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Abstract

Recognizing event in unconstrained videos is one of the most important tasks in multimedia

retrieval. It has many potential applications such as video indexing, searching, and event

recounting. However, this is a challenging task due to the large content variation and

uncontrolled capturing condition. This leads to the fact that these videos often contain

irrelevant information to the event of interest. The straightforward way to solve this problem

is to decompose the original video into smaller segments and build the event detectors from

these segment representations. This dissertation follows the aforementioned direction to

study event detection methods in real videos. Essentially, we study three complementary

approaches including feature representation, feature aggregation and feature learning.

In the first approach, we propose to use the segment-based (SB) feature representation to

overcome the limitation of the traditional video-based approach. In the video-based approach,

local features are extracted from the entire video and then aggregated to form the final video

representation. However, this video-based representation is ineffective when used for realistic

videos because the video length can be very different and the clues to determine an event may

happen in only a small segment of the entire video. To handle this problem, our segment-

based divides the original videos into segments for feature extraction and classification, while

still keeping the evaluation at the video level. We investigate several strategies to divide

a video into segments including non-overlapping uniform segment sampling, overlapping

uniform segment sampling, and segments that based on the shot boundary detection. We also

study the optimal segment length for event detection, which is close to the mean average

length of the training videos.
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The second approach handles the aforementioned problem by proposing a new video

pooling strategy for feature aggregation. We consider a video as a layered structure where

the lowest layer are frames, the top layer is the entire video, and the middle layers are the

sequences of consecutive frames or the concatenation of lower layers. While it is easy to

find local discriminative features in video from lower layers, it is non-trivial to aggregate

these features into a discriminative video representation. In literature, people often use sum

pooling to obtain reasonable recognition performance on artificial videos. However, the sum

pooling technique does not work well on complex videos because the region of interests may

reside within some middle layers. In this approach, we leverage the layered structure of video

to propose a new video pooling method, named sum-max video pooling (SM), to handle

this problem. Basically, we apply sum pooling at the low layer representation while using

max pooling at the high layer representation. Sum pooling is used to keep sufficient relevant

features at the low layer, while max pooling is used to retrieve the most relevant features at

the high layer, therefore it can discard irrelevant features in the final video representation.

In the third approach, we focus on feature learning method to learn the key segments

for video representation. In fact, a complex event can be recognized by observing necessary

evidences. It is not easy to locate supportive evidences because they can happen anywhere

in a video. A straightforward solution is to decompose the video into several segments and

search for the evidences in each segment. This approach is based on the assumption that

segment annotation can be assigned from its video label. However, this is a weak assumption

because the importance of each segment is not considered. On the other hand, the importance

of a segment to an event can be obtained by matching its detected concepts against the

evidential description of that event. Leveraging this prior knowledge, we propose a new

method, Event-driven Multiple Instance Learning (EDMIL), to learn the key evidences

for event detection. We treat each segment as an instance and quantize the instance-event

similarity into different levels of relatedness. Then the instance labels are learned by jointly

optimizing the instance classifier and its related level. Finally the optimal instance classifiers

are used to detect event.
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We verify the effectiveness of our approaches on the large scale TRECVID Multimedia

Event Detection 2010, 2011 and 2012 datasets. Our approaches can not only detect event, but

also provide evidences for event detection. Compared to other segment-based approaches,

our solutions achieve significant improvements. For example, when comparing in the MED

2011 dataset with a same setting, the baseline method (traditional video-based approach)

has the average precision of 6.74%, while our methods (SB, SM and EDMIL) have the

performance of 8.26%, 6.92% and 9.68% respectively.
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Chapter 1

Introduction

The moment you doubt whether you can

fly, you cease for ever to be able to do it.

– J.M. Barrie, Peter Pan

1.1 Motivations

The evolution of internet has been changing our daily life. According to a report by the

Internet World Stats [27], there is now more than 3 billions internet users, accounting for 40%

of the world’s population. The number of internet users are increasing rapidly and also keep

producing a huge amount of internet data. It is important to analyze these data because it can

provide valuable information about our daily activities. Among many interesting problems

that need to be investigated, recognizing event in internet videos has been drawing a lot of

attention in recent years [23, 59, 62, 83].

Recognizing event refers to the process of automatically identifying video clips that

contain a particular event of interest. This is a challenging problem because we need to

build computer system to recognize event not only from video metadata but also from its

content. The detail definition of this task and its challenges will be described in Section 1.2

and Section 1.3 respectively.



2 Introduction

Event recognition technologies are mainly employed in video retrieval systems to facili-

tate the retrieving progress. A video retrieval system that equipped such technologies can

have numerous applications such as video search, video recommendation and video filtering.

For example, below are some application scenarios:

• Video search. This is an important function in most of video sharing websites. Most

of the time, these websites only provide a search interface that supports text queries.

However, in order to do that, videos must have already been indexed based on its

content and other metadata [98]. Using the provided interface, user can search for a

specific tutorial such as “how to make a cake”, “how to repair an appliance”; or some

specific entertainment videos such as “a dog show” and “doing a magic trick”.

• Video recommendation. It is also very important for video sharing websites to

recommend videos that may appeal to the user. The longer the user stay on their

websites, the higher the benefit. The recommendation is often based on the user’s

favorite videos or recently watched videos [15, 55]. From these input videos, the

system will search for similar videos through their database within a short time. For

example, when the user watch a video of “how to drive a car”, they may also expected

to watch similar events such as “how to park a car” and “common driving mistakes”.

• Video filtering. In contrast to video recommendation, video filtering is also an im-

portant application of event detection technologies. There are certain event that the

managers do not want them to be public, especially when a government want to es-

tablish a video censorship. For example, videos that teach “how to make a bomb” or

“how to commit a suicide” should be removed from the retrieval results.

Zillmann and Weaver [100] show that human tend to have violent responses when

watching violent movies. In this case, event detection technology can be applied to

filter out violent scenes in a movies. This technology has been employed in Facebook

platform [63] to prevent the spread of a particular video over the internet, or to restrict

the video from a particular type of audiences such as children, as shown in Fig. 1.1.
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Fig. 1.1 Facebook has been placing warnings over violent videos posted to its site.

Motivated by these interesting applications, this dissertation aims to develop technologies

for building an automatic event detection system. We will describe more about our research

scope in the next section.

1.2 Problem Statement

This dissertation addresses the problem of recognizing complex event in videos. Basically,

it is the process of automatically identifying video clips that contain a particular event of

interest. There are two important characteristics of our target problem.

First, we are dealing with complex event. A complex event consists of various human

activities and occurs in some particular settings. For example, “changing a vehicle tire” is

an complex event that often happens at a garage or on street. This event contains several

activities such as removing hubcap, turning lugwrench, unscrewing bolts and pulling rim

out of tire. Complex event recognition differs from the traditional action recognition task in

that it is the combination of multiple human actions or activities. It often contains various
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Fig. 1.2 Overview of an event detection from video system.

Pick up an item Keep it in a hidden place Get out successfully

Fig. 1.3 Top: sequence of actions in the shoplifting event. Bottom: Examples of single action
detection in KTH dataset.

interactions between human and objects in different scenes. Therefore, a complex event

video is often longer than a single action video. Moreover, action videos are often captured

in controlled environment, while complex event videos are often recorded by internet users,

which is uncontrolled or arbitrary environment. Figure 1.3 shows the difference of complex

event and single action detection. The top images are sequence of actions that happens in a

shoplifting event, while the bottom images are examples of single action in the classic KTH

dataset. Note that for the shoplifting event, the sequence of actions needed to be recorded in

exactly the order from left to right. That means we not only deal with multiple actions, but

also need to take into account the order that these actions happen.

Second, we are dealing with multimedia data. Internet videos can contain information

from various mediums such as audio, visual and textual. Beside information from its content,
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internet videos often come with user-provided metadata description such as titles, tags

and descriptions. Traditionally, videos are indexed and retrieved based on this metadata

information. However, text-based video retrieval systems face an intrinsic limitation that is

the semantic gap between the content of the video and the information provided by the users.

Moreover, this information is tend to be noisy and not always reliable. Therefore, we focus

on utilizing multimedia data to build an effective event recognition system.

Due to the uncontrolled capturing condition of the complex videos, it is also interesting

to know which parts of the video are important for recognizing event? How can we detect

these parts? And suppose these parts do exist, how can we utilize them for complex event

recognition? These challenging questions are also addressed in our dissertation.

1.3 Challenges

• Large content variation. The large content variation refers to the diversity of a com-

plex event. Even though an event only involve with some specific objects, activities and

scenes, the variety among within these classes is also very high. For example, “birthday

party” is a complex event. This event can be happen during day or night and set in

indoor (a home, a restaurant) or outdoor (a backyard, a park) environment. Typically, in

a birthday party, the presence of a birthday cake is of the utmost importance. However,

in the real world setting, even the birthday cake can be very different from video to

video. Figure 1.4 shows some examples of birthday cake appear in internet videos.

In terms of content variation, recognizing complex event is more challenging than

other tasks such as instance search or copy detection . The instance search task aims

to search for a certain specific person, object or location. These instances can have

different views but it must belong to the same target of interest in the real world. The

target of copy detection task is a little bit more flexible. It aims to detect a video

segment that is derived from another video. The copy video can be derived from the

original video by means of transformations such as addition, deletion and modification.

To this end, the complex event detection task has the utmost content variation.
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Fig. 1.4 The large variation of birthday cake in the birthday party event.

• Uncontrolled capturing condition. The uncontrolled capturing condition distinguish

the complex event recognition task and the traditional action recognition task, which

is often recorded in studio settings. As a result, techniques that work well for action

recognition might no longer be effective for detecting complex event. For example,

camera motion is one of the most frequent prominence in internet videos. Although

popular motion features such as ESURF [91], STIP [42] and HOG3D [35] can effec-

tively recognize action in studio videos, it shows limited performance in internet videos

because it is not designed to handle camera motion. On the other hand, the Dense

Trajectories feature proposed by Wang [90] takes into account the camera motion and

demonstrates superior performance.

One of the direct consequence of uncontrolled capturing condition is that user-generated

videos often contain irrelevant information to the event of interest. In other words,

different parts of the video have different levels of relatedness to a particular event.

This leads to a challenging problem which is how to discard irrelevant information

from the video representation. It is especially difficult when the annotation of each

part of the video is almost not available. Figure 1.5 shows some examples of noisy

information in internet videos.
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Fig. 1.5 (a) Example video for “making a sandwich” event: the related segment appears after
a self-cam segment (unrelated); (b) example video for “grooming an animal” event: related
segment is sandwiched between two unrelated segments. This kind of video is popular in
realistic video datasets like MED. The frames with a red outlined box are examples of the
extracted keyframes when using a keyframe-based approach, which suffers from both noise
and missed extraction.
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Fig. 1.6 Example of near-miss video for “Changing a vehicle tire” event. The first row shows
some positive videos. The second row shows near-miss videos, which is very easy to be
confused with positive ones, even for human.

• Near-miss videos. Near-miss video refers to a kind of video that is closely related to a

particular event, however, it is not a positive instance of that event. Because a complex

video is often composed by several objects or activities in some particular order, it

might not be considered an event video if there is a lack of certain evidences. So a

near-miss video can contain several evidences but not enough to define an event. This

property of near-miss video often harm the performance of an event detection system.

In fact, this kind of video is also prevalent in the setting of complex event recognition

task. For example, “Changing a vehicle tire” is a complex event that involve one or

more people to replace a tire on a vehicle. An event is not defined if the tire of the

vehicle is not replaced. Examples of near-miss videos can be seen in Fig. 1.6.

• Large scale video database. Last but not least, we have to deal with big data as well.

We have to accurately search for a particular event through a large video archive in a

reasonable amount of time. In some complex event detection task such as TRECVID

Multimedia Event Detection (MED) [72], the evaluation time is also limited, which

forces the participants to care about the efficiency of their systems. In this contest,

the participants need to prepare their system that is able to search for event on large

collection of around 200,000 Internet videos, or 8,000 hours of videos [72].
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1.4 Contributions

The main challenge that is addressed in this dissertation is "uncontrolled capturing condition".

This challenge differentiates complex videos from artificial or studio setting videos. The

straightforward approach to handle this challenge is to decompose the original video into

small video segments and search for event evidences in these small segments. By following

this research direction, we made three main contributions in our dissertation:

• We propose a new feature representation method, named segment-based representation

(SB), to overcome the limitations of the traditional video-based approaches. The basic

idea is to examine shorter segments instead of using the representative frames or entire

video. We carry thorough experiments to verify our proposed method by investigating

different strategies to decompose a video into segments. These strategies include

uniform segment sampling and segments based on shot boundary detection.

• We propose a new feature aggregation method, called sum-max video pooling (SM),

to deal with noisy information in complex videos. This pooling technique is based

on the layer structure of video. Basically, we apply sum pooling at the low layer

representation while using max pooling at the high layer representation. Sum pooling

is used to keep sufficient relevant features at the low layer, while max pooling is used

to retrieve the most relevant features at the high layer, therefore it can discard irrelevant

features in the final video representation.

• We propose a new feature learning method, named Event-driven Multiple Instance

Learning (EDMIL), to learn key evidences for complex event detection. We treat

each segment as an instance and model it in a multiple instance learning framework

[2], where each video is a “bag”. The instance-event similarity is quantized into

different levels of relatedness. Intuitively, the most (ir)relevant instances should have

higher (dis)similarities. Therefore, we propose to learn the instance labels by jointly

optimizing the instance classifier and its related level.
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1.5 Thesis Overview

The remaining of this dissertation is organized as follows:

Chapter 2 introduces some background that is related to our research. This background

encompasses an introduction to TRECVID MED task and dataset. It also provide basic

knowledge about some low level features and feature encoding methods, which is necessary

to re-implement our system.

Chapter 3 presents our segment-based approach for complex event detection. At first

we introduce the video-based approach and some of its limitation. After that we present the

segment-based approach with several strategies to decompose a video into segments.

Chapter 4 presents our sum-max video pooling for complex event recognition. At first

we introduce the layer structure of a video. Based on this layer structure, we propose a new

video pooling technique which is a combination of sum pooling and max pooling.

Chapter 5 presents our method to detect event using the evidential description of an event.

We also present a method to calculate the similarity between a video segment and an event

based on textual description. This method can also provide evidences for event detection.

Chapter 6 concludes this dissertation by summarizing our contributions and discussing

about the future work.
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Fig. 1.7 Outline of our thesis. Our contributions are highlighted in the red boxes.





Chapter 2

Background

We can draw lessons from the past, but

we cannot live in it.

– Lyndon B. Johnson

2.1 TRECVID Multimedia Event Detection

As introduced in Chapter 1, complex event recognition is an important computer vision

research with many potential applications. In 2010 TRECVID community has proposed a new

task, named “Multimedia Event Detection” [71] to advance the research and development

in this area. The ultimate purpose of this task is to collect technologies for building a

computer system that can quickly search for a particular event over a large video collection

in a reasonable response time.

The task is defined as follows: “Given an event kit, find all clips that contain the event

in a video collection” [71]. The event kit provides the event definitions along with some

example videos of each event. At first, MED task defines an event:is a complex activity

occurring at a specific place and time; involves people interacting with other people and/or

objects; consists of a number of human actions, processes, and activities that are loosely

or tightly organized and that have significant temporal and semantic relationships to the

overarching activity; and is directly observable.
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For a specific event of interest, a textual description is also provided to help developers

generate the event search query. This textual description consists of following information:

event name, event definition, event explication and evidential description. The event name is

a mnemonic title of that event. The event definition provides a short definition of that event.

Event explication is a long description which explains ambiguous terminologies in the event

definition. Finally, the evidential description summarizes an event with its characteristics

such as scene, object/people, activities and audio information. Table 2.1 shows textual

description of an event in MED task.

2.2 Dataset

The TRECVID MED organizer also provides a standard benchmark for participants to

evaluate their methods [71]. In the pilot task (MED 2010), there are only three events that are

being tested1. These events are the following: (1) “Assembling a shelter”: one or more people

construct a temporary or semi-permanent shelter for humans that could provide protection

from the elements. (2) “Batting a run in”: within a single play during a baseballtype game, a

batter hits a ball and one or more runners (possibly including the batter) scores a run. And

(3) “Making a cake”: One or more people make a cake. This collection is divided into two

subsets including 1,744 videos for training and 1,724 videos for testing.

Since 2011, the number of test events has been increasing. New tested events as well as

tested videos are added every year. For example, there are 5 training events (E001-E005)

and 10 testing events (E006-E015) in MED 20112. The number for MED 2012 is 20 testing

events (E006-E015, E021-E030)3. These events are also kept in MED 2013 but more testing

videos are added. In MED 2014, a different test set with 10 new events are introduced

(E021-E040). List of all event names up to TRECVID MED 2014 can be found in Table

2.4. Since MED 2012, the evaluation set which contains around 98,000 test videos has been

1http://www.nist.gov/itl/iad/mig/med10.cfm
2http://www.nist.gov/itl/iad/mig/med11.cfm
3http://www.nist.gov/itl/iad/mig/med12.cfm
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Table 2.1 Textual description for event “Attempting a board trick”

Event name Attempting a board trick

Definition
One or more people attempt to do a trick on a skateboard, snowboard,

surfboard, or other boardsport board.

Explication

Board sports are sports where a person stands, sits, or lays on a board

and moves and controls the board. Tricks consist of intentional motions

made with the board that are not simply slowing down/stopping the board

or steering the board as it moves. Steering around obstacles or steering a

board off of a jump and landing on the ground are not considered tricks in

and of themselves.

Common tricks involve actions like sliding the board along the top of an

object (e.g. a swimming pool rim or railing), jumping from the ground or

the surface of water into the air, and spinning or flipping in the air.

Evidential

description

scene: outside, often in a skate park.

objects/people: skateboard, snowboard, surfboard, ramps, rails, safety

gear, crowds.

activities: standing, sitting or laying on the board; jumping with the board;

flipping the board and landing on it; spinning the board; sliding the board

across various objects.

audio: sounds of board hitting surface during trick; crowd cheering.
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frozen. This collection is blind to all participants, which means they are not allowed to

analyze these videos when tuning their systems.

Since MED 2014, the evaluation set has been doubled by adding around 100,000 test

videos. An overview of all MED video collections is shown in Table 2.2. To the best of our

knowledge, this is largest video dataset for event detection purpose. Because since MED

2012, the evaluation dataset has been frozen, most researchers conducts experiments on

MED2010, MED2011 and MED2012 dataset [38, 39, 84, 86]. The detail information of

these datasets can be seen in Table 2.3.

Table 2.2 Number of videos and video hours in the MED dataset up to 2014 [72].

Set Number of video clips Video duration (hours)

Development
Data

RESEARCH 10,000 314

10 Event Kits 1,400 74

Transcription 1,500 45

Event
Training Data

Event Background 5,000 146

40 Event Kits 6,000 270

Test Data
MEDTest 27,000 849

KindredTest 14,500 687

Evaluation Data
MED14Eval-Full 198,000 7,580

MED14Eval-Sub 33,000 1,244

Total 244,000 9,911

Table 2.3 Detail information of MED2010, MED2011 and MED2012 dataset.

Dataset No. Event No. Train Videos No. Test Videos Total Videos Total Hours

MED2010 3 1,744 1,724 3,468 110 hours
MED2011 10 1,331 31,822 33,153 1,100 hours
MED2012 25 3,878 1,938 5,816 250 hours
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Table 2.4 List of event names in MED task from 2010-2014.

ID Event name ID Event name

E001 Attempting a board trick E021 Attempting a bike trick

E002 Feeding an animal E022 Cleaning an appliance

E003 Landing a fish E023 Dog show

E004 Wedding ceremony E024 Giving directions to a location

E005 Working on a woodworking project E025 Marriage proposal

E006 Birthday party E026 Renovating a home

E007 Changing a vehicle tire E027 Rock climbing

E008 Flash mob gathering E028 Town hall meeting

E009 Getting a vehicle unstuck E029 Winning a race without a vehicle

E010 Grooming an animal E030 Working on a metal crafts project

E011 Making a sandwich E031 Beekeeping

E012 Parade E032 Wedding shower

E013 Parkour E033 Non-motorized vehicle repair

E014 Repairing an appliance E034 Fixing musical instrument

E015 Working on a sewing project E035 Horse riding competition

E016 Doing homework or studying E036 Felling a tree

E017 Hide and seek E037 Parking a vehicle

E018 Hiking E038 Playing fetch

E019 Installing flooring E039 Tailgating

E020 Writing E040 Tuning musical instrument
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2.3 Feature for Event Detection

2.3.1 Image Features

Image features or still image features can be further classified into global and local features.

Global features represent information of the whole frame (or image) while local features

focus on some local invariant characteristics.

The most common global feature is color histogram, which is a representation of the

distribution of colors in an image. Color histograms can potentially be identical for two

images with different object content which happens to share color information. Another

popular global feature is GIST [66]. GIST descriptor describes the dominant spatial structure

of a scene in a low dimensional representation.

For local image features, Scale-Invariant Feature Transform (SIFT) has become a standard

feature for many image classification tasks. It is proposed by Lowe in [50] to find local

maximum of Difference of Gaussians (an approximation of Laplacian of Gaussian) in space

and scale. It is a scale invariant local feature, simple and efficient. Other variants of SIFT

take into account the keypoint extraction methods, such as Hessian-Laplace interest points

detector [56] and dense sampling [64]. In both strategies, local features are extracted from

multiple scales by using the Gaussian scale space [56]. In the case of dense sampling, the

key points are densely sampled on a grid with a step size of 6 pixels. Once a key point is

detected, it is described using the standard SIFT [50]. It is also acknowledged that other

descriptors such as RGB-SIFT, Opponent-SIFT, and C-SIFT [7] can be complementary with

the standard SIFT descriptor [96].

2.3.2 Motion Features

Motion features have been widely developed for various action recognition tasks. Because

event video may contain multiple actions, it is reasonable to employ motion information for

event detection. Depend on the extraction methods, motion features can be classified into

two categories: methods based on interest points and methods based on tracking.
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Methods based on interest points. The Harris3D detector was proposed by Laptev and

Linderberg [42]. This is an extension of Harris2D detector which is used to detect corners

in image. Generally the proposed detector will detect points which have significant change

in both spatial and temporal direction. First, the spatial temporal second-moment matrix

averaged using a Gaussian weighting function g at spatial scale σi and temporal scale τi is

defined as below:

µ = g(.;σ
2
i ,τ

2
i ,)∗


L2

x LxLy LxLt

LxLy L2
y LyLt

LxLt LyLt L2
t

 (2.1)

Second, a new response function is proposed to measure the motion in 3D:

H = det(µ)+ k trace3(µ), (2.2)

Finally, interest points are those which maximize the response function H. To do this, the

authors use a corresponding eigenvalue problem. The response function H can be rewrote as

below:

H = λ1λ2λ3 − k (λ1 +λ2 +λ3)
3 (2.3)

Interest points are those have large eigenvalue λ1,λ2,λ3 which means large variation in

both spatial and temporal domain.

The Cuboid detector is based on temporal Gabor filters and was proposed by Dollár et al.

in [17]. The response function has the form:

R = (I ∗g∗hev)
2 +(I ∗g∗hod)

2 (2.4)

where g(x,y;σ ) is the 2D spatial Gaussian smoothing kernel, and hev and hod are a quadrature

pair of 1D Gabor filters which are applied temporally. The Gabor filters are defined by:

hev(t;τ,ω) =−cos(2πtω)e
−t2

τ2 (2.5)
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hod(t;τ,ω) =−sin(2πtω)e
−t2

τ2 (2.6)

with ω=4/τ . The two parameters σ and τ of the response function R correspond roughly to

the spatial and temporal scale of the detector. Interest points are the local maxima of the

response function R.

The Hessian detector was proposed by Willems et al. [91] as a spatio-temporal extension

of the Hessian saliency measure used for blob detection in images. The detector measures the

saliency with the determinant of the 3D Hessian matrix. The position and scale of the interest

points are simultaneously localized without any iterative procedure. In order to speed up the

detector, the authors used approximative box-filter operations on an integral video structure.

Each octave is divided into 5 scales, with a ratio between subsequent scales in the range 1.2 –

1.5 for the inner 3 scales. The determinant of the Hessian is computed over several octaves

of both the spatial and temporal scales. A non-maximum suppression algorithm selects joint

extrema over space, time and scales: (x, y, t, σ , τ).

Methods based on tracking. Methods based on tracking process the video frame by

frame. Trajectories are often extracted after tracking for fixed number of frame length.

Different features may different in both the extraction and description method. There are

several methods to extract trajectories. In [53], a standard Kanade–Lucas–Tomasi (KLT)

tracker is used to track features (using "good features to track") over a video. A fixed number

of features (typically 100) is initialized for tracking. Features are replaced as necessary when

tracks are lost. The output of this tracking is a trace of (x; y) pairs for each feature.

In [21], trajectories are generated by tracking dense SIFT points frame by frame. The

reason for using dense sampling, according to the author, is to provide sufficient points to

group similar motions into meaningful body parts. First, points are sampled on a regular

grid spacing with 5 pixels, then each image patch is represented by a SIFT descriptor. The

correspondence between key-points in successive frames is established by nearest neighbor

distance ratio matching.

Trajectories can also be tracked using dense optical flow. This method proposed by Wang

in [89, 90]. The trajectories are obtained by tracking densely sampled points using optical
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flow fields. First, feature points are sampled on a grid spaced by 5 pixels and at multiple

scales spaced by a factor of 1/
√

2. Then features are tracked in each scale separately. Each

point Pt = (xt ,yt) at frame t is tracked to the next frame t+1 by median filtering in a dense

optical flow field ω = (ut , vt).

Tracking using KLT can be difficult for initialization step, particularly when the scene

contains distracting objects. Moreover, sparse tracking methods like KLT might not capture

enough information of a moving object. That is why the dense trajectory approach [89]

yields better result than sparse trajectory extraction approach. However, tracking object is

still challenging in real world environment, where occlusion between moving objects are

popular. In that case, the tracker output tends to be noisy. On another hand, matching dense

SIFT descriptors is computationally very expensive [48] and, thus, infeasible for large video

datasets.

Trajectory descriptors. The trajectory descriptors are computed within a space-time

volume around the trajectory (see Fig. 2.1). The size of the volume is NxN pixels and L

frames. To embed structure information in the representation, the volume is subdivided into

a spatio-temporal grid of size nσ x nσ x nτ . The default parameters for our experiments are

N = 32, nσ = 2, nτ = 3.

Fig. 2.1 Illustration of dense trajectory description. Left: Feature points are sampled densely
for multiple spatial scales. Middle: Tracking is performed in the corresponding spatial scale
over L frames. Right: Trajectory descriptors are based on its shape represented by relative
point coordinates as well as appearance and motion information over a local neighborhood of
N x N pixels along the trajectory. In order to capture the structure information, the trajectory
neighborhood is divided into a spatio-temporal grid of size nσ x nσ x nτ [89].
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The HOGHOF [42] descriptor has shown excellent results on a variety of datasets. HOG

(histograms of oriented gradients) focuses on static appearance information, whereas HOF

(histograms of optical flow) captures the local motion information. HOGHOF descriptors are

computed along the dense trajectories (see Fig. 2.1). For both HOG and HOF, orientations

are quantized into 8 bins using full orientations, with an additional zero bin for HOF (i.e., in

total 9 bins). Both descriptors are normalized with their L2 norm.

The MBH descriptor is proposed by Dalal et al. [14] for human detection, where deriva-

tives are computed separately for the horizontal and vertical components of the optical flow.

This descriptor encodes the relative motion between pixels (See Fig. 2.2).

Fig. 2.2 Illustration of the MBH descriptor. (a,b) Reference images at time t and t+1. (c,d)
Computed optical flow, and flow magnitude showing motion boundaries. (e,f) Gradient
magnitude of flow field Ix, Iy for image pair (a,b). (g,h) Average MBH descriptor over all
training images for flow field Ix, Iy [14].

The MBH descriptor separates the optical flow field Iω = (Ix, Iy) into its x and y component.

Spatial derivatives are computed for each of them and orientation information is quantized

into histograms, similarly to the HOG descriptor (have 8-bin histogram for each component).

Finally, these two histograms are normalized separately with the L2 norm. Since MBH

represents the gradient of the optical flow, constant motion information is suppressed and

only information about changes in the flow field (i.e., motion boundaries) is kept. This is a

simple way to eliminate noise due to background motion. This descriptor yields excellent

results when combined with dense trajectory features.

As shown by Wang et al. [89, 90], the dense trajectory feature is one of the best for

action classification. In particular, it is an efficient way to remove camera motion. Violent
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scenes of Hollywood movies tend to have a lot of action and different effects. We use the

dense trajectory feature to capture this information. Trajectories are obtained by tracking

densely sampled points in the optical flow fields. As suggested by Wang [89, 90], we use

Histogram of Oriented Gradient (HOG), Histogram of Optical Flow (HOF) and Motion

Boundary Histogram (MBH) to describe each trajectory. HOG captures the appearance of

a moving object, whereas HOF captures its speed. The last descriptor, MBH, captures the

boundaries of motion and is good for handling camera motion.

2.3.3 Audio Features

We use the popular Mel-frequency Cepstral Coeffcients (MFCC) [75] for extracting audio

features. We set the window to 25 ms and the step size to 10 ms. 13-dimensional MFCC

vectors along with their first and second derivatives are used for representing each audio

segment. Raw MFCC features are also encoded using BoW. Note that this configuration was

used by the winning teams (AXES/LEAR) of the TRECVID Multimedia Event Detection

2013 [1] and THUMOS Challenge 2014 [70].

We investigated several ways to extract MFCC features from audio channel. These

MFCC libraries are used in our evaluation: VoiceBox audio toolkit [6], Yaafe audio library

[52] and the RASTA-PLP library [20]. We found that the RASTA-PLP implementation

achieved slightly better performance than others. Moreover, we did not observe significant

improvement when changing parameters such as window length and step between successive

windows. So we kept using the default setting in the RASTA-PLP implementation.

2.3.4 Deep Learning Features

Deep learning has been drawing a lot of attention after the seminal work of Krizhevsky et

al. [37]. They proposed a deep learning framework that significantly outperforms previous

state-of-the-art methods on the ImageNet benchmark [16]. This is a variant of multilayer

perceptrons (MLP) [77], where a larger number of layers can be incorporated into the network

(Fig. 2.3). The success of deep learning is due to the explosion of big data, Convolutional
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Neural Network (CNN) [45, 46], as well as major improvements for training the network

[4, 26].

Fig. 2.3 Illustration of deep learning architecture that was used in [37].

There are basically three ways to apply deep learning for event detection from video. (1)

Using pre-trained deep models to extract video features [85]. Note that if the model was

trained on image collection [9, 37, 80, 99], it can be used to extract image features for each

sample video frames. Video level features can be obtained by aggregating from all of its

keyframe-based featrues. (2) The second approach is to train a deep learning model directly

on event video collection. As a result, we can have an end-to-end network for the event

detection. However, deep learning techniques for video is still not matured, and training a

deep model with a limited number of positive labels might be not effective. (3) The third

method is fine-tuning for event detection data on top a pre-trained model. This is the most

common approach when applying deep learning to a new application. However, this approach

requires the pre-trained model should be trained on a dataset that is similar to video event

collection, otherwise, deep learning might not be applicable.

In this dissertation, we used the popular DeepCaffe [29] framework to extract keyframe

features. We used the pre-trained deep model provided by DeepCaffe. This model was

trained on ImageNet 1,000 concepts [16]. The protocol for training it is described in

[29]. As suggested in [37], we selected the last three fully connected layers for the feature

representation. The third and second-to-last layers have 4,096 dimensions, while the last

layer has 1,000 dimensions corresponding to the 1,000 concept categories in the ImageNet

dataset.
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Fig. 2.4 General MED framework

2.4 General Framework

We design a unified framework to evaluate the performance of individual features and their

combination (see Figure 2.4). We made it flexible in that we can easily test different fea-

tures. We also designed it in components, i.e., pre-processing, feature extraction, feature

encoding, feature classification, and feature fusion, so that each component could be eval-

uated separately while keeping the others intact. In particular, it consists of the following

components.

2.4.1 Pre-Processing

The pre-processing component prepares the data for the processing in the other components.

First, the video is resized to a width of 320 pixels, and its height is scaled so that the aspect

ratio is kept the same. All features are extracted from the resized video.

To get the image features, keyframes are sampled from the shots at one frames every two

seconds. This rate seems to be a good tradeoff between time and accuracy (as suggested in
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[33]). Blank keyframes, i.e., ones filled with a single color, are removed because they do not

contain informative features.

To get the audio features, the audio channel is extracted from the original video and saved

as a file in the standard WAV format. The audio features can be extracted from this file.

2.4.2 Feature Extraction

The feature extraction component aims to make a discriminative vector representation for

each shot extracted in the pre-processing step. The extraction method depends on what type

of feature will be used. To conduct comprehensive evaluations of features for VSD, our

framework supports a large variety of features, including global and local visual features.

Global features capture the global statistics of each extracted shot. These statistics can be

calculated directly from sub regions of a sampled frame and concatenated to form the vector

representation for that frame, before being aggregated into the final representation for each

shot. It is more complicated to calculate the feature vector representation for local features.

The number of local features varies from frame to frame; therefore, it requires a special

encoding technique, which will be described in Section 2.4.3.

Besides global and local features, our evaluation framework supports a number of other

features. In particular, audio features can be extracted from pre-defined temporal windows.

The features of each window provide local audio characteristics at that temporal location.

This means audio features can be considered as local. Another kind of feature is a mid-level

feature made using concept detectors. We use general concepts taken from off-the-shelf

datasets [16]. In addition, our framework supports state-of-the-art deep learning features,

which are extracted from a pre-trained model. A description of each feature is presented in

Section 2.3.
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2.4.3 Feature Encoding

Bag-of-word model

As for local features, we use the popular Bag-of-Words (BOW) model to generate a fixed-

length representation from local descriptors. This model was initially used to represent text

documents [24], and it was first used to represent images by Csurka et al. [12]. Its extension

to motion and audio features is straightforward [34, 81].

We used the experiment setup described in [32] to make our bag-of-words models. We

set the codebook size to 1,000, because in [32], performance did not significantly improve

when the larger codebooks were used, and a smaller codebook can significantly reduce the

computational time for feature encoding as well as feature learning. In order to train the

codebook, we randomly selected 1 million local descriptors and clustered them using the K-

means algorithm. The local descriptors were assigned to each codeword in a soft-weighting

manner [31] to improve the discriminative power of the encoded feature.

The main drawback of the bag-of-words model is that it does not incorporate spatial

information. The simplest way to overcome this problem is to partition the image into

sub-regions and encode local features in each region independently. After that, features from

all regions are concatenated into a single feature vector. There are many ways to partition

an image into sub-regions. To this end, we follow [32] and [44] and use 2 x 2 and 1 x 3

spatial configurations. We found that these spatial configurations are good trade-offs between

performance and computational cost of the high-dimensional feature vector.

Fisher Vector Encoding

The Fisher vector (FV) was first used for image classification in [28]. It has since been used

for action recognition, such as in [83] and [90]. Fisher vector encoding can be considered

to be an extension of Bag-of-words encoding. Unlike a bag of features, the Fisher vector

encodes both first- and second-order statistics between the local descriptors and the codebook.

As a result, it is much longer than the BoW feature when using the same codebook.
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Different from bag-of-words encoding, which often uses k-means to train the codebook,

the Fisher vector often uses the Gaussian Mixture Model (GMM) to encode the relative

position of each local descriptor to each mixture center. The relatively large expressiveness

of the Fisher vector means it can achieve comparable performance to that of BoW while

using a much smaller codebook [78, 83].

In our experiment, we set the number of Gaussians in the GMM model to K = 256.

Then we randomly selected 1,000,000 local descriptors for training the model. As suggested

in [73], it is better to reduce the local feature dimension by using Principal Component

Analysis (PCA). The normalization of the output feature is also very important. Following

the recommendation in [73], we applied power normalization with α = 0.5 followed by

L2-normalization to the Fisher vector.

2.4.4 Learning

Support Vector Machine (SVM) is a standard machine learning algorithm for image and

action recognition tasks. Therefore, we also use it in our experiments. To this end, we use

the LibSVM [8] for training and testing. Because we often deal with event collection with

more than two events, we simply adopt the one-vs.-rest scheme to solve the multi-class

classification problem.

For features encoded using the “bag-of-words” model, we use the χ2 kernel to calculate

the distance matrix. The optimal (C;g) parameters for learning Support Vector Machine

(SVM) classifiers are found by conducting a grid search with five-fold cross validation on

the original dataset. For features that are encoded with the Fisher vector, we use LibSVM

with linear kernel. In this case, we perform a five-fold cross-validation to obtain the learning

parameter C.

2.4.5 Fusion Scheme

Fusing information from different media seems to be a natural way to handle multimedia

content. Fusing multi-modal information has been used for multimedia event detection in
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recent works such as [40, 59, 62, 65]. The different types of multimedia data have their own

characteristics, so it is also natural that they would have different fusion strategies [94]. Here,

we chose to use late fusion with an average weighting scheme for all features [82]. This

simple fusion strategy has demonstrated stable performance across many event detection

collections as well as different set of features.





Chapter 3

Event Detection Using Segment-based

Feature Representation

Concentrate all your thoughts upon the

work at hand. The sun’s rays do not

burn until brought to a focus.

– Alexander Graham Bell

3.1 Introduction

Multimedia Event Detection (MED) is a challenging task in TREC Video Retrieval Evaluation

(TRECVID)1. The task is defined as follow: given a collection of test videos and a list of

test events, indicate whether each of the test events is present in each of the test videos. The

aim of MED is to develop systems that can automatically find video containing any event of

interest, assuming only a limited number of training exemplars are given.

The need for such MED systems is rising because a massive number of videos are

produced every day. For example, more than 3 million hours of video are uploaded and

over 3 billion hours of video are watched each month on YouTube2, the most popular video

1http://trecvid.nist.gov/
2http://www.youtube.com/t/press_statistics
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sharing website. What is needed are the tools for automatically processing the video content

and looking for the presence of a complex event in such unconstrained capturing videos.

Automatic detection of complex events has great potential for many applications in the field

of web video indexing and retrieval. In practice, a viewer may only want to watch goal

scenes in a long football video, a housewife may need to search for videos that teach her

how to make a cake, a handyman may look for how to repair an appliance, or a TV program

manager may want to remove violent scenes in a film before it is aired.

However, detecting events in multimedia videos is a difficult task due to both the large

content variation and uncontrolled capturing conditions. The video content is extremely

diverse even in a same event class. The genres of video are also very varied, such as

interviews, home videos, and tutorials. Moreover, the number of events is expected to be

extensive for large scale processing. Each event, in its turn, can involve a number of objects

and actions in a particular setting (indoors, outdoors, etc). Furthermore, multimedia videos

are typically recorded under uncontrolled conditions such as different lighting, viewpoints,

occlusions, complicated camera motions and cinematic effects. Therefore, it is very hard to

model and detect of multimedia events.

The most straightforward approach toward building a large scale event detection system

is using a bag-of-words (BoW) model [12]. There are two types of BoW representations

that are used for MED: BoW representation at the keyframe level and BoW representation at

the video level. The first method is employed for still image features where the keyframes

are often extracted at a fixed interval. The second method is employed for motion features

where moving patterns from the entire video are extracted. These methods are respectively

referred to as keyframe-based [25, 33, 54] and video-based [25, 33] in this chapter. Although

these methods can obtain reasonable results, they all suffer from severe limitations. For the

keyframe-based approach, temporal information is not incorporated in the model. Moreover,

it is possible that important keyframes are missed extraction. Extracting more keyframes can

tackle this problem but the scalability is also a problem for concern. On the other hand, the

video-based approach is most likely to suffer from noise. We found that the video length is

very different from video to video (even from videos of the same event class). In addition,
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the clues to determine an event may appear within a small segment of the entire video.

Thus, comparing the BoW representation of two videos is unreliable because it may contain

unrelated information. Figure 1.5 illustrates these limitations for both approaches.

In this chapter, we propose using a segment-based approach to overcome the limitations

of both the keyframe-based and video-based approaches. The basic idea is to examine shorter

segments instead of using the representative frames or entire video. We can reduce the

amount of unrelated information in the final representation, while still benefiting from the

temporal information by dividing a video into segments. In particular, we investigate two

methods to cut a video into segments. The first method is called uniform sampling, where

every segment has an equal length. We choose different segment lengths and use two types of

sampling: non-overlapping and overlapping. The overlapped configuration is used to test the

influence of dense segment sampling. The second method divides the video based on the shot

boundary detection to take into account the boundary information of each segment. Once

segments are extracted, we use dense trajectories, a state-of-the-art motion feature proposed

by Wang [89], for the feature extraction. After that, a BoW model is employed for the feature

representation. The experimental results on TRECVID MED 2010 and TRECVID MED

2011 showed the improvement of the segment-based approach over the video-based approach.

Moreover, a better performance can be obtained by using the overlapping sampling strategy.

The rest of this chapter is organized as follows. Section 3.2 introduces the related work.

Section 3.3 gives an overview of the dense trajectory motion feature and our segment-based

approach. The experimental setup including an introduction to the benchmark dataset and the

evaluation method are presented in Section 3.4. Then, in Section 3.5, we present and analyze

our experimental results. Detailed discussions of these results are presented in Section 3.6.

Finally, Section 3.7 concludes this work with discussions on our future work.
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3.2 Related Work

Challenges began from TRECVID 20103, and Multimedia Event Detection has drawn the

attention of many researchers. Seven teams participated in the debut challenge and 19 teams

participated the following year (MED 2011). Many MED systems have been built and

different strategies have been used for the event detection system.

Columbia University (CU) team achieved the best result in TRECVID MED 2010. Their

success greatly influenced later MED systems. In their paper [33], they answered two

important questions. The first question was, "What kind of feature is more effective for

multimedia event detection?". The second one was, "Are features from different feature

modalities (e.g., audio and visual) complementary for event detection?". Different kinds

of features have been studied, such as SIFT [50] for the image feature, STIP [41] for the

motion feature and MFCC (Mel-frequency cepstral coefficients [47]) for the audio feature to

answer the first question. In general, the STIP motion feature is the best single feature for

MED. However, the system should combine strong complementary features from multiple

modalities (both visual and audio) in order to achieve better results.

The IBM team [25] achieved the runner-up MED system in TRECVID 2010. They

incorporated information from a wide range of static and dynamic visual features to build

their baseline detection system. For the static features, they used the local SIFT [50], GIST

[67] descriptors and various global features such as Color Histogram, Color Correlogram,

Color Moments, Wavelet Texture, etc. They used the STIP [41] feature with a combined

HOG-HOF [43] descriptor for the dynamic feature.

The Nikon MED 2010 system [54] is also a remarkable system due to its simple but

effective solution. They built a MED system based on the assumption that a small number of

images in a given video contain enough information for event detection. Thus, they reduced

the event detection task to the classification problem for a set of images, called keyframes.

However, keyframe extraction is based on a scene cut detection technique [22] that is less

reliable in realistic videos. Moreover, the scene length is not consistent, which may affect

the detection performance.

3www.nist.gov/itl/iad/mig/med10.cfm
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The BBN Viser system [60] achieved the best performance at TRECVID MED 2011.

Their success confirmed the effectiveness of the multiple modalities approach for multimedia

event detection. In their work, they further investigated the performance of the appearance

features (e.g., SIFT [50]), color feature (e.g. RGB-SIFT [87]), and motion (e.g., STIP [41]),

and also MFCC [47] based audio features. Different kinds of fusion strategies have been

explored, from which the novel non-parametric fusion strategy based on a video specific

weighted average fusion has shown promising results.

In general, most systems used the multiple modalities approach to exploit different visual

cues to build their baseline detection systems. Static image characteristics are extracted from

frames within provided videos. Colombia University’s results [33] suggest that methods for

exploiting semantic content from web images, such as [18] and [33], are not effective for

multimedia event detection. For motion characteristics, most systems employed the popular

STIP proposed by Laptev in [41] for detecting complex actions. Other systems also took

into account the HOG3D [35] and MoSIFT [11] motion features. All these systems used a

video-based approach for the motion features, i.e., the motion features are extracted from the

entire video. IBM’s MED system [25] also applied the video-based approach but the video

was downsampled to five frames per second. One drawback of this video-based approach is

that it may encode unrelated information in the final video representation. In a long video,

the event information may happen during a small segment, and the information from the

other segments tends to be noisy. That is why it is important to localize the event segment

(i.e., where the event happens). This problem has been thoroughly investigated by Yuan et.

al. [97]. Yuan proposed using a spatio-temporal branch-and-bound search to quickly localize

the volume where an action might happen. In [93], Xu proposed a method to find optimal

frame alignment in the temporal dimension to recognize events in broadcast news. In [19],

a transfer learning method is proposed to recognize simple action events. However, these

works are not applicable for complex actions in multimedia event videos.

Different from other approaches, we use a segment-based approach for the event detection.

We did not try to localize the event volume like Yuan in [97]. In a simpler way, we use a

uniform sampling with different segment lengths for our evaluation. We also investigate
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the benefit of using the shot boundary detection technique in [22] for dividing video into

segments. Moreover, an overlapped segment sampling strategy is also considered for a denser

sampling. To the best of our knowledge, no MED system has previously used this approach.

We evaluate its performance using the dense trajectories motion feature that was recently

proposed by Wang in [89]. The dense trajectories feature has achieved state-of-the-art

performances for various video datasets, including challenging datasets like Youtube Action

[49] and UCF Sports [76]. In TRECVID MED 2012, the dense trajectories feature was also

widely used by top performance systems such as AXES [68], and BBNVISER [61]. We use

the popular “bag-of-words” model in [12] as our feature representation technique. Finally,

we use a Support Vector Machine (SVM) classifier for the training and testing steps.

3.3 Dense Trajectories and Segment-based Approach

We introduce the dense trajectory motion feature proposed by Wang in [89] in this section.

We additionally briefly review the trajectory extraction and description method. A detailed

calculation of all the related feature descriptors, especially for Motion Boundary Histogram,

is also presented. Our segment-based approach for motion features is introduced at the end

of this section.

3.3.1 Dense Trajectories

Trajectories are obtained by tracking the densely sampled points using the optical flow fields.

First, the feature points are sampled on a grid with a step size of 5 pixels and at multiple

scales spaced by a factor of 1/
√

2. Then, the feature points are separately tracked in each

scale. Each point Pt = (xt ,yt) at frame t is tracked to the next frame t+1 by using median

filtering in a dense optical flow field ω = (ut , vt):

Pt+1 = (xt+1,yt+1) = (xt ,yt)+(M ∗ω)|(x̄t ,ȳt), (3.1)

where M is the median filter, and (x̄t , ȳt) is the rounded position of (xt ,yt).
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After extracting a trajectory, two kinds of feature descriptors are adopted: a trajectory

shape descriptor and a trajectory-aligned descriptor.

Trajectory shape descriptor: The trajectory shape descriptor is the simplest one for

representing an extracted trajectory. It is defined based on the displacement vectors. Given a

trajectory of length L, its shape is described by the sequence S = (∆Pt ,..., ∆Pt+L−1), where

∆Pt = Pt+1 −Pt = (xt+1 − xt , yt+1 − yt). The resulting vector is then normalized by the sum

of the magnitudes of the displacement vectors:

S′ =
(∆Pt , ...,∆Pt+L−1)

∑
t+L−1
j=t ∥∆Pj∥

(3.2)

Trajectory-aligned descriptor: More complex descriptors can be computed within a space-

time volume around the trajectory. The size of the volume is NxN spatial pixels and L

temporal frames. This volume is further divided into a nσ x nσ x nτ grid to encode the

spatial-temporal information between the features. The default settings for these parameters

are N = 32 pixels, L = 15 frames, nσ = 2, and nτ = 3. The features are separately calculated

and aggregated in each region. Finally, the features in all regions are concatenated to form a

single representation for the trajectory. Three kinds of descriptors have been employed for

representing trajectory following this design: The Histogram of Oriented Gradient (HOG),

which was proposed by Dalal et al. in [13] for object detection, The Histogram of Optical

Flow (HOF), which was used by Laptev in [43] for human action recognition, and the Motion

Boundary Histogram (MBH). The MBH descriptor was also proposed by Dalal et al. [14]

for human detection, where the derivatives are computed separately for the horizontal and

vertical components of the optical flow Iω = (Ix, Iy). The spatial derivatives are computed for

each component of the optical flow field Ix and Iy independently. After that, the orientation

information is quantized into histogram, similarly to that for the HOG descriptor (8-bin

histogram for each component). Finally, these two histograms are normalized separately

with the L2 norm and concatenated together to form the final representation. Since the MBH

represents the gradient of the optical flow, constant motion information is suppressed and
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Fig. 3.1 Illustration of our segment-based approach. The original video is divided into
segments by using non-overlapping and overlapping sampling (overlapped segment examples
are drawn in dashes). After that, the feature representation is separately calculated for each
segment. This figure is best viewed in color.

only the information concerning the changes in the flow field (i.e., motion boundaries) is

kept.

According to the author [89], the MBH descriptor is the best feature descriptor for dense

trajectories. One interesting property of the MBH is that it can cancel out camera motion.

That is why it shows significant improvement on realistic action recognition dataset compared

to other trajectory descriptors. We only use the MBH descriptor in this study to test the

performance of our proposed segment-based method.

3.3.2 Segment-based Approach for Motion Feature

Our proposed segment-based approach is as follows. At first, the video is divided into fixed

length segments. We choose different segment lengths to pick the optimal one. In particular,

we choose segment lengths of 30, 60, 90, 120, 200 and 400 seconds. The lengths of 120 and

60 seconds are respectively close to the mean (115 s) and geometric mean (72 s) length of
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the training dataset. The geometric mean value is also considered because it can eliminate

the influence of outline cases, i.e., videos of exceptionally long durations. After that, the

dense trajectory features are extracted from the entire segment. A "bag-of-words" approach

is used to generate the final representation for each segment from the raw trajectory features

(Fig. 3.1).

For the previous segment-based approach, a video is divided into continuous segments.

This means information about the semantic boundary of a segment is not taken into account.

However, this information is important because it keeps the semantic meaning of each

segment. The simplest way to overcome this drawback is to use a denser sampling such as

the overlapped segments. We use an overlapping strategy for the same segment length as in

the non-overlapping experiments. In practice, we use uniform segment sampling with 50%

of overlapping. This means the number of segments will be doubled for each overlapping

experiment.

Another way to extract segments with boundary information is to employ a shot boundary

detection technique. For a fast implementation, we use the algorithm proposed in [22]. This

technique is also used in the Nikon 2010 MED system [54]. Basically, at first, this method

constructs a space-time image from the input video. We can sample points or calculate the

color histogram for each frame to construct the space-time image. This will reduce the 2D

frame image to the space dimension of the space-time image. The time dimension is the

number of frames of the video. The Canny edge detection algorithm is used to detect the

vertical lines after attaining the space-time image. Each detected vertical line is considered as

a scene cut. The method in [22] also proposed solutions for other kinds of scene transitions

such as a fade or wide. However, from our previous study, this method showed poor results

in these cases. Thus, we only adopted the scene cut detection algorithm. Each detected scene

cut is considered a segment in our experiments.

Our proposed segment-based approach is compared with the video-based one. Actually,

when the segment length is long enough, it becomes the entire video. In that case, we can

consider the video-based approach a special type of segment-based approach.
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3.4 Experimental Setup

3.4.1 Dataset

We tested our method on TRECVID MED 2010 and TRECVID MED 2011 datasets. An

event kit is provided with the definitions and textual descriptions for all the events for each

dataset. The first dataset contains 3,468 videos, including 1,744 videos for training and

1,724 video clips for testing, containing a total of more than 110 video hours. In TRECVID

MED 2010, there are 3 events classes: assembling a shelter, batting in a run, and making

a cake. The TRECVID MED 2011 dataset defined the 15 event classes listed in Table 3.1.

The first five events (E001-E005) are used for training and validation and the last 10 events

(E006-E015) are used for testing. It comprises of over 45,000 video clips for a total of 1,400

hours of video data. All the video clips are divided into three sets: event collection (2392

video clips), development collection (10198 video clips), and test collection (31,800 video

clips). It is worth noting that these two datasets contain a major number of background video

clips, i.e., video clips that do not belong to any event. The number of positive videos in the

event collection is also listed in Table 3.1.

3.4.2 Evaluation Method

Figure 3.2 shows our evaluation framework for the motion features. We conducted ex-

periments using the proposed segment-based approach and the video-based approach for

comparison. We use the library published online by the author4 to extract dense trajectory

feature. The source code is customized for pipeline processing using only an MBH descriptor

to save computing time but other parameters are set to default. Due to the large number

of features produced when using the dense sampling strategy, we use the "bag-of-words"

approach to generate the features for each segment. At first, we randomly select 1,000,000

dense trajectories for clustering to form a codebook of 4000 visual codewords. After that, the

frequency histogram of the visual words is computed over the videos/segments to generate the

4http://lear.inrialpes.fr/people/wang/dense_trajectories
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Table 3.1 List of events and its number of positive samples in event collection set of MED
2011 dataset.

Event ID Event Name #Pos videos

E001 Attempting a board trick 173

E002 Feeding an animal 168

E003 Landing a fish 152

E004 Wedding ceremony 163

E005 Working on a woodworking project 159

E006 Birthday party 221

E007 Changing a vehicle tire 119

E008 Flashmob gathering 191

E009 Getting a vehicle unstuck 151

E010 Grooming an animal 143

E011 Making a sandwich 186

E012 Parade 171

E013 Parkour 134

E014 Repairing an appliance 137

E015 Working on a sewing project 124

final feature vector. We also adopt the soft assignment weighting scheme, which was initially

proposed by Jiang in [31], to improve the performance of the “bag-of-words” approach.

Once all the features are extracted, we use the popular Support Vector Machine (SVM)

for the classification. In particular, we use the LibSVM library available online5 and adopt the

one-vs.-rest scheme for multi-class classification. We annotate the data in the following way

to prepare it for the classifier. All the videos/segments from positive videos are considered

positive samples, and the remaining videos/segments (in the development set) are chosen as

5http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Fig. 3.2 Evaluation framework for our baseline MED system

the negative samples. For testing purposes, we also use the LibSVM to predict the scores of

the videos/segments in each testing video. The score of a video is defined as the largest score

among its videos/segments. This score indicates how likely a video belongs to an event class.

3.5 Experimental Result

This section presents the experimental results from using our proposed approach on the

MED 2010 and MED 2011 dataset. We also present the results of combining various

segment lengths using the late fusion technique. This is a simple fusion technique where the

predicted score of each video is the average one of that video in all combined runs. We also

report the performance of our baseline event detection system using the keyframe-based and

video-based approach for comparison.

All the experiments were performed on our grid computers. We utilized up to 252 cores

for the parallel processing using Matlab codes. All the results are reported in terms of the
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Table 3.2 Results on the MED 2010 dataset using non-overlapping sampling.

Event/MAP 30 s 60 s 90 s 120 s 200 s 400 s Late fusion

Assembling

a shelter
0.4140 0.4511 0.4339 0.4457 0.4595 0.4610 0.4532

Batting in a run 0.7650 0.7852 0.7799 0.7553 0.7823 0.7871 0.7181

Making a cake 0.3596 0.3636 0.3433 0.3569 0.3058 0.3032 0.3727

All 0.5129 0.5333 0.5190 0.5193 0.5158 0.5171 0.5146

Table 3.3 Results on the MED 2010 dataset using overlapping sampling.

Event/MAP 30 s 60 s 90 s 120 s 200 s 400 s Late fusion

Assembling

a shelter
0.4177 0.4781 0.4617 0.4614 0.4601 0.4682 0.4486

Batting in a run 0.7727 0.7918 0.7975 0.7886 0.7893 0.7756 0.7691

Making a cake 0.4083 0.3819 0.3155 0.3415 0.3464 0.3239 0.4232

All 0.5329 0.5506 0.5249 0.5305 0.5319 0.5226 0.5470

Mean Average Precision (MAP). We calculate MAP using the TRECVID evaluation tool6

from the final score of each video in the test set. The best performing feature is highlighted

in bold for each event.

3.5.1 On TRECVID MED 2010

Non-overlapping and overlapping sampling

Table 3.2 lists the results from our segment-based approach when using a non-overlapping

sampling strategy. These results show that the performance is rather sensitive to the segment

length and it is also event-dependent. For example, the detection results of the first event,

“assembling a shelter”, are better when the segment length is increased. On the other hand, the

6http://www-nlpir.nist.gov/projects/trecvid/trecvid.tools/
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Fig. 3.3 Results from using segment-based approach with non-overlapping and overlapping
sampling on MED 2010. In all cases, the overlapping sampling performs the best

“making a cake” event tends to be more localized, i.e. the shorter the segment, the better the

performance. The performance of the “batting in a run” event is quite stable when segment

length is longer than 60 s. However, it is decreased 2% at 30 s. This suggests that shorter

lengths can harm the performance. In general, the performance of a 60-s segment is the best.

This length is also around the geometric mean length of the training set. Thus, we got peak

results for segment length around geometric mean point.

We further investigated the performance of a denser segment sampling, i.e., an overlap-

ping sampling strategy. Interestingly, the MAP score in Table 3.3 is consistently increased

for each event compared to the results without using overlapped segments. Figure 3.3 shows

a detailed comparison between the two strategies in terms of the over-all performance. We

again found that the performance with a segment length around the geometric mean length

(60 s) was the best. We also combined the performances of all the segment lengths using

late fusion and the results are listed in the last column of Tables 3.2 and 3.3. The late fusion

strategy can benefit the “making a cake” event, but it decreased the performances of the

remaining events. The overall performance is lower than the best one.
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Table 3.4 Comparison of different segment-based approaches with the video-based approach
on the MED 2010 dataset.

Event/MAP
Best

non-overlapping
Best overlapping SBD segments Video-based

Assembling shelter 0.4511 0.4781 0.4284 0.4911

Batting in a run 0.7852 0.7918 0.7866 0.7902

Making a cake 0.3636 0.3819 0.1918 0.2755

All 0.5333 0.5506 0.4689 0.5189

Segment sampling based on shot boundary detection

The second column in Table 3.4 shows the performance when shot boundary detection is

used to extract segments. Unexpectedly, the performance is quite low even when compared

with the video-based approach (listed in the last column). There are two possible reasons

for this low level of performance: (1) The shot boundary detection technique is inaccurate

when used on uncontrolled capturing videos; (2) the shot units may not contain enough

information to determine an event. The second reason suggests that combining multiple shots

to form a segment may improve the performance. Thus, we have conducted a segment-based

experiment based on this observation using segments extracted from multiple shots. However,

we did not see any significant improvement. Thus, the first reason is why this experiment

had poor result.

We also included the best results from the segment-based experiments using non-

overlapping and overlapping sampling in Table 3.4 for comparison. In general, our segment-

based approach outperforms the video-based approach by more than 3% in terms of MAP.

We did not conduct a keyframe-based experiment because we learned that it is inefficient

compared to the video-based approach.
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Fig. 3.4 Results from using segment-based approach with non-overlapping and overlapping
sampling on MED 2011. In most cases, the overlapping sampling performs the best.

3.5.2 On TRECVID MED 2011

We conducted the same segment-based experiments on MED 2011. For both the non-

overlapping and overlapping experiments, we chose segment lengths of 60, 90, 120, and 200

seconds and compare them with the video-based approach. A late fusion strategy is also

used to combine the performances of different segment lengths. We did not conduct a shot

boundary detection experiment because we showed that it is inefficient. Tables 3.5 and 3.6 list

the performances of each event for non-overlapping and overlapping experiment, respectively.

Figure 3.4 shows a better view for comparing the overall performance. The result from

using video-based approach, which is 0.2095 MAP, is also included for comparison. In most

cases, the overlapping sampling had better results than the non-overlapping sampling. In all

cases, the segment-based approach also outperforms the video-based approach. The best

improvement was about 5%, which was obtained at 120 s using an overlapping sampling.

The late fusion run also confirms its effectiveness for some events, such as “Flash-mob

gathering” and “Working on a sewing project”.



3.6 Discussion 47

Table 3.5 Results on the MED 2011 dataset using non-overlapping sampling.

Event/

MAP
60 s 90 s 120 s 200 s

Late

fusion

E006 0.1060 0.1277 0.1162 0.1005 0.1217

E007 0.1003 0.1521 0.1461 0.0539 0.1419

E008 0.4811 0.4923 0.4840 0.4508 0.4975

E009 0.2077 0.2072 0.1962 0.1860 0.2145

E010 0.0794 0.0916 0.0486 0.0854 0.0771

E011 0.0943 0.0698 0.0903 0.0703 0.0805

E012 0.3061 0.3560 0.3052 0.3639 0.3309

E013 0.5974 0.6030 0.5861 0.5941 0.6033

E014 0.2307 0.2008 0.2772 0.1723 0.2585

E015 0.1364 0.1599 0.1357 0.1284 0.1583

All 0.2340 0.2460 0.2386 0.2206 0.2484

The updated MED 2011 dataset has less number of training videos (See Table 2.3). We

also verify the effectiveness of our approach on this dataset. We conduct experiments at

different segment lengths including 8 s, 16 s, 32 s, 64 s, 128 s and 256 s. The overall

performance is shown in the last group of Fig. 3.5.

3.6 Discussion

3.6.1 Optimal Segment Length

It is true that the lengths of the event segments are quite different, even for the same events.

Therefore, the fixed length video segments are obviously not the optimal solution to describe

the events. However, compared to the video-based approach, as shown in our experiments
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Fig. 3.5 Results from using segment-based approach with non-overlapping on the updated
MED 2011 dataset.

Table 3.6 Results on the MED 2011 dataset using overlapping sampling.

Event/

MAP
60 s 90 s 120 s 200 s

Late

fusion

E006 0.1074 0.1069 0.1151 0.1010 0.1086

E007 0.1570 0.1733 0.1552 0.1466 0.1610

E008 0.4788 0.4767 0.4969 0.4620 0.4903

E009 0.1830 0.1999 0.2160 0.1972 0.1954

E010 0.1150 0.0851 0.1008 0.0746 0.1108

E011 0.0602 0.0885 0.1591 0.0779 0.0819

E012 0.3674 0.3129 0.3150 0.3075 0.3293

E013 0.6025 0.5893 0.6188 0.5675 0.5872

E014 0.2718 0.2487 0.2744 0.2095 0.2706

E015 0.1777 0.1459 0.1562 0.1214 0.1795

All 0.2521 0.2427 0.2607 0.2265 0.2515
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on the datasets of TRECVID MED 2010 and TRECVID MED 2011, the segment-based

approach using overlapping strategy for extracting segments consistently outperforms.

It is ideal if the boundary of the event segment can be determined. However, this

localization problem is difficult. The straightforward way to tackle this problem is extracting

segments based on shot boundary information. This solution is reasonable because the event

might be localized in certain shots. However, we obtained unexpected results due to the

unreliability of shot boundary detection in uncontrolled video dataset and the event segment

might span to several shots.

The method described in [30] suggests another approach to divide a video into segments.

Instead of learning a randomized spatial partition for images, we can learn a randomized

temporal partition for videos. However, this approach needs sufficient positive training

samples while MED datasets have a small number of positive samples with large variation.

On the other hand, it is also not scalable because learning and testing the best randomized

pattern is time-consuming. Therefore, the fixed-length approach is quite simple but still

effective.

Supposed the segment length is fixed, what is the optimal segment length for event

detection? This is a difficult question and the answer depends on the dataset. The results

of late fusion are quite close to the peak performance of each experiment. This suggests

a methodical way to choose the optimal segment length, i.e., combining multiple lengths

together (which is similar to [30]). However, to achieve the scalability, we should reduce

the number of combined lengths as much as possible. From the experimental results on

both the MED 2010 and MED 2011 dataset, we observed that with segment length from

60 s to 120 s, the performance is rather stable and close to the peak result. Interestingly,

this range is approximate to the range from the geometric mean length to (arithmetic) mean

length of the training sets. We also combined multiple segment lengths together using late

fusion with equal weights for all segment lengths for comparison. There are two combined

runs: one for segment lengths from 60 s to 120 s and the other is for all segment lengths.

The result obtained when combining segment lengths from 60 s to 120 s is equivalent to the

result obtained when combining all lengths, as shown in Table 3.8. Therefore, based on this
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Table 3.7 Comparison of different segment-based approaches with the video-based approach
on the MED 2011 dataset.

Event/MAP

Non-overlapping sampling

Video-basedBest

(at 90 s)

Late fusion

(all lengths)

Late fusion

(60, 90, 120 s)

E006 0.1277 0.1217 0.1244 0.0959

E007 0.1521 0.1419 0.1369 0.1303

E008 0.4923 0.4975 0.4973 0.4766

E009 0.2072 0.2145 0.2064 0.0943

E010 0.0916 0.0771 0.0753 0.1020

E011 0.0698 0.0805 0.0813 0.0609

E012 0.3560 0.3309 0.3277 0.2858

E013 0.6030 0.6033 0.6096 0.5385

E014 0.2008 0.2585 0.2579 0.2138

E015 0.1599 0.1583 0.1622 0.0964

All 0.2460 0.2484 0.2479 0.2095

observation, we can choose the first combined run as an efficient way for solving the optimal

segment length problem of the proposed segment-based approach on other datasets.

3.6.2 Scalability

For scalability, we discuss the storage and computation costs of our experiments. At first, our

system does not consume a lot of disk storage because we only store the final representation

of the videos or segments, not the raw features. We calculated the BoW features directly

from the raw feature outputs using a pipeline reading technique. One drawback is that this

technique requires a lot of memories. However, we handled this problem by encoding the

raw features into smaller chunks and aggregating them to generate the final representation.

By this way, we can manage the mount of memory usage.

In our framework, the most time-consuming steps are the feature extraction and repre-

sentation (using the bag-of-words model). It is worth noting that the computation time for

one video is independent of the segment length, which means our segment-based approach
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Table 3.8 Comparison of different segment-based approaches with the video-based approach
on the MED 2011 dataset.

Event/MAP

Overlapping sampling

Video-basedBest

(at 120 s)

Late fusion

(all lengths)

Late fusion

(60, 90, 120 s)

E006 0.1151 0.1086 0.1083 0.0959

E007 0.1552 0.1610 0.1616 0.1303

E008 0.4969 0.4903 0.4871 0.4766

E009 0.2160 0.1954 0.1958 0.0943

E010 0.1008 0.1108 0.1109 0.1020

E011 0.1591 0.0819 0.0845 0.0609

E012 0.3150 0.3293 0.3341 0.2858

E013 0.6188 0.5872 0.5910 0.5385

E014 0.2744 0.2706 0.2694 0.2138

E015 0.1562 0.1795 0.1795 0.0964

All 0.2607 0.2515 0.2522 0.2095
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has the same computational cost as the video-based approach. On the other hand, when we

do experiments at the segment level, we will have more training and testing samples than

that in the video-based approach. Thus, it will cost more in time to train and test using the

segment-based approach. However, this cost is relatively small compared with the feature

extraction and representation cost. For example, when using a grid computer with 252 cores,

it took us about 10 hours to generate the feature representation for each segment-based

experiment on MED 2010 dataset. In the mean time, we used one-core processor for the

training and testing, but it only took about 4-8 hours for the training and 2-4 hours for the

testing on each event. For the MED 2011 dataset, the computational cost was around 13

times bigger than the MED 2010 (linearly to the number of videos it contains).

3.7 Conclusion

We proposed using the segment-based approach for multimedia event detection in this work.

We evaluated our approach by using the state-of-the-art dense trajectories motion feature

on the TRECVID MED 2010 and TRECVID MED 2011 datasets. Our proposed segment-

based approach outperforms the video-based approach in most cases when using a simple

non-overlapping sampling strategy. More interestingly, the results are significantly improved

when we using the segment-based approach with an overlapping sampling strategy. Therefore,

the effectiveness of our methods on realistic datasets like MEDs is confirmed.

A segment-based approach with an overlapping sampling strategy shows promising

results. This suggests the importance of segment localization on the MED performance.

Suppose the segment length is fixed, we are interested in determining which segment is the

best representative for an event. In this study, we also observed that the detection performance

is quite sensitive to the segment-length and it depends on the dataset. The results obtained

from the late fusion strategy is quite stable and close the peak performance. This suggests a

methodical way to generalize the segment-based approach to other datasets. However, this

method is not scalable because it requires a lot of computation costs. Therefore, learning an
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optimal segment length for each event can be beneficial for an event detection system. This

is also an interesting direction for our future study.





Chapter 4

Event Detection Using Sum-max Feature

Aggregation

A clay pot sitting in the sun will always

be a clay pot. It has to go through the

white heat of the furnace to become

porcelain.

– Mildred W. Struven

4.1 Introduction

The problem of aggregating low level representation into a higher level one has been well

studied for image representation. Basically there are two main strategies to aggregate local

image descriptors: sum pooling [36] and max pooling [79]. To understand about these

pooling strategies, it is better to mention them in the context of bag-of-word model [12]. In

this model, at first a dictionary or codebook with around thousands of codewords is trained

using an unsupervised method such as K-means or Approximate K-means. After that, local

features, which are often extracted using a standard SIFT [50] feature, are quantized into

the codebook based on their distances to the nearest codewords. Finally, features that are

assigned to a codeword are pooled to get a representative value for that codeword. The sum
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Fig. 4.1 Example video for "assembling a shelter" event in the TRECVID MED 2010 dataset.
The top row shows the relevant frames while the bottom row shows the noisy frames.

pooling technique simply takes a sum over responses to a visual word. This technique is

useful when most of the features are relevant. On the other hand, the max pooling technique

only select the largest value between features responding to a visual word. This technique

only useful when at least one local feature is sufficiently discriminative. In this case, most of

the remaining features can be irrelevant.

Sum pooling and max pooling techniques can be easily adopted for video representation.

In this case, we can treat spatial-temporal local features in video as local features in image

and apply the same framework. State of art performance can be obtained using bag-of-

words model with the sum pooling technique in simple video classification/recognition tasks

such as sports action videos [76] or studio setting movies [51]. This is due to the fact that

discriminative features exist in the entire video in these datasets. However, this observation

is not true on complex video datasets where the discriminative features may exist within a

small part of the video. One example of these datasets is the TRECVID Multimedia Event

Detection (MED) dataset1, where most videos are captured by internet users and it tends to

be noisy. Example of such noisy video is shown in Fig 4.1. In this case, video pooling for

event recognition is much more challenging.

We are interested in the problem of video pooling for a more robust video representation.

We consider a video as a layered structure where the lowest layer are frames, the top layer

is the entire video, and the middle layers are the sequences of consecutive frames or the

concatenation of lower layers. Based on this layered structure of video, we propose to use

the sum-max video pooling to deal with noisy information in complex videos. Basically,

1http://www.nist.gov/itl/iad/mig/med10.cfm
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we apply sum pooling at the low layer representation while using max pooling at the high

layer representation. Sum pooling is used to keep sufficient relevant features at the low layer,

while max pooling is used to retrieve the most relevant features at the high layer, therefore it

can discard irrelevant features in the final video representation.

Our work is most related to [74], in which they proposed a segment-based approach to

generate segment level representation using the sum pooling technique. Here we focus on

different pooling techniques to generate the video representation. Experimental results on the

TRECVID Multimedia Event Detection 2010 dataset shows the effectiveness of our method.

The rest of this chapter is organized as follows. Section 2 introduces the layered structure

of video. Section 3 presents our sum-max pooling technique based on this layered structure.

The experimental setup and experimental results are described in Section 4. Finally, Section

5 concludes this chapter with discussions on our future work.

4.2 Layered Structure of Video

As mentioned in the previous section, pooling over the whole video is not effective for

complex video representation because these videos can contain irrelevant information. The

direct solution to remove these irrelevant information from the final video representation is

to pool over the relevant parts only. However, it is also non-trivial to determine which parts

of the video are relevant or not.

The layered structure of video is a simply way to lessen the impact of irrelevant infor-

mation. We define this layered structure as follows. The lowest layer are the frames of that

video. The top layer is the entire video. The middle layers are the sequences of consecutive

frames or the concatenation of lower layers. Figure 4.2 illustrates the layered structure in

videos.

For the sake of simplicity, we only use one middle layer and the frame sequences in

the middle layer are referred as segments in the rest of this chapter. In implementation, we

choose the length of the segments varies in the following range: 15, 30, 45, 60, 75, 90, 105,
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Fig. 4.2 Illustration of layered structure of video.

120, 135, 150, 165, 180, 195 and 210 seconds. We report the best segment length in Section

4.4.

4.3 Sum-max Video Pooling

Our sum-max video pooling method is proposed based on the layered structure of video and

consists of two steps: (1) Applying sum pooling to aggregate features from all frames of each

segment to generate the feature representation of that segment; (2) Applying max pooling to

aggregate the segment-level features to form the video representation. The max-sum video

pooling can be obtained in the same way but different in that max pooling is applied first,

then the sum pooling. It is worth noted that, sum video pooling and max video pooling are

two special cases when we applying sum-max video pooling and max-sum video pooling for

the whole video respectively. Examples of sum-max and max-sum video pooling are shown

in Fig 4.3.

In the context of bag-of-words model, suppose that there are N local descriptors in

the video, each descriptor is denoted at xn ∈ RD, where n = 1,...,N and D is the feature
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Fig. 4.3 Example of applying sum-max video pooling (top) and max-sum video pooling
(bottom) methods on an “assembling a shelter” event video. It can be seen from the top
image that after applying max pooling at the segment level, only relevant frames are encoded
in the final representation.

Fig. 4.4 Features from higher layers can be obtained from lower layers efficiently.
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Fig. 4.5 Illustration of sum-max video pooling. △, O, � represent relevant information; *
represents different kinds of irrelevant information, which is popular in complex event data.
Due to the native of the data, relevant information can appear in any part of the video, and
can follow some temporal order.

dimension. Denote each visual word mk ∈ RD, where k = 1,...,K with K is number of visual

words. M = {mk} is the set of visual words. The mid level coding of each descriptor can

be expressed as φn = [Φ1n, ...,ΦKn]. Further suppose that the video contains S segments.

Denote Ns is the number of local descriptors in segment s. The sum-max and max-sum video

pooling at each visual word can be defined as follows:

ψk = Maxs∈S( ∑
n∈Ns

Φkn) (4.1)
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Fig. 4.6 Results on the MED 2010 dataset using the sum-max pooling technique at different
segment lengths.

Fig. 4.7 Results on the MED 2010 dataset using the max-sum pooling technique at different
segment lengths.

ψk = ∑
s∈S

(Maxn∈NsΦkn) (4.2)

An intuitive example of sum-max pooling is shown in Fig 4.5. As we can see, max

pooling reserves the relevant information because noisy data tend to be varied, and none of

any kind of them is dominant. In the contrast, sum pooling incorporates both relevant and

irrelevant ones. Therefore, it is less representative than max pooling.

It is also worth noted that features from higher layers can be obtained from lower layers

efficiently. In fact, we only need to extract feature one time. An illustration of features

calculated from different segment lengths can be seen on Fig. 4.4.
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4.4 Experiment

4.4.1 Experimental Setup

We tested our method on TRECVID MED 2010 dataset. An event kit is provided with

the definitions and textual descriptions for all the events for each dataset. The first dataset

contains 3,468 videos, including 1,744 videos for training and 1,724 video clips for testing,

containing a total of more than 110 video hours. In TRECVID MED 2010, there are 3 event

classes: assembling a shelter (E001), batting in a run (E002), and making a cake (E003).

We adopt the popular bag-of-words model to build our event recognition framework. At

first, we use dense trajectory motion feature published by Wang [89] to calculate raw motion

features as local trajectory descriptors. The library to extract these features is published

online by the author2. The source code is customized for pipeline processing using only

Motion Boundary Histogram (MBH) descriptor to save computing time but other parameters

are set to default.

In the coding step, we randomly select 1,000,000 dense trajectories for clustering to form

a codebook of 4000 visual codewords. After that, the frequency histogram of the visual

words is computed over each segment to generate the feature vector for that segment. Finally,

we apply the sum-max pooling technique as described in Section 4.3 to obtain the final video

representation. We also adopt the soft assignment weighting scheme [31] with 5 nearest

neighbors to improve the performance of the “bag-of-words” approach.

In the learning and testing step, we use the popular Support Vector Machine (SVM) for

event classification. In particular, we use the LibSVM library available online3 and adopt the

one-vs.-rest scheme for multi-class classification.

2http://lear.inrialpes.fr/people/wang/dense_trajectories
3http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Table 4.1 Performance comparison of different video pooling strategies on the MED 2010
dataset.

Event/MAP
Max

pooling

Sum

pooling

Max-sum

pooling

(at 60 s)

Sum-max

pooling

(at 60 s)

E001 0.4365 0.4468 0.4646 0.5072

E002 0.6434 0.7988 0.7103 0.7900

E003 0.3144 0.3053 0.2806 0.3100

All 0.4648 0.5170 0.4852 0.5357

4.4.2 Experimental Result and Analysis

On the MED 2010 dataset

We report the results in terms of the Mean Average Precision (MAP). Results of sum-max

video pooling and max-sum video pooling are showed in Fig 4.6 and Fig 4.7 respectively.

Sum-max pooling improves the overall performance, especially for “assembling a shelter”

event. The best performance is obtained at the segment length of 60 s (same as observed

in [74]). Max-sum video pooling did not achieve good results compared to sum-max video

pooling. The reason for the low performance of max-sum pooling can be due to the lost of

relevant information when max-pooling is applied first.

We also observed that the performance largely depends on the segment length and the

event itself. For example, we can get better performance with short segment lengths for

the event “assembling a shelter”, while the event “making a cake” tends to have better

performance with longer segments.

We summarize our experimental results in Table 4.1. The best performing feature is

highlighted in bold for each event. In general, pooling over segments is more effective, i.e,

sum-max pooling outperforms sum pooling and max-sum pooling outperforms max pooling.

In the best case, sum-max video pooling outperforms the traditional sum pooling up to 2% in

terms of MAP.
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On the MED 2011 dataset

In this experiment, we calculate the sum-max video pooling at different segment lengths

including 8 s, 16 s, 32 s, 64 s, 128 s and 256 s. Results of our proposed methods on MED

2011 dataset are shown on Fig. 4.8 and Fig. 4.9 respectively. Our best results are obtained at

8 s when using χ2 SVM and 32 s when using linear SVM.

Fig. 4.8 Results on the MED 2011 dataset using the sum-max pooling technique at different
segment lengths (χ2 SVM).

Fig. 4.9 Results on the MED 2011 dataset using the sum-max pooling technique at different
segment lengths (linear SVM).

4.5 Conclusion

We proposed to use a sum-max video pooling technique to combine both sum pooling and

max pooling into a holistic video representation. This pooling technique is based on the
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layered structure of video. Preliminary results showed that this is an promising direction for

video representation.

One limitation of the current approach is that the performance depends on the segment

length. Therefore, we suggest to investigate a better approach to utilize the layered structure

of video for video representation.

For video representation, temporal information is also very important. However, it is

difficult to encode temporal information because video lengths are very varied. Therefore,

exploring temporal pooling for video representation is also a good research direction.





Chapter 5

Event Detection Using Event-Driven

Multiple Instance Learning

You never change things by fighting the

existing reality. To change something,

build a new model that makes the

existing model obsolete.

– Buckminster Fuller

5.1 Introduction

The problem of recognizing complex event in videos has become a popular research topic

due to the explosive growth of video data. A complex event can involve several actions or

activities and happens in some particular settings. Therefore, recognizing complex event is

more challenging than single action recognition. However, most complex detection systems

are still based on the techniques that was developed for action recognition [69, 90]. These

methods basically extract and aggregate local feature descriptors from the whole video to

create a unique video representation. This strategy might be not effective for complex event

detection because it treats different parts of the video equally. Therefore, it neutralizes the

important local information of an event.
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Fig. 5.1 Event “Grooming an animal” in the TRECVID MED 2012 dataset. The event kit
includes example videos and an event description which provides valuable cues to detect that
event.
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Fig. 5.2 Illustration of pSVM [38] method. Different from both miSVM and MISVM
solutions, pSVM allows some positive instance in the negative bags, which is suitable for
real videos.

In practice, human can recognize a complex event by spotting several evidences in video

[5]. This paper also demonstrated that better performance can be obtained by leveraging

positive and negative visual cues selected by humans. Therefore, it is important to automati-

cally detect key evidences for event detection. Several researchers have been working on

this direction. Tang et al. [84] split the video into segments and models key segments and its

duration as latent variables. Vahdat et al. [86] focus on intra-class variation by localizing

only the most salient evidence using latent SVM. Lai et al. [39] detect salient instances in

video based on a variant multiple instance learning, which was proposed by Yu et al. [95]. In

another work [38], they represent static and dynamic instances as sparse features and adopt a

learning-to-rank strategy to detect key evidence. In general, these approaches are based on

the assumption that segment annotation can be obtained from its video label. However, this

is a weak assumption because the importance of each segment is not taken into account.

On the other hand, the importance of a segment to an event can be obtained by matching

its concept-based representation against the evidential description of that event. Some works
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have been using the event description for zero-shot event detection such as in [10, 92]. To

the best of our knowledge, no work has taken into account this information for detecting

key evidence in videos. However, the evidential description of an event provides valuable

information to detect that event. Example of an event description (excerpted) is shown in Fig.

5.1.

Motivated by this observation, we propose a new method, Event-driven Multiple Instance

Learning (EDMIL), to learn key evidences for complex event detection. We treat each

segment as an instance and model it in a multiple instance learning framework [2], where

each video is a “bag”. The instance-event similarity is quantized into different levels of

relatedness. Intuitively, the most (ir)relevant instances should have higher (dis)similarities.

Therefore, we propose to learn the instance labels by jointly optimize the instance classifier

and its related level. We evaluate our proposed method on the large scale TRECVID MED

2012 dataset. Comparing to other instance-based learning methods such as [2, 39], our

method achieves a superior performance.

The remaining of this chapter is organized as follows. In the next section, we present

the method to calculate the instance-event similarity. Our proposed solution is introduced

in Section 5.3. The experiments and results are shown in Section 5.4. Finally, Section 5.5

concludes this work.

5.2 Instance-Event Similarity

In order to calculate the similarity between an instance and an event, we adopt a concept

expansion strategy as in [10]. Our method is similar in spirit, however, we apply at instance

level which is more accurate. The outline of our method is illustrated in Fig. 5.3 and it

consists of four steps.

Step 1: Concept detection. We use the concept collection that proposed in [99] to cover

a wide range of concept that can appear in realistic videos. This collection contains C =

1183 categories including 205 scene categories from the Places Database[99] and 978 object

categories from the ImageNet 2012[16]. The concept detection part is done by using the
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provided pre-trained model1. To detect concept for the whole segment, we detect concept at

sample frames and make the average aggregation.

Step 2: Event representation. We use standard natural language processing techniques

to create the text-based event representation. At first, the event description is pre-processed by

removing stop words and lemmatizing. It is then converted into a bag-of-words representation,

where the dictionary is obtained from the English Wikipedia corpus. Tf-idf weighting scheme

is also employed to put a higher weight on frequent as well as rare words.

Step 3: Concept-event similarity. To resolve the mismatch between words in the

concept collection and event description, we adopt the concept expansion strategy [10]. For

each concept category, we add the 10 most similar concepts obtained from word2vec[58]

model2 to expand this category. It is then represented by a bag-of-words vector with tf-idf

weights. Based on this representation, we can calculate the cosine similarity se
c between each

concept category and the event description. Table 5.1 shows top five most relevant concepts

for some events on the MED 2012 dataset.

Step 4: Instance-event similarity. Having obtained the concept score xc at each segment

and the concept-event similarity as in Step 1 and Step 3, the instance-event similarity is

calculated using the cosine similarity:

Se
i =

∑
C
c=1 se

cxc√
∑

C
c=1(se

c)
2
√

∑
C
c=1(xc)2

, (5.1)

5.3 Event-Driven Multiple Instance Learning

5.3.1 Problem Formalization

Suppose we have V training videos, and Iv instances in video v. We can calculate the

similarity Se
iv between an instance iv to a particular event e using Eq. (5.1). Suppose there

1http://places.csail.mit.edu
2https://code.google.com/p/word2vec
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Fig. 5.3 Outline of our method to calculate the instance-event similarity. Note that the concept
expansion technique can bridge concept “ski” in the instance segment to the evidential
description.
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Table 5.1 Top five concepts discovered by our system for 25 events in the MED 2012 dataset.

Event ID Top five importance concepts discovered by our system

E001 Ski, slide rule, ski resort, ski mask, ice skating rink

E002 Meat loaf, white shark, food court, pop bottle, cleaver

E003 Anemone fish, pole, raft, sturgeon, boat deck

E004 Groom, bridegroom, banquet hall, gown, altar

E005 Jigsaw puzzle, bamboo forest, carpenter’s kit, thatch, wooden spoon

E006 Table lamp, lampshade, torch, candle, custard apple

E007 Recreational vehicle, car wheel, amphibian, scooter, sports car

E008 Monitor, chime, bell, whistle, ballroom

E009 Recreational vehicle, amphibian, tank, car wheel, motor scooter

E010 Nail, bathtub, shower, fur coat, washbashin

E011 Pizza, bagel, meat loaf, cheeseburger, vegetable garden

E012 Recreational vehicle, amphibian, tank, sports car, freight car

E013 Playground, volleyball, picnic area, sports car, table lamp

E014 Toaster, dish washer, washing machine, refrigerator, space heater

E015 Sewing machine, dragonfly, syringe, clothing store, construction site

E016 Digital watch, classroom, CD player, crossword, stopwatch

E017 Tray, game room, cassette player, CD player, waiting room

E018 Backpack, walking stick, pop bottle, sleeping bag, plastic bag

E019 Tile roof, mortar, nail, jigsaw puzzle, drumstick

E020 Ballpoint, pencil box, rubber eraser, quill pen, pencil sharpener

E021 Tricycle, mountain bike, scooter, bicycle-built-for-two, unicycle

E022 Toaster, refrigerator, dish washer, washing machine, space heater

E023 Schipperke, otter hound, bluestick, collie, Tibetan terrier

E024 Forest path, cellular telephone, phone booth, platform, dial phone

E025 Boxing ring, fairway, hand-held computer, bell cote, chime
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is R level of relatedness from an instance to an event. We define two predict functions for

positive and negative instances at level r as follows.

Ppos(Se
iv,r) =

1, if Rank(Se
iv)≤ r

−1, otherwise
, and (5.2)

Pneg(Se
iv,r) =

−1, if Rank(Se
iv)≤ r

1, otherwise
, (5.3)

where Rank(.) is the function to quantize a similarity into a related level. Note that smaller

value of r results a higher confidence in the predict functions. We now learn the parameters

of the instance classifier jointly with the related level r by optimizing the following objective

function:

min
w,b,y,r

1
2
∥w∥2 +C f

V

∑
v=1

Iv

∑
i=1

L f
(
yiv,wT xiv +b

)
+Cp

V

∑
v=1

Iv

∑
i=1

Lp (yiv,P(Se
iv,r)) .

(5.4)

C f and Cp are cost parameters to control the influence of each loss function. Note that

in the special case where Cp = 0, the above formulation becomes a classic large-margin

problem. L f (.) and Lp(.) are two loss functions that will be jointly minimized. The first

loss function minimizes the loss due to the classification mismatch based on the instance

feature. The second one minimizes the loss due to the prediction obtained from the prior

knowledge. Intuitively, when the related level r increases, the first loss will also tend to

increase while the second loss will become smaller, and vice versa. L f (.) and Lp(.) can be

any loss function. Throughout this work, we use the standard hinge-loss function for L f (.):

L f
(
yiv,wT xiv +b

)
= max(0,1− yiv(wT xiv +b)), and the Lp(.) function is defined so that it

will penalize more on the high confident predictions:



5.3 Event-Driven Multiple Instance Learning 75

Lp (yiv,P(Se
iv,r)) =

Se
iv, if P(Se

iv,r) ̸= yiv

0, otherwise
.

5.3.2 Optimization Procedure

The optimization problem in Eq. (5.4) is a mixed-integer program which is not convex. In

order to solve this problem, we apply the alternating optimization strategy to search for a

suboptimal solution:

1. Fix instance labels yiv and solve for w and b. By fixing yiv, the optimization problem

becomes a classic SVM:

min
w,b

1
2 ∥w∥2 +C f ∑

V
v=1 ∑

Iv
i=1 L f

(
yiv,wT xiv +b

)
.

Thus it can be solved using a regular SVM solver.

2. Fix w and b, solve for r and update yiv. The problem now becomes:

min
y,r

C f ∑
V
v=1 ∑

Iv
i=1 L f

(
yiv,wT xiv +b

)
+Cp ∑

V
v=1 ∑

Iv
i=1 Lp (yiv,P(Se

iv,r)) .

We propose a greedy strategy to solve for this problem. At first, we iterate through all

level of relatedness to search for the optimal r by finding the minimum total loss when

updating yiv using Eq. (5.2, 5.3). Because the most positive and negative instances will

be selected first, there will be a higher possibility to correct mismatched labels that

were learned in the previous step. Lastly we update instance labels using Eq. (5.2, 5.3)

with the optimal r.

Because this is not a convex optimization problem, the initialized values of yiv should

be carefully selected. To this end, we use the same initilization method as in [2, 39], where

instance labels are same with its “bag” (video) label.

It is also worth noted that the optimization framework only keeps updating the instance

labels while the instance features are unchanged. Thus it is a good practice to use the

pre-computed kernel technique for optimizing w and b. In fact, although our method is more
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complex, it only takes around 5 minutes for training one model, compared to 40 minutes that

was reported in [39].

5.4 Experiment

5.4.1 Dataset

To evaluate our proposed method, we conducted experiments on the large scale TRECVID

MED 2012 dataset3. This dataset provides the definition for 25 complex events. The

first ten event names are listed in Table 5.1. We follow the setting by [39] to divide this

video collection into training and testing parts. These parts contain 3,878 and 1,938 videos

respectively.

5.4.2 Experimental Setup

At first, original videos are scaled down to 320 x 240 with keeping the aspect ratio. Key

frames are sampled at every 2 seconds from the resized video. The segment length is set to

8 seconds as suggested in [86]. To extract feature for each segment, we use the Improved

Dense Trajectories feature proposed by Wang and Schmid [90]. Motion Boundary Histogram

(MBH) is used to represent extracted trajectories because it can handle camera motion,

which is prevalent in realistic videos. For learning, we use our framework jointly with the

linear SVM. The cost parameters C f and Cp are selected by cross-validation in the range

of {0.1,1,10,100}. At the testing step, video-level score is obtained by averaging over all

instance scores. Finally we use the standard evaluation metric on MED, Mean Average

Precision (mAP), to report the performance.

5.4.3 Baseline Methods

We compare our methods with following baselines: miSVM, MISVM [2], VideoBOW and

pSVM [39]. At first, because our method is based on the Multiple Instance Learning (MIL)

3http://www.nist.gov/itl/iad/mig/med12.cfm
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Fig. 5.4 Optimal number of related levels.

framework, we evaluate two MIL solutions: miSVM and MISVM that were proposed by the

authors in [2]. The VideoBOW method is the standard approach where local features are

aggregated from the whole video. We also compare our method with the recently proposed

pSVM which was adopted in [39] for TRECVID MED. For all the baseline methods, except

VideoBOW, we utilize the codes provided by the authors to test with our features.

5.4.4 Experimental Results

At first, we conduct experiments to find the optimal value of R. We select R in the range

from 1 to 10. The overall performance is shown in Fig. 5.4. We obtain the peak performance

with R around 5. Small values of R tend to get low performances. This indicates that the

prediction of prior knowledge is not always good, and learning jointly with instance features

is necessary. The performance becomes saturated when R > 5. Therefore, we fix the value of

R to 5 for further experiments.
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Fig. 5.5 Evaluation results of 25 events in the TRECVID MED 2012 dataset. The mean APs
are 0.3015 (miSVM), 0.3051 (MISVM), 0.3544 (VideoBOW), 0.3890 (pSVM) and 0.4246
(Ours).

On The MED 2012 dataset

The performance of each baseline method as well as our method (EDMIL) are shown in Fig.

5.5. Our method significantly outperforms other baselines. For the best baseline, our method

relatively outperforms by 10%. Our instance-based classifier can also provide key evidences

for event detection. Example of true positive and false positive key evidences detected by

our system can be seen in Fig. 5.9 and Fig. 5.10 respectively.

On The MED 2011 dataset

For the MED 2011 dataset, we also compare our proposed method with our two previous

works: Segment-based Representation (SB) and Sum-Max Video Pooling (SM) at segment

length of 8 s. The results are shown in Fig. 5.6.

Our proposed EDMIL approach achieves the best performance while p-SVM only has a

comparable performance with the VideoBOW. Our segment-based approach (SB) does not

perform well. The reason is that we used the average aggregation over all segments of the

video at the testing step. We further conduct experiment with a new testing strategy: choose

the max segment score as the video score. The result of this experiment is shown on Fig. 5.7.
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Fig. 5.6 Evaluation results of 10 events in the TRECVID MED 2011 dataset using average
aggregation. The mean APs are 0.0378 (miSVM), 0.0322 (MISVM), 0.0674 (VideoBOW),
0.0666 (pSVM), 0.0663 (SM8), 0.0630 (SB8), 0.0761 (Ours).

Fig. 5.7 Evaluation results of 10 events in the TRECVID MED 2011 dataset using max
aggregation. The mean APs are 0.0640 (miSVM), 0.0564 (MISVM), 0.0674 (VideoBOW),
0.0870 (pSVM), 0.0663 (SM8), 0.0770 (SB8), 0.0968 (Ours).

The max aggregation strategy performs better than the average aggregation by a margin. The

performance gain can be seen in Fig. 5.8.

5.5 Conclusion

We propose a new method to detect event in videos from its key evidences. Our method

differs from others in that we utilize the evidential description provided for each event. Given

this supportive information, we search for key evidences by jointly optimizing with instance
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Fig. 5.8 The top 6 key evidences detected by our system for the event “Attempting board
trick”. The dominance of ski-related instances is reasonable.

Fig. 5.9 The top 16 key evidences detected by our system for the event “Parkour”.
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Fig. 5.10 The top 16 key false positive evidences detected by our system for the event
“Parkour”.

feature in a variant of multiple instance learning framework. As a result, we obtained a

superior event detection performance.





Chapter 6

Conclusion

If you can’t fly then run, if you can’t run

then walk, if you can’t walk then crawl,

but whatever you do you have to keep

moving forward.

– Martin Luther King Jr.

6.1 Summary

Recognizing complex event in videos has become an important task in computer vision due

to various applications. However, this is a challenging task because we have to deal with real

videos. In summary, there are four main challenges that we need to handle:

1. Large content variation.

2. Uncontrolled capturing condition.

3. Large scale video dataset.

4. Near-miss videos.

The most important challenge that need to be handled is uncontrolled capturing condition.

This challenge of internet videos often harm the performance of event detection systems that

was built on action recognition techniques. We handle this challenge by decomposing the
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Fig. 6.1 Summary of contributions of my dissertation.

original videos into segments and investigating feature representation, feature aggregation,

and feature learning methods from these segments. Beside this main challenge, we also deal

with the large content variation and large scale video dataset as well. To this end, we made

following contributions (Fig. 6.1):

1. We propose a new feature representation method, named segment-based representation

(SB), to overcome the limitations of the traditional video-based approaches. The basic

idea is to examine shorter segments instead of using the representative frames or entire

video. We carry thorough experiments to verify our proposed method by investigating

different strategies to decompose a video into segments. These strategies include

uniform segment sampling and segments based on shot boundary detection. By using
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more training examples (at segment level), this method can handle the large content

variation challenge as well.

2. We propose a new feature aggregation method, called sum-max video pooling (SM),

to deal with noisy information in complex videos. This pooling technique is based

on the layer structure of video. Basically, we apply sum pooling at the low layer

representation while using max pooling at the high layer representation. Sum pooling

is used to keep sufficient relevant features at the low layer, while max pooling is used

to retrieve the most relevant features at the high layer, therefore it can discard irrelevant

features in the final video representation. Our video pooling method is very efficient,

thus it can be applied to large scale video dataset as well.

3. We propose a new feature learning method, named Event-driven Multiple Instance

Learning (EDMIL), to learn key evidences for complex event detection. We treat

each segment as an instance and model it in a multiple instance learning framework

[2], where each video is a “bag”. The instance-event similarity is quantized into

different levels of relatedness. Intuitively, the most (ir)relevant instances should have

higher (dis)similarities. Therefore, we propose to learn the instance labels by jointly

optimizing the instance classifier and its related level. Similar to the first contribution,

this method also use more training examples (at segment level), therefore it can handle

the large content variation challenge.

It is beneficial to use some engineering tricks in order to handle large scale dataset. For

example, the pre-computed kernel is suitable when there is a large number of events. In this

case, we only need to calculate the kernel one time and train multiple time with different

labels. This technique is especially useful in our EDMIL method.

A summary of the significant achievement of our proposed methods can be seen in Fig.

6.2. Our methods (SB, SM and EDMIL) can improve the baseline VideoBOW by 22.55%,

2.67% and 43.62% respectively on the large scale MED 2011 dataset.
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Fig. 6.2 Performance comparison of our proposed solutions on the large scale MED 2011
dataset.

6.2 Conclusion

Detecting event in video is a challenging yet worth pursuing research topic. Due to nature

of internet videos, which often contains irrelevant content, it is crucial to develop robust

technologies for event detection in realistic videos. This dissertation has addressed this

challenging issue by introducing three major techniques including a feature representation,

feature aggregation and feature learning method.

At first, we proposed using the segment-based approach for event detection. Our proposed

segment-based approach outperforms the video-based approach in most cases when using a

simple non-overlapping sampling strategy. More interestingly, the results are significantly

improved when we using the segment-based approach with an overlapping sampling strategy.

This suggests the importance of segment localization on the event detection performance.

Suppose the segment length is fixed, we are interested in determining which segment is the

best representative for an event. In this study, we also observed that the detection performance

is quite sensitive to the segment-length and it depends on the dataset. The results obtained

from the late fusion strategy is quite stable and close the peak performance. This suggests a

methodical way to generalize the segment-based approach to other datasets. However, this
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method is not scalable because it requires a lot of computation costs. Therefore, learning an

optimal segment length for each event can be beneficial for an event detection system.

Secondly, we proposed to use a sum-max video pooling technique to combine both sum

pooling and max pooling into a holistic video representation. This pooling technique is based

on the layered structure of video. Preliminary results showed that this is an promising direc-

tion for video representation. One limitation of the current approach is that the performance

depends on the segment length. Therefore, we suggest to investigate a better approach to

utilize the layered structure of video for video representation.

Lastly, we proposed a new feature learning method to detect event in videos from its

key evidences. Our method differs from others in that we utilize the evidential description

provided for each event. Given this supportive information, we search for key evidences by

jointly optimizing with instance feature in a variant of multiple instance learning framework.

As a result, we obtained a superior event detection performance.

6.3 Future Work

We plan to extend our work in following directions.

• Learning the relationship between segments. Currently, we can learn a set of impor-

tant segments that can be used for event detection. We have not imposed any constraints

on the relation between segments. However, some spatial-temporal relationship might

be important to identify an event. For example, in the event “changing a vehicle tire”,

the action “removing hubcap” should take place before the action “replacing tire”.

Or in the event “flash mob gathering”, the “gathering” action should happen before

the “dancing” action takes place. Moreover, some actions can have a co-occurrence

relationship. For example, in the “birthday party” event, people can be both singing

and dancing.

• Learning the importance of each concept in the concept bank for event detection.

Currently we only detect a set of concepts that can be used to provide evidences to

detect an event. These concepts are obtained from NLP techniques. However, we do
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Fig. 6.3 Illustration of video event description and video event detection.

not know if it really visually represents for that event. It is interesting know which

concepts that both textually and visually represent for an event.

• Video description generation. This is the task that describing about what happening

in a video. This task also has many practical applications such as helping blind or

visually impaired people understand what happening in videos. Besides, it can be used

to build question-answering systems, which provides an interactive mechanism for

a better understanding of the video. Moreover, this technology, as a result, can be

applied to zero-shot event detection, as illustrated in Fig. 6.3.
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Appendix A

TRECVID MED 2013 Results

In this appendix, we briefly introduce our Multimedia Event Detection system for TRECVID

MED 2013. We use both audio and visual features with Bag-of-Words and Fisher Vector

Representation. Our MED framework consists of following steps: preprocessing, feature

extraction, feature representation and event classification.

A.1 Preprocessing

At first, all videos are normalized to around 320x240. We fix the width dimension to 320 and

change the height so that the aspect ratios are kept. The audio channels are removed from

resized videos to save disk space. After that, we extract one representative keyframe from

resized videos at every 2 seconds and audio feature from the original videos.

A.2 Feature Extraction

We use feature from different modalities to model multimedia events: still image features,

motion features and audio features. We use the standard SIFT with Hessian Laplace detector

for extracting still image feature. For motion feature, we use Dense Trajectories with MBH

descriptor. We use the MFCC for extracting audio feature.
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A.3 Feature Representation

Bag-of-Words representation is a simple way to encode local features. It is the frequency

histogram of local descriptors that are assigned to the nearest clusters. In the implementation,

we randomly select 1,000,000 local descriptors to train the codebook with 4,000 codewords.

The soft assignment technique is also employed to reduce the quantization errors. For Fisher

vector, we use the codebook size of 256 clusters which are generated using the Gaussian

Mixture Model (GMM). We further improve the expressiveness of Fisher vector by applying

PCA for reducing feature dimension, i.e 80-d for SIFT and 128-d for MBH.

A.4 Event Classification

We use the popular Support Vector Machine (SVM) for classification. All the positive videos

are considered as positive samples and the remaining videos are considered as negative

samples (including near miss videos). We use the chi-square kernel for training bag-of-words

histogram features and linear kernel for training features encoded by Fisher vector.

A.5 Result and Conclusion

We observed that Fisher vector representation is consistently better the traditional bag-of-

words histogram representation. The motion features archived the highest performance in

terms of single feature comparison, followed by image features and audio features. Fur-

thermore, these features are highly complementary, so their combination achieved the best

performance. We also observed a little performance gain when combining both Fisher vector

and bag-of-words feature encoding. Based on these observations, we submitted the FullSys

system based on the combination of audio or visual features. Our results (NII Team) on the

100Ex setting is shown in Fig. A.1. Our rank is 4th out of 18 participants.
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Fig. A.1 Comparison of our MED 2013 system with others on the full evaluation set for the
Pre-specified task. Results are sorted in the descending order of performance on the EK100
setting.





Appendix B

TRECVID MED 2014 Results

In MED 2014, we study some technical improvements for motion feature and image features

over our MED 2014 System.

B.1 For Motion Feature

We use the improved version of Dense Trajectories motion feature [90]. To describe trajecto-

ries, we choose to use both HOGHOF and MBH descriptors, which have been proved to be

effective for MED by AXES team [1]. In order to combine these descriptors, we train two

independent GMM codebooks. After that Fisher vector is used to encode feature from each

descriptor independently. The resulting representation at video level of each descriptor is

normalized by power normalization and L2 normalization. Finally these two feature vectors

are concatenated to form the final representation of each video.

B.2 For Image Feature

We apply two technical improvements on the image feature. At first, a new way of video

level feature representation is used to pool feature from its keyframe-based representation.

In MED 2013 system, we aggregated local descriptors from all sampled frames in video

without explicitly calculating keyframe-based features. For this year’s system, Fisher vector
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Table B.1 Performance comparison of different motion feature configurations.

MED13 System MED14 System

Dense Trajectories

(MBH)

Improved Dense

Trajectories (MBH)

Improved Dense

Trajectories (HOGHOF + MBH)

28.33 35.07 40.77

Table B.2 Performance comparison of different image feature configurations.

MED13 System MED14 System

SIFT
SIFT

(New aggregation)

SIFT

(New aggregation + RootSIFT)

23.41 24.24 27.02

is encoded for each sampled frame and normalized using power and L2 normalization.

Features from these sampled frames are averaged to form the video level representation. The

second technical improvement is using RootSIFT features [3]. We have applied RootSIFT

with different implementation of SIFT features such as the one use in [57], VLFeat [88],

and Color Descriptor [87]. Finally we chose to use VLFeat because it achieved the best

performance in our evaluation framework.

We evaluated the performance of new components on the KINDREDTEST 13 dataset.

All results are reported in terms of Mean Average Precision (MAP). Performance comparison

of motion features and image features are shown in Table B.1 and Table B.2 respectively.

Unfortunately, we could not finish running the best configuration for motion features, so

we use the same configuration as previous year because it took less time. For image feature,

we used the improved version. We also used the late fusion technique to combine audio and

visual features in our final submission. For related videos, we fixed our system to use them

as negative training samples for both EK10 and EK100 settings. We participated in the full

evaluation set containing around 200K videos for both Pre-specified (PS) and Adhoc (AH)

tasks.
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B.3 Results and Conclusion

Results of our MED system is shown in Fig. B.1. Our ranks was 11th out of 12 teams in

the EK10 setting and 10th in the EK100 setting. This observation is same for both PS and

AH tasks. Compared to top MED systems, our system is significantly worse in the EK10

setting. For example, our performance are 67% and 41% relatively to the best MED system

in the EK100 and EK10 respectively. We have learnt that top performance system have

incorporated semantic concept detection, which can be more helpful when number of training

videos are limited. This might be the reason for the significant drop on the performance of

our EK10 system.
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(b) Ad-Hoc Systems

Fig. B.1 Comparison of our MED 2014 system with others on the full evaluation set for both
Pre-specified and Ad-hoc tasks. Results are sorted in the descending order of performance
on the EK10 setting.



Appendix C

TRECVID MED 2015 Results

In TRECVID MED 2015, beside using audio and visual features with Fisher vector encoding,

we also use deep learning features extracted from a pre-trained model. The features from

the output of the final layer are also employed to zero shot event detection. Our results

demonstrated the benefit of using deep learning features, especially in the case of less

training examples.

C.1 Improvements over MED’14 System

DCNN features. We use the popular DeepCaffe [29] framework to extract image features.

We used the pre-trained deep model provided by Zhou et al. [99]. This model was trained

on an image collection of 1,183 categories including 205 scene categories from the Places

Database and 978 object categories from the ImageNet 2012. We selected the neuron

activations from the last three layers for the feature representation. The third and second-to-

last layer has 4,096 dimensions, while the last layer has 1,183 dimensions. We denote these

features as FC6, FC7, and FULL in our experiments.

Zero-shot event detection. In order to calculate the similarity between an video and

an event, we adopt a concept expansion strategy as in [10]. The outline of our method is

illustrated in Fig. 5.3 and it consists of four steps: concept detection, event representation,

concept-event similarity and instance-event similarity (as described in detail in Section 5.2).
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Fig. C.1 Performance of each feature and the fused runs.

C.2 Contribution of New Components

We evaluated the contribution of new components on the KINDREDTEST14 dataset. All

results are reported in terms of Mean Average Precision (MAP). Here we only report the over

all performance, which is averaged from all events. In figure C.1, we show the performance

of each feature, including low level features for comparison.

DCNN Features. In terms of single feature performance, FC7 feature has the best

performance, even better than dense trajectories feature. It can be seen that feature of the last

layer (FULL) does not perform well. It is due to the lost of information after applying max

pooling from the previous layer.

Zero-shot Event Detection. Performance of our EK0 run is around 6% MAP, which is

slightly better than the audio MFCC run. Moreover, this run is complementary to low level

and deep learning features. Combining with all low level and deep learning features, we

obtained around 8% relative improvement, as shown in the last column of Fig. C.1.
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C.3 Submitted Systems

After evaluating the improvements on the KINDREDTEST dataset, we chose to submit the

run that combining all available features for EK10 and EK100 settings. We also submit our

EK0 system to the full evaluation.

C.4 Result and Conclusion

Results of our MED system on the full evaluation set is shown in Fig. C.2. Performance is

reported in terms of MAP. Comparing with other systems, we are ranked 6th out of 7 teams

in the EK10 evaluation full and 6th out of 16 in the sub evaluation.

We have learnt that top performance systems have incorporated a couple of semantic

concept detectors including audio and visual concepts, which can be more helpful when

number of training videos are limited. This is the reason for lower performance of our EK10

system.

On the other hand, our system performed better in EK100 the setting. For example, we

got a better performance than the top team in this setting. This indicate that our low level

features work well when the number of training videos is abundant. We also observed that

our year-to-year improvement on EK10 is 72.5 %, while this number is only 25.9% for the

EK100. This observation confirms the contributions of high level and deep learning features

in case of event detection with few examplars.
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Fig. C.2 Comparison of our performance with top systems in terms of MAP.
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