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Chapter 1

Introduction and preliminaries

1.1 Historical backgrounds and goals of this

thesis

The weak convergence theory for random elements taking values in metric
spaces such as functional spaces endowed with some metrics, has been de-
veloped over decades because it is of interest in itself as well as usefulness
in statistical applications including goodness of fits tests and change point
detection tests. Especially, a well-known goodness of fit test “Kolmogorov-
Smirnov test” was validated by the so-called functional central limit theorem
proven by M. D. Donsker following the heuristic approach stated by J. L.
Doob, although the null distribution was originally derived by a direct cal-
culation of characteristic functions much earlier. On the other hand, weak
convergence theories in metric spaces were conclusively established by the
landmark paper by Prohorov (1956). In that paper, a separable Hilbert
space was one of concrete examples of metric spaces. After this work, the
weak convergence theory in Banach spaces including a Skorokhod space D,
which is the space of càdlàg functions endowed with the Skorokhod metric,
and the space ℓ∞, which is the space of bounded functions endowed with
the supremum norm, has been developed much further and applied to many
problems. See the books by Billingsley (1999) and by van der Vaart and
Wellner (1996). On the other hand, the weak convergence theory in sepa-
rable Hilbert spaces, especially L2 spaces, has not been so developed and
applied as compared to D and ℓ∞ spaces. However, an elegant treatment
of the Anderson-Darling statistic written in Example 1.8.6 of the book by
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van der Vaart and Wellner (1996) is of intense interest enough that it lets
us foresee its extensive applicability. A possible direction is to consider de-
pendent random variables. In the most previous works such as Khmaladze
(1979) which considered empirical processes and Mason (1984) which consid-
ered quantile processes, independent random variables were argued. Though
Oliveira and Suquet (1995, 1996, 1998) and Morel and Suquet (2002) treated
empirical processes for some dependent cases, associated case and mixing
case, they did not consider random fields which have the Anderson-Darling
type weight function. Another possible direction is to expand the field of
applications. Khmaladze (1979) and LaRiccia and Mason (1986) applied the
weak convergence results of empirical processes and quantile processes to
goodness of fit tests. Suquet and Viano (1998) applied the results of Oliveira
and Suquet (1995) to change point tests. Some other statistical applications
are in Oliveira and Suquet (1996). See Oliveira (2012) for some results about
functional limit theorems of associated sequences in Lp spaces, including L2

spaces, and the Skorokhod spaces.
Broadly speaking, this thesis has two goals. The one is to develop the

limit theorem of random fields which have the weight function equivalent of
the Anderson-Darling statistic used for testing change point hypotheses. We
consider the model not only the independent random variables but stochastic
processes. Especially, random fields of stochastic integrals taking values in
L2 spaces are considered. This part is based on Tsukuda (2015) and Tsukuda
and Nishiyama (2014, 2015).

The other goal is to derive the new functional central limit theorems in
L2 spaces for the number of partitions by the Ewens partition and random
mappings, which are important examples of random combinatorial struc-
tures, with a weight function. Because of this weight function, ℓ∞ space may
be not suitable as a framework to discuss the asymptotic behavior of random
fields considered in this thesis. Because only one functional space discussed
before is the Skorokhod space in this field, this thesis gives novel results.
This part is based on Tsukuda (2014).

Although these two goals are concerned with different problems, there is
a common treatment by the limit theorem in L2 spaces at the base of the
problems. Let us call it “L2 space approach”. We expect that more new
limit theorems in an L2 space can be acquired by this approach and it makes
this approach valiant.
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1.2 The organization of the thesis

The rest of this thesis is consisted as follows. In chapter 2, the weak con-
vergence theory in Hilbert spaces is summarized and a new theorem with
simple tightness criterion, which may be convenient especially for martingale
random fields, is presented.

Part I is concerned with change point tests for some stochastic processes.
Historical backgrounds and the key idea of our approach are explained in
chapter 3. Chapter 4 contains some results on convergences of random ele-
ments taking values in L2 spaces. Change point tests for continuous stochas-
tic processes and discrete ones are argued in chapter 5 and 6, respectively.
Chapter 7 includes comparisons of likelihood ratio methods and Z process
methods and other problems for some independent cases.

Part II is devoted to L2 functional limit theorems for two famous random
logarithmic combinatorial structures: the Ewens sampling formula and ran-
dom mappings. This part consists of three chapters. The goal of this part is
formulated and historical backgrounds are explained in chapter 8. In chapter
9, a new functional CLT for the Ewens sampling formula is presented. The
proof contains verifying a Poisson process approximation in L2([0, 1], du) and
establishing a functional CLT for a homogeneous Poisson process in an L2

space. In chapter 10, a new functional CLT for random mappings, which
is the other problem of this part, is presented. The argument for a Poisson
process approximation which is different from chapter 8 is contained.

1.3 Preliminaries

Let us make some conventions. In this thesis, convergences as T → ∞
and n → ∞ are considered. The notations →p and →d denote convergence
in probability and convergence in distribution, respectively. The notation
l.i.m. means the limit in the second mean, where this “mean” is meant the
expectation. “The sum”

∑0
k=1 ak is equal to 0 for any {a·}. The notation

1{·} denotes the indicator function. The binary relations a ∧ b and a ∨ b
for a, b ∈ R mean min(a, b) and max(a, b), respectively. Let us denote the
transpose of vector or matrix by superscript ⊤. The i-th element of vector
x is denoted by (x)(i) and the finite dimensional Euclidean norm of vector

x is denoted by ∥x∥ =
√
x⊤x. The (i, j) element of matrix A is denoted by
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(A)(i,j) and the operator norm of matrix A is denoted by ∥A∥OP , that is,

∥A∥OP = sup
x∈Rd,∥x∥=1

∥Ax∥ = sup
x∈Rd,∥x∥>0

∥Ax∥
∥x∥

.

Moreover, the Frobenius norm of matrix A which is defined by

∥A∥ =
√

tr(A⊤A) =

√∑
i

∑
j

|(A)(i,j)|2

is denoted by ∥A∥. Note that it holds that

∥A∥OP = max
σ

σ(A)

≤
√∑

σ

(σ(A))2 = ∥A∥

≤
∑
i

∑
j

|(A)(i,j)|,

where σ(A) denotes the singular value of the matrix A. The expectation
and the variance, or the covariance matrix, of X which has density func-
tion f(x, θ) is denoted by Eθ[X], V arθ[X], respectively. In particular, for a
random vector X, Eθ[X] denotes the expectation of each element of X and
V arθ[X] denotes the covariance matrix of X. For a random matrix X, Eθ[X]
also denotes the expectation of each element of X. The covariance of random
variables X1 and X2 is denoted by Covθ(X1, X2). For these three notations,
when there is no risk of confusion, we omit subscript θ.

Let us introduce a functional space L2(S,Rd, ds), or abbreviation form
L2(S, ds), L2(ds) or L2(S), where S is a bounded subset of the Euclid space.
Consider the inner product

⟨z1, z2⟩L2(S) =

∫
S

z1(s)
⊤z2(s)ds,

where z1 and z2 are d dimensional vector-valued functions on S and ds is
the Lebesgue measure. The functional space L2(S,Rd, ds) is equivalence
classes of square integrable real vector functions on a bounded set S, that
is, the set of all measurable functions z : S → Rd which satisfy ∥z∥2L2(S) =

⟨z, z⟩L2(S) < ∞. This space is a separable Hilbert space with respect to L2
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distance d2(z1, z2) = ∥z1− z2∥L2(S). Note that ∥ · ∥L2(S) is different from ∥ · ∥,
which is the Euclidean norm. In many cases, the inner product ⟨·, ·⟩L2([0,1],du)

and the norm ∥ · ∥L2([0,1],du) are denoted by ⟨·, ·⟩L2 and ∥ · ∥L2 for simplicity.
Let us denote a complete orthonormal system for L2([0, 1],Rd, du) space by
e1, e2, . . . . Note that, for example, it can be constructed as follows: If {e′j; j ∈
J} is a complete orthonormal system for L2([0, 1],R, du),{

(e′j, 0, . . . , 0)
⊤, (0, e′j, 0, . . . , 0)

⊤, . . . , (0, . . . , 0, e′j)
⊤; j ∈ J

}
becomes a complete orthonormal system for L2([0, 1],Rd, du). The predictable
quadratic variation process of martingales t ⇝ Mt is denoted by t ⇝ ⟨M⟩t
and note that it is different from the inner product ⟨·, ·⟩L2(S).

In the proofs, we sometimes omit integral region for simplicity if there is
no risk of confusion.
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Chapter 2

The weak convergence theory
in separable Hilbert spaces

2.1 Known results

In, this section, let us introduce the result written in van der Vaart and
Wellner (1996) with the assumption of the measurability. The conditions for
the weak convergence of random elements taking values in separable Hilbert
space was given by Prohorov (1956). Let H be a real separable Hilbert space
with inner product ⟨·, ·⟩H and a complete orthonormal system {ei}. A H-
valued random sequence Xn is said to be asymptotically finite dimensional
if for any δ, ε > 0, there exists a finite subset {ei : i ∈ I} of the complete
orthonormal system such that

lim sup
n→∞

P

(∑
j ̸∈I

⟨Xn, ej⟩2H > δ

)
< ε.

This tightness criterion is established by Prohorov (1956) and the phrase
“asymptotically finite dimensional” is apparently firstly used in van der Vaart
and Wellner (1996).

The weak convergence in separable Hilbert spaces is characterized by the
following theorem which clearly generalizes the Cramér-Wold theorem which
characterizes weak convergences in finite dimensional Euclid spaces, see, for
example, Billingsley (2012).
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Theorem 2.1.1. A sequence of random variables Xn : Ωn → H converges
in distribution to a tight random variable X if and only if it is asymptoti-
cally finite dimensional and the sequence ⟨Xn, h⟩H converges in distribution
to ⟨X, h⟩H for every h ∈ H.

See section 1.8 of van der Vaart and Wellner (1996) for more details and
the proof. It should be noted that the measurability of {X·} is not assumed
in their book. In this case, we have to argue the asymptotic measurability
instead. By this theorem, we can prove the following CLT in a Hilbert space.

Example: the central limit theorem in a Hilbert space Consider
the sequence {X·} of i.i.d. random elements which take their values in a
separable Hilbert space H. Assume that E[⟨X1, h⟩H] = 0 for any h ∈ H and
E[∥X1∥2H] < ∞. It holds that n−1/2

∑
Xk converges to a Gaussian field G

which satisfies ⟨G, h⟩ ∼ N(0,E[⟨X1, h⟩2H]) for any h ∈ H.

Actually, it follows from the CLT that⟨
1√
n

n∑
k=1

Xk, h

⟩
H

=
1√
n

n∑
k=1

⟨Xk, h⟩H →d N(0,E[⟨G, h⟩2H])

for any h. Moreover, letting {ej : j ∈ J} be a complete orthonormal system
for H, it holds that

E

∑
j>J0

⟨
1√
n

n∑
k=1

Xk, ej

⟩2

H

 =
1

n

∑
j>J0

E

( n∑
k=1

⟨Xk, ej⟩H

)2


=
1

n

∑
j>J0

E

[
n∑

k=1

⟨Xk, ej⟩2H

]
=

∑
j>J0

E
[
⟨X1, ej⟩2H

]
= E

[∑
j>J0

⟨X1, ej⟩2H

]

converges to 0 as J0 → ∞. That is because, by the Bessel inequality, the in-
tegrand (of the expectation) is bounded above by ∥X1∥2H which is integrable.
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By this CLT and the continuous mapping theorem, we can derive the
asymptotic distribution of the Anderson-Darling test statistic.

Example: the Anderson-Darling test statistic for the goodness of
fit test Consider the sequence {X·} of real valued i.i.d. random variables
with continuous distribution function F .

Let F0 be a given continuous cumulative distribution function. We wish
to test:

H0: F = F0

H1: F ̸= F0

Consider the measure dF on (R,B(R)) Let us define the random field

t⇝ Zk(t) =
1{Xk ≤ t} − F (t)√
F (t)(1− F (t))

which takes its value on L2(R, dF ). It holds that E
[
⟨Z1, h⟩L2(R)

]
= 0 and

that E
[
∥Z1∥2L2(R)

]
= 1 by the Fubini theorem. Due to the central limit

theorem in a separable Hilbert space,

1√
n

n∑
k=1

Zk(·) =
√
n(Fn(·)− F (·))√
F (·)((1− F (·))

→d G(·)

in L2(R, dF ), where the empirical distribution function of X1, . . . , Xn is de-
noted by Fn and t ⇝ G(t) is a Gaussian field. It follows from the Fubini
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theorem that

E[⟨Z1, h⟩2L2(R)]

=

∫
R

∫
R
E[Z1(s)Z1(t)]h(s)h(t)dF (s)dF (t)

=

∫
R

∫
R

F (s ∧ t)− F (s)F (t)√
F (s)((1− F (s))F (t)((1− F (t))

h(s)h(t)dF (s)dF (t)

=

∫
R

∫
R

F (s) ∧ F (t)− F (s)F (t)√
F (s)((1− F (s))F (t)((1− F (t))

h(s)h(t)dF (s)dF (t)

=

∫
R

∫
R

E[B◦(F (s))B◦(F (t))]√
F (s)((1− F (s))F (t)((1− F (t))

h(s)h(t)dF (s)dF (t)

= E

⟨ B◦(F (·))√
F (·)(1− F (·))

, h

⟩2

L2(R)

 ,
where u ⇝ B◦(u) denotes the (1 dimensional) standard Brownian bridge
which is defined byB◦(u) := B(u)−uB(1) for any u, where u⇝ B(u) denotes
the standard Brownian motion. The first and the second moments of the
standard Brownian bridge are given by E[B◦(u)] = 0 and E[B◦(u)B◦(v)] =
u ∧ v − uv for any u, v. Therefore, in this case,

G(·) = B◦(F (·))√
F (·)(1− F (·))

.

By the convergence above and the continuous mapping theorem, it holds that∫
R

n(Fn(t)− F (t))2

F (t)(1− F (t))
dF (t) →d

∫
R

(
B◦(F (t))√

F (t)(1− F (t))

)2

dF (t)

=

∫ 1

0

(
B◦(u)√
u(1− u)

)2

du.

Now, let us discuss the goodness of fit test. We can use∫
R

n(Fn(t)− F0(t))
2

F0(t)(1− F0(t))
dF0(t)

as the test statistic. This statistic is called the Anderson-Darling (AD) statis-
tic. We can construct the approximate rejection region by the asymptotic
distributions under H0 derived above.
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2.2 A new criterion

Sufficient conditions are given in the following proposition in order to check
that a given sequence of random elements taking values inH is asymptotically
finite dimensional.

Proposition 2.2.1. A sequence of random variables Xn : Ω → H is asymp-
totically finite dimensional if there exists the random variable X such that

E[∥Xn∥2H] → E[∥X∥2H] <∞ (2.2.1)

and
E[⟨Xn, ej⟩2H] → E[⟨X, ej⟩2H], ∀j ∈ J, (2.2.2)

as n→ ∞, where {ej : j ∈ J} is a complete orthonormal system of H.

Proof of the Proposition 2.2.1. It is enough to show that ∀ϵ > 0,
there exists a finite subset {ei : i ∈ I} of the complete orthonormal system
such that

lim sup
n→∞

E

[∑
j ̸∈I

⟨Xn, ej⟩2H

]
< ϵ

by the Markov inequality. The Parseval identity yields that

∥X∥2H =
∑
j∈I

⟨X, ej⟩2H +
∑
j ̸∈I

⟨X, ej⟩2H,

so, it holds that for any ϵ > 0 there exists a finite subset I ⊂ J such that∑
j∈I

E
[
⟨X, ej⟩2H

]
> E

[
∥X∥2H

]
− ϵ.

Thence, we have from the assumptions that

E

[∑
j ̸∈I

⟨Xn, ej⟩2H

]
= E

[
∥Xn∥2H

]
− E

[∑
j∈I

⟨Xn, ej⟩2H

]

→ E
[
∥X∥2H

]
− E

[∑
j∈I

⟨X, ej⟩2H

]
< ϵ

for enough large finite set I. This completes the proof.
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Corollary 2.2.1. If {Xn} satisfies (2.2.1), (2.2.2) and the sequence ⟨Xn, h⟩H
converges in distribution to ⟨X, h⟩H for every h ∈ H, then Xn →d X in H.

It will appear easier to check this set of sufficient conditions especially for
some martingales and we shall use this corollary frequently in the thesis.
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Part I

Applications to change point
tests
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Chapter 3

Introduction and the key idea

3.1 Historical backgrounds and rough expla-

nations

As it is written in Chapter 1, the weak convergences of random elements tak-
ing values in Hilbert spaces was firstly established by Prohorov (1956). After
Prohorov’s paper, the weak convergence theory in Hilbert space progresses
owing to some works; for example, see Parthasarathy (1967), Jakubowski
(1980), Dedecker and Merlevède (2003), Merlevède (2003) and their refer-
ences. On the other hand, the applications to statistical problems seem to
be much less numerous than ones of other functional spaces like ℓ∞ space,
which is a space of bounded functions equipped with the supremum norm.

A successful applications of the weak convergence theory in L2 space is
to derive the asymptotic distribution of Anderson-Darling (AD) test statis-
tic for goodness of fit test. While the asymptotic distribution of the test
statistic was derived by a direct calculation of characteristic functions in the
original paper by Anderson and Darling (1952), the book for modern theo-
ries of empirical processes by van der Vaart and Wellner (1996) contains an
elegant proof based on the L2 limit theory. See Section 1.8 of their book,
and see also Khmaladze (1979) and LaRiccia and Mason (1986). Moreover,
there is an application to change point problems for independent observations
with the Anderson-Darling type weight function which needs more delicate
arguments: see Tsukuda and Nishiyama (2014). The important point here
is that we have to treat the weight function of the form (u(1 − u))−1/2 for
u ∈ (0, 1) and it preclude the use of the weak convergence theory in ℓ∞
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space. In order to treat this weight function, most of the previous works
of change point problems adopted the theory of Hungarian construction; we
refer to Csörgő et al. (1986), Csörgő et al. (1993) and Csörgő and Horváth
(1997) for the details. Indeed the approach by this celebrated theory gives
us powerful tools in many situations, but it is not clear that we can apply
it to the problems in this part, which are stated below , and we think it
is natural to consider L2 space as frameworks of weak convergences in or-
der to treat this weight function. There are numerous studies which treat
change point problems; see Csörgő and Horváth (1997), Brodsky and Dark-
hovsky (2000) and Chen and Gupta (2012) for reviews, and see Horváth and
Rice (2014) for current progresses. Especially, there are several papers which
treat change detections in stochastic process models; for example, diffusion
processes with continuous observations: Lee et al. (2006), Mihalache (2012),
Negri and Nishiyama (2012) and Dehling et al. (2014), diffusion processes
with discrete observations: DeGregorio and Iacus (2008) and Song and Lee
(2009), counting processes: Matthews et al. (1985) and Liang et al. (1990),
AR(p) processes: Gombay (2008). Negri and Nishiyama (2014) adopts gen-
eral framework called Z-process methods. However, none of them seem to
have the same view as us. It is noted that although Suquet and Viano
(1998) applied L2 limit theorems to change point problems for some depen-
dent cases, mixing and associated cases, they proved weak convergences of
some statistics which do not have a weight function (u(1− u))−1/2.

Let us make a rough explanation of our results. Consider a parametric
model {Pθ} indexed by parameter θ. Let t ⇝ Xt, t ∈ [0,∞) be a semi-
martingale whose compensator is

∫
as(θ)ds and {ξk}k=1,2,... be a martingale

difference sequence under a probability measure Pθ for every θ. We shall pro-
pose a general approach based on the theory of weak convergence of random
elements taking values in L2 spaces: for continuous time stochastic processes,
consider

(u, θ)⇝ ZT (u, θ) =
1√
T

∫ T

0

wT
s (u)Hs(θ)(dXs − as(θ)ds), (3.1.1)

where H is a predictable process and

wT
s : (0, 1) ∋ u 7→ wT

s (u) =
1{s ≤ Tu} − u√

u(1− u)
, s ∈ [0, T ];
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and for discrete time stochastic processes, consider

(u, θ)⇝ Zn(u, θ) =
1√
n

n∑
k=1

wn
k (u)Hk−1(θ)ξk(θ), (3.1.2)

where Hk−1 is a measurable-Fk−1 random element and

wn
k : (0, 1) ∋ u 7→

{
0, u ∈

(
0, 1

n

)
,

1{k≤nu}−[nu]/n√
[nu]/n(1−[nu]/n)

, u ∈
[
1
n
, 1
)
, k = 1, . . . , n.

Let us call (3.1.1) and (3.1.2) pinned Z-process, because if we assign the
solution, or approximate solution, of estimating equations

1

T

∫ T

0

Hs(θ)(dXs − as(θ)ds) = 0

and
1

n

n∑
k=1

Hk−1(θ)ξk(θ) = 0

for θ, (3.1.1) and (3.1.2) equal to the partial sums of estimating equations
if we attach the suitable weight functions and rate constants. Pinned Z-
processes converge to centered Gaussian fields as T , or n, tends to infinity.
This idea basically comes from the the work of Horváth and Parzen (1994).
They studied the asymptotic behavior of a Fisher score change process, it is
the partial sum of the likelihood equation, for general independent observa-
tion cases under the null hypothesis. See also Negri and Nishiyama (2012),
they refined the idea and applied it to a change detection of drift parameters
in an ergodic diffusion process model. The proof for the limit theorem of Ne-
gri and Nishiyama (2012), especially the proof for the asymptotic tightness,
is based on the tightness criterion for martingales taking values in ℓ∞ spaces
developed by Nishiyama (1999). As for the tightness criterion for martin-
gales taking values in ℓ∞ spaces, see also Nishiyama (2000) and references
therein. Moreover, this approach is generalized to wide class of stochastic
processes by Negri and Nishiyama (2014). However, as it is stated above, we
cannot apply this kinds of weak convergence theorem to the current problems
because the random fields ZT and Zn are not bounded in (0, 1) with respect
to u. Hence, we regard random fields (3.1.1) and (3.1.2) as the elements in
some space L2([0, 1], du) and prove the limit theorems in this space.
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3.2 A change point test for an independent

random variables - the key idea -

Let us describe the problem for independent observations. Let (X ,A, µ) be
a measure space. Let Xk, k = 1, . . . , n be independent random variables
taking values in X , whose probability density functions with respect to the
measure µ are f(x; θ(1)), . . . , f(x; θ(n)), where θ ∈ Θ ⊂ Rd and Θ is a bounded
open convex set. For this model, what we wish to test is that

H0: ∃θ0 ∈ Θ such that θ(k) = θ0, ∀k = 1, . . . , n
H1: ∃θ0, θ1 ∈ Θ, ∃u∗ ∈ (0, 1) such that θ(k) = θ0, ∀k = 1, . . . , [nu∗]

and that θ(k) = θ1 ̸= θ0, ∀k = [nu∗] + 1, . . . , n

The likelihood is given by

n∏
k=1

f(Xk, θ(k)),

and the log likelihood is

n∑
k=1

log f(Xk, θ(k)) =
n∑

k=1

lθ(k)(Xk),

where lθ(x) = log f(x, θ). Consider the likelihood equation

1

n

n∑
k=1

l̇θ(Xk) = 0.

The notation θ̂n denotes the solution, or an approximate solution in the sense
that

1

n

n∑
k=1

l̇θ̂n(Xk) = oP (n
−1/2),

of the above equation.
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Suppose the following conditions. Let us assume that lθ is second order
differentiable with respect to θ. For any θ0 ∈ Θ, there exists a nonnegative
measurable function K which satisfy∫

X
K(x)f(x, θ0)µ(dx) <∞,

and
|∂ilθ1(x)− ∂ilθ2(x)| ≤ K(x) ∥θ1 − θ2∥ , ∀θ1, θ2 ∈ N (3.2.1)

|∂ijlθ1(x)− ∂ijlθ2(x)| ≤ K(x) ∥θ1 − θ2∥ , ∀θ1, θ2 ∈ N (3.2.2)

for all i, j = 1, . . . , d, where N is neighborhood of θ0. The matrix

Iθ = lim
n→∞

1

n

n∑
k=1

Eθ(k) [l̇θ(Xk)l̇θ(Xk)
⊤],

is assumed to be a positive definite matrix for all θ. Assume that for all
i, j = 1, . . . , d, for all k = 1, . . . , n and all θ ∈ Θ,

Eθ(k)

[
(∂i∂jlθ(Xk))

2] <∞,

Eθ(k)

[
(K(Xk))

2
]
<∞,

and there exist a δ > 0 such that for all i = 1, . . . , d,

Eθ(k)

[
|∂ilθ(Xk)|2+δ

]
<∞. (3.2.3)

Let us assume

inf
θ:∥θ−θ0∥>ε

∥∥∥∥∫
X
l̇θ(x)f(x, θ0)µ(dx)

∥∥∥∥ > 0, ∀θ0 ∈ Θ, ∀ε > 0. (3.2.4)

As for the estimator θ̂n, it holds that the following properties: Under H0, it
holds that

√
n(θ̂n − θ0) →d N(0, I−1

θ0
). Under H1, it holds that θ̂n →p θ∗,

where θ∗ is a point in Θ such that

θ∗ ̸= θ0, θ∗ ̸= θ1, u∗Eθ0 [l̇θ∗(X1)] + (1− u∗)Eθ1 [l̇θ∗(X1)] = 0.
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Here, let us explain Z-process methods. Solutions to estimating equations

Ψn(θ) =
1

n

n∑
k=1

ψ(Xk, θ) = 0

are sometimes called Z-estimators (see Chapter 3.3 of van der Vaart and
Wellner (1996) and Chapter 5 of van der Vaart (1998)), where ψ(x, θ) is a
finite dimensional vector. See ψ(Xk, θ) as l̇θ(Xk) in this section. We shall
consider change point tests based on estimating equations. For the purpose
of it, let us introduce Z-process Ψn(u, θ) and pinned Z-process Ψ◦

n(u, θ) as
follows:

Ψn(u, θ) =
1

n

[nu]∑
k=1

ψ(Xk, θ),

Ψ◦
n(u, θ) =

1

n

n∑
k=1

(1{k ≤ nu} − sn(u))ψ(Xk, θ),

where

sn(u) =
[nu]

n
, u ∈ (0, 1)

and
∑0

k=1 is always zero hereafter. We call Ψn(u, θ0) Z-motion, and Ψ◦
n(u, θ0)

Z-bridge because it holds that

√
nÎ

− 1
2

n Ψn(·, θ0) →d Bd(·)

and √
nÎ

− 1
2

n Ψ◦
n(·, θ0) →d B◦

d(·),

where Bd(·) and B◦
d(·) are the d dimensional standard Brownian motion and

the standard Brownian bridge, respectively and În is a consistent estimator
of V ar[ψ(X1, θ0)] under H0. For general θ, Ψn(·, θ) is not equal to Ψ◦

n(·, θ).
However, the important point is that

Ψn(·, θ̂n) = Ψ◦
n(·, θ̂n) ≈ Ψ◦

n(·, θ0), (3.2.5)

in some sense. Because of this relationship, we can use functions of Ψn(·, θ̂n)
as test statistics.
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Now, let us propose the test statistic

ADn =
n−1∑
j=1

n2Φn,j(θ̂n)
⊤Î−1

n Φn,j(θ̂n)

j(n− j)
,

where

În =
1

n

n∑
k=1

l̇θ̂n(Xk)l̇θ̂n(Xk)
⊤, (3.2.6)

and (Φn,j(θ))j=1,...,n−1 is calculated by

Φn,j(θ) =
1

n2

[
(n− j)

j∑
k=1

l̇θ(Xk)− j
n∑

k=j+1

l̇θ(Xk)

]
.

Remark 3.2.1. In this case, under H0, the pinned Z-process is

Ψ◦
n(u, θ) =

1

n

(1− sn(u))

nsn(u)∑
k=1

l̇θ(Xk)− sn(u)
n∑

k=nsn(u)+1

l̇θ(Xk)


=

1

n

n∑
k=1

(1{k ≤ nu} − sn(u)) l̇θ(Xk)

for u ∈ (0, 1) and a direct computation shows that

ADn =

∫ 1

0

nΨ◦
n(u, θ̂n)

⊤Î−1
n Ψ◦

n(u, θ̂n)

sn(u)(1− sn(u))
du

=

∥∥∥∥∥
√
nÎ

−1/2
n Ψ◦

n(·, θ̂n)√
sn(·)(1− sn(·))

∥∥∥∥∥
2

L2(S)

, (3.2.7)

where let us make a convention that if u < 1/n then

1{k ≤ nu} − sn(u)√
sn(u)(1− sn(u))

= 0.

In the proof of the following theorem, we use this expression (3.2.7) for ADn.
Under H1, the corresponding term is Mn(u)/

√
n where

Mn(u) =
1√
n

n∑
k=1

(1{k ≤ nu} − sn(u)) (l̇θ∗(Xk)− Eθ(k) [l̇θ∗(Xk)])

for u ∈ (0, 1).
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Remark 3.2.2. For În, any consistent estimator for Fisher information ma-
trix under H0 can be used. We can always construct it by (3.2.6), but in some
cases we can construct more sensible estimators like

În =
−1

n

n∑
k=1

l̈θ̂n(Xk).

For example, it becomes a constant for normal observations with known vari-
ance. We will use this În in Section 7.

As for this test, the following Theorem holds.

Theorem 3.2.1. (i) Under H0, the asymptotic distribution of ADn is

∫ 1

0

∥∥∥∥∥ B◦
d(u)√

u(1− u)

∥∥∥∥∥
2

du.

(ii) Under H1, the test is consistent.

In order to prove this theorem, let us prepare following lemmas.

Lemma 3.2.1. (i) Under H0, it holds that În →p Iθ0 . (ii) Under H1, it holds
that În →p Iθ∗ .

Lemma 3.2.2. (i) Under H0, it holds that

E

[
nΨ◦

n(u, θ0)
⊤I−1

θ0
Ψ◦

n(u, θ0)

sn(u)(1− sn(u))

]
= d

for all u ∈ (0, 1) and for all n ∈ N.
(ii) Under H1, it holds that

Eθtrue

[
Mn(u)

⊤I−1
θ∗
Mn(u)

sn(u)(1− sn(u))

]
≤ Eθ0

[
l̇θ∗(X1)

⊤I−1
θ∗
l̇θ∗(X1)

]
+ Eθ1

[
l̇θ∗(X1)

⊤I−1
θ∗
l̇θ∗(X1)

]
,

for all u ∈ (0, 1) and for all n ∈ N, where Eθtrue denotes integration with the
true probability measure under H1.
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Remark 3.2.3. Lemma 3.2.2 implies that random elements∥∥∥∥∥
√
nI

−1/2
θ0

Ψ◦
n(·, θ0)√

sn(·)(1− sn(·))

∥∥∥∥∥
2

L2

and ∥∥∥∥∥ I
−1/2
θ∗

Mn(·)√
sn(·)(1− sn(·))

∥∥∥∥∥
2

L2

,

are asymptotically tight in R because, by the Fubini theorem, their expecta-
tions do not depend on n and they are finite under H0 and H1, respectively.
Moreover, it holds that∥∥∥∥∥

√
nI

−1/2
θ0

Ψ◦
n(·, θ0)√

sn(·)(1− sn(·))

∥∥∥∥∥
2

L2

<∞ and

∥∥∥∥∥ I
−1/2
θ∗

Mn(·)√
sn(·)(1− sn(·))

∥∥∥∥∥
2

L2

<∞,

almost surely under H0 and H1, respectively, for all n.

Lemma 3.2.3. (i) Under H0, it holds that

n

∫ 1

0

∥∥∥∥∥Ψ◦
n(u, θ̂n)−Ψ◦

n(u, θ0)√
(sn(u))(1− sn(u))

∥∥∥∥∥
2

du→p 0.

(ii) Under H1, it holds that∫ 1

0

∥∥∥∥∥Ψ◦
n(u, θ̂n)−Ψ◦

n(u, θ∗)√
(sn(u))(1− sn(u))

∥∥∥∥∥
2

du→p 0.

Lemma 3.2.4. Under H0, the sequence of random vector⟨√
nI

−1/2
θ0

Ψ◦
n(·, θ0)√

sn(·)(1− sn(·))
, h

⟩

converges to ⟨G, h⟩ in distribution for every h ∈ L2([0, 1],Rd, du), where

G(u) =
B◦

d(u)√
u(1− u)

, u ∈ (0, 1).
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The following lemma is concerned with confirming Prohorov’s criterion
for tightness in L2 space.

Lemma 3.2.5. Under H0, the sequence of random maps

√
nI

−1/2
θ0

Ψ◦
n(·, θ0)√

(sn(·))(1− sn(·))

is asymptotically finite dimensional.

Now let us start to prove Theorem 3.2.1 by using above lemmas.

Proof of the Lemma 3.2.1(i). We shall derive the asymptotic distri-
bution of ADn. Due to Lemma 3.2.1(i) and Lemma 3.2.3(i), it holds that

ADn =

∥∥∥∥∥
√
nI

−1/2
θ0

Ψ◦
n(·, θ0)√

(sn(·))(1− sn(·))

∥∥∥∥∥
2

L2

+ oP (1).

Lemma 3.2.2-3.2.4 (i) leads that

√
nI

−1/2
θ0

Ψ◦
n(·, θ0)√

sn(·)(1− sn(·))
→d G(·) in L2([0, 1],Rd, du).

Hence, the continuous mapping theorem yields the conclusion.

Proof of the Theorem 3.2.1(ii). Due to Lemma 3.2.1(ii), Lemma
3.2.3(ii) and the continuous mapping theorem, it holds that

ADn = n×

(∫ 1

0

Ψ◦
n(u, θ∗)

⊤Î−1
n Ψ◦

n(u, θ∗)

sn(u)(1− sn(u))
du+ oP (1)

)
.

Recall that, generally, when M is a non negative definite matrix, it holds
that

2(v⊤M−1v + w⊤M−1w) = (v + w)⊤M−1(v + w) + (v − w)⊤M−1(v − w)

≥ (v − w)⊤M−1(v − w)
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for every v, w ∈ Rd. Since Iθ∗ is a positive definite matrix, denoting

An(u) =
1

n

n∑
k=1

(1{k ≤ nu} − sn(u))Eθ(k) [l̇θ∗(Xk)],

this inequality yields that

2

∫ 1

0

Ψ◦
n(u, θ∗)

⊤Î−1
n Ψ◦

n(u, θ∗)

sn(u)(1− sn(u))
du

≥
∫ 1

0

An(u)
⊤Î−1

n An(u)

sn(u)(1− sn(u))
du− 2

∫ 1

0

Mn(u)
⊤Î−1

n Mn(u)

nsn(u)(1− sn(u))
du.

The first term is asymptotically tight because it holds that∫ 1

0

An(u)
⊤Î−1

n An(u)

sn(u)(1− sn(u))
du

=

∫ 1

0

∑n
k=1(1{k ≤ nu} − sn(u))

2Eθ(k) [l̇θ∗(Xk)]
⊤Î−1

n Eθ(k) [l̇θ∗(Xk)]

nsn(u)(1− sn(u))
du

≤
∫ 1

0

∑n
k=1(1{k ≤ nu} − sn(u))

2

nsn(u)(1− sn(u))

(
Eθ0 [l̇θ∗(X1)]

⊤Î−1
n Eθ0 [l̇θ∗(X1)]

+Eθ1 [l̇θ∗(X1)]
⊤Î−1

n Eθ1 [l̇θ∗(X1)]
)
du

= Eθ0 [l̇θ∗(X1)]
⊤Î−1

n Eθ0 [l̇θ∗(X1)] + Eθ1 [l̇θ∗(X1)]
⊤Î−1

n Eθ1 [l̇θ∗(X1)],

so it holds that∫ 1

0

An(u)
⊤Î−1

n An(u)

sn(u)(1− sn(u))
du =

∫ 1

0

An(u)
⊤I−1

θ∗
An(u)

sn(u)(1− sn(u))
du+ oP (1).

By the Remark 3.2.3 and the Slutsky theorem, it holds that

n×
∫ 1

0

Mn(u)
⊤Î−1

n Mn(u)

nsn(u)(1− sn(u))
du =

∫ 1

0

Mn(u)
⊤I−1

θ∗
Mn(u)

sn(u)(1− sn(u))
du+ oP (1)

is asymptotically tight in R. Moreover, we have∫ 1

0

An(u)
⊤I−1

θ∗
An(u)

sn(u)(1− sn(u))
du =

∫ u∗

0

An(u)
⊤I−1

θ∗
An(u)

sn(u)(1− sn(u))
du+

∫ 1

u∗

An(u)
⊤I−1

θ∗
An(u)

sn(u)(1− sn(u))
du.
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For u < [nu∗]/n, it holds that

An(u) = [(1− sn(u))sn(u)− sn(u)(sn(u∗)− sn(u))]Eθ0 [l̇θ∗(X1)]

−sn(u)(1− sn(u∗))Eθ1 [l̇θ∗(X1)]

= sn(u)(1− sn(u∗))(Eθ0 [l̇θ∗(X1)]− Eθ1 [l̇θ∗(X1)])

→ u(1− u∗)(Eθ0 [l̇θ∗(X1)]− Eθ1 [l̇θ∗(X1)]), (3.2.8)

while for u ≥ ([nu∗] + 1)/n it holds that

An(u) = (1− sn(u))sn(u∗)Eθ0 [l̇θ∗(X1)]

+[(1− sn(u))(sn(u)− sn(u∗))− sn(u)(1− sn(u))]Eθ1 [l̇θ∗(X1)]

→ (1− u)u∗(Eθ0 [l̇θ∗(X1)]− Eθ1 [l̇θ∗(X1)]), (3.2.9)

uniformly for u ∈ (0, 1). Each of the right-hand sides of (3.2.8) and (3.2.9)
cannot be 0 because it holds that Eθ0 [l̇θ∗(X1)] ̸= 0, Eθ1 [l̇θ∗(X1)] ̸= 0 and
Eθ0 [l̇θ∗(X1)] ̸= Eθ1 [l̇θ∗(X1)]. Denoting ∆ = Eθ0 [l̇θ∗(X1)]− Eθ1 [l̇θ∗(X1)] ̸= 0, it
implies that, since Iθ∗ is a positive definite matrix,

lim inf
n→∞

∫ u∗

0

An(u)
⊤I−1

θ∗
An(u)

sn(u)(1− sn(u))
du

≥ lim inf
n→∞

∫ u∗

0

1

{
u <

[nu∗]

n

}
An(u)

⊤I−1
θ∗
An(u)

sn(u)(1− sn(u))
du

≥
∫ u∗

0

lim inf
n→∞

1

{
u <

[nu∗]

n

}
An(u)

⊤I−1
θ∗
An(u)

sn(u)(1− sn(u))
du

=

∫ u∗

0

lim
n→∞

1

{
u <

[nu∗]

n

}
An(u)

⊤I−1
θ∗
An(u)

sn(u)(1− sn(u))
du

=

∫ u∗

0

(1− u∗)∆
⊤I−1

θ∗
∆

1− u
du = (1− u∗)∆

⊤I−1
θ∗

∆ · log 1

1− u∗

≥ u∗(1− u∗)∆
⊤I−1

θ∗
∆ > 0

and that

lim inf
n→∞

∫ 1

u∗

An(u)
⊤I−1

θ∗
An(u)

sn(u)(1− sn(u))
du

≥
∫ 1

u∗

u∗∆
⊤I−1

θ∗
∆

u
du = u∗∆

⊤I−1
θ∗

∆ · log 1

u∗
> 0.

Therefore, we can conclude that the test is consistent.
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Now, let us prove the lemmas. As for the proofs of (ii) of the Lemmas are
similar to (i) except the Lemma 3.2.3 (ii), which is rather easier , so we omit
them. In the proofs,

1{k ≤ nu} − sn(u)√
sn(u)(1− sn(u))

is denoted by wn
k (u) for simplicity.

Proof of the Lemma 3.2.1(i). It holds that

În =
1

n

n∑
k=1

l̇θ̂n(Xk)l̇θ̂n(Xk)
⊤

=
1

n

n∑
k=1

l̇θ0(Xk)l̇θ0(Xk)
⊤

+
1

n

n∑
k=1

(
l̇θ0(Xk)(l̇θ̂n(Xk)− l̇θ0(Xk))

⊤ + (l̇θ̂n(Xk)− l̇θ0(Xk))l̇θ0(Xk)
⊤
)

+
1

n

n∑
k=1

(l̇θ̂n(Xk)− l̇θ0(Xk))(l̇θ̂n(Xk)− l̇θ0(Xk))
⊤

The second and third term is oP (1), because the assumption (3.2.1) and the
Schwartz inequality yield that

1

n

n∑
k=1

∂ilθ0(Xk)(∂jlθ̂n(Xk)− ∂jlθ0(Xk))

≤

√√√√ 1

n

n∑
k=1

(∂ilθ0(Xk))2
1

n

n∑
k=1

(∂jlθ̂n(Xk)− ∂jlθ0(Xk))2

≤

√√√√ 1

n

n∑
k=1

(∂ilθ0(Xk))2
1

n

n∑
k=1

(K(Xk))2∥θ̂n − θ0∥2

→p 0

by the law of large numbers, and other term is also converge to 0 in proba-
bility by the same reason. Hence, the law of large numbers yields that

În →p E[l̇θ0(X1)l̇θ0(X1)
⊤] = Iθ0 .

This completes the proof.
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Proof of the Lemma 3.2.2(i). Firstly, V ar[Ψ◦
n(u, θ0)] is calculated as

follows:

V ar[Ψ◦
n(u, θ0)] =

sn(u)(1− sn(u))

n
V ar[l̇θ0(X1)] =

sn(u)(1− sn(u))

n
Iθ0 .

Thus, it holds that

E

[
nΨ◦

n(u, θ0)
⊤I−1

θ0
Ψ◦

n(u, θ0)

sn(u)(1− sn(u))

]
=
ntr
(
V ar

[
I
− 1

2
θ0

Ψ◦
n(u, θ0)

])
sn(u)(1− sn(u))

= tr (Id) = d,

where tr(A) denotes the trace of matrix A and the notation Id denotes d
dimensional identity matrix. This completes the proof.

Proof of the Lemma 3.2.2(ii). For the simplicity, let us denote
l̇θ∗(Xk) − Eθ(k) [l̇θ∗(Xk)] by l̇Cθ∗(Xk) The left-hand side of the claim is equal
to

Eθtrue

[
1

n

n∑
k=1

(1{k ≤ nu} − sn(u))
2 l̇Cθ∗(Xk)

⊤I−1
θ∗
l̇Cθ∗(Xk)

sn(u)(1− sn(u))

]

=
1

n

[nu∗]∑
k=1

(1− sn(u))
2 Eθ0

[
l̇Cθ∗(X1)

⊤I−1
θ∗
l̇Cθ∗(X1)

]
sn(u)(1− sn(u))

+
1

n

n∑
k=[nu∗]+1

(sn(u))
2 Eθ1

[
l̇Cθ∗(X1)

⊤I−1
θ∗
l̇Cθ∗(X1)

]
sn(u)(1− sn(u))

= (1− sn(u))Eθ0

[
l̇Cθ∗(X1)

⊤I−1
θ∗
l̇Cθ∗(X1)

]
+ (sn(u))Eθ1

[
l̇Cθ∗(X1)

⊤I−1
θ∗
l̇Cθ∗(X1)

]
≤ Eθ0

[
l̇Cθ∗(X1)

⊤I−1
θ∗
l̇Cθ∗(X1)

]
+ Eθ1

[
l̇Cθ∗(X1)

⊤I−1
θ∗
l̇Cθ∗(X1)

]
.

This completes the proof.

Proof of the Lemma 3.2.3(i). It follows from the Taylor expansion
that

√
n
(
Ψ◦

n(u, θ̂n)−Ψ◦
n(u, θ0)

)
√
sn(u)(1− sn(u))

=
1

n

n∑
k=1

wn
k (u)l̈θ̃n(Xk)

√
n(θ̂n − θ0),

29



where θ̃n is between θ̂n and θ0. Since
√
n(θ̂n − θ0) = OP (1), let us show that∫ 1

0

(
1

n

n∑
k=1

wn
k (u)(l̈θ̃n(Xk)− l̈θ0(Xk))

)2

du→p 0.

By the Schwartz inequality, it holds that∫ 1

0

(
1

n

n∑
k=1

wn
k (u)(l̈θ̃n(Xk)− l̈θ0(Xk))

)2

du

≤
∫ 1

0

1

n2

n∑
k=1

wn
k (u)

n∑
k=1

(
l̈θ̃n(Xk)− l̈θ0(Xk)

)2
du

=
1

n

n∑
k=1

(
l̈θ̃n(Xk)− l̈θ0(Xk)

)2
. (3.2.10)

Because of the assumption (3.2.2), the (i, j)-th element of (3.2.10) is bounded
by
∑n

k=1(K(Xk))
2∥θ̃n− θ0∥2/n, which converges to 0 in probability. Next let

us show that ∫ 1

0

∥∥∥∥∥ 1n
n∑

k=1

wn
k (u)l̈θ0(Xk)

√
n(θ̂n − θ0)

∥∥∥∥∥
2

du→p 0.

Since it holds that
√
n(θ̂n−θ0) = OP (1), it is sufficient to show the following:

E

∫ 1

0

(
1

n

n∑
k=1

wn
k (u)l̈θ0(Xk)

)2

du


=

∫ 1

0

1

n2
E

( n∑
k=1

wn
k (u)l̈θ0(Xk)

)2
 du

=

∫ 1

0

1

n2
E

( n∑
k=1

wn
k (u)(l̈θ0(Xk)− E[l̈θ0(X1)])

)2
 du

=

∫ 1

0

1

n2

n∑
k=1

wn
k (u)

2E
[(
l̈θ0(Xk)− E[l̈θ0(X1)]

)2]
du

=
1

n

(
E
[(
l̈θ0(X1)

)2]
−
(
E
[
l̈θ0(X1)

])2)
→ 0.

This completes the proof.
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Proof of the Lemma 3.2.4. Firstly, it holds that⟨√
nI

−1/2
θ0

Ψ◦
n(·, θ0)√

sn(·)(1− sn(·))
, h

⟩
L2

=
n∑

k=1

I
−1/2
θ0√
n

∫ 1

0

wn
k (u)l̇θ0(Xk)

⊤h(u)du

because of the definition of the inner product. Its expectation is that

n∑
k=1

I
−1/2
θ0√
n

∫ 1

0

wn
k (u)E[l̇θ0(Xk)

⊤]h(u)du = 0,

and its variance is that
n∑

k=1

V ar

[
1√
n
I
−1/2
θ0

∫ 1

0

wn
k (u)l̇θ0(Xk)

⊤h(u)du

]
=

∫ 1

0

∫ 1

0

1

n

n∑
k=1

wn
k (u)w

n
k (v)h(u)h(v)

⊤dudv

=

∫ 1

0

∫ 1

0

sn(u ∧ v)− sn(u)sn(v)√
sn(u)(1− sn(u))sn(v)(1− sn(v))

h(u)h(v)⊤dudv

→
∫ 1

0

∫ 1

0

u ∧ v − uv√
uv(1− u)(1− v)

h(u)h(v)⊤dudv.

as n→ ∞. Further, we shall show that the Lyapunov Condition:

n∑
k=1

E

[∣∣∣∣∫ 1

0

1√
n
I
− 1

2
θ0
wn

k (u)l̇θ0(Xk)
⊤h(u)du

∣∣∣∣2+δ
]
→ 0,

for some δ > 0. The Schwartz inequality yields that

n∑
k=1

E

[∣∣∣∣∫ 1

0

1√
n
I
− 1

2
θ0
wn

k (u)l̇θ0(Xk)
⊤h(u)du

∣∣∣∣2+δ
]

≤
(∫ 1

0

∥h(u)∥2du
) 2+δ

2 n∑
k=1

E

∣∣∣∣∣
∫ 1

0

∥∥∥∥ 1√
n
I
− 1

2
θ0
wn

k (u)l̇θ0(Xk)

∥∥∥∥2 du
∣∣∣∣∣
2+δ
2

 .
Since h is square integrable, it is sufficient to show that

n∑
k=1

E

∣∣∣∣∣
∫ 1

0

∣∣∣∣ 1√
n
wn

k (u)
(
I
− 1

2
θ0
l̇θ0(Xk)

)
(i)

∣∣∣∣2 du
∣∣∣∣∣
2+δ
2

 (3.2.11)
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converges to 0 for some δ and for all i. Because of the assumption (3.2.3) for
all i, it holds that

E
[∣∣∣(I− 1

2
θ0
l̇θ0(X1))(i)

∣∣∣2+δ
]

≤ E

[∣∣∣∣(I− 1
2

θ0
1)(i) max

i=1,...,d
|∂ilθ(X1)|

∣∣∣∣2+δ
]

= (I
− 1

2
θ0

1)(i) max
i=1,...,d

E
[
|∂ilθ(X1)|2+δ

]
<∞,

where the notation 1 denotes the d dimensional vector whose all elements
are 1. Therefore, since 0 < δ < 2, (3.2.11) is bounded above by

n∑
k=1

E

[∫ 1

0

∣∣∣∣wn
k (u)√
n

(
I
− 1

2
θ0
l̇θ0(Xk)

)
(i)

∣∣∣∣2+δ

du

]

=

∫ 1

0

n∑
k=1

∣∣∣∣wn
k (u)√
n

∣∣∣∣2+δ

E

[∣∣∣∣(I− 1
2

θ0
l̇θ0(Xk)

)
(i)

∣∣∣∣2+δ
]
du

=
1

nδ/2
E
[∣∣∣(I− 1

2
θ0
l̇θ0(X1))(i)

∣∣∣2+δ
] ∫ 1

0

sn(u)
1+δ + (1− sn(u))

1+δ

(sn(u)(1− sn(u)))δ/2
du

≤ 1

nδ/2
E
[∣∣∣(I− 1

2
θ0
l̇θ0(X1))(i)

∣∣∣2+δ
] ∫ 1

0

2

(sn(u)(1− sn(u)))δ/2
du→ 0.

In consequence, the Lyapunov condition holds. Hence, the multivariate cen-
tral limit theorem yields that⟨√

nI
−1/2
θ0

Ψ◦
n(·, θ0)√

sn(·)(1− sn(·))
, h

⟩
L2

→d ⟨G, h⟩L2

for every h ∈ L2([0, 1], du), where G is a Gaussian variable such that

E[⟨G, h⟩L2 ] = 0,

and

E[⟨G, h⟩2L2 ] =

∫ 1

0

∫ 1

0

u ∧ v − uv√
uv(1− u)(1− v)

h(u)h(v)⊤dudv,

for every h ∈ L2([0, 1], du). Such a G is B◦
d(u)/

√
u(1− u), u ∈ (0, 1). This

completes the proof.
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Proof of the Lemma 3.2.5. Let us use the Proposition 2.2.1. As for
(2.2.1), it holds that

E

∥∥∥∥∥
√
nI

−1/2
θ0

Ψ◦
n(·, θ0)√

(sn(·))(1− sn(·))

∥∥∥∥∥
2

L2

 = d = E

∥∥∥∥∥ B◦(·)√
·(1− ·)

∥∥∥∥∥
2

L2

 .
Moreover, (2.2.2) holds if we take ej as h for the convergence of

V ar

[⟨√
nI

−1/2
θ0

Ψ◦
n(·, θ0)√

sn(·)(1− sn(·))
, h

⟩
L2

]

in the proof of the Lemma 3.2.4.

Moreover, let us provide another proof of the Lemma 3.2.5 which corrects
mistake in Tsukuda and Nishiyama (2014).

Another proof of the Lemma 3.2.5 By the Parseval identity, it is suf-
ficient to prove that

lim
J→∞

lim sup
n→∞

E

[∑
j>J

∣∣∣∣⟨√ n

sn(·)(1− sn(·))
I
− 1

2
θ0

Ψ◦
n(·, θ0), ej

⟩
L2

∣∣∣∣2
]
= 0

⇐⇒ lim
J→∞

lim sup
n→∞

E

∑
j>J

∣∣∣∣∣
⟨

1√
n

n∑
k=1

wn
k (·)I

− 1
2

θ0
l̇θ0(Xk), ej

⟩
L2

∣∣∣∣∣
2
 = 0

⇐⇒ lim
J→∞

lim sup
n→∞

E

∥∥∥∥∥ 1√
n

n∑
k=1

wn
k (·)I

− 1
2

θ0
l̇θ0(Xk)

∥∥∥∥∥
2

L2

−
∑
j≤J

∣∣∣∣∣
⟨

1√
n

n∑
k=1

wn
k (·)I

− 1
2

θ0
l̇θ0(Xk), ej

⟩
L2

∣∣∣∣∣
2
 = 0.

It follows from the Lemma 3.2.2 and the Fubini theorem that

E

∥∥∥∥∥1/√n
n∑

k=1

wn
k (·)I

− 1
2

θ0
l̇θ0(Xk)

∥∥∥∥∥
2

L2

 = d.
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It holds that

lim sup
n→∞

E

−∑
j≤J

∣∣∣∣∣
⟨

1√
n

n∑
k=1

wn
k (·)I

− 1
2

θ0
l̇θ0(Xk), ej

⟩
L2

∣∣∣∣∣
2


= − lim inf
n→∞

∑
j≤J

E

∣∣∣∣∣ 1√
n

n∑
k=1

⟨
wn

k (·)I
− 1

2
θ0
l̇θ0(Xk), ej

⟩
L2

∣∣∣∣∣
2


= − lim inf
n→∞

∑
j≤J

E

[
1

n

n∑
k=1

∣∣∣⟨wn
k (·)I

− 1
2

θ0
l̇θ0(X1), ej

⟩
L2

∣∣∣2]

= − lim inf
n→∞

∫ 1

0

∫ 1

0

1

n

n∑
k=1

wn
k (u)w

n
k (v)

J∑
j=1

E
[
I
− 1

2
θ0
l̇θ0(X1)

⊤ej(u)I
− 1

2
θ0
l̇θ0(X1)

⊤ej(v)
]
dudv

= − lim inf
n→∞

∫ 1

0

∫ 1

0

1

n

n∑
k=1

wn
k (u)w

n
k (v)d

J∑
j=1

ej(u)
⊤ej(v)dudv.

Since
∑n

k=1w
n
k (u)w

n
k (v) ≤ n by the Schwartz inequality and |

∑J
j=1 ej(u)

⊤ej(v)|
is integrable with respect to dudv, the Fatou lemma gives the upper bound

−
∫ 1

0

∫ 1

0

lim inf
n→∞

1

n

n∑
k=1

wn
k (u)w

n
k (v)d

J∑
j=1

ej(u)
⊤ej(v)dudv

= −
∫ 1

0

∫ 1

0

u ∧ v − uv√
uv(1− u)(1− v)

d
J∑

j=1

ej(u)
⊤ej(v)dudv

= −
∫ 1

0

∫ 1

0

E[B◦(u)B◦(v)]√
uv(1− u)(1− v)

d

J∑
j=1

e′
[ j−1

d
]+1

(u)e′
[ j−1

d
]+1

(v)dudv

= −dE

 J∑
j=1

∣∣∣∣∣
⟨

B◦(·)√
·(1− ·)

, e′
[ j−1

d
]+1

⟩
L2

∣∣∣∣∣
2
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since it holds that

lim inf
n→∞

1

n

n∑
k=1

wn
k (u)w

n
k (v)

= lim inf
n→∞

sn(u ∧ v)− sn(u)sn(v)√
sn(u)sn(v)(1− sn(u)(1− sn(v)))

=
u ∧ v − uv√

uv(1− u)(1− v)

and that
sn(u ∧ v)− sn(u)sn(v)√

sn(u)sn(v)(1− sn(u)(1− sn(v)))
≤ 1.

On the other hand, the Bessel inequality implies that

J∑
j=1

∣∣∣∣∣
⟨

B◦(·)√
·(1− ·)

, e′
[ j−1

d
]+1

⟩
L2

∣∣∣∣∣
2

≤

∥∥∥∥∥ B◦(·)√
·(1− ·)

∥∥∥∥∥
2

L2

.

Thence, the dominated convergence theorem yields that

−d lim
J→∞

E

 J∑
j=1

∣∣∣∣∣
⟨

B◦(·)√
·(1− ·)

, e′
[ j−1

d
]+1

⟩
L2

∣∣∣∣∣
2


= −dE

∥∥∥∥∥ B◦(·)√
·(1− ·)

∥∥∥∥∥
2

L2

 = −d.

This completes the proof.

Remark 3.2.4. This section is mainly from Tsukuda and Nishiyama (2014).
In the paper, there are some mistakes. Assumption (3.2.4) is added. The
claims of their Lemma 3(ii), 4 (ii), 5(ii) and 6 (ii) contain mistakes. In this
thesis, the claims of the Lemma 3(ii) and 4(ii) are corrected in the Lemma
3.2.2 and 3.2.3, respectively. The claims of the Lemmas 5(ii) and 6(ii) are
deleted in the Lemma 3.2.4 and 3.2.5. The proof of their Lemma 5 (i) is
wrong and the corrected one is contained in the proof of the Lemma 3.2.5 (i)
of this thesis. Due to the mistake in Lemma 4 (ii), the proof of the Theorem
1 (ii) also contains some mistakes, in addition to other mistakes appeared in
the equations (7), (8) and the later. These mistakes are also corrected in this
thesis. The table 3 is wrong and the corrected version is the Table 7.3 in this
thesis.
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3.3 Bridging a gap between the independent

case and stochastic processes

The goal of this part is generalizing this independent setup to some semi-
martingales and establishing similar methodologies to prove weak conver-
gences. In order to bridge this gap, let us rewrite the lemmas in the preceding
section by the notation which we shall use in the Chapter 5 and Chapter 6.
Define the random field

(u, θ)⇝ Zn(u, θ) =
1√
n

n∑
k=1

wn
k (u)l̇θ(Xk),

where

wn
k : (0, 1) ∋ u 7→

{
0, u ∈

(
0, 1

n

)
,

1{k≤nu}−[nu]/n√
[nu]/n(1−[nu]/n)

, u ∈
[
1
n
, 1
)
, k = 1, . . . , n.

Its “predictable projection” to the true model is

(u, θ)⇝ Zp
n(u, θ) =

1√
n

n∑
k=1

wn
k (u)Eθ(k) [l̇θ(Xk)].

The difference between Z and Zp is denoted by M:

(u, θ)⇝Mn(u, θ) =
1√
n

n∑
k=1

wn
k (u)(l̇θ(Xk)− Eθ(k) [l̇θ(Xk)]).

Lemma 3.3.1. (i) Under H0, it holds that

E
[
Zn(u, θ0)

⊤I−1
θ0

Zn(u, θ0)
]
= d

for all u ∈ (0, 1) and for all n ∈ N.
(ii) Under H1, it holds that

Eθtrue

[
Mn(u, θ∗)

⊤I−1
θ∗

Mn(u, θ∗)
]
= d,

for all u ∈ (0, 1) and for all n ∈ N, where Eθtrue denotes integration with the
true probability measure under H1.
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Lemma 3.3.2. (i) Under H0, it holds that∥∥∥Zn(·, θ̂n)− Zn(·, θ0)
∥∥∥2
L2

→p 0.

(ii) Under H1, it holds that

1

n

∥∥∥Zn(·, θ̂n)− Zn(·, θ∗)
∥∥∥2
L2

→p 0.

Lemma 3.3.3. UnderH0, the sequence of random vector ⟨I−1/2
θ0

Zn(·, θ0), h⟩L2

converges to ⟨G, h⟩L2 in distribution for every h ∈ L2([0, 1], du), where

u⇝ G(u) =
B◦

d(u)√
u(1− u)

.

Lemma 3.3.4. Under H0, the sequence of random maps I
−1/2
θ0

Zn(·, θ0) is
asymptotically finite dimensional.
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Chapter 4

On convergences of some
random fields

4.1 Limit theorems for stochastic integrals tak-

ing values in L2 spaces

First of all, set a measurable space and introduce a filtration. Let us con-
sider a locally square integrable martingale M whose predictable quadratic
variation process is

⟨M⟩· =
∫ ·

0

λsds,

where {λ·} is a non negative adapted process which satisfies

sup
s∈[0,∞)

E[λs] <∞.

It leads that M is a martingale. Define the following random field:

(u, θ)⇝MT (u, θ) =
1√
T

∫ T

0

wT
s (u)Hs(θ)dMs,

where

wT
s (u) =

1{s ≤ Tu} − u√
u(1− u)

, ∀u ∈ (0, 1),

θ is an element of open bounded subset Θ of Rd and H(θ) is a d dimensional
predictable process such that∫ T

0

∥Hs(θ)∥2d⟨M⟩s <∞, a.s. ∀θ ∈ Θ.
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Proposition 4.1.1. (i) If there exists a positive δ ∈ R such that∫
Θ

sup
s∈[0,∞)

E[∥Hs(θ)∥2+δλs]dθ <∞ (4.1.1)

holds, then it holds that∫
Θ

sup
s∈[0,∞)

E
[
∥Hs(θ)∥2λs

]
dθ <∞. (4.1.2)

(ii) If (4.1.2) holds, then it holds that

E
[
∥MT∥2L2([0,1]×Θ)

]
<∞.

In particular, MT takes its values in L2([0, 1]×Θ) a.s..
(iii) If (4.1.2) holds and there exists the following limit

C(θ, η) = l.i.m.
T→∞

1

T

∫ T

0

Hs(θ)Hs(η)
⊤λsds, (4.1.3)

then it holds that ∫
Θ

trC(θ, θ)dθ <∞.

Proof of the Proposition 4.1.1. (i) The Jensen inequality yields that

E[∥Hs(θ)∥2λs] = E[∥Hs(θ)∥2λs(1{∥Hs(θ)∥ ≥ 1}+ 1{∥Hs(θ)∥ < 1})]
≤ E[∥Hs(θ)∥2+δλs] + E[λs]
≤ sup

s∈[0,∞)

E
[
∥Hs(θ)∥2+δλs

]
+ sup

s∈[0,∞)

E [λs] .

The right-hand side does not depend on s, and by integrating both sides with
respect to θ, we obtain the conclusion because of the assumption (4.1.1).
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(ii) The left-hand side of the claim is equal to

E

[∥∥∥∥ 1√
T

∫ T

0

wT
s HsdMs

∥∥∥∥2
L2([0,1]×Θ)

]

= E

[∫ ∫ ∥∥∥∥ 1√
T

∫ T

0

wT
s (u)Hs(θ)dMs

∥∥∥∥2 dθdu
]

= E
[∫ ∫

1

T

∫ T

0

(
wT

s (u)
)2 ∥Hs(θ)∥2λsdsdθdu

]
=

∫ ∫ (
1

T

∫ T

0

(
wT

s (u)
)2 E [∥Hs(θ)∥2λs

]
ds

)
dθdu

≤
∫

sup
s∈[0,∞)

E
[
∥Hs(θ)∥2λs

]
dθ <∞

by a martingale property and the Fubini theorem. This completes the proof.
(iii) It holds that

lim
T→∞

E
[
1

T

∫ T

0

Hs(θ)Hs(η)
⊤λsds

]
= C(θ, η)

by the Jensen inequality. Hence, the conclusion is obvious.

In order to establish the limit behavior for MT (·, ·), recalling the Theorem
2.1, what we have to prove is that MT (·, ·) is asymptotically finite dimen-
sional and the weak convergence of the martingale ⟨MT , h⟩L2([0,1]×Θ) taking
values in R, for every h ∈ L2([0, 1]×Θ, du× dθ). Through proving them, we
can get the following limit theorem.

Theorem 4.1.1. Suppose that there exists a δ > 0 which satisfies (4.1.1)
and that ∫

Θ

∫
Θ

sup
s∈[0,∞)

∥∥E[Hs(θ)Hs(η)
⊤λs]

∥∥2
OP

dθdη <∞ (4.1.4)

and (4.1.3) hold. The random field MT (·, ·) converges to Γ(·, ·) weakly in
L2([0, 1]×Θ, du× dθ) as T → ∞, where Γ is a Gaussian field satisfying

E[⟨Γ, h⟩L2([0,1]×Θ)] = 0
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and

E[⟨Γ, h⟩2L2([0,1]×Θ)]

=

∫ 1

0

∫ 1

0

∫
Θ

∫
Θ

u ∧ v − uv√
u(1− u)v(1− v)

h⊤(u, θ)C(θ, η)h(v, η)dθdηdudv,

for every h ∈ L2([0, 1]×Θ, du× dθ).

Proof of the theorem 4.1.1. We use Corollary 2.2.1. Firstly we check
the criterion (2.2.1) as follows

E

[∥∥∥∥ 1√
T

∫ T

0

wT
s HsdMs

∥∥∥∥2
L2([0,1]×Θ)

]

=

∫ ∫ (
1

T

∫ T

0

(
wT

s (u)
)2 E [∥Hs(θ)∥2λs

]
ds

)
dθdu

→
∫

trC(θ, θ)dθ <∞.

The limit operation above is due to the dominated convergence theorem
because the pointwise convergence holds by the assumtion (4.1.3).

1

T

∫ T

0

(
wT

s (u)
)2 E [∥Hs(θ)∥2λs

]
ds

=

(
1− u

Tu

∫ Tu

0

+
u

T (1− u)

∫ T

Tu

)
E
[
∥Hs(θ)∥2λs

]
ds

→ (1− u)trC(θ, θ) + utrC(θ, θ) = trC(θ, θ)

and it holds that

1

T

∫ T

0

(
wT

s (u)
)2 E [∥Hs(θ)∥2λs

]
ds ≤ sup

s∈[0,∞)

E
[
∥Hs(θ)∥2λs

]
and the right-hand side is integrable with respect to du× dθ. Next we argue
the convergence of the inner product⟨

1√
T

∫ T

0

wT
s HsdMs, h

⟩
L2([0,1]×Θ)
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for h ∈ L2([0, 1]×Θ, du× dθ). The preceding display is equal to

1√
T

∫ T

0

⟨
wT

s Hs, h
⟩
L2([0,1]×Θ)

dMs

by the Fubini theorem for stochastic integrals (see 5.5 of Liptser and Shiryaev
(2001)) which can be applicable by the Proposition 4.1.1(ii). We shall apply
the martingale CLT. As for the variance, it holds that

VT := E

[(
1√
T

∫ T

0

⟨
wT

s Hs, h
⟩
L2([0,1]×Θ)

dMs

)2
]

= E
[
1

T

∫ T

0

⟨
wT

s Hs, h
⟩2
L2([0,1]×Θ)

λsds

]

and the right-hand side is equal to

E
[
1

T

∫ T

0

∫ ∫ ∫ ∫
wT

s (u)w
T
s (v)h(u, θ)

⊤Hs(θ)Hs(η)
⊤h(v, η)dθdηdudvλsds

]
=

∫ ∫ ∫ ∫
1

T

∫ T

0

wT
s (u)w

T
s (v)h(u, θ)

⊤E
[
Hs(θ)Hs(η)

⊤λs
]
h(v, η)dsdθdηdudv

We shall check that the dominated convergence theorem which yields that

VT →
∫ ∫ ∫ ∫

u ∧ v − uv√
u(1− u)v(1− v)

h(u, θ)⊤C(θ, η)h(v, η)dθdηdudv

can be applied. The pointwise convergence holds by the assumption (4.1.3).
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By the Schwartz inequality, it holds that

1

T

∫ T

0

wT
s (u)w

T
s (v)h(u, θ)

⊤E
[
Hs(θ)Hs(η)

⊤λs
]
h(v, η)ds

≤

√
1

T 2

∫ T

0

(wT
s (u)h(u, θ)

⊤E [Hs(θ)Hs(η)⊤λs]h(v, η))
2 ds

∫ T

0

(wT
s (v))

2ds

≤

√
1

T

∫ T

0

(wT
s (u))

2 sup
s∈[0,∞)

(h(u, θ)⊤E [Hs(θ)Hs(η)⊤λs]h(v, η))
2 ds

= sup
s∈[0,∞)

∣∣h(u, θ)⊤E [Hs(θ)Hs(η)
⊤λs
]
h(v, η)

∣∣
≤ ∥h(u, θ)∥ sup

s∈[0,∞)

∥∥E [Hs(θ)Hs(η)
⊤λs
]
h(v, η)

∥∥
≤ ∥h(u, θ)∥∥h(v, η)∥ sup

s∈[0,∞)

∥∥E [Hs(θ)Hs(η)
⊤λs
]∥∥

OP
,

The right-hand side is integrable with respect to du × dv × dθ × dη by the
Schwartz inequality and by the assumption (4.1.4). Therefore, we can apply
the dominated convergence theorem. It also leads that (2.2.2) holds. Finally,
let us check the Lyapunov condition:

E
[

1

T (2+δ0)/2

∫ T

0

⟨
wT

s Hs, h
⟩2+δ0

L2([0,1]×Θ)
λsds

]
→ 0

for some δ0 > 0. The Schwartz inequality gives the upper bound of the
left-hand side

1

T (2+δ0)/2
E
[∫ T

0

∥∥wT
s Hs

∥∥2+δ0

L2([0,1]×Θ)
λsds

]
∥h∥2+δ0

L2([0,1]×Θ).

Next, it follows from the Jensen inequality that

1

T (2+δ0)/2
E
[∫ T

0

∥∥wT
s Hs

∥∥2+δ0

L2([0,1]×Θ)
λsds

]
≤ 1

T (2+δ0)/2
E
[∫ T

0

∫ ∫
∥wT

s (u)Hs(θ)∥2+δ0dudθλsds

]
=

1

T (2+δ0)/2

∫ ∫ ∫ T

0

|wT
s (u)|2+δ0E

[
∥Hs(θ)∥2+δ0λs

]
dsdudθ

≤ 1

T δ0/2

∫
u1+δ0 + (1− u)1+δ0

(u(1− u))δ0/2
du

∫
sup

s∈[0,∞)

E
[
∥Hs(θ)∥2+δ0λs

]
dθ.
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If we choose δ0 < 2, which is possible by the assumption (4.1.1), the right-
hand side converges to 0, since∫

u1+δ0 + (1− u)1+δ0

(u(1− u))δ0/2
du

≤
∫ (

1

(1− u)δ0/2
+

1

uδ0/2

)
du = 2

∫
1

uδ0/2
du = 2.

Hence, the martingale central limit theorem yields the conclusion.

The following proposition and theorem are corresponding one to the propo-
sition 4.1.1 (i)(ii) and the theorem 4.1.1, when fixing θ.

Proposition 4.1.2. Fix a θ ∈ Θ. (i) If there exists a positive δ ∈ R such
that

sup
s∈[0,∞)

E[∥Hs(θ)∥2+δλs] <∞ (4.1.5)

holds, then it holds that

sup
s∈[0,∞)

E
[
∥Hs(θ)∥2λs

]
<∞. (4.1.6)

(ii) If (4.1.6) holds, then it holds that

E
[
∥MT (·, θ)∥2L2([0,1])

]
<∞.

In particular, MT (·, θ) almost surely takes its values in L2([0, 1], du).

Proof of the Proposition 4.1.2. (i) The Jensen inequality yields that

E[∥Hs(θ)∥2λs] = E[∥Hs(θ)∥2λs(1{∥Hs(θ)∥ ≥ 1}+ 1{∥Hs(θ)∥ < 1})]
≤ E[∥Hs(θ)∥2+δλs] + E[λs]
≤ sup

s∈[0,∞)

E
[
∥Hs(θ)∥2+δλs

]
+ sup

s∈[0,∞)

E [λs] .

This completes the proof.
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(ii) The left-hand side of the claim is equal to

E

[∫ 1

0

∥∥∥∥ 1√
T

∫ T

0

wT
s (u)Hs(θ)dMs

∥∥∥∥2 du
]

=

∫ 1

0

E
[
1

T

∫ T

0

(
wT

s (u)
)2 ∥Hs(θ)∥2λsds

]
du

=

∫ 1

0

(
1

T

∫ T

0

(
wT

s (u)
)2 E [∥Hs(θ)∥2λs

]
ds

)
du

≤ sup
s∈[0,∞)

E
[
∥Hs(θ)∥2λs

]
<∞

by a martingale property and the Fubini theorem. This completes the proof.

Theorem 4.1.2. Fix a θ ∈ Θ. Suppose that there exists the following limit

C(θ, η) = l.i.m.
T→∞

1

T

∫ T

0

Hs(θ)Hs(η)
⊤λsds. (4.1.7)

If there exists a positive δ ∈ R which satisfies

sup
s∈[0,∞)

E[∥Hs(θ)∥2+δλs] <∞ (4.1.8)

and it holds that

sup
s∈[0,∞)

∥∥E[Hs(θ)Hs(θ)
⊤λs]

∥∥
OP

<∞, (4.1.9)

then the random field MT (·, θ) converges to

Γ(·, θ) = C(θ, θ)1/2B◦
d(·)

w(·)
weakly in L2([0, 1], du) as T → ∞, where B◦

d denotes the d dimensional
standard Brownian bridge and w(u) =

√
u(1− u) for u ∈ [0.1].

Proof of the theorem 4.1.2. We use Corollary 2.2.1. Firstly we check
the criterion (2.2.1) as follows

E

[∥∥∥∥ 1√
T

∫ T

0

wT
s Hs(θ)dMs

∥∥∥∥2
L2([0,1])

]

=

∫ (
1

T

∫ T

0

(
wT

s (u)
)2 E [∥Hs(θ)∥2λs

]
ds

)
du

→ trC(θ, θ) <∞.
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The limit operation above is due to the bounded convergence theorem be-
cause the pointwise convergence holds by the assumption (4.1.7)

1

T

∫ T

0

(
wT

s (u)
)2 E [∥Hs(θ)∥2λs

]
ds

=

(
1− u

Tu

∫ Tu

0

+
u

T (1− u)

∫ T

Tu

)
E
[
∥Hs(θ)∥2λs

]
ds

→ (1− u)trC(θ, θ) + utrC(θ, θ) = trC(θ, θ)

for all u ∈ (0, 1) and it holds that

1

T

∫ T

0

(
wT

s (u)
)2 E [∥Hs(θ)∥2λs

]
ds ≤ sup

s∈[0,∞)

E
[
∥Hs(θ)∥2λs

]
.

Next we argue the convergence of the inner product⟨
1√
T

∫ T

0

wT
s Hs(θ)dMs, h

⟩
L2([0,1])

for h ∈ L2([0, 1], du). The preceding display is equal to

1√
T

∫ T

0

⟨
wT

s Hs(θ), h
⟩
L2([0,1])

dMs

by the Fubini theorem for stochastic integrals. We shall apply the martingale
CLT. As for the variance, it holds that

VT := E

[(
1√
T

∫ T

0

⟨
wT

s Hs(θ), h
⟩
L2([0,1])

dMs

)2
]

= E
[
1

T

∫ T

0

⟨
wT

s Hs(θ), h
⟩2
L2([0,1])

λsds

]

and the right-hand side is equal to

E
[
1

T

∫ T

0

∫ ∫
wT

s (u)w
T
s (v)h(u)

⊤Hs(θ)Hs(θ)
⊤h(v)dudvλsds

]
=

∫ ∫
1

T

∫ T

0

wT
s (u)w

T
s (v)h(u)

⊤E
[
Hs(θ)Hs(θ)

⊤λs
]
h(v)dsdudv
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We shall check that the dominated convergence theorem which yields that

VT →
∫ ∫

u ∧ v − uv√
u(1− u)v(1− v)

h(u)⊤C(θ, θ)h(v)dudv

can be applied. The pointwise convergence holds by the assumption (4.1.7).
Because of the Schwartz inequality, it holds that

1

T

∫ T

0

wT
s (u)w

T
s (v)h(u)

⊤E
[
Hs(θ)Hs(θ)

⊤λs
]
h(v)ds

≤

√
1

T 2

∫ T

0

(wT
s (u)h(u)

⊤E [Hs(θ)Hs(θ)⊤λs]h(v))
2 ds

∫ T

0

(wT
s (v))

2ds

≤

√
1

T

∫ T

0

(wT
s (u))

2 sup
s∈[0,∞)

(h(u)⊤E [Hs(θ)Hs(θ)⊤λs]h(v))
2 ds

= sup
s∈[0,∞)

∣∣h(u)⊤E [Hs(θ)Hs(θ)
⊤λs
]
h(v)

∣∣ .
The right-hand side is integrable by the Schwartz inequality for the Euclid
inner product, which gives the upper bound of the right-hand side

∥h(u)∥∥h(v)∥ sup
s∈[0,∞)

∥∥E [Hs(θ)Hs(θ)
⊤λs
]∥∥

OP
,

and by the assumption (4.1.9). Therefore, we can apply the dominated con-
vergence theorem. It also leads that (2.2.2) holds. Finally, let us check the
Lyapunov condition:

E
[

1

T (2+δ0)/2

∫ T

0

⟨
wT

s Hs(θ), h
⟩2+δ0

L2([0,1])
λsds

]
→ 0

for some δ0 > 0. The Schwartz inequality and the Jensen inequality give the
upper bound of the left-hand side

1

T (2+δ0)/2
E
[∫ T

0

∥∥wT
s Hs(θ)

∥∥2+δ0

L2([0,1])
λsds

]
∥h∥2+δ0

L2([0,1])

≤ 1

T (2+δ0)/2
E
[∫ T

0

∫
∥wT

s (u)Hs(θ)∥2+δ0duλsds

]
∥h∥2+δ0

L2([0,1])

=
1

T (2+δ0)/2

∫ ∫ T

0

|wT
s (u)|2+δ0E

[
∥Hs(θ)∥2+δ0λs

]
dsdu∥h∥2+δ0

L2([0,1])

≤ 1

T δ0/2

∫
u1+δ0 + (1− u)1+δ0

(u(1− u))δ0/2
du sup

s∈[0,∞)

E
[
∥Hs(θ)∥2+δ0λs

]
∥h∥2+δ0

L2([0,1]).
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If we choose δ0 < 2, which is possible by the assumption (4.1.8), the right-
hand side converges to 0. Hence, the martingale central limit theorem yields
the conclusion.

4.2 Limit theorems for discrete time martin-

gales taking values in L2 spaces

First of all, set a measurable space and introduce a filfration. Let us consider
a martingale difference sequence {ξ·} which satisfies

sup
k=1,2,...

E[ξ2k] <∞.

Define the following random field:

(u, θ)⇝Mn(u, θ) =
1√
n

n∑
k=1

wn
k (u)Hk−1(θ)ξk,

where

wn
k (u) =

{
0, u ∈

(
0, 1

n

)
,

1{k≤nu}−[nu]/n√
[nu]/n(1−[nu]/n)

, u ∈
[
1
n
, 1
)
,
k = 1, . . . , n,

θ is an element of open bounded subset Θ of Rd and H(θ) satisfies that

n∑
k=1

∥Hk−1(θ)∥2E[ξ2k|Fk−1] <∞, a.s..

Proposition 4.2.1. (i) If there exists a δ > 0 such that∫
Θ

sup
k=1,2,...

E[∥Hk−1(θ)∥2+δξ2k]dθ <∞. (4.2.1)

holds, then it holds that∫
Θ

sup
k=1,2,...

E
[
∥Hk−1(θ)∥2ξ2k

]
dθ <∞. (4.2.2)

(ii) If (4.2.2) holds, then it holds that

E
[
∥Mn∥2L2([0,1]×Θ)

]
<∞.
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In particular, Mn takes values in L2([0, 1]×Θ) a.s..
(iii) If (4.2.2) holds and there exists the following limit

C(θ, η) = l.i.m.
n→∞

1

n

n∑
k=1

Hk−1(θ)Hk−1(η)
⊤E[ξ2k|Fk−1], (4.2.3)

then it holds that ∫
Θ

trC(θ, θ)dθ <∞.

Proof of the Proposition 4.2.1. (i) The Jensen inequality yields that

E[∥Hk−1(θ)∥2ξ2k]
= E[∥Hk−1(θ)∥2ξ2k(1{∥Hk−1(θ)∥ ≥ 1}+ 1{∥Hk−1(θ)∥ < 1})]
≤ E[∥Hk−1(θ)∥2+δξ2k] + E[ξ2k]
≤ sup

k=1,2,...
E
[
∥Hk−1(θ)∥2+δξ2k

]
+ sup

k=1,2,...
E
[
ξ2k
]
.

The right-hand side does not depend on s, and by integrating both sides with
respect to θ, we obtain the conclusion because of the assumption (4.2.1).

(ii) The left-hand side of the claim is equal to

E

∥∥∥∥∥ 1√
n

n∑
k=1

wn
kHk−1ξk

∥∥∥∥∥
2

L2([0,1]×Θ)


= E

∫ ∫ ∥∥∥∥∥ 1√
n

n∑
k=1

wn
k (u)Hk−1(θ)ξk

∥∥∥∥∥
2

dθdu


= E

[∫ ∫
1

n

n∑
k=1

(wn
k (u))

2 ∥Hk−1(θ)∥2ξ2kdθdu

]

=

∫ ∫ (
1

n

n∑
k=1

(wn
k (u))

2 E
[
∥Hk−1(θ)∥2ξ2k

])
dθdu

≤
∫

sup
k=1,2,...

E
[
∥Hk−1(θ)∥2ξ2k

]
dθ <∞

by martingale property and the Fubini theorem. This completes the proof.
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(iii) It holds that

lim
n→∞

E

[
1

n

n∑
k=1

Hk−1(θ)Hk−1(η)
⊤ξ2k

]
= C(θ, η)

by the Jensen inequality. Hence, the conclusion is obvious.

Theorem 4.2.1. Suppose that there exists a δ > 0 which satisfies (4.2.1)
holds and that∫

Θ

∫
Θ

sup
k=1,2,...

∥∥E[Hk−1(θ)Hk−1(θ)
⊤ξ2k]

∥∥2
OP

dθdη <∞ (4.2.4)

and (4.2.3) hold. The random field Mn(·, ·) converges to Γ(·, ·) weakly in
L2([0, 1]×Θ, du× dθ) as n→ ∞, where Γ is a Gaussian field satisfying

E[⟨Γ, h⟩L2([0,1]×Θ)] = 0

and

E[⟨Γ, h⟩2L2([0,1]×Θ)]

=

∫ 1

0

∫ 1

0

∫
Θ

∫
Θ

u ∧ v − uv√
u(1− u)v(1− v)

h⊤(u, θ)C(θ, η)h(v, η)dθdηdudv,

for every h ∈ L2([0, 1]×Θ, du× dθ).

Proof of the theorem 4.2.1. We use Corollary 2.2.1. Let us check the
criterion (2.2.1) as follows

E

∫ ∫ ∥∥∥∥∥ 1√
n

n∑
k=1

wn
k (u)Hk−1(θ)ξk

∥∥∥∥∥
2

dθdu


=

∫ ∫
E

[
1

n

n∑
k=1

(wn
k (u))

2∥Hk−1(θ)∥2ξ2k

]
dθdu

→
∫

trC(θ, θ)dθ <∞.
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The limit operation above holds by the dominated convergence theorem be-
cause (4.2.3) yields the pointwise convergence

E

[
1

n

n∑
k=1

(wn
k (u))

2∥Hk−1(θ)∥2ξ2k

]

= E

(1− u)
1

[nu]

[nu]∑
k=1

+u
1

n− [nu]

n∑
k=[nu]+1

 ∥Hk−1(θ)∥2ξ2k


→ (1− u)trC(θ, θ) + utrC(θ, θ) = trC(θ, θ)

and because the domination holds by the assumption

E

[
1

n

n∑
k=1

(wn
k (u))

2∥Hk−1(θ)∥2ξ2k

]

≤ 1

n

n∑
k=1

(wn
k (u))

2 sup
k=1,2,...

E
[
∥Hk−1(θ)∥2ξ2k

]
= sup

k=1,2,...
E
[
∥Hk−1(θ)∥2ξ2k

]
.

The convergence of the inner product⟨
1√
n

n∑
k=1

wn
kHk−1ξk, h

⟩
L2([0,1]×Θ)

=
1√
n

n∑
k=1

⟨wn
kHk−1, h⟩L2([0,1]×Θ) ξk

shall be given by the martingale central limit theorem. As for the variance,
the tower property yields that

Vn := E

( 1√
n

n∑
k=1

⟨wn
kHk−1, h⟩L2([0,1]×Θ) ξk

)2


= E

[
1

n

n∑
k=1

⟨wn
kHk−1, h⟩2L2([0,1]×Θ) ξ

2
k

]

and the right-hand side is equal to

E

[
1

n

n∑
k=1

∫ ∫ ∫ ∫
wn

k (u)w
n
k (v)h(u, θ)

⊤Hk−1(θ)Hk−1(η)
⊤h(v, η)dθdηdudvξ2k

]

=

∫ ∫ ∫ ∫
1

n

n∑
k=1

wn
k (u)w

n
k (v)h(u, θ)

⊤E
[
Hk−1(θ)Hk−1(η)

⊤ξ2k
]
h(v, η)dθdηdudv
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We shall check that the dominated convergence theorem which yields that

Vn →
∫ ∫ ∫ ∫

u ∧ v − uv√
u(1− u)v(1− v)

h(u, θ)⊤C(θ, η)h(v, η)dθdηdudv,

can be applied. The pointwise convergence holds by the assumption (4.2.3).
Because of the Schwartz inequality, it holds that

1

n

n∑
k=1

wn
k (u)w

n
k (v)h(u, θ)

⊤E
[
Hk−1(θ)Hk−1(η)

⊤ξ2k
]
h(v, η)

≤

√√√√ 1

n2

n∑
k=1

(wn
k (u)h(u, θ)

⊤E [Hk−1(θ)Hk−1(η)⊤ξ2k]h(v, η))
2

n∑
k=1

(wn
k (v))

2

≤

√√√√ 1

n

n∑
k=1

(wn
k (u))

2 sup
k=1,2,...

(h(u, θ)⊤E [Hk−1(θ)Hk−1(η)⊤ξ2k]h(v, η))
2

= sup
k=1,2,...

∣∣h(u, θ)⊤E [Hk−1(θ)Hk−1(η)
⊤ξ2k
]
h(v, η)

∣∣
≤ ∥h(u, θ)∥ sup

k=1,2,...

∥∥E [Hk−1(θ)Hk−1(η)
⊤ξ2k
]
h(v, η)

∥∥
≤ ∥h(u, θ)∥∥h(v, η)∥ sup

k=1,2,...

∥∥E [Hk−1(θ)Hk−1(η)
⊤ξ2k
]∥∥

OP
.

The right-hand side is integrable by the Schwartz inequality and by the as-
sumption (4.2.4). Therefore, we can apply the dominated convergence the-
orem. It also leads that (2.2.2) holds. Finally, let us check the Lyapunov
condition:

E

[
1

n(2+δ0)/2

n∑
k=1

⟨wn
kHk−1, h⟩2+δ0

L2([0,1]×Θ) ξ
2
k

]
→ 0

for some δ0 > 0. The Schwartz inequality gives the upper bound of the
right-hand side

1

n(2+δ0)/2
E

[
n∑

k=1

∥wn
kHk−1∥2+δ0

L2([0,1]×Θ) ξ
2
k

]
∥h∥2+δ0

L2([0,1]×Θ).
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Then, the Jensen inequality yields that

1

n(2+δ0)/2
E

[
n∑

k=1

∥wn
kHs∥2+δ0

L2([0,1]×Θ) ξ
2
k

]

≤ 1

n(2+δ0)/2
E

[
n∑

k=1

∫ ∫
∥wn

k (u)Hk−1(θ)∥2+δ0dudθξ2k

]

=
1

n(2+δ0)/2

∫ ∫ n∑
k=1

|wn
k (u)|2+δ0E

[
∥Hk−1(θ)∥2+δ0ξ2k

]
dudθ

≤ 1

nδ0/2

∫ 1

1
n

W n(u)du

∫
sup

k=1,2,...
E
[
∥Hk−1(θ)∥2+δ0ξ2k

]
dθ,

where

W n(u) =
[nu]1+δ0 + (n− [nu])1+δ0

([nu](n− [nu]))δ0/2
.

If we choose δ0 < 2, which is possible by the assumption (4.1.1), the right-
hand side converges to 0, since∫ 1

1
n

W n(u)du ≤
∫ 1

1
n

(
1

(1− [nu]/n)δ0/2
+

1

([nu]/n)δ0/2

)
du

<

∫ 1

1
n

(
1

(1− u)δ0/2
+

1

(u− 1/n)δ0/2

)
du

= 2

∫ 1− 1
n

0

1

uδ0/2
du = 2

(
1− 1

n

)1−δ0/2

< 2.

Hence, the martingale central limit theorem yields the conclusion.
The following proposition and theorem are corresponding one to the

proposition 4.2.1 (i)(ii) and the theorem 4.2.1, when fixing θ. The proof
of the proposition 4.2.2 is omitted because it is very similar to the proof of
the proposition 4.2.1.

Proposition 4.2.2. Fix a θ ∈ Θ. (i) If there exists a positive δ ∈ R such
that

sup
k=1,2,...

E[∥Hk−1(θ)∥2+δξ2k] <∞ (4.2.5)

holds, then it holds that

sup
k=1,2,...

E
[
∥Hk−1(θ)∥2ξ2k

]
<∞. (4.2.6)
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(ii) If (4.2.6) holds, then it holds that

E
[
∥Mn(·, θ)∥2L2([0,1])

]
<∞.

In particular, MT (·, θ) almost surely takes its values in L2([0, 1], du).

Theorem 4.2.2. Fix a θ ∈ Θ. Suppose that there exists the following limit

C(θ, η) = l.i.m.
n→∞

1

n

n∑
k=1

Hk−1(θ)Hk−1(η)
⊤E[ξ2k|Fk−1]. (4.2.7)

If there exists a positive δ ∈ R which satisfies

sup
k=1,2,...

E[∥Hk−1(θ)∥2+δξ2k] <∞ (4.2.8)

and it holds that

sup
k=1,2,...

∥∥E[Hk−1(θ)Hk−1(θ)
⊤ξ2k]

∥∥
OP

<∞, (4.2.9)

then the random field Mn(·, θ) converges to

Γ(·, θ) = C(θ, θ)1/2B◦
d(·)

w(·)

weakly in L2([0, 1], du) as n→ ∞, where B◦
d denotes the d dimensional Brow-

nian bridge and w(u) =
√
u(1− u) for u ∈ [0.1].

Proof of the theorem 4.2.2. We use Corollary 2.2.1. Let us check the
criterion (2.2.1) as follows

E

∫ ∫ ∥∥∥∥∥ 1√
n

n∑
k=1

wn
k (u)Hk−1(θ)ξk

∥∥∥∥∥
2

dθdu


=

∫
E

[
1

n

n∑
k=1

(wn
k (u))

2Hk−1(θ)
⊤Hk−1(θ)ξ

2
k

]
du

→ trC(θ, θ) <∞.
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The last inequality is led by the definition of C(θ, η) and the assumption
(4.2.8). The limit operation above is due to the bounded convergence theorem
because the assumption (4.2.7) yields the pointwise convergence

E

[
1

n

n∑
k=1

(wn
k (u))

2Hk−1(θ)
⊤Hk−1(θ)ξ

2
k

]

= E

(1− u)
1

[nu]

[nu]∑
k=1

+u
1

n− [nu]

n∑
k=[nu]+1

Hk−1(θ)
⊤Hk−1(θ)ξ

2
k


→ (1− u)trC(θ, θ) + utrC(θ, θ) = trC(θ, θ)

for all u ∈ (0, 1) and it holds that

E

[
1

n

n∑
k=1

(wn
k (u))

2Hk−1(θ)
⊤Hk−1(θ)ξ

2
k

]
≤ sup

k=1,2,...
E
[
Hk−1(θ)

⊤Hk−1(θ)ξ
2
k

]
.

Next we argue the convergence of the inner product⟨
1√
n

n∑
k=1

wn
kHk−1(θ)ξk, h

⟩
L2([0,1])

=
1√
n

n∑
k=1

⟨wn
kHk−1(θ), h⟩L2([0,1]) ξk.

As for the variance, the tower property yields that

Vn := E

( 1√
n

n∑
k=1

⟨wn
kHk−1(θ), h⟩L2([0,1]) ξk

)2


= E

[
1

n

n∑
k=1

⟨wn
kHk−1(θ), h⟩2L2([0,1]) ξ

2
k

]

and the right-hand side is equal to

E

[
1

n

n∑
k=1

∫ ∫
wn

k (u)w
n
k (v)h(u)

⊤Hk−1(θ)Hk−1(θ)
⊤h(v)dudvξ2k

]

=

∫ ∫
1

n

n∑
k=1

wn
k (u)w

n
k (v)h(u)

⊤E
[
Hk−1(θ)Hk−1(θ)

⊤ξ2k
]
h(v)dudv
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We shall check that the dominated convergence theorem which yields that

Vn →
∫ ∫

u ∧ v − uv√
u(1− u)v(1− v)

h(u)⊤C(θ, θ)h(v)dudv

can be applied. The pointwise convergence holds by the assumption (4.2.7).
By the Schwartz inequality, it holds that

1

n

n∑
k=1

wn
k (u)w

n
k (v)h(u)

⊤E
[
Hk−1(θ)Hk−1(θ)

⊤ξ2k
]
h(v)

≤

√√√√ 1

n2

n∑
k=1

(wn
k (u)h(u)

⊤E [Hk−1(θ)Hk−1(θ)⊤ξ2k]h(v))
2

n∑
k=1

(wn
k (v))

2

≤

√√√√ 1

n

n∑
k=1

(wn
k (u))

2 sup
k=1,2,...

(h(u)⊤E [Hk−1(θ)Hk−1(θ)⊤ξ2k]h(v))
2

= sup
k=1,2,...

∣∣h(u)⊤E [Hk−1(θ)Hk−1(θ)
⊤ξ2k
]
h(v)

∣∣ .
The right-hand side is integrable by the Schwartz inequality for the Euclid
inner product, which gives the following upper bound

∥h(u, θ)∥ sup
k=1,2,...

∥∥E [Hk−1(θ)Hk−1(η)
⊤ξ2k
]
h(v, η)

∥∥
≤ ∥h(u, θ)∥∥h(v, η)∥ sup

k=1,2,...

∥∥E [Hk−1(θ)Hk−1(η)
⊤ξ2k
]∥∥

OP

and by the assumption (4.2.9). Therefore, we can apply the dominated con-
vergence theorem. It also leads that (2.2.2) holds. Finally, let us check the
Lyapunov condition:

E

[
1

n(2+δ0)/2

n∑
k=1

⟨wn
kHs(θ), h⟩2+δ0

L2([0,1]) ξ
2
k

]
→ 0

for some δ0 > 0. The Schwartz inequality and the Jensen inequality give the
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upper bound of the left-hand side

1

n(2+δ0)/2
E

[
n∑

k=1

∥wn
kHs(θ)∥2+δ0

L2([0,1]) ξ
2
k

]
∥h∥2+δ0

L2([0,1])

≤ 1

n(2+δ0)/2
E

[
n∑

k=1

∫
∥wn

k (u)Hk−1(θ)∥2+δ0duξ2k

]
∥h∥2+δ0

L2([0,1])

=
1

n(2+δ0)/2

∫ n∑
k=1

|wn
k (u)|2+δ0E

[
|Hk−1(θ)

⊤Hk−1(θ)|1+δ0/2ξ2k
]
dsdu∥h∥2+δ0

L2([0,1])

≤ 1

nδ0/2

∫ 1

1
n

W n(u)du sup
k=1,2,...

E
[
|Hk−1(θ)

⊤Hk−1(θ)|1+δ0/2ξ2k
]
∥h∥2+δ0

L2([0,1]).

If we choose δ0 < 2, which is possible by the assumption (4.1.1), the right-
hand side converges to 0. Hence, the martingale central limit theorem yields
the conclusion.
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Chapter 5

Continuous time stochastic
processes

5.1 The limit distribution of Z-process

Let us describe the following problem. Firstly, set a measurable space and
introduce a filtration. For a one dimensional continuous time adapted process
t⇝ Xt, t ∈ [0,∞) whose state space is R, consider a parametric model {Pθ}
indexed by θ ∈ Θ, where Θ is a bounded open subset of Rd, such that under
Pθ, X has the representation

Xt = At(θ) +Mt(θ), ∀t ∈ [0,∞)

where

t⇝ At(θ) =

∫ t

0

as(θ)ds

is a predictable finite variation stochastic process and M(θ) is a martingale
starting at zero whose predictable quadratic variation is

t⇝ ⟨M(θ)⟩t =
∫ t

0

bs(θ)ds,

where suppose that

sup
s∈[0,∞)

E[bs(θ)] <∞, ∀θ ∈ Θ.

The true value of θ for Xt is denoted by θ(t).
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For the model above, we wish to test the following hypotheses:

H0: ∃θ0 ∈ Θ such that θ(t) = θ0, ∀t ∈ [0, T ]
H1: ∃θ0, θ1 ∈ Θ, ∃u∗ ∈ (0, 1) such that θ(t) = θ0, ∀t ∈ [0, Tu∗)

and that θ(t) = θ1 ̸= θ0, ∀t ∈ [Tu∗, T ]

In order to estimate parameter θ, the following estimating equation is
considered:

ΨT (θ) =
1

T

∫ T

0

Hs(θ)(dXs − as(θ)ds) = 0,

where H is a d dimensional predictable process such that

1

T

∫ T

0

∥Hs(θ)∥2 bs(θ(s))ds <∞, a.s., ∀θ ∈ Θ.

The solution, or an approximate solution, of the estimating equation is de-
noted by θ̂T , i.e. it holds that ΨT (θ̂T ) = oP (1), and used as an estimator for
θ.

Assumptions I (C1) There exists the matrix Cκ(θ, η) given by

Cκ(θ, η) = l.i.m.
T→∞

1

T

∫ T

0

Hs(θ)Hs(η)
⊤bs(κ)ds

and Cθ0(θ, θ) is a positive definite for every θ ∈ Θ.
(C2) There exist the limits

l.i.m.
T→∞

1

T

∫ T

0

Hs(θ)(as(θ)− as(θ0))ds,

l.i.m.
T→∞

1

T

∫ T

0

Hs(θ)ȧs(θ0)ds,

for any θ0 ∈ Θ. Moreover, it holds that for any θ0 ∈ Θ and any ε > 0,

inf
θ:∥θ−θ0∥>ε

∥∥∥∥l.i.m.T→∞

1

T

∫ T

0

Hs(θ)(as(θ)− as(θ0))ds

∥∥∥∥ > 0. (5.1.1)
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(C3) Under H0,
√
T (θ̂T − θ0) →d N(0, Cθ0(θ0, θ0)

−1)
(C4) Under H1, θ̂T →p θ∗ which satisfies

u∗

(
l.i.m.
T→∞

1

Tu∗

∫ Tu∗

0

Hs(θ∗)(as(θ0)− as(θ∗))ds

)
+(1− u∗)

(
l.i.m.
T→∞

1

T (1− u∗)

∫ T

Tu∗

Hs(θ∗)(as(θ1)− as(θ∗))ds

)
= u∗D

∞(θ0) + (1− u∗)D
∞(θ1) = 0,

where

D∞(θ) = l.i.m.
T→∞

1

T

∫ T

0

Hs(θ∗)(as(θ)− as(θ∗))ds.

(C5) Hs(θ) is continuously differentiable with respect to θ.
(C6) as(θ) is second order continuously differentiable with respect to θ.
(C7) Under H1, it holds that

sup
s∈[0,∞)

E
[
∥Hs(θ∗)∥2a2s(θ)

]
<∞

for θ ∈ {θ0, θ1, θ∗}.
(C8) Under H0, it holds that

sup
s∈[0,∞)

E
[
∥Hs(θ0)∥2(∂ias(θ0))2

]
<∞

for i = 1, . . . , d. Under H1, it holds that

sup
s∈[0,∞)

E
[
∥Hs(θ∗)∥2(∂ias(θ∗))2

]
<∞

for i = 1, . . . , d.
(C9) Under H0, it holds that

sup
s∈[0,∞)

E[∥Hs(θ0)∥2+δbs(θ0)] <∞

for some δ > 0. Under H1, it holds that

sup
s∈[0,∞)

E[∥Hs(θ∗)∥2+δbs(θ(s))] <∞
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for some δ > 0.
(C10) Under H0, it holds that

sup
s∈[0,∞)

∥∥E[Hs(θ0)Hs(θ0)
⊤bs(θ0)]

∥∥
OP

<∞.

Under H1, it holds that

sup
s∈[0,∞)

∥∥E[Hs(θ∗)Hs(θ∗)
⊤bs(θ(s))]

∥∥
OP

<∞.

(C11) It holds that∥∥∥∥ 1√
T

∫ T

0

wT
s Hs(θ)dMs|θ=θn − 1√

T

∫ T

0

wT
s Hs(θ0)dMs

∥∥∥∥
L2([0,1])

→p 0

for any θ0 ∈ Θ, where θn is a random sequence which satisfies θn − θ0 =
OP (1/

√
T ).

Remark 5.1.1. If {M·} is finite variation processes, (C11) follows from the
Lipschitz conditions for θ ⇝ Hs(θ). In the case of ergodic diffusion processes,
(C11) also becomes the Lipschitz conditions for θ ⇝ Hs(θ) by the use of The
Itô formula under some mild conditions under H0. See the next section.

Assumptions I-S Assume (C1)-(C8) and (C11).
(C12) Under H0, it holds that

sup
s∈[0,∞)

E
[
∥Hs(θ0)∥4(bs(θ0))2

]
<∞.

Under H1, it holds that

sup
s∈[0,∞)

E
[
∥Hs(θ∗)∥4(bs(θ(s)))2

]
<∞.

(C13) Under H0, it holds that

sup
s∈[0,∞)

E
[
∥Hs(θ0)∥4

]
<∞.

Under H1, it holds that

sup
s∈[0,∞)

E
[
∥Hs(θ∗)∥4

]
<∞.
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Proposition 5.1.1. Assumptions Ia-S is a sufficient condition for Assump-
tions Ia. Especially,
(C12) implies (C10). (C12) and (C13) imply (C9).

Proof of the Proposition 5.1.1 As for the first assertion, it follows from
the property of the operator norm and the Jensen inequality that

sup
s∈[0,∞)

∥∥E [Hs(θ)Hs(θ)
⊤bs(θ(s))

]∥∥2
OP

≤ sup
s∈[0,∞)

d∑
i=1

d∑
j=1

∣∣∣E [(Hs(θ))(i) (Hs(θ))(j) bs(θ(s))
]∣∣∣2

≤ sup
s∈[0,∞)

d∑
i=1

d∑
j=1

E
[
(Hs(θ))

2
(i) (Hs(θ))

2
(j)

(
bs(θ(s))

)2]
= sup

s∈[0,∞)

E

[
d∑

i=1

(Hs(θ))
2
(i)

d∑
j=1

(Hs(θ))
2
(j)

(
bs(θ(s))

)2]
≤ sup

s∈[0,∞)

E
[(
∥Hs(θ)∥4 + ∥Hs(θ)∥4

) (
bs(θ(s))

)2]
= 2 sup

s∈[0,∞)

E
[
∥Hs(θ)∥4

(
bs(θ(s))

)2]
<∞.

As for the second assertion, it follows from the same reason as the Proposition
4.1.1. This completes the proof.

Introduce the random field {ZT (u, θ); (u, θ) ∈ (0, 1)×Θ} given by

ZT (u, θ) =
1√
T

∫ T

0

wT
s (u)Hs(θ)(dXs − as(θ)ds),

where

wT
s (u) =

1{s ≤ Tu} − u√
u(1− u)

, u ∈ (0, 1).

Its “predictable projection” to the true model is

Zp
T (u, θ) =

1√
T

∫ T

0

wT
s (u)Hs(θ)(as(θ(s))− as(θ))ds.
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The difference between Z and Zp, which is a martingale random field, is
denoted by {MT (u, θ); (u, θ) ∈ (0, 1)×Θ}, say, it is given by

MT (u, θ) = ZT (u, θ)− Zp
T (u, θ) =

1√
T

∫ T

0

wT
s (u)Hs(θ)dM

θ(s)
s .

Under H0, it holds that
Zp

T (·, θ0) = 0,

so
MT (·, θ0) = ZT (·, θ0).

This relationship gives us the idea to use functions of ZT as a test statistic.
However, since we cannot know the true value θ0, it is crucial to hold that
under H0,

ZT (·, θ̂T )− ZT (·, θ0) →p 0

which enables us to apply the limit theorem in the preceding chapter. More-
over, in order to ensure the power of the test, it is crucial to hold that under
H1,

1√
T
Zp

T (·, θ̂T ) ̸→
p 0.

Lemma 5.1.1. Under H0, it holds that∥∥∥Zp
T (·, θ̂T )

∥∥∥2
L2

→p 0

as T → ∞.

Proof of the Lemma 5.1.1 The Taylor expansion yields that

Zp
T (u, θ̂T ) =

1√
T

∫ T

0

wT
s (u)Hs(θ̂T )(as(θ0)− as(θ̂T ))ds

=
1

T

∫ T

0

wT
s (u)Hs(θ̂T )ȧs(θ̃T )

⊤ds
√
T (θ̂T − θ0),

where θ̃T is a value between θ0 and θ̂T . Because of the assumption
√
T (θ̂T −

θ0) = OP (1), we argue the convergence to 0 in probability in L2([0, 1], du) of
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the all elements in the following matrix:

1

T

∫ T

0

wT
s (·)Hs(θ̂T )ȧs(θ̃T )

⊤ds

=
1

T

∫ T

0

wT
s (·)Hs(θ0)ȧs(θ0)

⊤ds

+
1

T

∫ T

0

wT
s (·)Hs(θ0)(ȧs(θ̃T )− ȧs(θ0))

⊤ds

+
1

T

∫ T

0

wT
s (·)(Hs(θ̂T )−Hs(θ0))ȧs(θ0)

⊤ds.

For our purpose, it is sufficient to prove the first term in the right-hand
side converges to 0 in L2([0, 1], du) because of the continuous differentiability
of ȧs(θ) and Hs(θ) with respect to θ, θ̂T − θ0 = oP (1) and the Schwartz
inequality. The terms in the right-hand side converge to 0 in the second
mean for all u because of the assumption (C2). Moreover, by the Schwartz
inequality and assumption (C8), it holds that

E

[∥∥∥∥ 1T
∫ T

0

wT
s (u)Hs(θ0)∂ias(θ0)ds

∥∥∥∥2
]

≤ E
[
1

T

∫ T

0

(wT
s (u))

2ds
1

T

∫ T

0

Hs(θ0)
⊤Hs(θ0) (∂ias(θ0))

2 ds

]
≤ sup

s∈[0,∞)

E
[
Hs(θ0)

⊤Hs(θ0) (∂ias(θ0))
2] <∞,

for all i = 1, . . . , d and u ∈ (0, 1). Hence, the Fubini theorem and the
bounded convergence theorem yield that

lim
T→∞

E

[∫ 1

0

∥∥∥∥ 1T
∫ T

0

wT
s (u)Hs(θ0)∂ias(θ0)ds

∥∥∥∥2 du
]

= lim
T→∞

∫ 1

0

E

[∥∥∥∥ 1T
∫ T

0

wT
s (u)Hs(θ0)∂ias(θ0)ds

∥∥∥∥2
]
du

=

∫ 1

0

lim
T→∞

E

[∥∥∥∥ 1T
∫ T

0

wT
s (u)Hs(θ0)∂ias(θ0)ds

∥∥∥∥2
]
du = 0

for all i = 1, . . . , d. This completes the proof.
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Next, we discuss a limit theorem for MT (·, θ0) which is taking values in
L2([0, 1], du) spaces, which is a consequence of Theorem 4.1.2.

Lemma 5.1.2. Under H0, it holds that the random field u⇝MT (u, θ0) con-
verges weakly to u ⇝ Cθ0(θ0, θ0)

1/2B◦
d(u)/

√
u(1− u) in L2([0, 1], du), where

B◦
d is the d dimensional standard Brownian bridge.

Now, let us propose a test statistic ADT defined by

ADT =

∫ 1

0

ZT (u, θ̂T )
⊤Ĉ−1

T ZT (u, θ̂T )du

=
∥∥∥Ĉ−1/2

T ZT (·, θ̂T )
∥∥∥2
L2
,

where ĈT is a consistent estimator for Cθ0(θ0, θ0) under H0. By the condi-
tion (C11), the preceding lemma, the Slutsky theorem and the continuous
mapping theorem yield the former assertion of the following theorem.

Theorem 5.1.1. (i) Under H0, it holds that

ADT →d ∥G∥2L2

as T → ∞, where u⇝ G(u) = B◦
d(u)/

√
u(1− u).

(ii) Under H1, it holds that

ADT ≥ T

(
2

3
∆⊤C−1

∗ ∆− oP (1)

)
+OP (1),

where ∆ = u∗(1− u∗)(D
∞(θ0)−D∞(θ1)) and the test is consistent.

Proof of the Theorem 5.1.1.(ii). Since Ĉ−1
T is non-negative definite

matrix, it holds that

2v⊤1 Ĉ
−1
T v1 + 2v⊤2 Ĉ

−1
T v2 ≥ (v1 − v2)

⊤Ĉ−1
T (v1 − v2)

for arbitrary d-dimensional vector v1, v2. This property and the inequality√
u(1− u) ≤ 1/2 yield that

ADT ≥ 1

2

∫ 1

0

(Zp
T )

⊤(u, θ̂T )Ĉ
−1
T Zp

T (u, θ̂T )du−
∫ 1

0

MT (u, θ̂T )
⊤Ĉ−1

T MT (u, θ̂T )du

≥ 2T

∫ 1

0

A⊤
T (u)Ĉ

−1
T AT (u)du−

∫ 1

0

MT (u, θ̂T )
⊤Ĉ−1

T MT (u, θ̂T )du,
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where

AT (u) =

√
u(1− u)√

T
Zp

T (u, θ̂T )

=
1

T

∫ T

0

(1{s ≤ Tu} − u)Hs(θ̂T )(as(θ0)1{s ≤ Tu∗}

+as(θ1)1{s ≥ Tu∗} − as(θ̂T ))ds

=
1

T

∫ T

0

(1{s ≤ Tu} − u)Hs(θ∗)(as(θ0)1{s ≤ Tu∗}

+as(θ1)1{s ≥ Tu∗} − as(θ∗))ds+ oP (1)

= ÃT (u) + oP (1), (say).

The third equality is obtained by the same reason as Lemma 5.1.1. It holds
that, for u ≤ u∗,

ÃT (u) =
1− u

T

∫ Tu

0

Hs(θ∗)(as(θ0)− as(θ∗))ds

− u

T

∫ Tu∗

Tu

Hs(θ∗)(as(θ0)− as(θ∗))ds

− u

T

∫ T

Tu∗

Hs(θ∗)(as(θ1)− as(θ∗))ds

so,

l.i.m.
T→∞

ÃT (u) = (u(1− u)− u(u∗ − u))D∞(θ0)− u(1− u∗)D
∞(θ1)

= u(1− u∗)(D
∞(θ0)−D∞(θ1)),

and for u > u∗,

l.i.m.
T→∞

ÃT (u) = u∗(1− u)(D∞(θ0)−D∞(θ1)).

Let us denote l.i.m.
T→∞

ÃT (u) by A∞(u) for all u ∈ (0, 1). Next, we shall prove

E
[
∥ÃT − A∞∥2L2

]
→ 0. (5.1.2)

It holds that for all u,

E
[(
ÃT (u)− A∞(u)

)2]
≤ 2E

[
(ÃT (u))

2
]
+ 2(A∞(u))2
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and the first term in the right-hand side is bounded above by

2E
[
1

T

∫ T

0

(1{s ≤ Tu} − u)2Hs(θ∗)
⊤Hs(θ∗)(as(θ0)1{s ≤ Tu∗}

+as(θ1)1{s ≥ Tu∗} − as(θ∗))
2ds
]

≤ 2

T

∫ T

0

(1{s ≤ Tu} − u)2ds sup
s∈[0,∞)

E
[
Hs(θ∗)

⊤Hs(θ∗)(as(θ0)1{s ≤ Tu∗}

+as(θ1)1{s ≥ Tu∗} − as(θ∗))
2
]

≤ 2 sup
s∈[0,∞)

E
[
Hs(θ∗)

⊤Hs(θ∗)(as(θ0)
2 + as(θ1)

2 + as(θ∗)
2)
]
<∞.

Since the left-hand side of (5.1.2) is equal to∫ 1

0

E
[(
ÃT (u)− A∞(u)

)2]
du

and (A∞(u))2 is integrable with respect to u, the dominated convergence
theorem yields (5.1.2), and (5.1.2) yields that ÃT →p A∞ in L2([0, 1], du).
This result, the Slutsky theorem and the continuous mapping theorem yields
that ∫ 1

0

A⊤
T (u)Ĉ

−1
T AT (u)du→p

∫ 1

0

A⊤
∞(u)C−1

∗ A∞(u)du,

where C∗ := u∗Cθ0(θ∗, θ∗) + (1 − u∗)Cθ1(θ∗, θ∗). By simple calculations, the
right-hand side is equal to

u2∗(1− u∗)
2

3
(D∞(θ0)−D∞(θ1))

⊤C−1
∗ (D∞(θ0)−D∞(θ1)).

Finally, MT (·, θ̂T ) is asymptotically tight in L2([0, 1], du) by the assumption
(C11) and the Theorem 4.1.2. The last assertion is followed since C∗ is
positive definite and the assumption (5.1.1). This completes the proof.

5.2 A change detection procedure for an er-

godic diffusion process

Let us consider the stochastic differential equations with the state space
I = (l, r), where −∞ ≤ l < r ≤ ∞, given by

t⇝ Xt = X0 +

∫ T

0

S(Xs, θ)ds+

∫ T

0

σ(Xs)dWs, (5.2.1)
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where W· is the sandard Brownian motion and X0 is a random variable that
is independent of W· and satisfies E[(X0)

2] < ∞. Suppose that there exist a
strong solution to this SDE, that

sup
s∈[0,∞)

E[σ(Xs)
2] <∞

and that X· is ergodic in the second mean with respect to an invariant mea-
sure µθ for some θ, that is for any µθ-integrable function f , it holds that

lim
T→∞

E

[∥∥∥∥ 1T
∫ T

0

f(Xs)ds−
∫
I

f(x)µθ(dx)

∥∥∥∥2
]
= 0.

Remark 5.2.1. Some works consider test procedures to detect some changes
in drift parameters of diffusion processes: Lee et al. (2006), Mihalache (2012),
Negri and Nishiyama (2012) and Dehling et al. (2014). These previous works
assume the ergodicity which guarantees the convergence in probability, so this
assumption is stronger than theirs.

Suppose that S(x, θ) is continuously differentiable with respect to θ. Con-
sider the estimating equation

ΨT (θ) =
1

T

∫ T

0

Ṡ(Xs, θ)

σ(Xs)2
(dXs − S(Xs, θ)ds) = 0.

The solution of the above estimating equation is denoted by θ̂T . In this case,
as(θ) = S(Xs, θ), bs(θ) = σ(Xs)

2 and

Hs(θ) =
Ṡ(Xs, θ)

σ(Xs)2
.

The matrix Cκ(θ, η) is

Cκ(θ, η) =

∫
I

Ṡ(x, θ)Ṡ(x, η)⊤

σ(x)2
µκ(dx).

Suppose the following conditions:
(I) The function (x, θ) 7→ S(x, θ) is continuously differentiable with respect to
x and third order continuously differentiable with respect to θ in the neighbor-
hood N of θ0, θ1, θ∗ and the order of derivative is exchangeable. The function
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x 7→ σ(x) is continuously differentiable with respect to x. The functions
supθ∈N |S(x, θ)|, supθ∈N |∂iS(x, θ)|, supθ∈N |∂ijS(x, θ)|, supθ∈N |∂ijkS(x; θ)|,
σ(x) and σ′(x) are bounded above by polynomial growth functions of x,
that is, for example, it holds that

sup
θ∈N

|S(x, θ)| ≤ C(1 + |x|p)

for some constants C, p ≥ 1.
(II) infx∈R σ(x) > 0.
(III) For arbitrary q ≥ 1, sups∈[0,∞) E [|Xs|q] <∞.
(IV) Define

Ψ(θ, κ) =

∫
I

(S(x, κ)− S(x, θ))Ṡ(x, θ)

σ(x)2
µκ(dx).

For all κ ∈ Θ and any ε > 0, infθ:∥θ−κ∥>ε ∥Ψ(θ, κ)∥ > 0 holds.
(V) The matrix Cκ(θ, θ) is regular for all θ, κ ∈ Θ.
(VI) Define x 7→ K(x), Kd(x) by

K(·) = max
i,j,k

sup
θ∈N

∂i∂j∂kS(·, θ),

Kd(·) = max
i,j,k

sup
θ∈N

∂i∂j∂kS
′(·, θ),

where N is the neighborhood of any θ0. The function K(x) is continu-
ously differentiable with respect to x. The functions |K(x)| and |Kd(x)| are
bounded above by polynomial growth functions of x.

Remark 5.2.2. The conditions (I)-(V) are standard in order to argue infer-
ences on ergodic diffusion processes. See Nishiyama (2011) in Japanese. See
also Kutoyants (2004) for general studies on statistical inferences for ergodic
diffusion processes. Note that, in the current case, since we just consider
continuous processes, (C9) with δ = 0 is enough.

Proposition 5.2.1. Assume conditions (I)-(VI). (i) Under H0, it holds that√
T (θ̂T − θ0) →d N(0, I−1).

(ii) Under H1, it holds that θ̂T →p θ∗, which satisfies

u∗Ψ(θ∗, θ0) + (1− u∗)Ψ(θ∗, θ1) = 0.
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(iii) (C8) holds, that is, for θ = θ0, θ∗,

sup
s∈[0,∞)

E

[
∥Ṡ(Xs, θ)∥4

σ(Xs)4

]
<∞.

It yields that (C9) holds for δ = 1.
(iv) (C7) holds, that is, for θ = θ0, θ1, θ∗,

sup
s∈[0,∞)

E

[
∥Ṡ(Xs, θ∗)∥2(S(Xs, θ))

2

σ(Xs)4

]
<∞.

(v) (C10) holds, that is, for θ = θ0, θ∗

sup
s∈[0,∞)

∥∥∥∥∥E
[
Ṡ(Xs, θ)Ṡ(Xs, θ)

⊤

σ(Xs)2

]∥∥∥∥∥
2

OP

<∞.

As for the proofs of (i) and (ii), see Nishiyama (2011). As for the proof of
(iv), the proof is the same as (iii), essentially. Here, let us prove the rest.

Proof of the Proposition 5.2.1. Fix θ to θ0 or θ∗.
(iii). By the assumptions, there exist constants C, p ≥ 1 such that

sup
s∈[0,∞)

E

[
∥Ṡ(Xs, θ)∥4

σ(Xs)4

]
= sup

s∈[0,∞)

E


(∑d

i=1 (∂iS(Xs, θ))
2
)2

σ(Xs)4


≤ sup

s∈[0,∞)

E

[
d
∑d

i=1 (∂iS(Xs, θ))
4

σ(Xs)4

]

≤ sup
s∈[0,∞)

E

[
d

d∑
i=1

supθ∈N |∂iS(Xs, θ)|4

infx∈R σ(x)4

]

≤ sup
s∈[0,∞)

E

[
d

d∑
i=1

|C(1 + |Xs|)p|4

infx∈R σ(x)4

]

=
C4d2

infx∈R σ(x)4
sup

s∈[0,∞)

E
[
|1 + |Xs||4p

]
<∞.
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The latter assertion is obvious. This completes the proof.
(v). It follows from the definition of the operator norm that

sup
s∈[0,∞)

∥∥∥∥∥E
[
Ṡ(Xs, θ)Ṡ(Xs, θ)

⊤

σ(Xs)2

]∥∥∥∥∥
OP

≤ 1

infx∈R σ(x)2
sup

s∈[0,∞)

∥∥∥E [Ṡ(Xs, θ)Ṡ(Xs, θ)
⊤
]∥∥∥

OP

=
1

infx∈R σ(x)2
sup

s∈[0,∞)

max
i=1,...,d

σi

(
E
[
Ṡ(Xs, θ)Ṡ(Xs, θ)

⊤
])
,

where σi(A) denotes the i-th singular value of the matrix A. By the assump-
tions, there exist constants C, p ≥ 1 such that

sup
s∈[0,∞)

max
i=1,...,d

σi

(
E
[
Ṡ(Xs, θ)Ṡ(Xs, θ)

⊤
])

≤ sup
s∈[0,∞)

√√√√ d∑
i=1

(
σi

(
E
[
Ṡ(Xs, θ)Ṡ(Xs, θ)⊤

]))2

= sup
s∈[0,∞)

√√√√ d∑
i=1

d∑
j=1

(E [∂iS(Xs, θ)∂jS(Xs, θ)])
2

≤ sup
s∈[0,∞)

√√√√ d∑
i=1

d∑
j=1

(
E
[
sup
θ∈N

∂iS(Xs, θ) sup
θ∈N

∂jS(Xs, θ)

])2

≤ sup
s∈[0,∞)

√√√√ d∑
i=1

d∑
j=1

(E [C(1 + |Xs|)p])2

= sup
s∈[0,∞)

CdE [(1 + |Xs|)p] <∞.

This completes the proof.

Proposition 5.2.2. Let θ̂n is a random sequence such that
√
T (θ̂T − ϑ) =

OP (1) for any ϑ ∈ Θ. Under H0, it holds that∥∥∥∥∥ 1√
T

∫ T

0

wT
s

Ṡ(Xs, θ)

σ(Xs)
dWs|θ=θ̂T

− 1√
T

∫ T

0

wT
s

Ṡ(Xs, ϑ)

σ(Xs)
dWs

∥∥∥∥∥
L2([0,1])

→p 0.
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Remark 5.2.3. Let us confirm the Itô formula which will be frequently used
in the following proof. Let s ⇝ Xs be a one dimensional continuous semi-
martingale whose quadratic variation process is denoted by s ⇝ ⟨X⟩s. The
map x 7→ f(x) is second order continuously differentiable and its first and
second derivative is denoted by f ′, f ′′, respectively. It holds that∫ XT

X0

f ′(x)dx = f(XT )− f(X0) =

∫ T

0

f ′(Xs)dXs +
1

2

∫ T

0

f ′′(Xs)d⟨X⟩s.

Especially, when we consider the stochastic differential equation

Xt = X0 +

∫ t

0

S(Xs, θ0)ds+

∫ t

0

σ(Xs)dWs,

puitting f ′(·) = g(·)/σ2(·), it holds that∫ XT

X0

g(x)

σ2(x)
dx

=

∫ T

0

g(Xs)

σ(Xs)
dWs +

∫ T

0

(
g(Xs)S(Xs, θ0)

σ2(Xs)
+
g′(Xs)

2
− σ′(Xs)g(Xs)

σ(Xs)

)
ds.

We use Ṡ, S̈,K as g.

Proof of the Proposition 5.2.2. It follows from the Itô formula that∫ Tu

0

Ṡ(Xs, θ)

σ(Xs)
dWs

=

∫ XTu

X0

Ṡ(x, θ)

σ2(x)
dx−

∫ Tu

0

(
Ṡ(Xs, θ)S(Xs, θ0)

σ2(Xs)
+
Ṡ ′(Xs, θ)

2
− σ′(Xs)Ṡ(Xs, θ)

σ(Xs)

)
ds

and that∫ T

Tu

Ṡ(Xs, θ)

σ(Xs)
dWs

=

∫ XT

XTu

Ṡ(x, θ)

σ2(x)
dx−

∫ T

Tu

(
Ṡ(Xs, θ)S(Xs, θ0)

σ2(Xs)
+
Ṡ ′(Xs, θ)

2
− σ′(Xs)Ṡ(Xs, θ)

σ(Xs)

)
ds.

Noting that

M(u, θ) =
1√

Tu(1− u)

(
(1− u)

∫ Tu

0

Ṡ(Xs, θ)

σ(Xs)
dWs − u

∫ T

Tu

Ṡ(Xs, θ)

σ(Xs)
dWs

)
,
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the Taylor expansion around ϑ and the triangle inequality yield that

∥M(u, θ̂T )−M(u, ϑ)∥ (5.2.2)

≤

∥∥∥∥∥(1− u)

∫ XTu

X0

S̈(x, θ̃T )

σ2(x)
dx− u

∫ XT

XTu

S̈(x, θ̃T )

σ2(x)
dx

−(1− u)

∫ Tu

0

(
S̈(Xs, θ̃T )S(Xs, θ0)

σ2(Xs)
+
S̈ ′(Xs, θ̌T )

2
− σ′(Xs)S̈(Xs, θ̃T )

σ(Xs)

)
ds

+u

∫ T

Tu

(
S̈(Xs, θ̃T )S(Xs, θ0)

σ2(Xs)
+
S̈ ′(Xs, θ̌T )

2
− σ′(Xs)S̈(Xs, θ̃T )

σ(Xs)

)
ds

∥∥∥∥∥ ∥θ̂T − ϑ∥√
T (u(1− u))

≤

∥∥∥∥∥(1− u)

∫ XTu

X0

S̈(x, θ̃T )

σ2(x)
dx− u

∫ XT

XTu

S̈(x, θ̃T )

σ2(x)
dx

∥∥∥∥∥ ∥θ̂T − ϑ∥√
T (u(1− u))

+

∥∥∥∥∥−(1− u)

∫ Tu

0

(
S̈(Xs, θ̃T )S(Xs, θ0)

σ2(Xs)
+
S̈ ′(Xs, θ̌T )

2
− σ′(Xs)S̈(Xs, θ̃T )

σ(Xs)

)
ds

+u

∫ T

Tu

(
S̈(Xs, θ̃T )S(Xs, θ0)

σ2(Xs)
+
S̈ ′(Xs, θ̌T )

2
− σ′(Xs)S̈(Xs, θ̃T )

σ(Xs)

)
ds

∥∥∥∥∥ ∥θ̂T − ϑ∥√
T (u(1− u))

,

where θ̃, θ̌ are elements between θ̂T and ϑ. The second term is equal to∥∥∥∥∥− 1√
T

∫ T

0

wT
s (u)

(
S̈(Xs, θ̃T )S(Xs, θ0)

σ2(Xs)
+
S̈ ′(Xs, θ̌T )

2
− σ′(Xs)S̈(Xs, θ̃T )

σ(Xs)

)
ds

∥∥∥∥∥ ∥θ̂T−ϑ∥.
The triangle inequality yields the upper bound(∥∥∥∥∥ 1√

T

∫ T

0

wT
s (u)

(
S̈(Xs, ϑ)S(Xs, θ0)

σ2(Xs)
+
S̈ ′(Xs, ϑ)

2
− σ′(Xs)S̈(Xs, ϑ)

σ(Xs)

)
ds

∥∥∥∥∥
+

∥∥∥∥∥ 1√
T

∫ T

0

wT
s (u)

(
(S̈(Xs, θ̃T )− S̈(Xs, ϑ))S(Xs, θ0)

σ2(Xs)

+
S̈ ′(Xs, θ̌T )− S̈ ′(Xs, ϑ)

2
− σ′(Xs)(S̈(Xs, θ̃T )− S̈(Xs, ϑ))

σ(Xs)

)
ds

∥∥∥∥∥
)
∥θ̂T − ϑ∥.
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Each element in the norm of the second term is bounded above by

1√
T

∫ T

0

|wT
s (u)|

(
|∂i∂jS(Xs, θ̃T )− ∂i∂jS(Xs, ϑ)|S(Xs, θ0)

σ2(Xs)

+
|∂i∂jS ′(Xs, θ̌T )− ∂i∂jS

′(Xs, ϑ)|
2

+
|σ′(Xs)||∂i∂jS(Xs, θ̃T )− ∂i∂jS(Xs, ϑ)|

σ(Xs)

)
ds

≤ 1

T

∫ T

0

|wT
s (u)|

(
K(Xs)S(Xs, θ0)

σ2(Xs)
+
Kd(Xs)

2
+

|σ′(Xs)|K(Xs)

σ(Xs)

)
ds ·

√
T∥θ̂T − ϑ∥

The Schwartz inequality yields the following bound for the left part√
1

T

∫ T

0

|wT
s (u)|2ds

1

T

∫ T

0

(
K(Xs)S(Xs, θ0)

σ2(Xs)
+
Kd(Xs)

2
+

|σ′(Xs)|K(Xs)

σ(Xs)

)2

ds

=

√
1

T

∫ T

0

(
K(Xs)S(Xs, θ0)

σ2(Xs)
+
Kd(Xs)

2
+

|σ′(Xs)|K(Xs)

σ(Xs)

)2

ds

Its L2([0, 1], du) norm is asymptotically tight in R because of the ergodicity.
As for the first term in the right-hand side of (5.2.2), the triangle inequality
leads that∥∥∥∥∥(1− u)

∫ XTu

X0

S̈(x, θ̃T )

σ2(x)
dx− u

∫ XT

XTu

S̈(x, θ̃T )

σ2(x)
dx

∥∥∥∥∥
≤

∥∥∥∥∥(1− u)

∫ XTu

X0

S̈(x, ϑ)

σ2(x)
dx− u

∫ XT

XTu

S̈(x, ϑ)

σ2(x)
dx

∥∥∥∥∥ (5.2.3)

+

∥∥∥∥∥(1− u)

∫ XTu

X0

(S̈(x, θ̃T )− S̈(x, ϑ))

σ2(x)
dx− u

∫ XT

XTu

(S̈(x, θ̃T )− S̈(x, ϑ))

σ2(x)
dx

∥∥∥∥∥ .
The second term is bounded above by∥∥∥∥∥(1− u)

∫ XTu

X0

|S̈(x, θ̃T )− S̈(x, ϑ)|
σ2(x)

dx+ u

∫ XT

XTu

|S̈(x, θ̃T )− S̈(x, ϑ)|
σ2(x)

dx

∥∥∥∥∥
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and by the Itô formula, the first term is equal to∥∥∥∥∥(1− u)

[∫ Tu

0

S̈(Xs, ϑ)

σ(Xs)
dWs

+

∫ Tu

0

(
S̈(Xs, ϑ)S(Xs, θ0)

σ2(Xs)
+
S̈ ′(Xs, ϑ)

2
− σ′(Xs)S̈(Xs, ϑ)

σ(Xs)

)
ds

]

−u

[∫ T

Tu

S̈(Xs, ϑ)

σ(Xs)
dWs

+

∫ T

Tu

(
S̈(Xs, ϑ)S(Xs, θ0)

σ2(Xs)
+
S̈ ′(Xs, ϑ)

2
− σ′(Xs)S̈(Xs, ϑ)

σ(Xs)

)
ds

]∥∥∥∥∥ .
Therefore, the right-hand side of (5.2.3) is bounded by∥∥∥∥∥

∫ T

0

(1{s ≤ Tu} − u)
S̈(Xs, ϑ)

σ(Xs)
dWs

∥∥∥∥∥
+

∥∥∥∥∥
∫ T

0

(1{s ≤ Tu} − u)

(
S̈(Xs, ϑ)S(Xs, θ0)

σ2(Xs)
+
S̈ ′(Xs, ϑ)

2
− σ′(Xs)S̈(Xs, ϑ)

σ(Xs)

)
ds

∥∥∥∥∥
+d

∣∣∣∣(1− u)

∫ XTu

X0

K(x)

σ2(x)
dx+ u

∫ XT

XTu

K(x)

σ2(x)
dx

∣∣∣∣ ∥θ̃T − ϑ∥

because of the Lipschitz condition. Therefore, it is sufficient to prove that∥∥∥∥∥ 1T
∫ T

0

wT
s (·)

S̈(Xs, ϑ)

σ(Xs)
dWs

∥∥∥∥∥
2

L2([0,1])

→p 0 (5.2.4)

∥∥∥∥∥ 1T
∫ T

0

wT
s (·)

(
S̈(Xs, ϑ)S(Xs, θ0)

σ2(Xs)
+
S̈ ′(Xs, ϑ)

2
− σ′(Xs)S̈(Xs, ϑ)

σ(Xs)

)
ds

∥∥∥∥∥
2

L2([0,1])

→p 0 (5.2.5)∥∥∥∥∥ 1− ·
T 3/2

√
·(1− ·)

∫ XT ·

X0

K(x)

σ2(x)
dx

∥∥∥∥∥
2

L2([0,1])

→p 0 (5.2.6)

∥∥∥∥∥ ·
T 3/2

√
·(1− ·)

∫ XT

XT ·

K(x)

σ2(x)
dx

∥∥∥∥∥
2

L2([0,1])

→p 0 (5.2.7)

75



As for (5.2.4), it is enough to prove

1

T 2

∫ 1

0

E

[∣∣∣∣∫ T

0

wT
s (u)

∂i∂jS(Xs, ϑ)

σ(Xs)
dWs

∣∣∣∣2
]
du

=

∫ 1

0

E
[
1

T 2

∫ T

0

(wT
s (u))

2 (∂i∂jS(Xs, ϑ))
2

σ2(Xs)
ds

]
du

converges to 0 for any i, j. The integrand with respect to du has the following
bound which do not depend on T, u:

sup
s∈[0,∞)

E
[
(∂i∂jS(Xs, ϑ))

2

σ2(Xs)

]
≤
C2 sups∈[0,∞) E[(1 + |Xs|)2p]

infx∈R σ(x)2

and the integrand converges to 0 for every u by the ergodicity. Hence, the
bounded convergence theorem yields that (5.2.4) holds. This way shall be
also used below. As for (5.2.5), it is enough to prove the convergence of
the expectation to 0. It follows from the dominated convergence theorem
with the ergodicity and the Schwartz inequality. As for (5.2.6), since the Itô
formula yields that∫ XTu

X0

K(x)

σ2(x)
dx

=

∫ Tu

0

K(Xs)

σ2(Xs)
dWs +

∫ Tu

0

(
K(Xs)S(Xs, θ0)

σ2(Xs)
+
K ′(Xs)

2
− σ′(Xs)K(Xs)

σ(Xs)

)
ds,

it is sufficient to prove

E

∫ 1

0

(
1− u

T 3/2
√
u(1− u)

∫ Tu

0

K(Xs)

σ2(Xs)
dWs

)2

du

→ 0 (5.2.8)

and

E
[∫ 1

0

u(1− u)

T

(
1

Tu

∫ Tu

0

(
K(Xs)S(Xs, θ0)

σ2(Xs)

+
K ′(Xs)

2
− σ′(Xs)K(Xs)

σ(Xs)

)
ds

)2

du

]
→ 0. (5.2.9)
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As for (5.2.8), the left-hand side is equal to∫ 1

0

1− u

T 3u
E
[∫ Tu

0

(K(Xs))
2

σ4(Xs)
ds

]
du

≤ 1

T 2

∫ 1

0

(1− u)du sup
s∈[0,∞)

E
[
(K(Xs))

2

σ4(Xs)

]
→ 0.

As for (5.2.9), the Jensen inequality gives the upper bound of the left-hand
side

E

[∫ 1

0

1− u

T 2

∫ Tu

0

(
K(Xs)S(Xs, θ0)

σ2(Xs)
+
K ′(Xs)

2
− σ′(Xs)K(Xs)

σ(Xs)

)2

dsdu

]
.

It is bounded above by

1

T

∫ 1

0

u(1− u)du sup
s∈[0,∞)

E

[(
K(Xs)S(Xs, θ0)

σ2(Xs)
+
K ′(Xs)

2
− σ′(Xs)K(Xs)

σ(Xs)

)2
]

and it converges to 0. (5.2.7) is also valid by the same reason as (5.2.6). This
completes the proof.

Remark 5.2.4. We proved the approximation under H0. The assertion un-
der H1 is conjectured to be true, but its proof contains more complexities
because case analyses are needed.

Now, let us introduce the test statistic

ADT =

∫ 1

0

ZT (u, θ̂T )
⊤Ĉ−1

T ZT (u, θ̂T )

u(1− u)
du,

where

(u, θ)⇝ ZT (u, θ) =
1√
T

∫ T

0

wT
s (u)

Ṡ(Xs, θ)

σ(Xs)2
(dXs − S(Xs, θ)ds)

and

ĈT =
1

T

∫ T

0

Ṡ(Xs, θ̂T )Ṡ(Xs, θ̂T )
⊤

σ2(Xs)
ds.

Under H0, ĈT converges to Cθ0(θ0, θ0) in probability by the ergodicity and
the continuous differentiability of Ṡ. The Theorem 5.1.1, the continuous
mapping theorem and the Slutsky theorem yield the following theorem.

Theorem 5.2.1. Assume conditions (I)-(VI). Under H0, it holds that ADT →d

∥G∥2L2 as T → ∞.
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Chapter 6

Discrete time stochastic
processes

6.1 The limit distribution of Z-process

Firstly, set a measurable space and introduce a filtration. For a one di-
mensional discrete time adapted process{Xk}k=1,2,... whose state space is R,
consider a parametric model {Pθ} indexed by θ ∈ Θ, where Θ is a bounded
open subset of Rd. The true value of θ for Xk is denoted by θ(k).

For the model above, we consider the following test:

H0: ∃θ0 ∈ Θ such that θ(k) = θ0, ∀k = 1, . . . , n
H1: ∃θ0, θ1 ∈ Θ, ∃u∗ ∈ (0, 1) such that θ(k) = θ0, ∀k = 1, . . . , [nu∗]

and that θ(k) = θ1 ̸= θ0, ∀k = [nu∗] + 1, . . . , n

In order to estimate parameter θ, the following estimating equation is
considered:

Ψn(θ) =
1

n

n∑
k=1

Hk−1(θ)ξk(θ) = 0,

where {ξk(θ)}k=1,...,n becomes a martingale difference sequence when θ = θ(k)
which satisfies

sup
k=1,2,...

E
[
(ξk(θ))

2
]
<∞, ∀θ ∈ Θ,
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and Hk−1 is a d dimensional measurable-Fk−1 process such that

1

n

n∑
k=1

∥Hk−1(θ)∥2 E[(ξk(θ(k)))2|Fk−1] <∞, a.s., ∀θ ∈ Θ.

The solution, or an approximate solution, is denoted by θ̂n, i.e. it holds that
Ψn(θ̂n) = oP (1), and used as an estimator for θ.

Assumptions II (D1) There exists the matrix Cκ(θ, η) given by

Cκ(θ, η) = l.i.m.
n→∞

1

n

n∑
k=1

Hk−1(θ)Hk−1(η)
⊤E[(ξk(κ))

2|Fk−1]

and Cθ0(θ, θ) is a positive definite for any θ ∈ Θ.
(D2) There exists the limits

l.i.m.
n→∞

1

n

n∑
k=1

Hk−1(θ)(ξk(θ)− ξk(θ0))

l.i.m.
n→∞

1

n

n∑
k=1

Hk−1(θ)ξ̇k(θ0)

for any θ0 ∈ Θ. Moreover, it holds that for any θ0 ∈ Θ and any ε > 0,

inf
θ:∥θ−θ0∥>ε

∥∥∥∥∥l.i.m.n→∞

1

n

n∑
k=1

Hk−1(θ)(ξk(θ)− ξk(θ0))

∥∥∥∥∥ > 0. (6.1.1)

(D3) Under H0,
√
n(θ̂n − θ0) →d N(0, Cθ0(θ0, θ0)

−1).
(D4) Under H1, θ̂T →p θ∗ which satisfies

u∗

l.i.m.
n→∞

1

[nu∗]

[nu∗]∑
k=1

Hk−1(θ∗)(ξk(θ∗)− ξk(θ0))


+(1− u∗)

l.i.m.
n→∞

1

(n− [nu∗])

n∑
k=[nu∗]+1

Hk−1(θ∗)(ξk(θ∗)− ξk(θ1))


= u∗D

∞(θ0) + (1− u∗)D
∞(θ1) = 0,

79



where

D∞(θ) = l.i.m.
n→∞

1

n

n∑
k=1

Hk−1(θ∗)(ξk(θ∗)− ξk(θ)).

(D5) Hk(θ) is continuously differentiable with respect to θ.
(D6) ξk(θ) is second order continuously differentiable with respect to θ
(D7) Under H1, it holds that

sup
k=1,2,...

E
[
∥Hk−1(θ∗)∥2 (ξk(θ))2

]
<∞,

for θ ∈ {θ0, θ1, θ∗}.
(D8) Under H0, it holds that

sup
k=1,2,...

E
[
∥Hk−1(θ0)∥2 (∂iξk(θ0))2

]
<∞,

for i = 1, . . . , d. Under H1, it holds that

sup
k=1,2,...

E
[
∥Hk−1(θ∗)∥2 (∂iξk(θ∗))2

]
<∞,

for i = 1, . . . , d.
(D9) Under H0, it holds that

sup
k=1,2,...

E
[
∥Hk−1(θ0)∥2+δ(ξk(θ0))

2
]
<∞,

for some δ > 0. Under H1, it holds that

sup
k=1,2,...

E
[
∥Hk−1(θ∗)∥2+δ(ξk(θ(k)))

2
]
<∞,

for some δ > 0.
(D10) Under H0, it holds that

sup
k=1,2,...

∥∥E [Hk−1(θ0)Hk−1(θ0)
⊤(ξk(θ0))

2
]∥∥2

OP
<∞.

Under H1, it holds that

sup
k=1,2,...

∥∥E [Hk−1(θ∗)Hk−1(θ∗)
⊤(ξk(θ(k)))

2
]∥∥2

OP
<∞.
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(D11) It holds that∣∣∣(Ḣk−1(θ1)− Ḣk−1(θ2))(i,j)

∣∣∣ ≤ K
(i,j)
k−1 ∥θ1 − θ2∥ , ∀θ1, θ2 ∈ N,

where under H0, N is a neighborhood of θ0, and under H1, N is a neighbor-
hood of θ∗. Moreover, under H0, it holds that

sup
k=1,2,...

E[(K(i,j)
k−1 )

2(ξk(θ0))
2] <∞,

and under H1, it holds that

sup
k=1,2,...

E[(K(i,j)
k−1 )

2(ξk(θ(k)))
2] <∞.

(D12) Under H0, it holds that

sup
k=1,2...

E
[
∥∂iHk−1(θ0)∥2(ξk(θ0))2

]
<∞,

for all i = 1, . . . , d.
Under H1, it holds that

sup
k=1,2...

E
[
∥∂iHk−1(θ∗)∥2(ξk(θ(k)))2

]
<∞,

for all i = 1, . . . , d.
(D13) Under H0, there exists the limits

l.i.m.
n→∞

1

n

n∑
k=1

(
K

(i,j)
k−1 (ξk(θ0))

)2
l.i.m.
n→∞

1

n

n∑
k=1

(∂iHk−1(θ0)ξk(θ0)))
2

for all i, j = 1, . . . , d. Under H1, there exists the limits

l.i.m.
n→∞

1

n

n∑
k=1

(
K

(i,j)
k−1 (ξk(θ(k)))

)2
l.i.m.
n→∞

1

n

n∑
k=1

(
∂iHk−1(θ∗)ξk(θ(k)))

)2
for all i, j = 1, . . . , d.
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Assumptions II-S Assume (D1)-(D8) and (D11)-(D13). (D14) UnderH0,
it holds that

sup
k=1,2,...

E
[
∥Hk−1(θ0)∥4(ξk(θ0))4

]
<∞.

Under H1, it holds that

sup
k=1,2,...

E
[
∥Hk−1(θ∗)∥4(ξk(θ(k)))4

]
<∞.

(D15) Under H0, it holds that

sup
k=1,2,...

E
[
∥Hk−1(θ0)∥4

]
<∞.

Under H1, it holds that

sup
k=1,2,...

E
[
∥Hk−1(θ∗)∥4

]
<∞.

Proposition 6.1.1. Assumptions II-S is a sufficient condition for Assump-
tions II. Especially,
(D14) implies (D10). (D14) and (D15) imply (D9).

Proof of the Proposition 6.1.1 (i) In general it holds that for d dimen-
sional random vector a, b,∥∥E[ab⊤]∥∥2

OP
≤ tr

((
E[ab⊤]

)⊤ E[ab⊤]
)

≤ tr
(
E[ba⊤ab⊤]

)
= E[tr

(
ba⊤ab⊤

)
] = E[∥a∥2∥b∥2]

≤ E[∥a∥4 + ∥b∥4],

where the first inequality is led by the definition of the operator norm, the
second inequality is led by the fact that E[A⊤A] − (E[A])⊤ E[A] = E[(A −
E[A])⊤(A − E[A])] is non negative definite matrix. It follows from this in-
equality that

sup
k=1,2,...

∥∥E [Hk−1(θ)Hk−1(θ)
⊤(ξk(θ(k)))

2
]∥∥2

OP

≤ sup
k=1,2,...

E
[(
∥Hk−1(θ)∥4 + ∥Hk−1(θ)∥4

) (
ξk(θ(k))

)4]
<∞.

This completes the proof.
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Introduce the random field {Zn(u, θ); (u, θ) ∈ (0, 1)×Θ} given by

Zn(u, θ) =
1√
n

n∑
k=1

wn
k (u)Hk−1(θ)ξk(θ),

where

wn
k (u) =

{
0, u ∈

(
0, 1

n

)
,

1{k≤nu}−[nu]/n√
[nu]/n(1−[nu]/n)

, u ∈
[
1
n
, 1
)
, k = 1, . . . , n

.

Its “predictable projection” to the true model is

Zp
n(u, θ) =

1√
n

n∑
k=1

wn
k (u)Hk−1(θ)(ξk(θ)− ξk(θ(k))).

The difference between Z and Zp is denoted by {Mn(u, θ); (u, θ) ∈ (0, 1)×Θ},
say, it is given by

Mn(u, θ) =
1√
n

n∑
k=1

wn
k (u)Hk−1(θ)ξk(θ(k)).

Under H0, it holds that

Zp
n(·, θ0) = 0,

so
Mn(·, θ0) = Zn(·, θ0).

This relationship gives us the idea to use functions of Zn as a test statistic.
However, since we cannot know the true value θ0, it is crucial to hold that
under H0,

Zn(·, θ̂n)− Zn(·, θ0) →p 0

which enables us to apply the limit theorem in the preceding chapter. More-
over, in order to ensure the power of the test, it is crucial to hold that under
H1,

1√
n
Zp

n(·, θ̂n) ̸→p 0.

Lemma 6.1.1. Under H0, it holds that∥∥∥Zp
n(·, θ̂n)

∥∥∥2
L2

→p 0

as n→ ∞
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Proof of the Lemma 6.1.1 The Taylor expansion yields that

Zp
n(u, θ̂T ) =

1√
n

n∑
k=1

wn
k (u)Hk−1(θ̂n)(ξk(θ̂n)− ξk(θ(k)))

=
1

n

n∑
k=1

wn
k (u)Hk−1(θ̂n)ξ̇k(θ̃n)

⊤√n(θ̂n − θ0),

where θ̃n is a value between θ0 and θ̂n. Because of the assumption
√
n(θ̂n −

θ0) = OP (1), we argue the convergence to 0 in probability in L2([0, 1], du) of
the all elements in the following matrix:

1

n

n∑
k=1

wn
k (·)Hk−1(θ̂n)ξ̇k(θ̃n)

⊤ =
1

n

n∑
k=1

wn
k (·)Hk−1(θ0)ξ̇k(θ0)

⊤ + oP (1),

by the continuous differentiability of Hk−1(θ) and ξ̇k(θ) with respect to θ.
The terms in the right-hand side converge to 0 in the second mean for any u
because of the assumption (D2). Moreover, by the Schwartz inequality and
assumption (D8), it holds that

E

∥∥∥∥∥ 1n
n∑

k=1

wn
k (u)Hk−1(θ0)∂iξk(θ0)

∥∥∥∥∥
2


≤ E

[
1

n

n∑
k=1

(wn
k (u))

2 1

n

n∑
k=1

Hk−1(θ0)
⊤Hk−1(θ0) (∂iξk(θ0))

2

]
≤ sup

k=1,2,...
E
[
Hk−1(θ0)

⊤Hk−1(θ0) (∂iξk(θ0))
2] <∞,

for all i = 1, . . . , d and u ∈ [0, 1]. Hence, the Fubini theorem and the bounded
convergence theorem yield that

lim
n→∞

E

∫ 1

0

∥∥∥∥∥ 1n
n∑

k=1

wn
k (u)Hk−1(θ0)∂iξk(θ0)

∥∥∥∥∥
2

du


= lim

n→∞

∫ 1

0

E

∥∥∥∥∥ 1n
n∑

k=1

wn
k (u)Hk−1(θ0)∂iξk(θ0)

∥∥∥∥∥
2
 du

=

∫ 1

0

lim
n→∞

E

∥∥∥∥∥ 1n
n∑

k=1

wn
k (u)Hk−1(θ0)∂iξk(θ0)

∥∥∥∥∥
2
 du = 0
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for all i = 1, . . . , d. This completes the proof.

Lemma 6.1.2. Under H0, it holds that∥∥∥Mn(·, θ̂n)−Mn(·, θ0)
∥∥∥2
L2

→p 0

as n→ ∞

Proof of the Lemma 6.1.2 The Taylor expansion yields that

Mn(u, θ̂n)−Mn(u, θ0) =
1

n

n∑
k=1

wn
k (u)Ḣk−1(θ̃n)

⊤ξk(θ0)
√
n(θ̂n − θ0),

where θ̃n is a value between θ0 and θ̂n. Because of the assumption
√
n(θ̂n −

θ0) = OP (1), we argue the convergence to 0 in probability in L2([0, 1], du) of
the all elements in the following matrix:

1

n

n∑
k=1

wn
k (·)Ḣk−1(θ̃n)

⊤ξk(θ0) =
1

n

n∑
k=1

wn
k (·)Ḣk−1(θ0)

⊤ξk(θ0) + oP (1),

where the last equality is followed by the Schwartz inequality and the as-
sumption (D11). Indeed, it holds that∫ (

1

n

n∑
k=1

wn
k (u)

(
Ḣk−1(θ̃n)− Ḣk−1(θ0)

)
(i,j)

ξk(θ0)

)2

du

≤
∫

1

n2

n∑
k=1

(wn
k (u))

2

n∑
k=1

(
Ḣk−1(θ̃n)− Ḣk−1(θ0)

)2
(i,j)

(ξk(θ0))
2du

=
1

n

n∑
k=1

(
Ḣk−1(θ̃n)− Ḣk−1(θ0)

)2
(i,j)

(ξk(θ0))
2

≤ 1

n

(
1

n

n∑
k=1

(
K

(i,j)
k−1 ξk(θ0)

)2)∥∥∥√n(θ̃n − θ0)
∥∥∥2 →p 0,

for all i, j = 1, . . . , d, where the last convergence is followed by the Slustsky
theorem since

√
n(θ̂n − θ0) = OP (1) and

E

[
1

n

(
1

n

) n∑
k=1

(K
(i,j)
k−1 ξk(θ0))

2

]
≤ 1

n
sup

k=1,2,...
E
[
(K

(i,j)
k−1 ξk(θ0))

2
]
→ 0
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hold. It holds that

E

∥∥∥∥∥ 1n
n∑

k=1

wn
k (u)∂iHk−1(θ0)ξk(θ0)

∥∥∥∥∥
2


≤ E

[
1

n

n∑
k=1

(wn
k (u))

2 1

n

n∑
k=1

∂iHk−1(θ0)
⊤∂iHk−1(θ0)(ξk(θ0))

2

]
≤ sup

k=1,2...
E
[
∂iHk−1(θ0)

⊤∂iHk−1(θ0)(ξk(θ0))
2
]
<∞.

In consequence, it follows from the Fubini theorem and the bounded conver-
gence theorem that

E

∥∥∥∥∥ 1n
n∑

k=1

wn
k (·)Ḣk−1(θ0)

⊤ξk(θ0)

∥∥∥∥∥
2

L2

→ 0,

because the assumption (D13) yields the pointwise convergence to 0. This
completes the proof.

Next, we discuss a limit theorem for Mn(·, θ0) which is taking values in
L2([0, 1], du) spaces, which is a consequence of Theorem 4.2.2.

Lemma 6.1.3. Under H0, it holds that the random field u ⇝ Mn(u, θ0)
converges weakly to u⇝ Cθ0(θ0, θ0)B

◦
d(u)/

√
u(1− u) in L2([0, 1], du), where

B◦
d is the d dimensional Brownian bridge.

It is ready to propose a test statistic ADn defined by

ADn =

∫ 1

0

Zn(u, θ̂n)
⊤Ĉ−1

n Zn(u, θ̂n)du

=
∥∥∥Ĉ−1/2

n Zn(·, θ̂n)
∥∥∥2
L2
,

where Ĉn is a consistent estimator for Cθ0(θ0, θ0) under H0. By the preceding
lemma, the Slutsky theorem and the continuous mapping theorem yield the
former assertion of the following theorem.

Theorem 6.1.1. (i) Under H0, it holds that

ADn →d ∥G∥2L2

as n → ∞, where u ⇝ G(u) = B◦
d(u)/

√
u(1− u). (ii) Under H1, ADn

diverges to positive infinity as n→ ∞.

86



Proof of the Theorem 6.1.1.(ii). Since Ĉ−1
n is non-negative definite

matrix, it holds that

2v⊤1 Ĉ
−1
n v1 + 2v⊤2 Ĉ

−1
n v2 ≥ (v1 − v2)

⊤Ĉ−1
n (v1 − v2)

for arbitrary d-dimensional vector v1, v2. This property and the inequality√
[nu]/n(1− [nu]/n) ≤ 1/2 yield that

ADn ≥ 1

2

∫ 1

0

(Zp
n)

⊤(u, θ̂n)Ĉ
−1
n Zp

n(u, θ̂n)du−
∫ 1

0

Mn(u, θ̂n)Ĉ
−1
n Mn(u, θ̂n)du

≥ 2n

∫ 1

0

A⊤
n (u, θ̂n)Ĉ

−1
n An(u, θ̂n)du−

∫ 1

0

Mn(u, θ̂n)Ĉ
−1
n Mn(u, θ̂n)du,

where

An(u) =

√
[nu]/n(1− [nu]/n)√

n
Zp

n(u, θ̂n)

=
1

n

n∑
k=1

(
1{k ≤ nu} − [nu]

n

)
Hk−1(θ̂n)(ξk(θ̂n)− ξk(θ0)1{k ≤ nu∗}

−ξk(θ1)1{k ≥ nu∗})

=
1

n

n∑
k=1

(
1{k ≤ nu} − [nu]

n

)
Hk−1(θ∗)(ξk(θ∗)− ξk(θ0)1{k ≤ nu∗}

−ξk(θ1)1{k ≥ nu∗}) + oP (1)

= Ãn(u) + oP (1), (say).

The second last equality can be obtained by the same reason as the Lemma
6.1.1. It holds that, for u < [nu∗]/n,

Ãn(u) =
1

n

(
1− [nu]

n

) [nu]∑
k=1

Hk−1(θ∗)(ξk(θ∗)− ξk(θ0))

+
1

n

(
− [nu]

n

) [nu∗]∑
k=[nu]+1

Hk−1(θ∗)(ξk(θ∗)− ξk(θ0))

+
1

n

(
− [nu]

n

) n∑
k=[nu∗]+1

Hk−1(θ∗)(ξk(θ∗)− ξk(θ1))
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so,

l.i.m.
n→∞

Ãn(u) = (u(1− u)− u(u∗ − u))D∞(θ0)− u(1− u∗)D
∞(θ1)

= u(1− u∗)(D
∞(θ0)−D∞(θ1)),

for [nu∗]/n ≤ u < ([nu∗] + 1)/n,

Ãn(u) =
1

n

(
1− [nu∗]

n

) [nu∗]∑
k=1

Hk−1(θ∗)(ξk(θ∗)− ξk(θ0))

+
1

n

(
− [nu∗]

n

) n∑
k=[nu∗]+1

Hk−1(θ∗)(ξk(θ∗)− ξk(θ1))

so,
l.i.m.
n→∞

Ãn(u) = u∗(1− u∗)(D
∞(θ0)−D∞(θ1)),

and for u ≥ ([nu∗] + 1)/n,

l.i.m.
n→∞

Ãn(u) = u∗(1− u)(D∞(θ0)−D∞(θ1)).

Let us denote

A∞(u) =

{
u(1− u∗)(D

∞(θ0)−D∞(θ1)), u ∈ (0, u∗) ,

u∗(1− u)(D∞(θ0)−D∞(θ1)), u ∈ [u∗, 1) .

Next, we shall prove

E
[
∥Ãn − A∞∥2L2

]
→ 0. (6.1.2)

It holds that for all u,

E
[(
Ãn(u)− A∞(u)

)2]
≤ 2E

[
(Ãn(u))

2
]
+ 2(A∞(u))2

and the first term in the right-hand side is bounded above by

2E

[
1

n

n∑
k=1

(
1{k ≤ nu} − [nu]

n

)2

Hk−1(θ∗)
⊤Hk−1(θ∗)(ξk(θ∗)

−ξk(θ0)1{k ≤ nu∗} − ξk(θ1)1{k ≥ nu∗})2
]

≤ 2

n

n∑
k=1

(
1{k ≤ nu} − [nu]

n

)2

sup
k=1,2,...

E
[
Hk−1(θ∗)

⊤Hk−1(θ∗)(ξk(θ∗)

−ξk(θ0)1{k ≤ nu∗} − ξk(θ1)1{k ≥ nu∗})2
]

≤ 2 sup
k=1,2,...

E
[
Hk−1(θ∗)

⊤Hk−1(θ∗)(ξk(θ0)
2 + ξk(θ1)

2 + ξk(θ∗)
2)
]
<∞.
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Since the left-hand side of (6.1.2) is equal to∫ 1

0

E
[(
Ãn(u)− A∞(u)

)2]
du

and (A∞(u))2 is integrable with respect to u, the dominated convergence
theorem yields (6.1.2), and (6.1.2) yields that Ãn →p A∞ in L2. This result,
the Slutsky theorem and the continuous mapping theorem yields that∫ 1

0

A⊤
n (u)Ĉ

−1
n An(u)du→p

∫ 1

0

A⊤
∞(u)C−1

∗ A∞(u)du,

where C∗ := u∗Cθ0(θ∗, θ∗) + (1 − u∗)Cθ1(θ∗, θ∗). By simple calculations, the
right-hand side is equal to

u2∗(1− u∗)
2

3
(D∞(θ0)−D∞(θ1))

⊤C−1
∗ (D∞(θ0)−D∞(θ1)).

Finally, Mn(·, θ̂n) is asymptotically tight in L2([0, 1], du) by the assump-
tion (D11), which guarantees an approximation of θ∗ by consistent estimator,
and the Theorem 4.2.2. The last assertion is followed since C∗ is positive def-
inite and the assumption (6.1.1). This completes the proof.

6.2 A change detection procedure for for an

ergodic time series

Consider the time series model given by

Xk = S̃(Xk−1, . . . , Xk−q1 ; θ) + σ̃(Xk−1, . . . , Xk−q2 ; θ)εk

for k = 1, . . . , n, where {εk}nk=1 are independently, identically distributed
with N(0, 12) and θ ∈ Θ ⊂ Rd. Assume that S̃ and σ̃ do not have the same
elements of the parameter θ. By putting q = q1∨q2 and changing the domain
of the functions S̃ and σ̃, we can write

Xk = S(Xk; θ) + σ(Xk; θ)wk,

where Xk = (Xk−1, . . . , Xk−q) and S(·; θ) and σ(·; θ) are some measurable
functions on Rq. We can substitute X0. . . . , X−q with zero, or other finite
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value. Suppose that X is ergodic in the second mean with respect to an
invariant measure µ, that is, for any µ- measurable function f , it holds that

lim
n→∞

E

∥∥∥∥∥ 1n
n∑

k=1

f(Xk,Xk)−
∫
Rq+1

f(x)µ(dx)

∥∥∥∥∥
2
 = 0.

Assume that S(x, θ) and σ(x, θ) are third order continuously differentiable
with respect to θ.

Consider the estimating equation

Ψn(θ) =
1

n

n∑
k=1

1

σ(Xk; θ)

(
Ṡ(Xk; θ)

(
Xk − S(Xk; θ)

σ(Xk; θ)

)

+σ̇(Xk; θ)

((
Xk − S(Xk; θ)

σ(Xk; θ)

)2

− 1

))

=
1

n

n∑
k=1

Ṡ(Xk; θ)

(σ(Xk; θ))2
ξak(θ) +

1

n

n∑
k=1

σ̇(Xk; θ)

(σ(Xk; θ))3
ξbk(θ)

= Ψa
n(θ) + Ψb

n(θ) (say)

= 0,

where ξak and ξbk are defined by

ξak(θ) = Xk − S(Xk; θ)

and
ξbk(θ) = (Xk − S(Xk; θ))

2 − (σ(Xk; θ))
2,

respectively. The solution of the above estimating equation is denoted by θ̂n.

Define the random fields:

(u, θ)⇝ Zn(u, θ) = Za
n(u, θ) + Zb

n(u, θ),

where

Za
n(u, θ) =

1

n

n∑
k=1

wn
k (u)

Ṡ(Xk; θ)

(σ(Xk; θ))2
ξak(θ)

Zb
n(u, θ) =

1

n

n∑
k=1

wn
k (u)

σ̇(Xk; θ)

(σ(Xk; θ))3
ξbk(θ);
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(u, θ)⇝ Zp
n(u, θ) = Zp,a

n (u, θ) + Zp,b
n (u, θ),

where

Zp,a
n (u, θ) =

1

n

n∑
k=1

wn
k (u)

Ṡ(Xk; θ)

(σ(Xk; θ))2
(ξak(θ)− ξak(θ(k)))

Zp,b
n (u, θ) =

1

n

n∑
k=1

wn
k (u)

σ̇(Xk; θ)

(σ(Xk; θ))3
(ξbk(θ)− ξbk(θ(k)));

(u, θ)⇝Mn(u, θ) = Ma
n(u, θ) +Mb

n(u, θ),

where

Ma
n(u, θ) =

1

n

n∑
k=1

wn
k (u)

Ṡ(Xk; θ)

(σ(Xk; θ))2
ξak(θ(k))

Mb
n(u, θ) =

1

n

n∑
k=1

wn
k (u)

σ̇(Xk; θ)

(σ(Xk; θ))3
ξbk(θ(k)).

As for the Lemmas 6.1.1 and 6.1.2, it is sufficient to treat the first term and
the second term separately by the ineqaulity (a+ b)2 ≤ 2(a2 + b2). In order
to prove the Lemma 6.1.3, it is sufficient to prove the weak convergences of
Ma

n(·, θ0) and Mb
n(·, θ0) since the limits are the Gaussian and it follows from

the tower property that

E[Ma
n(·, θ0)⊤Mb

n(·, θ0)] = 0.

The matrix Cκ(θ, η) is

Cκ(θ, η) = Ca
κ(θ, η) + Cb

κ(θ, η),

where

Ca
κ(θ, η) =

∫
Rq

Ṡ(x; θ)Ṡ(x; η)⊤

(σ(x; θ))2(σ(x; η))2
(σ(x;κ))2µκ(dx)

and

Ca
κ(θ, η) =

∫
Rq

σ̇(x; θ)σ̇(x; η)⊤

(σ(x; θ))3(σ(x; η))3
(σ(x;κ))4µκ(dx).
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Suppose the following conditions:
(I) There exists measurable function Λ on Rq such that for θ ∈ {θ0, θ1, θ∗}
and i=1,. . . , d,

|S(x, θ)| ≤ Λ(x),

∥Ṡ(x, θ)∥ ≤ Λ(x),

∥∂iṠ(x, θ)∥ ≤ Λ(x),

σ2(x, θ) ≤ Λ(x),

∥σ̇∥2(x, θ) ≤ Λ(x),

∥∂iσ̇(x, θ)∥2 ≤ Λ(x).

(II) It holds that
inf
θ∈Θ

inf
x∈Rq

σ(x; θ) > 0.

(III) It holds that
sup

k=1,2,...
E[(Λ(Xk))

6] <∞.

(IV) Define Ψ(θ, θ0) = Ψa(θ, θ0) + Ψb(θ, θ0), where

Ψa(θ, θ0) =

∫
Rq

(S(x, θ0)− S(x, θ))Ṡ(x, θ)

σ2(x, θ)
µθ0(dx)

and

Ψb(θ, θ0) =

∫
Rq

((σ(x, θ0))
2 − (σ(x, θ))2)σ̇(x, θ)

σ3(x, θ)
µθ0(dx).

For all θ ∈ Θ and any ε, it holds that

sup
θ∈Θ

∥Ψn(θ, θ0)−Ψ(θ, θ0)∥ →p 0

and that
inf

θ:∥θ−θ0∥>ε
∥Ψ(θ, θ0)∥ > 0.

(V) The matrix Cκ(θ, θ) is invertible for all θ, κ ∈ Θ.
(VI) Under H0,

√
n(θ̂ − θ0) →d N(0, C−1(θ0, θ0)) and under H1, θ̂n →p θ∗

which satisfies
u∗Ψ(θ∗, θ0) + (1− u∗)Ψ(θ∗, θ1) = 0.

(VII) It holds that∣∣∣(S̈(Xk, θ1)− S̈(Xk, θ2))(i,j)

∣∣∣ ≤ Ka,(i,j)(Xk) ∥θ1 − θ2∥ , ∀θ1, θ2 ∈ N,
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and ∣∣(σ̈(Xk, θ1)− σ̈(Xk, θ2))(i,j)
∣∣ ≤ Kb,(i,j)(Xk) ∥θ1 − θ2∥ , ∀θ1, θ2 ∈ N,

where under H0, N is a neighborhood of θ0, and under H1, N is a neighbor-
hood of θ∗. Moreover, it holds that

sup
k=1,2,...

E[(Ka,(i,j)(Xk))
2σ2(Xk, θ(k))] <∞

and that
sup

k=1,2,...
E[(Kb,(i,j)(Xk))

2σ4(Xk, θ(k))] <∞.

With the conditions above, the following proposition holds. Its proof is
basic, so we omit.

Proposition 6.2.1. Suppose the conditions (I)-(III). Fix θ ∈ {θ0, θ1, θ∗}.
(i) (D7) holds, that is it holds that

sup
k=1,2,...

E

[
∥Ṡ(Xk, θ∗)∥2

σ4(Xk, θ∗)

(
(S(Xk, θ(k))− S(Xk, θ))

2 + σ2(Xk, θ)
)]

<∞

and that

sup
k=1,2,...

E
[
∥σ̇(Xk, θ∗)∥2

σ6(Xk, θ∗)

(
(S(Xk, θ(k))− S(Xk, θ))

4

+4((S(Xk, θ(k))− S(Xk, θ))
2σ2(Xk, θ) + 2σ4(Xk, θ)

)]
<∞.

(ii) (D8) holds, that is, it holds that

sup
k=1,2,...

E


∥∥∥Ṡ(Xk, θ)

∥∥∥4
σ4(Xk, θ)

 <∞

and that

sup
k=1,2,...

E
[
∥σ̇(Xk, θ∗)∥2

σ6(Xk, θ∗)

(
∥Ṡ(Xk, θ)∥2(S(Xk, θ(k))− S(Xk, θ))

2

+σ2(Xk, θ)(∥Ṡ(Xk, θ)∥2 + ∥σ̇(Xk, θ))∥2

+2Ṡ(Xk, θ)
⊤σ̇(Xk, θ)(S(Xk, θ(k))− S(Xk, θ))σ(Xk, θ)

)]
<∞.
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(iii) (D9) holds for δ = 1, that is, it holds that

sup
k=1,2,...

E


∥∥∥Ṡ(Xk, θ)

∥∥∥4
σ8(Xk, θ)

σ2(Xk, θ(k))

 <∞

and that

sup
k=1,2,...

E

[
∥σ̇(Xk, θ)∥4

σ12(Xk, θ)
σ4(Xk, θ(k))

]
<∞.

(iv) (D10) holds. Especially, by the Proposition 6.1.1, it holds that

sup
k=1,2,...

E


∥∥∥Ṡ(Xk, θ)

∥∥∥4
σ8(Xk, θ)

σ4(Xk, θ(k))

 <∞

and that

sup
k=1,2,...

E

[
∥σ̇(Xk, θ)∥4

σ12(Xk, θ)
σ8(Xk, θ(k))

]
<∞.

(v) (D12) holds, that is, it holds that

sup
k=1,2...

E

[
∥∂iṠ(Xk, θ)∥2

σ4(Xk, θ)
σ2(Xk, θ(k))

]
<∞

and that

sup
k=1,2,...

E

[
∥∂iσ̇(Xk, θ)σ(Xk, θ)− 3∂iσ(Xk, θ)σ̇(Xk, θ)∥2

σ8(Xk, θ)
σ4(Xk, θ(k))

]
<∞.

for all i = 1, . . . , d.

Now, let us introduce the test statistic

ADn =
n−1∑
j=1

nU⊤
n,jĈ

−1
n Un,j

j(n− j)
,
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where

j ⇝ Un,j =
1√
n

j∑
k=1

Ṡ(Xk, θ̂n)

(σ(Xk, θ̂n))2
ξak(θ̂n) +

1

n

j∑
k=1

σ̇(Xk, θ̂n)

(σ(Xk, θ̂n))3
ξbk(θ̂n),

Ĉn =
1

n

n∑
k=1

Ṡ(Xk, θ̂n)Ṡ(Xk, θ̂n)
⊤

(σ(Xk, θ̂n))2(σ(Xk, θ̂n))2
(σ(Xk, θ̂n))

2

+
1

n

n∑
k=1

σ̇(Xk, θ̂n)σ̇(Xk, θ̂n)
⊤

(σ(Xk, θ̂n))3(σ(Xk, θ̂n))3
(σ(Xk, θ̂n))

4.

It holds that

Un,[nu]√
[nu]/n(1− [nu]/n)

= Zn(u, θ̂n) + oP (1),

where

(u, θ) ⇝ Zn(u, θ)

=
1√
n

n∑
k=1

wn
k (u)

(
Ṡ(Xk; θ)

(σ(Xk; θ))2
ξak(θ) +

σ̇(Xk; θ)

(σ(Xk; θ))3
ξbk(θ)

)
.

With the setting above, the following proposition directly from the Theo-
rem 6.1.1.

Theorem 6.2.1. Assume conditions (I)-(VII). Under H0, it holds that ADn →d

∥G∥2L2 as n→ ∞ and under H1, the test is consistent.
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Chapter 7

Other topics

7.1 Z-process method and likelihood ratio pro-

cess method for independent data

Recall that the notation in Section 3.2. In order to test change point hypothe-
ses, it can be used the KS (Kolmogorov-Smirnov) type, the CM (Crámer-von
Mises) type and the AD type test statistics written as follows:

KS = sup
u∈(0,1)

|nΨ◦
n(u, θ̂n)

⊤Î−1
n Ψ◦

n(u, θ̂n)|,

CM =

∫ 1

0

nΨ◦
n(u, θ̂n)

⊤Î−1
n Ψ◦

n(u, θ̂n)du

and

AD =

∫ 1

0

nΨ◦
n(u, θ̂n)

⊤Î−1
n Ψ◦

n(u, θ̂n)

sn(u)(1− sn(u))
du.

Now we compare the suprema type statistics of Z-process method and
likelihood ratio test, which is considered as a standard method for parametric
change point problems, from the viewpoint of local asymptotic powers when
we consider likelihood equations as estimating equations. Only this section,
let us set a local alternative hypothesis

H1 : θ0 ̸= θ1 = θ0 + v−1
n h,

where vn → ∞ and n−1/2vn → 0 as n → ∞. Moreover, we define h0 and
h1 as follows: h0 = vn(θ∗ − θ0) = h(1 − u∗) and h1 = vn(θ1 − θ∗) = hu∗,
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respectively. We consider a change point estimator k̂ = nû which satisfy

û− u∗ = Op(n
−1v2n);

we refer to, for example, Bhattacharya (1987) and Gombay and Horváth
(1996) for the construction of such estimators and proofs. So, it is enough
to calculate the asymptotic distribution of

√
n(Ψ◦

n(u∗, θ̂n)
⊤Î−1

n Ψ◦
n(u∗, θ̂n)− µ⊤

n I
−1
θ∗
µn),

where
µn = u∗(1− u∗)(Eθ0 [l̇θ∗ ]− Eθ1 [l̇θ∗ ]).

The Taylor expansion yields that

Eθ0 [l̇θ∗(X1)] = Eθ∗−v−1
n h0

[l̇θ∗(X1)] = −v−1
n Iθ∗h0 + o(v−1

n )

and
Eθ1 [l̇θ∗(X1)] = Eθ∗+v−1

n h1
[l̇θ∗(X1)] = v−1

n Iθ∗h1 + o(v−1
n ),

so it holds that

µn = −v−1
n u∗(1− u∗)Iθ∗h+ o(v−1

n ) = O(v−1
n ).

Let us derive the asymptotic distribution of

√
n(Î

− 1
2

n Ψ◦
n(u∗, θ̂n)− I

− 1
2

θ∗
µn) =

√
nÎ

− 1
2

n (Ψ◦
n(u∗, θ̂n)− µn) +

√
n(Î

− 1
2

n − I
− 1

2
θ∗

)µn.

The second term converges to zero in probability. As for the first term, the
central limit theorem and Slutsky’s theorem yield that

√
nÎ

− 1
2

n (Ψ◦
n(u∗, θ̂n)− µn) →d N (0, u∗(1− u∗)) .

This is true because Ψ◦
n(u∗, θ̂n) can be replaced by Ψ◦

n(u∗, θ∗) and the variance
of

√
nΨ◦

n(u∗, θ∗) is

u∗(1−u∗)((1−u∗)V arθ∗−v−1
n h0

[l̇θ∗(X1)]+u∗V arθ∗+v−1
n h1

[l̇θ∗(X1)]) → u∗(1−u∗)Iθ∗

as n→ ∞. Hence, the delta method yields that

√
n(Ψ◦

n(u∗, θ̂n)
⊤Î−1

n Ψ◦
n(u∗, θ̂n)− µ⊤

n I
−1
θ∗
µn)√

4µ⊤
n I

−1
θ∗
µn

→d N (0, u∗(1− u∗)) ,
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and, since û− u∗ = Op(n
−1v2n), it leads that

KS − µ(Z)

σ(Z)

→d N(0, 1),

where
µ(Z) = nv−2

n lim
n→∞

v2nµ
⊤
n I

−1
θ∗
µn,

and
σ2
(Z) = 4nv−2

n u∗(1− u∗) lim
n→∞

v2nµ
⊤
n I

−1
θ∗
µn.

On the other hand, a likelihood ratio statistic is that

LR = sup
u
[u(1− u)(−2 log Λ[nu])],

where

Λ[nu] =
supθ

∏n
k=1 f(Xk, θ)

supθ

∏[nu]
k=1 f(Xk, θ) supθ

∏n
k=[nu]+1 f(Xk, θ)

. (7.1.1)

For likelihood ratio methods, see, for example, Gombay and Horváth (1994,
1996). It holds that

LR− µ(LR)

σ(LR)

→d N(0, 1),

where µ(LR) and σ
2
(LR) is 2u∗(1−u∗)µ∗ and 4nu2∗(1−u∗)2δ2σ2

2 in Gombay and

Horváth (1996), respectively, if vn satisfies nv−2
n (log log n)−1 → ∞ as n→ ∞.

Hereafter, this condition is assumed. Under H0, LR and KS converges to
the same limit if we consider likelihood equations as estimating equations.
Under H1, both statistics are thought to compete well asymptotically, at
least in the following examples.

(i) Normal observations, change in the mean when the variance is
unity. The probability density function is

f(x, θ) = exp

(
−(x− θ)2

2
− 1

2
log(2π)

)
.

It holds that
µ(Z) = µ(LR) = nv−2

n u2∗(1− u∗)
2h2

and
σ2
(Z) = σ2

(LR) = 4nv−2
n u3∗(1− u)3h2.

If we use
∑

−l̈θ̂n(Xk)/n as În, both test statistics are identical.
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(ii) Exponential observations. The probability density function is

f(x, θ) = exp(−θx+ log θ)1{x ≥ 0}.

It holds that
µ(Z) = nv−2

n u2∗(1− u∗)
2h2/θ20

and
σ2
(Z) = σ2

(LR) = 4nv−2
n u3∗(1− u∗)

3h2/θ20.

On the other hand, it holds that

µ(LR) = 2nu∗(1− u∗)(−u∗ log(1 + v−1
n h/θ0) + log(1 + u∗v

−1
n h/θ0)) ≈ µ(Z).

The last approximation is log(1 + x) ≈ x− x2/2 for small x.

(iii) Poisson observations. The probability mass function in the natural
form is

f(x, θ) = exp(θx− exp(θ)− log x!)1{x is nonnegative integer}.

It holds that
µ(Z) = nv−2

n u2∗(1− u∗)
2 exp(θ0)h

2

and that
σ2
(Z) = 4nv−2

n u3∗(1− u∗)
3 exp(θ0)h

2.

On the other hand, it holds that

µ(LR) = 2nu∗(1− u∗) exp(θ0)[(exp(v
−1
n h)− 1)v−1

n h− u∗

−(1− u∗) exp(v
−1
n h) + exp((1− u∗)v

−1
n h)]

≈ µ(Z)

and that

σ2
(LR) = 4nu3∗(1− u∗)

3 exp(θ0)(1− exp(v−1
n h))2 ≈ σ2

(Z).

The two approximations here are exp(x) ≈ 1 + x− x2/2 for small x.

Two local asymptotic powers are identical in these cases. Numerical
comparisons by Monte Carlo simulations will be done in the next section.
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7.2 Monte Carlo simulations

From the viewpoints of approximation accuracies underH0 and powers under
H1, we compare the tests with the test statisticsKSn, CMn and ADn defined
by

KSn = n max
j=1,...,n−1

Φn,j(θ̂n)
⊤Î−1

n Φn,j(θ̂n)

CMn =
n−1∑
j=1

Φn,j(θ̂n)
⊤Î−1

n Φn,j(θ̂n),

ADn =
n−1∑
j=1

n2Φn,j(θ̂n)
⊤Î−1

n Φn,j(θ̂n)

j(n− j)
,

where În = −
∑n

k=1 l̈θ̂n(Xk)/n, by Monte Carlo simulation In addition, we
compare these statistics based on Z-process methods and the corresponding
three types of statistics based on likelihood ratio methods:

LRKS
n = max

j=1,...,n−1
j(n− j)(−2 log Λj)/n

2,

LRCM
n =

n−1∑
j=1

j(n− j)(−2 log Λj)/n
3,

LRAD
n =

n−1∑
j=1

−2 log Λj/n,

where {Λ·} is (7.1.1). Under H0, (A) KSn and LRKS
n , (B) CMn and LRCM

n ,
and (C) ADn and LRAD

n converge to

(A) sup
u∈(0,1)

∥B◦
d(u)∥2,

(B)

∫ 1

0

∥B◦
d(u)∥

2 du,

(C)

∫ 1

0

∥∥∥∥∥ B◦
d(u)√

u(1− u)

∥∥∥∥∥
2

du

in distribution, respectively. Moreover, under H1, these tests are consistent.
Let us consider (i) normal observations, change in the mean when the

variance is unity; (ii) exponential observations; (iii) Poisson observations;
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(iv) observations generated by the following simple regression model: yk =
θ(0)+θ(1)xk+εk, xk ∼ N(0, 1), εk ∼ N(0, σ2), where xk and εk (k = 1, . . . , n)
are mutually independent random variables. Observed variables are xk and
yk, and εk is unobserved. The parameter σ2 is a nuisance parameter and we
will consider tests for θ = (θ(0), θ(1)).

Firstly, under H0, we evaluate approximation accuracies of six tests. By
setting the sample sizes n to 10, 50, 100, and 500 and the significance level
α to 0.10, we count the number of type I errors in 5000 times trial. Models
and their parameters are set as follows: (i) normal observations with unit
variance, θ0 = 0; (ii) exponential observations, θ0 = 1; (iii) Poisson observa-
tions, θ0 = log 5; (iv) regression, θ0 = (1, 1) and σ2 = 1. The type I error
rates are tabulated in Table 7.1. This result shows that the type I errors of
the CM type and the AD type statistics are almost the same as values of α
and not seen much change due to n, especially when it is larger than 50. On
the other hand, the tests by the KS type statistics are too conservative with
practical sample size such as 10, 50 or 100. Comparing likelihood ratio and
Z-process methods, in case (ii), the results are contrasting: the CM type and
the AD type statistics of likelihood ratio methods are liberal and Z-process
methods are conservative with n up to 100. In cases (iii) and (iv), the results
are similar.

Secondly, under H1, let us compare powers of six tests. The combination
of parameters are set to (θ0, θ1) =(i)(0, 1), (ii)(1, 2), (iii)(log 5, log 6), (iv-a)
((1, 1), (2, 1)), (iv-b) ((1, 1), (1, 2)), and (iv-c) ((1, 1), (1 + 1/

√
2, 1 + 1/

√
2)),

n to 100, α to 0.1 and we repeat 1000 times. The change point, it is denoted
by [nu∗], varies in 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 95. The powers
calculated from the trials are tabulated in Table 7.2-7.3. These results show
AD type statistics have remarkable power when a change point is close to the
first or the last sample and tolerable power otherwise. Comparing likelihood
ratio and Z-process methods in various cases, it does not seem possible to
state that one method is always better than the other.

7.3 A test for a raw moment change

By a similar way as Section 3.2, we can treat other change point tests. In
this section, we shall consider a test for a change in moments.

Let X1, . . . , Xn be mutually independent random variables and we con-
sider detecting a change in the moments up to r(r ∈ N) th moment in the

101



Table 7.1: Simulation results under H0: (i) normal observations, θ0 = 0; (ii)
exponential observations, θ0 = 1; (iii) Poisson observations, θ0 = log 5; (iv)
regression, θ0 = (1, 1)

n LRKS LRCM LRAD KS CM AD

10 0.038 0.097 0.085 0.038 0.097 0.085
(i) 50 0.069 0.102 0.101 0.069 0.102 0.101

100 0.089 0.111 0.109 0.089 0.111 0.109
500 0.087 0.098 0.095 0.087 0.098 0.095

10 0.046 0.118 0.109 0.028 0.085 0.075
(ii) 50 0.070 0.108 0.109 0.067 0.100 0.101

100 0.076 0.104 0.104 0.071 0.098 0.100
500 0.084 0.101 0.100 0.085 0.100 0.100

10 0.034 0.102 0.092 0.033 0.099 0.087
(iii) 50 0.073 0.104 0.102 0.071 0.104 0.102

100 0.074 0.101 0.099 0.073 0.101 0.097
500 0.090 0.104 0.104 0.090 0.104 0.104

10 0.007 0.102 0.036 0.002 0.088 0.074
(iv) 50 0.056 0.110 0.098 0.050 0.097 0.101

100 0.069 0.095 0.093 0.066 0.092 0.096
500 0.095 0.110 0.109 0.094 0.111 0.111

following formulation of the following hypothetical testing:

H0: E[X i
k] = µi

0 ∀k = 1, . . . , n, ∀i = 1 . . . , r
H1: ∃u∗ ∈ (0, 1), ∃i ∈ {1, 2, . . . , r} such that E[X i

k] = µi
0 for

k = 1, . . . , [nu∗] and E[X i
k] = µi

1 for k = [nu∗] + 1, . . . , n

We assume the existence of up to 2r + 1 th moments. For i th moment,
the discrete time stochastic process (ϕ

(i)
nj )j=1,...,n−1 is given by

ϕ
(i)
nj =

1

n2

{
(n− j)

j∑
k=1

X i
k − j

n∑
k=j+1

X i
k

}
.

The r-dimension vector Φn,j is defined by ϕ
(i)
nj by

Φn,j := (ϕ
(1)
nj , . . . , ϕ

(r)
nj )

⊤.
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Table 7.2: Simulation results under H1: (θ0, θ1) = (i) (0, 1), (ii) (1, 2) and
(iii) (log 5, log 6)

[nu∗] LRKS LRCM LRAD KS CM AD

5 0.150 0.207 0.282 0.150 0.207 0.282
10 0.445 0.531 0.644 0.445 0.531 0.644
20 0.917 0.919 0.940 0.917 0.919 0.940
30 0.989 0.991 0.987 0.989 0.991 0.987
40 1.000 0.998 0.997 1.000 0.998 0.997

(i) 50 0.997 1.000 1.000 0.997 1.000 1.000
60 0.994 0.996 0.996 0.994 0.996 0.996
70 0.992 0.988 0.987 0.992 0.988 0.987
80 0.907 0.916 0.936 0.907 0.916 0.936
90 0.443 0.503 0.616 0.443 0.503 0.616
95 0.145 0.214 0.298 0.145 0.214 0.298

5 0.135 0.211 0.251 0.182 0.233 0.320
10 0.271 0.402 0.443 0.356 0.426 0.511
20 0.634 0.712 0.730 0.701 0.738 0.757
30 0.821 0.858 0.848 0.847 0.868 0.859
40 0.898 0.924 0.905 0.902 0.923 0.909

(ii) 50 0.902 0.919 0.898 0.897 0.915 0.895
60 0.893 0.923 0.906 0.875 0.905 0.872
70 0.824 0.835 0.838 0.747 0.793 0.783
80 0.581 0.575 0.633 0.418 0.474 0.509
90 0.182 0.240 0.302 0.112 0.190 0.203
95 0.110 0.147 0.171 0.094 0.132 0.133

5 0.097 0.120 0.134 0.094 0.118 0.124
10 0.126 0.185 0.201 0.115 0.180 0.192
20 0.271 0.309 0.320 0.256 0.300 0.310
30 0.433 0.486 0.488 0.416 0.481 0.475
40 0.545 0.593 0.566 0.537 0.590 0.564

(iii) 50 0.574 0.614 0.584 0.568 0.616 0.580
60 0.505 0.560 0.547 0.509 0.565 0.553
70 0.422 0.487 0.469 0.427 0.490 0.477
80 0.274 0.358 0.384 0.290 0.363 0.398
90 0.150 0.179 0.208 0.154 0.183 0.217
95 0.095 0.123 0.129 0.094 0.126 0.136
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Table 7.3: Simulation results under H1: (θ0, θ1) = (iv-a) ((1, 1), (2, 1)), (iv-b)
((1, 1), (1, 2)) and (iv-c) ((1, 1), (1 + 1/

√
2, 1 + 1/

√
2))

[nu∗] LRKS LRCM LRAD KS CM AD

5 0.092 0.155 0.200 0.092 0.156 0.213
10 0.249 0.374 0.485 0.242 0.364 0.497
20 0.786 0.810 0.842 0.781 0.804 0.853
30 0.954 0.956 0.954 0.952 0.953 0.955
40 0.991 0.992 0.983 0.990 0.990 0.984

(iv-a) 50 0.990 0.994 0.988 0.989 0.995 0.987
60 0.995 0.992 0.988 0.995 0.992 0.987
70 0.952 0.952 0.954 0.950 0.953 0.952
80 0.809 0.829 0.864 0.801 0.830 0.869
90 0.243 0.374 0.461 0.257 0.375 0.482
95 0.102 0.177 0.213 0.100 0.168 0.219

5 0.100 0.184 0.237 0.103 0.193 0.269
10 0.250 0.376 0.450 0.263 0.381 0.482
20 0.716 0.763 0.795 0.672 0.733 0.765
30 0.944 0.951 0.948 0.930 0.938 0.932
40 0.986 0.987 0.982 0.979 0.984 0.976

(iv-c) 50 0.987 0.987 0.981 0.985 0.982 0.977
60 0.986 0.990 0.980 0.981 0.984 0.976
70 0.938 0.944 0.939 0.918 0.931 0.929
80 0.769 0.805 0.833 0.728 0.790 0.812
90 0.255 0.363 0.446 0.256 0.364 0.463
95 0.095 0.176 0.234 0.105 0.182 0.271

5 0.114 0.178 0.223 0.114 0.183 0.253
10 0.253 0.364 0.444 0.260 0.370 0.464
20 0.773 0.774 0.815 0.747 0.754 0.796
30 0.942 0.954 0.952 0.922 0.940 0.937
40 0.985 0.983 0.979 0.982 0.982 0.975

(iv-c) 50 0.986 0.988 0.985 0.985 0.989 0.985
60 0.983 0.984 0.973 0.980 0.980 0.971
70 0.942 0.936 0.941 0.925 0.928 0.932
80 0.789 0.802 0.835 0.758 0.787 0.815
90 0.282 0.373 0.472 0.276 0.390 0.481
95 0.127 0.199 0.247 0.126 0.204 0.253
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If there is no change in moments, E[Φn,j] = 0. The covariance matrix of(
1√
n

n∑
k=1

Xk, . . . ,
1√
n

n∑
k=1

Xr
k

)⊤

is denoted by Σ, that is, whose r1-th row and r2-th column element is

(Σ)(r1,r2) = lim
n→∞

1

n

n∑
k=1

Cov(Xr1
k , X

r2
k )

We can calculate the covariance of Xr1
k and Xr2

k (r1, r2 ∈ (1, . . . , r)) by

Cov(Xr1
k , X

r2
k ) = E[Xr1+r2

k ]− E[Xr1
k ]E[Xr2

k ].

The estimator Σ̂n of Σ is a sample covariance matrix whose r1-th row and
r2-th column element is calculated by

(Σ̂n)(r1,r2) =
1

n

n∑
k=1

Xr1+r2
k − 1

n

n∑
k=1

Xr1
k

1

n

n∑
k=1

Xr2
k .

Then, we propose the following test statistic:

MMn :=
n−1∑
j=1

n2Φ⊤
n,jΣ̂

−1
n Φn,j

j(n− j)
.

In this problem setting, we have the following theorem.

Theorem 7.3.1. (i) Under H0, the asymptotic distribution of MMn is

∫ 1

0

∥∥∥∥∥ B◦
d(u)√

u(1− u)

∥∥∥∥∥
2

du.

(ii) Under H1, the test is consistent.

Remark 7.3.1. In this case, the pinned Z-process is

Ψ◦
n(u) = (ψ◦

n,1(u), . . . , ψ
◦
n,r(u))

⊤,

105



where

ψ◦
n,i(u) =

1

n

(1− sn(u))

nsn(u)∑
k=1

X i
k − sn(u)

n∑
k=nsn(u)+1

X i
k

 , u ∈ (0, 1).

A direct computation yields that

MMn =

∫ 1

0

nΨ◦
n(u)

⊤Σ̂−1
n Ψ◦

n(u)

sn(u)(1− sn(u))
du.

We can derive the asymptotic distribution and prove the consistency forMMn

by the similar way as before.
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Part II

Applications to functional limit
theorems for random

combinatorial structures
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Chapter 8

Introduction

Consider non negative integer-valued random variables (Cn
1 , C

n
2 , . . . , C

n
n) which

satisfy Cn
1 + 2Cn

2 + . . . + nCn
n = n, that is to say, Cn

j is the number of com-
ponents whose size is j of a random partition of a given natural number n.
In many cases, it is known that finite dimensional marginals of (Cn

1 , C
n
2 , . . .)

converges in distribution to corresponding ones of (Z1, Z2, . . .), where Zj’s
are mutually independent Poisson random variables. For example, in case
of the Ewens sampling formula with the parameter θ, such Poisson variables
satisfy

E[Zj] =
θ

j
, j = 1, . . . , n

while in case of nn uniform random mappings from the set {1, . . . , n} to itself
they satisfy

E[Zj] =
e−j

j

j−1∑
i=0

ji

i!
, j = 1, . . . , n.

Such a weak convergence ensures that, for any fixed b,

(Cn
1 , . . . , C

n
b ) →d (Z1, . . . , Zb)

as n → ∞. In some cases, it is important to establish this kind of approx-
imation in the case where b = b(n) gets large as n increases. Indeed, it has
been recognized to be interesting to prove functional CLTs

u⇝
∑[nu]

j=1 C
n
j − θu log(n)√
θ log(n)

→d B in D[0, 1]
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as n → ∞, where D denotes the Skorokhod space, which is the space of
càdlàg functions, and B is the standard Brownian motion. In this part, we
shall prove new functional CLTs not in D[0, 1] but in L2([0, 1], du). To be
more specific, we will prove the weak convergence

u⇝
∑[nu]

j=1 C
n
j −

∑[nu]
j=1 E[Zj]√∑[nu]

j=1 E[Zj]
→d G in L2([0, 1], du),

where u⇝ G(u) = B(u)/
√
u, for both the number of partitions of the Ewens

sampling formula and random mappings through showing Poisson process
approximations are still working well in the current settings.

Functional CLTs in D were originally proved by Hansen (1990) for the
Ewens sampling formula and by Hansen (1989) for random mappings through
the direct ways to check the tightnesses and convergences of finite dimensional
marginal distributions (about the weak convergence theory in the Skorokhod
spaces, see the well-known book: Billingsley (1999)), though DeLaurentis and
Pittel (1985) had proved a functional CLT for random permutations earlier.
After that, they were proved by different, elegant ways via Poisson process
approximations by Arratia and Tavaré (1992). Arratia et al. (2000) proved
that it is possible to apply such approaches to general problem settings. See
Arratia et al. (2003) for overall arguments in this field.

Here, let us recall an sophisticated, unified approach by Arratia et al.
(2000) to treat asymptotic behavior of general logarithmic structures, which
satisfy the conditioning relation

P[Cn
1 = c1, . . . , C

n
n = cn] = P

[
Z1 = c1, . . . , Zn = cn

∣∣∣∣∣
n∑

j=1

jZj = n

]

and the logarithmic condition

lim
j→∞

jP[Zj = 1] = lim
j→∞

jE[Zj] = θ,

where {Z·} are not necessarily Poisson variables. They used the total varia-
tion distances to prove limit theorems including functional CLTs. The Ewens
sampling formula and random mappings, which are argued in this part, sat-
isfy these conditions. We believe that two important problems which are
studied in L2 spaces in this part would be the prototypes to open the new
windows to undiscovered problems with general logarithmic structures.
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Chapter 9

The Ewens sampling formula

9.1 The result

Let us introduce the Ewens sampling formula with some results proven by
Arratia et al. (1992), see also Arratia and Tavaré (1992). Introduce the
sequence {ξk}nk=1 of Bernoulli random variables whose distribution is given
by

P[ξj = 1] = pj =
θ

θ + j − 1
, j = 1, . . . , n,

where θ ∈ R. Define Cn
j by

Cn
j =


∑n−1

i=1 ξi(1− ξi+1) · · · (1− ξi+j−1)ξi+j + ξn, (j = 1)∑n−j
i=1 ξi(1− ξi+1) · · · (1− ξi+j−1)ξi+j

+ξn−j+1(1− ξn−j+2) · · · (1− ξn), (1 < j ≤ n)
0, (j > n)

for j = 1, 2, . . . and define C∞
j by

C∞
j =

∞∑
i=1

ξi(1− ξi+1) · · · (1− ξi+j−1)ξi+j.

It holds that E[C∞
j ] = θ/j, so it is almost surely finite for all j, and that

n∑
j=1

Cn
j =

n∑
j=1

ξj.
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The law of {Cn
· }nj=1 is

P[(Cn
1 , . . . , C

n
n) = (c1, . . . , cn)] =

n!

(θ)n

n∏
j=1

(
θ

j

)cj 1

cj!
1

{
n∑

j=1

jcj = n

}
,

where (θ)n denotes the rising factorial θ × (θ + 1) × · · · × (θ + n− 1). This
formula is firstly derived by Ewens (1972) in the context of the population
genetics and it is called the Ewens sampling formula. Consider a sequence
{Z·} of mutually independent Poisson variables such that

E[Zj] =
θ

j
, j = 1, 2, . . .

and that Cn
j →d C∞

j =d Zj. A coupling

n∑
j=1

E[
∣∣Cn

j − Zj

∣∣] = O(1)

can be constructed, and we fix this coupling through this chapter. For the
expectation of the sum

∑n
j=1C

n
j , it holds that

E

[
n∑

j=1

Cn
j

]
=

n∑
j=1

θ

θ + j − 1

and

θ log
(n
θ

)
≤ E

[
n∑

j=1

Cn
j

]
≤ 1 + θ + θ log(n).

Here, it is known that the asymptotic normality∑n
j=1C

n
j − θ log(n)√
θ log(n)

→d N(0, 1) (9.1.1)

as n → ∞ holds. This result is generalized to a functional CLT in the
Skorokhod space D[0, 1] by Hansen (1990). That is to say, the standardized
partial sum random field

u⇝
∑[nu]

j=1 C
n
j − θu log(n)√
θ log(n)

, 0 ≤ u ≤ 1
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converges in distribution to u⇝ B(u) in D[0, 1] by the usage of a limit the-
orem in D[0, 1]. This statement subsumes the asymptotic normality (9.1.1)
if we fix u to 1. This theorem has some other proofs: see, for example, Arra-
tia and Tavaré (1992) and Donnelly et al. (1991b). Especially, Arratia and
Tavaré (1992) proved it via a Poisson process approximation and basically
we follow their approach. In the case of θ = 1, which means random per-
mutations, the functional CLT is proven by DeLaurentis and Pittel (1985)
earlier.

The first goal of this part is to prove a new functional CLT described in
the following theorem.

Theorem 9.1.1. Define a random field

u⇝ Xn(u) =

∑[nu]
j=1 C

n
j − ℓ([nu])√
ℓ([nu])

, 0 ≤ u ≤ 1

where

ℓ(n) = θ
n∑

j=1

1

j

for a natural number n. It holds that Xn →d G in L2([0, 1], du) and the limit
G is

u⇝ G(u) =
B(u)√
u
.

This theorem shall be proven in section 9.4 after the preparation argued
in section 9.2 and section 9.3.

Remark 9.1.1. It is conjectured to be true that the same property holds for
other assemblies which satisfy the conditioning relation and the logarithmic
condition argued in Arratia et al. (2000).

The functional space L2([0, 1], du), which is equivalence classes of square
integrable functions on [0, 1] with respect to the Lebesgue measure du, is
a typical example of a separable Hilbert space. For the limit theory in a
separable Hilbert space, see section 1.8 of van der Vaart and Wellner (1996).
The standardization in the theorem seems to be odd, since it is different from
the standardization in Hansen’s functional CLT, in which the partial sum is
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divided by
√
θ log(n). The reason why we use ℓ(n) is that it is not clear that

functional CLT also holds if we define a random field by

u⇝
∑[nu]

j=1 C
n
j − θu log(n)√
θu log(n)

, 0 ≤ u ≤ 1,

whose behavior is severely different from Xn(u) when u is nearly 0. About
standardizations, see also the following remark.

Remark 9.1.2. For the asymptotic normality, Yamato (2013) showed that
the approximation accuracy of∑n

j=1C
n
j − θ(log(n)− ψ(θ))√
θ(log(n)− ψ(θ))

→d N(0, 1)

is better than (9.1.1) and derived the Edgeworth expansions, where ψ is the
digamma function ψ(x) = d log Γ(x)/dx = Γ′(x)/Γ(x). It has a representa-
tion

ψ(x) = −γ − 1

x
+

∞∑
j=1

x

j(x+ j)
,

where γ is the Euler’s γ which is defined by

γ = lim
n→∞

∣∣∣∣∣
n∑

j=1

1

j
− log(n)

∣∣∣∣∣ .
This result is similar to ours in the sense that it is not standardized by
θ log(n). Moreover, Arratia et al. (2000) proved the functional CLT of

u⇝
[nu]∑
j=1

(
Cn

j − E[Zj]
)√

θ log(n)
,

which is the equation (3.14) in their paper.

9.2 A Poisson process approximation

Arratia and Tavaré (1992) showed that

u⇝
∑[nu]

j=1(C
n
j − Zj)√

θ log(n)
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converges to 0 in probability uniformly with respect to u, which means∑[nu]
j=1 C

n
j is approximated by the sum of independent Poisson random vari-

ables. Corresponding to this, we prove the L2 norm of

u⇝
∑[nu]

j=1(C
n
j − Zj)√

ℓ([nu])
(9.2.1)

converges to 0 in probability by proving the following lemma.

Lemma 9.2.1. It holds that

E

∫ 1

0

∣∣∣∣∣
∑[nu]

j=1(C
n
j − Zj)√

ℓ([nu])

∣∣∣∣∣
2

du

 = O

(
log log(n)

log(n)

)
. (9.2.2)

Remark 9.2.1. This order is different from one without u in the denomi-
nator:

E

[
sup

0≤u≤1

∣∣∣∣∣
∑[nu]

j=1(C
n
j − Zj)√

θ log(n)

∣∣∣∣∣
]
= O

(
1√

log(n)

)
,

see Arratia and Tavaré (1992). In the equation (9.2.1), u in the denomi-
nator changes the numerator of the right-hand side in (9.2.2). By the same
argument we can prove

E

 sup
0≤u≤1

∣∣∣∣∣
∑[nu]

j=1(C
n
j − Zj)√

θ log(n)

∣∣∣∣∣
2
 = O

(
1

log(n)

)
.

Proof of the Lemma 9.2.1. Since it holds that

Cn
j − Zj =d Cn

j − C∞
j

= −
∑

l≥n−j+1

ξl(1− ξl+1) · · · (1− ξl+j−1)ξl+j

+ξn−j+1(1− ξn−j+2) · · · (1− ξn),

the inequality (a+ b)2 ≤ 2(a2 + b2) yields that

1

2
E[|Cn

j − Zj|2]

≤ E

( ∑
l≥n−j+1

ξl(1− ξl+1) · · · (1− ξl+j−1)ξl+j

)2


+E
[
ξ2n−j+1(1− ξn−j+2)

2 · · · (1− ξn+1)
2
]
. (9.2.3)
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By the monotone convergence theorem, the first term is equal to

E

( lim
N→∞

N∑
l=n−j+1

ξl(1− ξl+1) · · · (1− ξl+j−1)ξl+j

)2


= E

 lim
N→∞

(
N∑

l=n−j+1

ξl(1− ξl+1) · · · (1− ξl+j−1)ξl+j

)2


= lim
N→∞

E

( N∑
l=n−j+1

ξl(1− ξl+1) · · · (1− ξl+j−1)ξl+j

)2


≤ lim
N→∞

(
E

[
N∑

l=n−j+1

ξ2l ξ
2
l+j +

N∑
l=n−j+1

ξlξ
2
l+jξl+2j

+
N∑

l=n−j+1

ξlξl+j

N∑
k=n−j+1;k ̸=l

ξkξk+j

])

= lim
N→∞

(
N∑

l=n−j+1

plpl+j +
N∑

l=n−j+1

plpl+jpl+2j

+
N∑

l=n−j+1

plpl+j

N∑
k=n−j+1;k ̸=l

pkpk+j

)

≤
∑

l≥n−j+1

(plpl+j + plpl+jpl+2j) +

(
∞∑

l=n−j+1

plpl+j

)2

and the second term of (9.2.3) is bounded above by pn−j+1(1 − pn+1), since
the sequence {ξ·} is a sequence of mutually independent random variables,
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and (1− ξ·) are bounded above by 1. It holds that

∑
l≥n−j+1

(plpl+j + plpl+jpl+2j) +

(
∞∑

l=n−j+1

plpl+j

)2

+ pn−j+1(1− pn+1)

= θ2
∑

l>n−j+1

1

(θ + l − 1)(θ + l + j − 1)

+θ3
∑

l>n−j+1

1

(θ + l − 1)(θ + l + j − 1)(θ + l + 2j − 1)

+

(
θ2

∑
l>n−j+1

1

(θ + l − 1)(θ + l + j − 1)

)2

+
θn

(θ + n− j)(n+ θ)

=
θ2

j

n+1∑
l=n−j+2

1

θ + l − 1
+
θ3

2j

n+1∑
l=n−j+2

(
1

(θ + l − 1)(θ + l + j − 1)

)

+

(
θ2

j

n+1∑
l=n−j+2

1

θ + l − 1

)2

+
θn

(θ + n− j)(n+ θ)
.

It is bounded above by

θ2

θ + n− j + 1
+

θ3

2(θ + n− j + 1)(θ + n+ 1)

+

(
θ2

θ + n− j + 1

)2

+
θn

(θ + n− j)(n+ θ)

≤ θ2(1 + θ)

θ + n− j + 1

(
1 +

θ

2(θ + n+ 1)

)
+

θn

(θ + n− j)(n+ θ)
.

Next, It holds that

n∑
j=1

E[|Cn
j − Zj|2]

≤
b∑

j=1

E[|Cn
j − Zj|2] +

n∑
j=b+1

E[(Cn
j )

2] +
n∑

j=b+1

E[(Zj)
2] (9.2.4)
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for any 1 ≤ b ≤ n. The first term in (9.2.4) is bounded above by

b∑
j=1

θ

θ + n− j

(
θ(1 + θ) +

n

n+ θ
+

θ2

2(θ + n+ 1)

)
<

θb

θ + n− b

(
θ(1 + θ) +

n

n+ θ
+

θ2

2(θ + n+ 1)

)
.

Moreover, the Lemma 1 of Arratia et al. (1992) yields that

Cn
j ≤ C∞

j + 1{Jn = j},

where the random variable Jn ∈ {1, . . . , n} is defined by

Jn = min(j ≥ 1 : ξn+1−j = 1),

so, because of the property of Poisson distribution, the second and third
terms of the right-hand side of (9.2.4) are bounded above by

1 + 2
n∑

j=b+1

E[Zj] + 2
n∑

j=b+1

E[(Zj)
2] = 1 + 4

n∑
j=b+1

E[Zj] + 2
n∑

j=b+1

(E[Zj])
2 ,

because it holds that

n∑
j=b+1

E[1{Jn = j}] ≤
n∑

j=1

E[1{Jn = j}] = 1.

Since E[Zj] = θ/j, the second and third terms in the right-hand side are
bounded above by 4θ log(n/b) and 4θ2, respectively, because it holds that

n∑
j=1

1

j2
=
π2

6
< 2.

Therefore, for n ≥ 2, the right-hand side of (9.2.4) is bounded above by

nθ

2θ + n− 2

(
θ(1 + θ) +

n

n+ θ
+

θ2

2(θ + n+ 1)

)
+ 1 + 4θ2 + 4θ log

(
2n

n− 1

)
,

where we set b to [n/2]. As n→ ∞, it converges to

1 + (1 + 4 log 2)θ + 5θ2 + θ3,
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so is O(1). Hence, it holds that

E

∫ 1

0

∣∣∣∣∣
∑[nu]

j=1(C
n
j − Zj)√

ℓ([nu])

∣∣∣∣∣
2

du

 (9.2.5)

= E

∫ 1

0

∣∣∣∣∣
∑n

j=1 1{j ≤ nu}(Cn
j − Zj)√

ℓ([nu])

∣∣∣∣∣
2

du


≤ E

[∫ 1

0

∑n
j=1 1{j ≤ nu}

∣∣Cn
j − Zj

∣∣2
ℓ([nu])

du

]

= E

[∫ 1

0

|Cn
1 − Z1|2 +

∑n
j=2 1{j ≤ nu}

∣∣Cn
j − Zj

∣∣2
ℓ([nu])

du

]

= E

[∫ 1

0

du

ℓ([nu])
|Cn

1 − Z1|2 +
n∑

j=2

∫ 1

0

1{j ≤ nu}
ℓ([nu])

du
∣∣Cn

j − Zj

∣∣2] .
For the right-hand side, the inequality

ℓ([nu]) = θ

[nu]∑
j=1

1

j
> θ log([nu] + 1) > θ log(nu),

yields that∫ 1

0

du

ℓ([nu])
<

1

θ

∫ 1

0

du

log(1 + [nu])

<
1

θ

∫ 1
log(n)

0

du

log(1 + [nu])
+

1

θ

∫ 1

1
log(n)

du

log(nu)

<
1

θ log(n)

(
1

log 2
+ log log(n)

)
and that for j ≥ 2∫ 1

0

1{j ≤ nu}
ℓ([nu])

du =

∫ 1

log(j)
log(n)

du

ℓ([nu])

<
1

θ log(n)

∫ 1

log(j)
log(n)

du

u

=
log log(n)− log log(j)

θ log(n)
.
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Therefore, the right-hand side of (9.2.5) is bounded above by

1

θ log(n)
E
[(

1

log 2
+ log log(n)

)
|Cn

1 − Z1|2 (9.2.6)

+
n∑

j=2

(log log(n)− log log(j))
∣∣Cn

j − Zj

∣∣2]

≤ 1

θ log(n)
E
[
|Cn

1 − Z1|2

log 2
− log log 2 |Cn

2 − Z2|2

+ log log(n)
n∑

j=1

∣∣Cn
j − Zj

∣∣2]

≤ 1

θ log(n)

(
1

log 2
− log log 2 + log log(n)

) n∑
j=1

E
[∣∣Cn

j − Zj

∣∣2]
= O

(
log log(n)

log(n)

)
This completes the proof.

9.3 A functional CLT for a Poisson process

Here we prove a functional CLT for a homogeneous Poisson process in L2

space. That is because, to prove the theorem, it is of the same importance
as a functional CLT for the Poisson process in D[0, 1] which plays a key role
in Arratia and Tavaré (1992).

Lemma 9.3.1. For the homogeneous Poisson process {N·} whose intensity
is λ, it holds that

u⇝ Ns([nu]) − λs([nu])√
λs([nu])

→d G in L2([0, 1], du),

where s(n) = K
∑n

j=1 1/j for any positive constant K.

Proof of the Lemma 9.3.1. First of all, it holds that

(Ns([nu]) − λs([nu]))√
λs([nu])

=
1√
λ

∫ ∞

0

1{t ≤ s([nu])}√
s([nu])

(dNt − λdt).
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Let us denote the right-hand side by u⇝ Mn(u). For the proof, we use the
tightness criterion by Prohorov (1956) called asymptotic finite dimensional-
ity, see section 1.8 of van der Vaart and Wellner (1996).

(A) Convergence of the inner product. Fix an arbitrary h ∈ L2([0, 1], du).
The Fubini theorem yields that

⟨Mn, h⟩L2 =
1√
λ

∫ ∞

0

(∫ 1

0

1{t ≤ s([nu])}√
s([nu])

h(u)du

)
(dNt − λdt).

This is a terminal value of a square integrable martingale with an adequate
filtration and its predictable quadratic variation process can be written as
follows:

⟨⟨Mn, h⟩L2⟩

=
1

λ

∫ ∞

0

(∫ 1

0

1{t ≤ s([nu])}√
s([nu])

h(u)du

)2

λdt

=

∫ ∞

0

(∫ 1

0

∫ 1

0

1{t ≤ s([nu])}1{t ≤ s([nv])}√
s([nu])s([nv])

h(u)h(v)dudv

)
dt

=

∫ 1

0

∫ 1

0

(
s([nu]) ∧ s([nv])√
s([nu])s([nv])

)
h(u)h(v)dudv

For the integrand in the right-most side, it holds that∣∣∣∣∣s([nu]) ∧ s([nv])√
s([nu])s([nv])

h(u)h(v)

∣∣∣∣∣ ≤ |h(u)h(v)|,∫ 1

0

∫ 1

0

|h(u)h(v)|dudv ≤
∫ 1

0

h(u)2du <∞

and

lim
n→∞

s([nu]) ∧ s([nv])√
s([nu])s([nv])

= lim
n→∞

log(nu) ∧ log(nv)√
log nu log nv

=
u ∧ v√
uv

.

Therefore, the dominated convergence theorem yields that

lim
n→∞

⟨⟨Mn, h⟩L2⟩ =
∫ 1

0

∫ 1

0

u ∧ vh(u)h(v)√
uv

dudv.
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Let us check the Lyapunov condition. The Schwartz inequality yields that∫ ∞

0

1

λ3/2

(∫ 1

0

1{t ≤ s([nu])}√
s([nu])

h(u)du

)3

λdt

≤
∫ ∞

0

1√
λ

(∫ 1

0

1{t ≤ s([nu])}
s([nu])

du

)3/2(∫ 1

0

h(u)2du

)3/2

dt.

The Jensen inequality gives the upper bound∫ ∞

0

1√
λ

∫ 1

0

1{t ≤ s([nu])}
(s([nu]))3/2

du

(∫ 1

0

h(u)2du

)3/2

dt

=
1√
λ

∫ 1

0

∫ ∞

0

1{t ≤ s([nu])}dt 1

(s([nu]))3/2
du

(∫ 1

0

h(u)2du

)3/2

=
1√
λ

∫ 1

0

1√
s([nu])

du

(∫ 1

0

h(u)2du

)3/2

.

Because it holds that s([nu]) = K
∑[nu]

j=1 1/j > K log([nu] + 1) > K log(nu),
it is bounded above by

1√
λK log(n)

∫ 1

0

1√
u
du

(∫ 1

0

h(u)2du

)3/2

=
2√

λK log(n)

(∫ 1

0

h(u)2du

)3/2

→ 0.

Therefore, the convergence of the inner product is proved by the martingale
CLT.

(B) The asymptotic finite dimensionality. It is sufficient to prove

lim
J→∞

lim sup
n→∞

E

[∑
j>J

⟨Mn, ej⟩2L2

]
= 0,

where {e·} is a complete orthonormal system of L2([0, 1], du). The Fubini
theorem yields that

⟨Mn, ej⟩L2 =
1√
λ

∫ ∞

0

(∫ 1

0

1{t ≤ s([nu])}√
s([nu])

ej(u)du

)
(dNt − λdt).
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It holds that

lim sup
n→∞

E

[∑
j>J

⟨Mn, ej⟩2L2

]
= lim sup

n→∞
E

[
∥Mn∥2L2 −

J∑
j=1

⟨Mn, ej⟩2L2

]
. (9.3.1)

For the first term of the integrand in the right-hand side, it follows from
E[∥Mn∥2L2 ] = 1 that

lim sup
n→∞

E[∥Mn∥2L2 ] = 1,

and, for the second term, that

lim sup
n→∞

E

[
−

J∑
j=1

⟨Mn, ej⟩2L2

]

= − lim inf
n→∞

E

[
J∑

j=1

⟨Mn, ej⟩2L2

]

= − lim inf
n→∞

J∑
j=1

E

( 1√
λ

∫ ∞

0

(∫ 1

0

1{t ≤ s([nu])}√
s([nu])

ej(u)du

)
(dNt − λdt)

)2


= − lim inf
n→∞

J∑
j=1

1

λ

∫ ∞

0

(∫ 1

0

1{t ≤ s([nu])}√
s([nu])

ej(u)du

)2

λdt

= − lim inf
n→∞

J∑
j=1

∫ 1

0

∫ 1

0

∫ ∞

0

1{t ≤ s([nu]) ∧ s([nv])}√
s([nu])s([nv])

dtej(u)ej(v)dudv

= − lim inf
n→∞

∫ 1

0

∫ 1

0

s([nu]) ∧ s([nv])√
s([nu])s([nv])

(
J∑

j=1

ej(u)ej(v)

)
dudv

Applying the Fatou-Lebesgue theorem, the right-hand side is bounded above
by

−
∫ 1

0

∫ 1

0

lim inf
n→∞

s([nu]) ∧ s([nv])√
s([nu])s([nv])

(
J∑

j=1

ej(u)ej(v)

)
dudv,

since ∣∣∣∣∣s([nu]) ∧ s([nv])√
s([nu])s([nv])

(
J∑

j=1

ej(u)ej(v)

)∣∣∣∣∣ ≤
J∑

j=1

|ej(u)ej(v)|
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and
∑J

j=1 |ej(u)ej(v)| is integrable with respect to dudv. It is equal to

−
∫ 1

0

∫ 1

0

u ∧ v√
uv

(
J∑

j=1

ej(u)ej(v)

)
dudv = −E

[
J∑

j=1

⟨
B√
·
, ej

⟩2

L2

]

The Bessel inequality yields that

J∑
j=1

⟨
B√
·
, ej

⟩2

L2

≤
∥∥∥∥ B√·

∥∥∥∥2
L2

,

so the dominated convergence theorem yields that

lim
J→∞

E

[
J∑

j=1

⟨
B√
·
, ej

⟩2

L2

]
= E

[∥∥∥∥ B√·

∥∥∥∥2
L2

]
= 1.

Hence, (9.3.1) converges to 0 as J → ∞.
Because (A) and (B) hold, the conclusion follows from the Theorem 1.8.4

in van der Vaart and Wellner (1996).

9.4 Proof of the Theorem 9.1.1.

Let {N·} be the homogeneous Poisson process whose intensity is unity, then
it holds that

[n·]∑
j=1

Zj =
d

[n·]∑
j=1

(Nℓ(j) −Nℓ(j−1)) = Nℓ([n·]).

Lemma 9.2.1 and Lemma 9.3.1 yield that

d

(∑[n·]
j=1C

n
j − ℓ([n·])√
ℓ([n·])

,

∑[n·]
j=1 Zj − ℓ([n·])√

ℓ([n·])

)
→p 0,

where d(, ) is the L2 distance, and that

u⇝
∑[nu]

j=1 Zj − ℓ([nu])√
ℓ([nu])

→d G in L2([0, 1], du).

Theorem 2.7 (iv) in van der Vaart (1998) yields the conclusion.
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Chapter 10

Random mappings

10.1 The result

As the other goal of this part, let us discuss functional CLT for random
mappings in L2 space. The strategy for the proof is basically the same
as one of the Ewens sampling formula, namely, approximating the partial
sum of Cn

j by the one of independent Poisson random variables and using
the functional CLT for the Poisson process. The difference is that, in this
chapter, we do not calculate the second moment of

∑
(Cn

j −Zj) but evaluate
the approximation accuracy by the total variation distance between the law
of (Cn

1 , . . . , C
n
b ) and the law of (Z1, . . . , Zb). First of all, let us introduce the

problem of random mappings.
Consider the nn mappings of the set {1, . . . , n} to itself and assume the

probabilities of such events are equally likely. Each mapping partitions the
set {1, . . . , n}. Let us argue the number Cn

j of elements whose size is equal
to j. Its law is given by

P[(Cn
1 , . . . , C

n
n) = ((c1, . . . , cn))] =

n!en

nn

n∏
j=1

λ
cj
j

cj!
1

{
n∑

j=1

jcj = n

}
,

for example see Donnelly et al. (1991a), where

λj =
e−j

j

j−1∑
i=0

ji

i!
.

It holds that
(Cn

1 , C
n
2 , . . .) →d (Z1, Z2, . . .),
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where {Z·} is a sequence of mutually independent Poisson variables such that

E[Zj] = λj, j = 1, . . . , n.

Also in this case, the asymptotic normality∑n
j=1C

n
j − 1

2
log(n)√

1
2
log(n)

→d N(0, 1)

holds (Stepanov (1969)) and a functional CLT in D[0, 1] holds (Hansen
(1989)).

The goal in this chapter is the following theorem.

Theorem 10.1.1. Define a random field

u⇝ Yn(u) =

∑[nu]
j=1 C

n
j − ℓ′([nu])√
ℓ′([nu])

, 0 ≤ u ≤ 1,

where

ℓ′(n) =
n∑

j=1

λj =
n∑

j=1

e−j

j

j−1∑
i=0

ji

i!

for a natural number n. It holds that Yn →d G in L2([0, 1], du), and the limit
u⇝ G(u) is

u⇝ G(u) =
B(u)√
u
.

10.2 A Poisson process approximation

Lemma 10.2.1. It holds that∫ 1

0

∣∣∣∣∣
∑[nu]

j=1(C
n
j − Zj)√

ℓ([nu])

∣∣∣∣∣
2

du→p 0,

where ℓ(n) =
∑n

j=1 1/(2j).
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Proof of the Lemma 10.2.1. The left-hand side is evaluated by∫ 1

0

∣∣∣∣∣
∑n

j=1 1{j ≤ nu}(Cn
j − Zj)√

ℓ([nu])

∣∣∣∣∣
2

du

=

∫ 1

0

n∑
j=1

n∑
k=1

1{j ≤ nu}(Cn
j − Zj)1{k ≤ nu}(Cn

k − Zk)

ℓ([nu])
du

=
n∑

j=1

n∑
k=1

∫ 1

0

1{j ∨ k ≤ nu}(Cn
j − Zj)(C

n
k − Zk)

ℓ([nu])
du

≤
n∑

j=1

n∑
k=1

∫ 1

0

1{j ∨ k ≤ nu}
ℓ([nu])

du|(Cn
j − Zj)(C

n
k − Zk)|

By the similar way as (9.2.6), the right-hand side is bounded above by

2

log(n)

(
1

log 2
+ log log(n)

)
|(Cn

1 − Z1)(C
n
1 − Z1)|

− 2 log log 2

log(n)
|(Cn

2 − Z2)((C
n
1 − Z1) + (Cn

2 + Z2))|

+
n∑

j=1

n∑
k=2

2 log log(n)

log(n)
|(Cn

j − Zj)(C
n
k − Zk)|

<
2

log(n)

(
1

log 2
− log log 2 + log log(n)

)( n∑
j=1

|Cn
j − Zj|

)2

So, it is sufficient to prove that√
log log(n)

log(n)

n∑
j=1

|Cn
j − Zj| →p 0.

For any 1 ≤ b = b(n) ≤ n, the triangle inequality yields that

n∑
j=1

|Cn
j − Zj| ≤

b∑
j=1

|Cn
j − Zj|+

n∑
j=b+1

Cn
j +

n∑
j=b+1

Zj.

By the way similar to the equation (22) in Arratia et al. (1995), fix a good
coupling such that the first term in the right-hand side is bounded by the total
variation distance which converges to 0 and both of the expectation of the
second term and third term are O(log log(n)) where we let b(n) = n/ log(n).
This completes the proof.
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This lemma yields the following corollary, which is a Poisson process ap-
proximation.

Corollary 10.2.1. If Lemma 10.2.1 holds, then it holds that

∫ 1

0

∣∣∣∣∣
∑[nu]

j=1(C
n
j − Zj)√

ℓ′([nu])

∣∣∣∣∣
2

du→p 0.

Proof of the Corollary 10.2.1. Consider random variables Pj ∼
Pois(λj = j) j = 1, 2, . . . . By the definition of the median, it holds that

P(Pj < med(Pj)) <
1

2
.

On the other hand, it holds that

P(Pj < j) = e−j

j−1∑
i=0

ji

i!
= jλj.

Teicher (1955) proves that jλj is increasing as j goes larger, which is stated
in their second inequality of (8). The convergence (20) in Donnelly et al.
(1991a)

jλj →
1

2

yields that
1

2j
> λj, ∀j = 1, 2, . . . . (10.2.1)

Since it holds that
∞∑
j=1

(
1

2j
− λj

)
=

1

2
log(2),

which is the equation (31) in Donnelly et al. (1991a) and (10.2.1), it holds
that

0 < sup
u∈[0,1]

(ℓ([nu])− ℓ′([nu])) =
n∑

j=1

(
1

2j
− λj

)
= O(1)
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and infu∈[0,1] ℓ
′([nu]) = ℓ′(1) = 1/e. Thence, we have

∫ 1

0

∣∣∣∣∣
∑[nu]

j=1(C
n
j − Zj)√

ℓ′([nu])

∣∣∣∣∣
2

du

=

∫ 1

0

∣∣∣∣∣
∑[nu]

j=1(C
n
j − Zj)√

ℓ([nu])

∣∣∣∣∣
2(

1 +
ℓ([nu])− ℓ′([nu])

ℓ′([nu])

)
du

≤
∫ 1

0

∣∣∣∣∣
∑[nu]

j=1(C
n
j − Zj)√

ℓ([nu])

∣∣∣∣∣
2(

1 +
supu∈[0,1] (ℓ([n

u])− ℓ′([nu]))

infu∈[0,1] ℓ′([nu])

)
du

=

(
1 +

ℓ(n)− ℓ′(n)

ℓ′(1)

)∫ 1

0

∣∣∣∣∣
∑[nu]

j=1(C
n
j − Zj)√

ℓ([nu])

∣∣∣∣∣
2

du

=

(
1 + e

n∑
j=1

(
1

2j
− λj

))∫ 1

0

∣∣∣∣∣
∑[nu]

j=1(C
n
j − Zj)√

ℓ([nu])

∣∣∣∣∣
2

du→p 0.

This completes the proof.

This corollary and the functional CLT for a Poisson process yields the
Theorem 10.1.1.
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Merlevède, F. (2003). On the central limit theorem and its weak invariance
principle for strongly mixing sequences with values in a Hilbert space via
martingale approximation, J. Theoret. Probab. 16 625–653.

Mihalache, S. (2012). Strong approximations and sequential change-point
analysis for diffusion processes, Statist. Probab. Lett. 82, 464–472.

Morel, B. and Suquet, C. (2002). Hilbertian invariance principles for the
empirical process under association, Math. Methods Statist. 11 203–220.

Negri, I. and Nishiyama, Y. (2012). Asymptotically distribution free test
for parameter change in a diffusion process model, Ann. Inst. Statist. Math.
64 911–918.

Negri, I. and Nishiyama, Y. (2014). Z-process method for change point
problems, Quaderni del Dipartimento di Ingegneria dell’informazione e
metodi matematici. Serie ”Matematica e Statistica” n. 5/MS 窶 2014.
Dalmine: Universit degli studi di Bergamo. Facolt di Ingegneria. Retrieved
from http://hdl.handle.net/10446/30761

Nishiyama, Y. (1999). A maximal inequality for continuous time martin-
gales and M-estimation in a Gaussian white noise model, Ann. Statist. 27
675–696.

Nishiyama, Y. (2000). Entropy Methods for Martingales. CWI Tract 128
Centrum voor Wiskunde en Informatica, Amsterdam.

132



Nishiyama, Y. (2009). Asymptotic theory of semiparametric Z-estimators
for stochastic processes with applications to ergodic diffusions and time
series, Ann. Statist. 37 3555–3579.

Nishiyama, Y. (2011). Martingale riron ni yoru toukeikaiseki. (In Japanese;
English title: Statistical Analysis by the Theory of Martingales.) Kindaik-
agakusha, Tokyo.

Oliveira, P.E. (2012). Asymptotics for associated random variables.
Springer, Heidelberg.

Oliveira, P.E. and Suquet, C. (1995). L2(0, 1) weak convergence of the
empirical process for dependent variables, In Antoniadis, A. and Oppen-
heim, G. (eds.) Wavelets and Statistics, Lecture Notes in Statistics 103
331–344.

Oliveira, P.E. and Suquet, C. (1996). An L2[0, 1] invariance principle
for LPQD random variables, Port. Math. 53 367–379.

Oliveira, P.E. and Suquet, C. (1998). Weak convergence in Lp[0, 1] of
the uniform empirical process under dependence, Statist. Probab. Lett. 39
363–370.

Parthasarathy, K.R. (1967). Probability Measures on Metric Spaces.
Academic Press, New York.

Prohorov, Y.V. (1956). Convergence of random processes and limit theo-
rems in probability, Theory Probab. Appl. 1 157–214.

Song, J and Lee, S. (2009). Test for parameter change in discretely ob-
served diffusion processes, Statist. Inference Stoch. Process. 12 165–183.

Stepanov, V.E. (1969). Limit distributions for certain characteristics of
random mappings, Theory Probab. Appl. 14, 612–626.

Suquet, C. and Viano, M.C. (1998). Change point detection in depen-
dent sequences: invariance principles for some quadratic statistics, Math.
Methods Statist. 7 157–191.

Teicher, H. (1955). An inequality on Poisson probabilities, Ann. Math.
Statist. 26, 147–149.

133



Tsukuda, K. (2014). New functional central limit theorems for the Ewens
sampling formula and random mappings, preprint.

Tsukuda, K. (2015). A change detection procedure for an ergodic diffusion
process, manuscript in preparation.

Tsukuda, K. and Nishiyama, Y. (2014). On L2 space approach to change
point problems, J. Statist. Plann. Inference 149 46–59.

Tsukuda, K. and Nishiyama, Y. (2015). Manuscript in preparation.

van der Vaart, A.W. (1998). Asymptotic Statistics. Cambridge University
Press, Cambridge.

van der Vaart, A.W. and Wellner, J.A. (1996). Weak Convergence
and Empirical Processes: with Applications to Statistics. Springer-Verlag,
New York.

Yamato, H. (2013). Edgeworth expansions for the number of distinct com-
ponents associated with the Ewens sampling formula, J. Japan Statist.
Soc. 43 17–28.

134



Acknowledgements

135



The author would like to state his sincere thanks to those who gave com-
ments to the contents and who supported him in various senses.

The author is a Research Fellow of Japan Society for the Promotion of
Science. This work is partly supported by JSPS KAKENHI Grant Number
26-1487 (Grant-in-Aid for JSPS Fellows).

136



137


