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Abstract

In recent years, there has been a notable interest in the field of Inductive Logic Programming to learn

from state transitions as part of a wider interest in learning the dynamics of systems. Learning system

dynamics from the observation of state transitions has many applications in multi-agent systems, robotics

and bioinformatics alike. Knowing the dynamics of its environment can allow an agent to identify the

consequences of its actions more precisely. This knowledge can be used by agents and robots for planning

and scheduling. In bioinformatics, learning the dynamics of biological systems can correspond to the

identification of the influence of genes and can help the understanding of their interactions.

In this thesis, we study a method called learning from interpretation transition. The purpose of this

method is to automatically construct a model of the dynamics of a system from the observation of its

state transitions. In this method the dynamics of a system is represented by a logic program that is a

set of transitions rules. The learning settings can be summarized as follows. We are given a set of state

transitions and the goal is to induce a logic program that realizes the given transition relations.

In the first chapter we recall the background of the three main fields of research which our contribution

belongs to, that are: Machine Learning, Logic Programming and Inductive Logic Programming. In the

second chapter we introduce the preliminaries notions needed for the understanding of our contribution.

In the third chapter we introduce the basis of our framework for learning dynamics of system from state

transition. We firstly tackle this induction problem by learning from synchronous state transitions. Given

any Boolean state transitions diagram, we propose an algorithm that can learn a logic program that exactly

captures the system dynamics. Then, we focus on the minimality of the rules learned. Our goal is to learn

all minimal conditions that imply a variable to be true in the next state. In bioinformatics, for a gene

regulatory network, it corresponds to all minimal conditions for a gene to be activated/inhibited. For this

purpose, we propose another version of our algorithm which guarantees that all rules learned are minimal.

In the fourth chapter, we provide several extensions of our framework. Here, we start to consider how our

framework can contribute to model more complex Biological system. In some biological and physical

phenomena, effects of actions or events appear at some later time points. We extend our framework by

designing an algorithm that builds a logic program which captures the delayed dynamics of a system. So

far, the systems that our algorithms could handle were restricted to Boolean variables. Boolean values

are not sufficient to capture the complexity of some systems. That’s why we extend our algorithms

to handle multi-valued networks. Finally, the last contribution of this thesis is to learn dynamics of

non-deterministic systems. We extend our framework to learn probabilistic dynamics by proposing an

algorithm for learning from uncertain state transitions. This algorithm learns the probability of the value

change of each variable of the system.

In the fifth chapter, we discuss related work and compare our approaches to others. Here we point out

similarities and differences, assess advantages and weak points of the method we propose. Finally, in

the last chapter, we conclude the thesis by summing up what have been done and discuss possible future

works and perspectives.
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Chapter 1

Introduction

This thesis studies methods for the automatic construction of model of the dynamics of a system

from the observation of its state transitions. Learning system dynamics from the observation

of state transitions has many applications in multi-agent systems, robotics and bioinformatics

alike. Knowing its environment dynamics can allow an agent to identify the consequences of

its actions more precisely. This Knowledge can be used by agents and robots for planning and

scheduling. In bioinformatics, learning the dynamics of biological systems can correspond to

the identification of the influence of genes and can help the understanding of their interactions.

Figure 1.1 gives the big picture of our work. Given some raw data on the process, like time

series data of gene expression, we assume a discretization of those data in the form of state

transitions. From those state transitions, according to the semantic of the system dynamics, we

propose different inference algorithms that model the system as a logic program. The semantic

of system dynamics can differ regarding the synchronism of its variables, the determinism of its

State Transitions Model
of the Dynamics

Learning
Algorithm

Our Contribution

Time Series Data
Abstraction

Prediction

Query
Answering

Decision
Making

Planning

...

FIGURE 1.1: Big picture of our contribution: assuming a discretization of time series data of a
system as state transitions executions, we propose a method to automatically model the system

dynamics.

1
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changes and the influence of its history. In a synchronous system all transition rules are applied

at the same time: all variable values can change during a state transition. In a deterministic

system there is only one possible transition for each state of the system. An asynchronous

semantic implies that at most one transition rule can be applied in a transition, it means that only

one variable can change its value at a time. Asynchronism usually leads to non-deterministic

behaviors: from the same state there are multiple possible transitions. When system dynamics

are memoryless, the next state of the system only depends on the current state. More complex

systems can have memory, the value of its components can influences its behavior over multiple

time steps. It can have the form of delayed influences: a variable could influences the state of

the system k times step later. Memory can also represent duration or accumulation: a variable

could need to keep a certain value or pass by a sequence of values to have a certain effect on

the state of the system. In this thesis, we propose several modelings and learning algorithms to

tackle those different semantics. Our methodology is based on inductive logic programming, a

discipline that mixes machine learning and logic programming techniques.

Machine learning is a discipline concerned with the development, analysis and implementation

of automated methods that allow a machine to evolve through a learning process, and perform

tasks that are difficult or impossible to fill by more conventional algorithmic means. The pur-

pose of Machine Learning algorithms is to provide to a computer-controlled system the capabil-

ity to adapt its behavior through the analysis of empirical data from a database or sensors. The

difficulty lies in the fact that the set of all possible behaviors given all possible entries quickly

becomes too complex to describe using conventional programming languages. In machine learn-

ing, we entrust programs to fit a model to avoid this complexity and to use it operationally. In

addition, this model is adaptive: it as to take into account the evolution of the information

for which the response behavior have been validated, the so-called learning. This allows self-

improvement of the system analysis, which is one of the possible forms of artificial intelligence.

These programs, according to their degree of development, possibly incorporate probabilistic

data processing capabilities, data analysis from sensors, recognition (voice recognition, pattern

recognition, writing, etc.), data-mining, theoretical computer science, etc.

Logic programming is a form of programming, where a program is defined by a set of elemen-

tary facts and logic rules associating these facts with their (more or less) direct consequences.

These facts and rules are operated by a theorem prover or inference engine according to a ques-

tion or request. This approach is much more flexible than the definition of a sequence of instruc-

tions that the computer would perform. Logic programming is usually considered a declarative

programming approach rather than imperative. A logic program focuses more on the “what”

than the “how”, it declares a problem, not how to solve it. In logic programming, its the infer-

ence engine that takes care of the “how”, it does most of the computation, where the developer

as well as the user care about what they want. This programming paradigm is particularly suited

to the needs of artificial intelligence, which it is one of the main tools. Logic programming
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plays on the ambivalence between declarative and procedural representation. However, logic

programs always keep a pure logical interpretation to ensure their correction and, because of

their declarative nature, are more abstract than their imperative equivalent while remaining exe-

cutable.

Inductive Logic Programming (ILP) is an approach to machine learning which uses logic pro-

gramming techniques. From a base of facts and expected results, divided into positive and

negative examples, an ILP system tries to deduce a logic program which confirms the positive

and refutes negative examples. We can summarize this principle in the following way: positive

examples + negative examples + knowledge base = rules. ILP is defined as the intersection of

inductive machine learning and logic programming. Like in machine learning, the goal of ILP is

the development of methods that construct hypotheses from observations to extract knowledge

from experience. In contrast to most other approaches to inductive learning, inductive logic

programming is interested in properties of inference rules, in convergence of algorithms, and in

the computational complexity of procedures.

In some previous ILP works, state transitions systems are represented with logic programs, in

which the dynamics that rule the environment changes are represented by a logic rules. Based

on this idea, the method we propose learn logic programs from state transitions. In this method

the system dynamics are represented by a logic program that is a set of transitions rules. The

learning setting can be summarize as follows. We are given a set of state transitions and the

goal is to induce a logic program that realizes the given transition relations. More generally

speaking, our goal is to construct a model of the observed system, a model that can explain

those observations.

Let’s now consider a simple example in Figure 1.2. We are considering a group of friends who

are having a chat discussion about going or not to a party. The raw data of the system in this

example are the traces of their discussion, like the one of Figure 1.3.

The discretization into state transitions is made as follows. Here Pink invites Blue, Brown and

Yellow to a party, the system can be represented by three Boolean variables which represent

if each character joins or not the group. Here we do not need to represent Pink by a variable

since it will always have the same value because she joins her own party of course. The current

FIGURE 1.2: The four characters of our system: Blue, Brown and Yellow invited by Pink.
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Hey, party tonight, I guess everybody join ? ^^

Not in the mood for tonight ;(

Just me and Blue, then nope.

Only me finally ? I will stay home.

Meh... They don’t join finally ? Girls party !

2:00 PM

2:15 PM

2:46 PM

3:00 PM

Ahah, then girl party yep :)

5:15 PM

2:23 PM

FIGURE 1.3: Trace of the chat discussion of the characters.

FIGURE 1.4: Discretization of the chat discussion into state transitions.

state of the system is the group of people who join the party. Each character can see all the

messages and according to these messages the group evolves, i.e. someone joins or leaves. In

this example, Pink wants to know why her friends decide to join or not the group. What we want

to model is the relationship between the different characters: who likes whom and who dislike

whom.

Figure 1.4 shows the discretization of the chat discussion into state transitions. At the begin-

ning Pink thinks that everybody will join the party, so that the initial state of the system is

. Then at 2:15Pm, Yellow says that she does not want to join so that the state

changes to . Eight minutes later, Brown decides to not join the group an the state be-

comes . Blue is now alone in the group and this situation does not fit his preferences because

he decides to not join the party and the group becomes empty. It seems that Pink will be alone

tonight, but at 3:00PM Yellow changes her mind and decides to not lets Pink alone, the state of

the system becomes . Finally, only Yellow joins the party of Pink. From those state transi-

tions the method we propose can learn a logic program that represents the influences among the

character. This logic program is a set of transition rules that can realize the observed evolution
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of the group. Those transitions rules could be equivalent to the following informal statements:

joins only if joins; joins only if and joins; joins only if does

not join.

Knowing those relationships, Pink can now understand the reaction of her friends and can de-

duce why only Yellow joins her party. In this example, the variables are Boolean and the se-

mantics is synchronous, deterministic and memoryless. But we could imagine a more dynamics

complex with more variable values. We could have a representation that used three value vari-

ables: the character said he will join, he will not join or he has not decided yet. Also memory

could be considered: the choice of a character could also depend on his own previous choice.

For example, we can have a character that does not change his mind once he has said he will join

or not. Or we could have another character that always waits for the decision of some others

to decide what to do. Non-determinism is also possible in this kind of example: a character

can make different choices in the same condition according to his mood, mood that is unknown,

leading to non-deterministic behavior in the decision of this character. In this thesis we propose

several modeling and learning algorithm to address those different types of dynamics.
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1.1 Background

In this section we recall the background of three main fields of research which our contribution

belongs to, that are: Machine Learning in section 1.1.1, Logic Programming in section 2.1 and

Inductive Logic Programming in section 1.1.3. This chapter is build upon different sources that

mainly come from wikipedia and review papers.

1.1.1 Machine Learning

Machine learning is used to provide to computer systems or machines the perception of their

environment.For example, a machine learning system can allow a robot to learn how to walk,

the robot initially knowing nothing about the coordination of movements for walking. The robot

could start by making random movements, and then, selecting and focusing on movements

allowing it to move forward, will gradually establish a more efficient way of walking. Another

example is handwriting recognition. Handwriting recognition is a complex task because the

occurrences of the same character are never exactly equal. A machine learning system can be

designed to learn how to recognize characters by observing examples of the known characters.

Handwriting recognition algorithms are used everyday to sort out our letter according to the

addresses.

In 1959, Arthur Samuel [3] defined machine learning as a ”field of study that gives computers

the ability to learn without being explicitly programmed”. Tom M. Mitchell [4] provided a

widely quoted, more formal definition: ”A computer program is said to learn from experience E

with respect to some class of tasks T and performance measure P , if its performance at tasks in

T , as measured by P , improves with experience E”. This definition is notable for its defining

machine learning in fundamentally operational rather than cognitive terms. The famous question

”Can machines think?” of Alan Turing’s proposal [5], is simplified to ”Can machines do what

we (as thinking entities) can do?” [6].

The learning algorithms can be categorized according to the learning style they use:

1.1.1.1 Supervised learning

If the classes are predetermined and examples are known, the system learns to classify according

to a classification model; this is called supervised learning (or discriminant analysis). An expert

(or oracle) must first labels the examples. The process occurs in two phases. During the first

phase (offline, called learning or training), it comes to determine a model of the tagged data.
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The second phase (online, called test) is to predict the label of a new data, knowing the previ-

ously learned model. Sometimes it is better not to associate a single class, but a probability of

belonging to each of the predetermined classes (this is called probabilistic supervised learning).

The linear discriminant analysis and support vector machine (SVM) are typical examples. An-

other example is the detection of common symptoms with other known patients (examples): the

system can categorize new patients given their medical analyzes and estimate the risk (probabil-

ity) of developing a particular disease.

Supervised learning assumes that all examples are complete and labeled. The term semi-supervised

learning is used when data (or ”tags”) are missing. Performed probabilistically or not, it aims to

reveal the underlying distribution of examples in their description space. The model must deal

with unlabeled examples that can provide some information. In medicine, it can be an aide to

diagnosis or choice of the least expensive diagnostic tests.

We use the terms partially supervised learning (probability or not), when the labeling data is

partial. This is the case when a model states that a given data do not belong to a class A, but

perhaps to a class B or C. For example, A, B and C could be three diseases mentioned in the

context of a differential diagnosis.

1.1.1.2 Unsupervised learning

When the system or operator has only examples, without labels, and the number of classes and

their nature were not predetermined, it is called unsupervised learning or clustering. Here, no

expert is required, the algorithm must discover by himself more or less hidden data structure.

Data partitioning is an unsupervised learning algorithm. Here, the system must - in the feature

space (the sum of the data) - target data according to their available attributes to classify homo-

geneous group of examples. Similarity is generally calculated using a distance function between

pairs of examples. It is then up to the operator to combine or infer meaning for each group and

clusters patterns or groups of groups in their space. Various mathematical tools and software

can help. It is also called data regression analysis (model fit by least squares procedure or other

optimization of a cost function). If the approach is probabilistic (that is to say, each example,

instead of being classified as a single class, is characterized by a set of probabilities of belonging

to each class), it is called soft clustering (as opposed to hard clustering).

For an epidemiologist who would want to try to make emerge explanatory hypotheses from

a broad set of liver cancer victims, the computer could differentiate different groups, the epi-

demiologist then seek to associate with various explanatory factors, geographical origin, genet-

ics, habits and consumption practices, exposures to various potentially or actually toxic agents

(heavy metals, toxins, etc.).
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1.1.1.3 Reinforcement Learning

The algorithm learns behavior as an observation. The action of the algorithm on the environment

produces a return value that guides the algorithm learning. According to [7], reinforcement

learning is learning what to do - how to map situations to actions - so as to maximize a numerical

reward. In this paradigm, the learner is not informed of what actions it should take. It must find,

according to the situation, which actions are the most rewarding by trying them out. In complex

problem, actions can have cascading effect: not only affect the immediate reward, but also the

future situations and thus, all subsequent rewards. This exploration–exploitation dilemma is the

characteristic features of reinforcement learning.

One of the domain of application of reinforcement learning is robotics. In robotics, one of

the major challenges is the ability to adapt to change: the capacity that allows to perform new

tasks which were previously unknown. Reinforcement learning enables a robot to autonomously

discover an optimal behavior through trial-and-error interactions with its environment. Instead

of explicitly detailing the solution to a problem, in reinforcement learning the designer of a

control task provides feedback in terms of a scalar objective function that measures the one-step

performance of the robot.
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1.1.2 Logic Programming

The story of logic programming starts in the early 1930s with Jacques Herbrand. In [8], Her-

brand lays a first stone by setting the conditions for the validity of an automatic demonstration.

Later, in 1953, Quine [9] gave an original rule of inference, defined for Zeroth-order logic.

In that time, it was of little interest except to improve the calculation of the logic circuits. In

1958, McCarthy [10] was already proposing to use logic as a declarative language for knowl-

edge representation, considering a theorem prover as a problem solver. The idea was to divide

problem solving between the knowledge engineer, responsible for the validity of the application

expressed logically, and the inference engine, responsible for a valid and effective implementa-

tion. Then, in 1965, Robinson [11] proposed his resolution method: he based automatic demon-

stration on the conditions of Herbrand, with a reductio ad absurdum using logical statements

with clausal form and a resolution rule, providing an extension of the Quine’s rule to first-order

logic. The firsts approaches showed that the idea was there, but an efficient expression was still

remaining to be found.

The first logic programming applications (1964-1969) were questions/answers systems. Absys

(1969) was probably the first programming language based assertions [12, 13]. The notion of

Logic programming cames from the debates of that time about knowledge representation in ar-

tificial intelligence. In Stanford and Edinburgh, McCarthy and Kowalski, were for a declarative

representation and in MIT, Minsky and Papert, were for a procedural representation.

However, it is at the MIT that emerged Planner (1969) [14], a programming language based

on logic. A part of Planner, Micro-Planner [15], was used by Winograd for SHRDLU [16], a

program for the computer understanding of English. Planner invoked procedural plans based on

goals and assertions, and used backtracking to spare the little quantity of available memory of

these times. From Planner, drifted QA-4 [17], Conniver [18] (1972), Popler [19] (1973), QLISP

[20] (1976) and Ether [21] (1981).

However, Hayes and Kowalski in Edinburgh were trying to reconcile declarative approach and

knowledge representation with the Planner procedural approach. In 1972, Hayes developed an

equation language Golux [22], who could invoke various procedures by altering the operation of

the inference engine. Kowalski also showed that the SL-resolution addressed the implications

as reducing procedures goals. In 1971, Colmerauer and Kowalski saw that the clausal form

could represent a formal grammars and inference engine could be used for the analysis of texts,

some engines providing a bottom-up analysis, and Kowalski’s SL-resolution providing a top-

down analysis. The next year, they developed the procedural interpretation of the implications,

and established that clauses could be restricted to Horn clauses, corresponding to implications

where conditions and consequences are atomic statements. Then, in 1973, Colmerauer and

Roussel proposed the Prolog language [23] as a tool to describe a world in French, and then
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deal with the question about this world, Prolog being used for both analysis and synthesis in

French as well as for the reasoning producing the answers. This first Prolog diffused quickly.

The interest of Prolog for natural language querying databases led to a configurator for Solar

computers whose drift different query systems in English, French, Portuguese and German.

In 1976, the first port of Prolog for microcomputer was made. Finally, in 1977, Warren devel-

oped a Prolog compiler in Edinburgh, who provided the performances that Prolog was lacked.

And this Prolog became the standard we know nowadays.

1.1.2.1 Probabilistic Logic Programming

Probabilistic logic, also called probability logic or probabilistic reasoning, consist in the inte-

gration of probability theory into deductive logic structure. The result is a richer and more ex-

pressive formalism with a broad range of possible application in areas like artificial intelligence,

argumentation theory, bioinformatics, game theory, statistics. Probabilistic logics attempt to find

a natural extension of traditional logic truth tables: the results they define are derived through

probabilistic expressions instead.

The term ”probabilistic logic” was first used in a paper by Nils Nilsson published in 1986 [24],

where the truth values of sentences are probabilities. The proposed semantical generalization

induces a probabilistic logical entailment, which reduces to ordinary logical entailment when

the probabilities of all sentences are either 0 or 1. This generalization applies to any logical

system for which the consistency of a finite set of sentences can be established.

A difficulty with probabilistic logics is that they tend to multiply the computational complex-

ities of their probabilistic and logical components. Other difficulties include the possibility of

counter-intuitive results, such as those of Dempster-Shafer theory [25]. The need to deal with

a broad variety of contexts and issues has led to many different proposals. Those different ap-

proaches can be categorized into two different main classes: those logics that attempt to make a

probabilistic extension to logical entailment [26], and those that attempt to address the problems

of uncertainty and lack of evidence.

The central concept in the theory of subjective logic [27] are opinions about some of the propo-

sitional variables involved in the given logical sentences. A binomial opinion applies to a single

proposition and is represented as a 3-dimensional extension of a single probability value to ex-

press various degrees of ignorance about the truth of the proposition. For the computation of

derived opinions based on a structure of argument opinions, the theory proposes respective op-

erators for various logical connectives, such as multiplication (AND), comultiplication (OR),

division (UN-AND) and co-division (UN-OR) of opinions [28] as well as conditional deduction

(MP) and abduction (MT) [29].
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Approximate reasoning formalism proposed by fuzzy logic [30] can be used to obtain a logic in

which the models are the probability distributions and the theories are the lower envelopes [31].

In such a logic the question of the consistency of the available information is strictly related with

the one of the consistency of partial probabilistic assignment.

Markov logic networks [32] implement a form of uncertain inference [33] based on the maxi-

mum entropy principle [34, 35] the idea that probabilities should be assigned in such a way as

to maximize entropy, in analogy with the way that Markov chains assign probabilities to finite

state machine transitions.

Systems such as Pei Wang’s Non-Axiomatic Reasoning System [36] or Ben Goertzel’s Prob-

abilistic Logic Networks [37] add an explicit confidence ranking, as well as a probability to

atoms and sentences. The rules of deduction and induction incorporate this uncertainty, thus

sidestepping difficulties in purely Bayesian approaches to logic (including Markov logic), while

also avoiding the paradoxes of Dempster-Shafer theory. The implementation of PLN attempts

to use and generalize algorithms from logic programming, subject to these extensions.

The theory of evidential reasoning [38] also defines non-additive probabilities of probability (or

epistemic probabilities) as a general notion for both logical entailment (provability) and proba-

bility. The idea is to augment standard propositional logic by considering an epistemic operator

K that represents the state of knowledge that a rational agent has about the world. Probabilities

are then defined over the resulting epistemic universe Kp of all propositional sentences p, and

it is argued that this is the best information available to an analyst. From this view, Dempster-

Shafer theory appears to be a generalized form of probabilistic reasoning.
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1.1.3 Inductive Logic Programming

Inductive Logic Programming is an approach to machine learning which uses logic program-

ming techniques. From a base of facts and expected results, divided into positive and negative

examples, an ILP system tries to deduce a logic program which confirms the positive and infirm

negative examples. We can summarize this principle in the following way: positive examples

+ negative examples + knowledge base = rules. In [39], ILP is defined as the intersection of

inductive machine learning and logic programming. Like in machine learning, the goal of ILP is

the development of methods that construct hypotheses from observations to extract knowledge

from experience. In contrast to most other approaches to inductive learning, inductive logic

programming is interested in properties of inference rules, in convergence of algorithms, and in

the computational complexity of procedures [40].

Many classical machine learning techniques, like the Top-Down-Induction-of-Decision-Tree

family [41], require a limited knowledge representation such as propositional logic. In many

cases, this limitation can be a problem because knowledge can only be expressed in a first-order

logic, or one of its variant. Inductive logic programming avoid this problem by using computa-

tional logic as the representational mechanism for hypotheses and observations.

From computational logic, inductive logic programming inherits its representational formal-

ism, its semantical orientation, and various well-established techniques. Many inductive logic

programming systems benefit from using the results of computational logic. Additional ben-

efit could potentially be derived from making use of work on termination, types and modes,

knowledge-base updating, algorithmic debugging, abduction, constraint logic programming,

program synthesis, and program analysis.

Inductive logic programming extends the theory and practice of computational logic by inves-

tigating induction rather than deduction as the basic mode of inference. Whereas present com-

putational logic theory describes deductive inference from logic formulas provided by the user,

inductive logic programming theory describes the inductive inference of logic programs from

instances and background knowledge. In this manner, ILP may contribute to the practice of logic

programming, by providing tools that assist logic programmers to develop and verify programs.



Chapter 2

Preliminaries

In this chapter we introduce the preliminaries notions needed for the understanding of our con-

tribution. Section 2.1 provides formal defenitions of several notions about logic programs. No-

tions that we will use and extend later in the contributions chapters to formalize our approaches.

Section 2.2 provides formalizations of Boolean networks, that is the main model formalism we

use as benchmarks in our experiments. Section 2.3 provides a formalization of the dynamics

of state transitions systems as logic programs. Thus, it provides the formal intuition behind the

inferences methods used in our framework and also show how the output of our algorithms can

be used to realize state transitions. Finally, section 2.4 gives a summary of the contribution of

this thesis. This summary is also a kind of PhD report: it describe the evolution of the work

chronologically to provide to the reader the intuition of the motivations behind each extension

of the framework.

13
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2.1 Logic Programming

We now recall some preliminaries of logic programming. We consider a propositional language

L that is built from a finite set of propositional constants p, q, r, . . . and the logical connectives

¬, ∧ and←.

Definition 2.1 (Atom). An atom is of the form p(t1, . . . , tn), where p is a predicate symbol and

each ti is a term. If each ti is ground, then the atom is said to be ground.

Definition 2.2 (Literal). A literal is either an atom or an atom preceded by the symbol ”¬”.

The former is referred to as a positive literal, while the latter is referred to as a negative literal.

Let l be a literal, the complement of l is denoted l. The complement of a positive literal l is its

negation ¬l and the complement of a negative literal ¬l′ is its atom l′.

Definition 2.3 (Herbrand Universe). The Herbrand Universe of a program P , denoted HUP , is

the set of all terms which can be formed with the functions and constants in P .

A ground normal logic program (NLP) is a set of rules of the form

p← p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn (2.1)

where p and pi’s are atoms (n ≥ m ≥ 1). For any rule R of the form (2.1), the atom p

is called the head of R and is denoted as h(R), and the conjunction to the right of ← is

called the body of R. We represent the set of literals in the body of R of the form (2.1) as

b(R) = {p1, . . . , pm,¬pm+1, . . . ,¬pn}, and the atoms appearing in the body of R positively

and negatively as b+(R) = {p1, . . . , pm} and b−(R) = {pm+1, . . . , pn}, respectively. A rule R

of the form (1) is interpreted as follows: h(R) is true if all elements of b+(R) are true and none

of the elements of b−(R) is true. When b+(R) = b−(R) = ∅, the rule is called a fact rule. The

rule (1) is a Horn clause iff m=n.

Definition 2.4 (Herbrand Base). The Herbrand Base of a program P , denoted by B , is the set

of all atoms in the language of P .

Definition 2.5 (Interpretation). Let B be the Herbrand Base of a logic program P . An interpre-

tation is a subset of B. If an interpretation is the empty set, it is denoted by ε.

Definition 2.6 (Model). An interpretation I is a model of a program P if b+(R) ⊆ I and

b−(R) ∩ I = ∅ imply h(R) ∈ I for every rule R in P.

For a logic program P and an interpretation I , the immediate consequence operator (or TP
operator) [42] is the mapping TP : 2B → 2B:

TP (I) = {h(R) | R ∈ P, b+(R) ⊆ I, b−(R) ∩ I = ∅}. (2.2)
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The state transitions of a logic program P can be represented as a set of pairs of interpretations

(I, TP (I)).

Definition 2.7 (Consistency). Let R be a rule and (I, J) be a state transition. R is consistent

with (I, J) iff b+(R) ⊆ I and b−(R)∩I = ∅ imply h(R) ∈ J . LetE be a set of state transitions,

R is consistent with E if R is consistent with all state transitions of E. A logic program P is

consistent with E if all rules of P are consistent with E.

Definition 2.8 (Subsumption). Let R1 and R2 be two rules. If h(R1) = h(R2) and b(R1) ⊆
b(R2) then R1 subsumes R2. Let P be a logic program and R be a rule. If there exists a rule

R′ ∈ P that subsumes R then P subsumes R.

We say that a rule R1 is more general than another rule R2 if R1 subsumes R2.

Example 2.1. LetR1 andR2 be the two following rules: R1 = (a← b), R2 = (a← a∧b), R1

subsumes R2 because (b(R1) = {b}) ⊂ (b(R2) = {a, b}).When R1 appears in a logic program

P , R2 is useless for P , because whenever R2 can be applied, R1 can be applied.

In ILP, search mainly relies on generalization and specialization that are dual notions. Gen-

eralization is usually considered as an induction operation, and specialization as a deduction

operation. In [43], the author define the minimality and maximality of the generalization and

specialization operations as follows.

Definition 2.9 (Generalization operator [43]). A generalization operator maps a conjunction of

clauses S onto a set of minimal generalizations of S. A minimal generalization G of S is a

generalization of S such that S is not a generalization of G, and there is no generalization G′ of

S such that G is a generalization of G′.

Example 2.2. C1 = (p∧q) is a minimal generalization of C2 = (p∧q∧r). But C3 = (p) is not

a minimal generalization of C2. Because C3 is a generalization of C1 and C1 is a generalization

of C2.

Definition 2.10 (Specialization operator [43]). A specialization operator maps a conjunction of

clauses G onto a set of maximal specializations of G. A maximal specialization S of G is a

specialization of G such that G is not a specialization of S, and there is no specialization S′ of

G such that S is a specialization of S′.

The body of a rule of the form (1) can be considered as a clause, so that, the Definition 2.9 and

2.10 can also be used to compare the body of two rules.

Example 2.3. C1 = (p ∧ q ∧ r) is a maximal specialization of C2 = (p ∧ q). But C1 is

not a maximal specialization of C3 = (p). Because C2 is a specialization of C3 and C1 is a

specialization of C2.
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FIGURE 2.1: A Boolean network B1(left) and its state transition diagram (right)

2.2 Boolean network

A Boolean network is a simple discrete representation widely used in bioinformatics [44–46].

A Boolean network [44] is a pair (N ,F ) with N = {n1, ... , nk}, a finite set of nodes (or

variables), and F = {f1, ... , fk}, a corresponding set of Boolean functions fi : Bn → B, with

B = {0, 1}. ni(t) represents the value of ni at time step t, and equals either 1 (expressed) or 0

(not expressed). A vector (or state) s(t) = (n1(t), ... , nk(t)) is the expression of the nodes of

N at time step t. There are 2k possible distinct states for each time step. The state of a node

ni at the next time step t + 1 is determined by ni(t + 1)=fi(ni1(t), ... ,nip(t)), with ni1 , ...

,nip the nodes directly influencing ni, called regulation nodes of ni. A Boolean network can be

represented by its interaction graph (see Figure 2.1 left), but its precise regulation relations can

only be represented by the Boolean functions (see Example 2.4). From any Boolean network, we

can compute the state transition diagram (see Figure 2.1 right) which represents the transitions

between ni(t) and ni(t + 1). In the case of a gene regulatory network, nodes represent genes

and Boolean functions represent their relations.

Example 2.4. Figure 2.1 shows the interaction graph and the state transitions diagram of a

Boolean network B1 composed of the three following variables: {a,b,c}. The Boolean functions

of B1 are fa, fb, fc, which are respectively the following Boolean functions of a, b and c:

fa = ¬a ∧ (b ∨ c), fb = a ∧ c, fc = ¬a

Let us consider that the Boolean network B1, whose graph is depicted in Figure 2.1, is a gene

regulatory network so that a, b, c are genes. According to the interaction graph of B1: a is not

only an activator of b and an inhibitor of c but also its own inhibitor. The gene b is an activator

of a and the gene c is activator of both a and b. According to the Boolean functions of B1 in

Example 2.4, to activate a, either b or c has to be present but if a is present, it will prevent its

own expression at the next step (fa). The activation of b requires both a and c to be expressed at

the same time step; if one of them is not expressed at time step t then b will not be expressed at

t + 1 (fb). The presence of a is enough to prevent the expression of c, so that if a is expressed

at time step t then c will not be expressed at t+ 1 (fc).
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2.3 Representing Dynamics in Logic Programs

In this section we present the logic-based representation of dynamical systems proposed in [2],

which is a key issue for inductive learning of them. In ILP, a first-order representation is used

for a relational concept [47], and we simply follow this line of research. In particular, we do

not propose any new learning scheme for generalization and abstraction which are not directly

related to dynamics. For instance, if a particle A and a particle B have the same physical

properties, then a rule to decide the position of A after a perturbation is added must be the same

as a rule forB with the same kind of perturbation. Then, identification of such a rule involves the

dynamics, but the names A and B are not crucial so that we can generalize them to be a variable

in a common rule. In this section we show two such representations to deal with dynamics: one

is based on a first-order notation with the time argument, and the other does not use the time

argument.

Symbolic representation of dynamic changes has been studied in knowledge representation in

AI such as situation calculus [48] and event calculus [49], which are mostly suitable for virtual

action sequences. In real-world applications, however, the state of the world changes concur-

rently from time to time, and all elements in the world may change often synchronously. Then,

to represent discrete time directly in the simplest way, we can use the time argument in a rela-

tional representation: for each relation p(x) among the objects, where p is a predicate and x is a

tuple of its arguments, we can consider its state at time t as p(x, t). In this way, we shall repre-

sent any atom A = p(x) at time t by putting the time argument of the predicate as At = p(x, t).

Then, a rule in a logic program of the form (2.1) can be made a dynamic rule in the first-order

expression of the form:

At+1 ← A1
t ∧ · · · ∧Amt ∧ ¬Am+1

t ∧ · · · ∧ ¬Ant. (2.3)

The rule (2.3) means that, if A1, . . . , Am are all true at time step t and Am+1, . . . , An are all

false at the same time step t, then A is true at the next time step t + 1. Note that this kind

of dynamic rules is first-order even if the original rule is propositional. Then, any first-order

NLP that is a set of rules of the form (2.3) becomes an acyclic program, in which the stable

model semantics and the supported model semantics coincide. Moreover, we can simulate state

transition of Boolean networks using this representation and the TP operator [50].

Inoue [50] shows a translation of a Boolean network N = (V, F ) into a logic program τ(N)

such that τ(N) is a set of rules of the form (2.3): For each vi ∈ V , convert its Boolean

function fi(vi1(t), . . . , vik(t)) into a DNF formula1 ∨li
j=1Bi,j

t, where Bi,j is a conjunction

of literals, then generate li rules with vi
t+1 as the head and Bi,j

t as a body for each j =

1, . . . , li. Given a state S(t) = (v1(t), . . . , vn(t)) at time step t, let J t = {vit | vi ∈
1If no fi is given to vi, we assume the identity function for fi, i.e., vi(t+ 1) = vi(t).
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V, vi(t) is true in S(t)}. Then the translation τ has the property that the trajectory of N from

an initial state S(0) = (v1(0), . . . , vn(0)) can be precisely simulated by the sequence of inter-

pretations, J0, J1, . . . , Jk, Jk+1, . . ., where Jk+1 = Tτ(N)(J
k) ∩ {vit+1 | vi ∈ V } for k ≥ 0

[50].

Example 2.5. Consider the Boolean network N1 = (V1, F1), where V1 = {p, q, r}, and F1 and

the corresponding NLP τ(N1) are as follows.

F1 : p(t+ 1) = q(t), τ(N1) : p(t+ 1) ← q(t),

q(t+ 1) = p(t) ∧ r(t), q(t+ 1) ← p(t) ∧ r(t),
r(t+ 1) = ¬p(t). r(t+ 1) ← ¬p(t).

The state transition diagram for N1 is depicted in Figure 2.1.2

Starting from the interpretation J0 = {q(0), r(0)}, which means that q and r are true at time 0,

its transitions with respect to the Tτ(N1) operator are given as J1 = {p(1), r(1)}, J2 = {q(2)},
J3 = {p(3), r(3)}, . . ., which corresponds to the trajectory qr → pr → q → pr → . . . of N1.

Here pr → q → pr is a cycle attractor. N1 has also a point attractor r → r whose basin of

attraction is {pqr, pq, p, ε, r}.

The second way to represent dynamics of Boolean networks is based on a recent work on the

semantics of logic programming. Instead of using the above direct representation (2.3), we

can consider another representation without the time argument. That is, we consider a logic

program as a set of rules of the form (2.1). In [50], a Boolean network N is further translated

to a propositional NLP π(N) from τ(N) by deleting the time argument from every literal At

appearing in τ(N). Then, we can simulate the trajectory of N from any state S(0) also by the

orbit of the interpretation I0 = {vi ∈ V | vi(0) is true} with respect to the Tπ(N) operator, i.e.,

It+1 = Tπ(N)(I
t) for t ≥ 0. Moreover, we can characterize the attractors of N based on the

supported class semantics [51] for π(N).

A supported class of a logic program P [51] is a non-empty set S of Herbrand interpretations

satisfying:

S = {TP (I) | I ∈ S}. (2.4)

Note that I is a supported model of P iff {I} is a supported class of P . A supported class S of P

is strict if no proper subset of S is a supported class of P . Alternatively, S is a strict supported

class of P iff there is a directed cycle I1 → I2,→ · · · → Ik → I1 (k ≥ 1) in the state transition

diagram induced by TP such that {I1, I2, . . . , Ik} = S [51]. A strict supported class of π(N)

thus exactly characterizes an attractor of a Boolean network N .
2Each interpretation is concisely represented as a sequence of atoms instead of a set of atoms in examples, e.g.,

pq means {p, q} and the empty string ε means ∅.
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Example 2.6. Consider the Boolean network N1 in Example 2.5 again. The NLP

π(N1) : p ← q,

q ← p ∧ r,
r ← ¬p,

is obtained from the first-order NLP τ(N1) in Example 2.5 by removing the time argument

from each literal. Notice that this logic program is not acyclic, since π(N1) has both positive

and negative feedback loops: The positive loop appears between p and q, while the negative one

exists in the dependency cycle to r through p. In this case, behavior of a corresponding Boolean

network is not obvious.3

The state transition diagram induced by the Tπ(N1) operator is the same as the diagram in Fig-

ure 2.1. The orbit of pqr with respect to Tπ(N1) becomes pqr, pq, p, ε, r, r, . . . and the orbit of

qr is qr, pr, q, pr, . . . We here verify that there are two supported classes of π(N1), {{r}} and

{{p, r}, {q}}, which respectively correspond to the point attractor and the cycle attractor of N1.

In the following, we can use a logic program either with the time argument in the form of (2.3)

or without the time argument in the usual form (2.1) for learning. To simplify the discussion,

however, we will mainly use NLPs without the time argument in basic algorithms.

3The reason why behavior becomes complex in the existence of feedbacks is biologically justified as follows.
Each positive loop in a Boolean network is related to reinforcement and existence of multiple attractors, while each
negative loop is the source of periodic oscillations involved in homeostasis [52].
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2.4 Contribution

Learning complex networks becomes more and more important. Learning system dynamics has

many applications in multi-agent systems, robotics and bioinformatics alike. Knowledge of sys-

tem dynamics can be used by agents and robots for planning and scheduling. In bioinformatics,

learning the dynamics of biological systems can correspond to the identification of the influ-

ence of genes and can help the understanding of their interactions. In this thesis we tackle the

induction problem of such dynamical systems in terms of NLP learning from state transitions.

Our contribution is a framework composed of several algorithms for learning from interpretation

transitions.

2.4.1 First Steps

In [2], we firstly tackled the induction problem of such dynamical systems in terms of NLP

learning from synchronous state transitions. Given any state transition diagram we proposed an

algorithm, LF1T, that can learn an NLP that exactly captures the system dynamics. Learning

is performed only from positive examples, and produces NLPs that consist only of rules to

make literals true. The iterative character of LF1T has applications in bioinformatics, cellular

automata, multi-agent systems and robotics. We can imagine an agent or a robot that learns

the dynamics of its environment from its observations. Knowing its environment dynamics can

allow an agent to identify the consequences of its actions more precisely. LF1T can also be

used to learn these consequences according to the state of the world step-by-step. Aggregating

more and more observations, the agent becomes able to predict the evolution of the world more

precisely and can use this knowledge for planning and scheduling.

2.4.2 Getting Stronger

The performances of the first implementations were not sufficient to tackle model with more

than 15 variables. Lot of improvement could be done regarding the representation of the rules

in the implementation at this time. Improving the performance was our next move. In [53],

we proposed a new version of the LF1T algorithm based on Binary Decision Diagrams (BDDs)

[54, 55]. A BDD is a canonical representation of a Boolean formula which has been successfully

used in many research fields such as Boolean satisfiability solvers [56], data mining [57], ILP

[58] and abduction [59, 60]. The main concern of this version is the memory usage of the

algorithm and its run time efficiency. In previous algorithms, LF1T uses resolution techniques

to generalize rules and reduce the size of the output NLP. The novelty of our approach is the

adaptation of these techniques to the BDD structure. Here, we develop a method to perform

LF1T operations on a BDD that also realizes usual BDD merging operations as well as novel
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simplification operations. We represent an NLP by a set of BDD structures where each BDD

encodes rules with the same head literal. Assuming that rules respect a variable ordering, our

data structure is similar to an Ordered BDD (OBDD) [61, 62]. In our approach, each BDD

represents a formula in disjunctive normal form that defines whether a literal is true at the next

time step. Because LF1T does not learn negative rules, our structure only represents rules that

imply the head literal to be true. In that sense it can also be considered as a Zero-suppressed

Binary Decision Diagram (ZDD) [63]. Using a BDD representation we can also merge the

common part of rules and learn the same NLP with less memory usage than in previous versions

of LF1T. One weak point of the previous LF1T algorithm is that learning becomes slower and

slower as the NLP learned becomes bigger because it has to check more and more rules. In

practice, the compact representation of the BDD structure reduces the sensitivity of the LF1T
learning time to the NLP size. This version allows to learn Boolean networks up to 23 variables

(8, 388, 608 state transitions) in about one hour on an Intel Core I7 (3610QM, 2.3GHz) with

4GB of RAM. This algorithm is presented in section 3.2.

2.4.3 The Quest of Minimality

After that, we focused on the minimality of the rules and the NLPs learned by LF1T. Our goal

was to learn all minimal conditions that imply a variable to be true in the next state, e.g. all

prime implicant conditions. In bioinformatics, for a gene regulatory network, it corresponds to

all minimal conditions for a gene to be activated/inhibited. It can be easier and faster to perform

model checking on Boolean networks represented by a compact NLP than the set of all state

transitions. Knowing the minimal conditions required to perform the desired state transitions, a

robot can optimize its actions to achieve its goals with less energy consumption. From a techni-

cal point of view, for the sake of memory usage and reasoning time, a small NLP could also be

preferred in multi-agent and robotics applications. For this purpose, in [64], we proposed a new

version of the LF1T algorithm based on specialization. Specialization is usually considered the

dual of generalization in ILP [43, 65, 66]. Many incremental learning systems use both general-

ization and specialization to revise hypothesis according to new observations/examples.Where

generalization occurs when a hypothesis does not explain a positive example, specialization is

used to refine a hypothesis that implies a negative example.

In [67], prime implicants are defined for DNF formula as follows: a clause C, implicant of a

formula φ, is prime if and only if none of its proper subset S ⊂ C is an implicant of φ. In this

work, explanatory induction is considered, while in our approach prime implicants are defined

in the LFIT framework. Knowing the Boolean functions, prime implicants could be computed

by Tison’s consensus method [68] and its variants [69]. The novelty of our approach, is that

we compute prime implicants incrementally during the learning of the Boolean function. In its

previous version, LF1T uses resolution techniques to generalize rules and reduces the size of



Chapter 2. Preliminaries 22

the output NLP. This technique generates hypotheses by generalization from the most specific

clauses until every positive transitions are covered. Compared to previous versions, the novelty

of our new approach is that, know, we generate hypotheses by specialization from the most

general clauses until no negative transition is covered. The main weak point of the previous

LF1T algorithms is that the output NLPs depends on variable/transition ordering. Our new

method guarantees that the NLPs learned contain only minimal conditions for a variable to be

true in the next state. This algorithm is presented in section 3.3.

2.4.4 Facing Delays

With rule minimality being guaranteed, we started to consider how our framework can contribute

to model Biological system. In some biological and physical phenomena, effects of actions or

events appear at some later time points. For example, delayed influence can play a major role in

various biological systems of crucial importance, like the mammalian circadian clock [70] or the

DNA damage repair [71]. While Boolean networks have proven to be a simple, yet powerful,

framework to model and analyze the dynamics of the above examples, they usually assume that

the modification of one node results in an immediate activation (or inhibition) of its targeted

nodes [72] for the sake of simplicity. But this hypothesis is sometimes too broad and we really

need to capture the memory of the system i.e., keep track of the previous steps, to get a more

realistic model. Our aim was to give an efficient and valuable approach to learn such dynamics.

We extended our framework by designing an algorithm that takes multiple sequences of state

transition as input. This algorithm builds a normal logic program that captures the delayed

dynamics of a system. While the previous algorithm dealt only with 1-step transitions (i.e., we

assume the state of the system at time t depends only of its state at time t − 1), in [73], we

proposed an approach that is able to consider k-step transitions (sequence of at most k state

transitions). This means that we are able to capture delayed influences in the inductive logic

programming methodology. This algorithm is presented in section 4.1.

2.4.5 Uncertain Future

Our last contributions was to learn non-deterministic systems (multiple next states from the

same state). We extended the LFIT framework to learn probabilistic dynamics by proposing an

extension of LFIT for learning from uncertain state transitions. We developed an algorithm that

learns a set of deterministic logic programs, each state transition observed is realized by at least

one of them. Considering that the system learned is purely non-deterministic, given a state I , all

possible next states J is given by those programs. Then, we can provide the likelihood of each

rule by simply counting how many transitions they realize correctly.
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This algorithm has been used by David Martinez during his internship at the Inoue Laboratory.

Our algorithm was used as to learn the model of the environment where a robot evolved. It

inferred rules from observation of the consequence of a robot actions. Then a planner used

those rules to decide what next action the robot should perform to achieve his goal.



Chapter 3

Learning From Interpretation
Transitions

In this chapter we introduce the basis of our methods by providing modelisation and algorithm

to learn Boolean systems with synchronous deterministic semantics. First, in section 3.1 we

introduce our first contribution to the LFIT framework that is a method based on resolution to

learn logic program from state transitions. Then we provide an efficient data structure based on

Binary Decision Diagram and an adapted algorithm in section 3.2. Finally we provide a method

based on specialization that guarantee to output minimal rules in section 3.3.

The algorithms of the first section have been published in the Machine Learning Journal [2].

The BDD optimization methods we present in section 3.2 have been published in The 24th

International Conference on Inductive Logic Programming (ILP 2013) [53]. And the algorithms

of section 3.3 have been published the following year in ILP 2014 [64].

24
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3.1 Learning from 1-step Transitions

Learning complex networks becomes more and more important. Learning system dynamics has

many applications in multi-agent systems, robotics and bioinformatics alike. Knowledge of sys-

tem dynamics can be used by agents and robots for planning and scheduling. In bioinformatics,

learning the dynamics of biological systems can correspond to the identification of the influence

of genes and can help the understanding of their interactions. In [2], we firstly tackled the in-

duction problem of such dynamical systems in terms of NLP learning from synchronous 1-step

state transitions.

LF1T is an anytime algorithm, that is, whenever we process a set E of state transitions, we

will guarantee that the result of learning is a logic program P which completely represents the

dynamics of the transitions E so that a dynamical system is represented by P . For example,

from the state transitions of figure 2.1, we can learn a logic program equivalent to the Boolean

network they belong to.

For learning, we assume that the Herbrand base B is finite. The state transitions of E can be

seen as (positive) examples/observations of transition of the system. From these transitions

the algorithm learns a logic program P that represents the dynamics of E. To perform this

learning process we can iteratively consider one-step transitions. In LF1T, the Herbrand base

B is assumed to be finite. In the input E, a state transitions is represented by a pair of Herbrand

interpretations. The output of LF1T is an NLP that realizes all state transitions. To construct an

NLP for LF1T we can use a bottom-up method, which generates hypotheses by generalization

from the most specific clauses to explain positive examples that have not been covered yet. The

pseudo-code of LF1T is given as follows.

LF1T(E: pairs of Herbrand interpretations, P : an NLP)

1. If E = ∅ then output P and stop;

2. Pick (I, J) ∈ E, and put E := E \ {(I, J)};

3. For each A ∈ J , let

RIA :=

(
A←

∧
Bi∈I

Bi ∧
∧

Cj∈(B\I)

¬Cj
)

; (3.1)

4. If RIA is not subsumed by any rule in P , then P := P ∪ {RIA} and simplify P by gener-

alizing some rules in P and removing all clauses subsumed by them;

5. Return to 1.
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The LF1T algorithm can be used with or without an initial NLP P0. When only the examples

E are given as input, LF1T is initially called by LF1T(E, ∅). If an initial NLP P0 is given,

LF1T(E,P0) is executed. LF1T first constructs the most specific rule RIA for each positive

literal A appearing in J = TP (I) for each (I, J) ∈ E. We do not construct any rule to make a

literal false. The rule RIA is then possibly generalized when another transition from E makes A

true, which is computed by several generalization methods. The first generalization method we

consider is based on resolution. The resolution principle by Robinson [74] is well known as a

deductive method, but its naı̈ve use can be applied to a generalization method. In the following,

for a literal l, l denotes the complement of l, i.e., when A is an atom, A = ¬A and ¬A = A. We

firstly consider a resolution between two ground rules as follows.

Definition 3.1 (Naı̈ve/Ground Resolution). Let R1, R2 be two rules and l be a literal such that

h(R1) = h(R2), l ∈ b(R1) and l ∈ b(R2). If (b(R2) \ {l}) ⊆ (b(R1) \ {l}) then the ground

resolution of R1 and R2 (upon l) is defined as

res(R1, R2) =

(
h(R1)←

∧
Li∈b(R1)\{l}

Li

)
. (3.2)

In particular, if (b(R2) \ {l}) = (b(R1) \ {l}) then the ground resolution is called the naı̈ve

resolution of R1 and R2 (upon l). In this particular case, the rules R1 and R2 are said to be

complementary to each other with respect to l.

3.1.1 Generalization by Naı̈ve Resolution

When naı̈ve resolution is used, we need an auxiliary set Pold of rules to globally store subsumed

rules, which increases monotonically. Pold is set to ∅ at first. When a generated rule is newly

added at Step 4 in the pseudo-code of LF1T, we try to find a rule R′ ∈ P ∪ Pold such that (a)

h(R′) = h(R) and (b) b(R) and b(R′) differ in the sign of only one literal l. If there is no such

rule R′, then R is just added to P ; otherwise, add R and R′ to Pold then add res(R,R′) to P in

a recursive call of Step 4.

Example 3.1. Consider the state transitions in Fig. 2.1. By giving the state transitions step by

step, the NLP π(N1) = {#11,#14,#19} is obtained in Table 3.1, where #n is the rule ID.

We now examine the correctness of the LF1T algorithm in terms of its completeness and sound-

ness. A program P is said to be complete for a set E of pairs of interpretations if J = TP (I)

holds for any (I, J) ∈ E. On the other hand, P is sound for E if for any (I, J) ∈ E and

any J ′ ∈ 2B such that J ′ 6= J , J ′ 6= TP (I) holds. A deterministic learning algorithm is com-

plete (resp. sound) for E if its output program is complete (resp. sound) for E. We use the

following subsumption relation between programs: Given two logic programs P1 and P2, P1

theory-subsumes P2 if for any rule R ∈ P2, there is a rule R′ ∈ P1 such that R′ subsumes R.
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Algorithm 1 LF1T(E,P )
1: INPUT: a set E of pairs of Herbrand interpretations and an NLP P
2: OUTPUT: an NLP P

3: Pold: NLP
4: Pold ← ∅
5: while E 6= ∅ do
6: Pick (I, J) ∈ E; E := E \ {(I, J)}
7: for each A ∈ J do
8: RIA := A←

∧
Bi∈I Bi ∧

∧
Cj∈(B\I) ¬Cj

9: AddRule(RIA, P , Pold)
10: end for
11: end while

return P

Algorithm 2 AddRule(R, P , Pold) (with naı̈ve resolution)
1: INPUT : a rule R and two NLPs P and Pold

2: if R is subsumed by a rule of P then
3: Pold := Pold ∪ {R} return
4: end if
5: for each rule RP of P subsumed by R do
6: P := P \ {RP }
7: Pold := Pold ∪ {RP }
8: end for

9: P := P ∪ {R}
10: // Check for generalizations
11: for each rule R′ of P ∪ Pold with h(R) = h(R′) do
12: for each l ∈ b(R) such that l ∈ b(R′) do
13: if b(R) \ {l} = b(R′) \ {l} then
14: Pold := Pold ∪ {R}
15: Rlg := h(R)←

∧
Li∈b(R)\{l} Li

16: AddRule(Rlg, P , Pold)
17: end if
18: end for
19: end for

Theorem 3.2 (Completeness of LF1T with naı̈ve resolution). Given a set E of pairs of inter-

pretations, LF1T with naı̈ve resolution is complete for E.

Proof. For any pair of interpretations (I, J) ∈ E, it is verified that the rule RIA determines the

value of A in the next state of I correctly for any A ∈ J . On the other hand, for any atom

A 6∈ J , the value of A in the next state of I becomes false by RIA and the TP operator. Hence,

the set of rules P ∗ = {RIA | (I, J) ∈ E,A ∈ J} is complete for the transitions in E. Since

a rule R derived by the naı̈ve resolution of R1 and R2 subsumes R1 and R2 by Definition 3.1,
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TABLE 3.1: Execution of LF1T in inferring π(N1) of Example 3.1

Step I → J Operation Rule ID P Pold
1 qr → pr Rqrp p← ¬p ∧ q ∧ r 1 1 ∅

Rqrr r ← ¬p ∧ q ∧ r 2 1,2
2 pr → q Rprq q ← p ∧ ¬q ∧ r 3 1,2,3
3 q → pr Rqp p← ¬p ∧ q ∧ ¬r 4

res(4, 1) p← ¬p ∧ q 5 2,3,5 + 1,4
Rqr r ← ¬p ∧ q ∧ ¬r 6

res(6, 2) r ← ¬p ∧ q 7 3,5,7 + 2,6
4 pqr → pq Rpqrp p← p ∧ q ∧ r 8

res(8, 1) p← q ∧ r 9 3,5,7,9 + 8
Rpqrq q ← p ∧ q ∧ r 10

res(10, 3) q ← p ∧ r 11 5,7,9,11 + 3,10
5 pq → p Rpqp p← p ∧ q ∧ ¬r 12

res(12, 4) p← q ∧ ¬r 13 5,7,9,11,13 + 12
res(13, 9) p← q 14 7,11,14 + 5,9,13

6 p→ ε
7 ε→ r Rεr r ← ¬p ∧ ¬q ∧ ¬r 15

res(15, 6) r ← ¬p ∧ ¬r 16 7,11,14,16 + 15
8 r → r Rrr r ← ¬p ∧ ¬q ∧ r 17

res(17, 15) r ← ¬p ∧ ¬q 18 7,11,14,16,18 + 17
res(18, 7) r ← ¬p 19 11,14,19 + 7,16,18

P ′ = (P ∗ \ {R1, R2}) ∪ {R} theory-subsumes P ∗. Then, P ′ is also complete for E, since

TP ′ and TP agree with their transitions. Since the (theory-)subsumption relation is transitive, an

output program P , which is obtained by repeatedly applying naı̈ve resolutions, theory-subsumes

P ∗. Hence, P is complete for E.

The implication of Theorem 3.2 is very important: For any set of 1-step state transitions, we

can construct an NLP that captures the dynamics in the transitions. In other words, there is no

(deterministic) state transitions diagram that cannot be expressed in an NLP. It is also important

to guarantee the soundness of the learning algorithm, that is, it never overgeneralizes any state

transitions rule. The soundness can be obtained from the completeness when the transition from

any interpretation is deterministic like the assumption in this paper (that is why it is stated as a

corollary), but we show a more precise proof for it.

Corollary 3.3 (Soundness of LF1T with naı̈ve resolution). Given a set E of pairs of interpre-

tations, LF1T with naı̈ve resolution is sound for E.

Proof. It is easy to see that the program P ∗ in the proof of Theorem 3.2 satisfies the soundness.

Any naı̈ve resolution R = res(R1, R2) for any R1, R2 ∈ P ∗ deletes only one literal l such that

l ∈ b(R1) and l ∈ R2. Assume that R1 = RI1A and R2 = RI2A for some (I1, J1) ∈ E and
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Step I → J Operation Rule ID P Pold

1 ε→ pqr
Rεp p← ¬p ∧ ¬q ∧ ¬r 1 1

∅Rεq q ← ¬p ∧ ¬q ∧ ¬r 2 1,2
Rεr r ← ¬p ∧ ¬q ∧ ¬r 3 1,2,3

2 pqr → p Rpqrp p← p ∧ q ∧ r 4 1,2,3,4

3 p→ pq

Rpp p← p ∧ ¬q ∧ ¬r 5
lg(5, 1) p← ¬q ∧ ¬r 6 2,3,4,6 +1,5
qpq q ← p ∧ ¬q ∧ ¬r 7

lg(7, 2) q ← ¬q ∧ ¬r 8 3,4,6,8 +2,7

4 pq → pq

Rpqp p← p ∧ q ∧ ¬r 9
lg(9, 4) p← p ∧ q 10 3,6,8,10 +4,9
qpqq q ← p ∧ q ∧ ¬r 11

lg(11, 7) q ← p ∧ ¬r 12 3,6,8,10,12 +7,11

5 q → qr

Rqq q ← ¬p ∧ q ∧ ¬r 13
lg(13, 2) q ← ¬p ∧ ¬r 14 +2,13
lg(14, 12) q ← ¬r 15 3,6,10,15 +8,12,14

Rqr r ← ¬p ∧ q ∧ ¬r 16
lg(16, 3) r ← ¬p ∧ ¬r 17 6,10,15,17 +3,16

6 qr → r
Rqrr r ← ¬p ∧ q ∧ r 18

lg(18, 16) r ← ¬p ∧ q 19 6,10,15,17,19 +18

7 r → pr

Rrp p← ¬p ∧ ¬q ∧ r 20
lg(20, 1) p← ¬p ∧ ¬q 21 6,10,15,17,19,21 +20
Rrr r ← ¬p ∧ ¬q ∧ r 22

lg(22, 3) r ← ¬p ∧ ¬q 23 +22
lg(23, 19) r ← ¬p 24 6,10,15,21,24 +17,19,23

8 pr → p

Rprp p← p ∧ ¬q ∧ r 25
lg(25, 5) p← p ∧ ¬q 26 +25
lg(26, 10) p← p 27 15,24,27 +10,26
lg(26, 21) p← ¬q 28 15,24,27,28 +6,21

TABLE 3.2: LF1T algorithm with least generalization, running on the example of figure 2.1.

(I2, J2) ∈ E. Then, b(R) is satisfied by any partial interpretation I ′ such that I ′ = I1 ∩ I2 =

I1 \{l} = I2 \{l}. Considering total interpretations that are extensions of I ′, there are only two

possibilities, i.e., I1 and I2. Since A = h(R) belongs to both J1 = TP ∗(I1) and J2 = TP ∗(I2),

it also belongs to TP ′(I1) and TP ′(I2), where P ′ = (P ∗ \ {R1, R2})∪{R}. Applying the same

argument to all atoms in any J = TP ∗(I) for any interpretation I , we have J = TP ′(I). This

arguments can be further applied to all naı̈ve resolutions, so that TP (I) is the same as TP ∗(I)

for the final NLP P .

3.1.2 Generalization by Ground Resolution

Using naı̈ve resolution, P ∪ Pold possibly contains all patterns of rules constructed from the

Herbrand base B in their bodies. In our second implementation of LF1T, ground resolution is
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used as an alternative generalization method in AddRule. This replacement of resolution leads

to a lot of computational gains, since we do not need Pold any more: Every generalization which

can be found in Pold can be found in P by ground resolution.

Proposition 3.4. All generalized rules obtained from P ∪ Pold by naı̈ve resolution can be ob-

tained using ground resolution on P .

Proof. Let R1 ∈ P and R2 ∈ Pold be ground complementary rules with respect to a literal

l ∈ b(R1). Then, h(R1) = h(R2), l ∈ b(R2) and (b(R1) \ {l}) = (b(R2) \ {l}) hold.

Suppose that by naı̈ve resolution, R3 = res(R1, R2) is put into P and that R1 is put into

Pold in AddRule. By R2 ∈ Pold, there has been a rule R4 in P such that R4 subsumes R2,

that is, b(R4) ⊆ b(R2). We can also assume that l ∈ b(R4) because otherwise l has been

resolved upon by the naı̈ve resolution between R2 and some rule in P and thus R1 must have

been put into Pold. Then, the rule R5 = res(R1, R4) is obtained by ground resolution, and

b(R5) = (b(R1) \ {l}) = (b(R2) \ {l}). Hence R5 is equivalent to R3.

Ground resolution can be used in place of naı̈ve resolution to learn an NLP from traces of state

transition. In this case, we can simplify Algorithm 1 by deleting Lines 3 and 4 and by replacing

Line 9 with AddRule(RIA, P ). Algorithm 26 describes the new AddRule which adds and

simplifies rules using ground resolution.

As in the case of naı̈ve resolution, we can prove the correctness, i.e., the completeness and

soundness of LF1T with ground resolution.

Theorem 3.5 (Completeness of LF1T with ground resolution). Given a set E of pairs of inter-

pretations, LF1T with ground resolution is complete for E.

Proof. As in the proof of Theorem 3.2, if a program P is complete for E, a program P ′ that

theory-subsumes P is also complete for E. By Proposition 3.4, any rule produced by naı̈ve

resolution can be generated by ground resolution. Then, if P and P ′ are respectively obtained

by naı̈ve resolution and ground resolution, P ′ theory-subsumes P . Since P is complete for E

by Theorem 3.2, P ′ is complete for E.

Corollary 3.6 (Soundness of LF1T with ground resolution). Given a set E of pairs of interpre-

tations, LF1T with ground resolution is sound for E.

Proof. By Theorem 3.5, a program P output by LF1T with ground resolution is complete for

E. Then, as in the proof of Corollary 3.3, P is shown to be sound for E.
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Algorithm 3 AddRule(R,P ) (with ground resolution)
1: INPUT : a rule R and a NLP P

2: for each rule RP of P do
3: if R is subsumed by RP then return
4: end if
5: if R subsumes RP then
6: P := P \ {RP }
7: else
8: // Check for generalizations
9: if h(R) = h(RP ) then

10: if ∃l ∈ b(R) such that l ∈ b(RP ) then
11: if b(R) \ {l} is subsumed by b(RP ) \ {l} then
12: Rr := h(R)←

∧
Li∈b(R)\{l} Li

13: AddRule(Rr, P ) return
14: end if
15: if b(R) \ {l} subsumes b(RP ) \ {l} then
16: RrP := h(RP )←

∧
Li∈b(RP )\{l} Li

17: AddRule(RrP , P )
18: AddRule(R, P ) return
19: end if
20: end if
21: end if
22: end if
23: end for
24: P := P ∪ {R}

Example 3.2. Consider again the state transitions in Fig. 2.1. Using ground resolution, the

NLP π(N1) = {#11,#14,#19} is obtained in Table 3.3.

Comparing Examples 3.1 and 3.2, all rules generated by naı̈ve resolution are obtained by ground

resolution too. By avoiding the use of Pold, however, we can reduce time and space for learning.

As the next theorem shows, ground resolution has much complexity gain compared with naı̈ve

resolution, when learning is done with the input of complete 1-step state transitions from all 2n

interpretations, where n is the size of the Herbrand base B. In the propositional case, n is the

number of propositional atoms, which correspond to the number of nodes in a Boolean network.

We here assume that each operation of subsumption and resolution can be performed in time

O(1) by assuming a bit-vector data structure.

Theorem 3.7. Using naı̈ve version, the memory use of the LF1T algorithm is bounded by O(n ·
3n), and the time complexity of learning is bounded by O(n2 · 9n), where n = |B|. On the other

hand, with ground resolution, the memory use is bounded by O(2n), which is the maximum size

of P , and the time complexity is bounded by O(4n).
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TABLE 3.3: Execution of LF1T with ground resolution in inferring π(N1) of Example 3.2

Step I → J Operation Rule ID P

1 qr → pr Rqrp p← ¬p ∧ q ∧ r 1 1
Rqrr r ← ¬p ∧ q ∧ r 2 1,2

2 pr → q Rprq q ← p ∧ ¬q ∧ r 3 1,2,3
3 q → pr Rqp p← ¬p ∧ q ∧ ¬r 4

res(4, 1) p← ¬p ∧ q 5 2,3,5
Rqr r ← ¬p ∧ q ∧ ¬r 6

res(6, 2) r ← ¬p ∧ q 7 3,5,7
4 pqr → pq Rpqrp p← p ∧ q ∧ r 8

res(8, 5) p← q ∧ r 9 3,5,7,9
Rpqrq q ← p ∧ q ∧ r 10

res(10, 3) q ← p ∧ r 11 5,7,9,11
5 pq → p Rpqp p← p ∧ q ∧ ¬r 12

res(12, 5) p← q ∧ ¬r 13
res(13, 9) p← q 14 7,11,14

6 p→ ε
7 ε→ r Rεr r ← ¬p ∧ ¬q ∧ ¬r 15

res(15, 7) r ← ¬p ∧ ¬r 16 7,11,14,16
8 r → r Rrr r ← ¬p ∧ ¬q ∧ r 17

res(17, 7) r ← ¬p ∧ r 18
res(18, 16) r ← ¬p 19 11,14,19

Proof. In both P and Pold, the maximum size of the body of a rule is n. There are n possible

heads and 3n possible bodies for each rule: Each element of B can be either positive, negative

or absent in the body of a rule. This means that both |P | and |Pold| are bounded by the size in

O(n · 3n). The memory use in the algorithm is thus O(n · 3n). In practice, however, |P | is less

than or equal to O(2n) for the following reason. In the worst case, P contains only rules of size

n; if P contains a rule with m literals (m < n), this rule subsumes 2n−m rules which cannot

appear in P . That is why we can consider only two possibilities for each literal, i.e., positive

and negative occurrences of the literal (and no blank) to estimate the size |P |. Furthermore, P

does not contain any pair of complementary rules, so that the complexity is further divided by

n, that is, |P | is bounded by O(n · 2n/n) = O(2n). But |Pold| remains in the same complexity

and the memory use of the algorithm in practice is still O(n · 3n).

When adding a rule to P in AddRule using naı̈ve resolution, we have to compare it with all rules

in P ∪Pold, then this operation has a complexity ofO(n ·3n). Hence, using naı̈ve resolution, the

complexity of LF1T is O(
∑n·3n

k=1 k), where k represent the number of rules in P ∪ Pold, which

increases during the process until it finally belongs to O(n · 3n). Therefore, the complexity of

learning with naı̈ve version is O(
∑n·3n

k=1 k), which is then equal to O(n2 · 32n−1) = O(n2 · 9n).

On the other hand, using ground resolution, the memory use of the LF1T algorithm is O(2n),

which is the maximum size of P . The complexity of learning is thenO(
∑2n

k=1 k), which is equal

to O((2n(2n + 1))/2) = O(22n−1) = O(4n).
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By Theorem 3.7, given the set E of complete state transitions, which has the size O(2n), the

complexity of LF1T(E, ∅) with ground resolution is bounded by O(|E|2). On the other hand,

the worst-case complexity of learning with naı̈ve resolution is O(n2 · |E|4.5).

3.1.3 Experiments

In this section, we evaluate our learning methods through experiments. We apply our LFIT

algorithms to learn Boolean networks [75] in Section 3.1.3.1, and apply LFIT to identification

of cellular automata [76] in Section 3.1.3.3.

3.1.3.1 Learning Boolean Networks

We here run our learning programs on some benchmarks of Boolean networks taken from

Dubrova and Teslenko [77], which include those networks for control of flower morphogenesis

in Arabidopsis thaliana [78], budding yeast cell cycle regulation [79], fission yeast cell cycle

regulation [80] and mammalian cell cycle regulation [81]. However, since our problem set-

ting for learning is different from that for computing attractors in [77], we needed to reproduce

these inverse problems, which are made as follows. Firstly, we construct an NLP τ(N) from

the Boolean function of a Boolean network N using the translation in Section 2.3, where each

Boolean function is transformed to a DNF formula. Then, we get all possible 1-step state tran-

sitions of N from all 2B possible initial states I0’s by computing all stable models of τ(N)∪ I0

using the answer set solver clasp.1 Finally, we use this set of state transitions to learn an NLP

using our LFIT algorithms. Because a run of LF1T returns an NLP which can contain redundant

rules, the original NLP Porg and the output NLP PLFIT can be different, but remain equivalent

with respect to state transitions, that is, TPorg and TPLFIT
are identical functions.

Name # nodes # rules (org./LFIT) Naı̈ve (CPU/learned rules) Ground (CPU/produced rules)
Arabidopsis thalania 15 28 / 241 T.O. 13.825s / 1,446,548

Budding yeast 12 54 / 54 361s / 415,252 0.820s / 129,557
Fission yeast 10 23 / 24 5.208s / 45,122 0.068s / 16,776

Mammalian cell 10 22 / 22 5.756s / 47,222 0.076s / 18,955

TABLE 3.4: Learning time of LF1T for Boolean networks up to 15 nodes

Table 3.4 shows the time of a single LF1T run in learning a Boolean network for each problem

in [77] on a processor Intel Core I7 (3610QM, 2.3GHz). The time limit is set to 1 hour for each

experiment. We can see the good effect of using ground resolution in place of naı̈ve resolution.

The number of learned rules in each setting is also shown in Table 3.4, and is compared with
1http://potassco.sourceforge.net/
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the original literatures that present networks. Except Arabidopsis thalania, LFIT succeeds to

reconstruct the same gene regulation rules as in [77] in the first run of LF1T. However, in

Arabidopsis thalania, only 12 original rules are reproduced and the 16 other original rules are

replaced with other learned 229 rules in the output of the first run of LF1T. Although those

output rules are all minimal with respect to subsumption among them, some are subsumed by

original rules. This is because, our resolution strategy is to perform resolution only when it

produces a generalized rule, so other kinds of resolution, as general resolution, are not allowed.

For example, from R1 = (p ← p ∧ q) and R2 = (p ← ¬q ∧ r), R = (p ← p ∧ r) cannot

be obtained in LF1T, since R subsumes neither R1 nor R2. Then, we applied boostings twice

for Arabidopsis thalania, and obtained 76 rules in the first boosting, then got exactly the same

28 original rules in the second boosting. In constructing regulation rules of fission yeast, only

one rule is additionally produced: R15 = (x5 ← ¬x2 ∧ ¬x4 ∧ x5 ∧ x6). Note that all output

rules including R15 are minimal with respect to subsumption among them, and in particular

every output rule is not subsumed by any of the original rule. This rule does not disappear

with a boosting and the number of learned rules does not decrease from 24. Rules like R15 are

not necessary to capture the whole transitions, but may give an alternative way to implement

the dynamics. Hence, the same transition system can be realized in different ways. If this is

considered as a redundancy, it might be useful for robustness of biological systems.

In this experiment, the algorithm needs to analyze 2n steps of transitions to learn an NLP, where

n is the number of nodes in a Boolean network. That is why our implemented programs cannot

handle networks with more than 20 nodes in the benchmark; computing all 1-step transitions

takes too much time, since the grounding in the answer set solver cannot handle it. In other

words, the input size with more than 220 is too huge to be handled, so that we cannot even start

learning. Such a limitation is acceptable in the ILP literature; for example, it has been stated that

networks with 10 transitions and 10 nodes are reasonably large for learning [82]. Moreover, in

real biological networks, we do not observe an exponential number of the whole state transitions

from all possible initial states. Hence, anytime algorithms like LF1T must be useful for such

incomplete set of transitions, since learned programs are correct for any given partial set of state

transitions.

3.1.3.2 Learning big benchmark from partial state transitions sets

In this experiment, the algorithm needs to analyze 2|B| steps of transitions to learn an NLP, where

n is the number of nodes in a Boolean network. That is why our implemented programs cannot

handle networks with more than 20 nodes in the benchmark; since the current implementation is

still too naı̈ve to efficiently solve such big instances. Nevertheless, this limitation is acceptable

in the ILP literature; for example, it has been stated that networks with 10 transitions and 10
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TABLE 3.5: Learning details of LF1T on different partial state transitions sets of T-helper
benchmark

# of transitions # of output rules avg. size of output rules # of analyzed rules CPU time
5% (419,431) 131 8.51 28,244,034 356.40s
10% (838,861) 116 8.48 63,643,273 (+35M) 754s (+398s)

15% (1,258,292) 116 8.57 101,751,250 (+38M) 1206s (+452s)
20% (1,677,722) 133 7.99 142,478,023 (+40M) 1670s (+464s)
25% (2,097,153) 17 3.11 191,512,576 (+49M) 2475s (+805s)
30% (2,516,583) 120 7.58 224,668,076 (+33M) 2983s (+508s)
35% (2,936,013) 135 6.93 265,389,835 (+40M) 4758s (+1765s)

nodes are reasonably large for learning [82]. Moreover, in real biological networks, we do not

observe an exponential number in the whole state transitions from all possible initial states.

For such big networks we can still learn interesting rules within a reasonable time from a partial

set of transition.

We experiment with such partial learning using the benchmark of T-helper cell differentiation

[83], which is composed of 23 nodes [77]. Here we are concerned with the evolution of the

NLP learned by LF1T from 5% to 35% of the step transitions set. LF1T start with 5% of the

step transitions and outputs a NLP, then it considers 5% more step transitions and outputs a new

NLP, and so on until 35%. Table 3.5 presents details about the NLPs learned from these partial

step transitions sets. For each increase of 5% of the input, the table shows: the number of rules

of the output NLP and the average size (i.e. number of body literals) of these rules; and the last

columns give the number of produced rules and CPU time. Results show that CPU time and

number of produced rules slowly increase until 20% of the step transitions. Furthermore, the

number of rules in the NLP and their size is almost the same. Between 20-25% we observe a

cascade of generalizations which leads to a reduction of the number of rules from 122 to 17.

Also, these rules are quite small compared to previous one: average size of almost 3 against 8

before. The number of produced rules and CPU time slightly increase (9 millions more rules and

too time slower) compared to previous evolutions. Between 25-30%, because of the generality

of the rules of the NLP, we see that the number of produced rules is quite reduced. After 30%, the

evolution of the NLP is quite similar to one before 25%: the number of rules remains within the

same magnitude, and the average size of rules diminishes. Finally, we observe a drastic increase

of CPU time between 30% and 35% which cannot be explained only with the properties we

analyzed: the number of produced rules and properties of the output NLP are similar to previous

observations. The time for checking new rules depends on the size of the NLP: our hypothesis

is that the size of the NLP explodes during this phase, so that checking takes more time than

before. However, thanks to many simplifications, it finally leads to a NLP of 135 rules with an

average size of 7.

Example 3.3. An NLP learned from 25% of the step transitions of the benchmark T-helper (220

step transitions):
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x2← x1, x12, x20.

x4← x12, x20, x3.

x6← x12, not x19, x20, x5.

x7← x12, x20, x6.

x8← x12, x20.

x10← x12, not x19, x20, x9.

x13← x12, x20, not x23.

x14← x12, x13, x20.

x15← x12, x14, x20, not x8.

x16← x12, x15, x20.

x16← x12, x20, x4.

x17← x12, not x16, x20.

x18← x12, x17, x20, not x8.

x19← x12, x18, x20.

x21← x12, x20.

x22← x12, x20, x21.

x23← x12, x20, x22.

3.1.3.3 Learning Cellular Automata

A cellular automaton (CA) [76] consists of a regular grid of cells, each of which has a finite

number of possible states. The state of each cell changes synchronously in discrete time steps

according to a local and identical transition rule. The state of a cell in the next time step is

determined by its current state and the states of its surrounding cells (called neighbors). The

collection of all cellular states in the grid at some time step is called a configuration. An ele-

mentary CA consists of a one-dimensional array of possibly infinite cells, and each cell has one

of two possible states 0 (white, dead) or 1 (black, alive). A cell and its two adjacent cells form

a neighbor of three cells, so there are 23 = 8 possible patterns for neighbors. A transition rule

describes for each pattern of a neighbor, whether the central cell will be 0 or 1 at the next time

step.

In [84], Adamatzky asserts the problem to identify a CA from an arbitrary pair of its config-

urations. We provide a solution to this problem using LFIT. Here, we performed experiments

of LF1T with a background theory and inductive biases to learn transition rules of cellular au-

tomata.

Example 3.4. We here pick up one of the most famous elementary CAs, known as Wolfram’s

Rule 110 [76], whose transition rule is given in Table 3.6. In the table, the eight possible values

of the three neighboring cells are shown in the first row, and the resulting value of the central
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FIGURE 3.1: State changes by Wolfram’s Rule 110

cell in the next time step is shown in the second row. Rule 110 is known to be Turing-complete.

The pattern generated by Rule 110 from the initial configuration with only one true cell (colored

black) is depicted in Fig. 3.1. In the figure, time starts at 0 and patterns are shown until time 9.

The column numbers are used later, and we here assign 3 to the column with the single black

cell at time 0. We see that every cell at column 4 has the state 0 through transitions, since its

neighbors always have the state 100 (assuming that the invisible column 5 has the state 0 at time

0).

We here reproduce the rules for Wolfram’s Rule 110 from traces of configuration changes. Al-

though this problem is rather simple, it illustrates how the whole system of LFIT with a back-

ground theory and inductive biases works to induce NLPs for CAs.

Originally, an infinite space is assumed for the CA with Rules 110. To deal with the CA in a

finite space, two approximations can be considered:

1. Limited frame: Observes partially some set of cells. The problem in this setting is that,

from the same configuration, different transitions can occur. For example, the configura-

tions of cells (1, 2, 3) at t = 2 and at t = 4 take the same values (1, 1, 1) in Fig. 3.1, but

the next states are (1, 0, 1) at t = 3 and (0, 0, 1) at t = 5. If the frame width is only 3,

then we have two mutually inconsistent transitions from the same configuration. Hence,

rules are not constructed for the two edge cells but are learned only for the internal cells.

2. Torus world: Assumes that there is no end in the shape of circle, doughnut or sphere,

which can be constructed by chaining one edge cell with the other in one-dimensional

TABLE 3.6: Wolfram’s Rule 110

Current pattern 111 110 101 100 011 010 001 000
New state for center cell 0 1 1 0 1 1 1 0
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FIGURE 3.2: State changes by Wolfram’s Rule 110 in Torus world

cell patterns. Fig. 3.2 shows a torus world of size 4 and the state transitions by Rule 110

with the initial configuration (1, 2, 3, 4) = (0, 0, 1, 0). The columns numbered (4) and (1)

are thus identical to columns 4 and 1, respectively. Note that the configurations reach the

attractor, (1, 1, 1, 0)→ (1, 0, 1, 1)→ (1, 1, 1, 0).

Due to these approximations, the number of possible state transitions can be made smaller in the

case of elementary CAs like Fig. 3.2. Our learning framework can handle both limited frames

and torus worlds by considering adequate state transitions representation as input. For example,

to represent a torus world of size 4, a configuration is represented by a vector with 6 elements

(0, 1, 2, 3, 4, 5): 1, 2, 3, 4 respectively represent their values in the corresponding cells, and 0, 5

respectively represent the values of cells 4 and 1 (colored gray when the value is 1). This last

information can be represented in a background theory as the two rules with the time argument:

c(0, t)← c(4, t),

c(5, t)← c(1, t),

where c(x) represents a cell x and c(x, t) is its state at time step t. Unfortunately, these two

rules do not have corresponding rules without the time argument, since the head literals refer

the time step t instead of t+ 1. Hence, simple removal of the time argument from the both sides

changes the dynamic meaning of the NLP in application of the TP operator that infers about the

next time step. Then, without the time argument, we should copy the rules for c(4) to those for

c(0), and copy the rules for c(1) to those for c(5).

Now we use non-ground resolution and consider the following two biases:

• Bias I: The body of each rule contains at most n neighbor literals.
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TABLE 3.7: LF1T algorithm with Bias I on Rule 110 in Torus world

Step I → J Operation Rule ID P

1 000100→ 001100 R001
c(2) c(2)← ¬c(1) ∧ ¬c(2) ∧ c(3) 1 1

R010
c(3) c(3)← ¬c(2) ∧ c(3) ∧ ¬c(4) 2 1,2

2 001100→ 011101 R001
c(1) c(1)← ¬c(0) ∧ ¬c(1) ∧ c(2) 3

lg(3, 1) c(x)← ¬c(x− 1) ∧ ¬c(x) ∧ c(x+ 1) 4 2,4
R011
c(2) c(2)← ¬c(1) ∧ c(2) ∧ c(3) 5

res(5, 4) c(2)← ¬c(1) ∧ c(3) 6 2,4,6
R110
c(3) c(3)← c(2) ∧ c(3) ∧ ¬c(4) 7

res(7, 2) c(3)← c(3) ∧ ¬c(4) 8 4,6,8
3 011101→ 110111 R011

c(1) c(1)← ¬c(0) ∧ c(1) ∧ c(2) 9
lg(9, 6) c(x)← ¬c(x− 1) ∧ c(x) ∧ c(x+ 1) 10
lg(10, 4) c(x)← ¬c(x− 1) ∧ c(x+ 1) 11 8,11
R110
c(3) c(3)← c(2) ∧ c(3) ∧ ¬c(4) 12

R101
c(4) c(4)← c(3) ∧ ¬c(4) ∧ c(5) 13

res(13, 11) c(4)← ¬c(4) ∧ c(5) 14 8,11,14
4 110111→ 011101 R110

c(1) c(1)← c(0) ∧ c(1) ∧ ¬c(2) 15
lg(15, 8) c(x)← c(x− 1) ∧ c(x) ∧ ¬c(x+ 1) 16 8,11,14,16
R101
c(2) c(2)← c(1) ∧ ¬c(2) ∧ c(3) 17

lg(17, 14) c(x)← c(x− 1) ∧ ¬c(x) ∧ c(x+ 1) 18
res(18, 11) c(x)← ¬c(x) ∧ c(x+ 1) 19 8,11,16,19
R011
c(3) c(3)← ¬c(2) ∧ c(3) ∧ c(4) 20

res(20, 19) c(3)← c(3) ∧ c(4) 21
res(21, 19) c(3)← c(4) 22 11,16,19,22
res(8, 22) c(3)← c(3) 23 11,16,19,22,23

• Bias II: The rules are universal for every time step and for any position. This means that

the same states of the neighbor cells always implies the same state in the center cell at the

next time step.

Combining these two biases, we can adapt LF1T to learn dynamics of CAs. Using Bias I, the

rule construction process only considers n literals (here n = 3) in the neighbors of the cell in

the body of a rule. With Bias I, ground resolution is not sufficient to compare non-ground rules

with ground rules, for that we need non-ground resolution. We apply anti-instantiation (AI)

for getting universal rules with Bias II, whenever a newly added rule RIA is not subsumed by

any rule in the current program. We can guarantee the soundness of this generalization under

Bias II. However, without Bias I, we cannot determine the body literals for construction of each

universal rule, so that we must examine the effects from non-neighbor cells too.
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TABLE 3.8: LF1T algorithm with Biases I and II on Rule 110 in Torus world

Step I → J Operation Rule ID P

1 000100→ 001100 R001
c(2) c(2)← ¬c(1) ∧ ¬c(2) ∧ c(3) 1

ai(1) c(x)← ¬c(x− 1) ∧ ¬c(x) ∧ c(x+ 1) 2 2
R010
c(3) c(3)← ¬c(2) ∧ c(3) ∧ ¬c(4) 3

ai(3) c(x)← ¬c(x− 1) ∧ c(x) ∧ ¬c(x+ 1) 4 2,4
2 001100→ 011101 R001

c(1) c(1)← ¬c(0) ∧ ¬c(1) ∧ c(2) 5
R011
c(2) c(2)← ¬c(1) ∧ c(2) ∧ c(3) 6

ai(6) c(x)← ¬c(x− 1) ∧ c(x) ∧ c(x+ 1) 7
res(7, 2) c(x)← ¬c(x− 1) ∧ c(x+ 1) 8 8,4
res(7, 4) c(x)← ¬c(x− 1) ∧ c(x) 9 8,9
R110
c(3) c(3)← c(2) ∧ c(3) ∧ ¬c(4) 10

ai(10) c(x)← ¬c(x− 1) ∧ c(x) ∧ ¬c(x+ 1) 11
res(11, 9) c(x)← c(x) ∧ ¬c(x+ 1) 12 8,9,12

3 011101→ 110111 R011
c(1) c(1)← ¬c(0) ∧ c(1) ∧ c(2) 13

R110
c(3) c(3)← c(2) ∧ c(3) ∧ ¬c(4) 14

R101
c(4) c(4)← c(3) ∧ ¬c(4) ∧ c(5) 15

ai(15) c(x)← c(x− 1) ∧ ¬c(x) ∧ c(x+ 1) 16
res(16, 8) c(x)← ¬c(x) ∧ c(x+ 1) 17 8,9,12,17

4 110111→ 011101 R110
c(1) c(1)← c(0) ∧ c(1) ∧ ¬c(2) 18

R101
c(2) c(2)← c(1) ∧ ¬c(2) ∧ c(3) 19

R011
c(3) c(3)← ¬c(2) ∧ c(3) ∧ c(4) 20 8,9,12,17

Using Bias I only, LF1T in a limited frame of width 4 learns the following rules for Wolfram’s

Rule 110:
c(2)← ¬c(2) ∧ c(3),

c(3)← ¬c(2) ∧ c(3),

c(3)← c(3) ∧ ¬c(4),

c(x)← ¬c(x− 1) ∧ c(x+ 1),

c(x)← c(x− 1) ∧ c(x) ∧ ¬c(x+ 1).

(3.3)

Instead, when we use a torus world of length 4 for Wolfram’s Rule 110 in LF1T with Bias I

only, Table 3.7 shows the learning process2 and the following NLP is obtained:

c(3)← c(3),

c(3)← c(4),

c(x)← ¬c(x) ∧ c(x+ 1),

c(x)← ¬c(x− 1) ∧ c(x+ 1),

c(x)← c(x− 1) ∧ c(x) ∧ ¬c(x+ 1).

(3.4)

2In Tables 3.7 and 3.8, interpretations I and J are represented as configurations, that is, c(i) ∈ I iff c(i) is
true. Operation lg(R1, R2) takes the least generalization of R1 and R2 with the same pattern, which generalizes the
common terms in R1 and R2 into variables, and ai(R) takes the anti-instantiation of R.
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Both programs (3.3) and (3.4) are quite different from the original rules in Table 3.6. On the

other hand, if we use Biases I and II in either a limited frame of width 4 or a torus world of

length 4, we get the following NLP (the process is in Table 3.7), which are equivalent to the

original transition rule in Table 3.6:

c(x)← c(x) ∧ ¬c(x+ 1),

c(x)← ¬c(x− 1) ∧ c(x),

c(x)← ¬c(x− 1) ∧ c(x+ 1),

c(x)← ¬c(x) ∧ c(x+ 1).

(3.5)

In learning an NLP for Rule 110 with Biases I and II, we get interesting generalizations. The

NLP obtained from the trace of Rule 110 with LF1T becomes more compact in 4 rules, whereas

the original transition rule representing the dynamics of this CA in Table 3.6 consists of 5 rules.

However, there still exists a redundancy here; we can omit either the second or the third rule

from (3.5). But both rules are minimal rules, their body are prime implicant conditions of the

head.

3.1.4 Conclusion

We here firstly tackled the induction problem of learning dynamical systems in terms of NLP

learning from synchronous state transitions. The proposed algorithm LF1T has the following

properties:

• Given any state transitions diagram, which is either complete or partial, we can learn an

NLP that exactly captures the system dynamics.

• Learning is performed only from positive examples, and produces NLPs that consist only

of rules to make literals true.

• Generalization on state transitions rules is done by resolution, in which each rule can only

be replaced by a general rule. As a result, an output NLP is always minimal with respect

to subsumption among rules.

We have also shown how to incorporate background knowledge and inductive biases, and have

applied the framework to learning transition rules of Boolean networks. The results are promis-

ing, and implemented programs can be useful for designing the state transitions rules of dy-

namical systems from a specification of desired or non-desired state transitions diagrams. For

instance, a system can be considered to be robust if it is tolerant to a perturbation which interferes

normal state transitions. Such a transition diagram could be designed as a tree shape, in which

its root node corresponds to an attractor, so that any forced state change is eventually recovered
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to reach to the attractor [79]. Then we can do reverse engineering to get the corresponding state

transitions rules for the Boolean network.
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3.2 BDD Algorithms for LF1T

In the previous section we presented the first version of the LF1T algorithm. This algorithm

has two main weak points. The first one concern its performance: the first implementations

were not able to tackle model with more than 15 variables. The second one concern its output:

the NLP learned realize the input transitions, but there is no guaranty on the minimality of the

rules learned. Lot of improvement could be done regarding the representation of the rules in the

implementation. And it is this problem that we tackle first and that we discuss in this section.

How to solve the second problem is shown in the next section.

Now we present a new LF1T algorithm based on an efficient data structured inspired from

OBDD and Zero-suppressed BDD. A BDD is a canonical representation of a Boolean formula

[54, 55]. The novelty of this approach is the integration of LF1T operations into a BDD structure

to perform ground resolution. In this approach, one BDD represents a set of rules that have the

same head. Figure 3.3 show the evolution of the BDD that represents rules of p in Example 3.2:

In this figure, the last schema of step 9 represents a BDD that contains two rules p← p ∧ q and

p ← q ∧ r which both have p as their head. The internal nodes of our data structure represent

literals, and outgoing edges represent their polarity. In Figure 3.3, the first BDD has one root

node which represents the literal p and the edge between its child node q represents the fact that

p is positive in the rule p← p ∧ q.

Like an OBBD [61, 62], our structure respects a total variable ordering: if p, c are two nodes,

c is a child of p and lp, lc their literals respectively,then lp < lc. If there is an edge between

two nodes p, c that are not neighbors in the ordering, it means that all literals between them are

absent from the rules encoded by paths including p and c. Like a ZDD, our BDD structure can

have multiple root nodes, but only one leaf; it only represents positive rules. A root node always

represents the first literal of one or multiple rules. The leaf node represents the end of all rules;

it is the unique child of the last literal of every rule represented by the BDD.

Usual BDD merging operations are not sufficient to perform the generalization operations of

LF1T. In LF1T, these operations are equivalent to the use of naı̈ve resolution without Pold.

In Figure 3.3, the generalization obtained in step 2 can be obtained by usual BDD merging

operations: the node r has a positive and negative link to the same node (the leaf) and should

be removed according to BDD merging operations. But the generalization obtained by ground

resolution on step 9 cannot be obtained by usual BDD merging operations.

To use ground resolution within a BDD structure we need to introduce specific merging oper-

ations. These operations have to ensure that the set of rules represented by a BDD is always

minimal regarding ground resolution. In Figure 3.3, the last BDD of each learning step respects

this notion of minimality.
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FIGURE 3.3: Evolution of the BDD of p in Example 3.2, edge labelled by 0 represents nega-
tion, nodes without parent are roots and the empty node is the leaf. Last schema of each step
represents the real state of the BDD; intermediate ones illustrate update operations. Step 1:
from (pqr, pq) we learn p ← p ∧ q ∧ r. Step 2: from (pq, p) we learn p ← p ∧ q ∧ ¬r and
by resolution p ← p ∧ q. Step 9: from (qr, pr) we learn p ← ¬p ∧ q ∧ r and by resolution
p← q ∧ r. Step 11: from (q, pr) we learn p← ¬p∧ q ∧¬r which triggers two resolutions and

a subsumtion to finish with p← q.
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3.2.1 Algorithm

Algorithm 4 describes our adaptation to BDD of the addRule operation of LF1T. This algorithm

is an application to BDD of the previous version of LF1T based on ground resolution. Whenever

a new rule is learned, the corresponding BDD is updated as follows: 1) check if the rule is

subsumed, 2) generalize the rule, 3) remove subsumed rules, 4) insert the rule and 5) generalize

the BDD. The details of each step is explained as follows.

Algorithm 4 addRule(R,B)

INPUT: a rule R and a BDD B
g: a set of rules
// 1) Check if R is subsumed
for each root node r of B do

if r.subsumes(R, 0) then return
end if

end for
// 2) Generalizes R
for each root node r of B do

if r.generalizes(R, 0) then restart the for loop
end if

end for
// 3) Remove rules subsumed by R
l := the leaf node of B
l.clear(R, |R|, true)
// 4) Insert R into the BDD
insert(R,B)
// 5.1) Check generalization by R
g ← ∅
for each root node r of B do

r.generalizations(R, 1, g)
end for
// 5.2) Add the generalizations generated by R
for each rules Rg of g do

addRule(Rg)
end for

Subsumption (step 1)
To check if a rule is subsumed by a BDD, we have to check whether starting from a root and

following the body of the rules allow us to reach the leaf of the BDD. If we reach the leaf then

the rule is subsumed. Because we use ground resolution, if a rule is subsumed by the BDD it is

useless to search for generalizations of that rule. Checking for such a generalization will only

lead to generating a rule that is already in the BDD. Also, it cannot generalize any rules in the

BDD: every generalization which can be triggered by this rule has already been found using the

rules in the BDD that subsumes it.

Generalization of the new rule (step 2)
To search for generalizations of the rules we use a similar search. However, each time we reach

a node representing the current literal l of the rule, we check if the sub-BDDs subsume the
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Algorithm 5 subsumes(R, n) member function of a LF1T-BDD node N

1: INPUT: a rule R and an integer n
2: OUTPUT: a Boolean value

3: literalN : literal of the node N
4: true children: list of child nodes linked by a true edge
5: false children: list of child nodes linked by a false edge
6: head: the head literal of R

// 1) Terminal node
7: if is terminal() AND variable = head then
8: return true
9: end if

// 2) End of the rule
10: if n > |R| then
11: return false
12: end if
13: literalR ← nth literal of R

// 3) LF1T-BDD rules are more generals
14: if literalR > literalN then
15: return subsumes(R,n+ 1)
16: end if
17: literalR ← nth literal of R

// 4) The rule is more general
18: if literalR < literalN then
19: return false
20: end if

// 5) Same literal
21: if literalR is positive then
22: children← true children
23: else
24: children← false children
25: end if
26: for each child node c of children do
27: if c.subsumes(R,n+ 1) then
28: return true
29: end if
30: end for
31: return false

complementary rule on l. If it is the case, we generalize the rule on this literal and restart the

check for generalizations with the new rule.

Removal (step 3)
To delete the rules subsumed by the new rule in the BDD, this time we start from the leaf. We

follow the parents according to the rule until we check all corresponding parts of the BDD. If

we reach the end of the rule, it means that a rule is subsumed. If we do not encounter a node

with multiple children, we just have to delete the current node and purge the linked nodes: we

recursively delete all parent nodes that have no more children and all children who have no more

parents (those poor orphans). Otherwise, we come back to the first node with multiple children

we encountered, cut the child edge we followed, and purge the child node in the same way as

before.
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Algorithm 6 generalizes(R, n) member function of a LF1T-BDD node N

1: INPUT: a rule R and an integer n
2: OUTPUT: a Boolean value
3: literalN : literal of the node N
4: true children: list of child nodes linked by a true edge
5: false children: list of child nodes linked by a false edge

// 1) The rule is more general than all rules of the node
6: if n > |R| then return false
7: end if

// 2) Terminal node
8: if is terminal() then return false
9: end if

// 3) Check generalization on the current node
10: literalR ← nth literal of R

// 3.1) The node is more general than the rule
11: while literalN > literalR do
12: if subsumes(R,n) then
13: R← R \ literalR // 3.1.1) The node subsumes the complementary rule
14: return true
15: end if
16: n← n+ 1

// 3.1.2) No more literal to generalize
17: if n > |R| then return false
18: end if
19: end while

// 3.2) The rule is more general
20: if literalN < literalR then return false
21: end if

// 3.3) The sub-bdd possibly contains the complementary
22: same← true children
23: oposite← false children
24: if literalR is positive then
25: same← false children
26: oposite← true children
27: end if

// 3.3.1) Search for complementary rules
28: for each child node c of oposite do
29: if c.subsumes(R,n+ 1) then // Complementary rules is subsumed
30: R← R \ literalR
31: return true
32: end if
33: end for

// 4) Search for generalizations on next literal
34: for each child node c of same do
35: if c.generalizes(R,n+ 1) then
36: return true
37: end if
38: end for
39: return false

Insertion (step 4)
All operations we use on our BDDs are based on the manner in which we insert a rule into the

structure. First of all, when adding a rule R to a BDD B we assume that R does not subsumes

and is not subsumed by any rule of B and cannot be generalized by a rule of B using ground
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Algorithm 7 clear(R, n, can cut) member function of a LF1T-BDD node N
1: INPUT: R a rule, n an integer and can cut a Boolean
2: OUTPUT: a Boolean value

3: literalR: the nth literal of R
4: unlink ← false

// 1) Choice node
5: if #child > 1 then
6: can cut← false
7: end if

// 2) Check parents
8: for each parent node p do
9: literalp ← the literal of p

// 2.1) Parent is more general
10: if literalp < literalR then
11: if n = 1 AND is terminal() then
12: CONTINUE // 2.1.1) Not subsumed
13: end if
14: if !p.clear(R,n, can cut) then
15: CONTINUE
16: end if

// 2.1.2) Subsumed
17: if can cut then
18: remove the link with p and delete p if it do not has child
19: unlink ← true
20: CONTINUE
21: end if
22: return true
23: end if

// 2.2) Rule is more general
24: if literalp > literalR then
25: if !p.clear(R,n, can cut) then
26: delete p if it do not has any parent
27: CONTINUE // 2.2.1) Not subsumed
28: end if

// 2.2.2) Subsumed
29: if can cut then
30: remove the link with p and delete p if it do not has any child
31: unlink ← true
32: CONTINUE
33: end if
34: return true
35: end if

// 2.3) Same literal
36: if n > 0 AND !p.clear(R,n− 1, can cut) then
37: delete p if it do not has any parent
38: CONTINUE
39: end if

// 2.3.2) Subsumed
40: if can cut then
41: remove the link with p and delete p if it do not has any child
42: unlink ← true
43: CONTINUE
44: end if
45: return true
46: end for
47: return false

resolution (insured by step 1-3). To add a rule in the BDD we start by searching the common

part of the beginning and the end of the body. From the leaf of the BDD, we climb to its parents

following the rule from the end. If a parent node has multiple children we do not follow it.

Adding a parent to this node will generate more rules than only the one we want to represent.

We stop when there is no parent that corresponds to the literal of the rule or when we reach the

beginning of the rule. Let us call the last parent reached last and its literal llast; last will be
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connected later to the new nodes created to represent the rule. Then, we search for a root node

corresponding to the first literal. If such a root node does not exist, we create a new one, and

then we create and link new nodes for all literals l < llast of the rules. Then, last becomes the

child of the node most recently created. If a root node corresponds to the first literal of the rule

to insert, we follow its children according to the rule body. We stop the descent when no nodes

correspond to the rule body, and connect the most recent one we found to last. This insertion

policy allows us to compile common parts of the rule body to save memory space. It ensures that

a node with multiple children have only one parent and cannot have an ancestor with multiple

ancestors. In our implementation, this property is exploited to enhance the efficiency of the

subsumption and generalization checks of LF1T.

Generalization of BDDs (step 5)
To search the generalizations made by the new rule, we start from the root node. Let l be the

current literal we are checking in the rule. When we reach a node whose literal corresponds

to l or before it in the ordering, we just have to retrieve all rules subsumed by the rest of the

new rules. These rules can all be generalized on the current node. We continue the search

for generalizations on the children until we cannot follow the rule anymore. It is necessary to

clear the BDD from subsumed rules before this operation in order to avoid a cascade of useless

generalizations which lead to the rule we are inserting. In fact, let R1, R2 be two rules such that

R1 subsumesR2 on l. ThenR1 can generalizeR2 on l becauseR1 subsumes the complementary

of R2 on l.

Theorem 3.8. Let n be the size of the Herbrand base |B|. Using our dedicated BDD structure

the memory complexity as well as the computational complexity of LF1T remain in the same or-

der as the previous algorithm based on ground resolution: , i.e., O(2n) and O(4n), respectively.

Proof. Let n be the size of the Herbrand base |B|. This n is also the number of possible heads

of rules. Furthermore, n is also the maximum size of a rule, i.e. the number of literals in the

body; a literal can appear at most one time in the body of a rule. For each head there are 3n

possible bodies: each literal can either be positive, negative or absent of the body. From these

preliminaries we conclude that the size of an NLP |P | learned by LF1T is at most n · 3n. But

thanks to ground resolution, |P | cannot exceed n · 2n; in the worst case, P contains only rules

of size n where all literals appear and there is only n · 2n such rules. If P contains a rule with

m literals (m < n), this rule subsumes 2n−m rules which cannot appear in P . Finally, ground

resolution also ensures that P does not contain any pair of complementary rules, so that the

complexity is further divided by n; that is, |P | is bounded by O(n·2
n

n ) = O(2n).

In our approach, a BDD represents all rules of P that have the same head, so that we have n

BDD structures. When |P | = 2n, each BDD represents 2n/n rules of size n and are bound by

O(2n/n), which is the upper bound size of a BDD for any Boolean function [85]. Because BDD
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Algorithm 8 insert(R, BDD)
1: INPUT: a rule R and a BDD

2: starting: the set of starting nodes of BDD
3: literal: first literal of R
4: begin, end: BDD nodes
5: n← 0
6: push← false

// 1) Bottom-up search for common part
7: end← the last ancestor node reached following R from the corresponding terminal node

// 2) Fact rule
8: if |R| = 0 then
9: starting ← {terminalnode}

10: end if
11: begin← NULL

// 2.1) Search common literal within the starting nodes
12: if a node r ∈ starting correspond to literal then
13: begin← r
14: end if

// 2.2) New starting
15: if begin = NULL then
16: begin← a new node corresponding to literal
17: starting ← starting ∪ {begin}
18: push← true
19: end if
20: current: bdd node pointer
21: make current points on begin

// 3) Insertion of the rest of the body
22: while n ≤ |R| do
23: n← n+ 1

// 3.1) Link node reached
24: if n > |R| OR the nth literal of R is the one of end then
25: connect current to end according to the polarity of literal
26: return
27: end if
28: literal← nth literal of R

// 3.2) construct new nodes for the rest of the rule
29: if push then
30: create a new node for literal
31: connect the node to current according to the polarity of literal
32: make current points on the new node
33: CONTINUE
34: end if

// 3.3) Continue to follow the rule
35: next← NULL
36: for each child nodes c of current according to previous literal polarity do
37: if c has only one parent node AND correspond to literal then
38: next← c
39: BREAK
40: end if
41: end for

// 3.4) No more common literal
42: if next = NULL then
43: push = true
44: n← n− 1
45: CONTINUE
46: end if

// 3.4) // Continue to follow the LF1T-BDD
47: Make current point on next
48: end while
49: Connect end to begin according to the polarity of literal

merges common parts of rules, it is possible that a BDD that represents 2n/n rules needs less

than 2n/n memory space. In the previous approach, in the worst case |P | = 2n, whereas in our

approach |P | ≤ 2n. Our new algorithm still remains in the same order of complexity regarding

memory size: O(2n).
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Algorithm 9 generalizations(R, n,G)
1: INPUT: R a rule, n an integer, G a list of rules
2: OUTPUT: a Boolean value

3: literalN : node literal
4: G′, rules: set of rules

// 1) End of the rule
5: if n > |R| then return
6: end if
7: literalR ← nth literal of R

// 2) Node is more general
8: if literalN > literalR then return
9: end if

// 3) Generalizations are possible on all children
10: if literalN < literalR then
11: for each child node c do
12: rules← all rules subsumed by R in c
13: G← G ∪ {rules}
14: end for

// 2.2) Retrieve deeper generalizations
15: for each child node c do
16: G′ ← ∅
17: c.generalizations(R,n+ 1, G′)
18: literal← literalN
19: if the link with c is a negation then
20: literal← ¬literalN
21: end if
22: for each rule r of G′ do
23: G← G ∪ {(h(r)← literal ∧

∧
l∈b(r) l)}

24: end for
25: end for
26: return
27: end if

// 3) Same literal
28: for each child node c do
29: // 3.1) Search complementary rules
30: if the link with c has the same polarity as literalR then
31: rules← all rules subsumed by R in c
32: G← G ∪ {rules}
33: else
34: // 3.2) Check deeper generalizations
35: literal← literalN
36: if the link with c is a negation then
37: literal← ¬literalN
38: end if
39: G′ ← ∅
40: c.generalizations(R,n+ 1, G′)
41: for each rule r of G′ do
42: G← G ∪ {(h(r)← literal ∧

∧
l∈b(r) l)}

43: end for
44: end if
45: end for

Regarding learning, each operation has its own complexity. Let k be the place of a literal in the

variable ordering so that for the starting node literal of a BDD k = 0. In our BDD, a node has at

most 2 · ((n− k)− 1) children: (n− k)− 1 positive and negative links to all literals which are

superior to k in the ordering. Insertion of a rule is done in polynomial time; in the worst case,

we insert a rule where only one literal that differs from the BDD. Because we follow only the

first common literals, we have to check at most 2 · ((n − k) − 1) links on n − 1 nodes, which

belongs to O(n2).
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Subsumption as well as generalization checks require exponential time. In the case of subsump-

tion, in the worst case the BDD contains 2n/n rules and the rule is not subsumed by any of

them.

That means that we have to check every rule, and each check belongs toO(n2) so that the whole

subsumption operation belongs toO(n2 ·2n/n) = O(2n). To clear the BDD we have to perform

the inverse operation. We always have to check the whole BDD, so if the size of the BDD is 2n

then the complexity of the whole clear check also belongs to O(2n).

To generalize the new rule we have to check if the BDD subsumes one of its complementary

rules. Like for subsumption, in the worst case we have to check every rule. A rule can be

generalized at most n times; for each generalization we have to check at most n complementary

rules, so the complexity of a complete generalization belongs to O(n2 · 2n/n) = O(2n). For

the complexity of generalization of BDD rules we consider the inverse problem. In the worst

case, every rule of the BDD can be generalized by the new one. Because the new rule does not

cover any rules of the BDD, it can generalize each rule of the BDD at most one time. Then, we

have at most 2n/n possible direct generalizations on the whole BDD. In the worst case, each of

them can be generalized at most n − 1 times, and like before, for each generalization we have

to check at most n complementary rules. If a rule is generalized n times it means that its body

becomes empty, i.e. the rule is a fact, and it will subsume and clear the whole BDD. Then, the

complexity of a complete generalization of the BDD belongs to O(2n/n · (n− 1) ·n) = O(2n).

Each time we learn a rule from a step transition we have to perform these four checks which

have a complexity of O(n2 + 2n + 2n + 2n) = O(2n). From 2n state transitions, LF1T can

directly infer n · 2n rules. Learning the dynamics of the entire input implies in the worst case

2n · 2n operations which belong to O(4n). Using our dedicated BDD structure the memory

complexity as well as the computational complexity of LF1T remains the same order as the

previous algorithm based on ground resolution: respectively O(2n) and O(4n).

3.2.2 Evaluation

In this section, we evaluate our learning methods through experiments. We apply our new

LF1T algorithms to learn Boolean networks. Here we run our learning program on the same

benchmarks used in [2]. These benchmarks are Boolean networks taken from Dubrova and

Teslenko [77], which include those networks for control of flower morphogenesis in Arabidopsis

thaliana, budding yeast cell cycle regulation, fission yeast cell cycle regulation and mammalian

cell cycle regulation. Like in [2], we first construct an NLP τ(N) from the Boolean function of

a Boolean network N where each Boolean function is transformed to a DNF formula. Then, we

get all possible 1-step state transitions ofN from all 2|B| possible initial states I0’s by computing

all stable models of τ(N) ∪ I0 using the answer set solver clasp [86]. Finally, we use this set
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Name # nodes # rules Naı̈ve Ground BDD
Arabidopsis thalania 15 28 T.O. 40.8MB/13.8s 31.6MB/2.8s

Budding yeast 12 54 11MB/361s 4.6MB/0.82s 3.6MB/0.188s
Fission yeast 10 23 3.3MB/5.2s 0.8MB/0.68s 0.5MB/0.24s

Mammalian cell 10 22 4.7MB/5.7s 1MB/0.76s 0.5MB/0.24s

TABLE 3.9: Memory use and learning time of LF1T for Boolean networks up to 15 nodes with
the alphabetical variable ordering

Name min/max # rules Average # rules time std deviation rules/time
Arabidopsis thalania 29/962 227 4.31s 183.03/0.538s

Budding yeast 54/310 82 0.3s 41.91/0.019s
Fission yeast 23/45 24 0.04s 3.08/0.003s

Mammalian cell 22/22 22 0.03s 0/0.007s

TABLE 3.10: Experimental results of 1000 runs of LF1T with random variable orderings

of state transitions to learn an NLP using our LF1T algorithm. Because a run of LF1T returns

an NLP which can contain redundant rules, the original NLP Porg and the output NLP PLFIT

can be different, but remain equivalent with respect to state transitions, that is, TPorg and TPLFIT

are identical functions.

Table 3.9 shows the memory space and time of a single LF1T run in learning a Boolean network

for each problem in [77] on a processor Intel Core I7 (3610QM, 2.3GHz) with 4GB of RAM.

In the naı̈ve, ground and BDD versions of LF1T the variable ordering is alphabetical. The time

limit is set to one hour for each experiment. The gain of memory for the BDD version is up to

50% for the two smaller benchmarks and around 20% for the bigger ones. The main interest of

our algorithm is shown by the gain in CPU time. For the Arabidopsis thaliana benchmark the

input size is quite big: 215 state transitions. Here, naı̈ve version of LF1T reaches the time out

(T.O.) of one hour. On this big benchmark, using BDD, we need 80% less CPU time than the

previous ground resolution method. These results show that even if the BDD structure does not

have a big impact on the whole memory space use, its particular structure allows it to perform

LF1T operations faster than in the previous algorithms.

Table 3.10 show more precise experimental results on the BDD version of LF1T. This table

shows the minimimum, maximum and average number of rules in the output NLP of 1000 runs

of LF1T with random variable ordering. The fifth column shows the average learning time and

last one is the standard deviation over the number of rules and the one of learning time.

The standard deviation shows that the impact of variable ordering does not affect learning time

very much, but it has a significant influence on the rules learned by LF1T. Although those output

rules are all minimal with respect to subsumption among them, some are subsumed by original

rules. If we consider the original NLP as a kind of optimal NLP in terms of the number of rules,

the bigger NLPs learned by our BDD version are local optima where no ground resolutions can

be applied among the rules of the NLP. This is because the resolution strategy of LF1T is to
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perform resolution only when it produces a generalized rule, so other kinds of resolution are not

allowed. For example, from R1 = (p ← p ∧ q) and R2 = (p ← ¬q ∧ r), R = (p ← p ∧ r)
cannot be obtained in LF1T, since R subsumes neither R1 nor R2. Variable ordering has the

same effect on the previous versions of LF1T.

3.2.3 Conclusion

In this section, we proposed a new algorithm for learning from interpretation transitions based

on a BDD-like structure. Using this data structure, we can reduce the memory space to represent

NLPs learned by LF1T. Analysis of the worst-case computational complexity demonstrated that

learning with this method is equivalent to the previous method. However, experimental compar-

ison with previous LF1T algorithms showed that our method outperforms them in practice.
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3.3 Learning Prime Implicant Conditions

In this section, our main concern is the minimality of the rules and the NLPs learned by LF1T.

Our goal is to learn all minimal conditions that imply a variable to be true in the next state, e.g. all

prime implicant conditions. In bioinformatics, for a gene regulatory network, it corresponds to

all minimal conditions for a gene to be activated/inhibited. It can be easier and faster to perform

model checking on Boolean networks represented by a compact NLP than the set of all state

transitions. Knowing the minimal conditions required to perform the desired state transitions,

a robot can optimize its actions to achieve its goals with less energy consumption. From a

technical point of view, for the sake of memory usage and reasoning time, a small NLP could

also be preferred in multi-agent and robotics applications. We use the notion of prime implicant

to define minimality of NLP. We consider that the NLP learn by LF1T is minimal if the body of

each rule constitutes a prime implicant to infer the head.

In [67], prime implicants are define for DNF formula as follows: a clause C, implicant of a

formula φ, is prime if and only if none of its proper subset S ⊂ C is an implicant of φ. In this

work, explanatory induction is considered, while in our approach prime implicants are defined

in the LFIT framework. Knowing the Boolean functions, prime implicants could be computed

by Tison’s consensus method [68] and its variants [69]. The novelty of our approach, is that

we compute prime implicants incrementally during the learning of the Boolean function. To

the best of our knowledge, there is no previous work that propose a method to compute prime

implicant from interpretation of transition. In [67], a method is also proposed to compute prime

implicant amoung DNF formula for explanatory induction is considered, while in our approach

prime implicants are defined in the LFIT framework. Our new methods guarantee that the NLPs

learned contain only minimal conditions for a variable to be true in the next state.

3.3.1 Formalization

Definition 3.9 (Prime Implicant Condition). LetR be a rule and E a set of state transitions such

that R is consistent with E. b(R) is a prime implicant condition of h(R) for E if there does

not exist another rule R′ consistent with E such that R′ subsumes R. Let P be a NLP such that

P ∪{R} ≡ P : all models of P ∪{R} are models of P and vice versa. b(R) is a prime implicant

condition of h(R) for P if there does not exist another rule R′ such that P ∪ {R′} ≡ P and R′

subsumes R.

Definition 3.10 (Prime Rule). To simplify the rest of this paper, according to Definition 3.9 we

will call R a prime rule of E (resp. P ) if b(R) is a prime implicant condition of h(R) for E

(resp. P ). For any variable the most general prime rule is the rule with an empty body that states

that the variable is always true in the next state.
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Example 3.5. Let R1, R2 and R3 be three rules and E be the set of state transitions of Figure

2.1 as follows: R1 = p ← p ∧ q ∧ r, R2 = p ← p ∧ q, R3 = p ← q The only rule more

general than R3 is R′ = p., but R′ is not consistent with (p, ε) ∈ E so that R3 is a prime rule

for E. Since R3 subsumes both R1 and R2, they are not prime rules of E. Let P be the NLP

{p← p, q ← p ∧ r, r ← ¬p}, R3 is a prime rule of P because P realizes E and R3 is minimal

for E.

Definition 3.11 (Prime NLP). Let P be an NLP andE be the state transitions of P , P is a prime

NLP for E if P realizes E and all rules of P are prime rule for E. We call the set of all prime

rules of E the complete prime NLP of E.

Example 3.6. Let R1, R2 and R3 be three rules, E be the set of state transitions of Figure

2.1 and P an NLP as follows: R1 = p ← p ∧ q, R2 = q ← p ∧ r, R3 = r ← ¬p and

P = {R1} ∪ {R2} ∪ {R3}. Since R1, R2 and R3 are prime rule for E, P the NLP formed

of these three rules is a prime NLP of E. There does not exist any other prime rules for E,

therefore P is also the complete prime NLP of E.

3.3.2 Learning with full Naı̈ve/ground resolution

The complete prime NLP of a given set of state transitions E can naı̈vely be obtained by brute

force search. Starting from the most general rules that is fact rules, it suffices to generate all

maximal specific specialization (Def 2.10) step by step and keep the first ones that are consistent

with E. This method implies to check all state transitions for all possible rules that correspond

to O(n × 3n × 2n) = O(6n) checking operations in the worst case for a Herbrand base of n

variables. But it is also possible to do it by extending previous LF1T algorithm for the sake of

complexity. Here we propose a simple extension of naı̈ve (resp. ground) resolution. In previous

algorithms, for each rule learned, only the first least generalization found is kept. Now we

consider all possible least generalization and define full naı̈ve (resp. ground) resolution. LF1T
with full naı̈ve (resp. ground) resolution learn the complete prime NLP that realize the input

state transitions.

Definition 3.12 (full naı̈ve resolution and full ground resolution). Let R be a rule and P be a

NLP. Let PR be a set of rule of P such that, for all R′ ∈ PR, h(R) = h(R′) and for each R′

there exists l ∈ b(R), (b(R′) \ {l}) = (b(R) \ {l}) (resp. (b(R′) \ {l}) ⊆ (b(R) \ {l})). The

full naı̈ve (resp. ground) resolution of R by P is the set of all possible naı̈ve (resp. ground)

resolutions of R with the rules of P : resf (R,P ) = {res(R,R′)|R′ ∈ PR}.

Theorem 3.13 (Completeness and Soundness of full resolution). Given a set E of pairs of

interpretations, LF1T with full naı̈ve (resp. ground) resolution is complete and sound for E.
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Proof. According to Theorem 1 (resp. 2) of [2], LF1T with naı̈ve (resp. ground) resolution is

complete for E. It is trivial that any rules produced by naı̈ve (resp. ground) resolution can be

obtained by full naı̈ve (resp. ground) resolution. Then, if P and P ′ are respectively obtained by

naı̈ve (resp. ground) resolution and full naı̈ve (resp. ground) resolution, P ′ theory-subsumes P .

If a program P is complete for E , a program P ′ that theory-subsumes P is also complete for

E. Since P is complete for E by Theorem 1 of [2], P ′ is complete for E.

All rules that can be produced by naı̈ve (resp. ground) resolution can be obtained by full naı̈ve

(resp. ground) resolution. Since all rules produced by naı̈ve (resp. ground) resolution are sound

for E (Corrollary 1 (resp. 2) of [2]), full naı̈ve (resp. ground) resolution is sound for E.

Theorem 3.14 (LF1T with full resolution learn complete prime NLP). Given a set E of pairs

of interpretations, LF1T with full naı̈ve (resp. ground) resolution will learn the complete prime

NLP that realize E.

Proof. Let us assume that LF1T with full naı̈ve resolution does not learn a prime NLP of E. If

our assumption is correct it implies that there exists R a prime rule for E that cannot be learned

by LF1T with full naı̈ve resolution. Let B be the Herbrand base of E.

Case 1: |b(R)| = |B|, R will be directly infered from a transition (I, J) ∈ E. This is a

contradiction with our assumption.

Case 2: |b(R)| < |B|. let l be a literal such that l 6∈ b(R), according to our assumption, their

is a rule R′ that is one of the rule R1 := h(R) ← b(R) ∪ l or R2 := h(R) ← b(R) ∪ l and R′

cannot be learned because res(R1, R2) = R. Recursively, what applies to R applies to R′ until

we reach a rule R′′ such that |b(R′′)| = |B|. Our assumption implies that this rule R′′ cannot be

learned, but R′′ will be directly infer from a transition (I, J) ∈ E, this is a contradiction. Since

ground resolution can learn all rules learned by naı̈ve resolution, the proof also applies to LF1T
with full ground resolution.

3.3.3 Least Specialization for LF1T

Until now, to construct an NLP, LF1T relied on a bottom-up method that generates hypotheses

by generalization from the most specific clauses or examples until every positive example is

covered. Now we propose a new learning method that generate hypotheses by specialization

from the most general rules until no negative example is covered. Learning by specialization

ensures to output the most general valid hypothesis. Specialization is usually considered the dual

of generalization in ILP [43, 65, 66]. Where generalization occurs when a hypothesis does not

explain a positive example, specialization is used to refine a hypothesis that implies a negative

example. The main weak point of the previous LF1T algorithms is that the output NLPs depends

on variable/transition ordering. Because at each learning step the learned rules by the new LF1T
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algorithm are minimal according to the state transitions analyzed so far; it implies that our new

LF1T algorithm can learn more relevant NLPs from partial state transitions than previous ones.

Study of the computational complexity of our new method shows that it remains equivalent to

the previous version of LF1T. Using examples from the biological literature, we show through

experimental results that our specialization method can compete with the previous versions of

LF1T in practice.

Definition 3.15 (Least specialization). Let R1 and R2 be two rules such that h(R1) = h(R2)

and R1 subsumes R2. The least specialization ms(R1, R2) of R1 over R2 is

ms(R1, R2) = {h(R1)← b(R1) ∧ ¬li|li ∈ b(R2) \ b(R1)}

Example 3.7. R1 = a ← a ∧ b ∧ c is a least specialization of R2 = a ← a ∧ b. But R1 is

not a least specialization of R3 = a ← a because R2 is a specialization of R3 and R1 is a

specialization of R2.

Least specialization can be used on a rule R to avoid the subsumption of another rule with a

minimal reduction of the generality of R. By extension, least specialization can be used on the

rules of a logic program P to avoid the subsumption of a rule with a minimal reduction of the

generality of P . Let P be a logic program, R be a rule and S be the set of all rules of P that

subsume R. The least specialization ms(P,R) of P by R is as follows:

ms(P,R) = (P \ S) ∪ (
⋃

RP∈S
ms(RP , R))

Theorem 3.16 (Soundness of least specialization). Let R1, R2 be two rules such that R1 sub-

sumes R2. Let S1 be the set of rules subsumed by R1 and S2 be the rules of S1 that subsume

R2. The least specialization of R1 by R2 only subsumes the set of rules S1 \ S2.

Let P be a NLP andR be a rule such that P subsumesR. Let SP be the set of rules subsumed by

P and SR be the rules of SP that subsume R. The least specialization of P by R only subsumes

the set of rules SP \ SR.

Proof. :

According to Definition 3.15, the least specialization of R1 by R2 is as follows:

ms(R1, R2) = {h(R1)← (b(R1) ∧ ¬b(R2))}

All rule R of S2 subsumes R2, then according to Definition 4.12 b(R) ⊆ b(R2). If ms(R1, R2)

subsumes an R then there exists R′ ∈ ms(R1, R2) and b(R′) ⊆ b(R). Since R′ ∈ ms(R1, R2),

there is a l ∈ b(R2) such that l ∈ b(R′), so that b(R′) 6⊆ b(R2). Since all R ∈ S2 subsume R2,
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R′ cannot subsume any R since R′ does not subsume R2.

Conclusion 1: the least specialization of R1 by R2 cannot subsume any R ∈ S2.

Let us suppose there is a rule R′ ∈ S1 that does not subsumes R2 and is not subsumed by

ms(R1, R2). Let li be the ith literal of b(R2), then:

ms(R1, R2) = {(h(R1)← (b(R1) ∧ li)|li ∈ b(R2) \ b(R1)}(1)

R′ is subsumed by R1, so that R′ = h(R1) ← b(R1) ∪ S, with S a set of literal. R′ does not

subsume R2, so that there exists a l ∈ b(R2) \ b(R1) such that l ∈ S. According to (1), the rule

R′′ = h(R1) ← b(R1) ∧ l is in ms(R1, R2). Since R′′ subsumes R′ and R′′ ∈ ms(R1, R2),

ms(R1, R2) subsumes R′.

Conclusion 2: the least specialization of R1 by R2 subsumes all rule of S1 that does not sub-

sume R2.

Final conclusion: the least specialization of R1 by R2 only subsumes S1 \ S2.

According to Definition 3.9, the least specialization ms(P,R) of P by R is as follows:

ms(P,R) = (P \ SP ) ∪ (
⋃

RP∈SP

ms(RP , R))

For any rule RP let SRP be the set of rules subsumed by RP and SRP 2 ∈ SR be the rule of SRP
that subsume R.

The least specialization of RP by R only subsumes SRP \ SRP 2. So that
⋃

RP∈SP
ms(RP , R)

only subsumes (
⋃

RP∈SP
SRP \ SRP 2) = (

⋃
RP∈SP

SRP ) \ SR. Then ms(P,R) only subsumes the

rules subsumed by (P \ SP ) ∪ (
⋃

RP∈SP
SRP ) \ SR, that is SP \ SR.

Conclusion: The least specialization of P by R only subsumes SP \ SR.

3.3.4 Algorithm

Now we present the LF1T algorithm based on least specialization. The novelty of this approach

is double: first it relies on specialization in place of generalization and most importantly, it

guarantees that the output is the complete prime NLP that realize the input transitions, as shown

by Theorem 3.18. In this approach the data structures used are the same as the one of the ground

version of LF1T presented in previous section. Algorithm 10 shows the pseudo-code of LF1T
with least specialization. Like in previous versions, LF1T takes a set of state transitions E

as input and outputs an NLP P that realizes E. To guarantee the minimality of the learned

NLP, LF1T starts with an initial NLP PB0 that is the most general complete prime NLP of the
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Algorithm 10 LF1T(E) : Learn the complete prime NLP P of E

1: INPUT: E ⊆ 2B × 2B: (positives) examples/observations
2: OUTPUT: An NLP P such that J = TP (I) holds for any (I, J) ∈ E.

3: P a NLP
4: P := ∅

// Initialize P with the most general rules
5: for each A ∈ B do
6: P := P ∪ {A.}
7: end for

// Specify P by interpretation of transitions
8: while E 6= ∅ do
9: Pick (I, J) ∈ E; E := E \ {(I, J)}

10: for each A ∈ B do
11: if A /∈ J then
12: RI

A := A←
∧

Bi∈I Bi ∧
∧

Cj∈(B\I) ¬Cj

13: P := Specialize(P ,RI
A)

14: end if
15: end for
16: end while
17: return P

Herbrand base B ofE, i.e. the NLP that contains only facts (lines 3-7): PB0 = {p.|p ∈ B}. Then

LF1T iteratively analyzes each transition (I, J) ∈ E (lines 8-16).

For each variable A that does not appear in J , LF1T infers an anti-rule RIA (lines 11-12):

RIA := A←
∧
Bi∈I

Bi ∧
∧

Cj∈(B\I)

¬Cj

Then, LF1T uses least specialization to make P consistent with all RIA (line 13). Algorithm

21 shows in detail the pseudo code of this operation. LF1T first extracts all rules RP ∈ P that

subsume RIA (lines 3-10). It generates the least specialization of each RP by generating a rule

for each literal in RIA. Each rule contains all literals of RP plus the opposite of a literal in RIA
so that RIA is not subsumed by that rule. Then LF1T adds in P all the generated rules that are

not subsumed by P (line 15-17), so that P becomes consistent with the transition (I, J) and

remains a complete prime NLP. When all transitions have been analyzed, LF1T outputs P that

has become the complete prime NLP of E.

Example 3.8 shows the run of LF1T with least specialization on the state transitions of figure

2.1. LF1T starts with the most general set of prime rules that can realize E, that is P =

{p., q., r.}. From the transition (pqr, pq) LF1T infer the rule r ← p∧ q ∧ r that is subsumed by

r. ∈ P . LF1T then replaces that rule by its least specialization: ms(r., r ← p ∧ q ∧ r) = {r ←
¬p, r ← ¬q, r ← ¬r} Furthermore, P becomes consistent with (pqr, pq). From (pq, p) LF1T
infers two rules: q ← p ∧ q ∧ ¬r and r ← p ∧ q ∧ ¬r, that are respectively subsumed by q. and

r ← ¬r. The first rule, q., is replaced by its least specialization: {q ← ¬p, q ← ¬q, q ← r}. For

the second rule, r., its least specialization by r ← p∧ q ∧¬r generates two rules, r ← ¬p∧¬r
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Algorithm 11 specialize(P ,R) : specify the NLP P to not subsume the rule R

1: INPUT: an NLP P and a rule R
2: OUTPUT: the maximal specific specialization of P that does not subsumes R.

3: conflicts : a set of rules
4: conflicts := ∅

// Search rules that need to be specialized
5: for each rule RP ∈ P do
6: if RP is conflicting with R then
7: conflicts := conflicts ∪RP

8: P := P \RP

9: end if
10: end for

// Revise the rules by least specialization
11: for each rule Rc ∈ conflicts do
12: for each literal l ∈ b(R) do
13: if l /∈ b(Rc) and l̄ /∈ b(Rc) then
14: R′c := (h(Rc)← (b(Rc) ∪ l̄))
15: if P does not subsumes R′c then
16: P := P \ all rules subsumed by R′c
17: P := P ∪R′c
18: end if
19: end if
20: end for
21: end for
22: return P

and r ← ¬q ∧ ¬r. But these rules are respectively subsumed by r ← ¬p and r ← ¬q that are

already in P . The subsumed rules are not added to P , so that the analysis of (pq, p) results in

the specialization of q. and the deletion of r ← ¬r.

Learning continues with similar cases until the last transition (q, pr) where we have a special

case. From this transition, LF1T infers the rule q ← ¬p ∧ q ∧ ¬r that is subsumed by P on

R := q ← ¬p ∧ q ∧ ¬r. Because |b(R)| = |B| it cannot be specialized so that P becomes

consistent with (q, pr), LF1T just removes R from P .

Example 3.8. Table 4.1 shows the execution of LF1T with least specialization on step transi-

tions of figure 2.1 where pqr → pq represents the state transitions ({p, q, r}, {p, q}). Introduc-

tion of literal by least specialization is represented in bold and rules that are subsumed after

specialization are stroked.

Theorem 3.17 (Completeness of LF1T with least specialization). Let PB0 be the most general

complete prime NLP of a given Herbrand base B. Initializing LF1T with PB0 , by using least

specialization iteratively on a set of state transitions E, LF1T learns an NLP that realizes E.

Proof. :

Let P be an NLP consistent with a set of transitions E′, SP be the set of rules subsumed by P

and a state transitions (I, J) such that E′ ⊂ E and (I, J) ∈ E but (I, J) 6∈ E′. According to
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TABLE 3.11: Execution of LF1T with least specialization on step transitions of figure 2.1

Initialization pqr → pq pq → p p→ ε ε→ r r → r
p. p. p. p← ¬p. p← q. p← q.
q. q. q ← ¬p. p← q. p← r. p← p ∧ r.
r. r ← ¬p. q ← ¬q. p← r. p← ¬p ∧ q. p← q ∧ r.

r ← ¬q. q ← r. q ← ¬p. p← ¬p ∧ r. q ← ¬p ∧ q.
r ← ¬r. r ← ¬p. q ← r. q ← r. q ← p ∧ r.

r ← ¬q. q ← ¬p ∧ ¬q. q ← ¬p ∧ q. q ← q ∧ r.
r ← ¬p ∧ ¬r. q ← ¬q ∧ r. q ← ¬p ∧ r. r ← ¬p.
r ← ¬q ∧ ¬r. r ← ¬p. r ← ¬p. r ← ¬q ∧ r.

r ← ¬p ∧ ¬q. r ← ¬q ∧ r.
r ← ¬q ∧r .

qr → pr pr → q q → pr
p← q. p← q. p← q.

p← p ∧ r. p← p ∧ q ∧ r. q ← p ∧ r.
q ← p ∧ r. q ← p ∧ r. r ← ¬p.

q ← ¬p ∧ q ∧¬r. q ← ¬p ∧ q ∧ ¬r.
q ← p ∧ q ∧ r. r ← ¬p. q ← ¬p ∧ q ∧ ¬r.
r ← ¬p. r ← ¬p ∧ ¬q ∧ r. is removed because

r ← ¬q ∧ r. it cannot be specialized

Theorem 3.16, for any rule RIA that can be inferred by LF1T from (I, J) that is subsumed by

P , the least specialization ms(P,RIA) of P by RIA exactly subsumes the rules subsumed by P

except the ones subsumed by RIA. Since |RIA| is |B|, RIA only subsumes itself so that ms(P,R)

exactly subsumes SP \RIA. Let P ′ be the NLP obtained by least specialization of P with all RIA
that can be inferred from (I, J), then P ′ is consistent with E′ ∪ {(I, J)}.
Conclusion 1: LF1T keep the consistency of the NLP learned.

LF1T start with PB0 as initial NLP. PB0 is at least consistent with ∅ ⊆ E. According to conclu-

sion 1, initializing LF1T with PB0 and by using least specialization iteratively on the element of

E when its needed, LF1T learns an NLP that realizes E.

Theorem 3.18 (LF1T with least specialization output a complete prime NLP). Let PB0 be the most

general complete prime NLP of a given Herbrand base B. Initializing LF1T with PB0 , by using

least specialization iteratively on a set of state transitions E, LF1T learns the complete prime

NLP of E.

Proof. :

Let us assume that LF1T with least specialization does not learn a prime NLP of E. If our

assumption is correct, according to Theorem 3.17, LF1T learns a NLP P , that is consistent with

E and P is not the complete prime NLP of E. LF1T start with PB0 as initial NLP, PB0 is the

most general complete prime NLP that can cover E.
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Consequence 1: LF1T with least specialization can transform a complete prime NLP into an

NLP that is not a complete prime NLP.

Let P be the complete prime NLP of a set of state transitions E′ ⊂ E and (I, J) 6∈ E′, such

that P is not consistent with (I, J). Our assumption implies that the least specialization P ′ of

P by the rules inferred from (I, J) is not the complete prime NLP of E′ ∪ (I, J). According to

Definition 3.11, there are two possibilities:

• case 1: ∃R ∈ P ′ such that R is not a prime rule of E′ ∪ (I, J).

• case 2: ∃R′ 6∈ P ′ such that R′ is a prime rule of E′ ∪ (I, J).

Case 1.1: If R ∈ P , it implies that R is a prime rule of E′ and that R is consistent with (I, J),

otherwise R should have been specialized. Because R is not a prime rule of E′ ∪ (I, J) it

implies that there exists a rule Rm consistent with E′ ∪ (I, J) that is more general than R, i.e.

b(Rm) ⊂ b(R). Then Rm is also consistent with E′, but since R is a prime rule of E′ there does

not exist any rule consistent with E′ that is more general than R. This is a contradiction.

Case 1.2: Now let us suppose that R 6∈ P ; then R has been obtained by least specialization of

a rule RP ∈ P by a rule inferred from (I, J). It implies that ∃l ∈ b(R) and l ∈ I . If R is

not a prime rule of E′ ∪ (I, J), there exists Rm a prime rule of E′ ∪ (I, J) and Rm is more

general than R. It implies that l ∈ Rm otherwise Rm is conflicting with (I, J) because it will

also subsumes RP that is conflicting with (I, J). Since Rm is consistent with E′ ∪ (I, J) it is

also consistent with E′. This implies that ∃R′m a prime rule of E′ that subsumes Rm (it can be

Rm itself), R′m also subsumes R. Since P is the complete prime NLP of E′, R′m ∈ P .

Case 1.2.1: Let suppose that l 6∈ b(R′m), since l ∈ b(R) andR′m subsumesR thenR′m subsumes

RP because R = h(RP ) ← b(RP ) ∪ l. But since RP is a prime rule of E′ it implies that

R′m = RP . In that case it means that RP subsumes Rm and since l ∈ Rm, h(RP )← b(RP )∪ l
also subsumes Rm. Since h(RP ) ← b(RP ) ∪ l is R, R subsumes Rm and Rm can neither be

more general than R nor a prime rule of E′ ∪ (I, J). This is a contradiction with case 2.

Case 1.2.2: Finally let us suppose that l ∈ b(R′m), since R′m is consistent with E and l ∈ I , R′m
is consistent withE′∪(I, J). ButR′m subsumesRm and sinceRm is a prime rule ofE′∪(I, J)

it implies that R′m = Rm. In that case Rm ∈ P and because Rm is consistent with (I, J) and

Rm subsumes R, LF1T will not add R into P ′. This is a contradiction with case 1.

Case 2: Let consider that there exists aR′ 6∈ P ′ such thatR′ is a prime rule ofE′∪(I, J). Since

R′ 6∈ P ′, R′ 6∈ P and R′ is not a prime rule of E′ since P is the complete prime NLP of E′.

Then, there exists Rm ∈ P a prime rule of E′ such that Rm subsumes R′ and Rm 6∈ P ′ since

R′ is a prime rule of E′ ∪ (I, J). Then, b(R′) = b(R′m) ∪ S with S a non-empty set of literals

such that for all l ∈ S, l 6∈ b(Rm). Since Rm 6∈ P ′, there is a rule RIh(Rm) that can be inferred



Chapter 3. Learning From Interpretation Transitions 64

from (I, J) and subsumed by Rm. And there is no rule R′m ∈ ms(Rm, RIh(Rm)) that subsumes

R′ since R′ is a prime rule of E′ ∪ (I, J). Then, for all l′ ∈ b(RIh(Rm)), l′ 6∈ b(R′) otherwise

there is a R′m that subsumes R′. Since |b(RIh(Rm))| = B, b(R′) cannot contain a literal that is

not in b(RIh(Rm)) so that R′ subsumes RIh(Rm). R
′ cannot be a prime rule of E′ ∪ (I, J) since

R′ is not consistent with (I, J), this is a contradiction.

Conclusion: If P is a complete prime NLP of E′ ⊂ E, for any (I, J) ∈ E LF1T with least

specialization will learn the complete prime NLP P ′ of E′ ∪ (I, J). Since LF1T starts with a

complete prime NLP that is PB0 , according to Theorem 3.17, LF1T will learn a NLP consistent

with E, our last statement implies that this NLP is the complete prime NLP of E since LF1T
cannot specify a complete prime NLP into an NLP that is not a complete prime NLP.

Theorem 3.19 (Complexity). Let n be the size of the Herbrand base |B|. Using least special-

ization, the memory complexity of LF1T remains in the same order as the previous algorithms

based on ground resolution, i.e., O(2n). But the computational complexity of LF1T with least

specialization is higher than the previous algorithms based on ground resolution, i.e O(n · 4n)

and O(4n), respectively. Same complexity result for full naı̈ve (resp. ground) resolution.

Proof. Let n be the size of the Herbrand base |B| of a set of state transitions E. This n is also

the number of possible heads of rules. Furthermore, n is also the maximum size of a rule, i.e.

the number of literals in the body; a literal can appear at most one time in the body of a rule.

For each head there are 3n possible bodies: each literal can either be positive, negative or absent

from the body. From these preliminaries we conclude that the size of a NLP |P | learned by

LF1T from E is at most n · 3n. But since a NLP P learned by LF1T only contains prime rules

ofE, |P | cannot exceed n·2n; in the worst case, P contains only rules of size nwhere all literals

appear and there is only n · 2n such rules. If P contains a rule with m literals (m < n), this rule

subsumes 2n−m rules which cannot appear in P . Finally, least specialization also ensures that

P does not contain any pair of complementary rules, so that the complexity is further divided

by n; that is, |P | is bounded by O(n·2
n

n ) = O(2n).

When LF1T infers a ruleRIA from a transition (I, J) ∈ E whereA 6∈ J , it has to compare it with

all rules in P to extract conflicting rules. This operation has a complexity of O(|P |) = O(2n).

Since |b(RIA)| = n, according to Definition 3.9 the least specialization of a rule R ∈ P can at

most generate n different rules. In the worst case all rules of P with h(RIA) as head subsume

RIA. There are possibly 2n/n such rules in P , so that LF1T generates at most 2n rules for each

RIA. For each (I, J) ∈ E, LF1T can infer at most n rules RIA. In the worst case, LF1T can

generates n · 2n rules that are compared with the 2n rules of P . Thus, construction of an NLP

which realizes E implies n · 2n.2n = n · 4n operations. The same proof applies to LF1T naı̈ve

(resp. ground) resolution, when LF1T infers a rule RIA from a transition (I, J) ∈ E where
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A ∈ J . The complexity of learning an NLP from a complete set of state transitions with an

Herbrand base of size n is O(n · 4n).

3.3.5 Evaluation

In this section, we evaluate our new learning methods through experiments. We apply our new

LF1T algorithms to learn Boolean networks. Here we run our learning program on the same

benchmarks used in [2] and [53]. These benchmarks are Boolean networks taken from Dubrova

and Teslenko [77], which include those networks about control of flower morphogenesis in

Arabidopsis thaliana, budding yeast cell cycle regulation, fission yeast cell cycle regulation,

mammalian cell cycle regulation and T helper cell cycle regulation. Like in previous sections,

we first construct an NLP τ(N) from the Boolean function of a Boolean network N where

each Boolean function is transformed into a DNF formula. Then, we get all possible 1-step state

transitions ofN from all 2|B| possible initial states I0’s by computing all stable models of τ(N)∪
I0 using the answer set solver clasp [86]. Finally, we use this set of state transitions to learn

an NLP using our LF1T algorithm. Because a run of LF1T returns an NLP which can contain

redundant rules, the original NLP Porg and the output NLP PLFIT of LF1T can be different,

but remain equivalent with respect to state transitions, that is, TPorg and TPLFIT
are identical

functions. Regarding the new algorithms, it can also be the case if the original NLP is not a

complete prime NLP. For the new versions of LF1T, if Porg is not a prime complete NLP we will

learn a simplification of Porg . Table 3.12 shows the memory space and time of a single LF1T
run in learning a Boolean network for each benchmark on a processor Intel Core I7 (3610QM,

2.3GHz) with 4GB of RAM. It compares memory and run time of the three previous algorithm

(naı̈ve, ground and the BDD optimization of the ground version) with their extension to learn

complete prime NLP and the new algorithm based on least specialization. For each version of

LF1T the variable ordering is alphabetical and transition ordering is the one that clasp outputs.

The time limit is set to two hours for each experiment. Memory is represented in (maximal)

number of literal in the NLP learned. Except for LF1T-BDD, all implemented algorithms uses

the same data structures. That is why even LF1T with least specialization cannot compete with

the ground-BDD version regarding memory and run time. It is more relevant to compare it to

the original implementation of LF1T with ground resolution and the new one with full ground

resolution.

On Table 3.12 we can observe that, as the number of variable increase, the memory efficiency

of least specialization regarding ground version becomes more interesting. Regarding run time,

both algorithm have globally equivalent performances. But least specialization ensure that the

output is unique in the fact that it is the complete prime NLP of the given input transitions. LF1T
with full ground resolution also ensure this property, but is much less efficient than least spe-

cialization regarding both memory use and run time. On the benchmark, least specialization is
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Algorithm Mammalian (10) Fission (10) Budding (12) Arabidopsis (16) T helper (23)
Naı̈ve 142 118/4.62s 126 237/3.65s 1 147 124/523s T.O. T.O.

Ground 1036/0.04s 1218/0.05s 21 470/0.26s 271 288/4.25s T.O.
Ground-BDD 180/0.24s 147/0.24s 541/0.19s 779/2.8s 611/3360s

Full Naı̈ve 377 539/29.25s 345587/24.03s T.O. T.O. T.O.
Full Ground 1066/0.24s 1178/0.23s 23 738/4.04s 399 469/111s T.O.

Least Specialization 375/0.06s 377/0.08s 641/0.35s 2270/5.28s 3134/5263s

TABLE 3.12: Memory use and learning time of LF1T for Boolean networks benchmarks up to
23 nodes in the same condition as in [2]

Benchmark Nodes min/max # rules min/max time
Budding 12 54/54 1.22/3190
Fission 10 24/24 0.20/0.69

Mammalian 10 22/22 0.17/0.61

TABLE 3.13: Results of 1000 runs of LF1T with least specialization for Boolean networks
benchmarks: random transition orderings

Algorithm Scalability Run Time Memory Output Variable Order Transition Order
Naı̈ve 12 −− −− − − −

Ground 16 ++ ++ −− −− −−
Ground-BDD 23 +++ +++ −− −−− −−−

Full Naı̈ve 10 −−− −−− +++ +++ +++
Full Ground 16 −− − +++ +++ −−−

Least Specialization 23 ++ ++ +++ +++ −−−

TABLE 3.14: Properties of the different LF1T algorithms

respectively 75%, 65%, 91% and 95% faster. Least specialization version also succeed to learn

the t-helper benchmark (23 variables) in 1 hour and 21 minutes. The main interest of using least

specialization is that it guarantees to obtain a unique NLP that contains all minimal conditions

to make a variable true. Previous versions of LF1T do not have this property and experimental

results showed that their output is sensitive to variable ordering and especially transition order-

ing. For a given set of state transitions E, the output of LF1T with least specialization is always

the same whatever the variable ordering or transition ordering. It is easy to see that variable or-

dering has no impact on both learning time and memory use of the new versions of LF1T since

they consider all generalizations/specializations. But transition ordering has a bigger impact on

the learning time of the new version of LF1T compared to others as shown by the results of

Table 3.13.

Table 3.14 show the comparison of the different versions of LF1T regarding scalability, run time

and memory use. It also highlight the relative degree of sensitivity of each algorithm regarding

variable and transition ordering.

Regarding run time and memory usage, the Ground-BDD version is the best non-minimal al-

gorithm of the framework we propose. But variable ordering have an impact on the run time

of this algorithm, where it is not the case for the algorithm with minimal guaranties. The Least

Specialization approach is the most efficient algorithm we have that guaranty minimal rules in
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output. But transition ordering impacts both run time and memory, it is very significant on the

three algorithm that guaranty minimal rules.

3.4 Conclusion and Future Work

We proposed several algorithms for learning Boolean synchronous deterministic system from

interpretation transitions. Given any state transition diagram we can now learn an NLP that

exactly captures the system dynamics. Learning is performed only from positive examples, and

produces NLPs that consist only of rules to make literals true. Consistency of state transition

rules is achieved and minimality of rules is guaranteed. As a result, given any state transition

diagram E, LF1T always learns a unique NLP that contains all prime rules that realize E. It

implies that the output of LF1T is not sensitive to variable ordering or transition ordering. But,

experimental results showed that the algorithm is sensitive to input transitions ordering regarding

run time.



Chapter 4

Framework Extensions

In the previous chapter we introduced the basis of our learning framework. Until now our

modeling and algorithms require the variable of the system to be Boolean and capture only

synchronous deterministics semantics. In this chapter we extend our methods to address more

complex systems structure and dynamics. First, we propose a modelization of system with de-

layed influences as logic program and algorithms to learn those semantics in section 4.1. Later,

in section 4.2, we get rid of the Boolean limitation of the variable by providing a modelization

of multi-valued systems. With this modelisation we extend our algorithm dedicated to delayed

system in section 4.3. Then, we provide the simple extension to asynchronous semantics in sec-

tion 4.4. Finally, in section 4.5 we propose a modelisation of non-deterministic and probalistic

system, as well as algorithm to capture their dynamics from uncertain state transitions.

The algorithm that learns delayed influences presented in section 4.1 has been published in the

journal Frontiers in Bioengineering and Biotechnology [73]. The formalization of multi-valued

systems of section 4.2 and the algorithm that learns probalistic system in section 4.5 have been

accepted as a technical communication paper in the 31st International Conference on Logic

Programming (ICLP 2015).

68
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4.1 Delayed Systems

In some biological and physical phenomena, effects of actions or events appear at some later

time points. For example, delayed influence can play a major role in various biological systems

of crucial importance, like the mammalian circadian clock [70] or the DNA damage repair [71].

Social interactions too may depend on the behaviors history of the agents at stake [87]. While

Boolean networks have proven to be a simple, yet powerful, framework to model and analyze the

dynamics of the above examples, they usually assume that the modification of one node results

in an immediate activation (or inhibition) of its targeted nodes [72] for the sake of simplicity.

But this hypothesis is sometimes too broad and we really need to capture the memory of the

system i.e., keep track of the previous steps, to get a more realistic model. Our work aims to

give an efficient and valuable approach to learn such dynamics.

The most used framework to model delayed and indirect influences in Boolean networks was

designed by A. Silvescu et al. [88]: the authors introduced an extension of Boolean networks

from a Markov(1) to Markov(k) model, where k is the number of time steps during which a

variable can influence another variable. This extension is called temporal Boolean networks,

abridged as TBN(n,m, k), with n the number of variables and the expression of each variable

at time t + 1 being controlled by a Boolean function of the expression levels of at most m

variables at times in {t, t − 1, . . . , t − (k − 1)}. In this chapter, we will consider Markov(k)

model and discuss new learning algorithms.

We now extend our framework by designing an algorithm that takes multiple sequences of state

transitions as input and builds a normal logic program that captures the delayed dynamics of

a Markov(k) system. While the previous algorithm dealt only with 1-step transitions (i.e., we

assume the state of the system at time t depends only of its state at time t− 1), we propose here

an approach that is able to consider k-step transitions (sequence of at most k state transitions).

4.1.1 Formalization

A Markov(1) system can be represented by a deterministic state transitions diagram, like the one

in Figure 2.1. A Markov(k) system can be seen as a k-steps deterministic system. In other words,

the state of the system may depend on its (at most) k previous states. i.e., for any sequence of

k state transitions there is only one possible state at time step k + 1. If a Boolean network is

Markov(k), it means that k is the maximum number of time steps such that the influence of

any component (e.g., a gene) on another component is expressed. In other words, the state of a

Boolean network may then depend on its (at most) k previous states.

Definition 4.1 (Timed Herbrand Base). Let P be a logic program. Let B be the Herbrand base

of P and k be a natural number. The timed Herbrand Base of P (with period k) denoted by Bk ,
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is as follows:

Bk =
k⋃
i=1

{vt−i|v ∈ B}

where t is a constant term which represents the current time step.

According to Definition 4.16, given a propositional atom v, vj is a new propositional atom for

each j = t− i, (0 ≤ i ≤ k). A Markov(k) system can then be interpreted as a logic program as

follows.

Definition 4.2 (Markov(k) system). Let P be a logic program, B be the Herbrand base of P and

Bk be the timed Herbrand base of P with period k. A Markov(k) system S with respect to P is

a logic program where for all rules R ∈ S, h(R) ∈ B and all atoms appearing in b(R) belong to

Bk.

In a Markov(k) system S, the atoms that appear in the body of the rules represent the value

of the atoms that appear in the head, but at previous time steps. In a context of modeling gene

regulatory networks, these latter atoms represent the concentration of the interacting genes. This

concentration is abstracted as a Boolean value modeling the fact that it is lower or greater than

a threshold.

Example 4.1. Let R1 and R2 be two rules, R1 = a ← bt−1 ∧ bt−2, R2 = b ← at−2 ∧ ¬bt−2.

The logic program S = {R1, R2} is a Markov(2) system, i.e., the state of the system depends

on the two previous states. The value of a is true at time step t only if b was true at t − 1

and t − 2. The value of b is true at time step t only if a was true at t − 2 and b was false at

t − 2. The atoms that appear in the head of the rules of S is {a, b}. B1 represents these atoms

from time step t − 1: B1 = {at−1, bt−1} and B2 represents these atoms from time step t − 2:

B2 = {at−1, bt−1, at−2, bt−2}.

In the following definitions, we refer to N as the set of all natural numbers.

Definition 4.3 (Trace of execution). Let B be the atoms that appear in the head of the rules

of a Markov(k) system S. A trace of execution T is a finite sequence of states of S: T =

(S0, . . . , Sn), n ≥ 1,∀i ∈ N, i ≤ n, Si ∈ 2B . For all j ∈ N, we define:

prev(i, j, T ) =


∅ if i = 0 or j = 0,

(Si−j−1, . . . , Si−1) if j + 1 ≤ i

(S0, . . . , Si−1) otherwise.

We also define prev(i, T ) = prev(i, n, T ) and next(i′, T ) = Si′+1, i′ ∈ N, i′ < n.

We denote by |T | the size of the trace, that is the number of elements of the sequence. A sub-

trace of size m of a trace of execution T is a sub-sequence of consecutive states of T of size
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a b b

ab b a

b b a

ε b ε

b ε ε

ab ε ε

a ε b

ε ε ε

a b ab ε

FIGURE 4.1: Eight traces of executions of the system of Example 4.1 (left) and the correspond-
ing state transitions diagram (right)

m, where m ∈ N, 1 < m ≤ |T |. In the following, we will also denote T = (S0, . . . , Sn) as

T = S0 → . . .→ Sn.

Example 4.2. Let T1 = a → b → a be a trace of execution. T1 is a trace of size 2 and a → b

and b→ a are sub-traces of size 1 of T1.

Definition 4.4 (Consistent traces). Let T = (S0, . . . , Sn) and T ′ = (S′0, . . . , S
′
m) be two traces

of execution. T and T ′ are k-consistent, with k ∈ N, iff ∀i, j ∈ N, i < n, j < m, Si = Sj and

next(i, T ) 6= next(j, T ′) imply prev(i, k, T ) 6= prev(j, k, T ′). T and T ′ are said consistent iff

they are max(n,m)-consistent.

As shown in Figure 4.4, a Markov(k) system may seem non-deterministic when it is represented

by a state transitions diagram (right part of the figure). That is because such state transitions

diagram only represents 1-step transitions. In this example, the transition from the state b is not

Markov(1): the next state can be either a, b or ε. But it can be Markov(2), because all traces of

size 2 of Figure 4.4 are consistent.

Definition 4.5 (k-step interpretation transitions). Let P be a logic program, B be the Herbrand

base of P and Bk be the timed Herbrand base of P with period k. Let S be a Markov(k′) system

w.r.t P , k′ ≥ k. A k-step interpretation transition is a pair of interpretations (I, J) where I ⊆ Bk
and J ⊆ B.

Example 4.3. The trace ab→ b→ a can be interpreted in the three following ways:

- (at−2bt−2bt−1, a): the 2-step interpretation transition that corresponds to the full trace ab→
b→ a.

- (at−1bt−1, b): the 1-step interpretation transition corresponding to the sub-trace ab→ b.

- (bt−1, a): the 1-step interpretation transition that corresponds to the sub-trace b→ a.
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Definition 4.6 (Extended Consistency). Let R be a rule and (I, J) be a k-step interpretation

transition. R is consistent with (I, J) iff b+(R) ⊆ I and b−(R) ∩ I = ∅ imply h(R) ∈ J . Let

T be a sequence of state transitions, R is consistent with T if it is consistent with every k-step

interpretation transitions of T . Let O be a set of sequences of state transitions, R is consistent

with O if R is consistent with all T ′ ∈ O.

4.1.2 Algorithm

LFkT is an algorithm that can learn the dynamics of a Markov(k) system from its traces of

execution. LFkT takes a set of traces of executions O as input, where each trace is a sequence

of state transitions. If O is consistent, the algorithm outputs a logic program P that realizes all

transitions of O. The learned influences can be at most k-step relations, where k is the size of

the longest trace of O. The main idea is to extract n-step interpretation transitions, 1 ≤ n ≤ k,

from the traces of executions of the system. Transforming the traces into pairs of interpretations

allows us to use minimal specialization [64] to iteratively learn the dynamics of the system.

LFkT:

• Input: A set of traces of execution E of a Markov(k) system S.

• Step 1: Initialize k logic programs with facts rules.

• Step 2: Convert the input traces of executions into interpretation transitions.

• Step 3: Revise iteratively the logic programs by all interpretation transitions using mini-

mal specialization.

• Step 4: Merge all logic programs into one.

• Output: The rules of S which generated E.

The idea of the algorithm is to start with the most general rules (Algorithm 17 l.6-10) and

use specialization to make them consistent with the input observations (algo.2). The algorithm

analyzes each interpretation transition one by one and revises the learned rules when they are not

consistent (Algorithm 17 l.13-23). After analyzing all interpretation transitions, the programs

that have been learned are merged into a unique logic program (Algorithm 17 l.24-29). This

operation ensures that the rules outputted are consistent with all observations. Finally, LFkT
outputs a logic program that realizes all consistent traces of execution of O. We now provide

the detailed explanation of each step of the algorithm.

Step 1: The algorithm starts with a vector of size k where each element is the logic programs

{p.|p ∈ B}. In the following, we will call a n-step rule a rule R such that ∀vt−i ∈ b(R), 1 ≤
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Algorithm 12 LFkT(O) : Learn the most general rules that explain E

1: INPUT: O a set of sequences of state transitions (traces of executions)
2: OUTPUT: The logic program that realizes the transitions of O.

3: P ′ a vector of set of rules
4: E a vector of set of pairs of interpretations (I, J)
5: maxk := the size of the longest trace of O

// 1) Initialize P ′ with maxk, the logic program that contains the most general rules
6: for each k from 1 to maxk do
7: P ′k := ∅
8: for each A ∈ B do
9: P ′k := Pk ∪ {A.}

10: end for
11: end for
12: // 2) Extract interpretation from trace of executions
13: E := interprete(O)

14: // 3) Specify P ′ by the interpretation of the trace of executions
15: for each k from 1 to maxk do
16: Ek := the kth set of interpretation of E
17: while Ek 6= ∅ do
18: Pick (I, J) ∈ Ek; Ek := Ek \ {(I, J)}
19: for each A ∈ B do
20: if A /∈ J then
21: RI

A := A←
∧

Bi∈I Bi ∧
∧

Cj∈(B\I) ¬Cj

22: P ′k := the kth set of rule of P ′

23: P ′k := Specialize(P ′k,RI
A)

24: end if
25: end for
26: end while
27: end for

28: // 4) Merge the programs into a unique logic program
29: P := ∅
30: for each k from 1 to maxk do
31: P ′k := the kth set of rule of P ′

32: Remove from P ′k all rules that do not contain any literal of the form vt−k
33: P := P ∪ P ′k
34: end for
35: return P

i ≤ n. The idea is to learn rules independently for each possible k-step relation: 1-step rules,

2-step rules, . . . , k-step rules. The rules learned from 1-step interpretations will go into the 1-

step program, the rules learned from 2-step interpretations will go into the 2-step program and

so on. These different programs are merged at the end to constitute a logic program that realizes

all consistent traces of O.

Step 2: In order to use minimal specialization, we need to convert the input traces of execution

into interpretation transitions. This conversion is done by the function interprete, whose pseudo

code is given in Algorithm 20. It extracts all k-step interpretations from each trace T ∈ O . It

can be done by extracting and converting all sub-traces of T into corresponding interpretations.
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This way it produce one |T |-step interpretation, one |T | − 1 interpretation, . . . , one 1-step in-

terpretation. The function outputs them as a vector of set of interpretation transitions E, where

each set Ei corresponds to interpretation of sub-traces of size i.

Algorithm 13 interprete(O) : Extract interpretations transition from traces

1: INPUT: O a set of sequences of state transitions (traces of executions)
2: OUTPUT: E a vector of set of pairs of interpretations (I, J)

3: E := ∅
// Extract interpretations

4: for each sequence T ∈ O do
5: for each k from |T | to 1 do
6: for each sub-trace T ′ of size k in T do
7: sk := the kth state of T ′

8: I := ∅
9: for each state sk′ before sk in T ′ do

10: i := k − k′
11: for each atom a ∈ sk′ do
12: I := I ∪ {at−i}
13: end for
14: Ek := the kth set of interpretation of E
15: Ek := Ek ∪ {(I, sk)}
16: end for
17: end for
18: end for
19: end for
20: return E

Step 3: The algorithm iteratively learns from each set of pairs of interpretations Ei ∈ E. Now

it only needs to apply the LF1T method of [64] on each set Ei by analyzing each pair of inter-

pretations (I, J) ∈ Ei. For each variable A that does not appear in J , it infers an anti-rule
RIA := A ←

∧
Bi∈I Bi ∧

∧
Cj∈(Bi\I) ¬Cj , where Bi is the i-step atoms of Ei, i.e. all atoms

that can appear in a rule of Ei. Then, minimal specialization is used to make the corresponding

logic program P ′i consistent with RIA. Algorithm 27 shows the pseudo code of this operation.

In the function specialize, it first extracts all rules RP ∈ P that subsumes RIA. It generates

the minimal specialization of each RP by generating a rule for each literal in RIA. Each rule

contains all literals of RP plus the opposite of a literal in RIA so that RIA is not subsumed by

that rule. Then specialize adds in P all the generated rules that are not subsumed by P , so that

P becomes consistent with the transition (I, J).When all transitions have been analyzed, LF1T

outputs P that has become the logic program that realizes E.

Step 4: After analyzing all interpretation transitions, the programs that have been learned are

merged into a unique logic program. This operation guarantees that the rule outputted are con-

sistent with all input traces of executions. If a rule is not consistent with a trace of execution,

it has to be deleted. It can be checked by comparing each rule with other logic programs. If

a n-step rule R is more general than a n′-step rules R′, n′ < n, then R is not consistent with

the observations from which R′ has been learned. To avoid this case, we just need to remove
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Algorithm 14 specialize(P ,R) : specialize the logic program P to not subsume the rule R

1: INPUT: a logic program P and a rule R
2: OUTPUT: the minimal specific specialization of the rule of P by R.

3: conflicts : a set of rules
4: conflicts := ∅

// Search rules that need to be specialized
5: for each rule RP ∈ P do
6: if RP subsumes R then
7: conflicts := conflicts ∪RP

8: P := P \RP

9: end if
10: end for

// Revise the rules by minimal specialization
11: for each rule Rc ∈ conflicts do
12: for each literal l ∈ b(R) do
13: if l /∈ b(Rc) and l̄ /∈ b(Rc) then
14: R′c := (h(Rc)← (b(Rc) ∪ l̄))
15: if P does not subsume R′c then
16: P := P \ {R | R is subsumed by Rc′}
17: P := P ∪R′c
18: end if
19: end if
20: end for
21: end for
22: return P

n-step rules that have no vn variable. Finally, LFkT outputs a logic program that realizes all

consistent traces of executions of O. If O is a set of traces of execution of a Boolean network,

the logic program outputted by LFkT represents the Boolean functions of each variables. For

each variable, it corresponds to the conditions over the k previous step to make it active at t+ 1.

Theorem 4.7 (Correctness of LFkT). Let P be a logic program, B be the Herbrand base of

P and Bk be the timed Herbrand base of P with period k. Let S be a Markov(k) system with

respect to P . Let O be a set of traces of S. Using O as input, LFkT outputs a logic program

that realizes all consistent traces of O.

Proof. Let V be the vector of interpretation transition extracted from O by LFkT (Algorithm

20). According to Theorem 4 of [64], initializing LF1T with {p.|p ∈ B}, by using minimal

specialization iteratively on a set of interpretation transitions E, we obtain a logic program P

that realizes E. Since LFkT use the same method as LF1T on each element of V , LFkT learns

a vector of logic programs P ′ such that each logic program p′n ∈ P ′ realizes the corresponding

set of interpretation transitions vn ∈ V , n ≥ 1.

Let p′n ∈ P ′ be the logic program learn from vn ∈ V , n ≥ 1. p′n is obtained by minimal

specialization of {p.|p ∈ B}with all anti-rule of vn (non consistent rule). According to Theorem

3 of [64], p′n does not subsume any anti-rule that can be infered from vn. Then, p′n realizes all

deterministic transition of vn, that is ∀(I, J) ∈ vn, 6 ∃(I, J ′), J 6= J ′.
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Since vn contains n-step interpretation transition that represent all sub-traces of size n of O, p′n
realizes all consistent sub-trace of size n of O. Let Pn−1 be a logic program that realizes all

consistent sub-traces of size at most n−1 ofO. p′n can contains a ruleR such that (Bn\Bn−1)∩
b(R) = ∅ (no literal of R refers to the t − n state of the variables). In this case R realizes a

sub-trace of size n and also some sub-traces of size at most n − 1. If these sub-traces of size

n − 1 are consistent, then they are necessary realized by Pn−1. Pn−1 ∪ {R} does not realize

more consistent sub-trace of size at most n − 1 than Pn−1. Let SR be the set of rules of p′n of

the form R, then (p′n \ SR) only realizes all sub-traces of size n of O. Then the logic program

Pn = Pn−1 ∪ (p′n \ SR) only realizes all consistent sub-trace of size at most n− 1 of O and all

sub-traces of size n of O, that is Pn realizes all consistent sub-traces of size at most n of O.

Let p′1 ∈ P ′ be the logic program learn from v1 ∈ V , and let P = p′1. Let R′ be all rule of

the logic program p′n such that (Bn \ Bn−1) ∩ b(R′) 6= ∅. Iteratively adding rules R′ into P ,

starting by the logic program p′2 until p′k, we obtain a logic program that realizes all consistent

sub-traces of size at most k of O. So that, using O as input, LFkT outputs a logic program that

realizes all consistent traces of O.

Theorem 4.8 (Complexity). Let P be a logic program, B be the Herbrand base of P and Bk be

the timed Herbrand base of P with period k. Let S be a Markov(k) system with respect to P .

Let O be a set of trace of execution of S. The complexity of learning S from O with LFkT is

respectively: O(2nk) for memory and O(
∑
T∈O
|T | · n2nk) for runtime.

Proof. n = |B| is the number of possible heads of rules of S. nk = |Bk| is the maximum

size of a rule of S, i.e. the number of literals in the body; a literal can appear at most one time

in the body of a rule. For each rule head of B there are 3nk possible bodies: each literal can

either be positive, negative or absent from the body. From these preliminaries we conclude that

the size of a Markov(k) system S learned by LFkT is at most |S| = n · 3nk. But thanks to

minimal specialization, |S| cannot exceed n · 2nk; in the worst case, S contains only rules of

size nk where all literals appear and there is only n · 2nk such rules. If S contains a rule with m

literals (m < nk), this rule subsumes 2nk−m rules which cannot appear in S. Finally, minimal

specialization also ensures that S does not contain any pair of complementary rules, so that the

complexity is further divided by nk; that is, |S| is bounded by O(n·2
nk

nk ) = O(2
nk

k ). To learn S,

LFkT needs to store k programs Pi that are Markov(i) system with respect to P , 1 ≤ i ≤ k.

Conclusion 1: the memory use of LFkT is O(
k∑
i=1
|Pi|) = O(k · 2nkk ) = O(2nk).

For each trace T of O, LFkT extracts |T | pairs of interpretations. For each pair of interpretation

(I, J), LFkT infers an anti-rule ruleRIA for eachA ∈ B, A 6∈ J . LFkT compares eachRIA with

all rules of each programs Pi. There is atmost |B| anti-rules that can be infered from (I, J) by
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LFkT and the size of each program Pi is bound byO(2
nk

k ). Then, the complexity of learning one

trace of execution T ∈ O with LFkT is O(|T | · |B| ·k|Pi|) = O(|T | ·n ·k 2nk

k ) = O(|T | ·n2nk).

Conclusion 2: The complexity of learning S from O with LFkT is O(
∑
T∈O
|T | · n2nk).

4.1.3 Running example

Table 4.1 shows the execution of LFkT on traces of figure 4.4 where (a2b2b1, a) represents the

interpretation of the trace ab → b → a. Introduction of literal by minimal specialization is

represented in bold and rules that are subsumed after specialization are stroked. For the sake of

readability, here a1 and a2 respectively correspond to at−1 and at−2.

Initialization a→ b→ b ab→ b→ a
2-step NLP 1-step NLP (a2b1, b) (a1, b) (a2b2b1, a) (a1b1, b)

a. a. a← ¬a2. a← ¬a1. a← ¬a2. a← ¬a1,¬b1.
b. b. a← b2. a← b1. a← b2. a← a1, b1.

a← a1. b. a← a1. b.
a← ¬b1. (b1, b) a← ¬b1. (b1, a)

b. a← ¬a1,¬b1. b← ¬a2. a← ¬a1,¬b1.
a← a1, b1. b← ¬b2. b← a1.

b. b← a1. b← ¬b1.
b← ¬b1.

b→ b→ a ε→ ε→ ε b→ ε→ ε
(b2b1, a) (b1, b) (ε, ε) (ε, ε) (b2, ε) (b1, ε)
a← ¬a2. a← ¬a1,¬b1. a← ¬a2,b2. a← ¬a1,¬b1. a← ¬a2, b1. b← a1.
a← b2. b← a1. a← ¬a2, a1. b← a1. a← a2, b2.
a← ¬a1. b← ¬b1. a← ¬a2,b1. b← a1,¬b1. a← b2, a1.
a← ¬b1. (b1, a) a← b2. (ε, ε) a← b2,b1. (ε, ε)

b← ¬a2,¬b2. a← ¬a1,¬b1. a← a1. b← a1. a← a1. b← a1.
b← ¬a2, a1. b← a1. a← a2,¬b1. a← a2,¬b1.
b← ¬a2,¬b1. b← ¬b1. a← b2,¬b1. b← a2,¬b2.
b← ¬b2. a← a1,¬b1. b← ¬b2, b1.
b← a1. b← a2,¬b2. b← a1.
b← ¬b1. b← ¬b2, a1. b← a2,¬b1.

b← ¬b2,b1. b← a2, b2,¬b1.
b← a1. b← b2,¬b1, a1.

b← a2,¬b1.
b← b2,¬b1.
b← a1,¬b1.

ab→ ε→ ε a→ ε→ b ε→ b→ ε
(a2b2, ε) (a1b1, ε) (a2, ε) (a1, ε) (b1, ε) (ε, b)

a← ¬a2, b1. b← a1,¬b1. a← ¬a2, b1. b← a1,¬b1. a← ¬a2,b2b1. ∅
a← a2, b2, a1. a← b2, b1. a← ¬a2, a1b1.
a← a2, b2,b1. (ε, ε) a← a1. (ε, b) a← b2, b1. (b1, ε)
a← b2, b1. b← a1,¬b1. a← a2,¬b2, a1¬b1. ∅ a← a1. ∅
a← a1. b← a2,¬b2. b← a2,¬b2.

a← a2,¬b2,¬b1. b← ¬b2, b1. b← a2,¬b2, b1.
a← a2, a1,¬b1. b← a1. b← ¬b2, a1, b1.
b← a2,¬b2. b← a1.
b← ¬b2, b1.
b← a1.

b← a2,¬b2,¬b1.
b← a2, a1,¬b1.

Merging of the programs OUTPUT
a← b2, b1. a← b2, b1.
a← a1. b← a2,¬b2.

b← a2,¬b2.
b← a1.

TABLE 4.1: Execution of LFkT on traces of figure 4.4

Here the algorithm learns 2-step and 1-step relations that are represented by two different sets

of rules. Both of them are initialized with the most general hypotheses, i.e. rules with empty

body. The algorithm then analyzes the first trace a→ b→ b. From this trace, it extracts a 2-step
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interpretation transition: (at−2bt−1, b) (abridged (a2b1, b) in the table to save space); and two

1-step interpretation transitions: (at−1, b) and (bt−1, b) that respectively represent the begin and

the end of the trace. The aforementioned 2-step interpretation is used to revise the 2-step rules

and the 1-step interpretations are used to revise the 1-step rules. From (at−2bt−1, b), since a is

not present in the second interpretation, the algorithm infers the anti-rule R := a← at−2, bt−1.

R is used to revise the 2-step rules that subsume it, so that these rules become consistent with the

interpretation. This is done by the addition of the negation of each element of the body ofR into

the rules at and bt. From (at−1, b) it also infers an anti-rule of a that is R′ := a ← at−1. The

1-step rules are revised by R′ and then it analyzes the second 1-step interpretation transition.

From (bt−1, b), it infers the anti-rule R′′ := a← bt−1, that is now used to revise the new 1-step

rules. Here the rule of b is not modified because it is consistent with the interpretation and, by

extension, consistent with the trace.

Now, LFkT analyzes the trace ab → b → a. The 2-step rules of b are revised by the anti-

rule R := b ← at−2, bt−2, bt−1 extracted from (at−2bt−2bt−1, a). The 1-step rules are revised

by R′ := a ← at−1, bt−1 extracted from (at−1bt−1, b). Here, the rule a ← at−1, bt−1 is

removed because it subsumes R′ (here it is R’ itself) and cannot be specified. This kind of

deletion is represented by double stroked rules. the rule of b is then revised by the second 1-step

interpretation.

Then, the algorithm analyzes the trace b → b → a. Some 2-step rules of b are specialized to

become consistent with the trace. Some of them are removed because after specialization they

are subsumed by other rules and them become useless. These rules are stroked in the table, it

is the case of R := b ← ¬at−2,¬bt−2 the specialization of R′ := b ← ¬at−2 by adding bt−2.

This rule is subsumed by R′′ := b← ¬bt−2 and since R′′ is consistent with the trace, we do not

need to keep R because all rules that can be specialized from R can also be obtained by R′′.

Solving continues until all traces have been analyzed. At the end, the 2-step rules are merged

with the 1-step rules by removing the 1-step rules from the set of 2-step rules. These rules can

be non consistent with some 1-step interpretations since they have not been revised by all of

them. They can safely be removed, because if they are consistent with all 1-step interpretations,

this means they will appear in the set of 1-step rules.

LFkT finally outputs the two rules R1 := a ← bt−2, bt−1 and R2 := b ← at−2,¬bt−2, that

correspond to the system of Example 4.1. To ensure that the output is correct it will need to

analyzes all possible traces of the system that is 2n∗k, with n the number of variables of the

system and k the size of a trace. Here it will require the analysis of all 16 possible traces. But,

in this example, the algorithm succeeds to learn the rules of the system after the analysis of 8

traces of execution.
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Run time (# of seconds)
# Traces k=1 k=2 k=3 k=4 k=5

10 0.23s 0.27s 0.16s 0.28s 0.31s
100 1.87s 2.49s 1.63s 2.37s 2.84s

1,000 15.3s 18.5s 13.3s 20.1s 23.8s
10,000 146s 218s 147s 201s 234s

100,000 2,177s 2,577s 1,643s 1,764s 2,243s
1,000,000 27,768s 22,517 12,384 15,670 20,413

Output size (# of rules)
# Traces k=1 k=2 k=3 k=4 k=5

10 994 735 413 1,162 1,278
100 837 736 383 1,025 1,156

1,000 835 647 364 942 1,096
10,000 728 739 408 857 987

100,000 929 535 390 788 950
1,000,000 833 559 350 769 930
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FIGURE 4.2: LFkT Run time varying the input size (number of traces)

4.1.4 Evaluation

In the previous subsections, we have illustrated step by step how LFkT algorithm is able to

learn Markov(k) systems. To illustrate the merits of our work, we now apply this approach

to the analysis of the yeast cell cycle dataset from [89] and [90], which have been previously

analyzed in [91]. In this paper, Li et al. tackle the inference of gene regulatory networks from

temporal gene expression data. The originality of their work lies in the fact they consider delayed

correlations between genes. The methodology can capture gene regulations that are delayed of

k time units. The limits of the approach is that the authors only consider pairwise overlaps of

expression levels shifted in time relative to each other. Another limit of the approach is that it

is not able to make a distinction between a causal gene-gene regulation and the scenarios where

two genes, A and B, are being co-regulated by a third gene C: do we have A that regulates B

that regulates C, or is it a cooperation between A and B that regulates C?

Here, starting from a set of different traces coming from the yeast cell cycle system, we have

performed various experiments where we have tuned the number of traces that have been con-

sidered on the one hand, the value of k (i.e., the number of time steps representing the memory

of the system) on the other hand.

Figure 4.5 shows the evolution of run time of learning with LFkT on the five Boolean networks

of the yeast cell cycle proposed by [91]. These fives programs are respectively Markov(1) to

Markov(5). In these experiments, for each Boolean network the number of variable is 16 and

the length of traces in input is five states. The five Boolean networks have been implemented as

a logic program using Answer Set Programming [92]. The source code of these programs are

given as supplementary material. Traces of executions of these programs have been computed
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using the answer set solver clasp [86]. All experiments are run with a C++ implementation of

LFkT on a processor Intel Xeon (X5650, 2.67GHz) with 12GB of RAM. The main purpose of

these experiments is to assess the efficiency of our approach, i.e., how many traces LFkT can

handle for a given k. Complete output of LFkT for these experiments is accessible as textfile at

http://tony.research.free.fr/paper/Frontier/output.zip.

In the first table of Figure 4.5, the evolution of run time from 10 to 1,000,000 traces (which is

arbitrary chosen as upper bound of the scalability of the experiments) shows that, in practice,

learning with LFkT is linear in the number of traces when the number of variables is fixed.

Results show that the algorithm can handle more than one million of traces in less than 10 hours.

Since each trace is a sequence of five state transitions, when learning the Markov(5) system,

each trace can be decomposed into 15 interpretation transitions (one 5-step, two 4-step, three

3-step, four 2-step and five 1-step). Learning the Markov(5) program from one million traces

of executions of size five requires the processing of 15 million of interpretation transitions.

Learning the Markov(4) to Markov(1) programs requires to process respectively 14 million,

12 million, 9 million and 5 million of interpretation transitions. Intuitively one could expect

that learning the Markov(2) system to take significantly more time than learning the Markov(1)

system. But each program is different, i.e., the Markov(2) program is not an extension of the

Markov(1) program with 2-step rules. That is why run time is not always larger for a larger k:

learning time also depends of the rules that are learned. In this experiment, the best run time is

obtained with the Markov(3) program. We cannot say that the rules of this program are simpler

than the others, but they are simpler to learn for the algorithm. In the second table, we observe

that the number of rules learned for the Markov(3) program is significantly smaller than for the

others. It means that the algorithm needs to compare less rules for each traces analysis, which

can explain the speed up.

In this benchmark, in order to be faithful to the biological experiments presented by [91], we

considered k = 5 as a maximum. But our algorithm succeeds in processing larger memory

effects. On some random dummy examples (accessible at the above mentioned URL), we were

able to learn Markov(7) systems with the following performances: we can learn 10 traces in

2.8s, 100 traces in 27s, 1,000 traces in 249s, 10,000 traces in 3,621s, 100,000 traces in 39,973s,

1,000,000 traces in 441,270s. Even if the computation time increases, it should be kept in mind

that our method is designed to allow successive refinements of a model about its memory effect.

These results show that such an approach is tractable even with a large number of input traces.

We now apply LFkT to learn our previous benchmarks. These Boolean networks are taken

from Dubrova and Teslenko [77]: these networks model the control of flower morphogenesis

in Arabidopsis thaliana, the budding yeast cell cycle regulation, the fission yeast cell cycle

regulation and the mammalian cell cycle regulation.

http://tony.research.free.fr/paper/Frontier/output.zip
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4.1.5 Conclusion

To understand the memory effect involved in some interactions between biological components,

it is necessary to include delayed influences in the model. In this secion, we proposed a logical

method to learn such models from state transitions systems. We designed an approach to learn

Boolean networks with delayed influences. This section introduced our approach to learn nor-

mal logic programs from interpretation transitions on k-steps. This can be directly applied to the

learning of Boolean networks with delayed influences, which is crucial to understand the mem-

ory effect involved in some interactions between biological components. Further works aim at

adapting the approach developed in the paper to the kind of data as produced by biologists [91].

This requires to connect through various databases in order to extract real time series data, and

subsequently explore and use them to learn genetic regulatory networks. In account of the noise

inherent to biological data, the ability to either perform an efficient discretization of the data or

to include the notion of noise inside the modeling framework is fundamental. We will thus have

to discuss the discretization procedure and the robustness of our modeling against noisy data

and compare it to existing approaches, like the Bayesian ones [93].
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4.2 Multivalued Variables

In this section, we provide the formal extension of LF1T to multivalued variable. By consid-

ering variables with multiples values we can represent and learn more expressive models than

Boolean ones. The precise description of interactions between biological components generally

requires more than Boolean values (e.g., when one component influences two others, it is very

unlikely that the influences are triggered by exactly the same concentration of the component).

Research in multi-valued logic programming has proceed along three different directions [94]:

bilattice-based logics [95, 96], quantitative rule sets [97] and annotated logics [98, 99]. The

multi-valued logic representation used in our new algorithm is based on annotated logics. Here,

to each atom corresponds a given set of values. In a rule, a literal is an atom annotated with one

of these values. It allows us to represent annotated atoms simply as classical atoms and thus to

remain in the normal logic program semantics.

4.2.1 Formalization

In order to represent multi-valued variables, we now restrict all atoms of a logic program to the

form varval. The intuition behind this form is that var represents some variable of the system

and val represents the value of this variable. In annotated logics, the atom var is said to be

annotated by the constant val. We consider a multi-valued logic program as a set of rules of the

form

varval ← varval11 ∧ · · · ∧ varvalnn (4.1)

where varval and varvalii ’s are atoms (n ≥ 1). Like before, for any rule R of the form (4.1),

left part of← is called the head of R and is denoted as h(R), and the conjunction to the right

of← is called the body of R. We represent the set of literals in the body of R of the form (4.1)

as b(R) = {varval11 , . . . , varvalnn }. A rule R of the form (4.1) is interpreted as follows: the

variable var takes the value val in the next state if all variables vari have the value vali in the

current state.

Example 4.4. Let consider the following rules, R1 = a1 ← b1, R2 = b1 ← a1 ∧ b0, R3 =

a0 ← b0, R4 = a0 ← b0, R5 = b0 ← a0, R6 = b0 ← b1. The logic program P =

{R1, R2, R3, R4, R5, R6} is a multi-valued logic program.

An interpretation of a multi-valued program provides the value of each variable of the system

and is defined as follows.

Definition 4.9 (Multi-valued Interpretation). Let B be a set of atoms where each element has

the form varval. An interpretation I of a set of atoms B is a subset of B where ∀varval ∈
B, varval′ ∈ I and ∀varval′ ∈ I, @varval′′ ∈ I, val′ 6= val′′.
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For a system S represented by a multi-valued logic program P and a state s1 represented by an

interpretation I , the successor of s1 is represented by the interpretation:

next(I) = {h(R) | R ∈ P, b(R) ⊆ I}

The state transitions of a logic program P are represented by a set of pairs of interpretations

(I, next(I)).

Definition 4.10 (Multi-valued Model). An interpretation I is a model of a program P if b(R) ⊆
I implies h(R) ∈ I for every rule R in P .

Definition 4.11 (Multi-valued Consistency). Let R be a rule and (I, J) be a state transition. R

is consistent with (I, J) iff b(R) ⊆ I implies h(R) ∈ J . Let E be a set of state transitions,

R is consistent with E if R is consistent with all state transitions of E. A logic program P is

consistent with E if all rules of P are consistent with E.

Definition 4.12 (Subsumption). Let R1 and R2 be two rules. If h(R1) = h(R2) and b(R1) ⊆
b(R2) then R1 subsumes R2. Let P be a logic program and R be a rule. P subsumes R if there

exists a rule R′ ∈ P that subsumes R.

We say that a rule R1 is more general than another rule R2 if R1 subsumes R2. In particular, a

rule R is most general if there is no rule R′(6= R) that subsumes R (b(r) = ∅).

Example 4.5. Let R1 and R2 be the two following rules: R1 = (a1 ← b1), R2 = (a1 ←
a0 ∧ b1), R1 subsumes R2 because (b(R1) = {b1}) ⊂ (b(R2) = {a0, b1}).When R1 appears

in a logic program P , R2 is useless for P , because whenever R2 can be applied, R1 can be

applied.

To learn multi-valued logic programs with LF1T we need to adapt the ground resolution and

the least specialization to handle non-boolean variables.

Definition 4.13 (complement). LetR1 andR2 be two rules,R2 is a complement ofR1 on varval

if varval ∈ b(R1), varval
′ ∈ b(R2), val 6= val′ and (b(R2) \ {varval

′}) ⊆ (b(R1) \ {varval}).

Definition 4.14 (multi-valued ground resolution). Let R be a rule, P be a logic program and B
be a set of atoms, R can be generalized on varval if ∀varval′ ∈ B, val 6= val′, ∃R′ ∈ P such

that R′ is a complement of R on varval:

generalise(R,P ) = h(R)← b(R) \ varval

Definition 4.15 (Multi-valued least specialization). Let R1 and R2 be two rules such that

h(R1) = h(R2) and R1 subsumes R2. Let B be a set of atoms. The least specialization

ls(R1, R2,B) of R1 over R2 w.r.t B is

ls(R1, R2,B) = {h(R1)← b(R1)∧ varval
′ |varval ∈ b(R2) \ b(R1), var

val′ ∈ B, val′ 6= val}
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Least specialization can be used on a rule R to avoid the subsumption of another rule with a

minimal reduction of the generality of R. By extension, least specialization can be used on the

rules of a logic program P to avoid the subsumption of a rule with a minimal reduction of the

generality of P . Let P be a logic program, B be a set of atoms, R be a rule and S be the set

of all rules of P that subsume R. The least specialization ls(P,R,B) of P by R w.r.t B is as

follows:

ls(P,R,B) = (P \ S) ∪ (
⋃

RP∈S
ls(RP , R,B))

4.2.2 Algorithm

Now we present the adaptation of the LF1T algorithm to learn multi-valued logic program.

The algorithm guarantees that the output only contains the minimal rules that realize the input

transitions. Algorithm 15 shows the pseudo-code of the new LF1T.

Algorithm 15 LF1T(E, B) : Learn a program P that realize E

1: INPUT: E a set of state transitions of a system S and B the set of all possible atoms that can appear
in I and J .

2: OUTPUT: An logic program P such that J = next(I) holds for any (I, J) ∈ E.

3: P := ∅
// Initialize P with the most general rules

4: for each varval ∈ B do
5: P := P ∪ {varval ← .}
6: end for

// Specify P to realize each state transition
7: while E 6= ∅ do
8: Pick (I, J) ∈ E; E := E \ {(I, J)}
9: for each atom varval ∈ J do

10: for each varval
′ ∈ B, val′ 6= val do

11: RI
varval′ := varval

′ ←
∧

li∈I li
12: P := Specialize(P,RI

varval′ ,B)
13: end for
14: end for
15: end while
16: return P

Like in previous versions, LF1T takes a set of state transitions E as input and outputs a logic

program P that realizes E. To guarantee the minimality of the learned NLP, LF1T starts with

the most general rules (lines 3-7). The idea is that, at the begining we consider that each variable

can take any of its values with no conditions: for all state, the next state can be any state.

Then LF1T iteratively analyzes each transition (I, J) ∈ E (lines 8-16). For each atoms varval

that does not appear in J , LF1T infers an anti-rule RI
varval

(lines 11-12):

RIvarval := varval ←
∧
Bi∈I

Bi
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. Then, LF1T uses least specialization to make P consistent with all RI
varval

(line 13). The idea

here, is to specialize all rules which state that the variable var should take another value val

than the one observed in J . Algorithm 27 shows in detail the pseudo code of this operation.

Algorithm 16 specialize(P , R, B) : specialize P to avoid the subsumption of R

1: INPUT: a logic program P and a rule R
2: OUTPUT: the least specialization of P by R.

3: conflicts : a set of rules
4: conflicts := ∅

// Search rules that need to be specialized
5: for each rule RP ∈ P do
6: if RP subsumes R then
7: conflicts := conflicts ∪RP

8: P := P \RP

9: end if
10: end for

// Revise the rules by least specialization
11: for each rule Rc ∈ conflicts do
12: for each literal vval ∈ b(R) do
13: if vval /∈ b(Rc) then
14: for each vval

′ ∈ B, val′ 6= val do
15: R′c := (h(Rc)← (b(Rc) ∪ vval

′
))

16: if P does not subsume R′c then
17: P := P\ all rules subsumed by R′c
18: P := P ∪R′c
19: end if
20: end for
21: end if
22: end for
23: end for
24: return P

LF1T first extracts all rules RP ∈ P that subsume RI
varval

(lines 3-10). It generates the least

specialization of each RP by generating a rule for each literal in RI
varval

. Each rule contains all

literals of RP plus a new literal. This literal gives another value to the variable of a literal of

RI
varval

, so that RI
varval

is not subsumed by that rule. Then LF1T adds in P all the generated

rules that are not subsumed by P (line 15-17), so that P becomes consistent with the transition

(I, J) and all rules of P remains minimal. When all transitions have been analyzed, LF1T
outputs P that has become a list of minimal rule that realizes E.
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4.3 Multivalued Delayed Systems

In a previous section we presented an algorithm to learn timed Boolean networks. However,

this approach still has two limitations: (1) The maximum delay has to be given as input to the

algorithm; (2) The possible value of each state is assumed to be Boolean, i.e., two-valued. In this

section, we extend the previous learning mechanism to overcome these limitations. We propose

an algorithm to learn multi-valued biological models with delayed influence by automatically

tuning the delay. The delay is determined so as to minimally explain the necessary influences.

4.3.1 Formalization

Definition 4.16 (Timed Herbrand Base). Let P be a logic program. Let B be the Herbrand base

of P and k be a natural number. The timed Herbrand Base of P (with period k) denoted by Bk ,

is as follows:

Bk =
k⋃
i=1

{varvalt−i|varval ∈ B}

where t is a constant term which represents the current time step.

According to Definition 4.16, given a propositional atom varval, varvalj is a new propositional

atom for each j = t − i, (0 ≤ i ≤ k). A Markov(k) system can then be interpreted as a logic

program as follows.

Definition 4.17 (Markov(k) system). Let P be a logic program, B be the Herbrand base of P

and Bk be the timed Herbrand base of P with period k. A Markov(k) system S with respect

to P is a logic program where for all rules R ∈ S, h(R) ∈ B and all atoms appearing in b(R)

belong to Bk.

In a Markov(k) system S, the atoms that appear in the body of the rules represent the value of

the atoms that appear in the heads, but at previous time steps. In a context of modeling gene

regulatory networks, these latter atoms represent the concentration of the interacting genes. This

concentration is abstracted as an integer value modeling the fact that it is lower or greater than

certain thresholds. Example 4.6 shows the Boolean Markov(2) system of Example 4 of [73]

represented as a multi-valued logic program. Figure 4.3 shows the interaction graph of this

system and the corresponding transition diagram.

Example 4.6. Let consider the following rules,R1 = a1 ← b1t−1∧b1t−2,R2 = b1 ← a1t−2∧b0t−2,

R3 = a0 ← b0t−2, R4 = a0 ← b0t−1, R5 = b0 ← a0t−2, R6 = b0 ← b1t−2. The logic program

S = {R1, R2, R3, R4, R5, R6} is a Markov(2) system, i.e., the state of the system depends on

the two previous states. The value of a is 1 at time step t only if the value of b was 1 at t − 1
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and t − 2. The value of b is 1 at time step t only if the value of a was 1 at t − 2 and the value

of b was 0 at t− 2. The atoms that appear in the head of the rules of S are {a0, a1, b0, b1}. B1
represents these atoms from time step t − 1: B1 = {a0t−1, a1t−1, b0t−1, b1t−1} and B2 represents

these atoms from time step t− 2: B2 = {a0t−1, a1t−1, b0t−1, b1t−1, a0t−2, a1t−2, b0t−2, b1t−2}. Here S

is the Markov(2) system that produces the transitions of figure 4.4. The interaction graph of S

is shown by figure 4.3.

a b

2

22 10 01 11 00

FIGURE 4.3: The interaction graph of the Markov(2) system of Example 4.6 (left) and its state
transitions diagram (right). Here, activations and inhibitions are labeled by the delay of the

influence.

Trace of execution, their consistency and k-step interpretation are formally equivalent to the

Boolean case. Except that state are multi-valued interpretation (each variable value is given

explicitly).

10 01 01

11 01 10

01 01 10

00 01 00

01 00 00

11 00 00

10 00 01

00 00 00

FIGURE 4.4: Eight traces of executions of the system of Example 4.6

Example 4.7. The trace 11→ 01→ 10 can be interpreted in the three following ways:

- (a1t−2b
1
t−2a

0
t−1b

1
t−1, a

1b0): the 2-step interpretation transition that corresponds to the full trace

11→ 01→ 10.

- (a1t−1b
1
t−1, a

0b1): the 1-step interpretation transition corresponding to the sub-trace 11→ 01.

- (a0t−1b
1
t−1, a

1b0): the 1-step interpretation transition that corresponds to the sub-trace 01 →
10.

4.3.2 Algorithm

In section 4.1 we proposed a method to learn delayed influences of Boolean systems: the LFkT

algorithm. In this section, we propose a new version of this algorithm that handle multi-valued

variables. Furthermore, the delays are now computed dynamically and does not need to be

known or fixed to the maximal value (size of the longest trace).
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LFkT:

• Input: A set of traces of executions O of a multi-valued Markov(k) system S.

• Step 1: Initialize a logic program with fact rules.

• Step 2: Pick a trace T from O and update the delay considered accordingly.

– Initialize a logic program with fact rules for each new delay.

– Revise these logic programs with all previous traces (like step 3).

• Step 3: Convert the trace into interpretation transitions and revise the logic programs using

least specialization.

• Step 4: If there is remaining trace in O, go back to step 2.

• Step 5: Merge all logic programs into one while avoiding rules subsumption.

• Step 6: Remove all rules that are not necessary to explain the observations.

• Output: A set of rules which realizes O.

The detailed pseudo code of LFkT is given in Algorithm 17. Like before, the idea of the

algorithm is to start with the most general rules and use least specialization iteratively on each

traces to make the rules leanred consistent with the all input observations.

1) The algorithm starts with a logic program that only contains all possible fact rules and as-

sumes that the system to learn is Markov(1) (lines 6-9). These different programs are merged at

the end to constitute a logic program that realizes all consistent traces ofO. 2.1) Before learning

from a trace, we need to guarantee that we are considering a valid delay according to the trace

(lines 13-20). That is why we check the minimal delay required to explain the trace by using

the delay function, whose pseudo code is given in Algorithm 18. If this delay is greater than the

one currently considered by the algorithm, it updates this delay and generates programs for all

missing delays (lines 14-20). All previously analyzed traces are then re-analyzed but only for

these new programs. This allows to learn only the missing delayed rules. 2.2) Then it checks the

consistency of the new trace with previously analyzed ones (lines 21-31). The delay considered

is increased if necessary. In practice, the consistency of the new traces with previously analyzed

ones can be directly checked from the programs that are learned. If the program that considers

the biggest delay k has no rule that can realize the last transition of T (if 6 ∃R ∈ P ′k, b(R) ⊆ I

with (I, Sn) := the |T |-step interpretation transition of T ), then the trace is not k-consistent

with at least one of the previous ones. 2.3) The program that is learned is revised according to

the new trace using least specialization (lines 34-37). In order to use least specialization, we

need to convert the trace of execution into interpretation transitions. This conversion is done

by the function interprete, whose pseudo code is given in Algorithm 20. Here, min(k, |T |)
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Algorithm 17 LFkT(O,B) : Learn a set of rules that realize O
1: INPUT: O a set of traces of executions, B a set of atoms
2: OUTPUT: P a logic program that realizes the transitions of O.

3: P ′ a vector of set of rules
4: E a set of pairs of interpretations (I, J)
5: k an integer

6: // 1) Initialize P ′ with the most general logic program
7: for each atom varval ∈ B do
8: P ′1 := P ′1 ∪ {var

val ←}
9: end for
10: k := 1 // Assume Markov(1)

11: // 2) Learning phase
12: while O 6= ∅ do
13: pick a trace T ∈ O

14: // 2.1) Check delay of the trace
15: if delay(T ) > k then // Extend the delay to learn
16: for i = k + 1 to delay(T ) do
17: for each atom varval ∈ B do
18: for each atom var′val′ ∈ B do
19: P ′i := P ′i ∪ {var

val ← var′val′
t−i }

20: end for
21: end for
22: end fork := delay(T )
23: for each trace T ′ ∈ O′ do
24: P ′ := learn(P, T ′, k,B)
25: end for
26: end if
27: // 2.2) Check consistency with previous traces
28: if ∃T ′ ∈ O′, T and T ′ are not k-consistent then
29: for each k′ from k to min(|T |, |T ′|) do
30: if T and T ′ are k′-consistent then
31: for i = k to k′ do
32: for each atom varval ∈ B do
33: for each atom var′val′ ∈ B do
34: P ′i := P ′i ∪ {var

val ← var′val′
t−i }

35: end for
36: end for
37: end for
38: for each trace T ′ ∈ O′ do
39: P ′ := learn(P, T ′, k,B)
40: end for
41: k := k’
42: else//T and T ′ are not consistent, cannot happen if O is consistent
43: EXIT: non-deterministic input
44: end if
45: end for
46: end if
47: // 2.3) Specify P ′ by the interpretations of the trace
48: P ′ := learn(P, T, 1,B)
49: O := O \ {T}
50: O′ := O′ ∪ {T}
51: end while
52: // 3) Merge the programs into a unique logic program
53: merging := ∅
54: for each i from 1 to k do
55: remove from P ′i all rules subsumed by a rule of merging

56: merging := merging ∪ P ′i
57: end for
58: // 4) Keep only the rules that can realize the observations
59: P := ∅
60: for each T ′ ∈ O′ do
61: E := interprete(T ′)
62: for each (I, J) ∈ E do
63: for each R ∈ merging do
64: if b(R) ⊆ I and h(R) ∈ J then
65: P := P ∪ {R}
66: end if
67: end for
68: end for
69: end for
70: return P

interpretation transitions are extracted from the trace, one for each possible delay inferior to the

currently considered one, that is k. Following this method, it produces one min(k, |T |)-step

interpretation, one min(k, |T |) − 1 interpretation, . . . , one 1-step interpretation. The function
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Algorithm 18 delay(T ) : Compute the minimal delay of a trace

1: INPUT: a trace of execution T = (S0, . . . , Sn)
2: OUTPUT: delay an integer

3: delay := 1
4: for each i from 1 to n− 1 do
5: for each j from i to n− 1 do
6: if Si = Sj then
7: k := 1
8: while k ≤ i AND Si−k = Sj−k do
9: k := k + 1

10: end while
11: delay := max(delay,k)
12: end if
13: end for
14: end for
15: return delay

Algorithm 19 learn(P, T,min delay,B) : Revise P to avoid the subsumption of R

1: INPUT: P a vector of logic program, T a trace of execution and min delay an integer
2: OUTPUT: a vector of logic program

3: E := interprete(T )
4: for each i from min delay to |T | do
5: for each k-step interpretation (I, J) ∈ E with k ≥ i do
6: remove from I all atoms varvalt−n with n > i
7: for each atom varval ∈ J do
8: for each varval

′ ∈ B, val′ 6= val do
9: RI

varval′
:= varval

′ ←
∧
lj∈I lj

10: Pi := Specialize(Pi, R
I
varval′

,B)
11: end for
12: end for
13: end for
14: end for

return P

outputs them as a vector of interpretation transitions E, where each Ei corresponds to an i-step

interpretation transition of a sub-trace of size i of T . The algorithm iteratively learns from each

pair of interpretations ofE. Now it only needs to apply the least specialization by analyzing each

pair of interpretations (I, J) ∈ E. For each atom varval that does not appear in J , it infers

an anti-rule: RI
varval

:= varval ←
∧
Bi∈I Bi, Then, least specialization is used to make each

corresponding logic program P ′i consistent withRI
varval

, according to the delay of interpretation

transition. Algorithm 21 shows the pseudo code of this operation. In the function specialize, it

first extracts all rules RP ∈ P that subsumes RIA. It generates the least specialization of each

RP by generating a rule for each literal in RI
varval

. Each rule contain all literals of RP , plus

a literal that represents another value of the variable represented by a literal in RI
varval

, so that
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Algorithm 20 interprete(T ) : Extract interpretation transitions from a trace

1: INPUT: a trace of execution T = (S0, . . . , Sn)
2: OUTPUT: E a set of pairs of interpretations

3: E := ∅
// Extract interpretations

4: for each k from 1 to |T | do
5: T ′ := (S0, . . . , Sk) // the sub-trace of size k of T that start from S0
6: I := ∅
7: for each state sk′ before sk in T ′ do
8: delay := k − k′
9: for each atom a ∈ sk′ do

10: I := I ∪ {at−delay}
11: end for
12: E := E ∪ (I, Sk)
13: end for
14: end for
15: return E

Algorithm 21 specialize(P ,R,B) : specialize P to avoid the subsumption of R

1: INPUT: a logic program P , a rule R, a set of atoms B
2: OUTPUT: the least specialization of P by R.

3: conflicts : a set of rules
4: conflicts := ∅

// Search rules that need to be specialized
5: for each rule RP ∈ P do
6: if RP subsumes R then
7: conflicts := conflicts ∪RP
8: P := P \RP
9: end if

10: end for
// Revise the rules by least specialization

11: for each rule Rc ∈ conflicts do
12: for each literal varvalt−k ∈ b(R) do
13: if varvalt−k /∈ b(Rc) then
14: for each varval

′
t−k ∈ B, val′ 6= val do

15: R′c := (h(Rc)← (b(Rc) ∪ varval
′

t−k))
16: if P does not subsume R′c then
17: P := P\ all rules subsumed by R′c
18: P := P ∪R′c
19: end if
20: end for
21: end if
22: end for
23: end for
24: return P
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RI
varval

is not subsumed anymore by that rule. Then specialize adds in P all the generated rules

that are not subsumed by P , so that P becomes consistent with the transition (I, J).

3) After analyzing all traces of O, the k programs that have been learned are merged into a

unique logic program while taking care that subsumed rules are discarded. 4) All rules that are

not necessary to explain the observations are discarded. The algorithm only keeps the rules that

can be used to realize at least one of the transition of the input traces. Finally, LFkT outputs a

logic program that realizes all consistent traces of execution of O.

Theorem 4.18 (Correctness of LFkT). Let P be a logic program, B be the Herbrand base of

P and Bk be the timed Herbrand base of P with period k. Let S be a Markov(k) system with

respect to P . Let O be a set of traces of S. Using O as input, LFkT outputs a logic program

that realizes all consistent traces of O.

Proof. Let V be the vector of interpretation transition extracted from O by LFkT (Algorithm

20). According to Theorem 4 of [64], initializing LF1T with {p.|p ∈ B}, by using minimal

specialization iteratively on a set of interpretation transitions E, we obtain a logic program P

that realizes E. Since LFkT uses this method on each element of V , LFkT learns a vector

of logic programs P ′ such that each logic program p′n ∈ P ′ realizes the corresponding set of

interpretation transitions vn ∈ V , n ≥ 1.

Let p′n ∈ P ′ be the logic program learn from vn ∈ V , n ≥ 1. p′n is obtained by minimal

specialization of {p.|p ∈ B}with all anti-rule of vn (non consistent rule). According to Theorem

3 of [64], p′n does not subsume any anti-rule that can be inferred from vn. Then, p′n realizes all

deterministic transition of vn, that is ∀(I, J) ∈ vn, 6 ∃(I, J ′), J 6= J ′.

Since vn contains n-step interpretation transition that represent all sub-traces of size n of O, p′n
realizes all consistent sub-trace of size n of O. Let Pn−1 be a logic program that realizes all

consistent sub-traces of size at most n−1 ofO. p′n can contain a ruleR such that (Bn \Bn−1)∩
b(R) = ∅ (no literal of R refers to the t − n state of the variables). In this case R realizes a

sub-trace of size n and also some sub-traces of size at most n − 1. If these sub-traces of size

n − 1 are consistent, then they are necessary realized by Pn−1. Pn−1 ∪ {R} does not realize

more consistent sub-trace of size at most n − 1 than Pn−1. Let SR be the set of rules of p′n of

the form R, then (p′n \ SR) only realizes all sub-traces of size n of O. Then the logic program

Pn = Pn−1 ∪ (p′n \ SR) only realizes all consistent sub-trace of size at most n− 1 of O and all

sub-traces of size n of O, that is Pn realizes all consistent sub-traces of size at most n of O.

Let p′1 ∈ P ′ be the logic program learned from v1 ∈ V , and let P = p′1. Let R′ be all rules of

the logic program p′n such that (Bn \ Bn−1) ∩ b(R′) 6= ∅. Iteratively adding rules R′ into P ,

starting by the logic program p′2 until p′k, we obtain a logic program that realizes all consistent

sub-traces of size at most k of O. As a result, using O as input, LFkT outputs a logic program

that realizes all consistent traces of O.
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Theorem 4.19 (Complexity). Let P be a logic program, B be the Herbrand base of P and Bk
be the timed Herbrand base of P with period k. Let S be a multi-valued Markov(k) system with

respect to P . Let n be the number of variable of S. Let v be the maximal number of value of

a variable of S. Let O be a set of traces of execution of S. The complexity of learning S from

O with LFkT is respectively: O(n · vnk+1 + |O|) for memory and O(
∑
T∈O
|T | · nvnk+3 + |O| ·

n2k2 + n · vnk+2 + n · vnk+1 · |O| · k) for runtime.

Proof. nisthenumberofpossibleheadsofrulesofS.nk is the maximum size of a rule of S, i.e.

the number of literals in the body; a literal can appear at most one time in the body of a rule.

For each rule head of B there are vnk possible bodies: each literal can be present or absent

from the body. From these preliminaries we conclude that the size of a Markov(k) system S

learned by LFkT is at most |S| = n · vnk. To learn S, LFkT needs to store k programs Pi
that are Markov(i) system with respect to P , 1 ≤ i ≤ k. The algorithm also needs to store the

previously analyzed traces in order to update the considered delay.

Conclusion 1: the memory use of LFkT is O(
k∑
i=1
|Pi|+O) = O(k · n·vnkk + |O|) that is bound

by O(n · · · vnk+1 + |O|).

For each trace T of O, LFkT extracts |T | pairs of interpretations. For each pair of interpretation

(I, J), LFkT infers an anti-rule rule RIA for each A ∈ B, A 6∈ J . LFkT compares each RIA
with all rules of each programs Pi. There is at most |B| − n anti-rules that can be infered from

(I, J) by LFkT and the size of each program Pi is bound by O(n·v
nk

k ). Then, the complexity

of learning one trace of execution T ∈ O with LFkT is O(|T | · |B| − n · k|Pi|) = O(|T | ·
nv − n · kn·vnkk ) = O(|T | · n2vnk+2 − n) that is bound by O(|T | · nvnk+3). To update the

considered delay, the algorithm has to check the delay of each new trace T , this operation

belongs to O(|T |2) = (n2k2). And, checking the consistency of a new traces with previous

analyzed one is bound by O(|O| ∗n2k2). Merging the programs requires to compare all rules to

detect subsumption, it has a complexity of O(n ·vnk+2). Finally, removing the rules that are not

necessary to realize O requires to compare each rules with all k-step interpretation of O, thus it

requires O(n · vnk+1 · |O| · k).

Conclusion 2: The complexity of learning S from O with LFkT is O(
∑
T∈O
|T | · nvnk+3 + |O| ·

n2k2 + n · vnk+2).

4.3.3 Running example of LFkT

Table 4.2 shows the execution of LFkT on 4 traces of figure 4.4 where (a1t−2b
1
t−2a

0
t−1b

1
t−1, a

1b0)

represents the interpretation of the trace 11 → 01 → 10. Introduction of a literal by least spe-

cialization is represented in bold and rules that are subsumed after specialization are stroked.
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Trace Initialization a1b0 → a0b1 → a0b1 a1b1 → a0b1 → a1b0 CheckO′ = {a1b0 → a0b1 → a0b1}
Interpretation (a1t−2b

0
t−2a

0
t−1b

1
t−1, a

0b1) (a1t−1b
0
t−1, a

0b1) Conflict with a1b0 → a0b1 → a0b1 (a1t−2b
0
t−2a

0
t−1b

1
t−1, a

0b1)

Program P ′1 P ′1 P ′1 P ′1 P ′2 P ′2
Rules a0. a0. a0. a0. a0 ← a0t−2. a0 ← a0t−2.

a1. a1 ← a1
t−1. a1 ← a1t−1,b

1
t−1. a1 ← a1t−1, b

1
t−1. a0 ← a1t−2. a0 ← a1t−2.

b0. a1 ← b0
t−1. a1 ← a0

t−1, b
0
t−1. a1 ← a0t−1, b

0
t−1. a0 ← b0t−2. a0 ← b0t−2.

b1. b0 ← a1
t−1. b0 ← a1t−1,b

1
t−1. b0 ← a1t−1, b

1
t−1. a0 ← b1t−2. a0 ← b1t−2.

b0 ← b0
t−1. b0 ← a0

t−1, b
0
t−1. b0 ← a0t−1, b

0
t−1. a1 ← a0t−2. a1 ← a0t−2.

b1. b1. b1. a1 ← a1t−2. a1 ← a1t−2,b
1
t−2.

a1 ← b0t−2. a1 ← a1
t−1, a

1
t−2.

a1 ← b1t−2. a1 ← b0
t−1, a

1
t−2.

b0 ← a0t−2. a1 ← a0
t−2, b

0
t−2.

b0 ← a1t−2. a1 ← a1
t−1, b

0
t−2.

b0 ← b0t−2. a1 ← b0
t−1, b

0
t−2.

b0 ← b1t−2. a1 ← b1t−2.

b1 ← a0t−2. b0 ← a0t−2.

b1 ← a1t−2. b0 ← a1t−2,b
1
t−2.

b1 ← b0t−2. b0 ← a1
t−1, a

1
t−2.

b1 ← b1t−2. b0 ← b0
t−1, a

1
t−2.

b0 ← a0
t−2, b

0
t−2.

b0 ← a1
t−1, b

0
t−2.

b0 ← b0
t−1, b

0
t−2.

b0 ← b1t−2.

b1 ← a0t−2.

b1 ← a1t−2.

b1 ← b0t−2.

b1 ← b1t−2.

a1b1 → a0b1 → a1b0 a1b1 → a0b0 → a0b0 a0b0 → a0b1 → a0b0

(a1t−2b
1
t−2a

0
t−1b

1
t−1, a

1b0) (a1t−1b
1
t−1, a

0b1) (a1t−2b
1
t−2a

0
t−1b

0
t−1, a

0b0) (a1t−1b
1
t−1, a

0b0) (a0t−2b
0
t−2a

0
t−1b

1
t−1, a

0b0) (a0t−1b
0
t−1, a

0b1)

P ′1 P ′2 P ′1 P ′1 P ′2 P ′1 P ′1 P ′2 P ′1
a0 ← a1

t−1. a0 ← a0t−2. a0 ← a1t−1. a0 ← a1t−1. a0 ← a0t−2. a0 ← a1t−1. a0 ← a1t−1. a0 ← a0t−2. a0 ← a1t−1.

a0 ← b0
t−1. a0 ← a1t−2,b

0
t−2. a0 ← b0t−1. a0 ← b0t−1. a0 ← a1t−1, a

1
t−2. a0 ← b0t−1. a0 ← b0t−1. a0 ← a1t−1, a

1
t−2. a0 ← b0t−1.

a1 ← a1t−1, b
1
t−1. a

0 ← a1
t−1, a

1
t−2. a

1 ← a1t−1, b
1
t−1. a1 ← a0t−1, b

0
t−1. a0 ← b0t−1, a

1
t−2. b

0 ← a0t−1, b
0
t−1. b0 ← a0t−1, b

0
t−1. a0 ← b0t−1, a

1
t−2. b

0 ← a0t−1, b
0
t−1.

a1 ← a0t−1, b
0
t−1. a

0 ← b0
t−1, a

1
t−2. a

1 ← a0t−1, b
0
t−1. b0 ← a0t−1, b

0
t−1. a0 ← b0t−2. b1 ← a1t−1, b

0
t−1. b1 ← a1t−1, b

0
t−1. a0 ← b0t−2. b1 ← a1t−1, b

0
t−1.

b0 ← a1t−1, b
1
t−1. a0 ← b0t−2. b0 ← a1t−1, b

1
t−1. b1 ← a1

t−1, b
0
t−1. a0 ← a1t−1, b

1
t−2. a0 ← a1t−1, b

1
t−2.

b0 ← a0t−1, b
0
t−1. a

0 ← a0
t−2, b

1
t−2. b

0 ← a0t−1, b
0
t−1. a0 ← b0t−1, b

1
t−2. a0 ← b0t−1, b

1
t−2.

b1 ← a1
t−1. a0 ← a1

t−1, b
1
t−2. b

1 ← a1t−1,b
0
t−1. a1 ← a0t−2. a1 ← a0t−2,b

1
t−2.

b1 ← b0
t−1. a0 ← b0

t−1, b
1
t−2. b1 ← b0t−1. a1 ← a1t−1, a

1
t−2. a1 ← a1

t−1, a
0
t−2.

a1 ← a0t−2. a1 ← b0t−1, a
1
t−2. a1 ← b0

t−1, a
0
t−2.

a1 ← a1t−1, a
1
t−2. a1 ← a1t−1, b

0
t−2. a1 ← a1t−1, a

1
t−2.

a1 ← b0t−1, a
1
t−2. a1 ← b0t−1, b

0
t−2. a1 ← a1t−1, b

0
t−2.

a1 ← a1t−1, b
0
t−2. a1 ← b1t−2, a

0
t−2. a1 ← b0t−1, b

0
t−2.

a1 ← b0t−1, b
0
t−2. a1 ← a1

t−1, b
1
t−2. a1 ← a1t−1, b

1
t−2.

a1 ← b1t−2. a1 ← b1
t−1, b

1
t−2. a1 ← b1t−1, b

1
t−2.

b0 ← a0t−2. b0 ← a0t−2. b0 ← a0t−2.

b0 ← a1t−1, a
1
t−2. b0 ← a1t−1, a

1
t−2. b0 ← a1t−1, a

1
t−2.

b0 ← b0t−1, a
1
t−2. b0 ← b0t−1, a

1
t−2. b0 ← b0t−1, a

1
t−2.

b0 ← a1t−1, b
0
t−2. b0 ← a1t−1, b

0
t−2. b0 ← a1t−1, b

0
t−2.

b0 ← b0t−1, b
0
t−2. b0 ← b0t−1, b

0
t−2. b0 ← b0t−1, b

0
t−2.

b0 ← b1t−2. b0 ← b1t−2. b0 ← b1t−2.

b1 ← a0t−2. b1 ← a0t−2. b1 ← a0t−2,b
1
t−2.

b1 ← a1t−2,b
0
t−2. b1 ← a1t−1, a

1
t−2. b1 ← a1

t−1, a
0
t−2.

b1 ← a1
t−1, a

1
t−2. b1 ← b0t−1, a

1
t−2. b1 ← b0

t−1, a
0
t−2.

b1 ← b0
t−1, a

1
t−2. b1 ← b0t−2. b1 ← a1t−1, a

1
t−2.

b1 ← b0t−2. b1 ← a1t−1, b
1
t−2. b1 ← a1

t−2, b
0
t−2.

b1 ← a0
t−2, b

1
t−2. b1 ← b0t−1, b

1
t−2. b1 ← a1

t−1, b
0
t−2.

b1 ← a1
t−1, b

1
t−2. b1 ← b0

t−1, b
0
t−2.

b1 ← b0
t−1, b

1
t−2. b1 ← a1t−1, b

1
t−2.

Output after processing all possible traces
a1 ← b1t−2, b

1
t−1.

b1 ← a1t−2, b
0
t−2.

a0 ← b0t−2.

a0 ← b0t−1.

b0 ← a0t−2.

b0 ← b1t−2.

TABLE 4.2: Execution of LFkT on some traces of the figure 4.4
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On this example, the algorithm learns only 1-step relations at the beginning. It initializes the

program P ′1 with the most general hypotheses, i.e. fact rules. The algorithm then analyzes

the first trace 10 → 01 → 01. From this trace, it extracts a 2-step interpretation transition:

(a1t−2b
0
t−2a

0
t−1b

1
t−1, a

0b1). And a 1-step interpretation transition: (a0t−1b
1
t−1, a

0b1) that repre-

sents the end of the trace. From (a1t−2b
0
t−2a

0
t−1b

1
t−1, a

0b1), since a0 and b1 are present in the

second interpretation, the algorithm infers anti-rules for a1 and b0: Ra1 := a1 ← a0t−1, b
1
t−1 and

Rb0 := b0 ← a0t−1, b
1
t−1. The atoms referring to time step t− 2 are ignored by the algorithm in

the revision of P ′1, since only 1-step relations are considered in this program. Ra1 and Rb0 are

used to revise the rules of P ′1 that subsume them, so that these rules become consistent with the

interpretation. This is done using least specialization, by the addition of literals into the body of

the rules. Those added literal are represented in bold in the table. Here, the fact rule of a1 and

b1 are revised.

From (a0t−1b
1
t−1, a

0b1) it infers an anti-rule of a1 that is R′a1 := a1 ← a0t−1, b
1
t−1 and an anti-

rule of b0 that is R′b0 := b0 ← a0t−1, b
1
t−1. The rules of P ′1 are revised by R′b0 and R′a1 . Here, the

rule previously revised are revised again. The program then becomes consistent with the trace

11→ 01→ 01.

Now, LFkT analyzes the trace 11 → 01 → 10. This trace is not 1-consistent with the previous

trace 11→ 01→ 10, e.g. from the state 01 there are two possible next states. A new program P ′2

is initialized with minimal rules that consider 2-step relations. P ′2 is then revised to be consistent

with the previous traces stored in O′. The program is revised by the 2-step interpretation of

11 → 01 → 10. Here, some rules are subsumed after specialization and are then removed. In

the table they are stroked, like a1 ← a1t−2,b
1
t−2 that is subsumed by a1 ← b1t−2.

Solving continues until all traces have been analyzed. At the end, the programs learned are

merged into a unique one while ensuring that there is no subsumption between rules. Heren

for the sake of space and readability, we exhibit only the processing of 4 traces. To ensure

that the output is correct, it will need to analyze all possible traces of the system that is dn∗k,

with n being the number of variables of the system, d their domain size and k the delay of the

system. Here, it will require the analysis of all 16 possible traces. If all possible traces are

processed by the algorithm, it will output a logic program that is exactly the Markov(k) system

which produced those traces. Here the rules outputted will be the ones of the system of Example

4.6. In the table, they are highlighted in blue the first time they appear. In this case study, the

processing of remaining traces will lead to the specialization and deletion of the other rules.

4.3.4 Evaluation

In this section, we evaluate our new learning algorithm through experiments. We apply LFkT
to learn Boolean networks from biological literature. These Boolean networks are taken from
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Dubrova and Teslenko [77]: these networks model the control of flower morphogenesis in Ara-

bidopsis thaliana, the budding yeast cell cycle regulation, the fission yeast cell cycle regulation

and the mammalian cell cycle regulation. Those benchmark were originally Boolean Markov(1)

systems. Here, LFkT will learn rules for both value of each variable (0 and 1). In these experi-

ments, we artificially introduced delays in the relation between the variables to obtain Markov(k)

system. This is done by arbitrary modifying some rules conditions from t− 1 by t− k.

Runtime (in seconds)/Output size (# of rules)
Delay Mammalian (10) Fission (10) Budding (12) Arabidopsis (15)
k=1 0.06s / 23 0.07s / 24 0.42s / 54 5.87s / 28
k=2 6.92s / 3,922 2.5s / 2,003 213s / 10,551 6,902s / 4,981
k=3 752s / 54,692 49.39s / 11,312 20,970s / 60,568 T.O.
k=4 12,448s / 293,020 302s / 32,581 T.O T.O
k=5 T.O. 1,197s / 70,322 T.O T.O
k=6 T.O. 3,585s / 129,603 T.O T.O
k=7 T.O. 9,401s / 216,212 T.O T.O

FIGURE 4.5: Runtime and output size of LFkT on learning the benchmark from [77], varying
the delay of the system.

Figure 4.5 shows the evolution of runtime of learning with LFkT on four Boolean networks

of [77]. The number of variables in the benchmark goes from 10 to 15, time limit is set to

10 hours. The four Boolean networks were implemented as a logic program using Answer

Set Programming [92]. Traces of executions of these programs have been computed using the

Answer Set Solver clasp [86]. For each possible initial state, the ASP program generates the

corresponding trace according to each variable rules. In each experiment, the input of LFkT is

2n traces of size k with n the number of variables of the benchmark and k its delay.

All experiments are run with a C++ implementation of LFkT on a processor Intel Xeon (X5650,

2.67GHz) with 12GB of RAM. The main purpose of these experiments is to analyze the impact

of the delay associated to the model on the global runtime. The ASP source code of each

benchmark and the corresponding output of LFkT for these experiments can be accessed as text

files at

http://tony.research.free.fr/paper/CMSB/experiment.zip.

In the table of Figure 4.5, the evolution of runtime shows that, in practice, considering a higher

delay for a given system increases exponentially the learning time of LFkT for this system.

But the importance of this combinatorial explosion highly depends on the rules of the system

that is learned. For the mammalian cell benchmark, runtime is multiplied by about 100 when

increasing the delay from 1 to 2 or 2 to 3. Similar results are observed in the case of a much

bigger network that is the arabidopsis thaliana benchmark. But in the case of the budding yeast

benchmark, increasing the delay leads to a even higher runtime explosion: from delay of 1 to 2,

learning time increases by 500, but from 2 to 3 runtime increases by about 100. On the other

hand, for the fission yeast benchmark, runtime is only multiplied by respectively 35 and 20 when

increasing the delay from 1 to 2 and 2 to 3. Again, for the mammalian cell benchmark increasing

the delay from 3 to 4 only increase runtime by 16. Those results show that in practice, the time

http://tony.research.free.fr/paper/CMSB/experiment.zip
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required for learning a system highly depends on the dynamics of the system. Learning the

dynamics of the mammalian cell takes more time than learning the ones of the fission yeast, even

though the system has the same number of variables (10). And the influence of the evolution of

the delay of the system does not have the same impact on runtime for these two benchmarks.

In those experiments, the output of LFkT is an over-approximation of the original dynamics

of the system, in the sense that all original rules of the learned system are either present in the

output or subsumed by some rules of the output. For example, learning the Markov(2) version

of the fission yeast benchmark leads to 2,003 rules. Here, all 24 original rules of the benchmark

are present in the output but more traces are necessary to process in order to eliminate the other

rules. Even if over-approximating the dynamics may lead to be over-pessimistic when checking

some properties, it is still useful for two main reasons: (i) If a dynamics property is proven false

on the over-approximation, then it is false on the real system; (ii) The output of LFkT may help

to design new practical experiments in order to validate or refute some rules.

4.3.5 Conclusion

In this section, we propose a twofold extension of our previous results to learn normal logic

programs from interpretation transitions on k-steps: (i) Delay is now dynamically adjusted

and does not need to be initially assumed as input; (ii) The learning algorithm natively tack-

les multi-valued models. The work can then be directly applied to the learning of Boolean and

multi-valued discrete networks with delayed influences, which is crucial to understand the mem-

ory effect involved in some interactions between biological components. Further works aim at

adapting the approach developed in the paper to the kind of data as produced by biologists [91].

This requires to connect through various databases in order to extract real time series data, and

subsequently explore and use them to learn genetic regulatory networks.
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4.4 Asynchronous Systems

In this section we provide an extension of our framework to model and learn asynchronous sys-

tems. In [100], A. Garg et al. address the differences and complementarity of synchronous and

asynchronous semantics to model regulatory networks and identify attractors. The authors focus

on attractors, which are central to gene regulation. Indeed they give some precious information

about the cell differentiation processes. But previous studies about attractors with synchronous

semantics [101, 102] and asynchronous semantics [103, 104] showed that different updating

rules result in different attractors. The benefits of the synchronous model are to be computation-

ally tractable, while classical state space exploration algorithms fail on asynchronous ones. Yet

the synchronous modeling relies on one quite heavy assumptions: all genes can make a tran-

sition simultaneously and need an equivalent amount of time to change their expression level.

Even if this is not realistic from a biological point of view, it is usually sufficient as the ex-

act kinetics and order of transformations are generally unknown. The asynchronous semantics

however helps to capture more realistic behaviors. At a given time, a single gene can change

its expression level. This results in a potential combinatorial explosion of the number of states.

To illustrate this issue, the authors of [100] compare the time needed to compute the attractors

of various models (mammalian cell, T-helper, dendritic cell, . . .) and compare the results with

synchronous and asynchronous semantics. To make the asynchronous computation be more

efficient, they propose a new algorithm to capture the attractors, that is based on a combina-

tion of the synchronous and asynchronous ones. They identify the cases when attractors of the

asynchronous model match with the associated synchronous model. This has been implemented

in a software package called genYsis, which performs better than other existing approaches,

especially because it takes benefit from the aforementioned combined approach.

a

b c

• Ka,∅ = 0

• Kb,∅ = 0

• Kc,∅ = 0

• Kb,{a} = 1

• Kb,{c} = 0

• Kc,{a} = 1

abc bc c

b a

ac

ab

FIGURE 4.6: The feed-forward loop of [1]: influence graph (top-left), update rules (top-right)
and the corresponding transition diagram (bottom).
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Example 4.8. Figure 4.6, shows an example of asynchronous Boolean network. Here the three

firsts transition rule of the form KX,∅ = 0 means that the variable X can be inhibitd at the next

state if their is no influence on it. The rule Kb,{a} = 1 means that b can be activated at the next

state if a is present in the current state. The rule Kb,{c} = 0 means that b can be inhibitd at the

next state if c is present in the current state.

4.4.1 Time delays in asynchronous framework

In [105], Thomas and Kaufman discuss the meaning of time delays in asynchronous Thomas’

networks. Time delays constitute a bridge with the ordinary differential equations formalism

in the sense that they relate to the kinetic parameters involved in the production and decay

of a biological component. Compared to the logical description historically used, time delays

bring additional information. Without time delays, it was possible to exhibit cycle and the

corresponding periodicity, but not to determine whether this was a stable or unstable cycle. In

their paper, the authors propose a brute-force method to induce graphs from a partial state table.

Thanks to a Boolean algebra-based analysis, it is possible to propose some models that can

represent some given biological properties of the model to infer (e.g., stable states or cycles).

4.4.2 Formalization

An asynchronous Boolean network can be represented by a set of rules of the following forms:

activate(p)← ¬p ∧ p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ . . . ∧ ¬pn

inhibit(p)← p ∧ p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ . . . ∧ ¬pn

no change← p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ . . . ∧ ¬pn

where p and pi’s are atoms (n ≥ m ≥ 1) and activate, inhibit, no change are predicates.

Definition 4.20 (Asynchronous successors). Let I be the interpretation of the current state of an
asynchronous Boolean network B represented by a set of rules S. Let TP (I, S) = {h(R)|R ∈
S, b(R)+ ⊆ I, b(R)− ∩ I = ∅}. The successors of I in B according to S is

next(I, S) = {I∪{p}|activate(p) ∈ TP (I, S)}∪{I\{p}|inhibit(p) ∈ TP (I, S)}∪{I|no change ∈ TP (I, S)}

Example 4.9. The asynchronous Boolean network of Figure 4.6, can be represented as follow.

• Ka,∅ = 0 by inhibit(a)← a.

• Kb,∅ = 0 by inhibit(b)← ¬a ∧ b ∧ ¬c.

• Kc,∅ = 0 by inhibit(c)← ¬a ∧ c.

• Kb,{a} = 1 by activate(b)← a ∧ ¬b.

• Kb,{c} = 0 by inhibit(b)← b ∧ c.

• Kc,{a} = 1 by activate(c)← a ∧ ¬c.
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A multi-valued asynchronous system can be represented by a set of multi-valued rules where

each rules have the form:

change(vval)← vval
′ ∧ p1 ∧ · · · ∧ pn.

no change← p1 ∧ · · · ∧ pn.

where vval, vval
′
, p and pi’s are anotated atoms (n ≥ 1, val 6= val′) and change is a predicate.

Definition 4.21 (Multi-valued Asynchronous successors). Let I be the current state of an asyn-

chronous system represented by a set of multi-valued rules S. Let TP (I, S) = {h(R)|R ∈
S, b(R) ⊆ I}. The successors of I in B according to S is

next(I, S) = {I\{vval′}∪{vval}|change(vval) ∈ TP (I, S), vval
′ ∈ I}∪{I|no change ∈ TP (I, S)}

Example 4.10. The asynchronous system of Figure 4.6, can be represented as follow.

• Ka,∅ = 0 by change(a0)← a1.

• Kb,∅ = 0 by change(b0)← a0 ∧ b1 ∧ c0.

• Kc,∅ = 0 by change(c0)← a0 ∧ c1.

• Kb,{a} = 1 by change(b)← a1 ∧ b0.

• Kb,{c} = 0 by change(b)← b1 ∧ c1.

• Kc,{a} = 1 by change(c)← a1 ∧ c0.

4.4.3 Algorithms

We now adapt the LFIT framework to learn asynchronous systems. As a first step we do not

consider delay and show how to simply adapt LF1T when variables are Boolean. In this case,

the only real difference with learning synchronous system, is the rule that are infered from the

transitions.

In the transition of an asynchronous system, there is only one difference between the current

state and the next state. Here the idea is to only learn this change. When variable are Boolean,

this change can be either an activation or a inhibition: a variable change its value from false to

true or from true to false. Here, we need to learn rules for both changes.

Like in previous versions, LF1T takes a set of state transitions E as input and outputs an NLP

P that realizes E.

4.4.3.1 Learning using generalization

To learn Boolean network using generalization, the algorithm starts with an empty set of rules

and will iteratively analyzes each transition (I, J) ∈ E:
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• If ∃A ∈ J,A /∈ I the transition (I, J) is an activation of A and LF1T infers a rule RIA:

RIA := activate(A)←
∧
Bi∈I

Bi ∧
∧

Cj∈(B\I)

¬Cj

• If A ∈ I, A /∈ J the transition (I, J) is an inhibition of A and LF1T infers a rule RIA:

RIA := inhibit(A)←
∧
Bi∈I

Bi ∧
∧

Cj∈(B\I)

¬Cj

• If I = J , the transition is a self transition (I, I) and LF1T infers a rule R:

R := no change←
∧
Bi∈I

Bi ∧
∧

Cj∈(B\I)

¬Cj

Algorithm 22 show the pseudo-code of {LF1T} for learning asynchronous Boolean systems.

The way that rules are added into the program learned is the same as before (line 15, AddRule

is exactly Algorithm 26).

Algorithm 22 LF1T(E,P ) with generalization for asynchronous Boolean systems
1: INPUT: a set E of pairs of Herbrand interpretations and an NLP P
2: OUTPUT: an NLP P

3: while E 6= ∅ do
4: Pick (I, J) ∈ E; E := E \ {(I, J)}
5: if I 6= J then
6: if there is A /∈ I, A ∈ J then
7: R := activate(A)←

∧
Bi∈I Bi ∧

∧
Cj∈(B\I) ¬Cj

8: end if
9: if there is A ∈ I, A /∈ J then

10: R := inhibit(A)←
∧
Bi∈I Bi ∧

∧
Cj∈(B\I) ¬Cj

11: end if
12: else
13: R := no change←

∧
Bi∈I Bi ∧

∧
Cj∈(B\I) ¬Cj

14: end if
15: AddRule(RI

vval′
, P )

16: end while
17: return P

To learn multi-valued systems using generalization, the algorithm starts with an empty set of

rules and will iteratively analyzes each transition (I, J) ∈ E. If there is a variable v that

changed its value between I and J , we infer a rule that represent this change:
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• If vval ∈ I, vval′ ∈ J, val 6= val′ LF1T infers a rule RI
change(vval′ )

:

RI
vval′

:= change(vval
′
)←

∧
Bi∈I

Bi

• otherwize LF1T infers a rule R:

R := no change←
∧
Bi∈I

Bi

The pseudo code of LF1T for multi-valued asynchronous system is given in Algorithm 23. The

way that rules are added into the program learned is the same as before (line 11, AddRule is

exactly Algorithm 26).

Algorithm 23 LF1T(E,P ) with generalization for asynchronous multi-valued systems
1: INPUT: a set E of pairs of Herbrand interpretations and an NLP P
2: OUTPUT: an NLP P

3: while E 6= ∅ do
4: Pick (I, J) ∈ E; E := E \ {(I, J)}
5: if I 6= J then
6: Let vval ∈ I, vval′ ∈ J, val 6= val′

7: R := change(vval
′
)←

∧
Bi∈I Bi

8: else
9: R := no change←

∧
Bi∈I Bi

10: end if
11: AddRule(R, P )
12: end while
13: return P

4.4.3.2 Learning using specialization

To learn using specialization, we also need to learn the change but the way its done is different.

The rules infered from the transitions are anti-rule, that can be consider as counter example.

Activation is a counter example of inhibition and inhibition is a counter example of Activation.

By definition, its not possible to have both activation and inhibition of the same variable from

a given state. Intuitively, we could think that we can iteratively learn activation (resp. inhi-

bition) by specialization: each time we observe an inhibition (resp. activation) we specialize

our knowledge. But, when a variable does not change its value, its also a counter example for

both activation and inhibition. And its possible that from the same state, we have in case 1 an

activation of a variable a and in case 2 the change of another variable b. If we specialize the

rule of activation of a by the case 2, we do not subsume the case 1 any more. So, learning with

specialization cannot be done in this way.
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Specialization works for synchronous system, because what we try to learn is always true, a rule

is always applied if it match the current state. But, in an asynchronous system, we try to learn

possibilities. We want to know when a variable can take the value true or false. A solution to

this problem is to learn the inverse of what we want. The idea is to learn, when the variable

cannot take the value true (resp. false). In this case, when we observe that the variable take

the value true, its a real counter example of when the variable take the value false. Here, the

extension to multi-valued variable is straight forward: For each variable values, we learn when

the variable cannot take this value. Each time we observe that a variable take the value v, we

specialize the rules that say that the variable cannot take the value v. At the end, we only need

to compute the inverse logic program.

Algorithm 24 LF1T(E) with specialization for asynchronous multi-valued systems

1: INPUT: a set E of pairs of multivalued interpretations and an NLP P
2: OUTPUT: An NLP P such that J = TP (I) holds for any (I, J) ∈ E.

3: P a NLP
4: P := ∅

5: // 1) Initialize P ′ with the most general logic program
6: for each atom vval ∈ B do
7: for each atom vval

′ ∈ B, val 6= val′ do
8: P := P ∪ {vval ← vval

′}
9: end for

10: end for
// Specify P by interpretation of transitions

11: while E 6= ∅ do
12: Pick (I, J) ∈ E; E := E \ {(I, J)}
13: if ∃vval ∈ J, vval /∈ I then
14: RI

vval := change(vval)←
∧

Bi∈I Bi

15: else// Self-transition (I, I)
16: R := no change←

∧
Bi∈I Bi

17: end if
18: P := Specialize(P ,R)
19: end while
20: return ¬P

For this algorithm we consider a multi-valued logic program representation. Like before, the

algorithm starts with fact rules and will iteratively analyzes each transition (I, J) ∈ E. If there

is a variable v that changed its value between I and J , we infer an anti-rule that represent this

change: LF1T infers an anti-rule RI
vval

:

RI
vval′

:= change(vval
′
)←

∧
Bi∈I

Bi

If I = J , LF1T also infers an anti-rule of no change, R:

R := no change←
∧
Bi∈I

Bi
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The pseudo code of LF1T for asynchronous multi-valued system is given in Algorithm 24. The

way that rules are added into the program learned is the same as before (line 18, Specialize is

exactly Algorithm 21).

The same method can be used to capture delayed influence of asynchronous system. Here, the

delay of the system needs to be known in advance (like in Section 4.1.2). Since asynchronism

leads to inconsistent traces, we cannot determine if an inconsistency is the consequence of a

delays or asynchronism.
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4.5 Uncertainty

In this section we extend the LFIT framework to learn probabilistic dynamics by proposing an

extension of LFIT for learning from uncertain state transitions. Where other works like [106]

perform inferences from a probabilistic logic program, what we do is inferring the rules of such

logic program. The programs infered by our new algorithm are similar to paraconsistent logic

program of [99]. The use of annotated atoms allows the learned programs to induce multiple

values for the same represented variable. It allows us to represent multi-valued models and

capture non-deterministic state transitions. Our semantics differs from previous work like [107].

Here, the authors consider probabilistic logic programs as logic programs in which some of the

facts are annotated with probabilities. But in our method, it is the rules that have probabilities

and they are independent.

4.5.1 Formalization

An non-deterministic system can be represented by a set of logic programs where the rules have

the following form:

R = varval ← varval11 ∧ · · · ∧ varvalnn (i, j)

where varval and varvalii are atoms (n ≥ 1), varval is the head of R again denoted h(R) and

i, j are natural numbers, i ≤ j. Let I be a multi-valued interpretation. R means that i times over

j, var takes the value val in the successor of I if b(R) ⊂ I .

Definition 4.22 (Non-deterministic successors). Let I be the multi-valued interpretation of a

state of a non-deterministic system S represented by a set of logic programs P . Let P ′ be a

logic program, one of the successors of I according to P ′ is

next(I, P ′) = {h(R)|R ∈ P ′, b(R) ⊆ I}

The set of successors of I in S according to P is

successor(I, P ) = {J |J ∈ next(I, Pi), Pi ∈ P}

Definition 4.23 (Successor Probability). Let I and J be the multi-valued interpretation of two

states of a probabilistic system PS represented by a set of set of rules S. The probability for

J to be the successor of I is 0 if J /∈ successor(I, S). Otherwize, let Si ∈ S, next(I, Si) =

{h(R)|R ∈ S, b(R) ⊆ I}. If ∃Si ∈ S such that J = next(I, Si), the probability for J to be the

successor of I is

∏
varval∈J

max(i/j), (R = varval ← b(R)(i, j)) ∈ P (I, Si)
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4.5.2 Algorithm

We now present LUST, an extension of LFIT for Learning from Uncertain State Transition.

LUST learns a set of deterministic logic programs. The main idea is that when two transitions

are not consistent we need two different programs to realize them. The first program will realize

the first transition and the second one will realize the second transition. The algorithm will

output a set of logic programs such that every transition given as input is realized by at least

one of those programs. The rules learned also provide the probability of the variable values in

the next state. The probability of each rule R = varval ← b(R)(i, j) is simply obtained by

counting how many transitions (I, J) it realizes (when b(R) ⊆ I and varval ∈ J), represented

by i, over how many transitions it matches (when b(R) ⊆ I), represented by j.

LUST

• Input: a set of pairs of interpretations E and a set of atoms B .

• Step 1: Initialize a set of logic programs P with one program P1 with fact rules for each

atom of B.

• Step 2: Pick (I, J) in E, check consistency of (I, J) with all programs of P :

• if there is no logic program in P that realizes (I, J) then

– copy one of the logic programs Pi into a P ′i and add rules in P ′i to realize (I, J).

– Use full ground resolution to generalize P ′i .

• Step 3: Revise all logic programs that realize (I, J) by using least specialization.

• Step 4: If there is a remaining transition in E, go to step 2.

• Step 5: Compute the probability of each rule of all programs Pi according to E.

• Output: P a set of multi-valued logic programs that realizes E.

The detailed pseudo-code of the LUST algorithm is given in Algorithm 25. The algorithm starts

with one logic program that contains all fact rules. Each input transition is analyzed one by one.

If no program can realize the observed trace, one is copied and rules are added into this copy so

that it realize the transition. The program that realizes T are then revised using least specializa-

tion like in previous version of the algorithm. The program that does not realize the transition

realizes another one previously observed that is not consistent with the new one because of the

non-determinism of the system. Those program cannot be specialized by this transition because

we will lost the information of the previous transition it realizes. Finally, the algorithm will

output a set of logic program, each one of them realizes some traces of O and all traces of O are

realized by at least one of the program.
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Algorithm 25 LUST(E,B)
1: INPUT: a set of pair of interpretations E and a set of atoms B
2: OUTPUT: P a set of logic programs

3: E′ := ∅
4: P := ∅

// Initialize P with one program with the most general rules
5: P1 := ∅
6: for each varval ∈ B do
7: Pi := Pi ∪ {varval ←}
8: end for
9: P := P ∪ P1

// 2) Revise P to realize every transition
10: while E 6= ∅ do
11: Pick (I, J) ∈ E; E := E \ {(I, J)}
12: // 2.1) Check if (I,J) is realizable
13: for each logic program Pi of P do
14: realize I J := true
15: for each varval ∈ J do
16: if 6 ∃R ∈ Pi, b(R) ⊆ I, h(R) ∈ J then
17: realize I J := false
18: end if
19: end for
20: if realize I J = true then
21: break
22: end if
23: end for

// 2.2) construct a logic program that realize (I, J)
24: if realize I J = false then
25: for each varval ∈ J do
26: R := varval ←

∧
Bi∈I Bi(0, 0)

27: choose a Pi ∈ P
28: P ′i := Pi
29: P := AddRule(P ′i , R,B)
30: end for
31: end if

// 3) revise logic programs that realize (I,J)
32: for each logic program Pi of P do
33: for each varval ∈ J do
34: for each varval

′ ∈ B, val′ 6= val do
35: RI

varval′ := varval ←
∧
li∈I li(0, 0)

36: Pi := Specialize(Pi, RI
varval′ ,B)

37: end for
38: end for
39: end for

40: E′ := E′ ∪ (I, J) // 4) Remember (I,J) and continue with other transitions
41: end while

// 5) Compute the likelihood of each rules
42: for each logic program Pi of P do
43: for each rule R ∈ Pi such that h(R) = varval ← b(R)(i, j) do
44: for each (I, j) ∈ E′ do
45: if b(R) ⊆ I then
46: R := varval ← b(R)(i, j + 1)
47: if h(R) ∈ J then
48: R := varval ← b(R)(i+ 1, j)
49: end if
50: end if
51: end for
52: end for
53: end for
54: return P
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Algorithm 26 AddRule(R,P ) (with multi-valued ground resolution)
1: INPUT: a rule R and a NLP P

2: // 1) Check subsumptions
3: for each rule RP of P do
4: if R is subsumed by RP then
5: return P
6: end if
7: if R subsumes RP then
8: P := P \ {RP }
9: end if

10: end for
11: // 2) Produce generalizations
12: for each varval ∈ R do
13: if R can be generalized by P on varval then
14: generalized := true
15: P := AddRule(R′, P )
16: end if
17: end for
18: if generalized = true then
19: return P
20: else
21: return P ∪R
22: end if

Algorithm 27 specialize(P , R, B) : specialize P to avoid the subsumption of R

1: INPUT: a logic program P and a rule R
2: OUTPUT: the least specialization of P by R.

3: conflicts : a set of rules
4: conflicts := ∅

// Search rules that need to be specialized
5: for each rule RP ∈ P do
6: if RP subsumes R then
7: conflicts := conflicts ∪RP

8: P := P \RP

9: end if
10: end for

// Revise the rules by least specialization
11: for each rule Rc ∈ conflicts do
12: for each literal varval ∈ b(R) do
13: if varval /∈ b(Rc) then
14: for each varval

′ ∈ B, val′ 6= val do
15: R′c := (h(Rc)← (b(Rc) ∪ varval

′
))

16: if P does not subsume R′c then
17: P := P\ all rules subsumed by R′c
18: P := P ∪R′c
19: end if
20: end for
21: end if
22: end for
23: end for
24: return P
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4.5.3 Learning Probabilistic Action Models

In this section we present the application and the evaluation of the LUST algorithm to learn

action model in robotic applications. Here we present a conjoint work with David Martinez

who was internship student at Inoue lab from February to August 2015. Our approach learns an

action model encoded as a set of planning operators. Each operator describes how the value of

a predicate changes based on a set of preconditions given that an action is executed. We present

a novel method to learn in two levels as shown in Fig. 4.7.

Input observations
Symbolic

interpretation
Interpretation

transitions

LFIT

Grounded

transitions

Symbolic

transitions

Interpretation

transitions

Probabilistic

propositional rules

Symbolic planning

operators

Probabilistic

propositional rules

Operator

optimization
Best RDDL operators

FIGURE 4.7: Overview of the learning framework. The modules that interact with planning
data and operators are in the blue rectangle on the left, while the modules related to logic pro-
graming are included inside the red rectangle on the right. The input of the method are grounded
transitions, which are then converted to symbolic transitions to generalize between different
objects. To obtain rule candidates, LFIT requires that the symbolic transitions are represented
with propositional atoms. Finally, after rule candidates are obtained, they are transformed to

planning operators to select the best set of operators.

On the right, our framework is used to generate rules. Given a set of state transitions of a system,

it can learn a normal logic program that captures the system dynamics. The resulting rules are all

candidates that have to be considered to select the best planning operators. On the left, the data is

generalized between different objects by using a relational representation, and an optimization

method is used to select the best subsets of planning operators that explain input transitions

while maintaining generality. The dependency relations between the planning operators are

used to efficiently select the best candidates. Our method is designed to learn RDDL-like [108]

operators, where each variable is updated separately based on a set of preconditions. To that

end, in this section we present the following novel improvements:

• The integration of logic programming to efficiently limit the number of rule candidates

with a relational representation that provides better generalization, and an optimization

method to select the best subsets of planning operators.

• An optimization method that makes use of the dependency relation between rules to se-

lect subsets of planning operators efficiently. It uses a score function that balances the
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likelihood of the operators and their generality. Moreover, the confidence is also used so

that generality is strongly preferred for uncertain estimations.

4.5.3.1 Integration of Logic Programming and Planning Domains

In this section we describe the formalization used to represent planning operators, as well as

the data conversions needed to learn symbolic operators from grounded transitions while using

propositional logic programming.

4.5.3.2 Planning Model

Although LUST uses a propositional representation, the planning model uses a relational repre-

sentation to provide a better generalization between different states. Relational domains repre-

sent the state structure and objects explicitly. These domains are described by using a vocabulary

of predicates P and actions A, and a set of objects Cπ. Predicates and actions take objects as

arguments to define their grounded counterparts.

Example 4.11. Let on(X,Y) be a symbolic predicate, and { box1,box2,box3} be a set of objects.

Three possible groundings of the symbolic predicate on(X,Y) with the given atoms are on(box1,

box2), on(box1, box3 ) and on(box3, box1).

A grounded predicate or action is equivalent to an atom. In a planning domain, a planning

state s is a set of grounded predicates s = {p1, p2, ..., pn} that is equivalent to an Herbrand

interpretation.

Our planner operators represent a subset of RDDL domains [109]. For each variable, we define

the probability that it will become true in the next state based on a set of preconditions. In

contrast to the full RDDL specification, these preconditions can only consist of an action and

a set of predicates. Thus we define a planning operator as a tuple o = 〈opval , oact, oprec, oprob〉
where:

• opval is a predicate p whose value can change to val by applying the operator. It is equiv-

alent to the head of a logic rule.

• oact is the action that has to be executed for the operator to be applicable.

• oprec is a set of predicates that have to be satisfied in the current state so that the planning

operator is applicable. It is equivalent to the body of a logic rule.

• oprob is the probability that pval will be true.
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Note that planning operators use a relational representation (i.e. symbolic predicates), while

rules learned by LUST are propositional (i.e. annotated atoms, which are equivalent to grounded

predicates). Moreover, a symbolic planning operator can be grounded by replacing each variable

by an object.

4.5.3.3 Data Representation

To have a more general and compact model, we are using a relational representation at the plan-

ning level. The input of our method consists of state transitions that are tuples t = 〈s, act, s′〉
where s and s′ are the states before and after executing the action act. The states consist of

sets of grounded predicates, and act is a grounded action. On the other hand, the output is a

set of symbolic (i.e. non-grounded) planning operators. Therefore, our method transforms ini-

tial grounded data to symbolic planning operators. Moreover, LUST works with propositional

atoms, so a transformation from symbolic predicates to atoms and back to symbolic predicates is

also needed. Figure 4.7 shows the needed data conversions, which are explained in more detail

below.

Transform grounded transitions to symbolic transitions:

• Input: a set of grounded transitions T = [t1, t2, ..., tn].

• For each transition t = 〈s, act, s′〉:

– Take every argument χ of the action act.

– Substitute χ for a default symbolic parameter in s, act, and s′.

– Create a new transition t′ with the symbolic predicates in s and s′ and the symbolic

action act.

– Add the new transition t′ to T ′.

• Output: set of symbolic transitions T ′.

Transform a symbolic transition to an interpretation transition :

• Input: a symbolic transition t = 〈s, act, s′〉.

• Assign an atom to each predicate in s, act and s′.

• I = atoms that correspond to s.

• Add act as an atom in I that represents the action.



Chapter 4. Framework Extensions 112

• J = atoms that correspond to s′.

• Output: interpretation transition (I, J).

To transform a planning symbolic transition to an interpretation transition, a labeled atom that

encodes the action is added to the body of the interpretation transition. As each transition has

exactly one action, a multi-valued variable represents it more efficiently than boolean, other-

wise every action would have to be represented as different variables with only one being true.

Moreover, each symbolic predicate value is represented by one labeled atom. After the logic

programs are generated, the labeled atoms are translated back to symbolic predicates by using

the same conversion.

Transform a logic program to a set of planning operators:

• Input: a logic program P .

• For every rule R ∈ P such that h(R) = varval ← b(R)(i, j), a planning operator o is

created so that:

– opval = varval.

– oact = the action in the atoms of b(R).

– oprec = the set of atoms in b(R) that represent predicates.

– oprob = i/j.

– Add o to O

• Output: set of planning operators O.

4.5.3.4 Selecting the Set of Planning Operators

In this section we present the method to select the best subset of probabilistic planning operators

by using the set of logic programs generated by LF1T. First, the requirements that the planning

operators have to satisfy are presented. Afterwards, we explain the preferences to decide which

are the best planning operators. Finally, the method to obtain the desired planning operators is

described.

4.5.3.5 Planning Operators Requirements

Probabilistic planners require that only one planning operator can be applied in each state-action

pair. Therefore the planning model has to be defined with a set of non-conflicting planning

operators, so the planner can always decide which operator to apply for each state-action pair.
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Definition 4.24 (Conflicting planning operators). Let o1 and o2 be two planning operators that

represent the same action o1,act = o2,act and change the same predicate o1,pval = o2,pval with

different probabilities o1,prob 6= o2,prob. A conflict exists between both planning operators if

∃s | o1,prec ⊂ s, o2,prec ⊂ s.

4.5.3.6 Score Function

LUST provides the minimal set of rules that describe all possible transitions. However, the best

subset of non-conflicting planning operators has to be selected to create the model. To decide

which are the best set of operators the algorithm uses a score function. The algorithm prefers

operators with a high likelihood (i.e. that can successfully explain the state transitions), but also

has a regularization term to avoid overfitting to the training data. The regularization is based on

the number of planning operators and preconditions in those operators, so that general operators

are preferred when the likelihood of both is similar. This regularization penalty is bigger when

there are few training transitions to estimate each operator, as general operators are preferred to

poorly estimated specific ones. On the other hand, the regularization penalty decreases as our

estimate improves with more transitions because the method can be more confident about the

operators. The following functions are used to define the score function.

• The likelihood P (t|O) = P (s′|s, act, o) | (o ∈ O, oprec ∈ s, oact = act) is the probabil-

ity that the transition t is covered by the set of planning operators O.

• The penalty term Pen(O) = |O|+ 1
|O|
∑

o∈O |oprec| is the number of planning operators

plus the average number of preconditions that they have.

• The confidence in a planning operator Conf(O, T ) is bounded by using the Hoeffding’s

inequality. The probability that our estimate ôprob is accurate enough |ôprob − oprob| ≤ ε

with a number of samples |T | is bounded by Conf(O, T ) ≤ 1− 2e−2ε
2|T |.

Finally, the proposed score function is defined as

S(O, T ) =
1

|T |

(∑
t∈T

P (t|O)

)
+ α

Pen(O)

Conf(O, T )
(4.2)

where α is a scaling parameter for the penalty term. Also note that Conf(O, T ) ' 1 when the

number of input transitions is large, so the penalty term will always be present to ensure general

operators are preferred.
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FIGURE 4.8: Example of a parent graph. In each node, the planning operator preconditions are
shown. Leaves are the nodes painted in blue.

4.5.3.7 Selecting the Best Planning Operator Subset

In this section we present the algorithm used to select the subset of non-conflicting planning

operators that maximizes the score function. To do it efficiently we make use of the dependency

relations between operators by using the parent relation graph defined below.

Definition 4.25 (Parent relation). Let o1 and o2 be two planning operators that represent the

same action o1,act = o2,act and the same effect o1,pval = o2,pval . o1 is a parent of the operator

o2 if o1,prec ⊂ o2,prec.

Definition 4.26 (Parent graph). The parent graph GO of a set of planning operators O =

{o1, ..., on} is a directed graph with arcs (oi, oj) when oi is parent of oj and |oj,prec|−|oi,prec| =
1. Figure 4.8 shows an example of a parent graph. We will call leaves L(GO) of the graph all

nodes that do not have a child.

The parent graph orders the rules in levels that represent the generality of the operator: the

less predicates in the preconditions the more general the operator is. This graph provides two

advantages: generalizing operators is easier as we only have to follow the arcs, and it reduces

the number of conflicts to check because general operators won’t be checked if other more

specific operators that represent the same dynamics exist. An optimal solution can be obtained

through backtracking, but as it is computationally intensive, we present the greedy approach

that provides similar experimental results and can be applied efficiently in difficult domains

with many input transitions.

The first step to select the set of planning operators is to create the parent graph. Afterwards,

two algorithms are applied iteratively until no better sets of planning operators can be found.

The first algorithm prunes all conflicting leaf operators, leaving only the subset of leaves with

the highest score. The second one tries to generalize leaf operators, and removes them from the

tree if it can find a better and more general subset.
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Prune conflicting leaves:

• Input: Parent graph GO of the set of operator candidates O that represent one action.

• While leaf nodes L(GO) are conflicting, repeat:

– Create an undirected graph Gconflict that represents the conflicts between L(GO).

– Calculate the score for each non-conflicting subset in Gconflict.

– Remove all leaves from GO with the exception of the subset with the best score.

• Output: Parent graph G′O with non-conflicting leaves.

Generalize operators:

• Input: Parent graph G′O with non-conflicting leaves.

• For each leaf parent p | ∃(p, l) ∈ G′O, l ∈ L(G′O) do:

– Create a new set of operators with the leaves O′ = L(G′O).

– Add p to O′ and remove its children leaves l | ∃(p, l) ∈ G′O, l ∈ L(G′O).

– Calculate score S(O′, T ).

• If the best parent p improved the score:

– Remove l | ∃(p, l) ∈ G′O, l ∈ L(G′O) from G′O.

• Output: Parent graph G′O with better generalization.

4.5.3.8 Experiments

In this section we provide an experimental evaluation of our approach by learning two domains

of the 2014 International Probabilistic Planning Competition (IPPC). The experiments use tran-

sitions t = 〈s, act, s′〉 generated by randomly constructing a state s, randomly picking the ar-

guments of the action act, and then applying the action to generate the state s′. The distribution

of samples is biased to guarantee that half of the samples have a chance to change the state. To

measure the quality of the learned models, the errors shown represent the differences between

the learned operators and the ground truth ones. For each incorrect predicate in an operator

preconditions, the number was increased by 1.

The left plot in Fig. 4.9 shows the results obtained in the Triangle Tireworld domain. In this

domain, a car has to move to its destination, but it has a probability of getting a flat tire while

it moves. The domain has 3 actions. A “Change Tire” action that has only one precondition, a
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FIGURE 4.9: Results of learning the Triangle Tireworld domain and the Elevators domain from
IPPC 2014. The results shown are the means and standard deviations obtained from 10 runs.

The number of training transitions per action are shown.

“Load Tire” action that has 2 preconditions to change one predicate, and a “MoveCar” action

that changes 3 predicates based on 3 different preconditions. The results show that easy actions

can be learned with just a few transitions, while very complex actions require 100 transitions

until average errors below 1 are obtained.

The right plot in Fig. 4.9 shows the results obtained in the Elevators domain. In this domain, we

are only learning the actions that interact with the elevators, and not the dynamic effects related

to people using them. The “openDoorGoing*” and “closeDoor” actions are easy to learn, but the

“moveCurrentDir” action has two effects with 3 different preconditions each, and another two

effects with 4 preconditions. Therefore, to learn successfully the dynamics of “moveCurrentDir”

a large number of input transitions is required.

4.5.4 Conclusions

We have presented a new approach to learn planning operators. In contrast to previous ap-

proaches, it learns the dynamics of every predicate independently, and thus can be applied to

learn RDDL domains. The presented approach can find good sets of planning operators effi-

ciently, as it combines logic programming to restrict the set of candidates, and then the parent

relations between operators are used to quickly prune bad candidates until the desired subset of

operators is found (i.e. a set that generalizes as much as possible while explaining well enough

the input transitions).



Chapter 5

Related Works and Comparaison

In this chapter, we present and discuss about related works that share goals and methods with our

proposed framework. Section 5.1, presents theses works, here we describe what other researcher

groups have done recently in our research field. Section 5.2, provides a detailed comparison

with these works. Here, we show the advantages and weaknesses of our methods regarding

these existing works by discussing the possibility and limits of our methods.

117
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5.1 Related Work

5.1.1 Learning from Interpretations

Learning from interpretations [110–112] has been an ILP framework to produce a program from

its interpretations. Learning from interpretations considers examples simply as single interpre-

tations that are supposed to be models of an output program.

In the setting of [112, 113], it is assumed that each example is a small database (or a part of a

global database), and local coverage tests are performed. This allows them to use algorithms

based on local coverage tests that are usually linear in the number of examples. And, as each

example can be loaded independently of the other ones, there is no need to use a database system

even when the whole data set cannot be loaded into main memory.

When learning from interpretations, it is implicitly assumed that each example is completely

specified. Indeed, in propositional logic, all propositions should be either true or false. As a

consequence, missing values cannot be represented in this framework. It has therefore been

suggested by [114] to represent examples by partial interpretations. In a partial interpretation,

certain ground atoms have an unknown truth-value. Alternatively, [115] employs a second-order

logic for dealing with this situation.

ProbLog [58, 116] is a probabilistic extension of Prolog. A ProbLog program defines a dis-

tribution over logic programs by specifying for each clause the probability that it belongs to a

randomly sampled program, and these probabilities are mutually independent. In [117], the au-

thors introduce a parameter learning algorithm from interpretations for ProbLog: LFI-ProbLog.

LFI-ProbLog constructs a propositional logic formula for each interpretation that is used to es-

timate the marginals of the probabilistic parameters.

5.1.2 Learning Probabilistic Logic Program

Probabilistic inductive logic programming (or statistical relational learning) is the integration of

probabilistic reasoning with first order logic representations and machine learning [118]. There

is a lot of work lying at the intersection of probability theory, logic programming and machine

learning [119–123]. This field of research is known under the names of statistical relational

learning [124], probabilistic logic learning [125], or probabilistic inductive logic programming

[118]. This field has already contributed a rich variety of valuable formalisms and techniques,

including probabilistic Horn abduction [119], PRISMs [126], stochastic logic programs [122,

127, 128], Bayesian logic programs [129, 130], and Logical Hidden Markov Models [131].
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5.1.3 Learning Action Theories

Abductive action learning has been studied based on abductive event calculus [132], an abduc-

tive extension of event calculus, and has been extended for applications to planning, e.g., [133].

Moyle [134] uses an ILP technique to learn a causal theory based on event calculus [49], given

examples of input-output relations. In this work, a complete initial state is required as an input

and a complete set of narrative facts is computed in advance. Otero [135] uses logic programs

based on situation calculus [48], and considers causal theories represented in logic programs.

In this work, the truth value of a goal fluent is assumed to change only once between two time

points.

These previous works need either frame axioms or inertia rules in logic programs. The former

causes the frame problem and the latter requires induction in nonmonotonic logic programs.

Inoue et al. [136] induce causal theories represented in an action language given an incomplete

action description and observations. But it requires an algorithm to learn finite automata to

compute hypotheses, which may search the space of possible permutations of actions. Tran and

Baral [137] define an action language which formalizes causal, trigger and inhibition rules to

model signaling networks, and learn an action description in this language, given a candidate

set of possible abducible rules. Active learning of action models is proposed by Rodrigues et al.

[138] in a STRIPS-like language. Probabilistic logic programs to maximize the probabilities of

observations are learned by Corapi et al. [139], by employing parameter estimation to find the

probabilities associated with each atom and rule.

Works on learning action theories suppose applications to robotics and bioinformatics. In many

action theories, one action is assumed to be performed at a time, so its learning task becomes

sequential for each example sequence.

5.1.4 Reinforcement Learning

In some robotic systems, such as those that involve complex manipulation sequences, the deci-

sion maker has little input data and long periods of time to process it, because the actions take

a long time to execute. A good approach for learning such tasks is model based reinforcement

learning [140]. This approach allows a model to be obtained that represents the actions that

the robot can execute. The model is generated from the experiences obtained when the robot

executes the actions.

Work like [141], took profit of this representation to speed-up the learning process by combining

relational reinforcement learning with active learning. Active learning is based on a free mix of

exploration and instruction by an external teacher, and may be active in the sense that the system

tests actions to maximize learning progress and asks the teacher if needed. Such approach is of
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common use in robotic learning [142–145]. In [141], a relational model based on rules is learned

and used to plan the best actions to do next. Furthermore, this model is also used to guide the

teacher who helps the robot to learn the tasks.

5.1.5 Learning Nonmonotonic Programs

Learning NLPs has been considered in ILP, e.g., [146], but most approaches do not take the LFI

setting. The LFI setting in learning NLPs is seen in Sakama [147]. Most approaches on learning

NLPs is usually based on the stable model semantics [148].

The merit of the stable model semantics is that we can use state-of-the-art answer set solvers for

computation of stable models. In [149], transition rules of Cellular Automata are represented

in first-order NLPs where rules have a time argument. In this case, each NLP with the time

argument becomes acyclic so the supported models and stable models coincide, and thus we can

use answer set solvers for simulation of a CA. However, each answer set becomes infinite unless

a time bound is set.

5.1.6 Learning Neural Networks

In [150], d’Avila Garcez and Zaverucha concentrate on the problem of extraction of symbolic

knowledge from trained neural networks. The authors show that, for an NLP P , there exists a

neural network N with bipolar semi-linear neurons that computes the immediate consequence

operator TP for P . This network N can also perform inductive learning from examples effi-

ciently, assuming P as background knowledge and using the standard back-propagation learn-

ing algorithm. This method extracts knowledge directly from the internal part of the neural

network. In [151], Lehmann et al. propose several algorithms to construct a logic program from

a neural network. In this paper, they propose algorithms to construct an NLP from a mapping of

interpretations of the input/output of a neural network.

In [152], the authors propose the Connectionist Inductive Learning and Logic Programming

System (C − IL2P ). C − IL2P is a massively parallel computational model based on artifi-

cial neural networks. It integrates inductive learning from examples and background knowledge,

with deductive learning from Logic Programming. Starting with the background knowledge rep-

resented by a propositional logic program, it applies a translation algorithm to generate a neural

network that can be trained with examples. The authors propose to explain the results obtained

by their refined network by extracting a revised logic program from it. Moreover, the neural net-

work computes the stable model of the logic program inserted in it as background knowledge,

or learned with the examples, thus functioning as a parallel system for Logic Programming. As

a massively parallel non-monotonic learning system, C− IL2P has interesting implications for
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the problem of Belief Revision. The background knowledge together with the set of examples

can be inconsistent, and one needs to investigate ways to detect and treat inconsistencies in the

system, viewing the learning process as a process of revision.

5.1.7 Learning Boolean Networks

Learning the dynamics of Boolean networks has been considered in Bioinformatics. Liang

et al. [153] proposed the REVEAL algorithm, which uses mutual information in information

theory as a measure of interrelationships. In REVEAL, the maximum number of arguments

of each Boolean function is assumed to deal with exponential growth of computational time.

Akutsu et al. [154] analyze the problem of identifying a genetic network from the data obtained

by multiple gene disruptions and overexpressions with respect to the number of experiments.

They show algorithms for identifying the underlying genetic network by such experiments, but

their network model is a static Boolean network model in which expression levels of genes

are statically determined, and is hence different from the standard Boolean network in which

expression levels of genes change synchronously. Pal et al. [155] constructs Boolean networks

from a partial description of state transitions. This method is considered as a method to complete

missing transitions in the state transitions table. However, Boolean functions are not constructed

for each node in [155].

In [156], Klarner et al. propose a method to find seeds and symbolic steady states [157] for

model reduction and estimation of the number of cyclic attractors. Symbolic states are partial

states and can be consider as a logic rule. The seeds are set of symbolic states and can be

regarded as logic programs. The authors provide an optimization-based method for computing

these seeds by exploiting the prime implicant graph of the Boolean network. This graph captures

properties of fundamental importance for the network behavior. It permit to analyze certain

aspects of asymptotic dynamics without having to calculate the state transitions graph.

Akutsu et al. [158] guess unknown Boolean functions of a Boolean network whose network

topology is known. This corresponds to learning Boolean networks with the bias of neighbor

nodes. In [158], only acyclic networks are considered, and the main focus is a computational

analysis of such problems. Notably, all these previous works do not use ILP techniques.

Tamaddoni-Nezhad et al. [159] combine abduction and induction to learn rules of concentration

changes of a metabolite caused by changes in other metabolites in a metabolic pathway. This

method gives an empirical way to learn some causal effects, but its application domain does not

deal with dynamical effects of feedbacks, and a learned program does not describe complete

transitions of the dynamical system.
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Inoue et al. [160] complete causal networks by meta-level abduction. A biological network can

be constructed with this method for an incomplete structure, but the abductive method does not

consider dynamical behavior of the network and cannot deal with negative feedbacks.

5.1.8 Learning Petri Nets

In [82], Srinivasan and Bain present a framework to learn Petri nets from state transitions.

Petri nets can handle quantities of entities but their update schemes are different from those

of Boolean networks. Here, a hierarchical Petri net can be obtained by iterative applications of

their algorithm.

One of the domain of application of reinforcement learning is robotics. In some robotic systems,

such as those that involve complex manipulation sequences, the decision maker has little input

data and long periods of time to process it, because the actions take a long time to execute.

A good approach for learning such tasks is model based reinforcement learning [140]. This

approach allows a model to be obtained that represents the actions that the robot can execute.

The model is generated from the experiences obtained when the robot executes the actions.
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5.2 Comparison

In [50, 51], state transitions systems are represented with logic programs, in which the state of

the world is represented by an Herbrand interpretation and the dynamics that rule the environ-

ment changes are represented by a logic program P . The rules in P specify the next state of the

world as an Herbrand interpretation through the immediate consequence operator (also called

the TP operator) [42, 161].

Based on this ideas, we propose a framework to learn logic programs from traces of interpre-

tation transitions: Learning From Interpretation Transitions (LFIT). The learning setting of this

framework is as follows. We are given a set of pairs of Herbrand interpretations (I, J) as pos-

itive examples such that J = TP (I), and the goal is to induce a normal logic program (NLP)

P that realizes the given transition relations. As far as we know, this concept of learning from

interpretation transition (LFIT) has never been considered in the ILP literature.

5.2.1 Computational learning theory

LFIT is different from any method to learn Boolean functions that has been developed in the

field of computational learning theory [162]. LFIT learns dynamics of systems, while the con-

ventional learning setting is not involved in dynamics. More generally, learning Boolean func-

tions in the field of computational learning theory [162] is different from LFIT, since LFIT
learns dynamics of systems as a set of Boolean functions appearing in Boolean networks, while

the conventional learning setting is not involved in dynamics and often learns single Boolean

functions. Similar to LFI, computational learning theories usually do not learn dynamics of

systems in general.

5.2.2 Learning from interpretations

A closer setting can be found in learning from interpretations (LFI) [163] (Section 5.1.1), in

which positive examples are given as Herbrand models of a target program, but again the goal

of LFI is not to learn dynamics of systems. LFIT is different from the conventional LFI by

De Raedt [163]. The setting for De Raedt’s LFI learns a clausal theory, i.e., a set of clauses,

instead of an NLP that is a set of rules of the form (2.1). A clause is simply a disjunction of

literals, while a positive literal and a negative literal in the body are clearly distinguished in a

rule of an NLP. Other than this syntactical difference, the algorithm of conventional LFI can be

used to construct a clausal theory from our input. But, as stated in Section 5.1.1, LFI considers

examples simply as single interpretations that are supposed to be models of an output program,

hence is different from LFIT, which takes pairs of interpretations as its input. We actually see
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that LFI is a special case of LFIT. That is, LFI can be constructed from LFIT as follows. Since

I ∈ 2B is a model of P iff TP (I) ⊆ I , we can classify each example (I, J) ∈ 2B × 2B for

LFIT into a positive example for LFI if J ⊆ I or a negative example for LFI otherwise. The

information of J is only used to check if I is a model or not in this conversion.

In [164], the authors investigate the issue of scaling up inductive logic programming within

the setting of learning from interpretations. They propose two alternative implementations of

the Tilde system [165]: Tildeclassic, which loads all data in main memory, and TildeLDS,

which loads the examples one by one. Like TildeLDS, our firsts implementations of the LFIT
framework learn iteratively by considering input examples one by one. But again, the goal of

LF1T is to learn the dynamics of systems, which is not the case of the Tilde system.

In [117], the authors introduce a parameter learning algorithm from interpretations for ProbLog:

LFI-ProbLog. LFI-ProbLog constructs a propositional logic formula for each interpretation

that is used to estimate the marginals of the probabilistic parameters. We also extended our

framework to learn probabilistic logic program (Section 4.5). But where LFI-ProbLog infer the

probabilities of the composition of a state, LFIT infers the probabilities of the composition of

a next state regarding the current state: the probabilities amoung dynamical properties; about

transition. Typically, the rules outputed by the probabilistic learning algorithms of LFIT will

provide the probability for a variable to take a specific value in the next state, according to the

values of the other variable (in both current and next state).

5.2.3 Learning action theories

Learning action theories [134–139] (section 5.1.3) can be considered to share the common goals

with LFIT on learning dynamics. The goal of learning action theories is not exactly the same

as that of LFIT. In particular, LFIT can learn dynamics of systems with positive and negative

feedbacks, which has not been considered much in the literature. In many action theories, one

action is assumed to be performed at a time, so its learning task becomes sequential for each

example sequence. For example, learning action theories by [135] assumes a sequence of actions

in a narrative. In LFIT, on the other hand, every rule is fired as long as its body is satisfied and

update is synchronously performed at every ground atom. Moyle [134] uses an ILP technique

to learn a causal theory based on event calculus [49], given examples of input-output relations.

But in this work, a complete initial state is required as an input and a complete set of narrative

facts is computed in advance, and thus observations handled in our work cannot be explained.
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5.2.4 Reinforcement learning

As discussed in section 5.1.4, one of the domain of application of reinforcement learning is

robotics. A good approach for learning robot tasks is relational reinforcement learning. In

[141], where a relational model based reinforcement learning approach is presented, the model

used is based on rules that are learned and used to plan the robot actions as well as to guide the

teacher who helps the robot to learn the tasks. In such approach, LFIT methods can be used by

to learn this model.

In Džeroski et al. [166]’s relational reinforcement learning (RRL) is a learning technique that

combines reinforcement learning with ILP. As in (non-relational) reinforcement learning, RRL

can take into account feedbacks from the learning process as rewards: each time an observation

is received, an action is chosen so that the state is changed with the reward associated. The goal

of RRL is then to find a suitable sequence of transitions that maximize rewards. The merit to use

ILP in RRL is to have a more expressive representation in states, actions and Q-functions. With

a relational representation, the states, actions, and transitions are not represented individually.

Entities of the same predefined type are grouped and their relationships are considered. The

generalization provided by those models reduce the learning complexity. Contrary to [166], that

can consider feedbacks in the learning process as rewards, LFIT learns how such feedbacks

can be represented logically by state transitions rules. As the motivation of RRL is different

from that of LFIT, our goal is not to find an optimal strategy for state transitions but to learn the

system’s dynamics itself. As for the treatment of positive and negative feedbacks, LFIT learns

how such feedbacks can be represented by logic programs.

5.2.5 Learning Nonmonotonic Programs

Learning NLPs rather than definite programs has been considered in ILP, e.g., [146], but most

approaches do not take the LFI setting. Our learning framework is different from these previous

works [146, 147]. From the application point of view, NLPs are often used in planning and

robotics domain. Hence, the difference between previous work on learning action theories and

LFIT is inherited to the comparison between previous setting of learning NLPs and LFIT. From

the semantical viewpoint, there is an additional important difference: previous work on learning

NLPs is usually based on the stable model semantics [148], but LFIT learns NLPs under the

supported model (or supported set) semantics [51]. The merit of the supported model semantics

is that we can omit the time argument from a program and make it simpler. Boolean networks

can be represented in propositional NLPs [50], but still we can simulate state transitions by

watching the orbits of the TP operator. More importantly, attractors can be directly obtained

with the supported model or the supported set semantics. This is not possible using the stable

models of NLPs (without the time argument), since they ignore all positive feedback loops in the
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dynamics [50]. The supported models of an NLP can also be obtained as the models of Clark’s

completion of the program using modern SAT solvers. If we use answer set solvers for an NLP

with the time argument, we can simulate the dynamics of the corresponding Boolean networks,

but need to analyze each answer set to know when the same state is encountered twice by tracing

the orbit from time to time.

Learning with Neural Networks:

In [150], the authors propose a method to extract symbolic knowledge from trained neural net-

works. Given a set of input/output of a neural network, LFIT could be used to learn a logic

program that capture the dynamic of the neural network. In [150], knowledge is extracted from

the topology (inside) of the system where LFIT learn from its behavior (outside). This method

suppose that the internal part of the neural network is accessible.

In [152], the authors propose the Connectionist Inductive Learning and Logic Programming

System. C − IL2P is a massively parallel computational model based on artificial neural net-

works. The authors propose to explain the results obtained by their refined network by extracting

a revised logic program from it. Moreover, the neural network computes the stable model of the

logic program inserted in it as background knowledge, or learned with the examples, thus func-

tioning as a parallel system for Logic Programming. LFIT can also start with a logic program as

background knowledge and performs inductive learning from trace of state transitions that can

be seen as training examples. But, the background knowledge together with the set of examples

can be inconsistent, and one needs to investigate ways to detect and treat inconsistencies in the

system, viewing the learning process as a process of revision. LFIT share the same concerns, to

successfully learn a Boolean network from its states transition, LFIT can only infer consistent

rules, i.e the state transitions have to be consistent.

In [151], Lehmann et al. propose several algorithms to construct a logic program from a neural

network. Here, they propose algorithms to construct an NLP from a mapping of interpretations,

whose goal is similar to that of LFIT. Although there are some differences, one of their re-

duction method, called q-subsumption, corresponds to the ground resolution (Definition 3.1) of

LF1T. The main difference is that LF1T reduces the NLP iteratively, while in [151] all inter-

pretations are analyzed in a batch. Then, a large program cannot be handled in such a reduction

method, and the iterative reduction done by LFIT will be much more efficient in both memory

use and run time. The first algorithm they propose infer rules from interpretation transition in

the same maner as LF1T with generalization does. All infered rules are stored in one set S and

all generalisation of the rule of S are computed. This method will always be slower than LF1T,

since such an extrem case cannot append in our algorithms: all generalizations are made each

time we learn a new rule, thus, the program learn cannot be that big. The authors also provide

a greedy algorithm to perform the same task. This method iterate on all possible rules, starting

by the most general ones it keep the ones that are consistent with the set of interpretations. It
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can seems prety similar to our method based on minimal specialization. But again, many more

rules will be generated with their method and these rules will be compared with much more

transitions. Beside the performance issue and the non-iterative character of this method, it is the

most related work.

5.2.6 Learning Probabilistic Logic Program

We extended the LFIT framework to learn probabilistic dynamics by proposing an extension of

LFIT for learning from uncertain state transitions. Where work like [106] perform inferences

from a probabilistic logic program, what we do is inferring the rules of such logic program.

The programs infers by our new algorithm is similar to paraconsistent logic program of [99].

The use of annotated atoms allows the programs learned to induce multiple values for the same

represented variable. It allows us to represent multi-valued model and capture non-deterministic

state transitions. Our semantic differs from previous work like [107]. Here, the authors consider

probabilistic logic programs as logic programs in which some of the facts are annotated with

probabilities. But in our method, its the rules that have probabilities and they are independents.

5.2.7 Learning Boolean Networks

An intended direct application of LFIT is learning transition or update rules in dynamical sys-

tems such as Boolean networks [75] and cellular automata [76], which have been respectively

used as mathematical models of genetic networks and complex adaptive systems. It has been

observed that the TP operator for an NLP P precisely captures the synchronous update of the

corresponding Boolean network, where each gene and its regulation function correspond to a

ground atom and the set of ground rules with the atom in their heads, respectively [50]. Then,

given an input Herbrand interpretation I , which corresponds to a gene activity profile (GAP)

with gene disruptions for false atoms in I and gene overexpressions for true atoms in I , the in-

teractions between genes are experimentally analyzed by observing an output GAP J such that

J = TP (I) is assumed to hold after a time step has passed. In this setting, LFIT of an NLP P

corresponds to inferring a set of gene regulation rules that are complete for those experiments

of 1-step GAP transitions. Such a learning task has been analyzed in the literature [154, 158],

but no ILP technique has been applied to the problem. Besides, 2-state cellular automata, in

which each cell can take either 1 or 0 as a possible value, are instances of Boolean networks,

so that their state transitions are determined by the TP operator [167]. Hence it is possible to

apply LFIT for their learning tasks. Learning transition rules (called identification) of cellular

automata has been studied in the literature [84, 168], but again no previous work has employed

ILP techniques on this problem.
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Learning the dynamics of Boolean networks has been considered in Bioinformatics [153–155] as

we discussed in section 5.1.7. Compared with these studies, our learning method is a complete

algorithm to learn a set of logical state transitions rules for a Boolean network. As in [155],

we can also deal with partial transitions, but will not need to identify or enumerate all possible

complete transitions.

In [156], Klarner et al. provide an optimization-based method for computing model reduction

by exploiting the prime implicant graph of the Boolean network. The prime implicant graph

is similar to the prime implicant rules that can be learned by LF1T (section 3.3). But where

[156] work directly on the model, LFIT learn from the transitions of the model. Furthermore,

to compute model reduction the methods of [156] needs to enummerate all prime implicants.

The number of prime implicants of a Boolean formula grows exponentially with the number of

variables it depends on. When learning prime implicants rules, LF1T will only infers the rules

needed to capture the network behavior. But, according to [156], for typical biological models

these dependencies are so small that this enumeration is negligible. In our case, the original

purpose of LFIT is to learn system, like Boolean networks, whose model is unknown. Here,

the dependencies amoung variables are unknown and the enumeration of all prime implicants

is no more negligible. But our inference methods could also be used for the simplification of

existing models. Knowing the model, one could generate its state transitions and then use LFIT
to learn a reduced model. Knowing the influences amoung the variables of the system, we could

generate partial state transitions to directly learn general rules. But when the model is already

known, it should be more efficient to just use a method that work at the model level.

In [45], Lähdesmäki et al. propose algorithms to infer the Boolean functions of gene regulatory

network from gene expression data. Here, gene expression data is given as a set of positive and

negative example for each Boolean function. Each positive (resp. negative) example represents

a variable configuration that makes a Boolean function true (resp. false). The authors propose

an algorithm to construct the truth table of a Boolean function according to this set of examples.

This is pretty similar to learning from interpretation of transitions: for a transition (I, J), for

every A in J a positive example of the Boolean function of the variable A is I and for every A′

in the Herbrand base that are not in J , I is a negative example of the Boolean function of the

variable A′. The purpose of the algorithm proposed in [45] is also to check the consistency of

the given gene expression data. The author also extended their method to learn gene regulatory

networks under the Best-Fit Extension paradigm. The Best-Fit Extension Problem is to find a

Boolean functions that do as few “misclassification” as possible, on a given set of positive and

negative examples. Most algorithm in our framework assume that transitions are consistent, i.e.

from a given state there is exactly one next state. LFIT cannot be used to directly find the most

likely Boolean function. But, one could compute this function from the output of the algorithm

we propose to deal with uncertain state transitions in section 4.5.
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5.2.8 Learning Petri Nets

In [82], a hierarchical Petri net can be obtained by iterative applications of their algorithm. but

it is not possible to obtain networks with positive and negative feedback cycles. In fact, cyclic

dependencies have been generally hard to learned in ILP methods. Similarly to this work, the

main idea of the LFIT framework is to infer a system from the observations of its transitions.

One of our algorithm can capture the delayed influences of systems, this algorithm could be

used to learn Bounded Petri Nets. Using this algorithm, we could learn positive and negative

feedback cycles.

5.2.9 Learning Cellular Automata

In cellular automata (CAs), constructing transition rules from given configurations is known as

the identification problem. Adamatzky [84] provides algorithms for identifying different classes

of CAs, and analyzes computational complexities of those algorithms. Several algorithms are

also proposed in [168]. To the best of our knowledge, however, there is no algorithm which uses

ILP techniques for identifying CA rules.

5.2.10 Binary Decision Diagram

The probabilistic logic programming language ProbLog [58] computes probabilities via Binary

Decision Diagrams. A ProbLog program computes the probability of a query atom by apply-

ing sum-product computation to a Binary Decision Diagram, but allows definite clauses only.

For abduction in propositional theories, Simon and del Val [59] propose a consequence-finding

procedure implemented on Zero-suppressed BDDs. [60] run the EM algorithm over BDDs to

evaluate abductive hypotheses. In one of our implementations of the resolution based version

of LF1T, we took inspiration from Binary Decision Diagram for our data structure that repre-

sent the logic rules learned. The compact representation of Binary Decision Diagram allows to

drastically increase the performances of LF1T in terms of both runtime and memory.

5.2.11 Inverse Ingeniering

In [169], Pellegrino and Balzarotti propose a black-box technique to detect logic vulnerabilities

in web applications. Their approach is based on the automatic identification of a number of

behavioral patterns. Starting from few network traces in which users interact with a certain

application. Based on the extracted model, they generate targeted test cases following a number

of common attack scenarios.
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In practice, the most that can do the current LFIT implementation is to learn a single webpage

form. Where the possible values of each field has to be known, i.e. checkbox/choice list. On

such simple web form, LFIT could infer the model behind the webpage, but will not provide the

potential weak point directly. What LFIT does can be seen like inverse engineering, it could be

used to automatically reconstruct a model of an application or of its protocol like in [170, 171].



Chapter 6

Conclusions and Future Work

This thesis investigates the studies of the automatic construction of model of the dynamics of a

system from the observation of its state transitions. Given some raw data on the process, like

time series data of gene expression, we assume a discretization of those data in the form of state

transitions. From those state transitions, according to the semantic of the system dynamics, we

propose different inference algorithms that model the system as a logic program. The semantic

of system dynamics can differ regarding the synchronicity of its variables, the determinism of

its changes and the influence of its history. In this thesis we propose several modelings and

learning algorithms to tackle those different semantics.

6.1 Summary of contribution

We proposed several algorithms for learning Boolean synchronous deterministic system from

interpretation transitions. Given any state transitions diagram we can now learn an NLP that

exactly captures the system dynamics. Consistency of state transitions rules is achieved and

minimality of rules is guaranteed. As a result, given any state transitions diagram E, LF1T with

least specialization always learns a unique NLP that contains all prime rules that realize E. It

implies that the output of LF1T is no more sensitive to variable ordering or transition ordering.

But, experimental results showed that the new algorithm is sensitive to input transitions ordering

regarding run time. Design of an heuristic to make a good ordering of the input is one possible

future work.

To understand the memory effect involved in some interactions between biological components,

it is necessary to include delayed influences in the model. In this thesis, we proposed a logi-

cal method to learn such models from state transitions systems. We designed an approach to

learn Boolean networks with delayed influences. This can be directly applied to the learning of

131
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Boolean (or multi-level discrete) networks with delayed influences, which is crucial to under-

stand the memory effect involved in some interactions between biological components. Further

works aim at adapting the approach developed in the paper to the kind of data as produced

by biologists [91]. This requires to connect through various databases in order to extract real

time series data, and subsequently explore and use them to learn genetic regulatory networks.

In account of the noise inherent to biological data, the ability to either perform an efficient

discretization of the data or to include the notion of noise inside the modeling framework is

fundamental. We will thus have to discuss the discretization procedure and the robustness of our

modeling against noisy data and compare it to existing approaches, like the Bayesian ones [93].

Finally, we have presented a new approach to learn planning operators. In contrast to previous

approaches, it learns the dynamics of every predicate independently, and thus can be applied to

learn RDDL domains. The presented approach can find good sets of planning operators effi-

ciently. As future work, we would like to work on planning operators independent of actions.

This would require to have a more intelligent method to generate symbolic transitions from

grounded transitions so that changes not represented by actions could be learned. Our proba-

bilistic approach can be used to deal with the problems caused by noisy data as discussed in

previous paragraph. Indeed, if the quantity of input data is sufficiently big the probabilities of

the rules should discremine between the real dynamic, i.e. the rules with hight probabilities, and

the rules produced by the noise, i.e. the rules with low probabilities.

6.2 Perspectives

One possible use of our method is the construction and revision of model to fit some required

properties on the dynamics. The idea is to infer rules consistent with temporal properties or

constraints so that the model represented by the learned logic program basically does what we

want. A naı̈ve approach to this problem is to simply generate state transitions diagrams until

we find one that is consistent with all properties. Then our framework can be used to learn the

correspinding model of the selected diagram. This first method was in a collaborative work with

Alexandre Rocca, published as a book chapter in Logical Modeling of Biological Systems [172].

A more interesting approach would be to directly construct rules from the properties we want

to be satisfied. For some simple temporal properties (e.g., a given variable is expected to have a

particular value in the next state of the model), this is straightforward. But for other properties

that require exploration of the state transitions diagram, this is not so trivial. An elegant way

could be to start with a logic program, either given or eventually composed of all fact rules.

Here, we could simply run this logic program to capture the transitions that are not consistent

with the required temporal properties. Then we could use our specialization method to remove

those transitions from the dynamic of the program. This could ensure that the dynamics of the
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learned system does not violate a constraint. But by doing so, some other properties may not

hold anymore. The solution could be to use a mix of specialization and generalization: specialize

to avoid undesired transitions and generalize to statisfy disired transitions. This is a very chal-

lenging problem, because depending of the properties we want to achieve: the approach could

require to run the learned program so many times that we will generate more transitions than

by just computing the whole state transitions diagram once. So far, it seems more reasonable in

terms of run time efficiency to simply build something like a partial state transitions diagram. It

would be a more general representation than the whole diagram but where the properties could

still be checked. From this partial diagram, it will then be straightforward to construct the model

using our framework. Construction of models that fit temporal properties is an interesting prob-

lem and it is a challenging topic in the field of systems biology. Usually, biologist know some

properties of the system they try to model. Being able to use those properties during the learning

of a model from time series data by our framework could make it more usable in practice and

more efficient.

Another interesting possible application of our framework is data compilation. There is a lot

of efficient compilation methods that exists for text files, but nothing really efficient in terms

of compilation for binary files. Thus, the method we propose to learn delayed influences could

be used for this purpose. The idea is to learn a more compact representation of these files in

the form of a markov(k) system. By arbitrary chosing a number n of bits, we can consider a

binary file as a unique sequence of state transitions where each state is n bits values. Then, our

algorithm can learn a logic program that represents a Markov(k) system wich exactly realize

this sequence. Thus, this logic program could be more a compact representation of the binary

file. So far, the current implementation of the algorithm is not efficient for this kind of task, both

regarding run time and compression rate. The computation of the minimal delay alone is already

costly and the choosing a good number of bit to consider as a state is a complex problem itself.

One idea could be to divide the file in multiple parts were in each of them the transitions can be

explained with a small delay. Further work is needed to make this idea usable in practice, this

may be the occasion to investigate another application field.
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