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Abstract

The theory and analytical model for the stability analysis of magnetohydrodynamic (MHD)
modes based on the two-dimensional Newcomb equation are extended for the analysis of ex-
ternal MHD modes both with low# and with high-#x toroidal mode numbers. In this model,

since the appropriate weight function and the boundary conditions at rational surfaces are
introduced to solve the eigenvalue problem associated with the Newcomb equation, the spec-
trum of this eigenvalue problem contains only discrete eigenvalues. This feature enables us
to reveal explicitly whether plasma is stable or unstable.

In this dissertation, the analytical model is first applied to the development of a new
method that analyzes the stability of alow# external MHD mode in a matrix form, and hence
this new method is called the stability matrix method. A numerical code (MARG2D-SM) is de-
veloped according to the stability matrix method, and the validity of the code is confirmed
by several benchmark tests. The code clarifies the spectral structure ofn = 1 ideal exter-
nal kink modes, which are stable or unstable. The spectral gaps induced by the poloidal
coupling are also investigated. The stability matrix method reveals the effect of stable ideal
internal modes (fixed boundary modes) on the stability of ideal external modes (free bound-
ary modes). With this effect, the mode structure of an ideal external mode changes from a
surface mode structure to a global mode structure as a beta value increases, and an exter-
nal mode destabilizes when an internal mode approaches to their marginal stability; a beta
value is a ratio of the plasma pressure to the magnetic pressure. This effect explains how a
safety factor profile in the core region of high beta tokamak plasma affects the stability of an
ideal external mode.

The model based on the Newcomb equation has an advantage that the marginal stability
can be identified with a short computation time. Such an advantage is demonstrated to be
powerful in the study on the aspect ratio dependence of ther = 1 ideal external MHD mode
stability.

For high-n external MHD modes, the analytical method based on the Newcomb equation
is extended in the vacuum region; the vacuum energy integral is calculated by using the vec-
tor potential method. The MARG2D code, which solves numerically the eigenvalue problem

associated with the two-dimensional Newcomb equation, is adapted to this new model, and
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the validity of this extension is confirmed by benchmark tests. This extended MARG2D code
is developed as a parallel computing code, and enables the fast stability analysis of highu
modes like a peeling mode, an edge ballooning mode, and a couple of them called a peeling-
ballooning mode.
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Chapter 1
Introduction

Controlled thermonuclear fusion is expected to be a new and inexhaustible energy resource
in this 21-st century. Now the most promising approach to the fusion reactor is the magnetic
confinement of a high temperature plasma. A device of the magnetic confinement must be
a shape of torus, and various types of toroidal devices have been proposed [1]. The device
closest to a reactor among them is tokamak, first developed in the then U.S.S.R. [2]; for ex-
ample, in JT-60U the equivalent fusion multiplication factorQ has reached to 1.25 [3], where
Q is defined as the ratio of fusion output power to input power for plasma heating, and an
international project is ongoing for constructing the ITER (International Thermonuclear Ex-
perimental Reactor) among Japan, EU, USA, Russia, and other countries [4].

For a fusion reactor to be attractive from the economical point of view, a tokamak has to
be able to confine a high temperature, high$ plasma with enough long confinement time.
Here S is a ratio of the plasma pressure to the magnetic pressure. For establishment of such
a stationary high performance operation, there are several key issues to be resolved. One of
them is the stability against external magnetohydrodynamic (MHD) perturbations both with
low-n and with high# toroidal mode number.

The low-n ideal external MHD modes, obstacles limiting the tokamak performance, are
stabilized by a conducting wall as long as the wall be an ideal conductor. However, the modes
can remain still unstable due to the finite resistivity of the wall; such modes are called resis-
tive wall modes (RWMs) [5]. Since RWMs restrict the stationary operation, they are to be
stabilized or to be controlled by other methods than the conducting wall. An effective stabi-
lization mechanism is plasma rotation relative to the wall. However, the ration frequency
necessary for the stabilization is the Alfvén or the sound transit frequency [6-9], and hence
such rotation frequency is not expected in a reactor such as ITER. Another effective method is
a feedback control with external coils, which is considered as technologically feasible [10-15].
A numerical method of the feedback stabilization has been reported [13], which involves us-
ing both a MHD stability code DCON [16] and the vacuum field code VACUUM code [17].
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2 Chapter 1: Introduction

High-n external modes (a peeling mode [18], an edge-ballooning mode [19], and a mode
with the combined structure of the peeling and the ballooning modes) are the trigger for
edge localized modes (ELMs) that constrain the maximum achievable pressure gradients in
the pedestal at the tokamak edge region; high pressure gradients in the pedestal is a cru-
cial element for the high performance (so called H-mode [20]) operation. Numerical analysis
on the stability of high# external modes have been reported based on the single ideal MHD
model with the large+ ordering model [21-23] or on a full MHD model [24,25]. Such analyses
claim that highn external modes explain various ELM phenomena in H-mode [20] tokamak
operations. Also, an integrated modeling between the core and pedestal regions is reported,
which uses a predictive core transport model and a pedestal model that includes MHD sta-
bility analysis of high+ external modes [26].

Another promising approach to the MHD stability analysis for these external MHD modes
will be the Newcomb equation, which is the inertia free linear ideal magnetohydrodynamic
(MHD) equation [27, 28]. However, the Newcomb equation has regular singular points at ra-
tional surfaces that satisfy the resonance conditionm = ng(r), where m is the poloidal mode
number, ¢(r) is the safety factor, and r is a poloidal flux label of the MHD equilibrium. This
singular nature of the equation can yield continuous spectra in the stable region, and makes
it difficult to solve the equation numerically. Tokuda and Watanabe [29] have resolved such
difficulties by formulating a new eigenvalue problem associated with the two-dimensional
Newcomb equation for internal MHD modes; the proposed eigenvalue problem has only real
and denumerable eigenvalues without continuous spectra. At the same time, according to
this formulation, a code MARG2D has been developed which solves numerically the two-
dimensional Newcomb equation and the associated eigenvalue problem by a finite element
method [30].

Although the formulation in Ref. [29] is limited to internal MHD modes, we can expect
that the MARG2D formulation also provides a powerful tool for the stability analysis of low-
n and highn external MHD modes. The main purpose of this thesis is to develop an analytical
model and a numerical code for stability analysis of a broadn range of external MHD modes
in toroidal plasmas, especially in a shaped axisymmetric toroidal plasma by extending the
theory of the Newcomb equation to external modes. The code thus developed is also enough
fast to be used practically in the stability control as well as transport simulations.

Chapter 2 briefly reviews the ideal MHD model, static MHD equilibrium in an axisym-
metric system, and the Energy Principle for the linear ideal MHD stability analysis. Chapter
3 introduces the two-dimensional Newcomb equation and the associated eigenvalue prob-
lem, and describes the MARG2D stability code; these are the basis of this dissertation.

When I extend the theory of the Newcomb equation to external mode analyses, I take
different approaches for alow# mode and a high» mode.

For low- external mode analysis, [ develop in Chapter 3 a matrix method that expresses



the change of the potential energy due to the plasma displacement by a quadratic form with
respect to the values of the displacement at the plasma surface [10, 31]. According to this
method, a code MARG2D-SM is developed. The code provides a tool essential for the RWM
analysis, which is second to, but alternative to the DCON code. Moreover, if this matrix
method is combined with the eigenvalue problem associated with the Newcomb equation
derived in Chapter 3, we can get deeper insight into the spectral properties of external modes.
In Chapter 4, after benchmark tests between the MARG2D-SM code and the conventional sta-
bility analysis code (ERATO) [32], I investigate the spectral structure ofn = 1, stable or unsta-
ble, ideal external kink modes, and the property of the spectral gaps induced by the poloidal
coupling originated from the finite aspect ratio effect. Although toroidal effects on the spec-
tral gaps were analytically predicted in Ref. [33], this thesis numerically confirms these pre-
dictions. Furthermore I investigate, analytically and numerically, the destabilizing effect of
stable internal MHD modes on the stability and the mode structure of external MHD modes
when internal modes approach to their marginal stability. This effect of the stable internal
modes clarifies the difference between the external mode stability in a normal shear toka-
mak and that in a reversed shear tokamak. The stability of ideal external modes is further
investigated from the view point of the aspect ratio dependence, which gets attention in the
research on small aspect ratio tokamak [34].

For high-n external mode analysis I adopt in Chapter 5, the vector potential method [35]
in order to write the vacuum magnetic field contribution (vacuum energy integral) in the
same integral form as the plasma contribution. Consequently, we can apply the MARG2D
formulation directly to the vacuum energy integral and can analytically reduce the potential
energy for a highn external MHD mode without using the largen ordering. This extension
therefore realizes abroadn range of external mode analysis on the basis of the single physical
model.

The eigenvalues computed by the MARG2D code correspond neither to growth rates nor
frequencies of MHD perturbations. However, the sign of the minimum eigenvalue tells us
whether an MHD equilibrium is stable or unstable against ideal MHD perturbations since
the eigenvalue problem solved by MARG2D does not contain continuous spectra. This prop-
erty is especially useful when we have to analyze the stability of a series of equilibria gen-
erated from the time evolution of a discharge, either by an experiment or by a transport
simulation, since we are mainly interested in whether each equilibrium is stable or unsta-
ble. To facilitate such stability analysis I adapt MARG2D for parallel computing by using the
message passing interface (MPI) [36] and the ScaLAPACK library [37]. And also we study in
Chapter 5 the performance of this code, discussing the possibility of the stability analysis be-
tween the interval of experiments, and the possibility of the real-time stability analysis by
using a future, advanced parallel computer.

Finally, I summarize in Chapter 6 the achievements in this thesis, discussing the outlook
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for further developments and applications to analyze and to control external MHD modes in
a toroidal plasma.



Chapter 2

Ideal MHD model

2.1 Ideal MHD equations

We first introduce the single-fluid, ideal magnethydrodynamic (MHD) equations. In the ki-
netic theory, the behavior of the plasma composed of N particles is described by the Klimon-
tovich equation [38] coupled with Maxwell’s equations [39]. However, we are usually not
interested in the exact motion of all of the particles in a plasma, but rather in certain average
or approximate characteristics. We adopt the distribution function of the speciess, f;(x, v, ?),
as the ensemble averaged number of point particles per unit six-dimensional phase space;x
is the three-dimensional configuration space,v is the three-dimensional velocity space, and¢
is the time. By using f;, the Vlasov equation arises naturally from the Klimontovich equation
when the effects of collisions are ignored as [40,41]

afs(x,v,1)

v Vefit BLE+vxB)-Vyf, =0, (2.1)
ot mg

where g, and m; are the charge and the mass of a particle of speciess, E and B are the electric
and the magnetic fields, respectively.

By taking velocity moments of Eq. (2.1) in seven-dimensional(x, v, f) space, an infinite hi-
erarchy of equations in four-dimensional(x, r) space can be derived. The standard two-fluid
theory of plasma physics is obtained by truncating this infinite hierarchy with the assump-
tion that f; is nearly local Maxwellian. The single fluid, ideal MHD equations are derived

5



6 Chapter 2: Ideal MHD model

from the two-fluid equation as [41, 42]

dp
Xiv. =0, 2.2
a (ov) (2.2)
Dy
n— = B-V 2.
m,nDt J X D, (2.3)
E+vxB=0, (2.4)
Dp
—Z - _IpV. 2.
Dr pV -, (2.5)
oB
_— = —VXE’ 2.6
” (2.6)
VXB= /l()J, (27)
V-B=0, (2.8)

with the assumptions (i) high collisionality, (ii) characteristic dimensions much larger than
anion gyro radius, (iii) characteristic frequency is much smaller than the ion gyro frequency,
and (iv) small resistivity. Here,D/Dt = d/0t + v - V, p and p are the density and the pressure

of a plasma, m; is the mass of an ion, v is the fluid velocity, J is the current density, and  is

the vacuum permeability.

For plasmas of fusion interest, the conditions of small gyro radius and small resistivity
are well satisfied, and the low frequency condition is valid when we treat such MHD mo-
tions. However, the high collisionality assumption is never satisfied. Despite this break, em-
pirical evidence demonstrating that ideal MHD provides a very accurate description of most
macroscopic plasma behavior. Therefore, the ideal MHD model is used in this thesis to study
equilibrium and stability properties of tokamaks.

2.2 MHD equilibrium

In this section, we derive the equilibrium equations, called Grad-Shafranov equation [43-
45]. The basic equations of the ideal MHD equilibrium with scalar pressure and without

flow are
Vp=JXB, 2.9)
VXB=ul, (2.10)
V-B=0. (2.11)

For an axisymmetric system such as a tokamak plasma, we can define the poloidal magnetic

flux functiony from the toroidal component of the vector potentialA, as

U = —RA,, (2.12)
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Figure 2.1: Cylindrical and flux coordinate systems.

where R and ¢ are the cylindrical coordinate system (R, ¢, Z) as shown in Fig. 2.1. By using
this scalar functiony in (R, ¢, Z), the magnetic field is represented by

B =V¢xVy+ FVg. (2.13)
Here F, called toroidal field function, is expressed by using the toroidal fieldB; as
F = RB,. (2.14)

Then the set of the equilibrium equations, Eqs. (2.9)2.11), is reduced to a second-order par-

tial differential equation, called Grad-Shafranov equation, as

Ay=2Y XL OV R, 215
V=or T Ror T azz T HoRYs (2.15)

where the toroidal component of the plasma currentJ, is given by
Jyg=—R— — ———. (2.16)

It is easily seen that the pressure function p and toroidal field function F are functions
of only ¢. Since ¢ has an ambiguity of a shift of a constant value, we define they value at the
plasma surface to be zero; they value inside the surface is negative.

For tokamaks, a toroidal magnetic field is generated by a current in toroidal-field coils,
and a poloidal magnetic field is made by a finite toroidal current inside the plasma region
and by a current in poloidal-field coils. These magnetic field lines forms nested magnetic

surfaces which coincide with the contours ofys as shown in Fig. 2.1.
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Plasma behaviors along the magnetic surfaces and across them are fairly different. There-
fore, it is desirable to employ a flux coordinate system based on the contours ofy to analyze
properties of instabilities. In this thesis, we adopt a flux coordinate system {, 8, ¢), where ¢
is the toroidal angle same as that defined in a cylindrical coordinate system, andd is an arbi-
trarily chosen poloidal angle as shown in Fig. 2.1. Because# is the angular coordinate with
modulus of 27, the following constraint imposed to the Jacobian /g,

dl
=2, (2.17)
VB,

where /g = [(Vy x V) - Vo]~ and dl is the line element.

The flux surface average(X) s of a variable X is defined as

(XY, = i L XdV =2 X do =2 X/ B, dl (2.18)
f_A\I/TOAV/‘{l =, dV/d\P‘/g Y aviay®t ‘
dv 2 dl
=2 0=2r1¢ — 2.1
P T ; Vgd T Bp’ (2.19)

where V() is a volume inside a magnetic surface specified by an arbitrarily chosen label
¥, such as, the poloidal magnetic fluxys = [ B - VOdV/(2r)?, the toroidal magnetic fluxA =
| B -V¢dV/(2n)?, and so on. In this thesis, we adopty as the magnetic surface label.

Next, we define several equilibrium quantities. For statistic axisymmetric equilibrium,
the perpendicular component of the current is

BxV
J. = Tp, (2.20)
where [J is expressed as.J = J, + J;B/B. From the quasi-neutral condition
V-J=0, (2.21)
we get the relation as
B B x V)
v (2] =-v [2222) (2.22)
B B?
After some manipulations, Jj is derived as
Fd B? -B
Jy = _oap (1 - — )+ Y > >fB. (2.23)
B dy (B*)s (B*)¢

The first term of this equation is the well-known Pfirsch-Schliiter current [46] which main-
tains the quasi-neutral condition. The divergence-free current of the second term assures
the momentum balance along the magneticlines of force and it is essential for confining the
tokamak plasma. Within the framework of the neoclassical transport theory, the surface-

average parallel current is expressed by

(J-B)=J-B)g+(J B)p+{J-B)s, (2.24)
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where (J - B)g,(J - B)p are the ohmic current and the bootstrap current given as

(J - B)g =0nc(E - B), (2.25)
e dpe i dpz ¢ dTe i dTl
(J-B)g=—-F 31w +L3lw +L32E +L32w), (2.26)

and (J - B)s expresses the non-ohmically driven current [47,48]. The neoclassical transport
coefficients, oy, L, L}, LS,, and L}, are given in neoclassical transport theory review pa-
pers [49,50].

The MHD safety factor g, which assume the configurations of a set of nested toroidal flux

surfaces, is defined as
dy/dV

V) = .
1Y) = anjav
When a magnetic field line closes on itself by circulatingm times in the poloidal direction

(2.27)

and » times in the toroidal direction, the safety factor is represented asq = n/m. Such a
magnetic surface is called a rational surface.

The magnetic shear is a quantity that measures the change in pitch angle of a magnetic
field line from one flux surface to the next, and defined as [42]

V dq
=2——. 2.28
s(V) 7V (2.28)

The geometrical quantities, the aspect ratioA, the ellipticity «, and the triangularity ¢,
are defined as

Rma/
A= , (2.29)
a
K= ﬁ, (2.30)
a
0= g. (2.31)

Here R,,,; is the major radius, a is the minor radius, 4 is the height, and d is the distance
between major radius of the highest position from the plasma center, shown in Fig. 2.2.

Finally, we introduce several definitions of beta which is a ratio of the plasma pressure
to the magnetic pressure. The toroidal betag, and the poloidal betas, are defined as

2
g, =LY §;§p 23 (2.52)
10
B, = 33(2(19 28 (2.33)
pa

where By is the vacuum magnetic field at the plasma center called the magnetic axis,B,, is
the average poloidal magnetic field at the plasma edge, defined as

B /’LOIp

o= T (2.34)
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Figure 2.2: Lengths defined in a poloidal cross-section of a tokamak plasma.

and /, is the toroidal current. The volume average of a variableX ((X)) is defined as

| Xdv
X))y = —-—. 2.35
(XN Tav (2.35)
The volume averages are taken over the whole volume of the plasma. In addition, the nor-
malized beta By is defined as

B,

=1006;-a- ————,
ﬁN ﬁt a Ip//.lo'106

(2.36)

which relates to Troyon scaling of critical beta in tokamaks [51].

2.5 Ideal MHD stability

In this section, we introduce the theory for analyzing the ideal linear MHD stability, called
the Energy Principle [52]. We adopt a Lagrangian description of the fluid motion, and all
quantities are now considered to be functions of the initial location of a fluid elementr,
and of the time¢. With the displacement vector& which is determined by

r=ro+é&, (2.37)
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where r is the location of the fluid element at time¢, the linearized MHD equation takes the

form
i

pos = F&), (2.38)
p1 ==V - (po§), (2.39)
p1=-&-Vpo—ypoV - &, (2.40)
B, =V X (&£ X By), (2.41)

where the force operator

1

F¢) = 0 (VX Bo) X0+ (VXQ)XBo)+ V(- Vpy+ypoV - &). (2.42)

Here X is the equilibrium value of X, X is the perturbed value of X, and Q is the perturba-
tion of B defined asQ = B = V X (£ X By). Since the time does not appear explicitly in Eqgs.

(2.38)-(2.42), a general form of € can be written as
&(ro, 1) = €(ro)e”, (2.43)
and the corresponding eigenvalue equation is
~w’p€ = F(§). (2.44)

Equation (2.44) represents the normal mode formulation of the linearized MHD stability
problem for general three-dimensional equilibria. In this approach, only appropriate bound-
ary conditions on¢ are required. For example, when the plasma is surrounded by a conduct-
ing wall, the boundary condition is

n-£=0, (2.45)

where n is the unit normal to the plasma surface.

The force operator F is a self-adjoint operator [42, 53, 54], and this self-adjointness has a
major impact on both the analytic and the numerical formulation of linearized MHD stabil-
ity. Then we demonstrate this property with two arbitrary vectorsé and n satisfying appro-
priate boundary conditions in Appendix A.

Because of the self-adjointness of F, the linearized ideal MHD stability problem can be
easily cast in the form of a variational principle. The dot product of Egs. (2.38) and (2.42)
with & is formed and then integrated over the plasma volume, yielding

, OWED
Y EREo (2.46)
where
SW(E &) = — & & Fear (2.47)
2

1
K, &) = 3 / pIEP dr. (2.48)
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The quantity 0W represents the change of the potential energy associated with the pertur-
bation and is equal to the work done against the force F(¢) in displacing the plasma by an
amount . The quantity K is proportional to the kinetic energy.

When we have a primary interest to determine the stability boundary of the given sys-
tem, the variational formulation can be further simplified; the formulation is known as the
Energy Principle [52]. The physical basis of this principle is the fact that energy is exactly
conserved in the ideal MHD model. Since the extremum corresponding to the minimum
eigenvalue of w? actually represents a minimum in potential energysW, the Energy Princi-
ple states that an equilibrium is stable if and only if

oW(&*,€) >0 (2.49)

for all allowable displacements.
In general, a vacuum region surrounds a plasma, andoW is rewritten as the sum of three
terms as
OW = W + oWy + oWy, (2.50)

where a volume integral W extended over the fluid plasma domain, a surface integralo Wy

extended over the fluid-vacuum interface, and a volume integralo Wy extended over the vac-
uum region. Here we assume that a plasma and a vacuum are surrounded by a perfect con-
ducting wall. Before formulating these terms, we introduce the boundary condition at an

interface between a plasma and a vacuum as

p+ %BZHH =0, (2.51)
n-[vll, =0, (2.52)
nXx|[[E]]l, = 0, (2.53)
n-[[Bl]l, =0, (2.54)
nx|[[Bll,= Ja (2.55)

where the subscripta means the value at the plasma boundary, and[[X]], is the increment
in any quantity X across the boundary in the direction n. These boundary conditions are
transcribed to first order£ with the first-order vacuum vector potential A, where

. 0A . . .

E:_EJFEO’ B =V x A+ By, (2.56)

and vacuum quantities are distinguished when necessary by a accentuation asX. The gauge
has been chosen so that the scalar potential vanishes. From Eq. (2.51), we obtain the bound-

ary condition for the equation of motion as

1 1. . 1 ,
~ypoV €+ —By-Q=—By - VXA +-—(&-V)(B:- BD), (2.57)
Ho Ho 20
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and that for A from Eqs.(2.4), (2.53), and (2.54) as
nxA=—(n-&B,. (2.58)
Of course, A must satisfy the equation
VxVxA=0. (2.59)

To obtain Wy, §Ws, and Wy with the boundary conditions Egs. (2.57) and (2.58), we
perform an integration by parts in Eq. (2.47), and as the result,

oW = W —1/(n.§)(7pov-§+§L-Vp0—BO'Q)dS, (2.60)
2 Ho
where
17 (lor 2
6WF—§/ __‘fJ_'JXQ+7p0|V'§| +(fJ_.Vp0)V'§J_ dr’ (2-61)
Ho

and &, = & — &,b. With Eqgs. (2.57) and (2.58), the boundary term can be expressed as

SW — Wy = 6Ws + Wy, (2.62)
where
1 B?
SWs :—/In-§|2n~ HV(pO + —0)” , (2.63)
2 210/ 1],
1 |vx A|2
SWy =~ / [ Py (2.64)
2 Ho

The surface integral in Eq. (2.63) is executed on the plasma surface and the volume integral
in Eq. (2.64) is extended over the initial vacuum volume. Thus we obtain the final form of
oW with Eqs.(2.61), (2.63), and (2.64), and investigate the MHD stability with the sufficient
condition Eq. (2.49).

With the eigenvalues and the eigenfunctions of Eq. (2.44),£ in Eq. (2.43) can be expressed
as

£=) 0k (2.65)

where we define that&, belongs to w; and w, < w, < ---. By using Eq. (2.65),0W and K in
Eqs. (2.47) and (2.48) can be written as

(o)
=1

1 (o8]
SWE &) =5 ) pwiiEl. (2.66)
i=1

1 (o]
KE .= Wi (2.67)
i=1
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Now, we introduce the Hessian matrixHs [55] at the stationary points of a function f(x)

as

62
Hs (f(s)),, = (ﬁ) . (2.68)
! J 71 X=8

If the Hessian is positive (negative) definite ats, then f(x) attains a local minimum (maxi-
mum) at s. If the Hessian has both positive and negative eigenvalues, thens is a saddle point
for f(x).

We can apply this theorem to the stability analysis. The Hessian matrix ofoW in Eq. (2.66)
can be calculated as
p&iw? fori= j,
0 fori # j.

Hs(6W),; = { (2.69)

Since this matrix is diagonal andp is positive definite, the signsw; are identical to the signs
of eigenvalues of Hs(6W); if w; > 0, W attains a local minimum and the system is stable.

However, in the ideal MHD problem, the spectrum of the force operatorF in Eq. (2.42)
contains both discrete eigenvalues and continua. Moreover, if a rational surface exists in
the plasma, the continuous spectrum always reaches the originw = 0. This means that
we cannot expand & with the eigenfunctions as Eq. (2.65) and the Hessian matrix Eq. (2.69)
cannot be calculated.

To avoid such a problem, in the next chapter, we introduce the method that solves the
eigenvalue problem associated with the Newcomb equation with the appropriate weight
function and the boundary conditions at rational surfaces to eliminate the continuous spec-
tra [29, 30]. Here the Newcomb equation is the inertia free linear ideal MHD equation [27].
With this method, the sign of 6W,, can be identified, where 6W, expresses the potential en-
ergy of a plasma as6W, = 6Wr + 6Ws, and the stability of a MHD equilibrium against ideal
MHD motions can be analyzed.

In addition, for the external mode stability analysis, we need to identify the sign oW, +
oWy, and the vacuum magnetic energy integral oWy must be carefully treated. This is one
of the main issues in this dissertation, and two techniques to estimatesWy are discussed in

Chapter 5 and Appendix C.



Chapter 3

Two dimensional Newcomb equation

3.1 Introduction

The marginally stable state against the ideal MHD instability in a plasma is described by the
Newcomb equation [27] derived from the linear ideal MHD equations Eqs. (2.38)-(2.41) with-
outinertia. In an axisymmetric toroidal plasma, the Newcomb equation is a two-dimensional
homogeneous differential equation forY(r, ), where Y is the radial component of the fluid

displacement, r is the poloidal flux label of the equilibrium magnetic configuration (radial
coordinate) and 6 is the poloidal angle so defined that the equilibrium magnetic field lines
are straight on each toroidal surfacer = const.. In an one-dimensional case, the Newcomb

equation and the eigenvalue problem associated with this equation is derived in Ref. [30]
and is illustrated briefly in Appendix B. On the basis of this work, in this chapter, I intro-
duce the two-dimensional Newcomb equation, the associated eigenvalue problem and a code
MARG2D which solves this eigenvalue problem numerically [29]. Though the eigenvalues
obtained by the MARG2D code do not correspond to a growth rate or a frequency of a MHD
mode, the sign of them can identify the stability of a MHD equilibrium against ideal MHD
motions.

In addition, I present another method for the stability analysis of external modes with the
property of the Newcomb equation, called thestability matrixmethod. In this method, the
change of the potential energy due to the plasma displacement is expressed by a quadratic
form (a matrix form) with respect to the values of the displacement at the plasma surface [10].
The formulation used in this method is indispensable for the analysis of the resistive wall
modes (RWMs) and a code DCON has already reported [13]. We adapt the MARG2D code so
as to compute the matrix which is called the stability matrix, and the MARG2D-SM code is
developed for the stability analysis with this matrix.

In Section 3.2, I introduce the flux coordinate system used in this chapter, and reduce

the ideal MHD potential energy for an axisymmetric toroidal plasma to a quadratic form ex-

15
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pressed by the Fourier harmonics in Section 3.3. After obtaining the two-dimensional New-
comb equation and deriving the Frobenius series of the singular solutions in Section 3.4, I
formulate the eigenvalue problem associated with the Newcomb equation by introducing
the weight function and the boundary conditions in Section 3.5. After these formulations,
the outline of a code MARG2D is briefly mentioned in Section 3.6. After completing the ex-
planation about the eigenvalue problem associated with the Newcomb equation, I review
the stability matrix method, which is another method for the external mode analysis, and
the MARG2D-SM code in Section 3.7.

3.2 Coordinate System

We introduce the usual cylindrical coordinate system(R, Z, ¢) in which ¢ is the angle around
the axis of symmetry as shown in Fig. 2.1. The equilibrium magnetic fieldB in an axisym-
metric configuration can be expressed as Eq. (2.13) and satisfies force balance equations
Egs. (2.9)-(2.11). In the present work, we assume up-down symmetry fory(R, 2); y(R, -Z) =
Y(R, Z) for simplicity.

As in Ref. [56], we define the flux coordinate system(r, 6, ¢) by

() = 2Ry / 4 ay, (5.1)
and B.Vo
q) = Bve (3.2)

where R, is the R coordinate at the magnetic axis andgq is the safety factor already defined in
Eq. (2.27). The radial coordinate r has the dimension of length, whose value at the edge is
same as the plasma minor radius,

r(l//a) =a. (3.3)
The Jacobian +/g(r, 8) is

2

R
\Ve(r,6) = R—Or, (3.4)
and the quantity defined by
Vr-Vo
v
provides a measure of nonorthogonality of this coordinate system. We also define the opera-
tord, by

Bro(r,0) = (3.5)

Vr . V
Lo(r, 0 (3.6)
€L |V | (9 ,8 0( )
The equilibrium relation, Eq. (2.15), in the(r, 6, ¢) coordinates system is expressed as
dy dw dp dF
V| B, - F—. 3.7
r6r[dr| 4 d60(| *Bra) = = K T 5-7)
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3.3 Reduction of potential energy integral

We derive the reduced form of the ideal MHD potential energy integral expressed by the
Fourier harmonics of the radial displacement. Subsequently, we use some notations on vec-
tor operation. We express by Diag(d;) a diagonal matrix with diagonal elementsd; (j =
1,2,...). When f(6) is an operator periodic in thef#-direction, we define

1 2r .
fim = o /0 exp(—ilf) f(0) exp(imb)deo, (3.8)

and we express by f the matrix made from f;,,. Let X, Y be arbitrary vectors and A be a real
matrix, then the bracket(X|A|Y) is defined as

(XIAIY) = X'AY = )" XAy, (3.9)
Jk

where the symbol 7 denotes transpose of a vector or a matrix.

3.3.1 Ideal MHD potential energy integral

In the axisymmetric configuration, the displacement vectoré can be assumed to the & o
exp(—ing), where the integer n is the toroidal mode number. Since we are interested in the
marginal ideal MHD stability, we impose the incompressibility condition,V - & = 0.

By introducing variables

X=¢-Vr (3.10)

1
V:r(f-VG——.f-qu), (3.11)
q
we obtain the potential energy integral of a plasmadW), expressed by X, V as

SW, =Wy + 6Ws (3.12)

a 2n
— / ar [ aer. (3.13)
0 0

where the potential energy density £ and the operator D,(X) are defined as

2
L=alDyX)>+b

10
inV+ ——(rX) + hX + rB,0Ds(X)
qor

2

ov o0
+ c % + E(I‘X)
10X

X)=-— —inX 1
Diy(X) g8 X (3.15)

+e|X, (3.14)
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and the coefficientsa, b, c, h, and e are given by

a(r,0) = (%)2 ﬁRLO, (5.16)
b(r,6) = (REO)2 Ve RLO, (3.17)
c(r) = (1%)2 1%, (3.18)
h(r,6) = - 611(2 " lv’; 30, 1VrF + ra%ﬁ,,g), (3.19)
and
e(r,0) = Riofi—faﬁ N Rio (Rz‘;_l; + FL;—I:) (2 " |V’; 30, 1VrF + 2ra2 9) (3.20)

The operatord, is already defined by Eq. (3.6).

3.3.2 Elimination of V

We first minimize oW, for V(r, 6). The resultant Euler equation forV(r, 6) is

d (V. @ r\ 14 5
— =+ =0X)| = —in|—| |VA*|i -—X)+ HX|, 3.21
89(89 + ar(r )) 1n(RO) [Vr|* [1nV + qﬁr(r )+ (3.21)
where the operator A is defined as
HX = hX + 1B,9Dy(X). (3.22)

By substituting Eq. (3.21) into Eq. (3.14), we have the reduced form of the potential energy

density given by
o [0V 8 Poevoa P
_ 2 e Il - Il 2
L=al|DyX)|I” +b 89(80 + é)r(rX)) telggt 6r(rX) +elX|, (3.23)
where ) X
. F\ (Ry 1
b={=] (%) . (3.24)
(Ro) r) o2 |Vrf
To solve Eq. (3.21) for V(r, 6), we express X, V by their Fourier harmonics in the poloidal
direction
X(r,60) = Xo(r) + ) X,y exp(imt), (3.25)
m#0
V(r,0) = —i [Vo(r) + Z V, exp(imQ)] : (3.26)
m#0
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From the solubility condition for Eq. (3.21)

2n 1 N
/ \Vr? |inV + —g(rX) +HAX|do =0, (3.27)
0 q or
we have
nV, +12(rX)—— b [ V ——( )] ! h-X (3.28)
*Tqor (VrPy q0r vy '
where |
(V) = — / IVr|? do, (3.29)
271' 0
and the vectors b, h are given by
= (oo (VF0-1, (VD015 ), (3.30)
h :(---’ﬁO,—laﬁ0,09ﬂO,l9---)- (331)

Here (|Vr|2)[,m and Fll,m are computed by Eq. (3.8), and the vectorsX and X defined as
= (-"’X—27X—1’X07X1’X2’"')7 (5-52)

and
= (...,X_z,X_l,Xl,XQ,...), (555)

and define V and V, similarly. By eliminating V,(r) in Eq. (3.21) with Eq. (3.28), we obtain a
linear equation for V,

_ _ 0 r\
1% Qa—( )—n(ﬁo) H;X, (3.34)
where the matrices P, Q, and Hj are given by
2
P = Diag(m?®) + n? ( ) G, (3.35)
Ry
Q Diag(m) + — ( ) (3.36)
Hp =H,,, - - (3.37)
p=H <|Vr| >(| )0 Ho,
and G is
G_l,m = (lvrlz)l,m (538)

Here the notations on the arbitrary matrixT (T, T, and T) express as

T T-, T,y Top T-,
T, T, -- o Ty Ty Tig

IH|
1]
|
1]

(3.39)



20 Chapter 3: Two dimensional Newcomb equation

and
T T,
T= To1 Toa ,
T Ty
where

T,y T_o1p Ty,
T=|--- Too1 Too Tou
Ty Ty T,

The matrices P and Q satisfy the relation

_ _ 1 s 2 _
—Q+PDhiag|—|=n|—| GD,
o+tous ) -
where the matrix D is defined as
]:)EDiag(z—l).
m q

Next, we express the terms includingV in Eq. (3.23) as

v 9 o 0 o0

% + E-(rX) = [Dlag(m)V + E’(VX) . 0(9) + E’(FXO),
o (0V b o . .9 el
o (% + E’(rX)) =1iDiag(m) [Dlag(m)V + E’(FX)] -e(0),

where e(0) is defined as
e(0) = (...,exp(=2i6), exp(—ib), exp(if), exp(210), ...).

By substituting the solution of Eq. (3.34)

_ _\-1 0 - r\ -
V- (@) opo-a( ] (B) mx,
into Eq. (3.44), we obtain
_ 0 -1 J .
Diag(m)V + —(rX) = [—Diag(m) (P) : Q+ 1] -0 X)

2
_ ”(RLO) Diag(m) (P) ' H,X,

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)
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where I is the unit matrix. With the relation Eq. (3.42), we obtain

2
Diagim)V + LX) = n L |Lsp2 (%) — AX|.
or Ro or

where the matrices Lz and H are given by
_ . _\-1 -
L =Diag(m) (P) G,
H = Diag(m) (13)_1 H;.
By using Eq. (3.49), we haveoW, expressed in the quadratic form of X,
oW, = 2n° / L(X, X)dr,
0

where

F\*R 2
axn- (£

FVr[lo o o8 o
R (170) N [<5(rX)IDLDIE(rX)>

0
5, (X0} + (XIKIX)
r

_ 0 - 0 <. =
+ <X|MDIE(rX)> + <E(rX)ID M) |X> :

e

Here the matrices L, M, and K are defined as
I_: = (I_:B)t GI;B,
M = - (HY GL;,

F 2 r
K=|—] —(A E,
(Ro) Ro( +N) +

and matrices in Egs. (3.54)-(3.56) are given by

Fa _ . 1 . 2 r 2

G =Diag(m) (lVr|2)D1ag(m) +n (Ro) I,
. m R() 2 1 . m

wou ) oo )
lag(q n) R} \wt) g "
—\l A =

N = (H) GH,

and

1 21
E = (e(r,0)) = I /0 e(r, 0) exp(i(m — 1)0)d6.

21

(3.49)

(3.50)
(3.51)

(3.52)

(3.53)

(3.54)
(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)
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3.3.3 Normalization

We measure the length by a in Eq. (3.3) and the magnetic field by By at the magnetic axis.
Thus variables are written as

r =ar, (3.61)
F =RyBoF, (3.62)
p= Bop, (3.63)
and
W = REBoy. (3.64)

The matrices L, M, and N are non-dimensional, and K can be written as

K= —BZK (3.65)
Ry’

The normalized potential energy becomes

1
5W, = 217 / Far. (3.66)
0
and the potential energy density £ reads
o .
7o 1 - 8YO Ayl K v\ 4 #i2 _lDLDlaY
(9r 2 or
+ F? —|I:)(M)f|Y + Y|MD|— : (3.67)
or or
where € = a/Ry, and we have introduced the vector functionY as
Y = FX. (3.68)

3.3.4 Surface term

The surface term driving the unstable external kink mode can be derived from the last two
terms in the right hand side (RHS) of Eq. (3.67). We divide the matrixM into the diagonal

matrix M, and the off-diagonal matrix M, as

M =M, + M, (3.69)

0 M., M.,
M__ 0 cee My M, M,
_ 1-1 N 01 0.1 0.2 _ (3.70)
0 M, M_ O M, :

M, M, 0
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Then the last two terms in the RHS of Eq. (3.67) read
. [[0Y _ _ Y
F2I{ =D M) |Y) + (YIMD|
or or
Y

P [<2—’:|D (M) |Y> + <Y|M0D|—>]

0

or

(2D (W) 1F) + (MWD ). G
or or

Since we assume up-down symmetry, the matrixM is a real matrix, and

nlloF . oF
/ X M) + (YN 2 )| ar
no |\ Or or

nod o n ldMy| -
:/ —(YlMHlY)dr—/ Y| —=Z\7)dr. (3.72)
n o dr i dr
Here the matrix
My (r) = F"MpD (3.73)
is areal, diagonal matrix, and
(FINIT) = > (M), 1Y, (3.74)

Jj#0

Afterward, we have suppressed the symbol X expressing the normalized quantities. For

the harmonics Y; without any rational surfaces, we obtain

ld
[ [0 = (W) 1P (5.75)
Here we have used the regularity condition
Y=o (5.76)

For the harmonics Y,, with a rational surface, on the other hand, we derive
Ld
2
| S|l ¥F] dr
= (MH(1 ))mm|Ym(1)|2 + (MH(rm - O))m,lem(rm - O)|2
- (MH(rm + 0))m,m|Ym(rm + 0)|2a (377)

where r,, is the position of the rational surface. However,(My(r))m ~ (r — r,) around r =
¥, and as shown in Subsection 3.4.2, the singularity of Y,,(r) is bounded as |Y,,(r)]> ~ |r —
Fo| "1 H2mer where ., is the Suydam-Mercier index. Therefore, we have

(M)l Y (D) ~ |1 = 17 — 0. (3.78)
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Thus the surface terms disappear at the rational surfaces and we find
1 d - _ _ 5
| AT = ) (Ma(1), 17 (D (5.79)
o dr 4
Jj#0
By using Eqs.(3.71), (3.72) and (3.79) in Egs. (3.66) and (3.67), the normalized potential energy
can be written as

1
W, = 21 / Ldr + 6W,, (3.80)
0
where the potential energy density £ is
1 F2|0Y, | 1 I
=—=—|—=— Y|=K|Y Y|-—My|Y
e r | or " r? ‘ " ‘dr‘H

oY ___ oY
+ rF?{—[DLD|— ) + F*
or or

<‘9—Y|D (Mo)' |Y> + <Y|MOD|8—Y>] (8D
or or

and the surface term is
W, = 2n° Z(MH) DY (DI (3.82)
Jj#0

The surface term W, and Wy in Eq. (2.64) give the boundary condition at the plasma sur-
face for the free boundary modes [32,57], and determines the behavior of the modes there.

The singular structure of the quadratic form, Eq. (3.81), is explicitly described by the ma-
trix D defined by Eq. (3.43). This structure is later exploited in deriving the Newcomb equa-
tion and in formulating the eigenvalue problem. For an up-down symmetric equilibrium,
all matrices in Eq. (3.81) are real. In addition, the matricesL, K, and My are symmetric.

3.4 2D Newcomb Equation

3.4.1 Euler equation forY

We divide the potential energy density £ given by Eq. (3.81) into two parts: £, for the/ = 0
mode and £ for the [ # 0 modes,
L=L+L, (3.83)

Here £ in Eq. (3.83) is given by

Z=re? (Yo 4 2
dr dr

Ay o\ [ gy
<Z|D (My) |Y> + <Y|M0D|E>]

. K dy,(n 1
KD + 3 V=¥ + F2 ) = (7 - _) (Mo)o, Yo, (3.84)
10 r 1#0 r 4q
where X J
> Lj
K = Z — = (M. (3.85)

1£0,j#0
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The Euler equation forY; (I = +1, £2...) derived from Eq. (3.84) reads

dY; dyY;
(NY)’:Z[ (ﬁ, )+81,jd—rj+h/,jY/

j#0.]
dy, . d
+ - fll l] K, Y+ E(gl,OYO) + hoYy =0, (3.86)
where
1 1
fij=rF? (E - —) (Z - —)L;,,-, (3.87)
I q)\j q
[(n 1 n 1
gy =F* |5 — = |Mo)u — = — = | (Mo);| (3.88)
[\l ¢ i q
d | n 1 .
h; = dr »Fz (7 - c—]) (MO)j,l] - K, (3.89)
n
8o = (- —) (Mo)o,j» (3.90)
[ q
hio = — K. (3.91)
Next, £, is given by
Ly = 2 W —|Y0| ;: 7Yz + Yy ;‘J F? (MoD)oz— (3.92)

where the last two terms in Eq. (3.92) mean the correlation between the/ = 0 mode and the
[ # O modes. The Euler equation for Y(r) derived from Eq. (3.92) is

dY, d
(NY), = (fo 0—0) Z (801—1 + hozYz) + oYy = 0, (3.93)
170 dr
where

1 F2
f0,0 = _27’ (5.94)
goy=-F (7 - —) (Mo)o,s (3.95)

v K
hoi = - =3, (3.96)

¥

Equations (3.86) and (3.93) are the two-dimensional Newcomb equation expressed by the

Fourier harmonics{Y;()}.

3.4.2 Frobenius solution

When the maximum poloidal mode number is taken to beM (I = 0, =1, ..., M), then Eqs.

(3.86) and (3.93) are second order ordinary differential equations for €M + 1) harmonics.



26 Chapter 3: Two dimensional Newcomb equation

Therefore, they have 2(2M + 1) fundamental solutions around each rational surfacer =
rm (nq(r,) = m). Among the fundamental solutions, two solutions are singular atr = r,,
comprising of big and small solutions, and the remainders are analytic atr = r,, [58, 59]. We
obtain the singular solutions by using the Frobenius method [60]. The singular solutions can

be expressed as
Y = 1 [y«)) +xy ™ + ] (3.97)

where
X=71r—ry,, (3.98)

and « is the index to be determined. The vectory® = {y\”} is

0
© _ ] Im forl = m, (3.99)
Y { 0 forl+#m, .
and (n/m — 1/q) is expanded as
ﬁ_l:x.q_/ +x2.lq_”_ q_’ +oeen (3.100)
m q qz r=rm 2 qz q3 Y=rm
In the / = m case, the lowest power components of x in Eq. (3.86) are
d ,(n 1\ dY, 2 Q'z @ (0)
—|rF|——-— me_ =|(rF | me CL’(CZ+])X Y RN (3101)
dr m q dr q> L,
KoY == (Knn) _, 0+ (3.102)
and since the lowest x power in ¥, is x**!,
a2
dr m q)\j gq) 7 dr
] ’
= (’—l. - —) [erq—Lm,j (@+17x )+, (3.103)
J 4 q
n 1 n 1 dy;
F2 [(_ - _) (MO)j,m - (_. - _) (MO)m,j —
m g J g dr
n 1
= - (_‘ - _) | P2 (M) j] (e + Dx"y(D. (3.104)
J 4
Since the lowest x power of other terms in Eq. (3.86) isx®*', we obtain the equation as
2
{{er (q—z) Lm,ml ala+1) - Iv(mm} y O
q
n_1 q 2 M
+ - ——|(a+ 1){[rF2—Lm, (@+1) = |F*(Mp).; }y. =0. (3.105)
2. (J q) g " [P Mon

JjEmM
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Aswell as/ = mcase, in the/ # mand [ # O case, we derive the equation with the lowestx
power (= x*~!) terms in Eq. (3.86) as

q q
n_1 24
+ |- ——|aq|rF =Ly
I q g

In the / = 0 case, the lowest x power of Eq. (3.93) isx**2, and we obtain the condition as

@ + | FA(Mo)n, ,]} yO = 0. (3.106)

W =o0. (3.107)

Equations (3.105) and (3.106) are the homogeneous equations fory™ and y(l) (j

j # m),and
the index « is determined by the condition that these equations have the nontrivial solution.

By assuming « # 0, we obtain the linear equation foryy) from Eq. (3.106) as

' (Mo)m,
[L/J] a_ _ {[%Lhm a+ L]}y,(,?), (5.108)
2 = ( )(a/ + 1y, (3.109)
J q
From these equations, we obtain

(1) — q, -1 -1 (MO)m’] (0)

== {a? (LB )l,j [Lj,m] + (LB )l,j[ —7' Vin'» (3.110)
1 -1 Z(1)
M _ ;

g ’ 3.111
& (l q) a+1 (3.111)

where a # —1 is assumed. With Egs. (3.110) and (3.111), Eq. (3.105) reads

7\ 2
{er(q ) [me _Lml(L_ ) Jm]a'(a/"' 1)

- [Km,in +

’ F2
FQ%l Ly (Lj_gl)z,j (MO)m,j [ ] (MO)ml(L_ ) (Mo J]} 0 _ =0, (3.112)

where we use the condition thatL and L are real and diagonal matrices. By introducing

7\2
2[4 -1
a= lrF (C[ ) l [Lm m Lm,l (LB )l,j Lj,m], (3115)
y »q -1 F?
¢ = Ky + | F ?]Lm,, (L5'),, Mok, - [ ](Mmm,( ), Mol (3.114)

Eq. (3.112) can be rewritten as
aa(a+ 1) =c. (3.115)
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As the solutions of Eq. (3.115), we obtain
b ]

- 3.116

% 5 ~H ( )
1

a’ = — 5 + Umers (5117)

where the Suydam-Mercier index ., is

Homer = = (3.118)
a

=
+

By using Eqs. (3.116) and (3.117) in Egs. (3.110) and (3.111),y%,’ and y" (/ # m) in Eq. (3.97) can
be determined.

3.5 Eigenvalue Problem

Here we formulate the eigenvalue problem associated with the two-dimensional Newcomb
equation and introduce the boundary condition. The spectra of this eigenvalue problem
consist of only discrete eigenvalues. Thus, the eigenvalues identify the stable state as well as
the unstable state.

3.5.1 Kinetic energy integral

We introduce W, be a semi-positive definite (non-negative) quadratic form of the vector

function Y(r). The condition that the functional
W =o6W, - 16W, (3.119)

is stationary for arbitrary variations of Y yields an eigenvalue problem associated with the
Newcomb equation, where A is the eigenvalue. The spectral structure of this eigenvalue
problem is determined by the choice of the kinetic energy integral and the boundary condi-
tions at the rational surfaces [30, 57]; the latter choices are discussed in the next subsection.
In the one-dimensional case, the appropriate kinetic energy integral and the boundary con-
ditions are introduced in Ref. [30] and Appendix B. This theory in the one-dimensional case
is applied to the two-dimensional case as

oW, = 212 / Z oY), (3.120)
!

where the weight functionp,,(r) is given by

2
on(r) = F? (% - n) (3.121)
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for Y,,(r) if m = ng for some r in [0,1], and by
pi(r) = F? (3.122)

for Y,(r) if [ # nqg for any r in [0,1]. Therefore, the eigenvalue problem generated by Eqgs.
(3.119) and (3.120) is

N)Y =0, (3.123)
Ny = N + ADiag(p,(r)). (3.124)

This is the eigenvalue problem associated with the two-dimensional Newcomb equation. We
find by direct inspection that the Frobenius series of the singular solutions for Eq. (3.123)
coincide with those for the original Newcomb equation to the second terms.

The spectra A of the eigenvalue problem consist of real and denumerable eigenvalues
without continuous spectra by imposing correctly the boundary conditions forY(r) at the
rational surfaces. The eigenvalues4; can be ordered in the form of 4y < 4; < ..., and each
eigenfunction behaves as a sum of the small and the analytic solutions for the original New-
comb equation at each rational surface thanks to the form of the weight functions given by
Eqgs. (3.121) and (3.122). Next, the stability against the ideal MHD motion is determined by
the sign of the minimum eigenvalue 4y ; if 4, is negative, the plasma is unstable. When the
plasma is marginally stable, the eigenvalue problem has the null eigenvalue § = 0) with
the nontrivial global solution. Furthermore, from the theory of eigenfunctions, we have
A = 0W,/6W,, where both potential and kinetic energies are evaluated by using the eigen-

function corresponding to the eigenvalueA.

3.5.2 Boundary conditions

When we consider the one-dimensional problem, the correct boundary condition at ratio-
nal surfaces is the “natural boundary condition” [30]. In this two-dimensional case, to de-
termine the boundary conditions at rational surfaces, let us rewrite Eq. (3.119) in a general
quadratic form

Y(ldy  dY\ [dY ., dY
WIY] = /0 {<E Al E> + <5 B| Y> + <Y|B| E> +(Y|C| Y)}, (3.125)

where matrices A, B, and C have the block matrix structure, andA and C are Hermitian. The

stationary condition for W[Y] for the arbitrary variation forY yields

1 1
SW = —/ 5Y - N Ydr + <6Y iAiI—Y ¥ B’Y> -0, (3.126)
where the operation NV, is written as
d(.dY\ d dY
Y=—|A—|+—BY)-B— -CY 12
Na dr( dr)+dr( ) dr Ly, (3.127)
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and the second term in the RHS of Eq. (3.126) expresses the boundary terms.
By assuming, for simplicity, that onlyr = r,, is the rational surface, and the fixed bound-
ary condition atr = 1 as Y(1) = O, the boundary term becomes

dy dy
boundary term = <6Y ‘A— + B’Y> - <6Y ‘A— + B’Y> , (3.128)
dr r=ru—0 dr =1, +0
where we have used the regularity condition, Eq. (3.76), atr = 0. Since ¢Y is arbitrary, we
obtain Eqgs. (3.123) and (3.124) and the boundary condition at the rational surface
dY dY
A— + BY A— +BY
[ dr * [ dr *

As mentioned in Subsection 3.4.2, an eigenfunctionY(r) around r = r,, is a sum of the singu-

(3.129)

r=ru—0 r=ru+0

lar component Y () proportional to the small solution and the analytic componentY@(r),
Y(r) = YO%) + YO). (3.130)

For the analytic component, AdY?” /dr + B'Y® is continuous and the condition Eq. (3.129) is
automatically satisfied. The singular component, on the other hand, are independent across

r = r,, and we find that the conditions

(s)
[AddL + BfY“)] =0, (3.131)
r r=ru—0
dy®
[A— + B’Y(S)] =0, (3.132)
dr r=rp+0

are satisfied independently atr = r,, —Oand r = r,, + 0.

Since the/ # m harmonics in the singular componentY®(r) begin from the powerx!/>+ner
forl # 0, or x3**=er for[ = 0 (x = r — r,,), Y)(r) is continuous at» = r,, for / # m. Therefore,
we can impose atr = r,, the continuous condition forY,(r), [ # m, and the natural boundary
condition for Y,,(r). These conditions are convenient from the numerical point of view. This

is the reason we adopt the Fourier harmonic representation ofY.

3.6 Numerical code MARG2D

For realizing the stability analysis of ideal MHD modes on the basis of the analytical model
derived in the previous sections, a code MARG2D, which compute the eigenfunction by us-
ing the lowest order finite hybrid element method [61], have been developed [29]. In this
code, Y(r) and dY /dr are approximated as

N
Y +Y;
Y(r)= Z JTﬁleju/z(r), (3.133)
=1
dy i V=¥, 5.154)
— =), ————ejp), :
p Pl

Fiv1 = Fj
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where {r;}’s are nodal points in the radial direction, and the elemente, /() is defined by
ejr12(r) = 1forr; < r <rj,andej,p(r) = 0, otherwise. By substituting Egs. (3.133) and
(3.134) into Egs. (3.80) and (3.81), we obtain a matrix expressing the plasma potential energy

integral as follows.

NR
/<Y %K‘ Y> dr = Z <YJ‘ + Y0 [KalY; + Yj+1>, (3.135)
j=1
o 0 j\/'R
/<EY|DLD|67Y>‘”: Z(Y,+1 — YLyl Y - X)), (3.136)
=1
0 j\’R
/<Y|M0D| a_rY> dr=> (Y;+Y; IMAlY s - ¥}, (3.137)
=1
e
/< |D(M0)|Y> = D (¥~ MY, + Y ), (5.138)
j=1
o 2 jVR
/‘E‘YO dr = Z <(Y0)j+l (YO)j |RA| (Y())j+1 - (Yo)j> , (5159)
j=1
d i
/<Y‘_d_rMH‘ i’> dr=") (Y;+ ¥, [AMA ¥, + ¥ j0). (3.140)

J=1

where NR is the is the mesh number in the radial direction,

K
K, - (rrzﬁuz) Arsi, (3.141)
4 j+1/2
- D(rj+]/2)L(rJ+]/Z)D(r.]+]/2) (3.142)
At
Mo(7;41,2)D(r
M, =Y o ;+1/22)_( J+1/2), (3.143)
D(rj4172) (MO(er/Z))’
= . , (3.144)
1
R = , (3.145)
A Aj+1/2
Arjap [ d
dM, = i (E‘MH)rzr,H/h , (3.146)
and
ri+r;
Fiv1)2 = ! 2]+1, (3.147)

Arj+1/2 =Fj —F. (5148)
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The surface term in Eq. (3.82) is already expressed in a matrix form, and the kinetic energy
integral in Eq. (3.120) can be written as

NR
Wi =220 >~ > (Y + (Vs ((Qdal (¥ + (¥ 1)) (3.149)
m  j=1
NR
=222 ) (Y + Y1 IQul ¥+ Yo ), (3.150)
j=1
where ( )
m\F j+
(ON)mm = p+]/2Arﬂ1/2- (3.151)

By introducing the vector

(YD) -mm
Y_uwm (Y1)-mm+1
) Y (Yl)—MM+2E
E = = : , (3.152)
Ypim-n (Yvrs)mm—2
Yuu (Ynr+1)Mpm-1
(YNr+)mm

where MM is the maximum poloidal mode number to be considered, we derive the general-

ized eigenvalue problem in a matrix form as

Aw)E = ﬂBWkE (5.153)

I

Here the matrices Ay, and By, are obtained with Egs. (3.135)-(3.146) and Eqs. (3.150) and
(3.151), respectively. The numerical numerical method to solve the eigenvalue problem Eq.

(3.153) is a direct method with the LU factorization and the inverse iteration method [62].

3.7 Application to the theory for the external mode analysis

In the previous sections, we formulated the eigenvalue problem associated with the two-
dimensional Newcomb equation Egs. (3.123) and (3.124), and the sign of the minimum eigen-
value determines the stability of a plasma with the fixed boundary condition at the plasma
surface. With the relation Eq. (2.62), this eigenvalue problem can be extended for the ex-
ternal mode analysis by calculating the vacuum energy contributiond Wy ; two methods for
obtaining such a vacuum contribution will be introduced in Section 4.2, Appendix C and
Chapter 5.

For analyzing the external mode stability, a theory for the stability analysis of external
MHD modes in a tokamak is developed by using the property of the Newcomb equation.
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In this section, we formulate the method based on this theory, called the stability matrix
method.
The bilinear form for ideal MHD motion with Eq. (3.125) and the contribution from the

vacuum region is written as

WIE nl = W€ nl +(€,Myln,), (3.154)
where£, = £(a),
W, 1€.q] = / LI qldr, (3.155)
0
dé  dn d d
L[, 1] =<d—fILI o >+<§|K|n>+<d§ M’|q> <§|M|d—':>, (3.156)

and the matrix My stands for the contribution from the vacuum region. Let us notice that in
Eq. (3.156)

(3.157)

d d
é:’( Dyt T _ [f,( e

dny ] dny ]

‘fjd [( )]k

and

d d
f’( M) = — (&M aane] = & [ (M) ] (3.158)

LetS = {£| N€ = 0} be a set of functions that satisfy the Newcomb equation. By using Eqs.
(3.157) and (3.158) and the integration by part in Eq. (3.155), we have foré(r), n(r) € S

) (),

1
My = E(M + M. (3.160)

W,l€, 1] = (€, Muln,) + = <

Therefore, the bilinear form of the ideal plasma motion that satisfies the Newcomb equation
can be expressed in terms of the boundary values of the displacement. Next, letY”(r) be a

vector function (m = 0, +1,--- , +L)
Y'(r) = (YZ, (1), ,YL’"f(r))’, (3.161)
where each poloidal harmonicY]"(r) satisfies the condition
Y'a)=0 (#m), Y, (a)=1, (3.162)

for/ = 0,«£1,---,+L;. The set {Y"(r)} forms a basis for external modes [10]; any external
mode can be expressed by using a set of real numbers{x,,} as

£) = ) xa¥"(r). (3.163)

m
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Let us notice thaté, (a) = x,, for the m—th poloidal Fourier harmonics of&(r). The change of
the potential energy due to the modeé€ is given by the quadratic form of the vectorx,

WIE, €] = (xlAlx), (3.164)

where the matrix A is given by
A=M,+M,, (3.165)
(M), = W,I¥, Y. (3.166)

The matrix A is real and symmetric for an equilibrium with the mirror symmetry. We call in
the present paper A the stability matrixfor external modes. The stability of external modes
is clarified by solving the eigenvalue problem

Ax = px, (3.167)

where u denotes the eigenvalue of A; this is to emphasize the difference between the eigen-
value problem Eqgs. (3.123) and (3.124), the eigenvalue is defined as4, and that Eq. (3.167).
If the minimum eigenvalue of A is negative, then the plasma is unstable against ideal exter-
nal kink modes. The stability matrix A also plays an indispensable role in the stability for
resistive wall modes [10].
The basis Y"(r) can be constructed by using the response formalism [30]. Let us write
Y™(r) as
Y"(r)=X"(r)+ Z"(r), (3.168)

where Z"(r) given analytically satisfies the inhomogeneous boundary condition Eq. (3.162).
Consequently, we have an inhomogeneous equation forX™(r) with the homogeneous bound-
ary condition [63]

NX"(r)=-NZ"(r), X"(a)=0. (3.169)

Since Eq. (3.169) can be solved by the MARG2D code, we can construct the basis{Y"”(r)} and
the stability matrix A.

On solving Eq. (3.169), the same boundary condition with the eigenvalue problem Egs.
(3.123) and (3.124) is imposed at the rational surfaces. Also the matrixM is computed under
the assumption of no wall limit or ideal conducting wall. Those conditions guarantee the
Hermitian property of the stability matrixA. However, if the plasma surface coincides ex-
actlywith the rational surface, an eigenvalue problem cannot be constructed for an external
kink mode within the present formulation. This aspect is similar to the ERATO] code.

The MARG2D-SM code realizes the analysis of the external mode stability with the stabil-
ity matrix. In this code, the inhomogeneous equation Eq. (3.169) is numerically solved with
the LU factorization, and the eigenvalue problem Eq. (3.167) is solved with the QR algorithm

for real Hessenberg matrices [62].



Chapter 4

Application of the two-dimensional
Newcomb equation to compute the
stability matrix of external MHD modes

in tokamaks

4.1 Introduction

The Newcomb equation, the inertia free linear ideal MHD equation [27,28], plays fundamen-
tal roles in the MHD stability theory, as mentioned in Chapter 3. A code MARG2D [29] has
been developed which solves numerically the two-dimensional Newcomb equation and the
associated eigenvalue problem by a finite element method [30, 32]. We can know the ideal
MHD stability of the plasma from the sign of the eigenvalue/; if A be positive (negative),

then the plasma is stable (unstable) against ideal MHD perturbations.

I also have introduced in Section 3.7 the application of the theory of the Newcomb equa-
tion to the stability analysis of external modes in a tokamak. In this application, a matrix
method has been developed by using the property of the Newcomb equation to express the
change of the potential energy due to the plasma displacement by a quadratic form (a matrix
form) with respect to the values of the displacement at the plasma surface [10].

In this chapter, I execute the benchmark tests of the MARG2D-SM code, which realizes the
external mode analysis with the stability matrix, by comparing the ERATO] code in several
cases. After confirming the validity of the stability matrix method, we study comprehen-
sively the spectral structure of ideal external modes, stable or unstable, by using the newly
developed method.

The formulation introduced in Section 3.7 is indispensable for the analysis of the resis-
tive wall modes (RWMs) and a code DCON has already reported [13]. However, if the matrix

35
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method be combined with the eigenvalue problem associated with the original Newcomb
equation in the MARG2D code, the MARG2D-SM code enables us to get deeper insight into
the spectral properties of the external modes. These MARG2D and MARG2D-SM codes clar-
ify the effects of stable internal modes in a highg plasma on the properties of the external
modes. Among such effects, the stable internal modes can destabilize external modes and
change the surface mode structure of external modes into a global mode structure when the
internal modes approach to their marginal stability. The code also elucidates the difference
of the spectral properties between a normal shear tokamak and a reversed shear tokamak.
These spectral properties of ideal external modes not only are interesting by themselves but
also will be useful in the study of RWMs.

With the benefits of this MARG2D-SM code, the facility and the short computation time
for identifying the marginal stability, I apply this code to analyze an effect of the aspect ra-
tio on an external kink-ballooning stability, which attracts attention recently in the design
research on high-performance tokamaks.

In Section 4.2, I show benchmark tests of the present formulation with ERATOJ code [32]
(the JAERI version of the ERATO code). After confirming the validity of the MARG2D-SM
code, the spectral properties of external modes are investigated in Section 4.3. In Section 4.4
we study, numerically and analytically, the coupling between external modes and internal
modes by using the stability matrix method together with the associated eigenvalue prob-
lem for internal modes. An effect of the aspect ratio on the stability of ideal external kink-
ballooning modes is investigated in Section 4.5. Summary of the present work is given in
Section 4.6.

4.2 Benchmark test of MARG2D code

We execute benchmark tests among the method that solves Eq. (3.167) with the stability ma-
trix (SM) by the MARG2D-SM code, that solving the eigenvalue problem associated with the
Newcomb equation

N§& = —ADiag(p(r)¢, (4.1)

with the free boundary condition(EV) by the MARG2D code, and the ERATO] code [32]. Here
this eigenvalue problem Eq. (4.1) and the numerical codes MARG2D and MARG2D-SM are
introduced in Chapter 3.

The Equilibria used in benchmark tests have circular cross sections with the aspect ratio
A = 3.30; they are obtained by solving Grad-Shafranov equation numerically [48]. Figure 4.1
shows the contour of ¥ = const., and the profiles of the pressure p(s) and the safety factor
q(s) (s = ) with the poloidal betag, = 0.01; it is defined in Eq. (2.33). The safety factor at

the magnetic axis ¢o and that at the plasma surfaceg, are 1.32 and 2.80.
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Figure 4.1: Equilibrium for benchmark tests wheng, = 0.01. (a) Contours of ¢ (magnetic
surfaces). Solid lines are fory < O (plasma region), and the broken lines are fory > 0 (vac-
uum region). The outermost solid line shows the plasma surface. (b) Profiles of the pressure
p and the safety factorg (s = V). The values of the safety factor at the magnetic axisgy and
that at the plasma surfaceg, are 1.32 and 2.80, respectively.

We first investigate the stability ofn = 1 ideal external kink modes in the (g,, ) plane,
where y is the eigenvalue of the stability matrix. A series of equilibria J, p, F) is obtained

from the known equilibrium , p, F), as shown in Fig. 4.1, by the scaling with the parameter

0-9
U= oy, (4.2)
Py = o p), (4.3)
FA@) - F2(jo) = o2 [ F2 ) - F2 (o) (4.4)

where Y is the poloidal flux function at the magnetic axis. The safety factorg is scaled as

. 1F@)
= 2w, 4.5
I = F I (4.5)

however, since [, changes as [, = o1, 8, is unchanged by this scaling. In this article, each
equilibrium has no current density on the plasma surface.

The mesh numbers in both the MARG2D codes and the ERATOJ code are determined by
confirming the convergence of the eigenvalues. Since the ERATO]J code is based on the two-
dimensional finite element method with the lowest order elements, this code needs at least

four times mesh numbers in the poloidal direction as many as the MARG2D codes, based
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on the Fourier harmonics in the poloidal direction. On the other hand, in the radial direc-
tion, the MARG2D codes needs many mesh numbers near each rational surface to meet the
convergence. In this paper, the radial mesh numberNPS I, = 1200 and the maximum
poloidal mode number M,;,, = 32 are set for both the MARG2D codes, and the radial mesh
number NPS Iz = 500 and the mesh number in the poloidal directionNCH gy = 256 are
used for ERATO].

In both the MARG2D and the ERATO]J codes, the matrix representing the vacuum con-
tribution, My in Eq. (3.154), is calculated by using a Green’s function of the scalar potential
for the perturbation of magnetic fields in the vacuum [32, 64] with no wall limit assumption.
The Calculation with a Green’s function technique is demonstrated in Appendix C.

Figure 4.2 shows the dependence of the minimum eigenvalues ong,; this expresses the
stability of the ideal external mode in theA = 3.30 and 5, = 0.01 equilibria. The solid line
denotes the minimum eigenvalues of SMy, the dashed line shows those obtained by EV
Ao-m2p, and the dotted line is for those calculated by ERATOJA_grr, respectively. Ideal exter-
nal modes are marginally stable when the minimum eigenvalue equals to zero. From this
figure, g, Which are the g, values when ideal external modes are marginally stable are
obtained by the SM method as g, = 2.66 and 3.00, which well agree with those obtained
by EV and ERATO]J.

We also compare the eigenfunctions belonging to the minimum eigenvalues wheng, =
2.67 which is close t0g,—,g;; €ach minimum eigenvalue is negative. As shown in Fig. 4.3, each
poloidal Fourier harmonic of these eigenfunctions obtained by (a) SM, (b) EV, and (c) ERATO]J
is similar to each other. These show surface modes with the dominant harmonic/ = 3; it
is a well-.known feature of m > 2 ideal external kink modes in lowf3, tokamaks [65]. The
harmonics/ = 2 and/ = 4 are excited by the poloidal mode coupling with the harmonid = 3.
While the harmonic/ = 2 computed by the ERATOJ code is smooth atg = 2 rational surface
(s = 0.85), this harmonic obtained by the MARG2D codes is discontinuous atr = 0.81, which
is the feature of the MARG2D formulation explained in the previous sections.

A next benchmark test is executed in the, = 0.80 equilibria, whose p and ¢ profiles
when o = 1 are shown in Fig. 4.4. The values of gy and ¢, are 1.30 and 2.80, respectively.
Figure 4.5 shows the dependence of the minimum eigenvalues ong,. The g, value is
obtained by the SM method as g,_.,; = 4.28, and also well agrees with those obtained by
other methods. The dependences of the minimum eigenvalues ong, revealed by these three
methods are convex downward betweeng, = 3.00 and ¢, = g,—mg = 4.28. The poloidal
Fourier harmonics of the eigenfunctions belonging to the minimum eigenvalues wherny, =
4.27, that is close to g,—g, are shown in Fig. 4.6. These Fourier harmonics obtained by (a) SM,
(b) EV, and (c) ERATOJ are also almost same each other, and have global mode structures.

The g, dependence of 11y and structures of the eigenfunctions are different from those in
the low, case in figures Figs. 4.2 and 4.3, and it seems that only the poloidal mode coupling
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Figure 4.2: Dependence of the minimum eigenvalues ong, when 3, = 0.01. The label 1y de-
notes the minimum eigenvalue of the stability matrix (SM),Ay_,2p is that obtained by solv-
ing Eq. (4.1) with the free boundary condition (EV), andAy_ggr is that calculated by ERATO],
respectively. The marginally stableg, values are clarified by SM as g,_,,; = 2.66 and 3.00,
and are identical to those obtained by EV and ERATO].

will not explain the causes of such differences. These are the next topics discussed in Sections
4.3 and 4.4.

4.3 Spectral structure of external modes in tokamaks

The stability matrix A given by Eq. (3.165) should possess the all properties of external modes
even when these modes are stable. Among them, an interesting property is the intersection
of the eigenvalues of the modes in tokamaks [33,65]. Here we investigate numerically such a
spectral structure of the external modes by using the stability matrix.

Reference [33] has shown that the spectral structure, in particular, the intersection of the
eigenvalues, is strongly affected by both the aspect ratioA and the current poloidal betag,,.
Consequently, we make three kinds of equilibria whoseA and g, are different from each
other. One is the A = 100 and 5, = 0.01 equilibrium (EQ-1), and the second is theA = 3.30
and 8, = 0.01 equilibrium (EQ:-2); p and g of these equilibria are shown in Fig. 4.7. The
values of gp and g, in the EQ-1 case are 1.32 and 2.80, respectively. The last oneis theA = 3.30
and g8, = 0.80 equilibrium, already shown in Fig. 4.4 (EQ-3). Each equilibrium has circular
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Figure 4.3: Poloidal Fourier harmonics of the eigenfunctions belonging to the minimum
eigenvalues wheng, = 0.01 and ¢, = 2.67. These are obtained by (a) SM, (b) EV, and (c) ERA-
TOJ. The harmonics ¥; obtained by three methods are similar to each other, and these show
typical surface modes with the dominant harmonic/ = 3. The harmonic/ = 2 computed by
the MARG2D codes is discontinuous atg = 2 rational surface (» = 0.81) while this harmonic
obtained by ERATOJ is smooth ats = 0.85.



4.3: Spectral structure of external modes in tokamaks

‘ ‘ 3.0
Pressure J
003k N\ |l°——/——- Safety factor ll
2.5
]
!
IOo.oz- q
12.0
0.01¢
- 11.5
0.00F
1.0

0 02 04 06 08 1

S

41

Figure 4.4: Profiles of the pressure p and the safety factorg of the 8, = 0.80 equilibrium. The
values of gy and ¢, are 1.30 and 2.80, respectively. The magnetic surfaces of this equilibrium

are circular.
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Figure 4.5: Dependence of the minimum eigenvalues ong, when g, = 0.80. The marginally
stable g, values obtained by three methods are identical with each other asg,_,,o; = 4.28. The
behaviors of the g, dependence of the minimum eigenvalues are convex downward and are

similar to each other betweeng, = 3.00and g, = gg—pg = 4.28.
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Figure 4.6: Poloidal Fourier harmonics of the eigenfunctions belonging to the minimum
eigenvalues when 8, = 0.80 and ¢, = 4.27. These are obtained by (a) SM, (b) EV, and (c)
ERATOJ, which are similar to each other, and have global mode structures unlike the eigen-
functions in the low$, case in Fig. 4.3.
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Figure 4.7: Profiles of the pressure p and the safety factor g of the A = 100 equilibrium and
those of the A = 3.30 one. The p profile and S, are same for both cases (38, = 0.01). The ¢
profiles are shown with the dashed line (A = 100) and the dotted line (A = 3.30). The values
of go and ¢, are 1.32 and 2.80, respectively. The magnetic surfaces of this equilibrium are
circular.

cross sections. The g profile is scaled as Eq. (4.5), and the vacuum contribution is calculated
by assuming no wall limit.

Figure 4.8(a) shows the g, dependence of the eigenvalues, called the spectral structure,
in the EQ-1 case. The solid line, the dashed line, the dotted line, the dot-2dashed line, and
the short-dotted line, denote the minimum, the second, the third, the fourth, and the fifth
eigenvalues, respectively. Thei-th (i = 2, 3, ...) eigenvalue intersects thei + 1-th eigenvalues
in the stable region u > 0. For example, in Fig. 4.8(b) that is the enlargement of Fig. 4.8(a)
in 450 < g, < 6.00, the minimum eigenvalue intersects the second eigenvalue between
g, = 5.15 and 5.40.

The meaning of the spectral intersection can be understood from the poloidal Fourier
harmonics of the eigenfunctions. Figure 4.9(a) shows the poloidal Fourier harmonics of the
eigenfunction belonging to the minimum eigenvalue (EE,;,) when g, = 5.15 and the dom-
inant harmonic of this eigenfunction is/ = 5; Fig. 4.9(b) shows those of the eigenfunction
belonging to the second eigenvalue (EF.,,;) when g, = 5.15 and the dominant harmonic
of this eigenfunction is/ = 6. On the other hand, wheng, = 5.40, just after the intersection
point, the dominant harmonic of EF,;, shown in Fig. 4.9(c)is/ = 6, and that of EF;,,,,; in Fig.
4.9(d)is/ = 5. From these figures, we see the exchange of the eigenfunction belonging to the
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Figure 4.8: (a) Spectral structure of n = 1 ideal external kink modes in theA = 100 and
B, = 0.01 equilibria. (b) Expansion of figure (a) in4.50 < g, < 6.00. The analysis with
the stability matrix reveals the spectral structure of external modes when these modes are

stable. The i-th eigenvalue intersects the (i + 1)-th eigenvalues in the stable region,u > 0
(i=2,3,..).

i-th eigenvalue for that belonging to thei + 1-th or i — 1-th eigenvalue induces the spectral
intersection.
Next, the spectral structure in the EQ-2 case (A = 3.30,8, = 0.01) is shown in Fig. 4.10(a).
Unlike in the EQ-1 case, we see gaps at the intersection between thei-th eigenvalue and the
i+1 eigenvalues; we call them the spectral gaps. We look at the spectral gap betweeng, = 5.15
and g, = 5.401in Fig. 4.10(b), the enlargement of Fig. 4.10(a) in4.50 < g, < 6.00. The poloidal
Fourier harmonics of the eigenfunctions are shown in Fig. 4.11. EE,;, wheng, = 5.15, whose
dominantharmonicis/ = 5, changes to EF,,.,,; as ¢, increases t05.40, and EF,,,; wheng, =
5.15, whose dominant harmonicis/ = 6, becomes EF,,;, as g, becomes larger to 5.40. We also
observe a difference between the case ofA = 100 and that of A = 3.30. Inthe A = 3.30 case,
the dominant harmonics of these eigenfunctions excite the neighbor harmonics; especially
the eigenfunctions whose dominant harmonic is/ = 6, shown in figures 4.11(b) and 4.11(c),
accompany the harmonics/ = 4, 5, and 7. The poloidal couplings originated from the finite
aspect ratio effect induce these harmonics, and are thought to make the spectral gaps in the
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Figure 4.9: Poloidal Fourier harmonics of the eigenfunction whenA = 100 and 8, = 0.01.

(a) The eigenfunction belonging to the minimum eigenvalue and (b) that belonging to the

second eigenvalue wheng, = 5.15. (¢) The eigenfunction belonging to the minimum eigen-

value and (d) that belonging to the second eigenvalues wheng, = 5.40. The eigenfunction,

whose dominant harmonicis/ = 5, changes from the eigenfunction belonging to the mini-

mum eigenvalue to that belonging to the second eigenvalue asq, increases from5.15 to 5.40.

On the other hand, the eigenfunction belonging to the second eigenvalue wheng, = 5.15,

whose dominant harmonic is/ = 6, becomes the eigenfunction belonging to the minimum

eigenfunction wheng, = 5.40.
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Figure 4.10: (a) Spectral structure ofn = 1 external kink modes in theA = 3.30 and 5, = 0.01

equilibria. (b) Expansion of figure (a) in4.50 < g, < 6.00. Spectrum gaps are generated at
the spectral intersection points.

spectral structure [33].

We show in Fig. 4.12(a) the spectral structure in the EQ-3 case 3, = 0.80). The spectral
gaps become wider than those in the EQ-2 case. This is because of increase ing,, and this
effect of 5, is consistent with the analysis in [33]. However, we observe that the structure
is qualitatively different from the previousg, = 0.01 cases. The minimum eigenvalue be-
comes negative (unstable) in the regiong, < 4.28; this feature is already seen in Fig. 4.5.

To reveal the g, effect in detail, we focus on the region for5.15 < g, < 5.40 shown in Fig.
4.12(b), the enlargement of Fig. 4.12(a) in4.50 < g, < 6.00 as in the previous cases. Figure
4.13 shows EF,,;, and EF,,; when g, = 5.15 and g, = 5.40, respectively. Although, the
mode structures become more complicated than those in the lowp, cases, we see the/ = 5
and 6 harmonics in EF,,;,, and EF,.,,, exchange for each other as g, increases from 5.15 to
5.40. However, each eigenfunction has the global mode structure whose/ = 3 harmonic

is strongly excited. This suggests that the finiteg, effect induces, as well as the well-.known

poloidal coupling as in the EQ-2 case, another coupling between external modes and internal
modes.
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Figure 4.11: Poloidal Fourier harmonics of the eigenfunction whenA = 3.30 and 8, = 0.01.
(a) The eigenfunction belonging to the minimum eigenvalue and (b) that belonging to the
second eigenvalue wheng, = 5.15. (¢) The eigenfunction belonging to the minimum eigen-
value and (d) that belonging to the second eigenvalue wheng, = 5.40. The eigenfunction be-
longing to the minimum eigenvalue and that belonging to the second eigenvalue exchange
for each other when g, increases from 5.15 to 5.40. The dominant harmonics of these eigen-
functions accompany the neighbor harmonics; especially in the eigenfunction whose domi-
nant harmonicis/ = 6, shown in figures 4.11(b) and 4.11(c), the/ = 4, 5, and 7 harmonics are
excited.
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Figure 4.12: (a) Spectral structure ofn = 1 external modes whenA = 3.30 and 8, = 0.80. (b)
Expansion of figure (a) in4.50 < ¢, < 6.00. There are spectrum gaps and the widths of them

are broader than those of the gaps whenA = 3.30 and 8, = 0.01 in Fig. 4.10. The minimum
eigenvalues become negative (unstable) in the regiong, < 4.28.

4.4 Coupling between ideal external modes and ideal internal
modes

4.4.1 Couplingin high$, normal shear tokamaks

In this section, we verify the conjecture in the previous section; external modes couple with

internal modes in the highg3, case. We analyze the stability of internal modes by solving
the associated eigenvalue problem Eq. (4.1) with the fixed boundary condition at the plasma
surface (EV-fix), and compare the g, dependence of A,_;,, with that of yy, where Ay_;,, is the
minimum eigenvalue obtained by EV-fix andy, is that of the stability matrix (SM). The eigen-
values Ay, give us the spectral structure of internal modes even when these modes are sta-
ble [29]. Moreover, the SM method assumes that internal modes are stable, then the stability
of external modes can be analyzed separately from that of internal modes. With these fea-
tures, we can investigate the coupling between external modes and internal modes.

The equilibria used in this section are already shown in Fig. 4.4; whose cross sections are
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Figure 4.13: Poloidal Fourier harmonics of the eigenfunction whenA = 3.30 and 8, = 0.80.
(a) The eigenfunction belonging to the minimum eigenvalue and (b) that belonging to the
second eigenvalue wheng, = 5.15. (¢) The eigenfunction belonging to the minimum eigen-
value and (d) that belonging to the second eigenvalue wheng, = 5.40. The/ = 5 and 6 har-
monics of the eigenfunction belonging to the minimum eigenvalue and those of the eigen-
function belonging to the second eigenvalue exchange for each other wheng, increases from
5.15 to 5.40. However, unlike in the low#3, toroidal case shown in Fig. 4.11, the/ = 3 har-
monic of these eigenfunctions is strongly excited.
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Figure 4.14: (a) Dependence ofy, on g, and that of Ay_;,, on g, wheng,, = 0.80. The label Ay_;,

is the minimum eigenvalue obtained by solving Eq. (4.1) with the fixed boundary condition.
The p value tends toward —co as Ay_;,, approaches to +0 near g, = 2.30. Additionally, near

q. = 4.00, the g, dependence of y, and that of 1y_;,, are convex downward. These results
imply that the stability of internal modes affects that of external modes. (b) Dependence of
1o on g, and that of Q_;,, on g,. This result also intimates that the stability of external modes
is influenced by internal modes.

circular and g, = 0.80. The vacuum contribution is calculated with the assumption of the no
wall limit same as in the previous sections. The stability of internal modes is investigated in
the (g4, Ao-in)) plane, and a series of equilibria is obtained by the scaling as in Sections 4.2 and
4.3.

The eigenvalue A,_;,, expresses the potential energy integral 6W, = 212 fol (YINY)dr
normalized with the kinetic energy integraloK = 2n? fol (Y|Diag(p(r))|Y) dr. However, the
weight function p(r) in 0K varies as the safety factor profile changes. We introduce the nor-
malized potential energyQ,_;,, defined as

Qoin = 6W, = /O ] (YINT) dr = do_in /0 ] (YIDiag(p)|¥) dr, (4.6)
where
(Ty) =1, (4.7)

and also investigate the stability of internal modes by comparing the values ofQ2y_;,;.
Figure 4.14(a) shows theg, dependences of i, and that of 4y_;,;, and the g, dependence of
Qo_ine 1s shown in Fig. 4.14(b). The solid line denotesu, expressing the stability of external



4.4: Coupling between ideal external modes and ideal internal modes 51

(b)L-O

0.8t [i=1
| Y06
0.4 =2

0.2} /

OOO’ “:;—"'H-_:‘-----‘----‘-----‘---i-l-:’__;‘ %

Figure 4.15: Poloidal Fourier harmonics of the eigenfunction belonging to the minimum
eigenvalue when g, = 2.32. (a) Eigenfunction obtained by solving Eq. (4.1) with the fixed
boundary condition (1y_;,; = 1.32 X 1073). (b) Eigenfunction obtained with the stability ma-
trix (uy = —27.5). Since these are almost same as each other, the stability of internal modes

affects that of external modes.

modes, already shown in Fig. 4.5, and the dashed line in Fig. 4.14(a) showsA,_;,, and that in
Fig. 4.14(b) indicates Q,_;,, for the stability of internal modes. Wheng, < g,-mgi—in: = 2.306
(go < 1.069), internal modes whose dominant poloidal Fourier harmonic is/ = 1 become
unstable, and the analysis with SM is invalid.

When ¢, is close to but larger than g, g, po tends toward —oco as Ay_;,, approaches
to +0, asymptotically. The poloidal Fourier harmonics of the eigenfunction belonging to
Ao—in; and those of the eigenfunction belonging tou, when g, = 2.32 are shown in figures
4.15(a) (Ag_jny = 1.32 x 1073) and 4.15(b) (uy = —27.5), respectively. Though the eigenfunc-
tion belonging to u expresses an external mode, both eigenfunctions are indistinguishable.
These results show that internal modes strongly affect the stability of external modes when
Ga = Ga-mgi-in- The behavior of yp near g, = g,—g-ins Will be investigated analytically in the
next subsection.

In the region 3.00 < g, < 4.30, the dependence of 4y_;,; and that of Qy_;,, on g, shown in
Fig. 4.14, is convex downward. Moreover, theg, dependence of 1 in Fig. 4.14 is also convex
downward; g, = 3.97 where y, takes the minimum value is nearly equal tog, = 3.98 where
Ao—in; becomes minimum, and is also close tog, = 3.86 where €;_;,; is minimized.

Figure 4.16 shows the poloidal Fourier harmonics of the eigenfunction belonging toly_;,,
when g, = 4.27; this g, is same as that in Fig. 4.6. The/ < 3 harmonics of this eigenfunction
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Figure 4.16: Poloidal Fourier harmonics of the eigenfunction belonging to the minimum
eigenvalue obtained by solving Eq. (4.1) with the fixed boundary condition wheng, = 4.27.
The ! < 3 harmonics of this eigenfunction are similar to those of the eigenfunction belong-
ing to uy shown in Fig. 4.6(a).

are similar to those of the eigenfunction belonging tou, shown in Fig. 4.6(a). We see that the
stable internal mode is superimposed onto the surface mode with/ > 5. These results also
mean that external modes couple with internal modes.

The coupling between external modes and internal modes becomes weak asg, increases
so long as n is small. Figure 4.17 shows the poloidal Fourier harmonics of the eigenfunction
belonging to Ay, and those of the eigenfunction belonging tou, when g, = 4.90. Unlike in
figures 4.16 and 4.6(a), these eigenfunctions are quite different from each other, and we see
that internal modes have little effect on the stability of external modes.

Atg, ~ 4.30(qo = 2.00), the magnetic axis is also a rational surface, and it is impossible
to calculate the eigenvalue 4,_;,; correctly by the present formulation. Such a case is out of
scope in this article.

4.4.2 Analysis near the marginal stability of ideal internal modes

In Subsection 4.4.1, we have shown that the minimum eigenvalue of the stability matrix
Ho tends toward —oo as Ay_;,; approaches to +0, where 4y_;,; is the minimum eigenvalue ob-
tained by solving the eigenvalue problem Eq. (4.1) with the fixed boundary condition. In this

subsection, we investigate such behavior ofy, analytically.
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Figure 4.17: Poloidal Fourier harmonics of the eigenfunction belonging to the minimum
eigenvalue when g, = 4.90. (a) Eigenfunction obtained by solving Eq. (4.1) with the fixed
boundary condition. (b) Eigenfunction obtained with the stability matrix. The mode struc-
ture of the internal mode, shown in Fig. 4.17(a), is quite different from that of the external
mode in Fig. 4.17(b).

In general, the solution of the simultaneous equation
Px =y, (4.8)

can be written with the eigenfunctionse, of the eigenvalue problem

Pe, = Q,Re,, (4.9)
as
x=) xe (4.10)
J
1
M=§yyﬂ (4.11)

wheree; isnormalized as (e, - Re;) = 6, and R is the weight function. We apply this relation
to Eq. (3.169) with the eigenfunction of Eq. (4.1) solved with the fixed boundary condition
at the plasma surface. When 4y_;,, > O be small, Eq. (3.169) for the basis functions can be
approximately solved as

bm
X0 () = ———&y_,, (), (4.12)
/10—inl
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where &,_,,, is the eigenfunction belonging to Ay_;,, and satisfies the boundary condition
&o_in(@) = 0; the coefficient bf] is given by

B = (€ () —NZ"(r)) = /0 Eo P - (“NZ"()dr. (4.13)
By using Eq. (4.12) in Eq. (3.166), we have
by by 0
WP[YZ’ Ym]aPPx =5 - WP[§0—int’ fO—int] - —WP [fO—int’ Zm]
/10—int /IO—inr 0—int
- A—pr[zl,go_,.m] +W,IZ', Z™). (4.14)
O—int

Here, let us remember that W,[&,_;,..» Eo_in:] = Ao-ins and

Wp[fo—int’ Zm] /0 fO—inz(r) : (—NZm(r))dr = bg,

Wz &, ] = /0 Eo () - (“NZXP)dr = b, (4.15)
Consequently, Eq. (4.14) reads
1
WoLY, Y |yppr = - beb+ W,IZ',Z", (4.16)
0—int

and the stability matrixA,,,, is given by

1
Aappx = _/l—b ®b+ Wp[zl’ Z"1+ M,. (4.17)
O—int
Here
b:={(b,", - b}, (4.18)
and
b®b = (b,b). (4.19)

Let us notice that the matrixb ® b is a symmetric semi-positive matrix and all eigenvalues of
b ® b are non-negative. Leta_, be the maximum eigenvalue of b ® b and y, is the eigenvector
belonging to a_;, then the minimum eigenvalue of A, is approximately given by

a_
Ho-appx = = io_ft + (YW, 21, 2] + Myly, ). (4.20)

Therefore, 194, tends toward —co when 4y_;,, approaches to +0; n = 1 ideal external modes
are always unstable whenn = 1 ideal internal modes are marginally stable.

Figure 4.18 shows the dependence ofu on gy and that on g,. The Ay_;,, value becomes to
be zero at gg_;,, = 1.0694, and 1/, also becomes to be zero atgy_;,,. The solid line denotes the
minimum eigenvalue y, obtained with the original stability matrix Eq. (3.166) (Original),
the dashed line shows that obtained with the approximated stability matrix Eq. (4.17) (Ap-

proximation 1), and the dotted line is for the approximated eigenvalueu_,,,, given by Eq.
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Figure 4.18: Dependence of -1/, on gy and that on g,. The solid line denotes the result
obtained with the original stability matrix Eq. (3.166), the dashed line shows the result ob-
tained with the approximated stability matrix Eq. (4.17), and the dotted line is for the result
given by Eq. (4.20). Each line tends toward+0 as g, decreases to go_;,; = 1.0694.

(4.20) (Approximation 2), respectively. We observe that Eqs. (4.17) and (4.20) well describe
the behavior of iy near the marginal stability of internal modes. Theg, dependence of 1, an-
alyzed by Approximation 1 and 2 are almost same each other, and tend toward the Original
Mo as Ag—;n, approaches to +0 asymptotically.

Equation (4.12) reveals the meaning of couplingbetween an external mode and an inter-
nal mode. When Aq_;,, is small, the basis function Y defined by Eq. (3.163) is approximately
given by

I

b
Yﬁﬂ:—xifHMﬂ+ZWA (4.21)

O0—int
Consequently, any external modes expressed by Eq. (3.168) include¢,_;, (r) as the dominant
component, which explains Figs. 4.13 and 4.15.

4.4.3 Coupling in reversed shear tokamaks

We have confirmed that internal modes can be coupled with external modes and can destabi-
lize them in high{, tokamaks. Therefore, it will be interesting and important to investigate
from this viewpoint the stability of external modes in reversed shear tokamaks (RS).
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Figure 4.19: (a) Profiles of the pressure p and the safety factorq of the reversed shear equilib-
rium (RS) and the g profile of the normal shear one (NS). Theg,, of these equilibria are 0.01.
The minimum safety factorg,,;,, in RS is 1.32 that equals to g in NS, and the ¢, values in both
equilibria are 2.80. (b) Profile of the parallel current density j; of RS and that of NS. These

profiles near the plasma surface are similar to each other.

We first analyze the stability of external modes in the lowg,(= 0.01) RS whose aspect
ratio is A = 3.30 and the cross sections are circular. Since, in lowg, tokamaks, the stability
of external modes mostly depends on theq profile and the average parallel current density j
profile near the plasma surface, we make RS equilibria so that these profiles near the plasma

surface are almost same as those of normal shear tokamaks (NS), wherej is defined as

. _J-B)y F dp 1dF
M=y, T (B Ay pedy
and (C) 7 is the flux average value of a variable C defined in Eq. (2.18). Figure 4.19(a) shows
the p and ¢ profiles of the RS and the ¢ profile of the A = 3.30 and 8, = 0.01 NS, already
shown in Fig. 4.7, and the jj profiles are shown in Fig. 4.19(b). The minimumg value of RS,
Gmin» 18 Set to go = 1.32 of NS when ¢, of RS is equal to that of NS (g, = 2.80) because the

rational surfaces in the plasma are important for the stability of internal modes.

(4.22)

The spectral structure of external kink modes in theg, = 0.01 RS is shown in Fig. 4.20,
and is almost same as that in thes, = 0.01 NS shown in Fig. 4.10. This is because theq and
Jji profiles of NS and those of RS are almost same as each other near the plasma surface. This
result means that the difference between theg profile of RS and that of NS in the plasma
core scarcely affects the stability of external modes as expected; internal modes and external
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Figure 4.20: Spectral structure ofn = 1 ideal external kink modes in theA = 3.30 and 3, =
0.01 RS. This structure is almost same as that in theA = 3.30 and 5, = 0.01 NS in Fig. 4.10.

modes are almostindependent from each other. Next, we investigate the stability of external
modes in the high,(= 0.80) RS. The p and g profiles are shown in Fig. 4.21(a), and the j,
profiles are shown in Fig. 4.21(b);g,,;, of this RS is also set togy = 1.30 of NS when g, of RS is
equal to that of NS (g, = 2.80). Near the plasma surface, theq and j, profiles of RS are almost
same as those of NS and those of the lowg, equilibria in Fig. 4.19.

Figure 4.22 shows the g, dependence of 1, that of 4;_;,, and that of Qy_;,,. In Fig. 4.22(a),
the black solid line and the black dashed line show and Ay_;,; in NS, and the gray solid line
and the gray dashed line are foryu, and 4y_;,, in RS, already shown in Fig. 4.14, respectively.
The black and gray dashed lines in Fig. 4.22(b) expressQo_;, in NS and that in RS. Wheng, is
close to but larger than2.32, i, in RS tends toward —co as 4(_;,; approaches to +0. This agrees
with the result in Subsection 4.4.2.

We first pay attention to the solid lines in the region4.50 < ¢,; these are nearly iden-
tical to each other. Figure 4.23 shows the poloidal Fourier harmonics of the eigenfunction
belonging to x4 in RS when g, = 4.90. This eigenfunction is a surface mode whose dominant
harmonicis/ = 5, and is similar to the eigenfunction in highg, NS when g, = 4.90 in Fig.

4.17. When ¢, increases, lown external modes become surface modes, and the stability is
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Figure 4.21: (a) Profiles of the pressure p and the safety factor g of RS and the g profile of NS.
The S, of these equilibria are 0.80. The values of g,,;, and g, in RS are same as those in NS
(@min = 1.30, g, = 2.80). (b) Profile of the parallel current density j; of RS and that of NS.
These profile near the plasma surface are similar to each other.

mostly determined by the magnetic shear and j; profiles near the plasma surface, and inter-
nal modes have little effects on the stability of external modes. Figure 4.23 and the spectral
structure for g, > 4.50 in Fig. 4.22 confirm this conjecture.

We next find the high, RS equilibria still have a stable window against external modes,
3.00 < g, < 3.52, although the high$3, NS equilibria are unstable wheng, < 4.28. Since
the destabilizing effects of the current density near the plasma surface in both equilibria are
considered as almost same and theQ,_;,, values in RS are larger than those in NS as shown
in Fig. 4.22(b), we guess that such stabilization of external modes reflects the difference of
the stability of internal modes, which is caused by the differentq profiles.

This conjecture is confirmed as follows. Figure 4.24 shows the poloidal Fourier harmon-
ics of the eigenfunction belonging toy (Fig. 4.24(a)) and those of the eigenfunction belong-
ing to Ag_in (Fig. 4.24(b)) when g, = 3.53 in RS; this g, is close to g g = 3.52 that is the
marginally stable g, for external modes in RS. These figures imply that the internal mode
whose harmonics are/ < 3 destabilize the external mode with the/ > 4 harmonics peaking
at the plasma surface, as in the high, NS case shown in Fig. 4.6. However, Fig. 4.22 tells
us that internal modes in RS are more stable than those in NS when3.00 < ¢, < 4.50, and
as the result, the effect of internal modes on the stability of external modes in RS is weaker
than that in NS.
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Figure 4.22: (a) Dependence of 4, on g, and that of 1y_;,, on g, in RS, and those in NS, already
shown in Fig. 4.14(a). The g, of these RS and NS are same as0.80. In both equilibria, 1

tends toward —oo as Ay_;,; approach to +0 near the marginally stable g, for internal modes.

The spectral structure for external modes in RS wheng, > 4.50 is almost indistinguishable

with that in NS. It is because the destabilizing effects forg, > 4.50 are almost same as each

other. In RS, a stable window against external modes exists in lowerg,, 3.00 < g, < 3.53. (a)

Dependence of iy on g, and that of Qy_;,, on g, in RS, and those in NS. TheQ,_;,, values in RS

are larger than Q_;,, values in NS; this implies that internal modes in RS is more stable than

those in

NS.
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Figure 4.23: Poloidal Fourier harmonics of the eigenfunction belonging to the minimum
eigenvalue of the stability matrix wheng, = 4.90 in RS. The eigenfunction shows a surface
mode structure and is similar to the eigenfunction in NS (Fig. 4.17(b)). This result implies
that the 8, effect on the stability of external modes becomes weak asg, increases.
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Figure 4.24: (a) Poloidal Fourier harmonics of the eigenfunction belonging to the minimum
eigenvalue of the stability matrix (external modes), and (b) those of the eigenfunction be-
longing to the minimum eigenvalue obtained by solving Eq. (4.1) with the fixed boundary
condition (internal modes), in thes, = 0.80 and g, = 3.53 RS. The profile of/ < 3 harmonics

in figure (a) are similar to that in figure (b), and these harmonics destabilize external modes.
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Figure 4.25: Equilibrium for analyzing the effect of aspect ratio. Parameters areA = 3.26 and
By = 6.0. (a) Contours of . The outermost solid line shows the plasma surface. (b) Profiles
of the pressure p and the safety factorg. The ¢, and g, values are 3.05 and 4.1, respectively.

4.5 Effect of the aspect ratio on the stability

of external modes

As an application of the analysis with the stability matrix, we analyze the effect of the aspect
ratio on the stability of n = 1 external modes. The shape parameters of equilibria are fixed
ask = 1.8, 0 = 0.45. The profiles of dp/dy are also fixed. The toroidal magnetic field at the
magnetic axis, By, and the poloidal field current,/,, depend on the aspect ratioA as
Bo(A) = Bo(A = 3.26) X Iﬁ, (4.23)
Riuqj(A = 3.26)
I,(A) =I,(A =326) X ———, (4.24)
maj
where B;o(A = 3.26) = 3.36, R, ;(A = 3.26) = 2.93, and I,(A = 3.26) of the normalized
beta Sy = 5.0 equilibrium is set t04.0, respectively. Though the g profile varies as A and By
change, g value at s = 0.95 is fixed as gos = 3.5 by adjusting the /, value. The profiles of the
A = 3.26 equilibrium are shown in Fig. 4.25.

We first investigate the dependence of theSy limit on the aspect ratio againstn = 1 ideal
external modes with no wall limit assumption. As shown in Fig. 4.26, a low aspect ratio
equilibrium is more stable againstn = 1 external modes. In particular, whenA < 4, the
dependence of the external mode stability on theA value is stronger than that whenA > 4;

the By limit increases from 2.4 to 3.5 as A decreases from 4.0 to 2.24.
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Figure 4.26: Dependence of the Sy limit against » = 1 ideal external kink modes on the
aspect ratio A, where no perfect conducting wall limit is assumed. Thegy limit increases
as A decreases.

Figure 4.27 shows the dependence of theSy limit againstn = 1 ideal external modes on
the position of a perfect conducting wall. The position of a conducting wallb is defined as

b= (Rowar(d = 0.Z = 0) = Reptagna(¢ = 0.Z = 0)

+ (Rvatt(® = 0,Z = 0) = R piasna($ = 0,Z = 0)), (4.25)

| =

where R, 1s the R coordinate of the wall, R ;5 is that of the plasma surface, and subscripts
+ and — indicate R, > R_. When Sy < 7.5, a small aspect ratio equilibrium is more stable
than alarge aspect ratio one. Especially, in these calculations,b/a = 1.4 is enough to achieve
a high performance (8y > 5.0) operation in each A case.

The eigenfunctions, when 8y = 6.0 and the wall position is slightly more far from a
plasma surface than the marginally stable position, are shown in Fig. 4.28. InA = 3.26
case, the growth rate calculated with ERATOJ isy?> = 1.6 x 107>; that is normalized with
the toroidal Alfvén transit time at the magnetic axis. These eigenfunctions have a global
mode structure unlike in a lowy3 case shown in Section 4.2 [31]. From these results and those
obtained in Section 4.4, the stability of ideal internal modes has an effect on the stability of
ideal external modes.

The m = 3 Fourier components obtained with MARG2D-SM in each aspect ratio cases are
pointed near the outerg = 3.0 rational surface. However, since the widths of these points
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Figure 4.27: Dependence of theSy limit againstn = 1 ideal external kink modes on the posi-
tion of a perfect conducting wallb. b/a = 1.4 is enough to achieve that theSy limit is larger
than 5.01in each A case.

are nearly 0.001 measured in s, a general structure of the eigenfunction is almost the same
as that obtained with ERATO].

4.6 Summary

I have developed the MARG2D-SM code to realizes the stability analysis of external modes
with the stability matrix method, which is introduced in Section 3.7. By the benchmark tests
of this code with MARG2D and ERATO], I confirmed the validity of this method. By using the
stability matrix, we have comprehensively studied the spectral structure of then = 1 ideal
external kink modes, stable or unstable. Especially, I clarified numerically the spectral gaps
induced by the poloidal coupling originated from the finite aspect ratio effect. It has been
also shown that the finite poloidal beta (5,,) effect makes these gaps broaden. Such toroidal
effects of the low+ external modes were previously predicted, and the present calculations
confirmed clearly these predictions.

The stability matrix method enables us to perform deeper analysis of the external modes
when it is combined with the eigenvalue problem associated with the original Newcomb
equation. They elucidate numerically and analytically the effects of internal modes on the
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Figure 4.28: Eigenfunctions whengy = 6.0. (a) A = 2.44 obtained with MARG2D-SM code.
(b) A = 3.26 with MARG2D-SM. (¢)A = 4.0 with MARG2D-SM. (d) A = 3.26 obtained with
ERATO]J code.
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stability of external modes when the internal modes approach to their marginal stability (the
B limit, for example). The coupling with the internal modes changes the surface mode struc-
ture of the external modes into the global mode structure. It also explains the difference of
stability against external modes between a normal shear tokamak and a reversed shear toka-
mak. Such effects may be also important for the stability of the resistive wall modes (RWMs)
since we are interested in the stability of it for highg plasma where the internal modes can
be close to their marginal stability.

As an application of MARG2D-SM, I analyzed an effect of the aspect ratio on the stability
of external modes in high$3 tokamaks. From this result, I confirmed that external modes are
stabilized as the aspect ratio decreases. Since the eigenfunction belonging to the minimum
eigenvalue in high{ tokamaks has a global mode structure, low# ideal external modes are
dangerous for operations, and the aspect ratio is supposed to be optimized for stabilizing
such MHD modes.

An application to the RWMs such as construction of an eigenvalue problem was out of
scope in the present work. For example, M. Chuet al. showed in Ref. [13] that an eigenvalue
problem for the RWMs with the Hermitian property can be constructed when the plasma
inertiais neglected. The application of the present formulation to the RWMs will be reported

near future.






Chapter 5

Extension of the analytical model
for highn external mode analysis
in tokamak edge plasma

5.1 Introduction

In this chapter, we focus on a highn external MHD mode analysis in tokamak edge plasma.
As already mentioned in Chapter 1, since high# external modes (a peeling mode [18], an
edge-ballooning mode [19], and a couple of them called a peeling-ballooning mode) are re-
lated to edge localized modes (ELMs) that constrain the maximum achievable gradients in
the pedestal at tokamak edge region [19, 26], these modes are one of key components for fu-
sion research.

In Chapter 3 and Ref.[29], anew eigenvalue problem associated with the two-dimensional
Newcomb equation has been posed by formulating such that the spectra of the eigenvalue
problem are comprised of only real and denumerable eigenvalues without continuous spec-
tra, and the MARG2D code [29] has been developed to solve this eigenvalue problem on the
basis of this formulation. Though the eigenvalues obtained by the MARG2D code do not cor-
respond to growth rates or frequencies of MHD modes, the sign of them can identify the
stability against ideal MHD motions. By way of compensation, this code can realize a fast
stability analysis in comparison with stability codes ERATO [32] and MISHKA [24], which
are developed based on a full MHD model. From a pragmatic viewpoint about a linear ideal
stability analysis, we often do not pay attention to growth rates of unstable MHD modes,
but whether MHD modes are stable or unstable. Moreover, since continuous spectra exist in
the stable region, a linear ideal MHD stability analysis based on a full MHD model can not
identify the stable condition numerically. On the contrary, MARG2D always can determine
whether MHD modes are stable or unstable. These benefits of the MARG2D code, in fact a

67
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short computation time and a facility to identify marginal stability, are effective to analyze
middle-n and high-» modes stabilities.

For an external MHD mode analysis, the vacuum energy contribution must be calculated
correctly. However, a Green’s function technique, introduced in Appendix C and applied in
the previous chapters, is not suited to calculate the vacuum energy contribution in highs
case, because the numerical precision loses asn increases. To avoid such a problem, I apply
the approach that the vacuum contribution is represented in the same form as the plasma
contribution by introducing a solenoidal vector field, called the vector potential method [35],
and extend the MARG2D formulation, introduced in Chapter 3, to the vacuum region. This
extension realizes a broadn range of external mode analyses on the basis of the single physi-
cal model, unlike in the ELITE code [21,22] whose formulation uses the largen ordering [19].
This benefit will be effective in future for analyzing edge phenomena by the integrated sim-
ulation between the MHD stability code and the transport code. To archive this simulation, I
develop the MARG2D code as a parallel computing code with the message passing interface
(MPI) [36] and the ScaLAPACK library [37], and shorten the computation time for the stability
analysis.

This chapter is set out as follows. In the next section, I describe the coordinate system and
a solenoidal vector field for the vacuum region. After introducing the boundary condition at
the plasma-vacuum interface and that on the wall in Section 5.3, I extend the MARG2D for-
mulation to the vacuum region in Section 5.4. Then, in Section 5.5, I describe benchmark
tests of the extended MARG2D code implemented the present formulation with the ERATOJ
code (the JAERI version of the ERATO code), and confirm the validity of high» mode anal-
ysis with the extended MARG2D code in Section 5.6. In Section 5.7, performance results of
parallel computing with the Scalapack library are shown. I summarize the present work in
Section 5.8.

5.2 Construction of coordinates in the vacuum

5.2.1 Auxiliary coordinate system(p, {, ¢)

We introduce an auxiliary coordinate system(p, {, ¢) by
R=R,,j+pcos{, Z=psin{. (5.1)

We assume that the shapes of the plasma edge (the plasma surface) and an ideal conducting

wall are expressed as functions of{;

p = pp), (5.2)
for the plasma edge, and

p = pw(d), (5.3)
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for the conducting wall. A function (quasi magnetic surface)yy is defined by
Yy = prZ, 1 <5< Spax (5.4)

where s,,,, 1s a given number, for examples,,,, = 2. Each contour of Y, = const. is expressed

as ) :
S —
p =ppl) + 2

max

l[pw(() _pp(g)]’ I<s< Smax- (55)

From y, = ,s*, we have

_ > PP , 56
= e D 0@ (>6)
and
8‘#‘/ Srznax -1
—— =Yt 5.7
0 o) -y (6.7)
(%)_1 Wy p=p@ dp  p@-p dpp 5.8
dp o¢ P = pp(0) di  pu(Q) = pp(0) di '

5.2.2 Coordinate system (¢, x, @)

In general the relation between the line elementd/ along a contour of poloidal flux function
Y (oryy) = const. and a poloidal angle y is given by

e LK 5.9
dl g0 IVl '
where +/g(¥, x) is the Jacobian of the coordinate system(y, v, ¢). Itis of course
qW)
( s ) = R2—9 (5.10)
Ve x F)
for the straight field line coordinate, and
ap\~!
V8w O =5 -| PR, (5.11)
o
for the auxiliary coordinate system(p, {, ¢). Then we have
¢ _ NsWx) (5.12)
A \sw.0)
Especially, the transformation formula between the two anglesy and ¢ at the plasma edge is
df| _ gz Ry
C) == = =———, 5.13
P00 dxl, F,pdp 13
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where

o0 _ W W
3 - 9R cos{ + 7 sin/, (5.14)

and g,, F;are the safety factor and toroidal field function at the plasma edge.
We define the poloidal angle y in the vacuum by the formula (5.13) and construct the
coordinate system (v, x, ¢). Therefore, in the coordinate transformation(p, () © Wy, x),

we have 5
9% _o, (5.15)
dp
and the fundamental relation
Oy Wy dy 1
Vy, = —V —V¢, Vy=--2=V¢=—V¢, 5.16
Yy 8pp+0§{/\/d{{®p{ (5.16)

where 0y /dp and 9y /9¢ are given by Eq. (5.7) and by Eq. (5.8), respectively. Now it is easy
to obtain the following quantities that are necessary to express the quadratic form for the

perturbed magnetic field in the vacuum.

(9 -1
Vev(Yv. x) = (oR) (aip") 0,, (5.17)
v\ 1 (dyy\
vt = () e () s1m)

_Vuy-Vy Oy 1 1

= = , (5.19)
Pri= "Nyl = ¢ 78, VunP
and
ﬁsx = 2l/’ps:8w,\(- (5.20)
5.2.3 Construction of a solenoidal vector fieldCy,
We can define a solenoidal vector field (V - Cy = 0) by
Cyv =VoxXViy + Ty(v, X))V, (5.21)
by specifying 7'y as a function of ¢y, y. The gradient of the vector fieldCy is
_ CV . V¢ _ VgV(l//V’X)
V(WV,X) - CV . VX - TV R2 ’ (522)
and the contravariant form of Cy is
Cy = Vo X Viy + vViby X Vy. (5.23)

Since the Jacobian +/gy has been already defined in Eq. (5.17), we can specify the function
Ty(Yy, x) sothatvis equal to gy, the edge safety factor, everywhere in the vacuum; that is, we

give Ty (v, x) as

2
Tv = qu R =g W (5.24)

4a .
VevWv, x) PO, dp
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When we use the coordinate system(yy, {, ¢), we have

Cy=VoxVyy + qafl—);Vz//V X V¢, (5.25)
and
_ Ya
v(Yv,{) = 0. (5.26)

p
Here, we briefly discuss the following linear partial differential equation forf (v, x, ¢)

Cy Vf=a, (5.27)

where we assume f,@ o exp(—ing), and a(Yv, x, ¢) is a given function. On the (Y, x, @)
coordinate system, Eq. (5.27) reads

0
(a —i”%)f: Vevy, x)a. (5.28)

The right hand side of Eq. (5.28) can be expanded as

Vev Wy, Dy, x, ) = ) anWy) explimy — ing), (5.29)
then, we have .
JnWy) = ;a_m—%:), (5.30)
and
SWvx®) = Y fulthv) explimy — ing). (5.31)

Therefore, Eq. (5.27) has the solution as long as the edge safety factorg, is not a rational

number and the toroidal mode numberx is not equal to zero.

5.3 Boundary conditions

Let us first derive the boundary condition on the ideal conducting wall. The normal compo-
nent of the perturbation of magnetic fieldQ, = Q- r(nin Eq. (5.41) is the unit vector normal
to the plasma surface) is given, on the(yy, y, ¢) coordinate system, by

1
Vv

On Viy - Q = Dy (Xv), (5.32)

qa
Vvl vVev(Wy, x)

where
Yy =& - Vi, (5.33)

2) YV =\ - "l Y, 5.:;4

a
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which is the same definition in the plasma region Eq. (3.15). Therefore, the boundary condi-
tion @, = O on the ideal conducting wall is

Yv(lﬁv = wall, X) =0. (535)

Next, we express the continuous condition of O, at the plasma edge by Yy . It is convenient to

use the (Y, ¢, ¢) coordinate system. From the contravariant form ofCy

Cyv = Vo X Vipy + vy, Vv X V{, (5.36)
we obtain ] .
Qn = WWIV Q= Vo m@(m (5.37)
where il
DYy) = o (a_g - inv(wv,g)) Yy. (5.38)

Therefore, the continuous condition of Q, at the plasma edge is

1 1
D(Yy) = ———————D,(Y), (5.39)
VNG @) V@D
where
Y = é? 2 (5.40)
Here, let us remember that
1 1
= =n- (V¢ X V), (5.41)
IVévlVevWv, O IVYlgW, )

since the right hand side is a quantity intrinsic to the geometry of the plasma surface. Con-

sequently we have, as the boundary condition at the plasma edge,

YV(l//V’ g) = Y(lﬁ, {)’ (542)

and
Yy(v,x) = Y, x). (5.43)

5.4 Extension of the MARG2D form in the vacuum

5.4.1 Mathematical preliminaries

Let f(x) be areal periodic function with periodicity2z

FOO = ) fuexplimy), fon = fr (5.44)
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and ( ) and § dy be operations defined by

= roode=5- [ soar (5.45)
For example
(fexp(=ily)) = fi. (fexpib)) = f1=f;. (5.46)
We make a vector|f) from f;’s by
Y= =C o fanfoo fioo ), (5.47)

and a vector |f‘> by eliminating f; from |f)

) = 1fieo = Co s fons fis o) (5.48)

We also define the conjugate vector of|f) by

S1=Cofrfofie) =1 (5.49)

and ( f| similarly. Next, we introduce a matrix generated from.f(y) by

F={fi) fim= 75 F0o) expliGn — Dyldy = fionm. (5.50)

Since f(y)isreal, F is a hermitian matrix

fm,l = f[*m (5.51)

Let|a), |b) be two vectors, and A be a matrix. We write the inner product of two vectors as( | )

(alb) = " ajby, (ala) = la’, (5.52)
!
and a quadratic form as
(alAlb) = " a}ALbn. (5.53)
Lm

Let us notice that a matrix can be generated from the two vectors|a) and |b) by

(la)Xbl)im = (@®b")1m = aib, (5.54)

m?

and the product between (x|a) and (b|y) is written by a quadratic form as
(x|a){bly) := (x|a ® b"|y). (5.55)

Leta;(x) (j=1,---,N)be complex functions of the variabley and |a(x)) be a vector function
defined by

la()) = (@100, av), lal)); = a;(x). (5.56)
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The conjugate vector function(a(y)| is defined by
(a0l = (@), -+ »ay), (all; = a;(x).
Then a function f(y) given by .
foo = Zl fia 0.
=
can be expressed by an inner product form as
F00) = (@Qolf).

From Eq. (5.59) we obtain

FOOP = D Fa00a;00 fi = (flaGo)aClf),
ok

and
ISR = $1700Rdy = (AL,
Here the matrix A = (A;;) is given by
A= $ aatody.

and is a hermitian matrix. It can be also written as

f la()@(pldy = A.

Next, for two functions

00 = @Qlf), gl = (alx)lg).

we write the inner product of them as

(flg) = f F00g00dy.

and we have

(flg) = (fl1Alg).

Let b(y) be another function, then we obtain

GBSO = (BIF),
where
1b) = f blaCy)dy.

We also obtain

BOOIFOOP) = (fIBIS).

(5.57)

(5.58)

(5.59)

(5.60)

(5.61)

(5.62)

(5.63)

(5.64)

(5.65)

(5.66)

(5.67)

(5.68)

(5.69)
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Here the matrix B = (B;) is given by

B= 75 a0))b(@COldy, B = f a,00b00a 0Oy (5.70)

In this chapter, {exp(—ijy)} are used as {a;(x)}
|e(X)) = ( -, exp(le), cee 1’ e exp(_lj/\/), e )l’ (5.71)

le(x)); = exp(—1ijx). (5.72)

We also use the vector [é(y)) that is made by eliminating the j = 0 component from |e(y)).

Since
Fletonecoldy = 1. (5.73)
where I is the unit matrix, we obtain for Eq. (5.66)

(flg) = (flg)- (5.74)

We use repeatedly in this paper the following propositions on a quadratic form. A real
function of a complex numberz, L(z), is introduced as

L(z) = alzl* + b*z + 7'b, (5.75)

where a is real and b is complex. Then L(z) takes its extremum

2
L) = -2, (5.76)
a

atz = —b/a. Next, let L(x) be a real quadratic form for a complex vectorx
L(x) = (x|Alx) + (x|b) + (b|x), (5.77)
where A is a hermitian matrix and b is a complex vector. L(x) takes its extremum
L(x) = —(bIA”'|b), (5.78)

forx = —A7'b.

5.4.2 Quadratic form for the change of potential energy

in the vacuum

The perturbation of magnetic field in the vacuum is expressed by

Q=VxA, A=EXCy. (5.79)
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By introducing?, V as

1
Y:‘fv'VWV’ V:§V.V9_q_§v'v¢’

we have
A=Y(V¢—q,V0)+ q,VViy,
Q = quH X V¢) + I/th(b X V{//V + M¢V¢/V x V6.
Here
Uy = QaZ)G(Y),
oY +ing,V
g = — |— +1mgqg,V|,
S PV
ov N oY
Up = —Y4a| 77 ., |
¢= 7990 T Gy,
and

10
Y)=|—=—in|Y.
2 =155}

Therefore, when the energy integral of the perturbed magnetic field is written by

Wy =7 / Lodwvdy, Ly = VavIOP,

the potential energy density Ly is given by

2
+c

v oY |
_+_ s

= VP+b
Ly = a|Dy(Y)|” + 20 " a0,

1 oY
inV + ——— Y
nv + 7 alﬁv +ﬁ¢,g@9( )

and the coefficientsa, b, ¢ in Eq. (5.88) are

(5.80)

(5.81)
(5.82)

(5.83)

(5.84)

(5.85)

(5.86)

(5.87)

(5.88)

(5.89)

(5.90)

(5.91)

2
q, 1 TV
ayy,0) = =qa ;
S Y e
Vv q,
b(‘ﬁv, 9) :quz WZV Vv = _lvalza
R Ty
R2
cWv,0) =qo—— = qTv.
v q N qalv
In the following we write, for simplicity, ¢ instead of ¥y. Let us introduce a new variable
Oy, x) by
oV N oY
R

and expand the variables in Fourier series as
V(W x) =(=i) Y V() explimy),

YW, x), 2, x)) = Z(Ym(!//), D, () exp(imy).

m

(5.92)

(5.93)

(5.94)
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Consequently, we obtain

1 1 dY,
Vm(w) = E(Dm - n_/lcill;’l’ fOI' m # O, (595)
Oy(yY) = C;_fbo’ for m = 0, (5.96)
and
a—V+8—Y—Z'® ex (im)+%—(écy)|(i)>+% (5.97)
o a2 mEXPUmy) + 5 = v :

Here we use the notations by Egs. (5.71) and (5.59). By substituting Eq. (5.97) into the third
term in Eq. (5.88), we have

av a R R dy,
= (@600 @(ID) + |d—¢° (o)
(5.98)
and then
av aY oF  dY dY,
74 _ (DICID) + () |20 dw - G feld) + W@'” (5.99)
Here, {c¢) is defined by Eq. (5.45),
C= f 200D @0OIdY. (5.100)
and
- 7{ cCOlGO)dy. (5.101)

Next, by using Eq. (5.95) in the second term in Eq. (5.88), we obtain

15)
— +1nq,V + gy, D, (Y)

oy
- (éw) Diag (”Z)q>> T ngaVo
s dv\ . dy,
- (em D%> +iqBu U CUIDVY) + 2. (5.102)
Here Dy and Dy are diagonal matrices; they are
D, = Diag(ﬁ - n) : (5.103)
9a
Dy = Diag( ”qf‘) - DvDiag(@). (5.104)
m m

Consequently, the second term in Eq. (5.88) is
2

— +1nq,V + q,By, D, (Y)| dx

jl{b(X) oY

f di |(@Diag (™) iewo) ) + naa¥ + 10|
x boo | (e

Diag(7)®> T ngaVo + f(,\()], (5.105)
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where
f0) = (eCV) D, ¢> + By VECOIDYY) + i . (5.106)
Here we introduce the following vectors and matrices for later use:
b= ¢ buojecordy. (5.107)
B= § eG)bEIdy. (5.108)
= PIDBOOBL O TleCONdr. (5.109)
H = § RO0)ib00Bu (00Ol (5.110)
and
b = § 10000010 = ‘BDV dy> + Dop 4 g DY), (5.111)
dv | " dy

5.4.3 Minimization with respect toV, and ®,,

We first minimize with respect to V,, the integral (5.105), which can be written in a quadratic
form for Vj,

F (Vo) = (ng) bIVol* + (ng)(Via + @ Vo) + k. (5.112)

Here the coefficients @ and « are given by

@ = § debio)| (60 [Piag (42) @) + fo |
<b Dlag( q“) >+<b()()f()()> (5.113)
o) = <13 2 > + <b>7 + g.(hDy|Y), (5.114)
and
= o f3mos () |
X b(x) [(é(x) Diag(nnza)®> + f(,y)]. (5.115)

By applying Eq. (5.76), we obtain the minimum of# with respect to V,

1 »
min¥ = —@Ial + K. (5.116)
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Next, we express Eq. (5.116) in a quadratic form with respect to®. We obtain for Eq. (5.113)

Diag (nll) bh® I;*Diag(nll)‘ ci>> + KbO) fFONI

oua(i) )

lal* = (nq,)* <<i>

+ 1qa(b0) f(00))” <

+ nq, <(i) Diag(n%)‘ I;> b fx)), (5.117)
and for Eq. (5.115)
1 1 ol 1\l
K =(ng,)? < Dlag( )BDlag( )l >+ nqa< Diag (E) bf>
+ ng, <i7f Diag(%)‘ ‘i>> + (BOOIf OO, (5.118)

where |b;) is defined in Eq. (5.111). Let us notice that

A

d dY,
dw> g >|b & b'DyY) + by, (5.119)

<b(x)f0v)>| |b 2 b
dy

(b) " (b)

Here we use Eq. (5.54). Thenmin ¥ in Eq. (5.116) is rewritten as

1 1| . .
Dlag( ; ) BDiag (7)‘ (I)> + nq, <(I)

oo

minF = (nq,)* <

2
+ ngy <13f Diag(%)' é>> + OOLFCOR) - W (5.120)
where
1

B=B-—b b* 5.121
B ® A ( )

_ " b ~ - - |dY
b =b; — %b = 'BDV w> + g, HzDy|Y), (5.122)
Hz;=H - —b h*. 5.123
B ® ( )

In Eq. (5.120) the term includingdY,/dy has been canceled out.
When we use Eqgs. (5.99) and (5.120), we obtain a quadratic form with respect tod gener-
ated from Eqs. (5.87) and (5.88)

2

ov  JdY
dy + jl{b(/\/) ‘— +1inq,V + qfy, D (Y)| dx

LV:fCW)‘a_WTV

2
=(DP|d +e. (5.124)
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Here P, d and e are given by

P= C+D1ag( ?)BDlag( ?a)

dYy
d:wc+Dlag( ; )bf,

and

KbOOF OO
by

Now, it is easy to minimize £, with respect to ®, and we obtain

e = (b fOOI) -

min Ly = —(d|P” +e.

5.4.4 Quadratic form with respecttoY

Let us first expresse in a quadratic form with respect toY. From Eq. (5.106),

dy . _ . dY
lf@ )l = <— IDv 6(x))(@()| Dy | —>

2

dy,
v oS <Y|DV|€(X))(0(X)|DV|Y>+‘ o
dy -
+ 1qaPy.y <@ Dy ém) (e(x)IDy| Y)
dy
~ igBu (Y Dyl e(r)) ( _w>
Yo (. i~ ,dY\ [dY -
T ("(")|DV|@> <dw

. dyY; . dy,
+ 16]aﬁw,)(w(e(X)|Dv|Y> - IQaIBLﬁ,)(<Y|DVIe(X))W

) dy,

Consequently, we have

) N ) '
bW, ) fW. Iy = <@ [DvBD,| @> +q,

ay c= 1 dY
+ ¢a <@ |D/HD, | Y> +qa <Y ID/H'D,| @>

dyg [ dY\ [dY dYy
s (01 ) (0]

*

dy;
t iy 2 (hIDy|Y) +Qa<Y|DV|h>W

Here b, B, h and H are given from Egs. (5.107)-(5.110);H; is defined by

H, = f eONIB0O) By ey

(5.125)

(5.126)

(5.127)

(5.128)

(5.129)

(5.130)

(5.131)
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Similarly,
A dy dYy
bW, X)W, X)) = <b Dy E> + q.(hID|Y) + <”>W’

then we obtain
ay - . ... dY
Kb ) f @, O = <— |Dvb ® b"Dy| —>

+%

g <Y|Dvh & b'D| %>

+ qa <QI |Dvé ® h*D\/| Y>

+ <b>{<Y| i }
1 w v

dY* ady dY -

- o {GE{pm )+ (G0

By substituting Egs. (5.130) and (5.133) into Eq. (5.127), we obtain

dy .. __ . dY _
e= <@ IDyBDy| E> + g(YDyH,Dy |Y)
dY |- )
+ qa <@ |DvH;Dy| Y> + 44 <Y D HD, | %>,

where

1
H =H,-—heh".
2T ®

Next, by using Eq. (5.126) for the first term in Eq. (5.128) we have

(dIP™)d) = “;—3’ (el ey
ke
() (s [ () )

+ (b
When we use Eq. (5.122) forb s, we obtain
<C b_f>

- <c P 'Diag (”‘l] ) BD,

D1ag( ; )P_lDlag( ;]a)

),

P 'Diag (n?a)

P 'Diag (%) HDy

v).

g>+%<c

~\ dYy
”W}-

81

(5.132)

(5.133)

(5.134)

(5.135)

(5.136)

(5.137)
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and
<I_)f Diag(n?a)P_lDiag(nqa) l_7f>
__ . dY
:<—|Dv RBDVI—>+qa< |DVHLRBDV|@>
+q4aﬂmBmHaMY%wamﬁgmhnqw, (5.138)
where
R := Dlag( l) 1Dlag( l) (5.139)
Finally, we have
faWMMDdYWdy=OﬂhADWY% (5.140)
A:ifwmw%xwu. (5.141)

From these transformations, we obtain the potential energy density in the vacuumZy as

dyy |

dy

dy |- dy
ad t dY
+<d¢/ ‘DV (B-B'RB)D, d://>

Ly = Mo+ (e ) = (P le)] |

dy
(I RB) Dy dw>

4 <% ‘DV (1I-B'R) HBDV‘ Y>

+qa<Y

+ <Y Dy (¢2 (A - HyRH,) + A) D | Y> , (5.142)

where

*

dy;
Mo = _qadz//<

- qa<Y DVHgDiag( ?“)P‘l
dy?

_ 9%,
|

L
dy

The MARG2D code was extended for analyzing highn external modes by expressing the en-

1Dlag ( ) HzDy

Y)

)
dy
dy
)
dy,

Dy B Diag (%) P“' c> W (5.143)

P—lDiag( )BDV

[

ergy integral in the vacuum region as Eqs. (5.87) and (5.142) with the lowest order finite hy-
brid element method.
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5.5 Benchmark tests

We execute benchmark tests between the MARG2D code and the ERATO]J code [32], and show
the validity of the result with MARG2D.

5.5.1 Stability of n = 2 ideal external kink mode

We first investigate the stability ofn = 2 ideal external kink mode in the cylinder-like (the as-
pectratioA = 100) equilibrium, whose cross section is nearly circular (the ellipticityx = 1.0,

and the triangularityé = 0.0), with the MARG2D code and the ERATO] code. The equilibria
in this paper are obtained by solving Grad-Shafranov equation numerically [48]. Figure 5.1
shows the contour ofy = const., and the profiles of the average current density parallel to the
magnetic field B, j(s), and the safety factor g(s) (s = Vi); in this equilibrium, the poloidal
beta 3, defined in Eq. (2.33) is0.01. The average parallel current density jj is defined in Eq.

(4.22); we again write
. _(J-B) F d 1 dF
.]” = 2 ! == > _p - T T (5.144)
(B%)s (B5)pdy o dyr
where F is the toroidal field function, u, is the magnetic permeability in vacuum,(X), is the
flux surface average defined in Eq. (2.18). The safety factor at the magnetic axisg, and that

at the plasma surface g, are 1.32 and 2.89, and j|,/(j;» = 0.21, where j|, = j (s = 1), (jj) is

the average current density (the ratio of total toroidal current to the poloidal cross-sectional
area of the plasma), anda is the plasma minor radius.

The mesh numbers in the MARG2D code and the ERATOJ code are determined by con-
firming the convergence of the eigenvalues. Since the ERATOJ code is based on the two-
dimensional finite element method with the lowest order elements, it needs at least four
times mesh numbers in the poloidal direction as many as the MARG2D code, based on the
Fourier harmonics in the poloidal direction [31]. For computing the eigenvalue of then = 2
external kink mode, we set for the MARG2D code the radial mesh number in the plasma re-
gion NPS I;,p = 1200, that in the vacuum region NV,;,p, = 120, and select the poloidal
Fourier harmonics —32 < m < 32; which is to say that the Fourier harmonics number
Mypnp = 32 around the middle harmonic M, = 0. For the ERATOJ code, we used the
radial mesh number in the plasma NPS Iz = 800, that in the vacuum NVggy = 80, and
the mesh number in the poloidal direction NCHIgrr = 256 are used; these are enough to
converge the eigenvalues.

In the cylinder equilibrium case, the energy integral of the perturbed magnetic field in

the vacuum region can be written as

Wy =z [PFA] £, (5.145)
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(a) T T T (b)
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Figure 5.1: Equilibrium whose parameters areA = 100,k = 1.0, 6 = 0.0, and 8, = 0.001.
(a) Contours of ¢ (magnetic surfaces). Solid lines are fory < 0 (plasma region), and broken
lines are for y > 0 (vacuum region). The outermost solid line shows the plasma surface.
(b) Profiles of the safety factorg (solid line) and the parallel current density j, (dashed line),
where s = . The values of the safety factor at the magnetic axisqgo and that at the plasma
surface g, are 1.32 and 2.89, and jil,/{jj)«, where jjl, = ji(s = 1) and (jj), is the average
current density, is0.21, respectively.

where | K INTK

A= _kz(;(; = E?(ZIi/EIZ?(; ’ (5:146)
I, =1,z (z=aorb),XK, = K,kz),I,, K, aremth order modified Bessel functions,m
corresponds to the poloidal mode number,k is the toroidal wave number, andb is the minor

radius of the conducting wall, respectively [42]. Since the equilibrium shown in Fig. 5.1 is
like a cylinder (A = 100), we can use Eq. (5.145) to estimate Wy, and compare the results

obtained by three methods; one is the method with the MARG2D code thatWy is calculated

by Eq. (5.87) (MARG2D-V.P.), second is that with the MARG2D code thatWy is obtained by Eq.

(5.145) (MARG2D-Bessel), and the last is that with the ERATO] code.

We investigate the stability of n = 2 ideal external kink modes in the (/a, 1;) plane,
where A, is the minimum eigenvalue calculated by the MARG2D code @y-np) or ERATOJ
code (Ag_ggr). Figure 5.2 shows the dependence of 1y on b/a in the equilibrium shown in Fig.
5.1. The solid line denotes Ay_,,p obtained by MARG2D-V.P., the dashed line showsAg_0p
computed by MARG2D-Bessel, and the dotted line is forAy_ggr, respectively. Ideal external
modes are marginally stable when A, equals to zero. From this figure, the results computed
by these three methods are almost same as each other, and these results represent thatb/a
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[x107%]
A=100, n=2, ,=2.89, 3,=0.001
0.005f e MARG2D-V.P.
—-+—- MARG2D-Bessel [
~wae ERATOJ
0.000k— 0.000
Ao-m2p ] ANo-ERT
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00135 1.3 1.4
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Figure 5.2: Dependence of the minimum eigenvaluesd, on »/a in the equilibrium shown in
Fig. 5.1; the value of n is 2. The label y_,;p denotes the minimum eigenvalue obtained by
the MARG2D code, and Ay_ggr 1s that calculated by ERATOJ (dotted line), respectively. The
method for obtaining the energy integral in the vacuum region is changed in the MARG2D
code; one is calculated by Eq. (5.87) (MARG2D-V.P., solid line), the other is computed by Eq.
(5.145) (MARG2D-Bessel, dashed line). Each result obtained by these three methods are al-
most same as each other, and theb/a value when ideal external modes are marginally stable
is 1.23.

when ideal external modes are marginally stable is(b/a),,g = 1.23.

We also compare the eigenfunctions belonging tod, when b/a = 1.24 which is close to
(b/a)mgs; all minimum eigenvalues are negative. As shown in Fig. 5.3, sincen = 2 and g, =
2.89, it is well-known that the surface modes with the dominant harmonic(m,n) = (6,2)
appears as ideal external kink modes [31, 65], and each poloidal Fourier harmonic of these
eigenfunctions obtained by (a) MARG2D-V.P. Qg_sop = —7.51 x 107%), (b) MARG2D-Bessel
(Ado_azp = —7.52 x 107%), and (c) ERATOJ (Ag_ggr = —1.02 x 1075) is nearly identical to each
other.

5.5.2 Stability of n = 5 ideal external modes

We next investigate the stability ofn = 5 external modes in the (3,, 4o) plane. The common
parameters of the analyzed equilibria areA = 3.3, « = 1.8, and 6 = 0.45. The functional
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Figure 5.3: Poloidal Fourier harmonics of the eigenfunctions belonging tol, whenn = 2,
ga = 2.89,6, = 0.001, and b/a = 1.24. These are obtained by (a) MARG2D-V.P. Qy_p2p =

05

(b)

A=100, q,=2.89, b/a=1.24

_ _ -4
Bp—0.001, Ay=—7.52¢

0.5

0.5

—7.51 x 107, (b) MARG2D-Bessel (1g_pnop = —7.52 X 107%), and (c) ERATOJ (Ag_grr = —1.02 X

107°). The harmonics Y,, obtained by three methods are nearly identical to each other, and

these show typical surface modes with the dominant harmonic(m, n) = (6, 2).
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By, || CFy | CFy | aF Vi | OF
1.4 5.0 | 1.58 | 0.260 | 0.0 | 10.0
1.5 5.0 | 1.56 | 0.250 | 0.0 | 10.0
1.6 || 5.0 | 1.55 | 0.250 | 0.0 | 10.0
1.7 | 5.0 | 1.45 | 0.242 | 0.0 | 10.0
1.8 || 5.0 | 1.40 | 0.229 | 0.0 | 10.0
2.0 5.0 | 1.20 | 0.200 | 0.0 | 5.0
2.2 | 5.0 | 1.20| 0.210 | 0.0 | 5.0

Table 5.1: Parameters in Eq. (5.148) for each/3, equilibrium for investigatingn = 5 stability.

forms of p(¥) and j(y) are given as

dp 5\12
@ :_ﬁpo((l_(//) ) (5.147)
il cr\CP2 W —ve)
@ = — (1 - (ﬁ ) - €Xp (-4!&) + ap €Xp (—W , (5148)
where (3, is the current poloidal beta at the magnetic axis defined as
2
Bo = T (5.149)

B,

po 1s the plasma pressure at the magnetic axis and and B, is the average poloidal magnetic
field at the plasma edge defined in Eq. (2.34). Since the stability of current driven external
modes mostly depends on theq profile near the plasma surface and j |, the g profile near the
surface and j|,/(jj) value are nearly fixed as j|,/{j;) = 0.18 by modifying the parameters of
Eq. (5.148) as shown in Tab. 5.1 when we change theg, value; one of them whoseg, = 1.51s
shown in Fig. 5.4. Figure 5.4(a) shows the contour ofys = const., and the profiles of j(s) and
q(s), and those of p(s) and the pressure gradient toy, dp/dy(s), are shown in Figs.5.4(b) and
4(c), respectively. The values of gy and ¢, are 1.52 and 4.35.

To converge the eigenvalues, we used the parameters for MARG2D (afterward, MARG2D
means MARG2D-V.P.) as NPS I,,p = 1200, NVyp = 120, and select the poloidal Fourier
harmonics —44 < m < 84;in fact, Mypp = 64 around M., = 20. We also set the parameters
for ERATOJ as NPS Iy = 1200, NViggy = 120, and NCH Iy = 384; in this case, we use the
eikonal transformation in the ERATOJ code [66].

Figure 5.5 shows the dependence of 4, on 8, whenn = 5, g, = 4.35and b/a = 1.25.
In this figure, since the dashed line obtained with ERATO] closes in on thedy_ggr = 0line
asymptotically, we are hard to determine theg, limit, 8, .., forn = 5 MHD modes; 3, ., is
the g8, value that the analyzed MHD modes are marginally stable. In contrast, the solid line
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Figure 5.4: Equilibrium whose parameters areA = 3.3,« = 1.8,6 = 045,and 5, = 1.5.

(a) Contours of ¥ (magnetic surfaces). The outermost solid line shows the plasma surface.
(b) Profiles of ¢ (solid line) and j; (dashed line). The values of gy and g, are 1.52 and 4.35,
and jl,/{(jiya = 0.18, respectively. (c) Profiles of the pressurep (solid line) and the pressure
gradient dp/dy (dashed line).
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Figure 5.5: Dependence of 1, on 8, whenn = 5, g, = 4.35 and b/a = 1.25; one of the equi-
libria is shown in Fig. 5.4. Though the dotted line obtained with ERATOJ closes toward the
Ao-grr = 0line asymptotically, the solid line computed with MARG2D crosses thedy_;np = 0

line, and reveals thef, limit g, ., forn = 5 modes as 1.5.

obtained with MARG2D can cross the 4o_y,p = Oline, and clarifies 8, ., forn = 5 modes as
1.5.

The poloidal Fourier harmonics of the eigenfunction belonging tal, are shown in Figs.5.6
(B, = 1.5)and 5.8 (3, = 2.2); to obtain the eigenfunction, we set NCHIggr = 1024 to
converge the eigenvalue without the eikonal transformation for the ERATOJ code. When
B, = 1.5 shown in Fig. 5.6, the Fourier harmonics structures obtained by (a) the MARG2D
code (Ag_pnp = —5.55 x 107*) and (b) the ERATOJ code (g_grr = —8.83 X 107°) are similar to
each other, and the dominant harmonic is(m, n) = (22, 5) peaking at the plasma surface.

Figure 5.7 shows the contours of  and the constant-height surface of Y,(r, 6) when g, =
1.5, where Yy(r, 0) is defined as

Mo
Yo(r,0) = Re| > (Yo(r)n exp(imé)|, (5.150)
m=Mpin

Y, is the eigenfunction belonging toAy_yp, M, and M, are the minimum and the maxi-
mum poloidal mode numbers; in thisn = 5 case, M,,;, = —44 and M,,,, = 84. The constant-
height surface in Fig. 5.7(a) is drawn in—0.6 < Y, < 0.6 range, where Y (r, 6) is normalized
as max(Yy) = 1 and the region where |Yy| > 0.6 is blacked out. Since the (m,n) = (22,5)
component peaking at the plasma surface is the dominant component ofY, as shown in Fig.

5.6(a), the mode structure localized at the plasma surface can be shown. Figure 5.7(b) shows
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Figure 5.6: Poloidal Fourier harmonics of the eigenfunctions belonging tod, whenn = 5,
qa = 4.35,8, = 1.5and b/a = 1.25. These are obtained with (a) MARG2D (1_pp = —5.55 X
107%) and (b) ERATO]J (Ag_ggr = —8.83 x 107°). The harmonics Y, obtained by these methods
are similar to each other; the (22,5) harmonic peaking at the plasma surface is dominant in

these eigenfunctions.

the constant-height surface in the range from -0.3 to 0.3 and contours ofy; the ballooning
mode like structure is emphasized in the outboard bad curvature region. From Figs. 5.6 and
5.7, the most unstable eigenfunction is revealed that consists mainly of a peeling structure
with a secondary ballooning structure.

On the other hand, wheng, = 2.2 in Fig. 5.8, the Fourier harmonics obtained with (a)
MARG2D (Ap-p2p = —0.106) are far from those obtained with (b) ERATO] (g_grr = —4.13 X
1072). The Fourier harmonics structure shown in Fig. 5.8(a) is more similar to that shown
in Fig. 5.6(a); these are obtained with MARG2D. However, the harmonics structures shown
in Figs.5.6(b) and 5.8(b), which are computed with ERATO]J, are different from each other.
In Fig. 5.8(b), the 5 < m < 21 Fourier harmonics in the plasma (s < 1.0) have finite ampli-
tudes and construct the envelope peaking ats ~ 0.82; this is an edge ballooning mode and is
prominent part of the eigenfunction.

From figures obtained with ERATOJ, we understand that the mode structure of the eigen-
function belonging to A, changes from the ’edge ballooning dominant’ structure to the *peel-
ing dominant’ structure as, decreases. However, the mode structure shown in Fig. 5.8(a)
is different from that in Fig. 5.8(b), but is similar to that in Fig. 5.6(a). The reason is thought
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Figure 5.7: Constant-height surfaces of Yo(r,0) whenn = 5,¢q, = 435,85, = 1.5, and
bla = 1.25; Yy(r, 6) is defined as Eq. (5.150) and normalized maxY,(r, 6)) as unity. (a) Range
of the constant-height surface is set as—0.6 < Y, < 0.6; regions where |Y(r,8)| > 0.6 are
blacked out. Since the peeling component peaking at the plasma surface is prominent as
shown in Fig. 5.6(a), the mode structure localized at the plasma surface appears. (b) Range
of the constant-height surface is set as—0.3 < ¥, < 0.3. Contours of y are also shown; solid
lines show ¢ = —0.8 (innermost contour), —0.5, and —0.2 contours, and broken lines are for
Y > 0.2 contours. A ballooning mode like structure in the outboard bad curvature region is
emphasized.

as that the mode structure of the eigenfunction belonging to non-zerod, is tied to that of the
marginally stable (1, = 0) eigenfunction, because the MARG2D code solves the eigenvalue
problem associated with the Newcomb equation

NY = —-ADiag(p)Y, (5.151)

which is already derived in Chapter 3 as Eqs. (3.123) and (3.124), and this eigenvalue problem
is physically correct when the eigenvalued = 0.

5.5.3 Stability of highn external modes

A high8 equilibrium often has a steep pressure gradient, called a pedestal structure, and a
large bootstrap current [47,49, 50] near the plasma surface; this is called as an "TELMy-H oper-
ation’. In such an equilibrium, edge localized modes (ELMs) tend to become unstable; ELMs
are constructed with a high# external kink mode, called a peeling mode, a high# ballooning

mode localized near the plasma surface, and both of them. We investigate the stabilities of

high-n external modes in the equilibria with a pedestal structure in this subsection.
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Figure 5.8: Poloidal Fourier harmonics of the eigenfunctions belonging tol, whenn = 5,

ga = 4.35,B, = 2.2and b/a = 1.25. These are obtained with (a) MARG2D (1p_p2p = —0.106)

and (b) ERATO] (Ao_gzr = —4.13 x 1072). These are apparently different from each other. In
Fig. 5.8(b), an edge ballooning mode whose envelope peaks ats ~ 0.82 is dominant, but in

Fig. 5.8(a), the (22,5) harmonic peaking at the plasma surface is dominant like in Fig. 5.6(a)
(8, = 1.5). The reason is that since the MARG2D code solves the Newcomb equation Eq.
(5.151), the mode structure obtained by the MARG2D code is tied to the mode structure of the
marginally stable eigenfunction (Fig. 5.6(a)).

The common parameters of the equilibria areA = 3.3, x = 1.8, and 6 = 0.45. Since A,
K, and ¢ is same as those of the equilibrium shown in Fig. 5.4, the contour ofy = const. is
almost same as that shown in Fig. 5.4. The functional form of j(y) is given as Eq. (5.148), and

that of p(¥) is
dp

_ (¥ —0.91)?
v~ ‘ﬁw(] o P(W))

As in the previous subsection, we modify the parameters of Eq. (5.148) as shown in Tab. 5.2

(5.152)

to fix the g profile near the surface and j|,/(jj) value as 0.135 when the 3, value is changed.
Figure 5.9 shows the j, g, p, and dp/dy profiles when 8, = 1.2. The values of ¢, and g, are
1.7and 4.27, and the j|, value is finite to make a peeling mode unstable.

In these equilibria, we investigate the stability of then = 40 external modes; the param-
eters in MARG2D are NPS Iy;op = 2800, NVyp = 280, Mypp = 90, and M., = 130. Figure
5.10is the poloidal Fourier harmonics of the eigenfunction belonging taly_,,p whenn = 40,
go. = 4.27,B8, = 1.4, and b/a = 1.2; the eigenvalue is nearly equal to zero (= —7.77 X 107%).
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Figure 5.9: Equilibrium whose parameters areA = 3.3,k = 1.8,6 = 0.45,and 8, = 1.2. (a)
Profiles of g (solid line) and j, (dashed line). The values of g, and g, are 1.7 and 4.27, and
Jila/<j>a = 0.135, respectively. (b) Profiles of p (solid line) and dp/dy (dashed line).

B, || CFi | CF, arp Vi or

0.1 || .12 | 0.7 | 3.06x 1072 [0.999 | 1.0

0.2 1.15| 0.7 | 3.15x 1072 | 0.0 | 20.0
0.3 1.17 | 0.7 | 3.25x 1072 | 0.0 | 20.0
0.4 1.20 | 0.7 | 3.30x 1072 | 0.0 | 20.0
0.5 1.24 | 0.7 | 7.00x 1072 | 0.926 | 0.041
0.6 || 1.30 | 0.7 0.100 0.916 | 0.041
0.8 | 1.35| 0.7 0.116 0.913 | 0.041
1.0 || 1.44 | 0.7 0.122 0.913 | 0.041
1.2 || 1.50 | 0.7 0.216 0.911 | 0.036
1.4 | 1.57 | 0.7 0.214 0.911 | 0.036
1.6 | 1.62 | 0.7 0.303 0.909 | 0.035
2.0 || 2.06 | 0.7 0.330 0.909 | 0.034

Table 5.2: Parameters in Eq. (5.148) for eachg, equilibrium that we investigate high# stabil-
ity.
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n MMZD Mpeak

64 0
5 64 20
10 64 40

20 72 60
40 90 130

Table 5.3: Parameters in the MARG2D code for checking a convergence property.

As shown in Fig. 5.10(a) (the length used in the transverse axis iss), the mode structure of
this eigenfunction is localized near the plasma surface. To analyze such a highn localized
mode, we apply ng as the length of the transverse axis in Fig. 5.10(b); this is becauseng is
more suitable to pick the discrete Fourier harmonics up in detail thans. In these figures, the
Fourier harmonic whose poloidal mode number is171, thatis the minimum but larger than
ng,(= 170.8) integer, is dominant; this is a peeling mode. Moreover, an edge ballooning
mode constructing the envelope whose maxima isng =~ 150 appears. The constant-height
surfaces shown in Fig. 5.11 also indicate such an edge localized structure comprised of a
peeling mode and an edge ballooning mode.

To check a convergence property of the MARG2D code, we investigate a convergence
study for the same equilibrium shown in Fig. 5.9 with different values ofn (=1, 5, 10, 20,
40) when b/a = 1.1; the poloidal mode numbers in calculations are set as shown in Tab.
5.3, total radial mesh number NPS I);;p + NV);p changes from 880 to 3960, and the ratio of
NPS Iynp to NVypp is 10 @ 1 in each calculation. Figure 5.12 shows the result of this study,
where the variable d4y_,pp 1s the difference of 4y_yp from that computed with the mesh
number NPSI = 800, NV = 80. Awell quadratic convergence is observed for alln values.

On the basis of this convergence check, we set the parameters in the MARG2D code to
investigate the stability ofn = 1, 5, 10, 15, 20, 30, and 40 ideal modes as shown in Tab. 5.4.

Figure 5.13 shows the Ay_,;,p dependence on 3, for the differentn (=5, 10, 15, 20, 30, 40)
cases when g, = 4.27 and b/a = 1.2; one of the equilibria is shown in Fig. 5.9. Then = oo
ballooning stability is checked by solving the ballooning equation [67] and we computes, .,
for n = oo ballooning mode is 0.22, and the n = 1 ideal mode is always stable under this
g, = 427 and b/a = 1.2 condition. In this figure, then = 5 ideal mode (black solid line)
becomes unstable whenpg, > 0.62; 3, ., for n = 5 modes is 0.62. In the same way, 3, . for
each » are clarified as 0.45 (n = 10, black dashed line), 0.375 (n = 15, black dotted line), 0.37
(n = 20, gray solid lines), 0.34 (n = 30, gray dashed line). In then = 40 case, ideal mode
is unstable when 5, > 0.32 but are stable in the region0.61 < g, < 1.22. The reason of
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Figure 5.10: Poloidal Fourier harmonics of the eigenfunction belonging toly_pnp (= —=7.77 %

107%) when n = 40, g, = 4.27, B, = 1.4,and b/a = 1.2. Since the mode structure is localized
near the plasma surface as shown in Fig. 5.10(a) (the length used in the transverse axis iss),

we apply ng instead of s as the transverse axis in Fig. 5.10(b). In these figures, a peeling mode
whose m is 171 and an edge ballooning mode constructing the envelope whose maxima is
ng ~ 150 appear.

(a) 0.6 T T T 0.6 0.1
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Figure 5.11: Constant-height surfaces of Yy(r,6) whenn = 40, ¢, = 427, 3, = 1.4, and
b/a = 1.2. (a) Range of the constant-height surface is set as—0.6 < Y, < 0.6; regions where
|Yo(r,0)] > 0.6 are blacked out. An edge ballooning structure appears in the outboard bad
curvature region. (b) Range is set as—0.1 < Y; < 0.1. Contours of ¢ are also shown; solid
lines show ¢y = —0.8 (innermost contour), —0.5, and —0.2 contours, and broken lines are for
Y > 0.2 contours. A peeling component is emphasized at the plasma surface, especially at
the top and bottom of the surface.



96

“““ //////
Wo-vzp | e~ e =
0-M2D g/4v ..... P
P
_ V Vel
0.001 e —
/>( —-—-n=5
i -4 nN=10
xz( v n=20
ﬂ —x-— n=40
~0.002 " \pSi, 0 +NVyup=3960
0 ; :

1/(NPSly5+NVyp)°

Chapter 5: Extension of the analytical model for highn external mode analysis ...

[3x10 ]

Figure 5.12: Dependence of dAy_,p on the reciprocal of the square of total radial mesh
number (NPS Iyop + NVypp) in the equilibrium shown in Fig. 5.9; dAg_ppnp is the differ-
ence of Ay_yp from that computed with the mesh number NPS I15p + NVynp = 880. The
NPS Iynp+ NVypp value changes from 880 to 3960. A well quadratic convergence is observed

for all valuesof n(= 1, 5, 10, 20,

40).

n || NPShyp | NViop | Myop | Mpeax
1 800 80 64 0
5 1200 120 64 20
10 1200 120 64 40
15 1600 160 64 50
20 1600 160 72 60
30 2400 240 72 100
40 2800 280 90 130

Table 5.4: Parameters in the MARG2D code for eachn stability analysis.
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Figure 5.13: Dependence of Ag_y2p on S, for the different » values; one of the equilibria is
shown in Fig. 5.9. Then = co ballooning mode is unstable wheng, > B, cr—insy = 0.22, and
the n = 1 mode is always stable under theg, = 4.27 and b/a = 1.2 condition. The values
of the 8, limit g, ., for each n ideal MHD mode are clarified as0.62 (n = 5, black solid line),
0.45 (n = 10, black dashed line), 0.375 (n = 15, black dotted line), 0.37 (n = 20, gray solid
lines), and 0.34 (n = 30, gray dashed line). In then = 40 case, ideal mode are unstable when
B, = 0.32 but are stable in the region0.61 < g, < 1.22. This stabilization is made by the
Shafranov shift that enforces the shape stabilizing effect.

this stabilization is that the Shafranov shift [68] makes the shape effect (an ellipticity and a
triangularity) strong on the stability of then = 40 edge ballooning mode. As shown in this
figure, the MARG2D code can analyze the stabilities of the widen range ideal MHD modes.

5.6 Validity of the MARG2D formulation

for high-n external mode analysis

The formulation of Wy, used in the MARG2D code, Eq. (5.87), needs the assumption that the
conducting wall surrounds the system; in other words, the no-wall limit b/a — oo) analysis
cannot be executed. However, as can be appreciated from Eq. (5.145) in the cylinder equilib-

rium case, the stabilizing effect of the conducting wall decreases asn of the analyzed mode
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increases. Hence the position of the conducting wall is no longer the important factor to
discuss the stability of high+# external modes stability.

To confirm this fact in high$, toroidal equilibria with the MARG2D code, we investigate
the stability of n = 1, 10, 20, and 40 ideal MHD modes in the equilibria used in the subsection
5.5.3 shown in Fig. 5.9. The mesh numbers are also same as used in the previous subsection.

Figure 5.14 shows the dependence of 4o_»p 0n 3, for the differentb/a cases. Inthen = 1
case shown in Fig. 5.14(a), ideal MHD modes are stable whenb/a = 1.2; Ay_unp is always
positive in 0.1 < g, < 2.0. However, inb/a = 1.4 case, external modes become unstable
when g, > 1.81, and the g, ., values when b/a = 1.6, 1.8 and 2.0 are found as 1.30, 1.13 and
1.08, respectively. This result shows that the wall position is one of the important factors to
stabilize n = 1 external modes.

Next, in then = 10 case shown in Fig. 5.14(b), MHD modes whenb/a = 1.0 (solid line)
and 1.02 (dashed line) are stable. On the other hand, whend/a = 1.1 (dotted line), external
modes become unstable in0.52 < 8,, and whenb/a = 1.2 (dot 2-dashed line), 1.3 (dot dashed
line) and 1.4 (2-dot dashed line), external modes are unstable in0.45 < g,. The dot dashed
line (b/a = 1.3) approaches the 2-dot dashed line (/a = 1.4) asymptotically; this means that
the conducting wall situated outsideb/a = 1.3 has little effect on the stability ofn = 10
external modes.

When n = 20 shown in Fig. 5.14(c), fixed boundary mode ¢/a = 1.0) is still stable, but
external modes whenb/a = 1.02 becomes unstable in0.41 < g, < 0.63. Whenb/a > 1.1,
n = 20 external modes are unstable ing, > 0.37, and the dot 2-dashed line (b/a = 1.15)
approaches to the the dot dashed line (¢/a = 1.2); the stability of n = 20 external modes are
hardly affected by the conducting wall outsideb/a = 1.15. In the same way, in then = 40
case shown in Fig. 5.14(d), we must place the conducting wall insideb/a = 1.07 to influence
the stability of external modes; this is aimpractical position to design the experiments. From
these results, we show numerically that the position of the conducting wall must be close to
the plasma surface to affect the stability of highn external modes. Since the wall position
cannot be so close to the plasma surface in the design of the fusion reactor,b/a is not the
important factor to be discussed in the study of high# external modes stability, and the as-
sumption that the conduction wall surrounds the system in Eq. (5.87) is negligible for highu

mode analysis.

5.7 Parallel computing with the Scalapack library

As already mentioned, the MARG2D code can numerically identify the stability of ideal MHD
modes even when these modes are stable. With this property, we intend to realize the stabil-

ity analysis in the intervals of experiments, and in future times, the real-time stability study
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Figure 5.14: Dependence of Ay_»p on B, for the different b/a cases. In (a) then = 1 case,
ideal MHD modes are stable whenb/a = 1.2 (solid line). However, whenb/a = 1.4 (dashed
line), external modes become unstable ing, > 1.81, and in b/a = 1.6 (dotted line), 1.8 (dot
2-dashed line), and 2.0 (dot dashed line) cases, theS, ., values are 1.30, 1.13 and 1.08, respec-
tively. In (b) then = 10 case, ideal modes are stable whenb/a = 1.0 (solid line) and 1.02
(dashed line) in 0.1 < B, < 2.0. However, when b/a = 1.1 (dotted line), external modes be-
come unstable wheng, > 0.52, and when b/a = 1.2 (dot 2-dashed line), 1.3 (dot dashed line)
and 1.4 (2-dot dashed line), theg, ., value is 0.45; in particular, the dot dashed line becomes
identical with the 2-dot dashed line asymptotically. Similarly, in (c) then = 20 case, the dot
2-dashed line (b/a = 1.15) is almost same as the dot dashed line ¢/a = 1.2), and the dotted
line (b/a = 1.07) is approximately identical to the dot 2-dashed line ¢/a = 1.1) in (d) the
n = 40 case, respectively. These results show that the conducting wall is laid out close to the
plasma surface to stabilize highn MHD modes.
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during an experiment.

To achieve these experimental analyses, the computation time need to be reduced, in
particular, for realizing the real-time study, we must compute in time shorter than the char-
acteristic time of which the MHD equilibrium is changed by the heat and particle transports;
the measure of this characteristic time is about one second. We develop the MARG2D code
as the parallel computing code with the message passing interface (MPI) [36] and the ScaLA-
PACK library [37] to shorten the computation time, and to free up the memory restriction of
high-» mode stability analysis, which needs many mesh numbers for exact study as shown
in Fig. 5.12.

We execute benchmark tests about the parallelization of the MARG2D code in two cases;
oneis thelow+ (=1) case, the otheris the high# (=30) case. The parameters (N PS Iy2p, N Viap,
Muyp, M,eqi) are (800, 80, 64, 0) for the n = 1 case, and (2400, 240, 72, 100) for the n = 30 case,
respectively. The parallelization efficiencyC,,, is defined as

(computation time whennpg = 2) X 2

, 5.153
(computation time withnpg) X npg ( )

Cepp(npg) =

where npg is the number of processors; thisC, ¢ is normalized with the result whennpg = 2.

The computation system for these tests is the JAERI Origin3800 system [69], which is the
scalar parallel system with 768 processors. The peak computing speed of a single processor,
MIPS 500MHz processor, is 1 GFLOPs and that of this system is 768 GFLOPs. We use a part of
this system for benchmark tests; the maximum processor number is 128.

The MARG2D code is composed of two processes; one is to make the matrices ofN and R
in Eq. (5.151), that is parallelized with MPI (Process 1), and the other is to solve Eq. (5.151) by
the LU factorization and the inverse iteration method with the ScaLAPACK library (Process
2); this numerical method for linear equations is a direct method.

Figure 5.15 shows the dependence of the computation time andC, ;s on npg in (a) the low-
n case and (b) the high# case; the equilibrium is same as shown in Fig. 5.9 andb/a = 1.2. The
counts of the inverse iteration are set as20 in both cases. In this figure, the black bar graph
denotes the computation time for Process 1 and the gray bar graph shows that for Process 2,
and C, s are shown with the dashed line (Process 1), the dotted line (Process 2), and the solid
line (total calculation).

In the low- case shown in Fig. 5.15(a), the total computation time is shortened from
325.79 seconds(s) to 13.27s as npg increases from?2 to 128, and C, s of total calculation is over
50% when npy < 64 and is 38.4% with npp = 128. This is not enough fast to achieve aforesaid
experimental analyses, but C.;, is adequate at such a short time calculation. From these
results, we deduce that the MARG2D code has potential for reducing the computation time
to few seconds with the latest computation system.

In the highx case shown in Fig. 5.15(b), the calculation time is cut down from1279s to
36.88s, and C, s of total calculation is over 60% (npy < 64) and is 54.2% (npg = 128). Asin
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Figure 5.15: Dependence of the computation time and the parallelization efficiencyC, ;s on
the number of processorsnpg in (a) the n = 1 case and (b) then = 30 case; the computer
system is the JAERI Origin3800 system. The numerical parameters are shown above each fig-
ure. The black bar graph denotes the computation time for Process 1 and the gray bar graph
shows that for Process 2, and C,;; are shown with the dashed line (Process 1), the dotted
line (Process 2), and the solid line (total calculation). From the results that the computation
time and C,f are (a) 13.27s and 38.4%, and (b) 36.88s and 54.2% when npy = 128, we deduce
that the MARG2D code has potential for realizing the analysis in the intervals of experiments
with the latest computer system.
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the lown case, the calculation time will become several seconds with the latest system, and
is also enough short to the experiments interval analysis.

5.8 Summary

I have applied the approach consists of representing the plasma potential energy integral
to describe the vacuum energy integral by introducing a solenoidal vector field, and have
implemented this approach to a code MARG2D, which is the linear MHD stability code for
a two-dimensional toroidal geometry. This approach has the advantage that the numerical
accuracy in the vacuum region is kept at the same thatin the plasma region, and enables us to
perform the stability analysis of high# ideal external modes. I have determined the validity
of this extended MARG2D code by benchmark tests compared with the ERATO] code, and
show the beauty of the analytical model of MARG2D for identifying the stability of highn

external modes.

This approach restricts that a plasma and a vacuum region must be surrounded by a con-
ducting wall. [ have confirmed that the stabilizing effect of the conducting wall decreases as
nof the analyzed mode increases, and the position of the conducting wall becomes meaning-
less for highn external mode analysis, unlike in the low# case.

The MARG2D code was developed as a parallel computing code towards the integrated
simulation with the transport analyzing code, and the experimental analysis in the intervals
of experiments. From results of the performance tests, this code has potential for realizing
these objectives. The analysis of edge phenomena with this stability code will be reported
near future.

To perform the real-time stability study during an experiment, we must reduce the calcu-
lation time more by the optimization of this code to the computation system and employing
or developing the new numerical algorithm. This also will be reported near future.



Chapter 6
Summary

In this thesis, magnetohydrodynamic (MHD) external instabilities in an axisymmetric toroidal
plasma have been studied on the basis of the analytical model with the property of the two-

dimensional Newcomb equation.

In Chapters 2 and 3, the ideal MHD model and the two-dimensional Newcomb equation
have been introduced. The theory for the linear ideal MHD stability analysis, called the En-
ergy Principle, is efficient and intuitive method of determining plasma stability. On the ba-
sis of this theory, I introduced the two-dimensional Newcomb equation in Chapter 3; this
equation describes the marginally stable state against the ideal MHD instability in a plasma.
The stability of a plasma against the ideal MHD motion in a tokamak can be discriminated
by solving the eigenvalue problem associated with the two-dimensional Newcomb equation.
In the formulation of the eigenvalue problem, the weight functions (kinetic energy integral)
and the boundary conditions at rational surfaces were chosen such that the spectra of the
eigenvalue problem are comprised of only real and denumerable eigenvalues (discrete spec-
tra). Therefore, this eigenvalue problem identifies the ideal MHD stable states, as well as the
unstable states. The numerical code (MARG2D) was developed to solve the associated eigen-
value problem numerically by using the lowest order finite hybrid element method and a
direct method with the LU factorization and the inverse iteration method.

In Chapter 3, the theory based on the Newcomb equation was applied to the stability
analysis of lown external MHD modes in a toroidal plasma, and the stability matrix method
has been developed, where n is the toroidal mode number. With this method, the change
of plasma potential energy due to the plasma displacement is expressed by a quadratic form
with the boundary values of the displacement. The MARG2D-SM code was implemented this
stability matrix method to identify the external mode stability.

Chapter 4 has been devoted to the application of the analysis with the stability matrix
method by using the MARG2D-SM code. I have studied the spectral structure ofn = 1 ideal

external modes, especially, the spectral gaps induced by the poloidal coupling originated
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from the finite aspect ratio effect in the stable region were clarified. It has been also shown
that the finite poloidal beta {3,) effect makes these gaps broaden, whereg is a ratio of the
plasma pressure to the magnetic pressure. Though the spectral gaps were predicted analyti-
cally, our calculations confirmed clearly these predictions.

The stability matrix method enables us to implement deeper analysis of external modes
by combining with the eigenvalue problem associated with the Newcomb equation, pre-
sented in Chapter 3. I have clarified numerically and analytically the effect of stable ideal
internal modes on the stability of ideal external modes when internal modes approach to
the marginal stability. A stable internal mode couples with an external mode and makes an
impact on the external mode stability. This coupling changes the mode structure of external
modes from a surface mode to a global mode. The effect of internal modes on the external
modes stability also explains the difference of stability against external modes between a nor-
mal shear tokamak and a reversed shear tokamak. This result denotes that the distinction of
the safety factor profile in the plasma core region affects the external mode stability.

The property of the MARG2D and MARG2D-SM codes, the facility to identify marginal
stability in short time, is effective to survey appropriate parameters of the MHD equilib-
rium for designing experiments and for optimizing operations. As an example, I have an-
alyzed an effect of the aspect ratio on the stability of ideal external modes with the stability
matrix method, and revealed thatn = 1 external modes are stabilized when the aspect ratio
is made small. The eigenfunction of the most unstable external mode in a highg tokamak
has a global mode structure as shown in the circular equilibrium case. Such a global mode
is dangerous for tokamak operations, and the aspect ratio is supposed to be optimized for
stabilizing low+ external modes.

Chapter 5 is devoted to the extension of the analytical model with the Newcomb equa-
tion for the highn external modes stability analysis. I have applied the formulating tech-
nique, mentioned in Chapter 3, to represent the vacuum energy contribution by introducing
a solenoidal vector field; this approach is called the vector potential method. This approach
has the advantage that a numerical accuracy in the vacuum region is kept at the same that
in the plasma region. The MARG2D code was improved with this model, and enables us
to perform the stability analysis of high#n ideal external modes. Though this approach re-
stricts that a plasma and a vacuum region must be surrounded by a conducting wall, I con-
firmed that the stabilizing effect of the conducting wall decreases as then value of the ana-
lyzed mode increases, and the position of the conducting wall is negligible for highn exter-
nal mode analysis, unlike in the lown mode analysis case.

The numerical code based on this extended model also has an advantage that a compu-
tation time for the high» mode stability analysis becomes short, because this model is ob-
tained by solving partly the full MHD model analytically; this is clearly shown in Chapter 3.
I have developed the MARG2D as a parallel computing code to make use of this advantage,
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and have shown the potential of this code enough fast for realizing numerical analyses of
experimental results in the intervals of experiments.

The numerical codes MARG2D and MARG2D-SM developed and improved in this the-
sis realize two numerical methods for the stability analysis of external MHD modes; one is
the stability matrix method, the other is solving the eigenvalue problem associated with the
Newcomb equation. With these methods, the analysis of the resistive wall mode based on
the quadratic form formulation, and that of the edge localized modes, especially the relation

between MHD instabilities and transport phenomena, will be realized.






Appendix A

Self-adjointness of the operator F

In this appendix, we show the self-adjointness of the force operatorF defined in Eq. (2.42);
thatis

/ £ F(pdv = / n-F@)av, (A1)

where V is the plasma volume, £ and n are two arbitrary vectors. The integrand in Eq. (A.1)
can be written as

1
’T'F('f):’1'Ll—o((VXBo)><Q+(VXQ)XBO)‘FV(f'VPo+YP0V'f)], (A.2)

where Q = V X (¢ X By). By rewriting Eq. (A.2) as

1
'I'F(f):V'[’l(f'vpo+7P0V'§)+LTO(’7><BO)><Q

1 1
= V& -Vpy+ypeV-6)——0-R—- —(VXBy - (nxQ), (A.3)
Ho Ho
we derive
1
/'7 -F(&)dV = /S (é’ -Vpo+ypoV - & - ,U_OBO - Q) (n-n)dS — W,,(&, 1), (A.4)
1
W (€. m) = / [)’PO(V V- + —0-R
Ho

1
+ (V-m(&-Vpo) + ﬂ—O(V X By)-(nxQ)|dV, (A.5)

where R = V x (7 X By), nis the unit normal to the plasma surface. Here the surface integral
in Eq. (A.4) is done on the plasma surfaceS ,. With the boundary condition relating€ and A
(A is the vacuum vector potential as defined in Eq. (2.56))

1 1 ¢ - 1 it
—ypoV-€+—By-Q=—B,- (VX A)+ —(&- V)(B; - By, (A.6)
Ho Ho 219
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which is same as Eq. (2.57), the surface integral term in Eq. (A.4) can be transformed as

1
/ [U(f “Vpo+ypoV-§——By- Q)] - ndS
Sp Ho

BZ
= [ w-|[v(pos 2| nas
Sp Mo/ 11,
1 [ oo (7 x dyyas, (A7)
Ho Js,

where [[X]], is the increment in any quantity X across the boundary in the directionn. Here,
since [[py + B?/2uy]]. = 0 as shown in Eq. (2.51), the tangential component of the jump of
the derivative vanishes. By introducing one more vacuum vector potential asR = V x Cand
the boundary condition

nxC=—-(n-nBy, (A.8)

which is same as Eq. (2.58), the last term in Eq. (A.7) is rewritten as
1 2 ’ 1 2 ,
——/ (- By - (V x A))dS :—/ (nx ) (Vx A)dS
luo Sp /’10 SP

=L [ [vxA)x¢]-nas
Ho Js,

1 V- [(VxA)xC|av
Ho

:_l/(VXA)-(Vxé)dv, (A.9)
Ho

where we assume that a perfect conducting wall surrounds a plasma and use the boundary
condition at awall(n - R),.,; = 0. This is obviously symmetric.

Next, we show the self-adjointness of volume integral term Eq. (A.5). The first two terms
in Eq. (A.5) are obviously symmetric, and the last two terms can be rewritten as

dWy(&m) =V -1)(E& - Vpo) +J - (n X Q)
=-n-[JxQ+ V@ Vpo)| - V- @& - Vo)), (A.10)
where J = V X By/u,. The first two terms in Eq. (A.10) can be transformed as
n-[V(E-Vpo) + T xQ=[BoX(J-V)§—(§-V)I)+(Vpo— T X By)V - §
+ &-VVpo—&-V(J X Bo)] - n
= —[Bo x (VX (J X&) - VpoV-&] -1, (A.11)

where we use the relation
V(- Vpy) =(Vpg X V)X E+VpV-E+E&-VVp,

=By x (J - V)§) = J x (Bo - V)E) + VpoV - & + & - VVpy, (A.12)
JXQ=Jx((By-V)§) = (I XBo)V-&) =& V(I XxBo) =By x((§-V)J). (A13)
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The relation

—1- [BoX (VX (I X&) =~ xE-VXxBy)+V-[(nXBy) X (J x &)
=—(JXE -R+V-[(nxBy) x(J] x&], (A.14)

transforms Eq. (A.11) as

[VE - Vp) +IXQl n=-(IXE R+V-[(XBo) X (J x| —(m-Vpy)V - €
= [V -Vpo)+ I xR]-E+V-[(Exn)-By) J]. (A.15)

By using Eq. (A.15), we can express as

dW,(&,m) —dW,(1,) =V - [ X &) - Bo)J |+ V - [(n(§ - Vpo)) = (£ - Vpo))]
=V [((nx&) - J)B], (A.16)

and as the result,
va(g’ ']) - va('), f) = /V ’ [('] X f) . J] BOdV

- [t x- 1By - myas
=0, (A.17)

where the normal component of By vanishes on the plasma-vacuum surface. Thus with Egs.
(A.9) and (A.17), we prove the symmetric property of the operatorF as Eq. (A.1).






Appendix B

One-dimensional Newcomb equation

In this appendix, we introduce the eigenvalue problem associated with the one-dimensional
Newcomb equation by choosing the appropriate weight function and the natural boundary
condition at a rational surface. With this procedure, the spectrum of the eigenvalue problem
comprises real and denumerable eigenvalues. For simplicity, the fixed boundary condition,

&(r) = O at plasma surface, is assumed.

B.1 One-dimensional Newcomb equation

In an one-dimensional cylindrical coordinate system(r, 6, ¢), a perturbation displacement is
expressed as

& = Eexp(imb — ing), (B.1)

where m, n are the poloidal and the toroidal mode numbers, respectively. By taking the
plasma minor radiusa and the magnetic field at the magnetic axis By as the normalized pa-

rameters, the potential energy integral W), is written as

! ! dY |’

W, (YY) = /0 Ldx = /O {f(x) - +g(x>|Y|2}dx, (B.2)
(x) = Fz(ﬁ_lzm—z (B.3)
f)=x m_ q) m?+nex? ’

2
g(x):7A+N+E+(%—%Z)M1+M2 : (B.4)
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whereY = r€ - Vr, x = r/a, € = a/Ry, F is the normalized toroidal field, andA, N, E, M,, M,
in Eq. (B.4) are given as

2
A= (T_n) , (B.5)
q
2\ m?
N=|-| ———. B.6
(q) m? + n?e?x? (8.6)
2 x dp xdq
E=—"t_ 1222 (5 ZH) B.7
q2+€2xz{F2 dx ( qu)} (8.1
o 2 m? 1dg 2n*e’x
"Tgm + 2 \gdx | m? + n2ex?
1 28 Fx\’(2 1
12 [dp (eFxy (2 tdg)]| -
F2q*> +e2x? | dx q X qdx
2x d (1 m?
YAy () PR — B.9
>7 g dx (q) m? + n?ex? (B.9)

The Euler-Lagrange equation obtained with Eq. (B.2) is written as
d dY
pp (f(x)a) —-8()Y =0. (B.10)
We consider the eigenvalue problem associated with Eq. (B.10) as
d dYy
NY = —[f(0)— | - 80)Y = —Ap(X)Y, (B.11)
dx dx

where p(x) is the weight function. When a plasma is marginally stable, the eigenvalued = 0.

B.2 Elimination of the singularity
Since the energy integral obtained by Eq. (B.11) is expressed as

1
WL(Y.Y) =1 /0 p(x)|YPdx, (B.12)

the sign of A indicate the stability against the ideal MHD perturbation; whenA is negative
(positive), a plasma is unstable (stable).

However, since the LHS of Eq. (B.10) can be Taylor expanded around rational surfaces
q(x;) = m/nas

1 2
F(x) =w(x) (}% - 5) =fHG—x) +ilx—x) +--, (B.13)
2
W) =P (B.14

g)=go+gi(x—x9)+---, (B.15)
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where fj, fi, g0, and g, are Taylor coefficients, and x; is the location of a rational surface,
x = 0 and x, are obviously regular singular points of Eq. (B.10). To eliminate the singularity
induced by the former singular pointx = 0, the regularity condition has to be imposed at
x=0as

Y=0 atx=0. (B.16)

The singularity at x = x,, however, is more complicated, and is the cause that Eq. (B.11) has
continuous spectra whenp(x = x;) > 0. In such cases, the eigenvalue corresponding to the
marginally stable state cannot be numerically singled out among these continua.

When a plasma is marginally stable, Eq. (B.10) has a nontrivial solution which is square
integrable and satisfies the fixed boundary conditionsY(0) = Y(1) = 0. Since g(x;) = m/nis
a regular singular point, the region [0,1] can be separated into the left side region [0x;) and
the right side region (x,,1][28], and two fundamental solutions of Eq. (B.10) can be expressed

by the Frobenius series around g(x;) as

oo j
Y = (1,)7 12 [1 £ (@ ~ n) ] p=LR, (B.17)
= 4
where
s — for x < x,,
L= |x—x, = (=) et (B.18)
0 for x > x,,
0 for x < x,,
IR =|x—xlg = (B.19)
(x —x,) forx> x,.

Here the Suydam index g, is

1 go
P - (U B.2
P =TT gy (5.20)

and we assume that the Suydam stability condition

1 go

1 + % > 0, (B.21)
is satisfied. Since the square integrable solution given by Eq. (B.17) is only the solution with
the power —1/2 + ug,,, called the “small solution”, p(x) is chosen in Eq. (B.11) that all eigen-
functions behave as the small solution nearx = x,, and the proper boundary condition is

imposed at x = x,. For this purpose, we introduce firstp(x) as

2
o(x) = F? (g - n) : (B.22)

and the boundary condition atx = x, is obtained as follows. The bilinear form correspond-
ing to Eq. (B.2) is given by

(M At dE \
Wn, &) = /0 (f Tx dx T f)dx, (B.23)
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where the script = denotes the complex conjugate, and the bilinear concomitant is given by

d d dn*
nNE—-ENR)' = P (f(x) (n*d—i —-& d’l )) (B.24)

The boundary condition foré and n at x = x; is obtained from Eq. (B.24) to make the operator

N self-adjoint. Since the singularity of& and 7 is at most |x — x,|~'/>*s, we get the relations

lim foon % = o, (B.25)

XXy dx

and | |
/ 0 Nédx = / Nnédsx. (B.26)

0 0

Equation (B.26) means that the operator NV is self-adjoint without boundary conditions foré
and n. Thus the natural boundary condition foré should be imposed at x = x;.

By choosing p(x) and the natural boundary condition at rational surfacesx = x;, all
eigenfunctions behave as the small solution near the pointx = x;, and the spectrum of
Eq. (B.11) comprises real and denumerable eigenvalues. This means that we can obtain
numerically not only negative discrete eigenvalues but also positive ones, and identify the
marginally stable condition of a plasma against the ideal MHD motion.



Appendix C

Green’s function technique
for calculating the vacuum energy

contribution

In this appendix, we introduce the numerical method for calculating the vacuum energy
contribution with a Green’s function technique. The wall surrounding the plasma and the

vacuum is assumed as the perfect conducting wall.

C.1 Basicequation

In the straight field line coordinate (/, 6, ¢), the Jacobian +/g(y, 0) is expressed as

1 1
VWO = N uxve)  By-vey (D

where ¥ is the poloidal magnetic flux function defined in Eq. (2.12),0 and ¢ are the poloidal

and toroidal angle, B is the magnetic field in the cylindrical coordinate system R, ¢, Z) as
B =V¢ xVy + FW)Ve, (C.2)

and F(¥) is the toroidal field function; these are same as those defined in Section 2.2. With
the safety factor g(y)

B-V
1) = 5o c3)
Ve, 0) is transformed as
Ve, 0) = @Rz. (C.4)

By expressing the perturbed magnetic field in the vacuum region(Q with the scalar po-
tential d as
0 = Vo, (C.5)
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the potential energy integral in the vacuum reads
1
Wy == / VoL 4V, (C.6)
2 Jv

where dV is the volume element. We introduce the boundary condition for® on the perfect
conducting wall as
VO -n, =0, (C.7)

and that on the plasma surface as
Q- Vil, = VO - Vi, (C.8)

where n,, is the unit normal to the wall surface, Q is the perturbed magnetic field in the
plasma, and X|, means the value of X at the plasma surface. Since Q can be written with the

plasma displacement§ as

0=VX(XB), (C.9)
which is same as that in Section 2.3,Q - V¢ can be written as
F N
Q- Vi = —Dy(&), (C.10)
\/g 0
where
&=T&-vu, (C.11)
and the operator D,(X) for the perturbation X(i, 8, ¢) o exp(—ing) is
10X
X)=—-—— —inX. C.12
Diy(X) 4 90 in (C.12)
By substituting Eq. (C.10) into Eq. (C.8), we obtain
F oD
—Dy=—1|VD|,. C.13
\/g 6 an | |a ( )
The scalar potential O satisfies the Laplace equation
VO = 0. (C.14)
With the vector identity
IVO]> = V - (OVD) — OV2O, (C.15)
Wy is transformed as |
Wy =3 / VD - ndS, (C.16)

where [ is the surface integral on the plasma surface. Since® can be expressed by using the
real and symmetric kernel of integral Q(6, 6’) as

2n

D) = Q6,0)N(')dd’ , (C.17)
0

N@@) = [FDy(1(@), (C.18)
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Eq. (C.15) reads
2m 2n
Wy =n / do | do' 0, @)N@O)N@). (C.19)
0 0

By transforming from Eq. (C.6) to Eq. (C.19), Wy is calculated with the kernel of integral
Q06,8).

C.2 Integral equation

We introduce a Green’s theorem
/ WV —vWu)dv = / (u— - v—) ds, (C.20)

and a Green’s function satisfying
V2G(x,x') = 6(x — x'). (C.21)

Here in Eq. (C.20),u and v are arbitrary scalar functions, and in Eq. (C.21),6(x—x") is a Dirac’s
delta function, x and x’ are the integration variable and a point on the boundary surfaces.
By substitutingu = ® and v = G(x, x") into Eq. (C.20), we obtain

1 oG OD(x’
(I)(x):2—7T/((I)( )%—G(x,x’) 6(:))dS’

1 . 0G(x,x") ,
- / (cp( = )dS, (C.22)

where [, , expresses the surface integral on the wall. A Green’s function of Eq. (C.14) is

G(x,x') = , (C.23)
lx — x|
and the identities for G(x, x") can be obtained as
0 b =2r forx = x,,
/ 2 Gx,x)dS’ = (C.24)
. on 0 for x = x,,
-4 forx = x,,
/ 2 G(x. x})dS’ = (C.25)
=2 forx = x,

where 9/0n’ is the normal derivative relating the argument with prime (). With Eqs. (C.24)
and (C.25), Eq. (C.22) is transformed as

1 9
20(x,) = o {/ [D(x;) - q)(xa)] G(xa,x )ds’
4 4 ’ ’ a ’ 4
_ / G(xa,xa)%d)(xa)dS - /b D)) G, 1,)dS } (C.26)
1 ’ a ’ ’ ’ 6 ’ ’
= - { / D) Gy, XS / Gy, ) 0(¥,)dS

d
- / [D(x},) — D(x)] o ,G(xb,x;,)dS’}. (C.27)
b n
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This transformation is essential to remove the singularities whenx, = x, and x; = x,, and

these singularities are treated in Section C.4.

C.3 Definition of the poloidal angle on the wall

We express the shape of the conducting wall as (Ry);, (Zw);) with 2K + 1 numbers of point,

where
Rw)ak+1 = Ry, Zw)aks1 = Ew)h. (C.28)

By introducing the discrete pointz; as

Jj—1

T, jzl,--',2K+1, (C.29)

n=mn

(Rw); and (Zy); can be treated as the function of ;, Rw(n;) = (Rw); and Zy(n;) = (Zw));,
where n € [0,2x]. The location on the wall is specified by (7, ¢), and the outward normal
derivative of the scalar function f (7, ¢) on the wall is

- =R
dS = Ry on ORyw  dn 0Zy

of [aZW df  ORw Of
on

]dndgb, (C.30)

wheredS is the area element on the wall. The outer normal derivative on the plasma surface
can be obtained by changing from7 to 6. By using Eq. (C.30), Egs. (C.23) and (C.24) are
rewritten as

2r

20,(6) = 2]—”{ 0 dOR ) [(Da(Q’)DG”(O, g) — d,(0)DG(, 9')]

2r 2n

- d9'N(#)G"(6,0) — A dn’R’(n')(Db(n’)DG”(O,n’)}, (C.31)

1 2n 2r
0=5- { dOR (0)D,(0)DG' 1n,6)— |  do/N@)G'(,8)
T 0 0
21

= | R @) | @,01DG o) - cDb(n)DGO(n,n')]}. (C.32)

Here ®,(0) and ®,(n) are the scalar potential on the plasma surface and that on the wall,

respectively, and

" exp(=in(¢ — ¢')) d

G'(x. x') = /0 s, (C.33)
o o |0Z 8 OR8], .
DG (a,B) = [ B IR P aZ,]G (x(@), X' (B)), (C.34)

where a, 8 are 6 or 7, and
x=R,Z¢), x =R,Z,¢). (C.35)
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C.4 Elimination of the singularity

By introducing the modified elliptic integral K"

/2 cos(2ne)

K"(¢) = do, C.36
© /o [1-(1-¢)sin® ¢]'/2 ¢ (€39

(R -R?+(Z -2)

(R +R?*+ 2 -2

(C.37)

¢

G"(x, x’) can be written as

e o 4K"({) x (=1)"
G'(x,x") = (R TR+ (2 27 (C.38)

The integral K" as well as its derivativedK" /d{ exhibit singularities at{ = O as

KO =1 (C.39)
dK"(§) _ e L
e =(-1) 2§+ . (C.40)

From these equations, all the integrals containing DG" in Egs. (C.31) and (C.32) are now
regular. The integrals including G, however, still show logarithmic singularities, and we
cannot treat these integrals numerically. To avoid such singularities,G"(6, ') is rewritten as

G"(0,¢) = Greg + Ganals (C.41)
2
oo =G(6,6) + —— log|¢/ — 6], C.42
Grog = G(6.0) + 7 Tog (c42)
2
anal = — log |6 — 6], C.43
Ganal RO og| | (C.43)

where the integrals containing G,., are regular integrals. Since the singular part in Eq.
(C.41), Ggna» can be treated analytically as

J

041 041 3
/ do [ ae1og|o’ - 61 = K logh - 212, (C.44)
0, 0

h = |9j+1 - 9j|, (C.45)

we can integrate numerically Eqs. (C.31) and (C.32).

C.5 Vacuum energy matrix

We divide the poloidal angle on the plasma surface,f, and that on the wall,, by N + 1 and
M+ 1as
O =m =0, Oyy1 =Ny =21 (C.46)
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With the step function introduced as ( = 6 or )

ej+1/2({) — 1 fOI'{ € [gj» §j+l], (C47)
0 forl ¢4 ¢jnl,
the potentials are expanded as

N
0,(0) = ) bel (), (C.48)

Jj=1

M
O, = Y (). (C.49)

k=1

By substituting Eq. (C.48) into Eq. (C.31), multiplyinge/*'/2(9), and integrating from 0 to 2,

we obtain the linear equation
2b=A-b-C-c-B-a. (C.50)

Here b and ¢ are the vectors constructed with the coefficients in Egs. (C.48) and (C.49) as

b = (bla"‘ ’bN)t7 C:(Cl,"' ’CN)Z7 (C-Sl)
a is written as
a :((1], T, aN)la (C52)
0;+0i
a;=N@Ojr12), Ojr12 = = 1,---,N, (C.53)

and the matrices A, B, and C are given by

N
A =REGE (k) = 650 ) RIFVAGE L (jm), (C.54)
m=1
Bj,k = Sa,a’ (]’ k)a (C55)
Ciu =R;"°G} , (ji k), (C.56)
1 @+ Bi+1
Qﬁ,ﬁ, (k) = ———— a’a/ dB'DG"(a,8), (C.57)
2n(@jer — @) Jo, Be
1 iyl Or+1
Soa (k) =57 da do'G"(a,¢'), (C.58)
2n(ajn — a;)) Jo; 0

where we substitutea = 6 (or n) in the RHS of Egs. (C.57) and (C.58) whena = a (or ) in the
LHS, 6 is a Kronecker’s 6 symbol

1 forj=k,
Ok = O”. (C.59)
0 forj+#k,
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and
R = ROa)s Ry = R(pien ). (C.60)

To do likewise for Eq. (C.32), we also obtain the equation

0=D-b-F-c-E-a, (C.61)
where
Djx =R:M°G} . (i k), (C.62)
Ejx =8y0(j, k), (C.63)
M
Fiu =RyGh (k) = 635 D RYGY, (jom). (C.64)

m=1

By solving Egs. (C.50) and (C.61) ford, we obtain
b=Q-a, (C.65)

where the N X N real matrix Q is the approximated matrix of the kernel of integral in Eq.

(C.19) and is expressed as
Q=Q2I-A+CF'D(CF'E-B), (C.66)

and I is the unit matrix.
With the matrix Q, we obtain Wy in Eq. (C.19) as a quadratic form

N
Wy =n Z(Qjﬂ = 0))(Ors1 — O)Nit12Q kN jr1)2 (C.67)
el
~ (a]Q]a), (C.68)

Qix =011 — 0))(Ors1 — 61)Q - (C.69)






Bibliography

[1] K. Miyamoto, Plasma Physics for Nuclear Fusion (MIT Press, Cambridge, 1980) Chap.
16.

[2] N.]J.Peacocket al., Nature 224, 488 (1969).

[3] T.Fujita et al., Nucl. Fusion 39, 1627 (1999).

[4] V. A.Chuyanov, Nucl. Fusion40, 495 (2000).

[5] D. Pfirsch and H. Tasso, Nucl. Fusion11, 259 (1971).

[6] A.Bondeson and D.]. Ward, Phys. Rev. Lett.72, 2709 (1994).

[7] D.]J. Ward and A. Bondeson, Phys. Plasmas2, 1570 (1995).

[8] M.S. Chu et al., Phys. Plasmas 2, 2236 (1995).

[9] R.Fitzpatrick and A.Y. Aydemir, Nucl. Fusion36, 11 (1996).
[10] A.H. Boozer, Phys. Plasmas$5, 3350 (1998).
[11] J. Bialek, A. H. Boozer, M. E. Mauel and G. A. Navratil, Phys. Plasmas8, 2170 (2001).
[12] M. S. Chance, M. S. Chu, M. Okabayashi and A. D. Turnbull, Nucl. Fusiord2, 295 (2002).
[13] M.S. Chu, M. S. Chance, A. H. Glasser and M. Okabayashi, Nucl. Fusiond3, 441 (2003).
[14] A.M. Garofalo et al., Nucl. Fusion 40, 1491 (2000).
[15] M. Okabayashi et al., Phys. Plasmas8, 2071 (2001).
[16] A.H. Glasser and M. S. Chance, Bull. Am. Phys. Soc.42, 1848 (1997).
[17] M. S. Chance, Phys. Plasmas4, 2161 (1997).
[18] D. Lortz, Nucl. Fusion18, 97 (1978).

[19] J. W. Connor, R. ]. Hastie, H. R. Wilson and R. L. Miller, Phys. PlasmasS, 2687 (1998).

123



124 BIBLIOGRAPHY

[20] F. Wagner et al., Phys. Rev. Lett. 49, 1408 (1982).
[21] H.R. Wilson et al., Phys. Plasmas 6, 1925 (1999).

[22] H. R. Wilson, P. B. Snyder, G. T. A. Huysmans and R. L. Miller, Phys. Plasmas9, 1277
(2002).

[23] P.B.Snyderet al., Phys. Plasmas9, 2037 (2002).

[24] A.B.Mikhailovskii, G. T. A. Huysmans, S. E. Sharapov and W. Kerner, Plasma Phys. Rep.
23, 844 (1997).

[25] G.T.A.Huysmans, S. E. Sharapov, A. B. Mikhailovskii and W. Kerner, Phys. Plasmas8,
4292 (2001).

[26] T.Onjun et. al., Phys. Plasmas 11, 3006 (2004).

[27] W. A. Newcomb, Ann. Phys.10, 232 (1960).

[28] A.Pletzer and R. L. Dewar, J. Plasma Phys.45, 427 (1991).

[29] S.Tokuda and T. Watanabe, Phys. Plasmas6, 3012 (1999).

[30] S.Tokuda and T. Watanabe, J. Plasma Fusion Res.73, 1141 (1997).

[31] N. Aiba, S. Tokuda, T. Ishizawa and M. Okamoto, Plasma Phys. Control. Fusiord6, 1699
(2004).

[32] R.Gruber et al., Comput. Phys. Commun.21, 323 (1981).

[33] O.P.Pogutse and E. I. Yurchenko, Reviews of Plasma Physics (Ed. Leontovich M AXCon-
sultants Bureau, New York, 1986) Vol. 11, Chap. 2.

[34] N. Aiba, S. Tokuda, T. Ishizawa and M. Okamoto, J. Plasma Fusion Res. Series6, (2004,
to be published).

[35] R.Gruber et al., Comput. Phys. Commun.24, 363 (1981).

[36] W. Gropp, E. Lusk and A. Skjellum, Using MPI second edition (MIT Press, Cambridge,
1999).

[37] L.S. Blackford et al., ScaLAPACK Users’ Guide(SIAM, Philadelphia, 1996).

[38] Yu. L. Klimontovich, The Statistical Theory of Non-equilibrium Processes in a Plasma
(MIT, Cambridge, 1967).

[39] J. D.Jackson, Classical Electrodynamics third edition(Wiley, New York, 1999).



BIBLIOGRAPHY 125

[40] A.A.Vlasov,]. Phys. (USSR)9, 25 (1945).
[41] D.R. Nicholson, Introduction to Plasma Theory(Wiley, New York, 1983).
[42] ].P. Freidberg, Ideal Magnetohydrodynamics(Plenum Press, New York, 1987).

[43] H.Grad and H. Rubin, “Hydromagnetic Equilibria and Force-free Fields”, inUnited Na-
tions Conference on the Peaceful Uses of Atomic Energy, Geneva, 1958 Vol. 31, p. 190.

[44] V.D. Shafranov, Sov. Phys. JETP6, 545 (1958).
[45] R.Listand A. Shuliiter, Z. Naturforsch.129, 850 (1957).

[46] L.S. Solovev and V. D. Shafranov, Reviews of Plasma Physics (Ed. Leontovich M A)Con-
sultants Bureau, New York, 1966) Vol. 5, Chap. 1.

[47] S.P.Hirshman, Phys. Fluids21, 1295 (1978).

[48] T.Takeda and S. Tokuda, J. Comput. Phys.93, 1 (1991).

[49] F. L. Hinton and R. D. Hazeltine, Rev. Mod. Phys.48, 239 (1976).
[50] S.P.Hirshman and D. J. Sigmar, Nucl. Fusion21, 1079 (1981).

[51] F.Troyon, R. Gruber, H. Saurenmann, S. Semenzato and S. Succi, Plasma Phys. Control.
Fusion 26, 209 (1984).

[52] L. B. Bernstein, E. A. Frieman, M. D. Kruskal and R. M. Kulsrud, Proc. Roy. Soc.A244, 17
(1958).

[53] J. P. Goedbloed and S. Poedts, Principles of Magnetohydrodynamics, (Cambridge, New
York, 2004).

[54] A.E.Lifschitz, Magnetohydrodynamics and Spectral Theory(Kluwer, Dordrecht, 1989).

[55] R.A.Horn and C. R.Johnson, Matrix Analysis(Cambridge University Press, Cambridge,
1985).

[56] M. N. Bussac, R. Pellat, D. Edery and J. L. Soule, Phys. Rev. Lett.35, 1638 (1975).
[57] R.C.Grimm, R. L. Dewar and J. Manickam, J. Comput. Phys.49, 94 (1983).
[58] R.L.Dewar and A. Pletzer, J. Plasma Phys.43, 291 (1990).

[59] J. W. Connor et al., Phys. Fluids 31, 577 (1988).



126 BIBLIOGRAPHY

[60] C.M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and En-
gineers(McGraw-Hill, New York, 1978) pp.61.

[61] O.C.Zienkiewicz and R. L. Taylor, The Finite Element Method fourth edition(McGraw-
Hill, New York, 1991) Vol. 1.

[62] W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical Recipes
(Cambridge, New York, 1986).

[63] R. Courant and D. Hilbert, Methods of Mathematical Physics(Interscience, New York,
1953) Vol. 1.

[64] F.Troyon, L. C. Bernard and R. Gruber, Comput. Phys. Commun.19, 161 (1980).
[65] V.D. Shafranov, Sov. Phys. - Tech. Phys.15, 175 (1970).

[66] R.Gruber, F. Troyon and T. Tsunematsu, Plasma Phys.25, 207 (1983).

[67] J.W. Connor, R. ]J. Hastie and J. B. Taylor, Phys. Rev. Lett.40, 396 (1978).

[68] V. D. Shafranov, Reviews of Plasma Physics (Ed. Leontovich M A)(Consultants Bureau,
New York, 1966) Vol. 2, Chap. 2.

[69] Y. Idomura, M. Adachi, K. Gorai, Y. Suzuki and X. Wang, J. Plasma Fusion Res.79, 172
(2003).



