
A Computational Model and
Algorithms to Utilize GPUs for

Discrete Problems
by

Atsushi Koike

Dissertation

submitted to the Department of Informatics

in partial ful�llment of the requirements for the degree of

Doctor of Philosophy

SOKENDAI (The Graduate University for Advanced Studies)

September 2015

Committee
Zhenjiang Hu (Chair) National Institute of Informatics / Sokendai

Kunihiko Sadakane The University of Tokyo

Kento Aida National Institute of Informatics / Sokendai

Takayuki Aoki Tokyo Institute of Technology

Ken-ichi Kawarabayashi National Institute of Informatics / Sokendai

Takeaki Uno National Institute of Informatics / Sokendai

iii

Acknowledgments

I would like to thank my Ph.D. advisor in the University of Tokyo, Kunihiko Sadakane

for providing a wonderful research environment and sharing his wisdom with me. I

really enjoyed doing my ph.D. research and had a magni�cent time in Sokendai and the

University of Tokyo. I am very grateful to the sta� and the students of Mathematical

Informatics 2nd and 7th Laboratories in the University of Tokyo for sharing advanced

research topics. Their talks are always logical and well-structured, and I learned much

from them.

I would like to thank my Ph.D. advisor in Sokendai, Zhenjiang Hu for his enthusiastic

support. I had many opportunities to give a talk and obtained various insights through

the inspiring discussions. I would like to thank the members of the IPL Seminar, which

is organized by Hu’s Laboratory, for their helpful support and encouragement. In

particular, Kiminori Matsuzaki and Akimasa Morihata taught me many things about

Algebra of Programming, and Soichiro Hidaka, Akimasa Morihata, and Shigeyuki Sato

gave me insightful and essential comments for my ph.D. research. I am grateful to

Le-Duc Tung for taking the ph.D. journey together.

I would like to thank the members of my dissertation committee, Kento Aida,

Takayuki Aoki, Ken-ichi Kawarabayashi, and Takeaki Uno for insightful advice.

I would also like to thank Asanobu Kitamoto, Kenichi Miura, Kento Aida, and

Michihiro Koibuchi for providing well-prepared classes in Sokendai.

Finally, I would like to thank my parents for always being supportive.

v

謝辞

まず，東京大学での指導教員である定兼邦彦教授に感謝いたします．素晴らしい研究

環境を提供していただき，また，多くのことを教えていただき，本当にありがとうご

ざいました．先生のおかげで有意義で楽しい研究生活を送れました．また，東京大学

大学院情報理工学系研究科の数理第２研究室，数理第７研究室の皆様に感謝いたしま

す．様々な最先端の話題を論理的かつわかりやすく話していただき，多くのことを学

ばさせていただきました．

総合研究大学院大学での指導教員である胡振江教授に感謝いたします．常に熱心

に指導いただき，本当にありがとうございました．研究発表の機会を多く作っていた

だき，そこで有意義な議論を行えたことにより，多くの知見を得ることができまし

た．また，胡教授が開催されているIPLセミナーのメンバーの皆様からも多くの有意

義な助言をいただきました．特に松崎公紀准教授，森畑明昌講師からはプログラムの

数理について多くのことを教えていただきました．また，日高宗一郎助教，森畑明昌

講師，佐藤重幸博士からは博士論文に関し多くの貴重なコメントをいただきました．

ありがとうございました．博士課程の厳しい道のりを共に歩んできたLe-Duc Tungに

も感謝します．

本論文をまとめるにあたり，有益なご助言をいただいた審査委員の合田憲人教授，

青木尊之教授，宇野毅明教授，河原林健一教授に感謝いたします．

総研大において素晴らしい授業を提供していただいた北本朝展准教授，三浦謙一

名誉教授，合田憲人教授，鯉渕道紘准教授に感謝いたします．

最後にいつも自分を暖かく見守ってくれる両親に感謝します．いつも心配をかけ

てばかりでごめんなさい．

vii

Abstract

Graphics Processing Units (GPUs) were originally designed for e�cient processing of

graphics, but nowadays, they are widely used for a variety of computation applications

due to their powerful computational capabilities. Nevertheless, it is becoming more

di�cult to extract the optimal performance out of GPUs because it is necessary to take

the complicated architectures called SIMT into account to develop fast algorithms. To

tackle the issue, we propose a GPU-based computational model and develop some

basic algorithms.

Asymptotic complexity analysis is very useful to develop e�cient discrete algo-

rithms. We propose a GPU-based computational model that focuses on the analysis.

Our model called AGPU abstracts the GPU’s SIMT architecture using only three

parameters and takes account of many factors a�ecting the performance such as

coalescing, bank con�ict, multithreading. Moreover we reveal the relations between

the AGPU model and other computation models including BSP model and I/O model.

Therefore, we can utilize �ndings on other models for GPU-based algorithms.

We next analyze and develop some basic algorithms for lists including reduction,

pre�x scan, and comparison sorting. We not only provide e�cient GPU-based

algorithms, but also show how to develop the algorithms using the AGPU model. We

analyze the complexity of existing algorithms and the computational lower bound, and

�nd the performance bottlenecks of the algorithms from the results. Then, we develop

new algorithms by removing the bottlenecks. We propose a time and I/O-optimal

reduction algorithm for non-commutative operators and an I/O-optimal comparison

sorting algorithm. Using our reduction algorithm, we can solve the maximum segment

sum problem up to 3.9 times faster than the existing algorithm and our comparison

sorting algorithm runs up to 1.9 times faster than the existing algorithm.

ix

概要

GPUは元々はグラフィック処理のための専用プロセッサとして開発されたが，今日で

は，その高い並列計算能力を活かし，グラッフィック処理以外の多くの処理にGPUが

活用されている．しかし，アルゴリズムを設計する際，SIMTと呼ばれる独特なアーキ

テクチャを考慮する必要があるため，最適なパフォーマンスを得ることは非常に難し

い．この問題に対処するため，本論文では，GPU向けの計算モデルおよび幾つかの基

本アルゴリズムを提案する．

離散アルゴリズムの開発では，アルゴリズムの有用性を見積もるために，一般に

計算複雑度の漸近解析が行われる．本論文ではGPUアルゴリズムの漸近解析を行うた

めの計算モデルとしてAGPUモデルを提案する．本モデルは3つのパラメータのみを用

いて，GPUのSIMTアーキテクチャを適切に考慮できる．また，AGPUモデルとPRAMモ

デル，BSPモデル，I/Oモデルとの関係を明らかにする．これにより，GPUアルゴリズ

ムを設計する際に他の計算モデルでの知見を活用することができる．

また，本論文では，リストに対する基本処理であるリダクション，プレフィック

ススキャン，ソートの計算量解析と新規アルゴリズムの提案を行う．効率的なアルゴ

リズムを提案するだけでなく，どのように効率的なアルゴリズムを開発するかについ

ても示す．アルゴリズムの計算量および計算量下界を求めることで，アルゴリズムの

ボトルネックを発見し，ボトルネックを取り除くことにより新しいアルゴリズムを提

案する．具体的には，時間計算量およびI/O計算量が最適な非可換演算子でのリダク

ションアルゴリズム，およびI/O計算量が最適な比較ソートアルゴリズムを提案する．

提案されたリダクションアルゴリズムで最大部分和問題を解くと，既存アルゴリズム

よりも最大で3.9倍高速であり，また，提案された比較ソートアルゴリズムは既存アル

ゴリズムと比較し，最大で1.9倍高速である．

xi

Contents

List of Figures xv

List of Tables xix

List of Algorithms xxi

1 Introduction 1
1.1 Background . 2

1.2 Our Contributions . 3

1.3 Outline . 5

2 Preliminaries 7
2.1 Introduction . 7

2.2 Computer Architectures . 7

2.2.1 Von Neumann Architectures . 7

2.2.2 Threads . 11

2.2.3 Memory . 11

2.2.4 The Classic Performance Equation 13

2.2.5 Parallel Processing for Sequential Programs 14

2.3 Parallel Programming . 16

2.3.1 Multithreading . 16

2.3.2 Multiprocessors . 17

2.3.3 Flynn’s Taxonomy . 17

2.3.4 Costs of Parallel Computation 19

xii Contents

2.4 GPUs . 20

2.4.1 Architectures . 21

2.4.2 Multiprocessors . 23

2.4.3 CUDA . 25

2.5 Parallel Computational Models . 28

2.5.1 PRAM Model . 28

2.5.2 BSP Model . 29

2.6 GPU Models . 30

2.6.1 DMM and UMM . 30

2.6.2 PEM Model . 32

2.7 I/O Model . 32

2.8 Short Summary . 32

3 Parallel Computation Models for GPUs 35
3.1 Introduction . 35

3.2 AGPU Model . 36

3.2.1 Architecture . 36

3.2.2 Metrics . 40

3.2.3 The E�ect of Multithreading . 40

3.2.4 Discrepancy Between the AGPU Model and Real Architectures 41

3.2.5 Notation for Pseudo-codes . 43

3.3 Relations between the AGPU Model and Other Computational Models 44

3.3.1 PRAM Model . 44

3.3.2 Bulk Synchronous Parallel Model 45

3.3.3 I/O Model . 45

3.3.4 Multithreading in AGPU . 49

3.4 Guideline for Developing E�cient Algorithms Using the AGPU Model 50

3.4.1 Implementations Using CUDA 50

3.5 Short Summary . 51

4 Reduction Algorithms 53
4.1 Introduction . 53

4.2 De�nition . 54

Contents xiii

4.3 Reduction as a Programming Framework 54

4.3.1 Lists . 54

4.3.2 List Homomorphism . 56

4.3.3 Higher Order Functions on Lists 57

4.3.4 List Homomorphism Lemma . 58

4.4 Examples of Reduction . 58

4.4.1 Maximum Segment Sum Problem 59

4.5 Reduction with Commutative Operators 61

4.5.1 Tree-based Algorithm . 62

4.5.2 Cascading Algorithm . 66

4.6 Reduction with Non-commutative Operators 69

4.6.1 Tree-based Algorithm for Non-commutative Operators 69

4.6.2 Matrix-based Algorithm . 70

4.6.3 Pipeline Algorithm . 75

4.7 Summary of Complexities and Multiplicity 80

4.8 Experimental Evaluation . 80

4.8.1 Running Time . 80

4.8.2 Maximum Segment Sum . 81

4.9 Short Summary . 82

5 Pre�x Scan Algorithms 85
5.1 Introduction . 85

5.2 De�nition . 86

5.3 Applications of Pre�x Scan . 86

5.3.1 Stream Compaction . 87

5.4 Pre�x Scan Algorithms . 88

5.4.1 Matrix-based Algorithm . 88

5.5 Experimental Evaluation . 94

5.6 Short Summary . 95

6 Sorting Algorithms 97
6.1 Introduction . 97

6.2 Analyses of Known Parallel Sorting Algorithms 98

xiv Contents

6.2.1 Bitonic Sort . 98

6.2.2 GPU-Warpsort . 100

6.3 Sorting Lower Bound on the AGPU Model 104

6.4 I/O-optimal Sorting Algorithms . 105

6.4.1 Overview of the Algorithm . 105

6.4.2 Initialization . 107

6.4.3 Column-wise Merge . 108

6.4.4 Subarray Partition . 110

6.4.5 Row-wise Merge . 111

6.4.6 The Complexities and the Amount of Memory Used 113

6.4.7 E�ect of Multiplicity . 114

6.5 Experimental Evaluation . 114

6.5.1 Parameter Tuning . 114

6.5.2 Comparison with Thrust . 116

6.6 Short Summary . 116

7 Conclusion 119
7.1 Summary of the Dissertation . 119

7.2 Future Work . 120

Bibliography 123

xv

List of Figures

2.1 Block diagram of a simple computer architecture 8

2.2 Work �ow of the the instruction that loads a[2] in the memory unit.

Some modules are omitted. Dotted boxes represent registers or memory

units and (1), (2), . . . , (5) represent the stage numbers. 10

2.3 An example of pipelining. 15

2.4 An example of superscalar. 15

2.5 Examples of UMA architectures. 18

2.6 Examples of NUMA architectures. 18

2.7 Brief sketch of GPU architectures . 22

2.8 Brief sketch of the multiprocessor . 22

2.9 An example of shared memory banks 23

2.10 SIMT . 24

2.11 An example of multithreading . 25

2.12 CUDA overview . 26

2.13 CUDA’s hierarchy of threads . 27

2.14 How to emulate the grid using a GPU 27

2.15 PRAM model . 28

2.16 BSP model . 29

2.17 DMM and UMM . 31

2.18 Memory access on the DMM and the UMM. When four cores access

addresses 0, 1, 5, and 10, the DMM takes ` + 1 unit times and the UMM

takes ` + 2 unit times, where ` is the latency of the memory access. . . 31

2.19 I/O model . 33

xvi List of Figures

3.1 The architecture of AGPU model . 37

3.2 Examples of global memory accesses. Each block stores four words.

(a) All instructions coalesce. (b) These instructions do not coalesce

because the words are spread out among four blocks. 38

3.3 Examples of shared memory accesses. Each column of the shared

memory unit represents a memory bank, and each cell can store one

word. (a) Bank con�icts do not occur since no banks are accessed by

multiple cores. (b) The instruction is divided into two instructions

since the second column is accessed by two cores (bank con�ict). . . . 39

3.4 BSP model simulated by the AGPU model 46

4.1 An example of the merge operation for the maximum segment problem 60

4.2 Outline of tree-based reduction algorithm. 62

4.3 The procedure of each block for tree-based reduction algorithm. 63

4.4 Input sequence arranged as a matrix with p columns. 67

4.5 The procedure of each block for modi�ed tree-based reduction algorithm. 70

4.6 Input sequence arranged as a matrix with b columns. 72

4.7 Input sequence arranged as a matrix with b rows. 73

4.8 Examples of memory allocation for the matrix-based algorithm; (a)

four-way bank con�icts occur, (b) no bank con�icts occur. 75

4.9 Memory assignment of the pipeline algorithm at b = 4. 76

4.10 An example of the procedure of the pipeline algorithm. 76

4.11 An example of the shared memory layout to avoid bank con�icts. . . . 77

4.12 Running time of several reduction algorithms. 81

4.13 Running time of the MSS algorithms. 82

5.1 An example of stream compaction . 87

5.2 The process to calculate stream compaction 88

5.3 The outline of pre�x scan algorithm . 89

5.4 An example of the data alignment . 90

5.5 Bandwidth of the pre�x scan algorithm with varying number of row in

the matrix . 95

6.1 The bitonic sorting network for 8 elements 99

List of Figures xvii

6.2 Explanatory diagram showing how to merge two sorted sequences A,B 101

6.3 An example of the ranks for 8 distinct elements 101

6.4 The proof of the correctness of the process that merges two sorted

sequences. The gray-colored regions represent elements in the regions

are already copied to the shared memory. 102

6.5 Global memory accesses to merge eight sorted sequences; (a) GPU-

Warpsort, (b) our algorithm. In this example, our algorithm merges

eight sequences at a time. In the GPU-Warpsort, the number of the

global memory accesses for each element is six, whereas the number is

two in our algorithm. 106

6.6 Column-wise and Row-wise merge . 107

6.7 A heap used in the merge process . 108

6.8 The number of the global memory accesses for each value of d 115

6.9 Sorting rate for each value of d . 115

6.10 Sorting rate for our algorithm and Thrust comparison-based sorting . . 116

6.11 The number of global memory accesses for our algorithm and Thrust . 117

xix

List of Tables

2.1 Comparison of each generation of GPUs. 21

4.1 Complexities and multiplicity of reduction algorithms on AGPU(p,b,M).

Here n is the number of elements to be reduced. We assume p = o(n).
Cascading cannot be used with non-commutative operator, whereas

the others can. 80

5.1 Complexities and multiplicity of the pre�x scan algorithm adopted by

Thrust on AGPU(p,b,M). Here n is the number of input elements. We

assume n is much larger than the number of cores p. 91

6.1 Complexities of comparison-based sorting algorithms on the AGPU

model. Here n is the number of elements to be sorted, p is the number

of total cores, b is the number of cores in a multiprocessor, M is the

size of the shared memory in a multiprocessor. We assume n = Ω(b2). . 98

xxi

List of Algorithms

4.1 Calculate reduction using the tree-based algorithm 64

4.2 Calculate reduction using the cascading algorithm 68

4.3 Calculate reduction using the modi�ed tree-based algorithm 71

4.4 Calculate reduction using the matrix-based algorithm 74

4.5 Calculate reduction using the pipeline algorithm 78

4.6 Calculate local reduction using the pipeline algorithm 79

5.1 Calculate pre�x scan . 92

5.2 Calculate block pre�x scan . 93

5.3 Calculate block pre�x scan (Continued) 94

1

1
Introduction

Graphics Processing Units (GPUs) were originally designed for e�cient processing of

graphics, but nowadays, they are widely used for a variety of computation applications

due to their powerful computational capabilities. This approach is known as General-

purpose GPU (GPGPU) or GPU computing. Nevertheless, it is becoming more di�cult

to extract the optimal performance out of GPUs because it is necessary to take the

complicated architectures into account to develop fast algorithms. It is a serious problem

especially for discrete algorithms because the memory access of the algorithms tends

to be done irregularly and it prevents the algorithms from utilizing the computational

capabilities of GPUs.

This dissertation aims to make it possible to easily develop discrete algorithms

that fully utilize the computational capability of GPUs. To reach the goals, we �rst

propose computational models that abstract the essence of GPU architectures. The

model makes it easy to evaluate the e�ciency of GPU-based algorithms. Moreover, we

can �gure out the computational lower bound of various problems using the model,

which is useful to �nd the bottleneck of algorithms. After that, we develop e�cient

2 Chapter 1. Introduction

algorithms for some basic problems using our model. These algorithms are useful to

design e�ective discrete algorithms.

1.1 Background

Parallel architectures are becoming more important as processor clock speeds are

beginning to reach a limit. In the near future, performance growth will be driven more

and more by increased parallelization [1]. If the performance growth is driven by clock

speeds, most applications bene�t from the growth without any changes. However,

in order to exploit the improved parallel architectures, new parallel algorithms are

required.

GPUs are used for a variety of parallel computation applications because they are

equipped with high memory bandwidth and high parallelism. The memory bandwidth

has reached 337GB/s and the number of cores per device has reached 3072 in the latest

commercial model from NVIDIA. GPUs are also utilized by a lot of supercomputers,

including Titan, which was named No.1 on the Top500 list in November 2012. Moreover,

GPUs operate with signi�cantly low power consumption. On the Green500 list [2] in

November 2014, nine of top 10 supercomputers operate with GPUs.

Since GPUs have special architectures for e�cient processing with many cores, we

have to consider the architectures carefully to develop fast algorithms. NVIDIA [3]

provides a parallel computing platform and programming model called Compute

Uni�ed Device Architecture (CUDA). Although it enables us to develop programs that

can be executed on various GPU architectures, this model is less useful to obtain the

optimal performance.

In order to estimate the e�ciency of sequential discrete algorithms, we often

analyze asymptotic complexities of the algorithms on Random-Access Machine (RAM)

model. Although we cannot estimate the actual running time from the complexities, it

is very useful for some reasons. Firstly, the complexities are independent from the

speci�cation of actual machines because the RAM is a unifying abstracted machine

for all sequential machines. Moreover, this indicates that each problem has the

computational lower bound. Based on comparison of complexities with the lower

bound, we can �nd performance bottlenecks of algorithms. Secondly, we can analyze

the e�ciency of algorithms without executing programs. Thirdly, we can predict

1.2 Our Contributions 3

how parameters a�ect the performance. Consequently, we can focus on designing

algorithms separately from implementing and tuning the codes.

On the other hand, no unifying machines for all parallel machines exist because

parallel machines have a wide variety of architectures. Parallel Random-Access

Machine (PRAM) [4] model, which consists of multiple cores and a single shared

memory unit, is the standard computational model for the design of parallel algorithms.

However, algorithms developed on the model do not always show good performance

on GPUs because the PRAM is substantially di�erent from actual GPU architectures.

For example, b GPU-cores in a multiprocessor can read contiguous b elements in

the shared memory in parallel, namely, the complexity is 1 as is the case with the

PRAM models. However, if b elements are not stored contiguously, the cores cannot

always read them in parallel, namely, the complexity varies from 1 to b. Thus, parallel

computational models specialized in GPUs are required.

Some computational models for GPUs have been proposed [5, 6]. However, existing

models assume that a GPU is a SIMD machine. Therefore, we cannot take account of

multithreading, which is one of the most important features of GPUs. Moreover, the

relations between the models and other computational models are not clear.

On the other hand, some models [7, 8] aim to predicate the actual running time

on GPUs. Using the models, we can evaluate the running time without executing

programs on real GPUs. It is useful to tune the codes.

1.2 Our Contributions

In this dissertation, we propose a novel parallel computational model called AGPU.

The AGPU model abstracts the GPU’s SIMT architecture using only three parameters.

The AGPU model focuses on analyzing asymptotic computational complexities of

GPU-based algorithms. The purpose of the analyses using the AGPU model is to grasp

where the bottleneck for performance is. Therefore the AGPU model is simple and able

to take account of a lot of factors a�ecting the performance such as coalescing, bank

con�ict, multithreading. Complexities on GPUs depend on device speci�cations, but

they are within a constant factor of complexities on the AGPU model. Moreover,

the AGPU model has a lot of relations to other existing models, which is useful for

designing e�cient algorithms.

4 Chapter 1. Introduction

We next analyze and develop some basic algorithms for lists including reduction,

pre�x scan, and comparison sorting. We not only provide e�cient GPU-based

algorithms, but also show how to develop the algorithms using the AGPU model. We

analyze the complexities of existing algorithms and the computational lower bound in

order to �nd the performance bottlenecks of the algorithms. Then, we develop new

algorithms by removing the bottlenecks.

First, we analyze two standard reduction algorithms [9]; the tree-based algorithm

and the cascading algorithm, and give the evidence that the cascading algorithm runs

faster than the tree-based algorithm. Namely, the time complexity of the tree-based

algorithm is larger than that of the cascading algorithm. Though the cascading

algorithm has the optimal time and I/O complexities, it cannot be used for non-

commutative operators. We therefore proposed the pipeline algorithm. It also has the

optimal time and I/O complexities. Many problems can be calculated as reduction with

a non-commutative operator. Maximum segment sum problem is one of the problems

and it is widely used for practical applications. The pipeline algorithm solves the

maximum segment sum problem up to 3.9 times faster than the tree-based algorithm

and up to 29 times faster than the sequential algorithm on CPU. In addition, we analyze

the matrix-based algorithm to show the power of the AGPU model. Although the

algorithm has the optimal time and I/O complexities on SIMD architectures, the

algorithm is slow on GPUs. We can easily �nd the reason using the AGPU model; the

reason is the small multiplicity. Then, we measure the actual running time of the

algorithms and check we can obtain the expected performance.

Next, we analyze the time and I/O complexities of the fastest pre�x scan algo-

rithm [10] using the AGPU model. The algorithm has a tuning parameter α . We show

that the parameter makes tradeo� between the time complexity and the multiplicity.

Then, we measure the actual running time of the algorithm with various parameter

values on the real GPUs and check we can obtain the expected performance.

Lastly, we discuss comparison sorting algorithms. Though GPU-Warpsort [11] is

one of the fastest comparison sort algorithms, the I/O complexity is larger than the

lower bound. We therefore propose an I/O optimal comparison sorting algorithm. We

show our algorithm is fast not only in theory but also in practice. Our comparison

sorting algorithm runs up to 1.9 times faster than GPU-Warpsort.

1.3 Outline 5

1.3 Outline

Chapter 2 presents some basic preliminaries on computer architectures, parallel

programing, and GPUs. In Chapter 3, we describe our computational model AGPU.

We explain the architecture and the metrics to evaluate GPU-based algorithms. We

also discuss the relations between the AGPU model and other computational models.

Chapter 4 deals with reduction algorithms. After analyzing the complexities of existing

algorithms, we give a novel and e�cient algorithm for reduction with non-commutative

operators. Chapter 5 deals with pre�x scan algorithms. We prove the algorithm has a

tradeo� between the time complexity and the e�ect of multithreading on the AGPU

model, and check that the actual running time shows the same tendency. Chapter 6

deals with comparison sorting algorithms. We show the I/O complexity of existing

algorithms are not optimal and develop a new algorithm that has the optimal I/O

complexity. Chapter 7 concludes the dissertation.

7

2
Preliminaries

2.1 Introduction

In this chapter, we provide some preliminaries, which are necessary for later discussion.

After giving a brief introduction to computer architectures, we explain parallel

programming. Then we present GPU architectures. After that, we explain some

parallel computation models and GPU models. Finally, we introduce I/O model [12],

which is useful to evaluate the number of I/Os.

2.2 Computer Architectures

2.2.1 Von Neumann Architectures

Digital computers are often characterized by the ability to execute programs that are

stored in memory. These computers can execute various user programs without any

reconstruction of the hardware. They are called the Von Neumann architectures because

8 Chapter 2. Preliminaries

Computer	

CPU	

Control Unit
and ALU	

Memory Unit	

Registers	

Bus	

Bus	
 Bus	

Figure 2.1: Block diagram of a simple computer architecture

this concept was summarized by Von Neumann [13] during development of EDVAC.

We �rst introduce some technical terms of the Von Neumann architectures. For

more details, please refer to the standard textbook by Patterson and Hennessy [14]. In

order to introduce some terminologies, we consider a simple computer that consists of

one central processing unit (CPU) and one memory unit. Each byte in the memory unit

has a distinct address to access it. Programs and data are stored in the memory unit.

We do not consider how to copy them to the memory unit. The CPU consists of an

arithmetic logic unit (ALU), registers, and a control unit. The ALU carries out arithmetic

and logic operations. The registers stores data used by the control unit and the ALU.

The control unit sends control signals to the ALU, the registers, and the memory unit.

Figure 2.1 illustrates the architecture.

Transmission paths between components are called buses. Buses fall into three

types: data buses, address buses, and control buses. The data buses transfer data to

which the ALU carries out the arithmetic and logic operations. The address buses

transfer memory addresses in the memory unit. The control buses transfer signals

to control the ALU, the registers, and the memory unit. In general, if all data buses

and address buses consist of at least 64 parallel electrical wires, the word size of the

computer is 64-bit. In other words, a 64-bit computer can always transfer a word of 64

2.2 Computer Architectures 9

bits in parallel. The voltage of a wire represents a bit value. If the voltage is larger than

some threshold, it represents 1, otherwise, it represents 0.

A program is a sequence of instructions. Each instruction fetched by the CPU

consists of a operation code and operands. The operation code indicates an operation

the CPU carries out, and the operands indicate the addresses of the words to which

the operation is performed. After the computer is booted, the CPU �rst reads a

predetermined address to fetch the �rst instruction, and executes the instruction. After

that, it fetches the next adjacent instruction unless the current instruction is the jump
instruction. If the current instruction is the jump instruction, the CPU fetches the

instruction whose address is speci�ed by the operand of the jump instruction. The

CPU has a dedicated register to store the address of the current instruction. It is called

a program counter (PC). If the size of instructions is the same as the word size (64 bits =

8 bytes), the value of PC is incremented by eight after executing every instruction

except the jump instruction.

The computer runs in synchronization with a clock. Each bit in the registers stores

a value by keeping the output voltage of a circuit called �ip-�op, and the voltages can

be updated once at every tick of the clock. We can consider the voltages represent a

state of the computer, and the execution of programs proceeds by repeatedly updating

the voltages.

Each instruction takes several clock cycles to execute. For example, we consider an

implementation of “load” instruction. Suppose the computer loads 64-bit element a[2]

in the memory unit to register R1, where the address of the array (&a[0]) is stored

at register R2 and the value 16 = 8(bytes) × 2 is stored at register CONST16. The

execution is divided into �ve stages, each of which is executed in one clock cycle.

1. Fetch The instruction pointed by the PC is transferred to register IR.

2. Decode The control unit reads register IR and calculates control signals to execute

the load instruction. After that, it writes the values to registers. Namely, the

control signal to the ALU is set to “addition”, two operands of the ALU are set to

R2 and CONST16, and the �nal destination address of a[2] is set to R1.

3. Execute Due to the register values above, the ALU outputs the addition of R2 and

CONST16, and the output value (&a[2]) is written to register ALUOUT.

10 Chapter 2. Preliminaries

Computer	

PC	

Instruction
memory	

Control Unit	

Instruction IR	

Address

RA1	

Read
addr1	

RA2	

Read
addr2	

WA	

Write
addr	

CONST16	

Read
data1	

Read
data2	

Write
data	

(1) “load R2+16 to R1”	

(2) PC+8	

(2) R2	

(2) CONST16	
 (2) R1	

ALU	

(3) &a[0]	

(3) 16	

(2) “addition”	

AOP	
 ALUOUT	
 MOP	

(3) &a[2]	

(2) “read”	

Read
addr	

Operation	

Read
data	
MDR	

(4) a[2]	
(5) a[2]	

Data memory	
Registers	

(result)	

&a[0]	

R1	

R2	

Op	

Figure 2.2: Work �ow of the the instruction that loads a[2] in the memory unit.

Some modules are omitted. Dotted boxes represent registers or memory units and

(1), (2), . . . , (5) represent the stage numbers.

4. Data Access The value stored in the address pointed by register ALUOUT is

transferred to register MDR.

5. Write Back The value stored at MDR is transferred to the �nal destination address

R1.

Figure 2.2 illustrates the work �ow. In this �gure, some modules are omitted. Dotted

boxes represent registers or memory units. Note that this implementation takes much

time to execute the “Data Access” stage in practice. Since each stage basically needs to

be done in one clock cycle, the clock cycle becomes large.

Other instructions can also be executed in at most �ve clock cycles. A set of

instructions supported by a computer is called an instruction set, or an instruction

2.2 Computer Architectures 11

set architecture (ISA). The set includes arithmetic and logic operations and memory

accesses in general.

When the computer sequentially executes many instructions, a technique called

pipelining improves the performance. We will discuss it later.

2.2.2 Threads

As can be seen from the previous section, the state of the computer is determined by

the values of the registers including the program counter. The computer can execute

another program by evacuating the state of the current program and loading the state

of the other program. This is called a context switch, and each state to be switched is

called a context in this dissertation. Computers usually support the context switch.

In many cases, one context is assigned to a program called operating system (OS),
and the OS manages the other contexts in cooperation with the computer hardware.

Contexts managed by the OS are called threads. Multithreading is de�ned as dividing a

program into multiple threads. A Sequential program is de�ned as a program that

consists of a single thread. If the CPU executes multiple threads utilizing the context

switch, we say that the threads are concurrently executed.

In some architectures, the contexts are managed by the hardware. In this case, the

mechanism is called hardware multithreading.

Using multiple threads, the computer can utilize the hardware resource more

e�ciently in general. For example, when a thread waits for something, the computer

can execute another thread.

2.2.3 Memory

Since memory access instructions take more time than arithmetic instructions in

general, using appropriate memory leads to high performance of computation. Since

memory systems have a tradeo� between the access speed and the amount, the

registers and the memory unit use di�erent types of memory. In many cases, the

register is implemented from SRAM to achieve fast memory access, and the memory

unit is implemented from DRAM to obtain large amount of memory. We �rst explain

SRAM and DRAM, and then, we introduce caches to improve the performance.

12 Chapter 2. Preliminaries

SRAM

SRAM is memory that uses a circuit called �ip-�op to store one bit. It provides fast

memory access, but low capacity. It is a volatile memory, that is, data in the memory is

lost when the computer shuts down. SRAM is mainly used for the registers.

DRAM

DRAM is memory that uses capacitors, each of which stores one bit. It provides larger

capacity than SRAM, but the memory access is slow. DRAM is also a volatile memory.

Usually, DRAM works with di�erent frequency from the CPU. During the past decade,

DDR SDRAM is mainly used. DDR SDRAM can transfer a set of bits twice per clock

cycle. For example, when the clock frequency is 2.6GHz and the bandwidth is 320 bits,

the transfer rate is 2.6 × 320 × 2 = 1664(Gbits/sec) = 208(GB/sec). DRAM is mainly

used for the memory unit. To obtain large bandwidth, a DRAM unit often consists of

several memory banks.

When a CPU accesses the DRAM, the CPU sends the control signal to DRAM.

DRAM requires time to start the data transfer. This waiting time is called latency, and

it signi�cantly a�ects the performance.

A DRAM bank consists of multiple rows. When a CPU accesses a row, the CPU has

to activate the row in advance. The read instruction comprises the following three

steps:

1. Activate The row that the data belong to is activated,

2. Read The data are transferred to the CPU,

3. Precharge The row that the data belong to is deactivated.

The activation takes time. Moreover, unless the row is precharged, other rows cannot

be activated. The precharge also takes time.

To reduce the latency, DRAM usually supports burst access. Thanks to the burst

access, several contiguous words in the same row can be transferred by an instruction,

where the activation and the precharge are done only once.

2.2 Computer Architectures 13

Caches

Many architectures equip caches to reduce the memory access latency. Caches can

store small amount of data originally stored in the memory unit. Caches are usually

implemented from SRAM. The current computer systems equip a variety of caches.

When we emphasize the fact that the cache is for the main memory, it is called an L1
cache. A computer often has two separate caches for instructions and data. A cache for

instructions is called an instruction cache, and a cache for data is called a data cache.

Experientially, programs have two types of localities:

Temporal locality if an element is accessed, it tends to be accessed again soon.

Spatial locality If an element is accessed, elements close to the element tend to be

accessed soon.

Caches take advantage of the property. The accessed element and elements close to

the element are stored in the cache. Namely, the addresses of the memory unit are

divided into blocks with contiguous elements, and the block that the element belongs

to is transferred to the cache. This transfer can be e�ectively done using burst access

of DRAM. Moreover, usually, the CPU does not control this transfer. Instead, the

dedicated module called a DMA controller controls it. In other words, the CPU does not

have to wait for the transfer to be complete.

2.2.4 The Classic Performance Equation

The running time of a program is written as follows:

Running time =
#(Clock cycles)

Clock frequency

,

where #(Clock cycles) represents the number of clock cycles required to execute the

program. We de�ne Clock cycles per instruction (CPI) as an average number of clock

cycles that a computer requires to execute one instruction. Then, we have

#(Clock cycles) = #Instructions × CPI,

14 Chapter 2. Preliminaries

where #Instructions represents the number of instructions fetched by the computer.

Note that the CPI depends on both the computer and the program. Therefore, we have

Running time =
#Instructions × CPI

Clock frequency

.

Conventionally, software developers focus on reducing the number of instructions of

sequential programs, and hardware developers focus on reducing the CPI and increasing

the clock frequency. In spite of the fact that parallel processing is useful to reduce the

CPI especially for multithreaded programs, hardware developers have applied parallel

processing only to sequential programs. However, this approach is beginning to reach

a limit. Nowadays, software developers have to provide multithreaded programs, to

which hardware developers apply parallel processing.

We �rst explain parallel processing for sequential programs, and then, introduce

some techniques for multithreaded programs. From now on, when the CPI is reduced

to 1/x , we say the improvement of the CPI is x .

2.2.5 Parallel Processing for Sequential Programs

Pipelining

If each stage of the instructions is computed by a distinct module, the stages can be

executed in parallel. This technique is called pipelining. Figure 2.3 shows an example.

If the execution of a instruction is divided into �ve stages, the improvement of the CPI

is up to �ve.

Each stage always needs to be executed in one clock cycle to obtain the best

performance. The situation when a stage is not ready to execute is called a hazard.

For example, when an instruction refers an element written back by the previous

instruction, the CPU has to wait for completion of the previous instruction. Thus,

a hazard occurs. This is called a data hazard. Another example is a control hazard,

which occurs when the address of the instruction fetched next depends on the result of

the current instruction. When a hazard occurs, the CPU has to wait until the stage

becomes ready to execute. It is called a pipeline stall.

2.2 Computer Architectures 15

IF	
 ID	
 EXE	
 MEM	
 WB	
Instruction #1	

Time	

IF	
 ID	
 EXE	
 MEM	
 WB	

IF	
 ID	
 EXE	
 MEM	
 WB	

IF	
 ID	
 EXE	
 MEM	
 WB	

IF	
 ID	
 EXE	
 MEM	
 WB	

Instruction #2	

Instruction #3	

Instruction #4	

Instruction #5	

Figure 2.3: An example of pipelining.

IF	
 ID	
 EXE	
 MEM	
 WB	
Instruction #1	

Time	

IF	
 ID	
 EXE	
 MEM	
 WB	

IF	
 ID	
 EXE	
 MEM	
 WB	

IF	
 ID	
 EXE	
 MEM	
 WB	

IF	
 ID	
 EXE	
 MEM	
 WB	

Instruction #2	

Instruction #3	

Instruction #4	

Instruction #5	

Figure 2.4: An example of superscalar.

Superscalar

If the word size of the computer is 64 bits and the length of a instruction is 32 bits,

the CPU can fetch two instructions in parallel. Similarly, if the ALU can carry out

operations to two 64 bits elements and the data size of the input elements is 32 bits, the

ALU can carry out two operations in parallel with a slight modi�cation of the ALU.

Thus, in some cases, the CPU can execute multiple instructions in parallel by taking

advantage of the long bus width. This technique is called a superscalar. Figure 2.4

shows an example. In this example, a pair of the instructions #1 and #2, and a pair of

instructions #4 and #5 are executed in parallel. If the CPU can execute s instructions in

parallel, the improvement of the CPI is s . However, the number of elements executed in

parallel heavily depends on the program. When the maximum number of instructions

executed in parallel is s , we say the CPU has s slots.

16 Chapter 2. Preliminaries

SIMD

When we deal with vectors, the same operation is often applied to many distinct

elements. If the CPU has a wide data bus and equips many ALUs, the operation can be

processed in parallel. This technique is called SIMD, which stands for single instruction

stream, multiple data stream. This is slightly similar to the superscalar, but in this

case, one instruction is applied to many elements. These instructions are called SIMD
operations. When the maximum number of elements executed in parallel is s , we say

the CPU has s SIMD lanes. The improvement of the CPI is up to s . As explained later,

GPU architectures also utilize SIMD operations.

SIMD operations that access the memory unit are e�cient in general. If the CPU

accesses contiguous elements in the memory unit, the CPU can utilize the burst access

of the DRAM, which reduces the latency of the memory access. In GPU programming,

it is called coalesced memory access.

2.3 Parallel Programming

In this dissertation, multithreaded programs are called parallel programs. In this section,

we introduce some techniques to improve the performance of parallel programs. We

�rst explain how a single CPU executes parallel programs. Then we explain computers

with multiple cores. After that, we categorize computer architectures by some criteria.

If parallel programs are executed by computers that connect with each other over

a network, it is called distributed computing. This dissertation does not deal with

distributed computing.

From now on, CPUs are called cores because “CPU” is an ambiguous word. For

example, “CPU” also represents the device with multiple CPUs.

2.3.1 Multithreading

Multithreading is a technique to increase utilization of a core by executing multiple

threads concurrently. When a thread waits for something, the core executes another

thread. Thus, the core keeps active. This technique reduces the CPI. A concrete

example will be explained in Section 2.4.2.

2.3 Parallel Programming 17

Multithreading is categorized into two main types: coarse-grained multithreading

and �ne-grained multithreading. In coarse-grained multithreading, the core switches

between threads only when the active thread waits for a long time due to some reasons

such as communicating with external modules. When another thread is executed, the

current pipeline is emptied. It is easy to implement, but the performance improvement

is limited. In �ne-grained multithreading, the core can switch between threads at

every clock cycle. In other words, the core executes one of the active threads at every

clock cycle. Since the core has to maintain the states of all threads, it is di�cult to

implement, while it signi�cantly improves the performance because It can hide many

stalls. As explained later, GPU architectures also utilize �ne-grained multithreading.

Multithreading can work with superscalar. It is called simultaneous multithreading
(SMT). In the SMT, each thread is assigned to a slot.

2.3.2 Multiprocessors

Computers composed of multiple cores are called multiprocessors. Usually, the cores in

a multiprocessor share the same address space. This kind of multiprocessors are called

Shared memory multiprocessors (SMPs).

The SMPs are categorized into two types. If memory access time does not depend

on cores or addresses, the architectures are called uniform memory access (UMA).
Otherwise, the architectures are called nonuniform memory access (NUMA). Figure 2.5

(a) and (b) show examples of UMA, and Figure 2.6 (a) and (b) show examples of NUMA.

Note that caches are not considered as memory.

If multiple cores access the same element in the memory unit, we have to make

sure the cores access the element in the correct order. Thread synchronization or

synchronization is a mechanism to make some cores stop until other cores execute a

certain instruction. If each core waits at a predetermined point of the program until all

other cores reach their predetermined points, it is called barrier synchronization.

2.3.3 Flynn’s Taxonomy

Flynn’s taxonomy [15] is a well-known classi�cation of computer architectures.

Computer architectures are classi�ed according to the following two criteria:

18 Chapter 2. Preliminaries

Core	

Bus	

Core	

Interconnection	

Shared Memory	

(a)	

Core	

CacheBus	

Core	

Cache

Interconnection	

Shared Memory	

(b)	

Figure 2.5: Examples of UMA architectures.

Core	

MemoryBus	

Core	

Memory

Interconnection	

(a)	

Core	

MemoryBus	

Core	

Memory

Interconnection	

Shared Memory	

(b)	

Figure 2.6: Examples of NUMA architectures.

2.3 Parallel Programming 19

1. Does a program consist of a single thread or multiple threads? The former is

called “Single Instruction stream”, and the latter is called “Multiple Instruction

stream”.

2. Does a program apply instructions to a single element or multiple elements? The

former is called “Single Data stream”, and the latter is called “Multiple Data

stream”.

Thus, we have the following four classi�cations:

• Single Instruction stream, Single Data stream (SISD)

• Single Instruction stream, Multiple Data stream (SIMD)

• Multiple Instructions stream, Single Data stream (MISD)

• Multiple Instructions stream, Multiple Data stream (MIMD)

The advantage of MIMD is that it is easy to increase the number of cores. On

the other hand, the disadvantage of MIMD is that it is di�cult to develop e�cient

programs. For example, programs for MIMD require a lot of synchronization in general.

Moreover, it is di�cult to utilize the burst access of DRAM.

Single program, Multiple Data stream (SPMD) is one implementation of MIMD and

all threads execute the same program. It is a common style of parallel programming.

2.3.4 Costs of Parallel Computation

With respect to the cost of computation using multiple cores, the following two facts

are well known.

Amdahl [16] argued that the sequential portion of programs has large impact on

the whole performance. The argument is formalized as follows.

Theorem 2.1 (Amdahl’s Law) Suppose we execute a program using P processors and
α represents the fraction of the task that is inherently sequential. Let the speedup be the
running time in the case where it is executed in serial (with one processor) divided by the
running time in the case where it is executed in parallel (with P processors). Then, the
speedup S is

S =
1

α + (1 − α)/P
.

20 Chapter 2. Preliminaries

Proof. Let t1 be the running time in the case where it is executed with one processor,

and tP be the running time in the case where it is executed with P processors. Then,

we have

tP = t1α + t1(1 − α)/P = t1 (α + (1 − α)/P) .

Therefore, we have

S =
t1
tp
=

1

α + (1 − α)/P
.

ut

This gives the computational lower bound of parallel computation.

On the other hand, if we know the computation times with both a single core and

su�ciently large number of cores, we can obtain the upper bound of the computation

time with p cores.

Theorem 2.2 (Brent’s theorem [17]) If a computation C can be performed in time t
with q operations and su�ciently many processors which perform arithmetic operations
in unit time, then C can be performed in time t + (q − t)/p with p such processors.

Proof. Suppose that si operations are performed at step i, for i = 1, 2, · · · , t . Thus∑t
i=1 si = q. Using p processors, we can simulate step i in time

⌈
si/p

⌉
. Hence, the

computation C can be performed with p processors in time

t∑
i=1

⌈
si/p

⌉
≤

t∑
i=1

(p − 1 + si)/p = (1 − 1/p)t + (1/p)
t∑

i=1

si = t + (q − t)/p.

ut

The value q is called a work, and the value t is called a depth or a span.

2.4 GPUs

Graphics Processing Units (GPUs) were originally designed for e�cient processing of

graphics. In 2006, NVIDIA released GeForce 8800, which is the �rst GPU that supports

C language. This GPU executes multiple threads e�ciently due to the SIMT technique

explained later. This architecture is called Tesla [18] or G80 [19]. Since then, GPU

2.4 GPUs 21

Table 2.1: Comparison of each generation of GPUs.

Model GeForce 8800 C2070 k40 TITAN X
1

Architecture G80 [18] Fermi [19] Kepler [20] Maxwell

Cores 128 448 2880 3072

Multiprocessors 16 14 15 24

Cores / Multiprocessors 8 32 192 128

Amount of

16 KB 48 KB 48 KB 96 KB

shared memory (max)

Memory bandwidth 104 GB/sec 144 GB/sec 288 GB/sec 336.5 GB/sec

architectures have been improved signi�cantly. Figure 2.1 shows a comparison of each

generation of GPUs.

In this dissertation, we explain Fermi architecture [19, 3] proposed by NVIDIA.

A lot of GPU architectures are proposed recently, but most architectures including

Graphics Core Next (GCN), which is an architecture developed by AMD, have similar

characteristics.

2.4.1 Architectures

The Fermi architecture is a hybrid system of CPU and GPU devices. Figure 2.7 shows a

brief sketch of GPU architectures. The GPU device comprises multiple cores called

streaming processors (SPs) organized as multiprocessors called streaming multiprocessors
(SMs). Figure 2.8 shows a brief sketch of the multiprocessor. For instance, C2070 model,

which is Fermi based, consists of 448 cores organized as 14 multiprocessors. Each

multiprocessor individually executes programs and it does not have communication

means with other multiprocessors. Multiprocessors have the advantage of MIMD, that

is, it is easy to change the number of multiprocessors. The CPU invokes GPU programs

1
This model is not for High Performance Computing (HPC). Since the speci�cations are not o�cially

published, it is based on the information from the following sites:

• https://developer.nvidia.com/cuda-gpus

• http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities

• http://devblogs.nvidia.com/parallelforall/maxwell-most-advanced-cuda-gpu-ever-made/

• http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan-x/speci�cations

https://developer.nvidia.com/cuda-gpus
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities
http://devblogs.nvidia.com/parallelforall/maxwell-most-advanced-cuda-gpu-ever-made/
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan-x/specifications

22 Chapter 2. Preliminaries

CPU (Host)	

GPU (Device)	

Global Memory (DRAM)	

Multi- 
processor	

Multi- 
processor	

Invoke	

...	

Figure 2.7: Brief sketch of GPU architectures

and only the CPU can synchronize multiprocessors by waiting for all multiprocessors

in the device to complete executing programs. All cores in a multiprocessor execute

the same instruction at the same time, which is similar to SIMD.

The Fermi architecture has mainly three types of memory. The �rst one is global
memory, which can be accessed from all multiprocessors and the CPU. The global

memory is composed of DRAM. Therefore accesses to the global memory take longer

time than arithmetic operations. The device has a common cache for the global

memory, which is shared with all multiprocessors. It is called L2 cache. The second one

Shared  
memory	

Multiprocessor	

Cores	

Figure 2.8: Brief sketch of the multiprocessor

2.4 GPUs 23

Cores	

Shared
memory
banks
(SRAM)	

Figure 2.9: An example of shared memory banks

is shared memory, which can be accessed only from cores in a multiprocessor. The

shared memory is composed of SRAM and each multiprocessor has shared memory

inside. It consists of multiple banks, and cores can access distinct banks in parallel.

However, the number of cores that can access the same bank in parallel is limited.

Figure 2.9 shows an example. In Fermi architecture, a bank cannot be accessed from

multiple cores simultaneously unless cores access the same address. The third one is

registers in cores. The Fermi architecture has a large set of registers that can be used

for storage space for internal process. The device has several types of other memory,

but we do not explain them.

2.4.2 Multiprocessors

In Fermi architecture, each multiprocessor can handle up to 1536 threads concurrently.

The threads can be synchronized using barrier synchronization. The threads are divided

into groups with 32 threads called warps. The multiprocessor always applies the same

instruction to all threads in a warp. In other words, the multiprocessor issues SIMD

instructions to the threads in a warp. Moreover, the multiprocessor can switch between

warps similar to �ne-grained multithreading. In other words, the multiprocessor always

selects an active warp. This method is called Single Instruction stream, Multiple Threads
(SIMT), and it has the advantages of both SIMD and �ne-grained multithreading.

Figure 2.10 shows the process.

Figure 2.11 shows an example of multithreading. When a warp waits for data from

the global memory, the multiprocessor executes another warp. Thus, the multiprocessor

24 Chapter 2. Preliminaries

64 threads	

Time	

32 threads	 32 threads	

Multiprocessor
with 32 SIMD lanes	

Warp	 Warp	

Lanes	

Inst. A	

Inst. B	

Inst. B	

Inst. A	

Inst. C	

Inst. A
Inst. B
Inst. C

Program	

......	

The multiprocessor 
switches between warps	

Figure 2.10: SIMT

2.4 GPUs 25

Multiprocessor	

Time	

Wait due to global memory
access	

Shared  
Memory	

Cores	

Warps	

Wait due to global memory
access	

......

......	

......	

......	

......

......	

......	

......	

......

......	

......	

......	

Figure 2.11: An example of multithreading

keeps active. Moreover, the global memory access is e�ciently done if the threads

in the warp access the contiguous elements in the global memory. Note that the

maximum number of warps executed concurrently is constrained by the amount of

shared memory and registers used by a warp, because all warps in a multiprocessor

share the same memory.

In order to obtain high performance, it is important to design programs with

consideration for warps. For example, when threads in a warp diverge via a data-

dependent conditional branch, the multiprocessor serially executes each branch path,

which is ine�cient. It is also important to consider memory access patterns including

bank con�icts and coalescing, which will be discussed in Section 3.2.1.

2.4.3 CUDA

NVIDIA provides a programming environment called CUDA. CUDA provides program-

ming language, development tools, and the software architecture. Programmers write

codes based on the software architecture, and GPU hardware emulates the software

architecture. Thanks to the architecture, programs implemented using CUDA can be

executed on all NVIDIA GPUs. Figure 2.12 illustrates it. We �rst explain the software

architecture, and then, explain how GPU hardware emulates the software architecture.

A CUDA program consists of a CPU program and GPU programs. GPU programs

are called kernels, and the CPU invokes the GPU to execute a kernel. A kernel has

26 Chapter 2. Preliminaries

CUDA	
 Software
architecture	

Software  
on CUDA	

G80	
 Fermi	
 Kepler	
 GPU
hardware	

Emulate	

........

........	

........	

........	

Figure 2.12: CUDA overview

a hierarchy of sets of threads: grids, blocks, and threads. One grid is assigned for

a kernel, that is, the grid contains all threads in a kernel. A grid consists of blocks,

and a block consists of threads. The hierarchy is mapped to the hierarchy of the

hardware. The correspondence between the hardware and the kernel is shown in

Figure 2.13. A block is a set of threads that are executed by a single multiprocessor. A

multiprocessor may be assigned more than one blocks. Programmers are unconscious

of the assignment of blocks to multiprocessors. One thread is executed by a single core,

and each core concurrently executes multiple threads.

Figure 2.14 shows how to emulate the grid using GPU hardware. Suppose the

number of blocks in a grid is eight. If the number of multiprocessors in a GPU is two,

then, each block is basically assigned four blocks. If the number of multiprocessors in a

GPU is four, then, each block is basically assigned two blocks. Note that several blocks

in a multiprocessor can be executed concurrently, which is di�erent from the �gure.

Next, we explain how to emulate a block using a multiprocessor. As mentioned in

Section 2.4.2, multiprocessors support SIMT. If the number of cores in a multiprocessor

is larger than 32, then, cores are divided into groups with 32 cores, and each group

issues SIMD instructions to warps. If the number of cores is smaller than 32, the cores

execute 32 SIMD lanes in a warp over multiple clock cycles. In Fermi architecture, 32

cores in a multiprocessor are divided into two groups with 16 cores, and each group

executes SIMD instructions basically over two clocks.

2.4 GPUs 27

GPU Hardware	
 Kernel (software)	

Core	
 Thread	

Multiprocessor	
 Block (set of threads)	

GPU device	
 Grid (set of blocks)	

Shared  
memory	

Multiprocessor	

Cores	

Shared  
memory	

Block	

Threads	

Figure 2.13: CUDA’s hierarchy of threads

Time	

Block	
 Block	
 Block	
 Block	

Block	
 Block	
 Block	
 Block	

Grid	

MP0	
 MP1	

GPU with two
multiprocessors	

Block	
 Block	

Block	
 Block	

Block	
 Block	

Block	
 Block	

MP0	
 MP1	
 MP2	
 MP3	

GPU with four
multiprocessors	

Block	
 Block	
 Block	
 Block	

Block	
 Block	
 Block	
 Block	

Figure 2.14: How to emulate the grid using a GPU

28 Chapter 2. Preliminaries

Shared
memory
unit	
Core	

Core	

Core	

Core	

Figure 2.15: PRAM model

2.5 Parallel Computational Models

2.5.1 PRAMModel

Parallel random access machine (PRAM) model [4, 21, 22] has p cores that can execute

arbitrary instructions with a constant number of operands simultaneously. Figure 2.15

shows an example. The p cores have a shared memory unit of M words. Each core can

read/write from/to an arbitrary address in parallel.

PRAM models are classi�ed according to whether multiple cores can simultaneously

access the same address of the memory:

• Exclusive-Read, Exclusive-Write (EREW): multiple cores cannot read or write the

same address,

• Concurrent-Read, Exclusive-Write (CREW): multiple cores can read the same

address, but cannot read the same address,

• Exclusive-Read, Concurrent-Write (ERCW): multiple cores cannot read the same

address, but can write the same address (this case is not used),

• Concurrent-Read, Concurrent-Write (CRCW): multiple core can read and write

the same address.

When multiple cores attempt to write values to the same address at the same time in

“Concurrent-Write”, the model writes a value according to a predetermined rule. For

example, the model writes a value only when all cores attempt to write the same value.

In this dissertation, we consider EREW (exclusive-read, exclusive-write) PRAM

model unless otherwise stated. We denote the model by PRAM(p,M).

2.5 Parallel Computational Models 29

Concurrent 
computation	

Superstep	

v virtual processors	

Concurrent 
computation	

Superstep	

Communication	

Communication	

Barrier 
synchronization	

Barrier 
synchronization	

Figure 2.16: BSP model

2.5.2 BSP Model

Bulk Synchronous Parallel (BSP) model [23] is one of the parallel programming models

to make it possible to write programs without conscious of physical processors. The

numberv of virtual processors in the BSP model is larger than the number p of physical

processors, and users need not take processor assignment into account. This helps

users write general parallel programs. Figure 2.16 shows an example. In the BSP

model, a computation proceeds in a series of supersteps, each of which consists of

concurrent computation, communication, and barrier synchronization steps. The cost

of a superstep is determined by the maximum computation time by the p processors,

the maximum size of sent and received messages among the processors, and the time

for synchronization.

30 Chapter 2. Preliminaries

2.6 GPU Models

GPU models are basically categorized into performance prediction models and

computational models. Performance prediction models aim to estimate running

time of programs without executing the programs on GPUs, and many models are

proposed [7, 8, 24].

Computational models aim to provide asymptotic computational complexities of

algorithms. Nakano [25, 5] proposed memory machine models designed for GPUs.

Sitchinava and Weichert [6] also proposed a computational model for GPUs. These

models assume that a GPU is a SIMD machine. Therefore, we cannot take account of

multithreading, which is one of the most important features of GPUs. Moreover, Ma et

al. [26] proposed a memory access model for highly-threaded many-core architectures.

This model can analyze the asymptotic behavior of the global memory access using a

work and a span explained in Section 2.3.4.

Some researchers take a di�erent approach. Hou et al. [27] proposed a programming

model BSGP for GPUs. This model is based on the BSP model [23]. Programmers can

easily write BSGP-based codes and the BSGP compiler automatically translates the

codes to GPU-based codes.

In the following sections, we explain some GPU-based computational models.

2.6.1 DMM and UMM

Discrete Memory Machine (DMM) and Uni�ed Memory Machine (UMM) [25] are

memory machine models designed for GPUs. The DMM captures the features of the

shared memory of GPUs, while the UMM captures the features of the global memory.

The DMM consists of w memory banks, and word address i is located in the

(i mod w)-th bank. Figure 2.17 (a) shows an example. Each bank can be accessed from

one core at a time. We assume that it takes ` unit times to obtain the �rst word since

a core issues a memory access instruction, where ` is the latency of the memory

access. Let p be the number of cores in the machine. When core i (0 ≤ i < p) accesses

address i , it takes ` − 1 +
⌈
p/w

⌉
unit times. We can analyze the e�ect of bank con�icts.

Figure 2.18 (a) shows an example. When four cores access addresses 0, 1, 5, and 10,

addresses 1 and 5 cannot be accessed at a time due to the bank con�ict. Therefore, it

2.6 GPU Models 31

0	
 1	
 2	
 3	
 Group	

0	

4	

8	

12	

1	

5	

9	

13	

2	

6	

10	

14	

3	

7	

11	

15	

4	
 5	
 6	
 7	

8	
 9	
 10	
 11	

12	
 13	
 14	
 15	

w banks	

w words	

(a) DMM	
 (b) UMM	

Figure 2.17: DMM and UMM

0	
 1	
 2	
 3	
 Group	

0	

4	

8	

12	

1	

5	

9	

13	

2	

6	

10	

14	

3	

7	

11	

15	

4	
 5	
 6	
 7	

8	
 9	
 10	
 11	

12	
 13	
 14	
 15	

w banks	

w words	

(a) DMM	
 (b) UMM	

Figure 2.18: Memory access on the DMM and the UMM. When four cores access

addresses 0, 1, 5, and 10, the DMM takes ` + 1 unit times and the UMM takes ` + 2 unit

times, where ` is the latency of the memory access.

takes ` − 1 + 2 = ` + 1 unit times.

The UMM consists of multiple address groups, each of which consists of w words

and word address i is located in the bi/wc-th group. Figure 2.17 (b) shows an example.

All words in a group can be accessed simultaneously. When core i (0 ≤ i < p) accesses

address i , it takes ` − 1+
⌈
p/w

⌉
unit times as is the case with the DMM. We can analyze

the e�ect of coalescing. Figure 2.18 (b) shows an example. When four cores access

addresses 0, 1, 5, and 10, the machine has to access three groups. Therefore, it takes

` − 1 + 3 = ` + 2 unit times.

In our GPU model explained in Chapter 3, the latency for the shared memory access

is not considered because it will be small enough. Moreover, instead of considering the

latency for the global memory access, our model takes the e�ect of multithreading into

32 Chapter 2. Preliminaries

account.

2.6.2 PEM Model

Parallel external memory (PEM) model [6] is a computational model proposed by

Sitchinava and Weichert. This model assumes the multiprocessors are SIMD machines.

A program is divided into some rounds by synchronizations, and the running time

T (n) of a round is upper bounded as follows:

T (n) = t (n) + λq(n) + σ ,

where t (n) is the time complexity of the round, q(n) is the I/O complexity of the round,

λ is the latency for the global memory access, and σ is the upper bound on time for a

barrier synchronization.

Again, in our GPU model explained in Chapter 3, instead of considering the latency

for the global memory access, we takes the e�ect of multithreading into account.

2.7 I/O Model

In GPU programming, the number of I/Os signi�cantly a�ects the performance. In

order to evaluate the I/Os, the following model is very useful. In Section 3.3.3, we

reveal the relation to our GPU model.

The standard I/O model or external memory model [12] consists of a single processor,

an internal memory that can hold M words, and an external memory (a disk). The

external memory is divided into blocks with b words, and the processor can read/write

a single block per unit time. Algorithms are evaluated by only the sum of read and

write instructions. We call the number I/O complexity and denote this model by

I/O(b,M). Figure 2.19 shows the model.

2.8 Short Summary

In this chapter, we provided some preliminaries, which are necessary for later discussion.

As explained in Section 2.4, GPUs utilize MIMD to increase the scalability, and utilize

2.8 Short Summary 33

Internal memory
(size: M word)	

Processor	

b words/transfer	

External memory	

Figure 2.19: I/O model

SIMT to improve the performance of multiprocessors. SIMT is implemented by the

combination of SIMD and �ne-grained multithreading. Instead of the good e�ciency

of SIMT, it is di�cult to extract the optimal performance out of GPUs. Therefore,

appropriate computation models are required.

Finally, we introduced some existing models. We can utilize the models by revealing

the relation to our GPU model, which is discussed in Section 3.3.

35

3
Parallel Computation Models for GPUs

3.1 Introduction

We introduce a new computational model in order to analyze asymptotic computational

complexities of GPU-based algorithms. Complexity analyses are useful to design

e�cient algorithms. For example, we can compare the e�ciency of several algorithms

without executing the programs. Based on comparisons with the lower bound, we can

�nd what we should re�ne.

Actually, actual running time is often used to evaluate GPU-based algorithms.

However, in this case, we have to implement the algorithms and do code optimization.

If one does not know how to optimize the codes, one cannot show the e�ciency of the

algorithms. Since new architectures are proposed one after another, one needs to

spend much time to follow them.

We would like to separate designing algorithms from optimizing the codes. We

design our GPU model AGPU for this purpose. The model is simple and able to take

account of a lot of factors a�ecting performance such as coalescing, bank con�icts,

36 Chapter 3. Parallel Computation Models for GPUs

multithreading. Complexities on GPUs depend on device speci�cations, but they are

within a constant factor of complexities on the AGPU model.

In this chapter, we explain the architecture and the metrics of our model. After that,

we explain the relation between our model and other computational models. It is

useful to analyze the complexities of algorithms and �nd the lower bound.

3.2 AGPU Model

3.2.1 Architecture

We propose a new computational model Abstract GPU (AGPU). It is an abstracted

computational model that captures the essence of common GPU architectures. We

focus on features a�ecting performance and make the model as simple as possible.

Figure 3.1 shows the architecture of the AGPU model. AGPU consists of a host (CPU)

and a device (GPU). The device consists of p cores and one global memory unit. In this

model, each core handles a single thread and executes one instruction per unit time.

The word length of the device is w bits. A group of b cores forms a multiprocessor. The

device has k multiprocessors, that is, p = kb. Each multiprocessor has its own shared
memory unit with M words and individually executes programs invoked by the host.

We assume M ≥ b2. We also assume b can be represented as powers of two in order to

omit the process of rounding of fractions.

The multiprocessors have no means of communicating with each other. The host

can synchronize the multiprocessors by waiting for all multiprocessors in the device to

complete executing programs.

Each core can apply basic operations to words stored in the shared memory. The

basic operations include addition, subtraction, multiplication, division, and shift. Each

operation can be executed in one unit time unless bank con�icts occur. Cores cannot

apply operations to words in the global memory. If we need them, we �rst read them

from the global memory to the shared memory, then apply the operations to them.

Cores on real GPUs have large amount of registers, while cores on the AGPU model do

not have registers in order to make the model as simple as possible. Though memory

access to registers is several times faster than memory access to the shared memory in

general, we consider they are within a constant factor.

3.2 AGPU Model 37

Host	

Global
memory	

Multiprocessor	

Cores	

Shared
memory 
(M words)	

b cores	

b banks	

b words	 b words	 b words	
Device	

w bits	

Multiprocessor	
b cores	

b banks	

w bits	

Multiprocessor	
b cores	

b banks	

w bits	

Total p cores (k = p / b multiprocessors)	

...	

...	
...		

...		

Figure 3.1: The architecture of AGPU model

38 Chapter 3. Parallel Computation Models for GPUs

Cores	

Global 
memory	

block	
block	
 block	
 block	

(a)	
 (b)	

Figure 3.2: Examples of global memory accesses. Each block stores four words. (a) All

instructions coalesce. (b) These instructions do not coalesce because the words are

spread out among four blocks.

Each multiprocessor always makes all cores in it fetch the same operation, but

data addresses are arbitrary, namely, each core in a multiprocessor applies the same

operation to distinct words. In other words, all cores in a multiprocessor must take the

same execution path. When cores diverge via a data-dependent conditional branch, the

multiprocessor serially executes each branch path.

The global memory unit is high-capacity, low-speed and can be accessed by the

host and all multiprocessors in the device, whereas the shared memory units are

low-capacity, high-speed and can be accessed by only cores in the multiprocessor. The

global memory unit is divided into blocks with b words. The AGPU model has only

two instructions to access the global memory unit; one is a read instruction that copies

all words in a block to a shared memory unit, and the other is a write instruction

that copies b words in a shared memory unit to a block. Real GPU devices have the

same mechanism as these instructions, which are called coalescing or coalesced access.
Figure 3.2 shows examples of global memory accesses. In Figure 3.2(a), all memory

access instructions coalesce into one instruction and it is executed in a unit time.

On the other hand, in Figure 3.2(b), the instructions are executed in four unit times

because the words are spread out among four blocks. Note that if the b cores in a

multiprocessor access b consecutive words in the global memory, the instructions

are executed in at most two unit times. This is called contiguous access to the global
memory.

The shared memory unit in each multiprocessor is divided into b banks. All b cores

in a multiprocessor can access b distinct banks simultaneously. If multiple cores are

accessing the same bank, the accesses are serialized, which is called bank con�ict.

3.2 AGPU Model 39

Cores	

Shared
memory	

(a)	
 (b)	

Figure 3.3: Examples of shared memory accesses. Each column of the shared memory

unit represents a memory bank, and each cell can store one word. (a) Bank con�icts do

not occur since no banks are accessed by multiple cores. (b) The instruction is divided

into two instructions since the second column is accessed by two cores (bank con�ict).

Figure 3.3 shows examples of shared memory accesses. The columns of the shared

memory unit represent the banks. The addresses are allocated in the order of increasing

row index, that is, the �rst b addresses are allocated in the �rst row. In Figure 3.3(a), all

cores access distinct banks, therefore bank con�icts do not occur. On the other hand, in

Figure 3.3(b), the second column is accessed by two cores, therefore the instruction is

divided into two instructions. Note that if the b cores in a multiprocessor access b

consecutive words in the shared memory, bank con�icts do not occur. This is called

contiguous access to the shared memory.

We denote this model by AGPU(p,b,M,w). We may omit the parameters w and M

if they do not a�ect the performance of algorithms. In this case we denote the model

by AGPU(p,b,M) or AGPU(p,b).

Finally, we consider a variation of the model: volatile AGPU and non-volatile

AGPU. In the volatile AGPU, all data in the shared memory units are erased when

the host synchronizes multiprocessors, while in the non-volatile AGPU, all data in

the shared memory units are kept after synchronization. In the volatile model, if

some variables in a shared memory unit are necessary for the following process, the

multiprocessor has to write the variables to the global memory unit at the end of the

process. The CUDA environment uses the volatile model. We denote the volatile model

as AGPU, and the non-volatile model as AGPU
′
.

40 Chapter 3. Parallel Computation Models for GPUs

3.2.2 Metrics

To evaluate the performance of algorithms, we use �ve metrics: the time complexity, the

I/O complexity, the multiplicity, the amount of the global memory used and the amount
of the shared memory used. The multiplicity will be explained in the next section. The

time and I/O complexities are used to evaluate the running time of algorithms. The

time complexity is the number of instructions each multiprocessor executes. When

cores in a multiprocessor diverge, we count the instructions in all branch paths. If the

time complexity varies by multiprocessors, the largest complexity is adopted. The

I/O complexity is the total number of the global memory access instructions issued

by all multiprocessors. The reason why we analyze the I/O complexity separately

from the time complexity is that the execution time of the instructions to access

the global memory is quite larger than the time for other instructions, and this may

be a bottleneck. Since the number of multiprocessors accessing the global memory

simultaneously is limited by the bandwidth of the global memory, the I/O complexity

is de�ned as the summation of the number of global memory access instructions issued

by each multiprocessor.

The amounts of the global and shared memory used are used to evaluate the

memory usage of algorithms. If the amount of the shared memory used varies according

to the multiprocessors, the largest amount is adopted. If the amount of the shared

memory used is larger than M words, the algorithm cannot be implemented on GPU.

As we discuss in the next section, a large amount of the shared memory used makes

multithreading less e�ective. Moreover, it is important to reduce the amount of the

global memory used, especially if the input size is large.

3.2.3 The E�ect of Multithreading

As mentioned in Section 2.4.2, real GPU devices have a mechanism called multithreading.

Although it has a huge impact for the e�ciency of global memory accesses, the I/O

complexity is useless to estimate the e�ect of multithreading because multithreading

does not change the value of the I/O complexity. Therefore, we need a new metric. In

this section, we de�ne multiplicity to evaluate the e�ect. Since we assume that each

core executes a single thread in the AGPU model, we cannot directly evaluate the

number of threads each real GPU core executes concurrently. However, we provide a

3.2 AGPU Model 41

simple method to evaluate the e�ciency of multithreading of programs on the AGPU

model.

Each core in the real GPU devices handles multiple threads concurrently. The way

to make multithreading more e�ective is to increase the number of threads per core.

The number is limited by device speci�cations. When the maximum number of threads

is assigned, multithreading is most e�ective.

Supposing m is the amount of the shared memory used by a multiprocessor on the

AGPU model, the multiplicityM is de�ned asM := M/m. As mentioned in Section

2.4.2, the number of threads assigned to a core is limited by the amount of memory

used. Whenm is small, the multiplicity becomes large. In CUDA terms, occupancy
is de�ned as the number of assigned threads divided by the maximum number of

threads. The multiplicity corresponds to the occupancy, but it is simpli�ed and can be

calculated only using other AGPU metrics.

Finally, we discuss the value of the multiplicity. In real GPUs, the number of warps

each multiprocessor concurrently executes is limited by device speci�cations. In

NVIDIA GPUs, the maximum value is strictly larger than M/b2, but at most M/b.

Namely, when m = O(b), we can assign the maximum number of warps to the

multiprocessors. Therefore, when m = O(b), we say the multiplicity is optimal. On the

other hand, whenm = Ω(b2), we consider the multiplicity is not optimal.

3.2.4 Discrepancy Between the AGPU Model and Real Architec-
tures

Since our model is designed for analyzing time and I/O complexities, it is rather

simpli�ed. We discuss the discrepancy between our model and real GPU architectures.

Firstly, we do not take memory caches into account. Though many GPU devices

have caches, their speci�cations di�er a lot and it is di�cult to analyze cache behavior.

The aim of using the AGPU model is not to predict the actual running time of programs

but to analyze the asymptotic behavior of algorithms when the input size grows.

Therefore, we do not consider caches in the AGPU model. This makes it easy to

analyze the I/O complexities of algorithms. In the RAM model, it is common that

memory caches are not considered to analyze the asymptotic complexities of sequential

algorithms. Nevertheless, the obtained complexities are very useful for designing

42 Chapter 3. Parallel Computation Models for GPUs

algorithms. We therefore consider that complexity analyses using the AGPU model are

also useful for designing GPU-based algorithms. With respect to the L2 caches, we

can consider the AGPU has user-managed caches instead of the L2 caches. If we can

analyze the behavior of the L2 caches, we can change the algorithm so that it has

user-managed caches on the shared memory. Therefore the AGPU model does not

need to have the L2 caches.

Secondly, the memory organization of the multiprocessor in the AGPU model

is di�erent from that in real GPUs. In real GPUs, each core has a large amount of

registers and we can store data in the registers, while in the AGPU model, we cannot

store data in the registers. The AGPU model uses the shared memory instead. Since we

assume that each core can access the shared memory in unit time, this does not change

the time complexity. The amount of the shared memory in AGPU corresponds to the

sum of the amount of the shared memory and the registers in real GPUs.

Thirdly, real GPU architectures have many parameters such as the number of cores

in a multiprocessor, the number of banks on the shared memory unit, the block size of

the global memory, while these are �xed to b in the AGPU model. However, it dose not

a�ect asymptotic behavior of algorithms because we can consider that the di�erences

of the parameters are within a constant factor of b. The time and I/O complexities in

the AGPU model are therefore within a constant factor of those in real GPU devices.

Finally, the AGPU model does not consider synchronization of threads in a

multiprocessor. In real GPU devices, cores execute multiple threads concurrently to

improve the e�ciency of global memory accesses, which is called multithreading.

CUDA supports synchronization in a multiprocessor, while the AGPU model does not

support it to simplify the model. We consider that this is not a severe restriction. The

reason that CUDA has the mechanism of synchronization in a multiprocessor is that

the number of cores is normally smaller than that of executed threads. In the AGPU

model, we analyze the complexities of algorithms by assuming that the number of

cores is equal to that of threads. However, using Theorem 3.9 in Section 3.3.4, we can

easily obtain the complexities when algorithms are executed on multiprocessors with

fewer cores. We can also estimate the e�ect of multithreading using the AGPU model

as discussed in Section 3.2.3. Therefore it is not necessary to use synchronization in a

multiprocessor.

3.2 AGPU Model 43

3.2.5 Notation for Pseudo-codes

We explain notation for pseudo-codes on AGPU(p,b,M). Let MP[0..k − 1] be an

array of multiprocessors, where k = p/b. Let Core[0..b − 1] be an array of cores in a

multiprocessor. When multiple multiprocessors execute a program in parallel, we

write as follows:

1: for all ρ ∈ MP[x ..y] in parallel do
2: carry out some processing

3: end for

where x ..y represents the range of multiprocessors that execute a program. “for all”

loops are launched by a host. Namely, codes outside of “for all” loops are executed

by the host. All multiprocessors are synchronized at the end of “for all” loops by

the host. Although a real multiprocessor may concurrently execute multiple blocks

(corresponding to multiprocessors on AGPU(p,b,M)), programmers do not need to

care the assignment.

When all cores in a multiprocessor execute a program in parallel, we write as

follows:

1: for all ϵ ∈ Core[0..b − 1] in parallel do
2: carry out some processing

3: end for

We cannot specify the range of cores because all cores in the multiprocessor must

execute the same instruction.

Next, we explain the instructions to access the global memory; the symbols “⇒"

and “⇐" represent the global memory access instructions. We can access at most

b consecutive words in the global memory per instruction. Since a multiprocessor

in the AGPU model can access one block of the global memory in a unit time, the

multiprocessor may access the global memory twice to obtain b consecutive words.

However, it does not change the asymptotic I/O complexity.

The symbols “→" and “←" represent the shared memory access instructions. The

symbol “:=" represents an assignment of a pointer. Variable names begin with a capital

letter if they are in the global memory. Otherwise, they begin with a lower-case letter.

44 Chapter 3. Parallel Computation Models for GPUs

3.3 Relations between the AGPU Model and Other

Computational Models

In this section we discuss relations between the AGPU model and other computational

models in order to evaluate the power and limitation of the models. First we give a

notation.

De�nition 3.1 Let X ,Y be computational models. If for any algorithm AY on Y , there
exists an algorithm AX for the same problem on X such that the time (I/O) complexity of
AX is equal to or less than the value that is α times the time (I/O) complexity of AY , we
denote this by X ≤ αY (XIO ≤ αYIO). If it holds that X ≤ O(1)Y and Y ≤ O(1)X , we
denote this X = Y . We de�ne XIO = YIO analogously.

3.3.1 PRAMModel

The di�erence between the PRAM model and the AGPU model is the following. First,

in the PRAM model, p processors can execute di�erent instructions at the same time

(MIMD), while in the AGPU model, processors in a multiprocessor execute an identical

instruction (SIMD). Secondly, the PRAM model does not have memory hierarchy;

the PRAM model has only a shared memory. Thirdly, memory access of the AGPU

model is more restrictive than that of the PRAM model. Unless all cores inside a

multiprocessor access consecutive elements in the global memory, the accesses do not

coalesce. Additionally, when the cores inside the multiprocessor access the shared

memory, bank con�icts occur unless the cores access distinct banks.

For any algorithm on AGPU(p,b,M) using д-word global memory, there is a

corresponding PRAM(p,д + pM/b) algorithm running in the same time complexity,

that is, PRAM(p,д + pM/b) ≤ O(1)AGPU(p,b,M). This means that a lower bound on

the time complexity in EREW PRAM model also holds in AGPU. This is useful for

algorithm analyses.

On the other hand, for any algorithm on the PRAM model, the following theorem

holds:

Theorem 3.2 Consider any algorithm on the EREW PRAM(p,M) model that has an
instruction set of a constant number of instructions. Then it holds that AGPU(p,p,M) ≤

O(M/p)PRAM(p,M).

3.3 Relations between the AGPU Model and Other Computational Models 45

Proof. We simulate the EREW PRAM model by AGPU(p,p,M), that is, all the p cores

belong to a single multiprocessor, and they use the same shared memory. An algorithm

on PRAM model, in which cores can execute di�erent instructions at the same time,

can be converted to that on AGPU(p,p,M) by sequentially executing all types of

instruction in each cycle. The time complexity increases, but is multiplied by only a

constant factor. We also have to solve the bank con�ict problem. Since the PRAM

algorithm uses M contiguous words of the shared memory, at most dM/pe words

belong to the same bank. Therefore, the degree of bank con�ict is at most dM/pe in

each memory access. Then the running time of the AGPU algorithm is bounded by

dM/pe. ut

If M is linear to p, then it holds that AGPU(p,p,M) ≤ O(1)PRAM(p,M). The theorem

indicates that we can use known PRAM algorithms to design e�cient algorithms

executed inside a multiprocessor.

3.3.2 Bulk Synchronous Parallel Model

We can implement a BSP algorithm using AGPU
′(p, 1), that is, each multiprocessor has

only one core. Each multiprocessor in the AGPU model corresponds to a processor of

the BSP model, which is shown in Figure 3.4.

Communication between processors in the BSP model is done by using the global

memory of the non-volatile AGPU model. However the I/O complexity on the AGPU

model is higher than the communication cost on the BSP model because the I/O

complexity on the AGPU model is de�ned as the total number of global memory access

instructions.

3.3.3 I/O Model

Lemma 3.3 For the volatile and the non-volatile models,

I/OIO (b,M) = AGPUIO (b,b,M) = AGPU′IO (b,b,M).

Proof. A multiprocessor in AGPU(b,b,M) corresponds to a processor in I/O(b,M)

and shared memory in AGPU(b,b,M) corresponds to internal memory in I/O(b,M).

46 Chapter 3. Parallel Computation Models for GPUs

Host	

Global
memory	

Multiprocessor	

Cores	

Shared
memory 
(M words)	

1 core	

1 bank	

1 word	 1 word	
Device	

Total p cores (p multiprocessors)	

Multiprocessor	
1 core	

1 bank	

Multiprocessor	
1 core	

1 bank	

...	

...	

Figure 3.4: BSP model simulated by the AGPU model

3.3 Relations between the AGPU Model and Other Computational Models 47

The both memory can keep M words. The global memory access instructions in

AGPU(b,b,M) correspond to block transfers in I/O(b,M). Therefore, I/OIO (b,M) =

AGPUIO (b,b,M). Because AGPU(b,b,M) has only one multiprocessor, it is not nec-

essary to synchronize. Therefore the claim holds for both volatile and non-volatile

models. ut

Lemma 3.4 For the volatile AGPU model,

AGPUIO (p,b,M) = AGPUIO (b,b,M).

Proof. AGPUIO (b,b,M) comprises only one multiprocessor equipped with a shared

memory unit of M words while AGPUIO (p,b,M) comprises p/b multiprocessors, each

of which has a shared memory unit of M words. It is trivial that for any algorithm

on AGPU(b,b,M) there exists an algorithm on AGPU(p,b,M) that has same I/O

complexity as the algorithms on AGPU(b,b,M). Then we consider simulating any

AGPU(p,b,M) algorithm on AGPU(b,b,M). As mentioned in Section 3.2.1, the host

can synchronize multiprocessors. Let a phase be duration from a synchronization to

the next synchronization. If there is no synchronization in a program, the program has

a single phase. Suppose one multiprocessor in AGPU(b,b,M) sequentially executes

tasks that p/b multiprocessors in AGPU(p,b,M) are supposed to execute in parallel in

a phase. Since multiprocessors have no means of communication with each others

and all data in shared memory units are deleted at the time of synchronization, the

multiprocessor in AGPU(b,b,M) can always refer the same data as a multiprocessor

in AGPU(p,b,M). Therefore, it can execute any instructions the multiprocessor

in AGPU(p,b,M) executes. Since I/O complexity is de�ned as the total number

of global memory access instructions issued by all multiprocessors, the tasks the

multiprocessor in AGPU(b,b,M) executes has the same I/O complexity as the tasks all

multiprocessors in AGPU(p,b,M) execute. It holds for any phase. Therefore, for any

algorithm on AGPU(p,b,M) there exists an algorithm on AGPU(b,b,M) that has same

I/O complexity as the algorithms on AGPU(p,b,M). ut

From Lemmas 3.3 and 3.4, it is obvious that:

48 Chapter 3. Parallel Computation Models for GPUs

Theorem 3.5 For the volatile model,

I/OIO (b,M) = AGPUIO (p,b,M).

Next we consider the case of the non-volatile AGPU model. Lemma 3.4 does not

hold in this case.

Lemma 3.6 For the non-volatile AGPU model, it holds

AGPU′IO (b,b,
pM

b
) ≤ AGPU′IO (p,b,M).

Proof. We consider one phase as is the case with Lemma 3.4. Suppose one multipro-

cessor in AGPU(b,b, (p/b)M) sequentially executes tasks that k = p/b multiprocessors

in AGPU(p,b,M) are supposed to execute in parallel in a phase. Since data in the

shared memory can be used in the next phase, the multiprocessor has to keep all data in

the shared memory for the following phase. A multiprocessor in AGPU
′(b,b, (p/b)M)

can keep all data that k multiprocessors in AGPU(p,b,M) store in the shared mem-

ory. As with Lemma 3.4, the multiprocessor in AGPU(b,b, (p/b)M) can execute any

instructions the multiprocessor in AGPU(p,b,M) executes. ut

Note that it is not always true that for any algorithm on AGPU
′(b,b, (p/b)M)

there exists an algorithm on AGPU
′(p,b,M) that has the same I/O complexity as the

algorithms on AGPU(b,b, (p/b)M).

From Lemmas 3.3 and 3.6, we have:

Theorem 3.7 For the non-volatile AGPU model, it holds

I/OIO (b,
pM

b
) ≤ AGPU′IO (p,b,M).

We can also relate the volatile and non-volatile AGPU models. It is obvious that

AGPU
′
IO (p,b,M) ≤ AGPUIO (p,b,M), and we also obtain:

Theorem 3.8 For any algorithm on the non-volatile AGPU using s synchronizations,

AGPUIO (p,b,M) ≤ AGPU′IO (p,b,M) + O
(
spM

b

)
.

3.3 Relations between the AGPU Model and Other Computational Models 49

Proof. We can simulate any non-volatile AGPU algorithm on the volatile AGPU as

follows. At each synchronization, we save all the contents of shared memory to the

global memory, and before executing a program in a multiprocessor, the contents of

its shared memory are restored. Therefore extra O(spM/b) I/Os are enough for the

simulation. ut

3.3.4 Multithreading in AGPU

Finally, we discuss the complexities in the case that algorithms designed with

AGPU(v,b,M) is executed on AGPU(p,b,M).

Theorem 3.9 Supposing v > p, for the volatile AGPU model,

AGPUIO (p,b,M) = AGPUIO (v,b,M)

AGPU(p,b,M) ≤

⌈
v

p

⌉
AGPU(v,b,M)

Proof. Due to Lemma 3.4, AGPUIO (p,b,M) = AGPUIO (v,b,M) = AGPUIO (b,b,M).

We consider the time complexity. In AGPU(v,b,M), the number of multiprocessors

used by the algorithm isv/b, whereas, in AGPU(p,b,M), the number of multiprocessors

is p/b. Therefore, the ratio of the number of multiprocessors is at most dv/pe. Suppose

the multiprocessors on AGPU(p,b,M) simulate the multiprocessors on AGPU(v,b,M).

Since the multiprocessors on the AGPU model have no means of communication with

each others and all data in the shared memory are deleted at the time of synchronization,

a multiprocessor on AGPU(p,b,M) can always execute the same instructions as a

multiprocessor on AGPU(v,b,M). Therefore, the multiprocessors on AGPU(p,b,M)

can simulate the multiprocessors on AGPU(v,b,M) by simulating a multiprocessor on

AGPU(v,b,M) at most dv/pe times. If the time complexity varies by multiprocessors,

the largest complexity is adopted. Therefore, the time complexity on AGPU(p,b,M)

can be smaller than dv/pe factor of the time complexity on AGPU(v,b,M). ut

When we develop the algorithms taking multithreading into account, the number

of threads in the algorithms must be larger than the number of cores. We can estimate

the time and I/O complexities of the algorithms by applying Theorem 3.9. For example,

50 Chapter 3. Parallel Computation Models for GPUs

if the time complexity of an algorithm on AGPU(v,b,M) is O(n/v + logv), the time

complexity in case that the algorithm is executed on AGPU(p,b,M) isO(n/p+v logv/p).

3.4 Guideline forDevelopingE�cientAlgorithmsUs-

ing the AGPU Model

We provide a guideline to design e�cient algorithms using the AGPU model. First of all,

the I/O complexity (the number of global memory accesses) should be reduced as much

as possible because the execution time of a global memory access instruction is much

larger than others. As shown in Section 3.3.3, lower bounds on the I/O model also give

lower bounds on the I/O complexity in the AGPU model. Therefore e�cient I/O model

based algorithms will be bases of e�cient AGPU-based algorithms. Next, we should

make the multiplicity as large as possible by reducing the amount of shared memory

used. It makes multithreading e�ective. To design e�cient algorithms executed on a

multiprocessor, known PRAM algorithms can be used (see Section 3.3.1).

3.4.1 Implementations Using CUDA

We discuss the implementation of the algorithms designed with the AGPU model.

When we implement programs using CUDA, the followings are e�ective to make the

programs speed up.

1. The data referred from a single core are moved to the register.

2. The number of the warps in a block is increased to more than one.

3. The communication inside a block is done using the shared memory.

If we use the register instead of the shared memory, we can make memory access

fast. Moreover, the amount of shared memory used is reduced, which leads to make the

multiplicity large. When the number of a block in a multiprocessor is one, the number

of warps in a multiprocessor is limited because the number of warps assigned to a block

is limited. Therefore, using more than one blocks also makes the multiplicity large. We

can reduce the I/O complexity by the last item. It is also e�ective for performance

3.5 Short Summary 51

improvements to adjust the number of threads and blocks depending on hardware

architectures.

3.5 Short Summary

In this chapter, we proposed a new computational model AGPU in order to analyze

asymptotic computational complexities of GPU-based algorithms. Algorithms on

the AGPU model can be evaluated using �ve metrics, the time complexity, the I/O

complexity, the multiplicity, the amount of shared memory used, and the amount

of global memory used. The model is simple and able to take account of a lot of

factors a�ecting the performance such as coalescing, bank con�icts, multithreading.

Complexities on GPUs depend on device speci�cations, but they are within a constant

factor of complexities on the AGPU model.

After describing the architecture, we revealed the relation between the AGPU

model and other models including the PRAM model, the BSP model, and the I/O model.

It enables us to utilize some knowledge on the other model for the AGPU model.

Lastly, We provide a guideline to design e�cient algorithms using the AGPU model

according to the discussion so far.

53

4
Reduction Algorithms

4.1 Introduction

As the �rst example of complexity analyses using the AGPU model, we deal with

reduction algorithms. Reduction is a basic operation for arrays. Despite the simplicity

of the operation, it is not easy to develop fast reduction algorithms on GPUs because it

is necessary to take the GPU architectures into account. If one does not know the GPU

architecture, one cannot evaluate which kind of algorithms are suitable for GPUs.

Reduction plays a very important role in parallel programming. After giving the

formal de�nition, we explain many problems can be described as reductions especially

when we use non-commutative operators. We then analyze the complexities of some

reduction algorithms. We deal with both commutative and non-commutative operators.

There exist two main algorithms for reduction with commutative operators: tree-based

algorithm and cascading algorithm. The latter is faster than the former in practice.

We give evidence using the AGPU model; the latter has lower time complexity than

the former. We next deal with non-commutative operators. Since we cannot use the

54 Chapter 4. Reduction Algorithms

cascading algorithm for non-commutative operators, we give a novel and e�cient

algorithm. Our algorithm has the same complexities as the cascading algorithm. We

�nally evaluate these algorithms on real GPUs and show that our algorithm is fast not

only in theory but also in practice.

4.2 De�nition

Given an array T [0..n − 1] of n elements, reduction r (T , ⊕) is de�ned as

r (T , ⊕) :=
n−1⊕
i=0

T [i],

where the operator ⊕ is associative in this dissertation. The right-hand side of the

equation indicates that all elements in the array are reduced to one using operator ⊕,

informally,

n−1⊕
i=0

T [i] = T [0] ⊕ T [1] ⊕ · · · ⊕ T [n − 1].

For instance, r (T ,+) represents the summation of all the elements in an array T . We

assume the input array is allocated on the global memory of GPUs and each element of

the array stores a w bit number. We discuss both commutative and non-commutative

operators.

4.3 Reduction as a Programming Framework

Many problems for arrays can be described as reductions. Bird [28] revealed what kind

of problems are characterized as reductions. As explained later, a function can be

converted to a reduction if and only if the function is a homomorphism with respect to

list concatenation. In this section, we explain this property and give some examples.

4.3.1 Lists

Lists are sequences of elements such that all elements are included in the same set.

Arrays are one implementation of lists whose elements are indexed. Normally, memory

4.3 Reduction as a Programming Framework 55

addresses of the elements are continuously allocated in order of indices. List functions
are the functions that take lists as arguments. In this section, we discuss several

properties of list functions.

Basic De�nition

Let S be a �nite set. A function Singleton maps elements of S into singleton lists. Given

b ∈ S , the return value of the function is represented as [b], namely,

Singleton(b) = [b].

LetU = {[b] | b ∈ S }, that is, U consists of all singleton lists on S . We next de�ne an

associative operation on the singleton lists. The operator ++ represents concatenation
of two singleton lists. For a,b ∈ S , the result of [a]++ [b] is represented as [a,b]. The

operator is also de�ned on the results of the operation. Since we assume the operator

is associative, we have ([a]++ [b]) ++ [c] = [a]++ ([b]++ [c]) for a,b, c ∈ S . Thus, we

can use the following notation:

[a]++ [b]++ [c] = [a,b, c].

Let [S]+ be the closure ofU on the operator ++. In other words, [S]+ consists of all

elements generated by repeatedly applying the operator ++ to singleton lists. Let []

be the identity of the operator ++. It is called the empty list. In other words, for all

x ∈ [S]+, we have

x ++ [] = []++x = x .

We de�ne [S] as follows:

[S] = [S]+ ∪ { [] }.

For example, assuming S = {a,b}, we have

[S]+ = {[a], [b], [a,a], [a,b], [b,a], [b,b], [a,a,a], · · · },

[S] = {[], [a], [b], [a,a], [a,b], [b,a], [b,b], [a,a,a], · · · }.

The elements of [S] are called lists on S .

56 Chapter 4. Reduction Algorithms

By this de�nition, the pair ([S],++) is a monoid, that is, the following properties

hold:

Associativity: For all x ,y, z ∈ [S], (x ++y) ++ z = x ++ (y ++ z),

Identity: For all x ∈ [S], []++x = x ++ [] = x .

4.3.2 List Homomorphism

Let h(x) be a function from ([S],++) to another monoid (T , ⊕) such that the identity is

id⊕ and the operator ⊕ is associative. The function h is called a list homomorphism if

there exists a function f , and the function h can be speci�ed by the following equations:

h(x) =




id⊕, if x = [],

f (a), if x is a singleton list represented as [a],

h(y) ⊕ h(z), if x = y ++ z for some y, z ∈ [S]+.

Note that the argument x ∈ [S] always satis�es one of these three conditions. As

explained later in Section 4.3.4, these equations specify a unique function regardless of

the way to determine y, z due to the associativity of the operators ++, ⊕. For example,

the function count(x): [S]→ Z+ can be speci�ed as follows:

count (x) =




0, if x = [],

1, if x is a singleton list,

count (y) + count (z), if x = y ++ z for some y, z ∈ [S]+.

Given a list, this function counts the number of elements in the list.

The list homomorphism indicates that the function can be calculated using a

divide-and-conquer method. Accordingly, it is well known that many functions are list

homomorphisms [28, 29, 30]. For example, the merge sort can be described as a list

homomorphism. In that case, the output of h(x) is a list. In this dissertation, we only

deal with the case where the output of h(x) is not a list but a value. We still have many

examples, some of which we will introduce later.

4.3 Reduction as a Programming Framework 57

4.3.3 Higher Order Functions on Lists

If a function takes functions as arguments or returns functions, it is called a higher
order function. In this section, we introduce some higher order functions on lists.

Map

The function map(f ,x) takes a function f and a list in [S] as arguments and returns a

list in a monoid ([R],++), where [R] is the lists on a set R, and f is a function from S to

R. It is speci�ed as follows:

map(f ,x) =




[], if x = [],

[f (a)], if x is a singleton list represented as [a],

map(f ,y) ++map(f , z), if x = y ++ z for some y, z ∈ [S]+.

Informally, we have

map(f , [a1,a2,a3, · · · ,an]) = [f (a1), f (a2), f (a3), · · · , f (an)].

Again, the return value is independent of the way to determine y, z due to the

associativity of the operator ++.

Reduce

The function reduce(⊕,x) takes a function ⊕ and a list x as arguments and returns a

value in S , where ⊕ is an associative function from (S ×S) to S . It is speci�ed as follows:

reduce(⊕,x) =




id⊕, if x = [],

a, if x is a singleton list represented as [a],

reduce(⊕,y) ⊕ reduce(⊕, z), if x = y ++ z for some y, z ∈ [S]+.

Informally, we have

reduce(⊕, [a1,a2,a3, · · · ,an]) = a1 ⊕ a2 ⊕ a3 ⊕ · · · ⊕ an .

58 Chapter 4. Reduction Algorithms

The return value is also independent of the way to determiney, z due to the associativity

of the operator ⊕.

4.3.4 List Homomorphism Lemma

The following lemma shows that the list homomorphisms can be calculated using

maps and reductions.

Lemma 4.1 (List homomorphism lemma [31]) A function h that takes a list x as
an argument is a list homomorphism if and only if there exist a operator ⊕ and a function
f such that

h(x) = reduce(⊕,map(f ,x)).

Informally, we have

h([a1,a2,a3, · · · ,an]) = f (a1) ⊕ f (a2) ⊕ f (a3) ⊕ · · · ⊕ f (an).

We discuss the parallel computation of the list homomorphisms. The map function

has a trivial data parallelism because each element of a list can be executed inde-

pendently. Therefore, it is important to develop e�cient parallel algorithms for the

reduction function.

4.4 Examples of Reduction

We give some examples of the reduction. For commutative operators, the examples

include sum of list, maximum element in the list, and the size of the list.

We next give some examples for non-commutative operators. The �rst example is

matrix multiplication. Given a list of square matrices of the same size, the reduction

multiplies all matrices and outputs the resulting matrix. This operation is used for many

applications. For example, Hongo et al. [32] utilized this operation for random value

generations. In the next section, we give an example such that a divide-and-conquer

algorithm to solve the problem is well known.

4.4 Examples of Reduction 59

4.4.1 Maximum Segment Sum Problem

In this section, we deal with the maximum segment sum (MSS) problem.

Problem 4.2 (Maximum Segment Sum) Given a list of real numbers, compute the
maximum sum found in any contiguous segment of it.

For example, given a list [3,−1,−4, 1, 5,−9, 2], the answer is 6. The segment contributing

to the answer is [1, 5]. If all elements in the list are negative, the answer is 0. In this

case, the corresponding segment is empty. This problem appears in many applications.

In the �eld of data mining, this problem is used to calculate one dimensional association

rules [33]. Bentley [34] introduced a linear time algorithm for MSS. We introduce a

slightly modi�ed version introduced by Cole [29] in order to �t the algorithm to the

reduction framework.

We give a divide-and-conquer algorithm for this problem. Instead of calculating the

maximum segment sum directly, we calculate a tuple including it. We �rst generate a

tuple for each input element and then repeat merging the tuples until the number of

tuples becomes one.

Given a list x[0..n− 1], x[`..r] denotes the segment (sub-list) that ranges from index

` to index r , and sum(x[`..r]) denotes Σr
k=`

x[k]. The function mss′(x) that calculates

the tuple is represented by

mss′(x) = (mss(x), sum(x),mts(x),mis(x)) .

The function mss(x) returns the maximum segment sum, which is de�ned as follows:

mss(x) = max2
(
max

`≤r
sum(x[`..r]), 0

)
,

where the function max2(a,b) returns maximum value out of two arguments a,b. The

function mts(x) is called the maximum tail segment sum and de�ned as follows:

mts(x) = max2
(
max

i
sum(x[i ..n − 1]), 0

)
.

The function mis(x) is called the maximum initial segment sum and de�ned as follows:

mis(x) = max2
(
max

i
sum(x[0..i]), 0

)
.

60 Chapter 4. Reduction Algorithms

-2	
 -1	
 5	
 -1	

-2	
 -1	
 5	
 -1	
 -3	
 6	
 7	
 -4	

-3	
 6	
 7	
 -4	

Merge	

mss(y) = 5	

List y	
 List z	

List x	

mss(z) = 13	

sum(y) = 1	
 sum(z) = 6	

mts(y) = 4	

mis(y) = 2	

mts(z) = 9	

mis(z) = 10	

mss(x) = max3(mss(y), mss(z), mts(y)+mis(z)) = 14	

sum(x) = sum(y) + sum(z) = 7	

mts(x) = max2(mts(z), mts(y)+sum(z)) = 10	

mis(x) = max2(mis(y), sum(y)+mis(z)) = 11	

Figure 4.1: An example of the merge operation for the maximum segment problem

For a singleton list [b], we can calculate the tuple as follows:

mss′([b]) = (mss([b]), sum([b]),mts([b]),mis([b]))

= (max2(b, 0),b,max2(b, 0),max2(b, 0)) .

Let f be the function that generates a tuple from an element b in a list. Then, we have

f (b) = (max2(b, 0),b,max2(b, 0),max2(b, 0)) .

Next we de�ne the function ⊕ that merges two tuples. Figure 4.1 shows an

example. Given two lists y, z, and the corresponding tuples mss′(y),mss′(z), the

4.5 Reduction with Commutative Operators 61

operator mss′(y) ⊕ mss′(z) is de�ned as follows:

mss′(y) ⊕ mss′(z) = (max3 (mss(y),mss(z),mts(y) +mis(z)) ,

sum(y) + sum(z),

max2 (mts(z),mts(y) + sum(z)) ,

max2 (mis(y), sum(y) +mis(z))),

where the function max3(a,b, c) returns maximum value out of three arguments a,b, c .

Note that this operator is not commutative, namely, y ⊕ z , z ⊕ y in general. We can

see that this tuple corresponds to mss′(y ++ z), namely,

mss′(y ++ z) = mss′(y) ⊕ mss′(z).

Thus, the function mss′(x) is a list homomorphism, and we can solve the maximum

segment sum problem using a divide-and-conquer algorithm.

According to the Lemma 4.1, the function mss′(x) is represented as follows:

mss′(x) = reduce (⊕,map (f ,x)) .

Therefore, we can utilize the reduction framework to calculate the function mss′(x).
We will show the experimental result on GPUs in Section 4.8.2.

4.5 Reduction with Commutative Operators

We now discuss GPU-based reduction algorithms using the AGPU model. In this

section, we assume the operator ⊕ is commutative. We will deal with non-commutative

operators in the next section. We describe two standard algorithms suggested by

Harris [9] and analyze the time and I/O complexities and the amount of memory used.

Harris introduced seven algorithms for reduction [9]. We can divide them into two

types. The �rst six algorithms are called tree-based algorithms, and the last one is

called a cascading algorithm. The cascading algorithm is faster than the six tree-based

algorithms in a real GPU. In this section we show that the cascading algorithm has

lower time complexity than the tree-based algorithms on the AGPU model.

62 Chapter 4. Reduction Algorithms

n / (2b)	

n	

2b	
 2b	
 2b	
 2b	

1	

T [n]	

Input	

Output	

1st iteration	

2nd iteration	

log2b n!" #$ -th	

iteration	

Data size	

...
	

...
	

...	
 ...	

Figure 4.2: Outline of tree-based reduction algorithm.

We only explain the case where n is equal to or larger than p. When n < p, some

cores are not used. In particular, when n ≤ b, we always use a single multiprocessor.

However, we do not go into the detail of this case because we cannot take full advantage

of GPUs. We often consider the cases where the input size n is much larger than p. In

this section, if p = o(n) holds, we say that the input size is su�ciently larger than the

number of cores.

4.5.1 Tree-based Algorithm

We describe the tree-based algorithm proposed by Harris [9]. He applied �ve optimiza-

tion techniques to a naive algorithm step by step, and obtained six algorithms. We

analyze the fastest algorithm among the six algorithms using AGPU(p,b,M). This

algorithm contains all optimization techniques proposed by Harris.

Figure 4.2 shows the outline of tree-based algorithm. The input T [0..n − 1] is

divided into blocks with 2b words and each block is reduced to one element using a

single multiprocessor. After reducing all blocks, we obtain n/2b elements. The same

calculation is repeatedly done to the resulting values until the size of the elements

becomes one. The result is the reduction value of the input.

We next explain the procedure for calculating each block. Figure 4.3 shows an

example for the case where the operator is “addition” and b is equal to four. A

multiprocessor reads the �rst half of a block from the global memory and stores

them in the shared memory, and next, reads and stores the second half of a block

4.5 Reduction with Commutative Operators 63

a
	

b	
 c	
 d	
 e	
 f	
 g	
 h	

0

a+e
	

b+f	
 c+g	
 d+h	
 e	
 f	
 g	
 h	

a+c+e+g b+d+f+h	
 c+g
	

d+h	
 e	
 f	
 g	
 h	

a+b+c+d
+e+f+g
+h

b+d+f+h	
 c+g	
 d+h	
 e	
 f	
 g	
 h	

1 2 3Cores	

Shared  
memory	

0 1

0

Step 1	

Step 2	

Step 3	

Figure 4.3: The procedure of each block for tree-based reduction algorithm.

similarly. Thus, 2b elements are stored in the shared memory. After that, b cores in the

multiprocessor apply the operator to two elements in parallel (see Step 1 in Figure 4.3).

The cores access contiguous elements in each step. At the �rst step, the i-th core

carries out the operation to the i-th element and the (i + b)-th element in the block.

Some cores repeat carrying out the operation to the resulting values until only one

element remains. Since the cores access distinct banks, bank con�icts do not occur.

Note that we can use this procedure only if the operator is commutative. In Figure 4.3,

we actually calculate a ⊕ e ⊕ c ⊕д ⊕b ⊕ f ⊕d ⊕h instead of a ⊕b ⊕ c ⊕d ⊕ e ⊕ f ⊕д ⊕h.

If the operator is not commutative, these two values are not the same in general. A

pseudo code for tree-based algorithm is shown in Algorithm 4.1.

We analyze the time complexity of this tree-based algorithm using the AGPU

model. The loop on lines 14-17 runs logb times. So it takes O (logb) times to calculate

the reduction for one block. The loop on lines 5-27 runs

⌈
log

2b n
⌉

times. Let k be the

number of multiprocessors and s (i) represent how many times the loop in lines 7-23

64 Chapter 4. Reduction Algorithms

Algorithm 4.1 Calculate reduction using the tree-based algorithm

1: procedure CalculateReductionUsingTreeBased(T , n) . Given an array T [n]
2: Q := &T [0]
3: Ω := &W [0] . Bu�er to store temporary reduction values

4: d ← n
5: while d > 1 do
6: s ← dd/2kbe . The number of serialization

7: for j ← 0 to s − 1 do
8: for all ρ ∈ MP[0..k − 1] in parallel do
9: for all ϵ ∈ Core[0..b − 1] in parallel do

10: d1[ϵ]⇐ Q[2b (jk + ρ) + ϵ]
. Each multiprocessor reads the �rst half of the 2b elements

11: d2[ϵ]⇐ Q[2b (jk + ρ) + b + ϵ]
. Each multiprocessor reads the second half of the 2b elements

12: x[ϵ]← d1[ϵ] ⊕ d2[ϵ]
13: δ ← b/2
14: while δ > 0 do
15: x[ϵ]← x[ϵ] ⊕ x[ϵ + δ]
16: δ ← δ/2
17: end while
18: if ϵ = 0 then
19: Ω[jk + ρ]⇐ x[0]

. Each multiprocessor writes the reduction value of the 2b elements

20: end if
21: end for
22: end for
23: end for
24: Q := Ω . The same calculation is repeatedly done to the resulting values

25: d ← dd/2be . The number of elements is reduced to 1/2b
26: Ω := &Ω[d]
27: end while
28: return Q[0] . The reduction value of T [n]
29: end procedure

4.5 Reduction with Commutative Operators 65

are executed at the i-th iteration in lines 5-27. We have

s (i) =

⌈
n

(2b)i
1

k

⌉

=

⌈
n

2p (2b)i−1

⌉
.

Therefore, the time complexity of the algorithm is

dlog
2b ne∑

i=1

s (i) logb <

dlog
2b ne∑

i=1

logb

(
n

2p (2b)i−1
+ 1

)

=
n logb

2p

dlog
2b ne∑

i=1

(
1

2b

)i−1
+ logb

⌈
log

2b n
⌉
.

Since b ≥ 1, we have

dlog
2b ne∑

i=1

(
1

2b

)i−1
≤

∞∑
i=1

(
1

2b

)i−1
=

1

1 − 1

2b

≤ 2.

Thus, the time complexity is O((n logb)/p + logn). If the data size is su�ciently larger

than the number of cores, the time complexity is O((n logb)/p).

We next analyze the I/O complexity. Since each block is accessed three times in the

loop of lines 9-21 and the number of blocks is

⌈
n/(2b)i

⌉
, the multiprocessors access the

global memory 3

⌈
n/(2b)i

⌉
times at the i-th iteration. Therefore, the I/O complexity is

dlog
2b ne∑

i=1

3

⌈
n

(2b)i

⌉
≤

dlog
2b ne∑

i=1

3

(
n

(2b)i
+ 1

)

=

dlog
2b ne∑

i=1

(
3n

2b

(
1

2b

)i−1
+ 3

)
= O

(
n

b
+
logn

logb

)
.

66 Chapter 4. Reduction Algorithms

If the data size is su�ciently larger than the number of cores, the I/O complexity is

O (n/b).

Next, we analyze the amount of memory used in the algorithm. The shared memory

is only used to store elements of a block. The amount of the shared memory used is

therefore 2b words. The global memory is used to store the input, the output, and the

temporary results. The input consists of n elements. We use the same bu�er for output

and temporary results. We have to store n/(2b) elements to the global memory as a

temporary result after the �rst iteration. The amount of the global memory used is

therefore n + n/(2b) words.

The multiplicity is immediately calculated with the amount of shared memory used.

Since the amount of shared memory used is 2b words, The multiplicity is M/(2b).

4.5.2 Cascading Algorithm

We can improve the tree-based algorithm. The tree-based algorithm repeatedly

calculates a reduction value of a block, but it is not e�cient because some cores are not

used in the later steps of the calculation of each block. The cascading algorithm makes

cores keep active until the �nal part of the algorithm.

We describe the cascading algorithm using AGPU(p,b,M). We consider the input

sequence as a matrix with p columns. We use the row-major order, that is, the �rst p

elements in the input array are stored in the �rst row. Each of p cores is assigned to

one of the columns in the matrix. Figure 4.4 shows an example for b = 4 and p = 12.

Each core calculates the reduction of one column sequentially. After that, cores in a

multiprocessor calculate the reduction of b resulting values in a multiprocessor and

write the result to the global memory. We call this step “local reduction”. After that, we

calculate the reduction of p/b resulting values using the tree-based algorithm. We call

this step “global reduction”. As a result, we obtain the overall reduction value. Note

that we can use this procedure only if the operator is commutative. Algorithm 4.2

shows a pseudo code for the cascading algorithm.

The details of the local reduction is shown in Procedure CalculateLocalRe-

ductionUsingCascading. Each multiprocessor repeats handling one row with b

elements. In each iteration, it reads b contiguous elements from the global memory

by one coalesced memory access instruction and each core applies the operator to

4.5 Reduction with Commutative Operators 67

b = 4	

p = 12	

n / p rows	

Core
0	

Core
11	

Figure 4.4: Input sequence arranged as a matrix with p columns.

an element and the resulting value so far. After handling all assigned elements, a

multiprocessor has b resulting values. Finally, it reduces the b elements to one using

the tree-based algorithm.

We analyze the time complexity. The local reduction takes O (n/p + logb) times

because each multiprocessor handles all assigned elements in O (n/p) times and reduces

b resulting elements to one in O (logb) times. The global reduction can be computed in

O (logk) times using the tree-based algorithm for the k resulting values. The time

complexity is therefore O (n/p + logp). If the data size is su�ciently larger than the

number of cores, the time complexity is O (n/p).

Next, we analyze the I/O complexity. Since each multiprocessor always reads b

elements per instruction, the local reduction accesses the global memory O (n/b) times.

The global reduction accesses the global memory O (k/b) times using the tree-based

algorithm. Since we assume n ≥ p, the I/O complexity is O (n/b) .

Finally, we analyze the amount of memory used and the multiplicity. The amount

of the shared memory used is O(b) words because each core stores two elements in the

shared memory. The amount of the global memory used is n + O (p/b) words because

each multiprocessor has to store one word to the global memory as a temporary result.

The multiplicity is therefore M/(2b).

68 Chapter 4. Reduction Algorithms

Algorithm 4.2 Calculate reduction using the cascading algorithm

1: procedure CalculateReductionUsingCascading(T ,n) . Given an array T [n]
2: W [0..p/b − 1] = CalculateLocalReductionUsingCascading(T ,n)

. Local reduction

3: return CalculateReductionUsingTreeBased(W ,p/b) . Global reduction

4: end procedure

5: procedure CalculateLocalReductionUsingCascading(T ,n)

. Given an array T [n]
6: for all ρ ∈ MP[0..k − 1] in parallel do
7: for all ϵ ∈ Core[0..b − 1] in parallel do
8: x[ϵ]← 0 . Reduction value so far

9: for i ← 0 to n/p − 1 do
10: d[ϵ]⇐ T [ip + bρ + ϵ] . Each multiprocessor reads the i-th row

11: x[ϵ]← x[ϵ] ⊕ d[ϵ]
12: end for
13: δ ← b/2
14: while δ > 0 do
15: x[ϵ]← x[ϵ] ⊕ x[ϵ + δ]
16: δ ← δ/2
17: end while
18: if ϵ = 0 then
19: W [ρ]⇐ x[0]

. Each multiprocessor writes the reduction value so far

20: end if
21: end for
22: end for
23: returnW [0..p/b − 1]

. The local reduction values each of which is calculated by a multiprocessor

24: end procedure

4.6 Reduction with Non-commutative Operators 69

To sum it up, we con�rmed that the cascading algorithm is theoretically faster

than the tree-based algorithm on the AGPU model. If the data size is su�ciently

larger than the number of cores, the cascading algorithm is O(logb) times faster than

the tree-based algorithm, while these algorithms have the same I/O complexity. In

Section 4.8, we will show that the cascading algorithm is faster than the tree-based

algorithm in practice.

4.6 Reduction with Non-commutative Operators

The cascading algorithm utilizes the commutativity of the reduction operators for

e�cient memory access. Therefore, the algorithms do not work for non-commutative

operators. In this section, we propose a novel reduction algorithm for non-commutative

operators. The basic idea is that the reduction procedure is divided into several pipeline

stages and each core in a multiprocessor processes one pipeline stage. We call this

pipeline algorithm.

We �rst modify the tree-based algorithm so that it works for non-commutative

operators for later use. Although the algorithm causes two-way bank con�icts, the

complexities do not increase. Next we try to modify the cascading algorithm such that

it can work for non-commutative operators. The algorithm is called matrix-based
algorithm. Despite the optimal time and I/O complexities of the algorithm, the algorithm

is very slow on real GPUs. We analyze the algorithm using the AGPU model, and

reveal that the performance bottleneck is low multiplicity. Then, we describe the detail

of the pipeline algorithm.

4.6.1 Tree-based Algorithm for Non-commutative Operators

If the operators are not commutative, the tree-based algorithm explained in Section 4.5.1

do not return the correct answer in general. For example, in Figure 4.3, the algorithm

actually calculates a ⊕ e ⊕ c ⊕ д ⊕ b ⊕ f ⊕ d ⊕ h instead of a ⊕ b ⊕ c ⊕ d ⊕ e ⊕ f ⊕ д ⊕ h.

We therefore change the data assignment to cores. The new data assignment is shown

in Figure 4.5 and the pseudo code for the algorithm is shown in Algorithm 4.3. Since

the number of elements in a block is 2b, two-way bank con�icts occur at the step 1. For

example, since b is equal to four in Figure 4.5, the elements “a” and “e” in the �rst line

70 Chapter 4. Reduction Algorithms

a
	

b	
 c	
 d	
 e	
 f	
 g	
 h	

0

a+b
	

c+d	
 e+f	
 g+h	
 e	
 f	
 g	
 h	

a+b+c+d e+f+g+h	
 e+f
	

g+h	
 e	
 f	
 g	
 h	

a+b+c+d
+e+f+g
+h

e+f+g+h	
 e+f	
 g+h	
 e	
 f	
 g	
 h	

1 2 3Cores	

Shared  
memory	

0 1

0

Step 1	

Step 2	

Step 3	

Figure 4.5: The procedure of each block for modi�ed tree-based reduction algorithm.

are in the same bank, that is, Core 0 and Core 2 access the same bank at the same

time. Similarly, Core 1 and Core 3 access the same bank at the same time. Although it

makes the number of shared memory access twice, it does not change the asymptotic

complexities. Accordingly, the time and I/O complexities and the multiplicity are the

same as the original tree-based algorithm.

4.6.2 Matrix-based Algorithm

The cascading algorithm does not work for non-commutative operators. The matrix-

based algorithm can be obtained by improving the cascading algorithm. Although the

algorithm has the optimal time and I/O complexities, it is practically slow.

A typical way to develop GPU-based algorithms is to improve PRAM-based

algorithms for GPUs. As mentioned in Section 3.3.1, PRAM-based algorithms are

useful to develop algorithms executed inside a multiprocessor. In this section, we

�rst develop the matrix-based algorithm in this manner. After that, we analyze the

performance bottleneck.

As shown in Figure 4.6, we consider n input elements as a matrix with b columns

4.6 Reduction with Non-commutative Operators 71

Algorithm 4.3 Calculate reduction using the modi�ed tree-based algorithm

1: procedure CalculateReductionUsingTreeBased2(T ,n) . Given an array T [n]
2: Q := &T [1]
3: Ω := &W [1] . Bu�er to store temporary reduction values

4: d ← n
5: while d > 1 do
6: s ← dd/2kbe . The number of serialization

7: for j ← 0 to s − 1 do
8: for all ρ ∈ MP[0..k − 1] in parallel do
9: for all ϵ ∈ Core[0..b − 1] in parallel do

10: x[ϵ]⇐ Q[b (jk + ρ) + ϵ] . Each multiprocessor reads b elements

11: for j ← 0 to logb − 1 do
12: if ϵ < b/2j+1 then
13: x[ϵ]← x[2ϵ] ⊕ x[2ϵ + 1]
14: end if
15: end for
16: if ϵ = 0 then
17: Ω[jk + ρ]⇐ x[0]

. Each multiprocessor writes the reduction value of the b elements

18: end if
19: end for
20: end for
21: end for
22: Q := Ω . The same calculation is repeatedly done to the resulting values

23: d ← dd/2be . The number of elements is reduced to 1/2b
24: Ω := &Ω[d]
25: end while
26: return Q[0] . The reduction value of T [n]
27: end procedure

72 Chapter 4. Reduction Algorithms

b	

n / p rows	

n / b
rows	

MP 1	

MP k	

...
	

Figure 4.6: Input sequence arranged as a matrix with b columns.

and n/b rows in the row-major order. The n/b rows are divided into k (= p/b) groups,

each of which has n/p rows. Each multiprocessor calculates the reduction of one group.

In order to develop an e�cient algorithm executed inside a multiprocessor on the

AGPU model, we �rst develop a PRAM-based algorithm. In the cascading algorithm,

each core handles one column. We cannot adopt it due to non-commutativity. Instead,

we can design a simple algorithm on the PRAM model. As shown in Figure 4.7, we

consider the input elements as a matrix with n/b columns and b rows in the row-major

order. Each core handles one row and after that we reduce b resulting values to one.

This algorithm works for non-commutative operators. The algorithm has the optimal

time complexity O(n/p) on the PRAM model.

Next, we improve this algorithm for the AGPU model. We �rst discuss a naive

algorithm. A multiprocessor repeatedly accesses one column of the matrix shown in

Figure 4.7 and each core in the multiprocessor calculates reduction of one row. The I/O

complexity of this algorithm on the AGPU model is n, which is b times larger than the

optimal value. This ine�ciency is caused by non-coalesced global memory access,

namely, we need b memory accesses to obtain b input elements. We next improve

4.6 Reduction with Non-commutative Operators 73

b	

b rows	

n / b columns	

...	

Core 0	

Core 1	

Core b	

Figure 4.7: Input sequence arranged as a matrix with b rows.

the I/O complexity of the algorithm. In order to obtain b input elements per global

memory access, we repeat executing a square matrix with b columns and b rows. For

each iteration, we �rst copy all elements in a square matrix from the global memory

to the shared memory. Then, each core handles one row with b elements. In this

algorithm, we can obtain b elements per global memory access because we can utilize

coalesced memory access. Therefore, the I/O complexity of the algorithm is O (n/b).

We furthermore improve this algorithm. As mentioned in Section 3.3.1, An

algorithm on the AGPU model may have a larger time complexity than the algorithm

on the PRAM model for the same problem due to the bank con�icts. In the above

algorithm, b-way bank con�icts occur because all cores in a multiprocessor access the

same bank at the same time. We explain the detail using an example. Figure 4.8(a) shows

the memory allocation at b = 4. The data addresses are allocated in the row-major

order, namely, the addresses 0, 1, 2, and 3 are in the �rst row. In this �gure, the

columns represent banks. For example, the addresses 0, 4, 8, 12 are in the same bank.

In the above algorithm, the i-th element is allocated to the address i. In this case,

four elements in the same bank are accessed at the same time, that is, four-way bank

con�icts occur. We can avoid the bank con�icts by changing the memory allocation.

Figure 4.8(b) shows the improved memory allocation at b = 4. Formally, the i-th

element is allocated to the address bi/bc × b + ((i%b) + bi/bc) %b. As a result, this

algorithm has the optimal time and I/O complexities. The pseudo code for the algorithm

is shown in Algorithm 4.4. The global reduction is calculated using Algorithm 4.3.

Next, we analyze the multiplicity of this algorithm. Since this amount of shared

memory used is O(b2), the multiplicity is O(n/b2). It seems to be di�cult to increase

this value without increasing the time and I/O complexities. The low multiplicity is

74 Chapter 4. Reduction Algorithms

Algorithm 4.4 Calculate reduction using the matrix-based algorithm

1: procedure CalculateReductionUsingMatrixBased(T ,n) . Given an array T [n]
2: W [0..p/b − 1] = CalculateLocalReductionUsingMatrixBased(T ,n)

. Local reduction

3: return CalculateReductionUsingTreeBased2(W ,p/b) . Global reduction

4: end procedure

5: procedure Conv(i)

6: return bi/bc × b + ((i%b) + bi/bc) %b . Convert from index to address

7: end procedure

8: procedure CalculateLocalReductionUsingMatrixBased(T ,n)

. Given an array T [n]
9: for all ρ ∈ MP[0..k − 1] in parallel do

10: for all ϵ ∈ Core[0..b − 1] in parallel do
11: x[ϵ]← 0 . Reduction value so far

12: for i ← 0 to
⌈⌈
n/p

⌉
/b

⌉
− 1 do

13: for j ← 0 to b − 1 do
14: d[Conv(jb + ϵ)]⇐ T [ρ

⌈
nb/p

⌉
+

⌈
n/p

⌉
× j + i × b + ϵ]

15: end for
16: for j ← 0 to b − 1 do
17: x[ϵ]← x[ϵ] ⊕ d[Conv(j + ϵb)]
18: end for
19: end for
20: δ ← b/2
21: while δ > 0 do
22: x[ϵ]← x[2ϵ] ⊕ x[2ϵ + 1]
23: δ ← δ/2
24: end while
25: if ϵ = 0 then
26: W [ρ]⇐ x[0]

. Each multiprocessor writes the reduction value so far

27: end if
28: end for
29: end for
30: returnW [0..p/b − 1]

. The local reduction values each of which is calculated by a multiprocessor

31: end procedure

4.6 Reduction with Non-commutative Operators 75

0	
 1	
 2	
 3	

4	
 5	
 6	
7	

8	

15	
14	
13	
 12	

11	
10	
 9	

0	
 1	
 2	
 3	

4	
 5	
 6	
 7	

8	

15	
14	
13	
12	

11	
10	
9	

b = 4	

Shared  
memory	

bank 
0	

bank 
3	
...	

(a)	

bank 
0	

bank 
3	
...	

(b)	

b = 4	

Figure 4.8: Examples of memory allocation for the matrix-based algorithm; (a) four-way

bank con�icts occur, (b) no bank con�icts occur.

considered a main reason why the matrix-based algorithm is much slower than the

cascading algorithm. We will show the experimental result in Section 4.8.

4.6.3 Pipeline Algorithm

We now describe our pipeline algorithm. As is the case with the matrix-based algorithm,

the input array is represented as a matrix with b columns and n/b rows in the row-major

order (see Figure 4.6). The n/b rows are divided into k groups with n/p rows. Each

multiprocessor calculates the reduction of a group using 2b words of the shared

memory.

Figure 4.9 shows the memory assignment at b = 4. The elements in the shared

memory are numbered from 0 to 2b − 1, which are represented by 0©, 1©, 2©, · · · in

Figure 4.9. The �rst b elements store values copied from the global memory, and the

remaining b elements store values in progress.

Figure 4.10 shows the process of the reduction at b = 4. We suppose that each

core carries out one operation at each timestamp t = t1, t2, · · · . When the index of

timestamps is odd, the cores read b elements from the global memory. Otherwise, the

cores reduce two elements to one in parallel.

In Figure 4.9, the cores �rst copy four values to 0© 1© 2© 3© at t = t1. Then Cores 0

and 1 reduce the four values to two and store the resulting values to 4© 5© at t = t2. At

t = t4, Core 2 reduces 4© and 5© to one and stores it to 6©. Finally at t = t6, Core 3

76 Chapter 4. Reduction Algorithms

b = 4	

2b	

1	
0	

0	
 1	
 2	
 3	

4	

=	

+	
 3	
2	

5	

=	

+	
 5	
4	

6	

=	

+	
 6	
7	

7	

=	

+	

Input data read from 
the global memory	

Values 
in calculation	

Reduction value  
so far	

Figure 4.9: Memory assignment of the pipeline algorithm at b = 4.

Carry out the operation to the first row	

Read the first row	

Carry out the operation  
to the first and second rows	

Read the second row	

Carry out the operation  
to the first, second and third rows	

Read the third row	

Carry out the operation  
to the second, third and fourth rows	

Read the fourth row	

Shared memory	
 Cores	

0	
 1	
 2	
3	

t	

t1	

t3	

t4	

t2	

t5	

t6	

t7	

t8	

0	
 1	
2	
3	
 4	
 5	
6	
 7	

...	

Figure 4.10: An example of the procedure of the pipeline algorithm.

4.6 Reduction with Non-commutative Operators 77

b = 4	

0	

6	

1	

7	

2	

5	

3	

4	

Shared  
memory	

Figure 4.11: An example of the shared memory layout to avoid bank con�icts.

reduces 6© and the reduced value so far, which is the identity at �rst, and stores the

resulting value to 7©. The second row in the input matrix is processed similarly at time

t3, t4, t6, t8, and the third row is processed at time t5, t6, t8, t10. We can see all cores are

always active at t ≥ 5. We can design the algorithm for any b represented as powers

of two. On the other hand, when we calculate the reduction of one block using the

tree-based algorithm, the number of active cores decreases as the calculation proceeds.

Therefore the pipeline algorithm is faster than the tree-based algorithm.

Next, we explain the shared memory layout to avoid bank con�icts. Let addr (i)
denote the data address of i-th element. We determine addr (i) as follows:

addr (i) =




i, if i < b/2 or i ≥ b − 2,

i + 1, if b/2 ≤ i < b − 2 and i is a even number,

i − 1, otherwise.

Figure 4.11 shows an example of shared memory layout for b = 4.

In order to prove this arrangement does not cause bank con�icts, we prove there

exists a one-to-one mapping from cores to banks at any time the cores access the

shared memory. It is enough to prove the mapping is surjective. The cores access the

shared memory with four di�erent patterns.

1. When the cores store the input elements to the shared memory, core i handles

the i-th element. For each bank β , the corresponding core is β .

2. When each core loads the �rst element to reduce, core i handles element 2i (at

i < b − 1) or element 2b − 1 (at i = b − 1). If i = b − 1, core i accesses address

78 Chapter 4. Reduction Algorithms

Algorithm 4.5 Calculate reduction using the pipeline algorithm

1: procedure CalculateReductionUsingPipeline(T ,n) . Given an array T [n]
2: W [0..p/b − 1] = CalculateLocalReductionUsingPipeline(T ,n)

. Local reduction

3: return CalculateReductionUsingTreeBased2(W ,p/b) . Global reduction

4: end procedure

addr (2b − 1) = 2b − 1, which is stored in bank b − 1. Therefore, core b − 1 accesses

bank b − 1. If i < b/2, core i accesses address addr (2i) = 2i, which is stored in

bank 2i . Therefore, core i accesses bank 2i . Otherwise (if b/2 ≤ i < b − 1), core i

accesses address addr (2i) = 2i + 1, which is stored in bank 2i + 1 − b. Therefore

core i accesses bank 2i + 1 − b. To sum up, for each core i, if i < b/2, the core

accesses bank 2i, otherwise, the core accesses 2i + 1 − b. Note that 2i + 1 − b

is odd. Inversely, for each bank β , if β is even, the corresponding core is β/2,

otherwise, the corresponding core is (β + b − 1)/2.

3. When each core loads the second element to reduce, core i handles element 2i + 1

(at i < b − 1) or element 2b − 2 (at i = b − 1). We can handle this case in the same

manner as the above case. For each bank β , if β is odd, the corresponding core is

(β − 1)/2, otherwise the corresponding core is (β + b)/2.

4. When the cores write the resulting value to the shared memory, the cores access

discrete addresses, and all cores access the second row in the share memory (see

Figure 4.11). Therefore, for each bank, there exists a corresponding core.

Thus, the mapping from the cores to the banks is surjective in all cases. Therefore, bank

con�icts do not occur. Algorithm 4.5 shows a pseudo code for the pipeline algorithm.

The details of the local reduction is shown in Algorithm 4.6. Algorithm 4.5 uses

the tree-based algorithm for the global reduction. A pseudo code for the tree-based

reduction algorithm with non-commutative operators is shown in Algorithm 4.3.

Next, we analyze the complexities of the algorithm. Lines 2-30 in Algorithm 4.6

can be computed in O(n/p + logb) time. The global reduction can be computed in

O(logk) time using the tree-based algorithm for the k resulting values. Thus, the time

complexity is O(n/p + logp). If the data size is su�ciently larger than the number

of cores, the time complexity becomes O(n/p). As is the case with the cascading

4.6 Reduction with Non-commutative Operators 79

Algorithm 4.6 Calculate local reduction using the pipeline algorithm

1: procedure CalculateLocalReductionUsingPipeline(T ,n)

. Given an array T [n]
2: for all ρ ∈ MP[0..k − 1] in parallel do
3: for all ϵ ∈ Core[0..b − 1] in parallel do
4: if ϵ < b/2 then . Index for the �rst and second elements to be reduced

5: i1 ← 2 ∗ ϵ
6: i2 ← 2 ∗ ϵ + 1
7: else
8: i1 ← 2 ∗ ϵ + 1
9: i2 ← 2 ∗ ϵ

10: end if
11: if ϵ ≥ b − 2 then . Index for the resulting elements

12: ir ← ϵ + b
13: else if (ϵ%2) , 0 then
14: ir ← ϵ + b − 1
15: else
16: ir ← ϵ + b + 1
17: end if
18: for j ← 0 to n/p − 1 do
19: y[ϵ]⇐ T [ρnb/p + bj + ϵ] . Copy input to y[ϵ]
20: y[ir]← y[i1] ⊕ y[i2] . Reduce two elements to one

21: end for
22: for j ← 0 to logb − 1 do
23: y[ϵ]← id⊕
24: y[ir]← y[i1] ⊕ y[i2]
25: end for
26: if ϵ = 0 then
27: W [ρ]⇐ y[2b − 1]

. Each multiprocessor writes the reduction value so far

28: end if
29: end for
30: end for
31: returnW [0..p/b − 1]

. The local reduction values each of which is calculated by a multiprocessor

32: end procedure

80 Chapter 4. Reduction Algorithms

Table 4.1: Complexities and multiplicity of reduction algorithms on AGPU(p,b,M).
Here n is the number of elements to be reduced. We assume p = o(n). Cascading

cannot be used with non-commutative operator, whereas the others can.

Algorithms Time complexity I/O complexity Multiplicity

(Optimal) Θ(n/p) Θ(n/b) −

Tree-based O((n logb)/p) O(n/b) O(M/b)
Cascading O(n/p) O(n/b) O(M/b)
Pipeline (Ours) O(n/p) O(n/b) O(M/b)
Matrix-based O(n/p) O(n/b) O(M/b2)

algorithm, the I/O complexity is O(n/b). The amount of the shared memory used is

O(b) words and the amount of the global memory used is n + O(p/b) words. Finally,

the multiplicity is O(M/b).

4.7 Summary of Complexities and Multiplicity

Table 4.1 summarizes the time and I/O complexities and multiplicity of reduction

algorithms. All algorithms have the optimal I/O complexity O(n/b), and all algorithms

except the tree-based algorithm have the optimal time complexity O(n/p). The

tree-based algorithm has logb times larger time complexity than other algorithms.

In addition, the multiplicity of all algorithms except the matrix-based algorithm is

O(M/b), while the multiplicity of the matrix-based algorithm is O(M/b2).

4.8 Experimental Evaluation

4.8.1 Running Time

We have implemented all reduction algorithms explained in this chapter using CUDA

and have measured their running time using NVIDIA k20c GPU. The device consists of

2496 cores organized as 13 multiprocessors. The bandwidth of the global memory is

208GB/s . All algorithms use summation of integer as a reduction operator. In order to

compare the performance of the algorithms, all algorithms use the same operators.

Since the operator is commutative, all algorithms work correctly. An evaluation using

4.8 Experimental Evaluation 81

0

20

40

60

80

100

120

140

1048576	
 2097152	
 4194304	
 8388608	
 16777216	
 33554432	
 67108864	
 134217728	
 268435456	

B
an

dw
id

th
 (G

B
/s

ec
)	

Tree Cascading
Pipeline Matrix

220	

Number of elements	

222	
 224	
 226	
 227	
 228	
225	
223	
221	

Figure 4.12: Running time of several reduction algorithms.

a non-commutative operator will be shown in the next section.

Figure 4.12 shows the bandwidth of the reduction algorithms, which represents the

amount of elements processed per one second. Let “Tree”, “Cascading”, “Pipeline”,

“Matrix“ denote tree-based algorithm, cascading algorithm, pipeline algorithm, matrix-

based algorithm respectively. The bandwidth is limited by the bandwidth of the global

memory.

The cascading algorithm is fastest among these algorithms. The pipeline algorithm

is slower than the cascading algorithm, but su�ciently fast. The tree-based algorithm

is slower than the cascading algorithm and the pipeline algorithm when n is larger than

2
21

. This is considered due to the large time complexity. The matrix-based algorithm is

slowest among these algorithms. This is considered due to the small multiplicity.

4.8.2 Maximum Segment Sum

As explained in Section 4.4.1, the maximum segment sum problem requires a non-

commutative operator. We calculated the problem using the pipeline algorithm and

the tree-based algorithm for non-commutative operators. The running time were

82 Chapter 4. Reduction Algorithms

0

10

20

30

40

50

60

70

1048576	
 2097152	
 4194304	
 8388608	
 16777216	
 33554432	
 67108864	
 134217728	
 268435456	

B
an

dw
id

th
 (G

B
/s

ec
)	

Pipeline Tree CPU

220	

Number of elements	

222	
 224	
 226	
 227	
 228	
225	
223	
221	

Figure 4.13: Running time of the MSS algorithms.

measured on NVIDIA k40c GPU. The device consists of 2880 cores organized as 15

multiprocessors. The bandwidth of the global memory is 288GB/s . We also measured

the running time on CPU. We used Xeon E5-1620 (3.7GHz) with 252 GB DDR. We

utilized the linear-time sequential algorithm proposed by Bentley [34].

Figure 4.13 shows the bandwidth of the MSS algorithms. The pipeline algorithm is

3.9 times faster than the tree-based algorithm and 29 times faster than the sequential

algorithm on CPU at n = 2
28

.

4.9 Short Summary

We �rst explained that reduction plays a very important role in parallel programming.

Divide-and-conquer algorithms can be formalized as list homomorphisms, and we

can calculate list homomorphisms using reduction algorithms. Since some list

homomorphisms require non-commutative operators, we need fast algorithms for it.

As an example of list homomorphisms, we dealt with the maximum segment sum

(MSS) problem. This algorithm also requires a non-commutative operator.

After that, we evaluated the several reduction algorithms. The cascading algorithm

4.9 Short Summary 83

is fastest, but it works for only commutative operators. The tree-based algorithm

works for non-commutative operators, but it is slower than the cascading algorithm.

For non-commutative operators, we proposed the pipeline algorithm, which has the

optimal time and I/O complexities. The algorithm is nearly as fast as the cascading

algorithm on the real GPUs. With respect to the MSS problem, the pipeline algorithm

is 3.9 times faster than the tree-based algorithm and 29 times faster than the sequential

algorithm on CPU at n = 2
28

. Thus, our algorithm is fast not only in theory but also in

practice.

In addition, we evaluated the matrix-based algorithm to show the power of the

AGPU model. Although the algorithm has the optimal time and I/O complexities on

SIMD architectures, the algorithm is slow on GPUs. We can easily �nd the reason

using the AGPU model; the reason is the small multiplicity. In this way, one can

evaluate GPU-based algorithms using the AGPU model even if one is not familiar with

GPU architectures.

85

5
Pre�x Scan Algorithms

5.1 Introduction

In this chapter, we deal with pre�x scan (pre�x sum) algorithms. This chapter aims to

show that we can predict the performance of the GPU-based algorithms using the

AGPU model. As is the case with reduction, pre�x scan is utilized by many other

algorithms. After de�ning the pre�x scan in Section 5.2, we show the applications of

pre�x scan in Section 5.3. In Section 5.4, we analyze the asymptotic behavior of pre�x

scan algorithms and reveal that the performance of the state-of-the-art algorithm

heavily depends on a tuning parameter. In Section 5.5, we measure the actual running

time of the algorithms with various parameter values and check that we can estimate

the performance of the algorithms using the AGPU model.

86 Chapter 5. Pre�x Scan Algorithms

5.2 De�nition

Pre�x scan or pre�x sum is de�ned as follows. Given an array T [0..n − 1] of n elements,

pre�x scan returns an array U [0..n − 1] such that:

U [k] =




id⊕, if k = 0,
k−1⊕
i=0

T [i], otherwise,

where the operator ⊕ is associative and commutative and id⊕ is the identity element

for the operator. As stated in Chapter 4, the operator

⊕
indicates that all elements in

the array are reduced to one using operator ⊕, informally,

k−1⊕
i=0

T [i] = T [0] ⊕ T [1] ⊕ · · · ⊕ T [k − 1].

This de�nition is also known as exclusive scan or prescan.

We introduce another de�nition of pre�x scan. Inclusive scan is de�ned as follow:

U [k] =
k⊕
i=0

T [i].

We can generate the inclusive scan from the exclusive scan by shifting all elements of

the exclusive scan to the left and inserting the sum of the input elements, which is

calculated by adding the last element of the exclusive scan to the last element of the

input, at the end. In this dissertation, we deal with exclusive scan unless otherwise

noted.

5.3 Applications of Pre�x Scan

Pre�x scan is utilized by many applications. Blelloch [35] provides the list of the

applications. Harris et al. [36] deal with stream compaction, summed-area tables, and

radix sort as the applications, and describe the details of them. In this section, we deal

with stream compaction. It is commonly used in parallel algorithms.

5.3 Applications of Pre�x Scan 87

2	
 5	
 1	
 8	
 7	
 4	

even (x)	

x	

1	
 0	
 0	
 1	
 0	
 1	

2	
 8	
 4	

Input	

Output	

Figure 5.1: An example of stream compaction

5.3.1 Stream Compaction

Stream compaction is a kind of �ltering operation.

Problem 5.1 (Stream Compaction) Given an array of integer numbers and a �lter
function f that takes a real number and returns a boolean value, output the array that
consists of all elements each element x of which satis�es f (x) = 1.

Note that we assume that memory addresses in an array are continuously allocated in

order of indices in this dissertation.

Figure 5.1 shows an example. The function even returns one for even numbers,

and zero for odd numbers. The output is the array that consists of even numbers in

the input array. Obviously, the sequential algorithm requires Θ(n) times to solve the

problem. We want to reduce the time complexity using parallel algorithms.

The parallel algorithm consists of three steps. Figure 5.2 shows the process. The

�rst step generates the �ag array that stores even(x) for each input element x . The

second step calculates pre�x scan of the �ag array. The resulting array indicates the

destination addresses for the input elements that satisfy even(x) = 1. The third step

moves the input elements to the output array. This operation is called scatter.

Obviously, the step 1 and 3 can be calculated in parallel because there is no data

dependency. Thus, the performance of the algorithm heavily depends on the step 2,

that is, pre�x scan. Actually, it is not easy to implement scatter operations e�ciently

on GPUs because the global memory accesses are not always coalesced. In Chapter 6,

we will introduce a good way to avoid non-coalesced accesses.

88 Chapter 5. Pre�x Scan Algorithms

2	
 5	
 1	
 8	
 7	
 4	

even (x)	

x	

1	
 0	
 0	
 1	
 0	
 1	

2	
 8	
 4	

Input	

Output	

0	
 1	
 1	
 1	
 2	
 2	

Step 2: Prefix Scan	

Step 3: Scatter	

Address	
 0	
 1	
 2	

2	
 5	
 1	
 8	
 7	
 4	
x	

Destination	

Step 1: Flag Array	

Figure 5.2: The process to calculate stream compaction

5.4 Pre�x Scan Algorithms

In this section, we deal with GPU-based pre�x scan algorithms. Some basic algorithms

are proposed for parallel processors [37, 35]. We call them tree-based algorithms. The

GPU-based implementations are provided by Harris et al. [36, 38]. The time complexity

is O(logb) times larger than the trivial lower bound. Matrix-based algorithm is

proposed for GPUs by Dotsenko et al. [10]. The algorithm has a tuning parameter α

that makes tradeo� between the time complexity and the multiplicity. At α = 1, the

matrix-based algorithm is the same as the tree-based algorithms, while it is faster than

the tree-based algorithms at the optimal value.

5.4.1 Matrix-based Algorithm

The matrix-based algorithm is designed for GPUs. We analyze the algorithm using

the AGPU(p,b,M) model. Input data represented as a matrix with b columns are

partitioned into matrices with α rows and b columns and each matrix is processed by a

multiprocessor. We can choose an arbitrary value of the parameter α . Thrust [39],

which is one of the standard CUDA libraries, uses a similar algorithm for pre�x scan.

We analyze the pre�x scan algorithm in Thrust.

A pseudo-code for the pre�x scan algorithm used in Thrust is shown in Algorithm 5.1.

The code is slightly modi�ed to make the algorithm suitable for the AGPU model.

In addition, for simplicity, we omit the process of rounding of fractions. In the

5.4 Pre�x Scan Algorithms 89

Step 2: Global Prefix Scan	

Step 3: Local Prefix Scan	

Input	

Output	

Step 1: Local Reduction	

Figure 5.3: The outline of pre�x scan algorithm

pseudo-code, parameter k represents the total number of multiprocessors, namely,

k = p/b. Algorithms 5.2 and 5.3 are a subroutine invoked by Algorithm 5.1.

Figure 5.3 shows the outline of the algorithm. First, input data are partitioned into

k blocks and each multiprocessor calculates the reduction of a block. This process is

called “local reduction”. The algorithm for the local reduction is shown in Algorithm 4.2.

The result of reductions is stored in an array C . Then, one multiprocessor calculates

the pre�x scan of the array C . This process is called “global pre�x scan”. Finally, each

multiprocessor calculates the pre�x scan of a block. This process is called “local pre�x

scan”. The value of index i in the global pre�x scan array is equal to the �nal output

value of the �rst element of i-th block. Therefore, each multiprocessor can concurrently

calculates the pre�x scan of a block using the result of the global pre�x scan.

Algorithms 5.2 and 5.3 show the detail of the global and local pre�x scan. Each

multiprocessor calculates the pre�x scan of a single block. At the local pre�x scan, the

number of blocks is k , whereas the number of blocks is one at the global pre�x scan. In

order to let the multiple multiprocessors calculate the pre�x scan concurrently, we

want to know the pre�x scan value of the �rst element of each block. Actually, the

output C of the global pre�x scan represents the values.

In Algorithms 5.2 and 5.3, each block is divided into subblocks with αb elements.

Each subblock is represented as a matrix with α rows and b columns (α ≤ b). Each

multiprocessor repeats calculating the pre�x scan of a matrix. We use column-major

order, namely, �rst α elements in a block are stored in the �rst column. First, all

elements in a matrix are transferred from the global memory to the shared memory. At

this time, we rearrange the matrix in the shared memory as a matrix with α rows

90 Chapter 5. Pre�x Scan Algorithms

b = 8	

0	

1	

2	

3	

4	

5	

6	

7	

Shared  
memory	

pad	

a = 3	

0	

1	

2	

3	

4	

5	

6	

7	

0	

1	

2	

3	

4	

5	

6	

7	

Figure 5.4: An example of the data alignment

and b + 1 columns such that the i-th column in the original matrix is stored in the

i-th column and (b + 1)-th column in the new matrix does not store any elements.

Figure 5.4 shows an example for α = 3 and b = 8. The �rst α elements are stored in

distinct banks because the number of columns is b + 1. However, if α < b, the (α + 1)-th

element is stored in the same bank as the �rst element. Thus, bank con�icts occur.

On the other hand, if α is equal to b, bank con�icts do not occur because the α = b

contiguous elements are stored in distinct banks. Next, each core in a multiprocessor

calculates the reduction of the α elements in one column in parallel. After that, we

calculate the pre�x scan of this b resulting values. Finally, each core calculates the

pre�x scan of one column. Since the pre�x scan values of the �rst element of the

columns is represented as the above b resulting values, each core can do it in parallel.

We analyze the complexities of the algorithm. First, we analyze the time complexity.

It takes O(n/p + logb) time to calculate the local reduction because each core calculates

n/p rows and it takes O(logb) time to merge the result of each core. Note that bank

con�ict does not occur because b cores in a multiprocessor always access b contiguous

elements in the shared memory. Next, we analyze the time complexity of global and

local pre�x scan. Bank con�icts may occur when elements in a matrix are transferred

from global memory to shared memory. Each multiprocessor repeats copying b

elements α times. Although all elements in the same column are in distinct banks due to

padding, elements in di�erent columns can be in the same bank. The degree of con�icts

is min{db/αe,α } because the degree is equal to or smaller than the number of columns

used by b elements and it is also equal to or smaller than α . Since a multiprocessor

reads b elements α times, time complexity of reading a matrix is O(min{db/αe,α } · α).

Writing the resulting values of a matrix to global memory has the same time complexity.

In addition, it takes O(α + logb) time to calculate the pre�x scan of one matrix in the

shared memory. Therefore, the time complexity to calculate the pre�x scan of a matrix

5.4 Pre�x Scan Algorithms 91

Table 5.1: Complexities and multiplicity of the pre�x scan algorithm adopted by Thrust

on AGPU(p,b,M). Here n is the number of input elements. We assume n is much

larger than the number of cores p.

Algorithms Time complexity I/O complexity Multiplicity

Matrix-based O
((

n
p +

p
b2

) (
min

{⌈
b
α

⌉
,α

}
+

logb
α

))
3n
b + O

(
p
b

)
O

(
M
αb

)

is O(min{db/αe,α } · α + logb) in total. To calculate the global pre�x scan, this process

is serially repeated k/(αb) times. To calculate the local pre�x scan, this process is

serially repeated n/(kαb) times. Therefore, the total time complexity is

O
((
n

p
+

p

b2

) (
min

{⌈
b

α

⌉
,α

}
+
logb

α

))
.

Next, we analyze the I/O complexity. The algorithm uses (n/b + k) I/Os to calculate the

local reduction, (2p/b2) I/Os to calculate the global pre�x scan, and (n/b + k) I/Os to

calculate the local pre�x scan. Therefore, the total number of I/Os is 3n/b + O(p/b).

Next, the amount of the shared memory used is O(αb) words because the algorithm

uses αb words for a matrix to calculate the global and local pre�x scan. The amount of

the global memory used is (2n+p/b) words because 2n words are used for input/output

and p/b words are used to store the result of the local reduction. Finally, the multiplicity

is O(M/(αb)).

Table 5.1 shows the I/O and time complexities and multiplicity of the matrix-based

algorithm.

Parameter Tuning

We can choose an arbitrary value of the parameter α . First, we discuss how the value of

parameter α a�ects the performance of the algorithm. The parameter α is related to the

time complexity. When α is equal to one, the time complexity is O((n/p +p/b2) (logb)).
When α = Ω(b), the time complexity is O(n/p + p/b2). Thus, the time complexity

depends on α , and it attains the minimum when α = Ω(b). On the other hand, when α

is large, the multiplicity is inversely proportional to α . When α is equal to one, the

multiplicity is considered to be optimal since the amount of shared memory used is

O(b). On the other hand, When α = Ω(b), the multiplicity is not considered to be

92 Chapter 5. Pre�x Scan Algorithms

Algorithm 5.1 Calculate pre�x scan

1: procedure CalculatePrefixScan(T ,U ,n)

. Given an array T [n], Output U [n]
2: C[0..p/b − 1] = CalculateLocalReductionUsingCascading(T ,n)

. Local reduction

3: for all ρ ∈ MP[0..0] in parallel do . Global pre�x scan

4: for all ϵ ∈ Core[0..b − 1] in parallel do
5: CalculateBlockPre�xScan(C,C,k,NULL)
6: end for
7: end for

8: for all ρ ∈ MP[0..k − 1] in parallel do . Local pre�x scan

9: for all ϵ ∈ Core[0..b − 1] in parallel do
10: CalculateBlockPre�xScan(&T [n ∗ ρ/k],&U [n ∗ ρ/k],n/k,&C[ρ])
11: end for
12: end for

13: end procedure

optimal since the amount of shared memory used is O(b2). To summarize, parameter α

must be chosen from between 1 and Θ(b) with careful consideration of two competing

factors: the time complexity and the multiplicity.

If the input size n is much larger than p and α = Ω(b), the time and the I/O

complexities become O(n/p) and O(n/b), respectively, which are asymptotically

optimal. However, if the input size n is not su�ciently larger than p, the term p/b2

a�ects the time complexity. This is due to the ine�ciency of the global pre�x scan. The

time complexity can be improved by using multiple multiprocessors for the process. It

can be reduced to

O
(
n

p

(
min

(⌈
b

α

⌉
,α

)
+
logb

α

)
+ logp

)
by using the algorithm proposed by Harris et al. [36].

5.4 Pre�x Scan Algorithms 93

Algorithm 5.2 Calculate block pre�x scan

1: procedure CalculateBlockPrefixScan(T ,U ,n,C)

. Given an array T [n], Output U [n]
2: Allocate a matrixm[α][b + 1] in the shared memory.

3: for i ← 0 to n − 1 do
. Sequentially calculate the pre�x scan of the matrix with αb elements.

4: for j ← 0 to α − 1 do
. Read all elements in a matrix and arrange them in column-major order.

5: data_tmp[ϵ]⇐ T [αbi + jb + ϵ]
6: m[(jb + ϵ)%α][(jb + ϵ)/α]← data_tmp[ϵ]
7: end for
8: carry ⇐ C . Each core calculates the reduction of one column.

9: if ((ϵ = 0)&&(C , NULL)) then
10: val_column[ϵ]← C
11: else
12: val_column[ϵ]← I⊕
13: end if
14: for j ← 0 to α − 1 do
15: val_column[ϵ]← val_column[ϵ] ⊕m[j][ϵ]
16: end for

17: for (j = 1; j < b; j = j ∗ 2) do
. Cores calculate the pre�x scan of b resulting values.

18: if (ϵ ≥ j) then
19: val_column[ϵ]← val_column[ϵ − j] + val_column[ϵ]
20: end if
21: end for

22: if ((ϵ = 0)&&(C , NULL)) then
. Each core calculates the pre�x scan of one column.

23: next ← C ⊕m[0][ϵ]
24: m[0][ϵ]← C
25: else
26: next ←m[0][ϵ]
27: m[0][ϵ]← val_column[p − 1]
28: end if

94 Chapter 5. Pre�x Scan Algorithms

Algorithm 5.3 Calculate block pre�x scan (Continued)

29: for j ← 1 to α − 1 do
30: tmp ←m[j][ϵ]
31: m[j][ϵ]← next
32: next ← next ⊕ tmp
33: end for

34: for j ← 0 to a − 1 do
. Each multiprocessor writes all words in a sub-block to global memory.

35: data_tmp[ϵ]←m[(jb + ϵ)/a]
36: U [abi + jb + ϵ]⇐ data_tmp[ϵ]
37: end for
38: end for
39: end procedure

5.5 Experimental Evaluation

We measured the actual running time of the matrix-based algorithm for various values

of α using NVIDIA Tesla C1060 and k20c. We have implemented the program using

CUDA and the algorithm is based on the pre�x scan algorithm in the Thrust library.

The operator is 32-bit integer addition and the size of the input is 2
27 = 134,217,728.

The shared memory size per multiprocessor is 16 Kbyte in the C1060, and it is 48Kbyte

in the k20c. The maximum number of warps assigned to a multiprocessor is limited to

16 in the C1060 and it is limited to 64 in the k20c.

Figure 5.5 shows the actual running time for various values of α . The horizontal

axis represents the value of α , and the vertical axis represents the bandwidth, which

is a throughput speed. We compute the bandwidth as n × 2 × sizeof (int)/t where

t is running time of the algorithm. This value is limited by the bandwidth of the

architectures. The bandwidth of the C1060 is 102 GB/s, and the bandwidth of the k20c

is 208 GB/s.

The multiplicity has the maximum value when α < 6 in the k20c. In this range,

the bandwidth decreased with decreasing α . It is considered due to the large time

complexity. When α is equal to or larger than 6, the value is a�ected by two competing

factors, the time complexity and the multiplicity. The largest bandwidth was attained

at α = 18. When α > 18, it appears that the small multiplicity strongly a�ects the value.

5.6 Short Summary 95

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30

B
an

dw
id

th
 [G

B
/s

]	

Number of rows	

k20c
C1060

Figure 5.5: Bandwidth of the pre�x scan algorithm with varying number of row in the

matrix

The line of the C1060 shows the same tendency. The multiplicity has the maximum

value at α < 8.

5.6 Short Summary

In this chapter, we analyzed the time and I/O complexities of the pre�x scan algorithm

and measured the performance on real GPUs. The state-of-the-art algorithm has a

tuning parameter α . We showed that the parameter makes tradeo� between the time

complexity and the multiplicity. Then, we measured the actual running time of the

algorithm with various parameter values on the real GPUs and obtained the expected

performance. We can conclude that the AGPU model can explain the behavior of the

algorithm.

97

6
Sorting Algorithms

6.1 Introduction

In this chapter, we deal with sorting algorithms. Since sorting is one of the most

fundamental operations used for many applications, it is useful to speed it up. Sorting

algorithms are grouped into two types, non-comparison sorting and comparison sorting.

With respect to non-comparison sorting, many radix sort algorithms [36, 40, 41, 42, 43]

are proposed for GPUs, and one of the fastest radix sort algorithms is proposed by

Merrill and Grimshaw [44, 45]. Kolonias et al. [46] proposed a GPU-based count sort.

Many algorithms for comparison sorting are also proposed for GPUs. An early

implementation of bitonic sort [47] is proposed by Purcell et al. [48, 49], and some

algorithms are based on the bitonic sort, including GPUTeraSort [50], GPU-ABiSort [51],

IBR bitonic sort [52]. A GPU-based bitonic sort is explained in Section 6.2.1. Kipfer and

Westermann [53] showed some basic algorithms based on an odd-even transition

sorting network. Satish et al. [42] proposed an algorithm based on merge sort. He et

al. [54] and Cederman et al. [55] provided GPU-based quick sort algorithms. Leischner

98 Chapter 6. Sorting Algorithms

Table 6.1: Complexities of comparison-based sorting algorithms on the AGPU model.

Here n is the number of elements to be sorted, p is the number of total cores, b is

the number of cores in a multiprocessor, M is the size of the shared memory in a

multiprocessor. We assume n = Ω(b2).
Algorithms I/O complexity Time complexity

(Lower bound) Ω
(
n
b logM

b

n
b

)
Ω

(
n
p logn

)
Bitonic sort [47] O

(
n
b log

2 n
M

)
O

(
n
p log

2 n
)

GPU-Warpsort [11] O
(
n
b log

n
b

)
O

(
n
p log

n
b logb

)
Our algorithm O

(
n
b logM

b

n
b

)
O

(
n
p log

n
b logb

)

et al. [56] proposed sample sort algorithms, which is a multi-separator variation of the

quick sort.

GPU-Warpsort [11] utilizes both bitonic sort and e�cient merge sort. This is one of

the fastest algorithms for comparison sorting, but its I/O complexity is not optimal. We

therefore propose a new algorithm with the optimal I/O complexity. Table 6.1 shows

the I/O and time complexities of these algorithms.

We �rst discuss some known parallel sorting algorithms that can be executed on

the AGPU model in Section 6.2. Then, we discuss the lower bound on the time and

I/O complexities for comparison-based sorting algorithms on the AGPU model in

Section 6.3. After that, we explain the detail of our sorting algorithms in Section 6.4.

Finally, we evaluate our algorithms on real GPUs and show that our algorithm is faster

than the existing algorithm in practice in Section 6.5.

6.2 Analyses of Known Parallel Sorting Algorithms

6.2.1 Bitonic Sort

Bitonic sort [47] is a sorting algorithm based on bitonic sorting networks, and it can sort

n elements in parallel using multiple comparators.

Figure 6.1 shows an example of bitonic sorting networks. The bitonic sorting

network for n = 2
d

input elements consists of d = logn phases, and phase i (0 ≤ i < d)

consists of i + 1 stages. Given 2
d−i

sorted sequences of length 2
i

each at Phase i , 2d−i−1

6.2 Analyses of Known Parallel Sorting Algorithms 99

Input	
 Output	

0 1 2
Stage
Phase

0 0 1 1 20

Comparator
Small

Large

Merger

Figure 6.1: The bitonic sorting network for 8 elements

mergers output 2
d−i−1

sorted sequences of length 2
i+1

each. This algorithm is suitable

for GPU-based implementations because it requires no conditional branches.

We can execute the bitonic sort algorithm on the p processor PRAM model. The

PRAM model can simulate p comparators in parallel, while the sorting network

executes n/2 comparators in parallel at each stage. Since the number of stages of the

bitonic sort is O(d2) = O(log2 n), the running time of a bitonic sort algorithm on the

PRAM model is O((n log2 n)/p) .

We next execute the bitonic sort algorithm on the AGPU(p,b,M) model. As is the

case with the PRAM model, the AGPU model can simulate p comparators in parallel.

Additionally, we take multiprocessors into account. The input and output elements are

stored in the global memory. In order to simulate a comparator, a multiprocessor reads

the elements from the global memory to the shared memory, compares them, and then

outputs the results to the global memory. We modify the method by simulating one

merger using one multiprocessor. If the input size of the merger is equal to or smaller

than M , a multiprocessor can simulate a merger without the global memory, which

decreases the I/O complexity. Otherwise, the multiprocessor has to use the global

memory as a temporary bu�er. Furthermore, if the input size of the merger is equal to

or smaller than M , a multiprocessor can simulate multiple phases without the global

memory, which also decreases the I/O complexity.

We analyze the I/O complexity of the algorithm. The output of phase i (0 ≤ i < d)

is 2
d−i−1

sorted sequences of length 2
i+1

each. Because the input size of a merger is

M at the phase logM − 1, computations in phases 0 to logM − 1 are done without

100 Chapter 6. Sorting Algorithms

communication between multiprocessors. Therefore the I/O complexity in the phases

is O(n/b) in total. With respect to phases logM to logn, the algorithm does not require

any I/Os in stages logn − logM + 1 to logn. Though it is necessary to read and write

all elements in stages 0 to logn − logM , those I/Os are done to consecutive addresses

and all global memory accesses are done in units of b elements. From these analyses,

the I/O complexity of the bitonic sort is O(n(logn − logM)2/b).

We next analyze the time complexity of the algorithm. Since this algorithm requires

no conditional branch, and multiprocessors can always access b contiguous elements in

the shared memory, each stage can be simulated in O(n/p). Thus, the time complexity

is O((n log2 n)/p). We therefore obtain the following:

Theorem 6.1 The bitonic sort algorithm for n elements on the AGPU(p,b,M) model has
I/O complexity O((n log2(n/M))/b) and time complexity O((n log2 n)/p).

6.2.2 GPU-Warpsort

Since the bitonic sort for n elements consists of O(log2 n) stages, it is ine�cient if n is

large. In order to get rid of the ine�ciency of the bitonic sort, GPU-Warpsort [11]

combines the bitonic sort and the merge sort. The algorithm �rst divides the input into

sequences with length b, and sorts all sequences. Then it repeatedly merges two sorted

sequences similar to merge sort algorithm.

We explain how to merge two sorted sequences A,B using a multiprocessor with b

cores. Suppose the length of each sequence is n/2 and it is equal to or larger than b.

It is illustrated in Figure 6.2. The procedure �rst copies the �rst b elements of both

sequences from the global memory to the shared memory. Let amax and bmax denote the

maximum values read from the sequences A and B, respectively. The multiprocessor

sorts those 2b elements using the bitonic sort. It is enough to execute only the last

phase of the bitonic sort because those elements are composed of two sorted sequences.

The time complexity is O(logb). After sorting the 2b elements, the procedure outputs

the smallest b elements, and reads b new elements from either sequence A or B. If

amax ≤ bmax, the b new elements are copied from sequence A, and otherwise from

sequence B. The procedure repeats this procedure until all elements of the sequences A

and B are processed.

In order to prove the correctness of the procedure, we �rst de�ne the rank of the

6.2 Analyses of Known Parallel Sorting Algorithms 101

A	

B	

amax	

bmax	

b	
 b	
2b	
 Copy	

Shared memory

Input (in the global memory)

n / 2	

Figure 6.2: Explanatory diagram showing how to merge two sorted sequences A,B

18	
 24	
 51	
 73	

Rank	
 3	
 4	
 6	
 7	

Elements	
 Sorted Sequence	

9	
 17	
 18	
 24	
 28	
 51	
 73	
 90	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	

9	
 17	
 28	
 90	

Rank	
 1	
 2	
 5	
 8	

Rank	

Figure 6.3: An example of the ranks for 8 distinct elements

elements. Given n elements, the rank of element e is the number of elements smaller

than or equal to the element e in the n elements. If the elements are distinct, the

rank of element e is equal to the position of the element e in the sorted sequence of n

elements. Figure 6.3 shows an example for 8 distinct elements.

Now we prove the correctness of the procedure, which is not mentioned in

the original paper [11]. The procedure outputs b elements per iteration. Since the

procedure obviously outputs the smallest b elements at the �rst iteration, we consider

the subsequent iterations. If the procedure outputs all elements whose rank is equal to

or smaller than ib by the i-th iteration (2 ≤ i ≤ n/b), the output is correct. Note that

the number of such elements is at most ib. Suppose the output of the procedure is

correct until the (i − 1)-th iteration, and amax is equal to or smaller than bmax at the

beginning of the i-th iteration. The proof at the case where amax is larger than bmax

is analogous. Figure 6.4 shows the situation at the beginning of the i-th iteration.

All elements in the gray-colored region are already copied to the shared memory.

If amax ≤ bmax, the b new elements are copied from sequence A. In Figure 6.4, the

elements are in the region (1). If all elements whose rank is equal to or smaller than ib

are copied to the shared memory, the procedure outputs the correct elements using the

102 Chapter 6. Sorting Algorithms

A	

B	

amax	
bmax	

b	

b	

2b	

Copy	

Shared memory

Input (in the global memory)

n / 2	

b	

(1)	
 (2)	

(3)	

x	
y	
z	

Figure 6.4: The proof of the correctness of the process that merges two sorted sequences.

The gray-colored regions represent elements in the regions are already copied to the

shared memory.

bitonic sort. We therefore prove all elements that are not copied to the shared memory

have the ranks larger than ib. It is enough to prove the �rst element y in the region (2)

and the �rst element z in the region (3) in Figure 6.4 have the ranks larger than ib. Let

x be the last element in the region (1).

By the (i − 1)-th iteration, the procedure outputs (i − 1)b elements that include all

elements whose rank is equal to or smaller than (i − 1)b. If x and y are distinct, the rank

of y is at least one plus the rank of x . Since the rank of x is at least (i − 1)b +b = ib, the

rank of y is at least ib + 1. If x and y have the same value, the region (1) and (2) have

at least b + 1 elements such that the value of the element is equal to or smaller than y.

Therefore, the rank of x is at least (i − 1)b + (b + 1) = ib + 1. It indicates that the rank

of y is at least ib + 1. Similarly, if bmax and z are distinct, the rank of z is at least one

plus the rank of bmax. The rank of bmax is at least ib because bmax is the largest value in

the elements copied to the shared memory by the beginning of the i-th iteration and

the number of such copied elements is ib. The rank of z is therefore at least ib + 1. If

bmax and z have the same value, the gray-colored region and the region (3) have at

least b + 1 elements such that the value of the element is equal to or smaller than

bmax. Therefore, the rank of bmax is at least (i − 1)b + (b + 1) = ib + 1. It indicates that

the rank of z is at least ib + 1. Thus, the ranks of y and z are strictly larger than ib.

Accordingly, the procedure do not need these elements at the i-th iteration.

The procedure always reads b elements from the global memory using coalesced

memory access. Since the procedure basically reads b element and outputs b elements

at each iteration, we obtain the following.

6.2 Analyses of Known Parallel Sorting Algorithms 103

Lemma 6.2 On the AGPU(p,b,M) model, merging of two sorted sequences of length n/2
each is done with I/O complexity 2n/b + O(1) and time complexity O((n logb)/b). This
algorithm uses one multiprocessor and O(b) words of shared memory.

When the number of sorted sequences becomes smaller than the number of

multiprocessors, we cannot utilize all multiprocessors. The GPU-Warpsort therefore

adds some phases. It consists of four phases.

1. Given an input sequence of length n, compute n/b sorted sequences of length b

each.

2. Merge two sorted sequences into one, and repeat merging until the number of

sorted sequences is less than the number of multiprocessors.

3. Pick up some elements from the sorted sequences, and divide the sequences into

some groups using the picked elements as separators.

4. Merge the sequences in the same group.

Phases 3 and 4 prevent some multiprocessors from being idle.

The I/O and time complexities of the GPU-Warpsort are analyzed as follows. Phase

1 has I/O complexity 2n/b + O(1) and time complexity O((n log2 b)/p). Phase 2 has I/O

complexity O((n log(n/b))/b) and time complexity O((n logb log(n/b))/p). Although

the original paper [11] does not mention it, we can implement the algorithm such that

the time and I/O complexities of Phases 3 and 4 are dominated by those of Phases 1 and

2. We will explain the detail in Section 6.4. Supposing n = Ω(b2), the time complexity

of Phase 1 is dominated by that of Phase 2. Thus, we obtain the following theorem.

Theorem 6.3 Supposing n = Ω(b2), comparison sorting for n elements using GPU-
Warpsort runs on the AGPU(p,b,M) model with I/O complexity O((n log(n/b))/b) and
time complexity O((n log(n/b) logb)/p).

Because a trivial lower bound of the time complexity for comparison-based sorting

is Ω((n logn)/p), the time complexity of the GPU-Warpsort is less than O(logb) times

that of the optimal algorithm. On the other hand, the I/O complexity is O(log(M/b))

times larger than the optimal, as shown in Section 6.3.

104 Chapter 6. Sorting Algorithms

6.3 Sorting Lower Bound on the AGPU Model

We discuss the lower bound on the time and I/O complexities for comparison-based

sorting algorithms. The lower bound on the time complexity for sequential algorithms

is Ω (n logn). Since a device in AGPU(p,b,M) has p cores, the trivial lower bound on

time complexity for AGPU(p,b,M) is Ω((n logn)/p).

With respect to the I/O complexity, the lower bound for the I/O model [12] is

known as follows:

Theorem 6.4 (Aggarwal, Vitter [12]) A lower bound of I/O complexities of comparison-
based sorting algorithms for n elements on the I/O(b,M) model is Ω(nb logM

b

n
b).

Since Theorem 3.5 holds, the lower bound on the I/O complexity for the volatile model

AGPU(p,b,M) is as follows:

Theorem 6.5 Any comparison-based algorithm for sorting n elements on the volatile
AGPU(p,b,M) model requires Ω(nb logM

b

n
b) I/Os.

Even though Theorem 3.5 does not hold on non-volatile model AGPU
′
, we can

obtain the same lower bound as follows.

Theorem 6.6 Any comparison-based algorithm for sorting n elements on the non-volatile
AGPU′(p,b,M) model requires Ω(nb logM

b

n
b) I/Os.

Proof. A trivial lower bound of I/O complexities for sorting n elements is n/b, which

is necessary to read all the elements from the global memory. Therefore the I/O

complexity of any sorting algorithm does not change asymptotically if a preprocess

using O(n/b) I/Os is added. Therefore we preprocess the input to a sorting algorithm

so that the n elements are divided into blocks of consecutive b elements, and elements

in each block are sorted using the shared memory of a multiprocessor. This preprocess

is done with O(n/b) I/Os. From now on, we assume that the input to a sorting

algorithm is n/b sorted sequences of length b each. The number of possible inputs is

n!/(b!)n/b . A global memory access will transfer b elements into the shared memory of

a multiprocessor. Because a multiprocessor can store M elements, a multiprocessor can

compare the b elements that are newly copied into it with at most M − b elements that

already exist in it. After some computation in a multiprocessor, it will output data in

6.4 I/O-optimal Sorting Algorithms 105

the shared memory to the global memory. There are at most

(
M−b
b

)
< Mb/b! di�erent

results of comparison after 2 accesses (read and write) to the global memory. Therefore

the number of necessary global memory accesses to process n!/(b!)n/b di�erent inputs

is

logMb/b!

n!

(b!)n/b
= Ω

(n
b
logM/b

n

b

)
.

ut

6.4 I/O-optimal Sorting Algorithms

In this section we propose a comparison sorting algorithm on the AGPU(p,b,M)

model whose I/O complexity is asymptotically optimal. Aggarwal and Vitter [12]

propose an I/O-optimal algorithm on the I/O model, but do not take GPU architectures

into account. We improve the I/O complexity of the GPU-Warpsort using the technique

of Aggarwal’s algorithm.

We extend the GPU-Warpsort so that each multiprocessor merges more than two

sorted sequences at a time. In the GPU-Warpsort, every time multiprocessors merge

two sorted sequences, the elements are read from and written to the global memory.

By merging more than two sorted sequences at a time, we can reduce the number of

global memory accesses. Figure 6.5 shows an example of merging eight sequences

at a time. In this example, our algorithm merges eight sorted sequences at a time.

Therefore, our algorithm accesses each element in the global memory twice, while the

GPU-Warpsort accesses each element six times.

6.4.1 Overview of the Algorithm

Our algorithm consists of the following four parts:

1. Initialization,

2. Column-wise merge,

3. Subarray partition, and

4. Row-wise merge.

106 Chapter 6. Sorting Algorithms

(a) GPU-Warpsort	

Read	

Read	

Read	

Write	

Write	

Write	

Output	

Input	

(b) Our algorithm (d = 8)	

Read	

Write	

Output	

Input	

Figure 6.5: Global memory accesses to merge eight sorted sequences; (a) GPU-Warpsort,

(b) our algorithm. In this example, our algorithm merges eight sequences at a time. In

the GPU-Warpsort, the number of the global memory accesses for each element is six,

whereas the number is two in our algorithm.

6.4 I/O-optimal Sorting Algorithms 107

Column-wise merge	

Row-wise merge	

S1,1	

S1,u	

S1,2	

S2,1	

S2,u	

S2,2	

Sl,1	

Sl,u	

Sl,2	

Large values	

Small values	
 Group G1	

Group G2	

Group Gu	

...	

...	

...	

...	

...	

...	

Figure 6.6: Column-wise and Row-wise merge

In Part 1, our algorithm divides the input sequence into pieces of b elements. We

call each piece a basic block. Then we sort each basic block. We name sorted sequences

subarrays. In Part 2, we repeatedly merge subarrays until the number of subarrays

is equal to or smaller than a threshold `, whose value will be determined later. In

Part 3, we pick up some separators from each subarrays at regular intervals and

merge all separators. We partition each subarray into groups based on the separators

p1,p2, . . . ,pu . All elements in group Gj are basically larger than or equal to separator

pj−1 and smaller than separator pj . Finally in Part 4, we merge subarrays that belong

to the same group. This prevents some multiprocessors from being idle. Figure 6.6

illustrates the column-wise merge and the row-wise merge.

6.4.2 Initialization

In Part 1, our algorithm divides the input sequence into basic blocks of b elements

and sorts them. Each basic block is sorted by a multiprocessor using the Bitonic sort.

Since the number of the basic blocks is n/b and a multiprocessor can read or write

all elements in a basic block by one global memory access, the I/O complexity is

2n/b + O(1). Since k = p/b basic blocks are sorted in parallel, the time complexity is

O((n log2 b)/(bk)) = O((n log2 b)/p).

108 Chapter 6. Sorting Algorithms

Output subarray	

xmax	 ymax	

Input subarrays	
amax	

bmax	
cmax	

dmax	

zmax	

2b	2b	

2b	

amax	 bmax	 cmax	 dmax	

xmax	 ymax	

zmax	

Figure 6.7: A heap used in the merge process

6.4.3 Column-wise Merge

In this part, we repeatedly merge d subarrays into one subarray using small amount of

shared memory in a multiprocessor. The d input subarrays and the output subarray are

stored in the global memory. First we explain the data structure used to merge the

subarrays. It is a kind of heap structures; it is a rooted binary tree and each node has at

most two child nodes. For simplicity, we assume every internal node has always two

child nodes. In other cases, we can easily modify our algorithm. This structure has d

leaf nodes. Due to the above assumption, d is power-of-two. Figure 6.7 shows an

example for the case d = 4.

Each leaf node stores a pointer to an input subarray, while each internal node has a

bu�er in a shared memory that can store 2b elements. Because the number of internal

nodes is d − 1, the amount of shared memory used is 2b (d − 1) words. Each bu�er is

sorted whenever new elements are inserted. Input elements are read into a leaf, and

then transferred to its parent node. Each internal node moves elements inside its bu�er

to the parent node according to a rule that will be described later. The elements in the

root node will be output to the global memory. Each internal node and leaf has a key,

which is the last value moved to its parent node (in the case of the root node, last

output value). Because elements in bu�ers and subarrays are sorted, the last moved

6.4 I/O-optimal Sorting Algorithms 109

value is the maximum value moved so far.

Next we explain the “Heapify” operation. Each node of the heap has an index. The

root node has index 1. The left and the right children of node v have index 2v and

2v + 1, respectively. The function Heapify(v) is the process to move b elements to the

bu�er in node v from the bu�ers in the descendent nodes. The function is only invoked

when the number of elements in the bu�er of node v is at most b. For simplicity, we

assume the number of elements in the bu�er is exactly b. We can easily modify our

algorithm for the case where the number of elements is smaller than b. First, b smallest

elements are moved to the bu�er from the child node that has smaller key, and the

key of the child is updated to the value of the last element of the b elements. Then

the bu�er of node v consists of two sorted sequences; one is already stored in node

v before the move, and the other is newly moved to node v . We merge these two

sequences into one using the Bitonic sort. Then we repeat carrying out the same

process to the child node with the smaller key until we reach a leaf.

We can merge d sorted sequences into one by repeating the Heapify operation.

First, we allocate the shared memory to this structure and construct the heap by

repeating the Heapify operation on nodes in decreasing order of node indices. At the

time we set the key of each node as −∞. After that, we repeatedly output the smallest

b elements in the bu�er of the root node by the Heapify operation to the root node

until all elements have been output.

In order to prove that the heap outputs a correct sorted sequence, we prove that the

bu�er of each node always stores the smallest b elements in the subtree that consists of

its own node and the descendent nodes. Given a subtree, the rank of element e is

de�ned as the number of elements smaller than or equal to the element e in the subtree.

For instance, the rank of the smallest element in the subtree is one if the elements are

distinct. For any node v , we now prove the ranks of any elements in the descendent

nodes are larger than ib after the i-th output process. First we consider an internal

node whose children are leaves. We assume this is the i-th output process for node v

and the output is correct until the end of (i − 1)-th output process. Let αmax and βmax

be the keys of the left and the right children of node v for which the Heapify operation

is done. We assume that αmax ≤ βmax; the other case is done analogously. When we

conduct the Heapify operation to node v , the bu�er of node v has b elements, and the

smallest b elements in the left child are newly moved to the bu�er of node v . Due to

110 Chapter 6. Sorting Algorithms

the discussion in Section 6.2.2, any elements in the left child bu�er have ranks larger

than ib after the operation. Similarly, any elements in the right child bu�er have ranks

larger than ib after the operation. We can recursively prove this property for any

internal nodes.

Note that we can reduce the size of each bu�er from 2b to b as follows. The above

algorithm repeatedly carries out the Heapify operation from the root to a leaf. However,

we can improve this by recursively carrying out the Heapify of its child node before the

Heapify of its own node, which makes it unnecessary to keep more than b elements in

each bu�er.

To sum it up, we obtain the following.

Lemma 6.7 Merging d sorted sequences of length n/d each is done with I/O complexity
2n/b + O(d) and time complexity O(((n/b) logd + d) logb) on the AGPU(b,b,O(db))

model.

Accordingly, if a multiprocessor has M word shared memory, our algorithm can

concurrently merge up to d = O(M/b) sorted sequences. We carry out this process to

all subarrays using k multiprocessors in parallel. In the column-wise merge part, we

repeat this step s0 times, where s0 is a parameter determined later.

6.4.4 Subarray Partition

In Part 3, we divide each subarray into u subarrays. Let ` be the number of subarrays

remaining after Part 2. First, we pick up ρ elements from each subarray at regular

intervals, that is, we pick up one element per n/ρ` elements. We obtain ` lists of ρ

sorted elements. We call them separators. Then, we merge the lists into one using the

algorithm of Lemma 6.7. Let p1 ≤ p2 ≤ . . . ≤ pρ` denote the resulting separators, and let

p0 = −∞ and pρ`+1 = ∞. After that, we divide each subarray into u = ρ` + 1 subarrays

using the separators. Supposing subarray S is divided into subarrays S1, S2, . . . , Su

using separators p0,p1,p2, . . . ,pu , any elements in the resulting subarray Sj are equal

to or larger than the value of separator pj−1 and smaller than the value of separator pj

for any j (1 ≤ j ≤ u).

Let group Gj (1 ≤ j ≤ u) be a set of subarrays between pj−1 and pj . Each group has

` subarrays. The size of a group represents the number of the elements in the group.

Let
���Gj

��� denote the size.

6.4 I/O-optimal Sorting Algorithms 111

We can use the algorithm of Lemma 6.2 to divide each subarray. We �rst merge a

subarray and the separators to one sorted sequence, then, calculate the position of the

separators in the resulting sequence.

6.4.5 Row-wise Merge

We assign the groups to k multiprocessors using the following algorithm. Each

multiprocessor is serially assigned its groups. The �rst multiprocessor is repeatedly

assigned a group while the total size of assigned groups is smaller than 2n/k . When

the total size of the assigned groups is equal to or larger than 2n/k or there are no

groups to assign, we �nish assigning groups to the multiprocessor. Then, the next

multiprocessor is repeatedly assigned a group in the same manner. We repeat this to all

multiprocessors.

Lemma 6.8 If u > `k + 1, we can assign all groups to the k multiprocessors such that no
multiprocessors are assigned more than 2n/k elements.

Proof. Using the above algorithm, we can ensure that the total size of assigned groups

is smaller than 2n/k for any multiprocessors. We prove we can assign all groups to the

multiprocessors using the above algorithm. Assume for contradiction that there exist

groups that are not assigned to any multiprocessors at the end of the algorithm.

Since we pick up (u − 1)/` separators from each subarray of n/` elements, the

size of a divided subarray is at most n/(`((u − 1)/` + 1)) < n/(u − 1). Since each

group consists of ` subarrays, the size of a group is at most n`/(u − 1) < n/k . For any

multiprocessors, the total size of assigned groups is larger than n/k because we can

assign one more group to a multiprocessor whenever the total size of assigned groups

is equal to or smaller than n/k and there are any groups not assigned. Therefore, the

total size of assigned groups to the multiprocessors is at least (n/k) · k = n. This is a

contradiction. ut

Let Si,j (1 ≤ i ≤ `, 1 ≤ j ≤ u) denote the subarray that is a part of Si , and now in Gj .

A multiprocessor repeatedly merges d subarrays in a group using the algorithm of

Lemma 6.7 and get d`/de subarrays. In the row-wise merge part, a multiprocessor

repeatedly executes this step until all subarrays in a group are merged.

112 Chapter 6. Sorting Algorithms

Suppose a multiprocessor merges d subarrays in Gj that consists of subarrays

St
1,j , S

t
2,j , . . . , S

t
v,j at step t (1 ≤ t) and gets a set of subarrays St+1

1,j , S
t+1
2,j , . . . , S

t+1
dv/de,j

,

where v = `/dt−1. Let wt+1
ij be the size of St+1i,j , that is, wt+1

ij =
���S
t+1
ij

���. In order to get St+1i,j ,

a multiprocessor executes Heapify

⌈���S
t+1
i,j

��� /b
⌉

times. Therefore, the time complexity is

O *.
,



���S
t+1
i,j

���
b


logb logd+/

-
.

Supposing Cx is a set of indices of groups that are assigned to multiprocessor x , the

total time complexity at step t is

max

x

*.
,

∑
j∈Cx

dv/de∑
i=1



���S
t+1
i,j

���
b


logb logd+/

-
.

Due to Lemma 6.8, for any multiprocessor x ,

∑
j∈Cx

dv/de∑
i=1

���S
t+1
i,j

��� <
2n

k
.

Therefore, the time complexity at step t is

O
(
n

p
logb logd

(
1 +

u

ds0+1dt−1

))
.

Let t0 be the number of the steps in this part. Since t0 = O
(
logd `

)
, the total time

complexity in this part is

O *
,

t0∑
t=1

n

p
logb logd

(
1 +

u

ds0+1dt−1

)
+
-
= O

(
n

p
logb logd

(
t0 +

u

ds0+1

))
.

The I/O complexity to get St+1i,j at step t is O
(⌈���S

t+1
i,j

��� /b
⌉)

because a multiprocessor

access global memory two times at each Heapify. Therefore, the I/O complexity at step

t is

O
*..
,

∑
x

∑
S ′′i j∈Cx



���S
′′
i,j

���
b



+//
-
= O

(n
b

(
1 +

u

ds0+1dt−1

))
.

6.4 I/O-optimal Sorting Algorithms 113

Therefore, the total I/O complexity in this part is

O *
,

t0∑
t=1

n

b

(
1 +

u

ds0+1dt−1

)
+
-
= O

(n
b

(
t0 +

n

ds0+1

))
.

6.4.6 The Complexities and the Amount of Memory Used

We calculate the time and I/O complexities by summing up those of all parts. It

holds ` = O(n/(bds0+1)), and t0 = logd (n/b) − s0 where s0 is the number of steps in the

column-wise merging part. Supposing n = Ω(b2), the time complexity for the entire

process is

O
(
n

p
logb log

n

b
+ logb logd

(
n

b`
+
u`

k
+
u

b

))
,

and the I/O complexity for the entire process is

O
(n
b
logd

n

b
+ u`

)
.

The amount of the shared memory used is O(bd) words, and the amount of the global

memory used is 2n + O(u`) words.

We determine the values of ` and u as ` = k , and u = n/p so that we can eliminate

the second term of the time and I/O complexities.

Furthermore, the value of d is limited by the amount of shared memory M . We

select the maximum value of d . Since the algorithm uses O(db) words of shared

memory, we determine the value of d as d = O (M/b).

Taken together, we obtain the following theorem.

Theorem 6.9 Supposing n = Ω(b2), comparison sorting for n elements using our
algorithm runs on the AGPU(p,b,M) model with I/O complexity O(nb logM

b

n
b) and time

complexity O(np logb log
n
b).

This algorithm has the optimal I/O complexity. The time complexity is at most

O (logb) times larger than the lower bound.

114 Chapter 6. Sorting Algorithms

6.4.7 E�ect of Multiplicity

Supposing d is variable, the I/O complexity of the algorithm is O(nb logd
n
b), and the

multiplicity is O(M/db). When d has the largest value O(M/b), the I/O complexity is

equal to the lower bound O(nb logM
b

n
b), while the multiplicity has the smallest value 1.

It indicates the e�ciency of the global memory accesses becomes worst. On the other

hand, when d is equal to two, the I/O complexity is O(nb log
n
b), while the multiplicity is

O(M/b), which is considered to be optimal. Thus, there is a tradeo� between the I/O

complexity and the multiplicity.

6.5 Experimental Evaluation

6.5.1 Parameter Tuning

We checked that real GPUs have the same tradeo� as the AGPU model and determined

the value of d . We used NVIDIA Tesla k20c for all experiments. The input was 2
28

32-bit integers. Figure 6.8 shows the number of global memory accesses for each value

of d . These values were measured with nvprof, which is provided by NVIDIA. These

values do not include the number of cache accesses. The minimum and maximum

values of d are 2 and 256 respectively in this environment. We can see the number of

the global memory accesses decreases with increasing d .

Figure 6.9 shows the sorting rate (the number of elements processed per second)

for each value of d . The sorting rate is maximum at d = 4. When d > 4, although the

number of global memory accesses decreases with increasing d , multiplicity also

decreases with increasing d , which causes ine�ciency of global memory accesses.

On the other hand, when d ≤ 4, the value of multiplicity does not depend on the

value of d because the value of multiplicity is limited by device speci�cations and it

has maximum value 64 when d ≤ 4. Therefore, the sorting rate only depends on the

I/O complexity and increases with increasing d . Note that the time complexity is

independent of the value of d . We determined the value of d as d = 4.

6.5 Experimental Evaluation 115

0

100

200

300

400

500

600

700

800

900

2 4 8 16 32 64 128 256

N
um

be
r o

f G
lo

ba
l M

em
or

y
A

cc
es

se
s

(m
ill

io
n)

d	

Figure 6.8: The number of the global memory accesses for each value of d

0

20

40

60

80

100

120

140

160

2 4 8 16 32 64 128 256

So
rt

in
g

ra
te

 (m
ill

io
n/

se
c)
	

d	

Figure 6.9: Sorting rate for each value of d

116 Chapter 6. Sorting Algorithms

0

20

40

60

80

100

120

140

160

1048576	
 2097152	
 4194304	
 8388608	
 16777216	
 33554432	
 67108864	
 134217728	
 268435456	

So
rt

in
g

R
at

e
(m

ill
io

n/
se

c)
	

Thrust

Ours

220	

Number of elements	

222	
 224	
 226	
 227	
 228	
225	
223	
221	

Figure 6.10: Sorting rate for our algorithm and Thrust comparison-based sorting

6.5.2 Comparison with Thrust

We compared our algorithm with Thrust comparison-based sorting. Figure 6.10 shows

the sorting rate. Our algorithm was 1.9 times faster than Thrust when n = 2
28

.

Figure 6.11 shows the number of global memory accesses. Thrust comparison-based

sorting algorithm is similar to GPU-Warpsort and has the same I/O complexity. When

n = 2
28

, the number for our algorithm was equal to 27% of that for Thrust.

6.6 Short Summary

In this chapter, we discussed comparison sorting algorithms on GPUs. We �rst analyzed

the complexities of Bitonic sort and GPU-Warpsort using the AGPU model. Moreover,

we revealed the lower bound of the complexities of comparison sorting algorithm.

Though GPU-Warpsort is one of the fastest comparison sort algorithms, the I/O

complexity is larger than the lower bound. We therefore proposed an I/O-optimal

sorting algorithm. Some parameter values of the algorithm were determined by the

6.6 Short Summary 117

1

10

100

1,000

10,000

1048576	
 2097152	
 4194304	
 8388608	
 16777216	
 33554432	
 67108864	
 134217728	
 268435456	

N
um

be
r o

f G
lo

ba
l M

em
or

y
A

cc
es

se
s

(m
ill

io
n)
	

Thrust

Ours

220	

Number of elements	

222	
 224	
 226	
 227	
 228	
225	
223	
221	

Figure 6.11: The number of global memory accesses for our algorithm and Thrust

complexity analysis using the AGPU model. Our algorithm is fast not only in theory

but also in practice.

Thus, the complexity analysis using the AGPU model tells us what is the bottleneck

of existing algorithms and helps us determine some parameter values.

119

7
Conclusion

7.1 Summary of the Dissertation

In order to make it possible to easily develop GPU-based discrete algorithms, we

proposed a computational model AGPU and developed some GPU-based algorithms.

Asymptotic complexity analysis is very important to develop e�cient discrete

algorithms. The AGPU model is suitable for the analysis. The AGPU model abstracts

the GPU’s SIMT architecture using only three parameters, and it is able to take

account of a lot of factors a�ecting the performance such as coalescing, bank con�icts,

multithreading. The time and I/O complexities and the multiplicity are used to evaluate

the performance of algorithms, and the amounts of the global and shared memory used

are used to evaluate the memory usage of algorithms. We also revealed the relations

between the AGPU model and other models including the PRAM model, the BSP

model, and the I/O model. It enables us to utilize some knowledge on the other model

for the AGPU model.

Next, we analyzed and developed reduction algorithms. Reduction is important

120 Chapter 7. Conclusion

because many problems can be calculated as reduction. We analyzed the tree-based

algorithm and the cascading algorithm and gave the evidence that the cascading

algorithm is faster than the tree-based algorithm. Namely, the time complexity of

tree-based algorithm is larger than that of the cascading algorithm. Though the

cascading algorithm has the optimal time and I/O complexities, it cannot be used for

non-commutative operators. We therefore proposed the pipeline algorithm, which

also has the optimal time and I/O complexities. Our algorithm solves the maximum

segment sum problem, which is an instance of non-commutative reduction, up to 3.9

times faster than the tree-based algorithm and up to 29 times faster than the sequential

algorithm on CPU. In addition, we evaluated the matrix-based algorithm to show the

power of the AGPU model. Although the algorithm has the optimal time and I/O

complexities on SIMD architectures, the algorithm is slow on GPUs. We can easily

�nd the reason using the AGPU model; the reason is the small multiplicity. Then,

we measured the actual running time of the algorithms and obtained the expected

performance.

Next, we analyzed the time and I/O complexities of the fastest pre�x scan algorithm

and measured the performance on real GPUs. The algorithm has a tuning parameter α .

We showed that the parameter makes tradeo� between the time complexity and the

multiplicity. Then, we measured the actual running time of the algorithm with various

parameter values on the real GPUs and obtained the expected performance.

Lastly, we discussed comparison sorting algorithms. Though GPU-Warpsort is one

of the fastest comparison sort algorithms, we found that the I/O complexity is larger

than the lower bound. We therefore proposed an I/O optimal comparison sorting

algorithm. We showed our algorithm is fast not only in theory but also in practice. Our

comparison sorting algorithm runs up to 1.9 times faster than GPU-Warpsort.

Thus, the complexity analysis using the AGPU model tells us what is the bottleneck

of existing algorithms and helps us develop new algorithms.

7.2 Future Work

In the future, GPUs will put more and more applications into practical use by reducing

computation time drastically. For example, utilizing GPUs for machine learning is

actively being studied. To this end, we would like to improve our AGPU model and to

7.2 Future Work 121

develop more basic algorithms using the AGPU model.

The �rst challenge for the improvement of the AGPU model is to take more

hardware modules into account. For example, recent GPUs from NVIDIA are equipped

with texture memory, and read-only data can be e�ciently accessed using the memory.

Although the size of input data is substantially increasing in many research �elds,

input data have the read-only property in many cases. Therefore, analyzing algorithms

that utilize texture memory is important. Moreover, NVIDIA has a plan to provide

GPUs with 3D-stacked memory. This memory boosts memory band width drastically.

In the AGPU model, I/O complexity is de�ned as the total number of global memory

access. However, more detailed analyses are potentially required in order to evaluate

e�cient use of wide band width. It seems to be useful to consider work and depth [17]

for the I/O complexity.

The second challenge for the improvement of the AGPU model is to expand the

model to deal with multiple GPUs. We can obtain wider memory band width from

multiple GPUs. On the other hand, communication between GPUs is very slow

compared to memory access inside a GPU. We have to develop a model that can

evaluate the communication.

The challenge for development of basic algorithms is to deal with graphs. Recently,

many problems are de�ned on graphs. Therefore, graph algorithms are getting more

and more important. GPU-based graph algorithms have di�culty avoiding bank

con�icts and making global accesses coalesce. In order to tackle this problem, we

would �rst like to develop algorithms on trees. Parallel tree contraction is an important

operation on trees. Many problems on trees can be solved using tree contraction and it

is also a powerful tool to design a wide class of graph algorithms. We would like to

design e�cient GPU-based tree contraction algorithms.

123

Bibliography

[1] Herb Sutter. The Free Lunch Is Over: A Fundamental Turn Toward Concurrency

in Software. Dr. Dobb’s Journal, 30(3), March 2005.

[2] Sushant Sharma, Chung-Hsing Hsu, and Wu chun Feng. Making a case for a

green500 list. In IEEE International Parallel and Distributed Processing Symposium
(IPDPS 2006)/ Workshop on High Performance - Power Aware Computing, 2006.

[3] NVIDIA Corporation. NVIDIA CUDA C programming guide version 4.2, 2012.

[4] Steven Fortune and James Wyllie. Parallelism in random access machines. In

Proceedings of the tenth annual ACM symposium on Theory of computing, STOC

’78, pages 114–118, New York, NY, USA, 1978. ACM.

[5] K. Nakano. The hierarchical memory machine model for gpus. In Parallel and
Distributed Processing Symposium Workshops PhD Forum (IPDPSW), 2013 IEEE 27th
International, pages 591–600, 2013.

[6] Nodari Sitchinava and Volker Weichert. Provably e�cient gpu algorithms. CoRR,

abs/1306.5076, 2013.

[7] K. Kothapalli, R. Mukherjee, M.S. Rehman, S. Patidar, P.J. Narayanan, and

K. Srinathan. A performance prediction model for the cuda gpgpu platform. In

High Performance Computing (HiPC), 2009 International Conference on, pages 463

–472, dec. 2009.

[8] Sunpyo Hong and Hyesoon Kim. An analytical model for a gpu architecture

with memory-level and thread-level parallelism awareness. In Proceedings of the

124 Bibliography

36th annual international symposium on Computer architecture, ISCA ’09, pages

152–163, New York, NY, USA, 2009. ACM.

[9] Mark Harris. Optimizing parallel reduction in cuda, 2008.

[10] Yuri Dotsenko, Naga K. Govindaraju, Peter-Pike Sloan, Charles Boyd, and John

Manferdelli. Fast scan algorithms on graphics processors. In Proceedings of the
22nd annual international conference on Supercomputing, ICS ’08, pages 205–213,

New York, NY, USA, 2008. ACM.

[11] Xiaochun Ye, Dongrui Fan, Wei Lin, Nan Yuan, and P. Ienne. High performance

comparison-based sorting algorithm on many-core gpus. In Parallel Distributed
Processing (IPDPS), 2010 IEEE International Symposium on, pages 1–10, 2010.

[12] Alok Aggarwal and S. Vitter, Je�rey. The input/output complexity of sorting and

related problems. Commun. ACM, 31(9):1116–1127, September 1988.

[13] John von Neumann. First draft of a report on the EDVAC. Technical report,

University of Pennsylvania, June 1945.

[14] David A. Patterson and John L. Hennessy. Computer Organization and Design,
Fifth Edition: The Hardware/Software Interface. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 5th edition, 2013.

[15] M. Flynn. Some computer organizations and their e�ectiveness. Computers, IEEE
Transactions on, C-21(9):948–960, Sept 1972.

[16] Gene M. Amdahl. Validity of the single processor approach to achieving large

scale computing capabilities. In Proceedings of the April 18-20, 1967, Spring Joint
Computer Conference, AFIPS ’67 (Spring), pages 483–485, New York, NY, USA,

1967. ACM.

[17] Richard P. Brent. The parallel evaluation of general arithmetic expressions. J.
ACM, 21(2):201–206, April 1974.

[18] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. Nvidia tesla: A uni�ed

graphics and computing architecture. Micro, IEEE, 28(2):39 –55, march-april 2008.

Bibliography 125

[19] NVIDIA Corporation. NVIDIA’s next generation CUDA compute architecture:

Fermi, 2009.

[20] NVIDIA Corporation. NVIDIA’s next generation CUDA compute architecture:

Kepler gk110, 2012.

[21] Richard M. Karp and Vijaya Ramachandran. Parallel algorithms for shared-

memory machines. In Jan van Leeuwen, editor, Handbook of theoretical computer
science (vol. A), pages 869–941. MIT Press, Cambridge, MA, USA, 1990.

[22] J. JáJá. An Introduction to Parallel Algorithms. Addison-Wesley, Reading, Mass.,

1992.

[23] Leslie G. Valiant. A bridging model for parallel computation. Commun. ACM,

33(8):103–111, August 1990.

[24] Junjie Lai and André Seznec. Break down gpu execution time with an analytical

method. In Proceedings of the 2012 Workshop on Rapid Simulation and Performance
Evaluation: Methods and Tools, RAPIDO ’12, pages 33–39, New York, NY, USA,

2012. ACM.

[25] Koji Nakano. Simple memory machine models for gpus. In IPDPS Workshops,
pages 794–803, 2012.

[26] Lin Ma, Kunal Agrawal, and Roger D. Chamberlain. A memory access model for

highly-threaded many-core architectures. Future Generation Computer Systems,
30(0):202 – 215, 2014. Special Issue on Extreme Scale Parallel Architectures and

Systems, Cryptography in Cloud Computing and Recent Advances in Parallel and

Distributed Systems, ICPADS 2012 Selected Papers.

[27] Qiming Hou, Kun Zhou, and Baining Guo. Bsgp: bulk-synchronous gpu program-

ming. ACM Trans. Graph., 27(3):19:1–19:12, August 2008.

[28] R.S. Bird. Lectures on constructive functional programming. Technical Report

PRG69, OUCL, September 1988.

126 Bibliography

[29] Murray Cole. Parallel programming, list homomorphisms and the maximum

segment sum problem. Technical report, Proceedings of Parco 93. Elsevier Series

in Advances in Parallel Computing, 1993.

[30] Akimasa Morihata. Calculational Approach to Automatic Algorithm Construction.

PhD thesis, The University of Tokyo, Japan, March 2009.

[31] R. S. Bird. An introduction to the theory of lists. In Proceedings of the NATO
Advanced Study Institute on Logic of Programming and Calculi of Discrete Design,

pages 5–42, New York, NY, USA, 1987. Springer-Verlag New York, Inc.

[32] Kenta Hongo, Ryo Maezono, and Kenichi Miura. Random number generators

tested on quantum monte carlo simulations. Journal of Computational Chemistry,

31(11):2186–2194, 2010.

[33] Takeshi Fukuda, Yasukiko Morimoto, Shinichi Morishita, and Takeshi Tokuyama.

Data mining using two-dimensional optimized association rules: Scheme, algo-

rithms, and visualization. In Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’96, pages 13–23, New York, NY,

USA, 1996. ACM.

[34] Jon Bentley. Programming Pearls. ACM, New York, NY, USA, 1986.

[35] Guy E. Blelloch. Pre�x sums and their applications. In John H. Reif, editor,

Synthesis of Parallel Algorithms. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 1993.

[36] Mark Harris, Shubhabrata Sengupta, and John D. Owens. Parallel pre�x sum

(scan) with cuda. In Hubert Nguyen, editor, GPU Gems 3. Addison Wesley, August

2007.

[37] Siddhartha Chatterjee, Guy E. Blelloch, and Marco Zagha. Scan primitives

for vector computers. In Proceedings of the 1990 ACM/IEEE Conference on
Supercomputing, Supercomputing ’90, pages 666–675, Los Alamitos, CA, USA,

1990. IEEE Computer Society Press.

Bibliography 127

[38] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens. Scan

primitives for gpu computing. In Proceedings of the 22nd ACM SIG-
GRAPH/EUROGRAPHICS symposium on Graphics hardware, GH ’07, pages 97–106,

Aire-la-Ville, Switzerland, Switzerland, 2007. Eurographics Association.

[39] Jared Hoberock and Nathan Bell. Thrust: A parallel template library, 2010. Version

1.3.0.

[40] Scott Le Grand. Broad-phase collision detection with cuda. In Hubert Nguyen,

editor, GPU Gems 3. Addison Wesley, August 2007.

[41] Bingsheng He, Naga K. Govindaraju, Qiong Luo, and Burton Smith. E�cient

gather and scatter operations on graphics processors. In Proceedings of the 2007
ACM/IEEE Conference on Supercomputing, SC ’07, pages 46:1–46:12, New York, NY,

USA, 2007. ACM.

[42] Nadathur Satish, Mark Harris, and Michael Garland. Designing e�cient sorting

algorithms for manycore gpus. In Proceedings of the 2009 IEEE International
Symposium on Parallel&Distributed Processing, IPDPS ’09, pages 1–10, Washington,

DC, USA, 2009. IEEE Computer Society.

[43] Nadathur Satish, Changkyu Kim, Jatin Chhugani, Anthony D. Nguyen, Victor W.

Lee, Daehyun Kim, and Pradeep Dubey. Fast sort on cpus and gpus: a case

for bandwidth oblivious simd sort. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, SIGMOD ’10, pages 351–362,

New York, NY, USA, 2010. ACM.

[44] DUANE MERRILL and ANDREW GRIMSHAW. High performance and scalable

radix sorting: A case study of implementing dynamic parallelism for gpu. Parallel
Processing Letters, 21(02):245–272, 2011.

[45] Duane G. Merrill and Andrew S. Grimshaw. Revisiting sorting for gpgpu stream

architectures. In Proceedings of the 19th international conference on Parallel
architectures and compilation techniques, PACT ’10, pages 545–546, New York, NY,

USA, 2010. ACM.

128 Bibliography

[46] Vasileios Kolonias, Artemios G. Voyiatzis, George Goulas, and Efthymios Housos.

Design and implementation of an e�cient integer count sort in cuda gpus. Concurr.
Comput. : Pract. Exper., 23(18):2365–2381, December 2011.

[47] K. E. Batcher. Sorting networks and their applications. In Proceedings of the
April 30–May 2, 1968, spring joint computer conference, AFIPS ’68 (Spring), pages

307–314, New York, NY, USA, 1968. ACM.

[48] Timothy J. Purcell, Craig Donner, Mike Cammarano, Henrik Wann Jensen,

and Pat Hanrahan. Photon mapping on programmable graphics hardware. In

Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics
Hardware, HWWS ’03, pages 41–50, Aire-la-Ville, Switzerland, Switzerland, 2003.

Eurographics Association.

[49] Ian Buck and Tim Purcell. A toolkit for computation on GPUs. In Randima

Fernando, editor, GPU Gems, chapter 37. Addison Wesley, 2004.

[50] Naga Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh Manocha. Gputerasort:

high performance graphics co-processor sorting for large database management.

In Proceedings of the 2006 ACM SIGMOD international conference on Management
of data, SIGMOD ’06, pages 325–336, New York, NY, USA, 2006. ACM.

[51] Alexander Greßand Gabriel Zachmann. Gpu-abisort: optimal parallel sorting on

stream architectures. In Proceedings of the 20th international conference on Parallel
and distributed processing, IPDPS’06, pages 45–45, Washington, DC, USA, 2006.

IEEE Computer Society.

[52] Hagen Peters, Ole Schulz-Hildebrandt, and Norbert Luttenberger. A novel

sorting algorithm for many-core architectures based on adaptive bitonic sort. In

Proceedings of the 2012 IEEE 26th International Parallel and Distributed Process-
ing Symposium, IPDPS ’12, pages 227–237, Washington, DC, USA, 2012. IEEE

Computer Society.

[53] Peter Kipfer and Rüdiger Westermann. Improved GPU sorting. In Matt Pharr,

editor, GPUGems 2: Programming Techniques for High-Performance Graphics and
General-Purpose Computation, pages 733–746. Addison-Wesley, 2005.

Bibliography 129

[54] Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga Govindaraju, Qiong Luo, and

Pedro Sander. Relational joins on graphics processors. In Proceedings of the 2008
ACM SIGMOD International Conference on Management of Data, SIGMOD ’08,

pages 511–524, New York, NY, USA, 2008. ACM.

[55] Daniel Cederman and Philippas Tsigas. Gpu-quicksort: A practical quicksort

algorithm for graphics processors. J. Exp. Algorithmics, 14:4:1.4–4:1.24, January

2010.

[56] N. Leischner, V. Osipov, and P. Sanders. Gpu sample sort. In Parallel Distributed
Processing (IPDPS), 2010 IEEE International Symposium on, pages 1–10, April 2010.

131

Publication List

International Journal

1. (Refereed) Atsushi Koike, and Kunihiko Sadakane. A Novel Computational Model
for GPUs with Applications to E�cient Algorithms. International Journal of

Networking and Computing (IJNC), Volume 5, Number 1, pages 26–60, January

2015.

International Conferences

2. (Oral，refereed) Atsushi Koike, and Kunihiko Sadakane. A Novel Computational
Model for GPUs with Application to I/O Optimal Sorting Algorithms. 2014 IPDPS

Workshops (APDCM), Arizona USA, May. 2014.

3. (Oral，refereed) Atsushi Koike, and Kunihiko Sadakane. Abstract Computation
Model for Analyzing Complexity of GPU-based Algorithms. The 6th Annual

Meeting of Asian Association for Algorithms and Computation (AAAC2013),

April. 2013.

Domestic Conferences

4. (Oral)小池　敦，定兼　邦彦．GPUを用いた並列ソートアルゴリズム．
第10回情報科学ワークショップ，E-3，2014年9月．

5. (Oral)小池　敦，定兼　邦彦．GPU向け比較ソートアルゴリズムの実装
と評価．2014年電子情報通信学会大会講演論文集，DS-1-9，2014年3月．

132 Publication List

6. (Poster，refereed)小池　敦，定兼　邦彦．GPU向けのI/O最適な比較ソー
トアルゴリズム．ハイパフォーマンスコンピューティングと計算科学シ

ンポジウム（HPCS2014），2014年1月．

7. (Oral)小池　敦，定兼　邦彦．GPUを用いた並列ソートアルゴリズムの実
装と評価．情報処理学会研究報告.アルゴリズム研究会報告，AL 145-8，

2013年11月．

8. (Poster，refereed)小池　敦，定兼　邦彦．GPUアルゴリズム解析のための
並列計算モデル．GPU Technology Conference Japan 2013年7月．

9. (Oral)小池　敦，定兼　邦彦，Hoa Vu．AGPUモデルでの並列ソートアル
ゴリズムの計算量について．電子情報通信学会技術研究報告，COMP2013

pp.75-80，2013年5月．

10. (Oral) 小池　敦，定兼　邦彦．AGPUモデルにおけるマルチスレッデ
ィングの効果． 2013年電子情報通信学会大会講演論文集，DS-1-13，

2013年3月．

11. (Poster，refereed)小池　敦，定兼　邦彦．GPUのための並列計算モデル．
2013年ハイパフォーマンスコンピューティングと計算科学シンポジウム

（HPCS2013），2013年1月．

12. (Oral)小池　敦，定兼　邦彦．GPUのための並列計算モデル．電子情報通
信学会技術研究報告，COMP，112(272) 53-60, 2012年10月．

	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Background
	1.2 Our Contributions
	1.3 Outline

	2 Preliminaries
	2.1 Introduction
	2.2 Computer Architectures
	2.2.1 Von Neumann Architectures
	2.2.2 Threads
	2.2.3 Memory
	2.2.4 The Classic Performance Equation
	2.2.5 Parallel Processing for Sequential Programs

	2.3 Parallel Programming
	2.3.1 Multithreading
	2.3.2 Multiprocessors
	2.3.3 Flynn's Taxonomy
	2.3.4 Costs of Parallel Computation

	2.4 GPUs
	2.4.1 Architectures
	2.4.2 Multiprocessors
	2.4.3 CUDA

	2.5 Parallel Computational Models
	2.5.1 PRAM Model
	2.5.2 BSP Model

	2.6 GPU Models
	2.6.1 DMM and UMM
	2.6.2 PEM Model

	2.7 I/O Model
	2.8 Short Summary

	3 Parallel Computation Models for GPUs
	3.1 Introduction
	3.2 AGPU Model
	3.2.1 Architecture
	3.2.2 Metrics
	3.2.3 The Effect of Multithreading
	3.2.4 Discrepancy Between the AGPU Model and Real Architectures
	3.2.5 Notation for Pseudo-codes

	3.3 Relations between the AGPU Model and Other Computational Models
	3.3.1 PRAM Model
	3.3.2 Bulk Synchronous Parallel Model
	3.3.3 I/O Model
	3.3.4 Multithreading in AGPU

	3.4 Guideline for Developing Efficient Algorithms Using the AGPU Model
	3.4.1 Implementations Using CUDA

	3.5 Short Summary

	4 Reduction Algorithms
	4.1 Introduction
	4.2 Definition
	4.3 Reduction as a Programming Framework
	4.3.1 Lists
	4.3.2 List Homomorphism
	4.3.3 Higher Order Functions on Lists
	4.3.4 List Homomorphism Lemma

	4.4 Examples of Reduction
	4.4.1 Maximum Segment Sum Problem

	4.5 Reduction with Commutative Operators
	4.5.1 Tree-based Algorithm
	4.5.2 Cascading Algorithm

	4.6 Reduction with Non-commutative Operators
	4.6.1 Tree-based Algorithm for Non-commutative Operators
	4.6.2 Matrix-based Algorithm
	4.6.3 Pipeline Algorithm

	4.7 Summary of Complexities and Multiplicity
	4.8 Experimental Evaluation
	4.8.1 Running Time
	4.8.2 Maximum Segment Sum

	4.9 Short Summary

	5 Prefix Scan Algorithms
	5.1 Introduction
	5.2 Definition
	5.3 Applications of Prefix Scan
	5.3.1 Stream Compaction

	5.4 Prefix Scan Algorithms
	5.4.1 Matrix-based Algorithm

	5.5 Experimental Evaluation
	5.6 Short Summary

	6 Sorting Algorithms
	6.1 Introduction
	6.2 Analyses of Known Parallel Sorting Algorithms
	6.2.1 Bitonic Sort
	6.2.2 GPU-Warpsort

	6.3 Sorting Lower Bound on the AGPU Model
	6.4 I/O-optimal Sorting Algorithms
	6.4.1 Overview of the Algorithm
	6.4.2 Initialization
	6.4.3 Column-wise Merge
	6.4.4 Subarray Partition
	6.4.5 Row-wise Merge
	6.4.6 The Complexities and the Amount of Memory Used
	6.4.7 Effect of Multiplicity

	6.5 Experimental Evaluation
	6.5.1 Parameter Tuning
	6.5.2 Comparison with Thrust

	6.6 Short Summary

	7 Conclusion
	7.1 Summary of the Dissertation
	7.2 Future Work

	Bibliography

