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Abstract

The theory and analytical model for the stability analysis of magnetohydrodynamic (MHD)
modes based on the two-dimensional Newcomb equation are extended for the analysis of ex-
ternal MHD modes both with low-n and with high-n toroidal mode numbers. In this model,
since the appropriate weight function and the boundary conditions at rational surfaces are
introduced to solve the eigenvalue problem associated with the Newcomb equation, the spec-
trum of this eigenvalue problem contains only discrete eigenvalues. This feature enables us
to reveal explicitly whether plasma is stable or unstable.

In this dissertation, the analytical model is �rst applied to the development of a new
method that analyzes the stability of a low-n external MHD mode in a matrix form, and hence
this new method is called the stability matrix method. A numerical code (MARG2D-SM) is de-
veloped according to the stability matrix method, and the validity of the code is con�rmed
by several benchmark tests. The code clari�es the spectral structure ofn = 1 ideal exter-
nal kink modes, which are stable or unstable. The spectral gaps induced by the poloidal
coupling are also investigated. The stability matrix method reveals the effect of stable ideal
internal modes (�xed boundary modes) on the stability of ideal external modes (free bound-
ary modes). With this effect, the mode structure of an ideal external mode changes from a
surface mode structure to a global mode structure as a beta value increases, and an exter-
nal mode destabilizes when an internal mode approaches to their marginal stability; a beta
value is a ratio of the plasma pressure to the magnetic pressure. This effect explains how a
safety factor pro�le in the core region of high beta tokamak plasma affects the stability of an
ideal external mode.

The model based on the Newcomb equation has an advantage that the marginal stability
can be identi�ed with a short computation time. Such an advantage is demonstrated to be
powerful in the study on the aspect ratio dependence of then = 1 ideal external MHD mode
stability.

For high-n external MHD modes, the analytical method based on the Newcomb equation
is extended in the vacuum region; the vacuum energy integral is calculated by using the vec-
tor potential method. The MARG2D code, which solves numerically the eigenvalue problem
associated with the two-dimensional Newcomb equation, is adapted to this new model, and
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the validity of this extension is con�rmed by benchmark tests. This extended MARG2D code
is developed as a parallel computing code, and enables the fast stability analysis of high-n
modes like a peeling mode, an edge ballooning mode, and a couple of them called a peeling-
ballooning mode.
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Chapter 1

Introduction

Controlled thermonuclear fusion is expected to be a new and inexhaustible energy resource
in this 21-st century. Now the most promising approach to the fusion reactor is the magnetic
con�nement of a high temperature plasma. A device of the magnetic con�nement must be
a shape of torus, and various types of toroidal devices have been proposed [1]. The device
closest to a reactor among them is tokamak, �rst developed in the then U.S.S.R. [2]; for ex-
ample, in JT-60U the equivalent fusion multiplication factorQ has reached to 1.25 [3], where
Q is de�ned as the ratio of fusion output power to input power for plasma heating, and an
international project is ongoing for constructing the ITER (International Thermonuclear Ex-
perimental Reactor) among Japan, EU, USA, Russia, and other countries [4].

For a fusion reactor to be attractive from the economical point of view, a tokamak has to
be able to con�ne a high temperature, highβ plasma with enough long con�nement time.
Here β is a ratio of the plasma pressure to the magnetic pressure. For establishment of such
a stationary high performance operation, there are several key issues to be resolved. One of
them is the stability against external magnetohydrodynamic (MHD) perturbations both with
low-n and with high-n toroidal mode number.

The low-n ideal external MHD modes, obstacles limiting the tokamak performance, are
stabilized by a conducting wall as long as the wall be an ideal conductor. However, the modes
can remain still unstable due to the �nite resistivity of the wall; such modes are called resis-
tive wall modes (RWMs) [5]. Since RWMs restrict the stationary operation, they are to be
stabilized or to be controlled by other methods than the conducting wall. An effective stabi-
lization mechanism is plasma rotation relative to the wall. However, the ration frequency
necessary for the stabilization is the Alfvén or the sound transit frequency [6�9], and hence
such rotation frequency is not expected in a reactor such as ITER. Another effective method is
a feedback control with external coils, which is considered as technologically feasible [10�15].
A numerical method of the feedback stabilization has been reported [13], which involves us-
ing both a MHD stability code DCON [16] and the vacuum �eld code VACUUM code [17].
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2 Chapter 1: Introduction

High-n external modes (a peeling mode [18], an edge-ballooning mode [19], and a mode
with the combined structure of the peeling and the ballooning modes) are the trigger for
edge localized modes (ELMs) that constrain the maximum achievable pressure gradients in
the pedestal at the tokamak edge region; high pressure gradients in the pedestal is a cru-
cial element for the high performance (so called H-mode [20]) operation. Numerical analysis
on the stability of high-n external modes have been reported based on the single ideal MHD
model with the large-n ordering model [21�23] or on a full MHD model [24,25]. Such analyses
claim that high-n external modes explain various ELM phenomena in H-mode [20] tokamak
operations. Also, an integrated modeling between the core and pedestal regions is reported,
which uses a predictive core transport model and a pedestal model that includes MHD sta-
bility analysis of high-n external modes [26].

Another promising approach to the MHD stability analysis for these external MHD modes
will be the Newcomb equation, which is the inertia free linear ideal magnetohydrodynamic
(MHD) equation [27, 28]. However, the Newcomb equation has regular singular points at ra-
tional surfaces that satisfy the resonance conditionm = nq(r), where m is the poloidal mode
number, q(r) is the safety factor, and r is a poloidal �ux label of the MHD equilibrium. This
singular nature of the equation can yield continuous spectra in the stable region, and makes
it dif�cult to solve the equation numerically. Tokuda and Watanabe [29] have resolved such
dif�culties by formulating a new eigenvalue problem associated with the two-dimensional
Newcomb equation for internal MHD modes; the proposed eigenvalue problem has only real
and denumerable eigenvalues without continuous spectra. At the same time, according to
this formulation, a code MARG2D has been developed which solves numerically the two-
dimensional Newcomb equation and the associated eigenvalue problem by a �nite element
method [30].

Although the formulation in Ref. [29] is limited to internal MHD modes, we can expect
that the MARG2D formulation also provides a powerful tool for the stability analysis of low-
n and high-n external MHD modes. The main purpose of this thesis is to develop an analytical
model and a numerical code for stability analysis of a broadn range of external MHD modes
in toroidal plasmas, especially in a shaped axisymmetric toroidal plasma by extending the
theory of the Newcomb equation to external modes. The code thus developed is also enough
fast to be used practically in the stability control as well as transport simulations.

Chapter 2 brie�y reviews the ideal MHD model, static MHD equilibrium in an axisym-
metric system, and the Energy Principle for the linear ideal MHD stability analysis. Chapter
3 introduces the two-dimensional Newcomb equation and the associated eigenvalue prob-
lem, and describes the MARG2D stability code; these are the basis of this dissertation.

When I extend the theory of the Newcomb equation to external mode analyses, I take
different approaches for a low-n mode and a high-n mode.

For low-n external mode analysis, I develop in Chapter 3 a matrix method that expresses
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the change of the potential energy due to the plasma displacement by a quadratic form with
respect to the values of the displacement at the plasma surface [10, 31]. According to this
method, a code MARG2D-SM is developed. The code provides a tool essential for the RWM
analysis, which is second to, but alternative to the DCON code. Moreover, if this matrix
method is combined with the eigenvalue problem associated with the Newcomb equation
derived in Chapter 3, we can get deeper insight into the spectral properties of external modes.
In Chapter 4, after benchmark tests between the MARG2D-SM code and the conventional sta-
bility analysis code (ERATO) [32], I investigate the spectral structure ofn = 1, stable or unsta-
ble, ideal external kink modes, and the property of the spectral gaps induced by the poloidal
coupling originated from the �nite aspect ratio effect. Although toroidal effects on the spec-
tral gaps were analytically predicted in Ref. [33], this thesis numerically con�rms these pre-
dictions. Furthermore I investigate, analytically and numerically, the destabilizing effect of
stable internal MHD modes on the stability and the mode structure of external MHD modes
when internal modes approach to their marginal stability. This effect of the stable internal
modes clari�es the difference between the external mode stability in a normal shear toka-
mak and that in a reversed shear tokamak. The stability of ideal external modes is further
investigated from the view point of the aspect ratio dependence, which gets attention in the
research on small aspect ratio tokamak [34].

For high-n external mode analysis I adopt in Chapter 5, the vector potential method [35]
in order to write the vacuum magnetic �eld contribution (vacuum energy integral) in the
same integral form as the plasma contribution. Consequently, we can apply the MARG2D
formulation directly to the vacuum energy integral and can analytically reduce the potential
energy for a high-n external MHD mode without using the largen ordering. This extension
therefore realizes a broadn range of external mode analysis on the basis of the single physical
model.

The eigenvalues computed by the MARG2D code correspond neither to growth rates nor
frequencies of MHD perturbations. However, the sign of the minimum eigenvalue tells us
whether an MHD equilibrium is stable or unstable against ideal MHD perturbations since
the eigenvalue problem solved by MARG2D does not contain continuous spectra. This prop-
erty is especially useful when we have to analyze the stability of a series of equilibria gen-
erated from the time evolution of a discharge, either by an experiment or by a transport
simulation, since we are mainly interested in whether each equilibrium is stable or unsta-
ble. To facilitate such stability analysis I adapt MARG2D for parallel computing by using the
message passing interface (MPI) [36] and the ScaLAPACK library [37]. And also we study in
Chapter 5 the performance of this code, discussing the possibility of the stability analysis be-
tween the interval of experiments, and the possibility of the real-time stability analysis by
using a future, advanced parallel computer.

Finally, I summarize in Chapter 6 the achievements in this thesis, discussing the outlook
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for further developments and applications to analyze and to control external MHD modes in
a toroidal plasma.



Chapter 2

Ideal MHD model

2.1 Ideal MHD equations

We �rst introduce the single-�uid, ideal magnethydrodynamic (MHD) equations. In the ki-
netic theory, the behavior of the plasma composed ofN particles is described by the Klimon-
tovich equation [38] coupled with Maxwell's equations [39]. However, we are usually not
interested in the exact motion of all of the particles in a plasma, but rather in certain average
or approximate characteristics. We adopt the distribution function of the speciess, fs(x, v, t),
as the ensemble averaged number of point particles per unit six-dimensional phase space;x
is the three-dimensional con�guration space,v is the three-dimensional velocity space, andt
is the time. By using fs, the Vlasov equation arises naturally from the Klimontovich equation
when the effects of collisions are ignored as [40, 41]

∂ fs(x, v, t)
∂t + v · ∇x fs +

qs

ms
(E + v × B) · ∇v fs = 0, (2.1)

where qs and ms are the charge and the mass of a particle of speciess, E and B are the electric
and the magnetic �elds, respectively.

By taking velocity moments of Eq. (2.1) in seven-dimensional(x, v, t) space, an in�nite hi-
erarchy of equations in four-dimensional(x, t) space can be derived. The standard two-�uid
theory of plasma physics is obtained by truncating this in�nite hierarchy with the assump-
tion that fs is nearly local Maxwellian. The single �uid, ideal MHD equations are derived
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6 Chapter 2: Ideal MHD model

from the two-�uid equation as [41, 42]

∂ρ

∂t + ∇ · (ρv) = 0, (2.2)

min
Dv
Dt = J × B − ∇p, (2.3)

E + v × B = 0, (2.4)
Dp
Dt = −Γp∇ · v, (2.5)
∂B
∂t = −∇ × E, (2.6)

∇ × B = µ0 J, (2.7)
∇ · B = 0, (2.8)

with the assumptions (i) high collisionality, (ii) characteristic dimensions much larger than
an ion gyro radius, (iii) characteristic frequency is much smaller than the ion gyro frequency,
and (iv) small resistivity. Here,D/Dt = ∂/∂t + v · ∇, ρ and p are the density and the pressure
of a plasma, mi is the mass of an ion, v is the �uid velocity, J is the current density, andµ0 is
the vacuum permeability.

For plasmas of fusion interest, the conditions of small gyro radius and small resistivity
are well satis�ed, and the low frequency condition is valid when we treat such MHD mo-
tions. However, the high collisionality assumption is never satis�ed. Despite this break, em-
pirical evidence demonstrating that ideal MHD provides a very accurate description of most
macroscopic plasma behavior. Therefore, the ideal MHD model is used in this thesis to study
equilibrium and stability properties of tokamaks.

2.2 MHD equilibrium

In this section, we derive the equilibrium equations, called Grad-Shafranov equation [43�
45]. The basic equations of the ideal MHD equilibrium with scalar pressure and without
�ow are

∇p = J × B, (2.9)
∇ × B = µ0 J, (2.10)
∇ · B = 0. (2.11)

For an axisymmetric system such as a tokamak plasma, we can de�ne the poloidal magnetic
�ux functionψ from the toroidal component of the vector potentialAφ as

ψ = −RAφ, (2.12)



2.2: MHD equilibrium 7

B

B

R

Z

φ

ψ=const.

θ
B

Figure 2.1: Cylindrical and �ux coordinate systems.

where R and φ are the cylindrical coordinate system (R, φ,Z) as shown in Fig. 2.1. By using
this scalar functionψ in (R, φ,Z), the magnetic �eld is represented by

B = ∇φ × ∇ψ + F∇φ. (2.13)

Here F, called toroidal �eld function, is expressed by using the toroidal �eldBt as

F = RBt. (2.14)

Then the set of the equilibrium equations, Eqs. (2.9)-(2.11), is reduced to a second-order par-
tial differential equation, called Grad-Shafranov equation, as

∆∗ψ ≡ ∂2ψ

∂R2 −
1
R
∂ψ

∂R +
∂2ψ

∂Z2 = µ0RJφ, (2.15)

where the toroidal component of the plasma currentJφ is given by

Jφ = −Rdp
dψ −

1
µ0

F
R

dF
dψ . (2.16)

It is easily seen that the pressure function p and toroidal �eld function F are functions
of onlyψ. Sinceψ has an ambiguity of a shift of a constant value, we de�ne theψ value at the
plasma surface to be zero; theψ value inside the surface is negative.

For tokamaks, a toroidal magnetic �eld is generated by a current in toroidal-�eld coils,
and a poloidal magnetic �eld is made by a �nite toroidal current inside the plasma region
and by a current in poloidal-�eld coils. These magnetic �eld lines forms nested magnetic
surfaces which coincide with the contours ofψ as shown in Fig. 2.1.
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Plasma behaviors along the magnetic surfaces and across them are fairly different. There-
fore, it is desirable to employ a �ux coordinate system based on the contours ofψ to analyze
properties of instabilities. In this thesis, we adopt a �ux coordinate system (ψ, θ, φ), where φ
is the toroidal angle same as that de�ned in a cylindrical coordinate system, andθ is an arbi-
trarily chosen poloidal angle as shown in Fig. 2.1. Becauseθ is the angular coordinate with
modulus of 2π, the following constraint imposed to the Jacobian√g,I dl√gBp

= 2π, (2.17)

where √g = [(∇ψ × ∇θ) · ∇φ]−1 and dl is the line element.
The �ux surface average〈X〉 f of a variable X is de�ned as

〈X〉 f ≡ lim
∆V→0

1
∆V

Z Ψ+∆Ψ

Ψ

XdV = 2π
Z 2π

0

X
dV/dΨ

√gdθ = 2π
I X/Bp

dV/dΨ
dl, (2.18)

dV
dΨ

= 2π
Z 2π

0

√gdθ = 2π
I dl

Bp
, (2.19)

where V(Ψ) is a volume inside a magnetic surface speci�ed by an arbitrarily chosen label
Ψ, such as, the poloidal magnetic �uxψ ≡ R B · ∇θdV/(2π)2, the toroidal magnetic �uxΛ ≡R

B · ∇φdV/(2π)2, and so on. In this thesis, we adoptψ as the magnetic surface label.
Next, we de�ne several equilibrium quantities. For statistic axisymmetric equilibrium,

the perpendicular component of the current is

J⊥ =
B × ∇p

B2 , (2.20)

where J is expressed as J = J⊥ + J‖B/B. From the quasi-neutral condition

∇ · J = 0, (2.21)

we get the relation as
∇ ·

(
J‖

B
B

)
= −∇ ·

(B × ∇p
B2

)
. (2.22)

After some manipulations, J‖ is derived as

J‖ = −F
B

dp
dψ

(
1 − B2

〈B2〉 f

)
+
〈J · B〉 f

〈B2〉 f
B. (2.23)

The �rst term of this equation is the well-known P�rsch-Schlüter current [46] which main-
tains the quasi-neutral condition. The divergence-free current of the second term assures
the momentum balance along the magnetic lines of force and it is essential for con�ning the
tokamak plasma. Within the framework of the neoclassical transport theory, the surface-
average parallel current is expressed by

〈J · B〉 = 〈J · B〉E + 〈J · B〉B + 〈J · B〉S , (2.24)
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where 〈J · B〉E, 〈J · B〉B are the ohmic current and the bootstrap current given as

〈J · B〉E =σNC〈E · B〉, (2.25)

〈J · B〉B = − F
(
Le

31
dpe

dψ + Li
31

dpi

dψ + Le
32

dTe

dψ + Li
32

dTi

dψ

)
, (2.26)

and 〈J · B〉S expresses the non-ohmically driven current [47, 48]. The neoclassical transport
coef�cients,σNC, Le

31, Li
31, Le

32, and Li
32 are given in neoclassical transport theory review pa-

pers [49, 50].
The MHD safety factorq, which assume the con�gurations of a set of nested toroidal �ux

surfaces, is de�ned as
q(V) ≡ dψ/dV

dΛ/dV . (2.27)

When a magnetic �eld line closes on itself by circulatingm times in the poloidal direction
and n times in the toroidal direction, the safety factor is represented asq = n/m. Such a
magnetic surface is called a rational surface.

The magnetic shear is a quantity that measures the change in pitch angle of a magnetic
�eld line from one �ux surface to the next, and de�ned as [42]

s(V) ≡ 2V
q

dq
dV . (2.28)

The geometrical quantities, the aspect ratio A, the ellipticity κ, and the triangularity δ,
are de�ned as

A ≡ Rma j

a , (2.29)

κ ≡ h
a , (2.30)

δ ≡ d
a . (2.31)

Here Rma j is the major radius, a is the minor radius, h is the height, and d is the distance
between major radius of the highest position from the plasma center, shown in Fig. 2.2.

Finally, we introduce several de�nitions of beta which is a ratio of the plasma pressure
to the magnetic pressure. The toroidal betaβt and the poloidal betaβp are de�ned as

βt ≡ 2µ0〈〈p〉〉
B2

t0
, (2.32)

βp ≡ 2µ0〈〈p〉〉
B2

pa
, (2.33)

where Bt0 is the vacuum magnetic �eld at the plasma center called the magnetic axis,Bpa is
the average poloidal magnetic �eld at the plasma edge, de�ned as

Bpa ≡
µ0Ip

2π〈a〉 f
, (2.34)
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φ

R

Z

a a

d
h

Rmaj

Figure 2.2: Lengths de�ned in a poloidal cross-section of a tokamak plasma.

and Ip is the toroidal current. The volume average of a variableX 〈〈X〉〉 is de�ned as

〈〈X〉〉 ≡
R

XdVR
dV . (2.35)

The volume averages are taken over the whole volume of the plasma. In addition, the nor-
malized betaβN is de�ned as

βN ≡ 100βt · a · Bt

Ip/µ0 · 106 , (2.36)

which relates to Troyon scaling of critical beta in tokamaks [51].

2.3 Ideal MHD stability

In this section, we introduce the theory for analyzing the ideal linear MHD stability, called
the Energy Principle [52]. We adopt a Lagrangian description of the �uid motion, and all
quantities are now considered to be functions of the initial location of a �uid elementr0,
and of the time t. With the displacement vectorξ which is determined by

r = r0 + ξ, (2.37)
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where r is the location of the �uid element at timet, the linearized MHD equation takes the
form

ρ0
∂2ξ

∂t2 = F(ξ), (2.38)

ρ1 = −∇ · (ρ0ξ), (2.39)
p1 = −ξ · ∇p0 − γp0∇ · ξ, (2.40)
B1 = ∇ × (ξ × B0), (2.41)

where the force operator

F(ξ) =
1
µ0

((∇ × B0) × Q + (∇ × Q) × B0) + ∇(ξ · ∇p0 + γp0∇ · ξ). (2.42)

Here X0 is the equilibrium value of X, X1 is the perturbed value of X, and Q is the perturba-
tion of B de�ned as Q = B1 ≡ ∇ × (ξ × B0). Since the time does not appear explicitly in Eqs.
(2.38)-(2.42), a general form ofξ can be written as

ξ(r0, t) = ξ(r0)eiωt, (2.43)

and the corresponding eigenvalue equation is

−ω2ρξ = F(ξ). (2.44)

Equation (2.44) represents the normal mode formulation of the linearized MHD stability
problem for general three-dimensional equilibria. In this approach, only appropriate bound-
ary conditions onξ are required. For example, when the plasma is surrounded by a conduct-
ing wall, the boundary condition is

n · ξ = 0, (2.45)

where n is the unit normal to the plasma surface.
The force operator F is a self-adjoint operator [42, 53, 54], and this self-adjointness has a

major impact on both the analytic and the numerical formulation of linearized MHD stabil-
ity. Then we demonstrate this property with two arbitrary vectorsξ and η satisfying appro-
priate boundary conditions in Appendix A.

Because of the self-adjointness of F, the linearized ideal MHD stability problem can be
easily cast in the form of a variational principle. The dot product of Eqs. (2.38) and (2.42)
with ξ is formed and then integrated over the plasma volume, yielding

ω2 =
δW(ξ, ξ)
K(ξ, ξ) , (2.46)

where

δW(ξ∗, ξ) = − 1
2

Z
ξ∗ · F(ξ)dr, (2.47)

K(ξ∗, ξ) =
1
2

Z
ρ |ξ|2 dr. (2.48)
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The quantity δW represents the change of the potential energy associated with the pertur-
bation and is equal to the work done against the forceF(ξ) in displacing the plasma by an
amount ξ. The quantity K is proportional to the kinetic energy.

When we have a primary interest to determine the stability boundary of the given sys-
tem, the variational formulation can be further simpli�ed; the formulation is known as the
Energy Principle [52]. The physical basis of this principle is the fact that energy is exactly
conserved in the ideal MHD model. Since the extremum corresponding to the minimum
eigenvalue ofω2 actually represents a minimum in potential energyδW, the Energy Princi-
ple states that an equilibrium is stable if and only if

δW(ξ∗, ξ) ≥ 0 (2.49)

for all allowable displacements.
In general, a vacuum region surrounds a plasma, andδW is rewritten as the sum of three

terms as
δW = δWF + δWS + δWV , (2.50)

where a volume integralδWF extended over the �uid plasma domain, a surface integralδWS

extended over the �uid-vacuum interface, and a volume integralδWV extended over the vac-
uum region. Here we assume that a plasma and a vacuum are surrounded by a perfect con-
ducting wall. Before formulating these terms, we introduce the boundary condition at an
interface between a plasma and a vacuum as

[[
p +

1
2 B2

]]

a
= 0, (2.51)

n · [[v]]a = 0, (2.52)
n× [[E]]a = 0, (2.53)
n · [[B]]a = 0, (2.54)

n× [[B]]a = Ja, (2.55)

where the subscript a means the value at the plasma boundary, and[[X]]a is the increment
in any quantity X across the boundary in the direction n. These boundary conditions are
transcribed to �rst orderξ with the �rst-order vacuum vector potential Á, where

É = −∂Á
∂t + É0, B́ = ∇ × Á + B́0, (2.56)

and vacuum quantities are distinguished when necessary by a accentuation asX́. The gauge
has been chosen so that the scalar potential vanishes. From Eq. (2.51), we obtain the bound-
ary condition for the equation of motion as

−γp0∇ · ξ +
1
µ0

B0 · Q =
1
µ0

B́0 · ∇ × Á +
1

2µ0
(ξ · ∇)(B́2

0 − B2
0), (2.57)
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and that for A from Eqs.(2.4), (2.53), and (2.54) as

n× Á = −(n · ξ)B́0. (2.58)

Of course, Á must satisfy the equation

∇ × ∇ × Á = 0. (2.59)

To obtain δWF, δWS , and δWV with the boundary conditions Eqs. (2.57) and (2.58), we
perform an integration by parts in Eq. (2.47), and as the result,

δW = δWF − 1
2

Z
(n · ξ)

(
γp0∇ · ξ + ξ⊥ · ∇p0 − B0 · Q

µ0

)
dS , (2.60)

where
δWF =

1
2

Z { |Q|2
µ0
− ξ⊥ · J × Q + γp0 |∇ · ξ|2 +

(
ξ⊥ · ∇p0

)∇ · ξ⊥
}

dr, (2.61)

and ξ⊥ = ξ − ξ‖b. With Eqs. (2.57) and (2.58), the boundary term can be expressed as

δW − δWF = δWS + δWV , (2.62)

where

δWS =
1
2

Z
|n · ξ|2 n ·

[[
∇

(
p0 +

B2
0

2µ0

)]]

a
, (2.63)

δWV =
1
2

Z ∣∣∣∇ × Á
∣∣∣2

µ0
d ŕ. (2.64)

The surface integral in Eq. (2.63) is executed on the plasma surface and the volume integral
in Eq. (2.64) is extended over the initial vacuum volume. Thus we obtain the �nal form of
δW with Eqs.(2.61), (2.63), and (2.64), and investigate the MHD stability with the suf�cient
condition Eq. (2.49).

With the eigenvalues and the eigenfunctions of Eq. (2.44),ξ in Eq. (2.43) can be expressed
as

ξ =

∞∑

i=1
δiξi, (2.65)

where we de�ne that ξi belongs toωi and ω1 ≤ ω2 ≤ · · · . By using Eq. (2.65), δW and K in
Eqs. (2.47) and (2.48) can be written as

δW(ξ∗, ξ) =
1
2

∞∑

i=1
ρω2

i δ
2
i ξ

2
i , (2.66)

K(ξ∗, ξ) =
1
2

∞∑

i=1
ρδ2

i ξ
2
i . (2.67)
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Now, we introduce the Hessian matrixHs [55] at the stationary point s of a function f (x)
as

Hs ( f (s))i, j =

(
∂2 f (x)
∂xi∂x j

)

x=s
. (2.68)

If the Hessian is positive (negative) de�nite at s, then f (x) attains a local minimum (maxi-
mum) at s. If the Hessian has both positive and negative eigenvalues, thens is a saddle point
for f (x).

We can apply this theorem to the stability analysis. The Hessian matrix ofδW in Eq. (2.66)
can be calculated as

Hs (δW)i, j =


ρδ2

iω
2
i for i = j,

0 for i , j.
(2.69)

Since this matrix is diagonal andρ is positive de�nite, the signsωi are identical to the signs
of eigenvalues of Hs(δW); ifω1 > 0, δW attains a local minimum and the system is stable.

However, in the ideal MHD problem, the spectrum of the force operatorF in Eq. (2.42)
contains both discrete eigenvalues and continua. Moreover, if a rational surface exists in
the plasma, the continuous spectrum always reaches the originω = 0. This means that
we cannot expand ξ with the eigenfunctions as Eq. (2.65) and the Hessian matrix Eq. (2.69)
cannot be calculated.

To avoid such a problem, in the next chapter, we introduce the method that solves the
eigenvalue problem associated with the Newcomb equation with the appropriate weight
function and the boundary conditions at rational surfaces to eliminate the continuous spec-
tra [29, 30]. Here the Newcomb equation is the inertia free linear ideal MHD equation [27].
With this method, the sign ofδWp can be identi�ed, where δWp expresses the potential en-
ergy of a plasma asδWp = δWF + δWS , and the stability of a MHD equilibrium against ideal
MHD motions can be analyzed.

In addition, for the external mode stability analysis, we need to identify the sign ofδWp +

δWV , and the vacuum magnetic energy integralδWV must be carefully treated. This is one
of the main issues in this dissertation, and two techniques to estimateδWV are discussed in
Chapter 5 and Appendix C.



Chapter 3

Two dimensional Newcomb equation

3.1 Introduction

The marginally stable state against the ideal MHD instability in a plasma is described by the
Newcomb equation [27] derived from the linear ideal MHD equations Eqs. (2.38)-(2.41) with-
out inertia. In an axisymmetric toroidal plasma, the Newcomb equation is a two-dimensional
homogeneous differential equation forY(r, θ), where Y is the radial component of the �uid
displacement, r is the poloidal �ux label of the equilibrium magnetic con�guration (radial
coordinate) and θ is the poloidal angle so de�ned that the equilibrium magnetic �eld lines
are straight on each toroidal surfacer = const.. In an one-dimensional case, the Newcomb
equation and the eigenvalue problem associated with this equation is derived in Ref. [30]
and is illustrated brie�y in Appendix B. On the basis of this work, in this chapter, I intro-
duce the two-dimensional Newcomb equation, the associated eigenvalue problem and a code
MARG2D which solves this eigenvalue problem numerically [29]. Though the eigenvalues
obtained by the MARG2D code do not correspond to a growth rate or a frequency of a MHD
mode, the sign of them can identify the stability of a MHD equilibrium against ideal MHD
motions.

In addition, I present another method for the stability analysis of external modes with the
property of the Newcomb equation, called thestability matrix method. In this method, the
change of the potential energy due to the plasma displacement is expressed by a quadratic
form (a matrix form) with respect to the values of the displacement at the plasma surface [10].
The formulation used in this method is indispensable for the analysis of the resistive wall
modes (RWMs) and a code DCON has already reported [13]. We adapt the MARG2D code so
as to compute the matrix which is called the stability matrix, and the MARG2D-SM code is
developed for the stability analysis with this matrix.

In Section 3.2, I introduce the �ux coordinate system used in this chapter, and reduce
the ideal MHD potential energy for an axisymmetric toroidal plasma to a quadratic form ex-

15
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pressed by the Fourier harmonics in Section 3.3. After obtaining the two-dimensional New-
comb equation and deriving the Frobenius series of the singular solutions in Section 3.4, I
formulate the eigenvalue problem associated with the Newcomb equation by introducing
the weight function and the boundary conditions in Section 3.5. After these formulations,
the outline of a code MARG2D is brie�y mentioned in Section 3.6. After completing the ex-
planation about the eigenvalue problem associated with the Newcomb equation, I review
the stability matrix method, which is another method for the external mode analysis, and
the MARG2D-SM code in Section 3.7.

3.2 Coordinate System

We introduce the usual cylindrical coordinate system(R,Z, φ) in whichφ is the angle around
the axis of symmetry as shown in Fig. 2.1. The equilibrium magnetic �eldB in an axisym-
metric con�guration can be expressed as Eq. (2.13) and satis�es force balance equations
Eqs. (2.9)-(2.11). In the present work, we assume up-down symmetry forψ(R,Z); ψ(R,−Z) =

ψ(R,Z) for simplicity.
As in Ref. [56], we de�ne the �ux coordinate system(r, θ, φ) by

r2(ψ) = 2R0

Z ψ

0

q
F dψ, (3.1)

and
q(ψ) =

B · ∇θ
B · ∇φ, (3.2)

where R0 is the R coordinate at the magnetic axis andq is the safety factor already de�ned in
Eq. (2.27). The radial coordinate r has the dimension of length, whose value at the edge is
same as the plasma minor radius,

r(ψa) = a. (3.3)

The Jacobian
√

g(r, θ) is
√

g(r, θ) =
R2

R0
r, (3.4)

and the quantity de�ned by
βr,θ(r, θ) =

∇r · ∇θ
|∇r|2 , (3.5)

provides a measure of nonorthogonality of this coordinate system. We also de�ne the opera-
tor ∂⊥ by

∂⊥ ≡ ∇r · ∇
|∇r|2 =

∂

∂r + βr,θ(r, θ)
∂

∂θ
. (3.6)

The equilibrium relation, Eq. (2.15), in the(r, θ, φ) coordinates system is expressed as

1
r
∂

∂r

[
rdψ

dr |∇r|2
]

+
dψ
dr

∂

∂θ

(
|∇r|2 βr,θ

)
= −R2 dp

dψ − F dF
dψ . (3.7)
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3.3 Reduction of potential energy integral

We derive the reduced form of the ideal MHD potential energy integral expressed by the
Fourier harmonics of the radial displacement. Subsequently, we use some notations on vec-
tor operation. We express by Diag(d j) a diagonal matrix with diagonal elements d j ( j =

1, 2, ...). When f (θ) is an operator periodic in theθ-direction, we de�ne

fl,m ≡ 1
2π

Z 2π

0
exp(−ilθ) �f (θ) exp(imθ)dθ, (3.8)

and we express by f the matrix made from fl,m. Let X,Y be arbitrary vectors and A be a real
matrix, then the bracket〈X|A|Y〉 is de�ned as

〈X|A|Y〉 ≡ XtAY =
∑

j,k
X jA j,kYk, (3.9)

where the symbol t denotes transpose of a vector or a matrix.

3.3.1 Ideal MHD potential energy integral

In the axisymmetric con�guration, the displacement vectorξ can be assumed to the ξ ∝
exp(−inφ), where the integer n is the toroidal mode number. Since we are interested in the
marginal ideal MHD stability, we impose the incompressibility condition,∇ · ξ = 0.

By introducing variables

X = ξ · ∇r, (3.10)

V = r
(
ξ · ∇θ − 1

qξ · ∇φ
)
, (3.11)

we obtain the potential energy integral of a plasmaδWp expressed by X, V as

δWp = δWF + δWS (3.12)

= π

Z a

0
dr
Z 2π

0
dθL, (3.13)

where the potential energy densityL and the operatorDθ(X) are de�ned as

L = a |Dθ(X)|2 + b
∣∣∣∣∣inV +

1
q
∂

∂r (rX) + hX + rβr,θDθ(X)
∣∣∣∣∣
2

+ c
∣∣∣∣∣
∂V
∂θ

+
∂

∂r (rX)
∣∣∣∣∣
2

+ e |X|2 , (3.14)

Dθ(X) =
1
q
∂X
∂θ
− inX, (3.15)
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and the coef�cientsa, b, c, h, and e are given by

a(r, θ) =

(F
R

)2 1
|∇r|2

r
R0
, (3.16)

b(r, θ) =

(
F
R0

)2
|∇r|2 r

R0
, (3.17)

c(r) =

(
F
R0

)2 R0
r , (3.18)

h(r, θ) = − 1
q

(
2 +

r
|∇r|2∂⊥ |∇r|2 + r ∂

∂θ
βr,θ

)
, (3.19)

and

e(r, θ) =
r

R0

dp
dr ∂⊥R2 +

1
R0

(
R2 dp

dr + F dF
dr

) (
2 +

r
|∇r|2∂⊥ |∇r|2 + 2r ∂

∂θ
βr,θ

)
. (3.20)

The operator∂⊥ is already de�ned by Eq. (3.6).

3.3.2 Elimination of V

We �rst minimizeδWp for V(r, θ). The resultant Euler equation forV(r, θ) is

∂

∂θ

(
∂V
∂θ

+
∂

∂r (rX)
)

= −in
(

r
R0

)2
|∇r|2

[
inV +

1
q
∂

∂r (rX) + �HX
]
, (3.21)

where the operator �H is de�ned as

�HX ≡ hX + rβr,θDθ(X). (3.22)

By substituting Eq. (3.21) into Eq. (3.14), we have the reduced form of the potential energy
density given by

L = a |Dθ(X)|2 + �b
∣∣∣∣∣∣
∂

∂θ

(
∂V
∂θ

+
∂

∂r (rX)
)∣∣∣∣∣∣

2

+ c
∣∣∣∣∣
∂V
∂θ

+
∂

∂r (rX)
∣∣∣∣∣
2

+ e |X|2 , (3.23)

where
�b =

(
F
R0

)2 (R0
r

)3 1
n2 |∇r|2 . (3.24)

To solve Eq. (3.21) for V(r, θ), we express X, V by their Fourier harmonics in the poloidal
direction

X(r, θ) = X0(r) +
∑

m,0
Xm exp(imθ), (3.25)

V(r, θ) = − i
V0(r) +

∑

m,0
Vm exp(imθ)

 . (3.26)
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From the solubility condition for Eq. (3.21)Z 2π

0
|∇r|2

[
inV +

1
q
∂

∂r (rX) + �HX
]

dθ = 0, (3.27)

we have
nV0 +

1
q
∂

∂r (rX) = − 1
〈|∇r|2〉b ·

[
nV̄ +

1
q
∂

∂r (rX̄)
]
− 1
〈|∇r|2〉h · X, (3.28)

where
〈|∇r|2〉 ≡ 1

2π

Z 2π

0
|∇r|2 dθ, (3.29)

and the vectors b, h are given by

b = (..., (|∇r|2)0,−1, (|∇r|2)0,1, ...), (3.30)
h = (..., �H0,−1, �H0,0, �H0,1, ...). (3.31)

Here (|∇r|2)l,m and �Hl,m are computed by Eq. (3.8), and the vectorsX and X̄ de�ned as

X ≡ (..., X−2, X−1, X0, X1, X2, ...), (3.32)

and
X̄ ≡ (..., X−2, X−1, X1, X2, ...), (3.33)

and de�ne V and V̄, similarly. By eliminatingV0(r) in Eq. (3.21) with Eq. (3.28), we obtain a
linear equation for V̄,

¯P̄V̄ = − ¯
¯
Q ∂

∂r
(
rX̄

)
− n

(
r

R0

)2
H̄BX, (3.34)

where the matrices ¯P̄, ¯
¯
Q, and H̄B are given by

¯P̄ = Diag(m2) + n2
(

r
R0

)2
¯Ḡ, (3.35)

¯
¯
Q = Diag(m) +

n
q

(
r

R0

)2
¯Ḡ, (3.36)

H̄B = �Hl,m − 1
〈|∇r|2〉(|∇r|2)l,0 �H0,m, (3.37)

and ¯Ḡ is
¯
¯
Gl,m = (|∇r|2)l,m − 1

〈|∇r|2〉(|∇r|2)l,0(|∇r|2)0,m. (3.38)

Here the notations on the arbitrary matrixT ( ¯T̄, T̄, and T̄) express as

¯T̄ =



· · · · · · · · · · · ·
· · · T−1,−1 T−1,1 · · ·
· · · T1,−1 T1,1 · · ·
· · · · · · · · · · · ·


, T̄ =



· · · · · · · · · · · · · · ·
· · · T−1,−1 T−1,0 T−1,1 · · ·
· · · T1,−1 T1,0 T1,1 · · ·
· · · · · · · · · · · · · · ·


, (3.39)
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and

T̄ =



· · · · · · · · · · · ·
· · · T−1,−1 T−1,1 · · ·
· · · T0,−1 T0,1 · · ·
· · · T1,−1 T1,1 · · ·
· · · · · · · · · · · ·



, (3.40)

where

T =



· · · · · · · · · · · · · · ·
· · · T−1,−1 T−1,0 T−1,1 · · ·
· · · T0,−1 T0,0 T0,1 · · ·
· · · T1,−1 T1,0 T1,1 · · ·
· · · · · · · · · · · · · · ·



. (3.41)

The matrices ¯P̄ and ¯
¯
Q satisfy the relation

− ¯
¯
Q + ¯P̄Diag

(
1
m

)
= n

(
r

R0

)2
¯Ḡ ¯D̄, (3.42)

where the matrix ¯D̄ is de�ned as

¯D̄ ≡ Diag
(

n
m −

1
q

)
. (3.43)

Next, we express the terms includingV̄ in Eq. (3.23) as

∂V
∂θ

+
∂

∂r (rX) =

[
Diag(m)V̄ +

∂

∂r (rX̄)
]
· ē(θ) +

∂

∂r (rX0), (3.44)

∂

∂θ

(
∂V
∂θ

+
∂

∂r (rX)
)

= iDiag(m)
[
Diag(m)V̄ +

∂

∂r (rX̄)
]
· ē(θ), (3.45)

where ē(θ) is de�ned as

ē(θ) = (..., exp(−2iθ), exp(−iθ), exp(iθ), exp(2iθ), ...). (3.46)

By substituting the solution of Eq. (3.34)

V̄ = −
( ¯P̄

)−1 Q ∂

∂r (rX̄) − n
(

r
R0

)2 ( ¯P̄
)−1 HBX, (3.47)

into Eq. (3.44), we obtain

Diag(m)V̄ +
∂

∂r (rX̄) =

[
−Diag(m)

( ¯P̄
)−1 ¯

¯
Q + I

]
∂

∂r (rX̄)

− n
(

r
R0

)2
Diag(m)

( ¯P̄
)−1 H̄BX, (3.48)



3.3: Reduction of potential energy integral 21

where I is the unit matrix. With the relation Eq. (3.42), we obtain

Diag(m)V̄ +
∂

∂r (rX̄) = n
(

r
R0

)2 [
¯L̄B ¯D̄ ∂

∂r (rX̄) − H̄X̄
]
, (3.49)

where the matrices ¯L̄B and ¯H̄ are given by

¯L̄B ≡Diag(m)
( ¯P̄

)−1 ¯Ḡ, (3.50)

H̄ ≡Diag(m)
( ¯P̄

)−1 H̄B. (3.51)

By using Eq. (3.49), we haveδWp expressed in the quadratic form ofX,

δWp = 2π2
Z a

0
L(X, X)dr, (3.52)

where

L(X, X) =

(
F
R0

)2 R0
r

∣∣∣∣∣
∂

∂r (rX0)
∣∣∣∣∣
2

+ 〈X|K|X〉

+

(
F
R0

)2 r
R0

[〈
∂

∂r (rX̄)| ¯D̄ ¯L̄ ¯D̄| ∂
∂r (rX̄)

〉

+

〈
X|M̄ ¯D̄| ∂

∂r (rX̄)
〉

+

〈
∂

∂r (rX̄)| ¯D̄ (M̄)t |X
〉]
. (3.53)

Here the matrices ¯L̄, M̄, and K are de�ned as

¯L̄ =
( ¯L̄B

)t �G ¯L̄B, (3.54)

M̄ = − (H̄)t �G ¯L̄B, (3.55)

K =

(
F
R0

)2 r
R0

(A + N) + E, (3.56)

and matrices in Eqs. (3.54)-(3.56) are given by

�G = Diag(m)
(

1
|∇r|2

)
Diag(m) + n2

(
r

R0

)2
I, (3.57)

A = Diag
(
m
q − n

) (R0
R

)2 (
1
|∇r|2

)
Diag

(
m
q − n

)
, (3.58)

N =
(
H̄

)t �GH̄, (3.59)

and

E = (e(r, θ)) =
1

2π

Z 2π

0
e(r, θ) exp(i(m − l)θ)dθ. (3.60)
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3.3.3 Normalization

We measure the length by a in Eq. (3.3) and the magnetic �eld by B0 at the magnetic axis.
Thus variables are written as

r = a�r, (3.61)
F = R0B0 �F, (3.62)
p = B2

0 �p, (3.63)

and
ψ = R2

0B0 �ψ. (3.64)

The matrices ¯L̄, M̄, and N are non-dimensional, andK can be written as

K =
a
R0

B2
0 �K. (3.65)

The normalized potential energy becomes

�δWp = 2π2
Z 1

0
�Ld�r, (3.66)

and the potential energy densityL reads

�L =
1
ε2

�F2

�r

∣∣∣∣∣
∂Y0
∂r

∣∣∣∣∣ +

〈
Y

∣∣∣∣∣∣
�K
�r2

∣∣∣∣∣∣ Y
〉

+ �r �F2
〈
∂Ȳ
∂r |

¯D̄ ¯L̄ ¯D̄|∂Ȳ
∂r

〉

+ �F2
[〈
∂Ȳ
∂r |

¯D̄ (M̄)t |Y
〉

+

〈
Y|M̄ ¯D̄|∂Ȳ

∂r

〉]
, (3.67)

where ε = a/R0, and we have introduced the vector functionY as

Y = �rX. (3.68)

3.3.4 Surface term

The surface term driving the unstable external kink mode can be derived from the last two
terms in the right hand side (RHS) of Eq. (3.67). We divide the matrixM̄ into the diagonal
matrix ¯M̄D and the off-diagonal matrixM̄O as

M̄ = ¯M̄D + M̄O (3.69)

=



. . .

M−1,−1 0
0 M1,1

. . .


+



...

0 M−1,1 M−1,2

· · · M0,−1 M0,1 M0,2

M1,−1 0 M1,2 · · ·
M2,−1 M2,1 0

...



. (3.70)
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Then the last two terms in the RHS of Eq. (3.67) read

�F2
[〈
∂Ȳ
∂r |

¯D̄ (M̄)t |Y
〉

+

〈
Y|M̄ ¯D̄|∂Ȳ

∂r

〉]

= �F2
[〈
∂Ȳ
∂r |

¯D̄ (M̄O)t |Y
〉

+

〈
Y|M̄O ¯D̄|∂Ȳ

∂r

〉]

+

〈
∂Ȳ
∂r |

�F2 ¯D̄
( ¯M̄D

)t |Ȳ
〉

+

〈
Ȳ| �F2 ¯M̄D ¯D̄|∂Ȳ

∂r

〉
. (3.71)

Since we assume up-down symmetry, the matrixM̄ is a real matrix, andZ r2

r1

[〈
∂Ȳ
∂r |

¯M̄H |Ȳ
〉

+

〈
Y| ¯M̄H |∂Ȳ

∂r

〉]
dr

=

Z r2

r1

d
dr 〈Ȳ|

¯M̄H |Ȳ〉dr −
Z r2

r1

〈
Ȳ

∣∣∣∣∣∣
d ¯M̄H

dr

∣∣∣∣∣∣ Ȳ
〉

dr. (3.72)

Here the matrix
¯M̄H(r) ≡ F2 ¯M̄D ¯D̄ (3.73)

is a real, diagonal matrix, and

〈Ȳ| ¯M̄H |Ȳ〉 =
∑

j,0
(MH) j, j |Y j|2. (3.74)

Afterward, we have suppressed the symbol �x expressing the normalized quantities. For
the harmonics Y j without any rational surfaces, we obtainZ 1

0

d
dr

[
(MH(r)) j, j|Y j(r)|2

]
dr = (MH(1)) j, j|Y j(1)|2. (3.75)

Here we have used the regularity condition

Y(0) = 0. (3.76)

For the harmonics Ym with a rational surface, on the other hand, we deriveZ 1

0

d
dr

[
(MH(r))m,m|Ym(r)|2

]
dr

= (MH(1))m,m|Ym(1)|2 + (MH(rm − 0))m,m|Ym(rm − 0)|2

− (MH(rm + 0))m,m|Ym(rm + 0)|2, (3.77)

where rm is the position of the rational surface. However,(MH(r))m,m ∼ (r − rm) around r =

rm, and as shown in Subsection 3.4.2, the singularity ofYm(r) is bounded as |Ym(r)|2 ∼ |r −
rm|−1+2µmer , whereµmer is the Suydam-Mercier index. Therefore, we have

(MH(r))m,m|Ym(r)|2 ∼ |r − rm|2µmer → 0. (3.78)
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Thus the surface terms disappear at the rational surfaces and we �ndZ 1

0

d
dr 〈Ȳ|

¯M̄H |Ȳ〉dr =
∑

j,0
(MH(1)) j, j|Y j(1)|2. (3.79)

By using Eqs.(3.71), (3.72) and (3.79) in Eqs. (3.66) and (3.67), the normalized potential energy
can be written as

δWp = 2π2
Z 1

0
Ldr + δWs, (3.80)

where the potential energy densityL is

L =
1
ε2

F2

r

∣∣∣∣∣
∂Y0
∂r

∣∣∣∣∣
2

+

〈
Y

∣∣∣∣∣
1
r2 K

∣∣∣∣∣ Y
〉

+

〈
Ȳ

∣∣∣∣∣−
d
dr

¯M̄H

∣∣∣∣∣ Ȳ
〉

+ rF2
〈
∂Ȳ
∂r |

¯D̄ ¯L̄ ¯D̄|∂Ȳ
∂r

〉
+ F2

[〈
∂Ȳ
∂r |

¯D̄ (M̄O)t |Y
〉

+

〈
Y|M̄O ¯D̄|∂Ȳ

∂r

〉]
, (3.81)

and the surface term is
δWs = 2π2

∑

j,0
(MH) j, j(1)|Y j(1)|2. (3.82)

The surface term Ws and WV in Eq. (2.64) give the boundary condition at the plasma sur-
face for the free boundary modes [32, 57], and determines the behavior of the modes there.

The singular structure of the quadratic form, Eq. (3.81), is explicitly described by the ma-
trix ¯D̄ de�ned by Eq. (3.43). This structure is later exploited in deriving the Newcomb equa-
tion and in formulating the eigenvalue problem. For an up-down symmetric equilibrium,
all matrices in Eq. (3.81) are real. In addition, the matrices ¯L̄, K, and ¯M̄H are symmetric.

3.4 2D Newcomb Equation

3.4.1 Euler equation forY
We divide the potential energy densityL given by Eq. (3.81) into two parts:L0 for the l = 0
mode and �L for the l , 0 modes,

L = �L +L0, (3.83)

Here �L in Eq. (3.83) is given by

�L = rF2
〈

dȲ
dr |

¯D̄ ¯L̄ ¯D̄|dȲ
dr

〉
+ F2

[〈
dȲ
dr |

¯D̄ (M̄O)t |Ȳ
〉

+

〈
Ȳ|M̄O ¯D̄|dȲ

dr

〉]

+ 〈Ȳ| �K|Ȳ〉 +
∑

l,0
Yl

Kl,0

r2 Y0 + F2
∑

l,0

dYl

dr

(
n
l −

1
q

)
(MO)0,lY0, (3.84)

where
�K =

∑

l,0, j,0

Kl, j

r2 −
d
dr (MH)l, j. (3.85)
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The Euler equation forYl (l = ±1,±2...) derived from Eq. (3.84) reads

(NY)l =
∑

j,0,l

[
d
dr

(
fl, j

dY j

dr

)
+ gl, j

dY j

dr + hl, jY j

]

+
d
dr

[
fl,l

dYl

dr

]
− �Kl,lYl +

d
dr (gl,0Y0) + hl,0Y0 = 0, (3.86)

where

fl, j = rF2
(
n
l −

1
q

) (
n
j −

1
q

)
Ll, j, (3.87)

gl, j = F2
[(

n
l −

1
q

)
(MO) j,l −

(
n
j −

1
q

)
(MO)l, j

]
, (3.88)

hl, j =
d
dr

[
F2

(
n
l −

1
q

)
(MO) j,l

]
− �Kl, j, (3.89)

gl,0 = F2
(
n
l −

1
q

)
(MO)0, j, (3.90)

hl,0 = − �Kl,0. (3.91)

Next,L0 is given by

L0 =
1
ε2

F2

r

∣∣∣∣∣
dY0
dr

∣∣∣∣∣
2

+
K0,0

r2 |Y0|2 + Y0
∑

l,0

K0,l

r2 Yl + Y0
∑

l,0
F2(M̄O ¯D̄)0,l

dYl

dr , (3.92)

where the last two terms in Eq. (3.92) mean the correlation between thel = 0 mode and the
l , 0 modes. The Euler equation forY0(r) derived from Eq. (3.92) is

(NY)0 =
d
dr

(
f0,0

dY0
dr

)
+

∑

l,0

(
g0,l

dYl

dr + �h0,lYl

)
+ �h0,0Y0 = 0, (3.93)

where

f0,0 =
1
ε2

F2

r , (3.94)

g0,l = − F2
(
n
l −

1
q

)
(MO)0,l, (3.95)

�h0,l = − K0,l

r2 . (3.96)

Equations (3.86) and (3.93) are the two-dimensional Newcomb equation expressed by the
Fourier harmonics {Yl(r)}.

3.4.2 Frobenius solution

When the maximum poloidal mode number is taken to beM (l = 0,±1, ...,±M), then Eqs.
(3.86) and (3.93) are second order ordinary differential equations for (2M + 1) harmonics.
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Therefore, they have 2(2M + 1) fundamental solutions around each rational surfacer =

rm (nq(rm) = m). Among the fundamental solutions, two solutions are singular atr = rm,
comprising of big and small solutions, and the remainders are analytic atr = rm [58, 59]. We
obtain the singular solutions by using the Frobenius method [60]. The singular solutions can
be expressed as

Y = xα
[
y(0) + xy(1) + · · ·

]
, (3.97)

where
x ≡ r − rm, (3.98)

andα is the index to be determined. The vectory(0) = {y(0)
l } is

y(0)
l =


y(0)

m for l = m,
0 for l , m,

(3.99)

and (n/m − 1/q) is expanded as

n
m −

1
q = x ·

[
q′
q2

]

r=rm

+ x2 · 1
2

[
q′′
q2 − 2 q′

q3

]

r=rm

+ · · · . (3.100)

In the l = m case, the lowest power components ofx in Eq. (3.86) are

d
dr

rF2
(

n
m −

1
q

)2
Lm,m

dYm

dr

 =

rF2
(

q′
q2

)2
Lm,m


r=rm

α(α + 1)xαy(0)
m + · · · , (3.101)

− �Km,mYm = −
( �Km,m

)
r=rm

xαy(0)
m + · · · , (3.102)

and since the lowest x power in Y j is xα+1,

d
dr

[
rF2

(
n
m −

1
q

) (
n
j −

1
q

)
Lm, j

dY j

dr

]

=

(
n
j −

1
q

) [
rF2 q′

q Lm, j

]
(α + 1)2xαy(1)

p + · · · , (3.103)

F2
[(

n
m −

1
q

)
(MO) j,m −

(
n
j −

1
q

)
(MO)m, j

] dY j

dr

= −
(
n
j −

1
q

) [
F2(MO)m, j

]
(α + 1)xαy(1)

p . (3.104)

Since the lowest x power of other terms in Eq. (3.86) isxα+1, we obtain the equation as

rF2

(
q′
q2

)2
Lm,m

α(α + 1) − �Km,m

 y(0)
m

+
∑

j,m

(
n
j −

1
q

)
(α + 1)

{[
rF2 q′

q2 Lm, j

]
(α + 1) −

[
F2(MO)m, j

]}
y(1)

j = 0. (3.105)
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As well as l = m case, in the l , m and l , 0 case, we derive the equation with the lowestx
power (= xα−1) terms in Eq. (3.86) as

(
n
l −

1
q

)
α(α + 1)

∑

j,m

(
n
j −

1
q

) [
rF2Ll, j

]
y(1)

j

+

(
n
l −

1
q

)
α

{[
rF2 q′

q2 Ll,m

]
α +

[
F2(MO)m,l

]}
y(0)

m = 0. (3.106)

In the l = 0 case, the lowest x power of Eq. (3.93) is xα+2, and we obtain the condition as

y(1)
0 = 0. (3.107)

Equations (3.105) and (3.106) are the homogeneous equations fory(0)
m and y(1)

j ( j , m), and
the indexα is determined by the condition that these equations have the nontrivial solution.
By assumingα , 0, we obtain the linear equation fory(1)

j from Eq. (3.106) as

[
Ll, j

]
z(1)

p = −
{[

q′
q2 Ll,m

]
α +

[(MO)m,l

r

]}
y(0)

m , (3.108)

z(1)
p =

(
n
j −

1
q

)
(α + 1)y(1)

j . (3.109)

From these equations, we obtain

z(1)
l = −

{
α

q′
q2

(
L−1

B
)

l, j
[L j,m] +

(
L−1

B
)

l, j

[(MO)m, j

r

]}
y(0)

m , (3.110)

y(1)
l =

(
n
l −

1
q

)−1 z(1)
l

α + 1 , (3.111)

whereα , −1 is assumed. With Eqs. (3.110) and (3.111), Eq. (3.105) reads
rF2

(
q′
q2

)2
[Lm,m − Lm,l

(
L−1

B
)

l, j
L j,m]α(α + 1)

−
[

�Km,m +

[
F2 q′

q2

]
Lm,l

(
L−1

B
)

l, j
(MO)m, j −

[
F2

r

]
(MO)m,l

(
L−1

B
)

l, j
(MO)m, j

]}
y(0)

m = 0, (3.112)

where we use the condition that ¯L̄ and ¯L̄B are real and diagonal matrices. By introducing

a ≡
rF2

(
q′
q2

)2 [Lm,m − Lm,l
(
L−1

B
)

l, j
L j,m], (3.113)

c ≡ �Km,m +

[
F2 q′

q2

]
Lm,l

(
L−1

B
)

l, j
(MO)m, j −

[
F2

r

]
(MO)m,l

(
L−1

B
)

l, j
(MO)m, j, (3.114)

Eq. (3.112) can be rewritten as
aα(α + 1) = c. (3.115)
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As the solutions of Eq. (3.115), we obtain

αb = − 1
2 − µmer, (3.116)

αs = − 1
2 + µmer, (3.117)

where the Suydam-Mercier indexµmer is

µmer =

√
1
4 +

c
a . (3.118)

By using Eqs. (3.116) and (3.117) in Eqs. (3.110) and (3.111),y(0)
m and y(1)

l (l , m) in Eq. (3.97) can
be determined.

3.5 Eigenvalue Problem

Here we formulate the eigenvalue problem associated with the two-dimensional Newcomb
equation and introduce the boundary condition. The spectra of this eigenvalue problem
consist of only discrete eigenvalues. Thus, the eigenvalues identify the stable state as well as
the unstable state.

3.5.1 Kinetic energy integral

We introduce δWk be a semi-positive de�nite (non-negative) quadratic form of the vector
function Y(r). The condition that the functional

W ≡ δWp − λ δWk (3.119)

is stationary for arbitrary variations ofY yields an eigenvalue problem associated with the
Newcomb equation, where λ is the eigenvalue. The spectral structure of this eigenvalue
problem is determined by the choice of the kinetic energy integral and the boundary condi-
tions at the rational surfaces [30, 57]; the latter choices are discussed in the next subsection.
In the one-dimensional case, the appropriate kinetic energy integral and the boundary con-
ditions are introduced in Ref. [30] and Appendix B. This theory in the one-dimensional case
is applied to the two-dimensional case as

δWk = 2π2
Z ∑

l
ρl(r)|Yl(r)|2dr, (3.120)

where the weight functionρm(r) is given by

ρm(r) = F2
(
m
q − n

)2
(3.121)
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for Ym(r) if m = nq for some r in [0,1], and by

ρl(r) = F2 (3.122)

for Yl(r) if l , nq for any r in [0,1]. Therefore, the eigenvalue problem generated by Eqs.
(3.119) and (3.120) is

NλY = 0, (3.123)
Nλ = N + λDiag(ρl(r)). (3.124)

This is the eigenvalue problem associated with the two-dimensional Newcomb equation. We
�nd by direct inspection that the Frobenius series of the singular solutions for Eq. (3.123)
coincide with those for the original Newcomb equation to the second terms.

The spectra λ of the eigenvalue problem consist of real and denumerable eigenvalues
without continuous spectra by imposing correctly the boundary conditions forY(r) at the
rational surfaces. The eigenvaluesλ j can be ordered in the form ofλ0 ≤ λ1 ≤ ..., and each
eigenfunction behaves as a sum of the small and the analytic solutions for the original New-
comb equation at each rational surface thanks to the form of the weight functions given by
Eqs. (3.121) and (3.122). Next, the stability against the ideal MHD motion is determined by
the sign of the minimum eigenvalueλ0 ; if λ0 is negative, the plasma is unstable. When the
plasma is marginally stable, the eigenvalue problem has the null eigenvalue (λ = 0) with
the nontrivial global solution. Furthermore, from the theory of eigenfunctions, we have
λ = δWp/δWk, where both potential and kinetic energies are evaluated by using the eigen-
function corresponding to the eigenvalueλ.

3.5.2 Boundary conditions

When we consider the one-dimensional problem, the correct boundary condition at ratio-
nal surfaces is the �natural boundary condition� [30]. In this two-dimensional case, to de-
termine the boundary conditions at rational surfaces, let us rewrite Eq. (3.119) in a general
quadratic form

W[Y] =

Z 1

0

{〈
dY
dr |A|

dY
dr

〉
+

〈
dY
dr

∣∣∣Bt
∣∣∣ Y

〉
+

〈
Y |B| dY

dr

〉
+ 〈Y |C|Y〉

}
, (3.125)

where matricesA, B, and C have the block matrix structure, andA and C are Hermitian. The
stationary condition forW[Y] for the arbitrary variation forY yields

δW = −
Z 1

0
δY · NλYdr +

〈
δY

∣∣∣∣∣A
dY
dr + BtY

〉∣∣∣∣∣∣
1

0
= 0, (3.126)

where the operationNλ is written as

NλY ≡ d
dr

(
AdY

dr

)
+

d
dr

(BtY) − BdY
dr − CY, (3.127)
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and the second term in the RHS of Eq. (3.126) expresses the boundary terms.
By assuming, for simplicity, that onlyr = rm is the rational surface, and the �xed bound-

ary condition at r = 1 as Y(1) = 0, the boundary term becomes

boundary term =

〈
δY

∣∣∣∣∣A
dY
dr + BtY

〉

r=rm−0
−

〈
δY

∣∣∣∣∣A
dY
dr + BtY

〉

r=rm+0
, (3.128)

where we have used the regularity condition, Eq. (3.76), atr = 0. Since δY is arbitrary, we
obtain Eqs. (3.123) and (3.124) and the boundary condition at the rational surface

[
AdY

dr + BtY
]

r=rm−0
=

[
AdY

dr + BtY
]

r=rm+0
. (3.129)

As mentioned in Subsection 3.4.2, an eigenfunctionY(r) around r = rm is a sum of the singu-
lar component Y(s)(r) proportional to the small solution and the analytic componentY(a)(r),

Y(r) = Y(a)(r) + Y(s)(r). (3.130)

For the analytic component,AdY(a)/dr + BtY(a) is continuous and the condition Eq. (3.129) is
automatically satis�ed. The singular component, on the other hand, are independent across
r = rm, and we �nd that the conditions

[
AdY(s)

dr + BtY(s)
]

r=rm−0
= 0, (3.131)

[
AdY(s)

dr + BtY(s)
]

r=rm+0
= 0, (3.132)

are satis�ed independently atr = rm − 0 and r = rm + 0.
Since the l , m harmonics in the singular componentY(s)(r) begin from the powerx1/2+µmer

for l , 0, or x3/2+µmer for l = 0 (x = r − rm), Yl(r) is continuous at r = rm for l , m. Therefore,
we can impose at r = rm the continuous condition forYl(r), l , m, and the natural boundary
condition for Ym(r). These conditions are convenient from the numerical point of view. This
is the reason we adopt the Fourier harmonic representation ofY.

3.6 Numerical code MARG2D

For realizing the stability analysis of ideal MHD modes on the basis of the analytical model
derived in the previous sections, a code MARG2D, which compute the eigenfunction by us-
ing the lowest order �nite hybrid element method [61], have been developed [29]. In this
code, Y(r) and dY/dr are approximated as

Y(r) =

N∑

j=1

Y j + Y j+1

2 e j+1/2(r), (3.133)

dY
dr =

N∑

j=1

Y j+1 − Y j

r j+1 − r j
e j+1/2(r), (3.134)



3.6: Numerical code MARG2D 31

where {r j}'s are nodal points in the radial direction, and the elemente j+1/2(r) is de�ned by
e j+1/2(r) = 1 for r j < r < r j+1, and e j+1/2(r) = 0, otherwise. By substituting Eqs. (3.133) and
(3.134) into Eqs. (3.80) and (3.81), we obtain a matrix expressing the plasma potential energy
integral as follows.

Z 〈
Y

∣∣∣∣∣
1
r2 K

∣∣∣∣∣ Y
〉

dr =

NR∑

j=1

〈
Y j + Y j+1 |K∆|Y j + Y j+1

〉
, (3.135)

Z 〈
∂

∂r Ȳ
∣∣∣ ¯D̄ ¯L̄ ¯D̄

∣∣∣ ∂
∂r Ȳ

〉
dr =

NR∑

j=1

〈
Ȳ j+1 − Ȳ j |L∆| Ȳ j+1 − Ȳ j

〉
, (3.136)

Z 〈
Y

∣∣∣M̄O ¯D̄
∣∣∣ ∂
∂r Ȳ

〉
dr =

NR∑

j=1

〈
Y j + Y j+1 |M∆| Ȳ j+1 − Ȳ j

〉
, (3.137)

Z 〈
∂

∂r Ȳ
∣∣∣ ¯D̄ (M̄O)t

∣∣∣ Y
〉

dr =

NR∑

j=1

〈
Ȳ j+1 − Ȳ j

∣∣∣Mt
∆

∣∣∣ Y j + Y j+1
〉
, (3.138)

Z ∣∣∣∣∣
∂

∂rY0

∣∣∣∣∣
2

dr =

NR∑

j=1

〈
(Y0) j+1 − (Y0) j |R∆| (Y0) j+1 − (Y0) j

〉
, (3.139)

Z 〈
Ȳ

∣∣∣∣∣−
d
dr

¯M̄H

∣∣∣∣∣ Ȳ
〉

dr =

NR∑

j=1

〈
Ȳ j + Ȳ j+1 |dM∆| Ȳ j + Ȳ j+1

〉
, (3.140)

where NR is the is the mesh number in the radial direction,

K∆ =
K(r j+1/2)
4r2

j+1/2
∆r j+1/2, (3.141)

L∆ =
¯D̄(r j+1/2) ¯L̄(r j+1/2) ¯D̄(r j+1/2)

∆r j+1/2
, (3.142)

M∆ =
M̄O(r j+1/2) ¯D̄(r j+1/2)

2 , (3.143)

Mt
∆ =

¯D̄(r j+1/2)
(
M̄O(r j+1/2)

)t

2 , (3.144)

R∆ =
1

∆ j+1/2
, (3.145)

dM∆ =
∆r j+1/2

4

(
d
dr

¯M̄H

)

r=r j+1/2

, (3.146)

and

r j+1/2 =
r j + r j+1

2 , (3.147)

∆r j+1/2 = r j+1 − r j. (3.148)
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The surface term in Eq. (3.82) is already expressed in a matrix form, and the kinetic energy
integral in Eq. (3.120) can be written as

δWk = 2π2λ
∑

m

NR∑

j=1

〈
(Y j)m + (Y j+1)m |(Qm)∆| (Y j)m + (Y j+1)m

〉
(3.149)

= 2π2λ

NR∑

j=1

〈
Y j + Y j+1 |Q∆|Y j + Y j+1

〉
, (3.150)

where
(Q∆)m,m =

ρm(r j+1/2)
4 ∆r j+1/2. (3.151)

By introducing the vector

Ξ =



Y−MM

Y−MM+1
...

YMM−1

YMM



=



(Y1)−MM

(Y1)−MM+1

(Y1)−MM+2
...

...

(YNR+1)MM−2

(YNR+1)MM−1

(YNR+1)MM



, (3.152)

where MM is the maximum poloidal mode number to be considered, we derive the general-
ized eigenvalue problem in a matrix form as

AWpΞ = λBWkΞ. (3.153)

Here the matrices AWp and BWk are obtained with Eqs. (3.135)-(3.146) and Eqs. (3.150) and
(3.151), respectively. The numerical numerical method to solve the eigenvalue problem Eq.
(3.153) is a direct method with the LU factorization and the inverse iteration method [62].

3.7 Application to the theory for the external mode analysis

In the previous sections, we formulated the eigenvalue problem associated with the two-
dimensional Newcomb equation Eqs. (3.123) and (3.124), and the sign of the minimum eigen-
value determines the stability of a plasma with the �xed boundary condition at the plasma
surface. With the relation Eq. (2.62), this eigenvalue problem can be extended for the ex-
ternal mode analysis by calculating the vacuum energy contributionδWV ; two methods for
obtaining such a vacuum contribution will be introduced in Section 4.2, Appendix C and
Chapter 5.

For analyzing the external mode stability, a theory for the stability analysis of external
MHD modes in a tokamak is developed by using the property of the Newcomb equation.
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In this section, we formulate the method based on this theory, called the stability matrix
method.

The bilinear form for ideal MHD motion with Eq. (3.125) and the contribution from the
vacuum region is written as

W[ξ, η] = Wp[ξ, η] + 〈ξa|MV |ηa〉, (3.154)

where ξa = ξ(a),
Wp[ξ, η] =

Z a

0
L[ξ, η]dr, (3.155)

L[ξ, η] =

〈
dξ
dr |L|

dη
dr

〉
+

〈
ξ|K|η〉 +

〈
dξ
dr |M

t|η
〉

+

〈
ξ|M|dηdr

〉
, (3.156)

and the matrix MV stands for the contribution from the vacuum region. Let us notice that in
Eq. (3.156)

dξ j

dr (L) j,k
dηk

dr =
d
dr

[
ξ j (L) j,k

dηk

dr

]
− ξ j

d
dr

[
(L) j,k

dηk

dr

]
, (3.157)

and
dξ j

dr (Mt) j,kηk =
d
dr

[
ξ j(Mt) j,kηk

]
− ξ j

d
dr

[
(Mt) j,kηk

]
. (3.158)

Let S = {ξ | Nξ = 0} be a set of functions that satisfy the Newcomb equation. By using Eqs.
(3.157) and (3.158) and the integration by part in Eq. (3.155), we have forξ(r), η(r) ∈ S

Wp[ξ, η] = 〈ξa|MH |ηa〉 +
1
2

〈
ξa|L|

dηa
dr

〉
+

1
2

〈dξa
dr |L|ηa

〉
, (3.159)

MH := 1
2(M + Mt). (3.160)

Therefore, the bilinear form of the ideal plasma motion that satis�es the Newcomb equation
can be expressed in terms of the boundary values of the displacement. Next, letYm(r) be a
vector function (m = 0,±1, · · · ,±L f )

Ym(r) = (Ym
−L f (r), · · · ,Ym

L f (r))t, (3.161)

where each poloidal harmonicYm
l (r) satis�es the condition

Ym
l (a) = 0 (l , m), Ym

m (a) = 1, (3.162)

for l = 0,±1, · · · ,±L f . The set {Ym(r)} forms a basis for external modes [10]; any external
mode can be expressed by using a set of real numbers{xm} as

ξ(r) =
∑

m
xmYm(r). (3.163)
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Let us notice that ξm(a) = xm for the m−th poloidal Fourier harmonics ofξ(r). The change of
the potential energy due to the modeξ is given by the quadratic form of the vectorx,

W[ξ, ξ] = 〈x|A|x〉, (3.164)

where the matrix A is given by
A = Mp + MV , (3.165)

(
Mp

)
l,m

= Wp[Yl,Ym]. (3.166)

The matrix A is real and symmetric for an equilibrium with the mirror symmetry. We call in
the present paper A the stability matrix for external modes. The stability of external modes
is clari�ed by solving the eigenvalue problem

Ax = µx, (3.167)

where µ denotes the eigenvalue of A; this is to emphasize the difference between the eigen-
value problem Eqs. (3.123) and (3.124), the eigenvalue is de�ned asλ, and that Eq. (3.167).
If the minimum eigenvalue ofA is negative, then the plasma is unstable against ideal exter-
nal kink modes. The stability matrixA also plays an indispensable role in the stability for
resistive wall modes [10].

The basis Ym(r) can be constructed by using the response formalism [30]. Let us write
Ym(r) as

Ym(r) = Xm(r) + Zm(r), (3.168)

where Zm(r) given analytically satis�es the inhomogeneous boundary condition Eq. (3.162).
Consequently, we have an inhomogeneous equation forXm(r) with the homogeneous bound-
ary condition [63]

NXm(r) = −NZm(r), Xm(a) = 0. (3.169)

Since Eq. (3.169) can be solved by the MARG2D code, we can construct the basis{Ym(r)} and
the stability matrix A.

On solving Eq. (3.169), the same boundary condition with the eigenvalue problem Eqs.
(3.123) and (3.124) is imposed at the rational surfaces. Also the matrixMV is computed under
the assumption of no wall limit or ideal conducting wall. Those conditions guarantee the
Hermitian property of the stability matrixA. However, if the plasma surface coincidesex-
actly with the rational surface, an eigenvalue problem cannot be constructed for an external
kink mode within the present formulation. This aspect is similar to the ERATOJ code.

The MARG2D-SM code realizes the analysis of the external mode stability with the stabil-
ity matrix. In this code, the inhomogeneous equation Eq. (3.169) is numerically solved with
the LU factorization, and the eigenvalue problem Eq. (3.167) is solved with the QR algorithm
for real Hessenberg matrices [62].



Chapter 4

Application of the two-dimensional
Newcomb equation to compute the
stability matrix of external MHD modes
in tokamaks

4.1 Introduction

The Newcomb equation, the inertia free linear ideal MHD equation [27,28], plays fundamen-
tal roles in the MHD stability theory, as mentioned in Chapter 3. A code MARG2D [29] has
been developed which solves numerically the two-dimensional Newcomb equation and the
associated eigenvalue problem by a �nite element method [30, 32]. We can know the ideal
MHD stability of the plasma from the sign of the eigenvalueλ; if λ be positive (negative),
then the plasma is stable (unstable) against ideal MHD perturbations.

I also have introduced in Section 3.7 the application of the theory of the Newcomb equa-
tion to the stability analysis of external modes in a tokamak. In this application, a matrix
method has been developed by using the property of the Newcomb equation to express the
change of the potential energy due to the plasma displacement by a quadratic form (a matrix
form) with respect to the values of the displacement at the plasma surface [10].

In this chapter, I execute the benchmark tests of the MARG2D-SM code, which realizes the
external mode analysis with the stability matrix, by comparing the ERATOJ code in several
cases. After con�rming the validity of the stability matrix method, we study comprehen-
sively the spectral structure of ideal external modes, stable or unstable, by using the newly
developed method.

The formulation introduced in Section 3.7 is indispensable for the analysis of the resis-
tive wall modes (RWMs) and a code DCON has already reported [13]. However, if the matrix

35
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method be combined with the eigenvalue problem associated with the original Newcomb
equation in the MARG2D code, the MARG2D-SM code enables us to get deeper insight into
the spectral properties of the external modes. These MARG2D and MARG2D-SM codes clar-
ify the effects of stable internal modes in a high-β plasma on the properties of the external
modes. Among such effects, the stable internal modes can destabilize external modes and
change the surface mode structure of external modes into a global mode structure when the
internal modes approach to their marginal stability. The code also elucidates the difference
of the spectral properties between a normal shear tokamak and a reversed shear tokamak.
These spectral properties of ideal external modes not only are interesting by themselves but
also will be useful in the study of RWMs.

With the bene�ts of this MARG2D-SM code, the facility and the short computation time
for identifying the marginal stability, I apply this code to analyze an effect of the aspect ra-
tio on an external kink-ballooning stability, which attracts attention recently in the design
research on high-performance tokamaks.

In Section 4.2, I show benchmark tests of the present formulation with ERATOJ code [32]
(the JAERI version of the ERATO code). After con�rming the validity of the MARG2D-SM
code, the spectral properties of external modes are investigated in Section 4.3. In Section 4.4
we study, numerically and analytically, the coupling between external modes and internal
modes by using the stability matrix method together with the associated eigenvalue prob-
lem for internal modes. An effect of the aspect ratio on the stability of ideal external kink-
ballooning modes is investigated in Section 4.5. Summary of the present work is given in
Section 4.6.

4.2 Benchmark test of MARG2D code

We execute benchmark tests among the method that solves Eq. (3.167) with the stability ma-
trix (SM) by the MARG2D-SM code, that solving the eigenvalue problem associated with the
Newcomb equation

Nξ = −λDiag(ρ(r))ξ, (4.1)

with the free boundary condition(EV) by the MARG2D code, and the ERATOJ code [32]. Here
this eigenvalue problem Eq. (4.1) and the numerical codes MARG2D and MARG2D-SM are
introduced in Chapter 3.

The Equilibria used in benchmark tests have circular cross sections with the aspect ratio
A = 3.30; they are obtained by solving Grad-Shafranov equation numerically [48]. Figure 4.1
shows the contour ofψ = const., and the pro�les of the pressure p(s) and the safety factor
q(s) (s =

√
ψ) with the poloidal betaβp = 0.01; it is de�ned in Eq. (2.33). The safety factor at

the magnetic axis q0 and that at the plasma surfaceqa are 1.32 and 2.80.
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(a)

Figure 4.1: Equilibrium for benchmark tests whenβp = 0.01. (a) Contours of ψ (magnetic
surfaces). Solid lines are forψ ≤ 0 (plasma region), and the broken lines are forψ > 0 (vac-
uum region). The outermost solid line shows the plasma surface. (b) Pro�les of the pressure
p and the safety factor q (s =

√
ψ). The values of the safety factor at the magnetic axisq0 and

that at the plasma surfaceqa are 1.32 and 2.80, respectively.

We �rst investigate the stability of n = 1 ideal external kink modes in the (qa, µ) plane,
where µ is the eigenvalue of the stability matrix. A series of equilibria (�ψ, �p, �F) is obtained
from the known equilibrium (ψ, p, F), as shown in Fig. 4.1, by the scaling with the parameter
σ,

�ψ = σψ, (4.2)

�p( �ψ) = σ2 p(ψ), (4.3)

�F2( �ψ) − �F2( �ψ0) = σ2
[
F2(ψ) − F2(ψ0)

]
, (4.4)

whereψ0 is the poloidal �ux function at the magnetic axis. The safety factorq is scaled as

�q( �ψ) =
1
σ

�F( �ψ)
F(ψ)q(ψ), (4.5)

however, since �Ip changes as �Ip = σIp, βp is unchanged by this scaling. In this article, each
equilibrium has no current density on the plasma surface.

The mesh numbers in both the MARG2D codes and the ERATOJ code are determined by
con�rming the convergence of the eigenvalues. Since the ERATOJ code is based on the two-
dimensional �nite element method with the lowest order elements, this code needs at least
four times mesh numbers in the poloidal direction as many as the MARG2D codes, based
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on the Fourier harmonics in the poloidal direction. On the other hand, in the radial direc-
tion, the MARG2D codes needs many mesh numbers near each rational surface to meet the
convergence. In this paper, the radial mesh numberNPS IM2D = 1200 and the maximum
poloidal mode number MM2D = 32 are set for both the MARG2D codes, and the radial mesh
number NPS IERT = 500 and the mesh number in the poloidal directionNCHIERT = 256 are
used for ERATOJ.

In both the MARG2D and the ERATOJ codes, the matrix representing the vacuum con-
tribution, MV in Eq. (3.154), is calculated by using a Green's function of the scalar potential
for the perturbation of magnetic �elds in the vacuum [32, 64] with no wall limit assumption.
The Calculation with a Green's function technique is demonstrated in Appendix C.

Figure 4.2 shows the dependence of the minimum eigenvalues onqa; this expresses the
stability of the ideal external mode in theA = 3.30 and βp = 0.01 equilibria. The solid line
denotes the minimum eigenvalues of SMµ0, the dashed line shows those obtained by EV
λ0−M2D, and the dotted line is for those calculated by ERATOJλ0−ERT , respectively. Ideal exter-
nal modes are marginally stable when the minimum eigenvalue equals to zero. From this
�gure, qa−mgl which are the qa values when ideal external modes are marginally stable are
obtained by the SM method asqa−mgl = 2.66 and 3.00, which well agree with those obtained
by EV and ERATOJ.

We also compare the eigenfunctions belonging to the minimum eigenvalues whenqa =

2.67 which is close toqa−mgl; each minimum eigenvalue is negative. As shown in Fig. 4.3, each
poloidal Fourier harmonic of these eigenfunctions obtained by (a) SM, (b) EV, and (c) ERATOJ
is similar to each other. These show surface modes with the dominant harmonicl = 3; it
is a well-known feature of m ≥ 2 ideal external kink modes in low-βp tokamaks [65]. The
harmonics l = 2 and l = 4 are excited by the poloidal mode coupling with the harmonicl = 3.
While the harmonic l = 2 computed by the ERATOJ code is smooth atq = 2 rational surface
(s = 0.85), this harmonic obtained by the MARG2D codes is discontinuous atr = 0.81, which
is the feature of the MARG2D formulation explained in the previous sections.

A next benchmark test is executed in theβp = 0.80 equilibria, whose p and q pro�les
when σ = 1 are shown in Fig. 4.4. The values of q0 and qa are 1.30 and 2.80, respectively.
Figure 4.5 shows the dependence of the minimum eigenvalues onqa. The qa−mgl value is
obtained by the SM method as qa−mgl = 4.28, and also well agrees with those obtained by
other methods. The dependences of the minimum eigenvalues onqa revealed by these three
methods are convex downward between qa = 3.00 and qa = qa−mgl = 4.28. The poloidal
Fourier harmonics of the eigenfunctions belonging to the minimum eigenvalues whenqa =

4.27, that is close toqa−mgl, are shown in Fig. 4.6. These Fourier harmonics obtained by (a) SM,
(b) EV, and (c) ERATOJ are also almost same each other, and have global mode structures.

The qa dependence ofµ0 and structures of the eigenfunctions are different from those in
the low-βp case in �gures Figs. 4.2 and 4.3, and it seems that only the poloidal mode coupling
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Figure 4.2: Dependence of the minimum eigenvalues onqa when βp = 0.01. The labelµ0 de-
notes the minimum eigenvalue of the stability matrix (SM),λ0−M2D is that obtained by solv-
ing Eq. (4.1) with the free boundary condition (EV), andλ0−ERT is that calculated by ERATOJ,
respectively. The marginally stableqa values are clari�ed by SM as qa−mgl = 2.66 and 3.00,
and are identical to those obtained by EV and ERATOJ.

will not explain the causes of such differences. These are the next topics discussed in Sections
4.3 and 4.4.

4.3 Spectral structure of external modes in tokamaks

The stability matrixA given by Eq. (3.165) should possess the all properties of external modes
even when these modes are stable. Among them, an interesting property is the intersection
of the eigenvalues of the modes in tokamaks [33, 65]. Here we investigate numerically such a
spectral structure of the external modes by using the stability matrix.

Reference [33] has shown that the spectral structure, in particular, the intersection of the
eigenvalues, is strongly affected by both the aspect ratioA and the current poloidal betaβp.
Consequently, we make three kinds of equilibria whoseA and βp are different from each
other. One is the A = 100 and βp = 0.01 equilibrium (EQ-1), and the second is theA = 3.30
and βp = 0.01 equilibrium (EQ-2); p and q of these equilibria are shown in Fig. 4.7. The
values of q0 and qa in the EQ-1 case are1.32 and 2.80, respectively. The last one is theA = 3.30
and βp = 0.80 equilibrium, already shown in Fig. 4.4 (EQ-3). Each equilibrium has circular
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Figure 4.3: Poloidal Fourier harmonics of the eigenfunctions belonging to the minimum
eigenvalues whenβp = 0.01 and qa = 2.67. These are obtained by (a) SM, (b) EV, and (c) ERA-
TOJ. The harmonics Yl obtained by three methods are similar to each other, and these show
typical surface modes with the dominant harmonicl = 3. The harmonic l = 2 computed by
the MARG2D codes is discontinuous atq = 2 rational surface (r = 0.81) while this harmonic
obtained by ERATOJ is smooth at s = 0.85.
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Figure 4.4: Pro�les of the pressure p and the safety factorq of theβp = 0.80 equilibrium. The
values of q0 and qa are 1.30 and 2.80, respectively. The magnetic surfaces of this equilibrium
are circular.
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Figure 4.5: Dependence of the minimum eigenvalues onqa when βp = 0.80. The marginally
stable qa values obtained by three methods are identical with each other asqa−mgl = 4.28. The
behaviors of the qa dependence of the minimum eigenvalues are convex downward and are
similar to each other betweenqa = 3.00 and qa = qa−mgl = 4.28.
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Figure 4.6: Poloidal Fourier harmonics of the eigenfunctions belonging to the minimum
eigenvalues when βp = 0.80 and qa = 4.27. These are obtained by (a) SM, (b) EV, and (c)
ERATOJ, which are similar to each other, and have global mode structures unlike the eigen-
functions in the low-βp case in Fig. 4.3.
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Figure 4.7: Pro�les of the pressure p and the safety factor q of the A = 100 equilibrium and
those of the A = 3.30 one. The p pro�le and βp are same for both cases (βp = 0.01). The q
pro�les are shown with the dashed line (A = 100) and the dotted line (A = 3.30). The values
of q0 and qa are 1.32 and 2.80, respectively. The magnetic surfaces of this equilibrium are
circular.

cross sections. The q pro�le is scaled as Eq. (4.5), and the vacuum contribution is calculated
by assuming no wall limit.

Figure 4.8(a) shows the qa dependence of the eigenvalues, called the spectral structure,
in the EQ-1 case. The solid line, the dashed line, the dotted line, the dot-2dashed line, and
the short-dotted line, denote the minimum, the second, the third, the fourth, and the �fth
eigenvalues, respectively. The i-th (i = 2, 3, ...) eigenvalue intersects the i ± 1-th eigenvalues
in the stable regionµ > 0. For example, in Fig. 4.8(b) that is the enlargement of Fig. 4.8(a)
in 4.50 ≤ qa ≤ 6.00, the minimum eigenvalue intersects the second eigenvalue between
qa = 5.15 and 5.40.

The meaning of the spectral intersection can be understood from the poloidal Fourier
harmonics of the eigenfunctions. Figure 4.9(a) shows the poloidal Fourier harmonics of the
eigenfunction belonging to the minimum eigenvalue (EFmin) when qa = 5.15 and the dom-
inant harmonic of this eigenfunction isl = 5; Fig. 4.9(b) shows those of the eigenfunction
belonging to the second eigenvalue (EFsecond) when qa = 5.15 and the dominant harmonic
of this eigenfunction is l = 6. On the other hand, whenqa = 5.40, just after the intersection
point, the dominant harmonic of EFmin shown in Fig. 4.9(c) isl = 6, and that of EFsecond in Fig.
4.9(d) is l = 5. From these �gures, we see the exchange of the eigenfunction belonging to the
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Figure 4.8: (a) Spectral structure of n = 1 ideal external kink modes in the A = 100 and
βp = 0.01 equilibria. (b) Expansion of �gure (a) in 4.50 ≤ qa ≤ 6.00. The analysis with
the stability matrix reveals the spectral structure of external modes when these modes are
stable. The i-th eigenvalue intersects the (i ± 1)-th eigenvalues in the stable region,µ > 0
(i = 2, 3, ...).

i-th eigenvalue for that belonging to the i + 1-th or i − 1-th eigenvalue induces the spectral
intersection.

Next, the spectral structure in the EQ-2 case (A = 3.30, βp = 0.01) is shown in Fig. 4.10(a).
Unlike in the EQ-1 case, we see gaps at the intersection between thei-th eigenvalue and the
i±1 eigenvalues; we call them the spectral gaps. We look at the spectral gap betweenqa = 5.15
and qa = 5.40 in Fig. 4.10(b), the enlargement of Fig. 4.10(a) in4.50 ≤ qa ≤ 6.00. The poloidal
Fourier harmonics of the eigenfunctions are shown in Fig. 4.11. EFmin when qa = 5.15, whose
dominant harmonic isl = 5, changes to EFsecond as qa increases to5.40, and EFsecond when qa =

5.15, whose dominant harmonic isl = 6, becomes EFmin as qa becomes larger to5.40. We also
observe a difference between the case ofA = 100 and that of A = 3.30. In the A = 3.30 case,
the dominant harmonics of these eigenfunctions excite the neighbor harmonics; especially
the eigenfunctions whose dominant harmonic isl = 6, shown in �gures 4.11(b) and 4.11(c),
accompany the harmonics l = 4, 5, and 7. The poloidal couplings originated from the �nite
aspect ratio effect induce these harmonics, and are thought to make the spectral gaps in the
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Figure 4.9: Poloidal Fourier harmonics of the eigenfunction whenA = 100 and βp = 0.01.
(a) The eigenfunction belonging to the minimum eigenvalue and (b) that belonging to the
second eigenvalue whenqa = 5.15. (c) The eigenfunction belonging to the minimum eigen-
value and (d) that belonging to the second eigenvalues whenqa = 5.40. The eigenfunction,
whose dominant harmonic is l = 5, changes from the eigenfunction belonging to the mini-
mum eigenvalue to that belonging to the second eigenvalue asqa increases from5.15 to 5.40.
On the other hand, the eigenfunction belonging to the second eigenvalue whenqa = 5.15,
whose dominant harmonic is l = 6, becomes the eigenfunction belonging to the minimum
eigenfunction whenqa = 5.40.
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Figure 4.10: (a) Spectral structure ofn = 1 external kink modes in theA = 3.30 and βp = 0.01
equilibria. (b) Expansion of �gure (a) in4.50 ≤ qa ≤ 6.00. Spectrum gaps are generated at
the spectral intersection points.

spectral structure [33].
We show in Fig. 4.12(a) the spectral structure in the EQ-3 case (βp = 0.80). The spectral

gaps become wider than those in the EQ-2 case. This is because of increase inβp, and this
effect of βp is consistent with the analysis in [33]. However, we observe that the structure
is qualitatively different from the previousβp = 0.01 cases. The minimum eigenvalue be-
comes negative (unstable) in the regionqa ≤ 4.28; this feature is already seen in Fig. 4.5.

To reveal theβp effect in detail, we focus on the region for5.15 ≤ qa ≤ 5.40 shown in Fig.
4.12(b), the enlargement of Fig. 4.12(a) in4.50 ≤ qa ≤ 6.00 as in the previous cases. Figure
4.13 shows EFmin and EFsecond when qa = 5.15 and qa = 5.40, respectively. Although, the
mode structures become more complicated than those in the low-βp cases, we see the l = 5
and 6 harmonics in EFmin and EFsecond exchange for each other as qa increases from 5.15 to
5.40. However, each eigenfunction has the global mode structure whosel = 3 harmonic
is strongly excited. This suggests that the �niteβp effect induces, as well as the well-known
poloidal coupling as in the EQ-2 case, another coupling between external modes and internal
modes.
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Figure 4.11: Poloidal Fourier harmonics of the eigenfunction whenA = 3.30 and βp = 0.01.
(a) The eigenfunction belonging to the minimum eigenvalue and (b) that belonging to the
second eigenvalue whenqa = 5.15. (c) The eigenfunction belonging to the minimum eigen-
value and (d) that belonging to the second eigenvalue whenqa = 5.40. The eigenfunction be-
longing to the minimum eigenvalue and that belonging to the second eigenvalue exchange
for each other when qa increases from 5.15 to 5.40. The dominant harmonics of these eigen-
functions accompany the neighbor harmonics; especially in the eigenfunction whose domi-
nant harmonic is l = 6, shown in �gures 4.11(b) and 4.11(c), thel = 4, 5, and 7 harmonics are
excited.
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Figure 4.12: (a) Spectral structure ofn = 1 external modes when A = 3.30 and βp = 0.80. (b)
Expansion of �gure (a) in4.50 ≤ qa ≤ 6.00. There are spectrum gaps and the widths of them
are broader than those of the gaps whenA = 3.30 and βp = 0.01 in Fig. 4.10. The minimum
eigenvalues become negative (unstable) in the regionqa ≤ 4.28.

4.4 Coupling between ideal external modes and ideal internal
modes

4.4.1 Coupling in high-βp normal shear tokamaks

In this section, we verify the conjecture in the previous section; external modes couple with
internal modes in the high-βp case. We analyze the stability of internal modes by solving
the associated eigenvalue problem Eq. (4.1) with the �xed boundary condition at the plasma
surface (EV-�x), and compare the qa dependence of λ0−int with that of µ0, where λ0−int is the
minimum eigenvalue obtained by EV-�x andµ0 is that of the stability matrix (SM). The eigen-
values λ0−int give us the spectral structure of internal modes even when these modes are sta-
ble [29]. Moreover, the SM method assumes that internal modes are stable, then the stability
of external modes can be analyzed separately from that of internal modes. With these fea-
tures, we can investigate the coupling between external modes and internal modes.

The equilibria used in this section are already shown in Fig. 4.4; whose cross sections are
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Figure 4.13: Poloidal Fourier harmonics of the eigenfunction whenA = 3.30 and βp = 0.80.
(a) The eigenfunction belonging to the minimum eigenvalue and (b) that belonging to the
second eigenvalue whenqa = 5.15. (c) The eigenfunction belonging to the minimum eigen-
value and (d) that belonging to the second eigenvalue whenqa = 5.40. The l = 5 and 6 har-
monics of the eigenfunction belonging to the minimum eigenvalue and those of the eigen-
function belonging to the second eigenvalue exchange for each other whenqa increases from
5.15 to 5.40. However, unlike in the low-βp toroidal case shown in Fig. 4.11, the l = 3 har-
monic of these eigenfunctions is strongly excited.
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Figure 4.14: (a) Dependence ofµ0 on qa and that ofλ0−int on qa whenβp = 0.80. The labelλ0−int

is the minimum eigenvalue obtained by solving Eq. (4.1) with the �xed boundary condition.
The µ0 value tends toward−∞ as λ0−int approaches to +0 near qa = 2.30. Additionally, near
qa = 4.00, the qa dependence of µ0 and that of λ0−int are convex downward. These results
imply that the stability of internal modes affects that of external modes. (b) Dependence of
µ0 on qa and that of Ω0−int on qa. This result also intimates that the stability of external modes
is in�uenced by internal modes.

circular andβp = 0.80. The vacuum contribution is calculated with the assumption of the no
wall limit same as in the previous sections. The stability of internal modes is investigated in
the (qa, λ0−int) plane, and a series of equilibria is obtained by the scaling as in Sections 4.2 and
4.3.

The eigenvalue λ0−int expresses the potential energy integral δWp = 2π2 R 1
0 〈Y|NY〉 dr

normalized with the kinetic energy integralδK = 2π2 R 1
0
〈Y|Diag(ρ(r))|Y〉 dr. However, the

weight function ρ(r) in δK varies as the safety factor pro�le changes. We introduce the nor-
malized potential energyΩ0−int de�ned as

Ω0−int = ¯δWp =

Z 1

0

〈
Ȳ|NȲ

〉
dr = λ0−int

Z 1

0

〈
Ȳ|Diag(ρ)|Ȳ

〉
dr, (4.6)

where 〈
Ȳ|Ȳ

〉
= 1, (4.7)

and also investigate the stability of internal modes by comparing the values ofΩ0−int.
Figure 4.14(a) shows theqa dependences ofµ0 and that ofλ0−int, and the qa dependence of

Ω0−int is shown in Fig. 4.14(b). The solid line denotesµ0 expressing the stability of external
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Figure 4.15: Poloidal Fourier harmonics of the eigenfunction belonging to the minimum
eigenvalue when qa = 2.32. (a) Eigenfunction obtained by solving Eq. (4.1) with the �xed
boundary condition (λ0−int = 1.32 × 10−3). (b) Eigenfunction obtained with the stability ma-
trix (µ0 = −27.5). Since these are almost same as each other, the stability of internal modes
affects that of external modes.

modes, already shown in Fig. 4.5, and the dashed line in Fig. 4.14(a) showsλ0−int and that in
Fig. 4.14(b) indicates Ω0−int for the stability of internal modes. Whenqa < qa−mgl−int = 2.306
(q0 < 1.069), internal modes whose dominant poloidal Fourier harmonic isl = 1 become
unstable, and the analysis with SM is invalid.

When qa is close to but larger than qa−mgl−int, µ0 tends toward −∞ as λ0−int approaches
to +0, asymptotically. The poloidal Fourier harmonics of the eigenfunction belonging to
λ0−int and those of the eigenfunction belonging toµ0 when qa = 2.32 are shown in �gures
4.15(a) (λ0−int = 1.32 × 10−3) and 4.15(b) (µ0 = −27.5), respectively. Though the eigenfunc-
tion belonging toµ0 expresses an external mode, both eigenfunctions are indistinguishable.
These results show that internal modes strongly affect the stability of external modes when
qa ' qa−mgl−int. The behavior ofµ0 near qa = qa−mgl−int will be investigated analytically in the
next subsection.

In the region 3.00 < qa < 4.30, the dependence ofλ0−int and that of Ω0−int on qa shown in
Fig. 4.14, is convex downward. Moreover, theqa dependence ofµ0 in Fig. 4.14 is also convex
downward; qa = 3.97 where µ0 takes the minimum value is nearly equal toqa = 3.98 where
λ0−int becomes minimum, and is also close toqa = 3.86 where Ω0−int is minimized.

Figure 4.16 shows the poloidal Fourier harmonics of the eigenfunction belonging toλ0−int

when qa = 4.27; this qa is same as that in Fig. 4.6. The l ≤ 3 harmonics of this eigenfunction



52 Chapter 4: Application of the two-dimensional Newcomb equation to compute ...

0 0.5 1
0.0

0.2

0.4

0.6

0.8

1.0

r

Yl

l=1

l=2

l=3

l=4

l=5
l=6

qa=4.27 (q0=1.98)

Figure 4.16: Poloidal Fourier harmonics of the eigenfunction belonging to the minimum
eigenvalue obtained by solving Eq. (4.1) with the �xed boundary condition whenqa = 4.27.
The l ≤ 3 harmonics of this eigenfunction are similar to those of the eigenfunction belong-
ing to µ0 shown in Fig. 4.6(a).

are similar to those of the eigenfunction belonging toµ0 shown in Fig. 4.6(a). We see that the
stable internal mode is superimposed onto the surface mode withl ≥ 5. These results also
mean that external modes couple with internal modes.

The coupling between external modes and internal modes becomes weak asqa increases
so long as n is small. Figure 4.17 shows the poloidal Fourier harmonics of the eigenfunction
belonging toλ0−int and those of the eigenfunction belonging toµ0 when qa = 4.90. Unlike in
�gures 4.16 and 4.6(a), these eigenfunctions are quite different from each other, and we see
that internal modes have little effect on the stability of external modes.

At qa ' 4.30 (q0 ' 2.00), the magnetic axis is also a rational surface, and it is impossible
to calculate the eigenvalueλ0−int correctly by the present formulation. Such a case is out of
scope in this article.

4.4.2 Analysis near the marginal stability of ideal internal modes

In Subsection 4.4.1, we have shown that the minimum eigenvalue of the stability matrix
µ0 tends toward−∞ as λ0−int approaches to +0, where λ0−int is the minimum eigenvalue ob-
tained by solving the eigenvalue problem Eq. (4.1) with the �xed boundary condition. In this
subsection, we investigate such behavior ofµ0 analytically.
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Figure 4.17: Poloidal Fourier harmonics of the eigenfunction belonging to the minimum
eigenvalue when qa = 4.90. (a) Eigenfunction obtained by solving Eq. (4.1) with the �xed
boundary condition. (b) Eigenfunction obtained with the stability matrix. The mode struc-
ture of the internal mode, shown in Fig. 4.17(a), is quite different from that of the external
mode in Fig. 4.17(b).

In general, the solution of the simultaneous equation

Px = y, (4.8)

can be written with the eigenfunctionsen of the eigenvalue problem

Pen = ΩnRen, (4.9)

as

x =
∑

j
x je j, (4.10)

x j =
1

Ω j
(e j · y), (4.11)

where e j is normalized as (e j ·Rek) = δ j,k and R is the weight function. We apply this relation
to Eq. (3.169) with the eigenfunction of Eq. (4.1) solved with the �xed boundary condition
at the plasma surface. Whenλ0−int > 0 be small, Eq. (3.169) for the basis functions can be
approximately solved as

Xm
appx(r) = − bm

0
λ0−int

ξ0−int(r), (4.12)
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where ξ0−int is the eigenfunction belonging to λ0−int and satis�es the boundary condition
ξ0−int(a) = 0; the coef�cient bm

0 is given by

bm
0 = (ξ0−int(r),−NZm(r)) =

Z a

0
ξ0−int(r) · (−NZm(r))dr. (4.13)

By using Eq. (4.12) in Eq. (3.166), we have

Wp[Yl,Ym]appx =
bl

0
λ0−int

· bm
0

λ0−int
Wp[ξ0−int, ξ0−int] −

bl
0

λ0−int
Wp[ξ0−int, Zm]

− bm
0

λ0−int
Wp[Zl, ξ0−int] + Wp[Zl, Zm]. (4.14)

Here, let us remember thatWp[ξ0−int, ξ0−int] = λ0−int and

Wp[ξ0−int, Zm] =

Z a

0
ξ0−int(r) · (−NZm(r))dr = bm

0 ,

Wp[Zl, ξ0−int] =

Z a

0
ξ0−int(r) · (−NZl(r))dr = bl

0. (4.15)

Consequently, Eq. (4.14) reads

Wp[Yl,Ym]appx = − 1
λ0−int

b ⊗ b + Wp[Zl, Zm], (4.16)

and the stability matrixAappx is given by

Aappx = − 1
λ0−int

b ⊗ b + Wp[Zl, Zm] + MV . (4.17)

Here
b := {b−L f

0 , · · · , bL f
0 }, (4.18)

and
b ⊗ b = (bl

0bm
0 ). (4.19)

Let us notice that the matrix b⊗ b is a symmetric semi-positive matrix and all eigenvalues of
b⊗ b are non-negative. Letα−1 be the maximum eigenvalue ofb⊗ b and y0 is the eigenvector
belonging toα−1, then the minimum eigenvalue ofAappx is approximately given by

µ0−appx = − α−1
λ0−int

+
〈
y0|Wp[Zl, Zm] + MV |y0

〉
. (4.20)

Therefore,µ0−appx tends toward−∞whenλ0−int approaches to+0; n = 1 ideal external modes
are always unstable whenn = 1 ideal internal modes are marginally stable.

Figure 4.18 shows the dependence ofµ0 on q0 and that on qa. The λ0−int value becomes to
be zero at q0−int = 1.0694, and 1/µ0 also becomes to be zero atq0−int. The solid line denotes the
minimum eigenvalue µ0 obtained with the original stability matrix Eq. (3.166) (Original),
the dashed line shows that obtained with the approximated stability matrix Eq. (4.17) (Ap-
proximation 1), and the dotted line is for the approximated eigenvalueµ0−appx given by Eq.
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Figure 4.18: Dependence of−1/µ0 on q0 and that on qa. The solid line denotes the result
obtained with the original stability matrix Eq. (3.166), the dashed line shows the result ob-
tained with the approximated stability matrix Eq. (4.17), and the dotted line is for the result
given by Eq. (4.20). Each line tends toward+0 as q0 decreases to q0−int = 1.0694.

(4.20) (Approximation 2), respectively. We observe that Eqs. (4.17) and (4.20) well describe
the behavior ofµ0 near the marginal stability of internal modes. Theqa dependence ofµ0 an-
alyzed by Approximation 1 and 2 are almost same each other, and tend toward the Original
µ0 as λ0−int approaches to +0 asymptotically.

Equation (4.12) reveals the meaning ofcoupling between an external mode and an inter-
nal mode. Whenλ0−int is small, the basis functionYm de�ned by Eq. (3.163) is approximately
given by

Ym(r) = − bm
0

λ0−int
ξ0−int(r) + Zm(r). (4.21)

Consequently, any external modes expressed by Eq. (3.168) includeξ0−int(r) as the dominant
component, which explains Figs. 4.13 and 4.15.

4.4.3 Coupling in reversed shear tokamaks

We have con�rmed that internal modes can be coupled with external modes and can destabi-
lize them in high-βp tokamaks. Therefore, it will be interesting and important to investigate
from this viewpoint the stability of external modes in reversed shear tokamaks (RS).
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Figure 4.19: (a) Pro�les of the pressurep and the safety factorq of the reversed shear equilib-
rium (RS) and the q pro�le of the normal shear one (NS). Theβp of these equilibria are 0.01.
The minimum safety factorqmin in RS is 1.32 that equals to q0 in NS, and the qa values in both
equilibria are 2.80. (b) Pro�le of the parallel current density j‖ of RS and that of NS. These
pro�les near the plasma surface are similar to each other.

We �rst analyze the stability of external modes in the low-βp(= 0.01) RS whose aspect
ratio is A = 3.30 and the cross sections are circular. Since, in low-βp tokamaks, the stability
of external modes mostly depends on theq pro�le and the average parallel current density j‖
pro�le near the plasma surface, we make RS equilibria so that these pro�les near the plasma
surface are almost same as those of normal shear tokamaks (NS), wherej‖ is de�ned as

j‖ ≡
〈J · B〉 f〈B2〉

f
= − F〈B2〉

f

dp
dψ −

1
µ0

dF
dψ , (4.22)

and 〈C〉 f is the �ux average value of a variableC de�ned in Eq. (2.18). Figure 4.19(a) shows
the p and q pro�les of the RS and the q pro�le of the A = 3.30 and βp = 0.01 NS, already
shown in Fig. 4.7, and the j‖ pro�les are shown in Fig. 4.19(b). The minimumq value of RS,
qmin, is set to q0 = 1.32 of NS when qa of RS is equal to that of NS (qa = 2.80) because the
rational surfaces in the plasma are important for the stability of internal modes.

The spectral structure of external kink modes in theβp = 0.01 RS is shown in Fig. 4.20,
and is almost same as that in theβp = 0.01 NS shown in Fig. 4.10. This is because theq and
j‖ pro�les of NS and those of RS are almost same as each other near the plasma surface. This
result means that the difference between theq pro�le of RS and that of NS in the plasma
core scarcely affects the stability of external modes as expected; internal modes and external
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Figure 4.20: Spectral structure ofn = 1 ideal external kink modes in the A = 3.30 and βp =

0.01 RS. This structure is almost same as that in theA = 3.30 and βp = 0.01 NS in Fig. 4.10.

modes are almost independent from each other. Next, we investigate the stability of external
modes in the high-βp(= 0.80) RS. The p and q pro�les are shown in Fig. 4.21(a), and the j‖
pro�les are shown in Fig. 4.21(b);qmin of this RS is also set toq0 = 1.30 of NS when qa of RS is
equal to that of NS (qa = 2.80). Near the plasma surface, theq and j‖ pro�les of RS are almost
same as those of NS and those of the low-βp equilibria in Fig. 4.19.

Figure 4.22 shows theqa dependence ofµ0, that of λ0−int and that of Ω0−int. In Fig. 4.22(a),
the black solid line and the black dashed line showµ0 and λ0−int in NS, and the gray solid line
and the gray dashed line are forµ0 and λ0−int in RS, already shown in Fig. 4.14, respectively.
The black and gray dashed lines in Fig. 4.22(b) expressΩ0−int in NS and that in RS. Whenqa is
close to but larger than2.32, µ0 in RS tends toward−∞ as λ0−int approaches to +0. This agrees
with the result in Subsection 4.4.2.

We �rst pay attention to the solid lines in the region4.50 < qa; these are nearly iden-
tical to each other. Figure 4.23 shows the poloidal Fourier harmonics of the eigenfunction
belonging toµ0 in RS when qa = 4.90. This eigenfunction is a surface mode whose dominant
harmonic is l = 5, and is similar to the eigenfunction in high-βp NS when qa = 4.90 in Fig.
4.17. When qa increases, low-n external modes become surface modes, and the stability is
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Figure 4.21: (a) Pro�les of the pressure p and the safety factor q of RS and the q pro�le of NS.
The βp of these equilibria are 0.80. The values of qmin and qa in RS are same as those in NS
(qmin = 1.30, qa = 2.80). (b) Pro�le of the parallel current density j‖ of RS and that of NS.
These pro�le near the plasma surface are similar to each other.

mostly determined by the magnetic shear and j‖ pro�les near the plasma surface, and inter-
nal modes have little effects on the stability of external modes. Figure 4.23 and the spectral
structure for qa > 4.50 in Fig. 4.22 con�rm this conjecture.

We next �nd the high-βp RS equilibria still have a stable window against external modes,
3.00 < qa < 3.52, although the high-βp NS equilibria are unstable when qa < 4.28. Since
the destabilizing effects of the current density near the plasma surface in both equilibria are
considered as almost same and theΩ0−int values in RS are larger than those in NS as shown
in Fig. 4.22(b), we guess that such stabilization of external modes re�ects the difference of
the stability of internal modes, which is caused by the differentq pro�les.

This conjecture is con�rmed as follows. Figure 4.24 shows the poloidal Fourier harmon-
ics of the eigenfunction belonging toµ0 (Fig. 4.24(a)) and those of the eigenfunction belong-
ing to λ0−int (Fig. 4.24(b)) when qa = 3.53 in RS; this qa is close to qa−mgl = 3.52 that is the
marginally stable qa for external modes in RS. These �gures imply that the internal mode
whose harmonics are l ≤ 3 destabilize the external mode with thel ≥ 4 harmonics peaking
at the plasma surface, as in the high-βp NS case shown in Fig. 4.6. However, Fig. 4.22 tells
us that internal modes in RS are more stable than those in NS when3.00 < qa < 4.50, and
as the result, the effect of internal modes on the stability of external modes in RS is weaker
than that in NS.
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Figure 4.22: (a) Dependence ofµ0 on qa and that ofλ0−int on qa in RS, and those in NS, already
shown in Fig. 4.14(a). The βp of these RS and NS are same as 0.80. In both equilibria, µ0

tends toward−∞ as λ0−int approach to +0 near the marginally stable qa for internal modes.
The spectral structure for external modes in RS whenqa ≥ 4.50 is almost indistinguishable
with that in NS. It is because the destabilizing effects forqa ≥ 4.50 are almost same as each
other. In RS, a stable window against external modes exists in lowerqa, 3.00 ≤ qa ≤ 3.53. (a)
Dependence ofµ0 on qa and that of Ω0−int on qa in RS, and those in NS. TheΩ0−int values in RS
are larger than Ω0−int values in NS; this implies that internal modes in RS is more stable than
those in NS.
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Figure 4.23: Poloidal Fourier harmonics of the eigenfunction belonging to the minimum
eigenvalue of the stability matrix whenqa = 4.90 in RS. The eigenfunction shows a surface
mode structure and is similar to the eigenfunction in NS (Fig. 4.17(b)). This result implies
that the βp effect on the stability of external modes becomes weak asqa increases.
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Figure 4.24: (a) Poloidal Fourier harmonics of the eigenfunction belonging to the minimum
eigenvalue of the stability matrix (external modes), and (b) those of the eigenfunction be-
longing to the minimum eigenvalue obtained by solving Eq. (4.1) with the �xed boundary
condition (internal modes), in theβp = 0.80 and qa = 3.53 RS. The pro�le of l ≤ 3 harmonics
in �gure (a) are similar to that in �gure (b), and these harmonics destabilize external modes.
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(a)

Figure 4.25: Equilibrium for analyzing the effect of aspect ratio. Parameters areA = 3.26 and
βN = 6.0. (a) Contours ofψ. The outermost solid line shows the plasma surface. (b) Pro�les
of the pressure p and the safety factorq. The q0 and qa values are 3.05 and 4.1, respectively.

4.5 Effect of the aspect ratio on the stability
of external modes

As an application of the analysis with the stability matrix, we analyze the effect of the aspect
ratio on the stability of n = 1 external modes. The shape parameters of equilibria are �xed
as κ = 1.8, δ = 0.45. The pro�les of dp/dψ are also �xed. The toroidal magnetic �eld at the
magnetic axis, Bt0, and the poloidal �eld current,Ip, depend on the aspect ratioA as

Bt0(A) = Bt0(A = 3.26) × Rma j

Rma j(A = 3.26) , (4.23)

Ip(A) 'Ip(A = 3.26) × Rma j(A = 3.26)
Rma j

, (4.24)

where Bt0(A = 3.26) = 3.36, Rma j(A = 3.26) = 2.93, and Ip(A = 3.26) of the normalized
beta βN = 5.0 equilibrium is set to 4.0, respectively. Though the q pro�le varies as A and βN

change, q value at s = 0.95 is �xed as q95 = 3.5 by adjusting the Ip value. The pro�les of the
A = 3.26 equilibrium are shown in Fig. 4.25.

We �rst investigate the dependence of theβN limit on the aspect ratio againstn = 1 ideal
external modes with no wall limit assumption. As shown in Fig. 4.26, a low aspect ratio
equilibrium is more stable against n = 1 external modes. In particular, when A ≤ 4, the
dependence of the external mode stability on theA value is stronger than that when A > 4;
the βN limit increases from2.4 to 3.5 as A decreases from 4.0 to 2.24.
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Figure 4.26: Dependence of the βN limit against n = 1 ideal external kink modes on the
aspect ratio A, where no perfect conducting wall limit is assumed. TheβN limit increases
as A decreases.

Figure 4.27 shows the dependence of theβN limit against n = 1 ideal external modes on
the position of a perfect conducting wall. The position of a conducting wallb is de�ned as

b ≡ 1
2

(
(R+wall(φ = 0,Z = 0) − R+plasma(φ = 0,Z = 0)

+ (R−wall(φ = 0,Z = 0) − R−plasma(φ = 0,Z = 0))
)
, (4.25)

where Rwall is the R coordinate of the wall,Rplasma is that of the plasma surface, and subscripts
+ and − indicate R+ > R−. When βN < 7.5, a small aspect ratio equilibrium is more stable
than a large aspect ratio one. Especially, in these calculations,b/a = 1.4 is enough to achieve
a high performance (βN > 5.0) operation in each A case.

The eigenfunctions, when βN = 6.0 and the wall position is slightly more far from a
plasma surface than the marginally stable position, are shown in Fig. 4.28. InA = 3.26
case, the growth rate calculated with ERATOJ isγ2 = 1.6 × 10−5; that is normalized with
the toroidal Alfvén transit time at the magnetic axis. These eigenfunctions have a global
mode structure unlike in a low-β case shown in Section 4.2 [31]. From these results and those
obtained in Section 4.4, the stability of ideal internal modes has an effect on the stability of
ideal external modes.

The m = 3 Fourier components obtained with MARG2D-SM in each aspect ratio cases are
pointed near the outer q = 3.0 rational surface. However, since the widths of these points
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Figure 4.27: Dependence of theβN limit against n = 1 ideal external kink modes on the posi-
tion of a perfect conducting wallb. b/a = 1.4 is enough to achieve that theβN limit is larger
than 5.0 in each A case.

are nearly 0.001 measured in s, a general structure of the eigenfunction is almost the same
as that obtained with ERATOJ.

4.6 Summary

I have developed the MARG2D-SM code to realizes the stability analysis of external modes
with the stability matrix method, which is introduced in Section 3.7. By the benchmark tests
of this code with MARG2D and ERATOJ, I con�rmed the validity of this method. By using the
stability matrix, we have comprehensively studied the spectral structure of then = 1 ideal
external kink modes, stable or unstable. Especially, I clari�ed numerically the spectral gaps
induced by the poloidal coupling originated from the �nite aspect ratio effect. It has been
also shown that the �nite poloidal beta (βp) effect makes these gaps broaden. Such toroidal
effects of the low-n external modes were previously predicted, and the present calculations
con�rmed clearly these predictions.

The stability matrix method enables us to perform deeper analysis of the external modes
when it is combined with the eigenvalue problem associated with the original Newcomb
equation. They elucidate numerically and analytically the effects of internal modes on the
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Figure 4.28: Eigenfunctions whenβN = 6.0. (a) A = 2.44 obtained with MARG2D-SM code.
(b) A = 3.26 with MARG2D-SM. (c) A = 4.0 with MARG2D-SM. (d) A = 3.26 obtained with
ERATOJ code.
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stability of external modes when the internal modes approach to their marginal stability (the
β limit, for example). The coupling with the internal modes changes the surface mode struc-
ture of the external modes into the global mode structure. It also explains the difference of
stability against external modes between a normal shear tokamak and a reversed shear toka-
mak. Such effects may be also important for the stability of the resistive wall modes (RWMs)
since we are interested in the stability of it for high-β plasma where the internal modes can
be close to their marginal stability.

As an application of MARG2D-SM, I analyzed an effect of the aspect ratio on the stability
of external modes in high-β tokamaks. From this result, I con�rmed that external modes are
stabilized as the aspect ratio decreases. Since the eigenfunction belonging to the minimum
eigenvalue in high-β tokamaks has a global mode structure, low-n ideal external modes are
dangerous for operations, and the aspect ratio is supposed to be optimized for stabilizing
such MHD modes.

An application to the RWMs such as construction of an eigenvalue problem was out of
scope in the present work. For example, M. Chuet al. showed in Ref. [13] that an eigenvalue
problem for the RWMs with the Hermitian property can be constructed when the plasma
inertia is neglected. The application of the present formulation to the RWMs will be reported
near future.





Chapter 5

Extension of the analytical model
for high-n external mode analysis
in tokamak edge plasma

5.1 Introduction

In this chapter, we focus on a high-n external MHD mode analysis in tokamak edge plasma.
As already mentioned in Chapter 1, since high-n external modes (a peeling mode [18], an
edge-ballooning mode [19], and a couple of them called a peeling-ballooning mode) are re-
lated to edge localized modes (ELMs) that constrain the maximum achievable gradients in
the pedestal at tokamak edge region [19, 26], these modes are one of key components for fu-
sion research.

In Chapter 3 and Ref. [29], a new eigenvalue problem associated with the two-dimensional
Newcomb equation has been posed by formulating such that the spectra of the eigenvalue
problem are comprised of only real and denumerable eigenvalues without continuous spec-
tra, and the MARG2D code [29] has been developed to solve this eigenvalue problem on the
basis of this formulation. Though the eigenvalues obtained by the MARG2D code do not cor-
respond to growth rates or frequencies of MHD modes, the sign of them can identify the
stability against ideal MHD motions. By way of compensation, this code can realize a fast
stability analysis in comparison with stability codes ERATO [32] and MISHKA [24], which
are developed based on a full MHD model. From a pragmatic viewpoint about a linear ideal
stability analysis, we often do not pay attention to growth rates of unstable MHD modes,
but whether MHD modes are stable or unstable. Moreover, since continuous spectra exist in
the stable region, a linear ideal MHD stability analysis based on a full MHD model can not
identify the stable condition numerically. On the contrary, MARG2D always can determine
whether MHD modes are stable or unstable. These bene�ts of the MARG2D code, in fact a

67
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short computation time and a facility to identify marginal stability, are effective to analyze
middle-n and high-n modes stabilities.

For an external MHD mode analysis, the vacuum energy contribution must be calculated
correctly. However, a Green's function technique, introduced in Appendix C and applied in
the previous chapters, is not suited to calculate the vacuum energy contribution in high-n
case, because the numerical precision loses asn increases. To avoid such a problem, I apply
the approach that the vacuum contribution is represented in the same form as the plasma
contribution by introducing a solenoidal vector �eld, called the vector potential method [35],
and extend the MARG2D formulation, introduced in Chapter 3, to the vacuum region. This
extension realizes a broadn range of external mode analyses on the basis of the single physi-
cal model, unlike in the ELITE code [21,22] whose formulation uses the largen ordering [19].
This bene�t will be effective in future for analyzing edge phenomena by the integrated sim-
ulation between the MHD stability code and the transport code. To archive this simulation, I
develop the MARG2D code as a parallel computing code with the message passing interface
(MPI) [36] and the ScaLAPACK library [37], and shorten the computation time for the stability
analysis.

This chapter is set out as follows. In the next section, I describe the coordinate system and
a solenoidal vector �eld for the vacuum region. After introducing the boundary condition at
the plasma-vacuum interface and that on the wall in Section 5.3, I extend the MARG2D for-
mulation to the vacuum region in Section 5.4. Then, in Section 5.5, I describe benchmark
tests of the extended MARG2D code implemented the present formulation with the ERATOJ
code (the JAERI version of the ERATO code), and con�rm the validity of high-n mode anal-
ysis with the extended MARG2D code in Section 5.6. In Section 5.7, performance results of
parallel computing with the Scalapack library are shown. I summarize the present work in
Section 5.8.

5.2 Construction of coordinates in the vacuum

5.2.1 Auxiliary coordinate system(ρ, ζ, φ)

We introduce an auxiliary coordinate system(ρ, ζ, φ) by

R = Rma j + ρ cos ζ, Z = ρ sin ζ. (5.1)

We assume that the shapes of the plasma edge (the plasma surface) and an ideal conducting
wall are expressed as functions ofζ;

ρ = ρp(ζ), (5.2)

for the plasma edge, and
ρ = ρw(ζ), (5.3)
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for the conducting wall. A function (quasi magnetic surface)ψV is de�ned by

ψV = ψps2, 1 ≤ s ≤ smax, (5.4)

where smax is a given number, for examplesmax = 2. Each contour ofψV = const. is expressed
as

ρ = ρp(ζ) +
s2 − 1

s2
max − 1[ρw(ζ) − ρp(ζ)], 1 ≤ s ≤ smax. (5.5)

FromψV = ψps2, we have

ψV = ψp + ψp(s2
max − 1)

ρ − ρp(ζ)
ρw(ζ) − ρp(ζ) , (5.6)

and

∂ψV

∂ρ
=ψp

s2
max − 1

ρw(ζ) − ρp(ζ) , (5.7)
(
∂ψV

∂ρ

)−1
∂ψV

∂ζ
= − ρ − ρp(ζ)

ρw(ζ) − ρp(ζ)
dρw

dζ −
ρw(ζ) − ρ

ρw(ζ) − ρp(ζ)
dρp

dζ . (5.8)

5.2.2 Coordinate system(ψV , χ, φ)

In general the relation between the line elementdl along a contour of poloidal �ux function
ψ (orψV ) = const. and a poloidal angleχ is given by

dχ
dl =

1√
g(ψ, χ)

R
|∇ψ| , (5.9)

where
√

g(ψ, χ) is the Jacobian of the coordinate system(ψ, χ, φ). It is of course

√
g(ψ, χ) = R2 q(ψ)

F(ψ) , (5.10)

for the straight �eld line coordinate, and

√
g(ψ, ζ) =

(
∂ψ

∂ρ

)−1
ρR, (5.11)

for the auxiliary coordinate system(ρ, ζ, φ). Then we have

dζ
dχ =

√
g(ψ, χ)√
g(ψ, ζ)

. (5.12)

Especially, the transformation formula between the two anglesχ and ζ at the plasma edge is

Θp(χ) := dζ
dχ

∣∣∣∣∣
a

=
qa

Fs

R
ρ

∂ψ

∂ρ
, (5.13)
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where
∂ψ

∂ρ
=
∂ψ

∂R cos ζ +
∂ψ

∂Z sin ζ, (5.14)

and qa, Fs are the safety factor and toroidal �eld function at the plasma edge.
We de�ne the poloidal angle χ in the vacuum by the formula (5.13) and construct the

coordinate system (ψV , χ, φ). Therefore, in the coordinate transformation(ρ, ζ) ⇔ (ψV , χ),
we have

∂χ

∂ρ
= 0, (5.15)

and the fundamental relation

∇ψV =
∂ψV

∂ρ
∇ρ +

∂ψV

∂ζ
∇ζ, ∇χ =

dχ
dζ∇ζ =

1
Θp
∇ζ, (5.16)

where ∂ψV/∂ρ and ∂ψV/∂ζ are given by Eq. (5.7) and by Eq. (5.8), respectively. Now it is easy
to obtain the following quantities that are necessary to express the quadratic form for the
perturbed magnetic �eld in the vacuum.

√
gV(ψV , χ) = (ρR)

(
∂ψV

∂ρ

)−1
Θp, (5.17)

|∇ψV |2 =

(
∂ψV

∂ρ

)2
+

1
ρ2

(
∂ψV

∂ζ

)2
, (5.18)

βψχ := ∇ψV · ∇χ
|∇ψV |2 =

∂ψV

∂ζ

1
ρ2Θp

1
|∇ψV |2 , (5.19)

and
βsχ = 2ψpsβψχ. (5.20)

5.2.3 Construction of a solenoidal vector �eldCV

We can de�ne a solenoidal vector �eld (∇ · CV = 0) by

CV = ∇φ × ∇ψV + TV(ψV , χ)∇φ, (5.21)

by specifying TV as a function ofψV , χ. The gradient of the vector �eldCV is

ν(ψV , χ) =
CV · ∇φ
CV · ∇χ = TV

√
gV(ψV , χ)

R2 , (5.22)

and the contravariant form ofCV is

CV = ∇φ × ∇ψV + ν∇ψV × ∇χ. (5.23)

Since the Jacobian √gV has been already de�ned in Eq. (5.17), we can specify the function
TV(ψV , χ) so that ν is equal to qs, the edge safety factor, everywhere in the vacuum; that is, we
give TV(ψV , χ) as

TV = qa
R2

√
gV(ψV , χ)

= qa
R
ρΘp

∂ψV

∂ρ
. (5.24)
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When we use the coordinate system(ψV , ζ, φ), we have

CV = ∇φ × ∇ψV + qa
dχ
dζ∇ψV × ∇ζ, (5.25)

and
ν(ψV , ζ) =

qa

Θp
. (5.26)

Here, we brie�y discuss the following linear partial differential equation forf (ψV , χ, φ)

CV · ∇ f = α, (5.27)

where we assume f , α ∝ exp(−inφ), and α(ψV , χ, φ) is a given function. On the (ψV , χ, φ)
coordinate system, Eq. (5.27) reads

(
∂

∂χ
− inqa

)
f =

√
gV(ψV , χ)α. (5.28)

The right hand side of Eq. (5.28) can be expanded as
√

gV(ψV , χ)α(ψV , χ, φ) =
∑

m
αm(ψV) exp(imχ − inφ), (5.29)

then, we have
fm(ψV) =

−iαm(ψV)
m − nqa

, (5.30)

and
f (ψV , χ, φ) =

∑

m
fm(ψV) exp(imχ − inφ). (5.31)

Therefore, Eq. (5.27) has the solution as long as the edge safety factorqa is not a rational
number and the toroidal mode numbern is not equal to zero.

5.3 Boundary conditions

Let us �rst derive the boundary condition on the ideal conducting wall. The normal compo-
nent of the perturbation of magnetic �eldQn = Q · n (n in Eq. (5.41) is the unit vector normal
to the plasma surface) is given, on the(ψV , χ, φ) coordinate system, by

Qn =
1
|∇ψV |∇ψV · Q =

qa

|∇ψV |
√

gV(ψV , χ)
Dχ(XV), (5.32)

where
YV = ~ξV · ∇ψV , (5.33)

and
Dχ(YV) ≡

(
1
qa

∂

∂χ
− in

)
YV , (5.34)
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which is the same de�nition in the plasma region Eq. (3.15). Therefore, the boundary condi-
tion Qn = 0 on the ideal conducting wall is

YV(ψV = wall, χ) = 0. (5.35)

Next, we express the continuous condition ofQn at the plasma edge byYV . It is convenient to
use the (ψV , ζ, φ) coordinate system. From the contravariant form ofCV

CV = ∇φ × ∇ψV + ν(ψV , ζ)∇ψV × ∇ζ, (5.36)

we obtain
Qn =

1
|∇ψV |∇ψV · Q =

qa

|∇ψV |
√

gV(ψV , ζ)
Dζ(YV), (5.37)

where
Dζ(YV) ≡ 1

qa

(
∂

∂ζ
− inν(ψV , ζ)

)
YV . (5.38)

Therefore, the continuous condition ofQn at the plasma edge is

1
|∇ψV |

√
gV(ψV , ζ)

Dζ(YV) =
1

|∇ψ|√g(ψ, ζ)
Dζ(Y), (5.39)

where
Y = ~ξ · ∇ψ. (5.40)

Here, let us remember that

1
|∇ψV |

√
gV(ψV , ζ)

=
1

|∇ψ|√g(ψ, ζ)
= n · (∇ζ × ∇φ), (5.41)

since the right hand side is a quantity intrinsic to the geometry of the plasma surface. Con-
sequently we have, as the boundary condition at the plasma edge,

YV(ψV , ζ) = Y(ψ, ζ), (5.42)

and
YV(ψV , χ) = Y(ψ, χ). (5.43)

5.4 Extension of the MARG2D form in the vacuum

5.4.1 Mathematical preliminaries

Let f (χ) be a real periodic function with periodicity2π

f (χ) =
∑

m
fm exp(imχ), f−m = f ∗m, (5.44)



5.4: Extension of the MARG2D form in the vacuum 73

and 〈 〉 and
H

dχ be operations de�ned by

〈 f 〉 =

I
f (χ)dχ =

1
2π

Z 2π

0
f (χ)dχ. (5.45)

For example
〈 f exp(−ilχ)〉 = fl, 〈 f exp(ilχ)〉 = f−l = f ∗l . (5.46)

We make a vector | f 〉 from fl's by

| f 〉 = { fl} = (· · · , f−1, f0, f1, · · · )t, (5.47)

and a vector | �f 〉 by eliminating f0 from | f 〉

| �f 〉 = { fl}l,0 = (· · · , f−1, f1, · · · )t. (5.48)

We also de�ne the conjugate vector of| f 〉 by

〈 f | = (· · · , f ∗−1, f ∗0 , f ∗1 , · · · ), 〈 f | j = f ∗j , (5.49)

and 〈 �f | similarly. Next, we introduce a matrix generated from f (χ) by

F = { fl,m}, fl,m =

I
f (χ) exp[i(m − l)χ]dχ = fl−m. (5.50)

Since f (χ) is real, F is a hermitian matrix

fm,l = f ∗l,m. (5.51)

Let |a〉, |b〉 be two vectors, andA be a matrix. We write the inner product of two vectors as〈 | 〉

〈a|b〉 =
∑

l
a∗l bl, 〈a|a〉 = |a|2, (5.52)

and a quadratic form as
〈a|A|b〉 =

∑

l,m
a∗l Al,mbm. (5.53)

Let us notice that a matrix can be generated from the two vectors|a〉 and |b〉 by

(|a〉〈b|)l,m = (a ⊗ b∗)l,m = alb∗m, (5.54)

and the product between〈x|a〉 and 〈b|y〉 is written by a quadratic form as

〈x|a〉〈b|y〉 := 〈x|a ⊗ b∗|y〉. (5.55)

Let a j(χ) ( j = 1, · · · ,N) be complex functions of the variableχ and |a(χ)) be a vector function
de�ned by

|a(χ)) = (a1(χ), · · · , aN(χ))t, |a(χ)) j = a j(χ). (5.56)
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The conjugate vector function(a(χ)| is de�ned by

(a(χ)| = (a∗1(χ), · · · , a∗N(χ)), (a(χ)| j = a∗j(χ). (5.57)

Then a function f (χ) given by

f (χ) =

N∑

j=1
f ja∗j(χ), (5.58)

can be expressed by an inner product form as

f (χ) = (a(χ)| f 〉. (5.59)

From Eq. (5.59) we obtain

| f (χ)|2 =
∑

j,k
f ∗j a j(χ)a∗k(χ) fk = 〈 f |a(χ))(a(χ)| f 〉, (5.60)

and
〈| f (χ)|2〉 =

I
| f (χ)|2dχ = 〈 f |A| f 〉. (5.61)

Here the matrix A = (A j,k) is given by

A j,k =

I
a j(χ)a∗k(χ)dχ, (5.62)

and is a hermitian matrix. It can be also written asI
|a(χ))(a(χ)|dχ = A. (5.63)

Next, for two functions
f (χ) = (a(χ)| f 〉, g(χ) = (a(χ)|g〉, (5.64)

we write the inner product of them as

( f |g) =

I
f ∗(χ)g(χ)dχ, (5.65)

and we have
( f |g) = 〈 f |A|g〉. (5.66)

Let b(χ) be another function, then we obtain

〈b(χ) f (χ)〉 = 〈b| f 〉, (5.67)

where
|b〉 =

I
b(χ)|a(χ))dχ. (5.68)

We also obtain
〈b(χ)| f (χ)|2〉 = 〈 f |B| f 〉. (5.69)
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Here the matrix B = (B j,k) is given by

B =

I
|a(χ))b(χ)(a(χ)|dχ, B j,k =

I
a j(χ)b(χ)a∗k(χ)dχ. (5.70)

In this chapter, {exp(−i jχ)} are used as {a j(χ)}

|e(χ)) = (· · · , exp(i jχ), · · · , 1, · · · exp(−i jχ), · · · )t, (5.71)

|e(χ)) j = exp(−i jχ). (5.72)

We also use the vector |�e(χ)) that is made by eliminating the j = 0 component from |e(χ)).
Since I

|e(χ))(e(χ)|dχ = I, (5.73)

where I is the unit matrix, we obtain for Eq. (5.66)

( f |g) = 〈 f |g〉. (5.74)

We use repeatedly in this paper the following propositions on a quadratic form. A real
function of a complex numberz, L(z), is introduced as

L(z) = a|z|2 + b∗z + z∗b, (5.75)

where a is real and b is complex. Then L(z) takes its extremum

L(z) = −|b|
2

a , (5.76)

at z = −b/a. Next, let L(x) be a real quadratic form for a complex vectorx

L(x) = 〈x|A|x〉 + 〈x|b〉 + 〈b|x〉, (5.77)

where A is a hermitian matrix and b is a complex vector. L(x) takes its extremum

L(x) = −〈b|A−1|b〉, (5.78)

for x = −A−1b.

5.4.2 Quadratic form for the change of potential energy
in the vacuum

The perturbation of magnetic �eld in the vacuum is expressed by

Q = ∇ × A, A = ξ × CV . (5.79)
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By introducing Y,V as

Y = ξV · ∇ψV , V = ξV · ∇θ −
1
qa
ξV · ∇φ, (5.80)

we have

A = Y(∇φ − qa∇θ) + qaV∇ψV , (5.81)
Q = uψ∇θ × ∇φ + uθ∇φ × ∇ψV + uφ∇ψV × ∇θ. (5.82)

Here

uψ = qaDθ(Y), (5.83)

uθ = −
[
∂Y
∂ψV

+ inqaV
]
, (5.84)

uφ = − qa

[
∂V
∂θ

+
∂Y
∂ψV

]
, (5.85)

and
Dθ(Y) =

(
1
qa

∂

∂θ
− in

)
Y. (5.86)

Therefore, when the energy integral of the perturbed magnetic �eld is written by

WV = π

Z
LVdψVdχ, LV =

√gV |Q|2, (5.87)

the potential energy densityLV is given by

LV = a|Dθ(Y)|2 + b
∣∣∣∣∣inV +

1
qa

∂Y
∂ψV

+ βψθDθ(Y)
∣∣∣∣∣
2

+ c
∣∣∣∣∣
∂V
∂θ

+
∂Y
∂ψV

∣∣∣∣∣
2
, (5.88)

and the coef�cientsa, b, c in Eq. (5.88) are

a(ψV , θ) =
q2

a
|∇ψV |2

1√gV
= qa

TV

R2|∇ψV |2 , (5.89)

b(ψV , θ) = q2
a
|∇ψV |2

R2
√gV =

q3
a

TV
|∇ψV |2, (5.90)

c(ψV , θ) = q2
a

R2
√gV

= qaTV . (5.91)

In the following we write, for simplicity,ψ instead of ψV . Let us introduce a new variable
Φ(ψ, χ) by

Φ =
∂V
∂χ

+
∂Y
∂ψ

, (5.92)

and expand the variables in Fourier series as

V(ψ, χ) = (−i)
∑

m
Vm(ψ) exp(imχ), (5.93)

(Y(ψ, χ),Φ(ψ, χ)) =
∑

m
(Ym(ψ),Φm(ψ)) exp(imχ). (5.94)
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Consequently, we obtain

Vm(ψ) =
1
mΦm − 1

m
dYm

dψ , for m , 0, (5.95)

Φ0(ψ) =
dY0
dψ , for m = 0, (5.96)

and
∂V
∂χ

+
∂Y
∂ψ

=
∑

m

′Φm exp(imχ) +
dY0
dψ = (�e(χ)| �Φ〉 + dY0

dψ . (5.97)

Here we use the notations by Eqs. (5.71) and (5.59). By substituting Eq. (5.97) into the third
term in Eq. (5.88), we have

c(χ)
∣∣∣∣∣
∂V
∂χ

+
∂Y
∂ψ

∣∣∣∣∣
2

= 〈 �Φ|�e(χ))c(χ)(�e(χ)| �Φ〉 +
∣∣∣∣∣
dY0
dψ

∣∣∣∣∣
2

c(χ)

+
dY∗0
dψ c(χ)(�e(χ)| �Φ〉 + 〈 �Φ|�e(χ))c(χ)dY0

dψ , (5.98)

and then I
c(χ)

∣∣∣∣∣
∂V
∂χ

+
∂Y
∂ψ

∣∣∣∣∣
2

dχ = 〈 �Φ|C| �Φ〉 + 〈c〉
∣∣∣∣∣
dY0
dψ

∣∣∣∣∣
2

+
dY∗0
dψ 〈c|

�Φ〉 + dY0
dψ 〈

�Φ|c〉. (5.99)

Here, 〈c〉 is de�ned by Eq. (5.45),

C =

I
|�e(χ))c(χ)(�e(χ)|dχ, (5.100)

and
c =

I
c(χ)|�e(χ))dχ. (5.101)

Next, by using Eq. (5.95) in the second term in Eq. (5.88), we obtain
∂Y
∂ψ

+ inqaV + qaβψχDχ(Y)

=

(
�e(χ)

∣∣∣∣∣Diag
(nqa

m

)
�Φ
〉

+ nqaV0

+

(
�e(χ)

∣∣∣∣∣∣D̄V
d �Y
dψ

〉
+ iqaβψχ(ψ, χ)(e(χ)|DVY〉 + dY0

dψ . (5.102)

Here DV and D̄V are diagonal matrices; they are

DV = Diag
(

m
qa
− n

)
, (5.103)

D̄V := Diag
(
1 − nqa

m

)
= DVDiag

(qa

m

)
. (5.104)

Consequently, the second term in Eq. (5.88) isI
b(χ)

∣∣∣∣∣
∂Y
∂ψ

+ inqaV + qaβψχDχ(Y)
∣∣∣∣∣
2

dχ

=

I
dχ

[〈
�ΦDiag

(nqa

l

)
|�e(χ)

)
+ nqaV∗0 + f ∗(χ)

]

× b(χ)
[(

�e(χ)
∣∣∣∣∣Diag

(nqa

m

)
�Φ
〉

+ nqaV0 + f (χ)
]
, (5.105)
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where

f (χ) =

(
�e(χ)

∣∣∣∣∣∣D̄V
d �Y
dψ

〉
+ iqaβψχ(ψ, χ)(e(χ)|DVY〉 + dY0

dψ . (5.106)

Here we introduce the following vectors and matrices for later use:

�b =

I
b(χ)|�e(χ))dχ, (5.107)

B =

I
|�e(χ))b(χ)(�e(χ)|dχ, (5.108)

h =

I
[(−i)b(χ)βψχ(χ)]|e(χ))dχ, (5.109)

H =

I
|�e(χ))[ib(χ)βψχ(χ)](e(χ)|dχ, (5.110)

and
�bf =

I
|�e(χ))b(χ) f (χ)dχ =

∣∣∣∣∣∣BD̄V

∣∣∣∣∣∣
d �Y
dψ

〉
+

dY0
dψ

�b + qa|HDV |Y〉. (5.111)

5.4.3 Minimization with respect toV0 and Φm

We �rst minimize with respect toV0 the integral (5.105), which can be written in a quadratic
form for V0,

F (V0) = (nqa)2〈b〉|V0|2 + (nqa)(V∗0α + α∗V0) + κ. (5.112)

Here the coef�cientsα and κ are given by

α =

I
dχb(χ)

[(
�e(χ)

∣∣∣∣∣Diag
(nqa

m

)
�Φ
〉

+ f (χ)
]

=

〈
�b
∣∣∣∣∣Diag

(nqa

m

)
�Φ
〉

+ 〈b(χ) f (χ)〉, (5.113)

〈b(χ) f (χ)〉 =

〈
�b
∣∣∣∣∣∣D̄V

∣∣∣∣∣∣
d �Y
dψ

〉
+ 〈b〉dY0

dψ + qa〈h|DV |Y〉, (5.114)

and

κ =

I
dχ

[〈
�ΦDiag

(nqa

l

)∣∣∣∣∣ �e(χ)
)

+ f ∗(χ)
]

× b(χ)
[(

�e(χ)
∣∣∣∣∣Diag

(nqa

m

)
�Φ
〉

+ f (χ)
]
. (5.115)

By applying Eq. (5.76), we obtain the minimum ofF with respect to V0

minF = − 1
〈b〉 |α|

2 + κ. (5.116)
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Next, we express Eq. (5.116) in a quadratic form with respect to �Φ. We obtain for Eq. (5.113)

|α|2 = (nqa)2
〈

�Φ
∣∣∣∣∣∣Diag

(
1
m

)
�b ⊗ �b∗Diag( 1

m)
∣∣∣∣∣∣ �Φ

〉
+ |〈b(χ) f (χ)〉|2

+ nqa〈b(χ) f (χ)〉∗
〈

�b
∣∣∣∣∣∣Diag

(
1
m

)∣∣∣∣∣∣ �Φ
〉

+ nqa

〈
�Φ
∣∣∣∣∣∣Diag

(
1
m

)∣∣∣∣∣∣ �b
〉
〈b(χ) f (χ)〉, (5.117)

and for Eq. (5.115)

κ = (nqa)2
〈

�Φ
∣∣∣∣∣∣Diag

(
1
m

)
BDiag

(
1
m

)∣∣∣∣∣∣ �Φ
〉

+ nqa

〈
�Φ
∣∣∣∣∣∣Diag

(
1
m

)∣∣∣∣∣∣ �bf

〉

+ nqa

〈
�bf

∣∣∣∣∣∣Diag
(

1
m

)∣∣∣∣∣∣ �Φ
〉

+ 〈b(χ)| f (χ)|2〉, (5.118)

where | �bf〉 is de�ned in Eq. (5.111). Let us notice that

〈b(χ) f (χ)〉
〈b〉 | �b〉 =

1
〈b〉

∣∣∣ �b ⊗ �b∗
∣∣∣ D̄V

d �Y
dψ

〉
+ qa

1
〈b〉 |

�b ⊗ b∗|DVY〉 + dY0
dψ |

�b〉. (5.119)

Here we use Eq. (5.54). ThenminF in Eq. (5.116) is rewritten as

minF = (nqa)2
〈

�Φ
∣∣∣∣∣∣Diag

(
1
l

)
B̄Diag

(
1
l

)∣∣∣∣∣∣ �Φ
〉

+ nqa

〈
�Φ
∣∣∣∣∣∣Diag

(
1
l

)∣∣∣∣∣∣ b̄f

〉

+ nqa

〈
b̄f

∣∣∣∣∣∣Diag
(
1
l

)∣∣∣∣∣∣ �Φ
〉

+ 〈b(χ)| f (χ)|2〉 − |〈b(χ) f (χ)〉|2
〈b〉 , (5.120)

where

B̄ = B − 1
〈b〉

�b ⊗ �b∗, (5.121)

b̄f = �bf − 〈b(χ) f (χ)〉
〈b〉

�b =

∣∣∣∣∣∣B̄D̄V

∣∣∣∣∣∣
d �Y
dψ

〉
+ qa|HBDV |Y〉, (5.122)

HB = H − 1
〈b〉

�b ⊗ h∗. (5.123)

In Eq. (5.120) the term includingdY0/dψ has been canceled out.
When we use Eqs. (5.99) and (5.120), we obtain a quadratic form with respect to �Φ gener-

ated from Eqs. (5.87) and (5.88)

LV =

I
c(χ)

∣∣∣∣∣
∂V
∂χ

+
∂Y
∂ψV

∣∣∣∣∣
2

dχ +

I
b(χ)

∣∣∣∣∣
∂Y
∂ψ

+ inqaV + qaβψχDχ(Y)
∣∣∣∣∣
2

dχ

= 〈 �Φ|P| �Φ〉 + 〈d| �Φ〉 + 〈 �Φ|d〉 + 〈c(χ)〉
∣∣∣∣∣
dY0
dψ

∣∣∣∣∣
2

+ ē. (5.124)
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Here P, d and ē are given by

P = C + Diag
(nqa

l

)
B̄Diag

(nqa

l

)
, (5.125)

d =
dY0
dψ c + Diag

(nqa

l

)
b̄ f , (5.126)

and
ē = 〈b(χ)| f (χ)|2〉 − |〈b(χ) f (χ)〉|2

〈b〉 . (5.127)

Now, it is easy to minimizeLV with respect to �Φ, and we obtain

minLV = −〈d|P−1|d〉 + 〈c(χ)〉
∣∣∣∣∣
dY0
dψ

∣∣∣∣∣
2

+ ē. (5.128)

5.4.4 Quadratic form with respect toY
Let us �rst express ē in a quadratic form with respect toY. From Eq. (5.106),

| f (ψ, χ)|2 =

〈
d �Y
dψ

∣∣∣D̄V |�e(χ))(�e(χ)| D̄V
∣∣∣ d �Y

dψ

〉

+ q2
a
∣∣∣βψ,χ

∣∣∣2 〈Y|DV |e(χ))(e(χ)|DV |Y〉 +
∣∣∣∣∣
dY0
dψ

∣∣∣∣∣
2

+ iqaβψ,χ

〈
dY
dψ

∣∣∣D̄V
∣∣∣ �e(χ)

)
(e(χ) |DV |Y〉

− iqaβψ,χ 〈Y |DV | e(χ))
(
�e(χ)

∣∣∣D̄V
∣∣∣ d �Y

dψ

〉

+
dY∗0
dψ

(
�e(χ)

∣∣∣D̄V
∣∣∣ d �Y

dψ

〉
+

〈
d �Y
dψ

∣∣∣D̄V
∣∣∣ �e(χ)

)
dY0
dψ

+ iqaβψ,χ
dY∗0
dψ (e(χ)|DV |Y〉 − iqaβψ,χ〈Y|DV |e(χ))dY0

dψ . (5.129)

Consequently, we have

〈b(ψ, χ) | f (ψ, χ)|2〉 =

〈
d �Y
dψ

∣∣∣D̄VBD̄V
∣∣∣ d �Y

dψ

〉
+ q2

a〈Y|DVH2DV |Y〉 + 〈b〉
∣∣∣∣∣
dY0
dψ

∣∣∣∣∣
2

+ qa

〈
dY
dψ

∣∣∣D̄VHDV
∣∣∣ Y

〉
+ qa

〈
Y

∣∣∣DVH†D̄V
∣∣∣ d �Y

dψ

〉

+
dY∗0
dψ

〈
�b
∣∣∣D̄V

∣∣∣ d �Y
dψ

〉
+

〈
d �Y
dψ

∣∣∣D̄V
∣∣∣ �b

〉
dY0
dψ

+ qa
dY∗0
dψ 〈h |DV |Y〉 + qa〈Y|DV |h〉dY0

dψ . (5.130)

Here b,B, h and H are given from Eqs. (5.107)-(5.110);H2 is de�ned by

H2 =

I
|e(χ))[b(χ)

∣∣∣βψχ
∣∣∣2](e(χ)|dχ. (5.131)
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Similarly,

〈b(ψ, χ) f (ψ, χ)〉 =

〈
�b
∣∣∣D̄V

∣∣∣ d �Y
dψ

〉
+ qa〈h|D|Y〉 + 〈b〉dY0

dψ , (5.132)

then we obtain

|〈b(ψ, χ) f (ψ, χ)〉|2 =

〈
d �Y
dψ

∣∣∣D̄V �b ⊗ �b∗D̄V
∣∣∣ d �Y

dψ

〉

+ q2
a〈Y|DV h ⊗ h∗DV |Y〉 + |〈b〉|2

∣∣∣∣∣
dY0
dψ

∣∣∣∣∣
2

+ qa

〈
Y

∣∣∣DV h ⊗ �b∗D̄V
∣∣∣ d �Y

dψ

〉

+ qa

〈
dȲ
dψ

∣∣∣D̄V �b ⊗ h∗DV
∣∣∣ Y

〉

+ qa〈b〉
{
〈Y|DV |h〉dY0

dψ +
dY∗0
dψ 〈h|DV |Y〉

}

+ 〈b〉
{dY∗0

dψ

〈
�b
∣∣∣D̄V

∣∣∣ d �Y
dψ

〉
+

〈
d �Y
dψ

∣∣∣D̄V
∣∣∣ �b

〉
dY0
dψ

}
. (5.133)

By substituting Eqs. (5.130) and (5.133) into Eq. (5.127), we obtain

ē =

〈
d �Y
dψ

∣∣∣D̄VB̄D̄V
∣∣∣ d �Y

dψ

〉
+ q2

a〈Y|DVH̄2DV |Y〉

+ qa

〈
dY
dψ

∣∣∣D̄VHBDV
∣∣∣ Y

〉
+ qa

〈
Y

∣∣∣DVH†BD̄V
∣∣∣ d �Y

dψ

〉
, (5.134)

where
H̄2 = H2 − 1

〈b〉h ⊗ h∗. (5.135)

Next, by using Eq. (5.126) for the �rst term in Eq. (5.128) we have

〈d|P−1|d〉 =

∣∣∣∣∣
dY0
dψ

∣∣∣∣∣
2
〈c|P−1|c〉

+

(
dY0
dψ

)∗ 〈
c
∣∣∣∣∣P−1Diag

(nqa

l

)∣∣∣∣∣ b̄ f

〉

+

(
dY0
dψ

) 〈
b̄ f

∣∣∣∣∣Diag
(nqa

l

)
P−1

∣∣∣∣∣ c
〉

+

〈
b̄ f

∣∣∣∣∣Diag
(nqa

l

)
P−1Diag

(nqa

l

)∣∣∣∣∣ b̄ f

〉
. (5.136)

When we use Eq. (5.122) for b̄ f , we obtain
〈
c
∣∣∣∣∣P−1Diag

(nqa

l

)∣∣∣∣∣ b̄ f

〉

=

〈
c
∣∣∣∣∣P−1Diag

(nqa

l

)
B̄D̄V

∣∣∣∣∣
d �Y
dψ

〉
+ qa

〈
c
∣∣∣∣∣P−1Diag

(nqa

l

)
HBDV

∣∣∣∣∣ Y
〉
, (5.137)
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and
〈
b̄ f

∣∣∣∣∣Diag
(nqa

l

)
P−1Diag

(nqa

m

)∣∣∣∣∣ b̄ f

〉

=

〈
d �Y
dψ

∣∣∣D̄VB̄†RB̄D̄V
∣∣∣ d �Y

dψ

〉
+ qa

〈
Y

∣∣∣DVH†BRB̄D̄V
∣∣∣ d �Y

dψ

〉

+ qa

〈
d �Y
dψ

∣∣∣D̄VB̄†RHBDV
∣∣∣ Y

〉
+ q2

a
〈
Y

∣∣∣DVH†BRHBDV
∣∣∣ Y

〉
, (5.138)

where
R := Diag

(nqa

l

)
P−1Diag

(nqa

l

)
. (5.139)

Finally, we have I
a(ψ, χ)|Dθ(Y)|2dχ = 〈Y|DVADV |Y〉, (5.140)

A :=
I
|e)a(ψ, χ)(e|dχ. (5.141)

From these transformations, we obtain the potential energy density in the vacuumLV as

LV =M0 +
[
〈c(ψ, χ)〉 − 〈c|P−1|c〉

] ∣∣∣∣∣
dY0
dψ

∣∣∣∣∣
2

+

〈
d �Y
dψ

∣∣∣∣D̄V
(
B̄ − B̄†RB̄

)
D̄V

∣∣∣∣ d �Y
dψ

〉

+ qa

〈
Y

∣∣∣∣DVH†B
(
I − RB̄

)
D̄V

∣∣∣∣ d �Y
dψ

〉

+ qa

〈
d �Y
dψ

∣∣∣∣D̄V
(
I − B̄†R

)
HBDV

∣∣∣∣ Y
〉

+

〈
Y

∣∣∣∣DV
(
q2

a
(
H̄2 −H†BRHB

)
+ A

)
DV

∣∣∣∣ Y
〉
, (5.142)

where

M0 = − qa
dY∗0
dψ

〈
c
∣∣∣∣∣P−1Diag

(nqa

l

)
HBDV

∣∣∣∣∣ Y
〉

− qa

〈
Y

∣∣∣∣∣DVH†BDiag
(nqa

l

)
P−1

∣∣∣∣∣ c
〉 dY0

dψ

− dY∗0
dψ

〈
c
∣∣∣∣∣P−1Diag

(nqa

l

)
B̄D̄V

∣∣∣∣∣
d �Y
dψ

〉

−
〈

d �Y
dψ

∣∣∣∣∣D̄VB̄†Diag
(nqa

l

)
P−1

∣∣∣∣∣ c
〉

dY0
dψ . (5.143)

The MARG2D code was extended for analyzing high-n external modes by expressing the en-
ergy integral in the vacuum region as Eqs. (5.87) and (5.142) with the lowest order �nite hy-
brid element method.
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5.5 Benchmark tests

We execute benchmark tests between the MARG2D code and the ERATOJ code [32], and show
the validity of the result with MARG2D.

5.5.1 Stability of n = 2 ideal external kink mode

We �rst investigate the stability ofn = 2 ideal external kink mode in the cylinder-like (the as-
pect ratio A = 100) equilibrium, whose cross section is nearly circular (the ellipticityκ = 1.0,
and the triangularityδ = 0.0), with the MARG2D code and the ERATOJ code. The equilibria
in this paper are obtained by solving Grad-Shafranov equation numerically [48]. Figure 5.1
shows the contour ofψ = const., and the pro�les of the average current density parallel to the
magnetic �eld B, j‖(s), and the safety factor q(s) (s =

√
ψ); in this equilibrium, the poloidal

beta βp de�ned in Eq. (2.33) is 0.01. The average parallel current density j‖ is de�ned in Eq.
(4.22); we again write

j‖ ≡
〈J · B〉 f

〈B2〉 f
= − F
〈B2〉 f

dp
dψ −

1
µ0

dF
dψ , (5.144)

where F is the toroidal �eld function,µ0 is the magnetic permeability in vacuum,〈X〉 f is the
�ux surface average de�ned in Eq. (2.18). The safety factor at the magnetic axisq0 and that
at the plasma surface qa are 1.32 and 2.89, and j‖|a/〈 j‖〉 = 0.21, where j‖|a = j‖(s = 1), 〈 j‖〉 is
the average current density (the ratio of total toroidal current to the poloidal cross-sectional
area of the plasma), anda is the plasma minor radius.

The mesh numbers in the MARG2D code and the ERATOJ code are determined by con-
�rming the convergence of the eigenvalues. Since the ERATOJ code is based on the two-
dimensional �nite element method with the lowest order elements, it needs at least four
times mesh numbers in the poloidal direction as many as the MARG2D code, based on the
Fourier harmonics in the poloidal direction [31]. For computing the eigenvalue of then = 2
external kink mode, we set for the MARG2D code the radial mesh number in the plasma re-
gion NPS IM2D = 1200, that in the vacuum region NVM2D = 120, and select the poloidal
Fourier harmonics −32 ≤ m ≤ 32; which is to say that the Fourier harmonics number
MM2D = 32 around the middle harmonic Mpeak = 0. For the ERATOJ code, we used the
radial mesh number in the plasma NPS IERT = 800, that in the vacuum NVERT = 80, and
the mesh number in the poloidal direction NCHIERT = 256 are used; these are enough to
converge the eigenvalues.

In the cylinder equilibrium case, the energy integral of the perturbed magnetic �eld in
the vacuum region can be written as

WV = π
[
r2F2Λ

]
a
ξ2

a, (5.145)
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Figure 5.1: Equilibrium whose parameters areA = 100, κ = 1.0, δ = 0.0, and βp = 0.001.
(a) Contours ofψ (magnetic surfaces). Solid lines are forψ ≤ 0 (plasma region), and broken
lines are for ψ > 0 (vacuum region). The outermost solid line shows the plasma surface.
(b) Pro�les of the safety factorq (solid line) and the parallel current density j‖ (dashed line),
where s =

√
ψ. The values of the safety factor at the magnetic axisq0 and that at the plasma

surface qa are 1.32 and 2.89, and j‖|a/〈 j‖〉a, where j‖|a = j‖(s = 1) and 〈 j‖〉a is the average
current density, is 0.21, respectively.

where
Λ = − Ka

kaK ′
a


1 − (K ′

bIa)/(I′bKa)
1 − (K ′

bI′a)/(I′bK ′
a)

 , (5.146)

Iz = Im(kz) (z = a or b), Kz = Km(kz), Im, Km are m-th order modi�ed Bessel functions,m
corresponds to the poloidal mode number,k is the toroidal wave number, andb is the minor
radius of the conducting wall, respectively [42]. Since the equilibrium shown in Fig. 5.1 is
like a cylinder (A = 100), we can use Eq. (5.145) to estimate WV , and compare the results
obtained by three methods; one is the method with the MARG2D code thatWV is calculated
by Eq. (5.87) (MARG2D-V.P.), second is that with the MARG2D code thatWV is obtained by Eq.
(5.145) (MARG2D-Bessel), and the last is that with the ERATOJ code.

We investigate the stability of n = 2 ideal external kink modes in the (b/a, λ0) plane,
where λ0 is the minimum eigenvalue calculated by the MARG2D code (λ0−M2D) or ERATOJ
code (λ0−ERT ). Figure 5.2 shows the dependence ofλ0 on b/a in the equilibrium shown in Fig.
5.1. The solid line denotesλ0−M2D obtained by MARG2D-V.P., the dashed line showsλ0−M2D

computed by MARG2D-Bessel, and the dotted line is forλ0−ERT , respectively. Ideal external
modes are marginally stable whenλ0 equals to zero. From this �gure, the results computed
by these three methods are almost same as each other, and these results represent thatb/a
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Figure 5.2: Dependence of the minimum eigenvaluesλ0 on b/a in the equilibrium shown in
Fig. 5.1; the value of n is 2. The label λ0−M2D denotes the minimum eigenvalue obtained by
the MARG2D code, andλ0−ERT is that calculated by ERATOJ (dotted line), respectively. The
method for obtaining the energy integral in the vacuum region is changed in the MARG2D
code; one is calculated by Eq. (5.87) (MARG2D-V.P., solid line), the other is computed by Eq.
(5.145) (MARG2D-Bessel, dashed line). Each result obtained by these three methods are al-
most same as each other, and theb/a value when ideal external modes are marginally stable
is 1.23.

when ideal external modes are marginally stable is(b/a)mgl = 1.23.
We also compare the eigenfunctions belonging toλ0 when b/a = 1.24 which is close to

(b/a)mgl; all minimum eigenvalues are negative. As shown in Fig. 5.3, sincen = 2 and qa =

2.89, it is well-known that the surface modes with the dominant harmonic(m, n) = (6, 2)
appears as ideal external kink modes [31, 65], and each poloidal Fourier harmonic of these
eigenfunctions obtained by (a) MARG2D-V.P. (λ0−M2D = −7.51 × 10−4), (b) MARG2D-Bessel
(λ0−M2D = −7.52 × 10−4), and (c) ERATOJ (λ0−ERT = −1.02 × 10−5) is nearly identical to each
other.

5.5.2 Stability of n = 5 ideal external modes

We next investigate the stability ofn = 5 external modes in the (βp, λ0) plane. The common
parameters of the analyzed equilibria are A = 3.3, κ = 1.8, and δ = 0.45. The functional



86 Chapter 5: Extension of the analytical model for high-n external mode analysis ...

0 0.5 1

0

0.5

1

m/n=6/2
Ym

s

βp=0.001, λ0=−7.51e−4

A=100, qa=2.89, b/a=1.24
(a)

0 0.5 1

0

0.5

1

m/n=6/2
Ym

s

βp=0.001, λ0=−7.52e−4

A=100, qa=2.89, b/a=1.24
(b)

0 0.5 1

0

0.5

1

m/n=6/2

s

Ym

A=100, qa=2.89, b/a=1.24

βp=0.001, λ0=−1.02e−5(c)

Figure 5.3: Poloidal Fourier harmonics of the eigenfunctions belonging toλ0 when n = 2,
qa = 2.89, βp = 0.001, and b/a = 1.24. These are obtained by (a) MARG2D-V.P. (λ0−M2D =

−7.51× 10−4), (b) MARG2D-Bessel (λ0−M2D = −7.52× 10−4), and (c) ERATOJ (λ0−ERT = −1.02×
10−5). The harmonics Ym obtained by three methods are nearly identical to each other, and
these show typical surface modes with the dominant harmonic(m, n) = (6, 2).
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βp CF1 CF2 αF νF σF

1.4 5.0 1.58 0.260 0.0 10.0
1.5 5.0 1.56 0.250 0.0 10.0
1.6 5.0 1.55 0.250 0.0 10.0
1.7 5.0 1.45 0.242 0.0 10.0
1.8 5.0 1.40 0.229 0.0 10.0
2.0 5.0 1.20 0.200 0.0 5.0
2.2 5.0 1.20 0.210 0.0 5.0

Table 5.1: Parameters in Eq. (5.148) for eachβp equilibrium for investigatingn = 5 stability.

forms of p(ψ) and j(ψ) are given as
dp
dψ = − βp0

((
1 − ψ5

)1.2)
, (5.147)

dF
dψ = −

(
1 − ψCF1

)CF2 · exp (−4ψ) + αF exp
(
−(ψ − νF)2

2σ2
F

)
, (5.148)

where βp0 is the current poloidal beta at the magnetic axis de�ned as

βp0 ≡ 2µ0 p0
B2

pa
, (5.149)

p0 is the plasma pressure at the magnetic axis and andBpa is the average poloidal magnetic
�eld at the plasma edge de�ned in Eq. (2.34). Since the stability of current driven external
modes mostly depends on theq pro�le near the plasma surface and j‖|a, the q pro�le near the
surface and j‖|a/〈 j‖〉 value are nearly �xed as j‖|a/〈 j‖〉 = 0.18 by modifying the parameters of
Eq. (5.148) as shown in Tab. 5.1 when we change theβp value; one of them whoseβp = 1.5 is
shown in Fig. 5.4. Figure 5.4(a) shows the contour ofψ = const., and the pro�les of j‖(s) and
q(s), and those of p(s) and the pressure gradient toψ, dp/dψ(s), are shown in Figs.5.4(b) and
4(c), respectively. The values ofq0 and qa are 1.52 and 4.35.

To converge the eigenvalues, we used the parameters for MARG2D (afterward, MARG2D
means MARG2D-V.P.) as NPS IM2D = 1200, NVM2D = 120, and select the poloidal Fourier
harmonics−44 ≤ m ≤ 84; in fact, MM2D = 64 around Mpeak = 20. We also set the parameters
for ERATOJ as NPS IERT = 1200, NVERT = 120, and NCHIERT = 384; in this case, we use the
eikonal transformation in the ERATOJ code [66].

Figure 5.5 shows the dependence ofλ0 on βp when n = 5, qa = 4.35 and b/a = 1.25.
In this �gure, since the dashed line obtained with ERATOJ closes in on theλ0−ERT = 0 line
asymptotically, we are hard to determine theβp limit, βp,cr, for n = 5 MHD modes; βp,cr is
the βp value that the analyzed MHD modes are marginally stable. In contrast, the solid line
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Figure 5.4: Equilibrium whose parameters areA = 3.3, κ = 1.8, δ = 0.45, and βp = 1.5.
(a) Contours of ψ (magnetic surfaces). The outermost solid line shows the plasma surface.
(b) Pro�les of q (solid line) and j‖ (dashed line). The values of q0 and qa are 1.52 and 4.35,
and j‖|a/〈 j‖〉a = 0.18, respectively. (c) Pro�les of the pressure p (solid line) and the pressure
gradient dp/dψ (dashed line).
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Figure 5.5: Dependence ofλ0 on βp when n = 5, qa = 4.35 and b/a = 1.25; one of the equi-
libria is shown in Fig. 5.4. Though the dotted line obtained with ERATOJ closes toward the
λ0−ERT = 0 line asymptotically, the solid line computed with MARG2D crosses theλ0−M2D = 0
line, and reveals theβp limit βp,cr for n = 5 modes as 1.5.

obtained with MARG2D can cross theλ0−M2D = 0 line, and clari�es βp,cr for n = 5 modes as
1.5.

The poloidal Fourier harmonics of the eigenfunction belonging toλ0 are shown in Figs.5.6
(βp = 1.5) and 5.8 (βp = 2.2); to obtain the eigenfunction, we set NCHIERT = 1024 to
converge the eigenvalue without the eikonal transformation for the ERATOJ code. When
βp = 1.5 shown in Fig. 5.6, the Fourier harmonics structures obtained by (a) the MARG2D
code (λ0−M2D = −5.55 × 10−4) and (b) the ERATOJ code (λ0−ERT = −8.83 × 10−6) are similar to
each other, and the dominant harmonic is(m, n) = (22, 5) peaking at the plasma surface.

Figure 5.7 shows the contours ofψ and the constant-height surface ofY0(r, θ) when βp =

1.5, where Y0(r, θ) is de�ned as

Y0(r, θ) = Re


Mmax∑

m=Mmin

(Y0(r))m exp(imθ)
 , (5.150)

Y0 is the eigenfunction belonging toλ0−M2D, Mmin and Mmax are the minimum and the maxi-
mum poloidal mode numbers; in thisn = 5 case, Mmin = −44 and Mmax = 84. The constant-
height surface in Fig. 5.7(a) is drawn in−0.6 ≤ Y0 ≤ 0.6 range, where Y0(r, θ) is normalized
as max(Y0) = 1 and the region where |Y0| ≥ 0.6 is blacked out. Since the (m, n) = (22, 5)
component peaking at the plasma surface is the dominant component ofY0 as shown in Fig.
5.6(a), the mode structure localized at the plasma surface can be shown. Figure 5.7(b) shows
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Figure 5.6: Poloidal Fourier harmonics of the eigenfunctions belonging toλ0 when n = 5,
qa = 4.35, βp = 1.5 and b/a = 1.25. These are obtained with (a) MARG2D (λ0−M2D = −5.55 ×
10−4) and (b) ERATOJ (λ0−ERT = −8.83 × 10−6). The harmonics Ym obtained by these methods
are similar to each other; the (22,5) harmonic peaking at the plasma surface is dominant in
these eigenfunctions.

the constant-height surface in the range from -0.3 to 0.3 and contours ofψ; the ballooning
mode like structure is emphasized in the outboard bad curvature region. From Figs. 5.6 and
5.7, the most unstable eigenfunction is revealed that consists mainly of a peeling structure
with a secondary ballooning structure.

On the other hand, whenβp = 2.2 in Fig. 5.8, the Fourier harmonics obtained with (a)
MARG2D (λ0−M2D = −0.106) are far from those obtained with (b) ERATOJ (λ0−ERT = −4.13 ×
10−2). The Fourier harmonics structure shown in Fig. 5.8(a) is more similar to that shown
in Fig. 5.6(a); these are obtained with MARG2D. However, the harmonics structures shown
in Figs.5.6(b) and 5.8(b), which are computed with ERATOJ, are different from each other.
In Fig. 5.8(b), the 5 ≤ m ≤ 21 Fourier harmonics in the plasma (s ≤ 1.0) have �nite ampli-
tudes and construct the envelope peaking ats ' 0.82; this is an edge ballooning mode and is
prominent part of the eigenfunction.

From �gures obtained with ERATOJ, we understand that the mode structure of the eigen-
function belonging toλ0 changes from the 'edge ballooning dominant' structure to the 'peel-
ing dominant' structure asβp decreases. However, the mode structure shown in Fig. 5.8(a)
is different from that in Fig. 5.8(b), but is similar to that in Fig. 5.6(a). The reason is thought
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(a) (b)

Figure 5.7: Constant-height surfaces of Y0(r, θ) when n = 5, qa = 4.35, βp = 1.5, and
b/a = 1.25; Y0(r, θ) is de�ned as Eq. (5.150) and normalized max(Y0(r, θ)) as unity. (a) Range
of the constant-height surface is set as−0.6 ≤ Y0 ≤ 0.6; regions where |Y0(r, θ)| > 0.6 are
blacked out. Since the peeling component peaking at the plasma surface is prominent as
shown in Fig. 5.6(a), the mode structure localized at the plasma surface appears. (b) Range
of the constant-height surface is set as−0.3 ≤ Y0 ≤ 0.3. Contours ofψ are also shown; solid
lines showψ = −0.8 (innermost contour),−0.5, and−0.2 contours, and broken lines are for
ψ ≥ 0.2 contours. A ballooning mode like structure in the outboard bad curvature region is
emphasized.

as that the mode structure of the eigenfunction belonging to non-zeroλ0 is tied to that of the
marginally stable (λ0 = 0) eigenfunction, because the MARG2D code solves the eigenvalue
problem associated with the Newcomb equation

NY = −λDiag(ρ)Y, (5.151)

which is already derived in Chapter 3 as Eqs. (3.123) and (3.124), and this eigenvalue problem
is physically correct when the eigenvalueλ = 0.

5.5.3 Stability of high-n external modes

A high-β equilibrium often has a steep pressure gradient, called a pedestal structure, and a
large bootstrap current [47, 49, 50] near the plasma surface; this is called as an 'ELMy-H oper-
ation'. In such an equilibrium, edge localized modes (ELMs) tend to become unstable; ELMs
are constructed with a high-n external kink mode, called a peeling mode, a high-n ballooning
mode localized near the plasma surface, and both of them. We investigate the stabilities of
high-n external modes in the equilibria with a pedestal structure in this subsection.
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Figure 5.8: Poloidal Fourier harmonics of the eigenfunctions belonging toλ0 when n = 5,
qa = 4.35, βp = 2.2 and b/a = 1.25. These are obtained with (a) MARG2D (λ0−M2D = −0.106)
and (b) ERATOJ (λ0−ERT = −4.13 × 10−2). These are apparently different from each other. In
Fig. 5.8(b), an edge ballooning mode whose envelope peaks ats ' 0.82 is dominant, but in
Fig. 5.8(a), the (22,5) harmonic peaking at the plasma surface is dominant like in Fig. 5.6(a)
(βp = 1.5). The reason is that since the MARG2D code solves the Newcomb equation Eq.
(5.151), the mode structure obtained by the MARG2D code is tied to the mode structure of the
marginally stable eigenfunction (Fig. 5.6(a)).

The common parameters of the equilibria areA = 3.3, κ = 1.8, and δ = 0.45. Since A,
κ, and δ is same as those of the equilibrium shown in Fig. 5.4, the contour ofψ = const. is
almost same as that shown in Fig. 5.4. The functional form of j(ψ) is given as Eq. (5.148), and
that of p(ψ) is

dp
dψ = −βp0

(
1 + 15 · exp

(
−(ψ − 0.91)2

2 · (0.03)2

))
. (5.152)

As in the previous subsection, we modify the parameters of Eq. (5.148) as shown in Tab. 5.2
to �x the q pro�le near the surface and j‖|a/〈 j‖〉 value as 0.135 when the βp value is changed.
Figure 5.9 shows the j‖, q, p, and dp/dψ pro�les when βp = 1.2. The values of q0 and qa are
1.7 and 4.27, and the j‖|a value is �nite to make a peeling mode unstable.

In these equilibria, we investigate the stability of then = 40 external modes; the param-
eters in MARG2D are NPS IM2D = 2800, NVM2D = 280, MM2D = 90, and Mpeak = 130. Figure
5.10 is the poloidal Fourier harmonics of the eigenfunction belonging toλ0−M2D when n = 40,
qa = 4.27, βp = 1.4, and b/a = 1.2; the eigenvalue is nearly equal to zero (= −7.77 × 10−3).
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Figure 5.9: Equilibrium whose parameters areA = 3.3, κ = 1.8, δ = 0.45, and βp = 1.2. (a)
Pro�les of q (solid line) and j‖ (dashed line). The values of q0 and qa are 1.7 and 4.27, and
j‖|a/〈 j〉a = 0.135, respectively. (b) Pro�les of p (solid line) and dp/dψ (dashed line).

βp CF1 CF2 αF νF σF

0.1 1.12 0.7 3.06 × 10−2 0.999 1.0
0.2 1.15 0.7 3.15 × 10−2 0.0 20.0
0.3 1.17 0.7 3.25 × 10−2 0.0 20.0
0.4 1.20 0.7 3.30 × 10−2 0.0 20.0
0.5 1.24 0.7 7.00 × 10−2 0.926 0.041
0.6 1.30 0.7 0.100 0.916 0.041
0.8 1.35 0.7 0.116 0.913 0.041
1.0 1.44 0.7 0.122 0.913 0.041
1.2 1.50 0.7 0.216 0.911 0.036
1.4 1.57 0.7 0.214 0.911 0.036
1.6 1.62 0.7 0.303 0.909 0.035
2.0 2.06 0.7 0.330 0.909 0.034

Table 5.2: Parameters in Eq. (5.148) for eachβp equilibrium that we investigate high-n stabil-
ity.
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n MM2D Mpeak

1 64 0
5 64 20

10 64 40
20 72 60
40 90 130

Table 5.3: Parameters in the MARG2D code for checking a convergence property.

As shown in Fig. 5.10(a) (the length used in the transverse axis iss), the mode structure of
this eigenfunction is localized near the plasma surface. To analyze such a high-n localized
mode, we apply nq as the length of the transverse axis in Fig. 5.10(b); this is becausenq is
more suitable to pick the discrete Fourier harmonics up in detail thans. In these �gures, the
Fourier harmonic whose poloidal mode number is171, that is the minimum but larger than
nqa(= 170.8) integer, is dominant; this is a peeling mode. Moreover, an edge ballooning
mode constructing the envelope whose maxima isnq ' 150 appears. The constant-height
surfaces shown in Fig. 5.11 also indicate such an edge localized structure comprised of a
peeling mode and an edge ballooning mode.

To check a convergence property of the MARG2D code, we investigate a convergence
study for the same equilibrium shown in Fig. 5.9 with different values ofn (=1, 5, 10, 20,
40) when b/a = 1.1; the poloidal mode numbers in calculations are set as shown in Tab.
5.3, total radial mesh numberNPS IM2D + NVM2D changes from 880 to 3960, and the ratio of
NPS IM2D to NVM2D is 10 : 1 in each calculation. Figure 5.12 shows the result of this study,
where the variable dλ0−M2D is the difference of λ0−M2D from that computed with the mesh
number NPS I = 800, NV = 80. A well quadratic convergence is observed for alln values.

On the basis of this convergence check, we set the parameters in the MARG2D code to
investigate the stability ofn = 1, 5, 10, 15, 20, 30, and40 ideal modes as shown in Tab. 5.4.

Figure 5.13 shows theλ0−M2D dependence on βp for the different n (=5, 10, 15, 20, 30, 40)
cases when qa = 4.27 and b/a = 1.2; one of the equilibria is shown in Fig. 5.9. Then = ∞
ballooning stability is checked by solving the ballooning equation [67] and we computeβp,cr

for n = ∞ ballooning mode is 0.22, and the n = 1 ideal mode is always stable under this
qa = 4.27 and b/a = 1.2 condition. In this �gure, the n = 5 ideal mode (black solid line)
becomes unstable whenβp ≥ 0.62; βp,cr for n = 5 modes is 0.62. In the same way, βp,cr for
each n are clari�ed as 0.45 (n = 10, black dashed line), 0.375 (n = 15, black dotted line), 0.37
(n = 20, gray solid lines), 0.34 (n = 30, gray dashed line). In the n = 40 case, ideal mode
is unstable when βp ≥ 0.32 but are stable in the region 0.61 ≤ βp ≤ 1.22. The reason of
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Figure 5.10: Poloidal Fourier harmonics of the eigenfunction belonging toλ0−M2D (= −7.77×
10−3) when n = 40, qa = 4.27, βp = 1.4, and b/a = 1.2. Since the mode structure is localized
near the plasma surface as shown in Fig. 5.10(a) (the length used in the transverse axis iss),
we apply nq instead of s as the transverse axis in Fig. 5.10(b). In these �gures, a peeling mode
whose m is 171 and an edge ballooning mode constructing the envelope whose maxima is
nq ' 150 appear.

(a) (b)

Figure 5.11: Constant-height surfaces of Y0(r, θ) when n = 40, qa = 4.27, βp = 1.4, and
b/a = 1.2. (a) Range of the constant-height surface is set as−0.6 ≤ Y0 ≤ 0.6; regions where
|Y0(r, θ)| > 0.6 are blacked out. An edge ballooning structure appears in the outboard bad
curvature region. (b) Range is set as−0.1 ≤ Y0 ≤ 0.1. Contours of ψ are also shown; solid
lines showψ = −0.8 (innermost contour),−0.5, and−0.2 contours, and broken lines are for
ψ ≥ 0.2 contours. A peeling component is emphasized at the plasma surface, especially at
the top and bottom of the surface.
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Figure 5.12: Dependence of dλ0−M2D on the reciprocal of the square of total radial mesh
number (NPS IM2D + NVM2D) in the equilibrium shown in Fig. 5.9; dλ0−M2D is the differ-
ence of λ0−M2D from that computed with the mesh numberNPS IM2D + NVM2D = 880. The
NPS IM2D+NVM2D value changes from880 to 3960. A well quadratic convergence is observed
for all values of n (= 1, 5, 10, 20, 40).

n NPS IM2D NVM2D MM2D Mpeak

1 800 80 64 0
5 1200 120 64 20

10 1200 120 64 40
15 1600 160 64 50
20 1600 160 72 60
30 2400 240 72 100
40 2800 280 90 130

Table 5.4: Parameters in the MARG2D code for eachn stability analysis.
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Figure 5.13: Dependence ofλ0−M2D on βp for the different n values; one of the equilibria is
shown in Fig. 5.9. The n = ∞ ballooning mode is unstable whenβp ≥ βp,cr−in f ty = 0.22, and
the n = 1 mode is always stable under the qa = 4.27 and b/a = 1.2 condition. The values
of the βp limit βp,cr for each n ideal MHD mode are clari�ed as0.62 (n = 5, black solid line),
0.45 (n = 10, black dashed line), 0.375 (n = 15, black dotted line), 0.37 (n = 20, gray solid
lines), and 0.34 (n = 30, gray dashed line). In then = 40 case, ideal mode are unstable when
βp ≥ 0.32 but are stable in the region 0.61 ≤ βp ≤ 1.22. This stabilization is made by the
Shafranov shift that enforces the shape stabilizing effect.

this stabilization is that the Shafranov shift [68] makes the shape effect (an ellipticity and a
triangularity) strong on the stability of then = 40 edge ballooning mode. As shown in this
�gure, the MARG2D code can analyze the stabilities of the widen range ideal MHD modes.

5.6 Validity of the MARG2D formulation
for high-n external mode analysis

The formulation of WV used in the MARG2D code, Eq. (5.87), needs the assumption that the
conducting wall surrounds the system; in other words, the no-wall limit (b/a→ ∞) analysis
cannot be executed. However, as can be appreciated from Eq. (5.145) in the cylinder equilib-
rium case, the stabilizing effect of the conducting wall decreases asn of the analyzed mode
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increases. Hence the position of the conducting wall is no longer the important factor to
discuss the stability of high-n external modes stability.

To con�rm this fact in high-βp toroidal equilibria with the MARG2D code, we investigate
the stability ofn = 1, 10, 20, and 40 ideal MHD modes in the equilibria used in the subsection
5.5.3 shown in Fig. 5.9. The mesh numbers are also same as used in the previous subsection.

Figure 5.14 shows the dependence ofλ0−M2D on βp for the different b/a cases. In the n = 1
case shown in Fig. 5.14(a), ideal MHD modes are stable whenb/a = 1.2; λ0−M2D is always
positive in 0.1 ≤ βp ≤ 2.0. However, in b/a = 1.4 case, external modes become unstable
when βp ≥ 1.81, and the βp,cr values when b/a = 1.6, 1.8 and 2.0 are found as 1.30, 1.13 and
1.08, respectively. This result shows that the wall position is one of the important factors to
stabilize n = 1 external modes.

Next, in the n = 10 case shown in Fig. 5.14(b), MHD modes whenb/a = 1.0 (solid line)
and 1.02 (dashed line) are stable. On the other hand, whenb/a = 1.1 (dotted line), external
modes become unstable in0.52 ≤ βp, and when b/a = 1.2 (dot 2-dashed line),1.3 (dot dashed
line) and 1.4 (2-dot dashed line), external modes are unstable in0.45 ≤ βp. The dot dashed
line (b/a = 1.3) approaches the 2-dot dashed line (b/a = 1.4) asymptotically; this means that
the conducting wall situated outside b/a = 1.3 has little effect on the stability of n = 10
external modes.

When n = 20 shown in Fig. 5.14(c), �xed boundary mode (b/a = 1.0) is still stable, but
external modes when b/a = 1.02 becomes unstable in 0.41 ≤ βp ≤ 0.63. When b/a ≥ 1.1,
n = 20 external modes are unstable inβp ≥ 0.37, and the dot 2-dashed line (b/a = 1.15)
approaches to the the dot dashed line (b/a = 1.2); the stability of n = 20 external modes are
hardly affected by the conducting wall outsideb/a = 1.15. In the same way, in the n = 40
case shown in Fig. 5.14(d), we must place the conducting wall insideb/a = 1.07 to in�uence
the stability of external modes; this is a impractical position to design the experiments. From
these results, we show numerically that the position of the conducting wall must be close to
the plasma surface to affect the stability of high-n external modes. Since the wall position
cannot be so close to the plasma surface in the design of the fusion reactor,b/a is not the
important factor to be discussed in the study of high-n external modes stability, and the as-
sumption that the conduction wall surrounds the system in Eq. (5.87) is negligible for high-n
mode analysis.

5.7 Parallel computing with the Scalapack library

As already mentioned, the MARG2D code can numerically identify the stability of ideal MHD
modes even when these modes are stable. With this property, we intend to realize the stabil-
ity analysis in the intervals of experiments, and in future times, the real-time stability study
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Figure 5.14: Dependence ofλ0−M2D on βp for the different b/a cases. In (a) the n = 1 case,
ideal MHD modes are stable whenb/a = 1.2 (solid line). However, whenb/a = 1.4 (dashed
line), external modes become unstable inβp ≥ 1.81, and in b/a = 1.6 (dotted line), 1.8 (dot
2-dashed line), and 2.0 (dot dashed line) cases, theβp,cr values are 1.30, 1.13 and 1.08, respec-
tively. In (b) the n = 10 case, ideal modes are stable when b/a = 1.0 (solid line) and 1.02
(dashed line) in 0.1 ≤ βp ≤ 2.0. However, when b/a = 1.1 (dotted line), external modes be-
come unstable whenβp ≥ 0.52, and when b/a = 1.2 (dot 2-dashed line), 1.3 (dot dashed line)
and 1.4 (2-dot dashed line), theβp,cr value is 0.45; in particular, the dot dashed line becomes
identical with the 2-dot dashed line asymptotically. Similarly, in (c) then = 20 case, the dot
2-dashed line (b/a = 1.15) is almost same as the dot dashed line (b/a = 1.2), and the dotted
line (b/a = 1.07) is approximately identical to the dot 2-dashed line (b/a = 1.1) in (d) the
n = 40 case, respectively. These results show that the conducting wall is laid out close to the
plasma surface to stabilize high-n MHD modes.
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during an experiment.
To achieve these experimental analyses, the computation time need to be reduced, in

particular, for realizing the real-time study, we must compute in time shorter than the char-
acteristic time of which the MHD equilibrium is changed by the heat and particle transports;
the measure of this characteristic time is about one second. We develop the MARG2D code
as the parallel computing code with the message passing interface (MPI) [36] and the ScaLA-
PACK library [37] to shorten the computation time, and to free up the memory restriction of
high-n mode stability analysis, which needs many mesh numbers for exact study as shown
in Fig. 5.12.

We execute benchmark tests about the parallelization of the MARG2D code in two cases;
one is the low-n (=1) case, the other is the high-n (=30) case. The parameters (NPS IM2D, NVM2D,
MM2D, Mpeak) are (800, 80, 64, 0) for the n = 1 case, and (2400, 240, 72, 100) for the n = 30 case,
respectively. The parallelization ef�ciencyCe f f is de�ned as

Ce f f (nPE) := (computation time whennPE = 2) × 2
(computation time withnPE) × nPE

, (5.153)

where nPE is the number of processors; thisCe f f is normalized with the result whennPE = 2.
The computation system for these tests is the JAERI Origin3800 system [69], which is the

scalar parallel system with 768 processors. The peak computing speed of a single processor,
MIPS 500MHz processor, is 1 GFLOPs and that of this system is 768 GFLOPs. We use a part of
this system for benchmark tests; the maximum processor number is 128.

The MARG2D code is composed of two processes; one is to make the matrices ofN andR
in Eq. (5.151), that is parallelized with MPI (Process 1), and the other is to solve Eq. (5.151) by
the LU factorization and the inverse iteration method with the ScaLAPACK library (Process
2); this numerical method for linear equations is a direct method.

Figure 5.15 shows the dependence of the computation time andCe f f on nPE in (a) the low-
n case and (b) the high-n case; the equilibrium is same as shown in Fig. 5.9 andb/a = 1.2. The
counts of the inverse iteration are set as20 in both cases. In this �gure, the black bar graph
denotes the computation time for Process 1 and the gray bar graph shows that for Process 2,
and Ce f f are shown with the dashed line (Process 1), the dotted line (Process 2), and the solid
line (total calculation).

In the low-n case shown in Fig. 5.15(a), the total computation time is shortened from
325.79 seconds(s) to 13.27s as nPE increases from 2 to 128, and Ce f f of total calculation is over
50% when nPE ≤ 64 and is 38.4% with nPE = 128. This is not enough fast to achieve aforesaid
experimental analyses, but Ce f f is adequate at such a short time calculation. From these
results, we deduce that the MARG2D code has potential for reducing the computation time
to few seconds with the latest computation system.

In the high-n case shown in Fig. 5.15(b), the calculation time is cut down from1279s to
36.88s, and Ce f f of total calculation is over 60% (nPE ≤ 64) and is 54.2% (nPE = 128). As in
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Figure 5.15: Dependence of the computation time and the parallelization ef�ciencyCe f f on
the number of processors nPE in (a) the n = 1 case and (b) the n = 30 case; the computer
system is the JAERI Origin3800 system. The numerical parameters are shown above each �g-
ure. The black bar graph denotes the computation time for Process 1 and the gray bar graph
shows that for Process 2, and Ce f f are shown with the dashed line (Process 1), the dotted
line (Process 2), and the solid line (total calculation). From the results that the computation
time and Ce f f are (a) 13.27s and 38.4%, and (b) 36.88s and 54.2% when nPE = 128, we deduce
that the MARG2D code has potential for realizing the analysis in the intervals of experiments
with the latest computer system.
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the low-n case, the calculation time will become several seconds with the latest system, and
is also enough short to the experiments interval analysis.

5.8 Summary

I have applied the approach consists of representing the plasma potential energy integral
to describe the vacuum energy integral by introducing a solenoidal vector �eld, and have
implemented this approach to a code MARG2D, which is the linear MHD stability code for
a two-dimensional toroidal geometry. This approach has the advantage that the numerical
accuracy in the vacuum region is kept at the same that in the plasma region, and enables us to
perform the stability analysis of high-n ideal external modes. I have determined the validity
of this extended MARG2D code by benchmark tests compared with the ERATOJ code, and
show the beauty of the analytical model of MARG2D for identifying the stability of high-n
external modes.

This approach restricts that a plasma and a vacuum region must be surrounded by a con-
ducting wall. I have con�rmed that the stabilizing effect of the conducting wall decreases as
n of the analyzed mode increases, and the position of the conducting wall becomes meaning-
less for high-n external mode analysis, unlike in the low-n case.

The MARG2D code was developed as a parallel computing code towards the integrated
simulation with the transport analyzing code, and the experimental analysis in the intervals
of experiments. From results of the performance tests, this code has potential for realizing
these objectives. The analysis of edge phenomena with this stability code will be reported
near future.

To perform the real-time stability study during an experiment, we must reduce the calcu-
lation time more by the optimization of this code to the computation system and employing
or developing the new numerical algorithm. This also will be reported near future.



Chapter 6

Summary

In this thesis, magnetohydrodynamic (MHD) external instabilities in an axisymmetric toroidal
plasma have been studied on the basis of the analytical model with the property of the two-
dimensional Newcomb equation.

In Chapters 2 and 3, the ideal MHD model and the two-dimensional Newcomb equation
have been introduced. The theory for the linear ideal MHD stability analysis, called the En-
ergy Principle, is ef�cient and intuitive method of determining plasma stability. On the ba-
sis of this theory, I introduced the two-dimensional Newcomb equation in Chapter 3; this
equation describes the marginally stable state against the ideal MHD instability in a plasma.
The stability of a plasma against the ideal MHD motion in a tokamak can be discriminated
by solving the eigenvalue problem associated with the two-dimensional Newcomb equation.
In the formulation of the eigenvalue problem, the weight functions (kinetic energy integral)
and the boundary conditions at rational surfaces were chosen such that the spectra of the
eigenvalue problem are comprised of only real and denumerable eigenvalues (discrete spec-
tra). Therefore, this eigenvalue problem identi�es the ideal MHD stable states, as well as the
unstable states. The numerical code (MARG2D) was developed to solve the associated eigen-
value problem numerically by using the lowest order �nite hybrid element method and a
direct method with the LU factorization and the inverse iteration method.

In Chapter 3, the theory based on the Newcomb equation was applied to the stability
analysis of low-n external MHD modes in a toroidal plasma, and the stability matrix method
has been developed, where n is the toroidal mode number. With this method, the change
of plasma potential energy due to the plasma displacement is expressed by a quadratic form
with the boundary values of the displacement. The MARG2D-SM code was implemented this
stability matrix method to identify the external mode stability.

Chapter 4 has been devoted to the application of the analysis with the stability matrix
method by using the MARG2D-SM code. I have studied the spectral structure ofn = 1 ideal
external modes, especially, the spectral gaps induced by the poloidal coupling originated

103



104 Chapter 6: Summary

from the �nite aspect ratio effect in the stable region were clari�ed. It has been also shown
that the �nite poloidal beta (βp) effect makes these gaps broaden, whereβ is a ratio of the
plasma pressure to the magnetic pressure. Though the spectral gaps were predicted analyti-
cally, our calculations con�rmed clearly these predictions.

The stability matrix method enables us to implement deeper analysis of external modes
by combining with the eigenvalue problem associated with the Newcomb equation, pre-
sented in Chapter 3. I have clari�ed numerically and analytically the effect of stable ideal
internal modes on the stability of ideal external modes when internal modes approach to
the marginal stability. A stable internal mode couples with an external mode and makes an
impact on the external mode stability. This coupling changes the mode structure of external
modes from a surface mode to a global mode. The effect of internal modes on the external
modes stability also explains the difference of stability against external modes between a nor-
mal shear tokamak and a reversed shear tokamak. This result denotes that the distinction of
the safety factor pro�le in the plasma core region affects the external mode stability.

The property of the MARG2D and MARG2D-SM codes, the facility to identify marginal
stability in short time, is effective to survey appropriate parameters of the MHD equilib-
rium for designing experiments and for optimizing operations. As an example, I have an-
alyzed an effect of the aspect ratio on the stability of ideal external modes with the stability
matrix method, and revealed thatn = 1 external modes are stabilized when the aspect ratio
is made small. The eigenfunction of the most unstable external mode in a high-β tokamak
has a global mode structure as shown in the circular equilibrium case. Such a global mode
is dangerous for tokamak operations, and the aspect ratio is supposed to be optimized for
stabilizing low-n external modes.

Chapter 5 is devoted to the extension of the analytical model with the Newcomb equa-
tion for the high-n external modes stability analysis. I have applied the formulating tech-
nique, mentioned in Chapter 3, to represent the vacuum energy contribution by introducing
a solenoidal vector �eld; this approach is called the vector potential method. This approach
has the advantage that a numerical accuracy in the vacuum region is kept at the same that
in the plasma region. The MARG2D code was improved with this model, and enables us
to perform the stability analysis of high-n ideal external modes. Though this approach re-
stricts that a plasma and a vacuum region must be surrounded by a conducting wall, I con-
�rmed that the stabilizing effect of the conducting wall decreases as then value of the ana-
lyzed mode increases, and the position of the conducting wall is negligible for high-n exter-
nal mode analysis, unlike in the low-n mode analysis case.

The numerical code based on this extended model also has an advantage that a compu-
tation time for the high-n mode stability analysis becomes short, because this model is ob-
tained by solving partly the full MHD model analytically; this is clearly shown in Chapter 3.
I have developed the MARG2D as a parallel computing code to make use of this advantage,
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and have shown the potential of this code enough fast for realizing numerical analyses of
experimental results in the intervals of experiments.

The numerical codes MARG2D and MARG2D-SM developed and improved in this the-
sis realize two numerical methods for the stability analysis of external MHD modes; one is
the stability matrix method, the other is solving the eigenvalue problem associated with the
Newcomb equation. With these methods, the analysis of the resistive wall mode based on
the quadratic form formulation, and that of the edge localized modes, especially the relation
between MHD instabilities and transport phenomena, will be realized.





Appendix A

Self-adjointness of the operator F

In this appendix, we show the self-adjointness of the force operatorF de�ned in Eq. (2.42);
that is Z

ξ · F(η) dV =

Z
η · F(ξ) dV, (A.1)

where V is the plasma volume,ξ and η are two arbitrary vectors. The integrand in Eq. (A.1)
can be written as

η · F(ξ) = η ·
[

1
µ0

((∇ × B0) × Q + (∇ × Q) × B0) + ∇(ξ · ∇p0 + γp0∇ · ξ)
]
, (A.2)

where Q = ∇ × (ξ × B0). By rewriting Eq. (A.2) as

η · F(ξ) =∇ ·
[
η(ξ · ∇p0 + γp0∇ · ξ) +

1
µ0

(η × B0) × Q
]

− ∇ · η(ξ · ∇p0 + γp0∇ · ξ) − 1
µ0

Q · R − 1
µ0

(∇ × B0) · (η × Q), (A.3)

we deriveZ
η · F(ξ) dV =

Z
S p

(
ξ · ∇p0 + γp0∇ · ξ − 1

µ0
B0 · Q

)
(η · n)dS −Wpv(ξ, η), (A.4)

Wpv(ξ, η) =

Z [
γp0(∇ · η)(∇ · ξ) +

1
µ0

Q · R

+ (∇ · η)(ξ · ∇p0) +
1
µ0

(∇ × B0) · (η × Q)
]

dV, (A.5)

where R = ∇× (η× B0), n is the unit normal to the plasma surface. Here the surface integral
in Eq. (A.4) is done on the plasma surfaceS p. With the boundary condition relatingξ and Á
(Á is the vacuum vector potential as de�ned in Eq. (2.56))

−γp0∇ · ξ +
1
µ0

B0 · Q =
1
µ0

B́0 · (∇ × Á) +
1

2µ0
(ξ · ∇)(B́2

0 − B2
0), (A.6)
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which is same as Eq. (2.57), the surface integral term in Eq. (A.4) can be transformed asZ
S p

[
η(ξ · ∇p0 + γp0∇ · ξ − 1

µ0
B0 · Q)

]
· ndS

=

Z
S p

(n · η)(n · ξ)
[[
∇

(
p0 +

B2

2µ0

)]]

a
· ndS

− 1
µ0

Z
S p

(n · η)(B́0 · (∇ × Á)) dS , (A.7)

where [[X]]a is the increment in any quantityX across the boundary in the directionn. Here,
since [[p0 + B2/2µ0]]a = 0 as shown in Eq. (2.51), the tangential component of the jump of
the derivative vanishes. By introducing one more vacuum vector potential asŔ = ∇× Ć and
the boundary condition

n× Ć = −(n · η)B́0, (A.8)

which is same as Eq. (2.58), the last term in Eq. (A.7) is rewritten as

− 1
µ0

Z
S p

(n · η)(B́0 · (∇ × Á)) dS =
1
µ0

Z
S p

(n× Ć) · (∇ × Á) dS

= − 1
µ0

Z
S p

[
(∇ × Á) × Ć

]
· ndS

=
1
µ0

Z
∇ ·

[
(∇ × Á) × Ć

]
dV

= − 1
µ0

Z
(∇ × Á) · (∇ × Ć) dV, (A.9)

where we assume that a perfect conducting wall surrounds a plasma and use the boundary
condition at a wall (n · Ŕ)wall = 0. This is obviously symmetric.

Next, we show the self-adjointness of volume integral term Eq. (A.5). The �rst two terms
in Eq. (A.5) are obviously symmetric, and the last two terms can be rewritten as

dWp(ξ, η) ≡ (∇ · η)(ξ · ∇p0) + J · (η × Q)
= − η · [J × Q + ∇(η · ∇p0)] − ∇ · (η(ξ · ∇p0)), (A.10)

where J = ∇ × B0/µ0. The �rst two terms in Eq. (A.10) can be transformed as

η · [∇(ξ · ∇p0) + J × Q]
=

[B0 × ((J · ∇)ξ − (ξ · ∇)J) + (∇p0 − J × B0)∇ · ξ
+ ξ · ∇∇p0 − ξ · ∇(J × B0)] · η

= − [B0 × (∇ × (J × ξ)) − ∇p0∇ · ξ] · η, (A.11)

where we use the relation

∇(ξ · ∇p0) = (∇p0 × ∇) × ξ + ∇p0∇ · ξ + ξ · ∇∇p0

= B0 × ((J · ∇)ξ) − J × ((B0 · ∇)ξ) + ∇p0∇ · ξ + ξ · ∇∇p0, (A.12)
J × Q = J × ((B0 · ∇)ξ) − (J × B0)(∇ · ξ) − ξ · ∇(J × B0) − B0 × ((ξ · ∇)J) . (A.13)
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The relation

−η · [B0 × (∇ × (J × ξ))] = − (J × ξ) · ∇ × (η × B0) + ∇ · [(η × B0) × (J × ξ)]

= − (J × ξ) · R + ∇ · [(η × B0) × (J × ξ)] , (A.14)

transforms Eq. (A.11) as

[∇(ξ · ∇p0) + J × Q] · η = − (J × ξ) · R + ∇ · [(η × B0) × (J × ξ)] − (η · ∇p0)∇ · ξ
=

[∇(η · ∇p0) + J × R] · ξ + ∇ · [((ξ × η) · B0
) J]

. (A.15)

By using Eq. (A.15), we can express as

dWp(ξ, η) − dWp(η, ξ) =∇ · [((η × ξ) · B0)J]
+ ∇ · [(η(ξ · ∇p0)) − (

ξ(η · ∇p0))]

=∇ · [((η × ξ) · J)B0
]
, (A.16)

and as the result,

Wpv(ξ, η) −Wpv(η, ξ) =

Z
∇ · [(η × ξ) · J] B0dV

=

Z [(η × ξ) · J] (B0 · n)dS

= 0, (A.17)

where the normal component ofB0 vanishes on the plasma-vacuum surface. Thus with Eqs.
(A.9) and (A.17), we prove the symmetric property of the operatorF as Eq. (A.1).





Appendix B

One-dimensional Newcomb equation

In this appendix, we introduce the eigenvalue problem associated with the one-dimensional
Newcomb equation by choosing the appropriate weight function and the natural boundary
condition at a rational surface. With this procedure, the spectrum of the eigenvalue problem
comprises real and denumerable eigenvalues. For simplicity, the �xed boundary condition,
ξ(r) = 0 at plasma surface, is assumed.

B.1 One-dimensional Newcomb equation

In an one-dimensional cylindrical coordinate system(r, θ, φ), a perturbation displacement is
expressed as

ξ = ξ̄ exp(imθ − inφ), (B.1)

where m, n are the poloidal and the toroidal mode numbers, respectively. By taking the
plasma minor radius a and the magnetic �eld at the magnetic axisB0 as the normalized pa-
rameters, the potential energy integralWp is written as

Wp(Y,Y) =

Z 1

0
Ldx =

Z 1

0

{
f (x)

∣∣∣∣∣
dY
dx

∣∣∣∣∣
2

+ g(x) |Y |2
}

dx, (B.2)

f (x) = xF2
(

n
m −

1
q

)2 m2

m2 + n2ε2x2 , (B.3)

g(x) =
F2

x

[
A + N + E +

(
n
m −

1
q

)
M1 + M2

]
, (B.4)
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where Y = rξ̄ · ∇r, x = r/a, ε = a/R0, F is the normalized toroidal �eld, andA, N, E, M1, M2

in Eq. (B.4) are given as

A =

(
m
q − n

)2
, (B.5)

N =

(
2
q

)2 m2

m2 + n2ε2x2 , (B.6)

E =
2

q2 + ε2x2

{
x

F2
dp
dx −

(
2 − x

q
dq
dx

)}
, (B.7)

M1 =
2
q

m2

m2 + n2ε2x2

{
1
q

dq
dx +

2n2ε2x
m2 + n2ε2x2

+
1

F2
2q2

q2 + ε2x2

dp
dx +

(
εFx

q

)2 (
2
x −

1
q

dq
dx

)
 , (B.8)

M2 =
2x
q

d
dx

(
1
q

)
m2

m2 + n2ε2x2 . (B.9)

The Euler-Lagrange equation obtained with Eq. (B.2) is written as

d
dx

(
f (x)dY

dx

)
− g(x)Y = 0. (B.10)

We consider the eigenvalue problem associated with Eq. (B.10) as

NY ≡ d
dx

(
f (x)dY

dx

)
− g(x)Y = −λρ(x)Y, (B.11)

whereρ(x) is the weight function. When a plasma is marginally stable, the eigenvalueλ = 0.

B.2 Elimination of the singularity

Since the energy integral obtained by Eq. (B.11) is expressed as

Wp(Y,Y) = λ

Z 1

0
ρ(x)|Y |2dx, (B.12)

the sign of λ indicate the stability against the ideal MHD perturbation; whenλ is negative
(positive), a plasma is unstable (stable).

However, since the LHS of Eq. (B.10) can be Taylor expanded around rational surfaces
q(xs) = m/n as

f (x) = w(x)
(

n
m −

1
q

)2
= f0 (x − xs)2 + f1 (x − xs)3 + · · · , (B.13)

w(x) = F2 m2x
m2 + n2ε2x2 , (B.14)

g(x) = g0 + g1 (x − xs) + · · · , (B.15)
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where f0, f1, g0, and g1 are Taylor coef�cients, and xs is the location of a rational surface,
x = 0 and xs are obviously regular singular points of Eq. (B.10). To eliminate the singularity
induced by the former singular point x = 0, the regularity condition has to be imposed at
x = 0 as

Y = 0 at x = 0. (B.16)

The singularity at x = xs, however, is more complicated, and is the cause that Eq. (B.11) has
continuous spectra whenρ(x = xs) > 0. In such cases, the eigenvalue corresponding to the
marginally stable state cannot be numerically singled out among these continua.

When a plasma is marginally stable, Eq. (B.10) has a nontrivial solution which is square
integrable and satis�es the �xed boundary conditionsY(0) = Y(1) = 0. Since q(xs) = m/n is
a regular singular point, the region [0,1] can be separated into the left side region [0,xs) and
the right side region (xs,1] [28], and two fundamental solutions of Eq. (B.10) can be expressed
by the Frobenius series aroundq(xs) as

Y = (tp)−1/2+µsuy

1 +

∞∑

j=1
Y j

(
m
q − n

) j
 , p = L,R, (B.17)

where

tL ≡ |x − xs|L =


(xs − x) for x < xs,

0 for x > xs,
(B.18)

tR ≡ |x − xs|R =


0 for x < xs,

(x − xs) for x > xs.
(B.19)

Here the Suydam indexµsuy is

µsuy =

√
1
4 +

g0
f0
, (B.20)

and we assume that the Suydam stability condition
1
4 +

g0
f0
> 0, (B.21)

is satis�ed. Since the square integrable solution given by Eq. (B.17) is only the solution with
the power−1/2 + µsuy, called the �small solution�,ρ(x) is chosen in Eq. (B.11) that all eigen-
functions behave as the small solution near x = xs, and the proper boundary condition is
imposed at x = xs. For this purpose, we introduce �rstρ(x) as

ρ(x) = F2
(
m
q − n

)2
, (B.22)

and the boundary condition at x = xs is obtained as follows. The bilinear form correspond-
ing to Eq. (B.2) is given by

W(η, ξ) =

Z 1

0

(
f dη∗

dx
dξ∗
dx + gη∗ξ

)
dx, (B.23)
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where the script∗ denotes the complex conjugate, and the bilinear concomitant is given by

η∗Nξ − ξ(Nη)∗ =
d
dx

(
f (x)

(
η∗

dξ
dx − ξ

dη∗
dx

))
. (B.24)

The boundary condition forξ andη at x = xs is obtained from Eq. (B.24) to make the operator
N self-adjoint. Since the singularity ofξ and η is at most |x − xs|−1/2+µsuy, we get the relations

lim
x→xs

f (x)η∗ dξdx = 0, (B.25)

and Z 1

0
η∗Nξdx =

Z 1

0
Nηξdx. (B.26)

Equation (B.26) means that the operatorN is self-adjoint without boundary conditions forξ
and η. Thus the natural boundary condition forξ should be imposed at x = xs.

By choosing ρ(x) and the natural boundary condition at rational surfaces x = xs, all
eigenfunctions behave as the small solution near the point x = xs, and the spectrum of
Eq. (B.11) comprises real and denumerable eigenvalues. This means that we can obtain
numerically not only negative discrete eigenvalues but also positive ones, and identify the
marginally stable condition of a plasma against the ideal MHD motion.



Appendix C

Green's function technique
for calculating the vacuum energy
contribution

In this appendix, we introduce the numerical method for calculating the vacuum energy
contribution with a Green's function technique. The wall surrounding the plasma and the
vacuum is assumed as the perfect conducting wall.

C.1 Basic equation

In the straight �eld line coordinate (ψ, θ, φ), the Jacobian
√

g(ψ, θ) is expressed as
√

g(ψ, θ) =
1

(∇φ · (∇ψ × ∇θ)) =
1

(B0 · ∇θ) , (C.1)

whereψ is the poloidal magnetic �ux function de�ned in Eq. (2.12),θ and φ are the poloidal
and toroidal angle, B is the magnetic �eld in the cylindrical coordinate system (R, φ,Z) as

B = ∇φ × ∇ψ + F(ψ)∇φ, (C.2)

and F(ψ) is the toroidal �eld function; these are same as those de�ned in Section 2.2. With
the safety factor q(ψ)

q(ψ) =
B · ∇φ
B · ∇θ , (C.3)

√
g(ψ, θ) is transformed as √

g(ψ, θ) =
q(ψ)

F R2. (C.4)

By expressing the perturbed magnetic �eld in the vacuum regionQ́ with the scalar po-
tential Φ as

Q́ = ∇Φ, (C.5)
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the potential energy integral in the vacuum reads

WV =
1
2

Z
V
|∇Φ|2 dV, (C.6)

where dV is the volume element. We introduce the boundary condition forΦ on the perfect
conducting wall as

∇Φ · nw = 0, (C.7)

and that on the plasma surface as

Q · ∇ψ|a = ∇Φ · ∇ψ|a, (C.8)

where nw is the unit normal to the wall surface, Q is the perturbed magnetic �eld in the
plasma, and X|a means the value of X at the plasma surface. SinceQ can be written with the
plasma displacementξ as

Q = ∇ × (ξ × B), (C.9)

which is same as that in Section 2.3,Q · ∇ψ can be written as

Q · ∇ψ =
F√gDθ( �ξ), (C.10)

where
�ξ =

q
F ξ · ∇ψ, (C.11)

and the operatorDθ(X) for the perturbation X(ψ, θ, φ) ∝ exp(−inφ) is

Dθ(X) =
1
q
∂X
∂θ
− inX. (C.12)

By substituting Eq. (C.10) into Eq. (C.8), we obtain
F√gDθ =

∂Φ

∂n |∇Φ|a . (C.13)

The scalar potentialΦ satis�es the Laplace equation

∇2Φ = 0. (C.14)

With the vector identity
|∇Φ|2 = ∇ · (Φ∇Φ) − Φ∇2Φ, (C.15)

WV is transformed as
WV =

1
2

Z
a
Φ∇Φ · ndS , (C.16)

where
R

a is the surface integral on the plasma surface. SinceΦ can be expressed by using the
real and symmetric kernel of integralQ(θ, θ′) as

Φ(θ) =

Z 2π

0
Q(θ, θ′)N(θ′)dθ′, (C.17)

N(θ′) = [FDθ( �ξ)](θ′), (C.18)
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Eq. (C.15) reads
WV = π

Z 2π

0
dθ
Z 2π

0
dθ′Q(θ, θ′)N(θ)N(θ′). (C.19)

By transforming from Eq. (C.6) to Eq. (C.19), WV is calculated with the kernel of integral
Q(θ, θ′).

C.2 Integral equation

We introduce a Green's theoremZ
(u∇2v − v∇2u)dV =

Z (
u∂v
∂n − v∂u

∂n

)
dS , (C.20)

and a Green's function satisfying

∇2G(x, x′) = δ(x − x′). (C.21)

Here in Eq. (C.20),u and v are arbitrary scalar functions, and in Eq. (C.21),δ(x−x′) is a Dirac's
delta function, x and x′ are the integration variable and a point on the boundary surfaces.
By substituting u = Φ and v = G(x, x′) into Eq. (C.20), we obtain

Φ(x) =
1

2π

Z
a

(
Φ(x′)∂G(x, x′)

∂n −G(x, x′)∂Φ(x′)
∂n

)
dS ′

− 1
2π

Z
b

(
Φ(x′)∂G(x, x′)

∂n

)
dS ′, (C.22)

where
R

b expresses the surface integral on the wall. A Green's function of Eq. (C.14) is

G(x, x′) =
1

|x − x′| , (C.23)

and the identities forG(x, x′) can be obtained asZ
a

∂

∂n′G(x, x′a)dS ′ =


−2π for x = xa,

0 for x = xb,
(C.24)Z

b

∂

∂n′G(x, x′b)dS ′ =


−4π for x = xa,

−2π for x = xb,
(C.25)

where ∂/∂n′ is the normal derivative relating the argument with prime (′). With Eqs. (C.24)
and (C.25), Eq. (C.22) is transformed as

2Φ(xa) =
1

2π

{Z
a

[
Φ(x′a) − Φ(xa)] ∂

∂n′G(xa, x′a)dS ′

−
Z

a
G(xa, x′a) ∂

∂n′Φ(x′a)dS ′ −
Z

b
Φ(x′b) ∂

∂n′G(xa, x′b)dS ′
}
, (C.26)

0 =
1

2π

{Z
a
Φ(x′a) ∂

∂n′G(xb, x′a)dS ′ −
Z

a
G(xb, x′a) ∂

∂n′Φ(x′a)dS ′

−
Z

b

[
Φ(x′b) − Φ(xb)] ∂

∂n′G(xb, x′b)dS ′
}
. (C.27)
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This transformation is essential to remove the singularities whenx′a = xa and x′b = xb, and
these singularities are treated in Section C.4.

C.3 De�nition of the poloidal angle on the wall

We express the shape of the conducting wall as ((RW) j, (ZW) j) with 2K + 1 numbers of point,
where

(RW)2K+1 = (RW)1, (ZW)2K+1 = (ZW)1. (C.28)

By introducing the discrete pointη j as

η j = π
j − 1

K , j = 1, · · · , 2K + 1, (C.29)

(RW) j and (ZW) j can be treated as the function of η j, RW(η j) = (RW) j and ZW(η j) = (ZW)) j,
where η ∈ [0, 2π]. The location on the wall is speci�ed by (η, φ), and the outward normal
derivative of the scalar function f (η, φ) on the wall is

∂ f
∂ndS = RW

[
∂ZW

∂η

∂ f
∂RW

− ∂RW

∂η

∂ f
∂ZW

]
dηdφ, (C.30)

where dS is the area element on the wall. The outer normal derivative on the plasma surface
can be obtained by changing from η to θ. By using Eq. (C.30), Eqs. (C.23) and (C.24) are
rewritten as

2Φa(θ) =
1

2π

{Z 2π

0
dθ′R′(θ′)

[
Φa(θ′)DGn(θ, θ′) − Φa(θ)DG0(θ, θ′)

]

−
Z 2π

0
dθ′N(θ′)Gn(θ, θ′) −

Z 2π

0
dη′R′(η′)Φb(η′)DGn(θ, η′)

}
, (C.31)

0 =
1

2π

{Z 2π

0
dθ′R′(θ′)Φa(θ′)DGn(η, θ′) −

Z 2π

0
dθ′N(θ′)Gn(η, θ′)

−
Z 2π

0
dη′R′(η′)

[
Φb(η′)DGn(η, η′) − Φb(η)DG0(η, η′)

]}
. (C.32)

Here Φa(θ) and Φb(η) are the scalar potential on the plasma surface and that on the wall,
respectively, and

Gn(x, x′) =

Z 2π

0

exp(−in(φ − φ′))
|x − x′| dφ, (C.33)

DGn(α, β′) =

[
∂Z′
∂β′

∂

∂R′ −
∂R′
∂β′

∂

∂Z′

]
Gn(x(α), x′(β′)), (C.34)

whereα, β are θ or η, and
x = (R,Z, φ), x′ = (R′,Z′, φ′). (C.35)
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C.4 Elimination of the singularity

By introducing the modi�ed elliptic integralKn

Kn(ζ) =

Z π/2

0

cos(2nφ)
[1 − (1 − ζ) sin2 φ]1/2

dφ, (C.36)

ζ =
(R′ − R)2 + (Z′ − Z)2

(R′ + R)2 + (Z′ − Z)2 , (C.37)

Gn(x, x′) can be written as

Gn(x, x′) =
4Kn(ζ) × (−1)n

[(R′ + R)2 + (Z′ − Z)2]1/2 . (C.38)

The integral Kn as well as its derivativedKn/dζ exhibit singularities atζ = 0 as

Kn(ζ) = (−1)n+1 ln ζ
2 + · · · , (C.39)

dKn(ζ)
dζ = (−1)n+1 1

2ζ + · · · . (C.40)

From these equations, all the integrals containing DGn in Eqs. (C.31) and (C.32) are now
regular. The integrals including G, however, still show logarithmic singularities, and we
cannot treat these integrals numerically. To avoid such singularities, �Gn(θ, θ′) is rewritten as

Gn(θ, θ′) = Greg + Ganal, (C.41)

Greg = Gn(θ, θ′) +
2

R(θ) log |θ′ − θ|, (C.42)

Ganal = − 2
R(θ) log |θ′ − θ|, (C.43)

where the integrals containing Greg are regular integrals. Since the singular part in Eq.
(C.41), Ganal, can be treated analytically asZ θ j+1

θ j
dθ
Z θ j+1

θ j
dθ′ log |θ′ − θ| = h2 log h − 3

2h2, (C.44)

h ≡ |θ j+1 − θ j|, (C.45)

we can integrate numerically Eqs. (C.31) and (C.32).

C.5 Vacuum energy matrix

We divide the poloidal angle on the plasma surface,θ, and that on the wall,η, by N + 1 and
M + 1 as

θ1 = η1 = 0, θN+1 = ηM+1 = 2π. (C.46)
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With the step function introduced as (ζ = θ or η)

e j+1/2(ζ) =


1 for ζ ∈ [ζ j, ζ j+1],
0 for ζ < [ζ j, ζ j+1],

(C.47)

the potentials are expanded as

Φa(θ) =

N∑

j=1
b je j+1/2(θ), (C.48)

Φb(η) =

M∑

k=1
ckek+1/2(η). (C.49)

By substituting Eq. (C.48) into Eq. (C.31), multiplyinge j+1/2(θ), and integrating from0 to 2π,
we obtain the linear equation

2b = A · b − C · c − B · a. (C.50)

Here b and c are the vectors constructed with the coef�cients in Eqs. (C.48) and (C.49) as

b = (b1, · · · , bN)t, c = (c1, · · · , cN)t, (C.51)

a is written as

a =(a1, · · · , aN)t, (C.52)

a j = N(θ j+1/2), θ j+1/2 =
θ j + θ j+1

2 , j = 1, · · · ,N, (C.53)

and the matrices A, B, and C are given by

A j,k = Rk+1/2
a Gn

a,a′( j, k) − δ j,k

N∑

m=1
Rm+1/2

a G0
a,a′( j,m), (C.54)

B j,k =Sa,a′( j, k), (C.55)
C j,k = Rk+1/2

b Gn
a,b′( j, k), (C.56)

Gn
α,β′( j, k) =

1
2π(α j+1 − α j)

Z α j+1

α j
dα
Z βk+1

βk
dβ′DGn(α, β′), (C.57)

Sα,a′( j, k) =
1

2π(α j+1 − α j)

Z α j+1

α j
dα
Z θk+1

θk
dθ′Gn(α, θ′), (C.58)

where we substituteα = θ (or η) in the RHS of Eqs. (C.57) and (C.58) whenα = a (or b) in the
LHS, δ j,k is a Kronecker'sδ symbol

δ j,k =


1 for j = k,
0 for j , k,

(C.59)
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and
Rk+1/2

a = R(θk+1/2), Rk+1/2
b = R(ηk+1/2). (C.60)

To do likewise for Eq. (C.32), we also obtain the equation

0 = D · b − F · c − E · a, (C.61)

where

D j,k = Rk+1/2
a Gn

b,a′( j, k), (C.62)
E j,k =Sb,a′( j, k), (C.63)

F j,k = Rk+1/2
b Gn

b,b′( j, k) − δ j,k

M∑

m=1
Rm+1/2

b G0
b,b′( j,m). (C.64)

By solving Eqs. (C.50) and (C.61) forb, we obtain

b = Q · a, (C.65)

where the N × N real matrix Q is the approximated matrix of the kernel of integral in Eq.
(C.19) and is expressed as

Q = (2I − A + CF−1D)−1(CF−1E − B), (C.66)

and I is the unit matrix.
With the matrix Q, we obtain WV in Eq. (C.19) as a quadratic form

WV = π

N∑

j,k=1
(θ j+1 − θ j)(θk+1 − θk)Nk+1/2Q j,kN j+1/2 (C.67)

=
〈
a
∣∣∣ �Q

∣∣∣ a
〉
, (C.68)

�Q j,k =π(θ j+1 − θ j)(θk+1 − θk)Q j,k. (C.69)
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