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Abstract

The ballooning mode is a magnetohydrodynamic (MHD) instability that is ex-

cited in finite beta plasmas. The energy source of the ballooning mode originates

from the pressure gradient in a locally unfavorable magnetic curvature region, typi-

cally, in the outboard of the torus. The proximity of the measured edge pressure gra-

dient in H-mode to the critical gradient for ideal ballooning instability has led to the

proposal that these instabilities might have a role in triggering edge localized modes

(ELMs). New nonlinear theoretical models describe ELMs in terms of filaments that

erupt from the plasma. This is supported by strong experimental evidence from the

MAST tokamak[1, 2, 3] that the ELM does indeed exhibit a mode structure predicted

by the nonlinear ballooning mode theory. This thesis presents the nonlinear dynamics

of the ballooning mode and its relation with ELMs by means of numerical simula-

tions in spherical tokamak (ST) devices in the framework of MHD model and the drift

model. Our simulation reproduces the characteristic features of ELM crash phase.

The nonlinear simulations using MHD model are executed in a three dimen-

sional full toroidal geometry. The initial MHD equilibrium for the simulation is given

as an axisymmetric numerical MHD equilibrium, which is obtained by solving the

Grad-Shafranov equation on the poloidal cross-section. The profiles are selected to be



moderately broad in the core region following the conventional experiments. During

the linear analysis, the intermediate-nmodes (i.e., n = 5−9) have larger growth rates

than others, where n is the toroidal mode number. It is shown that these intermediate-

n modes have a ballooning mode nature in that the mode structures are poloidaly lo-

calized in the bad curvature region, and have a wide envelope consisting of several

poloidal components. In the nonlinear phase, the MHD ballooning modes evolve into

a nonlinear structure that results in the formation of a number of hot plasma filaments,

elongated along a magnetic field line, but localized about it. These filaments extend

out into the scrape-off layer on the outboard side but remain connected back into the

pedestal region on the inboard side. This filamentary structure is correspondent to the

convection motion of the plasma flows, which forms a twin-vortex flow pattern in such

a way that the plasma moves in outward direction, pushing the core plasma from in-

side to outside of the torus. When the balloon structure is initially formed at the plasma

surface, the magnetic field lines on both sides of the separatrix are pushed against each

other by such perpendicular flows due to the spouting-out and the perfect conductor

conserving the poloidal flux. Under this situation, the reconnection of the field lines

can effectively occur by the driven reconnection mechanism. Once such reconnec-

tion occur, the plasma rapidly flows out through the reconnected field lines due to the

parallel pressure gradient, leading to the filamentary structure. After the internal free

energy is partially lost by such convective processes, the system ceases to develop and

reaches a relaxed state. These results are compared qualitatively with the experimen-



tal observation of the ELMs in MAST and NSTX experiments. Good agreement is

found in the following characteristics formation of filaments separating from the core,

non-uniform growth of filaments due to toroidal mode coupling, time scale of ELM

crash, triggering by the ideal ballooning mode, presence of intermediate-n precursors

and loss of plasma through convective process.

Moreover the finite Larmor radius (FLR) effect is also addressed using the sim-

plified drift model, where the ion diamagnetic drift effect is included in the advection

term of the equation of motion. This modification has been found to suppress the

higher-n components linearly, since the mode growth is suppressed by the sheared ro-

tation flows. However, it has been also found that the filament separation from the core

can take place universally for FLR as well as the MHD case.
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Chapter 1
Introduction

Nonlinear plasma dynamics, and fast time scale motions in particular, are a

recurring theme in both natural and laboratory plasmas. The ballooning mode is a

magnetohydrodynamic (MHD) instability that is excited in finite beta plasmas. The

energy source of the ballooning mode originates from the pressure gradient in a lo-

cally unfavorable magnetic curvature region, typically, in the outer edge region of

the tokamak and helical configurations. Nonlinear evolution of such modes results

in sporadic releases of plasma heat energy from magnetically confined plasma. Fa-

miliar examples of such events are tokamak disruptions and edge localized modes

(ELMs). The proximity of the measured edge pressure gradient in H-mode to the

critical gradient for ideal ballooning instability has led to the proposal that these in-

stabilities might have a role in triggering ELMs. New nonlinear theoretical models

describe both processes in terms of filaments that erupt from the plasma. This is sup-

ported by strong experimental evidence from the MAST tokamak [1] that the ELM

does indeed exhibit a mode structure predicted by the nonlinear ballooning mode

theory. Furthermore, the camera images during shot #8814 of MAST show several

helically twisted bright stripes (i.e., filaments) on the plasma surface. Some of them

are raised and separated from the core, forming an arcade into the scrape-off layer

region. These filaments are generated on a 100μ sec time scale, are accelerated away

from the plasma edge, are extended along the field line and have a typical toroidal
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mode number n ∼ 8−10. This thesis presents the nonlinear dynamics of the balloon-

ing mode and its relation with ELMs by means of numerical simulations in spherical

tokamak (ST) devices in the framework of MHD model and the drift model. Our

simulation reproduces the characteristic features of ELM crash phase.

1.1 Ballooning Modes

A mode which is localized in regions of unfavorable magnetic field curvature ("bad

curvature") and which becomes unstable when the force due to pressure gradients is

greater than the mean magnetic pressure force. It was originally described by Coppi

[4] and the mathematical formalization was performed by Connor [5].

One of the most important features of the ballooning mode is the effect on sta-

bility of the average curvature of the magnetic field. The curvatures of the field lines

change sign from the inboard to the outboard side with respect to the curvature of the

surfaces of constant kinetic pressure. An understanding of how magnetic curvature

affects stability is aided by Fig.1.1. In this plan view of a torus, we can see how on

the inboard side, the gradient in magnetic field points in the opposite direction to the

gradient in kinetic pressure.

Force balance is given by,

F =
B ·∇B

μo
−∇

µ
p+

B2

2μo

¶
(1.1)
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Figure 1.1: Plan view of a section of a torus. The curvature of the B-field is stabiliz-
ing on the inboard side of the torus and destabilizing on the outboard side [8].

Since the majority of the magnetic field is toroidal and falls off as 1/R, the

magnetic tension term, B ·∇B can be simplified to

B ·∇B ≈ Bϕ ·∇Bϕ =
B2
ϕ

R
(−beR) (1.2)

where beR is a unit vector in the major radius direction. The magnetic ten-
sion force points inward along the major axis on both the outboard and inboard side,

whereas the kinetic pressure term −∇p points outward on the outboard side and in-

wards on the inboard side. The force balance is maintained by the magnetic pressure

term, ∇B2/2μo. This asymmetry leads to the phenomena of good and bad magnetic

curvature.

Figure 1.2 shows a typical mode structure for a perturbation that destabilizes

a ballooning mode. In order to be localized on the unfavorable curvature region,

the amplitude variation along the field line must be maximized. Therefore, the most
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Figure 1.2: The mode structure of ballooning mode. The mode is localized to the
unfavourable region of the plasma

unstable ballooning modes typically have high toroidal mode numbers [5]. The mode

structure is such that there are very fine structures in the poloidal direction, but in the

toroidal direction the wavelength is long. In a tokamak, the toroidal magnetic field is

much stronger than the poloidal field. Thus, along the magnetic field line, the mode

structure changes slowly, and the stabilizing energy from the field line bending is

minimized.

The ballooning mode instability can be further explained by using the energy

principle through the change in fluid potential energy associated with the perturbation

ξ. This was originally suggested by Furth [6] and Greene [7] and can be written as

follows,
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δWF =
1

2

Z
plasma

dr[
|B1,⊥|2

μo
+

B2
o

μo
|∇ · ξ⊥ + 2ξ⊥ · κ|2 + γpo |∇ · ξ|2 (1.3)

−2 (ξ⊥ ·∇po) (κ · ξ∗⊥)− jk (ξ
∗
⊥ × b) ·B1,⊥]

where b = B/B is the unit vector along magnetic field, κ is the curvature vector of

the magnetic field κ = b · ∇b, and ξ⊥ is the component of ξ that is perpendicular

to the equilibrium magnetic field. The terms can be interpreted as follows. The

|B1,⊥|2 term is the energy required to bend the magnetic field lines. The second term

represents the energy required to compress the magnetic field. The third term is the

compressional energy of the plasma. In other words these three term can also be

called as the change in potential energy of the Alfvén wave, the magneto-acoustic

wave, and the acoustic wave respectively. These three terms are always stabilizing.

The last two terms can be either stabilizing or destabilizing. The instabilities caused

by the fourth term are called pressure-driven modes, because∇p is the source of free

energy. Typically, ballooning and interchange modes are classified as the pressure-

driven types. The last term represents current-driven modes also called as kink mode.

Here the source of free energy is the parallel current density jk. Hence by these five

terms as given in (1.3), one can estimate the driving source of the instability.

In determining stability against ballooning modes, the stabilizing field line

bending and the destabilizing fourth term of (1.3) (pressure gradient drive) com-

pete with each other. For circular plasmas, this means that the ballooning modes are

stabilized by the shear of the magnetic field (s = rq́/q). The stabilizing effect can
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Figure 1.3: Stability diagram of the ballooning mode for circular surfaces showing
the first and second stabilty regions. The quantity α = −2μoRq2ṕ/B2 is a measure
of the pressure gradient, and s = rq́/q is the average magnetic shear [8].

be understood by following two magnetic field lines that are only slightly apart in

the radial direction. Therefore the mode structure must be almost the same on both

field lines. As the field lines are followed around the torus, if there is shear in the

magnetic field, the distance between field lines starts growing. This means that in re-

gions of strong shear the mode can not be entirely localized on the unfavorable side

and the destabilizing energy is reduced. On the other hand, low shear allows larger

radial mode structures to stay together on adjacent field lines. The net effect is that

the increasing magnetic shear raises the ballooning stability limit for given pressure

gradient.
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It turns out that in addition the stable region of high shear and low pressure

gradient, there is a second region of stability as well [9]. This stable region has

very low shear and high pressure gradient. The reason for this so-called second

stable region is the following. What stabilizes the ballooning mode is not actually the

global shear, but the local shear in the region where the ballooning mode is localized.

This region is the outboard side of the midplane, since there the magnetic shear is

most unfavorable. When the global shear is lowered close to zero, the shear on the

outboard side becomes negative. The more the local shear varies between the inboard

and outboard sides of the flux surface, the more negative the outboard side shear

becomes. Since the local shear is determined by the local toroidal current density

(the higher the current density, the lower the shear), a large variation of toroidal

current density on a flux surface creates also a large variation of the local shear. Also

a large pressure gradient creates a large variation of the local shear on a flux surface.

Therefore, when the global shear is close to zero, the stability of the plasma against

the ballooning modes is improved by increasing the pressure gradient. Unfortunately,

the access from the high shear low pressure gradient region to the second stability

region for circular plasmas is closed, i.e. there is an unstable region between the two

stable regions, see Fig. 1.3.

Although for circular plasmas, there is no access from the first stable region

(low ṕ, high s) to the second stable region (high ṕ, low s), but when the plasma

is strongly shaped (increased elongation and triangularity) [10], the stable regions
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become connected and the access to the second stable region is opened. The access

to the second stable region would make it possible to achieve high pressure values,

and to operate the tokamak with high . The second stability access also plays a role

in the edge stability and affects the ELMs.

1.2 Edge Localized Modes

The basic physics of confinement in tokamaks is not well understood. For this rea-

son confinement of particles and energy is modeled by a series of scaling laws which

correspond to modes of confinement. When the plasma is externally heated and the

temperature gradient becomes steeper, the confinement becomes significantly worse

due to the so-called “anomalous” transport. Compared to classical or neoclassical

transport, it is usually orders of magnitude faster. The anomalous transport is driven

by plasma turbulence. The plasma operating regime where anomalous transport is

dominating throughout the plasma is called low confinement mode or L-mode. A

great advance in tokamak research was made, when it was discovered that increasing

heating of the plasma above a certain threshold improves the confinement consider-

ably [11]. The turbulence then becomes suppressed in the edge region. Since the

confinement improvement is not global, the region where turbulence is suppressed

is called a transport barrier. The improved confinement operating regime is called

high confinement mode or H-mode (see figure 1.4). The key to the success of the

H-mode is the edge transport barrier or confinement barrier; a region of steep tem-
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Figure 1.4: Schematic representations of the pressure profiles in L-mode and H–
mode (ELMy Hmode). A profile of ELMy H-mode plasma with an internal transport
barrier (ITB) is also shown.

perature and density gradient that is formed close to the plasma edge [12]. Figure 1.5

shows electron density profiles over a transition from L-mode. to H-mode on the AS-

DEX Tokamak [13]. As can be seen, there is a clear increase in the density gradient

at the edge of the plasma and a knee is formed in the density profile. The characteris-

tic shape is known as a pedestal and such pedestals have been shown to form during

H-modes in both the density and temperature profiles [14].

In H-mode plasmas, short periodic bursts of plasma are often observed. They

are called Edge Localized Modes or ELMs[15, 16]. The ELMs are usually detected

most easily by the increased radiation coming from the divertor region (the so-called

divertor Dα-radiation). The radiation is produced when the particles released from
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Figure 1.5: The transition from L- to H-mode [13]. (a) Time Sequence of density
profiles measured around the transition from L- to H- mode. (b) Dα emission and
average density. The dotted lines refer to the times at which the density profiles in
(a) were measured.

the edge plasma during the ELM burst collide with neutral atoms that are abundant

near the divertor. The collisions excite the atoms and their de-excitation is observed

as radiation.

1.2.1 Classification of ELMs

The first classification of ELM phenomena was given for the DIII-D tokamak [18].

Three distinct types of ELM were numbered in the order in which they were discov-

ered.

Type I ELMs

Type I ELMs are large, regular bursts of MHD activity which result in large

heat loads to the divertor or limiter plates. TheDα-signal shows large isolated bursts
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and, therefore, they are also called ’giant’ ELMs. These giant ELMs could well be

intolerable in a large tokamak device. They are most easily distinguished because the

ELM repetition frequency increases with heating power. They appear at high input

power levels, often after a period of ELM-free H-mode. The plasma edge is close to

the ideal ballooning stability limit or even beyond it. The time-averaged degradation

of the edge plasma confinement is smaller than with other ELM types.

During the onset of such ELMs, pressure gradient in the transport barrier is

high, and it is widely believed that they are associated with ideal MHD events. Such

ideal MHD instabilities can be divided into two types, the ballooning mode, and the

kink (or peeling) mode. As mentioned in previous section the ballooning mode is

driven by pressure gradient[19] while the peeling mode are driven by large bootstrap

current[17]. Recent studies shows that in certain condition both the pressure gradient

and current density are high so that both peeling and ballooning mode stability crite-

ria are violated resulting in the coupled peeling–ballooning mode[17, 20, 21, 22]. In

such scenario, if the instability acts to remove the pressure gradient, it further desta-

bilize the peeling mode, leading to a large Type I ELM event.

Type II ELM

Type II ELMs, sometimes called grassy ELMs, are only observed on a few

large machines having strongly-shaped (high elongation and triangularity) plasmas

like ASDEX-U and DIII-D [11, 18]. Recently big ST like NSTX also observed such

ELMs[23]. The magnitude of the ELM bursts is lower and the frequency is higher
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than that of Type I ELMs, while the confinement stays almost as good as in Type

I ELMy plasmas. It is thought that the increase in triangularity and elongation can

give access to a region of so-called second stability [24] to the ballooning mode and

it is in this region that type II ELMs are observed [26].

Type III ELM

Type III ELM are the most common, and have been observed on all tokamaks

that have achieved H-mode. They are smaller and therefore less damaging than their

Type I counter-parts but are still somewhat problematic. Like all ELMs, they lead to

a lowering of the edge temperature gradient. Unlike, Type I and type II ELMs, type

III ELMs are observed at relatively low input power levels, often prior to a period of

ELM-free H-mode[27]. The plasma confinement is degraded more than with other

ELMs. The edge plasma pressure can be well below the ballooning stability limit.

They are also notably different as their frequency decreases with input power but

their magnitude tends to increase. On the ASDEX-U tokamak, type III ELMs are

observed below a certain critical temperature Te < 300eV . This observation suggests

that resistivity in the plasma core and therefore the current profile, may play some

role in the event. They can also be induced by radiative cooling which cools the edge,

increasing its resistivity [21].
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ELM-free operating modes

In addition to the above ELMy operating regimes two ELM-free operating

modes with stable density have been observed. In DIII-D and ASDEX Upgrade,

the so-called quiescent H-mode (QHM) has been achieved [28, 29]. In the quies-

cent H-mode, the ELMs become suppressed and, instead, harmonic oscillations are

observed in the plasma edge. They are signs of other MHD activity that keeps the

particle transport high. The high particle transport keeps the density in control and

avoids the typical problem of an ELMfree H-mode where the plasma density uncon-

trollably increases and the discharges ends with a disruption.

In Alcator C-MOD, the so-called enhanced Dα-mode or EDA is observed [30,

31]. In EDA, while the plasma behaves like in ELMy H-mode (steady-state density,

no accumulation of impurities), no periodic bursts of plasma exist, but instead the

Dα- radiation remains at an increased level throughout the EDA-period. The particle

and energy confinement is poorer than in true ELM-free H-mode. The conditions for

EDA resemble that of Type II ELMs.

In ASDEX Upgrade, different types of ELMs have been found to correspond

to different plasma edge parameters [32]. Figure 1.6 shows schematically the ELM

classification in Tedge − nedge space. The edge temperature and density refer to the

values on the top of the H-mode barrier. The lower limit for the temperature at high

density (labelled “MARFE unstable”) is caused by the radiation cooling of the edge

plasma and is inaccessible operating regime.
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Figure 1.6: A schematic view of different ELMy and ELM-like regimes in the
pedestal temperature-density space [8, 32].

1.2.2 ELM precursors

During the ELM cycle, magnetic fluctuations are observed before the main ELM

crash. The fluctuations, also called precursors, differ between ELM types, which

suggests that the instabilities behind the ELMs themselves can be different. In NSTX,

ELMs of several types are often observed: large Type I ELMs , medium Type II/III

ELMs and tiny Type V ELMs[23, 33, 34]. Preceding the Type I ELM crash, the

Mirnov coil array reveals a rapidly growing precursor having growth time < 100

msec with intermediate mode number n = 5 − 8. Preceding the Type II/III ELMs

crash, a precursor with frequency ∼ 2kHz and usually mode number n = 1 (but

occasionally n = 2− 3) appeared for several msec. In case of Type V ELM, a short-
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lived n = 1 precursor oscillation was observed before the ELM crash, persisting for

up to 2 toroidal transits before the crash and disappearing between ELMs.

In ASDEXUpgrade, the precursors are seen most clearly in the Type III ELMs,

but they have also been observed with Type I and Type II ELMs. The Type III ELM

precursor frequency varies around 50 − 150 kHz and the observed toroidal mode

numbers n are of the order 10 − 15 [15, 21]. For type I ELMs frequencies of about

5−20 kHz and mode numbers n = 5−10 are observed. In addition, higher frequency

modes ( 75−145 kHz) with n = 3−5 [35] and ν ≈ 300 kHz [36] have been associated

with the MHD activity occurring before an ELM. The precursors observed with Type

II ELM have frequency of about 30 kHz. Typical toroidal mode numbers n are of the

order of 3− 4.

In JET, Type I ELM precursors at the frequency of about 20 kHz and mode

numbers of 1−13 have been observed [38]. The lower mode numbers seem to be as-

sociated with lower values of collisionality in the edge region and highmode numbers

with high collisionality. In addition to the precursors, the Type I ELM phenomenon

has also been associated with the so-called washboard mode activity (bands of fluc-

tuating magnetic activity rotating in the direction of the electron diamagnetic drift

with typical frequencies in the range of 10 − 90 kHz) [39]. The washboard modes

have also been observed with mixed Type I/Type II ELMs [39].

While the exact relationship between the precursors and the ELM crash itself

is still not clear, the precursors can be used to obtain fundamental information on the
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underlying mechanisms for the ELMs. The mode numbers give insight to the mode

structure of the instability that is responsible for the ELM. Therefore, to validate

a theoretical model for the ELMs, its predictions have to be compared against the

information obtained from the precursor observations.

1.2.3 The importance of the ELM phenomenon

The ELMs have a degrading effect on the plasma confinement but, on the other hand,

they help to remove impurities and helium ash from the plasma. They also prevent the

density of the plasma from rising too high and causing a disruption. Stationary and

clean H-mode plasmas without ELMs have been difficult to achieve. Even though in

ELMy H-mode it is not possible to keep the confinement as high as in some ELM-

free operations, like the hot-ion mode in JET [40], its stable steady state operation

and good impurity exhaust in long pulses are superior to other operating regimes.

Therefore, ELMy H-mode has been chosen as the standard operating mode for ITER.

Probably the most harmful consequence of the ELMs is the erosion of the di-

vertorplates. From the point of view of the lifetime of the divertor plates, the ELM

bursts are much more destructive than the continuous flow of particles and energy.

In ITER, the ELM energy may exceed the threshold for divertor target ablation by a

factor of 5 [41]. Therefore, reducing the ELM peak power load or getting rid of the

ELMs altogether without sacrificing the control of the density and sufficient helium

exhaust are important goals that have to be reached on the way to a fusion reactor. In
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addition to tokamaks, ELMs have also been observed in stellarator and ST H-mode

plasmas [42, 2]. Thus it looks like that the problems associated with the ELMs have

to be solved even if one of these alternatives to a tokamak turns out to be better con-

cept for harnessing the fusion energy. It is also interesting to note that solar flares

have been found to display similar MHD instability properties as ELMs [43].

1.3 Spherical Tokamak

The name spherical tokamak or Spherical Torus, ST, has been applied to tokamaks

with aspect ratio A = R/a (ratio of the major to minor radii of the toroidal plasma

column) close to the unity, typically A < 1.5. Several important theoretical advan-

tages of this concept with significance for a future fusion reactor were firstly pointed

out by Peng and Strickler in 1986 [44]. The success of the START experiment (1991–

1998), which demonstrated good confinement [45, 46] and plasma beta values up to

40% [47], led to widespread interest in the ST and the construction of a new gen-

eration of much larger STs such as the mega ampere ST (MAST) [48] and NSTX

[49]. These devices have poloidal cross-sections and plasma currents comparable to

those in major conventional tokamaks such as ASDEX Upgrade and DIII-D. There

are thus two main ways in which ST research is helping to advance the mainline toka-

mak: first, by providing experimental data in new and overlapping parameter regimes

to test models and scaling laws (in particular global confinement); and second, by us-

ing the fact that the extreme geometry and other special conditions force models to
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Figure 1.7: Comparison of the conventional (large aspect-ratio) and a spherical
(tight aspect-ratio) tokamak plasma configuration (courtesy of Dr. D. A. Gates from
NSTX).

be improved or developed. Such models are then available for those conventional

aspect ratio tokamak problems where there were known limitations in the existing

models.

The transition from high to low aspect ratio is accompanied by the develop-

ment of a number of properties that have a profound effect on plasma behavior. First

and foremost, the low aspect ratio tokamaks could provide a more economical route

to magnetic confinement fusion. This was due to their compact size and high core

values of β = 8πnoT/B2
o a parameter often employed to express the efficiency of a

tokamak. The maximum β that can be obtained in tokamaks is limited by instabili-

ties [50]. This β limit (Troyon limit) is higher in STs due to their low aspect ratio and

high elongation [51]. Near the outboard plasma boundary, the poloidal and toroidal
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magnetic fields (and hence poloidal and toroidal gyroradii) can become comparable,

giving a large field line tilt. The strong toroidicity and increased mirror ratio lead to

enhanced trapping and impact on transport, plasma resistivity, etc. High values of

β and low aspect ratio also increase the bootstrap current fraction[52]. A model ST

power plant is planned to have 92% of its steady-state current drive from a combi-

nation of bootstrap and diamagnetic currents [53]. Furthermore, the low moment of

inertia of low A plasmas gives rise to high central plasma flow velocities (vφ ∼ vth ,

where vth is the ion thermal velocity), and there is large inherent E×B flow shear,

which has a strong influence on micro-turbulence and the formation of transport bar-

riers. As a result of the low magnetic field, supra-Alfvénic ions are readily gener-

ated, leading to the excitation of fast particle driven instabilities such as Alfvén eigen

modes.

In a conventional tokamak, plasma current is driven inductively from a central

solenoid, and initially the plasma is heated Ohmically (P = I2R). STs have a narrow

centre column, consequently there is very little space for a solenoid, and so inductive

current drive and Ohmic heating are limited. An important problem at ST is the ther-

mal load on plasma facing surfaces, which would be distributed over a smaller area

than in a conventional tokamak. In addition, due to the small inboard space, neu-

tron shielding of the centre column would be thinner in a ST reactor, and would then

require more frequent replacement. The lack of access would provide an engineer-

ing challenge for remote handling of activated surfaces, greater than that currently
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demonstrated in JET. STs are more resilient to large scale MHD instabilities (dis-

ruptions). The strong variation of |B| on a flux-surface in STs causes particles to

spend more time on the good-curvature side of the tokamak, increasing the stability

of ballooning-like modes. However, the same magnetic field profile causes a larger

fraction of particles to be trapped in the bad curvature region, especially on the outer

flux surfaces.

The ST concept has been experimentally investigated in several small devices

such as START, PEGASUS, MEDUSA [8] and the promising results (record βt ∼

40%, resilience to disruptions, comparable energy confinement time to conventional

tokamaks, etc. [47, 54]) have engendered a worldwide next generation programme of

large tight aspect ratio experiments (MAST, NSTX, GLOBUS-M, ETE, TST). The

excellent diagnostic visibility afforded by the spherical geometry of the MAST toka-

mak, remote first wall and extensive divertor and edge diagnostics make it an ideal

device for the study of ELMs. Especially the unique capability of imaging the whole

MAST plasma allows scientists to view how the plasma interacts with the coils and

wall of the machine when it gets out of control and “disrupts”. It motivated us to

investigate the ELM characteristic and extract information from the experimental ob-

servation of MAST. Table 1.1 show the values of engineering, heating and plasma

parameters for the famous ST experiment. These devices will serve to improve un-

derstanding of the physics of toroidal plasma systems, extending the parameters of
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START MAST NSTX
Major Radii R [m] 0.35 0.85 0.85
Minor Radii a [m] 0.27 0.65 0.68
Elongation κ 1.5− 3 ≥ 2 (2.45) 2.7
Aspect Ratio A 1.29 ≥ 1.3 (1.3) 1.27
Plasma current Ip [MA] 0.31 2 (1.35) 1.0 (1.5)
Toroidal field Bφ [T ] 0.2− 0.6 0.52 0.3− 0.6
Auxiliary PNBI [MW ] 1NBI 5 (3.3)NBI 5 (7)NBI
heating PRF [MW ] 0.2ECH 1.4 (0.9)ECH 6 (4)FW

Normalized βN 6 5.3 7.5
pressures βt% 40 17 39
Pulse length τp [s] 0.05 5 (0.7) 5 (> 1)

Table 1.1: Comparison of the key operational parameters of START, MAST and
NSTX. Figures in the brackets indicate values achieved [55, 56].

spherical devices to larger, hotter and collisionless regimes as well as develop scal-

ings for aspect-ratio and linear dimensions.

1.4 Experimental observation of MAST

The Mega Amp Spherical Tokamak (MAST) at UKAEA Fusion is a second gener-

ation ST designed to study low collisionality, low aspect ratio (ratio of major radius

R to minor radius a of A ∼ 1.3), highly elongated (κ > 2) plasmas with a plasma

current and poloidal cross-section comparable to medium sized conventional toka-

maks such as DIII-D and ASDEX-Upgrade. The toroidal field varies between 1.7T

at the inboard mid-plane and 0.25T at the outboard. This strong variation across the

plasma is a distinct feature of the ST. Experiments on the MAST are focused on the

core goals of improving fundamental understanding of transport, stability and edge

physics and investigating technological solutions to heating, current drive and plasma
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exhaust, both for ITER and future ST devices. This section presents an overview of

recent experimental results, and analysis on MAST related with edge physics espe-

cially ELMs.

ELMs are a concern for ITER as they could lead to damage to plasma-facing

surfaces. Improved understanding of ELMs is necessary to calculate their effect on

power loading, both on the first wall and divertor target plates. MAST plasmas ex-

hibit a number of advantageous feature for the study of ELMs structure especially in

explaining the spatial localization of ELM structure. The remote first wall and excel-

lent access for imaging diagnostics, combined with the low magnetic field and large

field line pitch angle at the outboard mid-plane facilitate diagnosis of ELM charac-

teristics that is simply not possible on most other devices[1, 2]. The overwhelming

evidence for the filamentary structure of ELMs comes from unique visible imaging

capabilities, the clarity of images being substantially enhanced by the large field line

pitch angle. Such images are supported by detailed Langmuir probe and plasma ro-

tation measurements which show that the ELMs are associated with a filamentary

structure of toroidal mode number typically n ∼ 10, rotating with a toroidal velocity

of ∼ 15kms−1[3]. Figure 1.8 shows the evidence of filamentary structure at the start

of ELM. As the ELM develops further, the filamentary structure pushes out into the

SOL and provides a conduit for a rapid particle and energy losses from the pedestal

region. Similar filamentary structure were also obtained in COMPASS-D indirectly

from magnetic measurements [63].
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Figure 1.8: High speed visible image of the MAST plasma (#8814) at the start of
an ELM, showing evidence for a filamentary structure that follows the field line near
the plasma boundary[1].

The capability of the Thomson scattering systems to monitor both inboard and

outboard pedestals has shown the formation of broad tail in both the density and

temperature profiles at the outboard midplane but no change on the inboard side,

showing that the ELMs in MAST have a ‘ballooning’ character and are convective

in nature, affecting primarily the outboard pedestal density profile. A sequence of

pedestal density profiles is illustrated in figure 1.9 showing the formation of steep

gradient in density and temperature profile in pedestal region just before the onset

of ELM, later during the onset of ELM, broadening of the profile occurs as shown

in Fig. 1.9(b). At this time, narrow plasma filaments develop, locally perturbing the

outboard separatrix and flux surfaces in SOL region as shown in Fig. 1.9(e). Finally
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Figure 1.9: Thomson scattering profiles of the outboard edge density profile in nor-
malized flux coordinates at different times with respect to the start of a similar ELM,
(a) shot 5752 before the ELM, (b) shot 5756 in the middle of the ELM rise, and (c)
shot 5864 near the end of the ELM rise time [3].
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the ‘detachment’ of the plasma filament at outboard midplane is shown in 1.9(c and

f) [3]. Similar behavior is seen in measurements from detailed studies enabled by

MAST’s unique imaging capabilities, have shown how plasma filaments form and

disturb the edge of the plasma. This disturbance to the outboard flux surfaces leads to

enhanced cross-field transport of heat and particles from the filament into the scrape-

off layer, beyond the separatrix. Since the filament is linked to the core it acts as

a conduit for losses from the whole pedestal region i.e. much more energy would

be lost during the process than there is contained, at any one time in the filament

volume. Finally, by magnetic reconnection, the filament detaches from the core at the

outboard mid-plane [2, 3]. The above interpretation of the formation and detachment

of filamentary structure are based on the nonlinear ballooning mode theory of Wilson

and Cowley [64] and will be explained in detail in later section.

1.5 Historical overview of theoretical modeling

MHD theory provides a single fluid description of long wavelength, low-frequency,

macroscopic plasma behavior. The governing equations forMHD theories areMaxwell’s

equations, mass, momentum and energy conservation equations and ohm’s law. When

we take η → 0, such a model is called ‘ideal’ MHD theory, where the plasma is con-

sidered to be perfectly conducting in contrast when η 6= 0, it is called ‘resistive’MHD

theory. In general, kinetic effects are not considered in conventional MHD theory not

only because they complicate the procedures of analysis but also because most of the
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important macroscopic MHD phenomena have been successfully described without

including the kinetic effects in the past.

1.5.1 Ideal MHD

Ideal MHD theory has been reviewed excellently by Freidberg[66], and readers are

referred to his book for a more detailed discussion. For ideal MHD theory, the gov-

erning equations are derived from the Maxwell-Boltzmann equation;

∂fj
∂t
+ u ·∇rfj +

qj
mj
(E + u×B) ·∇ufj =

µ
∂fj
∂t

¶
c

(1.4)

Here fj ≡ fj(x,v, t) is a distribution function for species j. Braginskii [67]

showed complete derivation for fluid moments of species j from the general kinetic

model. After deriving mass, momentum and energy conservation equations for elec-

tron and ion species, we may obtain a single fluid model from the two-fluid equations.

Assuming no dissipation (ν = 0) and isotropic plasma, the ideal MHD model can be

described as a single fluid in the following equations ;

continuity equation

∂ρ

∂t
+∇ · ρv = 0 (1.5)

equation of motion

∂

∂t
(ρv) + v (∇·ρv) + ρ (v ·∇v) = j×B−∇p (1.6)
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equation of state

∂p

∂t
+∇· (pv) + (γ − 1) (p∇ · v) = 0 (1.7)

Ohm’s law

E+ v×B = 0 (1.8)

Faradays’s law

∂B

∂t
= −∇×E (1.9)

Ampere’s law

∇×B = μoj (1.10)

∇ ·B = 0 (1.11)

A characteristic dimension for MHD phenomena is the overall dimension of

the plasma, denoted by L also called characteristic MHD length. The typical char-

acteristic time scale of ideal MHD is set by the thermal velocity of the ions, i.e.

vth = (2Ti/mi)
1/2. This is the fastest velocity at which the plasma as a whole can

be moved. Also the MHD ordering in terms of characteristic MHD frequency ω and

wavenumber denoted by k can be written as follows:
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ω ∼ ∂

∂t
∼ vth

L
(1.12)

k ∼ ∇ ∼ 1

L

and similarly, the resulting velocity

ω

k
∼ v ∼ vth

In the MHD theory, it is essential that the plasma is collisional, i.e. the parti-

cles interact frequently with each other. Without this assumption such quantities as

temperature or pressure of the fluid element can not be defined. On the other hand,

if ideal MHD is considered, plasma should not be too collisional, since it is assumed

that the resistivity of the plasma is small. Low resistivity allows to neglect such phe-

nomena as resistive diffusion and reconnection of magnetic field lines.

The following are the condition of validity of ideal MHD which must be satis-

fied [66]:

1. The collisionality must be large in order to keep ion and electron tempera-

tures equal and to ignore the viscous effects.

2. The ion gyro radius must be small compared with the characteristic length

scale of the MHD phenomena.

3. The resistivity must be small to avoid resistive diffusion.

The second and the third condition are satisfied for most plasmas that are inter-

esting from the fusion point of view. Unfortunately, the first condition is not. The col-
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lisionality is too low for the particle motion parallel to the magnetic field lines to be

treated accurately by ideal MHD. However, since the charged particles gyrate around

magnetic field lines, they can be assumed to be “frozen” to the field lines. This means

that, while the particle motion is very rapid in the parallel direction, gyro-averaged

perpendicular particle motion is slow and, consequently, the collisional effects are

fast compared with the transport across the field lines, so that the perpendicular be-

havior can be treated with the fluid model. This allows treating most fusion plasmas

with the ideal MHD theory in the direction perpendicular to the magnetic field. For-

tunately, in toroidal devices, like the tokamak, this has little effect on the equilibrium

and stability of the plasma. Consequently, the ideal MHD model for tokamak fusion

plasmas can be used in most cases.

It is also good to keep in mind the limitations of the MHD theory. For instance,

if the particle orbit radius is comparable to the gradient lengths of the plasmas, av-

eraging the particle position over the Larmor orbit is no longer justified and even

the perpendicular MHD has reached its limit of validity. For instance, in the region

near the tokamak plasma edge, where a steep pressure gradient exists, MHD theory

is close to the limit of validity and some effects caused by the finite ion gyro radius

start to play a role in the MHD stability of the plasma.
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1.5.2 Resistive instability

In the preceding section we discussed plasmas with zero resistivity. In such a case

conducting plasma is frozen to the line of magnetic force. However the resistivity of

plasma is not generally zero and the plasma may deviate from the line of magnetic

force. Modes which are unstable in ideal case may in some instance become unstable

if finite resistivity is introduced. Hence considering a finite resistivity η 6= 0 in Ohm’s

law 1.8, the ideal MHD equations may be modified for resistive stability studies.

E+ v×B = ηj (1.13)

Hence, the perturbed linearized Ohm’s law becomes

∂B1
∂t

= ∇× (v1 ×B0)−∇×
µ
η

μo
∇×B1

¶
(1.14)

= ∇× (v1 ×B0) +
η

μo
∇2B1

The second term of the RHS of (1.14) contains the finite resistivity of the

plasma and allows us to investigate the resistive instabilities. From a physical point

of view, it represents the diffusion of magnetic field lines through plasma and its char-

acteristic time is the so-called ‘resistive diffusion time’, τR (≡ μoL
2/η) .The shortest

characteristic time in the plasma is of the order of the Alfvén time, τA ≡ L/vA,where

vA = Bo/
√
μoρ, while the longest time is of the order of τR. Thus, the Lundquist

Number (or magnetic Reynolds number) S0 (≡ τR/τA) is used for characterizing the

plasma. For typical tokamak plasmas, S0 is on the order of 106 to 108, so the re-
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sistive diffusion time and the Alfvén time are well separated. As a rule of thumb, a

typical MHD characteristic time is on the order of the geometric mean of τR and τA

and an ideal MHD characteristic time is faster than that of resistive MHD. To distin-

guish the resistive instabilities from ideal MHD, the MHD modes are called resistive

ballooning, resistive interchange, resistive kink, and tearing modes etc.

1.5.3 Finite Larmor radius correction

Ideal MHD instabilities play an important role in limiting plasma performance in

tokamaks. Its effect on plasma confinement becomes even more important if the

MHD modes are associated with the so-called transport barriers (i.e. large pressure

gradient region), which suppress the thermal plasma transport in a narrow region

and control high confinement of the plasma. In such high pressure gradient region,

one must take into account all the relevant pressure-dependent effects, which can

modify the stability conditions. One of the well-known effects, which can dramati-

cally modify the stability of ideal MHD modes is the finite gyroradius effect of the

ion diamagnetic drift frequency ω∗i., which can stabilize ideal MHD modes if their

growth rate γMHD is comparable to or lower than ω∗i [68, 69, 70] Such effects can

be introduced through the drift ordering, by addition of few terms in the ideal MHD

equations. The modified MHD model is also called as drift model.
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As mention in the earlier section (i.e. 1.5.1), the MHD ordering is based on

ion thermal velocity scales v ∼ vth and ω ∼ vth/L. However the drift ordering [71]

brings the velocity and growth rate scales one order smaller,

v ∼ δvth,
∂

∂t
∼ δ

vth
L
,

ω

Ωci
∼ δ

ρi
L
∼ δ2 (1.15)

where δ is the characteristic small parameter,Ωci is the ion cyclotron frequency and ρi

is the ion gyroradius. The drift model avoid trivial complications by assuming equal

species temperature, Ti = Te.The quasineutrality condition makes both pressure the

same, (i.e., pi = pe) with the total pressure becomes p = pi + pe. The fluid velocity

can be written as

vi = v + vdia (1.16)

and

v = v⊥ + vq (1.17)

corresponds to MHD velocity in the limit of vanishing gyroradius. The drift ordering

introduces the diamagnetic velocity as vdia

vdia =
B×∇p

qnB2
(1.18)

where q is the particle charge. Using the above definition we can write two forms of

drift model equation, the first model is called as Hazeltine drift model (HZ)[71]
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∂n

∂t
+ n∇ · vi = 0 (1.19)

min

µ
∂v

∂t
+ v ·∇v + vdia ·∇v⊥

¶
=
1

c
j×B−∇p (1.20)

E+ vi ×B+
1

2en
(∇p− 2j×B) = η

µ
j−3cn
4B

b× ∇p

n

¶
(1.21)

dp

dt
+
5

3
(p∇ · v) = 0 (1.22)

However in Chang and Callen model (CC)[72], they uses the total ion fluid

velocity vi, and retain a partial derivative of vdia , that was neglected in (1.20) , and

hence we can write the equation of motion of Chang and Callen model as

min

µ
∂vi
∂t
+ vi·∇vi − vdia ·∇vi

¶
= j×B−∇p−∇ ·Πgv

i + μ∇2⊥vi (1.23)

, if we compare CC equation of motion and HZ equation of motion, ones sees the

parallel gyroviscous force term (i.e.,∇ ·Πgv
i ) .This term algebraically cancel a sig-

nificant part of the advective acceleration nvi·∇vi. This is also called as gyroviscous

cancellation[72], and is written as follows

n

µ
∂vdia
∂t

+ vi·∇vdia
¶
+∇ ·Πgv

i =∇χ− bn
¡
vdia·∇vk

¢
(1.24)

where χ = −pib · (∇× v⊥) is a scaler related to parallel component of ion vorticity.
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The main difference between these equations and the equation of MHD model

is through slight modification to the scalar pressure and the appearance of source

term proportional to vdia.Thus the drift model naturally produces the set of equations

that explicitly contain the lowest order finite Larmor radius correction to the MHD

model. This has been proven to be powerful tool for analysis of hot, well confined

plasma such as tokamak.

1.5.4 Nonlinear Ballooning mode theory

The theory for the early nonlinear evolution of ballooning modes in geometry of a

tokamak was developed by Cowley and Wilson [43, 64, 65]. This study was done by

keeping astrophysical application in mind. The field lines were assumed to be held

fixed at the two end points. Such a boundary condition are applicable to the plasma

edge where at certain rational surface the field lines connect back on themselves after

a finite number of revolutions around the torus. A number of approximation were

taken inorder to limit it to the early nonlinear phase. First, the perturbation has a long

wavelength in the direction along the magnetic field lines and is described by the

standard linear ideal MHD ballooning mode equation at marginal stability[75]. The

nonlinearity enter the equation for the variation of the perturbation perpendicular to

the field line, which is time-dependent. The perturbation is defined as

ξ (ψ, α, θ; t) = F (ψ, α; t)H (θ) (1.25)
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whereH is the solution to the ballooning equation at marginal stability, the nonlinear

equation that determines F is

∂2

∂t2
∂2

∂α2

"Z t

0

dt́
u (α, ψ; t́)

(t− t́)λ−1

#
=

∙
2 (1− μ)

∂2u

∂α2
− C1

∂2u

∂ψ2

¸
+ C2

∂u

∂α

"µ
∂u

∂α

¶2#

+C3
∂2u

∂α2
∂2

∂ψ2

µ
∂u

∂α

¶2
(1.26)

The first two terms on the right-hand side are standard linear terms. The first

term represents the linear drive for the unstable flux tube and close to linear mar-

ginal stability is positive (unstable) in a narrow region of ψ. The second represents

the stabilizing terms that come from pushing aside flux tubes to allow the exploding

tube through. For small amplitude the displacement is confined to the narrow lin-

early unstable region. The third term that is quadratic in u is the nonlinear drive due

to the weakening of the stabilizing field line bending as the flux tube expands. This

gives rise to an explosive evolution of the instability and a narrowing of the mode in

the poloidal direction. An additional third order term resulting from the evolution of

the pressure gradient leads to a widening in the radial direction as the local pressure

gradient at the centre of the mode is moved outwards by the instability. The result-

ing picture is that of a localized flux tube being expelled from the main plasma in

an explosive manner. This flux tube is connected back to the plasma. This model

can explain the filamentary structures observed in MAST to some extent, however it

didn’t address the loss mechanism of energy.



36

1.6 Purpose of this study

The main purpose of this study is to investigate the nonlinear dynamics of the bal-

looning mode by means of numerical simulations in ST devices in the framework of

MHD model and the drift model. One of the example of time evolution of nonlinear

ballooning mode instability is the ELMs. In the current work, we aim to explain the

scenario of an ELM crash with a spontaneous time development of plasma from the

beginning to the end continuously and self-consistently. This should be placed upon

the first attempt to understand the eruption of filamentary structure from the edge

pedestal during ELM crash. This study will help to close the gap between the ex-

perimental observation and theoretical modeling, and will reveals new informations

that will be helpful to improve the current understanding of the spatial and temporal

structure of ELMs.

Bearing in mind the above objective, most of this study is devoted to repro-

duce the eruption mechanism of filamentary structure by the simulation. Since the

mechanism of filaments is not understood at all, we firstly aim to understand the

outline of the phenomenon by using as simple model as possible. Thus, we carry

out MHD simulation in a three-dimensional full toroidal geometry to investigate the

characteristic feature of ELM burst which is considered to be governed by large scale

activities. The simulation results are immediately compared with the experimental

results, and the discrepancy between them are fed back to the modeling. Repeating
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such investigations many times, we can improve the modeling and can reproduce the

phenomenon appropriately.

Experimentally, the filamentary structures associated with ELMs has been al-

ready observed in multiple tokamaks (i.e., MAST, NSTX and ASDEX-U). These

filamentary structure have the following characteristic features: localized structure

along the field line, occurrence during the H-mode of operation, occurrence near

ballooning stability limit, convective loss of plasma, rapid growth of intermediate

precursor preceding the crash, ELM rise time ∼ 100μ sec. Hence our target is to re-

produce the above characteristic features of ELMs through simulation. Moreover in

the second part of our simulation, we will introduce a diamagnetic rotation of the per-

turbations in both toroidal and poloidal directions. These rotations will be introduced

in the MHD momentum equation through the advection term due to the ion diamag-

netic drift effect. This will improve our simulation model, and the simulation results

will become more realistic and comparable with the experimental observation.

In the following chapter, the simulationmodels are described, with the detail re-

garding the initial equilibrium, the boundary conditions, and the numerical schemes.

In chapter 3 and 4, the simulation results using the MHD model as well as the drift

model are presented. Chapter 5 shows the comparison between simulation result and

the experimental observation by using MHD and FLR models. And finally, the sum-

mary of this study and some remarks are described in the last chapter.
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Chapter 2
Simulation model

2.1 Simulation geometry

The principal aim of our simulation is to understand the nonlinear dynamics of bal-

looning modes and explore the formation of ballooning filaments which erupts dur-

ing ELMs in high beta plasma. Our simulations are based on standard resistive

MHD model. These simulations are executed in a three dimensional full-toroidal

cylindrical (r, θ, z) geometry as shown in Fig. 2.1, where r is the major radial co-

ordinate, θ is the toroidal angle and z is the vertical distance along the axis of the

ST. The poloidal cross-section is clipped in rectangular shape, including the exter-

nal open magnetic field. The external region is simply modelled by filling a uniform

low-pressure plasma initially to improve the numerical instabilities. The boundary

condition is periodic in toroidal direction, and the perfect-conducting no-slip wall

at all the physical boundaries. The region where simulation is performed includes

both the core plasma and the peripheral magnetic field. The plasma can freely ex-

tend into the peripheral region as a result of time development. A conductor rod is

placed on the center of the cylinder. Since the plasma motion that is propagated by

the Alfvén wave is disturbed at the top and the bottom boundary, therefore the sim-

ulation result is more sensitive to the conditions of these boundaries than the inner
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Figure 2.1: Schematic diagram of simulation geometry

and the outer boundaries. Therefore, we leave a sufficient margin in the vertical di-

rection from the core plasma in order to avoid the disturbance from the reflection at

the top and the bottom boundaries.

2.2 Physical models

2.2.1 MHD model

In order to analyze the dynamical behavior of the ballooning mode, we perform non-

linear simulations based on the MHD model, where the plasma is treated as a single

fluid with a single temperature. The independent variables are the mass density ρ,
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the fluid velocity v, the magnetic field intensity B, and the plasma pressure p. The

time development of these variables is expressed by the standard set of the nonlinear

resistive compressible MHD equations. The compressible nature in the governing

equations is fully retained in the simulation model because of its importance in the

nonlinear dynamics in this configuration.

∂ρ

∂t
= −∇ · (ρv) , (2.1)

∂

∂t
(ρv) = −∇ · (ρvv)−∇p+ j×B

+μ

µ
∇2v + 1

3
∇ (∇ · v)

¶
, (2.2)

∂p

∂t
= −∇ · (pv)− (γ − 1)

¡
p∇ · v + ηj2 + Φ

¢
, (2.3)

∂B

∂t
= −∇×E, (2.4)

j =∇×B, (2.5)

E = −v×B+ ηj, (2.6)

Φ = 2μ

µ
eijeij −

1

3
(∇ · v)2

¶
, (2.7)
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eij =
1

2

µ
∂vi
∂xj

+
∂vj
∂xi

¶
, (2.8)

Equations (2.1) to (2.4) are the equation of continuity, the equation of motion,

the equation of pressure, and the equation of induction, respectively. The current

density j is determined by Ampere’s law (i.e., (2.5)), and the electric field E follows

the Ohm’s law (i.e., (2.6)). The ratio of specific heats γ is 5/3 and for simplicity, the

resistivity η and the viscosity μ are assumed to be uniform constant through out the

whole region. The first term on the right hand side of (2.3) is the convection term and

the heating terms like adiabatic compression, ohmic heating and the viscous heating

are included in the second group of terms. By evaluating the viscous heating term Φ

the system retains the local energy conservation among the plasma heat, the kinetic

and magnetic field energies.

In the simulation, all the variables are treated as a normalized form, where

the initial toroidal magnetic field at the magnetic axis, and the initial density which is

assumed to be uniform in the initial state is set to be 1. since the pressure has the same

order as that of energy density, (i.e., po = B2
o ), pressure is automatically normalized

by scaling magnetic field. The unit of the length is given by the major radius at the

magnetic axis. Under these normalizations the velocity and the time are normalized

by the Alfvén velocity at the magnetic axis and the transit time of the Alfvén wave

on the axis, respectively. Therefore, we can compare the simulation results with real

experiments, by scaling the spatial dimension, the density and the magnetic field. For
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example, the plasma parameters of a typical NBI shot of the MAST plasma are given

by the toroidal magnetic field at geometric center ∼ 0.52(T ), the major radius ∼

0.85(m), and the line average density∼ 4.0×1019(m−3). By using these parameters,

we can estimate the unit of the time scale for this shot as 1(τA) ∼ 0.47(μ sec).

2.2.2 Simplified drift model

The MHD model is a useful approximation which has wide applicability for dynam-

ical phenomena with Alfvénic spatio-temporal scales. The resistive version of this

model can follow the processes which include the magnetic reconnection. How-

ever, the MHD approximation with a rigorous ordering estimation requires the target

phenomenon to have the characteristic spatial scale sufficiently larger than the ion

Larmor radius, and the time scale much shorter than the Alfvén one. The experimen-

tally observed phenomena, even the explosive one like a hard disruption in tokamak,

do not satisfy such conditions. As the first step to improve the modeling for more re-

alistic situations, we examine the lowest-order modification on the MHD model by

taking account of the FLR effect[85, 84]. In the fluid description, this corresponds to

adding the ion diamagnetic drift velocity vp,

vp =
m

2e

B×∇p

ρB2
(2.9)

to the standard MHD velocity, wherem and e are the mass and the charge of the ion,

respectively. By adding the advection term due to the diamagnetic rotation to the

equation of motion (2.2), i.e., we replace
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−∇ · (ρvv) −→ −∇ · (ρvv)− ρvp ·∇v (2.10)

therefore the modified equation of motion becomes

∂

∂t
(ρv) = −∇ · (ρvv)− ρ (vp ·∇v)−∇p+ j×B (11)

+ μ

µ
∇2v + 1

3
∇ (∇ · v)

¶

(vp)real = +
m

2e

µ
B×∇p

ρB2

¶
; (vp)sim = ζ · (vp)real (2.12)

a simple modification which includes the most essential part of the ion dynamics can

be obtained. The ion diamagnetic drift velocity increases linearly with the dimen-

sionless parameter ζ, where ζ is considered to be the controlling parameter. If we

take ζ = 1, it means we are using the realistic value of vp, however we also have

used the exaggerated value ζ in order to investigate the effect of vp. More complete

expression for the drift model was derived by Hazeltine andMeiss[71] and Chang and

Callen[72] as the time development of the total velocity, including also the electron

dynamics in the Ohm’s law. However, the characteristic nature including the poloidal

and toroidal diamagnetic rotation can be represented by our simplified model.
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2.3 Initial equilibrium

Initial axisymmetric equilibria are obtained with the two-dimensional Grad-Shafranov

equation in the poloidal plane (r, z) under the assumption of pressure and current pro-

files. We can derive the Grad-Shafranov equation from Ampere’s law. First, as the

current density j can be decomposed into components perpendicular and parallel to

the magnetic field B, we may write it in the following form;

j = j⊥ + jk (2.13)

where j⊥ = (B×∇p) /B2 = (dp/dψ) (B×∇ψ) /B2 and jk = jkB/B. After the

vector manipulation , the current density become

j = −r2 dp
dψ
∇φ− 1

μo

dF

dψ
B (2.14)

When we take a dot-product of Ampere’s law with∇φ, the RHS becomes

∇φ · (μoj) = −μo
dp

dψ
− dF

dψ

F

r2
(2.15)

and the LHS becomes

∇φ · (∇×B) = ∇ · (B×∇φ) (2.16)

= ∇ ·
¡
|∇φ|2∇ψ

¢
= ∇ ·

µ
1

r2
∇ψ

¶
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As a result, the Grad-Shafranov equation becomes

∆∗ψ = −μor2
dp

dψ
− F

dF

dψ
(2.17)

where

∆∗ ≡ r
∂

∂r

µ
1

r

∂

∂r

¶
+

∂2

∂z2

and ψ is a stream function for the poloidal magnetic field. In addition, the poloidal

magnetic field BR and Bz can be found in terms of cylindrical coordinates;

Br = −
1

r

∂ψ

∂z
, Bz =

1

r

∂ψ

∂r
(2.18)

p (ψ) and F (ψ) are the two free function included in (2.17). In this simulation, the

equilibrium pressure p (ψ) is given by flux function,

p (ψ) = po (1− (1− ψn)
α)β (2.19)

and the poloidal current function F (ψ) is given by

F (ψ) = Fo

¡
ψβ
n + Fex

¢
(2.20)

where ψn is the normalized poloidal flux function and is equal to unity at magnetic

axis and zero at plasma vacuum boundary. α and β are constants and are chosen as

α = β = 2. The pressure profile is flat around the magnetic axis with dp
dψn

= 0 at the

axis. Also F (ψ) is related to the toroidal magnetic field by
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Figure 2.2: Electron density ne, pressure pe and energy pedestalWe,ped in a quasi-s-
tationary ELMy H-mode discharge (#6252) [57].

Bθ = −
1

r
F (ψ) (2.21)

ψ(r, z) at equilibrium state is obtained by solving (2.17) numerically on the poloidal

cross section. and further the solution of ψ(r, z) is substituted in (2.18), (2.19)

and (2.20) to calculate two dimensional magnetic field (BGS(r, z)) and pressure

(pGS(r, z)) at equilibrium state.

After calculating numerically the two dimensional equilibrium from the pro-

cedure mentioned above, we extended the equilibrium into the three dimensional

axisymmetric field quantities by the following equations,

B(r, θ, z) = BGS(r, z) (2.22)
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Figure 2.3: Initial condition of the simulations. (a) Radial profiles of the plasma
pressure(p), the net toroidal current(jθ), and the safety factor(q). (b) Contour map of
poloidal flux. The position of the separatrix is indicated with dashed line.

p(r, θ, z) = pGS(r, z) + pbias (2.23)

Here we suppose that the outside region of the separatrix is filled with uni-

form low pressure plasma. This treatment is done by adding a low biased pressure

to pGS(r, z) as shown in (2.23) uniformly. Since the motion of plasma as shown

earlier in (2.2) is dependent on gradient of pressure (i.e., ∇p), therefore by adding

low uniform pressure all over the simulation will not break the equilibrium condi-

tion. Such treatments helps to avoid negative pressure and continue the simulation

smoothly even in highly nonlinear regime. Thus we add 20% of the maximum pres-

sure as pbias. The initial mass density is assumed to be uniform i.e., ρ(r, θ, z) = 1.

Shown in Fig. 2.3(a) is the radial pressure (p), net toroidal current (jθ), and safety
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factor (q) profiles. The profiles are selected to be moderately broad in the core region,

following the conventional experiments (i.e., see Fig.2.2 [57]), where the aspect ratio

A = 1.5, the elongation κ = 2.1, the q value at the magnetic axis is q0 = 1.146, min-

imum value of qmin = 1.093, and the central plasma beta β0 = 46.9%. The contour

of the poloidal flux of the initial equilibrium are shown in Fig. 2.3(b). The position

of the separatrix is identified by dotted line.

2.4 Boundary condition

Our simulation region consists of the following boundaries, the inner boundary (r =

rmin), the outer boundary (r = rmax), the top (z = zmin) and bottom (z = zmax)

boundaries. The real boundaries in the experiments, are usually made of metal, there-

fore if we ignore the complicated effect like recombination, the secondary electron,

the reflected backward flow of plasma, and impurity etc, then the most reasonable

condition for the boundary is the perfect conducting. Forexample the center rod in

ST is made of metal therefore the inner boundary is treated as conducting wall by

introducingB⊥ as constant on the relevant component of the magnetic field at the in-

nermost mesh for each time step. Hence we assume the perfect conducting no-slip

wall as boundary condition for the outer, inner, the top, and the bottom boundaries.

However in the toroidal direction it is periodic in nature.
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2.5 Numerical scheme

Numerical calculation of the MHD model equation and Drift model equation has

been implemented by using finite difference method and Runge-Kutta method. In

the current simulation the numerical grid is composed of r, θ, and z direction. The

grid numbers are chosen to be (Nr, Nθ, Nz) = (128, 64, 256), which is large enough

to treat the current problem. The finite difference method (FDM) consists of trans-

forming the partial derivatives in difference equations over a small interval. To obtain

as higher accuracy as possible with reasonable memory size, it is effective to raise the

order of finite difference approximation. The spatial derivatives on the right hand side

of (2.1) − (2.4) are approximated by using fourth-order finite differences scheme. A

first spatial derivative of a variable f at a discrete point is represented in the fourth

order central difference form by

∂f

∂x
|x=xi =

1

12δx
(−fi+2 + 8fi+1 − 8fi−1 + fi−2) (2.24)

where i is the index of numerical grid for spatial coordinate x, and δx is it interval.

The numerical error due to finite difference approximation is of the order of (δx)4

at most. Since (2.24) needs information of two neighbor at both direction i.e. i − 2

and i+2, therefore another treatment is necessary near the boundaries. To treat such

problem we adopted another approach, which make use of a lower order approxima-

tion near the boundaries. Such treatment of reducing the order has a stabilizing effect

for the solution particularly when there is reflection of short wave length wave at the
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boundary wall. Therefore the grid points next to boundary is treated with a second

order central difference scheme,

∂f

∂x
|x=xi =

1

2δx
(fi+1 − fi−1) (2.25)

and, at the boundary, a first order difference is used.

∂f

∂x
|x=xi =

1

δx
(fi+1 − fi) (2.26)

Thus all the derivatives in the RHS of the (2.1) − (2.8) are represented in the finite

difference form by using (2.24) − (2.26). The partial differential equations are now

treated as ordinary differential equations in respect of t by estimating the right hand

side at each time.

The time advancement of MHD equations is performed by using an explicit

fourth-order Runge-Kutta scheme. It is one of the standard algorithm to solve differ-

ential equations. Now we denotes the set of the independent variables (ρ,v,B, p) by

the vector y, and the sum of the RHS of (2.1) − (2.4) by vector g. The fourth order

Runge-Kutta requires four gradient or k terms to calculate yn+1,

k1 = δtg (yn) (2.27)

k2 = δtg

µ
yn +

k1
2

¶
(2.28)
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k3 = δtg

µ
yn +

k2
2

¶
(2.29)

k4 = δtg (yn + k3) (2.30)

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4) (2.31)

where n and δt is the time index and the time interval respectively. Combining (2.1)

− (2.4) and (2.27) − (2.31), can solve the MHD equations numerically. In case of

drift model equations, (2.2) will be replaced with the (2.11), the rest of procedure is

the same as mentioned for MHD equations.
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Chapter 3
MHD simulation results

3.1 Overview of simulation results:

In this chapter, the nonlinear dynamics of the ballooning mode are presented by

means of numerical simulations in the framework of MHD model. With the given

equilibrium similar to the conventional experiments, the nonlinear simulations are

executed in a three dimensional full toroidal geometry. In the linear analysis, the

intermediate-n modes have larger growth rates than others. These intermediate-n

modes have a ballooning mode nature, the mode structures are poloidaly localized

in the bad curvature region, and have a wide envelope consisting of several poloidal

components. In the nonlinear phase, the MHD ballooning modes evolve into a non-

linear structure that results in the formation of a number of hot plasma filaments,

elongated along a magnetic field line, but localized about it. These filaments ex-

tend out into the scrape-off layer on the outboard side but remain connected back

into the pedestal region on the inboard side. These results are compared qualitatively

with the experimental observation of the ELMs in MAST and NSTX experiments.

Good agreement is found in the following characteristics of filaments: presence of

intermediate-n precursors, triggering by the ideal ballooning mode, formation and
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separation of filaments from the core plasma, non-uniform growth of filaments, time

scale of ELM crash, and loss of plasma through convective process.

3.2 Linear instability

3.2.1 Linear growth of instability

In the initial equilibrium as shown in Fig. 2.3, the pressure profile is somewhat broad

in the core region, and steeply falls at the edge, where the ballooning modes can be

easily destabilized. The q profile, on the other hand, does not include the q = 1

rational surface over the whole poloidal cross section, and is set to be slightly greater

than 1 at the core, whereas in the edge region, the q value increases rapidly toward

the plasma surface. Therefore, various kinds of ballooning modes which are resonant

to the neighboring rational surfaces can be destabilized simultaneously in the edge

region.

By adding tiny random perturbations to the velocity components in the ini-

tial equilibrium as the seed of the instability, the system begins to develop sponta-

neously. The perturbations grow exponentially with several kinds of eigenmodes.

Figure 3.1(a) shows the time development of the magnetic energy for each toroidal

Fourier mode for the MHD case. Note that the intermediate-n modes are linearly un-

stable in the early phase, with intermediate-n have larger growth (especially, n = 9).

The low-n (i.e., n < 4) and high-n modes (i.e., n > 11) are nonlinearly driven as
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Figure 3.1: (a)Time development of magnetic energy for each toroidal Fourier com-
ponent n. (b)The linear growth rate for each toroidal Fourier mode number n.

the intermediate-n acquire finite amplitude. The exact toroidal mode structures can

be obtained from the simulation based on the linearized version of (2.1)− (2.4). Fig-

ure 3.1(b) shows the linear growth rate (γn) for each toroidal mode and is estimated

by using γn = 1
2
∆(lnEm)

∆t
, where Em is the magnetic energy of the perturbation at

time t. It is shown that the intermediate-n modes have larger growth rate, especially,

the n = 5 − 9 components have peaks for the ideal (η = 0) case. Hence the non-

linear activity will be dependent on the intermediate modes. In the later stage, after

t = 50τA, the mode coupling effects become significant and higher-n and lower-n

are seen to be excited. This stage may be called the nonlinear stage.
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3.2.2 Linear mode structures

In this section, we discuss the detail of the linear mode structure of the linear insta-

bility. Shown in Fig. 3.2 is the poloidal mode structures of such instabilities with

two-dimensional color image contours of the perturbations in the pressure, and with

the radial profiles of the poloidal Fourier expansions of the magnetic field energy.

Figure 3.2(a) shows the poloidal cross-section of the fluctuation component in the

pressure for the dominant toroidal mode (i.e., n = 9). The dotted line shows the po-

sition of rational surface. The red and blue contour denotes the positive and negative

perturbation in pressure respectively. The region where the pressure fluctuation be-

comes positive corresponds to the region where the plasma flow is gathered. It shows

that these modes are poloidaly localized in the so-called bad-curvature region with

unstable mode peaks in the outboard side of plasma. This is the most noticeable sup-

porting evidence of the ballooning mode because the growth of the mode is affected

by the magnetic field curvature. This is shown in Figure 3.2(b), it shows the poloidal

Fourier expansion of the magnetic field energy. It shows wide envelopes with multi-

ple poloidal components, causes a helically extending expansive deformations at the

plasma surface. This is also typical behavior of ballooning modes.

Another analysis for the evaluation of the free energy source by using the en-

ergy principle as given by (1.3), is presented in Table (3.1). As mentioned earlier the

first three term appear in the RHS of (1.3) corresponds to the change in the potential

energy of the Alfvén wave, the fast magneto-acoustic wave, and the acoustic wave.
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Figure 3.2: Poloidal mode structure of the linear n = 9 mode. (a) color contour map
of the perturbations in p on a poloidal cross section. Thick line indicates the location
of the separatrix. (b)Radial profile of the perturbation amplitude in the magnetic
energy for each poloidal Fourier mode number m. The horizontal axis indicates the
normalized poloidal flux from the magnetic axis(Ψ = 0) to the separatrix(Ψ = 1).

These terms are positive definite, so that they have a stabilizing effect. The fourth

and fifth term are related pressure driven and the current driven instability respec-

tively. Both the current-driven and the pressure-driven terms come out to be negative

for intermediate-n (i.e., n = 5, 6, 8 and 9). Therefore, the instability is driven by the

combination of the effect of both the current and the pressure gradient. Furthermore,

it can be seen that the pressure-driven term is much larger than the current-driven

term for intermediate-n. Therefore, we can conclude that the instability has a nature

of the pressure-driven modes for intermediate-n.

As for the effect of the resistivity, the obtained η dependencies of the growth

rate for each toroidal mode has been shown in Fig. 3.3. It shows that for η ≤ 1×10−5
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Figure 3.3: The resistivity η dependence of the linear growth rate for each toroidal
Fourier mode number n.

Terms n = 5 6 8 9
Kink −1.0 −1.0 −1.0 −1.0
Ballooning −6.0 −8.4 −15.7 −21.1
Alfvén 4.5 5.8 9.6 11.8
Fast magneto acoustic 0.77 1.1 2.5 2.4
Acoustic 0.76 1.2 2.9 3.4
Total −0.97 −1.3 −1.7 −4.5

Table 3.1: Estimation of the change in total potential energy by using the energy
principle. All the terms are normalized by the absolute value of the kink term for
each mode.



58

Figure 3.4: The viscosity μ dependence of the linear growth rate for each toroidal
Fourier mode number n.

, there is no significant change in the growth rate. Therefore, it can be identified that

these modes are mainly ideal in nature for those parameter ranges. We hereafter

adopt η = 1× 10−5 for the rest simulations. Incidentally, as shown in Table 3.1, the

sum of all terms is really negative, it means that these modes are ideally unstable. It

also supports the conclusion that these modes are ideal mode. Hence from Fig. (3.2

and 3.3) and Table 3.1 we can conclude that the modes which are currently under

investigation are ideal ballooning modes in nature.

Figure 3.4 shows the growth rate for each mode defined by Fig. 3.1(a) for

different value of viscosity (i.e., μ = 5×10−05, 1.5×10−04, 5×10−04, and 1×10−03

). It can be seen clearly that with the increase of viscosity, the dominant modes
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shift toward intermediate-n value, and the dampness of higher-n modes becomes

prominent. On the other hand for small viscosity i.e., 5 × 10−05 the damping of

higher-n by viscosity is not effective, so that growth rate for each mode is larger than

that of 1.5×10−04 and higher μ value. Such high-n activity cannot be treated properly

in our simulation which use a finite difference scheme in a discrete numerical grid

system because of lack of numerical grid. Besides, experimentally, the intermediate-

n activity is thought to play more important role as a precursor to the ELM in ST.

Therefore, our simulation should also focus on such intermediate-n activity. The

viscosity should be set to be large well enough to damp the high-n modes in linear

phase. Too large viscosity, such as 5× 10−04, and 1× 10−03, however, will cause an

undesirable damping and saturation of growth. Thus, we use an appropriate value for

the viscosity of i.e., 1.5× 10−04 for Fig. 3.1(a).

.

3.3 Nonlinear dynamics

3.3.1 Formation of filamentary structure

In this section we will investigate the dynamical behavior of ST plasma in the nonlin-

ear stage. As we can see from Fig. 3.1(a) the instability keeps growing linearly with

the growth rate till t = 50τA. This is the time when we see the first indication of non-

linearity when there is abrupt change in the growth rate of high-nmode (i.e., 11−16)
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that are driven as the intermediate-nmodes acquire finite amplitude. Hence the hyper

harmonics of the linear eigenmodes are excited abruptly and grows strongly. After

this time some of the perturbations are dissipated and others coalesce into larger bal-

loons. Thus, the growth of the instability is saturated and the perturbations become

visible scale as shown in Fig. 3.1(a).

Shown in Fig. 3.5(a) is the time development of the 2D pressure profiles in a

poloidal cross section on the early nonlinear stage. One can see the plasma surface

dimples with a substantial scale at t = 70τA. Especially, a large balloon is formed in

the outer edge region, whereas the inner edge is disordered in small scale fragments,

reflecting the local pitches of the field lines. On the other hand, the core region

roughly keeps its initial profile, since the relevant ballooning modes are localized

only in the edge region. At t = 80τA (i.e., the highly nonlinear phase) some of the

balloons are separated from the core plasma, and ejected into the open field region.

Such a time development is also represented with a three-dimensional iso-pressure

surface in Fig. 3.5(b). The ejection process of the balloons can be clearly seen. The

balloons are formed in helically twisted shapes along the magnetic field at t = 70τA.

The balloons are separated from the core as a plasmoid or filament at t = 80τA in

a thin arch shape which extends from the top and bottom of the torus. The filament

looks belt like structure with n = 9 as the dominant mode and is moving away from

the plasma edge perturbing the SOL region.
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Figure 3.5: Nonlinear time development of the pressure profile represented with
(a)image contour map of the net pressure(p), and (b)3-D bird’s-eye view of an iso–
pressure surface.
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3.3.2 Non-uniform growth of filament

Figure 3.6(a) shows a top view of a three-dimensional iso-contour surface of pressure

at t = 76τA. Note that the filamentary structure erupts only from few prominent

balloons regardless of the dominant linear mode numbers. In order to explore this

we plotted different combination of the dominant toroidal mode numbers n = 9

(red), 6 (green) and 5 (blue). For further detail see Fig.3.6(b), where n = 9 and 5

are plotted. If one compare this with the previous figure, the filaments erupt only

on those balloons where there is a positive alignment of n = 9 and n = 5 modes.

Fig.3.6(c) and (d) shows the 9, 6 and 5, 6 combination. And if we compare this with

Fig.3.6(b) it is clear that coupling of n = 9 and 5 is much stronger as compare to

the rest of combination. This can be explained by the position of rational surface for

n = 9(m/n = 11/9 = 1.22), 6(m/n = 7/6 = 1.16) and 5(m/n = 6/5 = 1.2).

The rational surface of n = 9 and 5 are located much closer as compare to n = 9, 6

and 6, 5 combination, enhancing the probability of strong toroidal coupling. Thus

such nonlinear coupling of the dominant toroidal modes results in nonlinear growth

of filament.

3.3.3 Field line behavior

In this section we will investigate the behavior of magnetic field line as well as the

flow pattern of stream lines. The field line structures on this stage are shown in

Fig. 3.7. The semi transparent surface indicates the iso-contour of plasma pressure,
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Figure 3.6: (a) Top view of a three-dimensional iso-contour surface of net pressure
at t = 76τA. It shows the nonlinear growth of few localized filaments. The filaments
are identified as f1, f2 , f3 and f4. The number of filaments are much less then the
number of dominant toroidal mode (i.e. n = 9). The perturbation component in
pressure for (b) n = 9 (red) and 5 (blue) , (c) n = 9 (red) and 6 (green) and (d) n = 5
(blue) and 6 (green) Fourier components are plotted together. It shows the alignment
of n = 9 and 5 perturbation in the direction of localized formation of filamentary
structure f1, f2 , f3 and f4 are much stronger then case (c) and (d) combination.
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the arbitrary traces of the magnetic and the plasma flow field lines are represented in

blue and red, respectively. This structure is correspondent with the convection motion

of the plasma flows, which forms a twin-vortex pattern as clearly seen from the early

nonlinear stage at t = 60τA as shown in Fig. 3.7(a). The stream lines along each side

of the finger flows spirally in such a way that at the center of each finger, the velocity

field moves outward along the radial direction, pushing the core plasma from inside

to outside. At t = 68τA, more prominent balloons appears on the plasma pressure

iso-surface. The stream lines still have a twin vortex flow pattern around each finger.

This figure also helps us to visualize how the ballooning structure looks like. In this

figure we showed two type of field line, one coming from inside, and the other along

the outside surface. The filament erupts on inner surface along the field line and

moves radially outward. Most probably the field line on the outside surface allows

the field lines from inside to pass through. At t = 80τA , we observe the eruption of

the filamentary structures, roughly following the magnetic field lines on the plasma

surface. Although at this point it is difficult to trace the stream lines along the finger

because of highly nonlinear regime but still we observed single spiral motion on the

top and bottom of the filament. The twin vortex flow pattern is no more observable

because the filament is separated from the plasma edge in radial direction.

The twin-vortex flow pattern is more clearly shown in Fig. 3.8 with a two-

dimensional toroidal flow pattern on the mid plane. One can see that the balloon

ridge is formed along the spouting out of the plasma flows. When the balloon is
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Figure 3.7: Time evolution of plasma pressure iso-contour (green), the arbitrary
traces of magnetic field line (blue), and the stream line (red) at (a) t=60τA (b) t=68τA
and (c) t=80τA. Stream lines makes twin vortex structure along the finger in early
nonlinear phase. The magnetic field line extended along the filamentary structure.

formed at the plasma surface, the magnetic field lines on both sides of the separatrix

are pushed against each other by such perpendicular flows due to the spouting-out.

Under this situation the reconnection of the field lines can effectively occur by the

driven reconnection mechanism[77]. In Fig. 3.9(a), two bunches of the magnetic field

lines are drawn. The upper one is traced from the points in the external open field,

where no field line was connected to the inside of the separatrix at the initial state.

However, at t = 82τA the field line trace penetrates the separatrix, and connected

to the internal toroidal field. This proves that the reconnection occurs somewhere

along the trace, possibly, at the ridge of the balloon. This type of the reconnection

is also observed in our previous simulation for the IRE in ST[78, 80]. Once such

reconnection occur, the plasma rapidly flows out through the reconnected field lines

due to the parallel pressure gradient. After the internal free energy is partially lost by

such convective processes, the system ceases to develop and reaches a relaxed state.
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Figure 3.8: Toroidal flow pattern on the equatorial plane at t = 60τ . The plasma
toroidal flow velocity is represented by fine arrows. The color contour map indicates
the plasma pressure, where the color varies from blue, green, red, to black as the
pressure increases.

Figure 3.9: Magnetic reconnection between internal and external field. An identi-
cal magnetic field and an iso-pressure surface near the separatrix are drawn for (a)
t = 60τA (b) t = 68τA and (c) t = 82τA.
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Chapter 4
FLR effects

In the second part of our simulation, we introduced the finite Larmor radius

(FLR) effects in MHD equations also called as drift model, which can play signifi-

cant part in the pedestal region. The drift model simulations follow the dynamics in

a more realistic manner by introducing a global rotation of the perturbations in both

toroidal and poloidal directions. These rotations are introduced in the MHD momen-

tum equation through the advection term due to the ion diamagnetic drift effect. The

simulation results in the linear phase show the suppression of the higher wave num-

ber components due to sheared rotational flows. In the nonlinear phase, however,

filament separation processes are found to take place universally with and without

FLR effect. The nonlinear flow pattern for the drift model shows the formation of

single vortex pattern, which is in contrast with the MHD case. However, the over-

all nonlinear time development shows unexpectedly similar behavior for both cases.

Therefore, the formation mechanism of the filamentary structure separating from the

core plasma seems not to be related to the vortex motion of the balloon structure but

dependent on the MHD nonlinear terms. It should be noted that in any cases clear

extended balloon structure (finger) emerges on the plasma surface and separate from

the core as filaments. Thus, the dynamics for the eruption could be determined only

by the MHD terms.
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4.1 Linear instability

In this section we executed the drift model simulation by using (2.10) under the

same geometry and with the same initial condition as described in Sec. (2.3). We

found dramatic and more realistic changes in the growth rate in the linear phase

after the inclusion of the lowest order finite Larmor radius correction. Physically,

FLR effects introduce a drift wave that propagates transverse to the magnetic field

and pressure gradient. This drift convects the perturbations along the pressure gra-

dient, for sufficiently large drift the perturbation phase mix with in growth period

and provide small cutoff to unstable high-n ballooning modes. For the experimental

parameter(ζ = 1.0), some exaggerated ones(ζ = 2.5, 5.0, 7.5), and the MHD(ζ = 0)

cases, the simulation have been executed. The advection term added in the equa-

tion of motion introduces a global rotation of the perturbations both in toroidal and

poloidal directions. Figure 4.1 shows the vp field structures in the poloidal cross

section. One can see that a narrow flow shear band exists in the edge region.

Shown in Fig. 4.2 and 4.3 are the time development of the perturbation in mag-

netic energy of each toroidal Fourier mode (i.e., n = 1 − 16) for different value of

ζ (i.e., 1.0, 2.5, 5.0, and 7.5). In case 1 as shown in 4.2(a), when ζ = 1, which also

gives the realistic value of vp, although the time development of magnetic energy is

very much similar to the MHD simulation but still we found small suppression for

n > 6 in linear phase. The n = 9 is still the dominant toroidal mode in the lin-

ear phase, however n = 5 becomes dominant as the simulation enters the nonlinear
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Figure 4.1: Image contour of the (a) toroidal and (b) poloidal diamagnetic drift speed
on a poloidal cross section for the drift model simulation with ζ = 1.

phase. By raising the value of ζ to exaggerated value of 2.5,the suppression becomes

more prominent in linear phase as shown in Fig.4.2(b). In this case the number of

dominant toroidal modes shift from higher to intermediate number ( i.e. n = 5 and 6

are the dominant modes with a clear suppression of n = 9 mode in the linear phase).

If we increase the value ζ further to intermediate levels i.e., 5.0 (see Fig. 4.3(a)) , we

observed a suppression of even n = 5 but still n = 5 is dominate among the rest of

the intermediate and high modes. There is a clear suppression of n = 9modes during

the linear phase where as in the nonlinear phase n = 9 excited abruptly this behavior

looks similar to previous plots when higher modes i.e., n > 10 grows abruptly be-

cause of the coupling of intermediate modes. In the fourth simulation we tested the
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ζ = 7.5, which is 7 times the realistic value of ζ for vp. For such higher value of ζ,

the time development of magnetic energy is totally different then the MHD case. In

the linear phase the low-n are dominant, where as the intermediate and higher modes

are highly suppressed. We can estimate easily the linear growth rate from the be-

havior of perturbation in magnetic energy plot, However the toroidal mode spectra,

which are plotted in Fig. 4.4 with ζ dependencies of the growth rate are estimated by

using the linearized version of the drift model equations. It shows that the higher-n

components are effectively suppressed by increasing ζ. last case when we perform

simulation with even higher value of ζ (i.e., 7.5), the FLR term played a more dom-

inant role in suppression of even the intermediate-n, which were not stabilized with

smaller concentration of ζ. The above four simulation results shows that FLR-MHD

clearly grows slower then the MHD, the higher modes do not grow linearly, in con-

trast to MHD simulation where modes n = 5− 9 appears to be the dominant mode.

4.1.1 Rotation of modes structure

The growth of the eigenmodes is affected by the diamagnetic rotation of the bulk

plasma through the modified advection term. It can be clearer if one see the poloidal

mode behavior. Figure 4.5 shows the time development of the perturbations in the

poloidal pressure profile for the n = 5 component of the ζ = 5.0 case. As one can

see, the poloidal mode structure has a similar ballooning type profile to that for the

MHD case. However, for the ζ = 5.0 case, the mode structure rotates in the poloidal
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Figure 4.2: Time development of magnetic energy for each toroidal Fourier compo-
nent n for small ζ (a) ζ = 1.0 and (b) ζ = 2.5.
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Figure 4.3: Time development of magnetic energy for each toroidal Fourier compo-
nent n for intermediate and high value of ζ : (a) ζ = 5.0 and (b) ζ = 7.5.
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Figure 4.4: The ζ dependence of the linear growth rate for each toroidal Fourier mode
number n.

Figure 4.5: Time development of the poloidal mode structures. An image contour
map for the n = 5 component of the pressure is indicated in each panel using ζ = 5.0.
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direction with almost the same rotation speed as the local poloidal diamagnetic drift

velocity which is indicated by Fig. 4.1(b). Since the rotational flow shear has com-

parable spatial and temporal scale to the growing mode components, the mode struc-

tures are gradually distorted and the excited energy is dissipated within the time scale

of the linear growth. This might be the basic mechanism for the suppression of the

mode growth due to the global flow shear. The distortion would be more effective

for smaller wavelength components than larger ones, if one assumes that the mode

structures extend closely to each other mode. Thus, the higher-n components are sup-

pressed, and the linear growths are dominated by the lower-n components for finite

ζ cases.

4.2 Formation of filamentary structure

In the drift model simulation, the hyper harmonics of the dominant modes are also

excited as well as the MHD case, when the amplitude of the instability becomes

large. One can see the excitation of such hyper harmonics in Fig. 4.2(a,b), where the

n = 12 modes induced as the hyper harmonics of the n = 6 mode abruptly change

their growth rate at t = 45τA for ζ = 1.0 and at t = 60τA for ζ = 2.5. Similarly

in Fig. 4.3(a) n = 9 mode is also excited at t = 85τA by the coupling of n = 5

and 4 for ζ = 5.0, and in (b) n = 4 and 6 modes induced as hyper harmonics of

n = 2 at t = 150τA for ζ = 7.5. Such excitation results in nonlinear growth of

the high-n modes, later steepening of pressure gradient in the edge region during
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the formation of balloons or finger in the outer edge region. Such localization along

the plasma pressure iso-surface can be clearly seen in the Fig. 4.6 for (a) ζ = 1.0

at t = 80τA, (b) ζ = 5.0 at t = 130τA and (c) ζ = 7.5 at t = 225τA. These

times represents the time of the middle of the ELM rise for different ζ cases. If we

compare this with the MHD case (i.e., Fig.3.5(b) at t = 70τA), we will see lot of

similarities. The ejection process of the balloons can be clearly seen. The balloons

are formed in helically twisted shapes along the magnetic field. The formation of

balloons looks similar with the only difference in the number of ridges or fingers on

the plasma pressure iso-surface. It is becuase of the difference in the dominant linear

toroidal mode number (i.e. precursor) preceding the nonlinear phase (e.g. for case

(a) n = 9, (b) n = 5 and for (c) n = 2 are the dominant precursors). Once the highly

nonlinear phase is achieved, some of the balloons are separated from the core plasma

and ejected into the open field region. The three pairs of panels of Fig. 4.7 and 4.8

show the formation of filamentary structures for different ζ cases. It should be noted

that for all cases clear filaments are erupts on the plasma surface and separated from

the core. It shows similarities with the non-uniform growth of filament because of the

coupling of toroidal modes. So even with the rotation of the toroidal modes, coupling

is still effective, and that results in fewer filaments then the dominant toroidal mode

number. Also, irrespective of the suppression of the intermediate toroidal modes in

linear phase the overall behavior of the modes structure in nonlinear phase are similar
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Figure 4.6: A localized formation of balloon also called as finger structure at (a)
t = 80τA, ζ = 1.0, (b) t = 130τA, ζ = 5.0, and (c) t = 225τA, ζ = 7.5. It is shown
in a bird’s-eye view of the iso-pressure surface with the time near the middle of onset
of ELM.

to MHD model where the high modes are the fastest growing modes and saturates

with the formation of filaments.

4.3 Field line behavior

Field line behavior is very important in investigation of formation of filamentary

structure as already discussed in MHD simulation in section (3.3.3). In this section

we will investigate the behavior of magnetic field as well as the behavior of stream

lines with the introduction of FLR effect. Figure 4.9 shows the plasma pressure iso-

contour (green), arbitrary traces of magnetic field lines(blue) and the stream lines

(red) for ζ = 1.0, 5.0 and 7.5 in the early nonlinear phase. The deformations into

balloons along the magnetic field lines in the outer edge region can be formed in

these three different cases. However if we closely look at the behavior of stream

lines, it looks much different then the MHD case. For low value of ζ as shown in



77

Figure 4.7: Formation of filamentary structure shown in the image contour map of
the poloidal pressure profiles in a poloidal cross section. Time and the ζ are (a)
t = 90τA, ζ = 1.0, (b) t = 145τA, ζ = 5.0, and (c) t = 235τA, ζ = 7.5.

Figure 4.8: Formation of filamentary structure shown in a bird’s-eye view of the
iso-pressure surface at (a) t = 90τA, ζ = 1.0, (b) t = 145τA, ζ = 5.0, and (c)
t = 235τA, ζ = 7.5. This stage can also be related to the time near the end of ELM
rise.
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Figure 4.9: Three dimensional geometry containing plasma pressure iso-contour
(green), arbitrary traces of magnetic field line (blue), and the stream line (red) us-
ing (a) ζ = 1.0 at t = 70τA, (b) ζ = 5.0 at t = 130τA and (c) ζ = 7.5 at t = 220τA.
For small ζ value the flow pattern is not modified, but with intermediate and high
FLR correction there is a change in flow pattern from twin to single vortex structure.

Fig.4.9(a) we observe twin vortex flow pattern which is quite similar to the MHD

case. However if we raise the value of ζ to intermediate and high level as shown in

4.9(b,c), the twin vortex convective rolls ofMHD case are no longer apparent. Instead

becuase of diamagnetic drift represented by (2.12) vortex has formed in the direction

encircling each balloon and convecting across the radial direction. Reflecting such

diamagnetic drift flows, the plasma flow structure then turns into a single-vortex one

on the balloon, as shown in Fig. 4.10.

If we compare the local flow speed with the radial velocity of the filament in

outward direction. We found that local flow speed for the vortices is 20 times larger

than the eruption of filaments for each case. Therefore, the formation mechanism of

the filamentary structure and its separation from the core seem not to be related to the

vortex motion at the balloons. Thus, the dynamics for the eruption of filament can be

considered to be determined mostly by the MHD terms.
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Figure 4.10: Toroidal flow pattern on the equatorial plane for the ζ = 7.5 case at
t = 190τA. The plasma toroidal flow velocity is represented by fine arrows. The
color contour map indicates the plasma pressure, where the color varies from blue,
green, red, to black as the pressure increases.



80

Chapter 5
Discussion

5.1 Comparison with observation

In this section, we will compare our simulation results with the experimental obser-

vation of the evolution of filament structures during ELMs. As described earlier in

Chapter 1, the evidence of the spatial localization of ELM structure come from a

variety of tokamak and experimental techniques. For example, COMPASS-D, JET,

ASDEXUpgrade, NSTX andMAST. But in current study our main focus is on ELMs

observed at ST like MAST and NSTX. As mentioned earlier, measurement of spa-

tial and temporal structure of ELM in MAST provides strong evidence for the ELM

to be a filament-like structure which have ballooning nature. These structure erupts

from outboard side with a typical time scale of∼ 100μ sec[1]. The structure are elon-

gated along the magnetic field lines with a toroidal mode number between 8 and 12

but localized about it[2]. The onset of Type I ELMs can be thought to be related to

the ballooning mode[2] since they are triggered near the ballooning stability limit. In

fact, the MHD fluctuations are observed as the precursor preceding the crash phase,

both the intermediate-n (n = 5− 12) precursors and the low-n (n = 1− 2) deforma-

tions are observed in the experiments[2, 34]. Evidence of reconnection has also been
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observed near the end of ELM rise from the Dα signal and the magnetic fluctuation

signal[3].

5.1.1 The mode structure of ELMs

Our nonlinear simulations are executed in a three dimensional full toroidal geometry.

The initial MHD equilibrium for the simulation is calculated through Grad-Shafranov

equations. The profiles are selected to be moderately broad in the core region fol-

lowing the conventional experiments. During the linear analysis, the intermediate-n

modes are linearly unstable with larger growth rates as shown in Fig.5.2. The high-n

and low-n modes are nonlinearly driven as the intermediate-n modes acquires finite

amplitude. And hence the nonlinear phase is dependent on these intermediate modes

precursors.

Experimentally, it has been observed in a number of machines, especially on

MAST that the ELMs have a typical filamentary structure with a toroidal mode num-

ber ∼ 10. The toroidal mode number of these filament has been extracted from a

study of discrete peak observed in the ion saturation current recorded by a mid-plane

reciprocating probe[3]. Interpreting the JSAT peak as a filament rotating with the

plasma past the probe, the toroidal mode number can be derived using,

mode number = 2π
Router

Vped∆t
(5.1)
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Figure 5.1: (a) The distribution of the Vped from CXRS. (b) The distribution of the
mean per ELM time difference between peaks in the ion saturation current observed
by the mid-plane reciprocating probe. (c) The distribution of derived mode number
(the dashed curve shows the results of a simulation of the spectral acceptance) [3].

where Router is the radius of the plasma at the outboard LCFS, Vped is the toroidal

velocity of the plasma at the top of the pedestal as shown in Fig.5.1(a), and∆t is the

time difference between the peaks in the ion flux (JSAT ) observed at reciprocating

probe for each ELM as shown in Fig.5.1(b). The distribution has a mean of 75μ sec,

and the majority of peaks have a mean time separation of < 100μ sec .The toroidal

mode number number is estimated from the distribution as shown in Fig.5.1(c) with

the peak value at n = 10 and mean is 11. If we compare this with our simula-

tion as shown in Fig.5.2, it shows the dominance of intermediate eigen modes i.e.,

(n = 5− 11) with the peak value at n = 8 and 9. Hence our simulation agrees with

this characteristic of Type I ELM.

If we look further at the behavior of these modes, we found that these interme-

diate modes are ideal modes with ballooning nature. Figure 3.2(a) shows the poloidal

cross-section of the fluctuation component in the pressure for the dominant toroidal
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Figure 5.2: Growth rate of the linear eigen modes for MHD simulation.

mode (i.e., n = 9). It shows clearly that these modes are poloidaly localized in

the so-called bad-curvature region with unstable mode peaks in the outboard side of

plasma. Similarly, Fig. 3.2(b) shows the poloidal Fourier expansion of the magnetic

field energy, identifying the superposition of multiple poloidal components. Both

of these figures supports the ballooning nature of these intermediate modes. Sim-

ilar results were observed for Type I ELM in MAST[2] and in ASDEX Upgrade

experiments[32], where they appear to be associated with a line of approximately

constant pedestal pressure, often in the vicinity of the ballooning stability boundary.

Thomson scattering profiles obtained during these ELMs [2] showed the formation of

a broad tail in both the density and the temperature profiles at the outboard mid-plane
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but no change on the inboard side, which is consistent with the ballooning nature of

ELMs.

5.1.2 The spatial structure of ELMs

The evidence of spatial structure has come from a variety of tokamaks and experi-

mental techniques. Because of excellent diagnostic visibility, remote first wall and

extensive divertor and edge diagnostic makes MAST an ideal device for the study of

ELMs. One of the most prominent features on the ELM crash is the emergence of

the filamentary structure[1, 2, 3] as shown in Fig. 1.8 and 1.9. The camera images

of the visible lights show several numbers of helically twisted bright stripes on the

plasma surface. Some of them are raised and separated from the core, forming an ar-

cade into the scrape-off layer region. In order to extract information on the spatial

structure of ELMs from Fig. 1.8, we performed the MHD simulation. Our simulation

shows clearly the emergence of fingers or balloons on the three dimensional pressure

surface which later results in separation of filamentary structure. These behaviors

well agree with experimental observation of shot #8814 (i.e., Fig. 1.8). Especially,

Fig. 3.5 shows quite similar behavior to the MAST observation.

Further evidence for the time evolution of the ELM filament comes from the

data shot #14648 of the new multi-time point edge Nd-YAG Thomson scattering

system on MAST[81]. Figure 5.3(a) and (b) show the edge density and temperature

profiles of a case where a filament is in the line of sight of the diagnostic. The tim-
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ing of the laser pulses relative to the target Dα light is shown in Fig. 5.3(c); they are

separated by 5μ sec starting 53μ sec after the start of the ELM. The first density pro-

file (red open circles) in Fig. 5.3 shows the formation of an outboard tail. The second

density profile is obtained 5μ sec later, shows the radial expansion of the density per-

turbation. The third density profile (open blue triangles) shows a sudden change in

the profile; the filament has detached from the LCFS leaving a depression behind in

the density profile. The electron temperature in this detached filament remains around

80eV . The characteristic of ELM observed in this figure is reproduced through our

simulation result as shown in Fig. 5.4(a). Using the parameters of the MAST ex-

periment, the normalization of the time scales for the current shot is estimated as

1 (τA) ∼ 0.47 (μ sec). With this conversion we can compare simulation time scale

with the real experiment. At time t = 50τA, which is the earlier nonlinear phase we

observed a steep pressure gradient in the core region, which become steeper at later

time, (i.e., t = 60τA) becuase of the excitation of high ballooning mode number.

The behavior of pressure profile is similar to the first density profile observed in ex-

periment, and hence can be named as the time of the onset of ELMs. At t = 70τA the

the pressure profile shows the formation of small hump on the edge pedestal becuase

of the radial expansion of pressure perturbation. The difference of time between the

onset of ELM and near the middle of ELM is about 5μ sec (i.e., 10τA) with radial ex-

pansion of about 1.5cm, which is similar to the second density profile Once the time

reaches 80τA (i.e. 5μ sec later), we found a small peak of pressure in SOL region
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leaving depression behind the pressure profile similar to the third density profile of

Fig. 5.3[81].

Figure 5.4(b) shows the overall time evolution of radial pressure profile starting

from linear phase till the burst of ELM. It shows clearly the steepening of pressure

gradient in the early nonlinear phase and then resulting in eruption of filament from

the edge pedestal. It clearly shows the convective nature of plasma loss, which is also

in agreement with the experimental observation[2].

As for the time scale, the total scenario for the ELM crash ends within almost

100τA, which corresponds to several tens of microseconds with our normalization.

This time scale agrees with that of the experimental ELM crash time scale[2]. It

should be also noted that such outstanding filament can be experimentally observed

only in a few direction[1], corresponding to our simulation result. This happens

becuase of the nonlinear coupling of the toroidal mode number. We showed in Fig.

3.6(b), the possible alignments of the dominant toroidal mode number n = 9 and 5,

resulting in non-uniform growth of filaments.

We also showed that these filamentary structure is correspondent to the con-

vection motion of the plasma flows, which forms a twin-vortex flow pattern in such a

way that the plasma moves in outward direction, pushing the core plasma from inside

to outside of the torus (see Fig. 3.8). When the balloon structure is initially formed

at the plasma surface, the magnetic field lines on both sides of the separatrix are

pushed against each other by such perpendicular flows due to the spouting-out and
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Figure 5.3: The time evolution of (a) the edge density profile and (b) the edge tem-
perature profile for single ELM. (c) The target sugnal as a function of time [81].



88

Figure 5.4: Time evolution of edge pressure profile along major radius R. (a) Radial
pressure profile at t = 50τA (early nonlinear phase), t = 60τA (at the time of onset
of ELM), t = 70τA ( in the middle of ELM rise) and t = 80τA (near the end of
ELM rise). (b) Radial time evoultion of pressure profile from linear till the end of
nonlinear phase.
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the perfect conductor conserving the poloidal flux. Under this situation, the recon-

nection of the field lines can effectively occur by the driven reconnection mechanism

. Once such reconnection occur as shown in Fig. 3.9(c) at t = 82τA, the plasma

rapidly flows out through the reconnected field lines due to the parallel pressure gra-

dient, leading to the filamentary structure. After the internal free energy is partially

lost by such convective processes, the system ceases to develop and reaches a relaxed

state. If we investigate the experimental observation, possible evidence of reconnec-

tion comes from the fast magnetics installed on MAST (see Fig. 11 of Ref.[3]). It

shows the magnetic fluctuation signal during an ELM. There is very brief (∼ 5μ sec)

event just before the peak in the Dα signal, which occurs at the time similar to the

predicted reconnection event (i.e., near the end of ELM rise). After the reconnec-

tion it is not known experimentally, whether or not the filament remains attached to

the core at some location away from the outboard mid-plane. However, our simula-

tion shows that the filament disappear after the reconnection as shown in Fig. 3.9(c)

at t = 82τA.

5.2 Comparison with theory

Our simulation results are also consistent with the prediction of the theoretical mod-

els related to the early nonlinear ballooning modes in the geometry of tokamak[43,

64]. According to them, during the nonlinear evolution of the ballooning mode, the

plasma develops filamentary structure that are elongated along the field line. On the
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outboard side of the tokamak plasma, the filaments are displaced radially a large dis-

tance from the field line on which they originated. However on the inboard side

the displacement is much more less. If we compare the above prediction with our

simulation, Fig. 3.5 shows clearly the formation of filamentary structure during the

nonlinear evolution of ballooning mode. Also in Fig. 3.7, we showed that these

filamentary structure are elongated along the magnetic field line and are displayed

radially a large distance from the field line on which they were generated.

In our simulation, after such a nonlinear development, considerable amount of

plasma can be lost out of the separatrix by purely dynamical processes. Since no

microscopic transport mechanism is included here, therefore we cannot estimate the

amount of heat and particle lost from the filamentary structure. These results are

compared qualitatively with the experimental observation of the ELMs in MAST and

NSTX experiments. Good agreement is found in the following characteristics forma-

tion of filaments separating from the core, non-uniform growth of filaments due to

toroidal mode coupling, time scale of ELM crash, triggering by the ideal ballooning

mode, presence of intermediate-n precursors and loss of plasma through convective

process. Thus, our simulation result well reproduces the experimental observations

of the ELM crash in ST. Therefore, it can be considered that our simulation roughly

follows the experimental situation at the onset of the ELM crash phase.[84, 86, 87]
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5.3 Effect of FLR correction

The evolution of ballooning mode instability has been studied using finite Larmor ra-

dius correction in MHD theory. Figure 4.1 shows the toroidal as well as poloidal flow

component of ion diamagnetic drift velocity. It shows a localized strong shear in the

edge region. Such diamagnetic flow have a stabilizing influence on the unstable bal-

looning modes. It was shown by Cooper [82] that the flow shear changes the time

behavior of the ballooning instability from purely exponentially growing mode to an

instability with phases of fast growth alternating with period of slow growth or de-

cay. Hence the net growth rate is reduced by flow shear. And that can be seen in the

Fig. 4.4, where the net growth rate is reduced with the increase in value of ζ (i.e. dia-

magnetic flow). As shown in Fig. 4.4, for ζ = 1.0, we observed clear suppression in

the growth of high mode number as compare to intermediate modes. When the value

of ζ is raised to higher exaggerated values, we see significant change in the growth

rate of the high and intermediate mode. The reason for low ζ to be less effective in

the stabilization of intermediate mode is becuase of the radial variation of ωdia [69],

when ζ is weak, a small increase in the pressure gradient allows γMHD > ωdia
2
[83]

to be satisfied and the strong MHD can grow. However with higher value ζ (i.e.,

2.5, 5.0, 7.5), large pressure gradient are needed to satisfy the above equation, and

so they are diamagnetically suppressed mode, giving rise to smaller ELMs having

reduced growth rates. If we compare the linear phase of both the MHD and drift sim-

ulation result, we found that the FLR-MHD clearly grows slower then the MHD, the
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higher modes do not grows linearly, in contrast to MHD simulation where interme-

diate modes appears to be the dominant one. Hence we found effective stabilization

of higher modes for weak ζ , and intermediate modes for higher value of ζ.

In the nonlinear phase, irrespective of the suppression of the intermediate toroidal

modes in linear phase the overall behavior of the modes structure as shown in Fig. 4.2

and 4.3 looks similar to MHD model simulation (see Fig. 3.1) where the high modes

are the fastest growing modes and saturates with the formation of filaments. If we

compare the formation of filamentary structure as shown in Fig. 4.8 with the MHD

model, we observed similar eruption of filaments, that are localized along the field

line in toroidal as well as poloidal direction. The field line behavior also looks simi-

lar to the MHD simulation, with the exception of flow pattern of stream line for high

ζ, where the plasma flow structure turns into a single vortex on the balloon structure.

This looks very interesting and need to be explore in future studies. The important

similarity between the MHD, and the FLR simulation with the experimental obser-

vation is the existence of the filamentary structure. One more similarity that need to

mention here is the eruption of fewer number of filament as compare to the dominant

mode number, which shows that even with the toroidal and poloidal rotation of the

perturbation, the modes are aligned along the position of the eruption of filaments,

giving rise to nonuniform growth of filament which also looks an interesting result.

[85, 84]
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Chapter 6
Concluding remarks

6.1 Summary

Numerical simulations based on the MHD and the drift models have been executed

for the purpose of revealing the nonlinear dynamics of the ballooningmode in toroidal

plasma. The simulation starts from linearly unstable configuration which causes ini-

tial tiny perturbation introduced on the plasma velocity field to grow spontaneously

with a specific eigen function. During linear analysis, the intermediate-nmodes (i.e.,

n = 5− 10) have larger growth rates than others. These intermediate-n modes have

a ballooning mode nature, the mode structures are poloidaly localized in the bad

curvature region, and have a wide envelope consisting of several poloidal compo-

nents. As for the effect of resistivity, there is no significant change in the growth rate

for η ≤ 1 × 10−5. Therefore, it can be identified that these modes are mainly ideal

in nature for those parameter ranges. In the nonlinear phase, the MHD ballooning

modes evolve into a nonlinear structure that result in the formation of a number of

hot plasma filaments, elongated along a magnetic field line, but localized about it.

These filaments extend out into the scrape-off layer on the outboard side but remain

connected back into the pedestal region on the inboard side. This filamentary struc-

ture is correspondent to the convection motion of the plasma flows, which forms a
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twin-vortex flow pattern in such a way that the plasma moves in outward direction,

pushing the core plasma from inside to outside of the torus. When the balloon struc-

ture is initially formed at the plasma surface, the magnetic field lines on both sides

of the separatrix are pushed against each other by such perpendicular flows due to

the spouting-out and the perfect conductor conserving the poloidal flux. Under this

situation, the reconnection of the field lines can effectively occur by the driven re-

connection mechanism. Once such reconnection occurs, the plasma rapidly flows

out through the reconnected field lines due to the parallel pressure gradient, leading

to the filamentary structure. After the internal free energy is partially lost by such

convective processes, the system ceases to develop and reaches a relaxed state.

The simulation results corresponding to the ELM crash phase in ST plasma

have reproduced the experimental observations qualitatively. These results were

compared with the Type I ELM observed in MAST[1, 2, 3], and NSTX[33, 34].

Qualitatively, good agreement is found in the following characteristic of Type I ELM:

• Triggered by the ideal ballooning mode

• Presence of intermediate-n precursors preceding the crash

• Emergence of filamentary structure during the onset of ELM

• Non uniform growth of filament, resulting from the nonlinear toroidal mode

coupling

• Convective loss of plasma from the edge pedestal during the onset of ELM
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• Time scale of ELM crash.

Moreover, the simplified drift model, where the ion diamagnetic drift effect is

included in the advection term of the equation of motion, has been applied to the

linear and nonlinear simulations. This modification has been found to suppress the

higher-n components linearly, since the mode growth is suppressed by the sheared

toroidal and poloidal flows. We also found that although the linear phase is substan-

tially modified with the introduction of FLR effect, however in the nonlinear phase

all the above discussion of MHD simulation are fully applicable with the exception

of the formation of single vortex flow pattern for higher ζ value.

6.2 Future directions

First among other questions for future investigation is the identification of the dis-

crepancy between the nonlinear phase of both the MHD and the drift model simu-

lation. Though there is a similarity in the formation and separation of filamentary

structure in both the model, but still there is difference in the flow pattern of the

stream lines. Therefore, further work is necessary to pinpoint the reasons for the

discrepancy in the flow pattern for the two models. One of the reason behind such

contrast in flow pattern comes from the inclusion of only the advection term of vp

in momentum equation, and ignoring the rest of the correction that comes with drift

model. We need to include the rest of the terms also for the drift model.
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The bootstrap current has been found to play important role in edge stability in

the literature. Its inclusion has been found to be essential in order for calculated kink-

peeling/ballooning stability boundaries to agree with experiment. Hence, inorder to

study the coupling of ballooning-peeling mode, which have been observed in number

of devices the inclusion of bootstrap current can be helpful.

The qualitative nonlinear behaviors discovered through our simulation are very

much in agreement with the experimental observation of MAST. Therefore another

direction for future work is to investigate the ELMs on other devices like conventional

tokamak geometry, and the Large Helical Device (LHD) geometry etc. It would be

an interesting study to compare the simulation results of ELMs using various kind of

toroidal geometries.
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