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Abstract

This thesis presents a system of axioms for a logic that is sound and complete

with respect to conditional probability spaces.

The literature of doxastic logics (logics for beliefs) has a number of different

ways of modeling beliefs of agents. One of the ways of expressing quantitative

beliefs is through probability theory. Popper-Renyi conditional probability

theory, an alternative approach to probability, is well suited for dynamic

languages and able to express formulas of the form:

‘I believe that p has probability of happening equal to 0 (zero). After p is

announced to be true I believe in p with positive probability.’

In this thesis I define conditional probability spaces, and a system of axioms

that is complete with respect to them. The proof of completeness for some

extensions for dynamics is given by reduction axioms, another advantage of

conditional probability logic.

As an application for this language I express strategies of card games. I use

the card game Algo as an example and express game actions and strategies

in a dynamic extension of the language of conditional probability logic.
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Chapter 1

Introduction

¡Oh! Y ahora, ¿quién podrá

defenderme?

El Chapuĺın Colorado

This chapter is meant to help the reader not so familiar with logic understand at

least some context which this text is talking to and about, and to help the reader more

familiar with the subject to have a quick idea of what are the accomplishments of this

thesis.

The first section is an informal introduction to the topics in the thesis. The second

section uses some usual technical jargon to explain some of the ideas; it is meant to be

understood by an initiate in symbolic logic studies. The theoretical background needed

for the thesis is presented in the next chapter.

1.1 What is this thesis about?

This thesis is about logics to express probabilistic beliefs and their changes.

The idea of modeling beliefs with probabilities comes from the assumption that we

can talk about degrees of beliefs. For instance, the belief that an apple falls after it is

released from a tree, that it might rain tomorrow, that a flip of a coin will land heads

or that a black box containing only red balls has a green ball (in this case the lack of

belief). Those beliefs create different expectations, or as some say, you would be willing

to bet different amounts of money on each of those events.

1



2 CHAPTER 1. INTRODUCTION

In cases where I am not sure, I can say, for example, that I believe that an event

(say, that I will receive a Ph.D.) has probability 95% of happening. A logic of degrees

of beliefs helps us to reason in a clear way about our own beliefs.

If I believe it is going to rain tomorrow and I believe that bringing an umbrella will

keep me dry, then I should bring an umbrella. But we all see how often the weather

forecast misses its predictions. My rule could be that I bring an umbrella only if it is

going to rain with probability at least 80%; after all it is unpleasant to carry an umbrella

that is unnecessary.

It is also interesting to note that beliefs can be wrong, as our earlier belief about the

flatness of Earth was.

Either because our beliefs were wrong or because we were misinformed, we change our

minds during our interactions with others. For example, if I have a biased coin I could

flip it enough times and convince myself that it is more likely to land tails. A magician’s

performance is a good example of belief change. If I believed that a magician had cut his

assistant in half only to see her appearing on the other side of the stage seconds after the

box she entered was closed, then I could start considering the impossible a possibility.

Processes that lead to changes are numerous. However, we can put them in two

different categories. First, the changes that occur only in our minds. This type of effect

is often triggered by some announcement, either verbal or signaled in some other way.

For example if you tell me you were born in Brazil, the probability that I assign to the

event that you may speak Portuguese will increase.

Other changes modify the real world and consequently our beliefs. I believe I will

be safer in a car if I fasten my seat belt, for instance. Changing the world changes our

beliefs.

Also there are changes that are triggered by both at the same time.

Dynamics is an important theme in this thesis. Among other things, I propose a

formal language to express changes when we are completely wrong in our beliefs and

faced with true information that contradicts them. With this language we can express

beliefs after events that were considered impossible (that had probability zero) happen.

Finally, this thesis applies the language presented to card games. Games are a

rich environment to describe with logic because of the intrinsic flow of information and

changes that they present. The focus is exclusively on a game called Algo, a card game

created by the Japanese Olympic Arithmetics Committee.
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I sum up the accomplishments of the present work as follows:

1. The design of a language able to express conditional probabilistic beliefs;

2. The introduction of a language with dynamic operators to express flow of infor-

mation (announcements, events and assignments);

3. The study of the card game Algo, expressing strategies with the logical language

established in previous chapters.

1.2 What are the contributions of this thesis?

1.2.1 Conditional Probability Logic

This thesis presents a system of axioms for a logic that is sound and complete with

respect to conditional probability spaces.

As we will see, the literature of doxastic logics (logics for beliefs) has a number of

different ways of modeling beliefs of agents. One of the ways of expressing quantitative

beliefs is through probability theory. The traditional Kolmogorov probability theory is

not rich enough to handle languages with dynamic operators (see Chapter 4).

Renyi conditional probability theory, an alternative approach to probability, is well

suited for dynamic languages. In Rényi (1955) the conditional probability function

P (· | ·) is defined as P : Σ×B→ [0, 1] satisfying:

(1) µ(A | B) ≥ 0; further µ(B | B) = 1;

(2) For any fixed B ∈ B and for any countable sequence (Ai)i∈N of pairwise dis-

joint elements of Σ it holds that µ(
⋃∞
i Ai, B) =

∑∞
i µ(Ai, B) (we call this property

σ-additivity);

(3) µ(A ∩B | C) = µ(A | B ∩ C) · µ(B | C);

where Σ is a σ-algebra over some set Ω and B ⊂ Σ \ {∅}. Note that we can define the

standard probability function as P (A) = P (A | Ω).

In the first chapter of this thesis I define conditional probability spaces, and the

system of axioms that is complete with respect to them.

To express beliefs of probabilities I will use a formula of the form Lrp meaning

‘the agent believes that the probability of p being true is at Least r.’ This language

was proposed by Aumann (1999) who did not prove completeness. Heifetz and Mongin

(2001) proposed first a set of axioms that was complete with respect to probability

spaces. In Zhou (2009) a simpler set of axioms was proposed.
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The first contribution of this thesis is an extension of the language from Aumann

to express conditional probabilities. I define the connective Lr(p||q) with the intended

meaning ‘the agent believes that the probability of p given q is at Least r.’

The relevance of such a language is not straightforward. I spend the rest of this

section explaining how a language for conditional probability belief is relevant. A similar

discussion was given in Baltag and Smets (2008).

Example 1.1 (Lottery Paradox). Suppose that, for some r < 1, Lrp implies ‘The agent

believes p.’ Pick a natural number n such that r ≤ n−1
n .

Suppose there is a lottery with n tickets, and the agent has one of the tickets.

Assuming the lottery is fair, her chances of winning are 1/n. Therefore the agent believes

that her ticket will not be the winning ticket (chances of not winning is n−1
n ). In fact,

for any given ticket the agent believes that it will not be the winning ticket. Hence, she

believes that no ticket will be the winning ticket. Which is a contradiction since she

knows that one of them will be the winning one.

This example makes clear the idea that qualitative belief in a proposition p should

imply quantitative belief that the chance of p is 1.

On the other hand, an important characteristic of belief is that it can be wrong, i.e.,

an agent can believe in an event p (believe its chance is 1) but in fact it is false. On

dynamic scenarios for probabilistic beliefs where updates are calculated by Bayesian rule

it is reasonable to expect events with probability zero. However, the Bayesian update is

not defined for events with probability zero.

The notion of conditional probability belief, defined in this thesis, allows a natural

way to express probabilistic beliefs integrated with dynamic scenarios.

1.2.2 Solving Open Problems

Baltag and Smets (2008) define a language for qualitative conditional belief, i.e., an

operator Lr(p||q) with r ∈ {0, 1}. Roughly, this operator means ‘the agent believes in p

given q’ if r = 1; and ‘the agent does not believe in p given q’ if r = 0.1

This qualitative language is complete with respect to finite discrete conditional prob-

ability spaces, i.e., in the definition of conditional probability function the σ-algebra Σ

is finite and equal to the set of subsets of Ω (Σ = P(Ω), and Ω is finite).

1Baltag and Smets (2008) does not mention the number r, but it is useful to denote with the subscript

r for easier comparison with the present work.
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The conditional probability logic defined in Chapter 3 is a language for quantitative

conditional belief. The qualitative language in Baltag and Smets (2008) can be seen

as a sublanguage of the conditional probability logic. Conditional probability logic is

complete with respect to the class of conditional probability spaces1 with B = Σ.

It is worth mentioning that in the finite discrete case, Renyi’s definition and Pop-

per’s definition of Conditional Probability coincide, as commented by Baltag and Smets

(2008). However, in this thesis they are essentially different.

To sum up this part I restate two problems that are left open in Baltag and Smets

(2008) that this thesis addresses:

Open Problem 1. To axiomatize the logic for arbitrary (finite or infinite) condi-

tional probability models.

Open Problem 2. Study the logic obtained by adding quantitative modal operator.

1.2.3 Dynamics and Reduction Axioms

The major advantage of conditional probability theory as the underlining model for a

language lies on the dynamics side. Announcements of propositions with probability

zero can be made and after the announcement the agent believes in the proposition with

positive probability. The intuition behind this problem is easy to grasp.

Imagine a shelf with three bananas, one apple and one screwdriver. Note that the

following should be equivalent in a logic of announcements (a traditional dynamic logic):

(a) After you take an object from the shelf and tell me it is a fruit I should assign

probability 1/4 to the fact that you took an apple; and

(b) I assign probability 1/4 to the event of you taking an apple given you took a

fruit.

There are languages (based on the traditional Kolmogorov probability) that are able

to express this situation. But the problem lies in the following similar scenario:

Imagine the same shelf as before with three bananas, one apple, one screwdriver and

one knife, but I do not know about the knife. The following should also be equivalent

in a logic of announcements:

(a) After you take an object from the shelf and tells me it is a cooking tool I should

assign positive probability to the fact that you took a knife; and

1I use a modified definition of conditional probability function. In Renyi’s definition B ⊂ Σ \ {∅},
whereas in Chapter 2 I define conditional probability function slightly differently; see Definition 2.1.
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(b) I assign positive probability to the event that you will take a knife given you took

a cooking tool.

Let ![p] be the operator for the public announcement of p and say that a formula of

the form [!p]q means ‘after the announcement of p it is the case that q.’ In Chapter 4

we define this operator formally.

In order to prove completeness of Public Announcement Logic we find reduction

axioms, a standard technique. The idea behind reduction axioms is: given a formula

φ with the new operator [!·] (say [!p]q) define a recursive method to find an equivalent

formula without the new operator [!·] (in this case p→ q).

The point to keep in mind at this stage is the importance of conditional probability

logic. After a public announcement a formula without conditional part is equivalent to

a formula with conditional part, i.e., we have the following equivalence as a theorem:

[!p]Lrq ↔ Lr([!p]q||p).

Conditional probability logic is essential for the existence of reduction axioms.

Dynamic epistemic logic is well studied in the book van Ditmarsch et al. (2007),

however it does not treat the probabilistic case. The papers of van Benthem (2003), Sack

(2009) and then Kooi (2003) were the first to treat the probabilistic case. The notion of

uncertainty of an announcement was improved in van Benthem et al. (2009). However, all

these references were based on the Kolmogorov notion of probability and used the static

language proposed by Fagin and Halpern (1994), which is a more expressive language

than the language found in Zhou (2009).

This thesis presents a language for conditional probability logic, which is essential to

express the reduction axioms of some dynamic logics (like Public Announcement Logic)

in the spirit of Aumann (1999) and Zhou (2009). Later in this thesis we come back to

the distinction between Aumann’s and Halpern’s ideas.

1.2.4 Card Games

As an application of this language I express strategies of card games. I use the card game

Algo as an example and express card actions and strategies in a dynamic extension of

the language of conditional probability logic.



Chapter 2

Background

Só escreva quando de todo não puder

deixar de fazê-lo. E sempre se pode.

Carlos Drummond de Andrade

Just write when you cannot lay it

aside. And one always can.

Carlos Drummond de Andrade

We present in this chapter the theoretical background needed for this thesis. Since all

the definitions and results are well known in the literature (with exception of conditional

probability measure) we present them without examples to motivate their point.

2.1 Set Theory and Propositional Logic: Basic Notation

First, we briefly define some notation of set theory and syntax for logical languages.

Propositional logic is the most popular as the base language for epistemic logics. We

define propositional logic with the symbols ¬,∧ and ∨ which denote negation, conjunc-

tion and disjunction. The symbol→ denotes implication. The set P is a set of countable

propositional variables. Any propositional variable is a formula; if φ and ψ are formulas

so are ¬φ, φ ∧ ψ, φ ∨ ψ and φ→ ψ; and nothing else is a formula. A more elegant way

to express it is:

A formula φ is given by

7
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φ
.
= p|¬φ|φ ∧ φ|φ ∨ φ|φ→ φ

where p ∈ P.

The notation and sets of set theory are denoted as follows. The sets of natural and

rational numbers are denoted by N and Q. The symbols ∩ and ∪ denote intersection

and union of sets. The symbol ⊂ denotes inclusion. If X is a set, then P(X) denote the

power set of X, i.e., the set of all subsets of X.

2.2 Measure and Conditional Probability

In this section we define the basic elements of measure theory and conditional prob-

ability that we will make use of throughout this thesis. For more details in measure

theory see, e.g., Halmos (1950). Our definition of conditional probability function is a

modified version of Rényi (1955). In his original proposal the conditional probability

function was defined as P : Σ × B → [0, 1], where B is closed by countable disjoint

union and ∅ /∈ B ⊂ Σ. In this thesis we consider the case that B = Σ, with the added

assumption that P (·,∅) is not σ-additive.

Fix a set X. Σ ⊂ P(X) is a σ-algebra if

· ∅, X ∈ Σ,

· if A,B ∈ Σ, then A \B ∈ Σ and

· if An ∈ Σ for all n ∈ N, then
⋃
n∈NAn ∈ Σ.

Call (X,Σ) a measurable space.

We say that a measurable space (X,Σ) is finite if X is finite. And we say it is discrete

if Σ = P(X).

A function µ : Σ → [0, 1] is called σ-additive if for any countable family of pairwise

disjoint sets (Ai)i∈N in Σ, it holds that µ(
⋃
i∈NAi) =

∑∞
i=0 µ(Ai).

Let (X,Σ) be a measurable space, a function µ : Σ → [0, 1] is called a probabilistic

measure (function) if the following is satisfied, for any A ∈ Σ:

(1) µ(A) ≥ 0;

(2) µ is σ-additive;

(3) µ(X) = 1.

The triple (X,Σ, µ) is called a probability space.
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Definition 2.1. Let (X,Σ) be a measurable space and denote by Σ∗ the set Σ \ {∅}.
A function µ : Σ × Σ → [0, 1] is called a conditional probabilistic measure (function) if

the following is satisfied:

(1) µ(A,B) ≥ 0; further µ(B,B) = 1;

(2) For any fixed B ∈ Σ∗ µ(·, B) is σ-additive;

(3) µ(A ∩B,C) = µ(A,B ∩ C) · µ(B,C).

The triple (X,Σ, µ) is called a conditional probability space.

The traditional probability of an event A is defined as µ(A|X). It is useful to state

and prove the following properties of a conditional probability function:

Theorem 2.2. Let (X,Σ, µ) be a conditional probability space and let A,B,C be ele-

ments of Σ. The following hold:

1. µ(A,∅) = 1;

2. µ(A ∩B,B) = µ(A,B);

3. If A ⊆ B, then µ(B,A) = 1;

4. µ(A ∩B,A ∩ C) = µ(B,A ∩ C.)

Proof. (1) Note that with B = C = ∅ in (3) of Definition 2.1 we have µ(∅,∅) =

µ(A,∅) · µ(∅,∅), hence µ(A,∅) = 1 by (1) of Definition 2.1.

(2) Letting B = C in (3) of Definition 2.1 we have

µ(A ∩B,B) = µ(A,B) · µ(A,A) = µ(A,B).

(3) Remember that if A ⊆ B, then A ∩B = A. The proof is given as follows:

1 = µ(B ∩A,A) = µ(B,A) · µ(A,A) = µ(B,A).

(4) Note that A∩B ∩C ⊆ A. Then by item (3) µ(A,A∩B ∩C) = 1. With that the

proof can be seen by the following:

µ(A ∩B,A ∩ C) = µ(A,A ∩B ∩ C) · µ(B,A ∩ C) = µ(B,A ∩ C).

Let X be a set and (Bi)i∈I a family of subsets of X indexed by the nonempty set I.

Denote by σ{Bi : i ∈ I} the smallest σ-algebra containing the family (Bi)i∈I .

Let (X,Σ1) be a measurable space and (Y,Σ2) a finite discrete measurable space.

Let µ and η be measures over Σ1 and Σ2. The product space between these two spaces is
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given by (X × Y,Σ1 × Σ2) where Σ1 ⊗ Σ2 = σ({E × F : E ∈ Σ1, F ∈ Σ2}), the smallest

σ-algebra containing Σ1×Σ2. The product measure between µ and η is denoted by µ×η :

µ× η(U) =
∑
y∈Y

µ(Uy)η(y),

where Uy = {x ∈ X : (x, y) ∈ U}, and η(y) = η({y}). It is a well-known fact (see, e.g.,

Halmos (1950)) that in the case where µ and η are probability measures the product

µ× η is a probability measure.

A real valued function f : X → [0, 1] is a Σ-measurable function if for all r between

0 and 1 we have f−1([0, r]) ∈ Σ. Or, equivalently, f−1([r, 1]) ∈ Σ for all r ∈ [0, 1].

A function T : X × Σ → [0, 1] is a Markov kernel if for any x ∈ X the function

T (x, ·) is a probabilistic measure over Σ and for any A ∈ Σ the function T (·, A) is a

Σ-measurable function.

A function T : X × Σ × Σ → [0, 1] is a conditional Markov kernel if for any x ∈ X
the function T (x, ·, ·) is a conditional probabilistic measure over Σ and for any A,B ∈ Σ

the function T (·, A,B) is a Σ-measurable function.

The probability theory for conditional probability spaces was proposed in Rényi

(1955). In his original proposal the conditional probability function was defined as

P : Σ×B→ [0, 1], where B is closed under countable disjoint union and ∅ /∈ B ⊂ Σ. In

this thesis we consider the case that B = Σ, with the added assumption that P (·,∅) is

not σ-additive.

Game theorists adopted this approach some time later in Myerson (1986) and more

recently in Battigalli and Siniscalchi (1999). The logic community seems to have not

paid much attention until Baltag and Smets (2008), which proposed a language for finite

discrete spaces. We will come back to this question in the next chapter.

2.3 Epistemic Structure and Probabilistic Models

An epistemic structure is a tuple M = 〈W,R, v〉 such that W is a set, R is an equiva-

lence relation over the power set of W , and v is a valuation, i.e., a function from the set

of propositions to a subset of W .

A probability model M = 〈Ω,Σ, T, v〉 is such that (Ω,Σ) is a measurable space;

T : Ω × Σ → [0, 1] is a Markov kernel; v is a valuation, a function from the set of

propositional variables to Σ.
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Definition 2.3. A conditional probability model M = 〈Ω,Σ, T, v〉 is such that (Ω,Σ) is a

measurable space; T : Ω×Σ×Σ→ [0, 1] is a conditional Markov kernel; v is a valuation,

a function from the set of propositional variables to Σ.

2.4 Syntax - Halpern and Aumann

In this thesis we will be referring to two formal languages for probability. Here we call

them Halpern’s language and Aumann’s language; however this distinction is usually

not made as texts in general use only one language and stick to it. For clarity I make

this distinction here. The names are from the first person to propose each language.

Halpern’s language is given by:

φ
.
= p|¬φ|φ ∧ φ|α1 · P (φ) + ...+ αk · P (φ) ≥ β,

where p ∈ P and α1, ..., αk, β ∈ [0, 1] ∩Q.

P (φ) stands for the probability of a formula φ. This language allows for combination

of probabilities of formulas in a linear way, e.g, the formula P (φ) + P (ψ) ≥ 0.5 is a

formula of the language.

The disadvantage of this language is that its axiomatization needs a set of axioms

for inequalities, turning the proof of completeness less traditional.

Aumann’s language is, strictly speaking, a sublanguage of Halpern’s. It does not

allow linear combination of probabilities and is given by:

φ
.
= p|¬φ|φ ∧ φ|P (φ) ≥ r,

where r ∈ [0, 1] ∩Q.

It is standard to write P (φ) ≥ r as Lrφ with the same intended meaning ‘the prob-

ability of φ is at least r.’

The disadvantage of this language is its inability to express sums of probabilities. As

a consequence the dynamic extensions are harder to study over Aumann’s language. In

Chapter 4 we show how conditional probability logic is needed in order to express some

dynamic concepts within Aumann’s idea. However, completeness is achieved only for a

limited class of event models.

Admittedly the disadvantages of either Halpern’s or Aumann’s language could be

ignored if the completeness of a logic is the only interest, since Halpern’s language is
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simply more expressive and also complete. What I argue here is that despite the fact that

Aumann’s language is less expressive it is still interesting as an object of study for two

reasons. First, the techniques for the proof of completeness (see Chapter 2) are similar

to modal logics, i.e., Lr operator behaves in many ways similarly to modal logics (it is

a modal operator in spirit). Second, it is still possible to express useful concepts despite

the loss of expressivity (like some strategies in Chapter 4). Moreover, the conditional

probability language (that is an extension of Aumann’s language) presented in this

thesis was designed with dynamics in mind, which allowed simple formulas for non-static

scenarios (see Chapter 3).

Intuitively we can see this simplicity as a consequence of the following difference: On

Kolmogorov theory of probability we say ‘The conditional probability of A given B is

P (A ∩ B)/P (B) if P (B) 6= ∅ and is undefined otherwise’. On Popper-Renyi theory of

conditional probability (Definition 2.1) we say ‘The conditional probability of A given

B is P (A|B)’ - the term P (A|B) is always defined.

2.5 Dynamic epistemic logic

Dynamic epistemic Logic is a field well studied, e.g., van Ditmarsch et al. (2007). Prob-

abilistic dynamics as an extension of Halpern’s language is studied in van Benthem

(2003), Kooi (2003), and Sack (2009). We illustrate dynamics in this section with public

announcement logic. For more details see Chapter 4.

The announcement of a formula φ is denoted by [!φ].

[!φ]ψ is read as ‘after the announcement of φ, it is true that ψ.’

It is interesting to note that there are different ways of defining the updated model

in probability logics for the case when the announced formula has probability zero (φ is

such that L1¬φ holds). Below we define one possible way of defining such update.

Definition 2.4 (SatisfiabilitySack (2009)). If M is a probabilistic model, the updated

model after the announcement of φ is denoted by Mφ and defined as

Mφ = 〈Ωφ,Σφ, Tφ, vφ〉,

where

Ωφ = JφK;
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Σφ = {B ∩ Ωφ : B ∈ Σ};

Tφ(w,A) =


T (w,A ∩ JφK)
T (w, JφK)

if T (w, JφK) 6= 0

0 otherwise.

vφ(·) = v(·) ∩ Ωφ

In Sack (2009) there is a set of reduction axioms for public announcement logic, but

note that

L0p ∧ p ∧ [!p]Lrp

holds only if r = 0.

2.6 Universal Modality

Let M = 〈W,Σ, T, v〉 be a conditional probability model. Let p be a propositional

variable and denote by JpK the set {w ∈ W : w ∈ v(p)}. Note that by the definition

of conditional probability function (Definition 2.1), for any x ∈ W , if JpK 6= ∅, then

T (x, ·, JpK) is σ-additive.

Suppose we have a language in which the set of formulas Φ is satisfied by M (satisfied

in each state w in M) if and only if T (x, ·, JpK) is σ-additive. Suppose the connective 3

is such that 3p is true if and only if JpK 6= ∅. Then we can define the set Φ3 = {3p→
φ : φ ∈ Φ}, which holds if and only if JpK 6= ∅ implies T (x, ·, JpK) is σ-additive.

Informally we translated part of the conditional probability function definition to a

formal language. I will spell out all the details in Chapter 3. For now, let’s define the 3

operator which is the dual of the traditional universal modality.

The 2 connective - with the traditional intended meaning ‘2φ holds in a state if and

only if φ holds at all states in the model’ - is the dual of the desired connective (3) above.

We abbreviate ¬2¬A by 3A and from now on we use the 2 as the primitive connective

following Goranko and Passy (1992), an interesting discussion on the universal modality.

A nice introduction to the topic can be found in Blackburn et al. (2002).

2.7 Algo

Card games, due to their incomplete information scenario (some cards are hidden in

other players’ hand), are a rich field for logicians and computer scientists to apply and
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test their models. For instance, Billings et al. (2002) discussed an automated player for

poker. On the other hand, van Ditmarsch (2001) modeled a game called Cluedo in terms

of the players’ knowledge states and how they change after public announcements are

made and private information is shared.

In this thesis I use the language defined for probabilities and conditional probabilities

to express the epistemic states and actions of card games, focusing on a game called

Algo.1 Created by the Japanese Arithmetics Olympic Committee, this game has not

been well studied from the mathematical or logical point of view and it is particularly

interesting from the point of view of epistemic logic.

Another contribution of this work is to propose some strategies for an automated

player (AI) based on the epistemic models defined in this paper.

For reference we explain the rules of the game below:

Definition 2.5 (Algo). Algon has the following rules:

The game has two players; there are n black cards and n white cards (with

the back and the front with the same color), and both sets of cards are

labelled from 0 (zero) to n − 1. All the cards are shuffled and both players

receive four cards, the rest of the cards are placed face down in a pile. Each

player orders his/her own cards, with the smallest card on the left, and place

them face down in front of them; if a black card and a white card have the

same number, the black card is considered smaller in this ordering.

The randomly chosen first player takes a card from the pile, looks at its value

and attacks the opponent’s cards. An attack consists in guessing the value

of a card in the opponent’s hand: 1. if the player guesses correctly, the card

is turned face up and the attacker can choose either to attack again or to

stop; when the attacker stops attacking, he/she inserts the card just taken

from the pile in the correct position in his hand, face down; 2. if the player’s

guess is wrong, he/she must place the card taken from the pile with his/her

other cards in order and turn it face up. If the attacking player stops or

guesses incorrectly it is the other player’s turn to take a card from the pile

and attack.

When only one player has any card face down, the game ends and that player

is the winner.

1This game is also known as “Coda.”
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PLAYER 2

1 3

smallest greatest

PLAYER 1

0

smallest greatest

Figure 2.1: Example 2.6. Example of a state go Algo. Player 1 has the cards =

(0B, 0W, 2B, 2W, 4W, 5B). Player 2 has the cards = (1B, 1W, 3B, 3W, 4B, 5W )

The following example is question 7 in Japanese Arithmetics Olympic Committee

(2011).

Example 2.6. An example of a moment of Algo6 can be seen in Figure 2.1. A property

of such a state is that we can completely determine all the cards in both players’ hands

only by looking at the information available:

In this case the value of the cards in the hand of player 1 is (0, 0, 2, 2, 4, 5) and

(1, 1, 3, 3, 4, 5) for player 2.

The standard game of Algo has 24 cards (12 black and 12 white) from 0 (zero) to

11, so when referring to Algo12 we may drop the subscript.

Algo Language When stating examples for Algon we will make use of the following

language.

Let the set of propositions be Pc = {vcpi : v < n, c ∈ {B,W}, p is a player, i ≤ n},

v stands for the value of the card, c stands for the color, p stands for the player holding

the color and i stands for the position in the hand of the player. Note that Algo has
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2n cards but any player holds up to n cards in any given situation because each player

draws one card from the pile at each turn and if the pile is empty they stop drawing.

Fix also the following set of propositions Pf = {Upi , Dpi : i ≤ n, p is a player}, where

Upi stands for ‘card in position i of player p is face up’ and Dpi stands for ‘card in

position i of player p is face down.’ The language for Algo is given by:

φ
.
= p|¬φ|φ ∧ φ,

where p ∈ Pc ∪ Pf .

Example 2.7. (Ex.2.6 continued) The previous example can be stated with our formal

language. Below we state only the propositions without negation:

Player 1 = {0B11, 0W12, 2B13, 2W14, 4W15, 5B16} ∪ {U12}
Player 2 = {1B21, 1W22, 3B23, 3W24, 4B25, 5W26} ∪ {U22 , U24}

Guess Notation One of the ways in which information flows in Algo is through attacks

(or guesses). Later when defining our formal language for Algo we intend to express

formulas like ‘after player 1 guesses that the opponent has a 2B, player 2 believes that

player 1 has the card 3B with probability 0.5.’ With this in mind we define the following

notation for a guess:

g : Pa
vcji−−→ Pj

Where Pa is the attacker, vcji is the guess and Pj is the player receiving the attack.

Note that Pj is redundant, but we leave it as it is.

The guess ‘Player 1 guesses that player 2 has the 2B in position 2’ is denoted as

g : P1
2B22−−−→ P2.



Chapter 3

Conditional Probability Logics

Que ninguém se engane, só se

consegue a simplicidade através de

muito trabalho.

Clarice Lispector

That no one be mistaken, one reaches

simplicity only through a lot of work.

Clarice Lispector

3.1 Introduction

In this chapter we introduce conditional probability logic (CPL). This language sets

the foundation for the study of dynamics in later chapters. Dynamics in epistemic logic

is an important field of study for artificial intelligence, philosophy and mathematics.

While non-probabilistic languages are well understood van Ditmarsch (2001), the same

is not true for languages able to express probabilistic beliefs; see for example Baltag and

Smets (2008)1.

The syntax in this chapter is an extension of previous probabilistic languages. We

extend the logic presented in Heifetz and Mongin (2001) and simplified in Zhou (2009),

1As we mentioned in the introduction, Baltag and Smets (2008) proposes a language for finite discrete

conditional probability spaces which expresses qualitative beliefs.

17
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where the set of axioms proposed was sound and complete for the class of type spaces

introduced by Harsanyi (1967).

Using Halpern’s approach to probability logic in a previous work, Fagin et al. (1990)

discusses the possibility of expressing conditional probabilities extending its language

to express product, e.g., they would express a formula of the form P (A|B) ≥ 1
2 by a

formula of the form P (A ∩ B) ≥ 2P (B). However expressions of the form P (A|B) +

P (B|A) ≥ 1
2 would lead to nonlinear combination of terms. This led to an increase

in complexity of the language. Moreover one can see that this syntax is still based on

the traditional probability theory of Kolmogorov. More recently, extending Halpern’s

language, van Benthem (2003) added dynamics with conditional probabilities but the

underlying probability theory was still the one defined by Kolmogorov.

Although the probability theory for conditional probability spaces was well described

in Rényi (1955) and game theorists adopted this approach some time later in Myerson

(1986) and more recently in Battigalli and Siniscalchi (1999), the logic community has

not fully adopted this approach in its languages yet.

In this chapter we extend the language of Zhou (2009) to a system able to express

conditional probability. Furthermore, we propose the class of conditional probability

spaces as semantics. Interestingly enough, Aumann’s perspective on probability logics

had no conditional probability extensions until this work. Moreover, neither Aumann’s

nor Halpern’s languages have any other proposal for conditional probability language

with quantitative degrees of beliefs.

As mentioned in the introduction, in this chapter we address two open problems

proposed by Baltag and Smets (2008):

Open Problem 1. To axiomatize the logic for arbitrary (finite or infinite) condi-

tional probability models.

Open Problem 2. Study the logic obtained by adding conditional belief operator.

To start the discussion we take the following problem as a motivation:

Problem 3.1. Let [!p] stand for the announcement of a proposition p and let Lrp stand

for ‘agent believes that the probability of p being the case is at least r’. How to define a

logical system (a set of axioms) where the formula p ∧ (L1¬p) ∧ [!p]Lrp is consistent for

some r > 0? What should a model that satisfies such a formula be like?

The goal of this chapter is to axiomatize the logic of belief operator for possibly infi-

nite conditional probability models, i.e., to establish a set of axioms sound and complete
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with respect to the class of conditional probability models (Definition 2.3). Tradition-

ally, belief operators1 describe the beliefs of agents. The idea of employing probability

languages for beliefs is to express degrees of beliefs. For example, L0.5p for expressing

‘the agent’s beliefs in p is at least 0.5.’ The motivation behind conditional probability

logic is to express formulas of the form Lr(p||q) with the intended meaning being ‘the

agent’s belief in p given q is at least r.’

When referring to probabilities we refer to subjective probabilities. A logic expressing

objective probability should have an axiom of the form L1p → p (meaning ‘if p has

probability 1, then p is true’). However Heifetz and Mongin (2001) mentions that:

We do know not if it is possible to formulate a general semantic counterpart

for truth axiom schema of epistemic logic L1φ→ φ.

Probability spaces (and conditional probability spaces) are structures appropriate to

reason about beliefs, but more work is needed to reason about objective probabilities.

3.2 Language and Model

We define conditional probability language as follows. Let P = {p, q, ...} be the countable

set of propositional variables and consider the language obtained from the following:

φ
.
= >|p|¬φ|φ ∧ φ|2φ|Lr(φ||φ),

where p ∈ P and r ∈ [0, 1] ∩Q.2 We use the following abbreviations:

⊥ .
= ¬>

Mr(φ||ψ)
.
= L1−r(¬φ||ψ)

Lrφ
.
= Lr(φ||>)

3φ
.
= ¬2¬φ

φ ∨ ψ .
= ¬(¬φ ∧ ¬ψ)

φ→ ψ
.
= ¬φ ∨ ψ.

1For instance Bp, meaning ‘the agent believes that p.’
2Q is the set of rational numbers.
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The formula Mrφ has the intended meaning ‘the agent believes that the probability

of φ is at most r.’ The connective 2 is the universal modality. A formula of the form

2φ has the intended meaning ‘φ holds in every state.’

Denote by L the set of all formulas in this language. Note that L is countable,

assuming that the set of propositional variables P is countable.

Definition 3.2. Consider a conditional probability model (CPM) M = 〈Ω,Σ, T, v〉 and

define the relation � over M as follows:

M, w � p iff w ∈ V (p);

M, w � ¬φ iff M, w 6� φ;

M, w � φ ∧ ψ iff M, w � φ and M, w � ψ;

M, w � 2φ iff M, w′ � φ for all w′ ∈W ;

M, w � Lr(φ||ψ) iff T (w, JφK, JψK) ≥ r;
where JφK = {w ∈ Ω : M, w � φ}.

Lemma 3.3. For any φ ∈ L, JφK ∈ Σ.

Proof. The proof is by the complexity of φ, where the atomic case is given by the

definition of the valuation v. The propositional case is given by the fact that J¬φK =

Ω \ JφK and Jφ1 ∨ φ2K = Jφ1K ∪ Jφ2K. For the universal case just note that J2φK = Ω or

∅. The case of formulas of the form Lr(φ||ψ) is given by noticing that if JφK, JψK ∈ Σ,

then JLr(φ||ψ)K = {w ∈ Ω : T (w, JφK, JψK) ≥ r} = T−1(·, JφK, JψK)([r, 1]), and note that

T (·, JφK, JψK) is a measurable function.

A formula φ is said to be true in state w of a CPM M if M, w � φ. In this case we

also say that φ holds in w if M is clear from the context. A formula φ is true in M if it

is true in all states of M. We denote by M � φ. In this case we also say that φ holds in

M. A formula φ is valid in the class of conditional probability models (CPM) if for any

CPM M it holds that M � φ. In this case we write � φ.

An important fact about the universal modality is that a formula of the form 3φ is

satisfied in a state if and only if JφK 6= ∅.

Theorem 3.4. For any state w of a model M the following conditions are equivalent:

1. JφK 6= ∅.
2. M, w � 3φ.

An interesting fact about the operator L1 is that it is a normal modality, i.e., (1) the

formula schema L1(φ→ ψ)→ (L1φ→ L1ψ) is valid in any CPM; and (2) the rule ‘If φ

is valid in all CPM, then L1φ is valid in all CPM’ is true.
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3.3 Axioms

System Lcp consists of the following axioms and rules:

(A0) propositional calculus

(K2) 2(φ→ ψ)→ (2φ→ 2ψ)

(T2) 2φ→ φ

(52) 3φ→ 23φ

(A1) L0(φ||ψ)

(A2) Lr(φ||φ) for 0 ≤ r ≤ 1

(A3) Lr(φ ∧ ψ||χ) ∧ Lt(φ ∧ ¬ψ||χ)→ Lr+t(φ||χ), for r + t ≤ 1

(A4) ¬Lr(φ ∧ ψ||χ) ∧ ¬Lt(φ ∧ ¬ψ||χ)→ ¬Lr+t(φ||χ), for r + t ≤ 1

(A5) 3ψ → (Lr(φ||ψ)→ ¬Ls(¬φ||ψ)), for r + s > 1

(C1) Lr(φ||ψ ∧ χ) ∧ Ls(ψ||χ)→ Lrs(φ ∧ ψ||χ)

(C2) ¬Lr(φ||ψ ∧ χ) ∧ ¬Ls(ψ||χ)→ ¬Lrs(φ ∧ ψ||χ)

(C2) 2(φ↔ φ′) ∧2(ψ ↔ ψ′)→ (Lr(φ||ψ)↔ Lr(φ
′||ψ′))

(N2) If ` φ, then ` 2φ

(ARCH) If ` γ → ¬Ms(φ||ψ) for all s < r, then ` γ → Lr(φ||ψ).

(A0) contains all tautologies and the rule of modus ponens.

The axioms (A1) to (A5) are essentially the axioms in the system presented in Zhou

(2009). Let ψ be the conditional part of a formula of the form Lr(φ||ψ). Define the

deduction rule (DIS) to be ‘if ` (φ↔ ψ) then ` Lrφ↔ Lrψ’. Let the system L′ consist

of the axioms (A1) to (A5) with > as their conditional part (changing 3ψ for > in (A5))

and the inference rules (DIS) and (ARCH) with > as their conditional part. Then L′

is the same system from Zhou (2009).

The restriction 3φ in axiom (A5) is important in the proof of σ-additivity of the

conditional probability function. For any A,B the following inequality holds µ(A|B) +

µ(X\A|B) ≥ µ(A∪(X\A)|B). The other inequality (≤) holds only whenB is non-empty.

Axiom (A5) is used for the proof of, e.g., Lemma 3.18 in the proof of completeness.

The axioms (C1) and (C2) were added to prove completeness in the conditional

probability models and they are related to the two inequalities that define the conditional

probability of an event.1 The axioms (K2) to (52) are the axioms of the standard S5

1 T (w,A ∩B|C) = T (w,A | B ∩ C) · T (w,B | C).



22 CHAPTER 3. CONDITIONAL PROBABILITY LOGICS

modal logic which is the correct and sound system for the universal modality (see van

Benthem (2010)). The inference rule (DIS) from Zhou (2009) is derivable from axioms

(C2) and (N2).

The inference rule (ARCH) holds because of the Archimedean property of the Real

numbers, i.e., given any real number there is a rational number greater than the number

given; or equivalently, between two real numbers there is a rational number.

A set Γ of formulas is inconsistent in Lcp if there are γ1, . . . , γn ∈ Γ such that

¬(γ1 ∧ . . . ∧ γn) is provable in Lcp, and Γ is consistent if it is not inconsistent. A single

formula φ is (in)consistent if {φ} is (in)consistent.

Soundness

The proof of soundness consists in showing that each axiom of Lcp is true in M for any

M in the class of conditional probability models and validity is preserved by the rules

(N2) and (ARCH).

Theorem 3.5. The system Lcp is sound.

Proof. We prove only the validity of axioms (A3) and (C1) since the others are routine

verification.

Let M = 〈Ω,Σ, T, v〉 be a conditional probability model, and let w ∈ Ω, φ, ψ ∈ L, r ∈
[0, 1] ∩Q:

·(A3)Lr(φ ∧ ψ||χ) ∧ Lt(φ ∧ ¬ψ||χ)→ Lr+t(φ||χ), for r + t ≤ 1

Suppose that M, w � 3χ, M, w � Lr(φ ∧ ψ||χ) and M, w � Lt(φ ∧ ¬ψ||χ). Then

T (w, Jφ∧ψK, JχK) ≥ r and T (w, Jφ∧¬ψK, JχK) ≥ t. Since Jφ∧ψK∪ Jφ∧¬ψK = JφK, Jφ∧
ψK ∩ Jφ ∧ ¬ψK = ∅ and JχK 6= ∅, adding each side of the two inequalities we have:

T (w, JφK, JχK) ≥ r + t

Since r + t ≤ 1 we have that M, w � Lr+t(φ||χ).

Suppose that M, w � ¬3χ. Then JχK is empty which implies that M, w � Lr+t(φ||χ)

always holds (because T (w,A,∅) = 1 for every A ∈ Σ.)

·(C1)Lr(φ||ψ ∧ χ) ∧ Ls(ψ||χ)→ Lrs(φ ∧ ψ||χ)

Suppose M, w � Lr(φ||ψ∧χ) and M, w � Ls(ψ||χ), which is equivalent to T (w, JφK, Jψ∧
χK) ≥ r and T (w, JψK, JχK) ≥ s. Multiplying both inequalities we have T (w, Jφ ∧
ψK, JχK) = T (w, JφK, Jψ ∧ χK) · T (w, JψK, JχK) ≥ rs. The equality holds because M is

a conditional probability space. The inequality implies that M, w � Lrs(φ ∧ ψ||χ).
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In order to prove that the axiom (A3) is valid we analyzed two cases: M � 3χ and

M � ¬3χ. This is equivalent to the cases JχK 6= ∅ and JχK = ∅.

The following theorems in this paragraph are technical results that we make use of

a number of times for the proof of completeness.

Theorem 3.6. The following are provable in Lcp:

(i) 2(φ→ ψ)→ (Lr(φ||χ)→ Lr(ψ||χ)).

(ii) 2(φ→ ψ)→ (¬Lr(ψ||χ)→ ¬Lr(φ||χ)).

(iii) 2¬(φ ∧ ψ)→ (Lr(ψ||χ) ∧ Ls(φ||χ)→ Lr+s(φ ∧ ψ||χ)), for r + s ≤ 1.

(iv) ¬Lr(φ||χ) ∧ ¬Ls(ψ||χ)→ ¬Lr+s(φ ∨ ψ||χ), for r + s ≤ 1.

Proof. (i) 2(φ→ ψ)→ (Lr(φ||χ)→ Lr(ψ||χ)):

1. (φ→ ψ)→ (φ ∧ ψ ↔ φ) (A0)

2. 2(φ→ ψ)→ 2(φ ∧ ψ ↔ φ) 1, (N2)

3. 2(φ ∧ ψ ↔ φ)→ (φ ∧ ψ ↔ φ) T2

4. 2(φ→ ψ)→ (φ ∧ ψ ↔ φ) 3,2,(A0)

5. 2(φ→ ψ)→ (Lr(φ ∧ ψ||χ)↔ Lr(φ||χ)) 4,(C2), (N2)

6. Lr(φ ∧ ψ||χ) ∧ L0(¬φ ∧ ψ||χ)→ Lr(ψ||χ) (A3)

7. L0(¬φ ∧ ψ||χ) (A1)

8. Lr(φ ∧ ψ||χ)→ Lr(ψ||χ) 6, 7, (A0)

9. 2(φ→ ψ)→ (Lr(φ||χ)→ Lr(ψ||χ)) 5,8,(A0)

(ii) Consequence of item (i).

(iii) 2¬(φ ∧ ψ)→ (Lr(ψ||χ) ∧ Ls(φ||χ)→ Lr+s(φ ∧ ψ||χ)):

1. ¬(φ ∧ ψ)→ ((φ ∨ ψ) ∧ ψ → (φ ∨ ψ) ∧ ¬φ) (A0)

2. 2¬(φ ∧ ψ)→ 2((φ ∨ ψ) ∧ ψ → (φ ∨ ψ) ∧ ¬φ) 1,(N2)

3. 2((φ ∨ ψ) ∧ ψ → (φ ∨ ψ) ∧ ¬φ)→
(Lr((φ ∨ ψ) ∧ ψ||χ)→ Lr((φ ∨ ψ) ∧ ¬φ||χ)) (item (i))

4. 2¬(φ ∧ ψ)→ (Lr((φ ∨ ψ) ∧ ψ||χ)→ Lr((φ ∨ ψ) ∧ ¬φ||χ)) 2,3,(A0)

5. Lr((φ ∨ ψ) ∧ ¬φ||χ) ∧ Ls((φ ∨ ψ) ∧ φ||χ)→ Lr+s(φ ∧ ψ||χ) (A3)

6. 2¬(φ ∧ ψ)→
(Lr((φ ∨ ψ) ∧ ψ||χ) ∧ Ls((φ ∨ ψ) ∧ φ||χ)→ Lr+s(φ ∧ ψ||χ)) 4,5,(A0)

7. (φ ∨ ψ) ∧ φ↔ φ (A0)

8. (φ ∨ ψ) ∧ ψ ↔ ψ (A0)

9. Lr((φ ∨ ψ) ∧ ψ||χ)↔ Lr(φ||χ) 8,(N2),(C2)

10. Ls((φ ∨ ψ) ∧ φ||χ)↔ Ls(φ||χ) 7,(N2),(C2)

11. 2¬(φ ∧ ψ)→ (Lr(ψ||χ) ∧ Ls(φ||χ)→ Lr+s(φ ∧ ψ||χ)) 9,10,6,(A0)
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(iv) ¬Lr(φ||χ) ∧ ¬Ls(ψ||χ)→ ¬Lr+s(φ ∨ ψ||χ), for r + s ≤ 1:

1. ((φ ∨ ψ) ∧ ¬ψ)→ φ (A0)

2. ((φ ∨ ψ) ∧ ψ)→ ψ (A0)

3. ¬Lr(φ||χ)→ ¬Lr((φ ∨ ψ) ∧ ¬ψ||χ) (item (ii)),1

4. ¬Lt(ψ||χ)→ ¬Lt((φ ∨ ψ) ∧ ψ||χ) (item (ii)),2

5. ¬Lr((φ ∨ ψ) ∧ ¬ψ||χ) ∧ ¬Lt((φ ∨ ψ) ∧ ψ||χ)→ ¬Lr+t(φ ∨ ψ||χ) (A4)

6. ¬Lr(φ||χ) ∧ ¬Lt(ψ||χ)→ ¬Lr+t(φ ∨ ψ||χ) 3,4,(A0)

The following theorem presents some interesting and useful formulas that are theo-

rems of Lcp.

Theorem 3.7. The following are provable in Lcp.

(i) 2(ψ → φ)→ Lr(φ||ψ);

(ii) 2φ→ L1φ.

(iii) Lr(φ||⊥).

Proof. (i) 2(ψ → φ)→ Lr(φ||ψ):

1. 2(φ→ ψ)→ (Lr(φ||φ)→ Lr(ψ||φ)) (Th.3.6-item (i))

2. Lr(φ||φ) (A2)

3. 2(ψ → φ)→ Lr(φ||ψ) 1,2,(A0)

(ii) 2φ→ L1φ.

1. φ→ (φ↔ >) (A0)

2. 2(φ→ (φ↔ >)) (N2), 1

3. 2φ→ 2(φ↔ >) (K2), 2, (A0)

4. 2(> ↔ >) (A0), (N2)

5. 2(φ↔ >)→ (L1φ↔ L1>) (C2), 4, (A0)

6. 2φ→ (L1φ↔ L1>) 3, 5, (A0)

7. L1> (A2)

8. 2φ→ L1φ 6, 7, (A0)

(iii) Lr(φ||⊥).

1. 2(⊥ → φ)→ Lr(φ||⊥) (item (i))

2. 2(⊥ → φ) (A0),(N2)

3. Lr(φ||⊥) 1,2,(A0)

Finally, we state two other theorems which we use for the proof of completeness in

the next section.
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Theorem 3.8. The following are provable in Lcp.

(i) ¬Lr(φ||ψ)→Mr(φ||ψ).

(ii) Lr(φ||ψ)→ Ls(φ||ψ) if r ≥ s.

Proof. (i) ¬Lr(φ||ψ)→Mr(φ||ψ):

1. ¬Lr(> ∧ φ||ψ) ∧ ¬L1−r(> ∧ ¬φ||ψ)→ ¬L1(>||ψ) (A4)

2. ¬Lr(φ||ψ) ∧ ¬L1−r(¬φ||ψ)→ ¬L1(>||ψ) (C2), (A0)

3. L1(>||ψ) (Th.3.7-item (i)),(K2), (A0)

4. ¬Lr(φ||ψ)→Mr(φ||ψ) 2,3,(A0)

(ii) Lr(φ||ψ)→ Ls(φ||ψ) if r ≥ s:
If r = s, there is nothing to do. Suppose r > s,

1. ¬Ls(φ ∧ φ||ψ) ∧ ¬Lr−s(φ ∧ ¬φ||ψ)→ ¬Lr(φ||ψ) (A4)

2. 3ψ → (Lr(>||ψ)→ ¬Lr−s(⊥||ψ)) (A5)

3. 3ψ → (Lr(φ||ψ)→ Ls(φ||ψ)) 2,(Th.3.7-item (i)),1,(A0)

4. 2(ψ → ⊥)→ (Lr(φ||⊥)↔ Lr(φ||ψ)) (C2), (A0)

5. 2¬ψ → Lr(φ||ψ) 4, (Th.3.7-item (iii)), (A0)

6. 2¬ψ → Ls(φ||ψ) (C2),(Th.3.7-item (iii)), (A0)

7. 2¬ψ → (Lr(φ||ψ)→ Ls(φ||ψ)) 5,6,(A0)

8. (2¬ψ) ∨ (3ψ)→ (Lr(φ||ψ)→ Ls(φ||ψ)) 3,7,(A0)

9. Lr(φ||ψ)→ Ls(φ||ψ) 8,(A0)

Completeness

The strategy for the proof of completeness is to build a canonical model (the states are

the maximal consistent sets of formulas). Before the proof itself we sketch below some

parts of it to help the reader. The proof is similar in many ways to the proofs in Heifetz

and Mongin (2001), Zhou (2009) and Zhou (2014).

Completeness of Conditional Probability Logic: Proof Sketch

· Fix a consistent formula χ in L. The goal is to construct a conditional probability

model that satisfies χ.

· Define a finite language (finite up to provable equivalences) which is given in func-

tion of the propositional variables in χ and its highest number of nested Lr opera-

tors, the depth of χ. Call this finite language L(χ).
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In Zhou (2007) the knowledge operator K is added to probability logic and the

finite language is defined in function of the number of nested operators Lr and K.

Our proof uses the fact that any formula of S5 is equivalent to a formula with the

highest number of nested 2 less than or equal to one.

· Let Ω be the set of all maximum consistent set of formulas of L(χ) and define

an equivalence relation ∼ over Ω (this relation is the semantic counterpart of the

universal modality 2). Let Γχ be a maximal consistent set of formulas of L(χ)

containing χ. There are are possible choices, fix any.

· Let the canonical model be Mχ = 〈Ωχ,Σχ, Tχ〉, where Ωχ is the set of all maximal

consistent set of formulas that are in the equivalence class of Γχ (i.e., Ωχ = {∆ ∈
Ω : ∆ ∼ Γχ}), and Σχ is the set of elements of the form [φ]; φ is a formula of the

finite language and [φ] = {∆ ∈ Ωχ : φ ∈ ∆}.

Different from Zhou (2007) where the knowledge operator K is added to probability

logic, we define the support of the model (the set Ωχ) as one of the equivalence

classes in the whole universe Ω, otherwise the universal modality cannot reach every

state in the model.

· The definition of the conditional Markov kernel Tχ is a little bit more laborious.

For each Γi ∈ Ω let Γ∞i be a maximal consistent extension of Γi in the language L

(Γ∞i is a set of formulas of L). Define Tχ(Γi, [φ], [ψ]) = α
Γ∞i
φ,ψ where

α
Γ∞i
φ,ψ = sup{α : Lα(φ||ψ) ∈ Γ∞i }.

We spend most of the proof showing that as it is defined Tχ is indeed a conditional

probability measure. We rely on some techniques from Zhou (2009), specially when

referring to Tχ(Γ, [φ], [ψ]) with [ψ] 6= ∅.

To bound the size of the set of states to a finite number we allow only formulas

up to a fixed depth. The depth of a formula is the maximum of the number of L

operators nested inside one another.

We define depth formally as follows.

Definition 3.9 (Local Language). The depth dp(φ) of a formula φ is defined inductively:

· dp(p) = 0, for propositional letters p;

· dp(¬φ) = dp(φ);
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· dp(φ1 ∧ φ2) = max{dp(φ1), dp(φ2)};

· dp(2φ) = dp(φ);

· dp(Lr(φ||ψ)) = 1 + max{dp(φ), dp(ψ)}.

Let the index of a formula of the form Lr(φ||ψ) be the rational number r. Remember

that P is the set of propositional variables. Let Q ⊂ P, q a positive rational number

(q > 0) and d a natural number(d ≥ 0). We define a local language L(Q, q, d) to be the

set of all formulas φ satisfying the following:

· Every propositional variable occurring in φ is in Q;

· Every index in φ is a multiple of 1
q ; and

· dp(φ) ≤ d.

The integer q is called the accuracy of the language L(Q, q, d).

For φ ∈ L(Q, q, d), we write φ̄ for the equivalence class

{ψ ∈ L(Q, q, d) | ψ ↔ φ is a theorem of Lcp }.

Lemma 3.10. If Q is finite, then { φ̄ | φ ∈ L(Q, q, d) } is finite.

Proof. This is proved by induction on d. Suppose |Q| = n. Note that formulas of

L(Q, q, 0) are simply formulas of propositional modal logic over n propositional variables.

By the modal conjunctive normal form theorem of Hughes and Cresswell (1996) we know

that every modal formula is provably equivalent in S5 to a finite conjunction of formulas

of the form

β ∨2γ1 ∨ · · · ∨2γk ∨3δ, (†)

where β, γ1, . . . , γk, δ are propositional formulas. Over n propositional variables, there

are at most

f(n) = 22n · 222n · 22n

non-S5-equivalent disjunctions of the form (†), and at most

g(n) = 2f(n)

non-S5-equivalent finite conjunctions of such disjunctions. Since Lcp contains S5, this

takes care of the induction basis. Let h(n, q, 0) = g(n).

Now assume that every formula in L(Q, q, d) is provably equivalent in Lcp to one of

a finite number h(n, q, d) of formulas. Call a formula in L(Q, q, d + 1) a modal atom
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if it is a propositional variable in Q or a formula of the form Li/q(ψ||χ), where 0 ≤
i ≤ q and ψ, χ ∈ L(Q, q, d). Evidently, every formula φ in L(Q, q, d + 1) is constructed

from modal atoms using 2, ¬, and ∧ only. By the modal conjunctive normal form

theorem, φ is provably equivalent to a finite conjunction of formulas of the form (†),
where β, γ1, . . . , γk, δ are Boolean combinations of modal atoms. Since there are at most

(q+ 1) ·h(n, q, d)2 non-equivalent formulas of the form Li/q(ψ||χ) with ψ, χ ∈ L(Q, q, d),

the number of non-equivalent modal atoms in L(Q, q, d) is at most n+(q+1) ·h(n, q, d)2.

So the number of non-equivalent formulas in L(Q, q, d+ 1) is bounded by

h(n, q, d+ 1) = g(n+ (q + 1) · h(n, q, d)2).

By Lemma 3.10, if Γ ⊆ L(Q, q, d) for some finiteQ, there is a finite subset {ψ1, . . . , ψk}
of Γ such that every formula in Γ is provably equivalent to one of ψ1, . . . , ψk. We denote

by
∧

Γ the conjunction ψ1 ∧ · · · ∧ ψk. Note that
∧

Γ ∈ L(Q, q, d), and up to provable

equivalence,
∧

Γ is independent of the choice of ψ1, . . . , ψk.

A set Γ ⊆ L(Q, q, d) is said to be a maximal consistent subset of L(Q, q, d) if Γ is

consistent and there exists no consistent Γ′ such that Γ ( Γ′ ⊂ L(Q, q, d). If Γ is a

maximal consistent subset of L(Q, q, d), then for every ∆ ⊂ Γ,
∧

∆ belongs to Γ.

Lemma 3.11. Let Γ,Γ′ be maximal consistent subsets of L(Q, q, d). If
∧

Γ ∈ Γ′, then

Γ = Γ′.

Proof. If
∧

Γ ∈ Γ′, then Γ ⊂ Γ′. Since Γ is maximal consistent and Γ′ is consistent,

Γ = Γ′.

If χ ∈ L, then L(χ) is defined as L(Pχ, qχ, dχ), where Pχ is the set of all propositional

letters in ψ, the index qχ is the least common multiple of all the denominators of the

indices in χ and dχ is the depth of χ .

Fix χ in L and suppose it is consistent in Lcp. Let Ω be the set of all maximal

consistent sets of formulas in L(χ).

Given a maximal consistent set of formulas Γ in Ω, define U(Γ) = {φ ∈ Γ : φ is of

the form ¬2ψ or 2ψ} and for any Γ,∆ ∈ Ω we say that Γ ∼ ∆ iff U(Γ) = U(∆). Let

Γχ be a maximal consistent set of formulas that contains χ. Note that the choice of Γχ

is not unique. Define Ωχ = {∆ ∈ Ω : ∆ ∼ Γχ}. Let [φ]χ = {∆ ∈ Ωχ : φ ∈ ∆} and

Σχ = {[φ]χ : φ ∈ L(χ)} (Σ∗χ = Σχ \ {∅}). Denote by γ2 the conjunction
∧
U(Γχ).

Lemma 3.12. Ωχ = {∆ ∈ Ω : γ2 ∈ ∆}( .= [γ2]).
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Proof. Let ∆ ∈ Ωχ. Then U(∆) = U(Γχ), and clearly
∧
U(∆) ∈ ∆, hence γ2 ∈ ∆, i.e.,

∆ ∈ [γ2].

For the other inclusion let ∆ ∈ [γ2] and let us show that U(∆) = U(Γχ). Consider

φ ∈ U(Γχ). Clearly, ` γ2 → φ, so φ ∈ ∆. Since φ is of the form 2ψ, we have φ ∈ U(∆).

Now let φ ∈ U(∆) and suppose it is not in U(Γχ). By maximality, Γχ ` ¬φ. Then

¬φ ∈ U(Γχ) and ` γ2 → ¬φ. It follows that ¬φ ∈ ∆, which is a contradiction.

Lemma 3.13. Σχ = P(Ωχ).

Proof. It is easy to see that if φ ∈ L(χ), then [φ]χ ∈ P(Ωχ).

Let X = {Γ1, . . . ,Γn} ⊆ Ωχ. Let γi be
∧

Γi and let φ be
∨n
i=1 γi. Clearly, φ ∈ Γi for

all i = 1, . . . , n. If φ ∈ ∆ for some ∆ ∈ Ωχ, then some γi ∈ ∆. By Lemma 3.11, Γi = ∆.

It follows that X = [φ]χ.

The pair (Ωχ,Σχ) is the measurable space for our canonical model. For the condi-

tional Markov kernel we need some steps that we prove first.

Let ∆ be a maximal consistent set of formulas in L(Q, q, d + 1) and let φ and ψ be

formulas in L(Q, q, d). Define:

α∆
φ,ψ = max{α : Lα(φ||ψ) ∈ ∆},

β∆
φ,ψ = min{β : Mβ(φ||ψ) ∈ ∆}.

Let L(χ+) be the language L(Pχ, qχ, dχ + 1). Note that L(χ) ⊂ L(χ+) ⊂ L. For

each Γ in Ω let Γ+ be a maximal consistent extension of Γ in L(χ+). Note that this

choice is not unique; fix one extension for each Γ ∈ Ω. Note that L
αΓ+
φ,ψ

(φ||ψ) ∈ Γ+ and

M
βΓ+
φ,ψ

(φ||ψ) ∈ Γ+.

Item (a.) in the next Lemma is essentially Lemma 3.11 from Zhou (2009).

Lemma 3.14. For any Γ ∈ Ωχ and φ, ψ ∈ L(χ) :

(a.) If 3ψ ∈ Γ, then either βΓ+

φ,ψ = αΓ+

φ,ψ or βΓ+

φ,ψ = αΓ+

φ,ψ + 1
qχ

;

(b.) If 3ψ /∈ Γ, then αΓ+

φ,ψ = 1 and βΓ+

φ,ψ = 0.

Proof. (a.)

(αΓ+

φ,ψ ≤ βΓ+

φ,ψ) Suppose αΓ+

φ,ψ > βΓ+

φ,ψ. It follows that (1− βΓ+

φ,ψ) + αΓ+

φ,ψ > 1.

We have that L
αΓ+
φ,ψ

(φ||ψ) ∈ Γ+ and by (A5), ¬L
1−βΓ+

φ,ψ
(¬φ||ψ) = ¬M

βΓ+
φ,ψ

(φ||ψ) ∈ Γ+,

but this contradicts the fact that M
βΓ+
φ,ψ

(φ||ψ) ∈ Γ+.
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(αΓ+

φ,ψ ≥ βΓ+

φ,ψ −
1
qχ

) Let s = αΓ+

φ,ψ + 1
qχ

. Then s is a multiple of 1
qχ

and αΓ+

φ,ψ < s, so

Ls(φ||ψ) 6∈ Γ+. Since Γ+ is a maximal consistent subset of L(Pχ, qχ, d+1), we must have

¬Ls(φ||ψ) ∈ Γ+. By Theorem 3.8, Ms(φ||ψ) ∈ Γ+, so s ≥ βΓ+

φ,ψ, i.e., αΓ+

φ,ψ ≥ βΓ+

φ,ψ −
1
qχ

.

(b.)

If 3ψ 6∈ Γ, then 2¬ψ ∈ Γ. Since ¬ψ → (ψ ↔ ⊥) is a tautology, 2(ψ ↔ ⊥) ∈ Γ by

(N2) and (K2). Since for any γ, L1(γ||⊥) is a theorem of Lcp, we get L1(φ||ψ) ∈ Γ and

M0(φ||ψ) ∈ Γ by (C2). So αΓ+

φ,ψ = 1 and βΓ+

φ,ψ = 0.

Definition 3.15. Let Γ∞ be a maximal consistent extension of Γ+ in L and φ, ψ be

formulas in L(χ). Define

αΓ∞
φ,ψ = sup{α : Lα(φ||ψ) ∈ Γ∞},

βΓ∞
φ,ψ = inf{β : Mβ(φ||ψ) ∈ Γ∞}.

Lemma 3.16. If r is a rational number and r < αΓ∞
φ,ψ, then Lr(φ||ψ) ∈ Γ∞.

Proof. Let s be a rational number such that r ≤ s < αΓ∞
φ,ψ and Ls(φ||ψ) ∈ Γ∞. Note

that if Ls(φ||ψ) /∈ Γ∞ for all such s, then we can derive a contradiction with the fact

that αΓ∞
φ,ψ is the supremum.

By Theorem 3.8.(ii), Ls(φ||ψ) → Lr(φ||ψ) is a theorem, hence also in Γ∞. By the

maximality of Γ∞, it holds that Lr(φ||ψ) ∈ Γ∞.

The next Lemma is based on Lemma 3.12 from Zhou (2009).

Lemma 3.17. Let 3ψ ∈ Γ and φ, ψ ∈ L(χ). Then αΓ∞
φ,ψ = βΓ∞

φ,ψ

Proof. Suppose αΓ∞
φ,ψ < βΓ∞

φ,ψ . Then there is a rational r such that αΓ∞
φ,ψ < r < βΓ∞

φ,ψ , which

implies Lr(φ||ψ) 6∈ Γ∞, i.e., ¬Lr(φ||ψ) ∈ Γ∞. Hence Mr(φ||ψ) ∈ Γ∞, contradicting

r < βΓ∞
φ,ψ .

If αΓ∞
φ,ψ > βΓ∞

φ,ψ , let r1 and r2 be rationals such that αΓ∞
φ,ψ > r1 > r2 > βΓ∞

φ,ψ . Then

Lr1(φ||ψ) ∈ Γ∞ and by (A5)1 we have ¬Mr2(φ||ψ) ∈ Γ∞, contradicting r2 > βΓ∞
φ,ψ .

The next Lemma is similar to Lemma 3.15 from Zhou (2009); the difference is the

added hypothesis 3ψ ∈ Γ.

Lemma 3.18. Let φ1, φ2, ψ ∈ L(χ) and Γ ∈ Ωχ. If ¬3(φ1 ∧φ2) ∈ Γ and 3ψ ∈ Γ, then

αΓ∞
φ1∨φ2,ψ = αΓ∞

φ1,ψ + αΓ∞
φ2,ψ. (3.1)

1Since r1 > r2 implies (1− r2) + r1 > 1, an instance of (A5) is Lr1(φ||ψ)→ ¬L1−r2(¬φ||ψ).
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Proof. Let α1, α2 and α+ denote αΓ∞
φ1,ψ

, αΓ∞
φ2,ψ

and αΓ∞
φ1∨φ2,ψ

, respectively. So we only need

to show that α1 + α2 = α+.

Suppose α1 + α2 < α+. Then there are rationals α′1 > α1 and α′2 > α2 such

that α′1 + α′2 < α+. It follows that Lα′1(φ1||ψ) 6∈ Γ∞ and hence ¬Lα′1(φ1||ψ) ∈ Γ∞.

Similarly ¬Lα′2(φ||ψ) ∈ Γ∞; by Theorem 3.6 it holds that ¬Lα′1+α′2
(φ1 ∨ φ2||ψ) ∈ Γ∞.

That is a contradiction because α1 + α2 < α+ and α+ is the greatest lower bound of

{r : Lr(φ1 ∨ φ2||ψ) ∈ Γ∞}.
Suppose that α1 + α2 > α+. Then there are rationals α′′1 < α1 and α′′2 < α2 such

that α′′1 +α′′2 > α+. It follows that Lα′′1 (φ1||ψ), Lα′′2 (φ2||ψ) ∈ Γ∞. We want to prove that

α′′1 + α′′2 ≤ 1. Suppose that α′′1 + α′′2 > 1; since 3(φ1 → ¬φ2) ∈ Γ, by Theorem 3.6 we

have Lα′′1 (φ1||ψ)→ Lα′′1 (¬φ2||ψ) ∈ Γ and clearly Lα′′1 (¬φ2||ψ) ∈ Γ∞. By axiom (A5),

` 3ψ → (Lα′′1 (¬φ2||ψ)→ ¬Lα′′2 (φ2||ψ));

we know that 3ψ,Lα′′1 (φ2||ψ) ∈ Γ∞, hence we have ¬Lα′′2 (φ2||ψ) ∈ Γ∞ which is a

contradiction. Therefore, we have α′′1 + α′′2 ≤ 1. By Theorem 3.6, Lα′′1 +α′′2
(φ1 ∨ φ2||ψ) ∈

Γ∞. But this is impossible because α′′1 +α′′2 > α+ and α+ is the greatest lower bound of

{r : Lr(φ1 ∨ φ2||ψ) ∈ Γ∞}.

Lemma 3.19. For any φ, ψ ∈ L(χ) and for any Γ ∈ Ωχ the following equation holds:

αΓ∞
φ1∧φ2,ψ = αΓ∞

φ1,φ2∧ψ · α
Γ∞
φ2,ψ

Proof. Suppose αΓ∞
φ1∧φ2,ψ

< αΓ∞
φ1,φ2∧ψ · α

Γ∞
φ2,ψ

.

Let x, y be rationals such that x ≤ αΓ∞
φ1,φ2∧ψ,y ≤ αΓ∞

φ2,ψ
and αΓ∞

φ1∧φ2,ψ
< xy. Then

Lx(φ1||φ2∧ψ) ∈ Γ∞, Ly(φ2||ψ) ∈ Γ∞ and Lxy(φ1∧φ2||ψ) /∈ Γ∞. Since Γ∞ is a maximal

consistent subset of L, by axiom (C1) we have Lxy(φ1 ∧ φ2||ψ) ∈ Γ∞, a contradiction

with the consistency of Γ∞.

Suppose αΓ∞
φ1∧φ2,ψ

> αΓ∞
φ1,φ2∧ψ · α

Γ∞
φ2,ψ

.

Let x, y be rationals such that x > αΓ∞
φ1,φ2∧ψ, y > αΓ∞

φ2,ψ
, and αΓ∞

φ1∧φ2,ψ
> xy. Then

Lx(φ1||φ2∧ψ) 6∈ Γ∞, Ly(φ2||ψ) 6∈ Γ∞, and Lxy(φ1∧φ2||ψ) ∈ Γ∞. Since Γ∞ is a maximal

consistent subset of L, we have ¬Lx(φ1||φ2 ∧ ψ) ∈ Γ∞ and ¬Ly(φ2||ψ) ∈ Γ∞. By (C2),

we get ¬Lxy(φ1 ∧ φ2||ψ) ∈ Γ∞, contradicting the consistency of Γ∞.

For each Γ ∈ Ωχ and each φ, ψ ∈ L(χ) we want to define the conditional Markov

kernel T by T (Γ, [φ]χ, [ψ]χ) = αΓ∞
φ,ψ (Definition 3.22). Lemmas 3.21 and 3.24 below show

that T as proposed makes sense.
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Lemma 3.20. The following is a theorem in Lcp

γ2 → 2γ2.

Proof. Recall that γ2 is a finite conjunction of formulas of the form ¬2δ and 2δ. Since

2δ → 22δ, ¬2δ → 2¬2δ and (2δ1 ∧ 2δ2) → 2(δ1 ∧ δ2) are theorems of modal logic

S5, γ2 → 2γ2 is a theorem of Lcp.

Lemma 3.21. For any Γ ∈ Ωχ and for any φ, ψ ∈ χ, αΓ∞
φ∧γ2,ψ∧γ2 = αΓ∞

φ,ψ.

Proof. Since γ2 → (φ ↔ (φ ∧ γ2)) is an instance of a propositional tautology, we get

2γ2 → 2(φ↔ (φ∧ γ2)) by (N2) and (K2). For any Γ ∈ Ωχ, by Lemma 3.20, 2γ2 ∈ Γ.

Hence it holds that 2(φ↔ (φ ∧ γ2)) ∈ Γ.

Analogously 2(ψ ↔ (ψ ∧ γ2)) ∈ Γ.

By axiom (C2) we have Lr(φ||ψ) ↔ Lr(φ ∧ γ2||ψ ∧ γ2) ∈ Γ∞. Therefore αΓ∞
φ,ψ =

αΓ∞
φ∧γ2,ψ∧γ2 .

Definition 3.22. Let Γ ∈ Ωχ and φ, ψ ∈ L(χ). Define Tχ(Γ, [φ]χ, [ψ]χ) = αΓ∞
φ,ψ.

Note that the definition of Tχ depends on the choice of Γ∞ for each Γ. We will later

select a particular choice with a certain desirable property (Lemma 3.27), but we will

first prove some facts about Tχ that do not depend on any particular choice.

The proof for the next lemma is straightforward.

Lemma 3.23. For any φ, ψ ∈ L(χ), ` φ ∧ γ2 → ψ ∧ γ2 iff [φ]χ ⊆ [ψ]χ.

The proof of the next Lemma is similar to Lemma 3.14 from Zhou (2009).

Lemma 3.24. Tχ as defined above is well-defined.

Proof. If [φ]χ = [φ′]χ and [ψ]χ = [ψ′]χ, then by Lemma 3.23 we have ` φ∧ γ2 ↔ φ′ ∧ γ2
and ` ψ ∧ γ2 ↔ φ′ ∧ γ2. By (N2) and axiom (C2) we have ` (Lr(φ1 ∧ γ2||ψ ∧ γ2) ↔
Lr(φ

′∧γ2||ψ′∧γ2))∧(Ms(φ∧γ2||ψ∧γ2)↔Ms(φ
′∧γ2||ψ′∧γ2)) , and hence αΓ∞

φ∧γ2,ψ∧γ2 =

αΓ∞
φ′∧γ2,ψ′∧γ2 . By Lemma 3.21 we get Tχ(Γ, [φ]χ, [ψ]χ) = Tχ(Γ, [φ′]χ, [ψ

′]χ).

To see that Tχ(·, [φ]χ, [ψ]χ) is a Σχ-measurable function it is enough to note that by

Lemma 3.13 every subset of Ωχ is measurable.

To show that for any Γ, Tχ(Γ, ·, ·) is a conditional probabilistic measure we first should

note that the model is finite. Therefore, σ-additivity is equivalent to finite additivity.

To prove that Tχ(Γ) is additive we should prove that if B ∈ Σ∗χ and A1, A2 ∈ Σχ are

such that A1 ∩A2 = ∅, then Tχ(Γ, A1 ∪A2, B) = Tχ(Γ, A1, B) + Tχ(Γ, A2, B).

We finish proving that Tχ is a conditional Markov kernel with the next lemma.
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Lemma 3.25. For any Γ ∈ Ωχ:

(a.) If A,B ∈ Σχ, then Tχ(Γ, A,B) ≥ 0 and Tχ(Γ, B,B) = 1;

(b.) if B ∈ Σ∗χ and A1, A2 ∈ Σχ are such that A1 ∩A2 = ∅, then

Tχ(Γ, A1 ∪A2, B) = Tχ(Γ, A1, B) + Tχ(Γ, A2, B);

(c.) if A,B,C ∈ Σχ, then

Tχ(Γ, A ∩B,C) = Tχ(Γ, A,B ∩ C) · Tχ(Γ, B,C).

Proof. a. Since L1(ψ||ψ) ∈ Γ+, it is easy to see that Tχ(Γ, B,B) = 1.

b. If B ∈ Σ∗χ, then there is a ψ ∈ L(χ) such that B = [ψ]χ. Since B 6= ∅, there

is a ∆ ∈ Ωχ such that ψ ∈ ∆. Suppose that ¬3ψ ∈ Γ, then 2¬ψ ∈ Γ. Clearly

2¬ψ ∈ U(Γ) = U(∆); and by axiom (T2) we have ¬ψ ∈ ∆, which is a contradiction.

Therefore 3ψ ∈ Γ.

If φ1, φ2 ∈ L(χ) are such that A1 = [φ1]χ and A2 = [φ2]χ, then we have that

` ¬((φ1 ∧ γ2) ∧ (φ2 ∧ γ2)). We have to prove that

Tχ(Γ, [φ1 ∧ γ2]χ ∪ [φ2 ∧ γ2]χ, [ψ]χ) = Tχ(Γ, [φ1 ∧ γ2]χ, [ψ]χ) + Tχ(Γ, [φ2 ∧ γ2]χ, [ψ]χ).

That is the same as αΓ∞
φ1∧γ2∨φ2∧γ2,ψ = αΓ∞

φ1∧γ2,ψ + αΓ∞
φ2∧γ2,ψ, which is true by Lemma

3.18. By Lemma 3.21 we have the desired equality:

αΓ∞
φ1∨φ2,ψ = αΓ∞

φ1,ψ + αΓ∞
φ2,ψ.

c. If φ1, φ2, ψ ∈ L(χ) are such that A = [φ1]χ, B = [φ2]χ and C = [ψ]χ, then we have

to prove

Tχ(Γ, [φ1 ∧ φ2]χ, [ψ]χ) = Tχ(Γ, [φ1]χ, [φ2 ∧ ψ]χ) · Tχ(Γ, [φ2]χ, [ψ]χ).

It is enough to notice that the following equality holds by Lemma 3.19:

αΓ∞
φ1∧φ2,ψ = αΓ∞

φ1,φ2∧ψ · α
Γ∞
φ2,ψ.

The next two Lemmas greatly simplify Lemma 3.16 from Zhou (2009). We explain

with more details the differences after the proof.

Lemma 3.26. Let Γ be in Ωχ and let Φ = {φ1, ..., φn} be such that ∆ = Γ+ ∪ Φ is

consistent, where each φi is a formula in L. For any φ, ψ ∈ L(χ), if αΓ+

φ,ψ < βΓ+

φ,ψ, then

there is a rational r < βΓ+

φ,ψ such that ∆ ∪ {Mr(φ||ψ)} is consistent.
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Proof. Let ∆ be as in the hypothesis and suppose that φ and ψ are such that αΓ+

φ,ψ < βΓ+

φ,ψ.

Abbreviate
∧

Γ+ ∧ φ1 ∧ ... ∧ φn by
∧

∆ the conjunction of all the formulas in ∆.

First remember that if αΓ+

φ,ψ < βΓ+

φ,ψ, then ¬LΓ+

βφ,ψ
(φ||ψ) ∈ Γ+. Hence

`
∧

Γ+ → ¬LΓ+

βφ,ψ
(φ||ψ). (†)

It follows that, since ∆ is consistent 6`
∧

∆→ L
βΓ+
φ,ψ

(φ||ψ).

On the other hand suppose that for all r < βΓ+

φ,ψ, `
∧

∆→ ¬Mr(φ||χ). Then by the

(ARCH) rule we have `
∧

∆ → L
βΓ+
φ,ψ

(φ||ψ), a contradiction with (†). Therefore there

is an r0 < βΓ+

φ,ψ such that ∆ ∪ {Mr0(φ||ψ)} is consistent.

The following property is a modified version of property (E) from Zhou (2009).

Lemma 3.27. For each Γ in Ωχ there is a maximal consistent Θ∞ extension of Γ+ in

L such that the following property is satisfied:

(F): for any φ, ψ ∈ L(χ), if αΓ+

φ,ψ < βΓ+

φ,ψ, then αΓ+

φ,ψ ≤ αΘ∞
φ,ψ = βΘ∞

φ,ψ < βΓ+

φ,ψ.

Proof. Fix Γ ∈ Ωχ. Remember that Γ+ is a maximal consistent extension of Γ in L(χ+).

Enumerate all the pairs of formulas (φi, ψi) in L(χ) {(φ1, ψ1), ..., (φk, ψk)} such that

αΓ+

φi,ψi
< βΓ+

φi,ψi
. Let

Θ0 = Γ+,

and for each n ≥ 0, let rn+1 be a rational number such that rn+1 < βΓ+

φn+1,ψn+1
and

Θn ∪ {Mrn+1(φn+1||ψn+1)} is consistent, then define

Θn+1 = Θn ∪ {Mrn+1(φn+1||ψn+1)}.

The existence of rn+1 with the required properties is guaranteed by Lemma 3.26. Fix

Θ∞ to be an extension of Θk in the language L.

Now we prove that αΘ∞
φi,ψi

= βΘ∞
φi,ψi

. If 3ψi /∈ Γ, then by Lemma 3.14 αΓ+

φi,ψi
= 1 and

βΓ+

φi,ψi
= 0, contradicting the hypothesis. Hence, 3ψi ∈ Γ ⊂ Θ∞ and by Lemma 3.17,

αΘ∞
φi,ψi

= βΘ∞
φi,ψi

.

To finish the proof note that for any i > 1 it holds that βΘ∞
φi,ψi

≤ ri, hence

βΘ∞
φi,ψi

< βΓ+

φi,ψi
.

Zhou does not state Lemma 3.26 explicitly. Rather he proves the fact that Lemma

3.26 with Φ = ∅ holds, which we call a weaker version of 3.26 for reference. Then in his
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paper Zhou (2009), the proof of Lemma 3.27 consists in building a series of intermediate

languages for each φi such that αΓ+

φi
< βΓ+

φi
. For φ1 and Γ+ the weaker version of

Lemma 3.26 guarantees the existence of a r1 such that Γ+ ∪ {Mr1φ1}. Remember that

L(χ) = L(Pχ, qχ, dχ) and define L1 = L(Pχ, q1, dχ) where q1 is the least common multiple

of qχ and the denominator of r1. Let Γ1 be a maximal consistent extension of Γ+ in L1.

Repeat the argument for φ2, i.e., if (βΓ1

φ2
< βΓ+

φ2
) or (βΓ1

φ2
= βΓ+

φ2
and αΓ1

φ2
= βΓ1

φ2
), then

L2 = L1; if βΓ1

φ2
= βΓ+

φ2
and αΓ1

φ2
< βΓ1

φ2
, then L2 = L(Pχ, q2, dχ), where q2 is the least

common multiple of q1 and the denominator of r2 (with r2 given by Γ1 and the weaker

version of Lemma 3.26).

Clearly the main difference between the two proofs, the one given by Lemmas 3.26

and 3.27 in this thesis and the one given by Zhou (2009) sketched above, is the fact that

Lemma 3.26 is a stronger version of the idea stated by Zhou.

Now let us go back to the proof of completeness.

Enumerate all maximal consistent sets in Ωχ, Γ1,Γ2, ...,Γn. From the above lemma

it follows that for each Γi there is a Θ∞i satisfying property (F). Redefine Tχ as follows

Tχ(Γi, [φ]χ, [ψ]χ) = α
Θ∞i
φ,ψ .

Define the canonical model

Mχ = 〈Ωχ,Σχ, Tχ, vχ〉,

where vχ(p) = [p]χ.

Lemma 3.28 (Truth Lemma). Let φ ∈ L(χ), then

Mχ,Γi � φ iff φ ∈ Γi.

Proof. The proof is by the complexity of φ, we prove the cases φ = Lr(ψ1||ψ2) and

φ = 2ψ.

(Case φ = Lr(ψ1||ψ2))

Assume Mχ,Γi � Lr(ψ1||ψ2), i.e., Tχ(Γi, [ψ1]χ, [ψ2]χ) ≥ r.
If 3χ ∈ Γi we have two cases to consider:

(Case α
Γ+
i
ψ1,ψ2

= β
Γ+
i

ψ1,ψ2
) In this case Tχ(Γi, [ψ1]χ, [ψ2]χ) = α

Γ+
i
ψ1,ψ2

. Therefore r ≤ αΓ+
i
ψ1,ψ2

and clearly Lr(ψ1||ψ2) ∈ Γi.

(Case α
Γ+
i
ψ1,ψ2

< β
Γ+
i

ψ1,ψ2
) In this case Tχ(Γi, [ψ1]χ, [ψ2]χ) ≥ r. Then r ≤ α

Θ∞i
ψ1,ψ2

<

β
Γ+
i

ψ1,ψ2
= α

Γ+
i
ψ1,ψ2

+ 1
qχ

. The last equality holds because of Lemma 3.14, but since

Lr(ψ1||ψ2) ∈ L(χ) we have r ≤ αΓ+
i
ψ1,ψ2

. Hence, Lr(ψ1||ψ2) ∈ Γi.



36 CHAPTER 3. CONDITIONAL PROBABILITY LOGICS

If 3χ /∈ Γi, then by Lemma 3.14, L1(ψ1||ψ2) ∈ Γi, and by Theorem 3.8 it holds that

Lr(ψ1||ψ2) ∈ Γi.

For the other direction assume Lr(ψ1||ψ2) ∈ Γi. Then r ≤ α
Γ+
i
ψ1,ψ2

≤ α
Θ∞i
ψ1,ψ2

. So

Mχ,Γi |= Lr(ψ1||ψ2).

(Case φ = 2ψ) Suppose Mχ,Γ � 2ψ.

Fact : If 2ψ 6∈ Γ then U(Γ) ∪ {¬ψ} is consistent.

(Proof of the fact) If U(Γ) ∪ {¬ψ} is inconsistent, then `
∧
U(Γ) → ψ, and by

(N2) and (K2) we have that ` 2
∧
U(Γ) → 2ψ. By Lemma 3.20 we also have that

`
∧
U(Γ) → 2

∧
U(Γ). With the two implications `

∧
U(Γ) → 2ψ holds. Since 2ψ ∈

L(χ), it holds that 2ψ ∈ Γ. This contradicts the hypothesis. Therefore U(Γ) ∪ {¬ψ} is

consistent.

Suppose 2ψ 6∈ Γ. By the fact above we know that U(Γ) ∪ {¬ψ} is consistent, so

there is a maximal consistent set of formulas Γ′ such that U(Γ) ∪ {¬ψ} ⊆ Γ′. We know

that Γ′ is in Ωχ because U(Γ) ⊂ Γ′.

In this way, Γ′ is such that Γ ∼ Γ′ and ψ 6∈ Γ′. By the induction hypothesis

Mχ,Γ
′ 6� ψ. Then Mχ,Γ 6� 2ψ, which contradicts our assumption. Therefore 2ψ ∈ Γ.

Now for the other direction assume 2ψ ∈ Γ. To prove Mχ,Γ |= 2ψ, take any

Γ′ ∈ Ωχ. It suffices to show Mχ,Γ
′ |= ψ. Since 2ψ ∈ U(Γ) and U(Γ) = U(Γ′), we have

2ψ ∈ U(Γ′) ⊆ Γ′. Since ` 2ψ → ψ, it follows that ψ ∈ Γ′. By the induction hypothesis,

Mχ,Γ
′ |= ψ.

Theorem 3.29 (Completeness). For any formula χ of L, if χ is consistent, then there

is a model M = 〈Ω,Σ, T, v〉, such that M, w � χ for some w ∈ Ω.

An immediate consequence of the proof of this theorem is the finite model property.

Which we state as follows.

Corollary 3.30 (Finite Model Property). A formula φ of L is valid in all conditional

probability models if and only if it is valid in all finite conditional probability models.

The last corollary does not imply decidability1 because the canonical model is not

finitely constructed (the values of Tχ may be irrational).

Finally, Lcp is not compact as shown in the next Lemma, which is the conditional

probabilistic version of Theorm 3.20 in Zhou (2009).

1A logic is decidable if there is an algorithm that given any formula of the language decides whether

it is a theorem.
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Lemma 3.31 (Non-compactness). Lcp is not compact. That is to say, there is some set

Λ of formulas in L which is finitely satisfiable, but is not satisfiable.

Proof. Consider the set Λ∞
.
= {¬L 1

2
p} ∪ {L 1

2
− 1

2n+2
p : n ∈ N}. It is easy to see that Λ∞

is not satisfiable. Now we show that it is finitely satisfiable. Without loss of generality,

we consider the finite subset ΛN = {¬L 1
2
}∪{L 1

2
− 1

2n+2
p : n ≤ N} for some given natural

number N . We define a model M = 〈Ω,Σ, T, v〉 as follows:

Ω = {w1, w2};
Σ = P(Ω);

T is any Conditional Markov Kernel satisfying the condition:

T (w1, {w1},Ω) =
1

2
− 1

2N+3
;

v(p) = {w1}.
It is easy to check that M, w1 � ΛN .

3.4 Completeness for Multi Agents

The proof of completeness in the multi-agent case has no added complications. To

build the canonical model one has to consider a conditional Markov kernel Ta for each

agent a and add the necessary steps to ensure the truth lemma for each formula of the

form Lar(φ||ψ). In this section we will spell out some details for the multi-agent case.

Let A be a finite set of agents, let P = {p, q, ...} be the set of propositional variables

and consider the language obtained from the following:

φ
.
= >|p|¬φ|φ ∧ φ|2φ|Lar(φ||φ), (3.2)

where p ∈ P, a ∈ A and r ∈ [0, 1] ∩Q.

Read Larp as ‘agent a believes the probability of p is at least r.’ Define the following

abbreviation:

La1−r(¬φ||ψ)
.
= Ma

r (φ||ψ).

A multi-agent conditional probability model M = 〈Ω,Σ, (Ta)a∈A, v〉 is such that (Ω,Σ)

is a measurable space; Ta : Ω × Σ × Σ → [0, 1] is a conditional Markov kernel for each

a ∈ A; v is a valuation, a function from the set of propositional letters to Σ.
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The set of axioms has the axioms (A1) to (A5), (C1), (C2) and (C→) and the rule

(ARCH) for each agent a ∈ A.
For completeness define the depth of a formula as previously, i.e, if φ is a non-

probabilistic formula, then dp(φ) is like before, while the depth of a probabilistic formula

is given by dp(Lar(ψ||χ)) = 1 + max{dp(ψ), dp(χ)}.
With this definition of depth fix a consistent formula χ and define the local language

L(χ) = L(Pχ, dχ, qχ).

Let Γχ be a maximal consistent set of formulas of L(χ) that contains χ. Define

Ωχ = {∆ ∈ Ω : ∆ ∼ Γχ}, where ∼ is defined as before. Let the σ-algebra be Σχ =

{[φ]χ : φ ∈ L(χ)}.
To construct the conditional Markov kernel Ta we define two functions α and β. For

each Γ ∈ Ωχ, fix an extension Γ+ ∈ L(χ+). Define

α(a,Γ, φ, ψ) = max{r : Lar(φ||ψ) ∈ Γ+} and β(a,Γ, φ, ψ) = min{r : Ma
r (φ||ψ) ∈ Γ+}.

For each extension Γ+ (of Γ) fix a maximal consistent extension Γ∞ in L and define:

α(a,Γ∞, φ, ψ) = sup{r : Lar(φ||ψ) ∈ Γ∞} and β(a,Γ∞, φ, ψ) = inf{r : Ma
r (φ||ψ) ∈ Γ∞}.

The key lemma here is Lemma 3.27, of which we state a modified version below.

Lemma 3.32. For each Γ in Ωχ there is a maximal consistent extension Θ∞ of Γ+ in

L such that the following property is satisfied:

(Fm): for each agent a for any φ, ψ ∈ L(χ), if α(a,Γ, φ, ψ) < β(a,Γ, φ, ψ), then

α(a,Γ, φ, ψ) ≤ α(a,Θ∞, φ, ψ) = β(a,Θ∞, φ, ψ) < β(a,Γ, φ, ψ).

Proof. Fix Γ ∈ Ωχ. Remember that Γ+ is a maximal consistent extension of Γ in L(χ+).

Enumerate all the triples (ai, φi, ψi) with ai ∈ A and φi, ψi ∈ L(χ):

{(ai, φ1, ψ1), ..., (ak, φk, ψk)} such that α(ai,Γ
+, φi, ψi) < β(ai,Γ

+, φi, ψi). Note that the

agent ai does not correspond to the i-th agent in the set A. Let

Θ0 = Γ+,

and for each n ≥ 0, let rn+1 be a rational number such that rn+1 < β(an+1,Γ
+, φn+1, ψn+1)

and Θn ∪ {Ma
rn+1

(φn+1||ψn+1)} is consistent, then define

Θn+1 = Θn ∪ {Ma
rn+1

(φn+1||ψn+1)}.
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The existence of rn+1 with the required properties is guaranteed by Lemma 3.26. Fix

Θ∞ to be an extension of Θk in the language L.

Now we prove that for each a ∈ A, α(a,Θ∞, φ, ψ) = β(a,Θ∞, φ, ψ). If 3ψ /∈ Γ, then

by Lemma 3.14, α(a,Θ∞, φ, ψ) = 1 and β(a,Θ∞, φ, ψ) = 0, contradicting the hypothesis.

Hence, 3ψ ∈ Γ ⊂ Θ∞ and by Lemma 3.17, α(a,Θ∞, φ, ψ) = β(a,Θ∞, φ, ψ).

To finish the proof note that for any i > 1 it holds that β(ai,Θ
∞, φi, ψi) ≤ ri, hence

β(ai,Θ
∞, φi, ψi) < β(ai,Γ

+, φi, ψi).

Enumerate all maximal consistent sets in Ωχ, Γ1,Γ2, ...,Γn. From the above lemma

it follows that for each Γi there is a Θ∞i satisfying property (Fm). Define Ta as follows

Ta(Γi, [φ]χ, [ψ]χ) = α(a,Θ∞i , φ, ψ).
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Chapter 4

Dynamics

Ela acreditava em anjo e, porque

acreditava, eles existiam.

Clarice Lispector

She did believe in angel and, because

she believed, they existed.

Clarice Lispector

The main point of this chapter is to extend conditional probability logic with dynamic

operators. With that we express the flow of information relevant for, among other

things, card games. The change of information is caused by a variety of ways, some of

the ones that we describe in the following sections are announcements, turning cards

face up, drawing cards, etc. This flow and change of information is traditional known as

dynamic epistemic logic.

Dynamic epistemic logic is well studied in the book by van Ditmarsch et al. (2007),

but it did not treat probabilistic cases of dynamics. The papers by Sack (2009) and then

by Kooi (2003) were the first to treat the probability case. However, they were using as

model the traditional probability spaces, hence formulas that were believed to be false

could not be announced and then begin to be believed.

In this chapter we refer to event models for probabilistic models that were well studied

in van Benthem (2003) and improved in van Benthem et al. (2009). Our approach in this

41
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chapter is different from the ones proposed in those papers in two points: 1. We make

use of conditional probability models; and 2. our language is inspired by Aumann’s idea,

as explained in the introduction, while van Benthem at al. are inspired by Halpern’s

ideas. Notice that the language we propose for conditional probability models is not

a sublanguage of Halpern’s language. The advantage of allowing formulas to express

inequalities and sum of probabilities is clear with the proof of completeness through a

set of reduction axioms for update models. With our language we could mimic only part

of this result.

Also in this chapter we refer to Dynamic Epistemic Logic with assignment, which is

studied in Benthem et al. (2006), Kooi (2007) and van Ditmarsch et al. (2005) without

considering probabilistic beliefs. In this chapter we extend those ideas to accommodate

conditional probability epistemic logics.

In this chapter one of the reasons for introducing conditional probabilistic language

in Chapter 3 becomes clear. We start with public announcement logic as a case study

and as a natural motivation for the introduction of conditional probabilistic logic.

4.1 Why Conditional Probability Logic, via PAL

One strength of Renyi’s notion of conditional probability is the meaningfulness of con-

ditionalizing over events of probability zero. An application of that for logic is the

possibility of expressing the following idea: someone believes in something to be false

when it is actually true, and when faced with the facts his/her belief in that some-

thing is greater than zero. We spell out this notion formally with the help of public

announcement logic in the next example.

Example 4.1. Suppose that today You and I are in a room without windows and that

it is raining outside but I do not believe it. In fact, I believe that the chance that it is

not raining today is 100%. I believe that when it is raining You have an umbrella 70%

of the time. And I believe that when it is not raining you carry the umbrella 40% of

the time. It is very clear that without anything else I believe that the chance that You

have an umbrella today is 40% (but in fact the probability is 70% as it is raining but I

do not believe it).

It should also be clear that after you telling me that it is raining I should believe

that the chance that You have an umbrella today is 70%. But how to model that?

Let us restate the problem with a static conditional probabilistic model.
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w1

¬RU
w2

RU

w3

¬R¬U
w4

R¬U

Figure 4.1: Example 4.1. R stands for ‘it is raining’ and U for ‘You have an umbrella.’

Let M = 〈Ω,Σ, T, v〉 be the following model with any function T satisfying the

equalities below:

Ω = {w1, w2, w3, w4}
Σ = P(Ω)

T (x, JUK, JRK) = 0.7, T (x, JUK, J¬RK) = 0.4 and T (x, J¬RK,Ω) = 1, for all x ∈ Ω.

v(R) = {w2, w4}, v(U) = {w1, w2}.
Where R reads as ‘it is raining’ and U as ‘You have an umbrella.’ See figure 4.1 for

a picture of the model.

For the information change we use the notion of announcements. The announcement

of φ is essentially a set of states (the states where the announcement is true). If φ is a

formula, read [!φ]ψ as ‘after the announcement of φ it is the case that ψ’. The language

of probabilistic PAL is given as:

φ = p|¬φ|φ ∧ φ|Lr(φ||φ)|2φ|[!φ]φ

Given a conditional probability model M = 〈Ω,Σ, T, v〉 the definition of truth of

formulas in probabilistic PAL is like before, with the added clause:

M, w � [!φ]ψ iff M, w � φ implies Mφ, w � ψ;

where Mφ = 〈Ωφ,Σφ, Tφ, vφ〉 is defined as follows:

Ωφ = JφK;

Σφ = {B ∩ Ωφ : B ∈ Σ};
Tφ(w,A,B) = T (w,A,B);

vφ(·) = v(·) ∩ Ωφ
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Define JψKφ
.
= {w ∈ Ωφ : Mφ, w � ψ}.

Let us go back to Example 4.1 and see the definition of public announcement in

action.

Example 4.2 (Continuation of Example 4.1). Given the model M in Example 4.1 the

following facts are true:

1. M � L1¬R
2. M � L0.4U ∧M0.4U

3. M � [!R]L0.7U

4. M � [!R]L1R

Proof. We prove only 2 and 3.

2. We have to prove that T (w, JUK,Ω) = 0.4, for any w ∈ Ω. First fix w ∈ Ω and

remember that, since Ω 6= ∅, then T (x, JUK,Ω) = T (w, JU ∧RK,Ω) +T (w, JU ∧¬RK,Ω).

since T (w, ·,Ω) is a conditional probability function we have the equalities:

(a) T (w, JU ∧ ¬RK,Ω) = T (w, JUK, J¬RK ∩ Ω) · T (w, J¬RK,Ω) = 0.4 · 1 = 0.4.

(b) T (w, JU ∧RK,Ω) = T (w, JUK, JRK ∩ Ω) · T (w, JRK,Ω) = 0.7 · 0 = 0

Therefore T (w, JUK,Ω) = 0.4 for any w ∈ Ω, which implies M � L0.4U ∧M0.4U .

3. Denote by ΩR the support of MR, the model resulted from the announcement

of R. Note that ΩR = Ω ∩ JRK. And similarly JUKR = JU ∧ RK. Finally remember

T (w, JU ∧RK, JRK) = T (w, JUK, JRK) for any U and R.

With this we have:

M � [!R]L0.7U if only if M � R implies MR � L0.7U , which holds if and only if M � R

implies TR(w, JUKR,ΩR) ≥ 0.7 for all w, which holds.

Examples 4.1 and 4.2 illustrate the strength of conditional probability models. While

it is intuitive that agents should review their beliefs when faced with information con-

tradicting previous ones, it is not clear how this update should be expressed without

conditional probability spaces.

The reason for introducing a complete set of axioms for conditional probability logic

is that there is no reduction axioms for PAL in probability logic based in Aumann’s

language. If p and q are propositional variables we can easily see that the following is a

valid formula:

[!p]Lrq ↔ (p→ Lr(q||p)),

i.e., from a formula without conditional probability we end up with a formula with

conditional probability.
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The power of conditional probability logic goes beyond PAL, but as an introduction

to the topic we prove the completeness of PAL for conditional probability logic through

reduction axioms.

Lemma 4.3. Let φ and ψ be formulas and M a model for probabilistic PAL, then:

JψKφ = Jφ ∧ [!φ]ψK

Proof. Suppose w ∈ Jφ ∧ [!φ]ψK. Then M, w � φ and (M, w � φ implies Mφ, w � ψ).

Therefore Mφ, w � ψ, which is the same as w ∈ JψKφ.
Suppose w ∈ JψKφ, i.e., w ∈ JφK and Mφ, w � ψ. This is the same as to say that

M, w � φ and (M, w � φ implies Mφ, w � ψ). Which is exactly w ∈ Jφ ∧ [!φ]ψK.

We prove the completeness of probabilistic PAL by giving a set of reduction axioms.

Reduction axioms are schemata of formulas which together describe a procedure to re-

place a formula with the connective [!φ] by an equivalent formula without the connective.

Theorem 4.4. The reduction axioms for probabilistic PAL, given by the schemata of

formulas below, are valid.

·[!φ]p↔ (φ→ p)

·[!φ]¬ψ ↔ (φ→ ¬[!φ]ψ)

·[!φ]2ψ ↔ (φ→ 2[!φ]ψ)

·[!φ](ψ ∧ χ)↔ ([!φ]ψ ∧ [!φ]χ)

·[!φ]Lr(ψ||χ)↔ (φ→ Lr([!φ]ψ||φ ∧ [!φ]χ))

Proof. We prove only the probabilistic formula. The others are routine.

Let M be a conditional probability model and let w be a state in the model.

M, w � [!φ]Lr(ψ||χ) iff M, w � φ implies Tφ(w, JψKφ, JχKφ) ≥ r, which is equivalent,

by the previous lemma, to:

M, w � φ implies T (w, Jφ ∧ [!φ]ψK, Jφ ∧ [!φ]χK) ≥ r.

Remember that T (w,A∩B,A∩C) = T (w,B,A∩C) always hold (see Theorem 2.2),

then

T (w, J[!φ]ψK, Jφ ∧ [!φ]χK) = T (w, Jφ ∧ [!φ]ψK, Jφ ∧ [!φ]χK).

So the above condition is equivalent to M, w |= φ→ Lr([!φ]ψ||φ ∧ [!φ]χ).
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The last reduction axiom cannot be expressed in probabilistic logic. We can see

that the conditional probability operator appears in the reduction schema for the non-

conditional probability operator if we take χ = > in the last reduction axiom:

[!φ]Lr(ψ)↔ φ→ Lr([!φ]ψ||φ).

The ability to express this equivalence is one of the advantages of conditional prob-

ability logic over the standard probability logic of Zhou (2009).

Theorem 4.5. The system Lcp together with the reduction axioms in Theorem 4.4 and

the rule

` φ↔ φ′ imples ` [!ψ]φ↔ [!ψ]φ′

are a complete system for probabilistic PAL.

Proof. Consider the following translation:

p = p

¬φ = ¬φ

2φ = 2φ

φ ∧ ψ = φ ∧ ψ

Lr(φ||ψ) = Lr(φ||ψ)

[!φ]p = φ→ p

[!φ]¬ψ = φ→ ¬[!φ]ψ

[!φ]2ψ = φ→ 2[!φ]ψ

[!φ](ψ1 ∧ ψ2) = [!φ]ψ1 ∧ [!φ]ψ2

[!φ]Lr(ψ1||ψ2) = φ→ Lr([!φ]ψ1||φ ∧ [!φ]ψ2)

[!φ1][!φ2]ψ = [!φ1]([!φ2]ψ)

The translation φ is defined on all formulas of PAL and the formula φ does not

contain any occurrence of the operator [!·]. Moreover, one can prove by induction on the

complexity of φ that

` φ↔ φ.

Suppose φ is a formula in the probabilistic PAL such that it is valid in all models in

the class of conditional probability models. Hence, φ is also valid and by the completeness

of conditional probability logic (Theorem 3.29) there is a proof of φ. Therefore, since

` φ↔ φ is provable, there is a proof of φ.
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To sum up the discussion in this section we state the following theorem:

Theorem 4.6. The formula L1¬p ∧ p ∧ [!p]Lrp for r > 0 is satisfiable.

Proof. The model that satisfies the formula is given in Example 4.1 and the proof of

satisfiability is given by Example 4.2.

4.2 Events

In this section we introduce a broader class of mechanisms to update a model. We call a

given change in the world an event and present as examples announcements, the turning

of a lamp on or off, the turning of a card face up, the drawing of a card, etc.

The word ‘event’ from event models should not be confused with events of a proba-

bility space. The first refers to a change in the world (either epistemic or factual); the

second is a set of possible outcomes in a random process.

A worthwhile remark about this issue is made in a footnote in van Benthem et al.

(2009). We reproduce the footnote below:

It is rather unfortunate that the term event is widely used in both probability

theory and dynamic-epistemic logic, but with slightly different interpretations.

In probability theory an event is what one would call a proposition in logic.

While an event in dynamic epistemic logic also comes with a proposition, viz.

its precondition, events in an event model really transform a given proba-

bilistic model, and are not part of that model itself. To make matters worse,

sometimes a whole event model is referred to as an event in dynamic-epistemic

logic. We can only warn the reader to suspend any easy identifications across

fields here.

Next first we introduce assignments, events that change the state of the world (factual

changes), then we introduce assignments with preconditions. Finally, we introduce event

assignment models and product update for sets of events which the agent is unsure about

which one took place.
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4.2.1 Assignments

Another way to modify a given scenario is by performing factual changes in the world.

In this section we will introduce the notion of assignments without preconditions, events

that simply change the state of the world.

Example 4.7. Consider a lamp that turns on or off though a sensor as follows: if the

lamp is on and the sensor is activated the lamp goes off, and if it is off and the sensor is

activated the lamp turns on.

States in which the lamp is on are elements of JONK and we call them ON states.

Similarly, states in which the lamp is off are elements of JOFF K and we call them OFF

states. Every time the lamp’s sensor is activated all the ON states becomes OFF states

and vice-versa. Note that the action of activating the sensor has no precondition and

can always be performed.

We denote this change by [ON := OFF,OFF := ON ] and call an assignment. The

general case is given in the next definition.

Definition 4.8. An assignment τ is a finite sequence of the form ([p1 := φ1], ..., [pn :=

φn]) where each propositional variable p appears at most once on the left side. We

sometimes denote φi by φpi . An assignment τ can be seen as a finite partial function

from the set of propositional variables to the set of formulas:

τ(p) =

{
φp if p is in the domain of τ

p otherwise.

We extend the assignment function to the whole language distributing it through the

connectives, e.g., τ(¬φ) = ¬τ(φ), τ(Lr(φ||ψ)) = Lr(τ(φ)||τ(ψ)), etc.

Probabilistic Assignment Logic is given by

φ
.
= p | ¬φ | φ ∧ φ | Lr(φ||ψ) | 2φ | [τ ]φ

where p is a propositional variable and τ is an assignment.

Given a conditional probability model M = 〈Ω,Σ, T, v〉 we define Mτ = 〈Ω,Σ, T, v′〉
where v′(p) = Jτ(p)KM. The definition of truth is given as before with the added clause:

M, w � [τ ]φ iff Mτ , w � φ

.
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Example 4.9 (Revisiting Example 4.7). Consider the following conditional proba-

bilistic model for Example 4.7, M = 〈Ω = {w1, w2},P(Ω), T, v〉 where T is given

by T (w, {w1}) = 2
3 and T (w, {w2}) = 1

3 for any w ∈ Ω and v(ON) = {w1} and

v(OFF ) = {w2}, i.e., w1 is an ON state and w2 is an OFF state.

In this situation the agent believes it is twice more likely that the lamp is on than it

is off, i.e., it holds that M � L 1
3
OFF ∧ L 2

3
ON.

Let τsen = [ON := OFF,OFF := ON ] be the assignment related to activating the

sensor of the lamp. We can see that after the lamp is activated the agent’s beliefs change,

i.e., M � [τsen]L 2
3
OFF ∧ L 1

3
ON. The proof goes as follows:

T (w, JONK) ≥ 2
3 for all w ∈ Ω implies that T (w, Jτsen(OFF )K) ≥ 2

3 for all w ∈ Ω.

This implies that Mτsen � L 2
3
OFF and hence M � [τsen]L 2

3
OFF .

For M � [τsen]L 1
3
ON the reasoning is similar. Also note that it is valid that

M � [τsen](φ ∧ ψ)↔ ([τsen]φ ∧ [τsen]ψ).

Moreover, this equivalence is valid for any assignment in the class of the conditional

probability spaces. We prove that in our next theorem.

Conditional probability logic extended with assignments is complete with respect to

the class of conditional probability spaces. Furthermore, its completeness is given by a

set of reduction axioms.

Lemma 4.10. The following equation holds:

JφKMτ = Jτ(φ)KM = J[τ ]φKM

Proof. The proof is by induction on the complexity of φ.

Theorem 4.11. The following formulas are valid:

·[τ ]p↔ τ(p)

·[τ ]¬ψ ↔ ¬[τ ]ψ

·[τ ]2ψ ↔ (2[τ ]ψ)

·[τ ](ψ ∧ χ)↔ ([τ ]ψ ∧ [τ ]χ)

·[τ ]Lr(ψ||χ)↔ Lr([τ ]ψ||[τ ]χ)

We postpone the proof until the next section where we introduce assignments with

preconditions.
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It is worth noting that the formula [τ ]Lr(φ||>)↔ Lr([τ ]φ||>) is a valid formula. This

means that we could have a set of reduction axioms for (non conditional) probability

logic extended with assignments.

Assignments without preconditions like defined in this section are the simplest kind

of events we consider, but because of their simplicity some events like the draw or turn

of a card in Algo, for example, are not possible to model. In order to express more

complex changes in the state of the world we introduce the notion of assignments with

preconditions in the next section.

4.2.2 Assignments with preconditions

A precondition of an event is a formula in conditional probability logic. Given a condi-

tional probability model, the actual world is an element of the set of states that satisfies

the precondition associated to the event before the event has taken place (otherwise the

event could not have taken place). Essentially, the precondition of an event represents

the set of states in which the event can happen. If the event happened, we should exclude

states that are inconsistent with the event taking place.

We formalize this discussion in this section.

Definition 4.12. An assignment-precondition event e is a pair (τ, pre), where τ is an

assignment and pre is a conditional probability logic formula, the precondition of τ . We

sometimes denote by τe and pre(e) the precondition associated with the pair e = (τ, pre).

We define the language for assignment-precondition probabilistic logic by:

φ
.
= p | ¬φ | φ ∧ φ | Lr(φ||φ) | 2φ | [e]φ

where p is a propositional variable and e is an assignment-precondition event.

The satisfaction relation is given as before with the added clause:

M, w � [e]φ iff M, w � pre(e) implies Me, w � φ,

where Me = 〈Ωe,Σe, Te, ve〉 with

· Ωe = Jpre(e)KM

· Σe = {B ∩ Ωe : B ∈ Σ}

· Te(w,A,B) = T (w,A,B)
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w1

0 2

0 1 1

w2

0 2

0 1 2

Figure 4.2: Example 4.13. Player 2 cannot distinguish between w1 and w2.

· ve(p) = Jτe(p)KM

Let’s consider the turn of a card.

Example 4.13 (Turning a card face up). Consider the following situation of Algo2 as

follows: player 2 has the cards (0W, 2B) and both are turning face down. Player 1 has

the cards (0B, 1B, 2W ) and all the cards are turning face down. Remember that the

cards in Algo2 ranges from 0 to 2.

Let w1 be the state in which player 1 holds the cards (0B, 1B, 1W ) and w2 be the

state in which player 1 holds the card (0B, 1B, 2W ). Note that player 2 believes it is

equally likely that the actual state is either w1 or w2 despite the fact that the actual

state is w2. See Figure 4.2.

For the given situation we have the following conditional probability model M:

· Ω = {w1, w2}

· Σ = P(Ω)

For all x ∈ Ω :

· T (x, {w},Ω) = 1
2 for all w ∈ Ω and T (x, {w}, {u}) = 1 if w = u; 0 otherwise

· v(1W13) = {w1}, v(2W13) = {w2} and v(3W13) = ∅.

Let Lrp stand for “player 2 believes the chance that p is true is at least r.” Clearly

it holds that M � L 1
2
(1W11).

Let e1 be the assignment-precondition event of turning the card 1W in the third

position in player 1’s hand face up. Similarly, let e2 be the assignment-precondition

event of turning the card 2W in the third in player 1’s hand face up. Formally we have



52 CHAPTER 4. DYNAMICS

ei = (τ, iW13 ∧D1i) for i ≤ 2 and τ = {D13 := U13}. Remember that D13(U13) stands

for ‘the card in position 3 in the hand of player 1 is face down(up).’

Clearly, after card 2W is turned face up player 2 is 100% sure of player 1’s hand.

We can see that by M, w2 � [e2]L1(2W13). On the other hand, if the card turned was

1W player 2 would be also sure about player 1’s hand configuration. We can see that

by M, w2 � [e1]L1(1W13). This last relation is true because w2 does not satisfy the

precondition of e1.

Finally we can also say that after the turn of the card in the third position in player

1’s hand player 2 would be 100% sure about player 1’s hand, i.e.,

M � [e1]L1(1W13) ∧ [e2]L1(2W13)

holds.

There is a set of reduction axioms for conditional probabilistic logic extended with

assignment-precondition connective as we see in our next theorem.

Lemma 4.14. The following equality holds:

JφKMe = Jpre(e) ∧ [e]φKM

Theorem 4.15. The following formulas are valid for any assignment-precondition e:

·[e]p↔ (pre(e)→ p)

·[e]¬ψ ↔ (pre(e)→ ¬[e]ψ)

·[e]2ψ ↔ (pre(e)→ 2[e]ψ)

·[e](ψ ∧ χ)↔ ([e]ψ ∧ [e]χ)

·[e]Lr(φ||ψ)↔ (pre(e)→ Lr([e]φ||pre(e) ∧ [e]ψ))

Proof. We prove the last equivalence:

M, w � [e]Lr(φ||ψ) iff M, w � pre(e) implies Me, w � Lr(φ||ψ).

Note that Me, (w, e) � Lr(φ||ψ) is equivalent to T (w, JφKMe , JψKMe) ≥ r.
The following holds because of Lemma 4.14.

T (w, (JφKMe), (JψKMe)) = T (w, J[e]φK, Jpre(e) ∧ [e]ψK) ≥ r,

which turns out to be equivalent to

M, w � Lr([e]φ||pre(e) ∧ [e]ψ).
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4.2.3 Event assignment model and product update model

Until now we considered events happening by themselves. In those cases the agent could

be sure that an event was happening and he/she knew which event took place. Now we

want to model situations where the agent knows that some event took place but cannot

distinguish which particular one.

In this section we define the product model resulted from a conditional probability

model and an event assignment model. An event assignment model is essentially a set

of events (with assignments) with a probability distribution over it, representing the

uncertainty of which event took place. Let’s consider an example first.

Example 4.16. Consider the following state of an Algo game: Player 1’s hand is

(1B, 3W,5W, 6B, 10W ), the last car drawn was 1B and Player 2’s hand is (0W, 5B, 9B, 11W ).

Player 1 guesses 5B, 11W and mistakenly guesses 8B in the third position in player 2’s

hand. Now it is the turn of player 2 and she draws the card 8B, which is put at position

3. See Figure 4.3 for the draw action.

In this situation player 1 cannot distinguish between the events where player 2 draws

the card 7B and the actual card 8B. In fact, player 1 cannot distinguish between the

cards 7B, 8B, 9B or 10B.

In this section we will formalize the following discussion: Suppose that before the

draw the formula L1
r(7B23) holds, i.e., player 1 believes that the chance that the third

card 7B is in the third position in player 2’s hand is at least r. Hence, after the draw

the formula M1
0 (7B24) should hold, i.e., player 1 considers impossible that the the forth

card in player 2’s hand is a 7B (assuming a normal distribution over the possible draws).

Another idea that we want to formalize is that if the formula L1
r(8B23) holds before

the draw, then it should hold that L1
r′(8B24) for some r′ after. How to calculate r′ is

also of interest in this section.

We start with the definition of event assignment model in a multi-agent scenario.

Let A be a non-empty set of agents:

Definition 4.17. An event assignment model is a tuple E = 〈E, pre, (Pa)a∈A, τ〉 where

· E is a finite set of events,

· pre(e) is the precondition for event e; a precondition is a formula of conditional

probability logic.

· Pa(e, ·) is a probability distribution over E for each agent a in A.
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0 5* 9 11*

1* 3 5 6 10

d8B23

0 5* 8 9 11*

1* 3 5 6 10

Figure 4.3: Example 4.16. The hand of Player 2 is (0W, 5B, 9B, 11W ). The hand of Player

1 is (1B, 3W, 5W, 6B, 10W ). The asterisk ‘(∗)’ represents the cards that are face up and the

underline (‘8’) represents the last card drawn.

· ·τe is an assignment, the change cause by event e.

The probability Pa(e, {e′}) represents the probability the agent a assigns to certain

event e′ happening when the event e actually happens.

It is worth mentioning that van Benthem et al. (2009) included a third “occurrence

probability” which is a probability distribution on the events sharing the same precon-

dition. We avoid that scenario here.

We define the language for event conditional probability logic (E-CPL henceforth) as

follows:

φ
.
= p | ¬φ | φ ∧ φ | Lir(φ||ψ) | 2φ | [E, e]φ

where p is a propositional variable, i ∈ A, r ∈ [0, 1] ∩ Q and E is an event assignment

model.

Definition 4.18. Given a conditional probabilistic model M = 〈Ω,Σ, (Ti)i∈A, v〉 and

an event assignment model E = 〈E, pre, (Pa)a∈A, τ〉 we define truth as before with the

added clause:

M, w � [E, e]φ iff M, w � pree implies ME, (w, e) � φ

where ME = 〈Ω⊗ E,Σ′, (T ×a P )i∈A, v
′〉:

Ω⊗ E = {(w, e) ∈ Ω× E : M, w � pree}
Σ′ = σ{A× F : A ∈ Σ, F ∈ P(E)}
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T×aP ((w, e), A,B) =


∑

x∈B Ta(w,Ax, Bx) · Ta(w,Bx, π1(B)) · Pa(e, {x})∑
x∈E Ta(w,Bx, π1(B)) · Pa(e, {x})

if B 6= ∅

1 otherwise.

where
B = { (s, x) ∈ B : P (e, {x}) > 0 },

π1(B) = { s ∈W : (s, x) ∈ B }.
v′(p) = {(w, e) : M, w � τe(p)}.

The definition of T ×P does not seem intuitive on a first look. We prove it is indeed

a conditional probability function and provide some intuitions behind its definition on

the next section.1

It is easy to see that assignments with preconditions are a particular case of event

assignment models. To go from the former to the latter one should set the event assign-

ment model to be a singleton with only one event and the probability function P to be

equal to 1.

Let’s go back to the drawing action as an example for event assignment model.

Example 4.19 (Example 4.16 revisited.). Remember the situation of Algo given by

Example 4.16 and Figure 4.3.

Consider the following event model given by D = 〈D, pre, P, τ〉, where

D = {dc23 : c ∈ {6B, 7B, 8B, 9B}}
pre(dcpi) = ¬(c1 ∨ c2) ∧

∧
j≤i,x>c ¬x2j ∧

∧
i≤j,c>x ¬x2j

P (x, {y}) = 1
4 for all x, y ∈ D (Uniform distribution)

τ(dcpi) = {cpi := >} ∪ {x2j+1 := x2j : x is a card with x 6= c and j ∈ {3, 4}} ∪
{xpi := ⊥ : x 6= c} ∪ {Upj+1 := Upj , Dpj+1 := Dpj : j ≥ i}.

Let M = 〈Ω,Σ, T, v〉 be the epistemic model after player 1 makes his guesses and

before player 2 draws a card; and let w0 be the current state.

We can express some interesting ideas, for instance, before the drawing, player 1

considers it possible for the card in position 3 in player 2’s hand to be 7B, but after

drawing he considers that impossible: (¬L1
1¬7B23) ∧

∧
d∈D[D, d]L1

1¬7B24.

Formula (L1
1¬8B23) ∧

∧
d∈D[D, d]L1

.58B23 says that before drawing the card player

1 considers it impossible for player 2 to have 8B in that position, but considers it more

likely than not after the drawing (perhaps based on player 2’s past guesses).

Player 1’s beliefs about unrelated cards (like 0W ) are not affected, as expressed by

(L1
r0W21)→

∧
d∈D[D, d]L1

r0W21, for any r.

To finish our example lets prove the following fact.

1I am thankful to my Advisor, Makoto Kanazawa, for the idea for this function,
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Fact: In the model given in Example 4.16 it holds that

M, w0 � (¬L1¬07B23) ∧
∧
d∈D

[D, d]L1¬7B24.

Proof of the fact: It is easy to see that M, w0 � (¬L1
1¬7B23) holds. For the second

part we have that M, w0 �
∧
d∈D[D, d]L1

1¬7B24 iff M, w0 � pred implies M×D, (w0, d) �

L1
1¬7B24 for each d ∈ D. If we prove that J7B24KM×D is empty when M, w0,� pred we

have the result.

Let’s prove that J7B24KM×D is the empty set when M, w0,� pred. Suppose that

some (w, e) ∈ J7B24KM×D, then M × D, (w, e) � 7B24, which happens only if (w, e) ∈
v′(7B24) = {(v, f) : M, v � τf (7B24)}, which is equivalent to M, w � 7B23. But if

M, w � 7B23, then M, w 6� pref for f ∈ D. Hence J7B24KM×D is empty and the result

holds.

Conditional probability logic is not expressive enough to be able to allow reduction

axioms for E-CPL. It is an open question if a Halpern style of conditional probability

logic could express a set of reduction axioms for E-CPL.

For the remaining of this chapter we will explain the product between a two condi-

tional probability spaces and the definition of T × P given earlier. On the next chapter

we use E-CPL to model actions in Algo.

4.3 Product of Conditional Probability Space.

In this section we define the product between conditional probability measure.

The product between two probability spaces is well understood, see e.g. Halmos

(1950). However, the same discussion is more complicated for conditional probability

spaces. A more laborious definition of the product seems to be needed.

The literature in probability theory has a definition that serves them well. Let

(X,Σ1, T ) and (Y,Σ2, P ) be conditional probability spaces. Let Σ1�Σ2 be the smallest

σ-algebra containing {A1 ×A2 : A1 ∈ Σ1, A2 ∈ Σ2}.
Following the definition in Rao (2010), the space resulted of the product between

both spaces (X and Y ) has its conditional probability measure T �P as a function with

domain and range seen below.

T � P : (Σ1 � Σ2)× (Σ1 × Σ2)→ [0, 1]. (†)
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However, the second component of the domain (Σ1×Σ2) is a problem for conditional

probability logic. It is not difficult to imagine a conditional probability model M, an

event model E and a formula φ such that JφKME is not an element of Σ1×Σ2.
1 The problem

arrises when trying to define the satisfaction for a formula of the form Lr(>||φ), i.e.,

what should be ME, (w, e) � Lr(>||φ) if JφK is not an element in the domain of T × P?

The problem is how to define a product that makes sense for sets (that correspond

to the set of states that satisfies a formula) that are outside this particular domain

(Σ1 × Σ2).

Let (W,Σ1, T ) and (E,Σ2, P ) be conditional probability spaces. Denote by Σ the set

(Σ1 � Σ2), Let A = A1 × A2 and B = B1 × B2 with A1, B1 ∈ Σ1 and A2, B2 ∈ Σ2 and

define

T � P (A,B) = T (A1, B1, ) · P (A2, B2).

As shown by Rao (2010), if B 6= ∅, then this equation defines a conditional prob-

ability measure over (Σ1 � Σ2) × (Σ1 × Σ2). It is not difficult to see that in the case

B = ∅ this definition also results in a conditional probability measure. With this idea

in mind we know that for our definition of product T × P (A,B) it should hold that if

A and B are rectangles, then we should haveT × P (A,B) = T � P (A,B). Next we will

see how to extend the function T × P when B is an union of disjoint rectangles.

Let B ⊂ W × E be of the form B =
⋃
i≤nBi where for each i ≤ n we have Bi ∈

Σ1 × Σ2, and Bi ∩ Bj = ∅ if i 6= j, i.e., B is a finite union of disjoint rectangles.

Choose the collection of Bi’s such that for each i and j either π2(Bi) = π2(Bj) or

π2(Bi) ∩ π2(Bj) = ∅. Define the following subset of B:

B̄ =
⋃
i∈I

Bk,

where I = {i : P (π2(Bi), π2(B)) > 0}. Note that I is always non-empty.

The following lemma is a technical result.

Lemma 4.20. If A,B ∈ Σ are such that A =
⋃
i≤nAi and B =

⋃
j≤mBj with Ai ⊆ Bi

for each i ≤ n, then P (A,B) > 0 implies Ā ⊂ B̄.

1Let Ω = W × E where W = {w1, w2} and E = {e1, e2}. Let a valuation v be such that v(p) =

{(w1, e1), (w1, e2), (w2, e2)}. Note that there are no sets A and B such that A ⊂ W , B ⊂ E and

JpK = A×B.



58 CHAPTER 4. DYNAMICS

E

W

B1

B2

B3

Figure 4.4: In this example B = B1 ∪B2 ∪B3. The set B̄ is given by B1 ∪B2.

Proof. Let x be an element of Ā, then there is a k such that x ∈ Ak. We know that

P (Ai, A) · P (A,B) = P (Ai, B), and since P (A,B) > 0 we have that Ai ⊆ B̄, hence

x ∈ B̄.

To help simplify notation define λ as the following function:

λ(Bi, B̄) = T (π1(Bi), π1(B̄)) · P (π2(Bi), π2(B̄)).

Define the product T ⊗P (Bi, B) to be the average of the probabilities among all the

Bk given B̄ given by the following equation:

T ⊗ P (Bi, B) =
λ(Bi, B̄)∑
k≤n λ(Bk, B̄)

=
T (π1(Bi), π1(B̄)) · P (π2(Bi), π2(B̄))∑
k≤n T (π1(Bk), π1(B̄)) · P (π2(Bk), π2(B̄))

(4.1)

See Figure 4.4 for a representation of B̄. Since B̄ is not necessary a rectangle we denote

this product by T ⊗ P to avoid any confusion with the product T � P given in Rao

(2010) that is defined only over rectangles.

Lemma 4.21. For any B = B1 ×B2 ∈ Σ1 × Σ2 it holds that T ⊗ P (B,B) = 1.

Proof. For B as in the hypothesis T ⊗P (B,B) is equal to
λ(B, B̄)

λ(B, B̄)
. The only remaining

step is to prove that λ(B, B̄) 6= 0.
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Remember that B̄ ⊆ B and consequently πi(B̄) ⊆ πi(B). Therefore T (π1(B), π1(B̄)) =

P (π2(B), π2(B̄)) = 1 and we can conclude that T ⊗ P (B,B) = 1.

Denote by Σ = (Σ1 � Σ2) and by Σ] = {B : B =
⋃
i≤nBi, Bi ∈ Σ1 × Σ2, and

Bi ∩Bj = ∅ if i 6= j}. Each element of Σ] is equal to a finite union of pairwise disjoint

rectangles. Let A ∈ Σ1 × Σ2 and B ∈ Σ], then define T × P : Σ× Σ∪ → [0, 1] as:

T × P (A,B) =
∑
i≤n

(T � P )(A,Bi) · (T ⊗ P )(Bi, B) (4.2)

The intuition behind this equation is the fact that if B1 and B2 are disjoint, then for

any conditional probability function µ the probability of A given B1 ∪B2 is given by

µ(A,B1 ∪B1) = µ(A,B1)µ(B1, B1 ∪B2) + µ(A,B2)µ(B2, B1 ∪B1).

This equation relates that the probability of a set given a union of two disjoint sets is

the sum of each probability given the sets separated and weighted by its own relative

probabilities.

Substituting Equation 4.1 in Equation 4.2 we have the following:

T × P (A,B) =

∑
i≤n T � P (A,Bi) · T (π1(Bi), π1(B̄)) · P (π2(Bi), π2(B̄))∑

k≤n T (π1(Bk), π1(B̄)) · P (π2(Bk), π2(B̄))

To simplify our notation from now on we write Ai for πi(A).

Remember that T � P (A,Bi) = T (A1, B1
i ) · P (A2, B2

i ). Substituting that on the

previous equation we have:

T × P (A,B) =

∑
i≤n T (A1, B1

i ) · P (A2, B2
i ) · T (B1

i , B̄
1) · P (B2

i , B̄
2)∑

k≤n T (B1
k, B̄

1) · P (B2
k, B̄

2)
(4.3)

Figure 4.5 illustrates a possible relation between A,B and B∗.

We summarize the previous discussion with the following theorem. As the objective of

this text is for event models after we state and prove the existence of product conditional

probabilities for the case where the second coordinate is finite.

Theorem 4.22. Let (W,Σ1, T ) and (E,Σ2, P ) be conditional probability spaces. Let Σ

be the smallest σ-algebra in W × E containing Σ1 × Σ2. Let Σ] be the set of all finite
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E
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B1

B2
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B4

Figure 4.5: In this example B̄ = B1 ∪ B3. The probability T × P (A,B) is equal to∑
i≤4 T � P (A,Bi) · T ⊗ P (Bi, B).

disjoint union of elements of Σ1 × Σ2, i.e., Σ] = {B : B =
⋃
i≤nBi, Bi ∈ Σ1 × Σ2, and

Bi ∩Bj = ∅ if i 6= j}.
Then there is a conditional probabilistic measure, which we denote by T × P , on

the product space (W × E,Σ,Σ]) such that if A1, B1 ∈ Σ1 and A2, B2 ∈ Σ2, then the

following holds:

T × P (A1 ×A2, B1 ×B2) = T (A1, B1) · P (A2, B2).

Moreover, for any A ∈ Σ and B ∈ Σ] the following equation defines one possible

T × P :

T × P (A,B) =

∑
i≤n T (A1, B1

i ) · P (A2, B2
i ) · T (B1

i , B̄
1) · P (B2

i , B̄
2)∑

k≤n T (B1
k, B̄

1) · P (B2
k, B̄

2)
(4.4)

Where πi(A) = Ai and B̄ =
⋃
i∈I Bk with I = {i : P (π2(Bi), π2(B)) > 0}.

Proof. First let A,B be elements in Σ such that there are Ai, Bi in Σi for i ∈ {1, 2} and

A = A1 ×A2 and B = B1 ×B2. A and B are rectangles.

Let’s show that T × P (A,B) = T (A1, B1) · P (A2, B2).

By Equation 4.2 we have T ×P (A,B) = T �P (A,B) ·T ⊗P (B,B). By Lemma 4.21

we know that T ×P (A,B) = T �P (A,B). And as was already shown by Rao (2010), if
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B 6= ∅ it holds that T � P (A,B) = T (A1, B1) · P (A2, B2). With that we can easily see

that T × P (A,B) = T (A1, B1) · P (A2, B2).

Now let’s show that T×P as given by Equation 4.4 is indeed a conditional probability

measure.

(i) If A ∈ Σ], then T × P (A,A) = 1.

This is straightforward as seen in the following:

T × P (A,A) =

∑
i≤n T � P (A,A) · λ(Ai, Ā)∑

i≤n λ(Ai, Ā)
=

∑
i≤n λ(Ai, Ā)∑
i≤n λ(Ai, Ā)

= 1

(ii) T × P (·, B) is σ-additive.

Let (Aj)j∈J be a countable pairwise disjoint sequence of elements of Σ, then:

T × P (
⋃
j∈J

Aj , B) =
∑
i≤n

T � P (
⋃
j∈J

Aj , Bi) · T ⊗ P (Bi, B) =

=
∑
i≤n

(
∞∑
j=0

T � P (Aj , Bi)) · T ⊗ P (Bi, B) =
∞∑
j=0

(
∑
i≤n

T � P (Aj , Bi) · T ⊗ P (Bi, B)) =

=
∞∑
j=0

T × P (Aj , B).

(iii) T × P (A ∩B,C) = T × P (A,B ∩ C) · T × P (B,C).

We use an equivalent definition of conditional probability measure given by Rao

(2010). For any A ∈ Σ and B,C ∈ Σ] we have to prove that:

(1) T × P (A ∩B,B) = T × P (A,B); and

(2) if A ⊆ B ⊆ C, then T × P (A,B) · T × P (B,C) = T × P (A,C).

Property (1) holds because of the properties of T � P . We now prove property (2).

Let A ∈ Σ and B,C ∈ Σ] be such that A ⊆ B ⊆ C. First assume that A,B and C

are non-empty.

Let (Bi)i≤n and (Cj)j≤m be sequences of pairwise disjoint elements of Σ1 ×Σ2 such

that B =
⋃
i≤nBi and C =

⋃
j≤mCj . Moreover choose the sequence (Cj)j≤m such that

n ≤ m, Cj = Bj if j ≤ n and Cj ∩B = ∅ if n < j ≤ m. It is always possible to construct

such sequence of Ci’s.

Using the fact that T and P are both conditional probability measures we can write

T × P (A,B) · T × P (B,C) as follows:

∑
i≤n T (A1 ∩B1

i , B̄
1) · P (A2 ∩B2

i , B̄
2)∑

k≤n T (B1
k, B̄

1) · P (B2
k, B̄

2)
·
∑

i≤m T (B1 ∩ C1
i , C̄

1) · P (B2 ∩ C2
i , C̄

2)∑
k≤m T (C1

k , C̄
1) · P (C2

k , C̄
2)

(4.5)
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First note that in the case that T (B̄1, C̄1) · P (B̄2, C̄2) = 0 then one of the factors is

also zero. If T (B̄1, C̄1) = 0 we must have that T (B1 ∩ C1
i , C̄

1) = 0 for all i ≤ m, hence

T×P (B,C) = 0. On the other hand, since A ⊆ B, it also must hold that T (Ā1, C̄1) = 0,

therefore the equation T × P (A,B) · T × P (B,C) = T × P (A,C) holds. The argument

is similar in the case that P (B̄2, C̄2) = 0.

In the case that T (B̄1, C̄1)·P (B̄2, C̄2) 6= 0 we can multiply the left factor in Equation

4.5 by
T (B̄1, C̄1) · P (B̄2, C̄2)

T (B̄1, C̄1) · P (B̄2, C̄2)

This together with the facts that T and P are conditional probability measures and

since B̄ ⊆ C̄ (by Lemma 4.20) result in the following:

∑
i≤n T (A1 ∩B1

i , C̄
1) · P (A2 ∩B2

i , C̄
2)∑

k≤n T (B1
k ∩ B̄1, C̄1) · P (B2

k ∩ B̄2, C̄2)
·
∑

i≤m T (B1 ∩ C1
i , C̄

1) · P (B2 ∩ C2
i , C̄

2)∑
k≤m T (C1

k , C̄
1) · P (C2

k , C̄
2)

Because of the way we chose each Ci we have that T (B1∩C1
i , C̄

1)·P (B2∩C2
i , C̄

2) = 0

for all i > n and for each i ≤ n it holds that T (B1 ∩ C1
i , C̄

1) · P (B2 ∩ C2
i , C̄

2) =

T (B1
i , C̄

1) · P (B2
i , C̄

2). So, we have the last equation equal to the following:∑
i≤n T (A1 ∩B1

i , C̄
1) · P (A2 ∩B2

i , C̄
2)∑

k≤n T (B1
k ∩ B̄1, C̄1) · P (B2

k ∩ B̄2, C̄2)
·
∑

i≤n T (B1
i , C̄

1) · P (B2
i , C̄

2)∑
k≤m T (C1

k , C̄
1) · P (C2

k , C̄
2)

For each i such that Bi∩ B̄ 6= Bi, then P (Bk, C̄) = 0 and the whole term T (B1
i , C̄

1) ·
P (B2

i , C̄
2) is equal to zero, hence we can cancel out the denominator from the left factor

with the numerator from the right fact in last equation, resulting in:

T × P (A,B) · T × P (B,C) =

∑
i≤n T (A1 ∩B1

i , C̄
1) · P (A2 ∩B2

i , C̄
2)∑

k≤m T (C1
k , C̄

1) · P (C2
k , C̄

2)

To conclude that this equation is equal to T × P (A,C) note that, since A ⊆ B it

holds that ∑
n<i≤m

T (A1 ∩ C1
i , C̄

1) · P (A2 ∩ C2
i , C̄

2) = 0.

Lemma 4.23. The definition of T × P is well-defined, i.e., it is independent of the

choice of rectangles that cover a set.

Corollary 4.24. With the same hypothesis as before, if (E,Σ2) is also finite discrete

we can calculate T × P as follows:
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Since E is finite we can rewrite the definition of T × P as follows.

T × P (A,B) =

∑
x∈E T (Ax, B̄x) · T (B̄x, B̄

1) · P ({x}, B̄2)∑
x∈E T (B̄x, B̄1) · P ({x}, B̄2)
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Chapter 5

Algo

Repara bem no que não digo.

Paulo Leminski

Listen carefully to what I ain’t saying.

Paulo Leminski

5.1 Introduction

The computer scientists are often interested in automated players. For instance,

Billings et al. (2002) discussed an automated player for poker. On the other hand, van

Ditmarsch (2001) with a non-probabilistic language modeled a game called Cluedo in

terms of the players’ knowledge states and how they change after public announcements

are made and private information is shared.

Algo lacks formal studies so in this chapter, as an application of conditional proba-

bilistic language we express strategies of card games using Algo as example. The game

allows up to 4 players; however we will restrict our analysis for the 2 player case.

5.2 Defining the game formally

Let N be the set of natural numbers less than n, i.e., N = {m ∈ N : m < n}. Let

I be a set of symbols for color. On the standard Algo I = {b, w} where b and w stand

65
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for black and white. A card is an element of C = N × I. If c is a card we denote its

value and color by value(c) and color(c). Define the order < over C as the lexicographic

order, i.e., vc < v′c′ iff v < v′ or v = v′ and c < c′, where b < w.

Definition 5.1. An Algo state s is a tuple s = 〈h1, h2, f〉 where h1 and h2 are the

sequences of cards held by player 1 and 2. We denote by h1(i) and h2(j) the i-th and

j-th card in the sequences. We require h1(i) < h1(j) if i < j; furthermore we ask for

h1(i) 6= h2(j) for any i, j. If H = {c : c = h1(i) or c = h2(j) for some i or j} is the set

of cards in the hands of the players, let f be a function f : H → {0, 1} which says if a

card is face up or down (f(c) = 0 if c is face down and f(c) = 1 if c is face up).

We call universe the set U of all Algo states. If s = 〈h1, h2, f〉 is an Algo state we

denote by handi(s) the sequence hi. Often we will denote the sequence h1 and h2 as

sets; we believe no confusion will rise.

We assume a random function pile which receives an Algo state and returns a card

that neither player holds, if any. Formally:

pile(s) ∈ C \ (hand1(s) ∪ hand2(s) if C \ (hand1(s) ∪ hand2(s) 6= ∅,

pile(s) = ∅ otherwise.

From now on we shall omit the index n, but the reader should keep in mind that all

the definitions should change if the number of cards in the game were to change.

Definition 5.2 (Similar hands:↔i). We say that two Algo states s = 〈h1, h2, f〉 and

s′ = 〈h′1, h′2, f ′〉 are similar for player i if for j 6= i we have that:

1. hi = h′i and f(hi(k)) = f ′(hi(k)) for all k ≤ |hi|
2. hj and h′j have the same size;

3. for every k ≤ |hj | we have color(hj(k)) = color(h′j(k));

4. for every k ≤ |hj | we have f(hj(k)) = f ′(h′j(k)) and if f(hj(k)) = 1, then

hj(k) = h′j(k).

Let X be a set and < a linear order over X. Let Y ⊂ X. We denote by sort(Y ) the

sequence (y1, y2, ...) such that Y = {y1, y2, ...} and yi < yj if i < j.

Definition 5.3. A draw D1 is a relation over U defined as follows: for s = 〈h1, h2, f〉
and s′ = 〈h′1, h′2, f ′〉 elements of U , sD1s

′ iff h2 = h2, h′1 = sort(pile(s) ∪ h1), and

f ′(x) = f(c) if c 6= pile(s), f ′(pile(s)) = 0. Similarly we define D2. We denote by D the

sequence (D1, D2).
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An epistemic structure for Algo is a tuple M = 〈W, (↔i)i≤2, s〉 where W ⊂ U , ↔i is

defined as follows: For every s, s′ ∈ W we say that s ↔i s
′ if hi = h′i and s and s′ are

similar for player i; s is an Algo state.

Remember that if R is a relation, R∗ denotes the reflexive transitive closure of R.

An initial epistemic structure is a tuple M = 〈W0, (↔i)i≤2, s0〉, where s0 is an Algo

state with the constraints |handi(s0)| = 4, f(x) = 0 for every x a card. W0 = {s ∈ U :

s0(↔1 ∪ ↔2)∗s}.

5.3 Language

In this section we define a language for Algo and express the strategies in this formal

language. We start showing the language, then we build the models to interpret the

language of Algo.

We restate our set of propositions as mentioned in the introduction. Let the set of

propositions be Pc = {vcpi : v < n, c ∈ {B,W}, p is a player, i ≤ n}, v stands for

the value of the card, c stands for the color, p stands for the player holding the color

and i stands for the position in the hand of the player. Fix also the following set of

propositions Pf = {Upi , Dpi : i ≤ n, p is a player}, where Upi stands for ‘card in position

i of player p is face up’ and Dpi stands for ‘card in position i of player p is face down.’

Note that (¬Upi) ∧ (¬Dpi) is not a contradiction, it implies that i exceed the size of

player p’s hand. The set of Propositions is P = Pc ∪ Pf .

The set of players of Algo is denoted by A and we call an element a of A a player.

We assume that A has only two elements and sometimes refers as player 1 and player 2

each of the elements of A.

The language for Algo is given by:

φ
.
= p | ¬φ | φ ∧ φ | Lar(φ||φ) | 2φ | α

α
.
= [D, d]φ | [F, f ]φ | [!g]φ | [!!g]φ

Where p ∈ P and a ∈ A. D and F are the event-assignment for drawing a card

and for turning a card face up, which are defined below. Finally, g is a guess and the

operators [!g] and [!!g] are also defined below. α denotes the action part of the language,

and is the focus of this section.

Figure 5.1 presents the axioms for Algon. Axiom (Al1) says that a card cannot be

face up and face down at the same time. Axiom (Al2) says that a card cannot be in
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· (Al1) ¬(Dai ∧ Uai), for all i ≤ n and all players a

· (Al2) ¬(vcai ∧ vcbj) if a 6= b or i 6= j

· (Al3) ¬(vcai ∧ v′c′aj) if i ≤ j and vc > v′c′

· (Al4) (
∨
v,c vcai)↔ (Dai ∨ Uai), for all i ≤ n

Figure 5.1: Axioms of Algon

two positions or with two different players at the same time. Axiom (Al3) says that the

hand should be ordered. Finally, axioms (Al4) states the idea that if there is a card in

position i then it is face up or face down.

Notation To help us with the notation we make the following abbreviation for any

value v ≤ n and color c ∈ {B,W}:
· vcp .

=
∨
j≤n vcpj

· vc .=
∨
i∈Player vci

In this way a formula vcp stands for the fact that the card vc is in player p’s hand.

And the formula vc stands for the fact that the card vc is in the hand of one of the

players.

Static Interpretation

Let M = 〈W, (↔a)a∈A, s0〉 be an epistemic structure for Algo, we define a CP-model

for Algo as Mcp = 〈W,Σ, (Ta)a∈A, v〉 where Σ = P(W ). Let s̄a = {t ∈W : s↔a t}, then

we define Ta :

Ta(s,A,B) =


|A∩B∩s̄a|
|B∩s̄a| if B ∩ s̄a 6= ∅
|A∩B|
|B| if B ∩ s̄a = ∅ and B 6= ∅

1 otherwise.

(5.1)

The valuation v is defined as:

v(p) =


{s ∈W : handp(s)(n) = vc} if p = vcpn
{s ∈W : f(handp(s)(i)) = 1} if p = Upi
{s ∈W : f(handp(s)(i)) = 0} if p = Dpi

Ta(s,A,B) is the probability that agent a with the information in state s assigns to

the fact that the actual state (possibly different than s) is in A given it is in set B.
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The idea behind the second clause of the definition of Ta is that if the information in

the state is conflicted with the new information the old information should be discarded.

The choice of Ta is not unique. One could make the case for different choices with

different policies for the empty set caused by the contradiction.

Let us prove that Ta as defined is a Conditional Markov Kernel.

Theorem 5.4. The function Ta as defined above is a conditional Markov kernel.

Proof. Fix s ∈ W and A,B,C ⊆ W . For simplicity abbreviate Ta(s,A,B) as T (A,B)

and s̄a by s.

(Condition 1) T (A,B) ≥ 0; T (B,B) = 1.

To prove that T (A,B) ≥ 0 it is enough to note that |A∩B∩s||B∩s| ,
|A∩s|
|s| are always greater

or equal to zero.

To prove that T (B,B) = 1 note that |B∩s||B∩s| = |B|
|B| = 1.

(Condition 2) For any B 6= ∅ holds that T (·, B) is σ-additive.

Since W is finite it is enough to prove additivity. Let A1 and A2 be disjoint subsets

of W . If B ∩ s 6= ∅ we have that

T (A1 ∪A2, B) =
|(A1 ∪A2) ∩ (B ∩ s)|

|B ∩ s|
=
|(A1 ∩B ∩ s) ∪ (A2 ∩B ∩ s)|

|B ∩ s|
,

and since A1 and A2 are disjoint it holds that the right-hand side of the last equality is

equal to the led-hand side of the next equality:

|(A1 ∩B ∩ s)|
|B ∩ s|

+
|A2 ∩B ∩ s|
|B ∩ s|

= T (A1, B) + T (A2, B)

If B ∩ s = ∅ the reasoning is similar.

(Condition 3) T (A ∩B,C) = T (A,B ∩ C) · T (B,C).

If C ∩ s and B ∩ C ∩ s are nonempty the conclusion is straightforward.

If C ∩ s 6= ∅ and B ∩ C ∩ s = ∅, then T (A ∩ B,C) = T (B,C) = 0. Therefore

T (A ∩B,C) = T (A,B ∩ C) · T (B,C).

If C ∩ s = ∅, then B ∩ C ∩ s = ∅, and the conclusion is straightforward.

If C = ∅, then B ∩ C = ∅ and T (A ∩ B,C) = T (A,B ∩ C) = T (B,C) = 1, hence

the conclusion.

Therefore Ta is a conditional Markov kernel.

We turn now to the definition of truth.
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Definition 5.5. We define satisfaction as follows:

Mcp, s � (p) iff s ∈ v(p);

Mcp, s � ¬φ iff M, s 6� φ;

Mcp, s � φ ∧ ψ iff M, s � φ and M, s � ψ;

Mcp, s � Lar(φ||ψ) iff Ta(s, JφK, JψK) ≥ r

We will mostly denote a card vc by c and make its value explicit only when necessary.

Next we will define the event assignment models for the actions in Algo.

5.3.1 Drawing a card

Drawing a card is an event that changes the beliefs of the players and the state of the

game, hence we define an event assignment model for this action.

Definition 5.6. Let’s define the event model for player a drawing a card. Denote by b

his/her opponent and let Da = 〈D, pre, (Pi)i∈A, τ〉, where:

D = {dci : c ∈ C, i ≤ n},
pre(dci) = ¬(ca ∨ cb) ∧

∧
j<i,x>c

¬xaj ∧
∧

j≥i,c>x
¬xaj ,

Pa(d, d
′) =

{
1 if d = d′

0 if otherwise.

Pb(d, d
′) =

{
0 if d 6∼b d′

1/|d̄b| if otherwise.

where dvci ∼b dv′c′k iff it holds that c = c′, i = k and (a = b implies v = v′). Also,

d̄b = {d′ : d ∼b d′}.
τ(dci) = {cai := >} ∪ {xaj+1 := xaj : x is a card with x 6= c and i < j ≤ |handa|} ∪

{xai := ⊥ : x 6= c} ∪ {Uaj+1 := Uaj , Daj+1 := Daj : j ≥ i}.

The precondition of drawing a card c that is placed in position i (pre(dci)) says that

neither player holds the card; that any card to the left of the card is smaller and any

card to the right is greater than the card c.

The assignment τ(dci) says that the card c is face down and in position i in the

hand of player a. Also, that any card to the right moves one position to the right (card

in position i becomes the card in position i + 1, for instance). Remember that in the

definition of τ(dci) we denote by xai the card x ∈ C in position j in the hand of player

a.
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The previous definition is the general case of Example 4.16. We define the meaning

of our connective [Da, d] through event-assignment model, i.e.,

Mcp, s � [Da, d]φ iff Mcp, s � pred =⇒ Mcp ×Da, (s, d) � φ

Let’s illustrate with an example:

Example 5.7. If player 1 draws the card 2B in position 2, player 2 considers it impos-

sible for it to be a 3W . With the formal language we have [D1, d2B2 ]M2
0 (3W12). Let’s

prove that this formula holds in any model.

Let M be an epistemic structure for Algo and Mcp its CP-model. For any Algo state

s, note the following:

Mcp, s � [D1, d2B2 ]M2
0 (3W12) which is equivalent to

Mcp, s � pre(d2B2) implies Mcp ×D, (s, d2B2) �M2
0 (3W12) if and only if

Mcp, s � pre(d2B2) implies T ×2 P (s, d2B2) = 0.

The last sentence is true when s does not satisfy the preconditions of d2B2 or, in the

case it does and the product is equal to zero. Note that for any d ∈ {diWj ∈ D : i < n, j ≤
|hand1|} we have P2(d2B2 , d) = 0 because d2B2 6∼2 d. On the other hand if d ∈ {diBj ∈
D : i < n, j ≤ |handa|} we have that J3W12Kd = {t : Mcp ×D1, (t, d) � 3W12} = ∅, and

since Ωd 6= ∅, T2(s, J3W12Kd,Ωd) = 0 for any d. Hence, T ×2 P (s, d2B2 , J3W12K, J>K) =

∑
x∈J>K T2(w, J3W12Kx, J>Kx) · T2(w, J>Kx, π1(J>K)) · P2(d2B2 , {x})∑

x∈E T2(w, J>Kx, π1(J>K)) · P2(d2B2 , {x})
= 0,

holds.

Therefore the formula [D1, d2B2 ]M2
0 (3W12) is always true.

5.3.2 Turning a Card Face Up

From a theoretical point of view turning a card face up should be equivalent to an

announcement of the value of the card. However, the action changes the state of the

world and we will follow this idea. Turning a card face up is given by an assignment-

precondition event which we define as follows:

Definition 5.8. The event model for turning a card face up is the tuple

F = 〈F, pref , P, τf 〉 where:

F = {fcai : c ∈ C, a ∈ A, i ≤ n}
pre(fai) = cai ∧Dai

τ(fai) = [Dai := Uai ]
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Different to the connective for drawing a card we define the meaning of the connective

[f ] through assignment-precondition connective:

Mcp, s � [f ]φ iff Mcp, s � pre(f) =⇒ (Mcp)f , s � φ

5.3.3 Guesses

The announcement of a guess is one of the biggest challenges in modeling the game

Algo. A definitive modeling and effective strategy is beyond the scope of this thesis, as

it relies on game theoretic concepts. In the following we present some interesting points

and issues when treating the attack action of a game.

First, we assume that the strategy applied by the attacker on a guess is known by

the defender (in fact it is common knowledge). This makes the announcement of a guess

a public announcement of a formula.

Naive Guess

After a guess the defender eliminates the possibility that the attacker holds the value

of the guessed card.

Let g be the guess Pa
cdj−−→ Pd, we define the connective [!g] to be the announcement

of guess g. Let ψg
.
= ¬(

∨
i≤|handa| cai). We interpret [!g] as follows:

Mcp, s � [!g]φ iff Mcp, s � ψg =⇒ (Mcp)ψg , s � φ

Remember that (Mcp)ψg is the updated model after the public announcement of ψg,

the intended meaning of this formula is ‘player a (the attacker) does not hold card c.’

Since the operator [!g] is interpreted as the announcement of ψg we could have defined

the operator [!g] as [!φg], we choose to make clear the idea of announcing a guess g.

Essentially, the announcement of a guess under the assumption that the player is

naive is rephrased with the public announcement of the player not holding the guessed

card.

Clever Guess

When a player guesses a card which he/she believes to be the most likely (i.e., most

probable) we say that he/she is employing the clever strategy. As we saw in the previous
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paragraph, the essential part of defining a strategy (that is common knowledge among the

players) is to find a formula in the language to express the corresponding announcement.

Since maximality is a concept outside of our language, we will define a formula to express

maximality with finite accuracy.

Fix an epistemic structure M for Algo and let Mcp be its CP-model. Note that

in the state s a card c is the most likely (i.e., most probable) for player a to be in

position i on the hand of player d iff for all r ∈ [0, 1] and for all cards x, it holds that

Mcp, s � Larxdi → Larcdi.
1

Hence, a guess g given by Pa
cdj−−→ Pd is (one of) the most likely guess to be correct

for player a iff for all r ∈ [0, 1], for all i ≤ n and for all cards x holds that Mcp, s �

Larxdi → Larcdj .

A limitation of the language should be clear now. To express maximality one needs

an infinite disjunction of the form
∧
r,i,x L

a
rxdi → Larcdj , which is clearly outside our

starting language. However, if the set of indexes r is finite we can rewrite the formula

with finite conjunctions, instead.

Let Ik = { jk : 0 ≤ j ≤ k} and define the following formula:

ψg+
.
=

∧
r∈Ik,i≤n,x∈Card

(Larxdi → Larcdj)

Although the formula ψg+ is not equivalent to maximality, the bigger the accuracy

of Ik (i.e., the larger the k) the closer it gets. Note that it is enough to bound k by

|{s′ : s′ ↔a s}|, since this set is bounded by some constant in function of the number of

cards.

In later states of the game k is often small (close to two or three). One could also

fix a k0 and have the idea of good enough, instead.

We define the connective [!!g] to be the announcement of guess g (for the clever

guess). We interpret [!!g] as follows:

Mcp, s � [!!g]φ iff Mcp, s � ψg+ =⇒ (Mcp)ψg+ , s � φ

1This holds because of the following: If for all a, y ≥ a implies x ≥ a, then x ≥ y.
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5.4 Player Types

To finish this chapter we define the notion of player types using formulas from the

language of Algo defined in the previous section.

A player in Algo has three moments to perform an action/make a choice:

1. The player must choose a guess to attack;

2. If the guess is correct he/she must decide whether to keep attacking or stop; and

3. When attacked he/she should decide how to interpret the attack.

If player 1 chooses a guess on the criteria that he does not hold the guessed card we

say that:

On the Algo state s player 1 announces any guess g = P1
c2pos−−−→ P2 that satisfies

Mcp, s � ¬U2pos ∧ ¬c1;

remember that the proposition ¬U2pos says that the card in position pos in the hand of

player 2 is face down. The formula ¬c1 stands for ‘player 1 does not have the card c’

If player 1 chooses to keep attacking only if his probability of guessing is greater than

k0 we say that:

Player 1 keeps attacking in the state s if g = P1
c2pos−−−→ P2 is his/her next guess and

holds

Mcp, s � L
1
k0
c2pos,

where k0 is the maximum risk Player 1 is willing to take, if the chance of guessing

correctly is lower than k0 he will stop guessing and pass his turn.

Finally, if guess g was to be announced, the formula ψg has two roles. First the

model should be updated accordingly. This means that if M is the old model, the new

model has as support JψgKM. This update happens before the confirmation of the guess

from the opponent or before any card turns face up.

These three formulas (¬U2pos ∧ ¬c1, L1
k0
c2pos, ψg) fully describe how player 1 should

play the game. We call that the type of player 1.

Definition 5.9. The player type is given by a tuple (f1, f2, f3) where each fi is a formula

in the language for Algo.

With this notion in hands we can ask which type of player performs better against

which other types. A fully analysis is well beyond the scope of this thesis and we leave

for further research the study between player types.
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5.5 A note on implementing Algo

On trying to study different strategies for Algo we propose a simple implementation in

Haskell (a functional programming language).

Despite the language proposed in this chapter we simplify the Haskell program using

static interpretation to calculate the probability distribution over states. The idea is

to calculate the function Ta from Equation 5.1 in each moment of the game, instead

calculating it at the initial state and update it as the game changes. We conjecture that

both implementations - the static in this paper and a theoretical dynamic implementation

as defined in this chapter - are equivalent.

We explore the implementation with some details in the appendix, and also present

the whole modules in Haskell.
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Chapter 6

Final Words

Gosto dos epitáfios; eles são, entre a

gente civilizada, uma expressão

daquele pio e secreto egóısmo que

induz o homem a arrancar à morte

um farrapo ao menos da sombra que

passou.

Machado de Assis

I like epitaphs; among civilized people

they are an expression of that pious

and secret selfishness that induces

men to pull out of death a shred at

least of the shade that has passed on

Machado de Assis

I finish this thesis summing up the limitations and advantages of conditional proba-

bility logic and its extensions.

Regarding the proof of completeness, it is unknown if the conditional probability

logic as presented (system Lcb) is decidable. In Zhou (2009) the system of probability

logic was modified and the decidability was given. It is an open question if a similar

approach is possible for conditional probability logic.

Dynamics with uncertainty of events turned out to be a difficult question and more

investigation is needed. The proponents of Halpern’s language have languages for un-

certainty on events, although not for conditional probability spaces. A natural step is

77
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to combine both ideas. A Halpern style language complete with respect to conditional

probability spaces is likely to be possible.

Many problems were solved within the present work. For instance, the extension of

conditional probability logic for a quantitative degree of belief. Also, the language is

complete with respect to infinite (and not necessary discrete) spaces.

The language made possible the introduction (in an Aumann style) of dynamic oper-

ators, like PAL, complete with a set of reduction axioms. The axioms were also possible

because of the language and its expressive power.

On a general level, the conditional probability logic made it possible to express

announcements of propositions that were believed to be false (the formula M0p ∧ p ∧
[!p]Lrp with r > 0 is satisfiable). This is a contribution to the logic community itself,

since neither Aumann’s nor Halpern’s proponents did not have a way to treat this issue.

It is the first time that Algo is formally studied. We were able to express some

strategies for the game using an extension of conditional probability logic.



Appendix A

Implementing Algo in Haskell

Isso de a gente querer ser exatamente

o que a gente é, ainda vai nos levar

além.

Paulo Lemiski.

That of us to want to be exactly what

we are, still will take us beyond.

Paulo Leminski

The following appendixes present the modules for automatic players of Algo. In this

chapter we assume that the reader has some familiarity with the functional programming

language Haskell. For an introductory text of Haskell from a mathematical and logical

point of view see Doets and van Eijck (2004).

The module AlgoCards defines the types for cards, deck, players and guesses. Also it

defines the functions to shuffle the cards and the instances to show function. We spend

just a few lines explaining this module as it is straightforward.

The module AlgoEpistemic defines functions to (1) draw a card; (2) to compute

results after guesses and (3) to calculate a guess. Also in this module we define data

types for formulas of conditional probability logic and satisfaction relation for those

formulas. This last part is inspired in the technical report van Eijck (2013), which

defines in Haskell the language for probability belief and knowledge (S5) intending to

check if formulas are satisfied or not in a given (probabilistic-)model.
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AlgoGame

AlgoEpistemic AlgoCards

Figure A.1: Algo program module dependence. The arrow directs to modules which relies

on other modules.

Module AlgoGame defines the function called to play the game. Also it is where we

define the function for each player’s turn. Most of this module is also straightforward.

Module AlgoGame relies on both modules AlgoEpistemic and AlgoCards. The mod-

ule AlgoEpistemic makes use of functions from module AlgoCards. And finally, the

module AlgoCards stands by itself. Figure A.1 illustrates the dependence among the

modules.

A.1 AlgoCards

For the module AlgoCards we import the modules Data.List and Monad.Random for

some operations over lists and for the function that shuffle the cards. The block of code

is presented below.� �
module AlgoCards where

import Data . L i s t

import Control . Monad . Random� �
A card has type Card and is a pair of an integer and a color. A color has type Color

with constructors Black and White. Note that because of the cosntruction we have that

(Black < White) == True.

Next we define the types for card and hand of player. Also we define the instances

to the show function.� �
data Card = Card { value : : Int ,

c o l o r : : Color

} d e r i v i n g (Eq , Ord)
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data Color = Black | White d e r i v i n g (Eq , Ord)

in s t ance Show Color where

show Black = ”B”

show White = ”W”

in s t ance Show Card where

show ( Card a b) = show a ++ show b� �
For simplicity the type of a player is Player represented by an integer. A guess has

type Guess and is a tuple (Int, Card, Player, Player) where the first player is the

attacker and the second is the defender.

The data type AlgoState is the type of an Algo state. pile represents the pile on

the game, hand1 is the hand of player 1 and hand2 is the hand of player 2.

A model (Model) is a tuple consisting of its support (supp), the actual state (s0) and

two lists of boolean values (face) to denote which cards are turning face up or down. A

model corresponds to the epistemic structure in Chapter 5.� �
type Player = Int

data Guess = Guess { pos : : Int ,

gCard : : Card ,

at : : Player ,

de f : : Player

} d e r i v i n g (Show , Eq)

data AlgoState = AlgoState { p i l e : : [ Card ] ,

hand1 : : [ Card ] ,

hand2 : : [ Card ]

}

data Model = Model { supp : : [ AlgoState ] ,

s0 : : AlgoState ,

f a c e : : ( [ Bool ] , [ Bool ] )

}� �
The next block of code defines some basic graphic vizualization of a state of the

game. We use American Standard Code (ASCII) symbols to show only the actual state

of a given model.

When dysplaying, the cards on the top and bottom represents the hand of player 2

and player 1. The letters ‘U’ and ‘D’ on top of each card let us know if a card is turning
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The next card on the pile is:

___

| |\

| W ||

|___||

\___|

*Player2:

_D_ _D_ _U_ _U_ _U_ _U_ _D_

| | | | | | | | | | | | | |

| 0W| | 3B| | 3W| | 4B| | 5B| | 6B| | 7W|

|___| |___| |___| |___| |___| |___| |___|

*Player1:

_U_ _D_ _D_ _U_ _U_ _U_ _U_ _U_

| | | | | | | | | | | | | | | |

| 0B| | 1B| | 6W| | 9B| | 9W| |10B| |10W| |11W|

|___| |___| |___| |___| |___| |___| |___| |___|

Figure A.2: Vizualization of an Algo state during the game.

face up or down. The letters ‘W’ and ‘B’ stands for colors‘white’ and ‘black.’ Figure

A.2 illustrate a situation.

� �
i n s t ance Show Model where

show m = ”The next card on the p i l e i s :”++”\n”++

( c ( showFirstOnPile ( s0 m) ) ) ++”\n”++

” Player2 Hand : ” ++”\n”++

( asc i iHand2 ( hand2$ s0 m) ( f a c e m) ) ++

”\n”++”\n”++

” Player1 Hand:”++”\n”++

( asc i iHand1 ( hand1 $ s0 m) ( f a c e m) )� �� �
showFirstOnPile s = i f n u l l $ p i l e s

then ”X”

e l s e show $ c o l o r $ head $ p i l e s

−− c Shows the c o l o r o f the card on top o f the p i l e .

c : : [ Char ] −> [ Char ]

c v = ” ” ++ ”\n”
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++”| |\\”++”\n”

++”|”++ a d j u s t S i z e v ++”||”++”\n”

++”| ||”++”\n”

++” \\ | ”

asc i iHand1 h f = ( l i n e 1 ( f s t f ) )++”\n”

++ ( l i n e 2 h)++”\n”

++ ( l i n e 3 h)++”\n”++ ( l i n e 4 h)

asc i iHand2 h f = ( l i n e 1 ( snd f ) )++”\n”

++ ( l i n e 2 h)++”\n”

++ ( l i n e 3 h)++”\n”++ ( l i n e 4 h)� �� �
l i n e 1 [ ] =””

l i n e 1 ( f : f s ) = ” ”++f a c e++” ” ++ ” ” ++ l i n e 1 f s

where f a c e = i f f then ”U” e l s e ”D”

l i n e 2 [ ] = ””

l i n e 2 (h : hs ) = ” | |” ++ ” ”++ l i n e 2 hs

l i n e 3 [ ] = ””

l i n e 3 (h : hs ) = ”|”++ ( a d j u s t S i z e $ show h) ++”|” ++

” ”++ l i n e 3 hs

a d j u s t S i z e v = case l ength v o f

1 −> ” ”++ v ++ ” ”

2 −> ” ”++ v

−> v

l i n e 4 [ ] = ””

l i n e 4 (h : hs ) = ” | |”++ ” ” ++ l i n e 4 hs� �
The last block defines the deck of cards and the functions to shuffle the cards used

to initialize the game.� �
deckN n = [ Card a b | a <− [ 0 . . ( n−1) ] , b <− [ Black , White ] ]

deck = deckN 12

oneRandomCard : : StdGen −> [ Card ] −> ( Card , StdGen )

oneRandomCard g d =(( l a s t $ take n d) , g1 )

where (n , g1 ) = randomR (1 , l ength d) g

s h u f f l e : : StdGen −> [ Card ] −> [ Card ]

s h u f f l e g [ ] = [ ]

s h u f f l e g d = c : s h u f f l e g ’ d ’
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where ( c , g ’ ) = oneRandomCard g d

d ’ = d \\ [ c ]

shu f f l eDeck d = do

seed <− newStdGen

return $ s h u f f l e seed d

pdeck = subsequences deck

p4deck = f i l t e r (\x −> ( l ength x == 4) ) pdeck� �
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A.2 Algo Epistemic

The module AlgoEpistemic is divided in two parts. In the first part we define the

conditional probabilistic belief language with public announcement for Algo. On the

second part we define the actions of Algo.

We need the module AlgoCards for this module as declare below.� �
module AlgoEpistemic where

import AlgoCards

import Data . L i s t� �
Remember that the language for conditional probability logic is given as follows:

φ
.
= > | p | ¬φ | φ ∨ φ | φ ∧ φ | Lir(φ||φ) | [!φ]φ

where p is in the set of propositional variables.

With that in mind we define the type of formulas to be F p. Next we explicitly define

this type and its instance of show function.� �
data F p = Top | P p | Ng (F p) | V [F p ] | A [F p ] | L Int Rat iona l (F p)

(F p) | PA (F p) (F p)

in s t ance (Show a ) => Show (F a ) where

show Top = ”T”

show (P a ) = show a

show (Ng a ) = ”−”++show a

show (V a ) = ”V”++ show (map show a )

show (A a ) = ”.”++ show (map show a )

show (L i r x y ) = ”L”++(show i )++” ”++show r

++ show x ++”//”++ show y

show (PA a b) = ”[!”++show a ++”]”++show b

−− show ( Ef e a ) = ” [E,”++ show e ++”]”++ show a� �
Remember that, if C is the set of cards in Algon and A is the set of players, then the

set of propositions for the language of Algo is given by

P = Pc ∪ Pf ,

where Pc = {cpi : c ∈ C, p ∈ A,and i ≤ n} and Pf = {Upi , Dpi : i ≤ n, p is a player}.
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In our module a proposition has type Prop and it is either a card with an integer

and a player (PropC Card Int Player) or a boolean, an integer and a Player (PropF

Bool Int Player).� �
data Prop = PropC { cv : : Card ,

handPos : : Int ,

p laye r : : Player } |
PropF { faceUp : : Bool ,

fPos : : Int ,

fP laye r : : Player }

i n s t ance Show Prop where

show (PropC c i j ) = show c ++ show i ++ show j

show ( PropF b i j ) = show b ++ show i ++ show j� �
We want to decide if a formula φ is satisfied in a given epistemic structure M of a game of

Algo. Technically we should define the satisfaction relation on a conditional probabilistic

model. However, we are going to define it on an epistemic structure. The reason being,

as we defined in Chapter 5, given a epistemic structure M we can uniquely determine a

conditional probability model MCP .

Hence, given a formula A and an epistemic structure m we denote the sentence

mCP , s0 � A, where s0 is the current state of m, by:

m ‘satis‘ A.

We define the function satis on the next block.� �
s a t i s m Top = True

s a t i s m (p@(P (PropC c i j ) ) ) = i f ( l ength ( ( hand j ) s )<=i )

then Fal se e l s e

( c == ( ( hand j ) s ) ! ! i )

where hand 1 = hand1

hand 2 = hand2

s = s0 m

s a t i s m (p@(P ( PropF b i j ) ) ) = i f ( l ength ( ( hand j ) s )<=i ) then Fal se e l s e

(b == ( ( ord j ) ( f a c e m) ) ! ! i )

where ord 1 = f s t

ord 2 = snd

hand 1 = hand1

hand 2 = hand2

s = s0 m

s a t i s m (Ng a ) = not $ s a t i s m a
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s a t i s m (V a ) = or (map ( s a t i s m) a )

s a t i s m (A a ) = and (map ( s a t i s m) a )

s a t i s m (L i r a b) = ( toRat iona l ( l ength $ map (\x−> s a t i s ( po inted m x

) (A [ a , b ] ) ) univ ) / toRat iona l ( l ength $ map (\x−> s a t i s ( po inted m x

) b) univ ) ) >= r

where univ = supp m

aNb = Ng (V [ Ng a , Ng b ] )

s a t i s m (PA a b) = i f ( s a t i s m a ) then ( s a t i s m’ b) e l s e True

where m’ = Model supp ’ ( s0 m) ( f a c e m)

supp ’ = ( f i l t e r (\x−> s a t i s ( po inted m x ) b) ( supp m) )� �
If we want to verify the validity of a formula in a particular state other than the

current state we use the function satisAt. If m is a epistemic structure, s0 is its current

state and A is a formula, then the following identity holds:

(m ‘satis‘ A) == (satisAt m A s0 ).

The set JAKm of states in m that satisfies A is given by the function truthSet.� �
s a t i sAt m phi s = s a t i s ( po inted m s ) phi

po inted m s = Model ( supp m) s ( f a c e m)

truthSet phi m = f i l t e r ( s a t i s At m phi ) ( supp m)� �
A.2.1 Game Actions

We consider now the actions in the game.

First we define the data type GameState, which is a model with a list of cards

representing the history of the cards in the game, i.e., if game has type GameState, then

if it is not empty the function

head (cHist game)

has type Card and its value is the last card drawn (it is not defined if cHist game is

empty).� �
data GameState = GameState { model : : Model ,

cHi s t : : [ Card ]

}� �
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Deciding the guesses Deciding which guess to announce is the first decision a player

has to make. In what follows the function calculateGuess receives a Player and a

GameState and extracts which cards from the opponent’s hand is face up.

The function calculateTGuessAI returns a pair (guess,p) of type (Guess, Int),

where the integer p denotes the probability of the guess guess being correct if Player i

announces the guess in the given game state. Also, this part is such that for any other

possible guess the value of p is maximum.� �
ca l cu l a t eGues s i game = do

l e t f s = f a c e $ model game

l e t f i = i f ( i == 1) then snd f s e l s e f s t f s

l e t s = s0 $ model game

l e t ws = supp $ model game

l e t stateE = f i l t e r (\x −> r i s x f s ) ws

l e t unknown = f i n d I n d i c e s (\x −> x == False ) f i

( guess , p ) <− calculateTGuessAI i s stateE unknown

return ( guess , p )

calculateTGuessAI ag s stateE unknowns = do

l e t handOpp = i f ( ag == 1) then hand2 e l s e hand1

l e t a t t = ag

l e t de f = head ( [ 1 , 2 ] \ \ [ ag ] )

l e t t = [ ( ( handOpp e ) ! ! i , i ) | i <− unknowns , e <−stateE ]

l e t t s = count ing t

l e t x = maximumBy biggEr t s

l e t guess = Guess ( snd $ f s t x ) ( f s t $ f s t x ) a t t de f

l e t p = snd x / ( f r omInteg ra l $ l ength t )

re turn ( guess , p )

where biggEr = (\a−> \b−> ( snd a ) ‘ compare ‘ ( snd b) )

count ing [ ] = [ ]

count ing ( x : xs ) = [ ( x , i n s tanc x ( x : xs ) ) ] ++ count ing ( d e l e t e x xs )

in s t anc x [ ] = 0

in s tanc x ( y : ys )

| x==y = 1+( in s tanc x ys )

| otherwi s e = in s tanc x ys� �
Deciding to keep attacking Another moment in which the player has to make a

choice is when he/she guesses correctly. In that case the choice is to keep attacking or

pass the turn. The function decideToKeepAttack receives a GameState a Guess and a
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rational number. The idea is to allow any desirable property to be implemented in order

to test different types of players.

As the code is presented player 1 keeps attacking if it holds that

mg, s0 � L1
0.3(cdi),

where mg is the model given by g of type GameState and s0 is the actual state. Player

2 keeps attacking if p ≥ 0.3.

As we saw in the function calculateTGuessAI, the rational p is calculate in a way

that both functions are equivalent. In other words, the strategy of player 1 for the

function decideToKeepAttack is redundant and should be avoided if performance of the

program is in question. We wrote this strategy for player 1 to make this point clear.� �
decideToKeepAttack g ( Guess i c 1 d) p =

( model g ) ‘ s a t i s ‘ L 1 0 .3 (P (PropC c i d) ) (Top)

decideToKeepAttack g ( Guess i c 2 d) p = p>= 0.3� �
Make a Guess The last action that we modeled is the guessing action. During this

event both players should act. The attacker announces the guess and the defender

updates his/her view of the world given the guess.

The function makeGuess receives a player, a guess g@(Guess pos c a d), a model

m@(Model ws s fs) and a card lc. Remember that the notation given by @ is a short

way to define ws,s,fs such that supp m == ws, s0 m == s, face m == fs; and sim-

ilarly for the guess g.

If m, s � cdpos holds then the guess is successful and the function makeGuess returns

(Model ws’ s fs’, True),

or else it returns

(Model ws’’ s fs’’, False).

The model that is returned if the guess is correct is given as follows: ws’ = JcdposKm’
and m’ = (ws, s, fs’) with fs’ equal to fs except to the position of lc in which fs’

is Truetextttpos of c in which fs’ is True. The idea is that the card that was guessed

turns face up and all the states in which the defender does not hold the card according

to the guess is deleted from the model.

If the guess is incorrect the model changes as follows:
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· ws1 = J¬
∨
i≤n caiKm,

· ws2 = J¬cdposKm’ with m’ == Model ws1, s, fs,

· ws’’ = J(lc)1posLastKm’’ with m’’ == Model ws2, s, fs’’.

Where fs’’ equal to fs except to the last card drawn’s position posLast in which fs’’

is True. The idea is that if the guess is unsuccessful the last card that was drawn should

be turned face up, the card that was guesses is assumed not to be in the hand of the

attacker nor in the position guessed.� �
makeGuess 1 g@( Guess pos c a d) m@( Model ws s f s ) l c =

i f m ‘ s a t i s ‘ (P (PropC c pos d) ) then ( ( Model ws ’ s f s ’ ) , True )

e l s e ( ( Model ws ’ ’ s f s ’ ’ ) , Fa l se )

where

f s ’ = ( f s t f s , ( take pos ( snd f s ) )++ [ True ] ++ drop ( pos

+1) ( snd f s ) )

ws ’ = truthSet (P $ PropC c pos d) ( Model ws s f s ’ )

ws1 = truthSet (Ng $ V [ (P $ PropC c i a ) | i <− [ 0 . . 1 1 ] ] )

m

ws2 = truthSet (Ng $ P $ PropC c posLast d) ( Model ws1 s f s

)

f s ’ ’= ( ( take posLast ( f s t f s ) )++[True]++drop ( posLast +1) ( f s t

f s ) , snd f s )

ws ’ ’ = truthSet (P $ PropC l c posLast 1) ( Model ws2 s f s ’ ’ )

posLast= head [ i | i < − [ 0 . .11 ] , m ‘ s a t i s ‘ (P $ PropC l c i 1) ]

makeGuess 2 g@( Guess pos c a d) m@( Model ws s f s ) l c = i f m ‘ s a t i s ‘ (P (

PropC c pos d) ) then ( ( Model ws ’ s f s ’ ) , True ) e l s e ( ( Model ws ’ ’ s f s

’ ’ ) , Fa l se )

where

f s ’ = ( ( take pos ( f s t f s ) )++ [ True ] ++ drop ( pos +1) ( f s t

f s ) , snd f s )

ws ’ = truthSet (P $ PropC c pos d) ( Model ws s f s ’ )

ws1 = truthSet (Ng $ V [ (P $ PropC c i a ) | i <− [ 0 . . 1 1 ] ] ) m

ws2 = truthSet (Ng $ P $ PropC c posLast d) ( Model ws1 s f s

)

f s ’ ’= ( f s t f s , ( take posLast ( snd f s ) )++[True]++drop ( posLast

+1) ( snd f s ) )

ws ’ ’ = truthSet (P $ PropC l c posLast 2) ( Model ws2 s f s ’ ’ )

posLast = head [ i | i < − [ 0 . .11 ] , m ‘ s a t i s ‘ (P $ PropC l c i 2)

]� �
Drawing a card The drawCard function is a simplified version of the product update

explained in Chapter 4. If the pile is not empty this function returns a new model where
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each new state is derived from a state in the previous model with the last card that was

drawn added in the appropriate position.� �
drawCard 1 gs = i f ( n u l l $ p i l e $ s0 m)

then gs

e l s e GameState ( Model ( f i l $ drawCardU 1 ( s0 m) ( supp m)

l c index ) ( drawCardS 1 ( s0 m) ) ( drawCardF 1 ( f a c e m

) index ) ) ( l c : cH)

where l c = head $ p i l e $ s0 m

h1 = s o r t $ ( hand1 $ s0 m)++[ l c ]

index = head $ f i n d I n d i c e s (\x −> x == l c ) h1

f i l = f i l t e r ( not . n u l l . hand1 )

m = model gs

cH = cHis t gs

drawCard 2 gs = i f ( n u l l $ p i l e $ s0 m)

then gs

e l s e GameState ( Model ( f i l $ drawCardU 2 ( s0 m) ( supp m)

l c index ) ( drawCardS 2 ( s0 m) ) ( drawCardF 2 ( f a c e m

) index ) ) ( l c : cH)

where l c = head $ p i l e $ s0 m

h2 = s o r t $ ( hand2 $ s0 m)++[ l c ]

index = head $ f i n d I n d i c e s (\x −> x == l c ) h2

f i l = f i l t e r ( not . n u l l . hand2 )

m = model gs

cH = cHis t gs

drawCardF 1 f s index = ( ( take index ( f s t f s ) )++[Fa l se ]++(drop index ( f s t f s

) ) , snd f s )

drawCardF 2 f s index = ( f s t f s , ( take index ( snd f s ) )++[Fal se ]++(drop index

( snd f s ) ) )

drawCardS 1 s = AlgoState ( t a i l p ) ( s o r t ( ( hand1 s )++[head p ] ) ) ( hand2 s )

where p = p i l e s

drawCardS 2 s = AlgoState ( t a i l p ) ( hand1 s ) ( s o r t ( ( hand2 s )++[head p ] ) )

where p = p i l e s

−− (drawCardU 1 ( s0 m) ( supp m) l c index )

drawCardU [ ] = [ ]

drawCardU 1 s (u : us ) lastCard posLastCard = ( addCard 1 u posLastCard

samecolor ) ++ (drawCardU 1 s us lastCard posLastCard )

where samecolor = s o r t ( f i l t e r (\x −> c o l o r x == c o l o r lastCard )

( deck \\ ( hand2 u) ) )

drawCardU 2 s (u : us ) lastCard posLastCard = ( addCard 2 u posLastCard

samecolor ) ++ (drawCardU 2 s us lastCard posLastCard )
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where samecolor = s o r t ( f i l t e r (\x −> c o l o r x == c o l o r lastCard )

( ( deck \\ ( hand1 u) ) ) )

addCard [ ] = [ ]

addCard 1 u i ( c : c s ) = AlgoState ( p i l e u) ( check ( hand1 u) i c ) ( hand2 u) :

addCard 1 u i cs

addCard 2 u i ( c : c s ) = AlgoState ( p i l e u) ( hand1 u) ( check ( hand2 u) i c ) :

addCard 2 u i cs

check e 0 c = i f ( c < e ! ! 0 ) then c : e e l s e [ ]

check e i c

| ( ( i == length e ) && ( c > e ! ! ( i −1) ) ) = ( take i e )

++ [ c ] ++ ( drop i e )

| ( i < l ength e ) && ( ( c > e ! ! ( i −1) ) && ( c< e ! ! ( ( i ) ) ) ) = ( take i e ) ++

[ c ] ++ ( drop i e )

| otherwi s e = [ ]� �
For last we state a few technical functions that we used in the code.� �

r 1 s t f s = ( hand1 s == hand1 t ) && ( cons i s tentWith ( hand2 s ) ( hand2 t ) (

snd f s ) )

r 2 s t f s = ( hand2 s == hand2 t ) && ( cons i s tentWith ( hand1 s ) ( hand1 t ) (

f s t f s ) )

−−cons i s tentWith : : [ Hand ] −> [ Hand ] −> Bool

cons i s tentWith [ ] = True

cons i s tentWith [ ] = True

cons i s tentWith [ ] = True

cons i s tentWith ( x : xs ) ( y : ys ) ( f : f s ) = i f cardEqual x y f

then cons i s tentWith xs ys f s

e l s e Fa l se

−−cardEqual : : Hand −> Hand −> Bool

cardEqual c1 c2 f = i f f

then ( c1 == c2 )

e l s e ( c o l o r c1 ) == ( c o l o r c2 )
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i n i t i a t e U n i v e r s e d=([ AlgoState s h1 h2 | h1<−p1deck , h2 <− p2deck , n u l l (

i n t e r s e c t h1 h2 ) ] , AlgoState s h1 h2 )

where h1 = s o r t ( take 4 d)

h2 = s o r t ( take 4 $ drop 4 d)

p1deck = [ a | a <− p4deck , c o l o r ( a ! ! 0 ) == cc ( h1 ! ! 0 ) ,

c o l o r ( a ! ! 1 ) == cc ( h1 ! ! 1 ) , c o l o r ( a ! ! 2 ) == cc ( h1

! ! 2 ) , c o l o r ( a ! ! 3 ) == cc ( h1 ! ! 3 ) ]

p2deck = [ b | b<− p4deck , c o l o r (b ! ! 0 ) == cc ( h2 ! ! 0 ) ,

c o l o r (b ! ! 1 ) == cc ( h2 ! ! 1 ) , c o l o r (b ! ! 2 ) == cc ( h2

! ! 2 ) , c o l o r (b ! ! 3 ) == cc ( h2 ! ! 3 ) ]

s = ( drop 8 d)

cc = c o l o r� �
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Appendix B

Algo Logical

This module is the implemattation of the game of Algo. Since it is straightforward we

skip the explanation and present only the code.� �
module AlgoLol where

import Data . L i s t

import Control . Monad . Random

import AlgoCards

import AlgoEpistemic

import Control . Monad

algoGame = do

d <− shu f f l eDeck deck

l e t ( univ , s t a t e I ) = i n i t i a t e U n i v e r s e d

l e t f s = ( [ False , False , False , Fa l se ] , [ False , False , False ,

Fa l se ] )

l e t m = Model univ s t a t e I f s

l e t cH = [ ]

l e t gS = GameState m cH

putStrLn $ show m

i <− algoLoop gS

return i

algoLoop gs@( GameState m cH) = do

i f ( not $ endGame m)

then

do

gs ’ <− algoTurnI gs

i f ( not $ endGame $ model gs ’ )

then

95
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do

gs ’ ’ <− algoTurnII gs ’

algoLoop gs ’ ’

e l s e re turn 1 −−Player 1 Wins

e l s e re turn 0 −− Player 2 Wins

endGame m@( Model f s ) = ( a l l (==True ) ( f s t f s ) ) | | ( a l l (==True ) ( snd f s

) )

a lgoTurnII gs@( GameState m cH) = do

l e t game = drawCard 2 gs

( guess , p ) <− ca l cu l a t eGues s 2 game

l e t (m’ , gResult ) = makeGuess 2 guess ( model game) ( head $

cHis t game)

i f gResult && ( not $ endGame $ m’ ) then algoTurnII ’ (

GameState m’ ( cHi s t game) ) e l s e re turn $ GameState m’

( cHi s t game)

algoTurnII ’ gs@( GameState m cH) = do

( guess , p ) <− ca l cu l a t eGues s 2 gs

i f decideToKeepAttack gs guess p

then

do

l e t (m’ , gResult ) = makeGuess 2 guess m ( head cH)

i f gResult && ( not $ endGame $ m’ ) then algoTurnII ’ (

GameState m’ cH) e l s e re turn ( GameState m’ cH)

e l s e re turn ( GameState m cH)

algoTurnI gs@( GameState m cH) = do

l e t game = drawCard 1 gs

putStrLn $ show $ model game

( guess , p ) <− ca l cu l a t eGues s 1 game

l e t (m’ , gResult ) = makeGuess 1 guess ( model game) ( head $

cHis t game)

i f gResult && ( not $ endGame $ m’ ) then algoTurnI ’ (

GameState m’ ( cHi s t game) ) e l s e re turn $ GameState m’

( cHi s t game)

algoTurnI ’ gs@( GameState m cH) = do

( guess , p ) <− ca l cu l a t eGues s 1 gs

i f decideToKeepAttack gs guess p

then

do

l e t (m’ , gResult ) = makeGuess 1 guess m ( head cH)
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i f gResult && ( not $ endGame $ m’ ) then algoTurnI ’ (

GameState m’ cH) e l s e re turn ( GameState m’ cH)

e l s e re turn ( GameState m cH)� �
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