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Abstract

The volume of traffic in both core and access networks has exponentially
increased every year over the past few decades. The computer attacks

also have increased in sophisticated techniques to evade existing intrusion
detection systems. It is rather difficult for daily network operators and ad-
ministrators to inspect every single packet or flow for discovering anomalies.
Therefore, the need to automatically detect attacks and unusual incidents in
computer networks is of crucial importance for nowadays operations.

An effective system that could expeditiously detect a broad range of
anomalies would enable administrators to prevent serious consequences of
anomalies related to network security, availability, or reliability. For over
a decade, many researchers have been studying to improve techniques for
anomaly detection by proposing and applying plenty of methods from simple
to sophisticated ones. Unfortunately, most of the studies are batch processing
techniques, and many of them are not fairly flexible to detect a vast variety
of anomalies caused by threats or accidents.

In this study, we proposed a detection system using microscopic to macro-
scopic designs for real-time anomaly detection. The key idea of the proposed
system is that the system learns network traffic from multiple timelines rather
than a single timeline of input data employed by most conventional detec-
tion systems. The advantages of the proposed system are 1) improving on
detection performance over the single timeline, 2) flexibility in applying the
proposed system to various types of networks or protocols, 3) robustness to
incorrect training data or manipulating data by attackers, 4) performance
improvement with weighted multiple timelines, and 5) real-time detectabil-
ity for anomalies caused by threats or accidents. We also performed a series
of experiments to examine the proposed system by employing three stan-
dard machine learning algorithms, namely multivariate normal distribution,
k -nearest neighbor, and one-class support vector machine. In our experi-
ments, we extracted nine key features on account of several selected attacks
from a testbed data set. We examined capabilities of the proposed system
in many aspects including detection performance, robustness, learning rate,
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time consumption, different volume of background traffic, time of anomaly
occurrence, and weighting for old data.

The experimental results show that the proposed system with machine
learning algorithms effectively detected several of anomalies caused by threats
or accidents. Our experiment also indicates that the multi-timeline technique
outperforms both conventional real-time and a combination of single and
multi-timeline. The proposed system shows a robust capability to learn from
incorrect training data or manipulating data by attackers. Moreover, two
of the three algorithms with the proposed system could learn from training
data in reasonable time. The proposed system can not only enable network
administrators to detect novel types of attacks but can be used to identify
abnormal behavior of their networks in real time as well.
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Chapter 1

Introduction

Computer and network security, i.e. cyber security are critical issues for
all participants in information industries, because almost all daily activ-

ities rely on computers and the Internet nowadays. The principle objective
of cyber security is protection of information and properties from theft, cor-
ruption, or natural disaster, while allowing the information and properties
to remain accessible and reliable to its intended and legitimated users. How-
ever, a report from the Computer Emergency Response Team Coordination
Center (CERT/CC) [1] in 2003 indicates an exponential increase in the num-
ber of security incidents every year from 1998 to 2003 as shown in Figure 1.1.
This report strongly suggests that every single system connected to the In-
ternet highly confront various and sundry threats of cyber security, including
attacks, viruses, worms. The result of this report also shows a massive warn-
ing sign that all computers and network systems connected to the Internet
presently involve various high relative risks of cyber security.

Not only a dramatic increase in security incidents arises on the Inter-
net, but there also has been a steady growth of sophisticated techniques to
evade detection schemes and prevention systems. Meanwhile, a number of
attackers do not need in-depth technical knowledge in order to carry out such
sophisticated attacks. According to studies by John Mchugh [2] and Howard
F. Lipson [3], both current trends in attack sophistication and intruder tech-
nical knowledge are graphically represented as shown in Figure 1.2. In this
figure, the dots along the attack sophistication line show inventive attack
techniques discovered between 1990 and early 2010. Unfortunately, there
is no 100-percent guarantee that some of these or novel attacks would not
happen to the systems even if many systems can detect these attacks. As a
consequence, the protection against a broad range of computer attacks is of
crucial importance.

In addition to different types of computer attacks caused by human inten-
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Figure 1.1: Security incidents on the Internet from 1988 to 2003.

tion, there is another kind of unusual incident in computer systems caused by
accidents such as power outages, misconfigurations, and flash crowds. These
unusual incidents have also produced several adverse effects on availability
and reliability of computer systems. Therefore, an effective technique for
anomaly detection does not mean only to perceive computer threats, but
to perceive unusual incidents caused by accidents as well. In our context,
anomaly detection is generally different from intrusion detection. Anomaly
detection has to cover a number of unusual incidents caused by attacks or
accidents from inside or outside; however, intrusion detection only focuses
on attacks or threats from outside of the network system.

There are several issues that make anomaly detection in computer net-
works much more difficult than those in other domains, such as fraud de-
tection, fault detection, system health monitoring. One of the major issues
is the high growth rates of the Internet traffic which network operators and
administrators face difficulties to detect anomalies. A study by K. G. Coff-
man and A. M. Odlyzko [4] suggested that the volume of the Internet traffic
double every three months in early decades. As a result, it is quite difficult
for day-to-day operators or administrators to manually inspect every single
packet or single flow that pass through their own networks. The operators
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Figure 1.2: Attack sophistication versus intruder technical knowledge.

need a fully automatic system to perform such network inspection and de-
tection tasks.

The next issue making detection more difficulty is that detecting anoma-
lies in computer networks really depends on a variety of factors in particular
situation. As an obvious example of these factors, we show a simple situa-
tion which might occur in a network system. Suppose that monitoring traffic
data in a small office shows that someone is surfing the Internet from inside
during office hours, we easily classify the data in this situation as a normal
behavior or a normal class. On the other hand, if exactly the same situation
occurs at midnight of the day when usually nobody is working at that mo-
ment and such behavior had never happened before, it is quite difficult for
network administrators to clearly define this situation as normal or abnormal
behavior. From this example, classifying data in this network traffic depends
on conditions at a particular time and in a particular place, referred to as
contextual anomalies.

Anomalies in computer networks have been defined as contextual anoma-
lies or conditional anomalies [4], because a data instance is anomalous in a
specific context but might be normal otherwise. The contextual anomalies
have been found on data related to position, location, and time, such as
spatial data or time-series data. Contextual anomalies have been commonly
studied in spatial data [5, 6] and time-series data [7, 8]. Figure 1.3 clearly
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shows an example of contextual anomaly for time-series data of a computer
network that shows the number of packets over the last few days. The lower
number of packets might be normal during early morning at time T1 in that
network, but the same number of packets during noon at time T2 on another
day would be an anomaly.

Last but not least, a big problem of anomaly detection in computer net-
works is that attackers or intruders make a large amount of effort to imitate
normal traffic in order to evade or influence detection systems, especially
when attackers perceive the detection scheme used in the target system.
However, such imitation or manipulation rarely occurs in other domains of
anomaly detection. In other domains, such as medical care for detecting dis-
ease outbreaks [9] or quality control in factories [10], almost all anomalies in
these problem domains are caused by nature or accidents, there is no human
intention of causing anomalies. Most of the anomalies in computer network,
however, are likely caused by human intention, and they could sometime
caused by accidents. With freely and available sophisticated attack tools, at-
tackers can effortlessly probe or scan the security system in order to discover
the network structure and detection technique, then they also can imitate
normal traffic to hide from the detection system. Therefore, the real challenge
of our study is not only expeditiously detecting a wide range of anomalies but
also developing a robust system that is not easily evade or easily influenced
by attackers.

Over past decades, researchers have proposed a large number of vari-
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ous techniques to detect anomaly in computer networks, from simple tech-
niques to sophisticated ones. These techniques have been categorized into
two fundamental categories: signature-based techniques and statistical-based
techniques [11, 12]. Some studies offered combination of signature-based
and statistical-based techniques known as hybrid approach [13]; however,
this approach is still based upon signature-based and statistical-based tech-
niques. Before an introduction to anomaly detection using machine learning
techniques, we discuss the advantages and disadvantages of signature-based
techniques and statistical-based techniques.

Signature-based techniques find network traffic for a series of bytes, packet
sequences, or network flows known to be anomalous. A key advantage of this
detection method is that signatures are easy to develop and understand if
target network traffic behavior is well-known. For example, one uses a sig-
nature that looks for particular strings within an exploit payload to detect
attacks that are attempting to exploit a particular buffer-overflow vulnera-
bility. The alarms generated by a signature-based system can easily indicate
what caused the alert. Moreover, pattern matching can be performed very
quickly on modern systems so the amount of power needed to perform these
checks is minimal for a limited set of signatures. For example, if the sys-
tems intend to protect only communicate via DNS, ICMP and SMTP, all
signatures related to other protocols can be removed.

Signature engines also have their disadvantages. Due to they only detect
known attacks, a signature must be created for every single attack, and other
novel attacks cannot be detected. Signature engines are also likely to suffer
from false positives because they are generally based on regular expressions
and string matching. Both problems of signature mechanisms are only search
for strings within packets or flows over the transmission line.

Although signatures work well against attacks with a fixed behavioral
pattern, they do not work well against mixtured attack patterns created
by a human or a worm with self-modifying characteristics. Detection is
more complicated by advancing exploit technology that allows malicious users
to conceal their attacks behind the NOP generators, payload encoders and
encrypted data channels. The overall ability of a signature engine to scale
against these changes is badly injured by the fact that a new signature must
be created for each variation; as the rule set grows, the performance of engines
unavoidably declines. This is the clearly reason that many signature-based
systems require high-end hardware and rich resources.

Eventually, the signature-based techniques are considered as an arm race
between attackers and signature developers, how speed at which new signa-
tures can be developed and applied to the system.

The statistical-based techniques, however, are based on the concept of
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a baseline for network behavior. This baseline is a description of accepted
network behavior which is learned or specified by the network administrators,
or both. Unusual incidents or anomalies are caused by any behaviors that
fall outside the predefined or accepted model of behavior. A crucial part of
statistical-based techniques is the capability to inspect protocols at all layers.
For every protocol monitored, the engine must has the ability to decode and
process the protocol to understand its goal and the payload. This inspection
process is computationally expensive at first, but it allows the system to scale
as the rule set grows and alert with fewer false positives when variances from
the accepted behaviors are detected.

A disadvantage of statistical-based techniques is the difficultly of defining
rules. Each protocol being analyzed must be defined, implemented and tested
for accuracy. Moreover, detailed knowledge of normal network behavior must
be constructed for accurate detection. On the other hand, once a protocol
has been built and a behavior defined, the engine can scale more quickly and
easily than the signature-based techniques because a new signature does not
have to be created for every attack and potential variant. Another downside
of statistical-based techniques is that malicious incidents that fall within
normal usage patterns is not detected.

However, statistical-based techniques have an advantage over signature-
based techniques in that a new attack for which a signature does not exist
can be detected if it falls out of the normal traffic patterns. The best example
of this is how such systems detect new automated virus spreading. When
a new system is infected with a virus it usually starts scanning for other
vulnerable systems at an abnormal rate flooding the network with malicious
traffic, thus triggering a TCP connection or bandwidth rule.

Machine learning is one of the several techniques have been proposed by
researchers to solve anomaly detection problem. We could consider machine
learning to be a statistical-based technique, which has high capabilities to
learn automatically to recognize complex patterns and make intelligent deci-
sions on the basis of data [14]. There are two fundamental types of machine
learning that can be applied for network traffic anomaly detection: super-
vised learning and unsupervised learning [15]. The distinction between these
two types is drawn from how algorithms learn to classify data.

Supervised learning is the machine learning technique of inferring a func-
tion from labeled training data. The training data consist of a set of training
examples. Each example is a pair consisting of an input value (normally
called a feature vector) and a desired output value. A supervised learning
algorithm analyzes training data and produces an inferred function, which is
commonly called a classifier. This technique has been well studied and could
cover and detect a wide range of network anomalies [16]. The general as-
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sumption of supervised learning for anomaly detection is that the anomalous
traffic is statistically different from normal traffic. Many studies have been
proposed and have applied several algorithms based on this assumption, such
as the Bayesian network algorithm [17], k -nearest neighbor algorithm [18],
and support vector machine algorithm[19]. Unfortunately, detection perfor-
mance and other key aspects of these algorithms has not been compared. The
main problem of applying supervised learning to network traffic is collecting
traffic as training data.

Contrary to supervised learning, the unsupervised learning is the machine
learning technique that takes a set of unlabeled training data as input, and
then attempts to find hidden structure in the data. The unsupervised learn-
ing is closely related to the problem of density estimation in statistics. Before
detecting anomalies, many researchers collect data for a certain amount of
time, one day for example, and then clustered data into several groups. After
that they can detect anomalies on the basis of the assumption that major
groups are normal traffic and minor groups are anomalous traffic [20, 21].
Unfortunately, this assumption is not true in many cases, especially when
we focus on traffic occur in a short period as real-time system. Examples of
such cases are distributed denial of service attacks (DDoS), viruses or worms
spreading, and flash crowds. In these examples, the amount of anomalous
traffic can be larger than those of normal traffic, and as a result, anomalous
traffic composes of a major group. In this case, learning algorithms will mis-
classify anomalous traffic as normal traffic and vice versa. In other cases,
outages and misconfigurations for example, although no anomalous packet
occurs, an unusual reduction in normal traffic also indicates that an unex-
pected incident arises. All of these unusual incidents cannot be generally
detected by using the unsupervised learning as clustering techniques.

Machine learning methods for general purposes are not enough to detect
anomalies in network traffic. There are two compelling reasons why we have
to modify machine learning methods for network traffic anomaly detection.
The first reason is that classifying traffic data depends on many factors,
particularly on time and location conditions, but most other domains of
anomaly detection are time and location independent. The second reason is
that attackers place a large amount of effort into imitating data to evade or
influence detection systems in computer networks, but this imitation rarely
occurs in other domains of anomaly detection. Therefore, we cannot directly
apply machine learning methods for general purposes to detect anomalies in
network traffic.

One of the serious obstacles to detect anomalies in computer networks is
that most of the existing and proposed methods utilize batch processing. This
means that the methods have to collect traffic data for certain amount before
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examine whether data contain anomalies or not. The main disadvantage
of batch processing methods is an unacceptable delay between time that
anomalies occur and time that operators be notified. Real-time anomaly
detection must guarantee response within strict time constraints, mostly in
the order of less than a minute and sometimes a second.

A variety of anomalies in computer and network systems has adversely
affected security, availability, or reliability. A lack of one or more of these
crucial issues could make a business lose a large amount of revenue, and
could damage corporate image or reputation in some ways. An effective
system that could quickly and accurately detect such attacks or accidents
would be able to prevent serious damages to computer systems and their
own business. Consequently, the prospect of real-time anomaly detection in
computer and network systems is really attractive and crucial for information
industries.

1.1 Motivation

Anomalies in computer networks have been changed dramatically in the past
decades. Modern attacks and abnormal behavior of network users are richly
diverse with various characteristics. There is no single solution to detect all
types of attacks and unusual incidents for dissimilar network environment.
Most existing methods for network anomaly detection are specific to each
particular anomaly or particular protocol, and most of them have assumed
the batch processing technique. Therefore, we do require a general system
which could expeditiously detect a broad range of attacks and misuse inci-
dents in computer network as possible as real-time processing. The system
should have flexible capabilities to easily adapt for a specific anomaly, pro-
tocol, etc. or even particular network environment.

Machine learning has the ability of the computer to learn from the pre-
vious experience or history, and performs better for a given task, as past
behavior resembles future one. It is an artificial intelligence (AI) technique
that provides computers with the ability to learn without being explicitly
programmed. The machine learning technique has high capabilities to learn
and classify data automatically, so it could be applied to detect a variety
of anomalies in network traffic. There are also a hundred of machine learn-
ing algorithms from simple to sophisticated one, which have been developed
more than a half century.

The machine learning techniques for general purposes are not suitable for
real-time anomaly detection in computer network. We hypothesize that the
specific representation of input data for computer networks should perform
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anomaly detection with a better performance than those of input data for
general tasks. The representation of input data should tolerate any kind of
noise, data imitation by attackers or misbehavior, and should be difficult for
attackers and intruders to hide themselves from the detection system. The
representation of input data should be able to perform such detection task in
real time so that the operation could receive notification of anomalies as fast
as possible, in our sense the time between anomalies occur and notification
would be equal to or less than a minute.

We concentrate our study and experiments on how to represent input data
rather than detection algorithms. The representation of input data is a higher
level so that we could employ any algorithm of machine learning techniques.
One of the main issues is the intrinsic characteristics of data representation
that provide flexibility of capabilities to detect specific anomalies as well
as general anomalies. For example, we could focus on particular addresses,
ports, or protocols for certain anomalies without modification in learning
algorithm. These all above are our motivation for conducting the research
experiments in this thesis.

1.2 Problem Statement

The problem in this study is “how to detect network traffic anomalies caused
by threats or accidents in real time and attackers hardly evade or manipulate
the detection system”. The word real time in our context means that the
detection system produces an alert after anomaly occurrence in a minute or
less. We assume that these anomalies in network traffic are caused by threats
or accidents, and a history of attack-free (or mostly attack-free) traffic is
available from the network system that we are monitoring. We also assume
that our system will be a part of a more comprehensive detection system
which also employs hand-coded rules, such as anti-virus or firewall systems
which prevent abnormal behavior and misuse of network traffic.

For specified problems, we intend to address the remaining problems from
previous studies as follows:

1. Most of previous studies can not detect anomalies in real time.

2. Attackers can easily evade or manipulate detection system if they per-
ceive the employed detection technique.

3. Most of prior work can detect anomalies caused by only threats, but
anomalies caused by accidents also produce harmful effects on network
systems.
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These all three problems cannot be solved by a single solution or a single
technique. Therefore, the primary aim of our study is to address the three
problems by using a single detection system.

1.3 Contributions

Our study makes two distinct contributions for the field of network security
as follows:

1. The multi-timeline system for real-time anomaly detection:
it is a detection system by using multi-timeline representation from
passing traffic as input information. This system does not require any
labeled data to detect anomalies in network traffic. Our study proves
that the proposed system is versatile and automatically detect anomaly
caused by threats or accidents in real time with promising performance.
The detection system also provides flexibility of capabilities to focus on
particular logical boundary of network system or particular anomalies.

2. Comparison of three learning algorithms: we applied three learn-
ing algorithms with the multi-timeline system in order to examine the
capabilities of the proposed system in different aspects. These are
well-know learning algorithms that have been used in various detection
problems.

There are many challenges and issues that our study intends to cover for
the anomaly detection problems in network traffic which other studies cannot
cover them all. The main differences are as follows:

1. We propose a detection system rather than detection algorithm. The
main advantage of proposing a detection system is that we can apply
any algorithm, and it is easy to change from an algorithm to any other
algorithm without modification or with tiny adjustment.

2. Our study focuses on real-time scheme while nearly all other studies
have been operated by offline or batch scheme.

3. We intend to detect contextual and point anomalies, while other studies
can detect either collective or point anomalies. The differences between
contextual, collective and point anomalies will be explained in the next
chapter.

4. The multi-timeline detection system provides capabilities to discover
anomalies caused by threats or accidents, while other studies can detect
anomalies caused by threats only.
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5. Our detection system does not need any modification of network sys-
tem, while some others require protocol modification; some have to
change network equipment or architecture.

6. The robustness of proposed system is one of the key issues in our study,
especially from incorrect training data, and manipulation or poisoning
by attackers. Other studies, however, have discussed robustness when
attackers realize the detection technique in the target system.

Table 1.1 summarizes the main issues covered by our study, which are differ-
ent from other studies of anomaly detection in network traffic.

Table 1.1: Different issues between our study and conventional techniques.

Issue Our study Conventional techniques

Proposal Detection system Algorithms or techniques
Scheme Real-time Offline or batch
Anomaly Contextual and point Collective or point
Caused by Threats and outages Only threats
Modification None Protocol or equipment
Flexibility For various types of

protocols
None

Robustness From incorrect train-
ing data and imitation

None

1.4 Dissertation Outline

The remaining chapters of this dissertation are organized as follows:

• Chapter 2 provides background knowledge on a variety of different
anomalies in computer networks, and characterizes existing techniques
for anomaly detection in network traffic.

• Chapter 3 presents some general design considerations and introduc-
tory design guidelines for applying the multi-timeline detection tech-
nique to network systems.

• Chapter 4 explains materials and methods for our experiments, in-
cluding data preparation, data representation, preprocessing steps, learn-
ing algorithms, and evaluation matrices.
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• Chapter 5 describes data sources including normal traffic and anomaly
traffic and explains how to create experimental network traffic in our
study.

• Chapter 6 shows the results of each individual experiment including
comparison of different interval values, performance comparison be-
tween features, no packet situations, learning rates, time consumption,
different volume of network traffic, time of anomaly occurrence.

• Chapter 7 discusses capabilities to detect anomalies in computer net-
works by using the multi-timeline detection system with machine learn-
ing algorithms. We also describe the steps required to apply the pro-
posed system to real network environments. We further point out the
limitation of our detection system and suggest some possible solutions.

• Chapter 8 concludes our study and gives some outlines of future work.
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Chapter 2

Literature Review

This chapter first provides general types of anomalies and its nature, then
explains the primary causes of anomalies in computer networks. Next,

we present several detection techniques employed in the past studies, and
point toward some advantages and disadvantages of these techniques. After
that we introduce key concepts of machine learning for anomaly detection in
general, and indicate why machine learning techniques gain more advantages
over conventional techniques. Finally, We review representation of input data
for anomaly detection by using machine learning algorithms.

2.1 Types of Anomalies

An important aspect of anomaly detection techniques is that we have to
understand distinctive characteristics of target anomalies. Anomalies are
generally classified into three main categories as follows [12]:

Point anomaly is an individual data instance considered as anomaly with
respect of the remainder of data. This is the simplest type of anomaly, and
many detection techniques of prior studies have been focusing on this type
of anomaly. We show an example of point anomalies in Figure 2.1. In the
figure, assume that we collected data with two features, x and y axes are
represented as feature values of data points or feature vector. We clearly
notice that the majority of data are distributed around on the top-right
corner of this graph. The points p1 and p2 are located far away from the
majority group. Therefore, these two points have been classified as point
anomalies because they are different from normal or major data points.

As a real example, consider anomaly detection in network traffic, let the
data set correspond to an individual packet that pass through a router. Let
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Figure 2.1: An example of point anomalies in a two-dimensional data set.

us assume that the data is defined using only packet size as a feature. A
packet whose packet size is very large or very small compared to normal size
of packets for the same protocol will be a point anomaly.

Contextual anomaly is a data instance considered as anomaly in a spe-
cific context but migh be normal in other contexts. We could refer to this
type of anomaly as conditional anomalies [22]. This type of anomaly has
been found on data related to position, location, and even time-series data
like network traffic. Contextual anomalies have been commonly studied in
time-series data and spatial data. Each data instance of a context is defined
by the following two sets of attributes.

• Contextual attributes. The contextual attributes define the context (or
neighbor) of that instance. For example, in time-series data of network
traffic, time is a contextual attribute that determines the position of
an instance on the entire sequence.

• Behavioral attributes. The behavioral attributes describe the noncon-
textual characteristics of an instance. For example, a spatial data shows
the average traffic of the entire network; however, the volume of traffic
at any location is a behavioral attribute.
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Figure 2.2: An example of contextual anomaly in network traffic.

We could categorize anomalies in network traffic as contextual anomalies
because traffic behavior is different in regard to network locations and a
particular time. Figure 2.2 shows one such example of contextual anomaly
in network traffic, where x axis represents a time and y axis represents the
number of packets. The lower number of packets might be normal during
early morning at time T1 but the same number of packets during noon at
time T2 on the following day would be an anomaly. In many cases of network
traffic, defining a context is straightforward, and thus applying a contextual
anomaly detection technique makes sense.

Collective anomaly is a collection of related data instances considered as
anomaly in respect of the rest of data set. An individual data instance in a
collective anomaly may not be anomaly by itself, but a collection of them is
a collective anomaly. An example of collective anomalies in network traffic
is as shown below:

...http-web, buffer-overflow, ftp-login, smtp-mail, ssh, http-web,

smtp-mail, ftp-login, ftp-login, buffer-overflow, ssh, smtp-mail...

The highlighted series of packet (ftp-login, ftp-login, buffer-overflow, ssh)
correspond to a denial of service attack (DoS) from a remote machine followed
by connecting to the target computer via the secure shell protocol (ssh). It
should be noted that this packet sequence is an anomaly, but the individual
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packets are normal packets when they occur in other sequences. Collective
anomalies have been studied for several types of data, such as sequence data
[23, 24], graph data [25], and spatial data [6].

Note that point anomalies can occur in any data set, while collective
anomalies can occur only in data sets in which data instances are closely
related to each other. Contextual anomalies, however, are subject to avail-
ability of contextual attributes in the data set. In addition, a point anomaly
or a collective anomaly can be a contextual anomaly if analyzed in respect
of a context. Therefore, we can transform a point anomaly or collective
anomaly detection problem to a contextual anomaly detection problem by
corresponding to the context information. In our study, we assume that
all anomalies in network traffic are point and contextual anomalies, because
the techniques used for detecting collective anomalies are very different than
those two types of anomalies.

Many situations and behaviors of users have caused anomalies in network
traffic, both directly and indirectly. Many anomalies result from human
intention; however, some anomalies results from unintentional situations.
Therefore, we can classify the primary causes of anomalies in network traffic
under two groups, first group caused by threats and the other group caused
by accidents.

Threats refer to any situation from human intention that potentially causes
serious harm to a target network. Threats can include everything from
viruses, worms, Trojans, back doors, and all types of attacks from mali-
cious users including inside and outside users. For example, an intruder can
use different scanning techniques to gain information about a target network,
and try to break into the network. Network anomalies caused by threats have
been studied more than a decade; however, many studies have been focusing
on specific threats or specific network protocols. Unfortunately, they have to
improve or modify these detection techniques all the time after discovering
a new threat or releasing a new network protocols.

Accidents are unexpected and undesirable events, some anomalies are not
harmful to network systems but most of them result in serious damage to
network systems. Examples of network anomalies caused by accidents are
outages, hardware failures, misconfigurations, and flash crowds. Although
some of these incidents are not harmful, these are reflected in a lack of relia-
bility, availability, or security in the network system. If these incidents occur
frequently, they highly damage corporate image and reputation. Many stud-
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ies separates detection techniques for anomalies caused by accidents from
those for anomalies caused by threats. In this study, however, we intend to
propose a system solution which has a capability to detect anomalies caused
by both threats and accidents.

2.2 Anomaly Detection Techniques

In a few decades, researchers have proposed various methods from simple
techniques to sophisticated ones for anomaly detection and intrusion detec-
tion. Instrusion detection refers to detection of malicious activities from
threats by human intention [26], while anomaly detection refers to detection
of anomalous activities from both threats and accidents. From these defini-
tion, intrusion detection is a bit different from anomaly detection; however,
many researchers use these two terminologies interchangeably. Most of prior
studies mainly focused on intrusion detection techniques, unfortunately they
rarely try applying the techniques for anomalies caused by accidents.

The key characteristic of anomalies in computer networks is the huge vol-
ume of traffic. The detection techniques need to be computationally efficient
to handle the large size of input data. Moreover, network traffic typically
comes in a stream fashion and therefore detection techniques require online
analysis rather than offline analysis. Another issue is that labeled data cor-
respond to normal traffic is usually available, while labeled data for anomaly
and intrusion are not avalable. All these issues cause anomaly detection in
computer networks unique and quite different from those in other domains.

A study by Denning [27] classified detection systems into host-based and
network-based detection systems. The host-based detection systems focus
on anomalous behavior at particular machine, while network-based detection
systems pay attention to deviant traffic over the network system.

2.2.1 Host-based Detection Systems

These detection systems deal with anomalies along traces at operating sys-
tem level. The anomalies are in the form of unusual subsequences (collective
anomalies) of the traces. Such unulual subsequences indicate malicious pro-
grams, unauthorized behavior and policy violations, for example. Although
all traces contain events belonging to the same order, the co-occurrence of
events is the key factor in discriminating between normal and anomaly be-
havior. Unfortunately, point anomaly detection techniques are not suitable
in this domain. The techniques need to model the sequence data or compute
similarity between sequences. A study by Snyder et al. [28] conducted a
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survey of different techniques used for this problem. Forrest et al. [23] and
Dasgupta and Nino [29] revealed comparative evaluations of anomaly detec-
tion for host-based detection systems. Table II shows some other anomaly
detection techniques used in this domain.

Table 2.1: Examples of anomaly detection techniques for host-based detec-
tion systems.

Detection technique References

Statistical technique using
histograms

Forrest et al. [30, 23], Gonzalez and Dasgupta
[31], Dasgupta et al. [29, 32]

Mixture of models Eskin [33]
Neural networks Gosh et al. [34]
Support vector machines Hu et al. [35], Heller et al. [36]
Rule-based systems Lee et al. [37, 38, 39]

2.2.2 Network-based Detection Systems

These detection systems deal with anomalies in network traffic. The anoma-
lies generally occur as abnormal patterns (point anomalies) among network
data and occur as anomalous subsequences (collective anomalies) [40, 41].
Due to computer network connected to the rest of the world via the Inter-
net, these anomalies mainly cause by outside attackers who intend to gain
unauthorized access to the network for information theft or to attack the
network. Available network data for detection systems can be at different
levels of granularity, for example, packet level traces, flow level data, and so
forth. The network data has a temporal aspect associated with it but most of
detection techniques typically do not explicitly handle the sequential aspect.
The network data also contain high dimensional with a mix of categories
as well as continuous attributes. A challenge faced by anomaly detection
techniques in this domain is that the nature of anomalies keeps changing
over time as the intruders adapt their network attacks to evade the existing
detection systems. Some anomaly detection techniques used in this domain
are shown in Table 2.2.

Although network-based detection systems have been applied a broad
range of detection techniques, according to survey researches [2, 11, 12],
we can categorize anomaly detection techniques for network traffic into two
major groups: signature-based and statistical-based methods.
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Signature-based methods monitor and compare packets or traffic flows
with predetermined attack patterns known as signatures. These techniques
are simple and efficient to process data in computer networks, and achieve
high accuracy with a low false detection rate. There are many commercial
systems that conform to an ideal of signature-based methods, for example
Snort [42, 43, 44], Suricata [43, 44], Bro [45], RealSecure, and Cisco Secure
IDS. However, comparing a massive number of network packets or traffic
flows with a large set of signatures is a time consuming task and it has
limited predictive capabilities. One of the main disadvantages is that the
signature-based methods cannot detect new or undefined attacks which are
not included in signatures [46], so administrators have to frequently update
signatures on the detection system. In addition, these techniques cannot
detect anomalies caused by some internal operations, such as outages or
misconfigurations, which are cannot defined as signatures.

Statistical-based methods [33, 47, 48, 49] can learn behavior of network
traffic and possibly detect undiscovered anomalies and unusual incidents,
especially ones caused by accidents. Many researchers have studied on par-
ticular techniques, for instance, the statistical profiling using histograms [50],
parametric statistical modeling [40], non-parametric statistical modeling [51],
a rule-based system [52], a clustering-based technique [53], and a spectral
technique [54]. All these techniques are straightforward, but selecting ap-
propriate parameters and threshold values for classification is still difficult,
especially when network infrastructures have been changes. Another disad-
vantage of this technique is that some need a particular period of time for
learning process before detecting anomalies in real environments.

Machine learning is one kind of the statistical-based techniques which
has high capabilities to automatically recognize complex patterns, and make
intelligent decisions on the basis of data [14]. There are two fundamental
types of algorithms in machine learning: the unsupervised algorithm and
supervised algorithm [15].

The unsupervised algorithm is a machine learning technique that takes a
set of unlabeled data as input and cluster data. We could detect anomalies on
the basis of the assumption that major groups are normal traffic and minor
groups are anomalous traffic [20]. Unfortunately, many cases are not true
in a certain period, such as distributed denial of service attacks (DDoS),
viruses or worms spreading, and flash crowds. From these examples, the
amount of anomalous traffic is normally larger than those of normal traf-
fic. In other cases, outages and misconfigurations for example, although no
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Table 2.2: Examples of anomaly detection techniques for network-based de-
tection systems.

Detection technique References

Statistical technique using
histograms

NIDES Anderson et al. [55, 56], EMERALD
Porras and Neumann [57], Yamanishi et al.
[58, 50]

Parametric statistical models Gwadera et al. [41, 40], Tandon and Chan [59]
Nonparametric statcistical
models

Chow and Yeung [51]

Bayesian networks Siaterlis and Maglaris [60], Sebyala et al. [61]
Neural networks HIDE Zhang et al. [62], NSOM Labib and

Vemuri [63]
Support vector machines Eskin et al. [33]
Rule-based systems ADAM Barbara et al. [52, 64, 17], Qin and

Hwang [65]
Clustering based ADMIT Sequeira and Zaki [53], Otey et al.

[66]
Nearest neighbor based MINDS Ertoz et al. [67]
Spectral Lakhina et al. [68], Thottan and Ji [54], Sun

et al. [69]
Information theoretic Lee and Xiang [70], Noble and Cook [25]

anomalous packet occurs, an unusual decline in normal traffic also indicates
an unexpected incident arising. Therefore, the unsupervised algorithm as a
clustering technique is not suitable for these types of anomalies.

In contrast to the unsupervised algorithm, the supervised algorithm can
cover and detect a wide range of network anomalies [16]. The basic as-
sumption of supervised algorithm is that the anomalous traffic is statistically
different from normal traffic. Many studies have been applied several algo-
rithms based upon this assumption, such as the Bayesian network algorithm
[17], the k -nearest neighbor algorithm [18], the support vector machine algo-
rithm [19]. Nevertheless, the performance of these algorithms for real-time
detection has not been compared with the same data set.

Many previous studies of supervised algorithms used packet-based or
connection-based features, which have a scalability problem when the num-
ber of packets or connections increases. However, the interval-based features
can possibly solve this problem [71]. For example, suppose we have network
traffic including 10 packets for 10 seconds, if we apply packet-based features
and the processing time for 1 packet is 1 unit, the processing time of packet-
based features will be 10 units. When the number of packets increases to
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1,000 packets for 10 seconds, the processing time also rises to 1,000 units as
well. However, if we apply interval-based features and the processing time
for 1 second is 1 unit, the processing time of interval-based features are only
10 units, regardless of the number of packets.

Another problem with the packet-based or connection-based features is
that, the same as the unsupervised algorithm, they cannot detect some in-
cidents. Although the packet-based features can distinguish between normal
packets and anomalous packets, they cannot detect an unexpected incident
that does not have any anomalous packet, such as outages and misconfigura-
tions. While the interval-based features have been shown to be able to detect
unusual incidents that do not have anomalous packets [72]. The question re-
mains whether interval-based features are suitable for each particular type
of anomalies. Thus, in this study, we also investigated which interval-based
features are practical for particular types of anomalies.

2.3 Fundamental of Machine Learning for Anomaly

Detection

To illustrate the basic concept of machine learning in which the anomaly de-
tection has been involved, let us first consider a simplified example. Suppose
that a network operator wants to automate the process of detecting a packet
by using two features: source port and destination port number. Now we
represent these two features for detecting anomalies in the test packet, x1

for the source port and x2 for the destination port. If we ignore how these
features might be measured in practice, we realize that the feature extractor
has thus reduced characteristics of the test packet to a data point or feature
vector x in a two-dimensional feature space, where

x =

[

x1

x2

]

. (2.1)

The first step is to plot all measurements on a two-dimensional feature
space as shown in Figure 2.3, where the horizontal axis represents the source
port x1 and the vertical axis represents destination port x2. For the next
step, an algorithm learns from all of the data points to locate the likelihood
of normal packets, and then forms the decision boundary between normal
and abnormal region. The decision boundary, the dash line in Figure 2.3
for example, can represented by a decision function to discriminate between
two classes. The decision function is a mathametical function which takes
a dataset as input and gives a decision (a test data point) as output. For
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Figure 2.3: Feature space of network packet.

instance, if a test data point falls into the normal region, ⊕mark for example,
we classify the test data as normal class. On the other hand, if a test data
point falls into the outside of normal region ⊗ mark for example, we classify
it as anomaly class.

All above procedures are the simple version with two features to detect
anomaly in the network packet. For the machine learning, we generally add
more features up to n features, and then the algorithm can learn from prior
data with all provided features. However, we define the probabilistic struc-
ture of data for the learning algorithm as representation of input data. There
is a wider perspective of data representation in different problem domains,
especially in network traffic. The representation of input data is one of the
significant effects on detection performance beside the features and learning
algorithms.

In the following section, we review existing representation of input data
for anomaly detection in network traffic and point out important issues of
these representation. Note that we mainly focus on the learning and de-
tecting processes rather than post-processing after the anomalies have been
detected. To simplify the explanation of the data representation in the fol-
lowing section, we assume that a data instance occurs in every interval on
a timeline for one day. An instance at time t = x is represented by x, and
when we consider more than one timeline, we represent the instance x on the
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present timeline p with xp, on the timeline number 1 with x1 and so on. The
ultimate goal of anomaly detection in network traffic is to specify a decision
function g(x) that can classify a test instance x into either the normal class
or anomaly class. Therefore, we can define the task of anomaly detection as
a binary classification problem [73], and we can evaluate performance of g(x)
with a measurement for binary classification problems.

2.4 Representation of Input Data

From previous studies, we have categorized detection techniques based on
how to create a decision boundary between normal and anomaly traffic. We
simply grouped representation of input data from previous work into three
categories as follows:

2.4.1 Manual-based Representation

g(xt)

xt

Timeline

Figure 2.4: Manual-based representation.

The first is the simplest and most straightforward representation of input
data to classify data. As shown in Figure 2.4, we have a single timeline,
which flows from the left to the right side. Suppose that an only one in-
stance x occurs on the timeline at time t represented by xt, and we intend
to classify the instance xt under either normal class or anomaly class. We
input the information of xt into a decision function g(xt) to perform a task
of classification. The figure depicts a detecting connection by a bold line
between the instance xt and decision function g(xt). The question is how to
define such the decision function g(xt).

A simple way to create the decision function g(xt) is to let the function
be manually specified by anomaly experts, or define by

g(xt|expertise information). (2.2)

We name this representation of input data as “manual-based representation”.
The expert could define the decision function for normal class, instances con-
form to defined patterns are classified as normal class, firewall systems have
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such function for example. The expert could define the decision function
for anomaly class as well, instances conform to defined patters are classified
as anomaly class, for instance, anti-virus software, signature-based intrusion
detection and firewall contain such function. In addition, the decision func-
tion could be specified by both normal and anomaly class function. Many
commercial products behave like this representation including Snort [42], Bro
[45], NetSTAT [74], RealSecure, and Cisco Secure IDS.

The advantages of this data representation are simple, straightforward,
and it could immediately detect anomalies after installation. Detection per-
formance of this representation depends on the defined function by expert,
so network administrators have to keep the function up to date. Most of
existing systems with this data representation are great performance; how-
ever, this representation is not a flexible solution, and it is quite difficult to
detect novel and variation of anomalies that are not defined in the decision
function.

2.4.2 Batch Representation

g(xt)

xt−2 xt−1 xt xt+1 xt+2

Timeline

Figure 2.5: Batch representation.

For this representation, we suppose that five instances, xt−2, ...,xt+2 occur
on a single timeline from t− 2 to t+2 sequentially, as shown in Figure 2.4.2.
We intend to classify a test instance whether it is an anomaly instance or
not by using the decision function, the test instance is xt for example. The
decision function g(xt) can use information from the rest of instances, xt−2,
xt−1, xt+1, and xt+2 (it may include the test instance xt as well), or define
by

g(xt|xt−2,xt−1,xt+1,xt+2), (2.3)

Here xt−2 to xt+2 are feature vectors from t− 2 to t + 2 during the day. As
shown in the figure, we depict the bold line to represent a test connection
between the test instance xt and the decision function. We also draw the
dash lines to represent learning connection between the rest of instances and
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the decision function. In this figure, we assume that the decision function
does not have learning connection with the test instance xt.

To automatically generate the decision function g(xt), some studies have
proposed what we call the “batch representation”. Generally, a learning al-
gorithm of this representation generates the decision function g(xt) by learn-
ing from other instances rather than the test instance, for example from
xt−2,xt−1,xt+1, and xt+2. Examples of studies conformed to this representa-
tion are [75] in which the algorithm learns from an entire data set, and [76]
in which the algorithm requires a certain amount of data before detecting an
individual or group of test instances. The previous studies also show that
plenty of learning algorithms have been applied to this representation; those
algorithms are simply classified as clustering and classification techniques.

One of the advantages of this representation is that we can apply a various
of learning algorithms from simple to sophisticated one. This representation,
however, is highly suitable for offline mode or detecting at the end of the day
rather than online mode or real-time anomaly detection. The main reason is
that this representation requires entire or a certain amount of data including
instances occur after the test instance to generate the decision function and
use this function to detect anomalies. In real-time anomaly detection, we
cannot acquire information about instances after the test instance, and we
only have learning connection between instances before the test instance.

2.4.3 Real-time Representation

g(xt)

xt−2 xt−1 xt

Timeline

Figure 2.6: Real-time representation.

Due to the intrinsic characteristic of the batch representation explained
in the previous subsection, we get rid of the connection between instances
after the test instance, then we obtain a new input data named “real-time
representation”. As shown in Figure 2.6, the bold line represents a test con-
nection between the test instance xt and the decision function g(xt), define
by

g(xt|xt−2,xt−1), (2.4)
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Here xt−2 and xt−1 are feature vectors that occur before the test interval, and
the decision function only has learning connection to instances before the test
instance. Note that the decision function can learn from the information of
test instance, but in this figure we assume that it does not. Obviously, this
data representation is more suitable for real-time anomaly detection than the
batch representation.

The decision function in this data representation still automatically gen-
erated by learning algorithm. An example of real-time representation is the
Next-Generation Intrusion Detection Expert System (NIDES) [77, 56]. The
NIDES was one of the few intrusion detection systems of its generation that
could operate in real time for continuous monitoring of user activity or could
run in an offline mode for periodic analysis. The other interesting example is
the real-time intrusion detection for ad hoc networks (RIDAN) system [78],
which combined real-time with manual-based representation.

This data representation has been used by real-time detection systems
in many other areas. However, there are three key issues under our con-
sideration for applying the real-time representation to computer networks.
The first issue is that the data from this representation are easily imitated
or manipulated by attackers to evade or to compromise detection systems,
because prior data have a strong influence on the decision function of the
test instance. The second issue is how to classify the present instance when
there is no prior data, instance. The last issue is what amount of prior data
is sufficient to generate a trustworthy classification function.

Table 2.3: Comparison of representation of input data in network anomaly
detection.

Criteria Manual Batch Real-time

Automation No Yes Yes
Real-time detection Yes No Yes
Flexibility No Yes Yes
Robustness No No No

Table 2.3 shows a comparison of representation of input data for anomaly
detection in network traffic. Automation denotes that system do not have
to change configuration or add information into a signature database at-
fer discovering new type of anomaly, but manual representation is a non-
automation system. Real-time indicates that system can detect anomalies
less than a minute after anomaly occur. Batch representation cannot detect
in real time because the system needs to process whole data at the end of
day. Robustness means that attackers hardly manipulate or evade the sys-
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tem. For all three representation, attacker can easily manipulate or evade
the system if they know detection technique employed in the system.
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Chapter 3

Proposed System Design

This chapter introduces the multi-timeline representation and provides
general design guidelines for applying it to network systems. The specific

design for our experements, however, will be explained in the next chapter.
For general design, we consider anomaly detection system as both micro-
scopic design and macroscopic design. Here both designs work together, and
the microscopic design has been included as a part of macroscopic design.
In Chapter 3.2, we explain our microscopic design named detector module,
how it works and describe a major role of multi-timeline representation of
input data in this module. We go into detail of anomaly detection device
as macroscopic design in Chapter 3.3 and explain how to combine different
detector modules for concurrent operation. In the last section, we discuss
issues of system design and point out some design considerations.

3.1 Multi-timeline Representation of Input Data

The important issues of the real-time representation of input data, which
explained in the previous chapter, suggest that the detection system is much
easy to be compromised by attackers or intruders. On the other hand, the
attackers who know the mechanism of detection system can easily conceal
their attacks or evade monitoring systems. To solve these issues, we propose
a representation as shown in Figure 3.1. We use information on network
traffic from past timelines as learning data for the decision function. This
technique hardens the detection system and it is quite difficult for attackers
to conceal their attacks or evade monitoring systems. However, we should
select past timelines that correlate with the present or detecting timline. For
example, we should use weekdays timelines only as learning data to detect
anomalies on weekdays, because behavior of weekdays traffic is different from
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those of weekends traffic.

x1
t−2 x1

t−1 x1
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x2
t−2 x2

t−1 x2
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t−1 xp

t

Timeline

Figure 3.1: Multi-timeline representation of input data.

The multi-timeline representation as shown in Figure 3.1 is different from
the single timeline. Suppose we intend to classify the test instance xp

t on the
present timeline and have three timelines, 1, 2, and p with the same length for
representing day one, day two, and the present day. We also depict intervals
on day one at time t− 2, ..., t with x1

t−2, x
1
t−1,and x1

t , and so forth on others
timelines. The algorithm uses multiple timeline from the past timelines as
input at the same interval of test instance xp

t . The learning algorithm also
generates the decision function g(xp

t ) by learning from the same interval as
the test instance. In this figure, for the test instance xp

t , we show a detecting
connection has been represented by the bold line, and learning connection by
dash lines. The algorithm generates the decision function for xp

t by learning
from time intervals t from day one and day two, which are represented by
x1
t and x2

t , respectively. The number of past timelines for decision functions
depends on the number of historical traffic stored in the system, but it affects
processing time of learning process. We will show empirical results for the
suitable number of past timelines and effect on prossessing time later.

We can present a difference of decision function between single timeline
and multi-timeline representation as follows. The decision function for single
timeline is

g(xp
t |xp

1,x
p
2, ...,x

p
t−1), (3.1)

and decision function for multi-timeline is

g(xp
t |x1

t ,x
2
t , ...,x

p−1
t ). (3.2)

Here, for single timeline, the decision function g(xp
t ) contains feature vectors

xp
1,x

p
2, ...,x

p
t−1 as input (all feature vectors before the test interval over the

present timeline p). For multi-timeline, g(xp
t ) is decesion function for the test
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feature vector x at interval t over the present timeline p, and contains feature
vector x1

t ,x
2
t , ...,x

p−1
t as input (feature vectors at the same interval t over past

timelines). We assume that input vectors of these two decision functions
are attack-free or almost attack-free, because detection performance of these
two functions mainly rely upon input vectors. If input vectors contain more
attacks, detection performance of decision functions would be decreased by
attack input.

The number of decision functions g(xt) along a timeline is a major differ-
ence between the real-time representation and multi-timeline representation.
For real-time representation, the learning algorithm generates only one deci-
sion function along a timeline. This decision function could be an updatable
function on account of network traffic occurred before the test data. As a
result, one decision function produces a vulnerable point that attackers can
easily conceal attack traffic or manipulate the detection system for evasion.
For multi-timeline representation, the number of decision functions is exactly
equal to the number of intervals for a single timeline. Each interval contain
an independent decision function from other interval. Therefore, the multi-
timeline representation is quite difficult for attackers to conceal attack traffic
or manipulate the detection system.
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Figure 3.2: Multi-timeline representation after applying a weight value 3 to
the timeline 2.

Weighting techniques could be applied to the multi-timeline representa-
tion. Weighting is a technique for telling learning algorithm which data is
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more significant than others, so that the algorithm should considerably em-
ploy them to generate the decision function. Suppose we have three timelines
as shown in Figure 3.1, where timeline 1, 2, and p represent day one, day two,
and the present day sequentially. A simple way to weight a new timeline,
timeline 2, over an old timeline, timeline 1, is replicating the timeline 2 as
much as the number of weight. If a weight value 3 has been applied to time-
line 2, then we replicate the timeline 2 to 3 timelines as shown in Figure 3.2.
As a result, the timeline 2 has an influence 3 times on the decision function
g(xt) more than the timeline 1 which contains only a single timeline. From
this figure, we can define the decision function as

g(xp
t |x1

t ,x
2
t ,x

2
t ,x

2
t ). (3.3)

Conversely, if we concern about an old timeline which far from the present
timeline, we can weight timeline 1 over timeline 2 as the same fasion ex-
plained.

Another techniques that could be applied to the multi-timeline represen-
tation is the Synthetic Minority Over-sampling Technique or SMOTE [79].
This technique applies a combination of over-sampling the normal class and
under-sampling the normal class and can achieve better classifier perfor-
mance. The SMOTE approach has been proposed for classifying imbalanced
datasets, which contains normal examples with only a small percentage of ab-
normal examples. Nearly all datasets of network traffic are imbalanced data,
so that we could apply this approach to our milti-timeline representation as
well.

Table 3.1: Comparison of conventional representation to multi-timeline rep-
resentation of input data.

Criteria Manual Batch Real-time Multi-timeline

Automation No Yes Yes Yes
Real-time detection Yes No Yes Yes
Flexibility No Yes Yes Yes
Robustness No No No Yes

Table 3.1 shows a comparison of representation of input data for anomaly
detection in network traffic. For automation, we measure whether the de-
tection system need to change configuration or not. For real-time detection,
we measure that the detection system can alert after anomalies occur less
than a minute. For flexibility, we observe that we can apply more than one
algorithms to detection system without changing main configuration. For
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robustness, we measure that variation of detection performance of system
less than 3% when 10% of anomaly traffic be contaminated in training data.

Here, we explain an example of the robustness criterion. Equation 3.1
represents a decision function for single timeline. Assume that we use the
number of packets as a single feature for detection system and attackers
contaminate all packets before test data at time t as

g(xt|100, 100, ..., 100), (3.4)

where 100s are the number of contaminated packets from attackers, while
the number of packets in normal traffic is 10 packets, for example. In this
case, if test data xt = 100, the system detect test data as normal instead of
anomalous traffic. However, the decision function for multi-timeline as Eq.3.2
did not use all packets before test data on the present timeline. Therefore,
contaminated packets have no effect on decision function for multi-timeline.

Another example of robustness, assume that an outage occur and inbound
input contains no packet at all. We can rewrite Eq.3.1 as

g(xt|0, 0, ..., 0), (3.5)

where 0s are the number of packets from inbound input, while the number of
packets in normal traffic is 10 packets. In this case, if test data xt = 0, the
system also detect test data as normal instead of anomalous traffic. However,
the decision function for multi-timeline as Eq.3.2 did not use all packets
before test data on the present timeline. Therefore, no packet on present
timeline have no effect on decision function for multi-timeline.

Changing the representation from horizontal to vertical, as the multi-
timeline representation does, gains several advantages. The first advantage
is that it is quite difficult for attackers to imitate or manipulate data to evade
detection system when we set the distance between timelines to be sufficiently
long. In Figure 3.1 for example, assume the length of every timeline is one
day long, such that the distance between xp

t and x2
t is one day and the

distance between xp
t and x1

t is two days. It seems impossible for attackers
to go back to the past and manipulate data from yesterday or two days ago.
The second advantage is that even if attackers imitate data on the present
timeline, this action has no influence on the decision function for the following
instances. In Figure 3.1 for example, attackers may create imitated instance
xp
t−2 and xp

t−1 like normal instances, but it does not influence the decision
function for instance xp

t , because g(xp
t ) is generated from x1

t and x2
t , which

occur at the same time t on past timelines. The last advantage is that our
analysis suggests that the multi-timeline representation (with some learning
algorithms) highly tolerates incorrect training data, because there is a very
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low possibility that incorrect data can occur at the same time on different
timelines. Therefore, we have conduct a series of experiments to examine
these key aspects and other aspects of the multi-timeline representation.

Time complexity of multi-timeline is also change from single timeline,
especially for training process. Time complexity of single timeline depends
on the number of intervals and number of timeline as O(mn), where m the
number of training data (days) and n is the number of interval. On the con-
trary, Time complexity of multi-timeline depends on the number of timeline
only O(m).

Representation of input data plays a crucial part in our design for anomaly
detection because the classifier in this system heavily relies upon the repre-
sentation of input data. The input data represents data of network traffic
in order to generate an effective classifier from historical or training data. It
means that the representation of input data is mainly associated with the
learning process rather than detecting process. In Chapter 2, we have shown
three conventional representation of input data and proposed a representa-
tion named multi-timeline to enhance capabilities of detection system.

We provide a short summary of three conventional and one proposed
representation of input data in Chapter 2 as follows:

• Manual-based representation depends entirely on knowledge of tech-
nical experts in network traffic anomaly. Although this system could
perform detection in real time, it cannot automatically discover new
types of anomalies.

• Batch representation have been developed to automatically detect a
new type of anomaly. This system employs batch processing tech-
niques, so it requires entire data and causes many problems to apply
this representation of input data for real-time detection.

• Real-time representation has the ability to automatically detect a new
type of anomaly and can be applied for real-time detection. However,
the main problem of this representation is that attackers can easily
evade the detection system or imitate normal traffic if they realize the
detection mechanism.

• Multi-timeline representation is our proposed input data to resolve the
main problem of real-time representation. This representation keeps
capabilities to automatically discover new anomalies and can operate
in real time. Moreover, it is a robust input data from unlabeled training
data so we do not require any preprocessing of training data.
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These input data are representation of network traffic, so they cannot pro-
cess data by themselves. Therefore, we require a learning algorithm utilizing
the representation of input data to produce a classifier in training process
and to classify test data in detecting process. We design the input data in
general so that one can pick any machine learning algorithm to work with
multi-timeline representation. In our design, a key role of learning algorithm
is making connections among training data, test data, representation of in-
put data, and classifier. Additionally, we provide some learning algorithms
for our experiments in Chapter 4.

Note that closer to our approach, many studies have proposed a technique
known as the multivariate technique. For example, a study by Lakhina et
al. [80] shows that the principal component analysis (PCA) can be used for
separating the high-dimentional space from different network traffict mea-
surements into subspaces, after that they can perform anomaly detection
from these disjoint subspaces. Another study by Nychis et al. [81] proposed
an entropy-based technique for anomaly detection in network traffic. The
main idea of this approach is that they analyze the power of multiple traffic
distributions, including the number of addresses, ports, and flow sizes, then
they use the entropy of these distributions in time series to detect anomalies
in network traffic. The last example has been studied by Kanda et al.[82].
They proposed a combination of sketchs, PCA, and entropy-based technique
to detect anomalies in time series of network traffic. These techniques as the
multivariate technique employ multiple values or multiple features of time se-
ries and compare a test data to other time series. The multivariate technique
is still based on batch representation because they still need entire network
traffic for a certain period. The multi-timeline representation, however, com-
pares a test data to historic network traffic rather than the current one, and
do not need entire data for detection.

3.2 Detector Module

We name the smallest part of our system as detector module. A detector
module consists of four primary functions, namely feature extraction, feature
scaling, weighting process and classifier as shown in Figure 3.3. The module
has two outside connections, one is between network traffic and feature ex-
traction as an input and another is between classifier and alarm system as
an output. We can divide data flows inside a detector module into two flows,
one flow for learning process and another flow for detecting process. Feature
extraction and feature scaling are common functions, but representation of
input data and classifier differently operate for learning and detecting pro-
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cess. We also apply the multi-timeline detection system to take the major
role of representation of input data, it is a crucial part to generate an effi-
cient classifier for anomaly detection. To understand functionality of detector
module, we explain each function in the following subsections.

Network
Traffic

Feature
Extraction

Feature
Scaling

Weighting
Process

Detector
Module Classifier Alarm

Training Data

Test Data

Figure 3.3: Process connections and data flows of detector module.

3.2.1 Feature Extraction

The main function of feature extraction is selecting important features of
network traffic. Extracted features should directly or indirectly associate
with expected anomalies. In our experiments, we can extract feature of
network traffic by using information on packet header and aggregate packets
or flows on interval basis. Table 3.2 shows fundamental features of network
traffic by aggregating information of packet header. However, we can create
variations of these features by combing more features together, for example,
the number packets per flow over an interval could be derived from ratio
between the Packet and Flow feature. Moreover, we also can extract more
specific protocols or ports based on these features, such as the number packets
of HTTP port 80 or the number of flows of ICMP, and so forth.

Table 3.2: Fundamental features of network traffic by aggregating informa-
tion of packet header.

Feature Description

Packet Number of packets
Byte Sum of packet sizes
Flow Number of flows
SrcAddr Number of source addresses
DstAddr Number of destination addresses
SrcPort Number of source ports
DstPort Number of destination ports

35



On the contrary, feature representation in nominal value, such as binary
values of 0 and 1, is another way for feature extraction rather than aggregat-
ing information of packet header. For example, we indicate that IP addresses
or port numbers appear on an interval with 1 and does not appear with 0,
so the classifier should consider IP addresses or port numbers which does
not appear before as anomalies. Therefore, output from feature extraction
could be mixed between features with real value and features with nominal
value. Our experiments apply only the aggregation technique so all features
are represented in real values.

One of the feature extraction parameters is interval value δ that affects
detection performance, resources, and time consumption of multi-timeline
system. If we set a short interval value, the system could detect short time
anomalies; however, we have to reserve more storage for each interval infor-
mation and take processing unit more often. Conversely, if we set a long
interval value, we could reduce storage for each interval information; how-
ever, the system hardly detect a short time anomaly. The interval value
also has an effect on time consumption, because it depends on the number
of packets in each interval. If we set a short interval value, the number of
packet in each interval less than those of a long interval value. Moreover, the
time between anomaly occur and alert rely on time interval and processing
time after that as

T (x) = δ + d(x), (3.6)

where T (x) is total processing time when an anomaly occur at interval x, δ
is an interval value, and d(x) is detecting time processed at interval x.

3.2.2 Feature Scaling

Feature scaling is a process attempts to standardize a wide range of fea-
ture values to the same range. This process may be unnecessary for other
techniques for anomaly detection in network traffic; however, feature scal-
ing or feature normalization is indispensable for the multi-timeline detection
system that relies mainly upon machine learning algorithms. Most learning
algorithms will not function properly without feature scaling.

Even though many scaling functions have been proposed [83], the common
goal of scaling functions is to independently normalize each feature compo-
nent to the [0,1] or [-1,1] range. We highly recommend the following two
scaling functions that would be appropriate for real-time anomaly detection.
We could normalize feature values by using the max value as

x′ =
x

max(x)
, (3.7)
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or by using the range of feature as

x′ =
x− µ

max(x)−min(x)
, (3.8)

where x′ is the normalized value derived from x an original value, µ is the
average value, max(x) and min(x) are maximum and minimum values of x
respectively. These two scaling functions have the same time complexity as
O(q) where q is the number of feature values, so these would take a very
short time of computation for real-time systems.

3.2.3 Weighting Process

Weighting is a mandatory process for the multi-timeline detection module,
especially during the learning process. This module guides the learning al-
gorithm to generate a decision function which relies on particular timelines.
Consequently, network operators could weight on one or more timelines to
bias the decision function of detection system. For example, recent timelines
should have a strong influence on the classifier than other older timelines.
There are various weighting techniques for different purposes that could be
plug into this module, such as by performing a sum, integral, average or even
calculus [84]. In our experiments, we adapted a gradual weighting function to
recent timelines and we will describe more details of our weighting function
in Chapter 4, System Implementation.

3.2.4 Classifier

The major role of classifier is distinguishing between normal and anomaly
in network traffic. The classifier in detector module is created by an algo-
rithm using representation of input data and training data during learning
process. As a result, effectiveness of classifier depends highly upon three
factors: learning algorithm, representation of input data, and training set.
In detecting process, the classifier receives a test data as an input, then pro-
duces a label of test data as an output to alarm system. One of our purposes
of multi-timeline learning is to enhance several capabilities of detector mod-
ule. In addition, the detector module could be applied in various schemes to
detect different types of anomalies in network systems.

3.3 Homogeneous Detector Device

An anomaly detection device contains a number of detector modules instead
of a single module. Though a single detector module could discover a new
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type of anomaly, it is better to consolidate two or more detector modules for
anomaly detection.

Anomaly Detection Device

Network traffic

F1 F2 F3 F4

M M M M

Alarms

Figure 3.4: Example of anomaly detection device using homogeneous detector
modules.

An anomaly detection device using homogeneous detector module con-
tains exactly the same type of detector modules as shown in Figure 3.4. The
same type of detector module as M in the figure could be the same learning
algorithm, representation of input data, and feature space. The main input
of this device is all network traffic through a certain point, such as a router or
switch in the network. Additional parts placed between main network traffic
and detector modules are traffic filters, for example F1-F4 in the figure. The
main function of these filters is filtering network traffic based on many types
of criteria, such as network protocol, port, IP address, MAC address and so
on. Each detector module will learn and create an own classifier based on
each criteria of the related filter. It is somewhat similar to home security
systems that we install a fire detector for each room in a house. In the case
of anomaly, each detector module could raise an alarm signal with detector
ID, so that operators could be notified and inspect traffic relating to such
anomaly.

The positive aspect of homogeneous detector module is that we could
filter only essential network traffic and do not require all network traffic for
monitoring. Moreover, the device is fairly adaptable and flexible because
network operators can adjust the device via filters alone. However, the neg-
ative aspect of homogeneous detector module is that we require traffic filters
and the device has to pay the extra cost for these additional parts. Another
drawback of multiple detector is how to judge when the decisions of multiple

38



detectors are different. Our results show that each type of attack contains it
own characteristics and alarms by using different sets of features, Back attack
by using f1 and f2, PortSweep attack by using f7 for example. Therefore,
we might keep these records to identify types of attacks later when multiple
detectors have been alerted.

In our design, the majority vote [85] could be applied in the system;
however, if each module takes care of one feature the majority vote will
fail for detecting a specific anomaly. In this case, one module only answers
correctly and the rest of them fails. However, this technique could be useful
for traceback the original of anomalies by deploying multi-timeline detection
devices in multiple networks. We can use the majority vote from the multiple
networks to find the probability of attack path when devices alert with the
same set of features, similar to the conventional IP traceback technique [86].

3.4 Design Consideration

This final section provides a step-by-step guide to apply our design for a real
network environment, and gives some considerations for each step. Although
we start from a microscopic design then expand to a macroscopic design,
applying our detection devices for real network environment we have to com-
pletely reverse these all processes. The following steps indicate standard
procedures for employing our designs in real network systems.

First, designers need to contemplate where the locations are necessary
for network operators to carefully monitor traffic. Global and local location
strategies should be applied in this first step. For global location strategy,
ones might deploy a couple of detection devices near a gateway to the Inter-
net, but the main concern is that a huge volume of network traffic could slow
detection devices down. As a result, detection devices should be hardware-
based devices rather than software-based devices. However, ones would ap-
ply software-based devices if they do not require real-time anomaly detec-
tion. For local location strategy, ones have to decide which particular areas,
servers, or workstations are important for monitoring. Even though software-
based devices could be applied, the number of devices results in the total cost
of detection system. Like home security systems, we choose precise locations
in this step before installing security cameras or several types of detectors.

The following step is detection device design. Designers need to individ-
ually design detector modules for each detection device or the same type of
partial areas in network system. For example, ones would apply homoge-
neous detector modules to detection device connected with the main router
and monitor only TCP, UDP, and ICMP. Ones could apply hybrid detector
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modules to a software-based detection device installed at a workstation or
server. The main consideration in this step is that detector modules could
be altered when system requirements have been changed. For example, at
the beginning detector modules monitor the entire network traffic, then they
would be altered to monitor TCP, UDP, and ICMP. Therefore, we proposed
anomaly detection device that is ready to get detector modules altered. Sim-
ilar to home security systems, we assign various types of security cameras or
detectors to suit each designed location in this step.

Finally, we need to select features, learning algorithm, representation of
input data, and other parameters for each detector module. We personally
recommend that the multi-timeline representation is highly suitable for real-
time detection device. In the next chapter, however, we examine all factors
that might have an effect on the multi-timeline representation, namely feasi-
ble features for particular types of anomalies, learning algorithm, and other
practical parameters for each learning algorithm. After our experiments, we
provides discussion and guidance to apply the multi-timeline representation
to anomaly detection module in Chapter 7.
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Chapter 4

System Implementation

In this chapter, we will explain all of implementation used and related to
our experiments. In Chapter 4.1, we describe network features used in

our experiments and explain how to normalize these features to the same
scale. We explain three learning algorithm applied to our experiments in
Chapter 4.3, namely multivariate normal distribution, k -nearest neighbor,
and one-class support vector machine.

Main tools for our experiments can be separated into three groups: pro-
gramming tools for dealing with the packet level, a numerical language and
libraries for computations. We used the C++ on Unix platform as a main
programming language with Libpcap [87] to read a packet header and aggre-
gate network traffic into different features. For numerical computations, we
applied the GNU Octave [88] as a high-level programming language to deal
with a number of matrices. Table 4.1 shows programing languages, version
of language, and lines of code for each step in the proprosed system.

Table 4.1: Programing language for each step in the proposed detection
system.

Extraction Scaling Weighting
Classifier

MND KNN OSVM

Language C++ Octave Octave Octave Octave LibSVM
Version 4.8.4 3.8.1 3.8.1 3.8.1 3.8.1 3.12
Lines of code 483 24 41 69 53 27
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4.1 Features Extraction and Feature Scaling

In this section, we explain what features have been extracted and how to
scale different ranges of these feature values. For our experiments, there are
two steps actively involved with features of network traffic: feature extraction
and feature scaling. The feature extraction is a process of transforming the
input data into the set of features in order to perform the detection task,
using this reduced representation instead of the full size input. The feature
scaling is a method used to normalize the range of independent variables or
features of data, also known as data normalization, it is performed during
the data preprocessing step.

Table 4.2: Features of network traffic on an interval basis.

f# Feature Description

f1 Packet Number of packets
f2 Byte Sum of packet sizes
f3 Flow Number of flows
f4 SrcAddr Number of source addresses
f5 DstAddr Number of destination addresses
f6 SrcPort Number of source ports
f7 DstPort Number of destination ports
f8 ∆Addr |SrcAddr − DstAddr|
f9 ∆Port |SrcPort − DstPort|
fall All Combined all features

In the feature extraction step, we extracted nine features as listed in Table
4.2 during packet aggregation for every single interval. In this table, we list
the feature abbreviation for our experiments, feature name, and description.
Note that the ∆Addr (f8) is the absolute number of difference between the
number of source addresses and the number destination addresses, and the
∆Port (f9) is the absolute number of difference between the number of source
ports and the number of destination ports. We represent feature vector fall
at time interval x as

xfall =











xf1

xf2
...

xf9











. (4.1)

All of the features are carefully selected to account for characteristics of the
selected anomalies listed in Table 5.1. We assume that input vectors as
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training data for learning process are attack-free or almost attack-free, be-
cause detection performance of the proposed system mainly rely upon input
vectors. If input vectors contain more attacks or contamination, detection
performance of the proposed system would be decreased by attack or con-
tamination input.

In the feature scaling step, it is one of the important step for data pre-
processing in our experiments. The feature scaling makes the values of each
feature in the data have the common range in [0,1]. Selecting the target
range depends on the nature of the data; however, we chose the simple way
to compute the scaled value. Due to a time constraint, especially in detection
process, we have to minimize computational time for feature scaling step by
using only the maximum value. We scaled features according to

x̂i,j =
xi,j

maxj(xi,j)
, ∀i=1...f ∧ ∀j=1...m, (4.2)

where x̂i,j is a scaled feature value, maxj(xi,j) is the maximum value of the
data in the i-th feature, m is the number of samples in the training data,
and f is the number of the feature.

4.2 Weighting Process

Weighting is one of the processes in multi-timeline detector module as ex-
plained in Chapter 3. This process will guide the learning algorithm to gen-
erate a decision function which relies on particular timelines. Consequently,
network operators could weight on one or more timelines to bias the decision
function of detection system. Figure 4.1 shows the weighting process in our
detector module during the learning process.

w3 w3

w2 w2 w2 w2

w1 w1 w1 w1 w1 w1

Training days
m-5 m-4 m-3 m-2 m-1 m

Weight value ϕ

Weight length φ

Figure 4.1: An example of weighting process with weight length φ = 6 and
weight value ϕ = 3.

In our implementation, we conducted experiments on the detector module
both with and without the weighting process. There are two parameters for
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weighting process, namely weight length φ and weight value ϕ, where the
weight length is the number of weighted training days and weight value is the
maximum number of replication. We also made an assumption that recent
data contains more useful information than older ones. To clarify, Figure 4.1
shows an example when m is the number of training days, and setting weight
length to 6 and weight value to 3. As a result, we add a weight from day m

to m−5 where weight 3 added to m and m−1, weight 2 added to m−2 and
m − 3, weight 1 added to m − 4 and m − 5 sequentially. For weight value,
we replicate training samples as the number of weight value, for example, we
replicate samples 3 times for weight value 3 and so on. We call this technique
as linear gradual weighting, used in a study by Sousuke Amasaki and Chris
Lokan [89]. We could be modified by reducing the weight value exponentially
called exponential gradual weighting. In our experiments, however, we apply
only linear gradual weighting technique. The weighting process could be
disabled by specifying the weight value equal to 1 or setting all timeline in
training data with the same weight value.

4.3 Learning Algorithms

In this section, we explain three learning algorithms selected for working
with the multi-timeline technique in our experiments. We employed three
standard and well-known algorithms of machine learning, namely the multi-
variate normal distribution, k -nearest neighbor, and one-class support vector
machine, to work with our learning model. Even if, the multivariate normal
distribution and k -nearest neighbor are not sophisticated algorithms, both
algorithms are in the list of top 10 algorithms in data mining as well as the
support vector machine [90]. We explained details of all these three learning
algorithms as follows:

4.3.1 Multivariate Normal Distribution (MND)

Before explaining about multivariate normal distribution, let us begin with
the one-dimensional or the univariate normal distribution (Gaussian density),
is defined by

p(x) =
1√
2πσ

exp

[

−1

2

(

x− µ

σ

)2
]

, (4.3)
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where µ is the mean value of the random variable x (an average), is defined
as

µ = E[x] ≡
+∞
∫

−∞

xp(x)dx, (4.4)

where E[x] denotes the mean (or expected) value of a random variable x.
The parameter σ2 is the expected squared deviation or variance of a random
variable x, is defined as

σ2 = E[(x− µ)2] ≡
+∞
∫

−∞

(x− µ)2p(x)dx. (4.5)
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Figure 4.2: Gaussian probability density function, (left) µ = 2 and σ2 = 0.5,
(right) µ = 7 and σ2 = 1

.

The univariate normal distribution is completely specified by two param-
eters, mean µ and variance σ2. Figure 4.2 (left) shows the graph of the
univariate normal distribution or Gaussian function for µ = 2 and σ2 = 0.5,
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and Figure 4.2 (right) shows the case for µ = 7 and σ2 = 1. Both are sym-
metric graph and always centered at µ; in addition, the larger value of the
variance cause the wider of the graph as shown in the figure.

The MND is a generalization of the Gaussian or normal probability den-
sity in high dimensions [91]. In f dimensions, the probability density function
of MND is written as

p(x) =
1

(2π)f/2 |Σ|1/2
exp

[

−1

2
(x− µ)TΣ−1(x− µ)

]

, (4.6)

where x is a f -component column vector, µ is the f -componet mean vcctor,
Σ is the f -by-f covariance matrix, |Σ| and Σ−1 are its determinant and
inverse, respectively. The covariance matrix Σ is defined as

Σ = E[(x− µ)(x− µ)T ], (4.7)

where (x− µ)T denotes the transpose of (x− µ). It seems obvious that for
a single dimension or f = 1, the multivariate Gaussian coincides with the
univariate normal distribution.

Multivariate Normal Distribution

x1

x2

p(x)

Figure 4.3: Multivariate normal distribution.

To get a sense on what the multivariate Gaussian looks like, let us focus
on a case in the two-dimensional space for visualization. Figure 4.3 shows
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an example of a two-dimensional Gaussian probability density function. The
graph contains two features, x1 and x2 represented by x-axis and y-axis re-
spectively, while the z-axis indicates p(x), and corresponds to the covariance
matrix

Σ =

[

σ1
2 0

0 σ2
2

]

. (4.8)

The shape of this graph are controlled by the covariance matrixΣ. Figure 4.3
has the Σ with σ1

2 ≪ σ2
2, so the graph is elongated along the x2 direction.

To classify a test instance x in our experiments, we specified a threshold
ε which have a range of value between 0 and 1. If p(x) is less than ε, we will
decide that the test instance x is anomaly, because the test instance gives a
lower probability compared to normal instances. Otherwise, we decide that
the test instance x is normal, because the test instance gives a probability in
a boundary of normal instances. For our experiments, however, we generalize
the ε to the adaptive threshold, is specified as

ε =
1

(2π)f/2 |Σ|1/2
exp

(

−1

2
ρ2
)

, (4.9)

where ρ is a parameter to obtain the proportion of maximum probability.
Smaller values of ρ produce higher value of p(x) than larger values of ρ. In
our experiments, we varied values of ρ between 2 and 4 on a linear scale
to determine the best detection performance. Therefore, we can define the
classification function of test data x as

g(x) =

{

anomaly, if p(x) < ε;
normal, otherwise.

(4.10)

The main reason for selecting MND is that this learning algorithm is
one of the linear classifiers. We need a simple learning algorithms to work
with our learning model, because the simpler algorithm we used, the faster
computational time we obtain. Although data in real network environments
may never come with the normal distribution, the MND provides a robust
approximation and has many nice mathematical properties. Furthermore,
because of the central limit theorem, many multivariate statistics converge
to the normal distribution as the sample size increases.

4.3.2 k-Nearest Neighbor (KNN)

The k -nearest neighbor is one of the learning algorithms, which is very simple
to understand but works incredibly well in practice. The KNN is an instance-
based learning algorithm for classifying data instances based on the closest
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learning samples in the f -dimensional space [92]. It is quite different from
the MND, which is based upon probability density of random variable.

To get better known about KNN, let us show an example of two-dimensional
instances as shown in Figure 4.4. Suppose we plot training instances on a
two-dimensional plane as shown in Figure 4.4 (left). The training instances
have been labeled with one of the two classes, square class and triangle class.
The test sample (⊗ mark) should be classified either to the square class or
the triangle class. If we set k = 3 (solid line circle as a boundary of 3-nearest
neighbor), the algorithm assigns the test sample to the triangle class because
there are 2 triangles and only 1 square inside the inner circle. If we set k

= 5 (dashed line circle as a boundary of 5-nearest neighbor), the algorithm
assigns the test sample to the square class because the number of squares is
greater than the number of triangles inside the outer circle.
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Figure 4.4: Examples of KNN: (left) the original KNN, (right) our modified
KNN.

The original KNN, we need to define two parameters, the constant k and
distance metric. In our experiments, however, we added another parameter,
the distance D, in order to apply KNN for unlabeled training data. To
understand our modified KNN, let us explain by using Figure 4.4 (right).
Suppose we have only one square class, and intend to classify the test sample
(⊗ mark) whether it is in the square class or not. If we set k = 5 and D

= d1 (solid line circle), the algorithm does not assign the test sample to the
square class because there are only 3 squares within the distance d1. On the
other hand, if we set k = 5 and a longer distance D = d2 (dashed line circle),
the algorithm assigns the test sample to the square class because there are
5 squares within the distance d2. Therefore, there are 3 parameters used to
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classify the test data in our experiments, namely the constant k, the distance
d, and distance metric.

For the distance metric, the Euclidean distance [93] is commonly used for
many classification problems. In our experiments, the nearest neighbors of
the data are also defined by standard Euclidean distances. More precisely,
suppose test data x comprising f features be described by the feature vector
[x1 . . . xf ]

T , where xi denotes the value of the i-th feature of data x, and T

denotes the transpose of column vector, which is the simple way to write a
column vector in a single row. The Euclidean distance between two instances
x and y is the length of the line segment connecting them, given by

d(x,y) =

√

√

√

√

f
∑

i=1

(xi − yi)2. (4.11)

Even if we employ the Euclidean distance as the distance metric for our
experiments, there are many other possible distance metrics. The following
distance metrics are well studied:

• Mahalanobis distance [94]

• Manhattan distance [95]

• Minkowski distance [96]

• Canberra distance [97]

These metrics provide a different technique to measure between two instances
in a high dimensional space. Dissimilar distance metrics also have advantages
and disadvantages for specified tasks. Therefore we need to carefully select
distance metric for our purpose.

To classify a test instance in our experiments, we specified the constant
parameter k = 3 and varied the distance parameter. Thanks to the feature
scaling step, we can vary the parameter D on a logarithmic scale between
10−6 and 100 for selection of the best detection performance. We defined the
classification function of test data x as

g(x) =







anomaly, if amount of training data nearest
to x is less than k in the distance D;

normal, otherwise.
(4.12)

We selected the KNN to work with the multi-timeline model because
this algorithm do not need an explicit learning phase. In other word, all
the training data is needed in the detecting phase, so time consumption in
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learning phase is a constant value. Moreover, the modified KNN used in our
experiment do not require all training data in learning phase because if we
find the k training instances in range of D distances, we classify the test
instance as a normal immediately, we do not need all training instances for
classification. In this manner, this algorithm takes a short detection time
for new instance. For this reason, the KNN is highly suitable for real-time
anomaly detection in network traffic. In addition, the k value of KNN allows
the classifier to tolerate noisy data; network traffic is one of the data which
contain lot of noise.

4.3.3 One-class Support Vector Machines (OSVM)

One-class support vector machines first introduced by Schölkopf et al. [98]
is a variation of the standard support vector machines (SVM) algorithm.
To better understand how OSVM works, we start with the concept of SVM
algorithm as shown in Figure 4.5.
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Figure 4.5: Examples of SVM algorithm: (left) smaller margin, (right) larger
margin.

We briefly introduce the basics necessary concepts of SVM rather than
mathematical concepts. Suppose that we have input data consisting of two
classes, square class and triangle class. We plot all input instances on a
two-dimensional plane as shown in Figure 4.5, it is obvious that both classes
are separable from each other by a single decision line. However, there are
many possible decision lines which can separate these two classes. Figure 4.5
on the left shows a decision line with smaller margins between two classes,
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but on the right shown another decision line with larger margins. First main
concept of SVM is that the algorithm tries to find the line which is separate
two classes with the maximum margin.

However, since input data is often not linearly separable, the SVM intro-
duces the notion of a “kernel induced feature space” which casts the data
into a higher dimensional space where the data is separable. For example,
as shown in Figure 4.6 on the left, the original feature space cannot linearly
separate between the square class and triangle class. Therefore, the SVM
algorithm transforms original input data to a new feature space, as shown in
Figure 4.6 on the right, which can separate two classes by a linear function
as shown in Figure 4.6. The SVM utilizes a kernel function to transform
original input data to a new feature space.

More precisely, a classification task usually involves separating data into
training and testing sets. Each instance in the training set contains one
target value (i.e. the class labels) and several attributes (i.e. the features or
observed variables). The goal of SVM is to produce a model (based on the
training data) which predicts the target values of the test data given only
the test data attributes.

Given a training set of instance-label pairs (xi, yi), i = 1..., l where xi ∈ R
f

and y ∈ 1,−1l, the SVM [99, 100] requires the solution of the following
optimization problem:

min
w,b,ξ

1

2
wTw + C

l
∑

i=1

ξi

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi,

ξi ≥ 0.

(4.13)

Here training vectors xi are mapped into a higher (maybe infinite) dimen-
sional space by the function φ. SVM finds a linear separating hyperplane
with the maximal margin in this higher dimensional space. The constant
value C > 0 is the penalty parameter of the error term. Furthermore,
K(xi,xj) ≡ φ(xi

Tφ(xj) is called the kernel function. Although various ker-
nels have been introduced by many researchers, the four basic kernels have
been used in SVM are

• linear: K(xi,xj) = xi
Txj .

• polynomial: K(xi,xj) = (γxi
Txj + r)d, γ > 0.

• radial basis function (RBF): K(xi,xj) = exp(−γ‖xi − xj‖2), γ > 0.

• sigmoid: K(xi,xj) = tanh(γxi
Txj + r).
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Here γ, r, and d are kernel parameters. The underlying mathematical theory
behind the SVM algorithm are explained in [101].
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Figure 4.6: Transformation from the original input data to a new feature
space.

The OSVM is a little different from original SVM, but the main concepts
are still the same as SVM. The difference is that the training data for OSVM
contain only one class, while those for SVM contain two or more classes.
The main idea is that the OSVM maps unlabeled input data into a high
dimensional space via an appropriate kernel function, and then attempts to
find hyperplanes that separate the input data with maximum margin.

To classify test data in our experiments, we defined the decision function
according to Muller et al. [102] as follow:

h(x) = sign((ω.Φ(x))− ρ) (4.14)

where h(x) is positive for most samples xi contained in the training set and
negative for the opposite, where ω is a normal vector of hyperplane, Φ is a
kernel function, and ρ represents a penalized value in the object function.
Therefore, we define the classification function of test data x as

g(x) =

{

anomaly, if h(x) = −1;
normal, if h(x) = +1.

(4.15)

In our experiments, we used the LIBSVM [103] tool with a radial basis
function (RBF) as an appropriate kernel. We used default values of standard
parameters from this tool for all experiments; however, we varied the nu and

52



gamma parameters on a logarithmic scale between 10−3 and 100 for selection
of the best detection performance.

There are several reasons that we employed the OSVM as a learning algo-
rithm with our learning model. First, the SVM is one of the new and popular
classification techniques, especially for binary classification, and considered
easier to use than other sophisticated algorithms, such as neural networks.
Second, in other domains, results by using SVM are often highly satisfactory,
so it might give reasonable results in task of anomaly detection in network
traffic as well. Last but not least, the SVM is a flexible algorithm whose ker-
nel function and other parameters can be tuned for own purpose. However,
the SVM has a problem of over-fitting from optimizing the parameters to
model selection as explained in [104].

53



Chapter 5

Datasets and Performance
Metrics

In this chapter, we first explain how to acquire traffic from a reliable campus
network and how to extract anomalies from a testbed data set, then we

explain the process of data preparation in Chapter 5.1. Next in Chapter 5.2,
we describe how to represent network traffic at a particular time interval by
using a feature matrix, which is fast and easy for algorithms to learn and test
instances. Finally, in Chapter 5.3, we explain the single value measure used
in our study to evaluate detection performance of three learning algorithms.

5.1 Data Sources and Preparation

In this section, we explain about collecting network traffic and process of data
preparation for experiments. We acquired data for our experiments from two
separated sources, one is a restricted campus network as normal traffic and
the other is a testbed data set as anomalous traffic.

For normal traffic, the primary source of raw data is from an edge router
of the Internet service center in Kasetsart University, Thailand. This center
provides computer clients for all university members, especially for students
and researchers, to access the Internet and various local services. There are
approximately 1,300 users every day among 157 computer clients, and the
service hours of this center are open between 8:30 and 24:00 on weekdays,
but close on weekends. Administrators installed anti-virus, personal firewall,
and appropriate software for ordinary users in each client, and users cannot
modify these software or install any other software by themselves. At the
end of every day, all clients automatically erase any modification and the
installed software and operating system are returned back to the initial state.
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Administrators of this center guarantee that no client contains any malicious
or attack software.

We collected real traffic from this campus network for 3 months and then
manually selected a total of 55 days according to official statistics that indi-
cate normal behavior of usage. For example, the report of official statistics
indicates that there are fairly low usages during midterm and final exami-
nation periods. Consequently, we can assume that all of the network traffic
collected from this source could contain a small number of anomalies, but
such tiny anomalies is negligible.

For anomalous traffic, we manually selected several types of anomalies
from a well-know testbed data set instead of simulating anomalies by our-
selves. We extracted only packets associated with attacks from the testbed of
DARPA Lincoln Lab in Massachusetts Institute of Technology [105, 106, 107].
The testbed contains both normal and anomalous traffic, and was provided
for researchers to evaluate intrusion detection systems. However, we used
only anomalous traffic because both types of traffic are from simulation, not
from real behavior of usage network, so we better collected normal traffic
from the real network environment rather than using from simulation. Even
if the testbed from DARPA Lincoln Lab has been provided in order to eval-
uate intrusion detection systems more than a decade, the recent study by C.
Thomas et al. [108] concluded that this testbed can be used for evaluation
in the present scenario as well. The other crucial reason is that machine
learning algorithms practically learn from background traffic. Therefore, the
more realistic network traffic, the more realistic and accuracy of algorithms.

We selected five types of anomalies from the the testbed as follows:

1. Back attack is a denial of service attack against the Apache web server,
where a client requests a URL containing many backslashes.

2. IpSweep attack is a surveillance sweep performing either a port sweep
or ping on multiple IP addresses.

3. Neptune attack is a SYN flood denial of service attack on one or more
destination ports.

4. PortSweep attack is a surveillance sweep through many ports to deter-
mine which services are supported on a single host.

5. Smurf attack is an amplified attack using ICMP echo reply flood.

Essential characteristics of these selected attacks are listed in Table 5.1. In
the first column, we indicate sources from the testbed and types of anoma-
lies for each instance. The Back and IpSweep, each attack contained two
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instances, while the Neptune, PortSweep, and Smurf, each attack contained
three instances. In the next five columns, we show primitive characteristics
of each instance: the number of source addresses, the number of destination
addresses, the number of source ports, the number of destination ports, and
the total amount of attack packets. Next, the average packet size (Bytes)
and duration (Seconds) of each instance are shown in the seventh and eighth
columns. Lastly, the average number of attack packets per second and per-
centages of each instance in one day long are shown in the last two columns.
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Figure 5.1: Examples of network traffic in our experiments, (top) normal
traffic in training data, (bottom) Back attack in test data.

For data preparation, we created training and test dataset from normal
and anomalous traffic data. We divided the 55-day raw data of normal traffic
collected from the reliable source into two data sets: one is a 39-day (≈70%)
traffic data set and the other is a 16-day (≈30%) traffic data set. We used
the 39-day data set as a learning data set for designated algorithms without
any modification. Separately, we combined the 16-day traffic data set with
each instances of anomalies to create a test data set for each individual type
of anomalies. For example, we combined the 16-day traffic data set with two
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instances of the Back attack, as listed in Table 5.1, to produce a 32-day test
data set for the Back attack, and so on and so forth. Therefore, we have a
32-day test data set for the Back and IpSweep attack, and a 48-day test data
set for the Neptune, PortSweep, and Smurf attack individually.

We also measured the volume of normal traffic, which is the aggregated
traffic volume of all packets from/to the computer center, and anomaly traf-
fic in both datasets. The minimum, maximum, and average volume of nor-
mal traffic are approximately 496 bit/sec., 394 kbit/sec., and 13 kbit/sec.
respectively. The average volume of Back, Ipsweep, Neptune, PortSweep,
and Smurf are approximately 560 kbit/sec., 11 kbit/sec., 32 kbit/sec., 576
kbit/sec., and 8 Mbit/sec. respectively.

There are two main reasons that we separated the learning data set and
test data set for individual types of anomalies. The first reason is that
we need to control network traffic and examine detection performance for
individual types of anomalies. The other reason is the purpose of performance
evaluation, we do need to exactly identify which network packets related to
normal or anomalous traffic. We will explain the measure for performance
evaluation in Chapter 5.3. If we cannot exactly identify network traffic in
experiments, we cannot evaluate detection performance in the experiments.

Figure 5.1 shows examples of aggregated network traffic for our exper-
iments. The x-axis indicates time between 8:00 and 24:00, and the y-axis
presents the number of packets per time interval δ at 10 seconds. The top
demonstrates a one-day network traffic in the training data, while the bot-
tom shows an instance of Back attack that occurs between 16:18 and 16:44.
At that time, as a results, the number of packets has an abrupt change as
shown in the bottom figure.
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Table 5.1: Characteristics of selected attacks.

Source
No. of
SrcAddr

No. of
DstAddr

No. of
SrcPort

No. of
DstPort

No. of
Packet

Average
Packet Size

(Byte)

Duration
(sec.)

Packets/sec. %Anomaly

Back

Week 2 Fri 1 1 1,013 1 43,724 1,292.31 651 67.16 0.75
Week 3 Wed 1 1 999 1 43,535 1,297.29 1,064 40.92 1.23

IpSweep

Week 3 Wed 1 2,816 1 104 5,657 60.26 132 42.86 0.15
Week 6 Thu 5 1,779 2 105 5,279 67.75 4,575 1.15 5.30

Neptune

Week 5 Thu 2 1 26,547 1,024 205,457 60 3,143 65.37 3.64
Week 6 Thu 2 1 48,932 1,024 460,780 60 6,376 72.27 7.38
Week 7 Fri 2 1 25,749 1,024 205,600 60 3,126 65.77 3.62

PortSweep

Week 5 Tue 1 1 1 1,024 1,040 60 1,024 1.02 1.19
Week 5 Thu 1 1 1 1,015 1,031 60 1,015 1.02 1.17
Week 6 Thu 2 2 2 1,024 1,608 60 1,029 1.56 1.19

Smurf

Week 5 Mon 7,428 1 1 1 1,931,272 1,066 1,868 1,033.87 2.16
Week 5 Thu 7,428 1 1 1 1,932,325 1,066 1,916 1,008.52 2.22
Week 6 Thu 7,428 1 1 1 1,498,073 1,066 1,747 857.51 2.02
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5.2 Data Representation

In this section, we explain how to represent network traffic, which is highly
suitable for our learning model. To reduce computational time of algorithms,
we aggregated packets and represented them as a single data instance on an
interval basis. In this manner, learning algorithms also will be able to learn
and detect anomalies; although, there is no packet at all in the network.
We represented aggregated traffic at an interval with a q-dimensional vector
known as a feature vector, where q is the number of features. The feature vec-
tor is a column matrix, a matrix consisting of a single column of q elements.
We represent aggregated traffic at time t as

xt =











xt1

xt2
...
xtq











. (5.1)

Here xt1 is a scalar-valued random variable of first feature, xt2 is a scalar-
valued random variable of second feature, and so on until qth feature. In
our experiments, we aggregated packets and extracted features from network
traffic, and then scale every feature variable to the value between 0 and 1,
we will describe feature extraction and scaling in Chapter 4.1, so that we can
rewrite Eq. 5.1 with

xt =











xt1

xt2
...
xtq











∈ R
q
[0,1]. (5.2)

However, Eq. 5.2 is a feature vector for a particular interval, and we mainly
used this x representation for all experiments in Chapter 6.

In programming, however, we use following representation because it is
more effective representation than Eq.5.2. Along a whole day, we can break
time into n intervals by setting size of interval δ. In our experiments, we
varied the size of interval δ from 1 second to 60 seconds, so the number
n of intervals in a single day are varied from 86,400 to 1,440 respectively.
Therefore, we can generalize Eq. 5.2 for one-day long as

x =











xt(1,1) xt(1,2) · · · xt(1,n)

xt(2,1) xt(2,2) · · · xt(2,n)

...
...

. . .
...

xt(q,1) xt(q,2) · · · xt(q,n)











∈ R
q×n
[0,1], (5.3)
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where q is the number of features and n is the number of intervals in one day.
The Eq. 5.3 is for one day network traffic; however, we actually use a three-
dimentional matrix to represent multiple day network traffic, but we did not
show the equation here. We applied Eq.5.3 into each decision function or
classify function in Eq.4.10, 4.12, and 4.15 as explained in Chapter 4.

5.3 Performance Evaluation

Before giving an explanation of the measure used in our study, we provide
background and basic concepts of performance evaluation for a binary clas-
sifier problem. Because of anomaly detection in our context defined as a
binary classification, there are a number of metrics to take a measurement
of this problem.

Table 5.2: Confusion matrix for anomaly detection.

Detected Class
Actual Class

Anomaly Normal

Anomaly True Positive (TP) False Positive (FP)
Normal False Negative (FN) True Negative (TN)

Let us consider a two-type classification problem, in which the outcomes
are labeled either as anomaly or normal. There are four possible results from
a binary classifier.

1. If the result from a classification is anomaly and the actual value is also
anomaly, then it is called a true positive (TP).

2. If the result from a classification is anomaly but the actual value is
normal, then it is called a false positive (FP).

3. If the result from a classification is normal and the actual value is also
normal, then it is called a true negative (TN).

4. If the result from a classification is normal but the actual value is
anomaly, then it is called a false negative (FN).

These four possible results can be formulated in a 2 × 2 contingency table
called confusion matrix as listed in Table 5.2. Moreover, almost all measures
for binary classification problems have been derived from these four values.

In our study, we define anomaly detection as a binary classification prob-
lem, so there are several measurements for such the problem [109]. The
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following list shows measures for evaluating the detection performance for
all our experiments.

• Precision-Recall

• F-score

We provide definition of these measures, then we show advantages and dis-
advantages of each measures.

Precision-recall (PR) is a measure that gives more information than the
ROC curve, particularly in unbalanced data. The precision is the fraction
of retrieved instances that are relevant, while the recall is the fraction of
relevant instances that are retrieved. For classification tasks, the precision
and recall are defined as:

precision =
TP

TP + FP
, (5.4)

recall =
TP

TP + FN
. (5.5)

The recall in this context is referred to as the true positive rate or sensitivity,
and precision is also referred to as positive predictive value. From anomaly
detection point of view, the precision is the percentage of detected intervals
that are actually anomalies, and the recall is the percentage of the actual
anomalous intervals that are detected. Although, an article of Jesse Davis
[110] shows that PR curves give more details than ROC curves, in our ex-
periments, we do require an average between both precision and recall as
a single measure to indicate classification performance. For this reason, we
ignore the PR curves in our experiments.

F-score or F-measure [111] is defined as a harmonic mean of precision and
recall:

F-score = 2× precision× recall

precision+ recall
. (5.6)

The F-score is in the range of 0 to 1, where 0 represents the worst clas-
sification rate, and 1 represents a perfect classification rate. The F-score
is often used in many fields, including information retrieval for measuring
search, document classification, query classification performance, and ma-
chine learning. Many earlier studies related to binary classification used the
F-score as a single measure to evaluate their work. However, the F-score do
not take the true negative rate into account, and it may be not preferable to
assess the performance of a binary classifier
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We evaluated detection performance of the proposed system and learning
algorithms by using the F-score as a single measure. It returns a value
between 0 and 1, where an F-score of 1 represents a perfect detection and 0
represents a worst detection or 100% miss. In our experiments, an acceptable
F-score is 0.5 because this value derived from the precision and recall. It takes
account of both false positive (FP) and false negative (FN) values. Therefore,
half range of F-score 0.5 or higher values indicate that the proposed system
accomplish in task of anomaly detection.
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Chapter 6

Evaluation

In this chapter, we represent the main purpose of individual experiments,
and show results from each of the experiments on the multi-timeline rep-

resentation. Note that, real-time anomaly detection in network traffic is
quite different from those utilized batch processing, offline techniques, or
processing at the end of the day. Therefore, we focus on many key aspects
of the multi-timeline representation rather than detection performance only;
these key aspects include beneficial effects of features and parameters usage,
learning curves, and time consumption. Consequently, we designed a series
of experiments in order to examine that the multi-timeline representation
contains flexible capabilities, and has a high probability of detecting various
anomalies in network traffic in real time.

In this study, we grouped our examination into nine experiments as fol-
lows:

• Experiment 1: comparison of different interval values

• Experiment 2: comparison of detection performance between individual
features and all features combination

• Experiment 3: detection performance of realtime and combination rep-
resentation

• Experiment 4: no packet situations

• Experiment 5: learning curves

• Experiment 6: time consumption

• Experiment 7: different volume of background traffic

• Experiment 8: time of anomaly occurrence
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• Experiment 9: weighting for old data

In some experiment, parameter setting yields subsequent results from a prior
experiment. We explain objectives, procedures, and show examination re-
sults of each experiment in the following sections.

6.1 Experiment 1: Comparison of Different

Interval Values

In our study, we break a single timeline of one day long into a series of inter-
vals. The interval value or bin size is one of the indispensable parameters,
which is an important factors affecting detection performance and time con-
sumption of the multi-timeline representation. On the one hand, if we set
the interval value with a long time, the number of intervals for one day is
small and rarely use computational resources; however, it is quite difficult
to identify which packets related to anomalies because single interval could
contains a large number of packets. On the other hand, if we set the in-
terval value with a short time, the number of intervals for one day is huge
and frequently use computational resources; however, it is easier to identify
which packets related to anomalies because single interval contains a smaller
number of packets.

The interval value also produces a significant effect on real-time detec-
tion or notification time after anomalies have been discovered. For example,
assume that we set the interval value at five minutes. It means that we need
to aggregate packet across five minutes and then perform a task of anomaly
detection, so the notification time when anomalies occurred takes approxi-
mately five minutes plus processing time of detection. However, if we set
the interval value at a short time, the system could notify network operators
faster than a long interval value. For these reasons, the interval value or bin
size is one of the crucial factors not only for the multi-timeline representation,
but for real-time detection as well.

The purpose of this first experiment is to identify the feasible and suitable
interval value, which will be later applied into the rest of our experiments.
In this experiment, we varied interval values δ = 1, 2, 4, 6, 8, 10, 20, 30, 40,
50, 60 seconds, and fixed the number of training days β = 39 days. We also
used decision function for multi-timeline representation

g(xp
t |x1

t ,x
2
t , ...,x

p−1
t ), (6.1)

where p is varied upon the number of training days β. We firstly performed
the experiment by employing individual features on individual algorithms,
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Figure 6.1: Detection performances of MND on different interval values by
using individual features.

and then computed the F-score (Eq.5.6) for each single type of attacks. The
results of this experiment are showed in Figure 6.1-6.3 by using MND, KNN,
and OSVM respectively. Figure 6.4 provides the average detection perfor-
mance with F-score as a summary for each algorithm over each type of attack.
Note that we list the characteristics of selected attacks in Table 5.1, including
the duration of target anomalies.

In the figures, the y-axis shows the F-score or detection performance,
which has values between 0 and 1, the higher values of F-score indicate better
detection performance than the lower values. The x-axis represents various
interval values from 1 to 60 seconds. From top to bottom, each row depicts
detection performance on different types of attacks, namely Back, IpSweep,
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Neptune, PortSweep, and Smurf as explained in Chapter 5.1. Different lines
in the graph show detection performance by using different nine features as
listed in Table 4.2.
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Figure 6.2: Detection performances of KNN on different interval values by
using individual features.

The examination results by using MND on different interval values are
shown in Figure 6.1. For Back attacks, the most effective feature is f2 but
detection performance declined when interval values increased; however, the
next effective feature f1 and the other features are steady along different
internal values. For IpSweep attacks, performances of all features except
f7 are increased from 1 to 10 seconds, then slightly increased and remained
steady from 10 to 60 seconds. For Neptune attacks, performances of f1−3,
f6−7, and f9 slightly increased close to F-score 0.75, and performances of
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f4−5, and f8 are nearby F-score 0.1. For PortSweep attacks, performance
of f7 marked increased from 1 to 20 seconds, then remained steady until 60
seconds. For Smurf attacks, performances of f1−4 and f8 noticeably decreased
from 1 to 10 seconds, then slightly decreased until 60 seconds.
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Figure 6.3: Detection performances of SVM algorithm on different interval
values by using individual features.

We presented examination results by using KNN on different interval val-
ues in Figure 6.2. For Back attacks, best two effective features are f2 and
f1 respectively; however, these slightly increased from 1 to 20 seconds and
slightly decreased from 50 to 60 seconds. For IpSweep attacks, performances
of all features except f7 markedly increased from 1 to 10 seconds, then re-
mained steady until 60 seconds. For Neptune attacks, performances of f1−3,
f6−7, and f9 grow from 1 to 10 seconds, and all seem higher than those by
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using MND. For PortSweep attacks, performance of f7 steady increased when
interval values were increased, while performances of other features were low
and seem unchanged. For Smurf attacks, only performance of f3 and f8
slightly decrease from 1 to 10 seconds, f1−2 and f4 remained at F-score 1, so
as f5−7 and f9 remained at F-score 0.1.
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Figure 6.4: Average detection performances with different interval values
using the MND, KNN, and OSVM.

The examination results in Figure 6.3 are from OSVM on different interval
values. For Back attacks, only performance of f1 gradually increased along
interval values, while others have little changes. For IpSweep attacks, per-
formances of all features markedly increased from 1 to 10 seconds, and then
remained steady until 60 seconds. For Neptune attacks, only performance
of f7 slowly decreased from 1 to 20 seconds, and then seem unchanged until
60 seconds, while others slightly increased from 1 to 20 seconds or have a
little change along interval values. For PortSweep attacks, performances of
all feature increased from 1 to 10 seconds, and then little changed from 10 to
60 seconds. For Smurf attacks, performances of all features decreased from
1 to 10 or 20 seconds, and then remained steady to 60 seconds.
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In Figure 6.4, the y-axis shows the F-score or detection performance,
the x-axis represents interval values from 1 to 60 seconds. Three rows from
the top depict detection performances by using MND, KNN, and OSVM
respectively, different lines show performances on different types of attacks.
The last row in this figure shows average performances of all three algorithms.

From top three rows, we can group detection performance lines along
interval value into three group: first, performance lines increased from 1 to
10 seconds and remained steady to 60 seconds; second, performance lines
decreased from 1 to 10 seconds and remained steady to 60 seconds; third,
performance lines seem steady along all interval values. The last rows depict
comparison of performance lines from three learning algorithms. It shows
that all performance lines increased from 1 to 10 second and then have a
little change between 10 and 60 seconds. Best detection performance lines
are from KNN, MND, and OSVM respectively. The results in this experiment
demonstrate that the feasible interval value for our data set is 10 seconds, so
we decided to perform the rest of our experiments with interval value at 10
seconds.

6.2 Experiment 2: Comparison of Detection

Performance between Individual Features

and All Features Combination

Feature selection play a crucial role in anomaly detection not only for the
purposed representation, but also for all other representation in anomaly de-
tection and any other domains. In theory, an efficient feature for a particular
type of anomaly may not be an efficient feature for another type of anomaly.
In machine learning perspective, we can also combine two or more features
up to an unlimited number of features to precisely detect or to cover a wider
range of anomaly. However, the number of features eventually have an ef-
fect on time consumption over both learning and detecting process. A large
number of combined features takes more computational resources and time
than a small number of combined features.

Nearly in the all experiments, we extract nine features on interval basis as
explained in Chapter 4.1. The number of combinations of these nine features
can be 511 possibilities; therefore, we decided to perform experiments with
individual features and a combination of all nine features instead. From
this manner, we can obtain the results which one is an effective feature for
a particular type of anomalies, and then we later selected these effective
features for next experiments.
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In this experiment, we use different feature vectors for a single and com-
bined feature. For single feature, we represent a feature vector as

xt =
[

xtf

]

∈ R
f
[0,1], (6.2)

where f is a feature, such as f = 1 indicates f1 or packet feature and so on.
For combined all feature, we represent a feature vector as

xt =











xt1

xt2
...
xt9











∈ R
9
[0,1], (6.3)

that combine all 9 features, from f1 to f9.
The purpose of Experiment 2 is to investigate highly effective features for

each individual type of attack. In this experiment, we fixed interval values
δ = 10 seconds and the number of training days β = 39 days. We also used
decision function for multi-timeline representation

g(xp
t |x1

t ,x
2
t , ...,x

p−1
t ), (6.4)

where p is varied upon the number of training days β. First, we sequentially
employed individual features, from f1 to f9, with a learning algorithm to
detect each type of selected attack. Next, we used the combination of all
nine features, and performed the same experimental process as individual
features. We then compared detection performance of individual features
and the combination of all nine features with the precision (Eq.5.4), recall
(Eq.5.5), and F-score value (Eq.5.6). The results of this comparison are
shown in Figure 6.5-6.7 in order of algorithms, MND, KNN, and OSVM
respectively. Finally, we compared F-scores of all three algorithms on each
type of attack, the results are shown in Figure 6.8.

In Figures 6.5-6.7, the y-axis shows precision, recall, and F-score, each has
a value between 0 and 1, where 0 indicates the worst detection performance
and 1 indicates the best detection performance. The x-axis represents indi-
vidual features from f1 to f9, as listed in Table 4.2, and a combination of all
features, fall. In these figures from top to bottom, each row illustrates perfor-
mances on different types of attacks: Back, IpSweep, Neptune, PortSweep,
and Smurf respectively as explained in Chapter 5.1. Different vertical bars
in the graph represent precision (P), recall (R), and F-score (F) values.

Detection performances of MND using different features are shown in
Figure 6.5. For Back attacks, effective features are f2 and f1 respectively,
but the F-score of fall is relatively low, although the recall value of fall is quite
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high. For IpSweep attacks, detection performances of individual features are
quite low, while performance of fall are relatively high. For Neptune attacks,
f1−3, f6−7, and f9 gain high detection performance, but the F-score of fall
is relatively low, although the recall value of fall reached the highest point.
For PortSweep attacks, only f7 is a feasible feature, while fall is not better
than f7, although the recall value of fall is better than those of f7. For Smurf
attacks, f1−4 and f8 are highly effective features, while the F-score of fall is
relatively low, although the recall value of fall is high.

The results of KNN using different features are shown in Figure 6.6.
For Back attacks, f2 and f1 are the same effective features as using MND;
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Figure 6.5: Precision (P), Recall (R), and F-score (F) of MND using different
features.
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however, the F-score of fall is much more higher than the F-score result by
using MND. For IpSweep attacks, although recall values of all individual
features, excepting f7, seem very high, F-score of all individual features are
obviously low. For Neptune attacks, detection performances of f1−3, f6−7,
and f9 are very high, but the F-score of fall slightly decrease from those by
using individual features. For PortSweep attacks, the detection performance
of f7 is a little better than those of all other features. For Smurf attacks,
detection performances of f1−4, f8, and fall are very high, it is not the same
result of MND that detection performance of fall is quite low.

The results shown in Figure 6.7 are from OSVM using different features.
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Figure 6.6: Precision (P), Recall (R), and F-score (F) of KNN using different
features.
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Obviously, recall values of OSVM seem pretty for all types of attacks, but
F-scores are quite low by using both individual features and the combination
of all features. For Back attacks, detection performances of f2 and fall are
slightly higher than those of other features. For IpSweep attacks, there is
no difference in detection performance among all individual features and the
combination of all features. For Neptune attacks, effective features are f1−3,
f6−7, f9, and fall, it is similar to MND and KNN. For PortSweep attacks,
detection performance using f7 is a little bit higher than using other features.
For Smurf attacks, F-scores of f1−4, f8, and fall are a little higher than those
using f5−7 and f9.
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Figure 6.7: Precision (P), Recall (R), and F-score (F) of OSVM using differ-
ent features.
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Figure 6.8 provides the same details as those in Figures 6.5-6.7; however,
we show only F-scores of all three algorithms for comparison. For Back
attacks, the effective features are f1, f2, and fall for all three algorithm, but
KNN is the best algorithm, especially by using fall. For IpSweep attacks, F-
scores of MND are the lowest by using individual features, but is the highest
by using fall. For Neptune attacks, detection performances of MND and KNN
quite higher than those of SVM, especially by using individual features. For
PortSweep attacks, f7 is the only effective feature for all algorithms, but the
performance fairly dropped by using fall. For Smurf attacks, f1−4, f8, and
fall are notable features, F-scores of KNN are the highest values of all three
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Figure 6.8: F-score comparison between MND, KNN, and OSVM with multi-
timeline representation.
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algorithms.

6.3 Experiment 3: Detection Performance of

Realtime and Combination Representa-

tion

To compare detection performance of multi-timeline representation with an-
other conventional representation, we also conducted additional experiments
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Figure 6.9: F-score comparison between MND, KNN, and OSVM with real-
time representation.
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by using the real-time representation as explained in Chapter 2.4.3. Note that
we cannot compare multi-timeline representation to the manual-based repre-
sentation and batch representation because of their limitations; the manual-
based representation cannot detect anomalies which are not contained in
database or discriminant function and batch representation cannot be ap-
plied in real time, for example. In this experiment, we fixed interval values δ
= 10 seconds and the number of training days β = 39 days as multi-timeline
representation. At present timeline p, we used decision function for real-time
or single timeline representation

g(xp
t |x1

1, ...,x
1
8640, ...,x

p−1
1 , ...,xp−1

8640,x
p
1,x

p
2, ...,x

p
t−1). (6.5)

The function detects a test data at time t for the present timeline p, x1
1 and

x1
8640 indicate feature vectors of first and last interval for training day 1, and

so far. In this case, we set the interval value δ = 10, so the number of feature
vector for one day is 8,640. The number of input in this function varied
upon the number of interval and training days β. Detection results of real-
time representation are shown in Figure 6.9, we show F-scores of real-time
representation with same details as those in Figure 6.8. For Back attacks,
the KNN outperformed other algorithms, especially by using f1, f2, and fall;
however, detection performances of all three algorithms are worse than those
by using the multi-timeline representation. For IpSweep attacks, F-scores of
all three algorithms by using the real-time representation are very similar to
F-scores of our representation as shown in Figure 6.8. For Neptune attacks,
the KNN gain higher detection rates than other algorithm, but quite lower
detection rates than the multi-timeline representation. For PortSweep at-
tacks, detection performances of all algorithms seem a little lower than those
by using multi-timeline representation as shown in Figure 6.8. For Smurf
attacks, effective features by using real-time representation and the multi-
timeline representation are the same, but F-score of real-time representation
are much lower than those of the multi-timeline representation.

We are also interested in combining single and multi-timeline represen-
tation. To this end, we conducted an additional experiment to measure
detection performance of combination scheme. In this experiment, we fixed
interval values δ = 10 seconds and the number of training days β = 39 days as
multi-timeline representation. We also use the present timeline p as a train-
ing day for single timeline representation. Therefore, the decision function
for this experiment is

g(xp
t |xp

1,x
p
2, ...,x

p
t−1,x

1
t ,x

2
t , ...,x

p−1
t ). (6.6)

The function detects a test data at time t for the present timeline p, from
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xp
1 to xp

t−1 indicate feature vectors from single timeline representation, and

from x1
t to xp−1

t indicate feature vectors from multi-timeline representation.
First, we sequentially employed individual features, from f1 to f9, with a

learning algorithm to detect each type of selected attack. Second, we used
the combination of all nine features, and performed the same experimental
process as individual features. Finally, we compared F-scores of all three
algorithms on each type of attack, the results are shown in Table 6.1.

We found that detection performances of the combination scheme are
lower than those of multi-timeline representation; ; 1.08-2.11% for 10 min-
utes training data (t = 60), 4.97-6.34% for 1 hour training data (t = 360),
and 9.82-18.31% for 1 day training data (t = 8640) for the single representa-
tion. From this experiment, we conclude that the detection performance of
the combination scheme largely decreases for more input data in the single
timeline. Thus, the multi-timeline representation outperforms both single
and combination representation.

Table 6.1: Performance degradation of real-time and combination from those
of multi-timeline representation.

t Real-time Combination

60 5.24-7.13% 1.08-2.11%
360 6.93-10.47% 4.97-6.34%
8640 15.71-23.53% 9.82-18.31%

6.4 Experiment 4: No Packet Situations

One of our main ideas for anomaly detection is that the system can detect
anomalies caused by both attacks or unusual incidents. In terms of anomaly
detection, the meaning covers far beyond intrusion detection, which is focus
on attacks from outsiders only. Moreover, anomaly detection systems should
have an essential characteristic which is difficult to be compromised or influ-
enced by the outside world. Even if attackers deeply know about techniques
or methods of detection system, it should be hardly possible for them to im-
itate normal traffic or evade the detection system. These characteristics are
crucial points for not only batch processing but also for real-time processing.

In this third experiment, we examine learning algorithms with the multi-
timeline representation to detect an anomaly caused by unusual incidents,
and to test robustness of the multi-timeline representation. Therefore, we
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separately conducted two sub-experiments for different purposes. The pur-
pose of the first sub-experiment is to investigate performance of three learn-
ing algorithms with the multi-timeline representation in detecting an unusual
incident, which is no packets at all for the whole day. The purpose of the
second sub-experiment is to examine robustness of the multi-timeline repre-
sentation with incorrect data in the learning process. To perform these two
sub-experiments, we simulated and applied no packet traffic to different data.
We simulated no packet traffic in test data for the first sub-experiment, and
combined original training data with no packet traffic for the second sub-
experiment.

6.4.1 No Packet Incident in Test Data

For the first sub-experiment, we assumed that an outage happens in the net-
work system; as a result, there is no traffic packet for one day long. At the
beginning, we let algorithms learn from all training data as we performed in
the previous two experiments, by using each individual feature and the com-
bination of all features. We then attempted to detect this unusual incident
(no traffic packet in test data) by using the same feature as performed in
the learning process. In this experiments, we fixed the interval value δ = 10
seconds and the number of training days β = 39 days. We also used decision
function for multi-timeline representation

g(xp
t |x1

t ,x
2
t , ...,x

p−1
t ), (6.7)

where p is varied upon the number of training days β. Here xp
t is a zero

vector, for no packet incident in test data experiment. Experiment results in
this first sub-experiment are shown in Figure 6.10. First three rows from the
top in Figure 6.10 show detection performances of MND, KNN, and OSVM
respectively. The last row in this figure provides F-score comparison of all
three learning algorithms over the no packet incident in test data.

For first three rows from the top in Figure 6.10, the y-axis shows precision
(Eq.5.4), recall (Eq.5.5), and F-score (Eq.5.6), these three indicators have a
value between 0 and 1, where 0 denotes the worst detection performance and
1 denotes the best detection performance. The x-axis represents individual
features from f1 to f9, as listed in Table 4.2, and fall the combination of all
features. For the last row in Figure 6.10, the y-axis shows only F-score values
in the same range between 0 and 1. The x-axis still represents f1 to f9, and
fall.

Each row in Figure 6.10 represents the following results. The first row
fromMND shows that precision scores are high for all features, but F-scores of
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Figure 6.10: Detection performance of multi-timeline representation for one-
day no packet incident as test data using the MND, KNN, and OSVM.

f7 and fall are relatively low. The second row from KNN shows that precision,
recall, and F-score are nearly the same score for all features. The third
row from OSVM shows that all precision, recall, and F-score are completely
perfect for the no traffic packet in test data. Comparison in the last row shows
that the efficient algorithms are OSVM, KNN, and MND respectively for all
features, individual features and the combination of all features; however,
the F-score of MND with the combination of all features (fall) is the worst
of all features and algorithms.

To compare results between using multi-timeline representation and real-
time representation, we also performed the same experiments with real-time
representation as early explained in Chapter 2.4.3. We show detection per-
formance of real-time representation in Figure 6.11 with the same details as
the multi-timeline representation shown in Figure 6.10. Each row in Figure
6.11 represents the following results. The first row from MND shows that
precision scores are as high as those of the multi-timeline representation, but
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Figure 6.11: Detection performance on real-time representation for one-day
no packet incident as test data using the MND, KNN, and OSVM.

only F-score of f7 is relatively low. The second row from KNN shows that
precision, recall, and F-score are nearly the same score for all features, but
recall and F-score are quite lower than those of the multi-timeline represen-
tation. The third row from OSVM shows that precision, recall, and F-score
are nearly perfect and very similar to results in Figure 6.10. We compared
F-scores of MND, KNN, and OSVM for all features as shown in the last row.
In this experiment, a highly effective algorithm is OSVM for both real-time
representation and multi-timeline representation.

6.4.2 No Packet Incident in Training Data

For the second sub-experiment, we assumed that a network administrator
accidentally combined the no packet incident into the original training data.
Therefore, we can test and examine robustness of the multi-timeline repre-
sentation in case of external influencing, including incorrect training data
and any manipulation from attackers. At the beginning, we added the no
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packet incident for one day long into the original training data, and then we
try to detect each type of attack with the same procedure in experiment 2,
as explained in Chapter 6.2. After that we compared the results between
using train data with no packet incident and the original train data without
no packet incident as experiment 2. We then expanded the number of no
packet incident from one day to three and five day long respectively into the
original training data. In this experiments, we fixed interval values δ = 10
seconds and the number of training days β = 39 days. We also used decision
function for multi-timeline representation

g(xp
t |x1

t ,x
2
t , ...,x

p−1
t , 0, ..., 0), (6.8)

where p is varied upon the number of training days β. Here the number
of zero vector 0 at the end depend on the number of days of no packet
incident. Finally, we computed relative percentage differences between using
original training data with no packet incident and without no packet incident.
We also compared these percentage differences between the multi-timeline
representation and real-time representation as early explained in Chapter
2.4.3. All comparative results in this experiment are listed in Table 6.2-6.4.

Experiment results from MND, KNN, and OSVM are shown in Table 6.2-
6.4 sequentially. For all three tables, the first column list types of attacks,
and the next three columns represent percentage difference of the multi-
timeline representation with no packet incident in training data for one day,
three days, and five days long respectively. The next three columns represent
percentage difference of the real-time representation with no packet incident
in training data as well. The positive sign (+) of percentage indicated an
increase, and negative sign (−) indicated a decrease of detection performance
compared with original results from the experiment 2.

Table 6.2: Percentage difference in detection performance of MND between
the multi-timeline and real-time representation.

Attack
Multi-timeline Real-time

1 day 3 days 5 days 1 day 3 days 5 days

Back -0.10% -0.54% -0.61% -0.10% +0.07% +0.74%
IpSweep -2.90% -5.47% -5.83% -0.94% -1.67% -1.83%
Neptune +0.60% -0.50% -1.16% +0.49% +1.20% +1.92%
PortSweep -1.07% -2.37% -2.60% -0.36% -0.75% -0.87%
Smurf +0.40% +0.38% +0.33% +0.85% +1.82% +2.18%

Table 6.2, for the multi-timeline representation, shows that detection per-
formance of MND declines when the number of no packet incident increase.
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The downward trends in detection performances for all types of attacks are
the same. Percentage differences for Back, IpSweep, PortSweep attacks are
all negative, but performance for Neptune attacks is positive with no packet
incident for one day long only. For Smurf attacks, there are all positive per-
centage but performance fall down when the number of no packet incident
increased. For the real-time representation, this table shows detection per-
formance is a small increase for Back, Neptune, and Smurf attack, but is a
slight decrease for IpSweep and PortSweep. These results indicate that both
the multi-timeline representation and real-time representation with MND are
fairly robust from no packet incident in training data.

Table 6.3: Percentage difference in detection performance of KNN between
the multi-timeline and real-time representation.

Attack
Multi-timeline Real-time

1 day 3 days 5 days 1 day 3 days 5 days

Back +0.15% +0.41% +0.41% +0.16% +0.45% +0.45%
IpSweep -0.01% +0.01% +0.01% +0.01% +0.04% +0.04%
Neptune +0.40% +0.86% +0.86% +0.22% +0.55% +0.55%
PortSweep +0.06% +0.20% +0.20% +0.02% +0.04% +0.04%
Smurf +0.01% +0.04% +0.04% +0.38% +0.86% +0.86%

Table 6.3 shows that detection performances by using KNN between the
multi-timeline representation and real-time representation are very similar.
The detection performances of both representations has slightly improved
when the number of no packet incident have been increased for all types of
attacks. Detection performances with one day long of no packet incident
are different from three day and five day long for all types of attacks. It
seems that detection performances of KNN converge to a constant value for
all type of attacks, although the number of no packet is rising. However, all
percentages differences are a tiny change, less than 1 percent for both repre-
sentations. This table indicates that both the multi-timeline representation
and real-time representation with KNN are quite robust from no packet in-
cident in training data.

Table 6.4 indicates that detection performances by using OSVM have
many various trends when we added different numbers of no packet incident
into the original training data. The table also shows that performances for
Back, Neptune, and Smurf attacks increase when the number of no packet
incident have been increased. While detection performance for IpSweep and
PortSweep attacks randomly fluctuate. These happen similarly for both the
multi-timeline and real-time representation.
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Table 6.4: Percentage difference in detection performance of OSVM between
the multi-timeline and real-time representation.

Attack
Multi-timeline Real-time

1 day 3 days 5 days 1 day 3 days 5 days

Back -0.36% +1.33% +1.73% +0.28% +0.34% +0.34%
IpSweep -1.12% -3.14% -0.32% +0.01% +0.15% +0.03%
Neptune -1.05% +6.93% +7.59% +0.73% +0.92% +1.39%
PortSweep -0.80% -0.82% -0.42% -0.02% +0.00% -0.02%
Smurf -1.78% +4.25% +6.86% +1.17% +1.80% +2.23%

In conclusion for this section, we found two interesting points from these
experimental results. The first point is that F-scores of OSVM for no packet
incident in test data from the first sub-experiment are much higher than
those for selected attacks as shown in Chapter 6.2. The main reason is that
the OSVM is highly sensitive to noise, so nearly all of the predictions from
OSVM are anomalies. Therefore, the OSVM produces high detection perfor-
mance when a large portion of data is anomaly as shown in Figure 6.10 for
the multi-timeline representation, and in Figure 6.11 for the real-time repre-
sentation. These two figures also show that the multi-timeline representation
by using MND and KNN outperform the real-time representation. The sec-
ond point is that one of the intrinsic features of KNN is noise tolerance. For
this reason, incorrect training data produce a relatively small effect on de-
tection performance of KNN as shown in Table 6.3. While the MND has a
negative effect as shown in Table 6.2 and the OSVM have a random effect
from incorrect training data as shown in Table 6.4.

6.5 Experiment 5: Learning Curves

A learning curve is one of the graphical tools that show development of detec-
tion performance. A learning curve conventionally depicts improvement in
performance on the vertical axis when there is alternation in another parame-
ter on the horizontal axis, such as the number of training data or the number
of iteration. One question in our concerns about the multi-timeline represen-
tation is that how many train data are fairly enough for learning algorithms
to detect anomalies. Although the real-time anomaly detection does not re-
quire simultaneous learning with detecting, time period of learning process
plays a crucial factor in multi-timeline representation. From machine learn-
ing perspective, it is absolutely true that the more training data acquired,

83



the more detection performance. Therefore, we conducted this experiment
to reveal learning curves of designated algorithms with multi-timeline repre-
sentation.

The main objective of this experiment is to investigate how quickly all
three algorithms learn from different size of training data to detect each type
of selected attack. In this experiment, we fixed interval values δ = 10 seconds
and varied the number of training days β = 3, 9, 12,..., 39 days. We also
used decision function for multi-timeline representation

g(xp
t |x1

t ,x
2
t , ...,x

p−1
t ), (6.9)

where p is varied upon the number of training days β. First, we picked the
best features of each learning algorithm for a particular type of attack, which
gained the highest F-score (Eq5.6) from the experiment 2. Next, rather than
learn from all 39-day training data, we let algorithms learn from a small
amount number of training data, then added training data up until cover the
whole training data. We started at training data for 3-day long and ended
with training data for 39-day long, increasing the number of training data
by 3 for each iteration. After that we let each learning algorithm detect
specific type of attack with the same test data as those conducted in the
experiment 2. We then plot learning curves of individual algorithms for a
particular type of attack. Finally, we computed the average performance for
each learning algorithm in order to compare overall learning curves of these
three algorithms as shown in Figure 6.12.

In Figure 6.12, the y-axis shows the F-score or detection performance;
of which 0 indicates the worst performance and 1 indicates the best per-
formance. The x-axis indicates the number of training data over learning
process, start from 3-day and end with all 39-day long of the training data.
From top to bottom, the first three rows show learning curves of MND, KNN,
and OSVM respectively. Different lines in the first three rows show learning
curves on Back, IpSweep, Neptune, PortSweep, and Smurf respectively. The
last row shows average learning curves of all three algorithms.

Results of this experiment show the following points. In the first row
using MND, detection performances for Back, Neptune, and Smurf increase
between 3-day and 9-day long of training data, and then have a small change,
while detection performances for IpSweep and PortSweep seem to be a con-
stant value along different size of training data. In the second row using
KNN, only the detection performance for Neptune have a rapid increase
from 3-day to 6-day long of training data, but one for other types of anoma-
lies have a bit change along different size of training data. In the third row
using OSVM, detection performances for all types of anomalies have some
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Figure 6.12: Learning curves of MND, KNN, and OSVM with different
amounts of training data.

fluctuation from 24-day long of training data along; however, detection per-
formances begin to improve after 30-day long of training data. The bottom
row shows comparison between the three algorithms. The results indicate
that detection performances of MND and KNN have a significant increase
from 3-day to 9-day long then remain stable through 39-day long of training
data. While the performance of OSVM increases after learning from 30-day
long of training data.

6.6 Experiment 6: Time Consumption

Time consumption of learning algorithms working with the multi-timeline
representation is one of the main issues of our investigation. For real-time
anomaly detection, the detecting process requires a very short period of time
to perform a function rather than the learning process. The definition of
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real-time detection in our context is that the system can detect and notify
an occurrence of anomaly to network administrators in a few seconds or
less than a minute. This means that the system has to perform tasks of
detecting process less than a minute, while the learning process has no such
restriction on computational time. Since we split the timeline for a single day
into a series of intervals, the longest period in the detecting process between
an occurrence of anomaly and notification is equal to the interval value plus
processing time. The learning process, however, may take more than a minute
or a longer time, because we could perform the learning process in advance.

The main purpose of this experiment is to measure time consumption
of the three algorithms working with the multi-timeline representation for
both learning and detecting process. In addition, we also can compare time
consumption between all these algorithms. In this experiment, we measured
time regardless the F-score or detection performance, so we can vary the
number of training data and the number of features while we fixed the number
of test data to one day long. We measured the time consumption during
learning and detecting process with the following steps. First, we started
with five features and five days of training data, we then measured time in
both learning and detecting process. Next, we varied the number of features
and the number of training data from 5 to 100, increasing the number by 5
for each iteration, in the meanwhile we measured time consumption for the
both process as well. To do so, we simulate data by repeating and appending
original data, features to themselves.

In this experiment, we fixed interval values δ = 1, 10, 20, 30, 40, 50, 60
seconds and varied the number of training days β = 5, 10, 15,..., 100 days.
We also used decision function for multi-timeline representation

g(xp
t |x1

t ,x
2
t , ...,x

p−1
t ), (6.10)

where p is varied upon the number of training days β. We used these con-
figuration for preprocessing, learning, and detecting processes.

6.6.1 Preprocessing

One of the key factors for real-time anomaly detection is time consumption,
especially during preprocessing steps. Therefore, we conducted this experi-
ment to measure time consumption of these steps. However, we performed
this experiment without concern over detection performance or F-score. In
this experiment, we varied three significant parameters which have a major
effect on time consumption, namely the number of training data, the number
of features, and the interval value. We altered the number of training data
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Figure 6.13: Time consumption per time interval in preprocessing processes.

and the number of features between 1 to 9, and the interval value from 1 to
60 seconds, with one day of test data during the test process.

Firstly, we measured the average time consumption of preprocessing steps
for real training and test dataset in this experiments. Figure 6.13 shows time
consumption per interval with 9 features over preprocessing steps for varying
size of interval values in training data and test data between original (1x) and
1,000 times of background traffic (1000x). For the one-second interval and
combined all nine features with original background traffic (1x), the average
time consumption of preprocessing steps for training data is 2.32 millisec-
onds, while those for test data is 2.28 milliseconds per interval. For 1,000
times of background traffic (1000x), time consumption for training data is
3.13 seconds, while those for test data is 2.96 seconds per interval. These
times consumption are measured from the end of each interval, therefore each
interval spent 1.00232 and 1.00228 seconds for training and test data respec-
tively. The minimum, maximum, and average packet of the experimental
traffic are 1 packet/sec., 750 packets/sec., and 26.191 packets/sec. succes-
sively. Interval time consumption of preprocessing for training and test data
seems very close, but the number of training data is more larger than those
of test data. Eventually, preprocessing steps for training spend time depened

87



on the number of training days as well.

6.6.2 Learning Process
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Figure 6.14: Time consumption of MND in learning process for varying size
of training data and features.

We show time consumption result of MND over learning process in Figure
6.14. With five days of training data and five features, the MND took 4.88
seconds. When we varied the number of training data to one hundred days
with fixed five features, the algorithm learned from all training data took 5.22
seconds. On the other hand, at five days of training data with one hundred
features, the algorithm took 9.21 seconds. When we reached one hundred
of both training data and features, the algorithm learned from training data
took 16.81 seconds.

Interestingly, when we altered the interval value and done the same pro-
cess with various number of training data and features, the graph of time
consumption with different interval values are the same shape but the po-
sition of the graphs shifted up or down from the original at 10 seconds,
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Figure 6.15: Time consumption of KNN in learning process for varying size
of training data and features.

depended upon the interval value. If the interval value is smaller (1 second
for example), the graph shift up from the original position. It means that
the algorithm spent more time than the interval value as 10 seconds. If the
interval value is larger (20, 30, 40, 50, and 60 seconds for example), the graph
shift down from the original position. It means that the algorithm spent less
time than the interval value as 10 seconds. However, we did not show results
of different interval values here.

We show time consumption result of KNN on learning process in Figure
6.15. Interestingly, whether we varied a number of parameters during learn-
ing process, such as the size of training data, the number of feature, and the
interval value, the KNN did not take computational time to process training
data at all. The result from Figure 6.15 shows a horizontal plane at zero
time consumption, no matter what the size of training data and the number
of features are. Although we altered the interval with different values, the
results are still as the original plane at the zero value, the graph did not shift
up or down, it is different from results of MND and OSVM.
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Figure 6.16: Time consumption of OSVM in learning process for varying size
of training data and features.

We should recall about time measurement in our experiments. We mea-
sured time consumption over the learning process and detecting process
alone, it does not include any other processes, which are before or after
these steps, such as feature extraction process or feature scaling process. We
will discuss the main reasons why the KNN does not take any time during
the learning process in Chapter 7.

We show time consumption result of OSVM over training process in Fig-
ure 6.16. The algorithm took 0.83 seconds at five days of training data with
five features. When we varied the number of training data to one hundred
days but keep the number of feature at five features, the OSVM took 5.53
seconds. While we have the fixed number of training data at five days but
varied the number of feature to one hundred features, the algorithm took
1.14 seconds. The maximum time consumption of OSVM is 12.53 seconds
at one hundred days of training data with one hundred features. Obviously,
time consumption of OSVM over training process depends upon both the
number of training data and the number of features.
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Moreover, for different interval values, the graph as shown in the figure
shift up or shift down depended on interval value. The graph shift up when we
choose smaller interval values, 1 second for example, and the graph shift down
when we choose larger interval values, 60 seconds for example. However, we
did not show shifted graphs for different interval values in Figure 6.16.

6.6.3 Detecting Process
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Figure 6.17: Time consumption of MND in detecting process for varying size
of training data and features.

We show time consumption result of MND over detecting process in Fig-
ure 6.17. At five days of training data and five features, the MND took 1.44
seconds. When we varied the number of training data to one hundred days
with five features, the algorithm detect anomalies in one day test data in 1.43
seconds, result is very close to that of five days of training data. After we
varied the number to one hundred features with five days of training data,
the algorithm took 3.90 seconds. Finally, when we used the maximum num-
ber with one hundred days of training data and one hundred features, the
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Figure 6.18: Time consumption of KNN in detecting process for varying size
of training data and features.

algorithm took 3.63 seconds to detect test data for one day long. Obviously,
no matter we varied the number of training data with the same number of
features, it has a very small effect on the time consumption that the MND
spend to detect one day test data.

In addition, when we altered the interval value, results are the same
fashion as in the training process. The graph shift up when we set smaller
interval values, and the graph shift down when we set larger interval values.
In Figure 6.17, however, we did not show time consumption graphs of various
interval values.

We show time consumption result of KNN during the detecting process
in Figure 6.18. The time consumption over detecting process using the KNN
is a very short period. The maximum time at one hundred days of training
data and one hundred features is only 2.47 seconds, while the minimum time
at five days of training data and five features is about 0.01 seconds. Figure
6.18 shows that the time consumption increases linearly along the number
of training data and the number of features. The time consumption had
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Figure 6.19: Time consumption of OSVM in detecting process for varying
size of training data and features.

abrupt changes when the number of training data and number of features
are greater than 70. Nevertheless, overall of time consumption by using KNN
over detecting process is generally low, the algorithm took 0.12 seconds at
one hundred days of training data with five features, and took 0.10 seconds
at five days of training data with one hundred features.

We can see a clear distinction between the MND and KNN results during
detecting process from Figure 6.17 and Figure 6.18. The MND is independent
of the number of training data over detecting process, while the KNN depends
on the number of training data.

We show time consumption result of OSVM over detecting process in Fig-
ure 6.19. Interestingly, this figure shows that the shape of time consumption
by using OSVM is completely different from other results in this experiment.
Even though the result show a random time consumption along x and y
axis, the time consumption somehow gradually increased when we varied
the number of training day and the number of feature toward larger values.
During detecting process, the OSVM took 0.59 seconds by using five days of
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training data with five features, 0.67 seconds by using five days of training
data with one hundred features, 0.68 seconds by using one hundred days of
training data with five features, and 1.06 seconds by using one hundred days
of training data one hundred features.

In addition, for different interval value, the graph also shifted up or down
from the original position similar to the results by using MND and KNN. The
graph shifted up by using smaller interval value; on the contrary it shifted
down by using larger interval value than the original at 10 seconds. However,
we did not show the results using different interval values in this figure. An
effect of interval value on graph position is the same fashion as all graphs
from previous results, except the graph of KNN during detecting process.

For all algorithems, the time between anomaly occur and alert rely on
time interval and processing time after that as

T (x) = δ + d(x), (6.11)

where T (x) is total processing time when an anomaly occur at interval x,
δ is an interval value, and d(x) is detecting time processed at interval x.
We set the interval value δ = 10 seconds for this experiment, so the number
of interval for one day is 8,640. For MND, the average processing time for
each interval in detecting process T (x) = 10 + (3.63/8640) ≈ 10 seconds.
For KNN, the average processing time for each interval in detecting process
T (x) = 10 + (2.47/8640) ≈ 10 seconds. For OSVM, the average processing
time for each interval in detecting process T (x) = 10 + (1.06/8640) ≈ 10
seconds. These results imply that the total processing time for each interval
in detecting process approximately equal to the interval value δ. They satified
realtime of our definition that the system raises an alarm after anomalies
occur less than 60 seconds.

6.7 Experiment 7: Different Volumes of Back-

ground Traffic

Volume of background or normal traffic is one of our concerns, because the
normal traffic generally affects the performance of detection systems. In
small network systems, the volume of anomalies traffic is normally larger
than normal traffic and we are easy to notice them manually, so detection
systems also easily perceive an occurrence of anomaly. In large network sys-
tems, however, the volume of anomalies traffic is relatively small compared
to normal traffic, many of detection systems suffer from this situation. From
early experiments, we found that the multi-timeline detection system can
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discover several anomalies with quite high of F-score (Eq.5.6) or detection
performance. Therefore, we hypothesize that the detection performance of
multi-timeline system should be declined when we employ the proposed sys-
tem to different sizes of computer network.
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Figure 6.20: Comparison of F-score from the original background traffic (1x)
to 1,000 times background traffic (1000x).

The main objective of this experiment is to examine the F-score or de-
tection performance of the multi-timeline detection system on four different
sizes of networks. In this experiment, we fixed interval values δ = 10 seconds
and the number of training days β = 5, 10, 15,..., 100 days. We also used
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decision function for multi-timeline representation

g(xp
t |x1

t ,x
2
t , ...,x

p−1
t ), (6.12)

where p is varied upon the number of training days β. First, we selected
one by one feature for each type of anomaly similar to experiment 2, then
carried out a detection task on the original data as explained in Chapter 5.
The results from original data showed the highest F-score for each type of
anomaly. Second, we generated a new background traffic based upon the
original data by multiplying the volume of original data 10 times, then em-
ployed each feature for a single type of selected anomaly again. For all types
of anomalies, we did not change the volume of traffic because we planned to
compare F-scores of the same size of anomaly traffic over different volumes
of background traffic. Next, we generated new network traffic by multiplying
100 and 1,000 times sequentially and measured the F-score for each several
size of background traffic.

Detection performances of the multi-timeline system over different sizes
of background traffic are shown in Figure 6.20. We found that the perfor-
mance of multi-timeline detection system have been exponentially decreased
when the volume of background traffic increase. However, F-scores by us-
ing the number of destination addresses (f5) and the number of destination
ports (f7) are slowly decreased than those by using other features. The main
reason is that both features ,the number of destination addresses and ports,
have changed relatively small when the size of background traffic has been
increased. Consequently, the multi-timeline detection system would be ap-
plied with any features in low-volume of network traffic, such as in access
networks. On the other hand, we should employ features which does not be
diverse in high-volume of network traffic, such as in core networks.

6.8 Experiment 8: Time of Anomaly Occur-

rence

For the multi-timeline detection system, we intend to investigate an hypoth-
esis that the time of anomaly occurrence has an effect on detection perfor-
mance. Normally, the volume of network traffic has change during a day,
start at a small amount of traffic and gradually increase until reach the peak
of the day then slowly decrease. We easily detect anomalies occurred at a
small background traffic rather than those anomalies occurred at a heavy
background traffic of the day. It means that the time of anomaly occurrence
produces an effect on detection performance of the multi-timeline detection
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system. Therefore, we have to examine detection performance of the pro-
posed system when anomalies occur at different time periods of the day.

In this experiment, we simulated that selected anomalies occur at the
begin of each hour from 9am to 11pm. As a result, each type of anomaly
appeared 15 times along one day of test data. We employed the top 3 features
from the experiment 2 for each type of anomaly, and detect them one by
one. We then evaluated the F-score (Eq.5.6) on different time perios that
anomalies occure. The final outcomes from this experiment would reveal
trends in F-score over time periods of a day that each anomaly occur.

In this experiment, we fixed interval values δ = 10 seconds and the number
of training days β = 39 days. We also used decision function for multi-
timeline representation

g(xp
t |x1

t ,x
2
t , ...,x

p−1
t ), (6.13)

where p is varied upon the number of training days β.
Figure 6.21 shows F-scores of top 3 features detected each anomalies along

time periods in one day. We found that the performance of multi-timeline
detection system reverses variation in volume of network traffic. The detec-
tion performance of multi-timeline detection system quite high around the
beginning and the end of the day, while the detection performance relatively
low at the middle of the day. The main reason is that network traffic around
the beginning and the end of the day are lower than those at the middle of
the day. However, the performances of multi-timeline detection system at
the middle of the day are small variation compared to the performance at
the beginning and at the end of the day. From the results in this experiment,
we can conclude that the time of anomaly occurrence has a small effect on
the performance of multi-timeline detection system.

6.9 Experiment 9: Weighting for Old Data

We conduct the last experiment to explore detection performance of both
the multi-timeline detector module with and without weighting process. For
several of network systems, operators need to give some recent traffic more
weight or influence on the result than old traffic in the same set of data. The
multi-timeline detection system also provides such function to do so. We try
employing a weighting process on the multi-timeline detector module and
comparing detection performance to those without the weighting process.

The following steps show how we perform experiments with a linear grad-
ual weighting technique as explained in Chapter 4. First, we set the weight
length and weight value as 1 for weighting process. Second, we select the
best feature from experiment 6.2 for each type of anomaly by using first
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Figure 6.21: Detection performance of selected anomalies over different time
occurences by using top 3 features.

learning algorithm, MND. After that we measure F-score (Eq.5.6) for every
types of anomalies and compute the average performance of multi-timeline
detector module for MND. Third, we alter the weight length φ = 1, 5, 10,
15, 20, 25 days, then average detection performance for all weight length.
Next, we change the weight value ϕ = 1, 3, 5, 7, 9 then follow the proce-
dure from the first to third step and compute the average detection perfor-
mance for all value. Finally, we switch the learning algorithm from MND
to KNN and OSVM respectively, and plot all computed average values on
three-dimensional graphs to compare trends in detection performance be-
tween these learning algorithms.

In this experiment, we fixed interval values δ = 10 seconds and the number
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Figure 6.22: Detection performance of multi-timeline module with weighting
process by using MND (upper left), KNN (upper right), and OSVM (bot-
tom).

of training days β = 39 days (exclude weighting). We also used decision
function for multi-timeline representation like

g(xp
t |x1

t ,x
2
t , ...,x

φ
ϕ−1,x

φ
ϕ), (6.14)

where p is varied upon the number of training days β. We shows the rela-
tionship between the weight length φ and weight value ϕ in Figure 4.1.

Performance results from this experiment on weighted timeline are shown
in figure 6.22. This figure contains three graphs, the detection performance
of multi-timeline module by using MND (upper left), KNN (upper right),
and OSVM (bottom). The x-axis represents the weight values from 1 to
9, while the y-axis indicates the weight length during the learning process.
The z-axis shows the F-score that contains a value between 0 and 1, where
0 represents the worst and 1 represents the best detection performance.

Experimental results in figure 6.22 show some issues for three learning
algorithms. Results from MND (upper left) show that the multi-timeline de-
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tector module with the weighting process produces 3.2-16.6% improvement
than the module without the weighted process. In case of KNN (upper right),
the graph indicates that adding the weighting process randomly produces a
small effect between 2.7-6.4% improvement. Employing OSVM (bottom),
however, the trend in detection performance is quite different from those by
using MND and KNN. The detection performance with OSVM is linearly
upward when we increase the weight values and weight length. The improve-
ment of performances by using OSVM are between 3.5-112%. From these
three figures, OSVM is a suitable algorithm for the multi-timeline detector
module with the linear gradual weighting technique.
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Chapter 7

Discussion

In this chapter, we will raise issues from overall our experiments. We then
compare different learning algorithms and representation of input data. In

the last section, we will point out limitation of the multi-timeline represen-
tation in the task of anomaly detection.

7.1 Effects of Different Interval Values on Real-

time Detection

We discovered that the interval value has major effects on accuracy of de-
tection performance and time consumption in both learning and detecting
processes. In our study, we conducted two experiments which get involved
with the interval value; the experiment 1: comparison of different interval
values and experiment 5: time consumption. The primary purpose of exper-
iment 1 is to identify a suitable interval value for subsequent experiments,
and the main purpose of experiment 5 is to measure time consumption of
learning algorithms in the learning and detecting process. In both experi-
ments, we altered the interval value, which is one of the crucial factors for
the multi-timeline representation, by using seven different values: 1, 10, 20,
30, 40, 50, and 60 seconds.

Our experimental results strongly suggest that setting the interval value
is one of the key factors in the multi-timeline representation. The best time
interval value strongly depends on the duration of target anomalies. If target
anomalies suddenly change and happen in a short duration, a small value
such as 1 or 10 seconds is the feasible interval time for the multi-timeline
representation. On the other hand, if target anomalies slowly change and
occur over a long time duration, a large value from 30 to 60 seconds is the
feasible interval time for detecting such anomalies. We should firstly consider
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the interval value and learning algorithm together rather than other factors,
because both of these factors have a huge impact on time consumption,
especially for real-time anomaly detection. One of the following sections
will explain the time complexity of each learning algorithm which have been
selected to work with the multi-timeline representation. In this study, we
found that the interval value at 10 seconds is a feasible interval value for our
data, so for the rest of our experiments we always set the interval value at
10 seconds.

We consider the multi-timeline representation as detection on the basis
of time interval rather than packet or flow. Therefore, the interval value also
have an effect on any process after anomalies been discovered. In accordance
to this representation can identify what interval or when an anomaly happen,
the interval value have an effect on a fine-grain inspector to specify what type
of anomaly occur in network for example. In our study, however, we did not
have and conduct experiment on such a fine-grain inspector.

7.2 Feasible Features for Detecting a Partic-

ular Anomaly

We discovered that various features have substantial effects on detection
performance over different types of anomalies. We performed the experiment
2 to compare detection performance between each individual of nine features
on selected types of attacks. In this experiment, we also measured detection
performance by using a combination of all nine features, then compare to
results by using a single feature. We found that learning algorithms produce
a good performance when we apply network features that closely correlate
with a specific type of attack.

Table 7.1: Feasible features for experimental attacks.

Attack Feature

Back Packet(f1), Byte(f2), Combined All(fall)
IpSweep Combined All(fall)
Neptune All except SrcAddr(f4), DstAddr(f5), ∆Addr(f8)
PortSweep DstPort(f7), Combined All(fall)
Smurf All except DstAddr(f5), SrcPort(f6), DstPort(f7), ∆Port(f9)

All results of the three algorithms suggest that feasible features for ex-
perimental attacks are the same. However detection performances on the
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same feature are fairly dissimilar for different algorithms. We can summa-
rize the feasible features for our experimental attacks as shown in Table 7.1.
Therefore, we can detect new attacks or anomalies that conform with the ex-
perimental attacks by using these feasible features. In summary, we have to
carefully select features which highly correlate with types of anomalies. For
example, for denial of service attack, we should use the number of packet,
flows, or the sum of packet size as a feature. Similary for port scanning
activity, we should use the number of destination port as a feature.

7.3 Robustness to Extreme Conditions and

Negative Influences

An essential characteristic of the multi-timeline representation is an ability
to resist extremely conditions and negative influences from outside. To verify
this capability, we conducted two separated parts in the experiment 3, with
no packet incident in test data and no packet incident in training data. In
the first part, no packet incident in test data, is to examine the capability
of multi-timeline representation in an extreme condition, and in the second
part, no packet incident in training data, is to examine detection ability when
incorrect data have been contaminated into the learning process.

Both parts in the experiment 3 suggest that the multi-timeline represen-
tation with a carefully selected algorithm is more likely to tolerate extremely
conditions and negative influences. Most of techniques for anomaly detection
in network traffic does not have such characteristics. These characteristics
play a crucial role in anomaly detection because if the detection system does
not have an ability to tolerate extreme condition, attackers or intruders might
change the target to the detection system by attacking via this vulnerable
point. Moreover, if attackers or intruders realize the detection technique with
a lack of robustness, they might develop a technique to compromise system
integrity, and then they can penetrate into the network system or easily evade
the system as well.

7.4 Increase of Learning Curve with the Num-

ber of Training Data

We conducted the experiment 4 to examine the increase of learning curves
among three selected algorithms with the multi-timeline representation. We
found that two of three algorithms with the multi-timeline representation
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have a capability to learn in a short period of time before detecting anomalies
with satisfied performance. In this examination, we varied the number of
data during learning process and measured detection performance in order
to show a learning curve of each algorithm.

Learning curves of MND and KNN rise sharply from 3 days to 9 days of
training data and then slowly change after on, but learning curves of OSVM
start to increase when the number of training data is more than 30 days.
Learning curves of OSVM appear to be similar results for both easy and
difficult detectable attacks. This summary results show that outstanding
learning curves are KNN, MND and OSVM respectively. The MND and
KNN mostly learned only from 3 days to 9 days before they can detect most
types of attacks with a promising performance, while the OSVM took more
than a month to learn data before detection performance begin to increase.

7.5 Time Consumption for Learning and De-

tecting Process

Network
Traffic

Feature
Extraction

Feature
Scaling

Classifier
Detection
Result

Training Data

Test Data

Network
Traffic

O(pmq)
O(pq)

O(mnq)
O(nq)

Algorithm
Detection
Result

Learning

Detecting

Figure 7.1: Time complexity of preprocessing step.

Time complexity of preprocessing step is one of our concerns for overall
system performance. Figure 7.1 indicates time complexity on an interval ba-
sis for each step in system procedure. From our analysis, we found that time
complexity of the preprocessing step for learning process slightly different
from those for detecting process. For the feature extraction, time consump-
tion relies on p the number of packets per interval, m the number of training
data (days), and q the number of features for extraction. As a result, time
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complexity of feature extraction for is O(pmq) for learning process, and O(pq)
for detecting process. For the feature scaling, time complexity of learning
process is O(mnq), while those for detecting process is O(nq), where n is the
number of interval. In our experiment, the feature extraction spent approxi-
mately 16 seconds, and the feature scaling spent approximately 12 secords for
a one-day long. After preprocessing step, time complexity depends upon the
algorithm as shown in Table 7.2. For real-time anomaly detection, we mainly
focused on time constraint for detecting process. Therefore, we consider the
time complexity of algorithm for detecting process to be the main system per-
formance, because the preprocessing step has the same time complexity for
any algorithm. However, we can apply vectorization to preprocessing step,
learning process, and deceting process in order to reduce time complexity.

Table 7.2: Computational time complexity for one-day test data.

Algorithm Learning Process Detecting Process

MND O(mnq) O(nq)
KNN O(1) O(mnq)
OSVM O(m2nq2) O(nqs)

From mathematical analysis point of view, all of the learning algorithms
in this experiment have computational time complexity as listed in Table 7.2.
This table displays information in three columns: learning algorithm, time
complexity of learning process, and time complexity of detecting process.
Here m is the number of training data (days), n is the number of intervals
in one day long, q is the number of features, and s is the number of support
vectors which relies on pattern of training data. This table shows that the
MND run in linear time proportionally with m, n, and q for learning process,
and proportionally with n and q for detecting process; the KNN run in con-
stant time regardless of the input size for learning process, but run in linear
time proportionally with m, n, and q for detecting process; the OSVM run in
quadratic time with regard to m and q, and run in linear time proportionally
with n for learning process, while run in linear time proportionally with n,
q, and s for detecting process [103].

For all algorithems over detecting process, the time between anomaly
occur and alert rely on time interval and processing time after that as

T (x) = δ + d(x), (7.1)

where T (x) is total processing time when an anomaly occur at interval x, δ
is an interval value, and d(x) is detecting time processed at interval x.
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The most interesting in this experiment is time consumption of OSVM for
both learning and detecting process. For learning process, Table 7.2 shows
that the OSVM run in quadratic time with regard to m and q, but it seems
likely that the OSVM run in linear time proportionally with m and q. The
main reason is that the numerical library for OSVM has the potential for
what we called vector computation, so that we could reduce computational
time of OSVM during learning process from quadratic time to linear time.
For detecting process, one of the input factors which affects time consumption
is the number of support vectors s. However, the number of support vectors
relied on the pattern of input data, which is also in regard to the number
of training data. It means that even if the number of training data is the
same, it might produce a different number of support vectors. Therefore, the
results of OSVM for detecting process appears randomly because of s, the
number of support vectors.

Table 7.3: Overall time consumption per time interval for original back-
ground traffic (1x).

Process Extraction Scaling Algorithm Total

Learning 1.97 ms 0.35 ms
2.08 ms (MND) 4.40 ms
0.00 ms (KNN) 2.32 ms
1.62 ms (OSVM) 3.94 ms

Process Extraction Scaling T (x) = δ + d(x) Total

Detecting 1.96 ms 0.32 ms
10 s + 0.46 ms (MND) ≈ 10 s
10 s + 0.29 ms (KNN) ≈ 10 s
10 s + 0.14 ms (OSVM) ≈ 10 s

Table 7.4: Overall time consumption per time interval for 1,000 times of
background traffic (1000x).

Process Extraction Scaling Algorithm Total

Learning 3.13 s 0.37 ms
2.19 ms (MND) ≈ 3.13 s
0.00 ms (KNN) ≈ 3.13 s
1.86 ms (OSVM) ≈ 3.13 s

Process Extraction Scaling T (x) = δ + d(x) Total

Detecting 2.96 s 0.35 ms
10 s + 0.49 ms (MND) ≈ 12.96 s
10 s + 0.25 ms (KNN) ≈ 12.96 s
10 s + 0.19 ms (OSVM) ≈ 12.96 s
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Table 7.3 shows overall time consumption per interval for original back-
ground traffic (1x). In this experiment, the average and maximum number of
background packet are 26.191 and 750 packets/sec, the amount of features is
9, and the number of training day is 39 days. Time consumption during pre-
processing steps, namely feature extraction and scaling, are common for all
three algorithms. This table shows time consumption on interval basis, but
the learning process spends more time for the whole training data. However,
we concerns only detecting process in real time, and the results show that the
multi-timeline system can perform anomaly detection in a few milliseconds.
Even if background traffic is 1,000 times of our experiments, the detecting
process still consumes in a few seconds.

Table 7.4 shows overall time consumption per interval for 1,000 times
of background traffic (1000x), where the average and maximum number of
background packet are 26,191 and 750,000 packets/sec. This table shows
that time consumption of scaling step, learning, and detecting algorithm are
similar between 1x and 1000x of background traffic. For both learning and
detecting steps, most time consumption for 1000x of background traffic have
been spent in the extraction process. Therefore, the bottleneck of multi-
timeline detection system is feature extraction, because this process relates
to the number of packet per interval. This table also shows that the feature
extraction step is a bottleneck of the proposed system because this step takes
more time when background traffic increases.

From our definition, these two tables suggest that the multi-timeline sys-
tem can detect anomalies in real time. For learning process, table 7.3 shows
that overall time consumption by using MND is 4.40 ms × 8640 intervals ×
39 days ≈ 24.7 minutes, and table 7.4 shows that overall time consumption
by using MND is 3.13 s × 8640 intervals × 39 days ≈ 293 hours. However,
learning process can be performed in advance, so we concern more over de-
tecting process. Detecting process for all algorithms, table 7.3 shows that
overall time consumption for each interval is approximately 10 s, and table
7.4 shows that overall time consumption for each interval is approximately
12.96 s. These results imply that the time consumption in detecting pro-
cess of multi-timeline system less than 60 seconds and the system can detect
anomalies in real time.

Our experiments show that the proposed system detects anomalies as a
real-time system with the following sizes. The proposed system gains de-
tection performance nearly the acceptable F-score 0.5 for 10x of background
traffic, where the average and maximum number of background packet are
261.91 and 7,500 packets/sec. Here, the average ratio between anomaly and
normal traffic be detected by the system is 0.25. At this size of network,
the system approximately takes 10 seconds from extraction step to detect
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anomalies. All of these imply that the proposed system is suitable for LAN
or access networks for real-time detection.

7.6 Detectability over Different Background

Traffic and Multiple Anomalies

We concern about applying the detection system in a real network traffic
and detecting a real situation with multiple anomalies. Therefore, we also
perform two experiments to evaluate the multi-timeline detection system
in those environments. We simulate experiments by replicating different
background traffic, and altering both single and multiple anomalies along
various intervals of the day. These two experiments would demonstrate how
the multi-timeline function on different background and multiple anomalies
in real network traffic.

Detection results show some interesting issues if we apply the multi-
timeline detection system into different network environment. Performance
of most features in multi-timeline detection system drop dramatically when
background traffic increase, while detection performance with some features,
such as the number of destination addresses and ports, slowly decrease in
huge background traffic. Altering background traffic from 394k to 394Mbit/sec,
detection performance of these two features declined approximately 50%,
while those of other features drop more than 80%. As a result, we could
employ the number of destination addresses and ports with multi-timeline
system into enormous traffic, backbone networks for example.

Detection results for single and multiple anomalies are not much different.
Nonetheless, a common result from both types of anomalies is detectability
during interval of the day. Detectability of both types are high in early morn-
ing and nearly midnight where normal traffic is low, but detectability of those
gradually decrease during at noon where normal traffic is peak. However, de-
tectability of multi-timeline system during the day fluctuate around 20-30%.
Empirical results suggest that detectability of multi-timeline detection sys-
tem are very similar between single and multiple anomalies.

7.7 Detection Performance from Weighting

Technique

Weighting is an method to bias some data more weight or impact upon
a system than other data. Therefore, this method can effectively weight
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recent timelines to more influence on the decision function than other old
timelines. Our study also conducts an experiment on the multi-timeline
with a weighting technique using the number of timeline replication as a
weighting value. Experiments on a weighting technique employ only three
learning algorithm, namely MND, KNN, and OSVM. In machine learning, we
could employ boosting algorithms, such as AdaBoost [112], LPBoost [113],
or BrownBoost [114], to create a weak data to a strong data that performs
function like a weighting technique.

Empirical results reveal that the detection performance of multi-timeline
system with weighting relies on two main factors. One factor is the weighting
technique applied to the detection module. The weighting technique in this
experiment is timeline replication, so both the number of training data and
the number of replication as a weighting value mainly affect the F-score.
Another factor is the learning algorithm employed to the detection module.
Results shown in figure 6.22 indicate that the weighting technique strengthen
the role of OSVM. The weighting process with MND has slightly improved
when we increased the number of training data and weighting value, and
the results from KNN show randomly and tiny change when we added the
weighting technique to the multi-timeline detection module.

Network
Traffic

Feature
Extraction

Feature
Scaling

Weighting
Process

Classifier
Detection
Result

Training Data

Test Data

Network
Traffic

O(pmq)
O(pq)

O(mnq)
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O(mnq)

Algorithm
Detection
Result

Learning

Detecting

Figure 7.2: Time complexity of multi-timeline detection module with weight-
ing process.

One of our concerns is time complexity after adding a weighting process
into the multi-timeline detection module. The weighting technique has an
effect on time complexity of the learning process only. In our experiment,
we applied timeline replication as weighting, so time complexity relies on
both the number of training data and number of replication as weighting
value. Analytically, our experiment contains the time complexity of weighting
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process as O(mnq), where m is the number of training data (days), n is
the number of intervals in one day long, q is the number of features. The
weighting value, however, is a constant value for multiplying and it does not
change the time complexity. Therefore, we could show the time complexity
of multi-timeline detection module as shown in figure 7.2.

7.8 Difference of Learning Algorithms

From these all experimental results, we found that several factors have an
essential role in detection performance for the multi-timeline representation.
Two interconnected factors were the learning algorithm and selected features
of network traffic. The results from the experiments 2: comparison of de-
tection performance between individual features and combined all features
described in Chapter 6.2 and the first part of experiment 3: no packet inci-
dent in test data described in Chapter 6.4 suggest the following issues: (1)
we have to select appropriate features, individual or combined features, for
a particular type of anomaly when we employ the MND. Additionally, (2)
we can use an individual feature for a particular type of anomaly or a com-
bined feature for all types of anomalies when we employ the KNN or OSVM,
although detection performance of a combined feature dropped slightly for
some types of anomalies.

Table 7.5: Pros and cons of the three learning algorithms.

MND KNN OSVM

Pros Pros Pros
• Parametric method • Robust to noisy data • Kernel-based method
• Simplicity • Fast training • Flexibility
Cons Cons Cons
• Normal distribution • Biased by value of k • Slow training
• Low accuracy • Memory limitation • Sensitive to noisy data

We list pros and cons of the three learning algorithms as shown in Table
7.5. Advantages of the MND is a simple algorithm and contains parametric
nature so that it does not need to keep old data after learning. However, the
MND is suitable for normal distribution and accuracy of this algorithm is still
low. Positive characteristics of the KNN are robust to noisy Internet traffic
data, and do not need the learning process. Disadvantages of the KNN are
the selection of appropriate parameter k and the KNN requires all training
data in memory, so that it has a potential memory problem. The OSVM
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is a kernel-based method that contains flexibility by using various kernels,
however, the negative side are that the OSVM needs a long computational
time in training process and it is very sensitive to noisy data. From our
experiments, it shows that the KNN is the best and the OSVM is the worst
of the three learning algorithms.

The next factor is the number of training data in learning process. The
results from the experiments 4: learning curves described in Chapter 6.5 show
that detection performance fairly increased and converged to a constant value
when we increased the number of training data, especially for the MND and
KNN. Learning curves of the OSVM, however, increased much slower than
those of MND and KNN. Experiment results in this experiment also suggest
that both MND and KNN can learn from one or two weeks of training data,
whereas the OSVM requires more than one month of training data.

The last factor is the interval value. Results from experiment 1: com-
parison of different interval values described in Chapter 6.1 show different
performances when we assigned different interval values. Short interval val-
ues make detecting anomalies more likely in a real-time system, but it needs
more computation time for one-day test data, according to Table 7.2. Thus,
the benefits of a short time interval value and the increased time consumption
are trade-off in the representation.

7.9 Comparison of Representation of Input

Data

Experimental results strongly confirm our hypothesis that the multi-timeline
representation has a number of capabilities for real-time anomaly detection
in computer networks. The multi-timeline representation provided flexibility
in using various algorithms, features, and interval values to detect several
anomalies . This representation could also detect various anomalies caused
by attacks or accidents. Additionally, the multi-timeline representation pro-
vides robustness to incorrect training data or data manipulation from at-
tackers. With appropriate learning algorithms and network features, the
multi-timeline representation could quickly learn from the training data to
detect specific anomalies.

Results in experiment 2 and 3 also provide comparisons between the
multi-timeline, real-time, and combination between single and multi-timeline
representation. Experimental results indicate that the multi-timeline repre-
sentation outperform the real-time representation, especially for the Back,
Neptune, PortSweep, and Smurf attacks. However, detection performance of
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the multi-timeline and real-time representations resembles for the IpSweep
attack. There are two instances of the IpSweep attack for the multi-timeline
and real-time representation. The first instance of IpSweep occurred in a very
short period, in 132 seconds, named as Week 3 Wed in Table 5.1. Another
instance occurred in a low packet per second, in 1.15 packet per second,
named as Week 6 Thu in the same table. These two instances are quite
similar to normal traffic so the IpSweep attack are hardly detected by both
representations. As a result, detection performances of the multi-timeline
and real-time representation are not significantly different.

Results in experiment 3 indicate that the number of t has an effect on
detection performance for the real-time and combination representation. De-
tection performances of real-time quickly drop from those of multi-timeline
representation when we added more t in learning process. For the combina-
tion representation, however, detection performance slowly drop compared
to experimental results by using real-time representation when we added
more t in learning process. All these results indicate that the multi-timeline
outperforms both real-time and combination representation.

The first part in experiment 4 presents detection performance over no
packet incident in test data by using the multi-timeline and real-time repre-
sentation respectively. The results indicate that detection performances of
the multi-timeline representation are better than those of the real-time rep-
resentation, especially by using MND and KNN. Detection performances of
OSVM, however, are not different between both of the representations. The
second part in experiment 4 show a difference detection performance between
three algorithms by using the multi-timeline and real-time representation.
The percentage results of detection performance in these tables are not sig-
nificantly different between both of the representations. However, trend in
percentage different of the multi-timeline and real-time representation resem-
ble when we added more incorrect training data. In summary, these results
confirmed that detection performances of the multi-timeline representation
are better than those of the real-time representation, but robustness to in-
correct training data is not different between both of the representations.

Applying interval-based features instead of packet-based features provides
great benefit to the multi-timeline representation. Interval-based features
can detect strange behaviors in network traffic even if no packet at all as
results in the first part of experiment 4; however, the packet-based features
cannot do so. Therefore, throughput of normal traffic has no effect on the
multi-timeline representation working with the interval-based representation
in term of detectability. For anomaly traffic, however, it is quite difficult to
specify detectable throughput because there are many factors of normal and
anomaly traffic related to detectability. The key factors are repeating pat-
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terns of normal traffic and characteristics of anomaly, the number of source
and destination addresses, the number of source and destination ports, packet
size, duration of anomaly for example. In our experiments, the multi-timeline
representation shows promising results on low throughput of anomaly traffic.
For example, characteristics of Neptune attacks as shown in Table 5.1 show
the average packet size of anomaly is equal to 60 Bytes and approximates 68
packets per second for three instances, so the throughput of Neptune for our
experiments approximates 32 kbit/second. The throughput of Neptune is
low and mainly occurs at the peak time, when the average volume of normal
traffic at that time is ≈ 250 kbit/second. However, detection performance of
KNN for the Neptune attack reach nearly the highest point.

Table 7.6: Comparison of F-scores (Avg/Max) between multi-timeline, real-
time, and combination representation.

Anomaly Multi-timeline Real-time Combination

Back 0.95/0.98 (KNN) 0.35/0.39 (KNN) 0.69/0.74 (KNN)
IpSweep 0.15/0.32 (MND) 0.09/0.27 (MND) 0.13/0.30 (MND)
Neptune 0.72/0.96 (KNN) 0.49/0.57 (KNN) 0.65/0.81 (KNN)
PortSweep 0.10/0.27 (KNN) 0.10/0.20 (KNN) 0.09/0.25 (KNN)
Smurf 0.94/1.00 (KNN) 0.38/0.53 (KNN) 0.75/0.89 (KNN)
No packet 0.73/0.77 (KNN) 0.69/0.73 (KNN) 0.70/0.75 (KNN)

Table 7.6 summarizes the detection performance between multi-timeline,
real-time, combination representation. We indicate average and the best F-
score which taken from f1-fall and the best algorithm (in parentheses) among
MND, KNN, and OSVM for Back, IpSweep, Neptune, PortSweep, and Smurf.
For no packet incident, however, we compare between MND and KNN rather
than three algorithms because both representations with OSVM produce the
same highest value of F-score. This table shows that the multi-timeline and
combination representation detect most anomalies with F-score higher than
the acceptable value 0.5, but most F-scores from real-time representation are
lower than the acceptable value.

7.10 Guidance for Applying the Multi-timeline

Representation

More concretely, the following steps provide a guidance to apply the multi-
timeline representation to a real network environment. First, we have to
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assign a size for the interval value by considering the trade-offs between no-
tification time after anomalies occur and time consumption of each interval
value. However, the interval value might often be assigned by software of
various network equipments in many network environments, in this case we
cannot freely choose the interval value. Next, designate particular features
or combined features for specific network traffic or for an expected anomaly.
For example, port scan attacks usually shoot a huge number of attack pack-
ets toward a target network, so we can choose the number of destination
ports for instance as a network feature for such attacks. In addition, we
can select a specific IP address, a range of IP addresses or even port num-
bers as a network feature. Lastly, we have to select a learning algorithm by
considering the amount of training data, detection performance, and time
consumption according to Table 7.2. We strongly recommend applying the
multi-timeline representation to access networks, place it behind a firewall
and virus detector, rather than applying to core networks because traffic data
on core networks are more diverse than those at access networks. Although
we did not examine performance of the multi-timeline representation in a
core network, we firmly believe that the multi-timeline representation could
be applied to core networks as well. We intend to conduct experiments by
using the multi-timeline representation on core networks as well.

7.11 Limitations of Multi-timeline Represen-

tation

Although experimental results show various capabilities of the multi-timeline
representation to detect anomalies in real time, they also reveal some limi-
tations. The main limitations of the multi-timeline representation that we
discovered consist three main issues: the first issue is that learning algorithms
need a period of time to learn prior data, the next issue is that learning pro-
cess needs attack-free or almost attack-free traffic, and the last issue is that
this representation did not provide any details about the attacks or incidents.

The need to learn prior data is an intrinsic nature of machine learning
methods, we cannot get out of this limitations. Our experiments, however,
show that we can carefully select a proper algorithm that have a capability to
quickly learn prior traffic. For example, results in the experiment 4 indicate
that learning period of MND and KNN are less than 9 days with satisfied
detection performance. Another solution to overcome this limitation is flex-
ibility of the multi-timeline representation to switch from one algorithm to
another algorithm. For example, in the first place we have no prior traffic so
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that we can apply the MND, after operate the system for a while, 15 days
for example, we can switch from MND to another algorithm that need more
prior data for learning process. Therefore, the need to learn prior data of
machine learning is not a big deal for the multi-timeline representation.

One of our limitations is training data over learning process of our de-
tection system. Multi-timeline detection system needs attack-free or mostly
attack-free traffic for learning process, but it is not feasible assumption at
backbone networks. Therefore, the multi-timeline detection system more
suitable for access networks rather than backbone networks.

Providing no detail of attacks or incidents is a real challenge for the
multi-timeline representation. One of the key concepts of the multi-timeline
representation by using interval-based features is the outstanding ability to
detect a wide range of anomalies caused by attacks or accidents. Although
learning algorithms with the multi-timeline representation can detect an in-
terval that anomaly occur, but the system provides a few details of attacks
or unusual incidents in network traffic. Details of these incidents depend on
features. For example, assume that we use the number of packet as a feature,
so alarm from the system imply that anomaly relate to the number of packet
in network traffic, such as denial of service attacks or outages. A solution
for this limitation is that applying more classifiers with different features, so
that we can combine details from different sources to identify the incident.
Another solution is providing an inspector to examine the interval contained
anomalies [115]; it is our future work.
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Chapter 8

Conclusion

In this thesis, we have proposed the multi-timeline representation for real-
time anomaly detection in network traffic. We start with explaining what

anomaly is in the context of network traffic, and then classifying a broad
range of network anomalies under two classes: one is caused by human in-
tention and the other is caused by accidents. From our literature review, we
found that for many years researchers have proposed a large number of de-
tection techniques for a particular anomaly and for general anomalies. These
proposed detection techniques can be classified as signature-based techniques
and statistical-based techniques. Owing to limitation of the signature-based,
they could hardly detect a novel anomaly, therefore a growing trend towards
anomaly detecting in network traffic has been focused on statistical-based
techniques. Unfortunately, almost all of statistical-based techniques rely on
batch processing, so they take a long time for notification after anomalies
occur and not suitable for detection in real time. The literature review
also reveals that machine learning techniques have been applied to various
and sundry problem domains, including anomaly detection in other domains.
However, detecting anomalies in network traffic is much more difficult than
those in other domains because many anomalies in network traffic are time
and location dependence, known as context anomalies. It means that an
incident classified under normal might be an anomaly at another time or
another location for example. As a result, representation of input data for
anomaly detection in other domains cannot be applied to network traffic. In
addition, attackers put effort into evading from detection system if they can
discover the technique been used. To solve these issues, we proposed the
multi-timeline system for anomaly detection in network traffic which highly
suitable for real-time system. This multi-timeline detection system do not re-
quire explicit training data known as unsupervised learning. We also firmly
believe that the multi-timeline detection system has several properties for
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real-time anomaly detection, such as flexibility, robustness, quick learning,
and short time consumption.

To confirm our hypothesis, we conducted a series of experiments in order
to examine several properties of the multi-timeline detection system. There
are eight parts in this series as follows. For the first experiment, the purpose
is to observe how the interval value have an effect on detection performance,
and to identify the best interval value for our experimental data. For the
second experiment, the purpose is to investigate which features are highly ef-
ficient for particular attacks. For the third experiment, the purpose is to test
robustness of the multi-timeline detection system. For the forth experiment,
the purpose is to explore how learning algorithms with the multi-timeline
representation quickly learn from training data. For the fifth experiment,
the purpose is to measure time consumption of learning algorithms with the
multi-timeline detection module. For the sixth experiment, the purpose is to
compare detection results when test anomalies occur over different volumes
of background traffic. For the next experiment, the purpose is to observe
effects on anomaly occurrence during a day. For the last experiment, the
purpose is to explore performance of the multi-timeline detection module
with a weighting technique. We acquired data from two sources, one source
from strongly controlled campus network, so we could assume that there is
no abnormal traffic in there, the other source from testbed data which have
been used in many studies for evaluate their own detection system.

Results from our experiments strongly confirm that the multi-timeline
module has many versatile capabilities for real-time anomaly detection in
computer networks. We could employ machine learning algorithms with the
multi-timeline representation to discover a variety of anomalies caused by
attacks or accidents. One of the experiments reveals which features are ef-
fective and most likely to detect a particular type of anomalies selected from
testbed data. Our result indicates that the multi-timeline technique gener-
ally outperform conventional real-time or even a combination between single
and multi-timeline technique. Experimental results also show the robustness
of the multi-timeline detection system that attackers hardly evade the system
or manipulate the system, even if attackers know the methodology used in
the detection system. Learning curves in one of the our experiments show
that the multi-timeline representation with some machine learning algorithms
could quickly learn from our training data, some algorithms could learn only
3 to 9 days of training data. Time consumption results in our experiment
suggest that the multi-timeline representation could be more than likely to
operate in real time. Our most desirable capability is that the multi-timeline
representation provides high flexibility so that we could employ different
algorithms or features for different types of anomalies in network traffic, re-
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gardless of types of networks, network media or even protocols. The last
experiment indicate that we could add a weighting technique as an option
into the multi-timeline module to give recent timelines more influence on
the result than other old timelines. However, detection performance of the
multi-timeline system mainly relies on the weighting technique and learning
algorithm.

In summary, we proposed the multi-timeline detection system so that we
can apply any machine learning algorithms or use any interval-based fea-
ture to detect network traffic anomalies in real time. We conducted a series
of experiments to examine several capabilities of the multi-timeline repre-
sentation, for example, flexibilities by using different algorithms or different
features, robustness from incorrect training data, a learning capability, an
ability to detect anomalies in real time. Experimental results strongly con-
firm that the multi-timeline representation have versatile capabilities and
flexibilities to discover several network traffic anomalies with promising de-
tection performance, especially for access networks or campus networks. The
multi-timeline detection system not only enables network administrators to
detect exist or novel types of attacks but can also be used to identify abnor-
mal behavior of their own networks in real-time.

For our future work, we intend to apply the multi-timeline detection
system to a real network environment. Although, our experimental results
show that the multi-timeline representation with some learning algorithms
detected several types of anomalies with promising performance, there are
many factors in network traffic that might adversely affect detection perfor-
mance of the multi-timeline system. Moreover, to fulfill an essential require-
ment of anomaly detection in real time, we intend to develop an automatic
inspector who provide full details of anomalies after it have been detected by
the multi-timeline detection system.

For future direction, we have to provide details of occurred anomalies; it is
a crucial part to fulfill potential of detection system using the multi-timeline
technique. We also plan to implement the multi-timeline representation in
computer networks of Bangkok university; however, before that we need to
examine other network features for different types of anomalies other than five
types of anomalies in this study. Applying the multi-timeline representation
in a core network or backbone network is one of our challenges, because traffic
of core network richly diverses and very dissimilars from access networks or
campus networks. Finally, we have a great desire that the multi-timeline
detection module would be applied to a hardware as a piece of network
equipment, so that the detection system using our multi-timeline technique
would run much faster than software-based system.
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[64] Daniel Barbará, Yi Li, Julia Couto, Jia-Ling Lin, and Sushil Jajodia.
Bootstrapping a data mining intrusion detection system. In Proceedings
of the 2003 ACM Symposium on Applied Computing, SAC ’03, pages
421–425, New York, NY, USA, 2003. ACM.

[65] Min Qin and Kai Hwang. Frequent episode rules for internet anomaly
detection. In Network Computing and Applications, 2004. (NCA 2004).
Proceedings. Third IEEE International Symposium on, pages 161–168,
Aug 2004.

[66] M. Otey, S. Parthasarathy, A. Ghoting, G. Li, and S. Narravula. To-
wards nic-based intrusion detection. In Proceedings of the ninth ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 723–728. ACM Press, 2003.

[67] Levent Ertz, Eric Eilertson, Aleksandar Lazarevic, Pang ning Tan,
Vipin Kumar, Jaideep Srivastava, and Paul Dokas. Minds – minnesota
intrusion detection system.

[68] Anukool Lakhina, Mark Crovella, and Christophe Diot. Mining anoma-
lies using traffic feature distributions. SIGCOMM Comput. Commun.
Rev., 35(4):217–228, August 2005.

125



[69] Jimeng Sun, Yinglian Xie, Hui Zhang, and Christos Faloutsos. Less is
more: Compact matrix decomposition for large sparse graphs, 2007.

[70] Wenke Lee and Dong Xiang. Information-theoretic measures for
anomaly detection. In Security and Privacy, 2001. S P 2001. Pro-
ceedings. 2001 IEEE Symposium on, pages 130–143, 2001.

[71] Kriangkrai Limthong. Performance of interval-based features in
anomaly detection by using machine learning approach. International
Journal of Machine Learning and Computing, 4(3):292–299, June 2014.

[72] Kriangkrai Limthong, Pirawat Watanapongse, and Kensuke Fukuda.
A wavelet-based anomaly detection for outbound network traffic. In
8th Asia-Pacific Symposium on Information and Telecommunication
Technologies, 2010. APSITT 2010. International Conference on, Jun
2010.

[73] Anand Narasimhamurthy. Theoretical bounds of majority voting per-
formance for a binary classification problem. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 27(12):1988–1995, Decem-
ber 2005.

[74] Giovanni Vigna and Richard A. Kemmerer. Netstat: a network-based
intrusion detection system. Journal of Computer Security, 7(1):37–71,
January 1999.

[75] ShengYi Jiang, Xiaoyu Song, Hui Wang, Jian-Jun Han, and Qing-Hua
Li. A clustering-based method for unsupervised intrusion detections.
Pattern Recognition Letters, 27(7):802–810, May 2006.

[76] A. Kind, M.P. Stoecklin, and X. Dimitropoulos. Histogram-based traf-
fic anomaly detection. IEEE Transactions on Network and Service
Management, 6(2):110–121, june 2009.

[77] Debra Anderson, Thane Frivold, Ann Tamaru, and Alfonso Valdes.
Next generation intrusion detection expert system (NIDES), software
users manual beta-update release. Technical Report SRI-CSL-95-0,
May 1994.

[78] Ioanna Stamouli, Patroklos G. Argyroudis, and Hitesh Tewari. Real-
time intrusion detection for ad hoc networks. In In WOWMOM 05:
Proceedings of the Sixth IEEE International Symposium on a World of
Wireless Mobile and Multimedia Networks (WoWMoM05, pages 374–
380. IEEE Computer Society, 2005.

126



[79] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip
Kegelmeyer. Smote: Synthetic minority over-sampling technique. J.
Artif. Int. Res., 16(1):321–357, June 2002.

[80] Anukool Lakhina, Mark Crovella, and Christophe Diot. Diagnosing
network-wide traffic anomalies. In Proceedings of the 2004 Conference
on Applications, Technologies, Architectures, and Protocols for Com-
puter Communications, SIGCOMM ’04, pages 219–230, New York, NY,
USA, 2004. ACM.

[81] George Nychis, Vyas Sekar, David G. Andersen, Hyong Kim, and Hui
Zhang. An empirical evaluation of entropy-based traffic anomaly de-
tection. In Proceedings of the 8th ACM SIGCOMM Conference on
Internet Measurement, IMC ’08, pages 151–156, New York, NY, USA,
2008. ACM.

[82] Yoshiki Kanda, Romain Fontugne, Kensuke Fukuda, and Toshiharu
Sugawara. Admire: Anomaly detection method using entropy-based
PCA with three-step sketches. Computer Communications, 36(5):575
– 588, 2013.

[83] Selim Aksoy and Robert M. Haralick. Feature normalization and
likelihood-based similarity measures for image retrieval. Pattern Recog-
nition Letters, 22(5):563 – 582, 2001. Image/Video Indexing and Re-
trieval.

[84] J. Grossman, M. Grossman, and R. Katz. The first systems of weighted
differential and integral calculus. Archimedes Foundation, 1980.

[85] Romain Fontugne, Pierre Borgnat, Patrice Abry, and Kensuke
Fukuda. Mawilab: Combining diverse anomaly detectors for automated
anomaly labeling and performance benchmarking. In Proceedings of
the 6th International COnference, Co-NEXT ’10, pages 8:1–8:12, New
York, NY, USA, 2010. ACM.

[86] Stefan Savage, David Wetherall, Anna Karlin, and Tom Anderson.
Practical network support for ip traceback. SIGCOMM Comput. Com-
mun. Rev., 30(4):295–306, August 2000.

[87] Luis Martin Garcia. Programming with libpcap — sniffing the network
from our own application. Hackin9 Magazine, 3(2/2008), February
2008.

127



[88] John W. Eaton, David Bateman, and Soren Hauberg. GNU Octave
version 3.0.1 manual: a high-level interactive language for numerical
computations. CreateSpace Independent Publishing Platform, 2009.
ISBN 1441413006.

[89] Sousuke Amasaki and Chris Lokan. The effects of gradual weighting on
duration-based moving windows for software effort estimation. In An-
dreas Jedlitschka, Pasi Kuvaja, Marco Kuhrmann, Tomi Mnnist, Jrgen
Mnch, and Mikko Raatikainen, editors, Product-Focused Software Pro-
cess Improvement, volume 8892 of Lecture Notes in Computer Science,
pages 63–77. Springer International Publishing, 2014.

[90] Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang
Yang, Hiroshi Motoda, Geoffrey J. McLachlan, Angus Ng, Bing Liu,
Philip S. Yu, Zhi-Hua Zhou, Michael Steinbach, David J. Hand, and
Dan Steinberg. Top 10 algorithms in data mining. Knowledge and
Information Systems, 14(1):1–37, December 2007.

[91] Sergios Theodoridis and Konstantinos Koutroumbas. Pattern Recogni-
tion, Fourth Edition. Academic Press, 4th edition, 2008.

[92] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York,
NY, USA, 1 edition, 1997.

[93] Michel M. Deza and Elena Deza. Encyclopedia of Distances. Springer,
1 edition, August 2009.

[94] Aharon Bar-Hillel, Tomer Hertz, Noam Shental, and Daphna Wein-
shall. Learning a mahalanobis metric from equivalence constraints.
Journal of Machine Learning Research, 6:937–965, December 2005.

[95] T. Lavoie and E. Merlo. An accurate estimation of the levenshtein
distance using metric trees and manhattan distance. In Software Clones
(IWSC), 2012 6th International Workshop on, pages 1–7, 2012.

[96] G.T. Toussaint. On a simple minkowski metric classifier. IEEE Trans-
actions on Systems Science and Cybernetics, 6(4):360–362, 1970.

[97] Syed Masum Emran and Nong Ye. Robustness of chi-square and can-
berra distance metrics for computer intrusion detection. Quality and
Reliability Engineering International, 18(1):19–28, 2002.

128



[98] Bernhard Schölkopf, John C. Platt, John C. Shawe-Taylor, Alex J.
Smola, and Robert C. Williamson. Estimating the support of a high-
dimensional distribution. Neural Computation, 13(7):1443–1471, July
2001.

[99] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A
training algorithm for optimal margin classifiers. In Proceedings of the
fifth annual workshop on Computational learning theory, COLT ’92,
pages 144–152, New York, NY, USA, 1992. ACM.

[100] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Ma-
chine Learning, 20(3):273–297, September 1995.

[101] Nello Cristianini and John Shawe-Taylor. An introduction to support
Vector Machines: and other kernel-based learning methods. Cambridge
University Press, New York, NY, USA, 2000.

[102] K.-R. Muller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf. An
introduction to kernel-based learning algorithms. IEEE Transactions
on Neural Networks, 12(2):181–201, mar 2001.

[103] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support
vector machines. ACM Transactions on Intelligent Systems and Tech-
nology, 2:27:1–27:27, 2011. Software available at http://www.csie.

ntu.edu.tw/~cjlin/libsvm.

[104] Gavin C. Cawley and Nicola L.C. Talbot. On over-fitting in model se-
lection and subsequent selection bias in performance evaluation. Jour-
nal of Machine Learning Research, 99:2079–2107, August 2010.

[105] Kristopher Kendall. A database of computer attacks for the evaluation
of intrusion detection systems. Master’s thesis, Massachusetts Institute
of Technology, Cambridge, MA, 1999.

[106] R.P. Lippmann, D.J. Fried, I. Graf, J.W. Haines, K.R. Kendall, D. Mc-
Clung, D. Weber, S.E. Webster, D. Wyschogrod, R.K. Cunningham,
and M.A. Zissman. Evaluating intrusion detection systems: the 1998
darpa off-line intrusion detection evaluation. In DARPA Information
Survivability Conference and Exposition, 2000. DISCEX ’00. Proceed-
ings, volume 2, pages 12 –26 vol.2, 2000.

[107] John McHugh. Testing intrusion detection systems: a critique of the
1998 and 1999 darpa intrusion detection system evaluations as per-
formed by lincoln laboratory. ACM Transactions on Information and
System Security, 3(4):262–294, November 2000.

129



[108] C. Thomas, V. Sharma, and N. Balakrishnan. Usefulness of darpa
dataset for intrusion detection system evaluation. In Society of Photo-
Optical Instrumentation Engineers (SPIE) Conference Series, volume
6973 of Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, March 2008.

[109] Marina Sokolova and Guy Lapalme. A systematic analysis of perfor-
mance measures for classification tasks. Information Processing &amp;
Management, 45(4):427 – 437, 2009.

[110] Jesse Davis and Mark Goadrich. The relationship between precision-
recall and roc curves. In Proceedings of the 23rd international confer-
ence on Machine learning, ICML ’06, pages 233–240, New York, NY,
USA, 2006. ACM.

[111] C. J. Van Rijsbergen. Information Retrieval. Butterworth-Heinemann,
Newton, MA, USA, 2nd edition, 1979.

[112] Ral Rojas. Adaboost and the super bowl of classifiers a tutorial intro-
duction to adaptive boosting.

[113] Ayhan Demiriz, KristinP. Bennett, and John Shawe-Taylor. Linear
programming boosting via column generation. Machine Learning, 46(1-
3):225–254, 2002.

[114] Yoav Freund. An adaptive version of the boost by majority algorithm.
Machine Learning, 43(3):293–318, 2001.

[115] Johan Mazel, Romain Fontugne, and Kensuke Fukuda. A taxonomy
of anomalies in backbone network traffic. In International Wireless
Communications and Mobile Computing Conference, IWCMC 2014,
Nicosia, Cyprus, August 4-8, 2014, pages 30–36, 2014.

130


