12). In this case, the solid conductivity decreases with the
particle size with an exponent of −1/3. The highest solid conductivity observed for
the smallest µm-sized EMB glass beads (Figure 3.40), would attribute the adhesive
force, which is more predominant for the smaller particle size. On the other hand,
an increase in the solid conductivity with the particle size observed for the five FGB
glass beads (hollow circles in Figure 3.40) cannot be caused by the either effects of
the self-weight or the adhesive foce. As discussed in Section 3.9, it would reflect
the effect of the surface roughness of individual particles (Figure 3.41). Therefore,
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Figure 4.3: Illustration of a radiative conductivity model. Lr is distance between infinitely-
thin planes and Hr is thermal conductance by radiative heat transfer between the two adja-
cent planes.

installation of the factor ξ in the solid conductivity model plays important role in
the interpretation of the experimental results for the FGB glass beads.

4.2 Radiative conductivity model

Radiative heat transfer through the volid spaces in the powdered media is mod-
eled by one-dimensional thermal radiation between multiple infinitely-thin parallel
planes, as illustrated in Figure 4.3. It is assumed that two adjacent planes have
temperature difference of ∆T , and the planes or particles is opaque for the thermal
radiation. The thermal conductance between two planes by the thermal radiation,
Hr, can be calculated as,

Hr =
ε

2− ε
σSB[(T +∆T )4 −T 4]

1
∆T

= 4
ε

2− ε
σSBT 3, (4.21)

where ε is emissivity, σSB is the Stefan-Boltzmann constant, and T is temperature
of a colder plane. With Lr being distance between two adjacent planes, the number
of the layers in unit length is 1/Lr. The radiative conductivity of this layered media
can be expressed as multiple serial connections of the radiative conductance Hr as,

krad = LrHr = 4
ε

2− ε
σSBLrT 3. (4.22)

Lr represents effective distance for the radiative heat transfer. It can be scaled by
characteristic length of the void space in the powdered media.

In homogeneous packing of equal-sized spheres, the void volume per particle is
calculated from particle radius Rp and porosity ϕ as,

V =
ϕ
N

=
4
3

πR3
p

ϕ
1−ϕ

, (4.23)
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where N is the number of the spheres in unit volume given by Equation (4.7). By
approximating this typical void volume by that of a sphere with the diameter of Dv,
the typical void length can be formulated as,

Dv = 2
(

ϕ
1−ϕ

)1/3

Rp. (4.24)

I introduce a factor ζ to scale the typical void length Dv to the effective distance for
the radiative heat transfer Lr, so that,

Lr = ζ Dv = 2ζ
(

ϕ
1−ϕ

)1/3

Rp. (4.25)

By substituting Equation (4.25) into Equation (4.22), the radiative conductivity can
be formulated as,

krad = 8
ε

2− ε
σSBζ

(
ϕ

1−ϕ

)1/3

RpT 3, (4.26)

and the radiative conductivity coefficient becomes,

B = 8
ε

2− ε
σSBζ

(
ϕ

1−ϕ

)1/3

Rp. (4.27)

The modeled radiative conductivity is proprotional to the particle size, since the
void length (Equation 4.24) is proportional to it. In a similar way, the increase in
the radiative conductivity with the porosity attributes the enhancement of the void
size. They are consistent with the experimental results (Figure 3.15 and 3.21).
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4.3 Comparison with the experimental results

The effective thermal conductivity of all samples measured in this study, except for
the metallic beads, was divided into the solid and radiative conductivities using the
temperature-dependent data. In this section, the solid and radiative conductivity
models are compared with the experimental results. The parameters used for the
model calculation for FGB glass beads, EMB glass beads, and regolith simulant,
are listed in Table 4.1.

4.3.1 Solid conductivity

Whether the samples used in this study were adhesive or nonadhesive is unknown.
The adhesive force is characterized by the surface energy (Equation 4.12). For the
FGB glass beads, EMB glass beads, and regolith simulant, the surface energy of γ
= 0.02 J/m2, which is typical for SiO2 (Gundlach et al., 2011), is used for the cases
of adhesive particles. The nonadhesive case is represented by giving γ = 0 J/m2.

The solid conductivity of the FGB glass beads is calculated as a function of the
particle diameter in Figure 4.4. The correction factor of the contact radius ξ was
set to unity. If the particles are nonadhesive, the constant solid coefficient of 0.0027
is calculated. On the other hand, when the adhesive force is taken into account,
the solid coefficient is enhanced up to 0.0084 for the particle diameter of 100 µm.
The adhesive force becomes more effective on the solid conductivity for the smaller
particles.

It was found that the solid conductivity model was higher than any experimental
data for the FGB glass beads. The lower experimental values can be reasonably
explained by the effect of the surface roughness observed on the FGB glass particles
(Figure 3.41). The roughness makes the contact radius smaller than that of smooth
particles, whose effect can be expressed in term of the factor ξ . The values of ξ for
respective samples are listed in Table 4.2. If the non-adhesive model is adopted, ξ
ranges from 0.33 to 0.96. On the other hand, ξ becomes lower, from 0.09 to 0.56 for
the adhesive model. The lower values of ξ are obtained for smaller particles, which
might reflect the fact that the smaller beads had more dense roughness (Figure 3.41).

The solid conductivity of the EMB glass beads expected from the model is
shown in Figure 4.5 as a function of the porosity. The modeled solid conductiv-
ity decreased by two orders of magnitude with the porosity from 0.4 to 0.9. The
non-adhesive model was an order of magnitude lower than the experimental val-
ues. It can not be explained by the surface roughness, because ξ ≤ 1. The adhesive
model agreed well with the experimental results for the EMB glass beads. The
model developed in this study can predict the solid conductivity with uncertainty of
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Figure 4.4: Model calculation of the solid coefficient as a function of the particle diam-
eter, compared with the experimental results shown in Figure 3.15. The solid line is for
nonadhesive case (γ = 0 J/m2) and the dashed curve is for adhesive (γ = 0.02 J/m2), with
ξ = 1.

Table 4.2: Values of ξ to be matched with the experimental solid coefficients for FGB glass
beads determined from Figure 4.4. The ranges shown in parentheses correspond to the
experimental error bars shown in Figure 4.4.

nonadhesive case adhesive case
ξ = 0 J/m2 ξ = 0.02 J/m2

FGB-20 0.68 (0.39-0.96) 0.40 (0.23-0.56)
FGB-40 0.50 (0.34-0.75) 0.25 (0.17-0.37)
FGB-80 0.48 (0.42-0.53) 0.19 (0.17-0.22)

FGB-180 0.44 (0.41-0.50) 0.14 (0.13-0.16)
FGB-300 0.34 (0.33-0.38) 0.09 (0.09-0.10)
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Figure 4.5: Model calculation of the solid coefficient as a function of the porosity, compared
with the experimental results shown in Figure 3.21. The solid line is for nonadhesive case
(γ = 0 J/m2) and the dashed curve is for adhesive (γ = 0.02 J/m2), with ξ = 1.

Table 4.3: Model estimations of the solid coefficient for the uncompressed regolith simulant.
Fitted ξ values are shown in the right column.

Model estimation Measured ξ
2.32×10−3 (nonadhesive) 1.47×10−3 0.63

7.48×10−3 (adhesive) 0.20

less than 50%.
The solid conductivity for the regolith simulant calculated from the non-adhesive

and adhesive models are shown in Table 4.3. As is the case for the FGB glass beads,
the model estimations were higher than the experimental values. If these differences
are assumed to attribute the surface roughness parameter ξ , ξ = 0.63 (nonadhesive
case) and 0.20 (adhesive case) were obtained.

Figure 4.6, 4.7, and 4.8 show estimations of the compressional stress depen-
dence of the solid conductivity for the FGB-20 glass beads, FGB-180 glass beads,
and regolith simulant, respectively. Similar to the uncompressed data, the experi-
mental values were lower than the calculated. The best fitted values of ξ are listed
in Table 4.4. For the non-adhesive case, the values of ξ for the FGB-20 and FGB-
180 glass beads are consistent with those determined form the uncompressed data
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Table 4.4: Values of ξ to fit the compressional stress dependent solid conductivity for the
FGB-20, FGB-180, and regolith simulant. See also Figure 4.6, 4.7, and 4.8.

nonadhesive (ξ = 0 J/m2) adhesive (ξ = 0.02 J/m2)
FGB-20 0.79 0.72

FGB-180 0.47 0.35
Regolith simulant 0.40 0.31

in Table 4.2. On the other hand, if the adhesive model is adopted, the values of ξ are
higher than those for the uncompressed data. For the regolith simulant, the adhesive
model can be well fitted by giving ξ = 0.31 rather than the non-adhesive model.

The thermal conductivity of the sintered glass beads can be also estimated using
the solid conductivity model in terms of the contact radius ratio (rc/Rp) in Equation
(4.19). In Figure 4.9, the model calculated form Equation (4.19), are compared to
the experimental data (Figure 3.38). It was found that the model showed higher ther-
mal conductivity and larger slope than the experimental data. In the derivation of
Equation (4.19), thermal conduction within the particles was neglected, by assum-
ing the contact conductance H ′

c is sufficiently lower than the conductance within
the particle Hp. This assumption is applicable for the unconsolidated powders. For
the sintered powders, the effect of the thermal conductance within the particles can
not be neglected compared to the contact conductance, because the neck formation
enhances the contact conductance.

Effect of the thermal conductance within the particles Hp on the effective solid
conductivity ksolid is roughly quantified below. For simplicity, I approximate Hp

as the conductance within a cube, whose volume is equivalent to that of a sphere,
Vp = 4πR3

p/3, with Rp being the particle radius. Then, the following equation on Hp

can be derived,

Hp = km
V 2/3

p

V 1/3
p

=

(
4π
3

)1/3

Rpkm. (4.28)

Using Equation (4.3), the solid conductivity model including the effect of the intra-
particle conduction can be written by,

ksolid =
NA

NL
H =

NA

NL

1
1/H ′

c +1/Hp
. (4.29)

By giving the same expressions for NA, NL, and H ′
c as described in Section 4.1, the

revised solid conductivity model is also plotted in Figure 4.9. Since Hp is propor-
tional to the particle radius as well as H ′

c, the revised solid conductivity model is
also independent of the particle radius. If the contact radius ratio is less than about
0.05, the solid conductivity is determined dominantly by the contact conductance.
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Figure 4.6: Comparison between the solid conductivity models and the experimental results
on the compressional stress dependence for the FGB-20 glass beads. The solid curves
represent the model with ξ = 1. The dashed curves show the fitting result via ξ .
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FGB-180
(a) non-adhesive model (γ = 0 J/m2)
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(b) adhesive model (γ = 0.02 J/m2)
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Figure 4.7: Comparison between the solid conductivity model and the experimental results
on the compressional stress dependence for the FGB-180 glass beads. The solid curves
represent the model with ξ = 1. The dashed curves show the fitting result via ξ .
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Regolith Simulant
(a) non-adhesive model (γ = 0 J/m2)
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(b) adhesive model (γ = 0.02 J/m2)

0.0 × 100

5.0 × 10-3

1.0 × 10-2

1.5 × 10-2

2.0 × 10-2

2.5 × 10-2

3.0 × 10-2

3.5 × 10-2

4.0 × 10-2

 0  5  10  15  20

S
ol

id
 C

on
du

ct
iv

ity
 (

W
/m

K
)

Stress (kPa)

Regolith Simulant
adhesive: xi = 1.00
adhesive: xi = 0.31

Figure 4.8: Comparison between the solid conductivity model and the experimental results
on the compressional stress dependence for the regolith simulant. The solid curves represent
the model with ξ = 1. The dashed curves show the fitting result via ξ .
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Figure 4.9: Comparison between the solid conductivity model and the experimental data for
the sintered FGB glass beads. The radiative conductivity is neglected, since it is sufficiently
smaller than the solid conductivity for the sintered sample. Solid line represents the model
without the thermal conductance within the particles Hp, calculated from Equation (4.19).
Dashed curve represents the model with Hp in addition to the contact conductance H ′

c, using
Equation (4.29).
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Figure 4.10: Model calculation of the radiative coefficient, with ζ = 1, as a function of the
particle diameter, compared with the experimental results shown in Figure 3.15.

The intra-particle conductance becomes more effective as the contact radius ratio
(or the contact conductance) increases. Thus, the above mentioned difference be-
tween the model and the experimental data for the sintered glass beads would be
explained by the non-negligible effect of the conduction within the particles. From
Figure 4.9, the revised model is still higher than the experimental values. Note that
the effect of the intra-particle conduction depends on the geometrical assumption
for the derivation of Hp. More realistic assumption will be required in the future
work.

4.3.2 Radiative conductivity

The radiative conductivity can be calclated form Equation (4.26) in terms of tem-
perature, particle radius, porosity, and emissivity. Figure 4.10 shows comparison
between model and expreimental data on the radiative conductivity at 300 K for the
FGB glass beads as a function of the particle diameter, with ζ = 1. The calculated
radiative conductivity agreed well with the overall trend of the experimental data.
In a strict sense, the value of ζ differed by the particle size. Table 4.5 shows the
best fitted values of ζ . It seemed to increase with decreasing the particle size. The
cause of this trend is discussed in the next section.

The modeled radiative conductivity for the EMB glass beads is shown in Fig-
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Table 4.5: Values of ζ to be matched with the experimental radiative coefficients for FGB
glass beads from Figure 4.10. The ranges shown in parentheses represent possible ranges
due to the experimental error (or heterogeneity).

Sample ζ
FGB-20 0.98 (0.73-1.19)
FGB-40 1.42 (1.07-1.93)
FGB-80 1.50 (1.22-1.74)

FGB-180 2.24 (1.77-2.56)
FGB-300 3.18 (2.45-3.99)

ure 4.11 as a function of the porosity. The experimental data are restricted to the
sieved samples (EMB-86.2, EMB-77.9, EMB-75.3, and EMB-69.5), because the
compressed EMB-49.5 and EMB-58.5 showed significant heterogeneity in the ra-
diative conductivity (Section 3.4). The model with ζ = 1 showed an order of magni-
tude lower radiative conductivity than the experimental values, which means under-
estimate of the effective radiative distance. Figure 4.12 shows optical micrographs
of the top surface of the EMB glass beads sieved through the 53 µm mesh (corre-
sponding to EMB-86.2, EMB-77.9, and EMB-69.5) and 500 µm mesh (EMB-75.3).
As seen in these photos, the individual particles form larger sized aggregates and
large voids exist between the aggregates. It is expected that the radiative heat trans-
fer though these larger voids would be effective than that through the smaller voids
between the individual particles. Enhancement of the effective radiative distance
from the geometrical estimate of the void size, in which the homogeneous packing
of the individual particles was assumed, can be expressed by the factor ζ = 15.

Maximum size of the aggregate would be limited by mesh size of the sieve.
For the EMB-86.2, EMB-77.9, and EMB-69.5, the size of the aggregates seemed
uniform about 50 µm (Figure 4.12a), ten times larger than the EMB particle diam-
eter. Since the ratio of the aggregate size to the particle size (≈ 10) was roguhly
consistent with the fitting value of ζ = 15, it is indicated that the effective radiative
distance can be characterized by the aggregate size, not by the individual particle
size. On the other hand, although the EMB-75.3 sample was sieved through the
larger mesh of 500 µm (100 times larger than the individual particle size) its radia-
tive conductivity can be fitted by the same factor of ζ = 15. A photo of 500 µm
sieved sample (Figure 4.12b) showed that the size of the aggregates is not uniform,
which would make the void size between the aggregates, and therefore the radiative
conductivity, smaller.

For the regolith simulant, the radiative coefficient of 1.25×10−11 is calculated
from the model with ζ = 1. This is slightly lower than the experimentally deter-
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Figure 4.11: Model estimation of the radiative coefficient as a function of the porosity. The
compared experimental data are shown in Figure 3.21. Solid curves represents the model
with ζ = 1. A radiative conductvity model with ζ = 15 (dashed curve) can be well fitted to
the experimental data.
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Figure 4.12: Optical micrographs of the sieved EMB samples.
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Figure 4.13: Model of a packing of aggregates. Ragg is radius of the aggregates, and rc,agg

is contact radius between the aggregates. Porosity of individual aggregates ϕagg is defined
in Figure 4.14.

mined values of B = 2.63×10−11 (Section 3.5). ζ = 2.1 is adequate for the regolith
simulant.

4.4 Discussion

Effect of the aggregation on the solid conductivity

In Section 4.3.2, it was suggested that the radiative conductivity is affected by
the aggregation. On the other hand, the solid conductivity data was well consistent
with the model, which assumed homogeneous packing. The aggregation seemed
not to affect the solid conductivity significantly.

Figure 4.13, shows a schematic model of packing of the aggregates. The indi-
vidual aggregates have radius of Ragg and porosity of ϕagg. Difinition of three kinds
of the porosity is illustrated in Figure 4.14. The bulk porosity of the powdered ma-
terials ϕ is related to the porosity of the individual aggregates ϕagg and porosity of
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Figure 4.14: Difinition of bulk porosity ϕ , porosity of individual aggregates ϕagg, and poros-
ity of packing structure of the aggregates ϕpack,agg. Gray; individual particle. Green; void
within the aggregates. White; Void between the aggregates.

the packing structure of the aggregates ϕpack,agg as,

(1−ϕ) = (1−ϕagg)(1−ϕpack,agg). (4.30)

If the individual aggregates have the solid conductivity of kagg, the effective solid
conductivity of the packing of the aggregates can be modeled using Equation (4.19)
as,

ksolid = 2kagg(1−ϕpack,agg)C(ϕpack,agg)
rc,agg

Ragg
, (4.31)

where rc,agg is the effective contact radius between the aggregates, which includes
the void space among aggregate-aggregate contact faces. Above equation indicates
that the solid conductivity is independent of the size of the aggregates when the con-
tact radius ratio rc,agg/Ragg is taken as a constant, similar to the solid conductivity
of the sintered glass beads. Let us call this model “structual model” and the original
one “homogeneous model”.

The porosity and thermal conductivity of the individual aggregates, ϕagg and
kagg, are unknown. Assume that ϕagg = 0.495 (maximum compression of the EMB
glass beads attained in this study), and corresponding thermal conductivity of kagg =

0.02 W/mK. In Figure 4.15, the solid conductivity of the aggregates packing is cal-
culated as a function of the bulk porosity by giving the contact radius ratios between
the aggregates rc,agg/Ragg = 0.1, 0.2, and 0.3. The structural model included the ef-
fect of the conduction within the aggregates, as done for the sintered glass beads
(Equations 4.28 and 4.29). The structual model with rc,agg/Ragg = 0.2 agreed with
the experimental values. It was also found that there was less difference between
the homogeneous model and the structual model with rc,agg/Ragg = 0.2.
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Figure 4.15: The structural solid conductivity models (dashed curve) for the aggregate pack-
ing compared to the homogeneous model (solid curve) and the experimental data. In the
structural model, ϕagg = 0.495 and kagg = 0.02 W/mK are assumed. Three kinds of the
structural models are shown with different contact radius ratios bewteen the aggregates,
rc,agg/Ragg = 0.1, 0.2, and 0.3.
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In practice, the contact radius ratio rc,agg/Ragg would differ by the aggregate size
and structural packing porosity of the aggregates. Whether the ratio of rc,agg/Ragg =

0.2 is realistic is unknown. Moreover, as mentioned before, the aggregates found in
the EMB-75.3 sample did not have the uniform size. The effect of the size distribu-
tion can not be modeled in the present state.

Effect of particle size on ζ

As mentioned in Section 4.3.2, the scaling factor of the radiative heat transfer
distance ζ seemed to increase with decreasing the particle size (Table 4.5). One of
the possible examinations of this trend is that the smaller particles are not opaque
against the thermal radiation, or electromagnetic wave. For the derivation of the
radiative conductivity, the particles were assumed to be completely opaque, i.e.,
assuming the transmittance τ equals to zero.

First, effect of the semi-transparent nature of the particles on the radiative con-
ductivity is discussed. As a simple example, consider six parallel planes as shown
in Figure 4.16. Each plane has the transmittance of τ . By neglecting the reflection
on the plane surface, net heat exchange between the plane 0 and 1 is,

q = q1 + τq2 + τ2q3 −q0 − τq−1 − τ2q−2

= (q1 −q0)+ τ(q2 −q−1)+ τ2(q3 −q−2), (4.32)

where qi = εσSBT 4
i is the radiative heat flux from the i-th plane. By approximating

(T0 + n∆T )4 ≈ T 4
0 + 4nT 3

0 ∆T with n being integers (∆T ≪ T0), the net heat flux
between the two planes can be calculated as,

q = 4εσSB(5τ2 +3τ +1)T 3
0 ∆T. (4.33)
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The radiative conductivity within the semi-transparent layers is defined by,

krad,τ = q
Lr

∆T
= 4εσSB(5τ2 +3τ +1)LrT 3

0 , (4.34)

where Lr is the distance between the two planes. If the planes are opaque for the
thermal radiation, the radiative conductivity is equivalent to the original model of
Equation (4.22), except for the term on the emissivity (ε or ε/(2− ε)). Therefore,
the radiative conductivity enhances by a factor of 5τ2 + 3τ + 1 due to the addi-
tional transmitted energy from the other planes. If 2n semi-transparent planes are
considered, the enhancement factor ζ becomes

ζ =
n

∑
i=0

(2n+1)τn. (4.35)

The radiative conductivity of the FGB-300 glass beads, for example, was larger
than the opaque model by the factor of 3.18 (ζ in Table 4.5). If this factor is all
contributed from the transparent nature of the glass particles, the transmittance of
0.35 is required.

Next, the transmittance of the particles is estimated by approximating a particle
by a thin slab, whose thickness is comparable to the particle diameter. When the
thermal radiation enters on a semi-transparent slab perpendicular to the slab surface,
spectral transmittance of the slab is written by the following equation,

τλ = exp(−4πkad
λ

), (4.36)

where ka is a coefficient representing the energy adsorption within the solid material
(imaginary part of complex index of refraction), d is thickness of the slab, and λ is
wavelength of the incident light (Modest, 2013). This relation holds if d ≫ λ (in
the region whose optical characteristics are determined by the geometric optics).
Using the data on the values of ka for soda-lime glass obtained by Rubin (1985),
the spectral transmittance is plotted in Figure 4.17. As shown in this figure, the
transmittance is higher for the thinner slab, or smaller particles. The spectral trans-
mittance strongly depends on the wavelength in the infrared region. Therefore, total
or integrated transmittance depends on the incident power spectral.

To estimate the total transmittance, thermal radiation from a slab with the tem-
perature of 300 K emitted into another slab is considered. The emitted powder
spectral can be calculated as,

Iλ (λ ,T ) = ελ Ib,λ (T,λ ) = ελ
2hc2

λ 5(ehc/λkT −1)
, (4.37)
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Figure 4.17: Spectral transmittance of soda-lime glass calculated from Equation (4.36) us-
ing ka from Rubin (1985). The slab thickness values of d = 5, 50, and 500 µm are given.

where ελ is spectral emissivity, Ib,λ is black body emissive power given by the
Plank’s law, h is the Plank’s constant, c is the speed of light, kB is the Boltzmann
constant. The total transmittance is defined as,

τ =

∫
λ τλ Iλ dλ∫

λ Iλ dλ
. (4.38)

The spectral transmittance τλ , adsorptance αλ , and reflectance ρλ are related each
other as, τλ +αλ +ρλ = 1. For simplicity, the reflectance ρλ is set to zero. The
Kirchhoff’s law states that ελ = αλ . Therefore, the spectral emissivity is calculated
by ελ = 1− τλ using the spectral transmittance given by Equation (4.36).

Figure 4.18 shows the total transmittance calculated from Equation (4.38) as a
function of the slab thickness. For comparison, the transmittance calculated from
Equation (4.35) using experimentally determined values of ζ for the FGB glass
beads (Table 4.5) is also plotted. It can be seen that the estimated total transmit-
tance of the glass is lower than the transmittance required to enhance the radiative
conductivity by the factor of ζ . It means that the effect of the particle size on the
observed values of ζ can not be explained by the semi-transparent nature of the
smaller particles.

Note that Equation (4.36) can be adopted in the geometrical optics regime (d ≫
λ ). The black body spectral has the peak intensity around the wavelength of 10
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the slab thickness, calculated from Equation (4.38). Points: Total transmittance required to
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diameter, calculated from Equation (4.35).

128



µm at the temperature of 300 K, so that the estimated transmittance of the small
particles (such as FGB-300 glass beads) might not be plausible. When d ∼ λ , Mie
scattering theory would be suitable. Because forward scattering is dominant for the
Mie scattering, it could make the forward radiative heat flux and resulting radiative
conductivity higher.

Thermal conductivity of the sintered glass beads lower than the model

In Figure 4.9, the sintered glass beads had lower thermal conductivity than the
model, even when the intra-particle conduction was introduced. Although the quan-
titative formulation of the intra-particle conductance was not verified in this study,
there might be other contributions to cause the disagreement.

The neck sizes of the sintered glass beads were broadly distributed, not uniform
(Figure 3.37). In the privious discussion, averaged neck radius was taken as an ef-
fective size on the total solid conductivity. If there is size distribution of the necks,
the effective neck size possibly becomes lower than the average neck radius. The
contact conductance at the neck region is proportional to the neck radius. When
parallel connection of the different contact thermal conductances is considered, the
effective conductance corresponds to the average contact conductance. On the other
hand, when the serial connection is considered, the effective conductance is lower
than the average, since the heat flow is constructed at the smaller contacts. Effect of
the neck radius distribution on the solid conductivity using the neck radius distribu-
tion (Figure 3.37) is discussed.

Let us define the contact conductance per unit neck radius as h, so that the
resulting contact conductance at each contact is represented as hri, where ri (i =
1,..., n) is the neck radius at i-th contact. The serial connection of these contact
conductances produces the total conductance Ht as,

Ht =
1

∑n
i=1 1/hri

, (4.39)

Effective neck radius reff is introduced. It is defined as a neck radius whose serial
connection results in the same total conductance as Ht,

1
n/hreff

= Ht. (4.40)

The effective neck radius on the thermal conduction is calculated as,

reff =
n

∑n
i=1 1/ri

. (4.41)

From the neck size distribution shown in Figure 3.37, the calculated effective
neck radius ratio is summarized in Table 4.6. As expected, the effective neck radius
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Table 4.6: Effective neck radius ratio calculated from Equation (4.41), compared to the
average neck ratio.

Sample Degree of sintering Average neck ratio Effective neck ratio
FGB-20 low 0.151 0.129

medium 0.188 0.172
high 0.300 0.264

FGB-40 low 0.109 0.101
medium 0.144 0.131

high 0.223 0.187
FGB-80 low 0.075 0.060

medium 0.078 0.070
high 0.119 0.111

ratio is lower than the average by 20% at the maximum. However, the difference
between the experimental data and the model is still exist, even if the average neck
radius ratio in Figure 4.9 is replaced by the effective neck ratio.

There are other possible causes for the lower experimental values than the model.
A method of the neck selection from the trace of the broken necks (shown in Section
3.8) potentially overestimated the neck radius, because I had assumed that the neck
size was larger thant the originally existing roughness and dent generated during
the breaking prcedure. The breaking process of the physical contacts could produce
the neck traces larger than the original neck size. They can not to be addressed
furthermore in this work. Direct measurement of the neck size without the breaking
is preferred in the future work.
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Chapter 5

Numerical simulation for thermal
evolution of planetesimals

5.1 Thermal model

Some different scenarios for planetesimal formation have been suggested. As men-
tioned in Chapter 1, planetesimal formation via mutual collisional growth of the
silicate dust aggregates could not be feasible because of the easy disruption of the
dust aggregates by the relatively low speed collisions (Wada et al., 2013). Grav-
itational instability model would be a feasible scenario for the rocky planetesimal
formation.

Dust particles in the nebula settled to the mid-plane in a few thousand years
at Earth’s orbit (1 AU from the Sun), with coagulation of the particles (Weiden-
schilling, 1980). Based on the gravitational instability model for the planetesi-
mal formation (Hayashi et al., 1985), mass of the primordial planetesimal can be
roughly estimated as,

m = π
(

GΣdτK

2

)2

Σd, (5.1)

where G is the gravitational constant, Σd is surface density of the solid dusts in
the early nebula, and τK is orbital period of the Kepler motion. The radius of the
planetesimal R with the mass m depends on packing porosity of the dust particles.
I assume that the planetesimals had uniform porosity of ϕ = 0.9 (Kataoka et al.,
2013). With Σd = 7.1(a/1 AU)−3/2 (a < 2.7 AU), where a is the distance from
the central Sun, the size distribution of the primordial planetesimals formed by the
gravitational instability is shown in Figure 5.1. The true density of the dust particle
is assumed at ρm = 3710 kg/m3, and compact (ϕ = 0) and porous (ϕ = 0.9) cases
are shown. For the porous case, the radius of the planetesimal is about 10 km in
the inner solar system. In this thesis, the thermal calculation is conducted for the
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Figure 5.1: Typical radius distribution of the planetesimal formed by the gravitational in-
stability. A solid curve assumed the planetesimal’s bulk porosity of 0.9 and a dashed curve
assumed non-porous condition.

planetesimals less than 10 km in radius.

The formation age of the planetesimal can be constrained from chronological
data of meteorites. 182Hf-182W chronology of iron meteorites showed that the dif-
ferentiation and core formation in their parent bodies occurred within 1.5 Myr after
the CAI formation (Qin et al., 2008; Kleine et al., 2009). Combined with the ther-
mal modelling, they suggested that parent bodies of the iron meteorites were formed
within 1 Myr after the CAI formation. The age of the chondrules ranges from 1 to 3
Myrs after the CAI formation. Parent bodies of the chondritic meteorites would be
accreted after the chondrule formation. Several studies on the thermal evolution of
the meteorites’ parent bodies attempted to constrain the time when the planetesimal
accretion is completed. Many ordinary chondrite models based on the onion-shell
model (e.g. Miyamoto et al., 1981; Akridge et al., 1998; Harrison and Grimm, 2010;
Henke et al., 2012a,b) showed that the parent body of the ordinary chondrite was
formed at about 2 Myr after the CAI formation. Like this, the formation of mete-
orites’ parent bodies, or planeterimals, would be continuous events. In this study,
the formation age of the planetesimal is taken as a variable from 0 Myr to 3 Myr
relative to the CAI formation. Note that the parent body of the meteorites does not
necessarily correspond to the planetesimal formed by the gravitational instability.
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The collisional growth of the initial planetesimals would result in the larger parent
body.

It is assumed that the rocky planetesimals consist of ordinary chondrites-like
silicate particles. Studies on interplanetary dust particles indicated that the size of
the pristine dust particles is less than 1 µm (Rietmeijer, 1993). I assume that the
radius of the dust particles in the planetesimals has is 0.5 µm. Table 5.1 shows
parameters used for the calculations.
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5.1.1 Heat conduction equation

Given that the planetesimals were not disturbed by the mutual impacts during the
thermal evolution, the following spherically-symmetric heat conduction equation is
solved by the explicit finite difference method.

ρc
∂T
∂ t

=
1
r2

∂
∂ r

(
r2k

∂T
∂ r

)
+ρQ(t), (5.2)

where T is temperature, r is radius from the center, t is time, ρ is bulk density, c is
specific heat, Q is heat generation rate per unit mass, and k is thermal conductivity.
The central difference equation of Equation (5.2) becomes,

T n+1
j = T n

j +
1

ρ jc j

{
1

∆r j

[
k j+1 + k j

2
Tj+1 −Tj

(∆r j+1 +∆r j)/2
−

k j + k j−1

2
Tj −Tj−1

(∆r j +∆r j−1)/2

]
+

1
r j

k j
Tj+1 −Tj−1

∆r j
+ρ jQ

}
∆t.

(5.3)

where ∆t and ∆r are time and radius steps, respectively, with superscript n being
the time coordinate and subscript j being the radius coordinate (node number) from
the center. For all calculations, the spherical planetesimals were subdivided into
100 spherical shells (i.e. node number is 100). The computational time step ∆t was
adjusted so that the following Courant-Friedrichs-Lewy condition is satisfied during
the calculation.

k
ρc

∆t
∆r2 ≤ 1

2
. (5.4)

Initial temperature is assumed to be constant at T0 as,

T = T0, at t = 0. (5.5)

The initial temperature of T = 200 K is adopted. Surface temperature of the plan-
etesimal maintains at the initial temperature,

T = T0 at r = R, (5.6)

and there is no point heat source at the center,

∂T
∂ r

= 0 at r = 0. (5.7)
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5.1.2 Heat source

Main heat source in the early planetesimal is the energy released by the decay of
the radioactive nuclides. The most effective is the decay heat of short-lived iso-
tope 26Al. Other short-lived isotope 60Fe and long-lived isotopes 40K, 232Th, 235U,
238U are also included. The heat generations by these isotopes can be calculated as
(Henke et al., 2012a),

Qi =
d
dt

(
X i E i

r
mi f i

)
= X i E i

r
mi f i

t0 exp(−λ it), (5.8)

where E i
r is heat energy released by decay of a nuclide i with mass of mi, X i is

mass fraction of the element i in the material, f i
t0 is isotope ratio at the time of the

planetesimal formation, and λ i is decay constant. f i
t0 can be written in terms of the

formation time relative to the solar system (CAI) formation, t0, and the isotope ratio
at the solar system formation, f i

CAI,

f i
t0 = f i

CAI exp(−λ it0). (5.9)

The total heat generation is calculated as,

Q(t) = ∑
i

[
X i E i

r
mi f i

CAI exp{−λ i(t + t0)}
]
. (5.10)

The decay constant is related to the half-life τ i
1/2,

λ =
ln2
τ1/2

. (5.11)

The parameters for this heat source are shown in Table 5.2.

5.1.3 Sintering of dust particles

The sintering of dust particles in the planetesimals would occur at high tempera-
ture, after which physical properties of the planetesimal would change drastically
due to resulted mechanical connection of the particles. The neck growth during the
sintering proceeds by several modes; viscous flow, surface diffusion, volume dif-
fusion, grain boundary diffusion, and evaporation-condensation (Rockland, 1967).
For µm-sized pure SiO2 particles, the surface diffusion is considered to be dominant
mechanism (Poppe, 2003). The neck growth for glass particles by Kuczynski (1949)
was well represented by the viscous flow theory. In this study, the neck growth
of the dust particles is calculated by combination of both the surface diffusion and
viscous flow.
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Table 5.2: Parameters for radioactive heat generation.

Isotope fCAI Er τ1/2 X
(MeV) (Myr)

26Al 26Al/27Al = 5.1×10−5 (1) 3.19 (2) 0.73 (1) 9.03 ×10−3 (3)

60Fe 60Fe/56Fe = 1.15×10−8 (4) 2.89 (2) 2.6 (5) 2.60 ×10−1 (3)

40K 40K/39K = 1.5×10−3 (6) 0.69 (2) 1.2 ×103 (7) 7.07 ×10−4 (3)

232Th 232Th/Th = 1 (6) 40.4 (2) 1.4 ×104 (7) 5.44 ×10−8 (3)

235U 235U/U = 0.24 (6) 44.4 (2) 7.0 ×102 (7) 3.02 ×10−8 (3)

238U 238U/U = 0.76 (6) 47.5 (2) 4.5 ×103 (7) 3.02 ×10−8 (3)

References: (1) Nyquist et al. (2009). (2) Henke et al. (2012a). (3) Typical
chondritic values from Henke et al. (2012a). (4) Tang and Dauphas (2012). (5)
Rugel et al. (2009). (6) Calculated from Table 3 in Anders and Grevesse (1989).

(7) Hays (1972).

The sintering can be subdivided into two stages. In the early stage of sintering,
the neck grows without the porosity reduction, until the neck radius ratio reaches
about 0.3. In this stage, neck growth by the surface diffusion is represented by the
following equation (Nochols and Mullins, 1965),

rn

Rp
=

(
25γsdΩDs

kBT R4
p

t

)1/6

, (5.12)

where rn is neck radius, Rp is particle radius, γs is surface tension proceeding the
sintering, d and Ω are diameter and volume of the molecule, kB is the Boltzmann
constant, T is temperature, and t is time. Surface diffusion coefficient Ds strongly
depends on temperature as,

Ds = Ds0 exp
(
− As

RgT

)
, (5.13)

where Ds0 and As are constants depending on the material types, and Rg is the gas
constant. For the viscous flow sintering, the neck growth follows,

rn

Rp
=

(
3γs

2ηR4
p
t

)1/2

, (5.14)

where η is viscous coefficient given by,

η = η0 exp
(

Av

RgT

)
, (5.15)
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Figure 5.2: Assumed relation between the porosity and the neck radius ratio. The neck
radius ratio is calculated from Equation (5.12) and (5.14).

where η0 and Av are constants (Kuczynski, 1949). The increase in the neck radius
during the finite time step ∆t is calculated for each mode. Adding these increment
radii, total neck growth for ∆t can be calculated. The initial neck radius is set at
zero.

It is empirically known that the porosity starts to decrease and the void space
between the particles diminishes when the neck radius ratio exceeds 0.3 (late stage
of sintering). In this stage, formulation of the sintering process has not been estab-
lished. Therefore, Equations (5.12) and (5.14) are used to calculate the neck radius
even in the late stage. The porosity is assumed to be related linearly to the neck
radius ratio. When the neck radius ratio exceeds 0.3, the porosity linearly decreases
from the initial porosity so as to make the porosity zero at the neck radius ratio of 1
(Figure 5.2).

The parameters used for the sintering calculation are listed in Table 5.1.

5.1.4 Thermal conductivity

The thermal conductivity of initial state of the planetesimal is calculated from the
thermal conductivity model developed in Chapter 4 in terms of dust size, poros-
ity, physical properties of composite material, and temperature. Because of the
low mass of the planetesimals, compressional stress attributing to the self-weight
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is neglected. Using the parameters shown in Table 5.1, the thermal conductiv-
ity of the planetesimals is calculated from the models given by Equation (4.20)
and (4.27). The resulting solid and radiative coefficients are A = 5.68× 10−4 and
B = 4.72×10−13 W/mK4, if ξ = 1 and ζ = 1.

As mentioned in Section 4.3, the solid conductivity decreases due to particle
surface roughness via ξ parameter, and the radiative conductivity enhances due to
large scale void structure via ζ parameter. It is assumed that the dust particles
have perfectly smooth surfaces, so that ξ = 1 is adopted for the solid conductivity.
Before the planetesimal formed, the individual dust particles were settled in the
mid-plane of the disk with undergoing the aggregation. The planetesimal formed
from these aggregates is expected to have macroscopic structure (packing of the
aggregates, as shown in Figure 4.12). Although the void size enhancement factor
ζ is not known exactly, the experimentally determined value of ζ ≈ 10 is adopted.
Therefore, the radiative coefficient B = 4.20 × 10−12 W/mK4 is utilized for the
calculations. In this situation, the solid conductivity ksolid is 1.90× 10−3 W/mK
(using the material conductivity km = 3.35 W/mK, see below) and the radiative
conductivity is 3.36×10−5 W/mK at the initial temperature of 200 K. This means
that the solid conduction is dominant heat transfer mode in the planetesimals.

The solid conductivity enhances by the sintering. Evolution of the solid co-
efficient as a function of the neck radius ratio is shown in Figure 5.3. While the
neck is smaller than a critical value, the thermal conductivity maintains at the un-
consolidated value of A = 5.68× 10−4. The critical values, after which the solid
conductivity is switched to that of sintered materials, is calculated so that the solid
coefficient of the sintered materials, given by Equation (5.17) (see below), becomes
equivalent to the unconsolidated value of A= 5.68×10−4. As the neck grows above
the critical value, the solid conductivity starts to increase linearly with the neck ra-
dius ratio. This linear relation is based on the experimental results for the sintered
FGB glass beads. The empirical relation between the solid conductivity and the
neck radius ratio is given by Equation (3.29) for the porosity of 0.4, which is ex-
perimentally verified at the neck ratio less than 0.3. This equation is independent
of the particle size. By dividing Equation (3.29) by the material conductivity of the
FGB glass at normal temperature (km = 1.11 W/mK), the solid coefficient can be
obtained as,

A = 0.605
rn

Rp
at ϕ = 0.4, (5.16)

In order to correct the solid conductivity at ϕ = 0.4 into that at ϕ = 0.9, the solid
conductivity model as described by Equation (4.20) can be used. The porosity-
dependent term in this equation is (1 − ϕ)C. At ϕ = 0.4, (1 − ϕ)C = 3.8, and
(1−ϕ)C = 0.059 at ϕ = 0.9. The solid coefficient of the sintered dust particles at
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Figure 5.3: Solid coefficient as a function of the neck radius ratio of the planetesimal. The
red horizontal line is given by the solid conductivity model of Equation (4.20). The green
line represents Equation (5.17). At higher neck ratio than 0.3, a relation represented by the
blue dashed curve is assumed.

the porosity of 0.9 is estimated by multiplying a factor of 0.016(= 0.059/3.8) by
the Equation (5.16),

A = 0.00968
rn

Rp
at ϕ = 0.9, (5.17)

This relation is drawn as the line in the neck radius ratio range between 0.059 and
0.3 in Figure 5.3. At the neck ratio larger than 0.3, the relationship is unknown
because the porosity is expected to start reducing. The relation in the neck ratio
range between 0.3 to 1 is approximated by a linear relation as to reach A = 1 at
maximum neck ratio of 1.

The solid conductivity is calculated by multiplying the solid coefficient A by
the material conductivity km. The intrinsic material conductivity of natural ordinary
chondritic meteorites is difficult to determine experimentally, because of the pres-
ence of voids or cracks in the meteorite samples, which makes the thermal conduc-
tivity lower than intrinsic value. Yomogida and Matsui (1983) measured the thermal
diffusivity of 26 chondritic meteorites under vacuum. They approximated the ther-
mal diffusivity κ of the meteorites as a function of the porosity ϕ and temperature
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T as (Yomogida and Matsui, 1984),

κ(T,ϕ) =
(

6×10−7 +
2.6×10−4

T

)
(1−1.13ϕ 0.33). (5.18)

The intrinsic thermal diffusivity without the voids κm(T ) is approximately esti-
mated by giving ϕ = 0 in Equation (5.18). The thermal conductivity can be calcu-
lated from

km(T ) = κm(T )ρmc(T ), (5.19)

where ρm = 3710 kg/m3 is true density and c(T ) = 800+0.25T −1.5×107/T 2 is
the specific heat for chondritic composition (Yomogida and Matsui, 1984).

The radiative conductivity is calculated by the product of the radiative coeffi-
cient times temperature cubic, as Equation (4.26). When the porosity decreases by
the sintering, the radiative conductivity is expected to be reduced. The linear re-
lation between the radiative coefficient and the porosity is assumed so as to reach
B = 0 at zero porosity.

5.2 Thermal evolution of planetesimals

For instance, two results of the thermal calculations of the planetesimals are shown
below. Figure 5.4 shows thermal evolution of a planetesimal of 2 km in radius
formed at 2.5 Myr after CAI formation. The temperature at the center of this plan-
etesimal increases up to 600 K, and the peak temperature gradually decreases from
the center to the surface. During the temperature evolution, the neck begins to grow
at about 1 Myr after the planetesimal formation only near the center. The porosity
does not change, because the neck ratio does not exceed 0.3. The thermal conduc-
tivity at the center enhances immediately after the neck growth.

For comparison, the calculation result for a planetesimal with R = 5 km and
tform = 2 Myr is shown in Figure 5.5. The evolution is remarkably different from the
model in Figure 5.4, although the peak temperatures at the centers differ by only 50
K. After the sintering starts, the neck radius ratio rapidly increases up to 1, which
causes enhancement of the thermal conductivity by three orders of magnitude. If the
thermal conductivity of the inner region increases by the sintering, the heat energy
generated by radioactive decay efficiency conducts to upper not-sintered layer. The
low-conductive nature of the non-sintered layer makes its temperature higher by the
heat flow from the inside, and then, the sintering occurs. This is seen as the abrupt
increase in the temperature and neck ratio at r = 0.95R (purple curves in Figure 5.5).
As a result, the peak temperature becomes homogeneous. Note that it depends on
the functional equation of the neck growth and resultant solid conductivity variation
in the neck ratio range larger than 0.3.
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Figure 5.4: (a) Temperature, (b) neck ratio, (c) porosity, and (d) thermal conductivity evo-
lutions inside a planetesimal of 2 km in radius (R = 2 km) formed at 2.5 Myr after the CAI
formation (tform = 2.5 Myr). Red curves represent the temporal evolutions at the center
(r = 0.0R). Green, blue, purple curves are the evolutions at the radius of 0.5R, 0.8R, and
0.95R from the center, respectively. Panel (e) shows the peak temperature distribution in
the planetesimal. (In panel (b), the curves of r = 0.50R, 0.80R, and 0.95R are lapped over
at the bottom of this figure. Sililarly, the porosity evolitions (c) at all positions maintains at
initial porosity of 0.9.)
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Figure 5.4: Continued.
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Figure 5.4: Continued.

5.3 Sintering condition of the planetesimals

Whether the sintering occurs and how degree the neck growth proceeds are impor-
tant problems for thermal and collisional evolution of the planetesimals. In this sec-
tion, conditions required for the sintering of planetesimals are organized in terms
of the size and formation age of the planetesimals. Before the sintering, the dust
particles adhesively contact each other with contact radius ratio of 0.027 relative to
the particle radius, calculated from JKR theory (Equation 4.12) for dust particles of
0.5 µm in radius. When the neck radius ratio, calculated from the sintering equa-
tions (5.12) and (5.14), exceeds the original value of 0.027, physical properties of
the planetesimals would change. Therefore, the neck radius ratio of 0.027 is chosen
as a criterion for determining occurrence of the sintering. If the neck radius ratio
becomes higher than 0.3, the porosity starts to reduce and the planetesimal shrinks.

Figure 5.6 graphically summarizes the sintering condition at the center of the
planetesimals. The final neck radius ratio is divided into three regions; rn/Rp <

0.027, 0.027 < rn/Rp < 0.3, and rn/Rp > 0.3. Planetesimals with the later two
cases are interpreted as sintered and consolidated planetesimals. As the formation
age is later, the minimum planetesimal size needed for the sintering becomes larger.
This figure indicates that the planetesimals larger than 400 m in radius can undergo
the sintering or neck formation between the dust particles. Another speculation
is that almost the sintered planetesimals has the neck ratio larger than 0.3, which
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Figure 5.5: (a) Temperature, (b) neck ratio, (c) porosity, and (d) thermal conductivity evo-
lutions inside a planetesimal of 5 km in radius (R = 5 km) formed at 2 Myr after the CAI
formation (tform = 2 Myr). Panel (e) shows the peak temperature distribution in the plan-
etesimal.
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Figure 5.5: Continued.
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Figure 5.5: Continued.
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Figure 5.6: Summary of sintering conditions at the center of planetesimals. Black, red, and
blue dots are categorized by the final neck radius ratio less than 0.027, larger than 0.027,
and larger than 0.3, respectively.

results in decrease of the porosity and shrinkage of the radius.
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center of planetesimal as a function of the radius and the formation time of the planetesimal.

There is time lag between the planetesimal formation and the sintering. This
time lag is shown in Figure 5.7. For example, at the center of a planetesimal of 10
km radius formed at 2 Myr after the CAI formation, the sintering occurs at 0.57
Myr after the planetesimal formation. The time lag is primarily determined by the
planetesimal’s formation age. As the planetesimal formed later relative to the CAI
formation, the time lag for the sintering becomes longer. It needs at least 0.07 Myr
after the planetesimal formation.

5.4 Implication to collisional process of planetesimals

The sintering of the dust particles would drastically change the mechanical strength
of the planetesimal, which would affect outcome of the mutual collisions. In this
section, collisional evolution of the thermally evolving planetesimal is discussed, by
comparing the sintering time and collisional timescale relative to the planetesimal’s
formation age.

Assume that the planetesimals have the same mass m at a given distance from
the Sun, as given by Equation (5.1). When the mutual collision of two equal-sized
planetesimals occurs and they merges completely, the collisional growth rate of the
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planetesimal can be written by,

dm
dt

= mnσcolv, (5.20)

where n is number density of the planetesimals, σcol is collisional cross section, and
v is their relative velocity. The collisional timescale can be defined as,

τcol =
m

dm/dt
=

1
nσcolv

. (5.21)

According to Hayashi et al. (1985), the collisional timescale can be approximated
as,

τcol =
ρR

3πΣd

τK

1+2θ
. (5.22)

where ρ = (1−ϕ)ρm is the bulk density of the planetesimals, R is the radius of the
planetesimals, and θ = 2Gm/Rv2 is the Safronov number which represents the in-
crease in the collisional cross section due to gravitational focusing. Using Equation
(5.22), we can calculate the collisional timescale as a function of the planetesimal
radius R and orbital radius a.

Figure 5.8 shows comparison between the collisional timescale calculated from
Equation (5.22) and the sintering time shown in Figure 5.7. The safronov number
is set at zero (i.e., neglecting runaway growth), because the gravitational focusing
is not so effective for the initial planetesimals with the mass of 1018 g formed at the
Earth’s orbit (Hayashi et al., 1985). In the following discussion, let us assume that
the radius of the planetesimal is 10 km uniformly over the nebula (Figure 5.1). It
is found that the collisional timescale at the Earth’s and Mars’ orbit is shorter than
the sintering time, which means that collisions between the unconsolidated plan-
etesimals occurred dominantly in the early stage of the planetary accretion. On the
other hand, in the asteroid source region, the collisional timescale is comparable to
or longer than the sintering time if the initial planetesimals are formed immediately
(typically tform < 0.5 Myr) after the CAI formation. Therefore, the collisions be-
tween the consolidated planetesimals would be dominant in this region. Figure 5.8
shows that internal structure of the planetesimals, when the mutual collision occurs,
is different by the orbital distance. As a result, the collisional outcome would differ.

The thermal evolution and the collisional process are simultaneous event. At the
Earth’s orbit, the collision between 10 km-sized planetesimals takes place within
6,000 years (Figure 5.8). After 6,000 years from the formation, the temperature of
the planetesimal heated up only by less than 50 K at the center. Therefore, the ther-
mal evolution before the collisions can be neglected. On the other hand, the heating
prior to the collisional growth is significant at the asteroid region, since the colli-
sional timescale is comparable to the heating timescale. The typical temperature of
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Figure 5.8: Comparison between the sintering times (the same as in Figure 5.7) and col-
lisional timescales (solid black lines) calculated from Equation (5.22) with θ = 0. The
collisional timescales at the Earth’s orbit (1 AU), Mars’ orbit (1.5 AU), and asteroid region
(2.7 AU) are shown.
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the colliding planetesimals can be characterized by the temperature averaged by the
volume as,

Tave =
∑i Tivi

∑i vi
(5.23)

where Ti and vi are the temperature and volume of the spherical shell of i-th node.
Figure 5.9 shows increase in the temperature relative to the initial temperature of
200 K at the center (red) and averaged by the volume (blue) at 0.1 Myr after the
formation (typical collisional timescale at 2.7 AU) for the 10 km planetesimal as a
function of the formation age relative to the CAI formation. For example, the tem-
perature in the planetesimals with 10 km radius increases by 400 K at the maximum
when the collision occurs. If such thermally evolving planetesimals coalesce by
the collision, the resulting larger planetesimal, or parent body of the meteorites and
asteroids, has higher initial temperature than the equilibrium temperature with the
nebula. Many studies on the thermal evolution of the meteorite’s parent bodies did
not take into account the pre-heating before the collisional growth (e.g. Miyamoto
et al., 1981; Akridge et al., 1998; Harrison and Grimm, 2010; Henke et al., 2012a).
Considering the pre-heating of the primordial planetesimals, the temperature in the
parent body should be revised upward by several hundred Kelvins from their calcu-
lated results.

In the previous studies, the thermal and collisional processes are independently
studied. However, as shown above, they are closely related each other. Comparison
between their timescales, as done in this study, are of great importance for appreci-
ating the collisional and thermal evolutions of the planetesimals. In the future work,
it is of importance to investigate the effect of the internal structure (unconsolidated
or consolidated) of the planetesimals on the collisional outcome. By combining
with the thermal model of the planetesimals constructed in this study, the evolution
of the planetary bodies will be able to be understood well with linkage between the
collisional and thermal processes.
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Chapter 6

Summary and conclusion

In this study, the parameter dependence of the thermal conductivity of the powdered
materials was investigated by the experiments under vacuum condition. The most
importance of this study, compared to the previous study, is comprehensive and
systematic investigations of the thermal conductivity using the same experimental
configuration and method. Numerous data sets were obtained, which can be com-
pared with each other. Systematic acquisition of the temperature-dependent data,
which were utilized to separate the effective thermal conductivity into the solid and
radiative contributions, enabled us to comprehend the parameter dependences of
each contribution.

Parameters whose dependence of the thermal conductivity were investigated in
this study are temperature (250 - 330 K), particle size (5 µm - 1 mm), porosity (0.40
- 0.86), material type (glass, titanium, copper), compressional stress (¡ 20 kPa),
particle size distribution (binary mixture of glass beads), and neck size ratio (¡ 0.3).
Especially, the compressional stress and neck size dependences were measured for
the first time. Using the data for the glass beads, the heat transfer mechanism in
the powdered materials was considered. It was found that the solid conductivity is
characterized by the contact radius and number of the contacts per unit area and
length. Moreover, the microscopic roughness on the particle surfaces would reduce
the solid conductivity. The radiative conductivity could be expressed in terms of the
void size between the particles.

The solid and radiative conductivities were modeled based on the heat transfer
mechanism inferred from the experimental results. The models were constructed
on the assumptions that (1) the particles have uniform size and spherical shapes, (2)
packing of the particles is homogeneous, (3) one-dimensional heat flows in the di-
rection of the gravity, and (4) the particles are opaque for the thermal radiation. This
is the first quantitative model for the powdered materials under vacuum constructed
in accordance with the physical mechanism successfully. The model integratively
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describes the parameter dependences, such as particle size, porosity, compressional
stress, etc. By giving values of these parameters, one can estimate the thermal
conductivity of powdered materials with various physical conditions. As an un-
precendented idea, the factor ξ , which represents reduction of the contact radius
due to the surface roughness (ξ ≤ 1), is included in the solid conductivity model.
For the glass beads measured in this study, the empirical values of ξ ranged from
0.33 to 0.97, depending on the particle size and surface roughness. The radiative
conductivity model contains the factor ζ in order to scale the geometrical void size
between the particles to the effective distance of the radiative heat transfer. By com-
paring the experimental results for the radiative conductivity, the empirical values
of ζ increased with the particle size, up to 15. The largest ζ value for the smallest
glass beads would attribute the aggregation, which enhanced the void size effective
on the radiative heat transfer through the void spaces between the aggregates.

As an application of the thermal conductivity model, the thermal conductivity
of the planetesimal was estimated, and the thermal evolution of the planetesimal
was numerically calculated. The calculation results were utilized to constrain the
sintering (neck formation) conditions of the planetesimals. The center of the plan-
etesimal as small as 1 km in radius (depending on the formation age) could undergo
high temperature above 600 K due to low thermal conductivity of the powdered ma-
terials, and the sintering occurred. The minimum radius of the planetesimal required
to cause the sintering was found to be 400 m. The minimum radius becomes larger
for the planetesimal formed later. Furthermore, time delay at which the sintering
starts was also determined. It takes 0.07 Myr to 4 Myr, sensitive to the formation
age. Comparison between the sintering and collisional timescales revealed that the
collisional process in the early stage of the planetary accretion proceeded by the
collision between unconsolidated planetesimals at the Earth’s orbit. In the region
of the asteroids, these timescales are comparable, so that the collisions between the
consolidated planetesimals could be dominate. It is indicated that the collisional
outcome differs by the orbit due to the difference in the internal structure of the
colliding planetesimals.

There still remain some unsolved problems in quantitative interpretation of the
discrepancy between the experimental and modeled conductivity. Although the
value of ξ seemed to depend on the surface roughness, its dependence can not be
formulated. It should be also noted that ξ is only a factor which represents the devi-
ation of the experimental data from the model. It is not clear whether ξ represents
the effect of the surface roughness alone. To answer this question, powder samples
without the surface roughness should be prepared and measured in the future work,
although the solid conductivity of the EMB glass beads with smooth surface was
consistent with the model of ξ = 1. The values of ζ were larger than unity, up to 4,
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even for the glass beads without the aggregation (FGB glass beads). Although the
semi-transparent nature of the small particles was discussed according to the geo-
metrical optics theory as a possible cause of the enhanced radiative conductivity, the
empirical values of ζ could not be quantitatively explained. It will be preferred to
model the radiative heat transfer in the powdered materials using the Mie scattering
theory.

Effect of the particle size distribution and shapes of the particles on the ther-
mal conductivity is also important issue for modelling the thermal conductivity of
the natural samples such as the regolith on the planetary surface. Although bi-
nary mixtures of the glass beads with the different particle sizes were measured
in this study, the solid and radiative conductivities were so heterogeneous that the
dependence could not be resolved. The method of the sample preparation has to
be re-considered. Enhancement of the heat transfer distance during the line heat
source measurement by making the heating duration longer may avoid the effect of
the local heterogeneity. To investigate the effect of the particle shape, the particles,
whose shapes are well-characterized (such as ellipsoidal particles or cubes), should
be measured.

In this study, the basic formulation of the thermal conductivity of powdered ma-
terials under vacuum was performed. In the future work, the model will be upgraded
by formulating ξ and ζ in terms of roughness parameters (amplitude and/or wave-
length) and scattering properties, respectively. In order to apply the model to the
natural regolith on the planetary bodies, some parameters, which suitably represent
the effects of the particle size distribution and particle shape, should be introduced,
based on the future experimental results.
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Appendix A

Thermal conductivity structure in
lunar regolith layer

As shown in Section 1.3, the thermal conductivity of the lunar regolith was in-situ
measured in Apollo missions as part of the Heat Flow Experiments. The thermal
conductivity values reported in literature were scattered from 0.009 to 0.03 W/mK,
depending on the depth, measurement sites, and methods for estimating the thermal
conductivity Langseth et al. (1973, 1976). The resulting crustal heat flow value on
the Moon is uncertain. For the future landing missions on the Moon, the thermal
conductivity of the surface regolith layer is a fundamental knowledge. In this Ap-
pendix, the thermal conductivity model presented in Chapter 4 is utilized to estimate
the thermal conductivity structure in the lunar regolith layer. The modeled result is
compared to the data obtained in Apollo missions.

For the calculation, it is assumed that the all physical and chemical parameters
other than the porosity and compressional stress (temperature, particle size, com-
position, etc.) are uniform along the depth. The density distribution of the lunar
surface regolith was constrained by lunar core samples collected in Apollo 15 to 17
missions. An approximate relation between the density and the depth was proposed
as,

ρ = ρ0
z+ z1

z+ z2
, (A.1)

where ρ is density, z is depth, and ρ0 = 1920 kg/m3, z1 = 0.122 m, and z2 = 0.18
m are empirical constants (Carrier et al., 1991). The porosity is calculated by as-
suming the true density of 3100 kg/m3, recommended for the lunar soil by Carrier
et al. (1991). The stress field in the regolith is given by hydrostatic pressure, as,

σ =
∫ z

0
ρ(z′)gdz′, (A.2)

where g is the gravitational acceleration at the lunar surface. Using the density
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Table A.1: Parameters for the thermal conductivity calculation of the lunar regolith.

Parameter Values Note
Material conductivity, km 2.5 W/mK basalt (Clauser and Huenges, 1995)
Particle Diameter, Dp 74 µm regolith simulant we measured
Young modulus, E 78 GPa basalt (Schultz, 1995)
Poisson’s ratio, ν 0.25 basalt (Schultz, 1995)
Surface energy, γ 0.02 SiO2 (Gundlach et al., 2011)
Temperature, T 250 K Langseth et al. (1976)
Emissivity, ε 1 -
Contact radius correction factor, ξ 0.31 This study for regolith simulant

distribution of Equation (A.1) and gravity on the lunar surface (g = 1.6 m2/s), one
can analytically calculate the self-weighted stress distribution in the lunar regolith
(Figure A.1).

The parameters for the thermal conductivity calculation of the lunar regolith is
shown in Table A.1. Mean particle size of the lunar regolith particles is assumed
to be the same as the lunar regolith simulant used in this study, which is within the
range of the mean particle size for the lunar regolith samples (45 to 100 µm McKay
et al., 1991). The subsurface temperature of 250 K measured by Apollo Heat Flow
Experiments (Langseth et al., 1972, 1973) is used. The contact radius correction
factor ξ is set at 0.31, which is determined from the data for the compressional
stress dependence of the regolith simulant (Table 4.4). The uncompressed sample
has lower ξ of 0.20, which would be suitable for the top surface of the regolith.
The value of ζ in the radiative conductivity model is set at 2.1, which is also deter-
mined for the regolith simulant. However, the radiative conductivity is not dominant
compared to the solid conductivity of the compressed subsurface regolith.

Figure A.2 shows the thermal conductivity calculated from the thermal conduc-
tivity model using the porosity and stress distribution in Figure A.1. The modeled
thermal conductivity increases with the depth from 0.003 W/mK at the top surface
to 0.01 at the depth of 2 m. The thermal conductivity deduced from the in-situ
heater-activated measurements (Langseth et al., 1973), which measured local con-
ductivity near the heat flow probe, is significantly higher than the model. This
difference would represent the effect of the regolith compaction near the probe,
caused by the drilling process. The compaction means enhancement of the den-
sity and the stress from the undisturbed original ones. The compression tests of
Apollo 12 regolith samples by Carrier (1972); Carrier et al. (1973) showed pos-
sible maximum density of 2000 kg/m3 (corresponding to the minimum porosity of
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Figure A.1: Density, porosity and hydrostatic pressure distribution in the lunar regolith. The
porosity is calculated from the density distribution (Equation A.1) assuming true density of
3100 kg/m3.
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Figure A.2: Thermal conductivity estimation in the lunar regolith (black curve), compared
to the in-situ measurements. The points represent the heater-activated estimation for Apollo
15 (blue) and 17 (red) sites. The horizontal lines represent the thermal conductivity es-
timation from the thermal diffusivity deduced from the attenuation of annual temperature
variations propagating into the lunar regolith (from Grott et al., 2010).
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Figure A.3: Compressional stress dependence of modeled thermal conductivity for the re-
golith simulant with the closest packing density of 2000 kg/m3 (porosity of 0.35). The
parameters listed in Table A.1 are used.

0.35) under one-dimensional compression of 70 kPa. If the regolith maintains this
minimum porosity of 0.35, the compressional stress from 10 to 200 kPa is needed
so as to enhance the thermal conductivity up to 0.014 to 0.03 W/mK (Figure A.3).
Penetration experiments were carried out during the Apollo 15 and 16 missions
(Mitchell et al., 1972a,b; Carrier et al., 1991). The recorded stress applied by the
astronauts during the penetration were ranged from 10 to 1000 kPa depending on
the penetration sites and depth, part of which would be stored in the regolith layer.
It could enhance the local thermal conductivity of the regolith.

On the other hand, the thermal conductivity reported by Langseth et al. (1976),
which was estimated from thermal diffusivity measurements using annual temper-
ature variation, is also higher than the model at shallower depth. They stated that
the regolith compaction near the probe could be neglected for the estimation of
the regolith’s thermal property from the long-term temperature variation, though
without quantitative validation. One of the possible causes of the higher thermal
conductivity is that higher stress than the hydrostatic pressure is applied on the sub-
surface regolith particles, which might be accomplished by the hysteresis of the
compressional stress due to global long-term bombardments of meteorites on the
lunar surface. In order to enhance the thermal conductivity of the regolith at 50 cm
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depth up to 0.01 W/mK without the density increase, the additional stress about 15
kPa is required. This stress might reflect the history of compaction and relaxation
process by meteorite impact on the Apollo 15 and 17 sites.

There are less experimental and theoretical evidences for supporting the results
of Apollo Heat Flow Experiments. In this thesis, by focusing on the deviation of
the compressional stress from the hydrostatic pressure in the lunar regolith layer, its
values required for reproducing the reported thermal conductivity of the lunar re-
golith were estimated. Whether these compressional stress values are proper should
be addressed in the future work. Note that the model calibration (determination of
ξ and ζ ) was conducted using only a simulant. Since actual lunar regolith could
have the different properties from the simulant (particle shape, composition, etc.),
the thermal conductivity measurements and the model calibration using the lunar re-
golith samples are necessary. Especially, compressional sress dependent data must
be obtained.
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Appendix B

Physical properties of regolith on
small bodies inferred from thermal
inertia

Asteroids, for example Ida (Belton et al., 1994) and Itokawa (Miyamoto et al.,
2007), as well as the Moon, are considered to be covered with regolith. The thermal
inertia I (J/m2Ks0.5) is defined as,

I =
√

kρc =
√

kρm(1−ϕ)c, (B.1)

where k is thermal conductivity, c is specific heat, and ρ = ρm(1−ϕ) is bulk den-
sity with ρm being true density of the material and ϕ porosity. The values of the
thermal inertia of many asteroids has been estimated from infrared observations
(Delbo’ et al., 2007). Since the thermal conductivity depends on the physical prop-
erties of the regolith (such as particle size, temperature, porosity, and composition),
these physical parameters of the surface regolith may be estimated from the inferred
thermal inertia value. The knowledge of the physical properties of the surface re-
golith helps us to understand its origin. Moreover, global mapping of the thermal
inertia and the physical condition of the surface regolith of an asteroid from the
remote sensing observation from an orbiter can provide the helpful information for
selecting landing or sample-return sites. In this chapter, I attempt to constrain the
physical parameters of the regolith on asteroid (162173) 1999JU3, target asteroid of
Japanese asteroid explorer Hayabusa 2. Hayabusa 2 lunched on December 3, 2014.
It equips a thermal infrared imager, named TIR, which images thermal emission
from the surface.

Figure B.1 shows the relation between the thermal inertia, thermal conductivity,
and porosity, assuming the specific heat of 700 J/kgK and the true density of 3000
kg/m3. The thermal inertia values of the powdered samples, whose thermal con-
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Figure B.1: Relation between thermal inertia and thermal conductivity calculated from
Equation (B.1) with true density ρm = 3000 kg/m3 and specific heat c = 700 J/kgK. Three
different porosities of 0.0, 0.4, and 0.8 are given. The experimental data at 300 K for the
FGB glass beads, EMB glass beads, and regolith simulant are also plotted, whose thermal
inertia is calculated using their bulk density and assuming c = 700 J/kgK.

ductivity was measured in this study, are also plotted. The thermal conductivity and
resulting thermal inertia increase with increasing the particle size and/or decreasing
the porosity. The unconsolidated glass beads used in this study have the thermal
inertia less than 135 J/m2Ks0.5. The higher thermal inertia up to 500 J/m2Ks0.5 was
obtained for the sintered glass beads.

The thermal inertia estimated for 1999JU3 ranges from 200 to 600 J/m2Ks0.5

(constrained by the ground-based and space telescope observations, Müller et al.,
2011). This thermal inertia range is consistent with that of the sintered powders,
rather than the unconsolidated powders (Figure B.1). If the 1999JU3 is covered
with the unconsolidated regolith, one of the possible examinations of the higher in-
ertia, or higher thermal conductivity, is that the regolith has the particle size larger
than 1 mm. The larger particle size makes the thermal conductivity higher by in-
crease of the radiative contribution. Alternatively, the lower porosity could make
the thermal inertia higher due to higher solid conductivity and higher density in
Equation (B.1). Now, taking the particle size and porosity as variables and using
the thermal conductivity model shown in Chapter 4, the thermal inertia can be cal-
culated as a function of these parameters. The particle size and porosity of the
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regolith on 1999JU3 are constrained.
The physical properties of the regolith on the asteroids are assumed to be iden-

tical to the lunar regolith simulant used in this study (Table 3.2). The specific heat
of the meteorites c = 800+ 0.25T − 1.5× 107/T 2 is used (Yomogida and Matsui,
1984). For simplicity, the temperature of the surface regolith is fixed at 300 K. The
contact force between the regolith particles contains only the adhesive force using
the surface energy of 0.02 J/m2, since the gravitational force is small on the surface
of small bodies. I used the correction factors for the solid and radiative conduc-
tivities of the regolith simulant without the compression, ξ = 0.20 and ζ = 2.1,
respectively. Substituting the calculated thermal conductivity k into Equation (B.1),
the thermal inertia can be calculated as a function of the particle size and porosity.
It is assumed that the average size of the surface regolith is representative of the
particle size effective on the thermal conductivity.

Figure B.2 shows the variation of the thermal inertia with the particle radius and
porosity. In the region 1 shown in Figure B.2, the solid conductivity is the dominant
contribution on the effective thermal conductivity. In this region, the thermal inertia
decreases with increasing the particle size, because the contact radius ratio by the
adhesive force becomes smaller for the larger particles. On the other hand, the
radiative conductivity is dominant and the thermal inertia increases with the particle
size in the region 2. The thermal inertia is sensitive to the particle size rather than
the porosity as long as it is higher than roughly 200 J/m2Ks0.5.

The thermal inertia between 200 and 600 J/m2Ks0.5 for the asterid 1999JU3
corresponds to the particle radius from a few milimeters to several tens milimeters.
For example, if the thermal inertia is 200 J/m2Ks0.5 and the porosity of the surface
regolith ranges from 0.3 to 0.9, the particle size can be restricted from 1.6 mm to
4.3 mm. Thus, from the global distirbution of the thermal inertia by TIR on-board
Hayabusa 2, the order estimation of the regolith’s particle size can be performed
even though the porosity is unknown. Note that if the thermal inertia is as small as
100 J/m2Ks0.5, or less, the possible particle size is widely distributedin in Figure
B.2, because the thermal inertia is also sensitive to the porosity. Therefore, it is dif-
ficult to constrain the particle size. Only the maximum size of the regolith particles
could be estimated.

Above discussion is based on the assumption that the regolith on the asteroid has
the thermophysical properties similar to the lunar regolith simulant. Moreover, the
effects of the particle size distribution and particle shape on the thermal conductivity
have not been sufficiently understood. Future works on these parameter dependence
are required to apply the thermal conductivity model to the natural regolith layer on
the terrestrial bodies.
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Figure B.2: Contour map of the thermal inertia as a function of the particle radius and
porosity. The thermal conductivity is calibrated by the uncompressed lunar regolith simu-
lant measured in this study. In the region 1, the solid conductivity is dominant. Inversely, the
radiative conductivity is dominant in the region 2. The boundary of these region is defined
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