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Abstract

The tool-use model to perform a task depends on: properties and configurations of

multiple objects and surfaces that interact with each other, perceptual and motor

skills of the robot, its capabilities to predict the consequences of its motor and cog-

nitive behaviors while handling the uncertainties and plan the sequence of behaviors

to realize the desired effect. However, due to variety of tasks and several variations

within them, it is not feasible for a robot to be pre-programmed with a tool use

model. The goal of this research is to enable autonomous learning of tool use model

to perform a task. Three sub-goals are presented in this thesis which require develop-

ing functions that enable a robot to 1) select a suitable tool among a set of available

external objects to achieve the desired effects 2) perform bi-directional inferences to

infer the function of tool, action (and its parameters), predict effects, plan etc; and 3)

evaluate the likelihood of the success of its inferences and prediction to reformulate

its plan and update the model.

The three problems in realization of the corresponding sub-goals are: 1) determin-

ing a tool representation generalizable to different objects is difficult because robot

does not have the notion of relevancy between the perceptual features of available

objects and the required function of the tool 2) one-way learning between action and

effects does not enable bi-directional inference and it is difficult to deal with uncertain-

ties of action-perception when learning is deterministic 3) determining a quantitative

measure of its own capabilities is difficult because in deterministic tool-use model the

success is expressed in binary terms.

This thesis presents an integrated approach termed as tool affordances to solve

these problems via robot learning of bi-directional probabilistic relationship between

action, functional features of the tool and effects of the manipulation of target object.

The functional features represent the features that remain distinctive and invariant

across several tools that can be used for same functionality. They can be used to
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transfer the learned tool-use model to unseen tools. To acquire causal and diagnostic

reasoning while dealing with the uncertainties in the domain knowledge, perceptual

and motor skills of the robot, learning and inference process, the probabilistic seman-

tics of Bayesian network(BN) is used to model the tool affordances. The modeling of

affordances as a probabilistic function also enables robot to get a quantitative mea-

sure of its performance for different situations, thus allowing the robot to determine

when a corrective measures is required, particularly for novel situations e.g. unseen

tools, action, environment, effect etc. A robot can then make probabilistic queries

to the human user based on its internal state, incorporate his feedback and learn

the tool use model in an online, incremental and interactive manner. Results show

that probabilistic representation of tool-use model enables autonomous learning of

tool-use model.

Keywords: Tool Manipulation, Probabilistic Graphical Models, Bayesian Net-

work, Affordances
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Chapter 1

Introduction

Tool use is fundamental activity in our daily lives which we perform to extend our

reach, amplify the physical strength, to transfer objects and liquids etc. For example,

we use a stick to retrieve an object kept far from our reachable workspace, hammer

to insert a nail into the wood, knife to cut the fruit and spoon to pour the oil while

cooking etc. Thus a domestic or household robot who is supposed to help us in human

environments should be able to solve tool using tasks with human competence. An

intelligent robot is expected to determine what change is required in the world (e.g.

setting up a table after the dinner is over); and in order to realize that required

change it should be able to reason about the suitable action and tool. And since

human environments are quite complex, dynamic and un-predictable, the capability

to solve a tool-use task is considered as the hallmark of intelligent behavior (Amant

et al.6).

1.1 Definitions of Tool Use

There has been several studies of tool use in animal cognition research (Parker et

al.7, Seed et al.8) with the objective of understanding their behavioral and cognitive

capabilities (e.g. Hunt9 studied manufacturing and usage of hook-tools in crows,

Inoue et al.10 studied stone tool use by wild chimpanzees etc.), however a universally

1



accepted definition of tool use is still lacking. Thus, it makes sense that I provide my

own definition of tool use along with the conceptual foundations, in the context of

this thesis. But before that, lets look at the existing definitions.

Lawick-Goodall11 focused on abstract properties of the behavior of tool-using

agent such as functionality and goals. He described tool use as:

”the use of an external object as a functional extension of mouth or beak,

hand or claw, in the attainment of an immediate goal”

However this definition does not specify the required alterations in the environ-

ment that can be considered as goals for a tool-use behavior. Alcock12 is more precise

in this regard:

”Tool-using involves the manipulation of an inanimate object, not inter-

nally manufactured, with the effect of improving the animals efficiency in

altering the form or position of some separate object.”

However, in the literature for animal cognition and tool use, a more general defi-

nition provided by Benjamin Beck13 is now widely accepted, which states:

”[Tool use is] the external employment of an unattached environmental

object to alter more efficiently the form, position, or condition of an- other

object, another organism, or the user itself when the user holds or carries

the tool during or just prior to use and is responsible for the proper and

effective orientation of the tool.”

The original definition by Beck has gone through several refinements since then

and many alternative definitions that fit different contexts (e.g tool-user, environ-

ment, actions, forms of engagement with the tool) has been proposed (Chevalier-

Skolnikoff14, Pretson15, Lestel and Grundmann16, Matsuzawa17, Baber2, Holmes and
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Spence18). Please refer Bentley-Condit et al.19 for current definitions and an updated

comprehensive catalog of animal tool use. However, the original definition covers the

examples of tool-use cases that I intend to address in this thesis and hence I shall

adapt it in this work with slight modifications that concerns with the semantics of

tools and their usage.

In this research, I am concerned with both semantics of the tools (i.e. the features

that are the relevant to the functionality of the tools) and effective the employment

of the tool to generate desired impact on the target. In my view, tool use is a goal

directed behavior and a robot should have an understanding of the implicit goal of

the task. That is to say, that robot must be responsible for its tool-using behavior

(knowledge of causality) and hence accidental or incidental achievement of goals are

not considered the tool-use cases.

I define tool use as:

Learning to utilize the functionally relevant features of the tool and gener-

ate the suitable spatial relations between tool, target, surfaces and agent’s

body with respect to three orthogonal properties as (a) specificity i.e. simple

or precise ( with respect to position, orientation or location), (b) temporal

order of control i.e. static or dynamic ( with respect to time) (c) tempo-

ral order of production i.e. sequential vs concurrent; to bring the required

alteration in the form, position or condition of the target.

1.2 Requirement of a Tool Use Model

To achieve the desired effects of a task, an autonomous tool-using robot should be

able to perform dynamic mechanical interaction with the target object via a suitable

tool. A tool-use model typically consists of sequence of several motor and cognitive

behaviors i.e. (i) determination of low-level effect which is required to satisfy the

task requirements (ii) selection of suitable tool based on some features relevant to
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the functionality of the task, (iii) selection of suitable target object (if not already

given) that can be manipulated to satisfy the task requirements, (iv) determination

of suitable position and orientation in which a tool should be placed relative to the

target and (v) determination and generation of suitable action (and its parameters)

to use the tool.

The tool use model should be robust to the contextual demands e.g. different

effects, tools, environment and the robot’s capabilities. For instance, to realize the

low-level effect of bringing a remotely placed object (e.g. a toy car) closer, a robot

should be able to reason about which of the available external objects can serve as

suitable tool (e.g. it should be able to ”hook” the object) and how it should be placed

relative to the target object. To achieve the desired effect, it should also be able to

determine and generate the suitable action e.g. pull, tap etc. (and its parameters e.g

force on the tool, angle of tool movement on 2D surface etc). The action here is defined

as the movement of tool that changes one or more features of the target e.g. position,

orientation, shape etc. and; the effect is defined as the quantitative and qualitative

change in some feature of target measured during or after the manipulation.

The model of tool-use (as considered in this thesis) depends on the requirements

of the task( and its variations), environment, capabilities, knowledge and prior expe-

riences of the tool-using robot. Other dependencies such as environmental constraints

like surfaces, presence of obstacles, task constraints like time and accuracy, morpho-

logical constraints like limitation of agent’s capabilities etc. are not beyond the scope

of this thesis.

The development of tool-using robots designed for very specific tasks e.g. to work

in space (Lovchik et al.20, Bluethmann et al21 ) and industrial work (Whitney et

al.22, Hara et al.23, Takeuchi et al.24), medical applications (Dario et al.25, Guthart

et al.26, Tierney et al.27) suggests that with careful programming and background

knowledge, it is possible to create tool using behaviors into an artificial agent.
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However, even for a relatively simple task of pulling a distant object closer, there

are different possibilities e.g., change in the initial position of box, size, shape, material

etc. of the target object and/or the tool, agent’s capabilities, surface frictions etc;

the changes which a programmer had not anticipated in advance. Thus in real world

situations, often an agent does not know the all the knowledge about the target object,

tools, actions etc; which it is required to reason about the missing information based

on prior experiences of performing the same task. Often, when a new tool-using task

appears, a tool-using agent may not have any prior experience and is required to learn

the usage of tool. Thus, the problem space of tool-use is quite large and it is a near-

impossible task for the designers to embed all the required knowledge representations

and intelligent behaviors within the robot.

1.3 The goal of my research

The goal of my research is to develop a function for robot learning of tool-use

model. For, the sake of structuring and organizing my work, the goal of my research

is sub-divided into following three sub-goals:

1. to develop a function that enables a robot to select objects available in its

environment, to be used as the tool for performing some specific task.

2. to develop a function that enables the robot to perform causal and diagnostic

reasoning about the unknown components of tool use model, while handing the

uncertainties of action-perception, background knowledge and the environment.

Using this function, a robot can determine suitable tools and actions to realize

the desired effects and predict the probable effects that could be generated

using its actions and available tools in an environment. This functions also

enables robot to handle various uncertainties, redundancy and irrelevancy of

the data observed by the robot during target manipulation. Thus, this function
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is required for a robot to plan its motor and cognitive behaviors such that

desired effects can be achieved.

3. to develop a function that enables robot to assess the plausibility of success of

its tool-use plan beforehand, during or after the manipulation and reformulate

it accordingly such that desired effects can be achieved.

1.4 The problems to realize the goal

The following are the three problems in related works (discussed in detail in Chap-

ter 2) that correspond to the three sub-goals of this research:

1. The problem to realize sub-goal 1 is that robot can not determine the relevance

of objects as a suitable tool because the causal probabilistic dependency between

the perceptual features of objects and the desired effects of the task is not

established.

2. The problem to realize sub-goal 2 is that one-way learning of tool use model

i.e. role of actions and tools in obtaining the effects, does not enable inverse

estimation within the tool-use model; and the deterministic mode of learning

does not enable handing of uncertainties, redundancy and irrelevancy of the

action-perception, background knowledge and the environment.

3. The problem to realize sub-goal 3 is that the inference mechanisms based on

deterministic model of learning do not provide the quantitative measure of the

plausibility of obtained inferences because the success and failure are judged in

binary terms (i.e. with a qualitative measure). Thus, since the robot can not as-

certain the confidence value of the robot in a particular situation in quantitative

terms, it can not reformulate a suitable plan accordingly.
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1.5 Contributions of this thesis

I have solved the three problems mentioned in this chapter by proposing three corre-

sponding novel approaches (discussed in detail in Chapter 3). Thus, my contributions

are:

1. I propose a novel approach of learning the perceptual features of the tool

causally relevant to realize the desired effects of the task. These features are

termed as functional features of the tool. This approach enables a robot to select

available objects that share those functional features to be used as tools. It also

enables predicting the effects of different tools on the basis of their functional

features.

2. I propose an approach of bayesian learning of tool-use model termed as tool

affordances to enable robot perform causal and diagnostic reasoning. The func-

tion of tool affordances is modeled using the probabilistic graphical model of

Bayesian Networks (BN) . The probabilistic semantics of BN enables a robot

to handle various uncertainties in its action-perception, learning, inference, en-

vironment etc.

3. I propose a novel approach to determine the quantitative measure of the plau-

sibility of inferences made in different situations. The gap between the desired

outcome of the task with the probable outcome predicted using the inferred

value as an input is calculated. The gap value is used to compare their match,

the smaller the gap the better is the match and hence more is the plausibility

of the result of inference. Thus, based on the different values of gap measure a

robot can reformulated its plan e.g. it may request human feedback or further

explore the environment.
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Outline of the Thesis

The contributions, limitations and the problems of related works in context of

realizing the goal of this thesis are discussed in Chapter 2. My proposed approach is

discussed in detail in Chapter 3. The proposed method, experiments and results are

discussed in Chapter 4. The conclusion and future works are discussed in Chapter 5.
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Chapter 2

Related Work

In this chapter, the previous work related to the manipulation of target object with

and without the tool-use is reviewed. I start by examining the literature on single

target object manipulation by the robot and then discuss its manipulation via a

secondary object (i.e. the tool). I will also discuss about the tool representations and

computational models for representing sensori-motor experiences of tool use.

2.1 The manipulation of target object without tool use

An early attempt to learn manipulation strategies by Christiansen et al.28 allowed

a robot to acquire the object manipulation model through exploration, practice and

observation. The robot starts with no initial model of the consequences of its actions

and learns a non-deterministic model which is incrementally refined to achieve its

goals. To learn this model, the manipulation task consists of moving target objects

to goal locations by tilting the tray on which they are placed. The presented system

is shown to represent and successfully reason about non-deterministic effects of the

actions. It also shows the benefit of using the experimental strategies for collecting

the training data such that a robot’s learning rate can be increased.

Zrimec29 , Lynch30, Yoshikawa and Kurisu31 proposed to plan object manipulation

by pushing it. The latter proposed an approach to learn the friction parameters
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using experimental pushes and resultant observation of the target displacement. The

friction parameters and mechanical model is estimated using vision. Yoshikawa and

Kurisu31 additionally deployed a force sensor on the pusher and pushed the object

via multiple contacts. The obtained mechanical analysis of the target manipulation

can be used to determine the traversability of the target in specific directions when

pushed with multiple pushing contacts. They also studied how target manipulation

can be explored to recognize objects.

A novel supervised on-line method for the pushing manipulation based on vision

is proposed by Salganicoff et al.32. The robot learns to manipulate objects into new

locations on a plane by learning a predictive model. This prediction model is formed

by observing the rotation of the object when it is pushed into the plane through a

single point contact. The advantage of the method is that the prediction model being

on-line in nature, keeps improving with the increase in number of target manipula-

tions. The most informative and appropriate action is selected using stochastic action

selection method to correct the deviations from the desired object path.

To enable autonomous target manipulation outside the controller environments,

Salganicoff et al.33 proposed a learning method that enables robot to adapt its per-

ceptual and motor system according to the task variations. To deal with the higher

costs of generating the data for learning, active learning algorithms based on a ver-

sion of ID3 decision trees are proposed to select appropriate directions for object

grasping from the visual information. For learning, the shapes of target objects is

approximated as superquadric, thus modeling different objects in a uniform manner.

Results show that robot rapidly learns to pick up new objects. The assumption of

superquadricity of shapes also enable to generalize its learning to other similar shapes

for a simulated grasping task when size of objects is larger.

The above works considered precision as the main requirement for the target

manipulation. But for the situations when a robot must perform a wide variety of
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manipulation tasks e.g. in a kitchen, space, prosthetic etc; versatility is also the

requirement. But for such cases, a robotic hand with higher degrees of freedom is

needed which in turn makes it difficult to be programmed or even perform learning in

a short period of time. To deal with this, Fuentes and Nelson34 presented a method

for learning dexterous manipulation of objects using multi-sensory information with

multifingered robot hands having 16-degrees of freedom. The approach is to learn

a few basic manipulation primitives using a genetic algorithm for a few prototypical

objects and store those primitives in a database. These manipulation primitives

translate or rotate a given object in a set of orthogonal directions. With the elements

of the database and learned primitives, an associate memory is formed that enables

determining suitable parameters for manipulating new objects e.g. by scaling and

adding or subtracting the primitives. The learning algorithm is robust to the noise

present in the sensors and effectors while performing a complex task in real world

situations; also primitives can be learned within a short duration of few minutes.

Fitzpatrick et al.35 addressed the problem of learning about the effects and conse-

quences of self-generated actions. To determine how a robot learns to move an object

in a particular fashion (e.g. whether object rolls or slides) and direction (towards the

robot and away from it). Simple poking and prodding actions are employed to learn

the resultant effects on novel objects of unknown shape and properties. Using the ob-

tained displacement of target object and action parameters (type of action i.e. pull or

push, initial hand position etc.), a mapping is learned to predict the required actions

for goal directed behaviors of target object (i.e. different target displacements).

Since many objects e.g. scissors have articulations, Katz et al.36 proposed a

relational approach of learning the kinematic structure of articulated objects through

manipulation. The articulated objects are represented as set of links connected by

rotational or prismatic joints. The goal of the robot is to learn the structure of such

objects and apply the learned policy in discovering the kinematic structure of related
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objects. Robot uses relational reinforcement learning to discover a new link or joint

in the object in which a reward is given to it on each such discovery. The discovery is

the based on observing the outcome of pushing action via one of the link of articulated

objects. Robot learns a policy, which discovers the kinematic structure quickly and

generalizes it to realize the goal of the their research.

2.2 The manipulation of target object via tool use

Bogoni37 conducted the first study in robot learning of tool use. His view is that the

representation for a tool must include not only its intrinsic (material) properties but

also its functional (how it is used) properties. In his study, the robot uses a variety

of tools made up of different shapes to perform piercing and chopping tasks. The

target of learning was their suitability to perform these aforementioned tasks. The

experiments involved robot manipulating target objects made from different tools

materials (styrofoam, sponge, pine and balsa wood) using the tools.

With this propositional approach, the features of the tool are represented as a

set of attribute-value pairs. Such a tool representation can be used to determine the

suitability of different available objects to be used as tools for the similar tasks. For

example, by checking the availability of same shape related features in the available

objects, a robot can select them to manipulate the target object and achieve the

similar effect. Thus, this approach is significant in addressing sub-goal 1. However,

this approach is limited for the tools which can clearly represented as a set of attribute-

values. Also, spatial relations between tool, target object, agent’s body and the

environment can not be suitably expressed modeled using this approach.

Stoytchev38,39’s work on learning of affordances (based on the concept of Affor-

dances, originally proposed by Gibson) is most cited work in robotic tool-use. To

understand his work, its benefits and drawbacks, it is imperative to first understand

what Gibson meant by Affordances. James Gibson40, perceptual psychologist who
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coined the concept of affordance defined it as ”perceptual invariants that are directly

perceived by an organism” and enable it to perform tasks. In his seminal book Eco-

logical Approach to Visual Perception (page 127), Gibson41 wrote:

The affordances of the environment are what it offers the animal, what it

provides or furnishes, either for good or ill. The verb to afford is found

in the dictionary, but the noun affordance is not. I have made it up. I

mean by it something that refers to both the environment and the animal

in a way that no existing term does. It implies the complementarity of the

animal and the environment.

Gibson41 also wrote on page 129:

An important fact about the affordances of the environment is that they are

in a sense objective, real, and physical, unlike values and meanings, which

are often supposed to be subjective, phenomenal, and mental. But actually,

an affordance is neither an objective property nor a subjective property; or

it is both if you like. An affordance cuts across the dichotomy of subjective-

objective and helps us to understand its inadequacy. It is equally a fact of

the environment and a fact of behavior. It is both physical and psychical,

yet neither. An affordance points both ways, to the environment and to

the observer.

According to him, there are three fundamental properties of an affordance:

1. An affordance exists relative to the action capabilities of a particular actor.

2. The existence of an affordance is independent of the actors ability to perceive

it.

3. An affordance does not change as the needs and goals of the actor change.
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Stoytchev38,39 proposed to learn tool affordances, solely grounded in behavioral

repertoire of the robot. The robot observes and investigates the outcome of perform-

ing user-defined primitive behaviors (pushing, pulling, or sideways arm movements)

whilst using different tools to the target object (an orange puck). The experimen-

tal condition is shown in Figure 2.1 in which different colored tools (stick, L-shape,

T-shape, L-hook, T-hook) are used to manipulate the target object. Using different

combinations of tools and behaviors the target object is displaced and its displace-

ment is stored in a look-up table. This table is later used to solve simple manipulation

tasks such as the task of object movement into the brown goal zone on the table shown

in the Figure 2.1.

Figure 2.1: Experimental apparatus used in Stoychev3. The goal of the robot is push
the orange puck on to the brown square using the color-coded tools and user-defined
primitive behaviors (pushing, pulling, or sideways arm movements). The geometric
model of the tool is not known to the robot.

Robot learns tool affordances by associating probabilities with the success of par-

ticular tool/behavior combinations which are used to adapt when tool was modified

e.g. broken or changed. For example, one of the branches of a T-shaped stick was

intentionally broken to show that the agent was able to learn that the tool affordances
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it was using was no longer reliable. The robot was also then able to adapt its tool

behavior by choosing an alternative affordances so that it could still move the puck

into the goal location.

The Gibsonian Affordances has certain limitations. As Gibson view’s affordances

as the action possibilities available to an individual in a particular environment i.e.

these possibilities are considered relative to the capabilities of that individual agent.

They are also considered independent of agent’s prior experience, knowledge, culture

and ability to perceive. Thus, Gibson’s affordances lack the power of prediction; are

invariant to the needs and goals of the the agent; and have binary existence.

Stoychev’s work carries some of the limitations of Gibsonian affordances. For

example, for a new tool, the affordances has to be learnt from scratch even if its similar

to the previously learned tools. Since, the tool representation is done using color of

the tool which is casually irrelevant feature for the outcome of target manipulation,

sub-goal 1 remains unsolved. The learning of affordances enable robot to to estimate

suitable action and its parameters to realize some given desired effects with a given

tool. The outcome of exploratory behaviors made with a tool are stored in a affordance

representation table. Stoytchev3 showed that such affordance representation can be

used as a predictive model of the results of target manipulation. However, the ”one-

way” learning does enable robot to perform both causal and diagnostic reasoning,

thus sub-goal 2 remains unsolved.

Gibsonian notion suggests that affordances are independent of agent’s prior ex-

perience. Thus, robot can not perform the estimation when action parameters and

tool representation are not used previously (i.e. only ”memory” based look-up is

used to predict the outcome of affordances). Since the affordances are binary, robot

can not evaluate the quantitative measure of likelihood of success/ failure and hence

sub-goal 3 is also not solved.
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Sinavpov and Stoytchev4 extended the approach of Stoychev3 to learn the func-

tional taxonomies of tool so that it can detect the similarity between tools based on

the outcomes of target manipulation performed with each tool. In these experiments,

a simulated robot arm manipulates the target object (a puck) using six different tools

T-Stick, L-Stick, Stick, L-Hook, Y-Stick, Arrow and six exploratory behaviors push,

pull, slide-left, slide-right, rotate-left and rotate-right. The robot observes the differ-

ent ways of target displacement. The visualization of the trajectories of target object

movement for different ways of target manipulation is shown is Figure 2.2.

Figure 2.2: A visualization of the trajectories of target object movement manipulated
using each of six user-defined behaviors with each of the six tools. All trajectories
are plotted relative to the target object’s initial position, which is decided randomly
for each trial.

A hierarchical clustering algorithm was then used to find clusters of similar dis-

placements where each cluster is treated as a discrete prototype of outcomes. The set

of these target displacement prototypes for each tool were used to calculate a simi-

larity measure which is used to compare one tool to another. In this way the robot is

able to classify different types of tools based upon their functional abilities. However,

a large number of trials (1200) were needed to generate the clusters of outcomes and

detect similarity between the tools.
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The benefit of this approach is that functional equivalence enables robot to deter-

mine the ”suitability” of different tools to solve the similar task of object movement.

Thus, robot can select available objects to be used as tools. However, the drawback is

that functional taxonomies of each tool has to be learnt separately even if its similar

to the previously learned tools, because the determination of functional equivalence

is based on blind exploration rather than actually understanding of causally relevant

features. Thus, sub-goal 1 is only partially solved.

Nishide et al.42 proposed a neuro-scientific representation of tool in which all the

multi-modal information is abstracted in two dimensional phase space of paramet-

ric bias. The drawback is that it is difficult to extract the tool representation and

generalize it to unseen tools, thus sub-goal 1 is not solved. Nabeshima et al.43,44

investigated the concept of alterable body schema and proposed temporal integration

of multisensory information for robotic tool use.

Kemp and Edsinger45 focused on learning tool manipulation from a human demon-

stration. Their approach is to detect and control the tip of an unknown tool. The

tip of the tool is automatically extracted from image data by using a multi-scale

spatio-temporal interest point operator which selects fast-moving convex shapes in

the image. Human demonstration of tool-using behavior is provided to the robot and

then robot attempts to mimic the tracked trajectory by using a form of feed-forward

control on the arm and wrist joints. Using this method the humanoid robot is able

to learn to clean a flexible hose with a brush without having any prior models of the

object or tool in its knowledge base.

The interesting feature of the approach by Kemp and Edsinger45 is that it can

be used for wide variety of tools for which tool representation can be encoded in

the tip of the tool. The study of Radwin et al.46 is detailed analysis of different

types of tools for which tip of the tool is considered most relevant in its functionality.

Thus, the benefit of using this approach is that the knowledge of previously used tool

17



Figure 2.3: Kemp and Edsinger45 demonstrated the tip detection on these tools
(hotglue gun, screwdriver, bottle, electrical plug, paint brush, robot finger, pen, pliers,
hammer, and scissors). The method performed best on the tools with sharp tips.

can be transferred to a new tool to solve similar tasks, thus addressing sub-goal 1.

But the drawback is that it is restricted for limited category of tools for which tool

representation can abstracted to the tip of the tool.

Brown et al.47 proposed a relational approach to tool representation which requires

modeling an explicit representation of structure and relationships between tool parts

and/or the tool, target object, and environment. Regarding modeling of tools with

his relational approach, Brown wrote on page 32:

A hammer, for example should be modeled as having a flat head which lies

at a right-angle to the handle; the handle to be held near the base; and the

flat heavy head of the hammer to be brought into contact with the blunt

end of the nail; and the nail being held in at right-angles to the piece of

wood [in which it is being inserted]

Brown suggests expressing such relational concepts about the tools, environment

and background knowledge in minute detail using inductive logic (see Muggleton and

Feng48). The agent learns abstract actions by observing human demonstrator and

executes them by providing the goals of action to a motion planner like RRT as input.

The relational approach of Brown et al.47 can richly express tools and the situ-

ations and approach can be used across different objects and situations in a flexible
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manner. This work addresses sub-goal 1 since the knowledge of previously learnt tool

affordances can be transferred to different tools as far as the structure of those tools is

similar to the previous one. But the problem is that a tool with different structure or

having different geometrical features can not be used because the casual relationship

between functionally relevant features of the tool i.e. geometrical features, used ac-

tion and the outcome of target manipulation is not established. Another drawback of

this work is the lack of robustness due to its inability to handle noise and uncertainty

of the sensors,actuators and environment, thus sub-goal 2 is only partially solved.

Nakamura and Nagai49 proposed a novel approach to model object concepts by

encoding the relationship between its appearance, usage and function. The appear-

ances is modeled using SIFT (Lowe50) visual descriptors, the function is modeled by

Gaussian distributions of visual changes in the tool and usage by the multinomial

distribution of various features comprising of hand shape for grasping the tool, parts

of the tool that support the grasp and contact points of the tool on the target object.

To learn the parameters of the model, Expectation Maximization (EM) algorithm

and Variational Bayesian method (see Attias51) is used. The learned model is used

to make inferences about functions and usage from the visual appearances. A large

set of tools having different functions were used e.g. scissors, pen, pliers, tweezers,

cutter, stapler, glue, scotch tape, vinyl tape etc.; thus enabling robot to determine

the usage of different tools.

The variational methods, bayesian in nature, depend on hyper-parameters i.e. the

parameters of the prior distribution. These parameters are chosen without looking at

the data and require tuning based on model validation. This ”experimental tuning”

requires several iterations of trial and validation, thus necessitating the need for a

human developer who can actually evaluate the results, tune the parameters and

re-evaluate the consequences. Thus for a autonomous robot, self-estimation of hyper-

parameters, based on model validations and cross-validations is required; however,
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it remains a challenge. My approach is avoid such experimental tuning of hyper-

parameters so that a robot can learn from its experiences without the need of an

expert developer.

2.3 Conclusion

Thus, based on the literature survey, I notice the following three problems that cor-

respond to the three sub-goals of this research (mentioned in Section 1.3):

1. The problem to realize sub-goal 1 is that robot can not determine the relevance

of objects as a suitable tool because the causal probabilistic dependency between

the perceptual features of objects and the desired effects of the task is not

established. The robot thus can not determine which of the features of the tool

(e.g. shape, size, color, material etc) are causally relevant to its functionality

for the given task and what is the quantitative measure of this relevancy. For

example, for hammer, the material of the tool is highly relevant, while its color

is irrelevant. Thus, if robot can determine the causal relevance of the features

of the tool then they can be used to define the suitable tool representation for

solving a particular task. Such a ”tool representation” may enable the robot

to select unseen available objects as the tools by determining their functional

equivalence with the tools previously used.

2. The problem to realize sub-goal 2 is that one-way learning of tool use model

i.e. role of actions and tools in obtaining the effects, does not enable inverse

estimation within the tool-use model; and the deterministic mode of learning

does not enable handing of uncertainties, redundancy and irrelevancy of the

action-perception, background knowledge and the environment.

3. The problem to realize sub-goal 3 is that the inference mechanisms based on

deterministic model of learning do not provide the quantitative measure of the
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plausibility of obtained inferences because the success and failure are judged in

binary terms (i.e. with a qualitative measure). Thus, since the robot can not

ascertain the confidence value of the robot in a particular situation in quanti-

tative terms, it can not reformulate a suitable plan accordingly. Thus, if the

plausibility can be assigned a probabilistic value, then when it is below a certain

threshold, then robot can determine that the result of inference is less likely to

achieve the desired effects with required accuracy. Then in such case, robot

can take some corrective measure e.g. asking some expert tool-user, further

exploration of the environment etc.

To summarize the differences between previous works with mine, the info-graphic

is presented below:

X: unsolved or out of scope

4 : partially solved

©: solved

Table 2.1: A visual description of related works and my work with respect to the
problems mentioned in Chapter 1

Author Problem 1 Problem 2 Problem 3
Stoytchev38,39 X 4 X
Sinavpov and Stoytchev4 X 4 X
Kemp and Edsinger45 4 X ©
Brown et al.47 © 4 ©
Nishide et al.42 4 4 X
Nakamura and Nagai49 4 © X
Jain (this study) © © ©

Guerin et al52 suggests that the fundamental unit to learn tool-use is to learn the

sensori-motor representations that capture the essential world and object properties

in terms of the actions that a robot is able to perform. These sensori-motor represen-

tations enable a robot to predict the consequences of its own behaviors and also plan

them in order to achieve some effect. That is why, the concept of Affordances (despite
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its limitations), hold such a significant appeal in the robotics research. I shall discuss

these limitations in the next chapter and adapt a different notion of affordances to

present an integrated framework to solve the problems mentioned above.
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Chapter 3

Approaches Used in this Thesis

The aim of this chapter is to present an integrated solution of Tool Affordances based

on functionally relevant features of the tool to acquire the inference capabilities men-

tioned in Table 3.4. The acquired inference capabilities shall enable robot to emulate

different tasks using various actions and tools. Also, generalization of functional

features shall enable robot to estimate the effects of unseen tools.

3.1 Tool Representation Using Functional Features

In Section 1.3, I addressed the requirements of a tool representation that can be

generalized to a wide variety of available objects which can be used as tools. I

propose a novel approach to tool representation grounded in a robot’s determination of

casually relevant features of the tool that influence its functionality for the given task

(e.g., shape, material, etc.) and discard the irrelevant features (e.g., color, texture,

etc). I term these the functional features of the tool for the given task. Table 3.1

lists examples of functional features of some tools and required functionalities of the

tasks. In this study, I focus only on the peculiar geometry of the constituent part of

the tool that is used to manipulate the target object to fulfill the functionality of the

task.
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Table 3.1: Functional features of various tools required for different tasks.

Task Objective Functionality of Tool Candidate Tools functional features
1. Extend Reach Move object Stick , L-shaped tool flat surface, corners
2. Transfer liquids Hold liquid Spoon, Glass non-convex shape
3. Deform object shapes Cut fruits Knife, Blade sharp edge
4. Amplify physical strength Insert nail Stone, Hammer mass, material

I argue that the functional features remain invariant across different types of

tools that offer similar functionality and that generalization of functional features

enables the robot to estimate the effects of unknown tools. For instance, as shown

in Table 3.1, both knife and blade have the functionality of cutting, since both have

sharp edges. My hypothesis is that a tool use model learnt using functional features

can be generalized to a wide variety of objects that share similar functional features.

Thus, when a robot is asked to realize an effect which it had previously realized using

a different tool, it can search for a suitable new tool on the basis of the similarity of

previously used functional features. This approach is likely to address the Problem 1

mentioned in Section 1.3.

3.2 Representation of Perceived Tool Affordances

Informally defined as the ”action possibilities”, there is a clear lack of consensus within

the ecological psychology community on what accordance means. Due to the lack of

a consensus over the concept of affordances, it is not clear that whether affordances

are the properties of an individual agent ( its ”effectiveness” or its complete body) or

of the environment or of combined agent-environment system. Chemero53 discusses

in details the multiple interpretations of affordances and the major points of disagree-

ment over them; also from the perspective of robotics (Chemero et al.54). Sahil et
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al.55 recently proposed three different perspectives: the agent, the environment, or

an observer to view the affordances.

Since there are many possibilities for applying the concept of affordances to the

design of artificial agents many affordance-based approaches have been developed.

Affordances have been used to develop a wide range of AI behaviors for artificial

agents. These behaviors include controlling the robot for its traversal and obstacle

avoidance (Murphy et al.56, Cakmak et al.57, Sahil et al.55, Paleta et al.58, Brock et

al.59, Ugur et al.60, Erdemir et al.61,62), grasping behaviors (Montesano et al.63, Detry

et al.64–66, Cos-Aguilera et al.67–69, Kraft et al.70, Sweeney at al.71), manipulation of

target object to determine its properties using primitive actions like pushing, poking,

pulling, lifting and rotating (Fitzpatrick et al.35, Mondoval et al.72, Sun et al.73, Dag

et al.74, Fritz et al.75). Affordances are also proposed to learn target manipulation

with the use of hand-held tools e.g with the use of sticks of various shapes (Wood

et al.76, Stoytchev38,39, Sinapov and Stoytchev77) where target is manpulated in 2D

surfaces using simple pre-programmed actions and also for learning more complex

behaviors e.g. driving a bolt into a slot using a screwdriver tool (Hortol et al.78,79).

According to McGrenere and Ho1, Gibsonian affordances mean ”an action pos-

sibility available in the environment to an individual, independent of the individual’s

ability to perceive this possibility”. In context of tool use, a tool can have certain af-

fordance but the information specifying its affordance are not available to the robot.

For example, a power tool has an affordance to drill a hole into the wall, but the but-

ton to operate but can be hidden, camouflaged or likewise. Thus, Gibson’s affordance

do not take into account the perceived properies of an object to define its affordance.

It exists relative to the action capabilities of a particular agent, e.g. the affordance of

hammering a nail exists for a robot with manipulator arms capable enough to handle

the hammer but does not exist for the robot with such action possibility. Also, it

does not change according to the needs and goals of the agent.
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On the contrary, according to Norman80 an affordance as a combination of both

actual and perceived properties of an object. Norman wrote:

”...the term affordance refers to the perceived and actual properties of

the thing, primarily those fundamental properties that determine just

how the thing could possibly be used. [...] Affordances provide strong

clues to the operations of things. Plates are for pushing. Knobs are for

turning. Slots are for inserting things into. Balls are for throwing or

bouncing. When affordances are taken advantage of, the user knows

what to do just by looking: no picture, label, or instruction needed.”

In context of tool use, Norman’s affordance should suggest how it should be used;

and give a visual clue to its function and use. For example, the affordance of a hammer

is both its elongated handle, heavy head, its material etc. (its actual properties) as

well as suggestion as to how it should be used e.g. attributes relevant for its grasping at

the end of its elongated handle (its perceived properties). Thus, Norman’s affordances

assume that information in the sensory receptors of an agent is good enough to

perceive anything and do not need any higher-level cognitive processes to mediate

between it’s sensory experience and the perception (Sternberg81). Also Norman,

unlike Gibson, does not disregard the knowledge, prior experience and expectation of

the agent. The reader is suggested to refer Table 3.2 for comparison of the concept

of affordances as defined by Gibson41 and Norman80.

Thus, in this thesis, I am using the notion of perceived affordances , the

concept proposed by Norman82–84, rather than Gibsonian’s affordances. In the words

on Norman:

Its very important to distinguish real from perceived affordances. Design

is about both, but the perceived affordances are what determine usability. I
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didnt make this point sufficiently clear in my book and I have spent much

time trying to clarify the now widespread misuse of the term.

Table 3.2: Comparison of affordances as defined by Gibson and Norman (McGrenere
and Ho1).

Gibson’s Affordances Norman’s Affordances
• Action possibilities in the envi-

ronment in relation to the action
capabilities of an actor
• Independent of the actor’s experi-

ence, knowledge, cultre, or ability
to perceive
• Existence is binary - an affor-

dance exists or it does not exist.

• Perceived properties that may
not actually exist
• Suggestions or clues as to how to

use the properties
• Can be dependent on the experi-

ence, knowledge, or culture of the
actor
• Can make an action difficult or

easy

In my work, I assume the existence of several tool affordances to solve the similar

task and also assume that a robot can generate the actions difficult or easy and exploit

the perceivable function of the tool. This is in accordance with the Norman’s view

of affordances. When Norman’s concept of affordances is applied to the everyday

artifacts e.g. in doors of a house, thin vertical doorhandles afford pulling, while flat

horizontal plates afford pushing (Gaver85). Both these affordances result in same

effect i.e. opening a closed door. Similarly, for a tool using task of pulling an object,

L-shape tool affords hooking an object to pull it, while a tweezer tool affords clamping

of object through the application of inward pressure with its sides and lifting the

object. Using both of the afforances, task of moving the object can be accomplished.

Thus, my view of tool affordances is implicitly linked with its outcome. Two tool

affordances are considered equal as far as they produce the similar effect, irrespective

of which tool is used and how it is used. An effect is defined as both quantitative

and qualitative change in some property of target object. An action is defined as

the movement of tool that changes one or more properties of the target object. Two
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tasks are also considered similar when their effects match qualitatively rather than

quantitatively. For example, in case of the task of object movement, the desired effect

of the task is to move a target object from place to other in a specific direction.

Thus the movement of object for 5 cm or 50 cm or any distance are considered the

same task as far as their angular movement directions are within certain threshold.

Table 3.3 defines the quantitative measure of similarity of different tasks performed

with the same objective.

Table 3.3: Two different tasks with the same objective are considered similar when
their effects match in qualitative terms.

Task Objective Candidate
Tools

Notion of similarity with the
effects of other tasks

1. Object Movement Stick, L shaped
Tool, Rake

angular movement directions of
target object are within 30 degree
of each other

2. Cutting an object
into pieces

Knife, blade,
Scissor

number of connected components
of the target object change after
the manipulation

3. Inserting nail into
the wood

Stone, Hammer contour of target object changes
after the manipulation

However since in real world situations, it may not have access to previously used

tools and/or the knowledge of previously used actions may be insufficient, I intend

to enable robot learn different tool affordances in such a way that they can be used

alternatively by the robot to solve similar tool using tasks.

For example, if robot acquires the tool affordances (through learning, pre-

programming etc) of pulling the object with a L-shape tool that ”hooks” the box

and changes its position by pulling it using some specific force. Now, consider the

case when the initial position of target object is a different from the situation for

which tool affordances Ire initially acquired, while the goal position remains the

same. In this case, to perform the similar task of object movement using the same

L-shaped tool, the robot should be able to reason about parameters of actions in
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Figure 3.1: Framework of Tool Affordances

terms of abstract properties such as linear forces or torques and generate the action

that can move target to the goal position. Now consider a more complex case when

robot does not even have access to L-shaped tool, then it must find a different

tool that has similar function. Thus, upon availability of different tools and action

schemas, an intelligent robot is expected to estimate their tool affordances using its

prior experience so that an alternative solution to solve a task can be explored when

required.

It means that robot should be able to determine the different ways of solving a

similar task using different actions and different tools. This also requires that robot

should be able to make predictions and inferences based on previous experiences of tar-

get manipulation. To address the Problem 2, I propose learning causal bi-directional

relationships between the tool-using action, functional features of the tool, and effect

of target manipulation. I propose the framework of Tool Affordances (Fig 3.1) to

perform such learning using the probabilistic framework of Bayesian Networks (BN).

The Bayesian network (BN) is chosen as the implementation of learning and eval-

uation of Tool Affordances to acquire the inference capabilities listed in Tabl 3.4. My
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Table 3.4: Inference capabilities required for an autonomous tool user to solve a
tool-using task in different situations.

Inference Input Target of In-
ference

Objective

Inference 1 Tool Represen-
tation ,Effects

Action To select a suitable action and es-
timate its parameters.

Inference 2 Action,Effects Tool Represen-
tation

To select a suitable tool by deter-
mining its function.

Inference 3 Effects Action,Tool
Representation

To select a suitable action and es-
timate its parameters along with
selecting a suitable tool by deter-
mining its function.

Inference 4 Action,Tool
Representation

Effects Estimation the outcome of tool
affordances i.e. probable effects

argument about robot requiring a large set of inference capabilities listed in Table 3.4

is also supported by recent studies in neuroscience. Grafton and Hamilton86 argued

about the existence of hierarchical topology in human brain for generating goal di-

rected actions. They show from the experiments the three levels of this hierarchy.

The desired effects of an action is at top level, followed by the tool which is to be

manipulated and tool using action at lowest level. This hierarchical topology enables

inference 1. Studies also suggest that recognition of tools is done in the same brain

region for action word generation(Grafton and Hamilton86, Martin et al.87, Martin

et al.88). This indicates that tool representation is closely correlated with the actions

that can be generated from these tools (Koechlin and Jubault89). Such correlation

enables the inference of tools though the knowledge of realized effects and used action

(inference 2). Tool use skill should enable robot to recognize tools(and its functions)

by observing the used action and effects on target object. For example, a person

performing a nailing action can be understood to have a hammer in his hand. Such

learning shall also enable robot to select suitable tools to realize the required effects
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using some given action. Thus inference 3 is required for robots capability of tool

recognition and selection.

Representing tool affordances with the BN enables robot to use a rich class of

inference and learning algorithms that comes with graphical models. I chose BN be-

cause of its ability to model probabilistic dependencies between the data. It enables

us to handle incomplete and irrelevant data as well as allows us to input domain and

background knowledge with a degree of confidence and relevance (see Pearl90,91). The

probabilistic semantics of the BN can be used to compute the probability distribution

over the possible outcomes by using a limited number of learning samples. In addi-

tion, when there is uncertainty about the actions, tool representations and effects, the

robot can make queries to its human user by referring to uncertainties expressed in

terms of probability. Hence, BN enables the robot to learn how to use tools by making

probabilistic queries for requesting knowledge, instructions, and demonstrations from

the user. Thus, modeling tool affordances using the probabilistic semantics of BN

gives us an edge over standard statistical methods (linear regression, logistic regres-

sion) as well as over the non-probabilistic machine learning methods (e.g., support

vector machines, classification and regression trees, random forests, neural networks,

nearest neighbor algorithms).

3.3 The proposed approaches

Thus, my proposed three approaches are:

1. To solve Problem 1 in order to realize sub-Goal 1, I propose a novel approach

of learning the perceptual features of the tool causally relevant to realize the

desired effects of the task. These features are termed as functional features of

the tool. This approach enables a robot to select available objects that share

those functional features to be used as tools. It also enables predicting the

effects of different tools on the basis of their functional features. To determine
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the causal probabilistic dependency between features of tool and the outcome of

target manipulation, robot performs multiple repetitions of the manipulation of

target object via the tool e.g., geometry, color, size, material, etc. For instance,

to bring a distant object closer, the tool should have a ”hook” to pull the target

object. Thus, a peculiar geometry in this case is causally relevant while color

and texture of the tool is not. These causally relevant features are termed as

functional features of the tool for the given task. Thus, with the knowledge of

”hook” shaped geometry as the functional feature, a robot can determine that

stick is clearly inappropriate tool while a rake is appropriate. Table 3.1 lists

examples of functional features of some tools and required functionality of the

tasks.

2. To solve Problem 2 in order to realize sub-Goal 2, I propose an approach of

bayesian learning of tool-use model termed as tool affordances to enable robot

perform causal and diagnostic reasoning. The function of tool affordances is

modeled using the probabilistic graphical model of Bayesian Networks (BN)

. The probabilistic semantics of BN enables a robot to handle various uncer-

tainties in its action-perception, learning, inference, environment etc. To obtain

the sensory-motor experiences of target manipulation, a robot performs a ran-

dom exploration of the environment i.e. manipulate target object by randomly

varying actions ( and their parameters ) and the functional features of the tool

(i.e. tool representation). Using the plethora of obtained sensory-motor experi-

ences, it should then learn the causal relationships between the tool-using action,

functional features of the tool, and effect of target manipulation (Fig 3.1) and

acquire the inferences capabilities (listed in Table 3.4). BN is chosen because it

comes with rich class of learning algorithms to model probabilistic dependencies

between the data and mechanisms of inferences capable of dealing with partial

observations, incomplete and irrelevant data (see Pearl90,91).
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3. To solve Problem 3 in order to realize sub-Goal 3, I propose a novel approach

to determine the quantitative measure of the plausibility of inferences made in

different situations. The gap between the desired outcome of the task with the

probable outcome predicted using the inferred value as an input is calculated.

The gap value is used to compare their match, the smaller the gap the better

is the match and hence more is the plausibility of the result of inference. Thus,

based on the different values of gap measure a robot can reformulated its plan

e.g. it may request human feedback or further explore the environment.

In the next chapter, I will discuss the experiments performed to acquire the in-

ference capabilities mentioned in this chapter, the used method and the obtained

results.
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Chapter 4

Learning of Tool Affordances

The aim of this chapter is to present the experiments, method and results for acquiring

the inference capabilities mentioned in Table 3.4.

4.1 Method

I implemented the framework shown in Figure 3.1 using the Bayesian Network (BN)

shown in Figure 4.4. BN is a directed probabilistic graphical model in which nodes

represent random variables, and the arcs (or lack of) represent conditional indepen-

dence assumptions. The conditional independence relationship encoded in a Bayesian

network can be stated as follows: a node is independent of its ancestors given its par-

ents, where the ancestor/parent relationship is with respect to some fixed topological

ordering of the nodes. The conditional independence provides a compact representa-

tion of joint probability distributions. One can regard an arc from action to target

placement as indicating that action ”causes” the target to be displaced. This notion

of causality is used as a guide to construct the graph structure shown in Figure 4.4.

The oval nodes represent continuous data stored using Gaussian nodes with higher

granularity, while the rectangular boxes are representations of discrete data. The

discrete variables are represented as a conditional probability table (CPT), which
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lists the probability that the child node takes on each of its different values for each

combination of values of its parents.

Two things are required to describe a BN: the graph topology (structure) and the

parameters of each conditional probability distribution (CPD). It is possible to learn

both of these from data (Heckerman92). The aim of the experiments presented in

this chapter is to confirm the hypothesis that functional feature based bayesian learn-

ing of tool affordances enable a robot acquite bi-directional inference capabilities.

Thus, the problem of learning the structure was not considered. A brief discussion

on the categories of structure learning algorithm and references is presented in Sec-

tion 6.1. I provided the robot with the graph structure of the BN, and CPD was

specified at each node. The parameters of each CPD of the model were learned using

maximum likelihood parameter estimation (Bishop93). The algorithm is discussed in

Section 6.1.1.

F1 F1

F2
F2

F3 F3

Functional Feature:F

F1: Horizontal Part

F2: Vertical Part

F3: Corner

T Shaped Tool

Figure 4.1: Functional features of T-shaped tool are shown. The brown lines indicate
that for functional features F1 and F2 entire flat surface of the tool can be used to
manipulate the target object. Please note that the the notion of functional feature in
this chapter is based on the geometrical feature of the tool and is independent of the
location of that geometrical feature. That is why there is a single category for each
available horizontal and vertical surfaces and corner respectively.
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In my experiments, the required effect of the task is to move the target object

in different directions. To do that, robot is equipped with actions and a tool. The

used T-shaped tool has 3 geometrical features to be used as functional features, as

shown in Figure 4.1. They are 1) the horizontal part, 2) vertical part, and 3) corner.

Note that both the horizontal part and vertical part have flat surfaces, but different

orientations relative to the handle of the tool. A cubic target object o is placed in

proximity of each functional feature Fj of the T-shaped tool, as shown in Figure 4.2,

where j ∈ [1, 3].

F1
F1

Functional Feature:F

F1: Horizontal Part F2: Vertical Part F3: Corner

F2
F2

F3 F
3

Figure 4.2: The placement of target object relative to the functional features. The
square shape denotes the cubic target object. The lines closes to the functional
features F1 and F2 indicate that a target object is placed randomly near the surface
in different manipulation trials.

For target manipulation, a force is applied to the tool. There are 5 discrete

directions in which robot is pre-programmed to move the tool. The the magnitude

of velocity is continuous. The tool velocities in each of the 5 discrete directions Vi

(for i ∈ [1, 5]) are indexed with a specific action label Ai. The Ai thus refers to

specific direction of the movement of the tool. The discrete action is parameterized

with continuous magnitude of the velocity of tool in that particular direction (refer

Figure 4.3).
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The pre-designed action Ai and functional feature Fj is used to manipulate the

tool, which in turn manipulates the object, where i ∈ [1, 5], j ∈ [1, 3]. The action

labeling and its semantic meaning are:

• A1: Contract Arm

• A2: Slide Arm Left

• A3: Pull Diagonally-1

• A4: Slide Arm Right

• A5: Pull Diagonally-2

Origin

od1

od2 od4

od3

od5

~V1

~V2

~V3

~V4

~V5

Figure 4.3: The tool is applied at once with a force that moves it in specific direction
and initial velocity Vi ∈ R2 and i ∈ [1, 5], where i denotes the direction of tool velocity.
In total, tool moves in 5 directions. The magnitude of tool velocity changes for each
manipulation trial, thus the observed target displacement also changes according to
the tool’s velocity. Here one such case for target manipulation is shown for each of
the 5 cases of tool movement. The length of arrows (in red) denote the magnitude of
tool velocity and odi is the resulting target displacement.

Robot uses the five pre-designed actions as mentioned above and their corre-

sponding movements are shown in Figure 4.3. The tool has the three functional
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features as shown in Figure 4.1 using which the target is manipulated. The robot

records the observations during the manipulation, as shown in Table 4.1. Thus, in

total, there are 5 · 3 = 15 combinations of Action and functional features that can be

used to manipulate the object and create the effect. All experiments on manipulation

and data acquisition were performed with a simulated T shaped Tool using Webots

1 simulation software.

The following two effects were measured:

1. The final displacement of the target object D ∈ R2 between the end position

and initial position.

2. The velocity of the target object measured immediately after its impact with

the tool W ∈ R2.

Table 4.1: The notation of robot’s observations during a manipulation trial.

Node Description Random Variable Value
A Set of actions A Ai , where i ∈ [1, 5]
F Set of functional features F Fj , where j ∈ [1, 3]
D Final target displacement D ∈ R2 dij ∈ R2

X Initial position of object relative to used Fj XF
o ∈ R2 X

Fj
o ∈ R2

V Initial velocity of tool before it hits the target V ∈ R2 vi ∈ R2

W Velocity of object after being hit by the tool W ∈ R2 wij ∈ R2

Two sets of experiments are performed:

1. For each combination of action and functional feature, the target object is ma-

nipulated by the tool only once. This experiment and its result is detailed in

Section 4.2.

2. For each combination of action and functional feature, the target object is ma-

nipulated by the tool multiple times. For each such manipulation trial (in which

1http://www.cyberbotics.com/
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A

V

WD

XF

Figure 4.4: Structure of Bayesian network to learn the proposed tool affordances
proposed in Figure 3.1. The notation is described in Table 4.1.

an action is executed with some functional feature), some random variation in

the force applied on the tool takes place. Thus, a different target velocity and

target displacement is observed for each manipulation trial. This experiment

and its result is detailed in Section 4.3.

4.2 Experiment 1: Manipulation of target object when a fixed linear

force is applied on the tool.

One manipulation trial was performed for each pair (Ai, Fj) and their observations

were recorded shown in Table 4.1 (a total 15 pairs). The effects observed during the

manipulation trial of one pair of (Ai, Fj) is called as one sample. Only one sample is

taken for each pair of pair of (Ai, Fj) to learn the tool affordances. However, one such

sample is also taken to make inferences from the learned tool affordances and one

additional sample is taken to cross-validate the plausibility of the obtained result of
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inference. The observation data from all the samples except (A5, F3) was used in the

learning process. The reason, I do not use the data from (A5, F3) for learning is that,

I am interested in evaluating the capability of learned affordances for the case when

the observations are novel or unseen to the robot. Thus the evaluation sample from

(A5, F3) is mentioned as novel or unseen effect. Hence, in total, there were 14 samples

for learning the tool affordances and all 15 samples are used for the evaluation i.e.

making the inferences.

After the robot has learned the tool affordances, I evaluated the robot’s capa-

bility to emulate the desired effects and test the inference capabilities mentioned in

Table 3.4. The effects created for the specific purpose of evaluation are given by the

human user to the robot. Hence, the data corresponding to that purpose is denoted

using superscript (h), while the data used for learning is denoted using superscript

(r).

As mentioned above, one manipulation trial was performed for each pair of (Ai, Fj)

(i ∈ [1, 5], j ∈ [1, 3]). The robot observed the effects of the manipulation on the

target object (d
(h)
ij , w

(h)
ij ) given by the human demonstrator (denoted by superscript

(h)) using action Ai and functional feature Fj, where the i ∈ [1, 5] and (j) ∈ [1, 3].

The task of the robot was to emulate the effects presented to it by estimating the

inference target for the given inputs as shown in Table 4.2.

Table 4.2: Input and output of tool affordances for inference tests mentioned in
Table 3.4.

Test Input Target Inference

1 (d
(h)
ij , w

(h)
ij ),v

(h)
k , Ak Fm

2 (d
(h)
ij , w

(h)
ij ), Fm Ak

3 (d
(h)
ij , w

(h)
ij ) Ak,Fm

4 Ai,Fj ,v
(h)
i (d

(r)
ij , w

(r)
ij )

Using the learned tool affordances, probabilistic inference was performed with the

junction-tree inference engine (Huang and Darwiche94). The engine computes the
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marginal probability distribution of members of a set of variables, given the evidence.

The engine was supplied with a Bayesian network of tool affordances (see Figure 4.4)

along with the evidence and weight for each variable in the network. The results

for acquiring the inference capability 1 are presented in Figure 4.5. The objective of

inference 1 is to select a suitable tool to realize the target effects using an arbitrarily

given action. Since the tool in my approach is represented using functional features, to

select a suitable tool, the robot inferred the functional features to realize the desired

effects using arbitrarily given actions.

4.2.1 Results of the Experiment 1 and their Discussion

The probability of a robot estimating a suitable functional feature Fm to realize the

effects given during the evaluation process d
(h)
ij ∈ R2 and w

(h)
ij ∈ R2 using the given

arbitrarily action Ak, where h and r denote the human user and robot, respectively,

and (i, k) ∈ [1, 5] and (j,m) ∈ [1, 3]. The inference calculated using the following

equation is shown in Figure 4.5.

PF = P (F = Fm|Ak, v(h)k , d
(h)
ij , w

(h)
ij ) (4.1)

For example, to realize (d
(h)
11 , w

(h)
11 ) using action A1, robot estimates F1 as a suit-

able functional feature. To determine whether the inferred Fm is suitable, the robot

calculates the gap between the effects given during evaluation process i.e. (d
(h)
ij , w

(h)
ij )

and the actual effects (d
(r)
km, w

(r)
km) resulting from the manipulation of action Ak and

functional feature Fm by the robot(denoted by the superscript (r)). The gap between

these effects in D ∈ R2 and W ∈ R2 is defined as follows:

ε(d
(r)
ij )

def
= d

(r)
km − d

(h)
ij (4.2)
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ε(w
(r)
ij )

def
= w

(r)
km − w

(h)
ij (4.3)

∑
n=1

( 5∑
i=1

3∑
j=1

[ 5∑
k=1

(∑
m

(d
(r)
km − d

(h)
ij )
)])

∑
n=1

[ 5∑
i=1

3∑
j=1

( 5∑
k=1

3∑
j=1

(δj m)
)] (4.4)

∑
n=1

( 5∑
i=1

3∑
j=1

[ 5∑
k=1

(∑
m

(w
(r)
km − w

(h)
ij )
)])

∑
n=1

[ 5∑
i=1

3∑
j=1

( 5∑
k=1

3∑
j=1

(δj m)
)] (4.5)

Discussions on the result of inference

The learned tool affordances enable robot to emulate desired effects (including the

novel effects) using several different combinations of action and functional features.

Figure 4.6 and Figure 4.7 show the the gap matrices ε(D) and ε(W ) with greyscale

shading corresponding to the gap values of ε(d
(r)
ij ) and ε(w

(r)
ij ), where (i, k) ∈ [1, 5]

and (j,m) ∈ [1, 3].

For any suitable inferred Fm, the gap should be smaller than gaps that correspond

to non-inferred Fm. I analysed the gap calculated using Equation 4.6 for the values

shown in Figure 4.6 and the gaps calculated using Equation 4.7 for the values shown

in Figure 4.7. The analysis shows that gaps corresponding to the inferred functional

feature Fm (shown using ’*’) are much narrower than the gaps corresponding to non-

inferred functional feature Fm. Figure 4.8 compares gap values corresponding to the

inferred Fm with those corresponding to non-inferred Fm. The bars clearly show the

inferred Fm for any arbitrarily given Ak is most suitable tool affordance to emulate

both learned and novel desired effects.
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Figure 4.5: Robot estimation of suitable functional features to realize effects given
by a human demonstrator (d

(h)
ij , w

(h)
ij ) (measured from the manipulation of action Ai

and functional feature Fj) using the arbitrarily given action Ak, where (i, k) ∈ [1, 5]
and (j,m) ∈ [1, 3]
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Figure 4.6: Matrix E(D) representing the gap in the final displacement of target

object D, between experienced displacement d
(h)
ij (given during the evaluation process)

and actual displacement d
(r)
km (he result of action Ak and functional feature Fm, where

(i, k) ∈ [1, 5] and (j,m) ∈ [1, 3]). The gap calculated using Equation 4.6 is represented
by greyscale parametric shading, i.e., the wider the gap, the darker the background.
For the gap corresponding to the actually inferred k shown in Figure 4.5, the ’*’
mark is used; hence, a narrower gap is expected for a better inference. d

(r)
53 ∈ R2 was

not used during the learning process, but d
(h)
53 ∈ R2 was given during the evaluation

process as novel effect, as shown in the last row.
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Figure 4.7: Matrix E(W) representing the gap in initial velocity of the object after

being hit by the tool W , between the experienced displacement w
(h)
ij (given during

the evaluation process) and actual displacement w
(r)
km (result of using action Ak and

functional feature Fm, where (i, k) ∈ [1, 5] and (j,m) ∈ [1, 3]). The gap calculated
using Equation 4.7 is represented by greyscale parametric shading, i.e., the wider the
gap, the darker the background. For a gap corresponding to the actually inferred
k shown in Figure 4.5, the ’*’ mark is used; hence, a smaller gap is expected for a
better inference. w

(r)
53 ∈ R2 was not used during the learning process, but w

(h)
53 ∈ R2

was given during the evaluation process as novel effect, as shown in the last row.
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Figure 4.8: Bars representing the gap between actual effect by the robot learner and
desired effect given by a human user. The gap is calculated using Equation 4.4 for
the values shown in Figure 4.6 (Left Graph) and Equation 4.5 for the values shown
in Figure 4.7 (Right Graph).
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4.3 Experiment 2: Manipulation of target object when a randomly

varying linear force is applied on the tool.

For each pair of Ai, Fj shown in Table 4.1 a total of 300 manipulation trials are

performed. For each such trial, different magnitude of tool velocity in the direction

corresponding to action Ai is observed due to the different magnitude of force applied

on the tool. The observation data obtained using one manipulation trial is considered

as one sample for that particular pair of (Ai, Fj).

In total 240 samples obtained for each pair (Ai, Fj). Since i ∈ [1, 5], j ∈ [1, 3],

there are 5 ·3 = 15 combination of Action and functional features used to manipulate

the object and create effect. Out of the 240 samples, 180 are the total samples kept

aside for learning the affordances for each pair. The data for 60 instances for each

of 15 pairs is kept for evaluating the tool affordances. However, the observation data

from all the samples except (A5, F3) was used in the learning process. The reason, I

do not use the data from (A5, F3) for learning is that, I am interested in evaluating

the capability of learned affordances for the case when the observations are novel or

unseen to the robot i.e. when no similar sensori-motor pattern has previously been

learned. Thus the evaluation sample from (A5, F3) is mentioned as novel or unseen

effect. Thus, in total, the data from 14 pairs is used for learning the tool affordances

and the data from all 15 pair are used for the evaluation i.e. making the inferences.

The descriptive statistics for the data which is used for learning the tool affordances

is given in Section 4.3.1 while that of evaluation is given in Section 4.3.2.

The following notation is used for describe the data in the tables below:

• vix denotes the component of the velocity of the tool used for action Ai along

the x-axis.

• viz denotes the component of the velocity of the tool used for action Ai along

the x-axis.
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• dijx denotes the x component of final target displacement caused due to the

manipulation of target object while using action Ai with functional feature Fj.

• dijz denotes the z component of final target displacement caused due to the

manipulation of target object while using action Ai with functional feature Fj.

• wijx denotes the x component of target velocity (right after impact with the

tool) caused due to the manipulation of target object while using action Ai

with functional feature Fj.

• wijz denotes the z component of target velocity (right after impact with the

tool) caused due to the manipulation of target object while using action Ai

with functional feature Fj.

4.3.1 Data for learning the tool affordances
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Table 4.3: The observations of the target manipulation performed using A1 and
functional feature F1

v1x v1z d11x d11z w11x w11z
min 0.00 1.30 0.00 0.17 -0.01 1.88
1st Quantile 0.00 1.54 0.00 0.24 -0.01 2.22
Median 0.00 1.73 0.00 0.31 -0.01 2.50
Mean 0.00 1.73 0.00 0.31 -0.01 2.51
Standard Deviation 0.00 0.23 0.00 0.08 0.00 0.33
3rd Quantile 0.00 1.93 0.00 0.39 -0.01 2.81
Max 0.00 2.11 0.00 0.47 -0.01 3.07

Table 4.4: The observations of the target manipulation performed using A1 and
functional feature F2

v1x v1z d12x d12z w12x w12z
min 0.00 1.53 0.00 0.00 0.00 0.00
1st Quantile 0.00 1.71 0.00 0.00 0.00 0.00
Median 0.00 1.94 0.00 0.00 0.00 0.00
Mean 0.00 1.93 0.00 0.00 0.00 0.00
Standard Deviation 0.00 0.24 0.00 0.00 0.00 0.00
3rd Quantile 0.00 2.13 0.00 0.00 0.00 0.00
Max 0.00 2.33 0.00 0.00 0.00 0.00

Table 4.5: The observations of the target manipulation performed using A1 and
functional feature F3

v1x v1z d13x d13z w13x w13z
min 0.00 1.53 0.00 0.19 -0.01 2.17
1st Quantile 0.00 1.74 0.00 0.26 -0.01 2.48
Median 0.00 1.94 0.00 0.34 -0.01 2.79
Mean 0.00 1.94 0.00 0.34 -0.01 2.77
Standard Deviation 0.00 0.23 0.00 0.09 0.00 0.35
3rd Quantile 0.00 2.15 0.00 0.42 -0.01 3.09
Max 0.00 2.33 0.00 0.49 -0.01 3.35

Table 4.6: The observations of the target manipulation performed using A2 and
functional feature F1

v2x v2z d21x d21z w21x w21z
min -2.33 0.00 0.00 0.00 0.00 0.00
1st Quantile -2.13 0.00 0.00 0.00 0.00 0.00
Median -1.93 0.00 0.00 0.00 0.00 0.00
Mean -1.92 0.00 0.00 0.00 0.00 0.00
Standard Deviation 0.23 0.00 0.00 0.00 0.00 0.00
3rd Quantile -1.71 0.00 0.00 0.00 0.00 0.00
Max -1.53 0.00 0.00 0.00 0.00 0.00
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Table 4.7: The observations of the target manipulation performed using A2 and
functional feature F2

v2x v2z d22x d22z w22x w22z
min -2.33 0.00 -0.50 0.00 -3.35 -0.00
1st Quantile -2.13 0.00 -0.41 0.00 -3.06 -0.00
Median -1.93 0.00 -0.33 0.00 -2.76 -0.00
Mean -1.93 0.00 -0.33 0.00 -2.76 -0.00
Standard Deviation 0.24 0.00 0.09 0.00 0.35 0.00
3rd Quantile -1.71 0.00 -0.25 0.00 -2.43 -0.00
Max -1.53 0.00 -0.19 0.00 -2.17 -0.00

Table 4.8: The observations of the target manipulation performed using A2 and
functional feature F3

v2x v2z d23x d23z w23x w23z
min -2.34 0.00 -0.51 0.00 -3.37 -0.00
1st Quantile -2.17 0.00 -0.43 0.00 -3.12 -0.00
Median -1.89 0.00 -0.32 0.00 -2.70 -0.00
Mean -1.93 0.00 -0.34 0.00 -2.76 -0.00
Standard Deviation 0.24 0.00 0.10 0.00 0.36 0.00
3rd Quantile -1.71 0.00 -0.25 0.00 -2.44 -0.00
Max -1.54 0.00 -0.20 0.00 -2.19 -0.00

Table 4.9: The observations of the target manipulation performed using A3 and
functional feature F1

v3x v3z d31x d31z w31x w31z
min -2.34 1.53 -1.08 0.26 -2.20 2.15
1st Quantile -2.12 1.77 -0.47 0.41 -1.99 2.51
Median -1.93 1.93 -0.37 0.56 -1.80 2.75
Mean -1.93 1.93 -0.38 0.58 -1.80 2.75
Standard Deviation 0.23 0.23 0.17 0.22 0.22 0.33
3rd Quantile -1.77 2.12 -0.25 0.69 -1.64 3.02
Max -1.53 2.34 -0.14 1.46 -1.40 3.34

Table 4.10: The observations of the target manipulation performed using A3 and
functional feature F2

v3x v3z d32x d32z w32x w32z
min -2.33 1.53 -1.40 0.18 -3.34 1.41
1st Quantile -2.12 1.71 -0.79 0.27 -3.03 1.60
Median -1.94 1.94 -0.61 0.38 -2.76 1.82
Mean -1.93 1.93 -0.61 0.40 -2.75 1.81
Standard Deviation 0.24 0.24 0.21 0.16 0.35 0.23
3rd Quantile -1.71 2.12 -0.42 0.50 -2.43 2.00
Max -1.53 2.33 -0.27 0.96 -2.15 2.21
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Table 4.11: The observations of the target manipulation performed using A3 and
functional feature F3

v3x v3z d33x d33z w33x w33z
min -2.33 1.53 -1.68 0.18 -3.16 2.17
1st Quantile -2.15 1.78 -0.90 0.48 -2.91 2.48
Median -1.95 1.95 -0.69 0.64 -2.62 2.63
Mean -1.96 1.96 -0.75 0.65 -2.61 2.67
Standard Deviation 0.22 0.22 0.26 0.23 0.33 0.26
3rd Quantile -1.78 2.15 -0.55 0.77 -2.33 2.92
Max -1.53 2.33 -0.34 1.55 -2.08 3.17

Table 4.12: The observations of the target manipulation performed using A4 and
functional feature F1

v4x v4z d41x d41z w41x w41z
min 1.53 0.00 0.00 0.00 0.00 0.00
1st Quantile 1.72 0.00 0.00 0.00 0.00 0.00
Median 1.91 0.00 0.00 0.00 0.00 0.00
Mean 1.92 0.00 0.00 0.00 0.00 0.00
Standard Deviation 0.24 0.00 0.00 0.00 0.00 0.00
3rd Quantile 2.13 0.00 0.00 0.00 0.00 0.00
Max 2.34 0.00 0.00 0.00 0.00 0.00

Table 4.13: The observations of the target manipulation performed using A4 and
functional feature F2

v4x v4z d42x d42z w42x w42z
min 1.53 0.00 0.19 0.00 2.18 0.00
1st Quantile 1.74 0.00 0.26 0.00 2.48 0.00
Median 1.90 0.00 0.31 0.00 2.72 0.00
Mean 1.92 0.00 0.32 0.00 2.74 0.00
Standard Deviation 0.23 0.00 0.09 0.00 0.34 0.00
3rd Quantile 2.12 0.00 0.40 0.00 3.04 0.00
Max 2.33 0.00 0.49 0.00 3.35 0.00

Table 4.14: The observations of the target manipulation performed using A4 and
functional feature F3

v4x v4z d43x d43z w43x w43z
min 1.53 0.00 0.19 0.00 2.17 0.00
1st Quantile 1.75 0.00 0.26 0.00 2.49 0.00
Median 1.93 0.00 0.33 0.00 2.76 0.00
Mean 1.93 0.00 0.33 0.00 2.76 0.00
Standard Deviation 0.22 0.00 0.09 0.00 0.33 0.00
3rd Quantile 2.11 0.00 0.41 0.00 3.03 0.00
Max 2.33 0.00 0.50 0.00 3.35 0.00
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Table 4.15: The observations of the target manipulation performed using A5 and
functional feature F1

v5x v5z d51x d51z w51x w51z
min 1.53 1.53 0.10 0.28 1.40 2.14
1st Quantile 1.73 1.73 0.17 0.36 1.60 2.43
Median 1.93 1.93 0.29 0.48 1.79 2.72
Mean 1.93 1.93 0.31 0.52 1.79 2.72
Standard Deviation 0.24 0.24 0.16 0.19 0.23 0.35
3rd Quantile 2.12 2.12 0.41 0.66 1.98 3.01
Max 2.34 2.34 0.96 1.15 2.19 3.32

Table 4.16: The observations of the target manipulation performed using A5 and
functional feature F2

v5x v5z d52x d52z w52x w52z
min 1.53 1.53 0.27 0.10 2.16 1.41
1st Quantile 1.73 1.73 0.35 0.24 2.46 1.61
Median 1.95 1.95 0.51 0.31 2.78 1.83
Mean 1.93 1.93 0.54 0.33 2.76 1.82
Standard Deviation 0.24 0.24 0.20 0.15 0.36 0.24
3rd Quantile 2.16 2.16 0.71 0.43 3.11 2.04
Max 2.34 2.34 1.02 0.85 3.36 2.21

Table 4.17: The observations of the target manipulation performed using A5 and
functional feature F3

v5x v5z d53x d53z w53x w53z
min 1.53 1.53 0.33 0.30 2.16 2.16
1st Quantile 1.68 1.68 0.46 0.40 2.39 2.39
Median 1.87 1.87 0.63 0.57 2.60 2.61
Mean 1.90 1.90 0.75 0.61 2.65 2.66
Standard Deviation 0.24 0.24 0.38 0.26 0.32 0.32
3rd Quantile 2.10 2.10 0.98 0.76 2.94 2.94
Max 2.34 2.34 2.00 1.54 3.28 3.28
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4.3.2 Data for evaluation of learnt tool affordances

In this sub-section, the descriptive statistics of the data used for making inferences

has been provided. The data used for calculating the inferences listed Table 3.4 is

provided by the human to the robot. In total 60 instances of the observations of target

manipulation, resulted from each pair of action Ai and Fj is recorded, where i ∈ [1, 5],

j ∈ [1, 3]. Thus, similar to the situation when data for learning the affordances is

observed and recorded, to evaluate the inferences, robot uses 5 · 3 = 15 combination

of Action and functional features to manipulate the object and create effect, used to

evaluate its learning.
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Table 4.18: The observations of the target manipulation performed using A1 and
functional feature F1

v1x v1z d11x d11z w11x w11z
min 0.00 1.30 0.00 0.17 -0.01 1.87
1st Quantile 0.00 1.46 0.00 0.22 -0.01 2.11
Median 0.00 1.62 0.00 0.27 -0.01 2.34
Mean 0.00 1.66 0.00 0.29 -0.01 2.40
Standard Deviation 0.00 0.25 0.00 0.09 0.00 0.37
3rd Quantile 0.00 1.89 0.00 0.37 -0.01 2.74
Max 0.00 2.10 0.00 0.46 -0.01 3.06

Table 4.19: The observations of the target manipulation performed using A1 and
functional feature F2

v1x v1z d12x d12z w12x w12z
min 0.00 1.54 0.00 0.00 0.00 0.00
1st Quantile 0.00 1.75 0.00 0.00 0.00 0.00
Median 0.00 1.94 0.00 0.00 0.00 0.00
Mean 0.00 1.95 0.00 0.00 0.00 0.00
Standard Deviation 0.00 0.23 0.00 0.00 0.00 0.00
3rd Quantile 0.00 2.13 0.00 0.00 0.00 0.00
Max 0.00 2.34 0.00 0.00 0.00 0.00

Table 4.20: The observations of the target manipulation performed using A1 and
functional feature F3

v1x v1z d13x d13z w13x w13z
min 0.00 1.54 0.00 0.20 -0.01 2.18
1st Quantile 0.00 1.71 0.00 0.25 -0.01 2.44
Median 0.00 1.82 0.00 0.29 -0.01 2.61
Mean 0.00 1.89 0.00 0.32 -0.01 2.71
Standard Deviation 0.00 0.23 0.00 0.09 0.00 0.34
3rd Quantile 0.00 2.07 0.00 0.39 -0.01 2.98
Max 0.00 2.32 0.00 0.49 -0.01 3.34

Table 4.21: The observations of the target manipulation performed using A2 and
functional feature F1

v2x v2z d21x d21z w21x w21z
min -2.34 0.00 0.00 0.00 0.00 0.00
1st Quantile -2.10 0.00 0.00 0.00 0.00 0.00
Median -1.91 0.00 0.00 0.00 0.00 0.00
Mean -1.92 0.00 0.00 0.00 0.00 0.00
Standard Deviation 0.23 0.00 0.00 0.00 0.00 0.00
3rd Quantile -1.71 0.00 0.00 0.00 0.00 0.00
Max -1.53 0.00 0.00 0.00 0.00 0.00
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Table 4.22: The observations of the target manipulation performed using A2 and
functional feature F2

v2x v2z d22x d22z w22x w22z
min -2.34 0.00 -0.50 0.00 -3.37 -0.00
1st Quantile -2.17 0.00 -0.43 0.00 -3.12 -0.00
Median -1.97 0.00 -0.35 0.00 -2.83 -0.00
Mean -1.97 0.00 -0.35 0.00 -2.82 -0.00
Standard Deviation 0.24 0.00 0.09 0.00 0.35 0.00
3rd Quantile -1.79 0.00 -0.28 0.00 -2.55 -0.00
Max -1.56 0.00 -0.20 0.00 -2.22 -0.00

Table 4.23: The observations of the target manipulation performed using A2 and
functional feature F3

v2x v2z d23x d23z w23x w23z
min -2.33 0.00 -0.51 0.00 -3.36 -0.00
1st Quantile -2.19 0.00 -0.44 0.00 -3.15 -0.00
Median -2.04 0.00 -0.37 0.00 -2.92 -0.00
Mean -1.97 0.00 -0.35 0.00 -2.82 -0.00
Standard Deviation 0.26 0.00 0.10 0.00 0.38 0.00
3rd Quantile -1.75 0.00 -0.27 0.00 -2.50 -0.00
Max -1.55 0.00 -0.20 0.00 -2.20 -0.00

Table 4.24: The observations of the target manipulation performed using A3 and
functional feature F1

v3x v3z d31x d31z w31x w31z
min -2.33 1.53 -1.22 0.26 -2.19 2.15
1st Quantile -2.14 1.78 -0.56 0.42 -2.01 2.52
Median -2.01 2.01 -0.42 0.62 -1.88 2.86
Mean -1.97 1.97 -0.44 0.61 -1.83 2.79
Standard Deviation 0.23 0.23 0.23 0.22 0.22 0.34
3rd Quantile -1.78 2.14 -0.25 0.75 -1.65 3.05
Max -1.53 2.33 -0.14 1.19 -1.41 3.33

Table 4.25: The observations of the target manipulation performed using A3 and
functional feature F2

v3x v3z d32x d32z w32x w32z
min -2.33 1.56 -1.18 0.18 -3.33 1.45
1st Quantile -2.18 1.77 -0.84 0.28 -3.12 1.66
Median -2.01 2.01 -0.66 0.40 -2.87 1.89
Mean -1.98 1.98 -0.66 0.44 -2.82 1.86
Standard Deviation 0.23 0.23 0.23 0.19 0.35 0.23
3rd Quantile -1.77 2.18 -0.49 0.55 -2.52 2.06
Max -1.56 2.33 -0.28 1.02 -2.21 2.20
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Table 4.26: The observations of the target manipulation performed using A3 and
functional feature F3

v3x v3z d33x d33z w33x w33z
min -2.32 1.53 -1.48 0.32 -3.13 2.17
1st Quantile -2.10 1.72 -0.82 0.44 -2.82 2.45
Median -1.89 1.89 -0.63 0.60 -2.58 2.59
Mean -1.91 1.91 -0.68 0.63 -2.58 2.63
Standard Deviation 0.23 0.23 0.23 0.25 0.31 0.26
3rd Quantile -1.72 2.10 -0.52 0.75 -2.30 2.83
Max -1.53 2.32 -0.34 1.45 -2.09 3.14

Table 4.27: The observations of the target manipulation performed using A4 and
functional feature F1

v4x v4z d41x d41z w41x w41z
min 1.54 0.00 0.00 0.00 0.00 0.00
1st Quantile 1.70 0.00 0.00 0.00 0.00 0.00
Median 1.91 0.00 0.00 0.00 0.00 0.00
Mean 1.92 0.00 0.00 0.00 0.00 0.00
Standard Deviation 0.23 0.00 0.00 0.00 0.00 0.00
3rd Quantile 2.11 0.00 0.00 0.00 0.00 0.00
Max 2.33 0.00 0.00 0.00 0.00 0.00

Table 4.28: The observations of the target manipulation performed using A4 and
functional feature F2

v4x v4z d42x d42z w42x w42z
min 1.53 0.00 0.19 0.00 2.18 0.00
1st Quantile 1.70 0.00 0.24 0.00 2.43 0.00
Median 1.90 0.00 0.31 0.00 2.72 0.00
Mean 1.91 0.00 0.32 0.00 2.74 0.00
Standard Deviation 0.23 0.00 0.09 0.00 0.34 0.00
3rd Quantile 2.09 0.00 0.39 0.00 3.00 0.00
Max 2.32 0.00 0.49 0.00 3.34 0.00

Table 4.29: The observations of the target manipulation performed using A4 and
functional feature F3

v4x v4z d43x d43z w43x w43z
min 1.55 0.00 0.20 0.00 2.20 0.00
1st Quantile 1.71 0.00 0.25 0.00 2.44 0.00
Median 1.86 0.00 0.30 0.00 2.66 0.00
Mean 1.90 0.00 0.32 0.00 2.71 0.00
Standard Deviation 0.22 0.00 0.08 0.00 0.32 0.00
3rd Quantile 2.09 0.00 0.40 0.00 3.01 0.00
Max 2.33 0.00 0.51 0.00 3.36 0.00
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Table 4.30: The observations of the target manipulation performed using A5 and
functional feature F1

v5x v5z d51x d51z w51x w51z
min 1.53 1.53 0.10 0.28 1.40 2.14
1st Quantile 1.71 1.71 0.17 0.34 1.58 2.40
Median 1.96 1.96 0.32 0.54 1.82 2.77
Mean 1.94 1.94 0.33 0.53 1.81 2.74
Standard Deviation 0.25 0.25 0.18 0.20 0.25 0.37
3rd Quantile 2.18 2.18 0.42 0.67 2.04 3.10
Max 2.32 2.32 0.81 1.03 2.17 3.29

Table 4.31: The observations of the target manipulation performed using A5 and
functional feature F2

v5x v5z d52x d52z w52x w52z
min 1.53 1.53 0.27 0.10 2.16 1.41
1st Quantile 1.65 1.65 0.32 0.19 2.34 1.54
Median 1.91 1.91 0.47 0.28 2.73 1.79
Mean 1.90 1.90 0.53 0.32 2.71 1.78
Standard Deviation 0.24 0.24 0.22 0.16 0.36 0.24
3rd Quantile 2.12 2.12 0.72 0.43 3.04 2.00
Max 2.32 2.32 1.31 0.83 3.33 2.20

Table 4.32: The observations of the target manipulation performed using A5 and
functional feature F3

v5x v5z d53x d53z w53x w53z
min 1.53 1.53 0.33 0.30 2.16 2.16
1st Quantile 1.75 1.75 0.51 0.43 2.43 2.49
Median 1.96 1.96 0.75 0.59 2.73 2.73
Mean 1.93 1.93 0.84 0.64 2.73 2.73
Standard Deviation 0.23 0.23 0.40 0.26 0.33 0.33
3rd Quantile 2.12 2.12 1.18 0.84 3.03 3.03
Max 2.30 2.30 1.84 1.47 3.27 3.27
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4.3.3 Results of Experiment 2 and their Discussion

The Tool Affordances framework proposed in Figure 3.1 is implemented using the

Bayesian Network(BN). After robot learns the tool affordances, I evaluate robot’s

capability to emulate desired effects and test the inference capabilities mentioned in

Table 3.4. The effects created for the specific purpose of evaluation are given by the

human user to the robot. Hence, the data corresponding to that purpose is denoted

using superscript (h), while the data used for learning is denoted using superscript

(r).

Thus the 60 samples of data obtained for the manipulation of the target object

using all 15 combination of actions and functional features i.e. using each pair of

(Ai, Fj) (i ∈ [1, 5], j ∈ [1, 3]) is given to the robot by human user. The effects

resulted from target manipulation are observed, recorded and used to evaluate tool

affordadances learnt by the robot. Robot is presented with the evaluation effects

(d
(h)
ij , w

(h)
ij ). The task of the robot is to emulate given effects by suitable estimation

of inference target for given inputs (Table 4.2).

To validate the inference result and calculate its accuracy, robot calculates the

gap in effects given during evaluation process i.e. (d
(h)
ij , w

(h)
ij ) and actual effects

(d
(r)
km, w

(r)
km) resulted from the manipulation of action Ak and functional feature Fm

by the robot(denoted by superscript (r)). The gap between these desired and actual

effects in D ∈ R2 and W ∈ R2 is defined as follows:

ε(d
(r)
ij )

def
= d

(r)
km − d

(h)
ij (4.6)

ε(w
(r)
ij )

def
= w

(r)
km − w

(h)
ij (4.7)
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4.3.3.1 Inference 1 : Action Recognition and Selection.

The probability of robot estimation of suitable action Ak to realize given effects by

human demonstrator d
(h)
ij ∈ R2 and w

(h)
ij ∈ R2 using the functional feature Fm, where

(i, k) ∈ [1, 5] and (j,m) ∈ [1, 3] shown in Fig 4.9, is calculated using the following

equation.

PA = P (A = Ak|F(m), d
(h)
ij , w

(h)
ij ) (4.8)

ε(d
(r)
ij ) =

60∑
ne=1

( 5∑
i=1

3∑
j=1

[ 3∑
m=1

(∑
k

(d
(r)
km − d

(h)
ij )
)])

60∑
ne=1

[ 5∑
i=1

3∑
j=1

( 3∑
m=1

5∑
i=1

(δi k)
)] (4.9)

ε(w
(r)
ij ) =

60∑
ne=1

( 5∑
i=1

3∑
j=1

[ 3∑
m=1

(∑
k

(w
(r)
km − w

(h)
ij )
)])

60∑
ne=1

[ 5∑
i=1

3∑
j=1

( 3∑
m=1

5∑
i=1

(δi k)
)] (4.10)

It can be noticed that that learned tool Affordances enable robot to emulate novel

effects novel evaluation effects d
(h)
53 and w

(h)
53 . But to validate the inference result, I

present matrix E(D) and E(W) as shown in Figure 4.10 and Figure 4.11 respectively

with greyscale shading corresponding to the gap values of ε(d
(r)
ij ) and ε(w

(r)
ij ) calculated

using Equation 4.9 and Equation 4.10 respectively.

As could be expected, the gap values of diagonal elements of both matrices are

lowest. Analysis of gap values to realize any pair of effect d
(h)
ij , w

(h)
ij where using ar-

bitrarily given functional feature Fm and the inferred action Ak (shown using ’*’)

are much lower than the gap values corresponding to non-inferred action Ak. Thus,
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Figure 4.9: Robot estimation of suitable Action Ak to realize given effects by human
demonstrator (d

(h)
ij , w

(h)
ij ) (measured from the manipulation of Action Ai and func-

tional feature Fj) using the arbitrarily given functional feature Fm ,where (i, k) ∈ [1, 5]
and (j,m) ∈ [1, 3]

inferred Ak for any arbitrarily given Fm is most suitable tool affordances to emulate

both learned and novel desired effects. To further support my argument, I create
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Figure 4.10: Matrix E(D) representing gap between desired displacement d
(h)
ij (given

during evaluation process) and experienced displacement d
(r)
km of the target object

(resulted using action Ak and functional feature Fm, where (i, k) ∈ [1, 5] and (j,m) ∈
[1, 3]). The gap value is represented using greyscale parametric shading i.e. larger
the gap value, darker the background. For the gap value corresponding to actually
inferred k calculated using Equation 4.6 and shown in Figure 4.9, the ’*’ mark is
used, hence a smaller gap value is expected. For the last column, d

(r)
53 ∈ R2 was not

used during the learning process, but d
(h)
53 ∈ R2 was given during evaluation process

as novel effect as shown in last row of the Figure 4.9).

errorbars (shown in Figure 4.12) using cumulative gap values representing inferred k

and non-inferred k (averaged over all the evaluation effects). The errorbar is calcu-

lated using Equation 4.9 for the values shown in Figure 4.10 (shown as Left Graph

in Figure 4.12 ) and Equation 4.10 for the values shown in Figure 4.11 (shown as

Right Graph in Figure 4.12).
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Figure 4.11: Matrix E(W) representing gap between desired initial velocity w
(h)
ij (given

during evaluation process) and experienced initial velocity w
(r)
km of the target object

after its impact from tool, (resulted using action Ak and functional feature Fm, where
(i, k) ∈ [1, 5] and (j,m) ∈ [1, 3]). The gap value is represented using greyscale para-
metric shading i.e. larger the gap value, darker the background. For the gap value
corresponding to actually inferred k calculated using Equation 4.7 and shown in Fig-
ure 4.9, the ’*’ mark is used, hence a smaller gap value is expected. For the last
column, w

(r)
53 ∈ R2 was not used during the learning process, but w

(h)
53 ∈ R2 was given

during evaluation process as novel effect as shown in last row of the Figure 4.9).

To test our hypothesis that the result of inference to realize the desired effects

than the non-inferred one, we perform hypothesis testing by designing two groups.

”Group One” corresponds to the case when inferred action was used and ”Group Two”

when ”non-inferred” action was used. The table also includes gap values obtained for

creating novel target displacement.
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Figure 4.12: Comparison of error bars representing the gap between the effects as
desired by human user with the ones experienced by the robot. The functional feature
Fm is given to the robot as input to realize d

(h)
ij (Left Window) and w

(h)
ij (Right

Window). Case 1: inferred Ak is used to create all the 15 types of effects. Case
2: non-inferred Ak is used to create all the 15 types of effects. Case 3: inferred Ak
is used to create only the novel effect (d

(h)
53 , w

(h)
53 ) . Case 4: non-inferred Ak is used

to create only the novel effect (d
(h)
53 , w

(h)
53 ) .

When the robot was asked to realized effects similar to that of learned ones as

well as novel ones, the two-tailed P value equals 0.0185. By conventional criteria,

this difference is considered to be statistically significant. Thus, we can say that

using inferred Ak to realize the target displacement is statistically significant than

the non-inferred Ak.

However, when the robot was asked to realize only novel displacement of target

object, then the P-test on gap values using both the groups suggest that, the two-

tailed P value equals 0.352. By conventional criteria, this difference is considered to

be not statistically significant. Thus, robot should ask human user for feedback, since

using inferred Ak to realize the novel target displacement may not always yield better

results than non-inferred Ak.

When the robot was asked to realize target velocity similar to that of learned

ones as well as novel ones, the two-tailed P value equals 0.0001. By conventional
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criteria, this difference is considered to be statistically significant. Thus, we can say

that using inferred Ak to realize the target velocity is statistically significant than the

non-inferred Ak.

However, when the robot was asked to realize only novel velocity of target object,

then the P-test on gap values using both the groups suggest that, the two-tailed P

value equals 0.2149. By conventional criteria, this difference is considered to be not

statistically significant. Thus, robot should ask human user for feedback, since using

inferred Ak to realize the novel target velocity may not always yield better results

than non-inferred Ak.

4.3.3.2 Inference 2: Tool Recognition and Selection.

PF = P (F = Fm|Ak, v(h)k , d
(h)
ij , w

(h)
ij ) (4.11)

The probability of robot estimation of suitable functional feature Fm to realize

given effects d
(h)
ij ∈ R2 and w

(h)
ij ∈ R2 using the given Action Ak , where h and r denote

human demonstrate and robot respectively, and (i, k) ∈ [1, 5] and (j,m) ∈ [1, 3] . The

inference calculated using the following equation is shown in Fig 4.5.

To calculate the gap values for target displacement (refer Equation 4.6), the fol-

lowing equation is used.

ε(d
(r)
ij ) =

60∑
ne=1

( 5∑
i=1

3∑
j=1

[ 5∑
k=1

(∑
m

(d
(r)
km − d

(h)
ij )
)])

60∑
ne=1

[ 5∑
i=1

3∑
j=1

( 5∑
k=1

3∑
j=1

(δj m)
)] (4.12)
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Figure 4.13: Robot estimation of suitable functional feature Fm for the arbitrarily
given action Ak to realize given Effects (d

(h)
ij , w

(h)
ij ) measured from the manipulation

of Action Ai and functional feature Fj and given to the robot by human user, where
(i, k) ∈ [1, 5] and (j,m) ∈ [1, 3]

To calculate the gap values for target velocity after the impact of tool (refer

Equation 4.6), the following equation is used.

ε(d
(r)
ij ) =

60∑
ne=1

( 5∑
i=1

3∑
j=1

[ 5∑
k=1

(∑
m

(w
(r)
km − w

(h)
ij )
)])

60∑
ne=1

[ 5∑
i=1

3∑
j=1

( 5∑
k=1

3∑
j=1

(δj m)
)] (4.13)
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Figure 4.14: Matrix E(D) representing gap between the desired displacement d
(h)
ij

(given during evaluation process) and experienced displacement d
(r)
km of target object

(resulted using action Ak and functional feature Fm, where (i, k) ∈ [1, 5] and (j,m) ∈
[1, 3]). The gap value is represented using greyscale parametric shading i.e. larger
the gap value, darker the background. For the gap value corresponding to actually
inferred m calculated using Equation 4.6 and shown in Figure 4.13, the ’*’ mark is
used, hence a smaller gap value is expected. For the last column, d

(r)
53 ∈ R2 was not

used during the learning process, but d
(h)
53 ∈ R2 was given during evaluation process

as novel effect as shown in last row of Figure 4.13.

To validate the inference result, I calculate matrix E(D) and E(W) using Equa-

tion 4.6 and Equation 4.7 respectively for (i, k) ∈ [1, 5] and (j,m) ∈ [1, 3], similar to

the ones shown in Section 4.3.3.1. The results show that gap values to realize any

pair of effect d
(h)
ij , w

(h)
ij where using arbitrarily given action Ak and inferred functional

feature Fm are much lower than the gap values corresponding to non-inferred action

Fm. Thus, I claim that inferred Fm for any arbitrarily given Ak is most suitable Tool
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Figure 4.15: Matrix E(W) representing gap between desired initial velocity w
(h)
ij (given

during evaluation process) and experienced initial velocity w
(r)
km measured after be-

ing hit from the tool, (resulted using action Ak and functional feature Fm, where
(i, k) ∈ [1, 5] and (j,m) ∈ [1, 3]). The gap value is represented using greyscale para-
metric shading i.e. larger the gap value, darker the background. For the gap value
corresponding to actually inferred m calculated using Equation 4.7 and shown in Fig-
ure 4.13, the ’*’ mark is used, hence a smaller gap value is execpted. For the last
column, w

(r)
53 ∈ R2 was not used during the learning process, but w

(h)
53 ∈ R2 was given

during evaluation process as novel effect as shown in last row of Figure 4.13.

Affordances to emulate both learned and novel desired effects. To support my claim,

I present errorbars (shown in Figure 4.16) using cumulative gap values representing

inferred m and non-inferred m (averaged over all the evaluation effects). The errorbar

is calculated using Equation 4.12 for the values shown in Figure 4.14 (shown as Left

Graph in Figure 4.16 ) and Equation 4.13 for the values shown in Figure 4.15 (shown

as Right Graph in Figure 4.16).
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Figure 4.16: Comparison of error bars representing the gap between the effects as
desired by human user with the ones experienced by the robot. The action Ak is given
to the robot as input to realize d

(h)
ij (Left Window) and w

(h)
ij (Right Window).

Case 1: inferred functional feature Fm is used to create all the 15 types of effects.
Case 2: non-inferred Fm is used to create all the 15 types of effects. Case 3: inferred
Fm is used to create only the novel effect (d

(h)
53 , w

(h)
53 ) . Case 4: non-inferred Fm is

used to create only the novel effect (d
(h)
53 , w

(h)
53 ) .

To test our hypothesis that the result of inference to realize the desired effects

than the non-inferred one, we perform hypothesis testing by designing two groups.

”Group One” corresponds to the case when inferred functional feature was used and

”Group Two” when ”non-inferred” functional feature was used.

When the robot was asked to realized effects similar to that of learned ones as

well as novel ones, the two-tailed P value equals 0.0319. By conventional criteria,

this difference is considered to be statistically significant. Thus, we can say that

using inferred Fm to realize the target displacement is statistically significant than

the non-inferred Fm.

However, when the robot was asked to realize only novel displacement of target

object, then the P-test on gap values using both the groups suggest that, the two-

tailed P value equals 0.1162. By conventional criteria, this difference is considered

to be not statistically significant. Thus, robot should ask human user for feedback,
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since using inferred Fm to realize the novel target displacement may not always yield

better results than non-inferred Fm.

When the robot was asked to realize target velocity similar to that of learned

ones as well as novel ones, the two-tailed P value equals 0.0001. By conventional

criteria, this difference is considered to be statistically significant. Thus, we can say

that using inferred Fm to realize the target velocity is statistically significant than

the non-inferred Fm.

However, when the robot was asked to realize only novel velocity of target object,

then the P-test on gap values using both the groups suggest that, the two-tailed P

value equals 0.0433. By conventional criteria, this difference is considered to be not

statistically significant. Thus, robot should ask human user for feedback, since using

inferred Fm to realize the novel target velocity may not always yield better results

than non-inferred Fm.

4.3.3.3 Inference 3 : Action with Tool Recognition and Selection.

PA,F = P (A = Ak, F = Fm|d(h)ij , w
(h)
ij ) (4.14)

The probability of robot estimation of suitable action Ak with functional feature

Fm to realize given effects by human demonstrator d
(h)
ij ∈ R2 and w

(h)
ij ∈ R2, where

(i, k) ∈ [1, 5] and (j,m) ∈ [1, 3] shown in Fig 4.17, is calculated using the following

equation.

As previously demonstrated in Section 4.3.3.1, I validate the inference result by

calculate matrix E(D) and E(W) using Equation 4.6 and Equation 4.7 respectively for

(i, k) ∈ [1, 5] and (j,m) ∈ [1, 3]. Again due to brevity of space, I do not show the gap

matrices for this inference, but my analysis show that the gap values to realize any

pair of effect d
(h)
ij , w

(h)
ij where using inferred Ak, Fm are much lower than the gap values

corresponding to non-inferred action Ak, Fm. Thus, I claim that inferred Ak, Fm is

most suitable Tool Affordances to emulate both learned and novel desired effects.
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Figure 4.17: Robot estimate of suitable Action Ak and functional feature Fm to realize
given effects by human demonstrator (d

(h)
ij , w

(h)
ij ) (measured from the manipulation of

Action Ai and functional feature Fj) ,where (i, k) ∈ [1, 5] and (j,m) ∈ [1, 3]

To support my claim, I present errorbars (shown in Figure 4.20) using cumulative

gap values representing inferred (k,m) and non-inferred (k,m) (averaged over all the

evaluation effects).
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Figure 4.18: Matrix E(D) representing gap of final displacement of target object D,

between the desired displacement d
(h)
ij (given during evaluation process) and experi-

enced displacement d
(r)
km (resulted using action Ak and functional feature Fm, where

(i, k) ∈ [1, 5] and (j,m) ∈ [1, 3]). The gap value is represented using greyscale para-
metric shading i.e. larger the gap value, darker the background. For the gap value
corresponding to actually inferred k,m calculated using Equation 4.6 and shown in
Figure 4.17, the ’*’ mark is used, hence a smaller gap value is expected. For the last
column, d

(r)
53 ∈ R2 was not used during the learning process, but d

(h)
53 ∈ R2 was given

during evaluation process as novel effect as shown in last row of Figure 4.17.

To test our hypothesis that the result of inference to realize the desired effects than

the non-inferred one, we perform hypothesis testing by designing two groups. ”Group

One” corresponds to the case when both inferred action and inferred functional feature

was used and ”Group Two” when ”non-inferred” action and non-inferred functional

feature was used.
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Figure 4.19: Matrix E(W) representing gap of initial velocity of object after being

hit from the tool W , between desired initial velocity w
(h)
ij (given during evaluation

process) and experienced initial velocity w
(r)
km (resulted using action Ak and functional

feature Fm, where (i, k) ∈ [1, 5] and (j,m) ∈ [1, 3]). The gap value is represented using
greyscale parametric shading i.e. larger the gap value, darker the background. For the
gap value corresponding to actually inferred k,m calculated using Equation 4.7 and
shown in Figure 4.17, the ’*’ mark is used, hence a smaller gap value is expected. For
the last column, w

(r)
53 ∈ R2 was not used during the learning process, but w

(h)
53 ∈ R2

was given during evaluation process as novel effect as shown in last row of Figure 4.17.

When the robot was asked to realized effects similar to that of learned ones as

well as novel ones, the two-tailed P value equals 0.0001. By conventional criteria, this

difference is considered to be statistically significant. Thus, we can say that using

inferred Ak, Fm to realize the target displacement is statistically significant than the

non-inferred Ak, Fm.
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Figure 4.20: Comparison of error bars representing the gap between the effects as
desired by human user with the ones experienced by the robot. The effects to realize
are d

(h)
ij (Left Window) and w

(h)
ij (Right Window). Case 1: inferred action and

functional feature Ak, Fm and is used to create all the 15 types of effects. Case 2:
non-inferred Ak, Fm is used to create all the 15 types of effects. Case 3: inferred
Ak, Fm is used to create only the novel effect (d

(h)
53 , w

(h)
53 ) . Case 4: non-inferred

Ak, Fm is used to create only the novel effect (d
(h)
53 , w

(h)
53 ) .

However, when the robot was asked to realize only novel displacement of target

object, then the P-test on gap values using both the groups suggest that, the two-

tailed P value equals 0.1523. By conventional criteria, this difference is considered

to be not statistically significant. Thus, robot should ask human user for feedback,

since using inferred Ak, Fm to realize the novel target displacement may not always

yield better results than non-inferred Ak, Fm.

When the robot was asked to realize target velocity similar to that of learned

ones as well as novel ones, the two-tailed P value equals 0.0001. By conventional

criteria, this difference is considered to be statistically significant. Thus, we can say

that using inferred Ak, Fm to realize the target velocity is statistically significant than

the non-inferred Ak, Fm.

However, when the robot was asked to realize only novel velocity of target object,

then the P-test on gap values using both the groups suggest that, the two-tailed P
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value equals 0.1466. By conventional criteria, this difference is considered to be not

statistically significant. Thus, robot should ask human user for feedback, since using

inferred Ak, Fm to realize the novel target velocity may not always yield better results

than non-inferred Ak, Fm.

4.3.3.4 Inference 4 : Prediction of Effects

After the learning is performed using 180 samples for each action Ai and functional

feature Fj, the prediction capability of learning affordanes is tested .The task of the

robot is to predict the effects, which a human user can create using an action and tool.

To evaluate, the robots prediction capability, the human user manipulates the target

60 times for each pair of action and functional feature. For each of manipulation trial

corresponding to the action Ak , the magnitude of tool velocity varies.

The robot observes the action performed by the human user, the velocity of the

tool at which it impacts the target and also the functional feature of the tool. However,

the robot does not get to observe the effects the human has created, which it is

required to predict. Using the Bayesian network, robot predicts the mean and variance

of the effects i.e. target displacement and target velocity after the impact of tool. In

total 900 such test cases were given to the robot (i.e. 60 manipulations corresponding

to each pair of Ak, Fm).

Thus, the gaussian distribution of effects for the action Ak (k ∈ [1, 5]) and func-

tional feature Fm (m ∈ [1, 3]) given by human demonstrator is predicted by the robot

using:

PD = P (D = d
(r)
km|Ak, v

(h)
k , Fm) (4.15)

PW = P (W = w
(r)
km|Ak, v

(h)
k , Fm) (4.16)
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where P (x) = 1
σ
√
2π
e−(x−µ)

2/2σ2

and x ∼ N (µ, σ2)

A larger set of continuous effects can also be inferred together using multivari-

ate gaussian distribution over set of random random variables X1, . . . , Xn. It is a

parameterized by an n-dimensional mean vector µ and an n x n positive definitive

covariance matrix
∑

, where

P (X) = 1
(2π)n/2|

∑
|1/2 exp

(
−1

2
(x− µ)T (

∑
)−1(x− µ)

)
For each manipulation trial made by the human, the error between actual target

displacement resulted by the manipulation made by human user, d
(h)
km and the target

displacement as predicted by the robot, d̂
(r)
km is measured as:

ε(dkm) = d̂
(r)
km − d

(h)
km (4.17)

Similarly, the error between actual target velocity, w
(h)
km (after its impact by the

tool) resulted by the manipulation made by human user and the target velocity as

predicted by the robot, ŵ
(r)
km is measured as:

ε(wkm) = ŵ
(r)
km − w

(h)
km (4.18)

The prediction accuracy is calculated by the robot as:

accuracyofprediction =
desired effect - predicted effect

desired effect
(4.19)

The mean error of predictions made by the robot is denoted by ε(dkm) and ε(wkm).

The percentage of mean error of predictions made by robot will give an estimate of

how accurately robot can predict. It is calculated as:

a(ε(dkm)) =
µ(ε(dkm))

µ(d
(h)
km)

(4.20)
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a(ε(wkm)) =
µ(ε(wkm))

µ(w
(h)
km)

(4.21)

Table 4.33: The percentage of mean error in robot’s predicting of effects resulted from
human manipulation using action Ak and functional feature Fm.

k m µ(d
(h)
km

) µ(w
(h)
km

) a(ε(dkm)) a(ε(wkm))

1 1 0.308 2.510 0.006 0.00
1 2 0.00 0.00 0.00 0.00
1 3 0.359 2.863 0.004 0.00
2 1 0.00 0.00 0.00 0.00
2 2 0.363 2.893 0.005 0.00
2 3 0.445 3.159 0.001 0.00
3 1 0.870 3.981 0.259 0.0001
3 2 0.658 3.620 0.281 0.00
3 3 0.488 3.072 0.237 0.373
4 1 0.0 0.00 0.00 0.00
4 2 0.362 2.91 0.0049 0.00
4 3 0.320 2.72 0.0050 0.00
5 1 0.437 2.763 0.0921 0.00
5 2 1.16 3.752 0.3075 0.00
5 3 0.743 3.54 0.0407 0.005

Thus for all the pairs of Ak, Fm, accuracy of prediction of target displacement is

80.89 % and of target velocity is 99%.

Thus, by using the Bayesian tool affordanes, a robot can also acquire the capability

to estimate probable effects with high accuracy, adding to its capability for generating

plans using the known actions and available tools.

4.4 Summary and Conclusion

In this chapter, I attempted to realize the goal of developing a function to determine

a tool representation that enables robot to transfer the tool-use skill to different tools

as well as select alternative tools by estimating their effects. The problem to realize

the goal is that the casual relationship between features of tool and its functionality

was not implicitly established because all the features of tool are not functionally
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relevant. To solve this problem, I proposed encode tool use skill in the features of the

tool that have casual influence on its functionality. My hypothesis was that functional

features remain invariant across the tools that offer the similar functionality. Using

the experiments, I showed that use of functional features in tool-use skill enables

robot to estimate the effects of unseen tools.

I also attempted to realize the goal of developing a function to encode tool use

skill that enables a robot to infer unobservable information from the observed ones.

This function is required to enable acquire the inference capabilities required for an

autonomous tool user. These include the capability to determine suitable action

and estimate its parameters, to select a suitable tool by determine its function and

estimate the outcome of target manipulation.

To realize this goal the problem was that relationship among actions, tool rep-

resentation and effects is not encoded in such a way that it can deal with hidden

stochastic and casual structures as well as noisy data. To address this problem, I pro-

posed robot learning of casual probabilistic dependencies between actions, functional

features and observed effects, termed as Tool Affordances. The probabilistic seman-

tics of Bayesian Network is used to learn tool affordances because the uncertainties

in domain/ background knowledge and inferences can be expressed in probabilistic

terms. Also Bayesian Network presents a large number of learning and inference

algorithms that suit the requirements of my goal.
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Chapter 5

Conclusion and Future Works

5.1 Conclusion

The goal of my research is to enable a robot to use a variety of tools by generalizing

the tool used acquired using few tools.

In Chapter 4, I attempted to realize the goal of developing a function to determine

a tool representation that enables robot to transfer the tool-use skill to different

tools as well as select alternative tools by estimating their effects. The problem

to realize the goal is that the casual relationship between features of tool and its

functionality was not implicitly established because all the features of tool are not

functionally relevant. To solve this problem, I proposed encode tool use skill in the

features of the tool that have casual influence on its functionality. My hypothesis

was that functional features remain invariant across the tools that offer the similar

functionality. Tool representation is done using the geometrical feature of the tool

that influences the functionality of the task. The objective of using these functional

features is to generalize of tool use skill to unseen tools,actions and effects. Robot

manipulates the target object using a pre-designed action and a functional feature of

the T shaped tool. T shaped tool has three functional features i.e. Horizontal Part,
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Vertical Part and Corner. Using the experiments, I showed that use of functional

features in the usage of tool enables robot to estimate the effects of unseen tools.

I also attempted to realize the goal of developing a function to encode tool use

skill that enables a robot to infer unobservable information from the observed ones.

This function is required to enable acquire the inference capabilities required for an

autonomous tool user. These include the capability to determine suitable action

and estimate its parameters, to select a suitable tool by determine its function and

estimate the outcome of target manipulation.

To realize this goal the problem was that relationship among actions, tool rep-

resentation and effects is not encoded in such a way that it can deal with hidden

stochastic and casual structures as well as noisy data. To address this problem, I

proposed robot learning of casual probabilistic dependencies between actions, func-

tional features and observed effects, termed as Tool Affordances. The effects of target

manipulation are final target displacement and initial target velocity after the impact

of functional feature. A total of five actions are pre-designed where each actions is

the cluster-id of varying tool velocities in a specific direction. Using all possible com-

binations of Actions and functional features, robot manipulates the target object and

observations are recorded to learn the Tool Affordances.

Tool Affordances encode the probabilistic dependencies between Action, functional

feature and the resulting effects of manipulation. To test the learnt tool affordances

in acquiring inference capabilities for tool recognition and selection, action recog-

nition and selection as well as prediction of effects of target manipulation, human

demonstrator presents effects from all possible combinations of Actions and func-

tional features to the robot. The presented inference results show robot’s capability

to emulate effects (including effects novel to the robot) given by human demonstrator

by performing the target inference. I also perform validation of inference results and

show that learned Tool Affordances are suitable for emulation of desired effects.
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The probabilistic semantics of Bayesian Network is used to learn tool affordances

because the uncertainties in domain/ background knowledge and inferences can be

expressed in probabilistic terms. Also Bayesian Network presents a large number of

learning and inference algorithms that suit the requirements of my goal. The pre-

sented inference results that show robot’s capability of tool recognition and selection,

action recognition and selection as well as action,tool recognition and selection to

realize desired effects. I also showed that the generalization of functional feature en-

ables robot to estimate the effect of unseen tools. Using the internal belief state of

the robot expressed in probabilistic terms, a robot can request feedback from human

for some structured input about domain/background knowledge and tool-use skill.

For each tool-use task, a separate tool-use model is required. Thus, when different

tools like pen, scissors, spoon, tweezers, hammer etc are to perform the tasks which

require a distinct functionality, robot is required to observes the target manipulation

and model the corresponding tool affordances. For such cases, the approach of Naka-

mura and Nagai49 serves as a good example, however as discussed in Section 2.3, the

approach requires frequent experimental tuning of hyper-parameters i.e. parameter

of a prior distribution, based on the performance of the model. Thus, in order to ex-

tend my approach for different tasks, one of the candidate of my future research is to

build on their work and develop a function to suitably estimate the hyper-parameters

based on cross-validation of the model.

5.2 Future Works

I intend to develop a function to enable robot learn the usage of tools such that

learnt skill can be used to solve similar tool using tasks. This is required because

programming a robot to use each tool is not feasible due to the variations in the

desired effects of each task, actions required for the manipulation and the changes in

perceivable features of each tool. In my work, two tasks are considered similar when
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their effects match qualitatively. For example, in case of the task of object movement,

the desired effect of the task is to move a target object from place to other in a

specific direction. Thus, the movement of object for 5 cm or 50 cm or any distance

are considered the same task as far as their angular movement directions are within

certain threshold.

To use a tool autonomously in order to realize the effects of some tool using task,

a tool using agent requires the following capabilities:

Capability 1: to determine the required effects of the task.

Capability 2: to identify a suitable tool for the given task.

Capability 3: to determine suitable tool placement pose i.e. correct position and

orientation in which tool should be placed relative to the target object and then

generate suitable action to achieve such a tool pose

Capability 4: to generate the action to manipulate the tool after it is correctly

placed.

For capability 1, a robot is required to learn about the descriptors of each task

using which the features of target object that change during tool use can be expressed

e.g. final target displacement to express change in position for object movement task,

surface area to express contour change for amplification of strength task. For capabil-

ity 2 it is required to learn about the features of the tool relevant to its functionality

that depend on required effects of the task and structural constraints with the target

object. For example, it makes a better tool when constituent part of the tool that

manipulates the target has flat surface as geometry and when its surface is longer

than surface of target object. For capability 3, a robot is required to pay atten-

tion to relationship between desired effects and the spatial constraints between tool

and target object. For example, to retrieve a distant object, a suitably placed too

will have its surface behind the surface of target object in order to pull it. Then to
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generate action, it should be able to reason in terms of abstract parameters such as

force and torques. Such reasoning is also required for capability 4 when linear forces

(for Stick, L-shape tool etc), impact forces (hammer, stone etc) and rotational forces

(screwdriver etc) are required to be generated.

The limitation of my work of tool affordances (95–97is that learning to use tool is not

considered. The knowledge and skills required to use a tool were pre-programmed.

The problem is that, it is not feasible for a human designer to provide the prior

knowledge and skills for acquiring the capabilities to use a tool and to learn the

casual dependencies among them, because such an exercise is quite time consuming

and resource intensive. Moreover, different tasks may require different knowledge and

tool-use skills so such an approach will not be generally applicable to wide range of

tool-use tasks.

In future, I intend to propose an approach (discussed in Section 5.2.1) to learn

the usage of tools in an online and incremental manner is proposed, in which the

robot acquires the capabilities to use tool via interaction with the human user (refer

Setcion 5.2.4 for proposed implementation of my approach). The human user demon-

strates the process of tool use, such that concept information is done incrementally

to yield the important information associated with each of the four capabilities of

tool-use. Robot should formulate an initial hypothesis about the functional features

of the tool, tool-pose and actions for tool-placement and target manipulation. It

should then learn the casual dependencies among them using BN based tool affor-

dances. The hypothesis is then tested by experimenting with a variety of tools to

perform similar tasks (refer Section 5.2.5) for which inferences are made using learnt

tool affordances. The uncertainties in domain/task knowledge or the inference results

prompt the robot to make an interaction with the user and update its hypothesis by

incorporating user feedback in its learning.
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Thus, the aim of my future research is to address the problem of minimizing human

effort and the computational complexity involved in autonomous tool use of the robot

by proposing an approach in which robot learns tool use based on interaction with

the human user.

5.2.1 Candidate Concept for learning tool use model

The concept of learning usage of tools can be divided into the parts that represent

action, tool representation and effects.

Extraction of Visual Descriptors

The robot is provided with a set of visual descriptors to be used for tool and

object recognition and classification. These describe shape, size, position and color of

the segmented objects and tools. I extract these Visual Descriptors using 2d images

of tool and object.

• Normalized x and y coordinates of the center of the enclosing rectangle and

surface normals.

• Normalized width, height and angle (orientation) of the enclosing rectangle.

• Hue normalized color histogram of the pixels inside the object’s region.

• Area (number of pixels).

• Convexity - ratio between the perimeter of the object’s convex hull and the

perimeter of the object’s contour.

• Eccentricity - ratio between the minor and major axis of the minimum-area

enclosing rectangle.

• Compactness - ratio between the object area and its squared perimeter.

• Circleness - ratio between the object area and the area of its enclosing circle.
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• Squareness - ratio between the object area and the area of its minimum-area

enclosing rectangle.

• SIFT Features.

Defining Task Spaces to represent effects

The effects are modeled by Gaussian distribution of visual changes that occur

between the end and start of manipulation. In the task of Extension of Reach, the

effects are modeled as relative distance between final and initial object position, to

provide generalization over absolute positions of the target object. In case of Amplifi-

cation of Strength, effect are described as modified length of the nail before and after

manipulation. To avoid the burden of pre-programming the definition of effects, I

propose that visual changes that occur between the end and start of manipulation for

each task (see Table 3.1) should be mapped to some task space. I define the following

types of effects of tool Use on target objects:

• Position Change: relative distance of object placement.

• Orientation Change: relative orientation of object.

• Color Change : correlation coefficient between color histograms of object

• Contour Change: correlation coefficient between fourier descriptors of object

• Change in no of objects: count connected components of object.

It is required for the robot to autonomously select an appropriate task space for the

given task by observing the effects. I propose that the robot would be provided with a

pool of task spaces mentioned above to which observations from human demonstration

shall be mapped. Table 5.1 shows the correlation between tools and task spaces.

Identify a good tool for the given task
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Table 5.1: The effects required for solving different tasks using the tools

Tools Color Contour Position Number of objects
Stick, Hook, L-Shape yes
Knife, Scissor yes(shape)
Hammer, Stone yes(shape) yes/no
ScrewDriver yes(length) yes
Push Pin, Stappler yes
Pen, Pencil yes
Paperweight, Clamps yes(mass)

I had defined functional features as the casually relevant features of the tool that

determine its functionality for a given task. For example, for the tools used to deform

object shapes i.e. knife, blade etc; the sharp edge is the functional feature, but for the

tools that amplify physical strength i.e. stone, hammer etc; the mass, material are

the functional features. Examples of functional features are shown in Table 3.1. my

hypothesis is that these functional features remain distinctive and invariant across

different tools used for performing similar tasks. Identifying a good tool requires

the robot to determine that what are the required functional features to realize the

desired effects and which constituent part of the tool has those functional features. It

also requires determining what is the required grip on the tool to carry out the given

task and whether the available tools provide such a grip. I propose to divide a tool

in 3 different segments, each with its own visual descriptors parameters:

1. Handle: It is the graspable part of the tool. The manner in which one

grips the handle can be used to transmit force through a tool in several ways, i.e.,

impact forces (as with using hammers), linear forces (as with using L shape, T shape,

Stick tool, saws etc), rotational forces (as with using screwdrivers): in each case, the

requirement for transmitting force will have a bearing on the interaction between user

and handle. Please refer Table 5.2 for more details.
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2. End-effector: The end extremity of the tool which generally come into contact

with the object. Also, it is generally the end-effector which carries the functional

feature of the tool (but this is not the requirement e.g. in L shape tool, even though

the horizontal part of the tool is the end effector, but both vertical and horizontal parts

of the tool can be used to manipulate the tool since they both carry the functional

feature which is flat surface). Thus, the end effector signifies both form and function.

3.Body: The connecting part between the handle and the end-effector.

I make this discrete parameterizations of each part of a tool, so that it is possible

to have a better generalization capability to the learning of the affordances. For

example, certain tools might not afford certain actions not because its end-effector is

inappropriate (in case the form of end effectors carries functional features) but because

the tool might be too short to reach the target object or simply not graspable by

the robot. Thus identifying a good tool requires the robot to learn the dependencies

between the desired effects, structural constraints of tool and target object and spatial

constraints of the environment.

For example, in case of the task Extension of Reach, the desired effect is to bring

an object kept at distance, closer to the robot. A suitable tool would be the one that

enables ”Finger-palm” contact to enable ”hook” grip affordance. Table 5.2 shows the

different types of contact a human makes on the handle of tool to realize the goal

of the task. It is shown ( Baber2) that types of contact between hand and tool has

correlation with the types of grip a tool makes on target object and the goal of the

task. Thus, such correlation can be used to recognize the intention of the user and

also the goal of the task. In my work, human shows the grasped tool to the robot

from different viewpoints by rotating its wrist. The robot calculates the SIFT visual

descriptors of the hand shape of tool grasp. These descriptors are later trained using

Support Vector Machines to classify the types of grip as shown in Table 5.2.
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Table 5.2: Types of Grip. The list below is inspired from Table 6.2 of the book
”Cognition and Tool Use” by Christopher Baber2

Type of Grip Contact Description Goal of the
task

Tools Used

Hook Finger-palm Palm against surface, Pulling a
lever and fingers hooked around
the tool

Extension of
Reach

Stick, L shape, T
shape, Egg headed
Stick

Power Hand Tool rested across palm and en-
closed by fingers

Amplification of
strength

Hammer, Saw

Scissor Thumb-two fin-
gers (inside)

Fingers and thumb placed inside
handles of the tool

Cutting paper or
cloth

Scissors

Pinch Thumb-finger-
palm

Tool resting against palm, and
grasped between thumb and fin-
gers

Positioning
screw driver
head onto a
screw

Screwdriver

Lateral Thumb-
forefinger

Tool between thumb and forefin-
ger

To catch an ob-
ject and lift up

Using tweezers

Pen Thumb-two fin-
gers (outside)

Tool rested on thumb and pressed
by two fingers

Coloring, writ-
ing on a surface

Pen

5.2.2 Generation of suitable tool placement strategy

After the suitable contact surface of the tool is selected, it is placed to manipulate

the target object. By observing the human demonstration of tool placement, robot

forms a hypothesis of what constituents a suitable tool placement. For example, when

human uses flat geometry of horizontal part of L-shape tool to move a distant object

closer in Extension of Reach task, the robot observes that the normal of the contact

surface of tool should be aligned with vector describing target position change. Then

such correlation between surface normal of contact surfaces and displacement vector

representing the effect is learned by the robot. Henceforth when some tool is given to

the robot to realize the similar effect, it can generate surface normals of its surfaces

and using the learned correlation find a suitable surface and placement strategy.

In case of task of amplification of strength using hammer to insert a nail into

wood, the axis of nail should be at right angle relative to surface of wood and axis of

heavy head should be aligned with axis of nail. In this case, the effect is described

as contour change (see Section 5.2.1) i.e. modified length of the nail before and after
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manipulation. Here, robot learns the correlations between the surface normals of

nail, head of the hammer and surface of the wood with that of vector representing

the effect.

5.2.3 Manipulation of Target Object

A robot requires the action model to manipulate target object using the L-shape

tool. The action models describe how executing each behavior affects the world. For

example, to manipulate a cubic target, it needs the following action plan in order:

• go-to(L-shape-tool) /* The robot goes towards the L-shaped tool */

• pick-up(L-shape-tool) /* The robot picks up the L-shaped tool in its gripper */

• generate-placement(L-shape-tool, horizontal-part, target-object) /* The robot

places L-shape tool in a position and orientation such that it ”hooks” the target

object using its horizontal-part */

• pull-with-tool(L-shape-tool, target-object) /* The target object is pulled using

the L-shaped tool */

• match (target-current-position, desired-position) /* If target reaches its desired

position, robot will stop */

• drop(L-shape-tool) /* The tool is detached from its gripper*/

Such sequence of actions is required to realize the effects. The action model of some

of these actions is provided to the robot as domain knowledge by the human designer.

But when for example the action models corresponding to the placement-of-tool

and pull-with-tool are not provided, then robot should learn them by requesting
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human user for a demonstration. The robot has to construct action model and domain

knowledge from the human demonstration, then test and refine it by trial and error

process as well as further instruction. Robot thus initially forms the hypothesis

about using a particular tool. The informative experiments that test this hypothesis

is created by the human user, thus limiting the search space to a practical number of

experiments. The human user starts by demonstrating single observation to the robot.

The objective of single demonstration is to enable robot learn from fewer manipulation

trials in an incremental manner, such that learning outcome of one manipulation trial

helps in refining the subsequent trials to achieve the desired effects.

5.2.4 Candidate Implementation of learning from human in-

teraction

The underlying process of learning from interaction is:

1. Robot observes the demonstrator manipulate a target object using some action

and tool to realize the required effects.

2. (a) Robot maps the effects on the task spaces defined in Section 5.2.1.

(b) The goal of the task is determined by observing the type of contact user

makes on the tool while manipulation to enable a suitable grip, as shown

in Table 5.2.

(c) The functional features are selected using the approach detailed in Sec-

tion 5.2.1.

(d) The action model for the placement of constituent part of the tool that

has contact surface relative to target object is constructed using approach

mentioned in Section 5.2.2.

(e) The action model for subsequent target manipulation after it is suitably

placed is constructed as explained in Section 5.2.3. To perform manipu-
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lation, the human user applies linear force or impact force or rotational

force to manipulate the target object depending on the task and selected

tool. These forces are dependent of several parameters e.g. in case of task

of amplification of strength the impact force is proportional to the energy

imparted to the head, which, in turn, relates to the mass of the head, the

angular velocity of the swing, the distance covered during the swing and

the magnitude of the force applied by the user. Such dependency graph is

presented to the robot by human programmer.

3. Robot learns the dependencies between desired effects, functional features of

the tool with action models for tool placement and target manipulation. Such

learning is performed using the probabilistic semantics of Bayesian networks.

4. The human user designs an experiment in which,robot is required to perform

the similar task realize i.e. realize the similar effects, but by using some different

tool. This experiment is to test the robots learning of selection of functional

features and placement strategy by identifying the required dependencies be-

tween desired effects, features of the tool and structural constraints of tool and

target object.

5. If robot fails in performing any of the required four components of tool use or if

the accuracy of inference shows a smaller probability, then it makes queries to

human user for a demonstration using the same tool. The interaction enables the

robot to incorporate more domain and task-specific knowledge for subsequent

manipulation trial. Steps 1-5 are repeated till the success is achieved.

5.2.5 Candidate Experimental condition

I intend to perform the experiments in which robot learns to use the tools shown in

Figure 5.2. The effects to realize is move a target object kept at distance closer to the
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robot. The experiments are performed in SIGVerse (see Inamura et al.5) , which is

a simulator that combines dynamics, perception, and communication simulations for

synthetic approaches to research into the genesis of social intelligence. Please refer

to Section 6.2 for more details about research and development of SIGVerse.

Figure 5.1: Different candidate tools to be used to realize the task of extension of
reach.

Experiment 1: Robot manipulation of target object using stick as the tool.

Two candidate sticks are kept on the table as show in (a) of Figure 5.2. Robot

observes the tools and target object and calculates the visual descriptors. But it

is unable to determine the suitable functional features, tool placement strategy and

(a) Two candidate sticks
to manipulate the target
object from its initial po-
sition to the goal.

(b) Human selects larger
of the two sticks and
places it behind the tar-
get object by rotating the
stick.

Figure 5.2: Robot is required to perform extension of reach task using stick tool as
shown inside SIGVerse simulation environment.
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(a) The human user grips
the stick tool with Finger-
palm contact.

(b) The normal of contact
surface is aligned with the
vector representing effect.

Figure 5.3: Human demonstrates how to grasp and place the tool to enable successful
target manipulation.

action to manipulate target object. Thus, it requests demonstration from human

user.

Experiment 2: Robot learning stick-tool use by observing the human demon-

stration.

Human demonstrates target object manipulation using the Stick-tool through pro-

cess as described in Section 5.2.4.

1. Selection of tool: Human selects the larger stick tool.

2. Grasping the tool: Human grasps the tool as shown in (a) of Figure 5.3.

3. Placement of tool: Human rotates the wrist and places the surface of tool

behind the target object as shown in (b) of Figure 5.3.

4. Target manipulation: Human uses pull-with-tool action to manipulate tar-

get from its initial position to the goal.

What robot learns from interaction?

Robot learns the domain knowledge about what constitutes a suitable grasp, what

are the functional features of the tool for the given task, a suitable tool placement
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strategy and the action required for subsequent manipulation of target. It also learns

the spatial constraints of environment and how to map the observed effects into a pool

of task spaces provided to the robot. The details of its learning presented using literals

is shown in Table 5.3. Along with domain knowledge and individual components of

tool use, the robot encodes the casual dependencies between the cause and effects of

target manipulation from human demonstration using a Bayesian network shown in

Figure 5.4. This BN is required to evaluate the tool affordances by making inferences

listed in Table 3.4.

Figure 5.4: The dependencies between the cause and effects of target manipulation
are encoded in Bayesian network(BN). The box represents the nodes having discrete
data and ovals represent nodes with continuous data. The two actions used are ro-
tate(tool) and pull-with-tool(tool, target-object). The former is used for placement
of tool and later one for the subsequent manipulation. Action causes the placement of
constituent part of the tool which has functional feature, so an arc is added. Using ac-
tion and functional feature, the target is manipulated which causes its displacement,
hence arcs representing casual dependencies are added.

Experiment 3: Robot manipulation of target object using T shape tool to test

its learning.

Robot is required to perform similar task i.e. realize similar effects using a T-shape

tool. The T-shape tool is kept on table with the target object. The functional features

of the T-shape tool are shown in Figure 4.1. Robot checks whether the requirements
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Table 5.3: Explanation of learning to use stick-tool from human demonstration.
Target of learning Representation of what is learnt from

human
Explanation

Spatial Constraint length(tool-handle, end-effector, Lhe), dis-
tance(robot, target-object, drt), Lhe >drt

The length of body connecting the handle of
tool and end effector should be larger than
the distance between robot and initial posi-
tion of target object. Suitable length is re-
quired to reach the target object.

Grasp hook-grip(Tool, Finger-palm) Human uses Finger-palm contact with tool
to provide hook grip with target object .

Functional Feature geometry(Tool, flat-surface) The geometry used is flat surface.
length(Tool, Ls), length(target-object, Lt),
Ls >Lt

Length of contact surface of tool should be
greater than the length of contact surface of
object.

Placement of tool distance(position-of-tool-surface, position-
of-goal, dsg), distance(position-of-target,
position-of-goal, dtg), dsg >dtg

the contact surface should always be behind
the the target object in order to provide a
hook affordance

touching(tool, target-object) The contact surface of tool and target object
should touch.

angle(contact-surface-of-tool, αc),
angle(target-object, αt), |αc| = |αt|

The contact surface of tool and target should
have same orientation.

normal(tool-surface, ~n), target-
displacement(target-object, ~r), ~n = c
~r

The normal vector of the contact surface of
tool should be parallel with the vector de-
scribing final target displacement.

Target manipulation pull-with-tool(Tool, target-object) Human uses pull-with-tool action to ma-
nipulate target from its initial position to the
goal.

Task Space relative-target-position(initial, final) Effects are relative distance between initial
and final object position

of spatial constraints and functional features are met (refer Table 5.3). Then, it selects

the contact surface that meets the requirement for placement of tool. Both horizontal

and vertical parts satisfy the condition of having a surface whose normal is aligned

to the vector representing target displacement. After the placement, robot applies

the similar pull-with-tool(tool, target-object) action to manipulate the target and

achieve the desired effects.

Experiment 4: Robot manipulation of target object using Rakes to test its

learning.
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(a) Using horizontal part
as functional feature

(b) Using vertical part as
functional feature

Figure 5.5: Both horizontal and vertical parts can be used to manipulate the target
object, as shown inside SIGVerse simulation environment.

Robot manipulates the target object using pull-with-tool(tool, target-object)

action after selected the suitable surface and placing the tool as shown in (a)-(d) of

Figure 5.6.

In future, I would like to test this approach on generalization of tool-use model

to a variety of unseen novel tools in order to realize novel effects. For example, after

observing human move the object to its left using the flat surface of vertical stick,

how to enable robot retrieve a distant object by pulling it with cup/egg head shaped

sticks which have convex geometry. Also, I intend to make robot learn functional

features using combination of computer vision, social interaction and social cues with

the human user and extend the concept of functional features to the cases where

geometry is not the only functionally relevant feature e.g. in case of hammer to crack

the nut stiffness of the material is functional feature, in case of paper weight tool,

mass would be the functional feature. The robot’s capability to learn affordances

for several actions and functional features using social interaction to acquire various

inference capabilities is required to realize this goal of an autonomous robot tool user.
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(a) Two candidate rakes
to manipulate the target
object. The smaller rake
is not chosen since it does
not satisfy the spatial con-
straints.

(b) The placement of tool
fails because it does not
satisfy the literal touch-
ing(tool, target-object)

(c) The shown contact
surface is selected for tar-
get manipulation

(d) The shown contact
surface is selected for tar-
get manipulation

Figure 5.6: Robot selects suitable contact surface for target manipulation, if it satis-
fies the requirements related to spatial constraints, functional features and placement
of tool as mentioned in Table 5.3
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Chapter 6

Appendix

6.1 Bayesian Network: A probabilistic graphical model

As Jordan98 stated:

”Graphical models are a marriage between probability theory and graph

theory. They provide a natural tool for dealing with two problems that

occur throughout applied mathematics and engineering – uncertainty and

complexity – and in particular they are playing an increasingly important

role in the design and analysis of machine learning algorithms. Funda-

mental to the idea of a graphical model is the notion of modularity – a

complex system is built by combining simpler parts. Probability theory

provides the glue whereby the parts are combined, ensuring that the sys-

tem as a whole is consistent, and providing ways to interface models to

data. The graph theoretic side of graphical models provides both an intu-

itively appealing interface by which humans can model highly-interacting

sets of variables as well as a data structure that lends itself naturally to

the design of efficient general-purpose algorithms.

Many of the classical multivariate probabalistic systems studied in fields

such as statistics, systems engineering, information theory, pattern recog-
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nition and statistical mechanics are special cases of the general graphical

model formalism – examples include mixture models, factor analysis, hid-

den Markov models, Kalman filters and Ising models. The graphical model

framework provides a way to view all of these systems as instances of a

common underlying formalism. This view has many advantages – in par-

ticular, specialized techniques that have been developed in one field can

be transferred between research communities and exploited more widely.

Moreover, the graphical model formalism provides a natural framework

for the design of new systems.”

Probabilistic graphical models (PGM) are graphs in which nodes represent random

variables, and the (lack of) arcs represent conditional independence assumptions. The

assumptions for conditional independence among variables enable a compact represen-

tation of joint probability distributions. For example, for n binary random variables

X1, . . . , Xn, representing joint probability distribution will need O(2N) parameters,

but thanks to the assumption of conditional independence, few variables can do the

job.

There are two types of graphical models: 1) un-directed and, 2) directed. Bayesian

Networks ( also known as influence diagrams (Shachter99), causal probabilistic net-

works (Jensen et al.100), recursive graphical models (Lauritzen101), causal networks

(Heckerman102), bayesian belief networks (Cheng et al.103), belief networks (Dar-

wiche104) etc) is a directed graphical model.

For a better understanding of the Bayesian Networks, I will begin with a brief

explanation of Bayes rule and the notion of conditional independence. Bayesian

network as the name suggests is based on Bayes rule (Equation 6.1), where Pr denotes
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the probability while A and B are the random variables connected by a directed arc

as shown in .

Pr(A|B) =
Pr(B|A) Pr(A)

Pr(B|A) Pr(A) + Pr(B|¬A) Pr(¬A)
(6.1)

A graph consists of vertices and links between them i.e G = (V,A), where V =

{v1, . . . , vn} be the set of vertices present in the graph and A represent finite set of

arcs or edges. In a directed graph, all the arcs or edges have an associated direction

from one node to another.

Each arc a = (u,v) can be defined either as an ordered or an unordered pair of

nodes, which are said to be connected by and incident on the arc and to be adjacent

to each other. Since they are adjacent, u and v are also said to be neighbors. If (u,v)

is an ordered pair, u is said to be the tail of the arc and v the head; then the arc

is said to be directed from u to v and is usually represented with an arrowhead in

v (u → v). It is also said that the arc leaves or is outgoing for u and that it enters

or is incoming for v. If (u,v) is unordered, u and v are simply said to be incident on

the arc without any further distinction. In this case, they are commonly referred to

as undirected arcs or edges, denoted with e ∈ E and represented with a simple line

(u→ v).

The characterization of arcs as directed or undirected induces an equivalent char-

acterization of the graphs themselves, which are said to be directed graphs (denoted

with G = (V,A)) if all arcs are directed, undirected graphs (denoted with G = (V,E))

if all arcs are undirected, and partially directed or mixed graphs (denoted with G =

(V,A,E)) if they contain both directed and undirected arcs.

Let the given set of random variables be X = X1, X2, ....., Xp.

The Markov property of Bayesian networks, which follows directly from d-

separation (Pearl90), enables the representation of the joint probability distribution

of the random variables in X (the global distribution) as a product of conditional
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probability distributions (the local distributions associated with each variable Xi).

This is a direct application of the chain rule (Korb and Nicholson105). In the case of

discrete random variables, the factorization of the joint probability distribution PX

is given by

PX(X) =

p∏
i=1

PXi(Xi | ΠXi) (6.2)

where ΠXi is the set of the parents of Xi; in the case of continuous random

variables, the factorization of the joint density function fX is given by

fX(X) =

p∏
i=1

fXi(Xi | ΠXi) (6.3)

Similar results hold for mixed probability distributions (i.e., probability distribu-

tions including both discrete and continuous random variables).

After we have the joint probability distribution PX , the next task is to learn the

Bayesian network. Learning denotes the task of fitting a Bayesian Network (Koller

and Friedman106). It involves two steps:

1. Learning the structure for model selection.

2. Learning the underlying parameters of the global distribution of variables for

the selected model.

The structure of the Bayesian Network can be built using the prior information

available on the data and the knowledge of some human expert about the domain. But

it can also be learned from the data itself and Several algorithms have been proposed

for this task. They fall under three broad categories: constraint-based, score-based,

and hybrid algorithms. Few names are mentioned for the well known algorithms for

each of the three category for the readers reference.
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• Constraint Based Structure Learning Algorithms: PC algorithm (Spirtes et

al.107), Grow-Shrink (GS)(Margaritis108), Incremental Association (IAMB)(Tsamardinos

et al.109), Fast Incremental Association (Fast-IAMB) (Yaramakala and Mar-

garitis110), Interleaved Incremental Association (Inter-IAMB) (Tsamardinos et

al.111) etc.

• Score Based Structure Learning Algorithms: Greedy search algorithms such

as hill-climbing (Chickering112, Bouckaert113), Genetic algorithms Larranaga et

al114, Simulated annealing (Bouckaert113) etc.

• Hybrid Structure Learning Algorithms: Sparse Candidate algorithm (SC) (

Friedman et al115), Max-Min Hill-Climbing (MMHC) algorithm ( Tsamardinos

et al.116).

The second step is called parameter learning. The most commonly used algorithm

known as maximum likelihood estimation (used in this thesis) is explained with proofs

in next section.

6.1.1 Maximum Likelihood Parameter Estimation

I will start with some formal definitions. The n random variables that arise from a

random sample are denoted with sub-scripted upper case letters as:

X1, X2, ....., Xn

The corresponding observed values of a specific random sample are denoted as

subscripted lowercase letters:

x1, x2, ....., xn
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Now, we use the some ”sample statistics” to summarize the data of the sample.

These sample statistics are refereed as parameters of the data that arrive from sample.

The range of possible values of the parameter θ is called the parameter space. This

space is usually donated by Ω. For example, if µ denotes the mean of distances

traveled by a number of mobile robots in a two-dimensional plane, then the parameter

space is:

Ω = {µ : 0 ≤ µ ≤ 2}

And, if p denotes the proportion of robots who reached their destination, then the

parameter space is:

Ω = {p : 0 ≤ p ≤ 1}

The point estimator of parameter θ is the function of X1, X2, .....Xn. This

function is denoted here as the statistic:

%(X1, X2, .....Xn)

For example, the function:

X̄ =
1

n

n∑
i=1

Xi

is a point estimator of the population mean µ.

The function:

p̂ =
1

n

n∑
i=1

Xi

(where Xi = 0, 1) is a point estimator of the population proportion p measured

using the data obtained from a random sample of the population.
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And, the function:

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2

is a point estimator of the population variance σ2.

And the observed point estimate of parameter θ is the function %(x1, x2, .....xn).

Now, with the above definitions, I will explain the method of maximum likelihood.

Statement of the Problem

Suppose we have a random sample X1, X2, .....Xn whose assumed probability

distribution depends on some unknown parameter θ. Now, given the observed values

of the random sample x1, x2, .....xn, our interest is in finding a point estimator i.e.

the function %(X1, X2, .....Xn) so as to determine a good point estimate of θ i.e.

%(x1, x2, .....xn). For example, if we assume that all the Xi are normally distributed

with mean µ and variance σ2, then our goal is to determine a good estimate of µ and

σ2, using the observed data x1, x2, .....xn.

Approach

A good estimate of the unknown parameter θ would be the value of θ that max-

imizes the likelihood of getting the data that we obtained from our specific random

sample, observed. Thus maximizing the likelihood of unknown parameter is the basic

idea behind this method.

To implement this method, let’s assume that the probability density function for

each Xi in our random sample X1, X2, .....Xn is f(xi; θ). Then, the joint probability

density function of X1, X2, .....Xn can be written as:

L(θ) = P (X1 = x1, X2 = x2, . . . , Xn = xn)
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where likelihood function L(θ) is written as a function of θ. Now, in a random

sample all the Xi are independent from each other. So, the definition of the joint

probability mass function can be written as:

L(θ) = P (X1 = x1, X2 = x2, . . . , Xn = xn) = f(x1; θ) · f(x2; θ) · · · f(xn; θ)

By taking the product of indexed terms, we can write:

L(θ) = P (X1 = x1, X2 = x2, . . . , Xn = xn) = f(x1; θ)·f(x2; θ) · · · f(xn; θ) =
n∏
i=1

f(xi; θ)

Formal definitions

Here I define the terms (1) likelihood function, (2) maximum likelihood esti-

mators, and (3) maximum likelihood estimates.

Definition. Let X1, X2, .....Xn be a random sample from a distribution. Let’s

assume that this distribution depends on some unknown parameters θ1, θ2, . . . , θm.

Let the probability mass (or density ) function be defined as f(xi; θ1, θ2, . . . , θm).

Now, lets suppose that these m unknown parameters are constrained to a given

parameter space. Let’s denote this parameter space by Ω. Then:

1. The Likelihood function: We can write the joint probability density (or

mass) function of our random sample X1, X2, .....Xn as a function of the

parameters θ1, θ2, . . . , θm of the distribution that generated it, as:

L(θ1, θ2, . . . , θm) =
n∏
i=1

f(xi; θ1, θ2, . . . , θm) (6.4)

Here, θ1, θ2, . . . , θm ∈ Ω is called the likelihood function.
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2. Maximum Likelihood Estimator: If the m-tuple defined by the observations

x1, x2, .....xn for our random sample can be written as:

[%1(x1, x2, .....xn), %2(x1, x2, .....xn), . . . , %m(x1, x2, .....xn)]. (6.5)

Then, the maximum likelihood estimator of θi for i = 1, 2, . . . ,m can be

written as:

θ̂i = ui(X1, X2, . . . , Xn)

3. Maximum likelihood estimate: The observed values mentioned in Equa-

tion 6.5,

[u1(x1, x2, . . . , xn), u2(x1, x2, . . . , xn), . . . , um(x1, x2, . . . , xn)]

are called as the maximum likelihood estimates of θi for i = 1, 2, . . . ,m

Note: The one and only difference between the formulations for the estimator

and the estimate is that:

• the likelihood estimator is define with the uppercase letters (to denote that

its value is random), and

• the point estimate is defined using lowercase letters (to denote that its value

is based on an obtained sample and hence is fixed)

Now, for the easier understanding of how to determine the value of θ that

maximizes the likelihood function, I will provide here two examples. Example 1

105



considers the case when the observed values are discrete; considered to have boolean

values just for the sake of simplicity. In example 2, I will explain the situation when

the observed values are continuous.

Example 1:

Suppose we have a random sample X1, X2, .....Xn, where Xi are independent

Bernoulli random variables with an unknown parameter p such that:

• Xi = 0: if a randomly selected mobile robot does not reach the destination, and

• Xi = 1: if a randomly selected mobile robot reaches the destination

The probability mass function of each Xi is:

f(xi; p) = pxi(1− p)1−xi

, where xi = 0, 1 and 0 < p < 1.

Now, the likelihood function L(p) written as joint probability mass function

using the product of index terms as:

L(p) =
n∏
i=1

f(xi; p) = px1(1− p)1−x1 × px2(1− p)1−x2 × · · · × pxn(1− p)1−xn

Upon simplification by summing up the exponents, we obtain:

L(p) = p
∑
xi(1− p)n−

∑
xi

Now, our objective is to determine some p that maximizes our likelihood function

L(p). To do that, rather than directly differentiating the likelihood function with

respect to p, we first take its natural logarithm and then differentiate. It is done
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because natural logarithm is a monotonically increasing function of x. That means

that the value of p that maximizes the natural logarithm of the likelihood function

log(L(p)) is also the value of p that maximizes the likelihood function L(p). Such a

small manipulation is done to make differential bit easier. Now, the natural logarithm

of the likelihood function is:

logL(p) = (
∑

xi)log(p) + (n−
∑

xi)log(1− p)

We then take its derivative and set it to 0:

∂log(L(p))

∂p
=

Σxi
p
− n− Σxi

1− p = 0

Now, multiplying through by p(1p), we get:

(
∑

xi)(1− p)− (n−
∑

xi)p = 0

Upon distributing few terms cancel out leaving us with:

∑
xi − np = 0

Thus, we can obtain a point estimate as:

p̂ =

n∑
i=1

xi

n

Our estimator function would then be:

p̂ =

n∑
i=1

Xi

n
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To verify whether the obtained estimate is maximum, we can take second deriva-

tive of log likelihood with respect to p and confirm that it is negative.

Example 2:

Suppose we have a random sample X1, X2, .....Xn, where Xi are drawn from a nor-

mal distribution with unknown parameters θ and variance σ2. The Bayesian networks

for this situation are called Gaussian Bayesian networks (Geiger and Heckerman117,

Neapolitan118).

To fine the estimator function and point estimates, the first step is to write down

the join density function of Xi as a function of the parameters of the distribution that

generated the sample. Thus, it can be written as:

f(xi;µ, σ
2) =

1

σ
√

2π
exp

[
−(xi − µ)2

2σ2

]
The parameter space can be written as:

Ω = (µ, σ) : −∞ < µ <∞; 0 < σ <∞

Therefore, the likelihood function for −∞ < µ < ∞ and 0 < σ < ∞ from

Equation 6.4 is:

L(µ, σ) = σ−n(2π)−n/2exp

[
− 1

2σ2

n∑
i=1

(xi − µ)2

]
To maximize the likelihood function with respect to parameters µ and σ, we need

to take its derivative with respect to the parameters. To avoid the confusion over

parameters, let’s re-write the join density function of Xi as:

f(xi; θ1, θ2) =
1√

θ2
√

2π
exp

[
−(xi − θ1)2

2θ2

]
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where θ1 = µ and θ2 = σ2, and the likelihood function as:

L(θ1, θ2) =
n∏
i=1

f(xi; θ1, θ2) = θ
−n/2
2 (2π)−n/2exp

[
− 1

2θ2

n∑
i=1

(xi − θ1)2
]

As explained in Example 1 above, the log of likelihood function is used to make

the derivation easier. It can written as:

logL(θ1, θ2) = −n
2

logθ2 −
n

2
log(2π)−

∑
(xi − θ1)2

2θ2

I then take the partial derivative of the log of likelihood function with respect to

parameter θ1, and setting it to 0.

∂log(L(θ1, θ2))

∂θ1
=
−2Σ(xi − θi)(−1)

2θ2
= 0

On solving, few terms cancel each other out. Upon multiplying both sides by θ2

and then distributing the summation, we obtain:

∑
xi − nθ1 = 0

Thus, upon maximizing the likelihood function with respect to θ1 = µ , that the

maximum likelihood estimator (see Equation 6.5 of µ is:

µ̂ =
1

n

n∑
i=1

Xi = X̄

And therefore, base on the given sample, a maximum likelihood estimate of µ is:

µ̂ =
1

n

n∑
i=1

xi

109



Now, let’s solve for another parameter θ2, where θ2 = σ2. Taking the partial

derivative of the log of likelihood function with respect to θ2, and setting to 0, we

obtain:

∂log(L(θ1, θ2))

∂θ2
=
−n
2θ2

+
Σ((xi − θi)2)

2θ22
= 0

Multiplying through by 2θ22:

∂log(L(θ1, θ2))

∂θ2
=

[−n
2θ2

+
Σ((xi − θi)2)

2θ22
= 0

]
× 2θ22

We obtain:

−nθ2 +
∑

(xi − θ1)2 = 0

Upon solving for the parameter θ2, we calculate that its maximum likelihood

estimator function (Equation 6.5) is:

σ̂2 =

∑
(Xi − X̄)2

n

and its maximum likelihood estimate is:

θ̂2 = σ̂2 =

∑
(xi − x̄)2

n

Now, again to verify whether the obtained estimate is maximum, the second

derivative of log of likelihood function with respect to the parameters µ and σ2 can

be taken and confirmed that it is negative.
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6.1.2 Tools to learn the Bayesian Networks

There are several packages on CRAN (package repository for statistical computing

using R) dealing with Bayesian networks. They can classified on the basis of the two

core functionalities required to model the Bayesian Network namely structure learn-

ing and parameter learning. Some packages perform only one of the two functionality.

I am mentioning some packages that perform both of them. These packages are bn-

learn (Scutari119,120, deal (Bttcher and Dethlefsen121), pcalg (Kalisch et al.122), and

catnet (Balov and Salzman123). In particular, the bnlearn package site mentions

that it offers a wide variety of structure learning algorithms, parameter learning ap-

proaches (maximum likelihood for discrete and continuous data, Bayesian estimation

for discrete data), and inference techniques (cross-validation, bootstrap, conditional

probability queries, and prediction).

6.2 SIGVerse: Socio IntelliGenesis simulator

Figure 6.1: The concept image of SIGVerse which appeared in Inamura et al.5
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Sigverse is a simulation platform for social interaction between agents that include

humans in rea world and robots in virtual world as shown in Figure 6.1(refer Inamura

et al.5 for an introduction). It enables seamless human-robot cooperation and collab-

oration in which humans can connect with the robots using cyberspace (Inamura124)

and simulation the interaction (Tan and Inamura125). An agent inside SIGVerse can

be a human avatar, a robot or some other entity can supports interactive behav-

ior. The human(s) in real world can interact with virtual agents inside SIGVerse via

peripheral devices meant for multi-modal interaction e.g. Microsoft Kinect sensor,

Sony’s PlayStation Move, Wii Motion Controller, JoyStick, Mouse etc. This makes

it very easy and inexpensive to perform embodied and multi-modal human-robot in-

teraction (Tan and Inamura126,127) even at a large scale in less time (Inamura and

Tan128) using cloud based architecture (Tan and Inamura129). It is being used as offi-

cial platform for Robocup competition that focus on HRI (Tan et al.130,131) and have

found use in developing a chatter-bot system for supporting embodied interactions

(Tan and Inamura132,133) and networked driving simulator (Takahasi and Shibata134).

I am using SIGVerse for simulating the manipulation of target via tool-use. The

robot observations from these manipulation trials is then fed to the Bayesian Net-

work to learn and evaluate the tool affordances as explained in Chapter 4. However,

the main utilization of SIGVerse in my project is to use it for learning the tool-use

model via interaction between humans and robots. The interaction based learning

experiments are the candidate for future works as discussed in Section 5.2.
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[119] R. Nagarajan, M. Scutari, and S. Lèbre, Bayesian Networks in R with Applica-
tions in Systems Biology. Use R! series, Springer, 2013.

[120] M. Scutari, “Structure Variability in Bayesian Networks,” ArXiv Statistics -
Methodology e-prints, 2009.

[121] S. G. Boettcher and C. Dethlefsen, “deal: A package for learning bayesian
networks,” Journal of Statistical Software, vol. 8, pp. 1–40, 12 2003.

[122] M. Kalisch, M. Mchler, D. Colombo, M. H. Maathuis, and P. Bhlmann, “Causal
inference using graphical models with the r package pcalg,” Journal of Statistical
Software, vol. 47, pp. 1–26, 5 2012.

[123] N. Balov and P. Salzman, “How to use catnet package,” 2010.

[124] T. Inamura, “Human-robot cooperation system using shared cyber space that
connects to real world - development of sociointelligenesis simulator sigverse
toward hri,” in Proceedings of 1st International Conference on Simulation and
Modeling Methodologies, Technologies and Applications, pp. 429–434, 2011.

[125] J. T. C. Tan and T. Inamura, “What are required to simulate interaction with
robot? sigverse - A simulation platform for human-robot interaction,” in IEEE
International Conference on Robotics and Biomimetics, pp. 2878–2883, 2011.

[126] J. T. C. Tan and T. Inamura, “Embodied and multimodal human-robot inter-
action between virtual and real worlds,” in IEEE International Symposium on
Robot and Human Interactive Communication, pp. 296–297, 2013.

[127] J. T. C. Tan and T. Inamura, “Integration of work sequence and embodied inter-
action for collaborative work based human-robot interaction,” in ACM/IEEE
International Conference on Human-Robot Interaction, pp. 239–240, 2013.

[128] T. Inamura and J. T. C. Tan, “Development of robocup @home simulator:
simulation platform that enables long-term large scale HRI,” in ACM/IEEE
International Conference on Human-Robot Interaction, pp. 145–146, 2013.

[129] J. T. C. Tan and T. Inamura, “Sigverse - A cloud computing architecture sim-
ulation platform for social human-robot interaction,” in IEEE International
Conference on Robotics and Automation, pp. 1310–1315, 2012.

[130] J. T. C. Tan, T. Inamura, Y. Hagiwara, K. Sugiura, T. Nagai, and H. Okada, “A
new dimension for robocup @home: human-robot interaction between virtual
and real worlds,” in ACM/IEEE International Conference on Human-Robot
Interaction, p. 332, 2014.

122



[131] J. T. C. Tan, T. Inamura, K. Sugiura, T. Nagai, and H. Okada, “Human-robot
interaction between virtual and real worlds: Motivation from robocup @home,”
in Social Robotics - 5th International Conference, pp. 239–248, 2013.

[132] J. T. C. Tan and T. Inamura, “Extending chatterbot system into multimodal in-
teraction framework with embodied contextual understanding,” in Proceedings
of the seventh annual ACM/IEEE international conference on Human-Robot
Interaction, pp. 251–252, 2012.

[133] J. T. C. Tan, F. Duan, and T. Inamura, “Multimodal human-robot interac-
tion with chatterbot system: Extending aiml towards supporting embodied
interactions,” in IEEE International Conference on Robotics and Biomimetics,
pp. 1727–1732, 2012.

[134] T. Bando and T. Shibata, “Networked driving simulator based on sigverse and
lane-change analysis according to frequency of driving,” in 15th International
IEEE Conference on Intelligent Transportation Systems, pp. 1608–1613, 2012.

123


	Abstract
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Definitions of Tool Use
	1.2 Requirement of a Tool Use Model
	1.3 The goal of my research
	1.4 The problems to realize the goal
	1.5 Contributions of this thesis

	2 Related Work
	2.1 The manipulation of target object without tool use
	2.2 The manipulation of target object via tool use
	2.3 Conclusion

	3  Approaches Used in this Thesis 
	3.1 Tool Representation Using Functional Features
	3.2 Representation of Perceived Tool Affordances
	3.3 The proposed approaches

	4  Learning of Tool Affordances 
	4.1 Method
	4.2  Experiment 1: Manipulation of target object when a fixed linear force is applied on the tool.
	4.2.1 Results of the Experiment 1 and their Discussion

	4.3  Experiment 2: Manipulation of target object when a randomly varying linear force is applied on the tool.
	4.3.1 Data for learning the tool affordances
	4.3.2 Data for evaluation of learnt tool affordances
	4.3.3 Results of Experiment 2 and their Discussion

	4.4 Summary and Conclusion

	5 Conclusion and Future Works 
	5.1 Conclusion
	5.2 Future Works
	5.2.1 Candidate Concept for learning tool use model
	5.2.2 Generation of suitable tool placement strategy
	5.2.3 Manipulation of Target Object
	5.2.4 Candidate Implementation of learning from human interaction
	5.2.5 Candidate Experimental condition


	6 Appendix
	6.1 Bayesian Network: A probabilistic graphical model
	6.1.1 Maximum Likelihood Parameter Estimation
	6.1.2 Tools to learn the Bayesian Networks

	6.2 SIGVerse: Socio IntelliGenesis simulator

	Bibliography

