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Abstract 

 

In present fusion devices the generation of dust particles is observed and 

characteristics of the dust particles collected after discharges have been analyzed. 

Typically the collected dust particles have irregular, flake or spherical shapes with 

sizes from nanometers to tens of micrometers and consist of materials of divertor 

plates, first wall or inner structures. They are considered to appear in a plasma due to 

erosion of plasma-facing surfaces, condensation and adhesion of plasma-spattered 

materials, flaking of redeposition layers. The motion and destruction of dust particles 

in the high temperature plasma region can contribute to the impurity transport that 

makes essential to study behavior of dust particles during a discharge. It is well 

known that dust particles obtain large, usually negative, electrical charge (up to 10
6
 

elementary charges) in a plasma and can affect electric potential distributions and 

change kinetic properties of the plasma due to scattering and absorption of plasma 

particles. The important safety issue is the ability of dust particles to accumulate large 

amount of radioactive tritium. The dust may be a primary radiological and explosion 

risk factor. In recent years dust particles also have attracted attention in growing 

technological applications of plasmas connected to astrophysical, space, laboratory, 

and processing applications. In fusion devices the dust density usually is not high 

enough to show the collective effects. Therefore, the aim of the present study is to 

investigate the behavior of a single dust particle in a plasma wall transition layer that 

includes sheath formation with the dust particle, analysis of releasing conditions at the 

wall and possible trajectories of dust particles with various sizes and masses. We 

consider a conductive spherical dust particle initially placed on the wall. The 

directions and magnitudes of the forces acting on the dust depend on the local plasma 

parameters, dust particle size and charge. The present problem needs to be analyzed 

self-consistently because the charge of the dust particle affects the surrounding plasma 

and mutually depends on fluxes of electrons and ions to the dust particle. This 

presents significant difficulties in the theoretical treatment of such problem; therefore, 

we used computer simulations in combination with a simplified theoretical approach. 

Assuming local plasma parameters known and fixed we can theoretically find the 

charge, currents and forces to the dust particle that allows to analyze its behavior in a 

wide range of sizes, masses, spatial and time scales. 
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At first, we investigate the conditions allowing a dust particle to be released 

from the wall, when the total force is acting on the dust towards plasma. The total 

force in our analysis includes the electrostatic force, the drag forces due to ion 

absorption and scattering, the electrostatic image force due to redistribution of charges 

on the wall and the gravitational force. The ion drag force is obtained using the 

Orbital Motion Limited (OML) theory, which gives us absorption cross section of 

electrons and ions by the dust particle, and the charge of dust particle attached to the 

wall is determined by the wall surface charge density and dust radius. The condition 

for releasing of the dust particle is obtained analytically in respect to the dust radius. 

From this condition we derive the “first critical dust radius” that is the largest radius 

of the dust particle capable to leave the wall. Using estimations of plasma parameters 

near the wall according to the Bohm sheath theory, we can express the first critical 

radius as a function of the wall potential. 

For the case of the zero gravitational force (vertical surfaces), it was shown 

that the first critical radius exists only when the wall potential exceeds the threshold 

value, below which no dust particles can be released from the wall. For the deeper 

wall potentials than the threshold one, the smaller dust particle than the first critical 

radius will be released and the bigger one will be pinned to the wall due to the large 

ion drug force compared to the electrostatic force. Changing the wall potential we can 

control the size of released dust particles or suppress motion of all dust particles. 

When the gravitational force is directed toward the wall, it reduces the value of the 

first critical radius, but does not affect the threshold potential. For the opposite 

direction of the gravitational force, there are two values for the first critical radius, 

which define two zones in the “dust radius – wall potential” space for the released 

dust particles. Configuration of the zones is controlled by the gravitational parameter 

that is a function of dust mass density and plasma parameters. One of the zones is 

dominated by the electrostatic force and another one by the gravitational force. For a 

large gravitational parameter they are merged, while for a small one they are 

separated by a range of wall potentials, where no dust particles can leave the wall.   

The motion of the released dust particles in one-dimensional (1D) boundary 

plasma is analyzed numerically by solving dust motion and charging equations 

simultaneously. In the model of a plasma being not affected by the dust particle, we 

consider the 1D system bounded at one side by a perfectly absorbing electrically 

biased wall and at another side bordering with a bulk plasma with given densities and 



 iii

temperatures of electrons and ions. The bulk plasma provides continuous inflow of 

plasma particles into the system, which is filled with uniformly distributed neutral gas. 

A Debye sheath is formed in front of the wall and an extended ionizing presheath is 

formed further from the wall due to electron impact ionization of neutral atoms. This 

system was simulated with the originally developed 1D Particle-in-Cell/Monte-Carlo 

(PIC/MC) code. The simulations conducted to achieving the steady state give us the 

spatial distributions of plasma parameters (densities, flow velocities, temperatures, 

potential etc.) in the sheath and the presheath. Using the OML theory and simulated 

plasma parameters, we found currents and forces to the dust particle and solved dust 

dynamics equation numerically. The simulated trajectories of the released particles in 

a plasma show small or large amplitude oscillations that are sharply discriminated 

with the critical radius: the “second critical radius”. The smaller dust particles than the 

second critical radius have a large amplitude of oscillations going deeper into the 

plasma. The existence of the second critical radius is caused by the appearance of an 

effective potential barrier near the wall due to reduction of the dust charge that 

depends on sharply changing local plasma parameters. The second critical radius is 

increasing with decreasing of the dust mass due to a delayed charging effect. This 

effect leads to the dust charge is being larger than the local equilibrium one during the 

motion of a released particle from the wall, thus allowing the lighter dust particles to 

oscillate with a larger amplitude. When the dust mass is smaller than a certain critical 

value, there is no more clear discrimination between small and large amplitude 

oscillations and the second critical radius disappears. 

The 1D model applied here does not take into account effects of interaction 

between a dust particle and a plasma. When the size of dust particle is larger than the 

Debye length, these effects may be significant and disturb the wall sheath formation 

around the dust particle. For the self-consistent analysis of the spherical dust particle 

behavior in a boundary plasma near the wall, the two-dimensional (2D) PIC 

simulations with a cylindrical symmetry are carried out. The charge, electron and ion 

currents and forces are simulated for a dust particle attached to the wall. It is shown 

that the simulated dust charge is in a good agreement with the theoretically calculated 

one for the smaller dust size than the Debye length. The theoretical value is calculated 

for a polarized dust particle at the wall in non-uniform external electric field, where 

the interaction between dust and plasma is not included. When the dust size is larger 

than the Debye length, the absolute value of the dust charge is significantly higher 
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than the theoretical value. This result is explained by the enhanced normal electric 

field at the dust surface due to the plasma shielding effect. This effect also leads to 

increasing of the repulsive electrostatic force and the first critical radius. Simulation 

result of the electron current density to the dust particle shows weak dependence on 

the dust size contrary to the OML prediction. A modified OML expression for the 

electron current density was presented, where the surface potential of the dust is 

replaced by the fixed wall potential. This modification shows good agreement with 

the simulation results. The same substitution for the ion current density also 

eliminates its dependence on the dust particle radius; nevertheless, the discrepancy 

exists between the simulation results and the modified OML formula. Further 

modification of the OML expression was made by taking into account the sharp 

change of the impact parameters (potential energy and flow velocity) of absorbed ions 

inside the sheath. This correction gives a good agreement between simulation results 

and theory for the smaller dust particles. For the dust particles bigger than the sheath 

width, the saturation of the ion current density was observed due to the development 

of the individual spherical sheath around the dust particle. The 2D simulations 

confirmed the existence of the first critical dust radius and showed good agreement 

with the prediction by the 1D model for the smaller dust particles than the Debye 

length.  

In this study the existence of the first critical dust radius was predicted 

theoretically and confirmed with the 2D self-consistent simulations. We found the 

second critical dust radius separating small and large amplitude oscillations of the 

dust particles in the boundary plasma. The 2D self-consistent simulations of a dust 

particle on the wall gave us a good agreement with the theoretical results for the 

smaller dust than the Debye length and showed enhancing effect of the dust sheath on 

the dust particle charge and the electrostatic force. Modifications of the OML 

expressions for electron and ion current densities are proposed. The self-consistent 

simulations of the dust particle dynamics in the sheath as well as effects of a magnetic 

field and various elementary processes remain of the future issues. The results of this 

research give us the principle understanding of the dust characteristics in boundary 

plasmas and can contribute to the investigation of the dust dynamics in the realistic 

and complex situations. 
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Chapter 1 

 

Introduction 

 

1.1 Dust particles in fusion and processing plasmas 

 

In the past years advancing efforts toward controlled fusion as well as growing 

technological applications of a plasma in semiconductor and chemical industries, 

extending researches and experiments in space make important understanding of 

plasma systems behavior of increasing complexity. One of the recent subjects 

attracted attention in those applications is the presence of small grains of solid matter 

in the plasma. These grains called the dust particles are typically sized from 

nanometers to hundreds of micrometers at the earth conditions and can be formed due 

to various volumetric or surface processes in the plasma [1-4]. Among these processes 

there are reactions in the chemically active plasmas, condensation and adhesion of 

spattered materials, etching and spattering of plasma contacting surfaces chemically 

or/and by ion bombardment, crackling and flaking of redeposited layers etc. These 

processes lead to the presence of dust particles of different sizes, shapes and 

compositions in the plasma during discharges and their accumulation after discharges 

on inner reactor surfaces [4]. The dust particles were experimentally observed in all 

kind of plasma applications under varying plasma conditions [5-8]. In particular, in 

the Large Helical Device (LHD) and the ASDEX-Upgrade fusion devices they were 

collected after series of discharges from inner vessel surfaces at the various toroidal 

and pololidal locations above and below a midplane [5]. The distribution of dust 

particles shows no dependence on orientation of the surfaces to the horizontal in the 

LHD, but the majority of collected dust mass contained in larger particles was from 

bottom locations in the ASDEX-U. On the other hand, the LHD holds greater dust 

mass on the surfaces not exposed to the plasma. Most of the collected particles were 

irregular in shape also some amount of spherically shaped particles was present. The 

averaged count-median diameter of the particles from the ASDEX-U was about 3µm, 
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while for the dust from the LHD it was about 10µm. Almost all particles from both 

devices contain C, Fe, Cr and Mn, which are divertor plate, first wall and inner 

structures materials, some particles were mixture of these components. The large 

amount of dust particles was collected from bottom locations in the TEXTOR 

tokamak after six month of operation [6]. About 15% of collected particles were 

ferromagnetic iron reach with some amount of Cr and Ni (Inconel alloy) and 

noticeable low-Z overlayer. Rest of particles were non-ferromagnetic and composed 

of graphite or Si, Al, S that came from divertor plate or boronizations and ICR-

siliconizations performed during the operation period. Among ferromagnetic particles 

the large amount of almost perfect spheres was detected with diameters from 10µm to 

100 µm, the flake and irregular shaped particles were also observed. The non-

ferromagnetic dust particles were shaped like pieces of rock or graphite clusters with 

very wide range of sizes from submicrometers to hundreds of micrometers. The 

variety of shapes and composition of dust particles shows that they were formed by 

different mechanisms and under different conditions. The spherical particles were 

likely exposed to the plasma long time or formed in the plasma volume, while the 

flakes are most likely formed at the surfaces. The divertor region is suggested as one 

of the most suitable place for the dust particles formation due to the high energy flux 

to divertor plates and the relatively cold plasma, where dust particles may dwell long 

time and even grow. Also the dust particles can appear at the time of He glow 

discharge cleaning or film deposition discharges (boronization, siliconization). 

During discharges in a fusion device the dust particles can move in the plasma 

that was observed by a laser scattering method in the JIPPT-IIU tokamak [7] and by 

an infrared camera in the Extrap-T2 and the TEXTOR devices [9]. It is suggested that 

the dust particles can be accelerated to significant velocities in boundary plasma 

regions and moving toward the core plasma can contribute to the contamination level 

of the plasma [10,11]. However, at present the influence of the dust particles on 

operational conditions of fusion devices is not well understood [4] and the amount of 

accumulated experimental data on dust dynamics in fusion devices is not sufficient for 

clear conclusions. Among other issues the important one is the safety operation of 

future fusion devices like the International Thermonuclear Experimental Reactor 

(ITER) [12]. The carbon dust particles can absorb large amount of tritium (>0.2 H/C) 

and are highly reactive. This imposes radiological and explosion risk in case of 
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vacuum or coolant leakage as well as during maintenance periods. That may require 

the periodic cleaning and utilization of dust from fusion devices that can accumulate 

at the inner surfaces during operation periods. In the ITER the expected energy flux to 

the plasma-facing components during a disruption may reach dangerous values of a 

few 210GW /m  and destruction rate of energy absorbing surfaces may be significant 

producing large amount of dust. That makes actual study of dust particles behavior in 

edge plasmas of fusion devices during discharges. 

The processing plasma used for semiconductor industry is usually a low 

temperature weakly ionized plasma of noble gases or mixture with chemically active 

gases like silane (SiH4). Under such conditions the dust particles readily grow due to 

chemical reactions of various radicals in the plasma volume and coagulation of 

smaller clusters and particulates as well as substrate etching [8]. The amount of dust 

particles under such conditions can be as high as 3 4 310 cm− −  that is enough to make 

important collective effects of dust-plasma and dust-dust interactions, when such 

plasma is called a dusty plasma [13-15]. In dusty plasmas various new phenomena are 

observed like dusty crystal formation [16,17], dust voids and vortices as well as new 

types of waves and instabilities. The important one for material processing is possible 

effect of dust particles on potential profiles and ion fluxes in the plasma near a wall 

[18,19] and as well as substrate damage due to dust impact. However, in fusion 

devices the dust density most likely doesn’t reach such high levels and study of a 

single particle dynamics is more important, toward which the present work is oriented. 

Nevertheless, for the processing plasma the properties of a single dust particle are 

fundamental and can be used for analysis of various dust phenomena. 

 

1.2 Theory and physics of sheath formation 

 

As the boundary plasma is one of the probable formation locations of dust 

particles and the region where a dust particle moves starting from the wall or toward 

the wall carrying charge and kinetic energy, the description of a plasma wall transition 

(PWT) layer is required for understanding of dust dynamics. The wall in contact with 

a plasma under negative floating or bias potential repulses electrons and attracts ions. 

That creates positively charged region near the wall which screens the plasma from 

the wall potential and is called a sheath. This screening is not perfect, however, and 
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the electric field extends into the plasma forming a non-uniform PWT layer. The 

formation of a PWT layer near a wall is one of the earliest plasma problems pointed 

out first by Tonks and Langmuir as far back as 1929 [20]. They described the 

potential structure in the PWT layer using series expansion method for a Poisson’s 

equation solving with various models of ion collisionality in fluid approach. Also they 

phenomenologically defined the sheath edge as a point, where the local charge density 

is a small fraction (they used 0.05) of the local electron charge density. The 

practically quasi-neutral plasma outside the sheath is called a presheath and the quasi-

neutral “plasma solution” of potential distribution can be applied there. The concept 

of the sheath edge has played the significant role in the development of the PWT layer 

theory although its definition was changed and the intermediate transition layer 

between the sheath and the presheath was introduced by Riemann much later [21,22]. 

As the fluid plasma solutions for a presheath are valid in the limit of the vanishing 

Debye length 0
D
λ → , they have singularity at some point near a wall, where the 

electric field goes to infinity. This point was defined as the sheath edge in the fluid 

approach [23]. The important step in the theory development was the Bohm criterion 

[24] for the sheath formation stating that ion flow velocity at the sheath edge should 

be no less than the ion sound speed. The Bohm criterion in fluid approach is valid 

regardless of ion collisionality or ionization model, because it defines the singularity 

point intrinsically inherent to plasma solutions of a presheath [25]. The potential 

distribution in the sheath can be found only by solving the Poisson’s equation, which 

is possible analytically in the limit of the sheath edge positioned infinitely far from the 

wall on the Debye length scale. Then the Bohm criterion is applied to this infinitely 

far point as necessary condition for positive spatial charge development in the sheath. 

Therefore, physically the Bohm criterion and the sheath formation require that the 

electron density in the sheath decays faster than the ion density toward the wall. Other 

qualitative interpretation implies that no disturbances of the plasma by the wall can 

propagate into the plasma volume with the lower speed than the ion sound speed, thus 

the positively charged sheath region is localized near the wall. As we noted, the Bohm 

criterion is satisfied at the sheath edge independently on ion collisionality, so ions 

should be pre-accelerated in the presheath region up to the ion sound speed. 

Nevertheless, the presheath can be non-uniform with ion accelerating potential drop 

only if there is some process leading to momentum loss of ions or growing of the ion 
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flux [21]. Thus, the collisional, ionizing and geometrical presheaths are possible and 

the characteristic length of the plasma parameters and electric potential variations in 

the presheath will be order of the corresponding collision mean free path or 

geometrical scale. Another type of presheaths was pointed by Chodura [26] is the 

magnetic presheath, where the magnetic field lines are oblique to the wall. He 

introduced the magnetic presheath edge condition stating the parallel to the magnetic 

field ion velocity should be larger than the ion sound speed. The characteristic length 

of the magnetic presheath is the ion Larmor radius. Later it was shown that the 

magnetic presheath mechanism is associated with the ion polarization drift [27]. In 

real complex situations different presheath mechanisms can play important role, thus 

the mixed presheath can be formed. 

The kinetic theory of the boundary plasma is also developed [28]. The 

difference of the kinetic approach from the fluid one is the description of plasma 

particles densities, flow velocities and other parameters as the moments of the 

particles velocity distribution functions, which are solutions of the Boltzmann 

equation. Nevertheless, in the kinetic approach it is also necessary to solve the 

Poisson’s equation to obtain the potential distribution in the sheath or use the “plasma 

solution” for the presheath. Therefore, the kinetic PWT layer theory inherited the 

same scale problem and the singularity of the plasma quasi-neutral solutions in the 

limit 0
D
λ →  as the fluid one. The sheath edge concept is also used in kinetic 

approach as the singularity exists in the zero 
D
λ  limit. The kinetic form of the Bohm 

criterion was obtained, which imposes restrictions on the ion velocity distribution 

function [29]. The kinetic form of the Bohm criterion shows that the ion velocity 

distribution function at the sheath edge should vanish for zero ion velocities and can 

be reduced to the fluid form using a perturbation method. 

However, in the case of the finite Debye length the presheath quasi-neutral 

solution can be substituted with the Poisson’s equation solution with the smallness 

parameter of the Debye length scale. In this case, the presheath solution has no 

singularity and the sheath edge concept loses its meaning. Moreover, in this case it 

was shown that the kinetic form of the Bohm criterion is satisfied everywhere in the 

plasma and has no information on the sheath formation [21]. Nevertheless, for finite 

small values of the ratio of the Debye length to the presheath characteristic length, the 

theory of the sheath and the presheath has essentially different spatial scales and can 
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not be matched in the analytical integrated PWT layer solution. The exception is the 

case of a highly collisional plasma, when the presheath characteristic length is 

comparable with the Debye length and smooth transition can be obtained [22,30]. For 

general case Riemann introduced the intermediate spatial scale that has characteristic 

length in between the Debye length and the presheath length scales [21,22]. This 

intermediate scale serves for smooth matching of the sheath and presheath solutions 

instead of the sheath edge concept. Therefore, at present there is three-scale theory for 

description of the PWT layer including the positively charged Debye sheath, the 

quasi-neutral presheath and the transition layer between them. The solutions at each 

region are scalable in the real coordinates. Nevertheless, the sheath edge concept had 

great impact on boundary plasma physics, especially in fluid approach, that 

discussions about it continues, see for example [31-35]. Of cause, the Poisson’s 

equation can be solved numerically in the whole plasma that, however, needs 

appropriate boundary conditions at some point of the presheath or a plasma source 

between two walls. Usually the boundary conditions in the presheath are set 

approximately, iteratively excluding unphysical presheath solutions. In addition to the 

mentioned presheath mechanisms, the effect of various elementary processes and 

plasma conditions on the sheath formation is studied in numerous theoretical and 

simulation works. Among these effects there are secondary electron emission from the 

wall, two or more kinds of positively or negatively charged plasma particles, different 

velocity distributions of ions and electrons, different configurations of a magnetic 

field and combinations of these effects that are important to study for realistic 

conditions found in fusion or processing plasmas. Some calculations of the dusty 

PWT layers are also done showing multilayer structures of the dusty sheaths [36-38]. 

 

1.3 Properties of dust particles in plasma 

 

It is well known from experimental and theoretical researches [39,40,13] that 

dust particles in a plasma obtain large electric charge (up to 10
6
 elementary charges) 

due to electron and ion currents on them which are defined by plasma conditions. The 

charge of the dust particle is its critical parameter, which is most important to describe 

dust effect on the plasma as well as find acting forces on the dust particle and describe 

its dynamics. Usually electrons in the plasma have higher velocities than ions and 
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their flux to the dust particle exceeds the ion flux, so the dust particles get negative 

charge in the plasma, unless the electron density is too low or the secondary electron 

emission from the dust particle is strong. From this point of view the dust particles 

can be considered as small floating probes in the plasma. However, the sizes of dust 

particles usually are very small and classical Langmuir probe theory is not applicable 

for them until dust size will not be much larger than the Debye length and the ion 

collision mean free path, when the current to the dust can be described in the planar 

sheath limited regime. Instead, for description of charging of small dust particles the 

Orbital Motion Limited theory is commonly used [41,42], which defines the currents 

to the dust particle using the plasma particles absorption cross section by the spherical 

dust obtained in the orbital motion approximation. This approximation assumes 

collisionless motion of electrons and ions around a dust particle described by angular 

momentum and energy conservation laws. Therefore, the OML theory does not 

consider specifics of potential distribution around the dust particle in the plasma. It 

considers the impact parameter, which belongs to the electron or ion trajectory 

tangentially grazing the dust surface, as the radius of the absorption cross section area 

as long as it is assumed that all particles with the smaller impact parameters will cross 

the dust surface. This assumption, however, is not satisfied for every potential 

distribution around the dust particle [42,43]. There are two limitations, the first: when 

the potential decreases toward the dust faster than approximately 21 r  then falling to 

the center ion trajectories are possible and the absorption cross section will be defined 

by some critical absorption radius instead of the grazing surface trajectory [42]. The 

second, the effective potential barrier can appear for certain values of the ion angular 

momentum, so such ion will not reach the dust surface even though their impact 

parameter is smaller than the one corresponding to the grazing trajectory [44,45]. On 

the other hand, it was shown that relative quantity of such rejected ions is small and 

does not affect ion current to the dust significantly until the plasma density is not high 

and the ion temperature low [45]. The potential distribution around the dust particle is 

defined by the screening of the dust charge with the plasma and is the issue of the 

sheath formation around the dust particle. However, the dust screening is the complex 

self-consistent problem requiring kinetic description and the complete kinetic dust 

charging theory is not developed yet. There are studies applicable to describe dust 

charging under simplified conditions. The theory of Bohm, Burhop and Massey [46] 
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uses the quasi-neutral plasma solution to find the potential profile around the spherical 

probe in the plasma. Thus, it is valid only for the dust particles, which radii are much 

larger than the Debye length and much smaller than the ion collision mean free path. 

Another, the radial motion ABR (Allen, Boyd, Reynolds) theory [47,48] solves the 

Poisson’s equation for the purely radial ion motion toward the dust particle, and thus 

is valid in the cold ions approximation. The numerical study of the sheath structure 

around dust particles was performed in [49] showing that the potential distribution in 

the sheath can be well described by the Debye-Hückel potential and the screening dust 

radius is changing from the linearized ion-electron Debye length for small dust 

particles to the electron Debye length for larger particles. All the mentioned theories 

describe dust charging in the infinite plasma with spherically symmetrical potential 

distribution around the particle. However, the dust particle motion usually occurs in 

complex conditions of plasma flows and external fields, in particular, in the plasma 

wall transition layers. The study of a dust particle in more complex conditions of an 

ion flow showed anisotropic potential distribution around a dust particle, which is 

called a wake potential [50]. In this case the region of increased ion density is formed 

behind the particle in the flow. The simulation studies of the dust charging and 

screening in the ion flow demonstrate the potential distribution around the dust 

particle clearly [51,52]. Nevertheless, there is no self-consistent theory to describe the 

effect analytically. The complex picture of the dust particle screening in the flow 

affects not only the dust charging, but also the ion drag force acting on the particle in 

the ion flow. The ion drag force is directly associated with momentum transfer from 

the ions to the dust particle. The momentum transfer occurs due to direct absorption of 

ions and due to scattering of ions by the dust. The latter one is also responsible for the 

wake field formation. Usually the OML theory is used to describe the absorption part 

of the ion drag force. The simulation studies of the ion drag force due to scattering 

[53,54] show that the classical scattering theory with the cutoff Coulomb potential 

assumption underestimates the force for low ion energies. The role of the electron 

drag force is also recognized for specific plasma parameters in the presence of a 

constant external electric field [55]. Most of the mentioned studies are relevant to the 

dust particles with smaller radii than the Debye length. The comprehensive simulation 

study of the dust charging and shielding in the ion flow for larger dust particles than 

the Debye length is recently performed by Hutchinson [56-58]. It shows that for 

subsonic ion flows the downstream side of the dust particle can receive higher ion 
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flux than the upstream one, however, reporting that the ion drag force acting on the 

dust particle is with 20% accuracy agrees with the present analytical approximations. 

Nevertheless, all the studies mentioned here do not take into account the presence of 

the wall and the non-uniform electric field in the sheath. 

It is known from experimental and theoretical works that dust particles can 

levitate in the sheath under the balance of electrical, ion drag and gravitational forces 

acting on them [59,62]. The experiments are usually conducted in the plasma of DC 

or RF glow discharges with low degree of ionization and artificially prepared dust 

particles, which are observed by a CCD (charge-coupled device) camera in a scattered 

light of laser. However, the dynamical measurements of dust charges, currents and 

forces on them are indirect and unreliable. The trapping of the dust particles in the 

sheath region near a horizontally placed electrode was observed, where the particles 

can oscillate around their equilibrium positions and even form the periodic structures 

known as dusty crystals when their motion in the horizontal plane is restricted and 

electrostatic coupling is strong [17,61]. The dust particles in the dusty crystals are 

aligned not only in the horizontal but also in the vertical direction, what as suggested 

is due to wake potential formation downstream of the upper layers of dust particles. 

Because of usually high neutral gas density in the laboratory plasma experiments with 

dust particles, their oscillations around equilibrium positions in the sheath are damped 

due to neutral atoms and ions friction. The measurements of the frequency, damping 

rate and equilibrium positions of dust oscillations are proposed as a plasma sheath 

diagnostics [62]. On the other hand, due to finite charging time of the dust particles 

their charge has lag during the dust motion that is called a delayed charging effect. It 

is shown that the delayed charging effect can lead to parametric instability and self-

exiting vertical dust oscillations in the sheath [63,64]. The simulation studies of dust 

levitation and dynamics in sheaths are conducted within the fluid description of a 

plasma in a sheath [60,65]. They show that there is the maximum radius of dust 

particles that are capable to levitate, above which the particles fall down to the 

electrode. In [65] the forces acting on the dust particle in the sheath are described in 

the fluid approach and the conditions for capturing of the particles injected into the 

sheath from a wall with different velocities are analyzed. It showed that there is a 

narrow range of dust velocities and radii when the trapping of dust particles is 

possible, otherwise the dust particle fall down on the wall. However, these works do 

not consider what happens with the dust particle on the wall surface, while the 
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charging of the dust particle on the wall is significantly different from its charging in a 

plasma [66]. Also the used model of dust charging and motion in sheaths is not self-

consistent and valid only for small dust particles. A few direct observations of dust 

particles motion in fusion devices was performed [9], which show projections of dust 

trajectories on the plane transverse to the view line, but provides no information on 

dust sizes and charges. 

 

1.4 Motivation and target setting 

 

As the dust particles are commonly found in present plasma application 

devices including fusion devices, investigations of their impact on the operation 

conditions of those devices are necessary. The sources of dust particles in plasma 

reactors can include destruction and deposition processes on plasma-facing surfaces 

as well as the volumetric chemical and physical processes. The dust particles can 

affect electric potential profiles in a plasma due to the large absorbed charge and also 

can change kinetic plasma properties due to plasma particles absorption and scattering. 

The moving dust particles in processing plasma applications can strike a processed 

material causing its damage or can accumulate in some areas of plasma reactors 

changing operation characteristics. In fusion devices moving dust particles are 

probable sources of impurities, which transport is radically different from ion 

impurities transport due to a variable charge, a huge mass and a large size. The highly 

charged dust particles also can contribute in radiation energy loss in a divertor region 

of fusion devices. Another important issue for future fusion reactors is ability of the 

dust particles to absorb significant amount of tritium that makes them potentially 

dangerous. The regions near walls of plasma reactors are the places where the dust 

particles are usually produced and accumulate during operation period. As known the 

highly non-linear plasma wall transition layer is formed near the plasma-facing wall, 

where electric fields and plasma particles flows are significant. Hence, studies of dust 

dynamics in plasmas and, in particular, near wall regions of plasma reactors are 

important for understanding of a dust impact on their operation. Investigation of a 

single dust particle motion is a key element for study of more complex dust systems 

dynamics and is directly applicable for low dust density conditions like in fusion 

devices. The previous studies were restricted by either consideration of dust particles 
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smaller than the Debye length and not attached to the wall or the simple ion flow 

conditions not accounting the wall presence as another sheath boundary. 

 Therefore, the aim of the present study is the investigation of a single dust 

particle statics and dynamics in PWT layers, which includes the self-consistent sheath 

formation with the dust particle, analysis of starting conditions at the wall and 

possible trajectories of dust particles, which size can be larger than the Debye length. 

The thesis consists of the four chapters. In Chapter 1 (Introduction) the main results of 

previous researches on sheath formation, basic properties of dust particles and their 

behavior in sheaths are described, on basis of which the motivation of the present 

study and its target is given. In Chapter 2, the dust particle behavior in PWT layer is 

analyzed using one-dimensional (1D) approach. That includes description of the 1D 

PIC (Particle-In-Cell) simulation method of PWT layer without dust particle and 

comparison of the simulation results with the kinetic theoretical consideration, the 

model of currents and forces acting on the dust particle in the undisturbed plasma. In 

this chapter the first critical radius is derived theoretically [67] and the second critical 

radius is shown from the analysis of dust trajectories, which defines dust releasing 

condition from the wall and discriminates different types of dust particles trajectories, 

respectively [68]. There is also discussion of dust particles surviving conditions and 

dynamics in the edge plasma of fusion devices. In Chapter 3 the self-consistent two-

dimensional (2D) simulations of a large dust particle properties in the sheath on the 

wall position is presented. The chapter is opened with the introduction which explains 

drawbacks of the one-dimensional model and possibilities of the two-dimensional one 

for self-consistent analysis. After that the description of the originally developed 2D 

simulation model is given. The simulation results confirm the existence of the first 

critical radius. They are compared with predictions of the 1D model and its possible 

modifications are discussed together with peculiarities of the sheath formation with a 

dust particle, which radius is bigger than the Debye length. The final Chapter 4 

includes summary of the results and discussion on unresolved problems and future 

issues. In the Appendices necessary mathematical derivations are presented. 
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Chapter 2 

 

Dust behavior in boundary plasma – 

One-dimensional model 

 

In this chapter we consider one-dimensional (1D) model of a dust particle 

behavior in a plasma wall transition (PWT) layer that includes kinetic analysis of 

collisionless sheath formation, description of the 1D PIC simulation method of the 

PWT layer without a dust particle, comparison of the simulation results with the 

kinetic theoretical consideration, and the model of currents and forces on the dust 

particle in undisturbed plasma. The one-dimensional model assumes that the dust 

particle doesn’t disturb distributions of plasma parameters in sheath significantly, 

which is possible if the dust particle is small compared to the Debye length, 

presumably. Here the first critical radius is derived theoretically [67] and the second 

critical radius is shown from the analysis of dust trajectories [68]. Dust dynamics in 

an edge plasma of fusion devices is discussed. 

 

2.1 Sheath formation 

 

In order to analyze behavior of a dust particle in a boundary plasma we should 

know the properties of a sheath and a presheath including spatial distributions of 

potentials, densities, fluxes etc. These parameters are used later to obtain local values 

of a dust charge and acting forces on it that allow simulating the dust particle’s motion. 

The theoretical fluid description of a PWT layer is not convenient for dust motion 

analysis as it separately considers a sheath and a presheath at different length scales 

and an intermediate layer is required for the smooth transition between them. 

Therefore, we use the computer simulation of the integrated sheath-presheath system 

and kinetic theoretical analysis of the sheath to check the accuracy of the simulation 

code. 
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2.1.1 Theoretical analysis 

 

The formation of a collisionless sheath for given initial distribution functions 

of electrons and ions can be analyzed theoretically in the kinetic approach that gives 

exact solutions for distributions of plasma parameters. This consideration includes 

effect of truncation of electron velocity distribution function, when high-energy 

electrons are capable to reach the wall over the sheath potential drop and are absorbed 

there, as a result a deficit of high-energy reflected electrons is produced. Therefore, 

the electron velocity distribution function in the sheath will not be a full Maxwellian 

distribution as it is assumed in all fluid analysis of the sheath formation. This exact 

consideration of the collisionless sheath formation allows us to test correctness of the 

developed one-dimensional simulation code for sheaths. 

 

 

 

 

 

 

Fig. 2.1.1 One-dimensional model for the kinetic analysis of the collisionless sheath 

formation. 

 

Let’s consider the one-dimensional system (Fig.2.1.1) that is bounded by a 

perfectly absorbed wall at the right end 0=z  with the negative potential 0ϕ <w
 and 

the bulk plasma at the left = − sz L  with the fixed potential 0ϕ = . There are no 

collisions and volumetric sources or sinks of plasma particles in the system. The bulk 

plasma consists of electrons and ions of charge iq  and provides half-Maxwellian 

particle inflows into the system. The half-Maxwellian velocity distribution functions 

of electrons and ions )(
0
+

ef , )(
0
+

if  have given densities )(
0
+
en , )(

0
+
in  and temperatures eT , 

iT , respectively, the superscript (+) here denotes particles with positive velocities to 

the z direction.  

For the injected particles of species iej ,=  the half-Maxwellian velocity 

distribution function is written as 

z 0 

wall

ϕw  

-Ls 

bulk 

plasma 

0ϕ =  

( )( )

0 υ+
j zf  
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( )
2

( ) ( )

0 02 exp
2 2

υ
υ

π
+ +

 
= −  

 

j j z

j z j

j j

m m
f n

T T
, (2.1.1) 

where jm  is the mass of j-th species particle. The plasma particle distribution 

functions inside the system should satisfy the collisionless Boltzmann equation 

( ) ( ) ( ), ,
0

υ υϕ
υ

υ

∂ ∂
− =

∂ ∂
j z j j z

z

j z

f z q f zd z

z m d z
, (2.1.2) 

where ( )ϕ z  is the local electrostatic potential. For the case of a monotonic spatial 

profile of the potential, which we can expect in the collisionless sheath, equation 

(2.1.2) has the exact solution in the whole system. Changing the velocity variable in 

the Boltzmann equation to the total energy 

( )21

2
j z j z jm q zε υ ϕ≡ + , (2.1.3) 

we can get 

( ) ( ),
, 0

ε
υ ε

∂
=

∂
j j z

z j z

f z
z

z
.  (2.1.4) 

Therefore, the solution of eq. (2.1.4) for the particles with positive velocities is 

( ) ( ) ( )( ) ( ) ( )

0 0, 2 exp
2

ε ϕ
ε ε

π
+ + +

 −
= = −  

 

j jz j

j j z j j z j

j j

m q z
f z f n

T T
, (2.1.5) 

that means the shape of total energy distribution function of injected particles does not 

change spatially and their total energy conserves. In the Debye sheath formed near the 

negatively biased wall, the monotonically decreasing potential accelerates ions toward 

the wall, thus the local velocity of the slowest ion is ( ) ( )2is i iz q z mυ ϕ= −  and all 

ions come to the wall. For electrons the sheath potential is repulsive, thus only the part 

of electrons with initial velocities larger than 2es w ee mυ ϕ= −  will be absorbed by 

the wall, while the rest of electrons is reflected by the negative sheath potential and 

forms the negative velocity part of the electron distribution function ( )( ) ,ε−
e ezf z . This 

function satisfies the same Boltzmann equation (2.1.4) and has the similar solution 

( ) ( ) ( )( ) ( ) ( )

0, , ,ε ε ε ε ϕ− − += − = < −e ez e s ez e ez ez wf z f L f e , (2.1.6) 

( )( ) , 0,ε ε ϕ− = ≥ −e ez ez wf z e . (2.1.7) 
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As we can see, the high energy part of electrons with the negative velocities is 

truncated and the local truncation velocity is ( )2etr w ee z mυ ϕ ϕ = − −  . 

Now, when we know the local distribution functions, we can find the local 

macroscopic plasma parameters (Appendix A). The densities of electrons and ions are 

( )
( ) ( )

( )

0 exp 1 erf
ϕ ϕϕ

+

   −     = +          

w

e e

e e

e ze z
n z n

T T
,  (2.1.8) 

( )
( ) ( )( )

0 exp erfc
ϕ ϕ

+
  
 = − −       

i i

i i

i i

q z q z
n z n

T T
, (2.1.9) 

where 
2

0

2
erf

x

tx e dt
π

−≡ ∫  and erfc 1 erfx x≡ −  are the error function and the 

complementary error function, respectively. The effect of the truncation of the 

electron velocity distribution function is displayed by the term with the error function 

of potential in (2.1.8), which provide reduction of the electron density in comparison 

with the usual Boltzmann relation. The corresponding fluxes have the following form 

( )

0

2
exp

ϕ
π

+  
Γ =  

 

e w

e e

e e

T e
n

m T
, (2.1.10) 

( )

0

2

π
+Γ = i

i i

i

T
n

m
, (2.1.11) 

and the flow velocities are 

( )
( )( )
( )( )

exp[ ]2

1 erf [ ]

ϕ ϕ

π ϕ ϕ

− −
=

+ −

w ee

ez

e
w e

e z TT
u z

m e z T
, (2.1.12) 

( )
( ) ( )

2

exp( )erfc ( )

π

ϕ ϕ
=

− −

i i

iz

i i i i

T m
u z

q z T q z T
. (2.1.13) 

The fluxes are constants in the sheath because there are no any particle sources or 

sinks, also we should note that the electron flux is created exclusively due to the 

truncation of the electron velocity distribution function, otherwise the symmetrical 

Maxwellian distribution does not provide any flux.  From the floating wall condition 

Γ = Γe i  it is easy to find the floating wall potential 
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2
( )

0

, ( )

0

1
ln

2
ϕ

+

+

  
 = −  
   

e e i e

w fl

e ii

T n m T

e m Tn
. (2.1.14) 

The Poisson’s equation ( ) ( )
2

0 2 i i e

d
q n z en z

d z

ϕ
ε = −  should be solved in order 

to obtain the spatial distribution of the potential in the system. Unfortunately, it is 

strongly nonlinear second order differential equation that can not be solved 

analytically. Nevertheless, the obtained expressions for plasma parameters as 

functions of the local potential are suitable for the comparison with the simulations. 

 

2.1.2 Simulation of sheath and presheath 

 

The Particle-In-Cell/Monte-Carlo (PIC/MC) simulations are used here to get 

plasma parameters distributions in the whole PWT layer including a sheath and a 

presheath. As well known, a presheath can be formed if some elementary process 

leading to changing of ion momentum or flux is present in the system [21]. Such 

processes can be elastic collisions of ions with neutrals, ionization, charge exchange 

or presence of an oblique magnetic field. Тhe kinetic simulation of the PWT layer 

with collisional processes can be readily performed with PIC/MC simulations [69,70] 

that require only collisional cross sections and make no assumptions on the form of a 

collisional integral in the Boltzmann 

equation despite simplified or fluid 

approaches. The PIC method based 

on solving of motion equations of 

super-particles, which are ensembles 

of real particles of one kind with 

close positions and velocities or in 

other words small elements of a 

phase space developing in time as one super-particle. The motion is performed 

discretely in time on a spatial mesh, which serves for solving of field equations. The 

Monte-Carlo extension to the PIC method [70,71] calculates the probability of a 

collisional process for super-particles and performs the collision of a super-particle 

when a random number hits in the normalized probability. The probability can be 

calculated for each particle and local plasma parameters. Therefore, the PIC/MC 
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Fig. 2.1.2 One-dimensional model of the simulated 

system. 
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method allows to kinetically simulate a plasma with elementary processes in self-

consistent way. For our simulations we developed original one-dimensional in space 

and three-dimensional in velocity space (1D3v) code based on the PIC/MC method. 

The model and the simulation method are described below. 

The plasma in the simulated system (Fig.2.1.2) consists of ions, electrons, and 

hydrogen atoms uniformly distributed with a fixed density an  and a temperature aT . 

The simulated system of the length sL  is bounded by the bulk plasma containing 

equilibrium electrons and ions with the constant densities 0 0 0= =e in n n  and the 

temperatures eT , iT . The bulk plasma provides incoming electron flux with half-

Maxwellian and ion flux with shifted Maxwellian velocity distribution functions,  

where the velocity shift is a given parameter, which sets the incoming ion flux. The 

boundary of the bulk plasma at the same time is transparent for outgoing particles that 

form the negative velocity part of the distribution functions. The elementary processes 

accounted in the system are ionization of neutrals by electron impact collisions, elastic 

scattering of ions on the neutral atoms and charge exchange. Depending on selected 

plasma parameters we can turn on and off different processes that allows us to create 

the ionizing or collisional presheath. For the conditions of a divertor plasma the 

ionizing presheath may be preferable due to a relatively high plasma temperature. The 

wall is assumed perfectly absorbing for electrons and ions and no secondary emission 

and recycling are considered. Hence, the sources of electrons and ions in the system 

are the bulk plasma and the plasma generated by electron impact ionization, and the 

sink is due to coming out of plasma particles through the boundaries of the system. 

We do not consider the magnetic presheath formation here; however, the magnetic 

field which is perpendicular to the wall can be present in the system. 

For electron impact ionization cross section the Lotz’s formula [72] was used 

for ionization of a ground state atom to a single ionized ion 

( )
1

ln /
1 exp 1

sK
e i e

iz i i i i

k e i i

a b c
ε χ ε

σ ς
ε χ χ=

    
= − − −   

     
∑ ,  (2.1.15) 

where eε [eV] is the energy of the impact electron, iχ  is the binding energy of 

electrons in the i-th subshell, iς  is the number of equivalent electrons in this subshell; 

ia , ib , and ic  are the fitting constants. These parameters for two gases (hydrogen and 

argon) are presented in Table 2.1.1. 
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 H Ar 

sK  1 2 

1ς  1 6 

1χ , eV 13.6 15.8 

1a , 1410− cm
2
eV

2
 4.0 4.0 

1b  0.60 0.62 

1c  0.56 0.40 

2ς  - 2 

2χ , eV - 29.2 

2a , 1410− cm
2
eV

2
 - 4.0 

2b  - 0.4 

2c  - 0.6 

 

Table 2.1.1 Electron impact ionization cross section parameters of hydrogen and 

argon atoms [72]. 

 

After the ionizing collision the impact electron has energy 

, 1 ,cs e e new eε ε χ ε= − − , (2.1.16) 

where ,new eε  is the energy of the created electron, which was taken from [71, eq.(77)] 

the same for H and Ar 

1

. 10 tan arctan
20

e

new e R
ε χ

ε
 − 

=   
  

, (2.1.17) 

here all energies are in eV, and R is the uniform random number on the range (0,1]. 

Both the impact electron after ionization and the created electron have isotropic 

distribution of velocity vector in velocity space. Created ions have random velocities 

according to the isotropic Maxwellian velocity distribution function with the neutral 

gas temperature aT  

3
2 2 2

2

, exp
2 2

i x y zi

new i

a a

mm
f

T T

υ υ υ

π

  + +    = −      
. (2.1.18) 

The cross section for elastic collisions of ions with neutrals for hydrogen was taken 

from [73,74] 
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( )2

0 0 1 2ln lnel CM CMA A Aσ σ ε ε= + + , (2.1.19) 

where 21

0 2.80028 10σ −= × m
2
, CMε  is the collision energy in the center-of-mass (CM) 

system expressed in eV, and the coefficients iA  for hydrogen are 3

0 0.591039 10= ×A , 

2

1 0.877354 10= − ×A , 1

2 0.256830 10= ×A . For argon atoms corresponding cross 

sections were taken from the experimental data [75] and were fitted with the same 

formula (2.1.19) with the coefficients 3

0 0.14264 10= ×A , 2

1 0.2335355 10= − ×A , 

1

2 0.176657 10= ×A . For simulation of the ion elastic collisional process with neutral 

atoms, the random velocity of an atom υ
�

a  is obtained according to the isotropic 

Maxwellian (2.1.18). After that the relative velocity 0υ υ υ= −
� � �

rel i a  and the center-of-

mass velocity ( )0 2υ υ υ= +
� � �

CM i a  are calculated, here 0υ
�

i  is the velocity of an ion 

before the collision. The collision energy in the CM system then is 

2

4

i

CM rel

m
ε υ=

�
. (2.1.20) 

After scattering the new relative velocity ,υ
�

rel sc  is calculated, so that ,υ υ=
� �

rel cs rel  and 

its direction is random isotropically distributed in velocity space. The velocity of the 

ion after scattering is found as 

, ,

1

2
υ υ υ= +
� � �

i sc CM rel sc . (2.1.21) 

The charge exchange cross section is given according to [73,74] both for 

hydrogen and argon as  

( )0 1 2

3.5 5.4

3 4 5

ln /

1

CM

cx

CM CM CM

A A A

A A A

ε
σ

ε ε ε

+
=

+ + +

ɶ

ɶ ɶ ɶ
, (2.1.22) 

where 310 /ε ε−=ɶ
CM CM wA , εCM [eV] is the same as for elastic collisions, wA  is the 

atomic weight (for hydrogen 1=wA and for argon 40=wA ). The coefficients are 

20

0 3.2345 10−= ×A m
2
, 3

1 0.23588 10= ×A , 1

2 0.23713 10= ×A , 1

3 0.38371 10−= ×A , 

5

4 0.38068 10−= ×A , and 9

5 0.11832 10−= ×A . The ion velocity after the collision is 

substituted with a random velocity isotropically distributed in the velocity space 

according to the Maxwellian (2.1.18) with the neutral gas temperature aT . 

The PIC method includes calculation of electrons and ions trajectories 

represented by super-particles in the self-consistent electric potential. The spatial 
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distributions of the potential at each time step are obtained by solving the Poisson’s 

equation with zero potential of the bulk plasma boundary, ( ) 0ϕ − =sL , and the given 

potential of the wall ϕw . Another modification of the 1D code has the floating wall 

boundary condition with the electric field at the wall given according to the wall 

surface charge density 0w wE σ ε= − . The surface charge density σ w  of the wall 

found by accumulating of collected charges from the plasma and assumption of 

neutrality for the whole plasma including the bulk. After the discretization of the 

Poisson’s equation on the uniform spatial mesh using finite difference formulae the 

obtained three-diagonal matrix is solved by the sweep method [70]. 

Simulations of the plasma in the system started from uniform distributions of 

electrons and ions under the conditions corresponding to the neutral bulk plasma and 

prolonged to achievement of the steady state showing the sheath-presheath plasma 

structure. The super-particle motion equations are expressed in finite differences by 

the modified leap-frog explicit scheme. In the standard leap-frog method the particle 

positions and velocities are calculated at different time moments, which are shifted on 

half of the time step 2∆t . That creates errors in diagnostic of such parameters as a 

particle flux in sharply non-uniform and accelerated plasma as in a sheath, because in 

this case the flux is a product of the velocity and the density that correspond to 

different positions of a particle in the sheath. This problem is resolved by calculating 

of the particle velocity at each half time step that matches corresponding diagnostic 

moments for the particle position and velocity.  

( )

( )

2

2

2

2

2

t

jt t t

j

t t t t t

t t

jt t t t

j

q E z t

m

z z t

q E z t

m

υ υ

υ

υ υ

+∆

+∆ +∆

+∆

+∆ +∆

 ∆
 = +



= + ∆


∆ = +


, (2.1.23) 

where E is the local electric field. As easy to see this scheme preserves the accuracy 

order and stability of the standard leap-frog method due to keeping of the same 

relation 

( )
2 2

t

jt t t t

j

q E z
t

m
υ υ+∆ −∆= + ∆ , (2.1.24) 
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but adds two more operations at each time step, which are, nevertheless, have little 

impact on total calculation time, because other operations for Monte-Carlo collisions 

and diagnostics take much longer time. The diagnostic includes calculations of the 

spatial profiles of the densities, fluxes and flow velocities, the velocity distribution 

functions and the mean energy of all plasma components in three velocity dimensions 

as well as the spatial potential distribution and the time behavior at the selected points. 

The time behavior diagnostic allows us to check the achievement of a steady state and 

control numerical instabilities with the level of plasma oscillations. All spatial profiles 

are obtained in the steady state and are averaged over the time interval that exceeds 

several tens of the ion plasma oscillation periods. Typical time of one simulation 

comes to a few hundreds periods of the plasma ion oscillations. 

 

2.1.3 Simulation results and comparison with theory 

 

In order to check the correctness of the code we simulated the collisionless 

sheath without any elementary processes and compared them with the theoretical 

results described in Section 2.1.1. The simulation results of the collisionless sheath are 

shown in Fig.2.1.3 for the ratio of ion-to-electron temperature 1 8=i eT T , the mass 

ratio 64=i em m  and the half-Maxwellian ion and electron influxes with the density 

ratio ( ) ( )

0 0 0.5069+ + =e in n  that implies quasi-neutrality of the bulk plasma. The wall was 

set floating and for the given above plasma parameters its theoretical potential is 

, 2.44w fl ee Tϕ = − . In Fig.2.1.3(a), the simulated spatial potential profile is shown. As 

we can see, the simulated floating wall potential coincides with the theoretical value. 

The potential profile is monotonically decreasing that corresponds to the theoretical 

condition. The drop of potential at the bulk plasma boundary is caused by the specific 

ion velocity distribution function that does not satisfy the Bohm criterion [24] and has 

zero velocity ions in spite of physical sheath edge conditions [21], therefore, the 

electron sheath is formed to accelerate ions. For the purpose of the test it doesn’t play 

role, because such behavior corresponds to the theoretical solution with the given 

boundary conditions. In Fig.2.1.3(b), the time evolution of the wall potential and the 

potential at the middle point are plotted, where 2

0 0D eT n eλ ε≡  is the Debye length 

at the boundary of the bulk plasma. They oscillate in the steady state with the plasma 
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Fig. 2.1.3 Simulation results of the collisionless sheath for the ion to electron 

temperature ratio 1 8=i eT T , the mass ratio 64=i em m  and the half-

Maxwellian ion and electron influxes with the density ratio 
( ) ( )

0 0 0.5069+ + =e in n at the / 50Dz λ = − , 2

0 0D eT n eλ ε≡  is the Debye 

length at the boundary of the bulk plasma. 
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Fig. 2.1.4.  Comparison of the simulated (crosses) and the theoretical (lines) values of 

the electron and ion densities, flow velocities and mean kinetic energies 

as functions of the local potential. The plasma parameters are the same as 

in Fig.2.1.3. 

 

electron frequency and the amplitude of order of the electron temperature that 

confirms the stability of the simulation. The averaging time period is shown by the 

vertical dotted lines. The time averaged spatial profiles of the charge densities, the 

flow velocities, the mean kinetic energies and the fluxes are presented in Fig.2.1.3(c-

f), respectively, where the brackets represent an ensemble averaging. We can see the 

sheaths structure in this case with the electron sheath near the bulk plasma, the quasi-

neutral region in the middle of the system and the Debye sheath near the wall. The 
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electron and ion fluxes are equal each other that should be expected for the floating 

wall condition and are constant over the whole system as long as there are no particles 

sources and sinks. The agreement between the simulation results and the theoretical 

solutions is confirmed by Fig.2.1.4, where the electron and ion densities, the flow 

velocities and the mean kinetic energies are plotted as functions of the local potential. 

The crosses on the figure shows the simulated values and the lines are the theoretical 

solutions. As we can see, there is excellent agreement for all parameters. The 

theoretical curves for the electron and ion densities show that for the shallow 

potentials near the bulk plasma boundary, the electron density is higher than the ion 

one and an electron sheath should be formed for the injected half-Maxwellian ions 

without collisions. Further, there is the charge-neutrality point, which corresponds to 

the shelf on the potential profile, and the ion sheath. The electron velocity distribution 

function inside the sheath is strongly affected by the truncation effect that causes 

sharp increase of the electron flow velocity. The obtained results confirm the validity 

of the developed simulation code and provide additional information on the boundary 

conditions at the bulk plasma and the effect of the truncation of the electron velocity 

distribution function. 

The more realistic sheath simulations can be carried out when we take into 

account the presheath formation due to ionization of neutrals and provide an initial ion 

flow velocity at the bulk plasma boundary to avoid the electron sheath appearance.  

Let’s consider the plasma that is close to parameters of the divertor plasma in 

fusion devices. The real values of the temperature of electrons and ions in the bulk 

plasma were chosen 10= =e iT T eV and the plasma density was  12

0 10=n cm
-3
. Due 

to difficulties of a particle simulation with a large plasma volume that requires vast 

computation resources we took the length of the simulated system 100λ=s DL , where 

2

0 0 23.5λ ε= =D eT n e µm is the bulk electron Debye length, which still 

significantly exceeds the expected sheath width of order a few Debye lengths. The 

elementary process accounted here was the electron impact ionization of neutral 

hydrogen. With the purpose of getting the reliable ionizing presheath, which length is 

order of ionization mean free path, fitted into the simulated system we would 

effectively increase the neutral gas density that was 1510=an cm
-3
 with the 

temperature 0.025=aT eV, which corresponds to the room temperature of 20˚C. 
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Fig. 2.1.5 Spatial profiles of the simulated potential, electron and ion densities, flow 

velocities and effective temperatures in the Debye sheath and the presheath 

near the floating wall. 

 

Simulated spatial distributions of the electric potential, the charge densities, 

the flow velocities and the effective temperatures ( )22υ υ≡ −eff z zT m of electrons 

and ions are shown in Fig.2.1.5. We can see the monotonic potential distribution in 

the system that includes the positively charged sheath and the quasi-neutral presheath. 

As expected, the largest part of the potential drop between the floating plate and the 

bulk plasma appears in the Debye sheath region. The potential drop at the bulk plasma 

boundary was eliminated by the selected shift velocity of the injected Maxwellian ion 

velocity distribution function. Inside the Debye sheath all parameters of the plasma 

significantly change due to sharp acceleration of ions and modification of the 

electrons velocity distribution function. In contrast, the ionizing presheath region has 

the weak electric field, the almost constant effective temperatures of electrons and 

ions and gradual acceleration of ions toward the plate up to the sound speed 

accompanied with decrease of the density. According to the Bohm criterion [21,24] 

we can define the sheath edge as the position, where the ion flow velocity equals to 

the local ion sound speed  
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( )
( ) ( )γ+

= e i

s

i

T z T z
c z

m
, (2.1.25) 

where γ  is the ratio of the specific heat at a constant pressure to that at a constant 

volume, for the one-dimensional adiabatic case 3γ = . The simulated spatial 

distribution of the ion sound speed presented in Fig.2.1.5 normalized by 

0 =s e ic T m   , where the obtained position of the sheath edge is indicated as shL . 

The obtained value of shL  is ,5.4λD sh , where , 1.36λ λ=D sh D  is the electron Debye 

length at the sheath edge, its value is also simulated. 

Fig. 2.1.6 Simulated velocity distribution functions of the ions (left) and the electrons 

(right) at the sheath edge position / / 0.074s sh sz L L L= = . 

 

Due to the absorption of the high-energy electrons, the negative velocity tail of 

the electron distribution function is absent and the electron effective temperature and 

the electron density are reduced. We can observe this effect in Fig.2.1.6, where the 

simulated ions and electrons distribution functions at the sheath edge are shown. Two 

groups of ions were formed in the ion velocity distribution function: the ions injected 

from the bulk plasma and the ones created by ionization of hydrogen atoms, both of 

which were accelerated by the presheath potential drop. Assuming that the slowest 

ions injected from the bulk plasma initially have zero velocity that further accelerated 

in the presheath, we can approximately find the part of the injected ions in the total 

ion density at the sheath edge. Such estimation shows that about half of the ions at the 

sheath edge was injected and another half was created by ionization. As can be seen, 
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acceleration of the ions leads to narrowing of their velocity distribution function that 

allows us to neglect their temperature as the first approximation. 

Therefore, the simulation gave us spatial distributions of the plasma 

parameters in the whole system including the Debye sheath and the ionizing presheath. 

The obtained potential distribution, the electron and ion densities, the flow velocities 

and the effective temperatures can be used further for the analysis of the dust particle 

motion in the boundary plasma. 

 

2.2 Behavior of a dust particle 

 

Here we will consider the one-dimensional model of a single spherical dust 

particle behavior in a boundary plasma assuming that the plasma is not affected by the 

dust particle. When immersed into the plasma a dust particle becomes a small floating 

probe that absorbs plasma charges and can move or levitate under effect of an 

electrostatic force and other forces such as an ion drag force or a gravitational force. 

In our case, the dynamics of the dust particle is described by the equations of charging 

and motion with the initial conditions implying the dust particle placed on the wall 

with zero velocity. The conditions, under which the dust particle can be released from 

the wall, will be also analyzed in details in this section. In order to solve the dust 

dynamics equations we need to know the currents and forces acting on the dust 

particle, which depend on the local plasma parameters and the dust charge. The 

distributions of the boundary plasma parameters were simulated in the previous 

section and the currents and the forces we describe below. 

 

2.2.1 Model: charging and forces 

 

The charging of a dust particle in a plasma is a fundamental problem that is 

related to the plasma probe theory. Usually, a dust particle in a plasma can be 

considered as a floating probe accumulating electron and ion currents on it. As the 

electron mass is small, electron velocities are high and the electron current to the 

uncharged dust particle exceeds the ion current and the dust particle obtains a negative 

charge. This process of charging continues until the negative charge of the dust 

particle, which is repulsive for electrons and attractive for ions, will not equalize the 
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currents and further the equilibrium dust charge will not change significantly. Note 

that the equilibrium dust charge in the steady state still can vary due to discrete nature 

of the absorbed charges, which may be important for very small dust particles, and 

fluctuations of the plasma parameters. The repulsion of the electrons and the attraction 

of the ions create a plasma sheath around the dust particle, which modifies potential 

distribution and trajectories of plasma particles around the dust particle and requires 

the solution of the Poisson’s equation. Thus, the problem of dust charging is self-

consistent and is not solved in a general case. It becomes even more complex if a dust 

particle is placed in a plasma flow or an external non-uniform electric field like in a 

sheath. For the analysis of dust dynamics we need to simplify the situation to describe 

the dust charging analytically apart a self consistent computer simulation. The Orbital 

Motion Limited (OML) theory [41,42] gives us the possibility to describe the 

charging current to a spherical dust particle. This theory does not consider a self-

consistent sheath structure around the dust particle, instead it uses the energy and the 

angular momentum conservation equations to obtain the absorption cross section of an 

electron or an ion by the dust particle. The cross section corresponds to the grazing 

dust surface trajectory of an electron or an ion that has the maximal impact parameter 

among absorbed particles. This consideration is valid only if the potential distribution 

around the dust particle is spherically symmetrical and does not allow the existence of 

trapped ion trajectories. That is possible if the potential is decreasing toward the dust 

particle not faster than approximately 21 r  [42,44]. Other limitation is appearance of 

an effective potential barrier [43,45] due to specific competition between the electric 

field in the screened dust potential and the centrifugal force. The barrier appears for a 

big dust particle in comparison with the screening length. However, the OML theory 

was proved to be accurate enough for the most situations [45]. Other available 

theories have more strict limitations as the ABR (Allen, Boyd, Reynolds) theory [47] 

is applicable for low energy ions and the theory by Bohm, Burhop and Massey for the 

limit of 0λ →D . Also, all these theories do not take into account a magnetic field, 

secondary or photo emissions etc., which are beyond our consideration at present and 

can be included in future. Therefore, the OML theory was used here to describe the 

absorption of plasma particles by the spherical dust particle. It gives the following 

expressions for the absorption cross section of an electron or an ion 
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where dR  is the radius of the dust particle, dQ  is its charge, ie,υ  is the incident 

velocity of the absorbed electron or ion, and eqe −= . If the velocity distribution 

functions of electrons and ions are known then we can calculate the charging currents. 

As we saw in previous Section 2.1.3, the ions are highly accelerated toward the wall 

by the sheath and presheath potential drops, therefore we can neglect an ion 

temperature and describe the ions as monoenergetic with the local flow velocity izu . 

The electron distribution function is assumed Maxwellian with the effective 

temperature eT . Thus, the ion and electron currents to the negatively charged dust 

particle can be found as following 
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and in the case of  a positively charged dust particle 
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The local equilibrium charge ,d eqQ of the dust particle can be found from the equation 

( ) ( ), ,, , 0+ =i d eq e d eqI Q z I Q z . (2.2.4) 

If for the initially uncharged dust particle 0=dQ  the electron current exceeds the ion 

current, so the condition ( )
( )

( )
8 e

e i i

e

T z
en z q z

mπ
> Γ  is fulfilled, then the dust particle 

can have a negative equilibrium charge. This condition is easily satisfied for the most 

situations due to the very small electron mass until an electron density is too low as 

for example in a very deep negative sheath potential. The last situation may be 

realized near a highly biased wall with an external negative voltage applied. 

During the motion the dust particle experiences changing of the surrounding 

plasma parameters and if the motion is fast in comparison to the dust charging 
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timeτ ch , then the dust particle may not reach the local equilibrium charge at the every 

position that is called the delayed charging effect. The dust charging time can be 

estimated using the perturbation method. Let’s write the non-equilibrium dust charge 

as ,= + ∆d d eq dQ Q Q  then the dust charging equation is 

( ) ( ), ,

∆
= + ∆ + + ∆d

i d eq d e d eq d

d Q
I Q Q I Q Q

d t
. (2.2.5) 

This equation can be linearized when the deviation of the charge is small 
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<<
zTR

Q

ed

d

επ
∆

 and taking into account equation (2.2.4) we will get  
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i d i e dd
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n z R q n z R ed Q
Q

d t m u z m T z
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The solution of equation (2.2.6) in the form ( )expd chQ t τ∆ ∝ −  gives the charging 

time  
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( )

( )
( )

2 2

0 0

1

2 2τ ε ε π
= +i d i e d

ch i iz e e

n z R q n z R e

m u z m T z
. (2.2.7) 

The delayed charging effect may be important if the dust charging time is shorter than 

the characteristic time of the dust motion, which we will discuss in the following 

sections. 

Further, let’s consider the forces acting on the dust particle. As long as the 

charged dust particle is placed in the sheath with the local electric field ( )E z , it 

experiences the electrostatic force, which with the assumption of undisturbed plasma 

in our one-dimensional model is simply 

( ) ( ) ( ), ,=E dF z t Q z t E z . (2.2.8) 

Another force acting on the dust particle is the ion drag force. It includes two 

components: the first is the ion drag force due to absorption of ions by the dust 

particle ( )tzF abi ,,  and the second is the ion drag force due to scattering of ions 

( )tzF sci ,, . The ion absorption drag force can be calculated in the same way as the ion 

current assuming the monoenergetic ion velocity distribution function 
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. (2.2.9) 
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Here we neglected the dust particle’s velocity in comparison to the ion flow velocity 

and substituted the relative ion-dust velocity with the ion one. 

The ion drag force due to scattering can be written as 

( )
( ) ( )

( )

2 2

, 2 2

0

, ln
,

4π ε

Λ
= d i i d

i sc

i iz

Q z t q n z
F z t

m u z
, (2.2.10) 

where dΛln  is the Coulomb logarithm for the dust particle. This force is obtained 

from the classical momentum transfer cross section for the Coulomb scattering [76]. 

The lower limit of the integral of the Rutherford scattering is the smallest scattering 

angle that corresponds to the dust screening radius ( )λ+d DR  and the upper limit is 

the largest scattering angle that corresponds to the absorption radius absR . The 

shielding length is usually assumed equal to the electron Debye length λD  [49,65] and 

according to the OML theory 
,

2

0 , ,

1
2π ε υ

= − d e i

abs d

d e i e i

Q q
R R

R m
 . Correspondingly to the 

classical consideration [13,65] the Coulomb logarithm for the dust particle is the weak 

function of the dust particle’s radius and the Debye length 
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i iz

Q q
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m u
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Here we neglect the dependence of the Coulomb logarithm on the dust radius and 

assume that it is constant. For the simulated plasma parameters we take 3ln =dΛ  that 

is smaller value than a usual plasma Coulomb logarithm integrated from the zero 

impact parameter. The dust velocity is also neglected here in respect to the ion flow 

velocity. 

When the dust particle is placed close to the wall (at the distance less than the 

screening radius) the distribution of the wall charges is affected by the dust particle 

creating the electrostatic force directed toward the wall. We approximately describe 

this force using the electrostatic image method symmetrically placing the point charge 

equal with an opposite sign to the dust charge at the same distance from the wall as 

for the dust particles center. That assures the normal electric field at the wall surface 

neglecting the plasma and the dust particle polarization effects. As the dust charge is 

screened by a plasma, we can neglect this force for the dust dynamics in plasmas, but 

we account it for the release condition analysis when the dust particle is placed on the 

wall. Thus, the electrostatic image force for the dust on the wall is equal to 
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The gravitational force acting on the dust particle is arbitrary directed 

relatively to the wall normal direction depending on the wall orientation to the 

horizontal line. For the vertical walls the projection of the gravitational force on the 

wall normal is zero and in our one dimensional analysis it can be omitted. In other 

cases the projection can be directed both toward the wall and in the opposite direction. 

We consider two limit cases of the bottom position of the horizontal wall and the 

upper position. Then the gravitational force will be = ±g dF m g , where dm  is the dust 

particle’s mass, and g  is the free fall acceleration. The plus sign means the 

gravitational force directed toward the wall and the minus sign means from the wall 

direction. For the case of solid spherical dust particle 

34

3
π ρ= ±g d dF R g , (2.2.13) 

where ρd  is the mass density of the dust particle. 

In our consideration there is no flow of the neutral atoms and they do not 

provide a directed drag force, but cause dissipative friction force. Because of the low 

neutral gas temperature and the small dust particle velocity relative to the ion flow 

velocity, the neutral frictional force is negligible in comparison to the ion drag force. 

Therefore, we neglect the neutrals frictional force in the short time of one dust 

oscillation period and just point the dumping effect of the neutrals friction. The forces 

described above are included in the total force and used for solution of the dust 

motion equation 

, ,= + + + +E i ab i sc m gF F F F F F . (2.2.14) 

We have expressions for the currents and forces to the dust particle, where the 

independent parameters are the local plasma parameters, which are simulated or can 

be estimated theoretically, and the dust radius dR . Numerical solutions of dynamics 

equations (2.2.1) for different radii of the dust particle can show their possible 

trajectories in the boundary plasma. In the next section we analyze the solutions and 

the initial conditions on the wall. 
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2.2.2 Release from wall: the first critical radius 

 

Now, let’s discuss the situation when the dust particle is placed on the wall 

initially. We are interested, first of all, what is the dust charge and when the dust 

particle can leave the wall and move into the plasma. The charge of the dust particle 

on the wall is no more directly obtained from the floating condition of equal currents 

of electrons and ions to the dust particle. Instead, the dust charge is determined by the 

wall surface charge density as long as the conductive dust particle is in electrical 

contact with the wall. In the absence of the dust particle, the wall surface charge 

density is directly related to the electric field at the wall wE . From the Gauss theorem 

for the plane geometry and the zero electric field inside the conductive wall we know 

the wall surface charge density 0w wEσ ε= − . If the dust particle is a disk (circle 

element of the wall) then its charge would be the product of the dust surface and the 

wall surface charge density 2

0d d w d wQ S R Eσ π ε= = − . In the case of the spherical dust 

particle we can not just write 2

04d d w d wQ S R Eσ π ε= = −   because the electric field will 

be disturbed by the dust particle. Therefore, the dust particles charge on the wall is 

described as 

2

0d q d wQ R Eξ π ε= − , (2.2.15) 

where qξ  is the form factor taking into account the effect of dust shape and the 

redistribution of the surface electric field due to the presence of the dust particle. The 

form factor can be found analytically for simple situations by solution of the Laplace 

equation for the disturbed electric field. For the case of the conductive sphere placed 

on the wall in a uniform external electric field, it was shown [77] that the value of the 

form factor is  

22
6.58

3
qξ π= ≈ . (2.2.16) 

Note that this value is larger than that of a spherical surface 4qξ = , thus, on average 

the normal electric field on the dust surface is enhanced due to polarization of the dust 

in comparison with the undisturbed electric field at the wall surface. Later, when we 

consider the two dimensional model, we include effects of the non-uniform external 

electric field and analyze the plasma effect. Hence, the initial dust particle charge on 

the wall expressed as (2.2.15) is a function of the dust radius and the electric field at 
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the wall. When the particle is released from the wall it recharges to the floating 

potential as the electric contact with the wall is lost. 

The condition, when the dust particle can leave the wall, should assume that 

the total force acting on the particle on the wall position is negative, i.e. directed from 

the wall 

( ) , ,0 0E i ab i sc m gF z F F F F F= = + + + + < . (2.2.17) 

Here we neglected any molecular forces bounding the dust particle with the wall, 

because it requires including roughness and atomic structures of the surfaces that is 

beyond our consideration. 

All the forces included in the releasing condition (2.2.17) are functions of the 

dust radius and the plasma parameters at the wall. Thus, if the plasma parameters are 

fixed then the releasing condition can be solved in respect to the dust radius. As the 

direction of the gravitational force is arbitrary we consider three cases: the 

gravitational force is zero (vertical wall), negative (upper wall) and positive (lower 

wall) corresponding to expression (2.2.13). After substitution of the initial dust charge 

(2.2.15) into the electric force, we find 

( ) 2 2

00E q d wF z R Eξ π ε= = − . (2.2.18) 

The ion drag forces on the dust particle at the wall position are 
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The electrostatic image force is rewritten as 

2 2 2

0

16

q d w

m

R E
F

ξ π ε
= , (2.2.21) 

and the gravitational force (2.2.13) does not change. As we can see, all the forces are 

power dependent on the dust radius dR , where the highest is the fourth order power 

for the ion scattering force and the lowest one is the second order. Therefore, the dust 

particle release condition (2.2.17) finally becomes the second order polynomial 

inequality 
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, (2.2.22) 
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q

i iw izw

E
C

m u

ξε
ξ

 
= + −  Γ  

. (2.2.25) 

Inequality (2.2.22) can have two, one or no real solutions depending on the relation 

between the coefficients A  , B  and C . The RHS of inequality (2.2.22) is a concave 

shape parabola on dR  scale (Fig.2.2.1), because, as easy to see, in all cases 0A > . 

Physically it means that the very large particles can not leave the wall due to the large 

positive ion scattering force. 

Let’s consider the situation 

when the gravitational force is zero, 

where the dust particle is located on 

the vertical wall. In this case the 

coefficient B  is positive and 

number of non-negative zeros of the 

condition’s (2.2.22) LHS depends 

on the sign of the coefficient C : 

when 0C > , there are no positive 

solutions for dR , and when 0C ≤ , 

there is one non-negative solution 

with the physical meaning. 

The one non-negative solution is 

( )
2

1 1 1 4ln 1
ln

i izw

c d p

q w i d

m u
R

E q
α

ξ
 = − + + Λ −  Λ

, (2.2.26) 

where 

( ) 2

0

2

1 /16
1

q q w

p

i iw izw

E
C

m n u

ξ ξ ε
α

−
≡ − = . (2.2.27) 

Therefore, the non-negative solution (2.2.26) exists only when  

1pα ≥ . (2.2.28) 
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Fig. 2.2.1 Parabolic dependence of the 
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We called 1cR  the first critical dust radius. If the dust particle radius 1d cR R< , the 

release condition (2.2.17) is satisfied and the dust particle can leave the wall, in the 

opposite case 1d cR R≥ , the dust particle can not leave the wall. Thus, the first critical 

dust radius is the radius of the biggest released dust particle. As we noted, in the case 

1pα <  there is no positive solution for the first critical dust radius and because all the 

coefficients A  , B , and C  in this case are positive, the total force acting on the dust 

particle will be positive, so the particle of any size can not leave the wall. 

In order to understand when the condition (2.2.28) of the first critical dust 

radius existence is satisfied, we need to know plasma parameters at the wall. These 

parameters can be measured or simulated, but for getting more general conclusion let 

us theoretically estimate the electric field wE , the ion density iwn  and flow velocity 

izwu  at the wall in the Debye sheath. The classical way is to use the Bohm theory 

[21,24] of the sheath, which assumes the vanishing electric field and the ion flow 

velocity equal to the ion sound speed 0s e ic T m=  at the sheath edge. We consider 

here the classical collisionless sheath with Maxwellian electrons formed in front of 

the biased wall with the given sheath potential drop shϕ . After integrating of the 

Poisson’s equation once and using the flux and the energy conservations for the ions, 

one arrives to 

0

2
1izw sh

s e

u e

c T

ϕ
= + , (2.2.29) 

1 2

0

2
1 sh

iw

e

e
n n

T

ϕ
−

 
= + 

 
, (2.2.30) 

2 0

0

2 2
1 2

sh

e

e

Te sh

w

e

n T e
E e

T

ϕ
ϕ

ε

− 
=  + + − 

 
 

, (2.2.31) 

where 0n  is the ion density at the sheath edge. Now we have the plasma parameters 

near the wall expressed analytically via the sheath potential drop, the plasma density 

and the electron temperature at the sheath edge. 

Fig.2.2.2 shows the electrostatic, the ion absorption drag, the ion scattering 

drag, the image and the total forces as functions of the normalized dust radius for the 

estimated plasma parameters according to formulae (2.2.29-31) with the sheath 

potential drop 10sh ee Tϕ = , the dust form factor 6.58qξ =  and the dust Coulomb  
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logarithm ln 3dΛ = . Here and then we perform numerical calculations for the single 

charged hydrogen ions with eqi += . As we can see, the electrostatic force (2.2.18), 

which is parabolic on dR , exceeds all other forces for the particles smaller than the 

first critical dust radius 1cR , so these particles can be released from the wall. With 

increasing of the size of dust particles the ion drag force increases faster than the 

electrostatic force and dust particles bigger than 1cR  are pinned against the wall. 

The dependence of the parameter pα  on the sheath potential drop is presented 

in Fig.2.2.3(a) using the obtained dependencies of the plasma parameters on shϕ  in the 

Bohm sheath model. The parameter pα  is a monotonically increasing function of shϕ  

from zero, therefore, condition (2.2.28), which indicates the existence of the first 

critical dust radius, is satisfied when the sheath potential drop is larger than the 

threshold value ,sh thϕ  corresponding to 1pα = . As shown in Fig.2.2.3(b), the first 

critical radius increases from zero at the threshold sheath potential drop to a few 

Debye lengths for deeper sheath potentials. For the potentials lower than the threshold 

one, no physical solutions for the first critical radius exist and the dust particles of any 

size are pinned against the wall with the ion drag forces.  
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Fig. 2.2.2 Forces acting on the dust particle on the wall position as functions of the 

normalized dust radius 
d

R  for the spherical particle with 6.58
q

ξ = , the 

dust Coulomb logarithm ln 3
d

Λ =  and 10
sh e

e Tϕ = . The first critical dust 

radius corresponding to the total force equaled zero indicated as 1cR . 
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Thus, the region above the curve in Fig.2.2.3(b) corresponds to the pinned dust 

particles, and the region below the curve corresponds to the particles sizes and the 

sheath potentials when the dust particles can be released from the wall. 

As can be seen from the definition of the parameter 
p

α  (2.2.27), it is the ratio 

of the electric field pressure to the ion flow pressure. Hence, the condition of the first 

critical radius existence (2.2.28) means that the electrostatic pressure should be larger 

than the ion flow pressure at the wall. The value of the threshold sheath potential drop 

corresponds to the marginal equality of the pressures. The threshold potential ,sh th
ϕ  

can be found from the equation 

( ) ( )
.

2

0

2

,

1 /16 2
2 1 /16 1 1

1 2

sh th ee T
q q w

p q q

i iw izw sh th e

E e

m n u e T

ϕξ ξ ε
α ξ ξ

ϕ

− − −
 ≡ = − + =

+  
. (2.2.32) 
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Fig. 2.2.3  Dependence of the parameter 
p

α  (a) and the first critical dust radius 1cR  

(b) on the sheath potential drop 
sh

ϕ  in the Bohm sheath model. Here the 

parameters 6.58
q

ξ =  and ln 3
d

Λ = . 

a) 

b) 
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Fig. 2.2.4  Threshold sheath potential drop as the function of the dust particle form 

factor in the Bohm sheath model. 

 

The solutions of this equation for different dust form factors are sown in Fig.2.2.4. As 

one can see, the threshold sheath potential drop weakly depends on the form factor for 

wide range of its values from around 4
q

ξ =  to 12
q

ξ =  including the value for the 

spherical dust particle 6.58
q

ξ = . Thus, the threshold potential is not sensitive for the 

small deviations of the dust shape from the spherical one. Another point is that the 

threshold potential exists only in the range of the form factors 

( ) ( )0.5167 8 1 7 8 8 1 7 8 15.48
q

ξ≈ − < < + ≈  changing sharply near the limits. 

Outside this range of the form factor values the parameter 
p

α  is less than unity and 

the first critical dust radius does not exist. Thus, all dust particles with the form factor 

outside the indicated range of values will be pinned against the wall. The lower limit 

of the range appears due to insufficient dust charge to release the dust particle from 

the wall and the upper limit is caused by the strong electrostatic image force as it is 

proportional to the square of the dust charge, while the electrostatic repulsive force 

depends on it only linearly. 

The sheath potential drop can be controlled by the externally applied voltage 

to the wall. Generally, if we apply the voltage between two walls, the plasma potential 

will be still positive in respect to the both walls until the area of one wall will not be 

very small compare to another one or the secondary/photo electron emission is not 

strong. The dependence of the sheath potential drop on the externally applied voltage 
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can be obtained theoretically in the planar geometry (Appendix B) and satisfy the 

relation 

( )
( )

( )( )
( )( )

1 1

2 2

expexp
1

21 1

w w
sh ext esh e e

w w

ish e sh ext e

e Te T mS S

mS Serf e T erf e T

ϕ ϕϕ π

ϕ ϕ ϕ

− +−  
+ = + 

+  + +
,

 (2.2.33) 

where extϕ  is the externally applied voltage to the wall “w1” in respect to the wall 

“w2”,  1wS  and 2wS  are the areas of the two walls, respectively. The solutions of 

(2.2.33) are shown in Fig.B.3 (Appendix B). 

Therefore, the first critical dust radius and the threshold potential are the 

functions of the externally applied voltage to the wall. It shows the possibility to 

control the size of the released dust particles or even suppress the dust releasing from 

the wall when the wall potential is below the threshold value. 

Now the gravitational force is taken into account, at first, we consider the case 

when its direction is toward the wall. In this case, the coefficient B  (2.2.24) remains 

positive and the release condition (2.2.22), as in the case without gravitational force, 

has one or no physical solutions for the first critical radius depending on the sign of 

the coefficient C  (2.2.25). The first critical radius can be written then 

( ) ( ) ( )
2

2

1 1 1 4ln 1
ln

i izw

c g g d p

q w i d

m u
R

E q
α

ξ
 = − + ∆ + + ∆ + Λ − Λ  

, (2.2.34) 

where 

08

3

e

g g

q w i iw D

n T

E q n
δ

ξ λ
∆ = , (2.2.35) 

and the dimensionless gravitational parameter gδ  is defined as 

1 2

0

3 2 1 2

0 0

d D d

g

e e

g g

n T en T

ρ λ ρ ε
δ ≡ = . (2.2.36) 

The parameter g∆  after substitution of the electric field and the ion density on the 

wall according to (2.2.30-31) will be the following function of the dimensionless 

sheath potential drop 

1 2

1 28

3 2 1 2 2sh e

sh e

g ge T

q sh e

e T

e T e
ϕ

ϕ
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ξ ϕ −

 +
∆ =  

 + + − 
. (2.2.37) 
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Thus, the gravity effect is localized and described only by the gravitational parameter 

gδ . As we can see from (2.2.34), the condition for the first critical dust radius 

existence, 1pα ≥ , is not modified. It means that the threshold sheath potential drop is 

also present and, moreover, its value is not affected by the gravitational force directed 

to the wall. Such independence of the threshold potential on the gravitational force 

can be explained if we note that it corresponds to the first critical dust radius 

approaching zero. Therefore, only the forces with the lowest second order dependence 

on the dust radius define the force balance near the threshold potential and the effect 

of gravitational force vanishes in this case due to cubic dust radius dependence.  

In Fig.2.2.5, the dependence of the first critical dust radius on the sheath 

potential drop is shown when the gravitational force is directed toward the wall for 

various values of the gravitational parameter gδ . As we can see, the stronger gravity 

is, the smaller the first critical radius is and the smaller the region of released dust 

particles becomes. That is physically reasonable, as the gravitational force in this case 

hampers the release of the particles. Also, one can see that the threshold potential is 

not affected by gravity as was discussed above. The gravitational parameter gδ  

(2.2.36) depends not only on the dust mass density but also on the plasma parameters, 

so for the same dust particles the effect of the gravitational force on the first critical 

radius is smaller in dense and hot plasmas. For the carbon dust particles with 

2dρ = g/cm
3
 and 9.8g =  m/s

2
 we can obtain the estimation formula 

17

3 2 -3 1 2

0

9.09 10

[cm ] [eV]
g

en T
δ

×
= . (2.2.38) 

Using this expression, the gravitational parameter gδ  for a typical density of the 

divertor plasma 12

0 10n = cm
-3
 and the electron temperature 10eT = eV is estimated as 

0.29gδ ≈ , hence the effect of the gravitational force is small, while for a typical 

processing plasma with 10

0 10n = cm
-3
 and 3eT = eV the gravitational parameter is 

525gδ ≈  and the effect of the gravitational force becomes significant. As shown in 

Fig.2.2.6, when the gravitational parameter 1gδ < , the first critical dust radius is 

practically unaffected by the gravitational force and for 10gδ >  the first critical 

radius is inversely proportional to gδ . 
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Fig. 2.2.5 Dependence of the first critical dust radius on the sheath potential drop 

with the gravitational force directed toward the wall for various values of 

the gravitational parameter gδ  and the parameters 6.58qξ = , ln 3dΛ = . 
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Fig. 2.2.6 Dependence of the first critical dust radius on the gravitational parameter 

gδ  for the gravitational force directed toward the wall with various values 

of the sheath potential drop and the parameters 6.58qξ = , ln 3dΛ = . 
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In the case of the gravitational force directed from the wall, the coefficient B  

(2.2.24) may be both positive and negative, thus there appears the releasing condition 

(2.2.22) can have two positive solutions for the first critical radius 

( ) ( ) ( )
2

2

1 1 1 4ln 1
ln

i izw

c g g d p

q w i d

m u
R

E q
α

ξ
 = − − ∆ ± − ∆ + Λ − Λ  

. (2.2.39) 

As can be seen from expression (2.2.39), in any case we have only one physical 

solution for the first critical radius when 1pα ≥ . For 1pα <  the first critical radius 

has no solutions when the discriminant ( ) ( )2

1 4ln 1 0g d pD α≡ − ∆ + Λ − <  or 1g∆ <  

and has two physical solutions 1

l

cR   and 1

u

cR  ( 1

l

cR  smaller than 1

u

cR ) when 0D >  and 

1g∆ > . Two values for the first critical radius mean that the dust particle will be 

released from the wall when its size is in between of them 1 1

l u

c d cR R R< <  and pinned 

to the wall when the dust size is out of the range. Thus, the threshold sheath potential 

drop in this case exists, above which there is only one value of the critical dust radius. 

Below the threshold sheath potential two situations are possible depending on the 

gravitational parameter gδ : no particles can leave the wall, or there is the range of 

released dust particle’s radius in between two solutions of the critical radius. The 

threshold sheath potential does not depend on gravity as in the case of the positive 

gravitational force. The situation is illustrated in Fig.2.2.7, where the regions colored 

in green correspond to the released dust particles. We can see two regions of the 

released dust particles for the values of the gravitational parameter 2.302gδ <  that 

are merged when 2.302gδ > . There is a gap in the sheath potential values for the 

small gravitational parameters, where no dust particles can leave the wall even though 

the gravitational force is directed from the wall. When the gravitational parameter is 

large, there are dust particles that are released from the wall for any sheath potentials. 

For the special value of the gravitational parameter 2.302gδ ≈ , the two regions of 

released dust particles and the two regions of the pinned particles can be clearly 

distinguished. There is a dominant force indicated in the left part of Fig.2.2.8 that 

prevails in each of the regions. In the right part of Fig.2.2.8 the absolute values of the 

forces are plotted for the selected dust radii. In the logarithmic scale of the figure, the 

largest force is dominant in some range of the sheath potentials. As we can see, the 

gravitational force is dominant for the large particle with / 10d DR λ =  in the released 



 45 

 

 

Fig. 2.2.7 The first critical dust radius 1cR  as a function of the sheath potential drop 

shϕ  for the case when the gravitational force is directed from the wall with 

various values of the gravitational parameter gδ  and parameters 6.58qξ = , 

ln 3dΛ = . The regions corresponding to the released dust particles are 

indicated in green color. 
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region and the ion scattering drag force prevails in the upper pinned region. For the 

small dust particle / 0.1d DR λ =  the ion absorption drag force is dominant in the 

lower pinned region and the electrostatic force in the released region. The 

configuration of the pinned and released particles regions depend on the gravitational 

parameter. The diagram shown in Fig.2.2.9 displays the number of the first critical 

radius solutions depending on the sheath potential drop and the gravitational 

parameter. We can see that only one solution exists for the sheath potentials higher 

than the threshold potential that corresponds to the electrostatically released dust 

particles region. For the lower potentials than the threshold the two critical radius 

solutions exist when the gravitational parameter is above the solid line, which is 

defined by the condition 0D = . These two solutions bound the gravitationally 

released dust particles region. The area below the solid line in Fig.2.2.9 corresponds 

to the situation when all dust particles are pinned. The largest value of the 

gravitational parameter, when this situation is possible, is 2.302gδ ≈  and 

corresponding pinned and released dust particles regions are shown in Fig.2.2.8. 

Therefore, basing on the gravitational parameter and Fig.2.2.9 we can say what 
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Fig. 2.2.8 Force diagram for selected dust particle radii for the case of the 

gravitational force directed from the wall and the parameters 

ln 3dΛ = , 6.58qξ = , and ln 3dΛ = . 

0.1 1 10
10

1

10
3

10
5

0.1 1 10
10

-1

10
1

10
3

0.1 1 10
10

-5

10
-3

10
-1

10
1

  

 

 

F
 /
n
0
T
eλ

2 D

eϕ
sh
 /T

e

eϕ
sh
 /T

e

R
d
 /λ

D
=10

R
d
 /λ

D
=0.78

  

 

 

F
 /
n
0
T
e
λ2 D

R
d
 /λ

D
=0.1

 

 

F
 /
n
0
T
eλ

2 D

eϕ
sh
 /T

e

 F
E
       F

i,sc
    F

m

 F
i,ab
    F

g



 47 

configuration of the released and pinned dust particles regions we have, and using the 

first critical radius solutions we are able to predict particles of what size can leave the 

wall or not. 
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Fig. 2.2.9 Diagram of the existence of the first critical dust radius depending on the 

sheath potential drop and the gravitational parameter for the case of the 

gravitational force directed from the wall. As everywhere above 6.58qξ =  

and ln 3dΛ = . 

 

Therefore, in this section we have shown that the first critical dust radius 

exists, which discriminates the released and pinned dust particles on their radii. The 

dependences of the first critical dust radius on the sheath potential drop, the 

gravitational parameter and the dust form factor are analyzed. They show the 

possibility to control the size of the released dust particles with the externally applied 

bias voltage to the wall or even suppress the motion of dust particles with any size. 

The dependences of the first critical radius on the sheath potential were analyzed for 

different situations including the direction of the gravitational force, the dust mass 

densities and the plasma conditions. In the next section we show the dynamics of the 

released particles in the boundary plasma [67]. 
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2.2.3 Dynamics in boundary plasma: the second critical radius 

 

In this section we consider the motion of the dust particles in the boundary 

plasma, which are released from wall. The dynamics of the dust particle, which radius 

is smaller than the first critical radius, is described by the charging and motion 

equations 

( )
( ) ( )

( )
2

2

,
, ,

,

d

i e

d

d Q z t
I z t I z t

d t

d z
m F z t

d t


= −



 =

 , (2.2.40) 

where ( )tzF ,  is the total force acting on the particle at the current position and the 

time moment. The initial conditions for these equations assume that the dust particle 

is placed on the wall with zero velocity and its charge is conditioned by the 

attachment to the wall 

( )0 0z t = = ,   
0

0
t

dz

dt =

= ,   ( ) 2

00d q d wQ t R Eξ π ε= = − . (2.2.41) 

The ion and electron currents to the dust particle are described according to the OML 

theory [41,42] by the formulae (2.2.2-3) for the monoenergetic ions and the electrons 

with the Maxwellian velocity distribution and for both the negative and positive dust 

charge. The forces acting on the dust particle including the electrostatic force, the ion 

drag absorption and scattering forces are taken according to the previously described 

formulae (2.2.8-10). In this case, we omitted the electrostatic image force due to 

exponential screening of the dust potential by a plasma when the dust particle is 

detached from the wall. The gravitational force is constant because it does not depend 

on dust particle’s position and charge. Therefore its effect will be discussed separately 

from the numerical solutions of the dust dynamics equations (2.2.40) in a non-uniform 

boundary plasma for better understanding of each force effect. 

The spatial distributions of the plasma parameters in the sheath and the 

presheath were simulated and described in Section 2.1.3. The simulated spatial 

distributions of the electric potential, the electron and ion charge densities, the flow 

velocities and the temperatures are used to calculate the local currents and forces to 

the dust particle. The system of dust dynamics equations (2.2.40) together with the 

initial conditions (2.2.41) was solved numerically by the Runge-Kutta fourth order 

method for various dust particle radii and masses. The plasma parameters known at 
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the discrete positions of the PIC spatial computational mesh were linearly interpolated 

to the current dust particle’s position. In Fig.2.2.10, the simulated trajectories, 

velocities and charges for the carbon 2dρ = g/cm
3
 dust particles of various radii are 

shown in the sheath and the presheath near the floating wall in the previously 

simulated system (Section 2.1.3) with the density of the hydrogen plasma at the bulk 

plasma boundary 12

0 10n = cm
-3
 and the electron and ion temperatures of the bulk 

plasma 10e iT T= = eV. The particle positions in Fig.2.2.10 are normalized by the 

electron Debye length Dλ , which is 23.5 µm for the given plasma parameters, the 

velocities are normalized by the ion sound speed 4

0 3.09 10sc = × m/s and the time is 

normalized by the ion plasma frequency 9

0 1.32 10iω = × s
-1
. As we can see from 

Fig.2.2.10(a), the smallest particles of 2.35dR = nm goes out of the simulated region 

in short time of a few microseconds and gain the speed up to 310 m/s. Somewhat 

bigger particle with 0.235dR = µm (Fig.2.2.10(b)) damping oscillations with a 

relatively large amplitude around some equilibrium position. As we do not take into 

account the dust-neutrals friction, the damping of the oscillations has collisionless 

nature and is caused by the delayed charging effect. The amplitude of the oscillations 

significantly exceeds the sheath width, which has the order of the Debye length, so the 

dust particle penetrates deeply into the presheath during the oscillations. The 

oscillation period of this dust particle is about 0.1 ms and it gains the velocity up to 

10m/s. The big particle with the radius 9.4dR = µm also oscillates (Fig.2.2.10(c)), but 

the amplitude of the oscillations is comparatively small, so that the dust particle does 

not leave the sheath, the period of oscillations is about 3.8 ms, while the gained speed 

has the order of 1m/s. The charging time for the dust particles can be estimated 

according to formula (2.2.7), which shows that it is inversely proportional to the dust 

radius and gives  0 0.28ch iτ ω ≈  for the particle with 9.4dR = µm, 0 11ch iτ ω ≈  for the 

0.235dR = µm and 3

0 1.1 10ch iτ ω ≈ ×  for the particle with 2.35dR = nm. These 

estimations are made for the simulated plasma parameter at the sheath edge, where the 

simulated electron density is 11

, 5.1 10e shn = × cm
-3
, the ion density is 

11

, 5.3 10i shn = × cm
-3
, the ion flow velocity is 4

, 3.96 10i shu = × m/s and the effective 

electron temperature is , 9.4e shT = eV. 
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Fig. 2.2.10 Time evolution of simulated trajectories and charge of the carbon dust 

particles ( 2dρ = g/cm
3
) with various radii in the simulated boundary 

plasma. 
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As we can see in Fig.2.2.10, the charging time is much shorter than the 

oscillation periods of the particles, except for the smallest one of the radius 

2.35dR = nm. Therefore, the delayed charging effect, when the motion of a dust 

particle is fast and its local charge does not reach the local equilibrium value at any 

point, is strong for the smallest dust particle and weak for the large ones. The charging 

time of a dust particle (2.2.7) depends on the local plasma parameters, which vary in 

the sheath sharply. In Fig.2.2.11, spatial profiles of the charging time of the dust 

particles with the same radii as in Fig.2.2.10 are shown. As we can see, the charging 

time increases significantly in the Debye sheath, where the plasma density is low. 

That can enhance the delayed charging effect for the dust particles with the amplitude 

of oscillations within the sheath region.  As we mentioned, the delayed charging is 

responsible for the damping of the dust particles oscillations. This damping occurs 

when even short delay in the dust charging accumulates during many oscillation 

periods. As was shown in [63], when there is a spatial gradient of the equilibrium dust 

charge then during the dust particle motion toward the gradient direction its charge 

will be a bit lower than the local equilibrium value and a bit higher during the motion 

in the opposite direction. 
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Fig. 2.2.11 Spatial profiles of the charging time of the dust particles with different 

radii in the simulated boundary plasma. 
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Thus, in any case the electric force acting on the dust particle will be a bit stronger 

during its motion in the opposite to the direction of the equilibrium dust charge 

gradient. This effect leads to the exciting or damping of the dust oscillations 

depending on the direction of the electric force. The shorter the charging time is, the 

smaller the delayed charging effect is, as we can see comparing between Fig.2.2.10(b) 

and Fig.2.2.10(c). 

After this qualitative observation of the different dust particles trajectories, 

let’s get closer look at the oscillations. In Fig.2.2.12, the amplitudes of the first 

oscillation period of the dust particle as functions of its radius are shown for various 

dust masses. One can see that there is no motion of dust particles of any masses, 

which radii are bigger than the first critical dust radius 1cR . Otherwise, the dust 

particle can leave the wall and penetrate into the plasma on a maximal distance maxz− . 

As can be seen in Fig.2.2.12, there are dust particles, which can and can’t go far from 

the wall, sharply discriminated on the dust radii by some value. We call this value the 

second critical dust radius 2cR . So, the smaller dust particles than the second critical 

dust radius have the large amplitude of oscillations in the boundary plasma, while the 

larger ones will oscillate with the small amplitude or stay near the wall depending on 

the initial conditions. More detailed analysis of the small amplitude oscillations 

requires taking into account the molecular interaction between the dust and the wall 

that is beyond of the present consideration. Thus, not all particles that are smaller than 

the first critical radius 1cR  can actually penetrate into the plasma, and only that dust 

particles, which are smaller than the second critical radius, can do. 

As can be seen in Fig.2.2.12, the radii of light dust particles, which are lighter 

than the critical mass d cm m< , cannot be strictly differentiated in respect to dust 

particles trajectories. Thus, there is no second critical radius for them. The second 

critical dust radius depends on the dust particle mass, as can be seen in Fig.2.2.12, and 

approaches the value *

2 0.41c DR λ=  for these plasma parameters when the dust mass 

approaches to infinity dm → ∞ . The mass dependence can be explained by the 

delayed charging effect, which leads to increasing of the second critical radius with 

decreasing of the dust mass due to the faster dust motion from the wall compared to 

the slow relaxation of the high initial dust charge. For the very light dust particles 

with d cm m< , this effect is so strong that the electric field in the sheath region propels  
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Fig. 2.2.12 Amplitude of the first period of the dust particle oscillations as a function 

of the dust radius for different masses. 

 

them against the ion flux for any dust radii that smaller than the first critical one. 

From the simulations we found that the critical mass for the simulated plasma 

parameters equals approximately 62 10c im m= × , where im  is the ion (proton) mass. 

For the solid carbon dust particles with 2dρ = g/cm
3
 we can find the relation 

[ ]12 35 10 md i dm m R µ= ⋅ . Therefore, for these plasma parameters, the particles with 

the radii smaller than 7.4 nm are lighter than the critical mass and experience strong 

delayed charging effect. This estimation also agrees with the charging time 

calculations made for the dust particle, which trajectory is shown in Fig.2.2.10(a). 

The existence of such sharp separation of the oscillation amplitudes on the 

dust radii for heavy dust particles can be explained using the effective potential 

energy  

( ) ( )
0

z

U z F z dz′ ′≡ −∫ . (2.2.42) 

The effective potential energy is convenient for the analysis of the motion of 

the heavy dust particles as their charge is the local equilibrium one at any point due to 

the long enough oscillation periods in comparison with the dust charging time. 

Therefore, the total force acting on the heavy dust particles depends only on the local 

plasma parameters and the local equilibrium dust charge, but not on the time, thus we 

can use the effective potential. As we saw above, this is an approximate assumption 
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for many oscillation periods, but is good for the one period and becomes more precise 

for heavier dust particles. The spatial profiles of the effective potential are shown in 

Fig.2.2.13 for different radii of the dust particles. For the dust particles smaller than 

the second critical radius *

2 0.41c DR λ= , the gradient of the effective energy near the 

wall is positive (Fig.2.2.13(a)), so the total force is directed from the wall, and there is 

a potential minimum, around which a dust particle oscillates reaching far from the 

wall positions (Fig.2.2.13(b)). 

The bigger dust particles than *

2cR  have no minimum of the potential energy or 

the effective potential barrier does not allow them to move far from the wall. Such 

dust particles return to the wall, where they recharge, and detach from the wall again. 

Therefore, the heavy dust particles are capable to move away from the wall on a 

significant distance only if their radii are smaller than *

2cR . The smaller the dust 

particle is, the deeper it penetrates into the plasma. Note also that the returning point 

of a dust particle trajectory is located much further from the wall than its equilibrium 

position, especially for small particles. Such small particles can reach the bulk plasma, 

see also Fig.2.2.10(a). 
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Fig. 2.2.13 Spatial profiles of the effective potential energy for heavy dust particles 

with different radii on close to the wall spatial scale (a) and the extended 

scale (b). 
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The minima and the maxima of the effective potential energy correspond to 

the stable and unstable equilibrium positions of the dust particle, respectively. For 

understanding when and why the effective potential barrier appears, we obtained the 

equilibrium positions for dust particles of various radii. If a dust particle with the 

given radius dR  is placed at some position in the plasma for sufficiently long time, it 

obtains the local equilibrium charge ( ),d eqQ z , which corresponds to the zero total 

current on the dust particle ( ), 0d eqdQ z dt = . If the local equilibrium charge of the 

dust particle at some position corresponds to the zero total force acting on it, then this 

position is equilibrium position eqz  of the dust particle of the radius dR , so that 

2 2 0eqd z d t = . Fig.2.2.14 presents the calculated equilibrium positions and the 

corresponding equilibrium charges for the dust particles with the radius dR . As we can 

see, there is no equilibrium positions for the dust particles with the larger radius than 

2

cut

cR , which is the critical levitation radius found in [60]. That situation corresponds to 

monotonically decreasing effective potential profiles in Fig.2.2.13. 
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 Fig. 2.2.14 Equilibrium dust position and the corresponding local equilibrium dust 

charge as function of the dust particle radius. 
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There are two equilibrium positions for the dust with the radii *

2 2

cut

c d cR R R> > . The 

equilibrium position closer to the wall is unstable that corresponds to the effective 

potential maxima, while the one further from the wall is the stable equilibrium 

position, which corresponds to the effective potential minima (Fig.2.2.13). There is 

only one stable equilibrium position far from the wall when *

2d cR R< . Therefore, the 

value *

2cR  corresponds to the effective potential barrier, which just appears near the 

wall. Here, we classify the motions of heavy dust particles started from the wall on 

their radii without the gravitational force: 

1 2

cut

c d cR R R> >  - There is no equilibrium position. The particle returns to the 

plate just after detachment from it.  The particle can perform short oscillations in the 

immediate proximity to the wall due to the recharging process when its initial velocity 

is not zero. 

*

2 2

cut

c d cR R R> >  - The dust particle initially placed at the wall cannot reach its 

equilibrium position due to existence of the effective potential barrier and returns to 

the plate similar to the previous case. However, if the initial kinetic energy of the dust 

particle is larger than this barrier, it can oscillate around its equilibrium position. 

*

2c dR R>  - There is only one stable equilibrium position. The smaller the dust 

particle is, the further from the wall the equilibrium position. The particle will 

oscillate around its equilibrium position. 

Now it can be clearly seen, that the effective potential barrier is the reason of 

the sharp separation between the short and long amplitude oscillations, and the radius 

*

2cR , when the barrier appears, is the second critical radius for the heavy dust particles 

described above. The physical explanation of the non-monotonous effective potential 

profiles with the maxima is based on the spatial profile of the local equilibrium dust 

charge. As can be seen in Fig.2.2.15, the sharp decrease of the charge near the wall 

makes the electric force acting on the dust particle weak in spite of the strong electric 

field there. Actually, when the wall potential is deeply negative, the electron density 

near the wall will be very low and a dust particle can have a positive electric charge 

there, so the electric force will be directed toward the wall and there will be no 

repulsive force at all. That occurs for the dust particles of any radius, because, as can 

be seen from the electron and ion charging currents (2.2.2-3) and Fig.2.2.15, the 

equilibrium dust charge is proportional to the radius. 
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In order to analyze the dependence of the second critical radius on the wall 

potential, let’s use the Bohm sheath model [21,24], which was used for the analysis of 

the first critical radius and which gives the same local plasma parameters as analytical 

functions of the local potential ( )zϕ  as (2.2.29-31). The potential inside the sheath 

has all values from zero at the sheath edge to the arbitrary wall potential, which equals 

to the sheath potential drop shϕ . In Fig.2.2.16, the radius of the dust particle that has 

the equilibrium position at the point with the potential ( )zϕ  is shown.  As we can see 

from Fig.2.2.16, when the wall potential is deeper than 4.23 eT e−  and the particles 

smaller than 1.17 Dλ , two equilibrium positions exist. The equilibrium position closer 

to the wall is unstable and another is stable. Hence, the decreasing part of the curve 

corresponds to the second critical radius, while the increasing part corresponds to the 

positions of the effective potential minima. Thus, if the wall potential is shallower 

than 2.84 eT e− , then there is no maximum of the effective potential in the system 

and so the second critical radius does not appear. If the wall potential is deeper than 

4.23 eT e− , then a maximum appears for the dust particles with 1.17d DR λ<  . In this 
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Fig. 2.2.15 Spatial profiles of the local equilibrium charge of the dust particles with 

different radii in the simulated system. 
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case dust particles of any size with low kinetic energy can be confined in the vicinity 

of the wall.  Therefore, the second critical dust radius exists only for the sheath 

potential drops in the range 2.84 4.23sh ee Tϕ< < . 

The effect of gravity on the effective potential energy maxima and minima 

positions and the second critical radius is similar to its effect on the first critical radius. 

In Fig.2.2.17, the dependencies of the first critical radius on the sheath potential drop 

together with the radius of the dust particle, which has the equilibrium at the point 

with the potential ϕ , for the different directions of the gravitational force are shown.  

The used value of the gravitational parameter in Fig.2.2.17 is large enough 

41.66 10gδ = ×  in order to demonstrate the gravity effect clearly. When the 

gravitational force is directed toward the wall the second critical dust radius decreases 

(Fig.2.2.17(c)) as could be expected. Note that the dust particles can go deep into the 

plasma only when the wall potential and the dust radii are in the intersection region of 

1d cR R≤  and 2d cR R≥ . In the opposite case, the positions of the effective potential 

minima and maxima can be separated (Fig.2.2.17(a)). 
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Fig. 2.2.16 Radius of a dust particle, which has the equilibrium position at the point 

z  as function of the local potential ( )zϕ  in the sheath described 

according to the Bohm sheath model [21,24]. 
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Fig. 2.2.17 Dependencies of the first critical dust radius on the sheath potential drop 
*

shϕ ϕ=  (red lines) and the radius of the dust particle, which has the 

equilibrium at the point with the potential *ϕ ϕ= −  (black lines: solid for 

the unstable equilibrium and dashed lines for the stable one), for the 

gravitational force directed from the wall (a), to the wall (c) and without 
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In this case, for some very small dust particles in the deep sheath potentials there is 

only an effective potential maximum, while some bigger particles have no barrier and 

fall down from the wall. Interesting is the region inside the eqR  curve, where the dust 

particles have stable equilibrium position. It means that the corresponding dust 

particles can possibly levitate or oscillate near the wall above them. Therefore, the 

diagrams, like shown in Fig.2.2.17, calculated for various values of the gravitational 

parameter gδ  and different form factors qξ  give complete description of the dust 

particle behavior for any values of the dust radius dR  and the wall potential. 

In this section we studied the dynamics of a dust particle coming off the wall 

in the sheath and the presheath using solutions of dust dynamics equations, i.e. the 

equations of motion and charging simultaneously,  in wide range of the dust radii, 

masses and the wall potentials. It was shown that the second critical radius exists for 

heavy dust particles, d cm m> , which separates particles that can or can not go far 

from the wall. Dynamics of the dust particle charging during the motion causes 

dependence of the second critical radius on the dust mass and finally leads to its 

vanishing for d cm m< . The delayed charging effect also causes the collisionless 

damping of the oscillations. The smaller the dust particle is, the deeper it goes into the 

plasma. The existence of the second critical radius was explained by the appearance 

of the effective potential barrier due to sharp decreasing of the equilibrium dust 

charge near the wall. The combined dependencies of the first critical radius on the 

wall potential and the second critical radius on the local potential in the boundary 

plasma for different directions of the gravitational force allow to analyze the dust 

particle behavior in the wide range of the plasma parameters [68]. 
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2.3 Dust behavior in edge plasma of fusion devices 

 

In this section we discuss the dust dynamics in edge plasmas of fusion devices, 

which takes into account some important aspects not considered in the previous 

sections, e.g. a heat balance of the dust particles and an effect of a magnetic field 

presence. The results described here were published in [11]. In order to estimate 

conditions, under which a dust particle can survive in a plasma, we consider a balance 

of incoming and outgoing energy fluxes to/from a spherical dust particle. The major 

energy input is the absorption of ions and electrons by the dust particle from a 

surrounding plasma and their recombination on the dust surface. Another source of 

the incoming energy is bremsstrahlung and line radiation in a plasma that can be 

absorbed by the dust particle. Since the dust particle in a plasma usually obtains a 

negative floating potential, dϕ , which corresponds to equality of absorbed ion and 

electron fluxes, the energy gained by ions in the sheath potential drop equals to the 

energy lost by electrons. Therefore, we can calculate the electron, ion particle fluxes 

and their kinetic energy fluxes to the dust particle assuming the Maxwellian velocity 

distribution functions of electrons and ions in an unperturbed plasma. Neglecting 

effect of a magnetic field in the limit ,Le Li Dρ ρ λ≫  , where Leρ  and Liρ  are the 

electron and ion Larmor radii, respectively, and taking absorption cross section 

according to the Orbital Motion Limited (OML) theory [41,42] we can get absorbed 

particle fluxes 
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, (2.3.1) 

where dR  is the radius of the dust particle, ,e iT T  are the electron and ion temperatures, 

respectively, and 0n  is the electron or ion density under quasi-neutrality condition for 

the hydrogen plasma. Assuming e iT T T= = , / 1836i em m = , and from the equal 

electron and ion fluxes we find the dust floating potential 

2.504de

T

ϕ
= − . (2.3.2) 

Similarly, we can obtain following expressions for the electron and ion kinetic energy 

fluxes to the dust particle 
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The sum of the energy fluxes to the dust particle due to the absorption of electrons 

and ions is p e i i izW W W ε= + + Γ , where izε  is the ionization potential of the neutral 

atoms. Here, it is assumed full absorption of the recombination energy by the dust 

particle. Taking into account the floating potential (2.3.2), we obtain 

( )2

0

8
20.29 3.504p d iz

i

T
W R n T

m
π ε

π
= + . (2.3.4) 

Corresponding total heat transmission coefficient for the dust particle’s sheath is 

( ) / 5.79d e i eW Wγ ≡ + Γ = . (2.3.5) 

Radiation heating of the dust particle we roughly estimate with some constant energy 

flux density radP , assuming that the dust particle is uniformly exposed to the radiation. 

Thus, the radiation energy flux to the dust particle equals 

24rad d radW R Pπ= . (2.3.6) 

The typical value of  radP  for present fusion devices can be estimated as 4~ 10  W/m
2
 

that is usually negligible in comparison with the absorbed particle energy flux density. 

As we can see, both heating processes are defined by plasma parameters and are 

independent of the temperature of the dust particle dT . 

Different processes such as the radiation, the thermal evaporation, the physical 

and chemical sputtering, and the radiation enhanced sublimation (RES) can sustain 

cooling of the dust particle. We neglect effects of neutrals in a plasma taking into 

account their low density in comparison with the ion density.  

The radiation energy flux from the dust particle can be described with the Stefan-

Boltzmann function 

2 44SB d SB dW R Tπ σ= , (2.3.7) 

where 85.67 10SBσ −= × W/m
2
K

4
 is the Stefan-Boltzmann constant. Here, for 

simplicity the total emissivity of the dust particle taken equal unity thanks to usual 

surface roughness of dust particles, which were observed in fusion devices [5,6]. 

Evaporation cooling of the dust particle we estimate assuming that the particle 
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consists of carbon (graphite) and taking for it experimental data of the evaporation 

rate as a function of the dust temperature dT , and the heat of vaporization from [78]. 

The evaporation rate ,C evapG can be expressed as 

10.3656 38570 /2 26 1/ 2

, 4 5.01 10 10 dT

C evap d dG R Tπ −−= ×  atom /s. (2.3.8) 

The bound energy of a carbon atom calculated from the heat of vaporization is 

7.43evapε∆ = eV. Therefore, the energy flux from the dust particle due to the thermal 

evaporation is written as 

,evap C evap evapW G ε= ∆ . (2.3.9) 

Other mechanisms of the dust cooling (physical and chemical sputtering and RES) are 

associated with the incoming ion flux iΓ  (2.3.1) to the dust particle.  Each of these 

processes has the experimentally or numerically defined erosion yield Y  that 

generally is function of ion energies iε  and the dust temperature dT . Assuming that 

above processes are caused by the proton flux on the carbon dust particle and taking 

corresponding yield dependencies from [73,74], we can calculate the averaged yield 

over the ion energy distribution function ( )i if ε : 

( ) ( ) ( )1 1/ 2

0

2
i i ab i i i d i i

i

Y d E Y e f
m

Γ ε σ ε ε ϕ ε
∞

−= −∫ , here ( )ab iσ ε  is the absorption 

cross section of ions by the dust particle. For the Maxwellian ion energy distribution 

function with temperature the 10T = eV, we obtain for physical sputtering and RES 

41.4 10physY −≅ × ,   ( ) 6932.6
0.049expRES d

d

Y T
T

 
≅ − 

 
. (2.3.10) 

Total erosion yield for chemical sputtering ( )chem dY T  is taken from [74] for the ion 

energy range 20-30 eV.  Activation energies for these processes can be estimated as 

7.4physε∆ = eV,   0.7RESε∆ ≈ eV,   2chemε∆ ≈ eV, (2.3.11) 

that finally gives the following energy fluxes carried out from the dust particle by 

three considered processes 

phys i phys physW Y ε= Γ ∆ , RES i RES RESW Y ε= Γ ∆ , chem i chem chemW Y ε= Γ ∆ . (2.3.12) 

The follow condition of the energy balance for the dust particle 

( ) ( ) 0p rad SB evap phys RES chemW W W W W W W W≡ + − + + + + =  (2.3.13) 
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defines its equilibrium temperature ,d eqT . It should be noted, that all involved energy 

fluxes are proportional to the surface area of the dust particle 2~ dR , which is canceled 

in the equilibrium condition (2.3.13), so that the equilibrium temperature of the dust 

particle ,d eqT  doesn’t depend on the dust radius.  

The dependencies of the incoming and outgoing energy flux densities to the 

dust particle on its temperature are presented in Fig.2.3.1. Cross points of the total 

cooling and heating power curves give solutions of (2.3.13) and thus the dust 

equilibrium temperature ,d eqT  for different plasma densities. As can be seen in 

Fig.2.3.1, contributions of RES, physical and chemical sputtering in dust cooling 

around the equilibrium condition are negligible for the given plasma temperature. 

Depending on the plasma density, cooling of the dust particle at the thermal 

equilibrium carried out either by radiation or evaporation. In the last case 

corresponding to the high plasma densities and dust equilibrium temperatures, the 

dust particle can be destructed quickly. 
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Fig. 2.3.1 Incoming and outgoing energy flux densities for a spherical carbon dust 

particle in hydrogen plasma with 10e iT T= = eV and various densities 0n . 
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We can estimate the rate of dust destruction and its dwell time taking into 

account four processes mentioned above: thermal evaporation, RES, physical and 

chemical sputtering. These processes cause the flux of carbon from the dust particle 

that can be written as 

( ),C C evap i phys RES chemG G Y Y Y= + Γ + + . (2.3.14) 

Decreasing rate of the radius of the spherical dust particle is 

24

d C C

d d A

dR A G

dt R Nπ ρ
= , (2.3.15) 

where 12CA = g/mole is the carbon’s atomic weight, 2dρ ≈ g/cm
3
 is the dust particle 

mass density, and AN  is the Avogadro’s constant. As the flux CG  is again 

proportional to the dust surface area, the dust radius decreasing rate (2.3.15) is not a 

function of the radius.  

Fig.2.3.2 presents the dust temperature dependencies of the calculated 

decreasing rates of the dust particle radius for the same plasma parameters as in 

Fig.2.3.1. In the range of lower dust temperatures than 1000K∼  the dust destruction 

is caused by chemical processes, at dust temperatures higher than ~ 3000K  the fast 

thermal evaporation of the dust started. There is the slowest destruction rate in the 

intermediate temperature range caused by RES. Taking the dust equilibrium 

temperatures from Fig.2.3.1 we find from Fig.2.3.2(b) that the dust particle dwell time 

strongly depends on the plasma density. The typical dust particle of micrometer size 

can survive in a plasma ~ 10 s  for 13

0 10n = cm
-3
 and 2~ 10− s  for 1410n = cm

-3
. In 

the last case, there is the reasonable question about the dust heating time, whether the 

dust particle will survive long enough to get the equilibrium temperature. Simple 

estimation gives the dust heating time 

,

0
3

d eqT

d d mh

heat d

C T

R C
dT

A W

ρ
τ = ∫ , (2.3.16) 

where mhC  is the carbon’s molar heat capacity [78]. Calculating the heating time 

(2.3.16) for the dust particle with 1dR = µm in the plasma with 14

0 10n = cm
-3
, we can 

find 4~ 10heatτ − s that is much shorter than the dwell time. Above estimations show 

that in a divertor plasma of present fusion devices dust particles can survive long time 

10> s and with high speed can be transported through the more dense edge plasma. 
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Fig. 2.3.2 Rates of a spherical carbon dust particle radius decreasing due to various 

processes (a) in the hydrogen plasma with 10e iT T= = eV and various 

densities 0n  (b). 
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The dynamics of the dust particle in a magnetized sheath were considered in 

[11] for the magnetic field oblique to the wall with not too small angle Bα , 

1 B e im mα>> > . As well known [26] the magnetized sheath consists of two 

regions: the quasi-neutral magnetic presheath with the scale length of the order of the 

ion gyro-radius Liρ , and the Debye sheath with the scale length of the order of the 

Debye length Dλ , it is assumed here that D Liλ ρ< . At the entrance of the presheath, 

ions move along the magnetic field toward the wall. The component of ion velocity 

normal to the wall starts to increase when they are closer to the wall than the ion gyro-

radius due to scraping wall ion trajectories during gyro-motion. There are also strong 

diamagnetic and E B×  ion flows along the direction parallel to the wall and 

perpendicular to the magnetic field in the magnetized sheath. The motion of a dust 

particle itself is not magnetized as the Larmor radius for the dust particle is very large 

due to the huge dust mass, but the direction of the ion drag force depends on the 

direction of the magnetized ion flow. As the ion drag force provided by the 

diamagnetic ion flow is not balanced by any other force, the dust particle can be 

significantly accelerated in parallel to the wall direction. Due to this acceleration the 

dust particle can obtain as large as a few km/s velocity parallel to the wall. Therefore, 

if the wall has steps or roughness (like edge of a limiter or a divertor plate or 

inhomogeneous redeposited layers) the dust particle can be launched into the plasma 

in poloidal or radial direction (limiter case) and fly on significant distances. The 

obtained high velocity allows reflection of the dust particles from other walls that 

makes motion of the dust particles in a complex geometry of fusion devices rather 

difficult to predict. The combination of the dust particles oscillations in the direction 

normal to the wall and motion parallel to the wall can produce “jumping” of the dust 

particle on the wall surface. In the case, when the surface is not smooth the “jumping” 

may be enhanced by the diamagnetic ion flow, which is parallel to the wall surface 

locally, but the obtained acceleration may be not parallel to the wall at the next 

“jump” position. All these types of the dust particles motion may make their way 

toward the hot and dense core plasma, where the dust particles are destroyed and 

deliver their components as impurities. 
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2.4 Conclusion 

 

In this chapter we have analyzed the behavior of a spherical dust particle in a 

boundary plasma near an electrically biased wall using the one-dimensional (1D) 

approach. The plasma parameters in the sheath and the presheath are obtained in the 

1D model and then the motion of a spherical dust particle is analyzed along the 

normal direction to the wall. The currents and the forces to the dust particle are 

calculated as if the spherical (three dimensional) dust particle was immersed into the 

plasma, which is non-uniform only in normal direction to the wall (one-dimensional). 

The dynamics of the dust particle is calculated by solving the dust charging and 

motion equations separately from the plasma simulations. Such separation is caused 

by the huge difference between timescales of the plasma and dust dynamics. In this 

model, it is also assumed that the dust particle does not disturb a plasma significantly 

and we can use the simulated local plasma parameters for the calculation of the 

currents and forces. Using this approach we have studied the conditions, under which 

the dust particles can be released from the wall, and the possible trajectories of the 

dust particles of various radii and masses in the sheath. We showed that there is the 

first critical dust radius, which defines the biggest dust particles capable to leave the 

wall due to excess of the electrostatic force over the ion drag forces acting on the 

particle. The dependence of the first critical radius on the wall potential allows 

controlling the size of the released dust particles with applying of a bias voltage to the 

wall. It was shown that there is the critical wall potential relative to the plasma 

potential, when the releasing of any size dust particles from the wall is suppressed. 

The gravity effect on the first critical radius is clarified. As was shown, the 

gravitational force directed to the wall reasonably reduces the value of the first critical 

radius. On the other hand, when the gravitational force directed from the wall, the 

releasing of the dust particles from the wall becomes possible below the critical wall 

potential. However, not all released dust particles can further move deeply into the 

plasma. Some dust particles can oscillate in the sheath with large amplitude, while 

others can not go far from the wall and return on it due to the recharging process. The 

existence of the second critical dust radius, which separates the oscillating and 

returning dust particles on their radii, was shown in the certain range of the wall 

potentials. The appearance of the second critical radius is explained by peculiarities of 
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the equilibrium dust charge and the effective potential profiles. The effect of the 

delayed dust charging is pointed out, that leads to damping of the dust particles 

oscillations and disappearance of the second critical radius for the very light particles. 

The combined diagrams of the critical radii and the wall potentials for different 

gravity conditions show all possible types of the dust particle behavior in the analyzed 

system. We suggest that the modern experimental techniques allow verifying these 

results under laboratory plasma conditions in relatively straightforward way using 

spherical dust particles of different radii in DC discharge plasma. For that purpose 

distributions of dust particles on their radii on an electrode can be compared before 

and after exposure to a plasma or, possibly, direct observation of an individual dust 

particle motion can be used. However, the small amplitude dust oscillations, when a 

dust particle just detaches the wall, may be difficult to detect.  

Some aspects of a dust particle dynamics in edge plasmas of fusion devices 

were discussed. We have analyzed the power balance of the dust particles due to 

various heating and cooling mechanisms for different densities of plasmas. We have 

shown the dependences of the heating and cooling powers on the dust temperature 

that gives us the equilibrium dust temperature under various plasma conditions. The 

rate of dust destruction was obtained as a function of the dust particle temperature. It 

shows that a dust particle of a micrometer size can survive sufficiently long time (tens 

of seconds) in edge plasmas. The effect of a magnetic field on dust dynamics is 

discussed and the possibility of acceleration of the dust particles along the wall 

surface due to diamagnetic drift of ions was shown. It is suggested that the dust 

particles can be an important source of the impurities in future fusion reactors like 

ITER [12], where the heat flux on a divertor plate and its destruction is expected as 

significant. The more detailed studies of the dust particles motion in a magnetized 

edge plasma should be done using integrated simulations of the total SOL plasma 

(fluid or kinetic approaches) and dust dynamics (e.g. by Monte-Carlo method), that 

requires combination and developing of different codes. To describe the properties 

(charging, forces) of a dust particle in plasma under various conditions including a 

magnetic field more detailed theoretical and simulation studies are also needed. 
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Chapter 3 

 

Dust behavior in boundary plasma – 

Two-dimensional model 

 

In this chapter we consider the properties of a spherical conductive dust 

particle on a plasma-facing wall and sheath formation with the dust particle using the 

self-consistent two-dimensional Particle-In-Cell (2D PIC) simulations. The 

simulations are conducted to overcome the limitations of the one-dimensional model 

used in Chapter 2, where the dust particle was assumed not affecting the sheath 

formation. The PIC method allows kinetic self-consistent simulations of sheaths with 

the dust particle of various shape and size that can be larger than a Debye length or 

even a sheath width and can strongly affect the sheath formation. In this chapter we 

describe the developed simulation method and analyze the simulated charge, currents 

and forces to the dust particle at the wall position in comparison with the analytical 

approach. The present state of this study shows at which points the theoretical 

consideration of the dust statics on the plasma-facing wall agrees or disagrees with the 

simulation results and what are important effects that should be included in the 

theoretical description, besides some preliminary modifications are proposed. The 

further modifications of the analytical approach as well as the self-consistent 

simulation study of the dust particles with various shapes apart from the wall are the 

future issues of this study. 

 

3.1 Introduction 

 

In the previous consideration of the dust particles behavior on a plasma-facing 

wall and in the boundary plasma we neglected the effect of the dust on the plasma as 

was described above. Such simplification was necessary to solve analytically dust 

statics equations on the plasma-facing wall and obtain expressions for dependencies 
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of the critical dust radii on local plasma parameters and the wall potential. However, 

the kinetic approach is necessary to describe the self-consistent interaction of the dust 

particle with the plasma as the dust charging and shielding depend on velocity 

distribution functions of plasma particles as well as affect them due to absorption and 

scattering processes. The self-consistent simulation of the dust motion together with 

the plasma dynamics in a kinetic approach is practically unfeasible with available 

computational resources, because of very large difference in the time scales due to a 

huge dust mass, which may exceed the ion mass up to 2210∼  times. The using of an 

artificially reduced dust mass for the simulation is not reliable due to the delayed 

charging that may strongly affect motion of the light dust particles as we saw in the 

previous chapter. That was the reason why we split the plasma simulations and the 

dust motion in our 1D consideration. Again, such splitting is possible only neglecting 

the influence of a dust particle on a plasma. We can neglect the disturbance of a 

plasma by a dust particle when its size is small, then the dust charge which is 

proportional to the dust radius dR  in a plasma [40] and 2

dR  on a wall [77] is also 

small. It was shown in previous researches [49] that the screening radius of the dust 

particles is the linearized ion-electron Debye length when the dust radius is smaller 

than the Debye length and increases to the electron Debye length for larger dust 

particles. So, disturbance of a plasma by small dust particles is localized and does not 

affect the sheath formation. Moreover, it was also shown in [49] that the potential 

distribution around a small dust particle in a plasma is well described by the Debye-

Hückel potential, so we could use the classical approximation of the truncated 

Coulomb potential for the scattering of ions by the dust particle. Nevertheless, if the 

dust particle size is large in comparison with the Debye length, then the modification 

of the local potential distribution around a dust particle due to shielding of its charge 

can significantly disturb the sheath formation near a wall and the dust, so they should 

be considered simultaneously and at least two-dimensional description of the 

disturbed sheath is necessary. Another important property of the boundary plasma 

near a wall is a strong and non-uniform electric field in the sheath, which accelerates 

the ion flow over the sound speed. The non-uniform electric field polarizes the dust 

particle, so a spherically non-symmetric own electric field makes the particle 

shielding more complicated and affects the absorption and Coulomb scattering of 

plasma particles. The problem for a dust particle in the external electric field near the 
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wall is even more complex, because the wall charges also are redistributed under the 

effects of the dust particle field and the potential structure in this multidimensional 

system involving high order field moments. In addition, the sheath electric field is 

non-uniform in space and has a gradient on the Debye length scale; therefore, the 

polarization of the larger dust particle than the Debye length is non-linear. One more 

mentioned issue is the highly accelerated ion flow in the non-uniform sheath potential. 

As was shown previously, the ion flow leads to anisotropic screening of the dust 

charge and creates the wake potential [50] behind the dust, which is thought 

responsible for the vertical alignment of dust particles in dust crystals [16]. All these 

issues make very difficult self-consistent theoretical description of properties of a 

large dust particle in the sheath. Therefore, computer simulations are usually used to 

analyze self-consistent dust particle charging and shielding. Numbers of simulations 

are performed to study dust charging and shielding in an ion flow [51,52,56-58]. All 

the works consider a dust particle immersed in uniform drifting plasma without an 

external electric field and a wall. Other works [55,79] consider various aspects of dust 

charging in a uniform external electric field either without a plasma or in a diffuse-

drift approach of a highly collisional fluid. So far, there have been no self-consistent 

kinetic simulations of a dust particle in sheath. As the aim of our work is investigate 

of dust behavior in the sheath, we need to perform such self-consistent simulations to 

analyze the behavior of the large dust particles. We still are not able to simulate the 

dust and plasma dynamics simultaneously due to the different time scales, so we are 

restricted to self-consistent simulations of an immobile dust particle in the sheath at a 

given position. Nevertheless, the same difference in the dynamics time scales allows 

us to assume that the plasma reaches a quasi-steady state at every position of the dust 

particle during its motion. This means that we can simulate the dust particles at 

different distances from the wall and calculate the local self-consistent dust charge 

and acting forces and then use these local self-consistent values to analyze the dust 

dynamics. In this way, we can obtain the effective potential profiles for the self-

consistent dust-plasma-wall interactions in a quasi-steady state. The effective 

potential can be obtained at spatially discrete positions and can be interpolated in 

between them. Such method is equivalent to solving dust dynamics equations on a 

spatially discrete mesh with the simulated distribution of the self-consistent field. It 

requires a large amount of the computational work, which is not complete yet, 

because the two-dimensional simulations consume significantly more computational 
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resources than the one-dimensional ones. The new 2D PIC/MC code for these 

simulations was originally developed and the simulation method is described in the 

next section. After confirmation of the correctness of the developed code by several 

test runs, we started our simulations for the dust particle on the wall as its initial 

position. We obtained the self-consistent simulated values of the dust charge, currents 

and forces acting on the dust particle on the wall position, which will be described 

further, for different radii of the dust particle and values of the wall potential and 

made the comparison with the 1D model. These results allow us to evaluate our one-

dimensional model, clarify the dust shielding effect and propose modifications to the 

analytical approach. The further results of the developed 2D model will be published 

in future works. 

 

3.2 Numerical method: self-consistent simulations 

 

The two-dimensional PIC/MC simulation code was developed on the basis of 

our one-dimensional code created formerly, which was extended with additional 

radial dimension r  and the three-dimensional ( ), ,x y zυ υ υ  velocity space was 

converted into the ( ), ,z r θυ υ υ  one, so the 1D3v model was extended to the 2D3v 

model. The most of procedures were modified including the plasma particles injection 

and absorption, the motion advancing, the weighting on a spatial mesh and the Monte-

Carlo collisions procedures as well as the Poisson’s equation solver with additional 

boundary conditions. The special care was given to the dust particle representation 

with the surface charge distribution. In addition to the conventional diagnostics of the 

plasma parameters, several new parameters are calculated, such as dust surface charge 

distribution and its total charge, absorbed currents by the dust particle and the acting 

forces on it. Below we describe the simulation method in more details.  

The simulated system is schematically shown in Fig.3.2.1. The plane wall at 

0z =  is facing the plasma injected from the left boundary of the system sz L= − . The 

system is cylindrically symmetric around the z -axis. The additional dimension of the 

system is the radial r  direction. The system is limited in the r  direction by the outer 

radial boundary rr L= . The system is rotationally uniform around the z -axis, so we 

can simulate a full-dimensional body of a dust particle with the axial symmetry. 
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Representing the dust particle as a half-circle in the ( ),z r  space, we are able to 

simulate the spherical dust particle in the system. Other axially symmetric shapes of 

the dust particle are also possible, e.g. a rectangular shaped particle in the ( ),z r  space. 

The particle position on the z -axis can be arbitrary including the case of the dust 

particle touching the wall. There is no magnetic field in the system. The same 

elementary processes of the ion and electron collisions with neutral atoms as for the 

1D model are included in the 2D system. The Monte-Carlo procedure for the 

elementary processes simulation uses the same method that was described in the 1D 

model, which was already three-dimensional in velocity space (1D3v). As the 

positions of colliding particles do not change during the elementary processes, but 

only their velocities change, or a particle appears/disappears at the same position, the 

1D3v collisional procedures were easily transformed into present 2D3v code. 

The wall and the dust particle surfaces are assumed perfectly absorbing for the 

incident plasma particles, so that no secondary emission is considered. As in the 1D 

case, the plasma is injected into the system from the left boundary. The electrons are 

injected with the half-Maxwellian velocity distribution function in the z  direction 

with the fixed temperature eT   and the full-Maxwellian distribution in r  direction 

with the same temperature eT . Ions have the temperature iT  in the both directions for 

the full-Maxwellian velocity distribution along the r  direction and the shifted 

Maxwellian distribution with the shift velocity 0u  along the z  direction. The densities 

of ions and electrons on the left boundary are equalized to the given value 0n  to 

0 
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e
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Fig. 3.2.1 Sketch of the two-dimensional simulated system with a spherical dust 

particle. 

r 
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maintain quasi-neutrality. The ion shift velocity is determined in order to avoid any 

unphysical potential changes at the left boundary. The left boundary of the system is 

transparent for outgoing particles, which are excluded from the simulation when they 

cross the boundary. The algorithm of the plasma particles motion, which we describe 

below, assures that a plasma particle can not have unphysical negative values of r  

coordinate during the motion. 

On the outer radial boundary we applied the original “inverse-reflection” 

boundary conditions for the plasma particles. Since the plasma is non-uniform along 

the z  direction and its profiles are not known a priori, we can not inject plasma 

particles from the outer radial boundary into the system without implying some 

artificial plasma conditions there. Therefore, we reflected all particles going out of the 

simulated system through the outer radial boundary back into the system that implies 

zero total particles flux through this boundary and is a common simulation technique. 

This flux condition is exact when there is no dust particle in the system. In this case, 

there is no scattering center, which can create a non-zero radial flux. When the dust 

particle is present in the system, the radial flux through the outer radial boundary 

strictly speaking is not zero. Nonetheless, it should be vanishing for sufficiently 

remote position of the boundary from the dust, because of the strong axial electric 

field in the sheath, which drives the plasma particles out of the system along the z  

direction. So, the reflection boundary conditions on this boundary are much better 

than any artificially imposed constant input flux of the plasma particles. However, the 

important question is following: where the reflected particle appears inside the 

simulated region at the next time step and what should be its velocity? The answer to 

this question distinguishes one reflection method from another. Usually for a 

periodical system in Cartesian coordinates an outgoing particle reenters the system 

from the opposite side or “mirror” reflection is used bouncing the particle back into 

the system.  The “mirror” reflection assumes that another particle symmetrically 

enters the system form outside as the outgoing particle leaves it. This “mirror” method 

is valid only if there is no any force acting on the particles normally to the boundary, 

otherwise the symmetry is broken. None of these methods is applicable for the 

cylindrical geometry on the outer radial boundary, because neither periodicity nor 

symmetry exists there in the radial direction. Moreover, the radial centrifugal force is 

always directed out of the system making the “mirror” reflection senseless. To avoid 
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these difficulties, let’s notice that the equation of motion 2 2md r dt F=
��
 is time 

reversible in a constant force field. The PIC method is discrete in time, so during a 

time step t∆  a field solved on a spatial mesh is fixed. It means, if an outgoing particle 

had a position inr
�
 and a velocity inυ

�
 at time t  inside the system and moved out to a 

position outr
�
  and a velocity outυ

�
 at a moment t t+ ∆ , then a particle with the exactly 

opposite velocity outυ−
�

 at the position outr
�
 at the moment t  could move for the same 

time t∆  from the position outr
�
 to the position inr

�
 and the velocity inυ−

�
 (see Fig.3.2.2). 

If we assume that our system is in a steady state and a local velocity distribution 

function of plasma particles is symmetric (in respect to the zero velocity) near the 

outer radial boundary, then such an “inversely symmetric” particle with the opposite 

velocity at the point outr
�
 will always exists. Therefore, we can apply this consideration 

to a particle motion through the outer radial boundary of our system in the ( ),r θ  

space to get the “inverse reflection” boundary conditions for the particles crossing the 

outer radial boundary  

( ) ( )
( ) ( )
( ) ( )

r r

r t t r t

t t t

t t tθ θ

υ υ

υ υ

 + ∆ =


+ ∆ = −
 + ∆ = −

. (3.2.1) 

We assume that the motion along the z  direction of the particle going out of the 

system through the outer radial boundary is the same as the motion of the “inversely 

reflected” incoming particle. This assumption is correct when the radial variation of 

any force acting along the z  direction is not large on the r tυ ∆  scale that is easy to 

Fig. 3.2.2 Scheme of the “inverse reflection” boundary conditions for a 

radially outgoing particle in the cylindrical system. 

 
ininr υ
��
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outoutr υ
��
,  

The simulated 

system 
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achieve for the sufficiently remote outer radial boundary from the dust particle and a 

strong electric field along the z -axis in the sheath. The same conditions are required 

for the in- and out-flux equality through the boundary, as was discussed above, that is 

automatically provided by the symmetrical velocity distribution function. Therefore, 

the very simple “inverse reflection” boundary conditions (3.2.1) for outgoing plasma 

particles through the outer radial boundary were used, which imply symmetric 

velocity distribution functions in the ( ),r θυ υ  velocity space at the boundary. These 

boundary conditions are also valid for the case when a radial force is acting on 

particles at the outer radial boundary without any additional calculations of the 

particles trajectories. 

The plasma particles equations of motion in cylindrical coordinates are written 

as 

( )

( )
2
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z z

r r

r
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E z r
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
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

ɺ

ɺ

ɺ

ɺ

ɺ

, (3.2.2) 

where the dot means total time derivative, q  is the charge of a plasma particle, m  is 

its mass, ( ),zE z r  and ( ),rE z r  are the z  and r  components of the local electric field. 

As can be seen, these equations have singularity at the axis 0r =  that makes difficult 

their using for simulations. Moreover, due to a discrete time step the radial coordinate 

r  may accidentally get a negative value during the particle motion. In order to avoid 

this singularity, we transform the coordinates and velocities of a particle and then 

solve the motion equations in the local Cartesian coordinates with the x -axis along 

the local θ  direction and the y -axis along the local r  direction (Fig.3.2.3). After 

updating of the particles coordinates and velocities, we transform them back to the 

cylindrical coordinates for charge weighting on the mesh procedure. As in the one-

dimensional code, we find the particle velocities at each half time step for the 

diagnostic purpose. 
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Therefore, the procedure of the particle motion is following: at the time 

moment t  the particle’s coordinates and velocities are  

( ), , , ,z r t
z r θυ υ υ , (3.2.3) 

then the velocities and the components of the local electric filed are transformed as  
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( )
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υ υ

υ υ
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 =
 =

, (3.2.4) 

and 0xE Eθ= =  due to cylindrical symmetry. After a half time step, the new 

particle’s velocities are 
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. (3.2.5) 

Using these velocities we can find the displacement of the particle in the local 

Cartesian system of coordinates during the motion on time t∆  
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Fig. 3.2.3 Local Cartesian system of coordinates used for solution of the particle 

motion equations. 
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and the new cylindrical coordinates of the particle at the moment t t+ ∆  

( )

( ) ( )2 2

z z t t z z

r r t t r y x

δ

δ δ

′ ≡ + ∆ = +


′ ≡ + ∆ = + +
. (3.2.7) 

The new velocity components in the cylindrical system of coordinates at the time 

t t+ ∆  are written then  

( ) ( )

( ) ( )

( )

,

cos sin ,
2

cos sin

z z z z

r r y x r

x y

q
t t E z r

m

q t
t t E z r

m

t tθ θ

υ υ υ

υ υ υ θ υ θ

υ υ υ θ υ θ

 ′ ′ ′≡ + ∆ = +


∆ ′ ′ ′≡ + ∆ = ∆ + ∆ +


′ ≡ + ∆ = ∆ − ∆


ɶ

ɶ ɶ

ɶ ɶ

, (3.2.8) 

where θ∆  is the rotation angle of the particle in the θ  direction that satisfies the 

relations 

cos

sin

r y

r

x

r

δ
θ

δ
θ

+ ∆ = ′

 ∆ =
 ′

. (3.2.9) 

As can be seen from equation (3.2.7), r ′  can not have negative values and has zero 

value only when 0r yδ+ =  and 0xδ = . The last situation corresponds to the purely 

radial motion with θ π∆ = , thus, the uncertainty in formulae (3.2.9) should be 

resolved as cos 1θ∆ = −  and sin 0θ∆ = . Therefore, using this algorithm according to 

(3.2.3-9), we can avoid the singularity of the plasma particles motion equations at the 

0r =  axis and assure that the particles can not have negative values of the radial 

coordinate r  numerically. 

The PIC simulation method requires that the electric field distribution in the 

system should be found by solving the Poisson’s equation on a spatial mesh. We used 

a rectangular uniform mesh in ( ),z r  space with constant cell sizes z∆  and r∆  in 

axial and radial directions, respectively (Fig.3.2.4). The mesh covers the entire system 

including the interior of the dust particle and the first node of the mesh is placed at the 

origin of the coordinate system ( )0, 0z r= = . We use an index 0..i N= , where 

sN L z= ∆ , for numbering the nodes in the axial direction, and an index 0..j M= , 

where rM L r= ∆ , for the nodes in the radial direction. The first node has 0i =  and 
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0j = . To find the field distribution we solve the Poisson’s equation in the following 

form 

( ) ( ) ( ) 0, , ,freez r z r z rκ ϕ ρ ε∇ ∇ = − , (3.2.10) 

where ( ),free z rρ  is the local density of free charges, ( ),z rϕ  is the local electric 

potential, and ( ),z rκ  is the local dielectric constant, which has value dκ κ=  inside 

the dust particle and 1κ =  outside it. The Poisson’s equation (3.2.10) can be written 

in finite differences for a non-boundary ( ),i j  node of our spatial mesh ( 0,i N≠  and 

0,j M≠ ) as following 

, 1 1, , 1, , 1

, , 1 , 1, , , , 1, , , 1 , 0

i j i j i j i j i j free

i j i j i j i j i j i j i j i j i j i j i jA A A A Aϕ ϕ ϕ ϕ ϕ ρ ε+ + − −
+ + − −+ + + + = − , (3.2.11) 

where the coefficients ,i jA are 
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Fig. 3.2.4 Sketch of the spatial mesh used for the Poisson’s equation solving. 
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The coefficients ,i jA (3.2.12) are written for the general case without applied 

boundary conditions. Therefore, now for the non-boundary points of the system we 

have ( ) ( )1 1N M− −  linear equations and ( )( )1 1 4N M+ + −  unknowns, thus 

( )2 2N M+ −  equations of boundary conditions are necessary. The boundary 

conditions should be written for the boundary points of the system. We assume that 

the wall has the fixed potential wϕ  and the potential of the left axial boundary of the 

system is zero. At the axis 0r =  the radial component of the electric field should be 

zero due to the cylindrical symmetry of the system and at the outer radial boundary 

rr L=  we also assume the zero radial electric field. The last condition is satisfied only 

approximately when the dust particle exists in the system, which creates a radial 

electric field, but if the outer radial boundary is sufficiently far from the dust particle 

then the radial electric field at the boundary can be neglected. The screening of the 

dust charge by a plasma also helps to reduce the radial electric field at the outer radial 

boundary. Later we show how far should be placed the outer radial boundary from the 

dust particle for physically correct solutions of a potential. The boundary conditions 

described above can be written as 

( )
( )
( )
( )

0,

,

,1 ,0

, , 1

, 1.. 1

0, 1.. 1

0, 1.. 1

0, 1.. 1

j w

N j

i i

i M i M

j M

j M

i N

i N

ϕ ϕ

ϕ

ϕ ϕ

ϕ ϕ −

= = −


= = −


− = = −
 − = = −

. (3.2.13) 

Here we expressed the radial electric field at the boundaries as a one-side finite 

difference derivative of the potential. Now the system of linear equations (3.2.11-13) 

is closed and can be solved. Let’s note that the indices of the mesh nodes used in the 

equation for the point ( ),i j  differ only on 1±  from the values i  and j . Therefore, the 

matrix of the system of linear equations (3.2.11-13) can be written as a five-diagonal 

sparse matrix, which we solved by the Gauss elimination method for bounded 

matrices. After finding of the electric potential at the mesh nodes, we calculate the 

components of the eclectic field as a finite difference centered derivative for all non-

boundary mesh nodes and as a one-side derivative for the boundary nodes. We used 

the matrix method for solving of the Poisson’s equation (3.2.10), because the ( ),z r  

variables in this equation are inseparable due to the spherical shape of the dust particle 
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and the corresponding half-circle shape of the local dielectric constant distribution 

( ),z rκ . In the case of a cylindrical dust particle and a rectangular shape of the local 

dielectric constant distribution ( ),z rκ , the Poisson’s equation (3.2.10) can be solved 

by the FFT (Fast Fourier Transform) or the Cycle Reduction methods [70], which are 

much faster than the matrix method. Nevertheless, the matrix method is more 

universal, because we can use various boundary conditions (any combination of given 

potentials and normal components of the electric field) instead of (3.2.13) as well as it 

is possible to set any point of the system to a given potential that allows placing of 

arbitrary shaped bodies under different potentials inside the system. Thus, the 

described solution method of the Poisson’s equation provides significant flexibility 

that can be applicable for different problems. 

The free charge density ( ),free z rρ  in the RHS of the Poisson’s equation 

(3.2.10) includes charges of plasma particles in the system as well as charges 

absorbed by the dielectric dust particle from plasma, although they are placed on the 

dust surface. For a numerical solution of the finite difference Poisson’s equation 

(3.2.11), we need to know values of the free charge density at the nodes of the spatial 

mesh. The free charges in a plasma are distributed on the spatial mesh according to 

the standard first order Cloud-In-Cell procedure [69] accounting difference of the 

cells volumes in the cylindrical geometry. The charge induced by an electric field on 

the dust particle is the bound charge with ( ),bound z rρ . The sum of the free and bound 

charges is the total charge, which satisfies the conventional Poisson’s  equation  

( ) ( ) ( )2

0, , ,free boundz r z r z rϕ ερ ρ ∇ = − +  . (3.2.14) 

We should note here that we needn’t to know the bound charge to solve 

equation (3.2.10), but it can be calculated from (3.2.14) using the solution of (3.2.10). 

Let’s consider two limit cases of the dust conductivity: the ideally conductive or 

ideally insulating dust particle. In the former case, the dust dielectric constant 

dκ → ∞ , which we simulate by a sufficiently large value 610dκ = , and in the latter 

case, the dust dielectric constant can have any value. For the perfectly insulating dust 

particle we assume that the plasma charges absorbed by a dust particle are stick at the 

point, where they cross the dust surface. To treat the absorbed charges we introduce 

an additional uniform grid with the angle ϑ  on the dust surface with K  cells 

(Fig.3.2.5). Each cell accumulates the free absorbed charges in it that form the free 
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charge of the cell, which is assigned to its center. The free charge of the cell, then, is 

also weighted on the spatial mesh of the system to solve the Poisson’s equation 

(3.2.10).  

In the case of a perfectly conductive dust particle detached from the wall, all 

charges on the dust surface are strictly speaking free. Nevertheless, we keep the 

separation of the dust surface charge on the free (absorbed from a plasma) charge and 

the bound charge, which is zero in total, but can be non-uniformly distributed on the 

dust surface with positive and negative values. This separation allows us to distribute 

the free dust charge arbitrarily on the conductive dust surface, because the artificial 

bound charge will be automatically redistributed to keep almost zero electric field 

inside the dust particle due to the dust dielectric constant with a very high value, 

according to equation (3.2.10). To minimize the numerical errors we distributed the 

free charge of the conductive dust particle uniformly on its surface, and then all non-

uniformity of the dust surface charge distribution is kept by the bound dust charge. 

In the case when the perfectly conductive dust particle is attached to the wall, 

an external source keeps constant potential of the wall and the attached dust. The 

equality of the dust potential to the one of the wall is assured by the high value of the 

dust dielectric constant dκ , which provides practically zero electric field inside the 

dust particle, and at least one common point of the dust particle connected with the 

wall. In this case, the total bound dust charge can have non-zero values due to 

z 

k 

1 K 
ϑ  

Fig. 3.2.5 Dust surface mesh for the absorbed charge calculations. 
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redistribution of charges between the dust and the wall in order to keep the common 

constant potential. As the common constant potential is already assured by the 

boundary conditions (3.2.13) and the sufficiently high dκ  value, this redistribution is 

obtained automatically solving the Poisson’s equation (3.2.10). 

After finding of the electric field distribution in the system, we can calculate 

the normal to the dust surface component of the electric field k

nE  at the centers of the 

dust surface grid cells using linear interpolation between the spatial mesh nodes inside 

the system. Then, the total charge density at the k-th grid point on the dust surface, 

total

kσ , can be calculated as 

0

1free

total kk d

k n

d d

E
σ κ

σ ε
κ κ

−
= + , (3.2.15) 

where free

kσ  is the free dust surface charge density at the k-th grid point on the dust 

surface. The total dust charge is then 

1

K
total

d k k

k

Q Sσ
=

= ∑ , (3.2.16) 

and the total electrostatic force acting on the dust particle along the z -axis is  

1 0

1
cos

2 2

totalK
k totalk

el z k k

k

F E k S
σ

ϑ σ
ε=

   = − −      
∑ , (3.2.17) 

where k

zE  is the axial component of the electric field at the center of the k-th cell of 

the dust surface grid, kS  is the surface area of the k-th cell of the dust surface grid. 

The radial or rotational force on the dust particle is zero due to the cylindrical 

symmetry of the system. This total electric force acting on the dust particle includes 

all kinds of electrostatic interaction of the dust particle with the wall and the plasma; 

therefore, it includes the electrostatic force created by the field of the Debye sheath, 

the electrostatic image force as well as the drag force due to Coulomb scattering both 

of ions and electrons. We will discuss this issue later in this chapter. The drag force 

on the dust particle due to the absorption can be easily obtained by calculation of the 

momentum transfer rate to the dust particle of the absorbed ions and electrons. 

For testing of the developed two-dimensional code using the numerical 

methods described above, we simulated the collisionless sheath without a dust particle. 

In this case, the plasma should be uniform in the radial direction and can be described  
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with the theoretical one-dimensional model (Section 2.1.1). In Fig.3.2.6, the simulated 

spatial distributions of the electron, ion and charge densities as well as the potential 

distribution in the collisionless sheath are shown as color map diagrams, the solid 

black lines inside the diagrams show the theoretical values of the electron and ion 

densities calculated according to formulae (2.1.8-9). The simulations have done for 

the wall potential fixed at 10w ee Tϕ = − , the ratio of the ion temperature to the 

electron one 1i eT T =  and the equal injected electron and ion densities 

( ) ( )

0 0 0 2e in n n+ += = . The number of used super-particles of each sort was 262144 and 

the spatial mesh has 100 50×  cells in the axial and radial directions, respectively. As 

can be seen, there is a very good agreement between the simulation and the theoretical 

results. The ion density is more fluctuating in comparison with the electron density, 

because the averaging time for the diagnostics was order of the ion plasma oscillation 

period. Also the level of the fluctuations is relatively high near the axis of symmetry 

due to smallness of volumes of the spatial mesh cells and, correspondingly, smaller 

number of super-particles per cell. Nevertheless, the fluctuation level is not very large 

and does not affect potential formation as can be seen in Fig.3.2.6(d). Moreover, we 
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Fig. 3.2.6 Spatial distributions of the electron (a), ion (b) and charge (c) densities 

as well as electric potential (d) in the simulated collisionless sheath and 

comparison with the theoretical analysis (solid black lines). 
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can not see any significant radial non-uniformity of the plasma even near the outer 

radial boundary, thus the developed “inverse reflection” boundary conditions are 

proved to be correct. 

For the next test we put a spherical conductive dust particle attached to the 

wall in a uniform external electric field without a plasma. In this case, the theoretical 

consideration [77] gives us the potential distribution in the system and the charge of 

the dust particle. In Fig.3.2.7, the simulated and the theoretical charges of the dust 

particle of various radii are shown for the external electric field 510 V/m and the 

radius of the system 50rL = µm. As can be seen, the theoretical and the simulated 

dust charges are in a good agreement for the values of the d rR L  ratio up to 

approximately 0.4 . For the larger values of the ratio, the dust charge is disturbed by 

too close position of the radial outer boundary of the system and imposed there zero 

component of the radial electric field. Therefore, we can say that our field boundary 

conditions are valid when the system’s radius at least 2.5  times larger than the radius 

of the dust particle. In the presence of a plasma, the field created by the dust particle 

decays quicker, so we can safely use the obtained validity criterion for the field 

boundary conditions 2.5r dL R > . 

 

Fig. 3.2.7 Dependence of the simulated charge of the dust particle attached to the 

wall in uniform external electric field 510 V/m on the ratio of the dust 

radius to the radius of the system. 
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Further, we check the effect of the spatial mesh size on the potential solution 

around a dust particle. If the mesh is too coarse then the spherical shape of the dust 

particle may not be reproduced well and the electric field distribution around the dust 

particle is disturbed. For this purpose we simulated the dielectric spherical dust 

particle with the radius 1dR = µm and the dielectric constant 10dκ = , with its center 

placed at the distance 2 µm from the wall in the uniform external electric field 

610 V/m without a plasma.  In Fig.3.2.8, the simulated potential at the point on the 

axis of symmetry, which is 4 µm far from the wall and 1µm from the dust surface, is 

shown for the different sizes of the spatial mesh cells z r∆ = ∆ = ∆ . The red line in 

Fig.3.2.8 is the linear fit of the simulated potentials at the selected point. As can be 

seen, the simulated potential converges to the value 16.215ϕ ≈ V as the cell size 

approaches to zero 0∆ → . This value can be considered as close to the true solution 

of the potential at the selected point. The value of the undisturbed by the dust particle 

potential at this point is 0 16ϕ = V, therefore the potential disturbance introduced by 

the uncharged polarized dust particle is about 0.215pϕ ≈ V. The convergence is good 

Fig. 3.2.8 Simulated (dots) and fitted (red line) potential dependence on the cell 

sizes z r∆ = ∆ = ∆   at the point, which is distant on the dust radius length 

from the dust surface, for the dielectric spherical dust particle with the 

radius 1dR = µm and dielectric constant 10dκ = , with its center placed 

at the distance 2 µm from the wall in the uniform external electric field 
610 V/m without plasma. 
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for the cell sizes smaller than approximately 0.15 dR  and the relative error of the pϕ  is 

less then 10%, while the relative error of total potential is about 0.1%. Therefore, we 

can expect a good approximation of the dust particles shape, when there are at least 

six cells per a dust radius 6dR ∆ ≥ . 

In this section we described the numerical method, the boundary conditions 

and their applicability for the two-dimensional self-consistent simulations of a 

conductive or dielectric spherical dust particle in the boundary plasma including the 

case of the dust particle attached to the wall. The originally developed PIC code based 

on the described method is applicable to analyze the dust particles properties at the 

wall position self-consistently with the sheath formation and verify our one-

dimensional consideration results.  

 

3.3. Results of self-consistent simulations 

 

In this section we describe present results of the two-dimensional self-

consistent simulations of the conductive spherical dust particle placed on the 

electrically biased wall in contact with a plasma. The plasma is injected from the left 

boundary of the system, where electrons have the Maxwellian and hydrogen ions have 

the shifted Maxwellian velocity distribution functions with the same densities equal 

12

0 10n = cm
-3
 and the temperatures 3e iT T= = eV, which are typical for the plasma in 

the divertor region of fusion devices. The injected ion velocity distribution function 

has the shift on velocity 4

0 3.284 10u = × m/s in order to satisfy the Bohm criterion 

[21,24] of the sheath formation. The wall potential and the dust particle radius are the 

parameters in order to analyze corresponding dependencies. The elementary processes 

were not included in the simulations and the presheath was not produced, because the 

dust particle was placed on the wall in the Debye sheath region and the 

computationally consuming presheath formation is not particularly an important factor 

of the dust particle properties on the wall. For the selected plasma parameters the 

electron Debye length in the bulk plasma is 12.9Dλ = µm, the electron plasma 

frequency equals 105.6 10peω = × s
-1
 and the ion plasma frequency is 91.3 10piω = × s

-1
. 

The steady state of the plasma without a dust particle was calculated once, after that 

the dust particle of variable radius was put in the system and the simulations restarted. 
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This allowed us to save the computational time, because the new steady state after the 

dust particle insertion usually was achieved for 110 piω− . The system size varied to 

satisfy the model validity conditions described in the previous section and typically is 

200 100× µm in the axial and radial directions, respectively. The size of the spatial 

mesh cell typically was 1µm in the both directions. The simulation of one regime 

usually takes from 10 to 40 hours using four Itanium 2GHz processors. 

The typical simulation results of the dust particle on the plasma-facing wall 

are shown in Fig.3.3.1, where the spatial distributions of the electric potential, the 

charge density, the electron and ion densities, the ion flow velocity in the axial 

direction and the effective electron temperature are plotted for the dust radius 

20dR = µm and the wall potential 15wϕ = − V. The surface of the dust particle is 

indicated by the white line. As can be seen from the potential distribution 

(Fig.3.3.1(a)), the equipotential lines smoothly bend around the dust particle, so that 

the sheath edge is not strongly affected by the dust particle presence, instead the 

sheath width is compressed in front of the dust particle. Distribution of the potential in 

the radial direction shows that the screening length of the dust particle is about the 

Debye length Dλ . The interesting fact is that there is the positive charge accumulation 

in front of the dust particle (Fig.3.3.1(b)). In the studies of a dust particle in an ion 

flow without the wall [52], we saw that a positive charge accumulates behind the dust 

particle, where the wake potential is formed due to the scattering of ions by the 

charged particle. In our case with the wall presence, the ion scattering significantly 

differs from the infinite plasma case, because the scattered ions are absorbed by the 

wall and have practically no decelerated part of their trajectories. The formation of the 

positive charge in front of the dust particle becomes clearer if we compare the 

distributions of the ion (Fig.3.3.1(c)) and electron (Fig.3.3.1(d)) densities. The ion 

density profiles are almost undisturbed by the dust particle, while the electron density 

decreases significantly around it. Therefore, the positively charged region in front of 

the dust is formed due to lack of electrons, as near the wall, but with the higher ion 

density, as in the middle of the sheath. Also, we can conclude from this observation 

that the dust is screened by electrons and not by ions, so the screening length is 

comparable with the electron Debye length. There is a shadow region in the space 

between the wall and the dust particle, where the densities of electrons and ions are 

both relatively low, the potential is close to the wall potential and the electric field is  
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Fig. 3.3.1 Simulated spatial distributions of the electrostatic potential (a), the 

charge density (b), the electron (c) and the ion (d) densities, the ion 

flow velocity in the axial direction (e) and the effective electron 

temperature (f) in the sheath with the conductive spherical dust 

particle on the wall. 
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small in comparison with the electric field at the wall far from the dust particle. As 

can be seen from Fig.3.1.1(e) the ions are accelerated along the z -axis near the front 

side of the dust particle to almost the same speed as at the wall. At the same time, the 

ion density is higher there than that near the wall far from the dust, therefore the axial 

flux of the ions is increased in front of the dust particle that testifies about attraction 

of ions along the radial direction. There are also scattered ions going into the shadow 

region behind the dust particle. In Fig.3.1.1(f), the effective electron temperature 

distribution in the simulated system is shown. We can see that the effective 

temperature decreases near the wall and in the shadow region, where the potential is 

close to the wall potential. This can be explained by the effect of truncation of the 

electron velocity distribution function due to absorption of the high-energy electrons 

by the wall and the dust. We currently can not explain the small spot of hot electrons 

near the front dust side that is, probably, a numerical effect due to small number of 

representative super-electrons there and requires additional investigations. This 

qualitative description of the self-consistent sheath formation with the conductive 

spherical dust particle on the wall, which size exceeds the Debye length, shows the 

one-side shielding of the dust particle that weakens the effect of the dust on the sheath 

edge and creates the specific scattering field for the ions. 

In Fig.3.3.2, the simulated total force acting on the dust particle on the plasma-

facing wall (black dots) without the gravitational force and its prediction by the one-

dimensional model, both of which are normalized by the geometrical cross section of 

the particle, are shown as functions of the dust particle radius for the two values of the 

wall potential: the floating wall potential without a dust particle 2.17w ee Tϕ = − and 

the deeper than floating potential value 5.0w ee Tϕ = − . As we can see, for the deeper 

wall potential the total force changes its sign from negative (from the wall direction) 

for small dust particle radii to positive (to the wall direction) for the bigger dust 

particles and there is the critical value of the dust radius around 1.8d DR λ= . Therefore, 

the simulations confirm the existence of the first critical dust radius, so that the dust 

particles with larger radii than the first critical one can not leave the wall. In the case 

of the shallower wall potential, the values of the total force are more positive for the 

same dust size in comparison with the deeper wall potential case. That qualitatively 

agrees with the one-dimensional model prediction and implicitly support the threshold 

potential existence.  
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Unfortunately, the simulation of very small dust particles is difficult, because we need 

a tiny mesh in this case, and as the first critical dust radius is zero for the threshold 

potential, it is hard to simulate. However, the simulated total force is close to the 

theoretically predicted parabolic dependence for the dust particles smaller than the 

Debye length Dλ . At the same time, there is the difference between the simulated and 

the theoretical total forces for the larger dust radius than the Debye length, as we 

suggested. For the both values of wall potentials, the simulated dependences of the 

total force on the dust radius are much weaker than the theoretical parabolic one for 

the large dust particles. That leads to the bigger values of the simulated first critical 

dust radius than that predicted theoretically. 

To clarify the reason leading to the difference between the one-dimensional 

theoretical and the simulation results, we analyze properties of the dust particle on the 

plasma-facing wall. In Fig.3.3.3, the dependences of the charge of the dust particle 

placed on the plasma-facing wall on the particle radius are shown according to the 

self-consistent simulations (circles) and the one-dimensional theoretical formula 

(2.2.15) (red line). The theoretical values of the dust charge are proportional to the 

square of the dust radius and are linearly proportional to the electric field at the wall, 

 

Fig. 3.3.3 Dependence of the charge of the spherical conducting dust particle 

placed on the wall on the particle radius for the wall potential value 

5.0w ee Tϕ = − . The black dots show the results of the 2D simulations, 

the red line represents one-dimensional analytical approach for 

uniform external electric field and the black line shows the analytical 

dependence taking into account the non-uniform external electric field. 
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which was taken from the simulation of the sheath without a dust particle and equals 

2.15 /w e DE T eλ= . As we can see in Fig.3.3.3, the absolute values of the simulated 

dust charge are smaller than the theoretically obtained ones, in particular for the 

bigger dust than the Debye length. This leads to reduction of the repulsive 

electrostatic force acting on the bigger dust particles than the Debye length in 

comparison with the 1D theoretical prediction and can not explain the weakening of 

the total force acting on the big dust particles (Fig.3.3.2). Here we should note that the 

theoretical formula (2.2.15) is obtained under the assumption of the uniform electric 

field near the wall on the scale of the dust particle radius. However, the electric field 

in the sheath is not uniform as we saw from the sheath simulations in the section 

(2.1.3). As was described earlier, in the 1D theoretical approach we can not take into 

account the self-consistent shielding of the dust particle in a plasma, but we can 

consider the spatial variation of the unperturbed electric field by the dust particle in 

the sheath near the wall. The charge of a spherical conductive dust particle placed on 

a conductive wall in a non-uniform external electric field can be solved analytically 

using the expansion of the field potential on the z  coordinate 

( )
max

0

k
k

k

k

z h zϕ
=

= ∑ , (3.3.1) 

where kh  are dimensional coefficients of the expansion, i.e. 0h  is the wall potential 

and 1h−  is the electric field at the wall. The solution (see Appendix C) gives the dust 

charge in the form of series of powers of the dust particle radius dR  
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Here, ( )nΓ  is the Gamma function and ( )nζ  is the Riemann’s Zeta function. The 

first term in formula (3.3.2) corresponds to the dust charge on the wall in the uniform 

electric field with the value 1h−  and coincides with formula (2.2.15). Hence, we can 

show that the value of the form factor for a spherical dust particle is 

2

22 2 3q qcIξ π= = . In Fig.3.3.3, the analytical dependence of the dust particle charge 

on its radius, which takes into account non-uniformity of the electric field in the 

sheath, is shown by the black line. The potential distribution in the sheath was 

simulated without the dust particle for the same plasma parameters as the simulations 

with the dust particle, and then the potential was expanded on the z  coordinate 

according to (3.3.1). The expansion up to the third order of z  was good on the range 

6.2 0D zλ− ≤ ≤ . Correspondingly, the dust charge was calculated according to (3.3.2) 

up to the term proportional to 3

dR  that is valid for 3.1 0D dRλ− ≤ ≤ . The higher orders 

in the expansion were checked to make no significant improvement in the accuracy 

for the indicated range. As we can see in Fig.3.3.3, accounting of the electric field 

non-uniformity the reduction of the theoretical estimation of the dust particle charge is 

significant for the bigger dust particles than the Debye length, while for the smaller 

particles we have very good agreement with the simulation results. The absolute value 

of the theoretical dust charge in the non-uniform electric field is lower than the 

simulated one for the big particles. As the only effect, which was not taken into 

account in the dust charge calculation in the non-uniform external electric field, is the 

dust shielding by a plasma, then this effect is responsible for the difference between 

the simulated dust charge and the one-dimensional theoretical consideration in the 

non-uniform external field. Therefore, the plasma shielding of the dust particle placed 

on the plasma-facing wall leads to the increase of the negative dust charge. Physically 

this effect is reasonable, because the plasma shielding causes sharper variation of the 

potential near the dust particle, thus it enhances the electric field at the dust particle 

surface and, consequently, its surface charge density. Thus, the effect of the dust 

shielding by a plasma is opposite to the effect of the non-uniform electric field, so 

they partially compensate each other. Due to this the simulated dust charge is 

comparatively close to the theoretical one in the uniform electric field as shown in 

Fig.3.3.3. 
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Let’s further consider the electron and ion fluxes on the dust particle placed on 

the wall. In Fig.3.3.4, the dependence of the electron current density to the dust 

particle is shown as a function of the dust radius for the two cases of the wall potential 

2.17w ee Tϕ = −  and 5.0− . As we can see, the electron current density is practically 

independent of the dust particle radius. It shows that we should be careful of using the 

OML expression for the electron current to the dust (2.2.2). 

In the particular case, when the conductive dust particle is attached to the wall, its 

potential is fixed to the wall potential value and does not depend on the dust charge 

and size, as for the dust particle floating in a plasma. Therefore, the electron density 

near the dust surface ( ) ( )( )0exp 4e d d en z Q e R T zπε  in expression (2.2.2) should be 

substituted with ( )0 exp w en e Tϕ , as the wall potential is counted from the bulk 

plasma with the density 0n . Here we neglected the variation of the electron 

temperature near the dust surface. Therefore, the electron current to the dust particle is 

rewritten as 

2 8
expe w

e d o

e e

T e
I R en

m T

ϕ
π

π
 

= −  
 

. (3.3.5) 
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The electron current density corresponding to (3.3.5) is shown in Fig.3.3.4 by solid 

lines for the two values of the wall potential. As we can see, the modified electron 

current density is independent of the dust particle size and is in better agreement with 

the simulated electron current density for the deeper wall potential case. For the both 

cases of the wall potential, the simulated value of the electron current density is 

smaller than the theoretical one, which can be explained by the effect of the truncation 

of the electron velocity distribution function in the complex dust-wall geometry. The 

high-energy electrons absorbed by the wall are absent in the distribution function of 

the electron velocity normal to the dust particle surface. Thus, this component of the 

electron velocity, which is normally directed toward the dust surface, can not form the 

half-Maxwellian distribution and the electron flux to the dust reduces especially in the 

shadow region between the dust particle and the wall. The shallower the wall potential 

is, the stronger this effect is, because more electrons with lower energy will be 

absorbed by the wall. 

If we consider the dust particle with the fixed wall potential as we did for the 

electron current (3.3.5), we obtain the following modified OML expression for the ion 

current to the dust particle on the wall 

2

0 2

0

2
1 i w

i d iz i

i iz

q
I R q

m u

ϕ
π

 
= Γ − 

 
, (3.3.6) 

where 0izΓ  and 0izu  are the ion particle flux and the ion flow velocity to the z  

direction at the point with the zero potential (left boundary), respectively. As we can 

see, the modified ion current density according to (3.3.6) does not depend on the dust 

radius in spite to the conventional OML expression (2.2.2) and the simulation results, 

which are shown in Fig.3.3.5 by the red line and the black dots, respectively. 

Surprisingly, that the unmodified OML dependence (2.2.2) is not so far from the 

simulated ion current density values. However, it linearly increases with the dust 

radius, while the simulated current density dependence on the dust radius is nonlinear 

and tends to saturate for large particle radii (Fig.3.3.5). To clarify this dependence 

let’s note that the OML theory describes the motion of ions only in a field of the dust 

particle, while the strong electric field created by the wall is also present in the sheath. 

Strictly speaking, the new theory of the absorption of the plasma particles by a dust 

particle in an external electric field needs to be developed. 
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Fig. 3.3.5 Dependencies of the ion current density to the spherical conducting dust 

particle placed on the plasma facing wall. Black dots represent 

simulation results, red line shows the dependence according to the OML 

theory and the black line according to the modified OML expression.  

Fig. 3.3.6 Simulated spatial profiles of the ion flow velocity and the electric 

potential in the undisturbed by the dust particle sheath. The dashed line 

shows the position, where we can roughly assume the ions start to feel 

the electric field created by the dust particle shown as a half-circle.  
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Such theory should calculate ion trajectories in the self-consistent fields of the dust 

particles and the sheath, but because of the complexity of the situation we left this as 

one of future issues. At present, we can try to separate the both fields in the one-

dimensional model and reduce the sheath field effect by excluding part of ions 

trajectories far from the dust particle in axial direction. As a first estimation we can 

assume that the ion trajectories start to feel the dust particle field at the position 

2 dz R− = . Then, we can apply to formula (3.3.6) the local values of the ion flow 

velocity at the point 2 dz R− =  and the potential difference between this point in the 

undisturbed sheath and the wall as following 

( )
( )

2

0 2

2 2
1

2

i d w

i d iz i

i iz d

q z R
I R q

m u z R

ϕ ϕ
π

  = − −  = Γ −
 = − 

. (3.3.7) 

The ion flux here was not changed as it conserves in the collisionless undisturbed 

sheath. In Fig.3.3.6, the simulated spatial profiles of the ion flow velocity and the 

electric potential in the sheath undisturbed by the dust particle are shown, where the 

selected point 2 dz R− =  is indicated by the dashed line. Applying the simulated 

values of the ion flow velocity and the potential from Fig.3.3.6 into the modified 

OML expression (3.3.7) we can get the dependence of the ion current density on the 

dust radius shown in Fig.3.3.5 by the black line. The modified OML dependence of 

the ion current density has good agreement with the simulation results for the smaller 

dust than the Debye length and shows the saturation for the big dust particles, which 

is not present in the conventional OML dependence (2.2.2). Nevertheless, the 

simulated ion current density is much smaller than that obtained from the modified 

OML expression (3.3.7), when the dust particle radius is bigger than the Debye length. 

It is reasonable to suggest that this difference comes from the self-consistent 

screening of the dust particle by a plasma, which is not present in the theoretical 1D 

approach. The dependences similar to the ion current density on the dust radius 

(Fig.3.3.5) can be obtained for the ion absorption drag force, because of their common 

nature due to the ion absorption and the similarity in the OML expressions for the 

current (2.2.2) and the force (2.2.9). 
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Let’s consider more closely the screening of the dust particle by a plasma on 

the plasma-facing wall. In Fig.3.3.7, the simulated spatial potential distributions 

around the dust particles of two different radii on the plasma-facing wall with the 

potential 5.0w ee Tϕ = −  are shown. The potential distribution for the particle with 

radius 1.55d DR λ =  is shown in Fig.3.3.7(a) and for the larger dust particle with 

3.10d DR λ =  in Fig.3.3.7(b). In the case when the dust particle radius is 

1.55d DR λ = , which is larger than the Debye length, we can see the dust particle 

placed in the disturbed sheath potential near the wall, so we can expect that the 

electric field of the wall sheath affects the current to the dust particle. When the dust 

particle is larger with 3.10d DR λ = , an individual sheath around the particle is 

developing and the effect of the wall sheath reduces. In this case, the ion current 

density to the dust particle tends to be defined by the plasma conditions at the edge of 

the individual dust sheath. When the dust sheath width is small in comparison with the 

dust radius, the ion current to the dust is limited by the dust sheath and not by the ion 

orbital momentum. Therefore, for the very large dust particles with d DR λ≫  the ion 

current density is almost independent of the dust radius and saturates at the level, 

which can be estimated as 2

0 04i d sI R en cπ≈  that can be seen from the simulation 

results in Fig.3.3.5. This level is lower than that obtained by the modified OML 

expression (3.3.7), because the increase of the ion absorption cross section (2.2.1) due 

to the orbital term in the parenthesis does not work in the sheath limited regime. The 

saturation of the ion current density also means the saturation of the ion flow pressure 

on the dust particle due to absorption. Therefore, the ion drag force acting on the very 

large dust particle with d DR λ≫  placed on the wall can grow proportionally to 2

dR∼  

that is weaker than the cubic dependence obtained in the 1D theoretical model. This 

can contribute in the weaker dependence of the total force acting on the very large 

dust particle on the dust particle radius (Fig.3.3.2). We can suggest that the same 

mechanism can diminish the strong fourth order dependence on the dust radius of the 

ion drag scattering force, which was obtained in the 1D model, for the very large dust 

particles. 
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3.4 Discussion 

 

In this chapter we described the model and the present results of the two-

dimensional self-consistent simulations of the spherical conductive dust particle 

placed on the plasma-facing wall. The originally developed two-dimensional PIC/MC 

code allows us to simulate the interaction between a plasma and conductive or 

insulating dust particles of various shapes with different values of the dielectric 

constant placed at arbitrary distance from the wall including the case of the particle 

attached to the wall. The self-consistent simulations of the dust particle shielding and 

the sheath formation near the wall allow us to verify the results obtained in the one-

dimensional approach, which were described in Chapter 2. In particular, we have 

confirmed the existence of the first critical dust radius, which is the radius of the 

biggest dust particle capable to leave the wall. It was shown that our 1D approach 

correctly describes the statics of the dust particles, which radii are smaller than the 

Debye length, on the plasma-facing wall. However, we found that the total force 

pushing the dust particles toward the wall does not increase so fast with increasing of 

the particles radii as the force predicted by the one-dimensional model does. It leads 

to larger values of the first critical dust radius than the prediction for the deeper wall 

potentials. The analysis of the obtained simulation results shows that the charge of the 

dust particles on the wall, which are bigger than the Debye length, calculated 

according to the 1D model is larger than the simulated one. However, the electric field 

non-uniformity in the sheath significantly reduces the dust charge to the smaller 

values than the simulated ones. The simulated dust charge is, therefore, the 

combination of the effect of the non-uniform electric field in the sheath and the effect 

of the dust shielding by a plasma. The last one causes increasing of the normal electric 

field at the dust surface and enhancing of the dust surface charge density. Thus, we 

can expect that for a smaller Debye length the charge of the dust particle with a fixed 

radius at the wall with a fixed potential is larger than that for a longer Debye length 

and, correspondingly, the electric force is stronger. Nevertheless, to explain the 

reduction of the total force acting on the dust particle toward the wall for the large 

dust radii we need to consider the ion drag force dependence on the dust size. We 

have shown that the ion current density and, correspondingly, the ion absorption drag 

pressure acting on the much bigger dust particle than the Debye length tends to 

saturate due to developing of the sheath limited current regime. For the dust particles, 
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which radii are not so large but still larger than the Debye length, we proposed the 

modified OML expressions for the electron and ion currents to the dust particle 

attached to the wall accounting the fixed dust potential and the acceleration of ions in 

the sheath. The more precise absorption theory for the dust particle in the sheath can 

be developed basing on the calculation of ion trajectories in the sheath potential 

disturbed by the dust particle. The non-self-consistent consideration without the 

plasma screening effect, which takes into account the induced field calculation around 

the conductive dust particle at the wall (Appendix C) can be useful and is our future 

issue. The reduction of the ion absorption drag pressure can contribute to the 

explanation of the first critical dust radius increasing. Nevertheless, the contribution 

of the ion drag scattering force is also important and can be studied further. One of the 

possible issues affecting dependence of the ion scattering drag force on the dust radius 

is the corresponding dependence of the dust Coulomb logarithm. Another issue is 

defining itself of the ion scattering drag force on the dust particle in the sheath. In 

spite of the classical consideration, ions are absorbed by the wall and have no 

decelerating part of their trajectories around the dust particle. We can consider this 

effect from the electrostatic point of view. In an unlimited uniform plasma flow, the 

wake potential is created behind the dust particle along the flow. The electrostatic 

interaction of the charged dust particle with the wake field can be considered as the 

scattering force acting on the dust particle. Thus, the scattering force is the interaction 

of the dust particle with a plasma. However, in the sheath even without a dust particle 

the plasma is positively charged and can attract the negatively charged dust particle to 

the direction from the wall. Thus, not all electrostatic interactions of the dust particle 

with a plasma can be considered causing the scattering force. Only the interaction 

with the plasma disturbance introduced by the dust particle presence can be attributed 

to the scattering, other part of the electrostatic dust-plasma interaction should be 

attributed to the usual electric force due to the sheath electric field.  As we saw from 

the 2D simulations, the large positive charge is created near the upstream point of the 

dust surface, which is opposite to the conventional wake field. Therefore, the direction 

and the value of the scattering force acting on the dust particle at the wall needs 

additional studies. As well as the ion absorption by the dust particle in the disturbed 

sheath, the scattering process can be also considered for the theory development. As a 

next issue we also consider the self-consistent simulations of the dust particles with 

different shapes apart from the wall. That can clarify the self-consistent dust dynamics 

in the sheath. 
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Chapter 4 

 

Summary 

 

In the present work we investigated the statics and dynamics of the spherical 

dust particle on the electrically biased plasma-facing wall and in the boundary plasma 

near it using the one-dimensional theoretical approach with simulated plasma 

parameters distributions as well as the two-dimensional self-consistent simulations. 

The used theoretical one-dimensional model describes the behavior of the dust 

particle in the boundary plasma assuming that the particle does not disturb the plasma 

parameters distributions significantly that can be correct for the smaller dust radii than 

the Debye length. The spatial profiles of the plasma parameters in the sheath and the 

presheath were simulated using our own developed 1D PIC/MC code. The charging of 

the dust particle in a plasma is described according to the Orbital Motion Limited 

theory [41,42], which gives the absorption cross sections of electrons and ions by the 

dust particle. The ion absorption cross section is also used for calculations of the ion 

absorption drag force. Other forces acting on the dust particle taken into account are 

the electric force due to the sheath electric field, the electrostatic image force due to 

the interaction of the dust with the induced charges on the wall, the ion scattering drag 

force due to the deflection of ion trajectories by the dust and the gravitational force.  

Except the electrostatic and arbitrary directed gravitational forces all others are 

pushing the dust particle toward the wall. The balance of the pushing and repulsive 

forces, which defines the conditions when the dust particle can leave the wall and start 

the motion toward the plasma, was analyzed. The charging of conductive dust particle 

on the wall physically differs from the charging in the plasma, because in this case not 

the currents but the component of the electric field normal to the surface defines the 

dust charge. Taking into account the dependencies of the charge and the forces on the 

dust particle radius, we have predicted the existence of the first critical dust radius, 

which defines the largest particle able to release from the wall. The dependencies of 

the first critical dust radius on the wall potential, the form factor of the dust particle, 

the plasma parameters and the gravity conditions were analytically obtained for the 
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simple Bohm sheath model [24]. For the case without the gravitational force, it was 

shown that there is the threshold sheath potential drop, so that in the shallower than 

this sheath potential dust particles of any size can not leave the wall. For the deeper 

than the threshold sheath potential the first critical dust radius is the increasing 

function of the potential drop. Accounting the possibility to control the sheath 

potential drop with the externally applied voltage, one can also control the size of the 

dust particles released from the wall or even suppress releasing of particles with any 

size. It was shown that the gravitational force directed toward the wall does not affect 

the threshold potential and reduces the values of the first critical dust radius. In the 

case of the gravitational force acting from the wall direction, the threshold potential 

remains unchanged, but releasing of the dust particles for the shallower potentials 

becomes possible with the gravity assistance. Depending on the value of the 

gravitational parameter, which describes the relative strength of the gravitational force 

in respect to the ion flow pressure, there could be a range of the sheath potentials, 

where releasing of the dust from the wall is still suppressed. Practically it can be used 

for collection of dust particles on some electrodes and prevention of their spreading in 

a plasma, especially for dense plasma conditions when the role of the gravitational 

force is not important. Such collectors could be installed in the divertor region of 

fusion devices, where the dust probably produced and where the biased electrode 

minimally affects the confinement conditions. 

Furthermore we analyzed possible trajectories of the released dust particles 

with various radii and masses in the normal to the wall direction using our one-

dimensional model. The trajectories were calculated using simultaneous solutions of 

the dust charging and motion equations with the simulated profiles of the plasma 

parameters in the boundary plasma. It was shown that there is the second critical 

radius for the heavy dust particles, which discriminates their large and small 

amplitude trajectories. The large amplitude dust oscillatory trajectories are possible in 

the well like effective potential profiles with the minimum corresponding to the 

equilibrium position. The smaller the dust particle is, the larger the oscillation 

amplitude becomes. The short trajectories are performed by dust particles in the force 

field pushing it toward the wall, which corresponds to the effective potential profile 

decreasing near the wall. Such dust particles return to the wall immediately after 

releasing due to the fast recharging process switching the direction of  the total force 

acting on the released particle in a plasma. The existence of the second critical radius 
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was explained by appearance of the effective potential barrier separating the wall 

from the dust equilibrium position, which the particle with the zero initial velocity can 

not reach. For the dust particle with the radius equal to the second critical one the 

barrier just appears at the wall position. It was shown that without the gravitational 

force the maximum of the effective potential corresponding to the barrier appears in 

the sheaths with the deeper sheath potential drop than 4.23
e
T e  and does not appear 

in the shallower sheaths than 2.84
e
T e  for the Bohm sheath model. For the 

intermediate sheath potentials the second critical radius exists and has the maximum 

value corresponding to the critical dust levitation radius found by Vladimirov [60]. 

The sharp discrimination of the motion amplitudes on the dust particle radii 

disappears for the dust particles lighter than the critical mass due to the delayed 

charging effect, when the charge of the dust particle initially attached to the wall 

slowly relaxes in a plasma to the local equilibrium charge in comparison with the 

oscillation period. The delayed charging effect also leads to the collisionless damping 

of the large amplitude oscillations due to the mechanism described in [63]. The effect 

of gravity on the effective potential barrier and the equilibrium positions was 

examined. It was shown that the levitation of dust particles may be possible near a 

wall in an upper horizontal position with the shallow sheath potential. The combined 

diagrams of the equilibrium and the critical dust radii plotted in the sheath potential 

space show the scenario of the dust particle behavior initially placed on the wall for 

any selected wall potential, dust radius and the given gravitational conditions. Such 

diagrams allow us to analyze which dust particles can leave the wall and go far into 

the plasma that can be helpful for understanding of the plasma contamination. 

The power balance of the carbon dust particle in a plasma was analyzed 

allowing to estimate the internal particle temperature and the corresponding dwell 

time for different plasma conditions. It was shown that for the present and future 

divertor plasma parameters a micrometer size dust particle can have a temperature of 

a few thousands kelvins and survive long enough time, from hours to tens of 

milliseconds, to move on significant distances with the typical speed of a m/s order. It 

was shown that the main mechanisms leading to the carbon dust destruction in 

divertor plasma are likely the thermal evaporation and the radiation enhanced 

sublimation, while the chemical sputtering plays role only for relatively low dust 

temperatures. Some of these results were published in [11] and support the idea that 
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the dust particles can penetrate into the edge plasma of fusion devices and contribute 

to the impurity contamination. The role of the ion diamagnetic drift in the magnetized 

sheath and the roughness of the wall surface for the dust particle acceleration was 

recognized in [11]. 

In order to evaluate the results obtained from the one-dimensional 

consideration and analyze the behavior of the bigger dust particle than the Debye 

length in sheaths, we developed the new two-dimensional PIC/MC code for the 

cylindrically symmetric system. The code allows simulating of the self-consistent 

sheath formation with the conductive or insulating immobile dust particle of various 

axially symmetric shapes, sizes and values of the dielectric constant, which can be 

placed at arbitrary position in front of the electrically biased wall including the case of 

a dust particle attached to the wall. Some non-standard features of the code 

concerning boundary conditions, the field solver and the motion advancing scheme 

are described in Section 3.2. The results of the simulations of the total force acting on 

the conductive spherical dust particles on the plasma-facing wall confirm the 

existence of the first critical dust radius. The simulated total force reasonably agrees 

with the theoretical prediction calculated according to the one-dimensional model for 

the dust particles which radii are smaller than the Debye length that validates the first 

critical radius estimations for the shallow wall potentials. For the bigger dust particles 

than the Debye length the simulated total force is much weaker than that predicted by 

the one-dimensional model. It leads to the bigger values of the first critical dust radius 

for deep sheath potential drops than ones expected from the theoretical consideration. 

The analysis of the self-consistent charging and screening of the big dust particle 

suggests that, the most likely, this effect is attributed to the theoretical overestimation 

of the ion drag force, especially its scattering component, rather than the 

underestimation of the repulsive electric force. The comparison of the simulated dust 

charge with the induced charge on the dust particle in the non-uniform sheath electric 

field shows that the latter one is smaller than the former one for big dust radii due to 

the self-consistent screening of the dust particle by a plasma, which enhances the field 

on the dust surface and the corresponding induced surface charge density. The 

analysis of the ion current density on the dust particle shows its nonlinear dependence 

on the particle radius in spite to the OML prediction, which takes into account a fixed 

potential of the dust particle attached to the wall. We suggest that there are two 

reasons responsible for the observed dependence. The first one is the superposition of 



 109 

the sheath electric field with the one created by the dust particle, which leads, in the 

rough approximation, to the dependence of the impact ion kinetic and potential energy 

on the dust particle size. The second effect is transition of the ion current regime from 

the orbital to the sheath limited for the dust particles, which size is much larger than 

the Debye length. In the sheath limited regime the ion current density on the dust 

particle tends to saturate. Together with the ion current density also the ion flow 

pressure on the dust particle saturates that contributes to the weakening of the total 

force pushing the particle toward the wall. The ion scattering by the dust at the wall 

position substantially differs from the usual scattering of ions by the dust particle in 

the ion flow. The simulations of the dust particle screening near the wall showed that 

the excess of positive charge is formed near the upstream point of the dust surface, 

because of absence of the decelerating part of the ion trajectories due to the absorption 

by the wall. This can cause the significant effect on the ion scattering drag force 

including the change of its direction. Regarding this, additional theoretical and 

simulation studies of the ion scattering by a dust near the wall are needed. The 

obtained results of the self-consistent screening of dust particles that are bigger than 

the Debye length in the sheath show the main effects, which should be taken into 

account in future theoretical descriptions. As the next step of our researches we also 

consider obtaining of the self-consistent effective potential profiles for the big dust 

particles in the boundary plasma that should clarify the self-consistent dust dynamics. 

This study can be useful for developing of the more rigorous theoretical estimations of 

the self-consistent currents and forces acting on the big dust particle that can be 

applied for integrated simulations of dust dynamics in a SOL (Scrape-Off-Layer) 

plasma in fusion devices. The theory also should take into account effects of a 

magnetic field and a possible electron emission from the dust in future. Further 

refining of the consideration of the dust particle releasing from the wall can include 

the contact potential difference between the wall and the dust particle of different 

material. This also can be considered as the electrostatic approach for accounting of 

the molecular bounding forces between the wall and the dust particle. In the 

conclusion we would like to say that the present work includes the first theoretical 

consideration of the dust releasing from the plasma-facing wall and the first self-

consistent simulations of the dust particles screening in the sheath. 
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Appendix A 

 

Local macroscopic quantities in 

collisionless boundary plasma 

 

Let’s consider the one-dimensional model, in which the plasma particles with 

the half-Maxwellian distribution functions are injected from the bulk plasma 

boundary ( sz L= − ) toward the perfectly absorbing wall ( 0z = ), which has the given 

potential wϕ  (Fig.2.1.1). In this analysis we consider the formation of the 

collisionless sheath potential, which monotonically decreases toward the wall. The 

potential at the injection boundary of plasma particles is set to zero. Because there are 

no particle sources and sinks in the system, the local energy distribution functions of 

the plasma particles, ( ),j j zf z ε  (here j = e, i), are the same at any point as at the 

injection boundary ( )0,j j zf z ε= . Here ( )2 / 2j z j z jm q zε υ ϕ= +  is the total particle 

energy in the electrostatic potential ( )zϕ . The local macroscopic quantities inside the 

system can be easily calculated using the local energy distribution function. Electrons 

have positive and negative velocities due to reflection by the monotonically 

decreasing potential. The local electron density with positive velocities can be 

calculated as 

( )
( )
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and with negative velocities as 

( )
( )

( )( )

( ) [ ]( )

0( ) ( )

0

( )1
exp erf

2

we

e ez w

e ez e

e ee ze ez

f e z e z
n z d n

T Tm e z

ϕ

ϕ

ε ϕ ϕ ϕ
ε

ε ϕ

− +
− +

−

   −
 = =    +    

∫ . 

 (A.2) 

Here ( )( )

0e ezf ε+  is the electron energy distribution function (2.1.5) and ( )

0en
+  is the 

density of electrons with positive velocities at the injection boundary and 
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2

0

2
erf

x

tx e dt
π

−= ∫  is the error function. 

The total local density of electrons with positive and negative velocities is then 

expressed as 

( ) ( ) ( ) ( ) [ ]( ){ }( ) ( ) ( )

0 exp 1 erf ( )e e e e e w en z n z n z n e z T e z Tϕ ϕ ϕ+ − +  = + = + −  . (A.3) 

The second term of the electron density in (A.3) comes from the fact that the electron 

distribution function is truncated at negative velocities. One can easily obtain the total 

electron density at the sheath entrance z = 0, where ϕ = 0  

( ) ( )( )

00 1 erfe e w en n e Tϕ+  = + −   (A.4) 

As ions have only positive velocities in the monotonically decreasing potential, the 

local ion density is obtained as following 
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 (A.5) 

where ( )( )

0i izf ε+  is the ion energy distribution function and ( )

0en
+  is the ion density at 

the injection boundary and erfc 1 erfx x= −  is the complementary error function. 

The flux of electrons with positive velocities is 
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and with negative velocities is 
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The sum of these fluxes gives us the uniform total electron flux 
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The flux of ions, all of which have positive velocities, is obtained as 
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These macroscopic quantities give us the local flow velocities of electrons and ions 

( )
( ) ( )
( ) ( )

( )( )
( )( )

( ) ( )

( ) ( )

exp[ ]2

1 erf [ ]

w ee e e

ez

ee e w e

e z Tz z T
u z

mn z n z e z T

ϕ ϕ

π ϕ ϕ

+ −

+ −

− −Γ + Γ
= =

+ + −
, (A.10) 

and 
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The potential wϕ  of the floating wall is determined by equality of the electron and 

ion fluxes to the wall and can be found as following 
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Appendix B 

 

Sheath potential drop and externally 

applied voltage 

 

In order to obtain the relation between the externally applied voltage extϕ  and 

the sheath potential drop shϕ , the simple one-dimensional model is used (Fig.B.1). 

We consider the plasma between the wall w1 and the wall w2 with the externally 

applied voltage extϕ  to the walls. The areas of the wall w1 and the wall w2 are S
 w1
 

and S
 w2
, respectively. 

 

 

 

 

 

 

 

 

The Debye sheaths are formed in front of each wall, where a plasma is assumed 

collisionless, so that the particle fluxes conserve. In this model we do not take into 

account the presheath potential drop and assume the same quasi-neutral plasma 

conditions at the edges of both sheaths. Also, we consider only the positively charged 

sheaths. The ions at a sheath edge are assumed monoenergetic with the velocity iseu  

directed toward a wall satisfying the Bohm criterion. The ion flux to the wall is then 

( ) ( )i i iz ise isen z u z n uΓ = = . (B.1) 

Fig. B.1 One-dimensional model for calculation of the relation between the 

externally applied voltage extϕ  and the sheath potential drop shϕ . 

w1 w2 

S w1 S w2 
extϕ  

plasma 
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Here isen  and iseu  are the ion density and the ion flow velocity at the sheath 

entrance, respectively. The electron velocity distribution function at the sheath edge is 

truncated due to absorption of high-energy electrons by the wall (see Appendix A), so 

the electron flux in the sheath is expressed via the electron density at the sheath edge 

esen  as following 

( )
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1 erf /

sh ee

e ese

e sh e
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m e T
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π ϕ

−
Γ =

+
. (B.2) 

The current conservation in this circuit (Fig.B.1) gives us the following relation 

( )1 1 2 2 1 1 2 2w w w w w w w w

e e i i iS S Z S SΓ + Γ = Γ + Γ . (B.3) 

Here i iZ q e=  is the ion charge number, 1w

eΓ  and 2w

eΓ  are the electron fluxes to 

the walls w1 and w2, respectively. According to (B.2) we have 
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The ion fluxes to the walls w1 and w2, 1w

iΓ  and 2w

iΓ , respectively, are equal each 

other due to the same sheath edge conditions 

1 2w w

i i ise isen uΓ = Γ = . (B.6) 

Fig. B.2 Sketch of potential profile between two walls w1 and w2. Here the 

external voltage is applied to the wall w1 with the positive polarity and 

the potential is referred from the wall w2. 
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Substituting these expressions into the current conservation equation (B.3), we find 

the relation between the externally applied voltage extϕ  and the sheath potential drop 

shϕ  
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Here the charge neutrality condition at the sheath edges ese i isen Z n=  is used. 

According to the Bohm criterion, the ion flow velocity at the sheath entrance equals to 

the ion sound speed /ise e iu T m= , thus the relation (B.7) can be rewritten as 
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Without the externally applied voltage, 0extϕ = , the sheath potential drop 

corresponds to the floating walls case 

( )
( )

exp /

21 erf /

sf e e

isf e

e T m

me T

ϕ π

ϕ

−
=

+
. (B.9) 

Here sfϕ  is the potential drop in the sheath near the floating wall. As this potential 

drop is determined by the equality of the electron and ion fluxes, it does not depend 

on the areas of the walls. In the case of a deep sheath potential, the effect of the 

truncation of electron velocity distribution function is negligible, ( )erf / 1sf ee Tϕ → . 

So, the well known floating sheath potential drop is obtained 

1
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sf e

e i

e m
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. (B.10) 

On the other hand, in the case of large applied voltage, 1ext ee Tϕ ≫ , the second term 

in LHS of equation (B.8), which corresponds to the electron current to the wall w2, 

can be neglected  
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In this case, for 2 1w wS S≪  the sheath potential drop near the wall w1, shϕ , 

approaches the floating potential sfϕ  (B.9). The dependences of the sheath potential 
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drops near the walls w1 and w2 are shown in Fig.B.3 for the hydrogen plasma and the 

two values of the ratio 1 2/w wS S =0.1 and 10.0. For this case the floating sheath 

potential drop is 2.847 /sf eT eϕ = . Due to symmetry of the model, the value 2w

shϕ  

can be considered as the sheath potential drop shϕ  for the negative polarity of the 

externally applied voltage to the wall w1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

As we can see, for the large value of the ratio 1 2/w wS S , the sheath potential drop 

near the wall w1 is almost independent of the external voltage. In this case, we can not 

get shallow sheath potential drops. On the other hand, in case of the small value of the 

area ratio, the sheath potential drop is widely controlled by the externally applied 

voltage. 

Fig. B.3 Sheath potential drops near the walls w1 and w2 as functions of the 

externally applied voltage. The solid lines correspond to the area ratio 
1 2/ 0.1w wS S =  and the dashed lines to 1 2/ 10w wS S = . 

0 5 10 15 20
0

5

10

15

20

25

eϕ w1

sh
 /T

e

 

 

eϕ
sh

 /
T

e

eϕ
ext

 /T
e

eϕ w2

sh
 /T

e



 119 

Appendix C 

 

Electrostatic potential due to induced 

charge of spherical dust in non-uniform 

electric field 

 

The induced charge on the spherical dust particle immersed in non-uniform 

electric field is described here theoretically. The spherical conductive dust particle 

with the radius dR  is attached to the infinitely extended conductive wall with 

externally applied non-uniform electric field (Fig.C.1). 

 

 

 

 

 

 

 

 

The local electrostatic potential is a superposition of the external non-uniform 

potential ( )ex zϕ  and the potential created by the induced charge of the dust particle 

( ),in r zϕ  

( ) ( ) ( ), ,ex inr z z r zϕ ϕ ϕ= + . (C.1) 

 

Fig. C.1 Sketch of a conductive spherical dust particle with the radius dR  on a 

conductive wall in cylindrical coordinates ( ),r z . Non-uniform electric 

field is applied externally. 
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 z 

    β = const. 

  α  = const. 

The external potential can be approximated by the polynomial of the axial coordinate 

z  

( )
max

0

k
k

ex k

k

z h zϕ
=

= ∑ , (C.2) 

where the coefficient 0h  corresponds to the wall potential at 0z =  

0 wh ϕ= . (C.3) 

This means that the induced potential at the wall is vanishing 

( ), 0 0in r zϕ = = . (C.4) 

The induced potential should satisfy the Laplace equation 
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In order to obtain the potential in the cylindrically symmetric configuration, the 

bipolar coordinates ( ),α β  are introduced 

di R
z i r

iα β
+ =

+
, (C.6) 

where i is the imaginary unit.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. C.2 Constant lines of the bipolar coordinates α and β in ( ),r z  space. The 

spherical dust particle surface and the wall surface correspond to 

0 1 2β β= =  and 0β = , respectively. 
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The relations between the coordinates ( ),r z  and ( ),α β  are following 
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where 0 α≤ ≤ ∞  and β−∞ ≤ ≤ ∞ . The introduced coordinates α and β are 

orthogonal with the lines of constant α  and β  in ( ),r z  space shown in Fig.C.2. 

The dust surface and the wall surface ( )0z =  correspond to 01/ 2β β= =  and 

0β = , respectively. 

The Laplace equation (C.5) in the ( ),α β coordinates has the form 
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The general solution of this equation is given by 

( ) ( )
( )
( )

( )2 2

0

00

sinh
,

sinh
in d C J

βλ
ϕ α β α β λ λ αλ

β λ

∞

= + ∫ . (C.9) 

Note that the induced potential satisfies the condition (C.3) on the wall surface, where 

0z β= = . The unknown coefficient ( )C λ  is determined by the boundary condition 

on the dust surface. Here, this coefficient is expanded by the series of the parameter 

λ  
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This gives us the series expression of the induced potential 
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where the function ( ),nIλ α β  is defined as 
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The external potential (C.2) in the ( ),α β  space is expressed as following 
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Further, we express the term ( )2 2/
k

β α β +   in the expansion (C.13) using the 

function ( ),nI α β , which is defined as 
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This relation leads to 
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 (C.15.3) 

and so on to the desired order. Finally, the external potential can be expressed by the 

function ( ),nI α β  as following 
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. (C.16) 

Here, the highest order of expansion maxk  in (C.2) is limited by 4. This expression 

can be combined with that of the induced potential to give the summary local 

potential 
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The potential on the surface of the dust particle, where 0 1/ 2β β= = , is the same as 

the wall potential wϕ  

( ) ( )0 0, ,ex in wϕ α β ϕ α β ϕ+ = , (C.18) 

for any value of α . Taking into account the relation 

( ) ( )0 0, ,k kI Iλα β α β= , (C.19) 

one can obtain the unknown coefficients kc  in equation (C.10) expressed by the 

coefficients of the external potential kh . 
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 (C.20) 
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dh R
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The surface charge density of the spherical dust particle can be obtained from the 

normal component of the electric field on the dust surface 
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where the functions ( )0nI α  and ( )0cnI α  are defined as 
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Finally, the induced charge of the spherical dust particle is 
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Here, the coefficients qnI  and qcnI  are defined as 
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and 
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where ( )nΓ  and ( )nς  are the Gamma and the Riemann’s Zeta functions, 

respectively. 

In the case of the uniform external electric field,  

0 1z

d
E h

d z

ϕ
= − = − , (C.27) 

the averaged surface charge density is obtained as 
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