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Abstract

Gauge-Higgs unification models are studied as candidates for new physics beyond the

standard model, which give interesting suggestions about the origin of the Higgs field.

In these models, we identify extra components of higher dimensional gauge fields as Higgs

fields so that higher dimensional gauge symmetry protects the Higgs mass against quantum

corrections. I research 6-dimensional (6D) gauge-Higgs unification models especially.

First, I review the simple models of the gauge-Higgs unification. Then, I investigate the

6D models that have the custodial symmetry. We constrain gauge groups, orbifold com-

pactifying the extra dimensions, gauge group representations of matter fields by requiring

the theory to be realistic. Furthermore, I also investigate models that have the magnetic

fluxes penetrating the compactified space as a background to realize the three generations

of the matters and the hierarchical structure of the Yukawa couplings. Finally, I discuss

a possibility of building realistic 6D gauge-Higgs unification models from the results we

obtained.
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Chapter 1

Introduction

The standard model (SM) of the particle physics well-describes our world, but it still has

many theoretical or experimental problems. For example, we do not know the origins of

the Higgs boson, which causes the electro-weak (EW) symmetry breaking, nor the three

generations of the matter fields, nor the hierarchical Yukawa couplings. We need new

physics to solve these problems. In this chapter, I introduce the gauge-Higgs unification

models as candidates for new physics after giving a brief review of the SM.

1.1 Standard model

It is known that there are four fundamental interactions in our world: the electromagnetic,

the weak, the strong, and the gravitational interactions. Among them, the first three

are described in the SM. The gauge symmetry of SM is SU(3)C × SU(2)L × U(1)Y , and

SU(2)L × U(1)Y is spontaneously broken to U(1)EM by the Higgs mechanism.
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The Lagrangian of SM is

LSM = −1

4
trGµνG

µν − 1

4
trFµνF

µν − 1

4
BµνB

µν

+ iq̄iL

(
∂µ − igG

λα
2
Gα

µ − igA
σa
2
Aa

µ − i
gB
6
Bµ

)
γµqiL

+ id̄iR

(
∂µ − igG

λα
2
Gα

µ + i
gB
3
Bµ

)
γµdiR

+ iūi
R

(
∂µ − igG

λα
2
Gα

µ − i
2gB
3

Bµ

)
γµui

R

+ il̄iL

(
∂µ − igA

σa
2
Aa

µ + i
gB
2
Bµ

)
γµliL

+ iēiR (∂µ + igBBµ) γ
µeiR

−
(
ydij q̄

j
LHdiR + yuijū

i
RϵHqjL + yeij l̄

j
LHeiR + h.c.

)

−
∣∣∣
(
∂µ − igA

σa
2
Aa

µ − i
gB
2
Bµ

)
H
∣∣∣
2

− V (H), (1.1.1)

where

Gµν ≡ ∂µGν − ∂νGµ − igG [Gµ, Gν ] ,

Fµν ≡ ∂µAν − ∂νAµ − igA [Aµ, Aν ] ,

Bµν ≡ ∂µBν − ∂νBµ,

qiL ≡
(
ui
L

diL

)
, liL ≡

(
νiL
eiL

)
, (i = 1, 2, 3) (1.1.2)

and Gµ, Aµ, Bµ are the SU(3)C , SU(2)L, U(1)Y gauge fields, gG, gA, gB are the SU(3)C ,

SU(2)L, U(1)Y gauge couplings, respectively. The coupling constants yuij, y
d
ij, (i, j = 1, 2, 3)

are the up- and the down-type Yukawa couplings, λα(α = 1, · · · , 8) and σa(a = 1, 2, 3) are

the Gell-Mann matrices and the Pauli matrices, respectively. H denotes the Higgs field

that is a complex scalar SU(2)L doublet, ϵHqiL ≡ ϵabHaqibL (a, b = 1, 2 : SU(2)L indices),

and V (H) is the Higgs potential. The potential that is renormalisable and breaks the EW

symmetry dynamically is generally written as

V (H) = −µ2H†H + λ
(
H†H

)2
, (1.1.3)

where

H =

(
H+

H0

)
. (1.1.4)

The components H0 and H+ are U(1)EM neutral and positive-charged, respectively.
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1.2 Higgs mechanism

The Higgs mechanism is indispensable for describing how the gauge bosons and the matter

fermions get their masses through the EW symmetry breaking in SM. The EW symmetry

is broken when the potential in (1.1.3) has the VEV as

H†H = v2 ≡ µ2

2λ
. (1.2.1)

Using the SU(2)L × U(1)Y gauge symmetry, the VEV is always parameterized as

⟨H⟩ =
(
0

v

)
. (1.2.2)

Including the fluctuation modes, the Higgs doublet H can be written as

H = exp

(
iξa

σa

2

)(
0

v + η

)
. (a = 1, 2, 3) (1.2.3)

When we choose the unitary gauge, this becomes

H =

(
0

v + η

)
. (1.2.4)

The gauge bosons get the masses from the kinetic term of H in (1.1.1):

Lmass = −m2
W

(
W+

µ W−µ
)
− m2

Z

2
ZµZ

µ, (1.2.5)

where

mW =
gA√
2
v, mZ =

√
g2A + g2B

2
v,

W±
µ =

1√
2

(
A1

µ ∓ iA2
µ

)
,

Zµ = cos θWA3
µ − sin θWBµ. (1.2.6)

Here, θW is the Weinberg angle defined by

tan θW =
gB
gA

. (1.2.7)

The orthogonal combination of Zµ, which has no mass term, is identified as the photon:

Aγ
µ = sin θWA3

µ + cos θWBµ. (1.2.8)
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In this way, the longitudinal components of the gauge fields absorb the unphysical

degrees of freedom of 3 Nambu-Goldstone bosons ξa, and the gauge bosons corresponding

to the broken gauge symmetries get non-vanishing masses. At the same time, the Higgs

field also gets a mass, which comes from V (H). The mass of the physical Higgs η is

mη =
√
2µ = 2

√
λv. (1.2.9)

The matter fermions also get masses through the Yukawa interactions with the Higgs fields.

The Higgs boson was discovered in 2012 by the LHC experiments [58, 59]. The discovery

made the set of the particles that appear in SM complete. However, the origin of the Higgs

sector is still unknown.

1.3 Gauge-Higgs Unification

The gauge-Higgs unification (GHU) models [8, 9, 10, 11] are attractive candidates for

new physics beyond SM. We identify the extra dimensional components of the higher

dimensional gauge field as 4D Higgs fields. In this case, the Higgs field is ruled by the

gauge principle and the theories do not need any elementary scalar fields. Besides, the

higher dimensional gauge symmetry forbids the Higgs mass at tree-level, and protects the

Higgs mass against quantum corrections.1 So they are expected to solve the gauge hierarchy

problem. The EW symmetry is broken dynamically by one-loop effect in GHU models.

1.3.1 Fairle and Manton’s model

In 1979, David Fairlie and Nicholas Manton extended the idea of Kalza-Klein theory [8, 9]

and suggested the 6D gauge theory on M4 × S2, where M4 is the 4-dimensional (4D)

Minkowski spacetime and S2 is 2-dimensional sphere. They decomposed the 6D gauge

field as

AM(x, y) = (Aµ(x, y), Am(x, y)), (1.3.1)

where M = 0, 1, 2, 3, 4, 5 is the 6D Lorentz index, xµ (µ = 0, 1, 2, 3) is the 4D coordinate

on M4 and ym (m = 4, 5) is the extra dimensional coordinate on S2. Then, Aµ(x, y) can

be decomposed into the Kaluza-Klein (KK) modes as

Aµ(x, y) =
∑

n

A(n)
µ (x)fA,n(y), (1.3.2)

1In 6D models on an orbifold, tree-level Higgs mass terms are allowed at a fixed point of the orbifold.
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where fA,n(y) are called the KK mode functions for A(n)
µ (x). The zero-mode gauge field

A(0)
µ is identified as the 4D gauge field that appears at low energies. In the same way, we

can decompose the extra components of the gauge field Am(x, y) into the KK modes as

Am(x, y) =
∑

n

A(n)
m (x)fϕ,n(y). (1.3.3)

This contains the zero-mode A(0)
m (x). In their setup, the background field configuration of

Am(x, y) has the rotational symmetry SO(3) and there is a magnetic flux on S2. They

showed that scalar fields originating from Am(x, y) play a role of the Higgs fields that break

the gauge symmetry SU(2)L × U(1)Y , whichi is obtained from a larger gauge group in six

dimensions, to the electromagnetic symmetry U(1)EM. This is the first research of GHU

models.

They considered the simple Lie groups SU(3), SO(5), G2 as the larger gauge group

that is brokn to SU(2)L×U(1)Y . Their rank is 2 and the same as that of SU(2)L×U(1)Y .

They calculated the Weinberg angle θW and the mass spectrum for each gauge group.

They found that the most realistic value of θW is predicted in the case of G2, and all the

mass scales of the W, Z and the Higgs bosons and the first KK excited mode are given by

O(R−1). The latter result stems from the fact that the model has only a single scale R−1

and all the masses are generated at tree-level.

1.3.2 Hosotani mechanism and 6D GHU models

In 1983, Hosotani proposed a mechanism that breaks the gauge symmetry by quantum

effect [10]. He indicated that the Aharanov-Bohm effect occurs when the extra dimensional

spaces are not simply connected and the Aharanov-Bohm phase (or the Wilson-line phase)

plays a role of the 4D Higgs field. The EW symmetry can be broken by this mechanism. In

such a case, we can generate a hierarchy between the Higgs mass and the KK mass scales

since the Higgs mass is suppressed by the loop factor.

The simplest models of GHU with the Hosotani mechanism are based on 5-dimensional

(5D) gauge theories whose gauge groups are U(3) in the flat spacetime [15, 18] and SO(5)×
U(1) in the warped spacetime [19, 21, 22]. In these models, the EW symmetry is broken

dynamically by the VEV of the Wilson-line phase θH ≡
∫
C dy Ay, where C is a non-

contractible cycle along the extra dimension and Ay is the 5-th component of the gauge

8



field. According to Refs.[14], the W boson mass mW is expressed in terms of θH as

mW =

⎧
⎨

⎩

|⟨θH⟩|
2πR in flat case

ke−kπR
√
2πkR

|sin⟨θH⟩| in warped case
, (1.3.4)

whereR is a typical radius of the extra-dimensional space and k is the inverse AdS curvature

radius. The KK mass scale mKK is given by

mKK =

⎧
⎨

⎩
R−1 in flat case

πke−kπR in warped case
. (1.3.5)

Notice that this is independent of θH in contrast to mW . Thus, we can realize the hierarchy

between mW and mKK if the VEV of θH is small enough. From the experimental bounds,

mKK must be larger than a few TeV.2 If mKK ≥ 4 TeV, for example, we can see that

⟨θH⟩ ≤ O(0.1) from (1.3.4) and (1.3.5).

The effective potential for θH is induced at one-loop level. It has a form of

Veff(θH) =
3

l6π3
m4

KKf(θH). (1.3.6)

where l6 ≡ 128π3 is the 6D loop factor, and f(θH) is a dimensionless periodic function of

θH with a period 2π. An explicit form of f(θH) is determined by matter contents of the

theory. Without any fine-tuning among the model parameters, we obtain ⟨θH⟩ = O(1)π

from the potential (1.3.6). The Higgs mass mH can be estimated from (1.3.6) as

mH =

⎧
⎪⎨

⎪⎩

{
f ′′(θH)

12g24
l6π

} 1
2 1

2R in flat case
{
f ′′(θH)

3πg24
l6

} 1
2
√

kπR
2 ke−kπR in warped case

, (1.3.7)

where f ′′(θH) ≡ d2f(θH)
dθ2H

. In the flat case, mH is typically estimated around O(10) GeV,

which is too light to be realistic. In the warped case, on the other hand, mH can be heavy

enough to reproduce the observed value thanks to logarithm of the warped factor.

In each case, we have to realize a small value of ⟨θH⟩ in order to obtain the realistic

mass spectrum, which is difficult to achieve without any fine-tunings. This problem arises

from the fact that 5D GHU models have no Higgs potential at tree-level.

In 6D models, this problem can be solved because the Higgs quartic couplings exist at

tree-level that originate from tr
(
[A4, A5]

2) in the 6D gauge kinetic term, while quadratic

terms are induced at one-loop level.
2According to Refs. [60, 61], mKK > 4.16 TeV in the flat case, and mKK > 2.68 TeV for the KK

graviton in the warped case.
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In the flat spacetime, for example, the effective potential up to one-loop level has a

form of

V (θH) = − c2g2

l6R2

(
θH
gπR

)2

+ c4g
2

(
θH
gπR

)4

+O(θ6H), (1.3.8)

where c2, c4 = O(1) are numerical constants, g is the 4D SU(2)L gauge coupling constant,

By minimizing this, we find that

⟨θH⟩ ≃
gπ

√
c2√

2l6c4
≃

0.02
√
c2√

c4
≪ 1, (1.3.9)

and the KK modes are estimated to be around a few TeV without tuning model parameters.

Besides, we can realize the observed Higgs mass more easily than 5D case. So 6D GHU

models are phenomenologically attractive. Another reason why 6D GHU models are well

worth researching is a possibility of realizing the generations of matter fermions and the

Yukawa hierarchy by introducing background magnetic fluxes. Such fluxes break the gauge

symmetry and realize chiral fermions in 4D effective theories. We evaluated the Yukawa

couplings with the magnetic fluxes that break the EW symmetry and realize the three

generations of the matter fermions or one-Higgs doublet case in 6D GHU models on T 2/ZN

orbifold.

The structure of this thesis is as follows. In the Chapter 2, SU(3) GHU model in

the flat or warped metric is introduced as the simplest example of 5D GHU models. I

explain the setup of the model and show how much Yukawa and weak gauge couplings

for the quarks and leptons deviate from the experimental values in 5D GHU models. In

the Chapter 3, I select the concrete 6D GHU models that have the custodial symmetry.

We constrained the 6D gauge groups and the orbifolds compactifying the extra dimensions

and the G representations that matter fields belong to by generalization of group theory.

In the Chapter 4, I introduce magnetic fluxes penetrating the extra dimensions to realize

the matter generations and the Yukawa hierarchy by overlap integrals of zero-mode wave

functions. In the Chapter 5, I summarize the results of model building, and tell the

problems and future prospects of 6D GHU models.
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Chapter 2

Example of gauge-Higgs unification

As I told in the previous chapter, GHU approaches have been investigated as the model

of new physics beyond the SM. The EW symmetry is broken by the nonvanishing VEV

of the Wilson-line phase in these models. Some models have been constructed to explain

the origin of the Higgs field in the SM. In the simplest models, gauge group is often taken

as SU(3)C × SU(3)W in 5D flat metric, or SU(3)C × SO(5)× U(1) in 5D warped metric.

In this chapter, I show the simplest example of GHU models. We will evaluate the weak

gauge couplings and the Yukawa couplings for the matter fermions in the presence of the

bulk fermions’ mass terms and see whether they deviate from the experimental values.

2.1 SU(3)W model

The SU(3)W GHU models are considered because the gauge group is the minimum simple

group that contains SU(2)L × U(1)Y subgroup and one SU(2)L Higgs doublet as the

extra component of the gauge field. In these models, the symmetry breaking SU(3)W →
SU(2)L × U(1)Y is caused by orbifold projection. In the simplest model the spacetime is

5D, and the 5th dimension is compactified with S1/Z2.

From the next section, I calculate the zero-mode and the KK mode wavefunction of

each field and evaluate the Yukawa couplings and gauge couplings on the configuration of

SU(3)W GHU model in the case of flat or warped metric and mention the the mass of the

Higgs boson.
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2.2 Field content

We think SU(3)W gauge theory. SU(3)W gauge field is expressed as AM = Aa
MT a where

T a is 1
2×Gell-Mann matrices. We can decompose AM as

AM =
8∑

a=1

Aa
M

λa

2
=

1

2

⎛

⎜⎜⎝

A3
M + 1√

3
A8

M A1
M − iA2

M A4
M − iA5

M

A1
M + iA2

M −A3
M + 1√

3
A8

M A6
M − iA7

M

A5
M + iA5

M A6
M + iA7

M − 2√
3
A8

M

⎞

⎟⎟⎠ , (2.2.1)

and 5D matter field that belongs to SU(3) fundamental representation is written as Ψf .

5D Lagrangian is

L5D =− 1

2
tr

(
F (A)MNF (A)

MN − 1

ξ
f 2
gf

)
+ i
∑

f

{
Ψ̄fΓMDMΨf − iMϵ(y)Ψ̄fΨf

}
, (2.2.2)

where

F (A)
MN ≡ ∂MAN − ∂NAM − igA[AM , AN ],

DM ≡ ∂M − igAAM ,

gA : gauge coupling of AM ,

Γµ =

(
σµ

σ̄µ

)
(µ = 0, 1, 2, 3), Γ5 =

(
1

−1

)
,

σµ = (1, σi) , σ̄µ = (−1, σi) , (i = 1, 2, 3)

Ψ̄ = iΨ†Γ5, M : bulk mass parameter,

ϵ : step function, (2.2.3)

and −1
ξf

2
gf is the gauge fixing term.

2.3 Compactified space

We think 5D flat metric:

ds2 = GMNdx
MdxN = ηµνdx

µdxν + (dy)2, (2.3.1)

where ηµν = diag(−1, 1, 1, 1) denotes 4D Minkowski metric (µ, ν = 0, 1, 2, 3,M,N =

0, 1, 2, 3, 4) and compactify the 5th dimension y by S1/Z2 orbifold.
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2.3.1 S1/Z2 orbifold

This is the one-dimensional orbifold of the interval. The compactified extra dimension y

by S1 is identified as

y ∼ y + 2πR, (2.3.2)

where R is the radius of S1, and by Z2 action, y is identified as

y ∼ −y. (2.3.3)

2.4 Orbifold boundary conditions

2.4.1 Gauge fields

S1 boundary conditions of AM are

AM(xµ, y + 2πR) = TAM(xµ, y)T †. (2.4.1)

where T is a unitary matrix of the translation transformation on S1. If we define P0, Pπ

as unitary matrices of Z2 transformation on y = 0, πR respectively, we can write

Pπ = TP0, (2.4.2)

so Z2 boundary conditions of AM are written as

Aµ(x
µ,−y) = P0Aµ(x

µ, y)P †
0 ,

Ay(x
µ,−y) = −P0Ay(x

µ, y)P †
0 ,

Aµ(x
µ, πR− y) = PπAµ(x

µ, πR + y)P †
π ,

Ay(x
µ, πR− y) = −PπAy(x

µ, πR + y)P †
π , (2.4.3)

where Ay is the 5th component of AM . As stated above, Aµ and Ay must have an oppsosite

Z2 parity for gauge invariance. So when Aµ has a zero-mode, Ay cannnot have. Zero-mode

fields on the flat profile must have Z2 eigenvalues as (λ0,λπ) = (+,+) where λ0,λπ is an

eigenvalue of Z2 transformation at y = 0, π respectively.
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2.4.2 Matter fields

Next, I define boundary conditions for matter fields Ψ. If yi = 0, πR, I can write as

Ψ(x, yi − y) = ±PiΓ
5Ψ(x, yi + y), (2.4.4)

where Γ5 = γ5 = iγ0γ1γ2γ3. For this boundary condition, components whose Z2 eigenval-

ues are (λ0,λπ) = (+,+) are restricted to one chirality. So we can realize chiral theory.

This can be rewritten as

Ψ(x,−y) = η0P0Γ
5Ψ(x, y),

Ψ(x, πR + y) = ηπPπΓ
5Ψ(x, πR− y), (2.4.5)

where η0, ηπ = ±.

2.4.3 Zero-mode conditions

As stated above, zero-mode fields have constant profile on the flat metric and invariant for

Z2 transformation. When symmetry breaking SU(3)W → SU(2)L × U(1)Y is caused by

orbifold boundary conditions, the components of AM that should have zero-mode are as

follows:

A(0)
µ =

1

2

⎛

⎜⎜⎝

A3(0)
µ + 1√

3
A8(0)

µ A1(0)
µ − iA2(0)

µ

A1(0)
µ + iA2(0)

µ −A3(0)
µ + 1√

3
A8(0)

µ

− 2√
3
A8(0)

µ

⎞

⎟⎟⎠ , (2.4.6)

A(0)
y =

1

2

⎛

⎜⎝
A4(0)

y − iA5(0)
y

A6(0)
y − iA7(0)

y

A4(0)
y + iA5(0)

y A6(0)
y + iA7(0)

y

⎞

⎟⎠ , (2.4.7)

and for matter fields,

Ψ(0)
R =

⎛

⎜⎝
Ψ3(0)

R

⎞

⎟⎠ , Ψ(0)
L =

⎛

⎜⎝
Ψ1(0)

L

Ψ2(0)
L

⎞

⎟⎠ , (2.4.8)

where Γ5ΨR = ΨR,Γ5ΨL = −ΨL. In order that these components have zero-modes, the

Z2 parity (λ0,λπ) should be as follows:
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Aµ =

⎛

⎜⎝
(+,+) (+,+) (−,−)

(+,+) (+,+) (−,−)

(−,−) (−,−) (+,+)

⎞

⎟⎠ , Ay =

⎛

⎜⎝
(−,−) (−,−) (+,+)

(−,−) (−,−) (+,+)

(+,+) (+,+) (−,−)

⎞

⎟⎠ , (2.4.9)

ΨR =

⎛

⎜⎝
(−,−)

(−,−)

(+,+)

⎞

⎟⎠ , ΨL =

⎛

⎜⎝
(+,+)

(+,+)

(−,−)

⎞

⎟⎠ . (2.4.10)

For example, if we take P0, Pπ as

P0 = Pπ =

⎛

⎜⎝
−1

−1

1

⎞

⎟⎠ , (2.4.11)

we can realize (2.4.9) and (2.4.10).

Here, in (2.4.7) we select (A4
y+ iA5

y, A
6
y+ iA7

y) as the SU(2)L Higgs doublet whose VEV

breaks SU(2)L × U(1)Y to U(1)EM from the components of Ay that have zero-modes, so

we identify (A4
y − iA5

y, A
6
y − iA7

y)
t as the Hermite conjugate field of the Higgs doublet.

2.5 Mode functions and Mass eigenvalues

2.5.1 Gauge sector

In GHU models, the nonzero VEV of the Wilson-line phase breaks the EW symmetry.

Here, we decompose AM as

AM = ⟨AM⟩+ ÃM , (2.5.1)

where ⟨AM⟩ is the background part and ÃM is the fluctuation part of AM . I select ξ = 1

and the function of the gauge-fixing term as

fgf = DM ÃM , (2.5.2)

where

DM ÃN ≡ ∂M ÃN − igA
[
⟨AM⟩, ÃN

]
. (2.5.3)

From (2.2.2), we can derive the linearized equation of motion of ÃM as

DMDM ÃN − igA
[
⟨FNM⟩, ÃM

]
= 0. (2.5.4)
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To derive the mode functions of gauge fields with the nonzero Wilson-line phase θH , I

change the basis as

ÃM → ÂM ≡ ΩÃMΩ−1, (2.5.5)

Ω(y) ≡ exp

{
−igA

∫ y

0

dy′⟨Ay⟩(y′)
}
, (2.5.6)

where Ω(y) is the gauge transformation matrix. Due to this, DM changes into ∂M and

⟨FNM⟩ vanishes , so (2.5.4) becomes

∂M∂M ÂN = 0, (2.5.7)

∴ ∂M∂M Âa
N = 0. (2.5.8)

We substitute the KK expansion for ÃM on this equation:

Âa
µ(x, y) =

∑

n

f̂a
n(y)Â

n
µ(x), (2.5.9)

Âa
y(x, y) =

∑

n

ĝan(y)Â
n
y (x). (2.5.10)

We apply the on-shell condition for Ân
M(x): (" −m2

n)Â
n
M(x) = 0, where " ≡ ∂µ∂µ, then

we obtain the eigenequations for mn (KK mode equations):

∂2y f̂
a
n(y) = −m2

nf̂
a
n(y), (2.5.11)

∂2y ĝ
a
n(y) = −m2

nĝ
a
n(y). (2.5.12)

For mn > 0, the solutions of these equations are

f̂a
n(y) = Aa

n cos(mny) + Ba
n sin(mny), (2.5.13)

ĝan(y) = Ca
n cos(mny) +Da

n sin(mny), (2.5.14)

where Aa
n,Ba

n, Ca
n,Da

n are y-independent constants.

Now, we derive KK mode functions (containing zero-mode functions) and KK mass

eigenvalues of gauge sector. The boundary conditions for the zero-modes of each compo-

nents read from (2.4.9) are

∂yA
a
µ|y=0,πR = 0 (a = 1, 2, 3, 8), Aa

µ|y=0,πR = 0 (a = 4, 5, 6, 7),

Aa
y|y=0,πR = 0 (a = 1, 2, 3, 8), ∂yA

a
y|y=0,πR = 0 (a = 4, 5, 6, 7). (2.5.15)
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We must rewrite these conditions by the new basis (2.5.5).

The non-zero Wilson-line phase breaks the symmetry SU(2)L×U(1)Y down to U(1)EM.

When the EW simmetry is broken, we can take the zero-mode of Ay as A(0)
y = 1

2A
7
yλ

7 and

the classical solution of gauge field is ⟨Ay⟩ = 1
2aλ

7 (a: constant of mass dimension 1). So

the Wilson-line phase θH can be written as

θH ≡ 1

2
gA

∫ πR

0

dyA7
y(y)

=
1

2
gAπRa. (2.5.16)

This value is determined dynamically (not by hand) at one-loop level. Ω(y) in (2.5.6) is

rewritten as

Ω(y) = exp
{
−iθ(y)λ7

}

=

⎛

⎜⎝
1

cos θ
2 − sin θ

2

sin θ
2 cos θ

2

⎞

⎟⎠ , (2.5.17)

where

θ = θ(y) ≡ gA
2

∫ y

0

dy′A7
y(y

′)

=
gA
2
ay

=
y

πR
θH . (2.5.18)

The gauge transformation induced by Ω(y) preserves the boundary conditions (2.4.3) and

(2.4.5), but shifts θH by 2nπ. So the θH is a variable by 2π. The EW symmetry is broken

dynamically when θH has a nonzero VEV.

Then, Aa
M are mixed by θ as

(
Â1

M

Â4
M

)
=

(
cos 1

2θ − sin 1
2θ

sin 1
2θ cos 1

2θ

)(
A1

M

A4
M

)
,

(
Â2

M

Â5
M

)
=

(
cos 1

2θ − sin 1
2θ

sin 1
2θ cos 1

2θ

)(
A2

M

A5
M

)
,

(
Â′3

M

Â6
M

)
=

(
cos θ − sin θ

sin θ cos θ

)(
A′3

M

A6
M

)
,

Â7
M = A7

M , Â′8
M = A′8

M (2.5.19)
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where
(
A′3

M

A′8
M

)
≡
(

−1
2

√
3
2

−
√
3
2 −1

2

)(
A3

M

A8
M

)
. (2.5.20)

For example, the boundary conditions for (A1
µ, A

4
µ):(2.5.15) change to

∂yf
1
n

∣∣∣∣
y=0,πR

= ∂y

(
cos

θ

2
· f̂ 1

n + sin
θ

2
· f̂ 4

n

) ∣∣∣∣
y=0,πR

= 0,

f 4
n

∣∣∣∣
y=0,πR

= − sin
θ

2
· f̂ 1

n + cos
θ

2
· f̂ 4

n

∣∣∣∣
y=0,πR

= 0. (2.5.21)

We find f̂ 1
A,n(y) = A1

n cos(mny), f̂ 4
A,n(y) = B4

n sin(mny) quickly, so the condition (2.5.21)

is rewritten as
(

− cos(mnπR) sin θH
2 sin(mnπR) cos θH

2

−mn sin(mnπR) cos θH
2 mn cos(mnπR) sin θH

2

)(
A1

n

B4
n

)
= 0. (2.5.22)

We obtain when det of the left hand side is 0:

tan2(mnπR) = tan2

(
θH
2

)
,

∴ mn =

∣∣∣∣±
θH
2πR

+
n

R

∣∣∣∣ . (2.5.23)

From (2.5.22) and the ortho-normalization condition:
∫ πR

0

dy
{
f̂ 1
n(y)f̂

1
l (y) + f̂ 4

n(y)f̂
4
l (y)

}
= δn,l, (2.5.24)

A1
n and B4

n are determined.

∴ f̂ 1
n =

1√
πR

cos(mny),

f̂ 4
n =

1√
πR

sin(mny),

(
mn =

∣∣∣∣
θH
2πR

+
n

R

∣∣∣∣ , n : an integer

)
(2.5.25)

We find f̂ 2 = f̂ 1, f̂ 5 = f̂ 4. The other mode functions are

f̂ ′3
n =

1√
πR

cos(mny),

f̂ 6
n =

1√
πR

sin(mny),

(
mn =

∣∣∣∣
θH
πR

+
n

R

∣∣∣∣ , n : an integer

)
(2.5.26)

f̂ 7
n =

√
2

πR
sin(mny),

(
mn =

∣∣∣
n

R

∣∣∣ , n ̸= 0
)

(2.5.27)

f̂ 8
n =

√
2

πR
cos(mny).

(
mn =

∣∣∣
n

R

∣∣∣
)

(2.5.28)

18



Here, notice that df̂a
n/dy whose fa

n have the massless mode satisfies the mode function

of ĝan which does not have the masless mode. from (2.5.15). So ĝan ∝ df̂a
n/dy is valid for

such a, and they have the same mass eigenvalue mn. Similarly, dĝan/dy whose gan have the

massless mode satisfies the mode function of f̂a
n which does not have the masless mode,

and f̂a
n ∝ dĝan/dy for such a. The mode functions of Aa

y are

ĝ1n =
1√
πR

sin(mny),

ĝ4n =
1√
πR

cos(mny),

(
mn =

∣∣∣∣
θH
2πR

+
n

R

∣∣∣∣ , n : an integer

)
. (2.5.29)

We find ĝ2 = ĝ1, ĝ5 = ĝ4, and

ĝ′3n =
1√
πR

sin(mny),

ĝ6n =
1√
πR

cos(mny),

(
mn =

∣∣∣∣
θH
πR

+
n

R

∣∣∣∣ , n : an integer

)
(2.5.30)

ĝ7n =

√
2

πR
cos(mny),

(
mn =

∣∣∣
n

R

∣∣∣
)

(2.5.31)

ĝ8n =

√
2

πR
sin(mny).

(
mn =

∣∣∣
n

R

∣∣∣ , n ̸= 0
)

(2.5.32)

When we assign the bosonic fields that appear in the SM to these mode functions, they

are expressed as

Â1
µ =

∞∑

n=0

f̂ 1
n(y)Wµ,n(x), Â2

µ =
∞∑

n=0

f̂ 2
n(y)Wµ,n(x),

Â4
µ =

∞∑

n=0

f̂ 4
n(y)Wµ,n(x), Â5

µ =
∞∑

n=0

f̂ 5
n(y)Wµ,n(x),

Â3′

µ =
∞∑

n=0

f̂ 3′

n (y)Zµ,n, Â6
µ =

∞∑

n=0

f̂ 6
n(y)Zµ,n(x)

Â8′

µ =
∞∑

n=0

f̂ 8′

n (y)γµ,n(x),

Â4
y =

∞∑

n=0

f̂ 4
n(y)ϕn(x), Â5

y =
∞∑

n=0

f̂ 5
n(y)ϕn(x),

Â6
y =

∞∑

n=0

f̂ 6
n(y)ϕn(x), Â7

y =
∞∑

n=0

f̂ 7
n(y)ϕn(x), (2.5.33)

where Wµ,n(x), Zµn, γµ,n(x), ϕn(x) means the 4D sector for the KK mode of W boson, Z

boson, photon, the Higgs boson, respectively.　
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2.5.2 Fermion sector

We can derive the equation of motion for Ψf from (2.2.2):

iΓN (∂N − igA⟨AN⟩)Ψf − iMϵΨf = 0. (2.5.34)

We take ϵ = 1 in the region 0 ≤ y ≤ 1.

By the gauge transformation with Ω(y),

Ψ̂ = Ω(y)Ψ. (2.5.35)

(2.5.34) is rewritten as

γµ∂µΨ̂
f
R − (∂y +M) Ψ̂f

L = 0,

γµ∂µΨ̂
f
L + (∂y −M) Ψ̂f

R = 0, (2.5.36)

where γµ is the 4D γ matrices, N = µ = 0, 1, 2, 3 component of ΓN , and Ψ̂R = 1+γ5
2 Ψ,

Ψ̂L = 1−γ5
2 Ψ̂ (Ψ̂ = Ψ̂R + Ψ̂L, γ5Ψ̂R = +Ψ̂R, γ5Ψ̂L = +Ψ̂L). We decompose Ψ̂ into the KK

modes, and substitute the on-shell conditions for Ψ̂f
n(x), the 4D sector of the KK mode for

Ψ̂f (x, y): (γµ∂µ −mn)Ψ̂f (x) = 0 into (2.5.36), the we obtain the mode equations for Ψ̂f :

D±(M)ĥf
∓n(y) = −mnĥ

f
±n(y),

D±(M) ≡ ±∂y +M, (2.5.37)

where the double signs correspond and +,− means R,L. When mn ≥ M , the solutions are

ĥf
Rn(y) = Af

n cos(λny) + Bf
n sin(λny),

ĥf
Ln(y) = − 1

mn
{(MAf

n − λnB
f
n) cos(λny) + (MBf

n + λnA
f
n) sin(λny)}, (2.5.38)

λn ≡
√
m2

n −M2,

where Af
n, B

f
n are constants. The boundary conditions for ĥf are

D+Ψ
1
L = D+Ψ

2
L = D−Ψ

3
R = 0,

Ψ1
R = Ψ2

R = Ψ3
L = 0, (at y = 0, πR) (2.5.39)

D± ≡ D±(M).
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The relation between Ψf and Ψ̂f is

Ψ1 = Ψ̂1,

Ψ2 =

{
cos

θ

2
· Ψ̂2 + sin

θ

2
· Ψ̂3

}
,

Ψ3 =

{
− sin

θ

2
· Ψ̂2 + cos

θ

2
· Ψ̂3

}
. (2.5.40)

The ortho-normalization conditions of ĥi are
∫ πR

0

dyĥ1
χ4n(y)ĥ

1
χ4l(y) = δnl,

∫ πR

0

dy

{
ĥ2
χ4n(y)ĥ

2
χ4l(y) + ĥ3

χ4n(y)ĥ
3
χ4l(y)

}
= δnl, (2.5.41)

where χ4 means the 4D chirality. Af
n, B

f
n are determined from the conditions, so the

solutions are

ĥ1
Rn =

√
2

πR
sin(λny), ĥ1

Ln =

√
2

πR
cos(λny + α),

mn =

√
M2 +

n2

R2
, λn =

n

R
,

when mn ≥ M , where cosα ≡ λn
mn

, sinα ≡ M
mn

. Also,

ĥ2
Rn = B2

n sin(λny), ĥ3
Rn = B3

n

{
λn
M

cos(λny) + sin(λny)

}
,

ĥ2
Ln = B2

n cos(λny + α), ĥ3
Ln = −mn

M
B3

n sin(λny),

sin(λnπR) =
λn
mn

sin

(
θH
2

)
, λn ≡

√
m2

n −M2. (2.5.42)

When 0 < mn < M , the mode functions are

ĥf
Rn(y) = Af

ne
λny +Bf

ne
−λny,

ĥf
Ln(y) = − 1

mn

{
(M − λn)A

f
ne

λy + (M + λn)B
f
ne

−λny
}
, (2.5.43)

λn ≡
√
M2 −m2

n.

Then, there is no solution for ĥ1
R,Ln, and

ĥ2
Rn = A2

n(e
λny − e−λny), ĥ3

Rn = B3
n(
λn +M

λn −M
eλny + e−λny),

ĥ2
Ln(y) = −A2

n

mn

{
(M − λn)e

λny − (M + λn)e
−λny

}
, ĥ3

Ln =
M + λn
mn

B3
n(e

λny − e−λny),

m2
n =

2 sin2 θH
2

cosh(2λnπR) + sin2 θH
2 − cos2 θH

2

M2, (λn ≡
√
M2 −m2

n). (2.5.44)
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When mn = 0, the mode functions are

ĥf
R0 = Af

0e
My,

ĥf
L0 = Bf

0 e
−My. (2.5.45)

Then, the massless modes are

ĥ1
R0 = 0, ĥ1

L0 =

√
2M

1− e−2MπR
e−My,

ĥ2
R0 = 0, ĥ2

L0 =

⎧
⎨

⎩
0, (θH ̸= 0 mod 2π)
√

2M
1−e−2MπR e−My, (θH = 0 mod 2π)

ĥ3
R0 =

⎧
⎨

⎩
0, (θH ̸= 0 mod 2π)
√

2M
e2MπR−1e

My, (θH = 0 mod 2π)
ĥ3
L0 = 0. (2.5.46)

After obtaining the mode functions of fermions, we assign the fermions that appear in

the SM to them. The mass spectrums of fermions depend on the bulk mass M f , so we can

realize the mass of the fermions by specifying M f for the lightest mode of each Ψ̂f . From

the interaction between Â8
M and Ψ̂f , we find the ratio of the hypercharge among SU(2)L

doublet (Ψ̂1
L, Ψ̂

2
L) and Ψ̂R is 1 : 1 : −2. For example, we can assign (uL, dL) and dR to them,

and can assign (νL, eL) and eR by an additional U(1) group.

2.6 Gauge couplings

Here, we derive the 4D effective gauge couplings of fermions from the 5D interaction be-

tween ÂM and Ψ̂. The 5D gauge interaction is

I5Dgc =

∫
d5xgAΨ̄

fΓMAMΨf

=

∫
d4x

∫ πR

0

dygA
{
¯̂ΨfγµÂµΨ̂

f + · · ·
}
. (2.6.1)

Inserting (2.5.33) into this, we obtain

L4D
gc =

g(0)√
2
ēL0γ

µWµ0νL0 + h.c.+ · · · , (2.6.2)

where the ellipsis means the contribution of the KK modes of relevant fields. The 4D gauge

coupling is expressed as

g(0)(θH ,M) ≡ gA

∫ πR

0

dy
(
ĥ2
L0f̂

1
0 + ĥ3

L0f̂
4
0

)
ĥ1
L. (2.6.3)
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For the limit θH → 0, the EW symmetry is unbroken and the gauge coupling for all the

fermions become universal. The coupling is easily calculated as

g(0)(0,M) = gA

∫ πR

0

dy

(
ĥ2
L0 ·

1√
πR

+ 0 · 0
)
ĥ1
L0. (2.6.4)

Since ĥ2
L0 =

√
2M

1−e−2MπR e−My = ĥ1
L0,

g(0)(0,M) =
gA√
πR

∫ πR

0

dy(ĥ1
L0)

2 =
gA√
πR

= g4, (2.6.5)

where we used the normalization condition for ĥ1
L0, and g4 means the 4D SU(2)L gauge

coupling. This has no dependence on M . After the EW symmetry breaking, θH become

the nonzero value by quantum effect, and g(0) have dependence on M .

For simplicity, we consider the case that M = 0 and θH ̸= 0. In this case, the relevant

mode functions become

ĥ1
L0 =

√
2

πR
,

ĥ2
L0 =

1√
πR

cos

(
θH
2πR

y

)
, ĥ3

L0 =
1√
πR

sin

(
θH
2πR

y

)
,

f̂ 1
0 =

1√
πR

cos

(
θH
2πR

y

)
, f̂ 4

0 =
1√
πR

sin

(
θH
2πR

y

)
, (2.6.6)

so g(0) is written as

g(0) =
gA
πR

√
2

πR

∫ πR

0

dy sin

(
θH
2πR

y

)

= gA

√
2

πR

1

θH
(1− cos θH) . (2.6.7)

So the deviation from g4 is evaluated by the ratio:

g(0)
g4

=

√
2

θH
(1− cos θH) . (2.6.8)

This becomes 1 when θH ∼ 2.3.

Now, we change our policy to the models with the warped spacetime. The mass spec-

trums and the couplings in the case of warped metric ds2 = e−2kyηµνdxµdxν + dy2 are

calculated in [21]. In this paper, the Bessel functions of the zero-mode fermion are approx-
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imated as

(α > 1) ĥ2
L0(z) ∼ ĥ1

R0(z) ∼
√

2k(α− 1)z1/2−α,

ĥ3
L0(z) ∼

√
k(α− 1)

2

sin θH
z1πα

z1/2+α, (2.6.9)

(α < 0) ĥ2
L0(z) ∼

∣∣∣∣cos
θH
2

∣∣∣∣

√
2k(1− α)

z1−α
π

z1/2−α

ĥ3
L0(z) ∼ sgn

(
cos

θH
2

)
sin

θH
2

√
2k(1− α)

z1−α
π

z1/2−α, (2.6.10)

where z = eky, k is the Ads curvature radius, zπ = ekπR, and α = M/k + 1/2. The Bessel

functions of the A1,4
µ zero-mode are approximated as

f̂ 1
0 ∼ 1√

πR
,

f̂ 1
0 (zπ)

f̂ 1
0 (1)

∼ cos2
θH
2
,

f̂ 4
0 (zπ)

f̂ 1
0 (1)

∼ sin
θH
2

cos
θH
2
. (2.6.11)

Using these mode functions, the 4D gauge coupling g(0) is evaluated as

g(0)

(
M

k
>

1

2

)
∼ g4,

g(0)

(
M

k
< −1

2

)
∼ g4

∣∣∣∣cos
θH
2

∣∣∣∣ . (2.6.12)

The zero-mode function of each fermion is characterized by M/k, and they evaluated the

deviation of (2.6.12) from g4 of each flavor. They concluded the deviations are very small

and become larger for heavy fermions. Such deviations mean that the universality of the

weak interaction is slightly broken in the presence of the non-zero θH .

2.7 Yukawa couplings

As with the previous case, we derive the 4D effective Yukawa couplings. In GHU models,

the Yukawa couplings stem from the 5D gauge interaction. The corresponding term is

L5D
yukawa = gAψ̄Γ

4Ayψ (2.7.1)

= gA
(
¯̂Ψ1, ¯̂Ψ2, ¯̂Ψ3

)
Γ41

2

⎛

⎜⎝ −iÂ7
y

iÂ7
y

⎞

⎟⎠

⎛

⎜⎝
Ψ̂1

Ψ̂2

Ψ̂3

⎞

⎟⎠ . (2.7.2)
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The 4D Yukawa coupling is expressed as

L5D
yukawa = yeφ0ēL0eR0 + h.c. · · · . (2.7.3)

From (2.7.2),

ye =
gA
2

∫ πR

0

dyf̂ 7
0

(
ĥ2
L0ĥ

3
R0 − ĥ2

R0ĥ
3
L0

)
. (2.7.4)

In the flat case with the limit θH → 0,

ye =
gA
2

∫ πR

0

√
πR

2

(√
2M

1− e−2MπR
e−My ·

√
2M

1− e−2MπR
e−My − 0 · 0

)

= gA
√
2πR

Me−MπR

1− e−2MπR
. (2.7.5)

This can realize the 4D Yukawa coupling by tuning M for each fermion.

After the EW symmetry breaking, ye has the dependence of θH( ̸= 0). When M = 0,

ĥ2
R0 =

1√
πR

sin

(
θH
2πR

)
, ĥ3

R0 =
1√
πR

cos

(
θH
2πR

)
. (2.7.6)

Then,

ye =
gA
2

∫ πR

0

√
2

πR

{
1

πR
cos2

(
θH
2πR

)
− 1

πR
sin2

(
θH
2πR

)}

=
gA
2

√
2

πR

sin θH
θH

(2.7.7)

This is a decreasing function of θH from θH = 0 to θH ∼ 4.5. Now, we define the Higgs

VEV v in the SM as

v ≡ 2mW

g4
∼ 246 GeV. (2.7.8)

The deviation of ye from the real 4D Yukawa coupling is evaluated by the ratio

r ≡ |ye| v
me

. (2.7.9)

In the present case,this ratio is

r(M = 0) =

√
2mW

me
· sin θH

θH
. (2.7.10)

The deviation is small for e when θH ∼ π.
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Next, we see the case with the warped metric. According to [21], the ratio r withM = 0

is approximated as

r(M = 0) ∼ 2

θH
sin

θH
2
, (2.7.11)

for −π ≤ θH ≤ π with the Bessel functions.

For |M | /k > 1/2,

r (|M | /k > 1/2) ∼
∣∣∣∣cos

θH
2

∣∣∣∣ (2.7.12)

In the case, r is almost independent on M/k and vanishes as θH approaches π for all quarks

and leptons. I conclude that it is difficult to realize the Yukawa coupling for each flavor,

so the Yukawa hierarchy by the mass terms of the bulk fermions in the present setup.

2.8 The mass of the Higgs boson

In the present case, the EW symmetry is broken by the VEV of the zero-mode of A7
y(z).

The Higgs potential is flat in the 5D GHU at the classical level, and the flat direction is

determined by θH . This flatness is lifted at the one-loop level. Such potential Veff(θH)

determines ⟨θH⟩. Then, the Higgs field obtain a finite mass.

According to the [14], the general (flat or warped) form of the one-loop effective poten-

tial is expressed as

Veff(θH) =
3

l6π3
m4

KKf(θH). (2.8.1)

where f(θH) is a dimensionless periodic function of θH with a 2π period. The Higgs mass

can be obtained by expanding Veff(θH) around the ⟨θH⟩ = θmin
H , that gives the global

minimum of Veff(θH):

m2
H = f ′′(θmin

H )
3πg24
l26

R(e2kπR − 1)

k
m4

KK (2.8.2)

∴ mH =

{
f ′′(θmin

H )
3g24

256π3

} 1
2 √

kRmKK

=

{
f ′′(θmin

H )
3g24

128π2

} 1
2 kπR

2

mW

sin
θmin
H
2

, (2.8.3)

in the warped case. In [13], the factor kπR
2 ∼ 19 and θH = π

2 gives mH = 125 GeV with

f ′′(θH)
1
2 ∼ 1.9.
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Chapter 3

6D gauge-Higgs Unification with

custodial symmetry

3.1 Motivations and purposes

In extra-dimensional models, coupling constants in 4D effective theories generally devi-

ate from the standard model values even at tree level due to the mixing with the KK

modes [26, 27, 28]. Unless mKK is very high, models need some mechanisms to suppress

such deviations. Especially a requirement that the rho parameter and the Zb̄b-coupling

do not deviate too much often imposes severe constraints on the model building. It is

known that the custodial symmetry can protect them against the corrections induced by

the mixing with the KK modes [19, 29]. Hence we focus on 6D GHU models that has the

custodial symmetry in this section.

The purpose of this chapter is to select candidates for realistic 6D GHU models by

making use of the group theoretical analysis. The analysis is useful to investigate the GHU

models because the Higgs sector is determined by the gauge group structure. There are

some works along this direction. 5D models are analyzed in Ref. [31], the tree-level Higgs

potentials in 6D models are calculated in Ref. [17], and models in arbitrary dimensions

are discussed in Ref. [32]. In these works, the custodial symmetry is not considered and

the electroweak gauge symmetry SU(2)L × U(1)Y is embedded into a simple group. Thus

the Weinberg angle θW is determined only by the group structure, and they found that

no simple group realizes the observed value of θW . However, this assumption is not indis-

pensable because the color symmetry SU(3)C is not unified anyway. Besides, any brane

localized terms allowed by the symmetries are not introduced in those works. In fact,
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the realistic models constructed so far have allowed both an extra U(1) gauge symmetry,

which is relevant to the realization of the experimental value of θW , and various terms and

fields localized at the fixed points of the orbifolds [15, 18, 22, 24]. Therefore, we include

both ingredients in our analysis. Since larger gauge groups contain more unwanted exotic

particles, we restrict the 6D gauge group to SU(3)C×G×U(1)Z , where G is a simple group

whose rank is less than four.

This chapter is organized as follows. In the next section, we explain our setup and

derive conditions for zero-modes. In Sec. 3.3, we list the zero-modes in the bosonic sector

for all the rank-two and the rank-three groups. In Sec. 3.4, we find a condition to preserve

the custodial symmetry, and provide explicit expressions of the W and the Z boson masses.

In Sec. 3.5, we discuss embeddings of quarks into 6D fermions, and search for appropriate

representations of G that the 6D fermions should belong to. In Sec. 3.6, we calculate

the Higgs potential at tree level. We summarize at Sec. 5 . In Appendix A, we collect

formulae in the Cartan-Weyl basis of the gauge group generators. In Appendix B, general

forms of the orbifold boundary conditions are shown. In Appendix C, we list irreducible

decompositions of various G representations into the SU(2)L × SU(2)R multiplets.

3.2 Setup

3.2.1 Compactified space

The 6D spacetime is assumed to be flat, and the metric is given by

ds2 = ηMNdx
MdxN = ηµνdx

µdxν + (dx4)2 + (dx5)2, (3.2.1)

where M,N = 0, 1, · · · , 5, ηµν = diag(−1, 1, 1, 1) is the 4D Minkowski metric, and the

coordinates of the extra-dimensions (x4, x5) are identified as
(
x4

x5

)
∼
(
x4

x5

)
+ 2πn1R1

(
1

0

)
+ 2πn2R2

(
cos θ

sin θ

)
, (3.2.2)

where n1 and n2 are integers, and R1, R2 > 0 and 0 < θ < π are constants. In order

to obtain a chiral 4D theory at low energies, we compactify the extra space on a two-

dimensional orbifold. All possible orbifolds are T 2/ZN (N = 2, 3, 4, 6). It is convenient to

use a complex (dimensionless) coordinate z ≡ 1
2πR1

(x4+ ix5). Then, the orbifold obeys the

identification,

z ∼ ωz + n1 + n2τ, (3.2.3)
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where ω = e2πi/N and τ ≡ R2
R1
eiθ [33]. Note that an arbitrary value of τ is allowed when

N = 2 while it must be equal to ω when N ̸= 2.

The orbifold T 2/ZN has the following fixed points in the fundamental domain [35, 39].

z = zf ≡

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, 12 ,
τ
2 ,

1+τ
2 (on T 2/Z2)

0, 2+τ
3 , 1+2τ

3 (on T 2/Z3)

0, 1+τ
2 (on T 2/Z4)

0 (on T 2/Z6)

(3.2.4)

4D fields or interactions are allowed to be introduced on these fixed points.

3.2.2 Field content

We consider a 6D gauge theory whose gauge group is SU(3)C × G × U(1)Z , where G

is a simple group. Since G must include SU(2)L × SU(2)R, its rank r is greater than

one. In this paper, we investigate cases in which r = 2, 3. In the following, we omit

SU(3)C since it is irrelevant to the discussion. The 6D gauge fields for G and U(1)Z are

denoted as AM and BZ
M , and the field strengths and the covariant derivative are defined as

F (A)
MN ≡ ∂MAN−∂NAM−i[AM , AN ], F

(Z)
MN ≡ ∂MBZ

N−∂NBZ
M , and DM ≡ ∂M−iAM−iqZBZ

M ,

where qZ is a U(1)Z charge. The 6D Lagrangian is expressed as

L =− 1

4g2A
tr
(
F (A)MNF (A)

MN

)
− 1

4g2Z
F (Z)MNF (Z)

MN + i
∑

f

Ψ̄fΓMDMΨf

+
∑

zf

L(zf)δ(2)(z − zf), (3.2.5)

where gA and gZ are the 6D gauge coupling constants for G and U(1)Z , Γ
M are the 6D

gamma matrices, and L(zf) are 4D Lagrangians localized at the fixed points z = zf .

The G gauge field AM is decomposed as

AM =
∑

i

Ci
MHi +

∑

α

W α
MEα, (3.2.6)

where {Hi, Eα} are the generators in the Cartan-Weyl basis, i.e., Hi (i = 1, · · · , r) are the
Cartan generators and α runs over all the roots of G. Since AM is Hermitian, C i

M are real

and W−α
M = (W α

M)∗. In the complex coordinate (xµ, z), the extra-dimensional components

are expressed as

Az = πR1 (Ay − iA5) , Az̄ = A†
z,

BZ
z = πR1

(
BZ

4 − iBZ
5

)
, BZ

z̄ = BZ†
z . (3.2.7)
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3.2.3 Orbifold conditions for gauge fields

As shown in Appendix B, the general orbifold boundary conditions for the gauge fields can

be expressed as

AM(x, z + 1) = AM(x, z),

BZ
µ (x, z + 1) = BZ

µ (x, z), BZ
z (x, z + 1) = BZ

z (x, z),

AM(x, z + τ) = AM(x, z),

BZ
µ (x, z + τ) = BZ

µ (x, z), BZ
z (x, z + τ) = BZ

z (x, z),

Aµ(x,ωz) = PAµ(x, z)P
−1, Az(x,ωz) = ω−1PAz(x, z)P

−1,

BZ
µ (x,ωz) = BZ

µ (x, z), BZ
z (x,ωz) = ω−1BZ

z (x, z), (3.2.8)

where P are elements of G. The orbifold conditions for 6D fermions are provided in (3.5.2).

Since the zero-modes of the gauge fields have flat profiles over the extra dimensional

space, the condition for AM to have zero-modes are determined by the choice of the ma-

trix P in (3.2.8). It is always possible to choose the generators so that P is expressed in

terms of the Cartan generators as

P = exp (ip ·H) , (3.2.9)

where p · H ≡
∑

i piHi and pi are real constants. Thus PHiP−1 = Hi and PEαP−1 =

eip·αEα, and the relevant conditions in (3.2.8) are rewritten as

C i
µ(x,ωz) = C i

µ(x, z), C i
z(x,ωz) = ω−1C i

z(x, z),

W α
µ (x,ωz) = eip·αW α

µ (x, z), W α
z (x,ωz) = ei(p·α−

2π
N )W α

z (x, z). (3.2.10)

This indicates that Ci
µ always have zero-modes while Ci

z do not irrespective of the choice

of the matrix P . Therefore the orbifold boundary conditions cannot reduce the rank of

G as mentioned in Ref. [34]. Besides, BZ
µ has a zero-mode while BZ

z does not. Namely

U(1)Z is unbroken by the orbifold conditions. In contrast, whether W α
µ and W α

z have zero-

modes depend on the choice of P . Since (3.2.10) is the ZN transformation, pi must satisfy

eiNp·α = 1. Thus possible values of p · α are

p · α =
2nαπ

N
, (3.2.11)

where nα is an integer.
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From (3.2.10), the conditions for Wα
µ and W α

z to have zero-modes are expressed as

p · α =

⎧
⎨

⎩
0, (for W α

µ )

2π
N , (for W α

z )
(3.2.12)

where the equalities hold modulo 2π.

Now we focus on P such that the orbifold bondary conditions break G to SU(2)L ×
SU(2)R × U(1)r−2. We denote the positive roots that specify SU(2)L and SU(2)R as αL

and αR, respectively. Then they must satisfy αL · αR = 0, and αL + αR is not a root, and

pi must satisfy

p · αL = p · αR = 0, (mod 2π)

p · β =
2nβπ

N
, (nβ ∈ Z, nβ ̸∈ NZ) (3.2.13)

where β is the root of G other than αL and αR.

3.3 Zero-modes of gauge and Higgs fields

In this section, we investigate the field content of the zero-modes from the 6D gauge fields.

3.3.1 Rank two groups

First we consider a case that r = 2, i.e., G = SO(5),G2. In this case, the unbroken

gauge group by the orbifold conditions is SU(2)L × SU(2)R × U(1)Z . We do not consider

G =SU(3) because it does not contain SU(2)L × SU(2)R as a subgroup. The roots of G

can be expressed as linear combinations of two-dimensional basis vectors ei (i = 1, 2).

SO(5)

The roots are {±ei ± ej,±ei} (1 ≤ i ̸= j ≤ 2). We can choose the unbroken sub-

group SU(2)L × SU(2)R as

(αL,αR) = (e1 + e2, e1 − e2). (3.3.1)

The other possible choices are essentially equivalent to this case.1 Then the adjoint rep-

resentation of G is decomposed into the irreducible representations of SU(2)L × SU(2)R
as

10 = (3, 1) + (1, 3) + (2, 2). (3.3.2)
1We cannot choose them as (αL,αR) = (e1, e2) because αL + αR is a root in such a case.
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The candidate for the Higgs scalars is a bidoublet (2, 2), which consists of ±e1 and ±e2.

The conditions in (3.2.13) are now expressed as

p1 + p2 = p1 − p2 = 0, (mod 2π)

p1 =
2nPπ

N
. (nP ∈ Z, nP ̸∈ NZ) (3.3.3)

It is enough to search the solution in a range 0 ≤ p1, p2 < 2π. The solution exists when

N ̸= 3, and it is

(p1, p2) = (π, π), (3.3.4)

or

P = exp {iπ(H1 +H2)} . (3.3.5)

Therefore the zero-mode condition for (2, 2) is expressed as

π =
2π

N
. (3.3.6)

Namely, we have a bidoublet Higgs when N = 2, while no Higgs exists in the other cases.

G2

The roots are {±(e1 ±
√
3e2)/2,±(e1 ± 1√

3
e2)/2,±e1,±e2/

√
3}. We can choose the

SU(2)L × SU(2)R subgroup as

(αL,αR) =

(
e1,

e2

√
3

)
,

(
e2

√
3
, e1

)
. (3.3.7)

The other possible choices are essentially equivalent to these cases.

Let us first consider the case of (αL,αR) = (e1, e2/
√
3). The irreducible decomposition

of the adjoint representation of G is

14 = (3, 1) + (1, 3) + (2, 4). (3.3.8)

The candidate for the Higgs scalars is (2, 4). The conditions in (3.2.13) are expressed as

p1 =
p2√
3
= 0, (mod 2π)

p1
2

+
p2
2
√
3
=

2nPπ

N
. (nP ∈ Z, nP ̸∈ NZ) (3.3.9)

It is enough to search the solution in a range 0 ≤ p1,
p2√
3
< 2π. The solution exists when

N ̸= 3, and it is

P = exp
(
2
√
3πiH2

)
. (3.3.10)
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Therefore the zero-mode condition for (2, 4) is expressed as

π =
2π

N
. (3.3.11)

Namely, we have a (2, 4) multiplet as the Higgs scalar zero-modes when N = 2, while no

Higgs exists in the other cases.

In the case of (αL,αR) = (e2/
√
3, e1), the results are obtained by exchanging SU(2)L

and SU(2)R in the above resuts. Hence we do not have SU(2)L-doublet Higgses.

3.3.2 Rank three groups

Next we consider a case that r = 3, i.e., G =SU(4),SO(7),Sp(6). In this case, the unbroken

gauge group by the orbifold conditions is SU(2)L×SU(2)R×U(1)X×U(1)Z . The roots of G

can be expressed as linear combinations of three-dimensional basis vectors ei (i = 1, 2, 3).

SU(4)

The roots are {
√
2e1,

√
2e2, ±e1

√
2
± e2

√
2
+e3}.2 We can choose the SU(2)L×SU(2)R subgroup

as

(αL,αR) = (
√
2e1,

√
2e2). (3.3.12)

The other choices are essentially equivalent to this case. The U(1)X generator QX is

identified as

QX = 2e3 ·H = 2H3. (3.3.13)

The irreducible decomposition of the adjoint representation of G is

15 = (3, 1)0 + (1, 3)0 + (2, 2)+2 + (2, 2)−2 + (1, 1)0, (3.3.14)

where (3, 1)0, (1, 3)0 and (1, 1)0 correspond to SU(2)L, SU(2)R and U(1)X generators,

respectively. Thus the candidates for the Higgs scalars are two bidoublets. Independent

conditions in (3.2.13) are expressed as

√
2p1 =

√
2p2 = 0, (mod 2π)

p1√
2
+

p2√
2
+ p3 =

2nPπ

N
, (nP ∈ Z, nP ̸∈ NZ) (3.3.15)

2It is sometimes convenient to embed these roots into a four-dimensional vector space. Then they are

expressed as êI − êJ (1 ≤ I ̸= J ≤ 4), where êI are the basis vectors of the embeded space. The original

basis vectors are expressed as e1 = 1√
2
(ê1 − ê2), e2 = 1√

2
(ê3 − ê4) and e3 = 1

2 (ê
1 + ê2 − ê3 − ê4).
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The solution is

P = exp

(
2nPπi

N
H3

)
, (3.3.16)

where nP = 1, · · · , N − 1. Therefore the zero-mode conditions for (2, 2)±2 are

±2nPπ

N
=

2π

N
. (mod 2π) (3.3.17)

Therefore, the scalar zero-modes we have are

(2, 2)+2, (2, 2)−2 : (when N = 2)

(2, 2)+2 : (when N = 3, 4, 6 and nP = 1)

(2, 2)−2 : (when N = 3, 4, 6 and nP = N − 1)

Nothing : (in the other cases) (3.3.18)

SO(7)

The roots are {±ei ± ej,±ei} (1 ≤ i ̸= j ≤ 3). Essentially inequivalent choices of the

SU(2)L × SU(2)R subgroup are

(αL,αR) = (e1 + e2, e1 − e2), (e1 + e2, e3), (e3, e1 + e2). (3.3.19)

(I) (αL,αR) = (e1 + e2, e1 − e2)

The U(1)X generator is

QX = e3 ·H = H3. (3.3.20)

The irreducible decomposition of the adjoint representation of G is

21 = (3, 1)0 + (1, 3)0 + (2, 2)+1 + (2, 2)−1 + (2, 2)0

+(1, 1)+1 + (1, 1)−1 + (1, 1)0, (3.3.21)

where (3, 1)0, (1, 3)0 and (1, 1)0 correspond to SU(2)L, SU(2)R and U(1)X genera-

tors, respectively. Thus the candidates for the scalar zero-modes are three bidoublets

and two singlets. Independent conditions in (3.2.13) are expressed as

p1 + p2 = p1 − p2 = 0, (mod 2π)

p1 + p3, p1, p3 =
2nPπ

N
. (nP ∈ Z, nP ̸∈ NZ) (3.3.22)
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It is enough to search the solution in a range 0 ≤ p1, p2, p3 < 2π. The solution exists

only when N = 4, 6, and it is

P = exp

{
iπ

(
H1 +H2 +

2nP

N
H3

)}
, (3.3.23)

where nP ̸= 0, N/2. Therefore the zero-mode conditions for (2, 2)±1, (2, 2)0 and

(1, 1)±1 are

π ± 2nPπ

N
=

2π

N
, π =

2π

N
, ±2nPπ

N
=

2π

N
, (3.3.24)

respectively. The double-signs correspond.

When N = 4, the scalar zero-modes we have are

(2, 2)−1, (1, 1)+1 : (when nP = 1)

(2, 2)+1, (1, 1)−1 : (when nP = 3) (3.3.25)

When N = 6, they are

(1, 1)+1 : (when nP = 1)

(2, 2)−1 : (when nP = 2)

(2, 2)+1 : (when nP = 4)

(1, 1)−1 : (when nP = 5) (3.3.26)

(II) (αL,αR) = (e1 + e2, e3)

The U(1)X generator is

QX = (e1 − e2) ·H = H1 −H2. (3.3.27)

The irreducible decomposition of the adjoint representation of G is

21 = (3, 1)0 + (1, 3)0 + (2, 3)+1 + (2, 3)−1

+(1, 1)+2 + (1, 1)−2 + (1, 1)0. (3.3.28)

The candidates for the scalar zero-modes are (2, 3)±1 and (1, 1)±1. Independent

conditions in (3.2.13) are expressed as

p1 + p2 = p3 = 0, (mod 2π)

p1 + p3, p2 + p3, p1 − p2 =
2nPπ

N
. (nP ∈ Z, nP ̸∈ NZ) (3.3.29)
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It is enough to search the solution in a range 0 ≤ p1, p2, p3 < 2π. The solution exists

when N = 3, 4, 6, and it is

P = exp

{
2nPπi

N
(H1 −H2)

}
, (3.3.30)

where nP ̸= 0, N/2. Therefore the zero-mode conditions for (2, 3)±1 and (1, 1)±1

are

±2nPπ

N
=

2π

N
, ±4nPπ

N
=

2π

N
, (3.3.31)

respectively.

When N = 3, the scalar zero-modes we have are

(2, 3)+1, (1, 1)−2 : (when nP = 1)

(2, 3)−1, (1, 1)+2 : (when nP = 2) (3.3.32)

When N = 4, they are

(2, 3)+1 : (when nP = 1)

(2, 3)−1 : (when nP = 3) (3.3.33)

When N = 6, they are

(2, 3)+1 : (when nP = 1)

Nothing : (when nP = 2, 4)

(2, 3)−1 : (when nP = 5) (3.3.34)

(III) (αL,αR) = (e1 + e2, e3)

The results are obtained by exchanging SU(2)L and SU(2)R in the case (II). Hence

we do not have SU(2)L-doublet Higgses.

Sp(6)

The roots are {±ei ± ej,±2ei} (1 ≤ i ̸= j ≤ 3). Essentially inequivalent choices of the

SU(2)L × SU(2)R are

(αL,αR) = (2e1, 2e2), (e1 + e2, 2e3), (2e3, e1 + e2). (3.3.35)
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(I) (αL,αR) = (2e1, 2e2)

The U(1)X generator is

QX = e3 ·H = H3. (3.3.36)

The irreducible decomposition of the adjoint representation of G is

21 = (3, 1)0 + (1, 3)0 + (2, 2)0 + (2, 1)+1 + (2, 1)−1

+(1, 2)+1 + (1, 2)−1 + (1, 1)+2 + (1, 1)−2 + (1, 1)0. (3.3.37)

The candidates for the scalar zero-modes are four SU(2)L-doublets and six SU(2)L-

singlets. Independent conditions in (3.2.13) are expressed as

2p1 = 2p2 = 0, (mod 2π)

p1 + p2, p1 ± p3, p2 ± p3, 2p3 =
2nπ

N
, (n ∈ Z, n ̸∈ NZ) (3.3.38)

The solutions exist only when N = 4, 6. They are

P =

⎧
⎨

⎩
P (1)
n ≡ exp

{
iπ
(
H2 +

2nπ
N H3

)}
,

P (2)
n ≡ exp

{
iπ
(
H1 +

2nπ
N H3

)}
,

(3.3.39)

where n ̸= 0, N/2.

When N = 4, the scalar zero-modes we have are

(2, 1)+1, (1, 2)−1 : (for P (1)
1 or P (2)

3 )

(2, 1)−1, (1, 2)+1 : (for P (1)
3 or P (2)

1 ) (3.3.40)

When N = 6, they are

(2, 1)+1 : (for P (1)
1 or P (2)

4 )

(1, 2)−1 : (for P (1)
2 or P (2)

5 )

(1, 2)+1 : (for P (1)
4 or P (2)

1 )

(2, 1)−1 : (for P (1)
5 or P (2)

2 ) (3.3.41)

(II) (αL,αR) = (e1 + e2, 2e3)

The U(1)X generator is

QX =
(
e1 − e2

)
·H = H1 −H2. (3.3.42)
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The irreducible decomposition of the adjoint representation of G is

21 = (3, 1)0 + (1, 3)0 + (3, 1)+2 + (3, 1)−2 + (2, 2)+1 + (2, 2)−1 + (1, 1)0.

(3.3.43)

The conditions in (3.2.13) are expressed as

p1 + p2 = 2p3 = 0, (mod 2π)

p1 + p3, p2 + p3, 2p1, 2p2 =
2nπ

N
, (n ∈ Z, n ̸∈ NZ) (3.3.44)

where n ̸= 0, N/2. The solutions exist only when N = 3, 4, 6. They are

P =

⎧
⎨

⎩
P (1)
n ≡ exp

{
2nπi
N (H1 −H2)

}
,

P (2)
n ≡ exp

{
iπ
(
2n−N

N (H1 −H2) +H3

)}
.

(3.3.45)

When N = 3, the scalar zero-modes we have are

(3, 1)−2, (2, 2)+1 : (for P (1)
1 or P (2)

1 )

(3, 1)+2, (2, 2)−1 : (for P (1)
2 or P (2)

2 ) (3.3.46)

When N = 4, they are

(2, 2)+1 : (for P (1)
1 or P (2)

1 )

(2, 2)−1 : (for P (1)
3 or P (2)

3 ) (3.3.47)

When N = 6, they are

(2, 2)+1 : (for P (1)
1 or P (2)

1 )

(2, 2)−1 : (for P (1)
5 or P (2)

5 )

Nothing : (in the other cases) (3.3.48)

(III) (αL,αR) = (2e3, e1 + e2)

The results are obtained by exchanging SU(2)L and SU(2)R in the case (II).
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3.4 Custodial symmetry and Weinberg angle

3.4.1 Custodial symmetry

Here we consider a condition that the custodial symmetry is preserved after the electroweak

symmetry is broken.

The SU(2)L and SU(2)R generators are

(T±
L , T 3

L) =

(
E±αL

|αL|
,
αL ·H
|αL|2

)
, (T±

R , T 3
R) =

(
E±αR

|αR|
,
αR ·H
|αR|2

)
, (3.4.1)

respectively. Thus we can rewrite (3.2.6) as

Aµ =W+
LµT

+
L +W−

LµT
−
L +W 3

LµT
3
L +W+

RµT
+
R +W−

RµT
−
R +W 3

RµT
3
R

+BX
µ x ·H + · · · , (3.4.2)

where

W±
Lµ ≡ |αL|W±αL

µ , W 3
Lµ ≡ αL · Cµ,

W±
Rµ ≡ |αR|W±αR , W 3

Rµ ≡ αR · Cµ, (3.4.3)

and BX
µ ≡ x·Cµ

|x|2 is the U(1)X gauge field that does not exist when r = 2. The ellipses denote

components that do not have zero-modes. Since the generators in (3.4.1) are normalized

as

tr
(
T+
L T−

L

)
= tr

(
(T 3

L)
2
)
=

1

|αL|2
, tr

(
T+
R T−

R

)
= tr

(
(T 3

R)
2
)
=

1

|αR|2
, (3.4.4)

the canonically normalized zero-mode gauge fields are

Ŵ±,3
Lµ ≡

√
A

gA |αL|
W±,3

Lµ , Ŵ±,3
Rµ ≡

√
A

gA |αR|
W±,3

Rµ , B̂Z
µ ≡

√
A

gZ
BZ

µ , (3.4.5)

where A is the area of the fundamental domain of T 2/ZN .

Since we have assumed that SU(2)R × U(1)Z is unbroken by the orbifold boundary

conditions, we introduce some 4D scalar fields at one of the fixed points of T 2/ZN in order

to break it to U(1)Y . We demand that the custodial symmetry SU(2)V ⊂ SU(2)L×SU(2)R

remains unbroken after the Higgs fields have VEVs. The generators of SU(2)V are

T±
V ≡ T±

L + T±
R =

E±αL

|αL|
+

E±αR

|αR|
,

T 3
V ≡ T 3

L + T 3
R =

αL ·H
|αL|2

+
αR ·H
|αR|2

. (3.4.6)
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Thus the conditions for SU(2)V to be unbroken are

[
T±
V , ⟨Az⟩

]
=
∑

β

⟨W β
z ⟩
(
N±αL,βEβ±αL

|αL|
+

N±αR,βEβ±αR

|αR|

)
= 0,

[
T 3
V , ⟨Az⟩

]
=
∑

β

⟨W β
z ⟩
(
αL · β
|αL|2

+
αR · β
|αR|2

)
Eβ = 0, (3.4.7)

since Ci
z do not have zero-modes and thus ⟨C i

z⟩ = 0.

Rank two groups

Let us first consider the rank two groups. We introduce the following Lagrangian at z = 0.3

Lbd =
{
−Dµφ

†Dµφ− V (φ)
}
δ(z), (3.4.8)

where φ is a complex scalar field belonging to (1, 2)+1/2 under SU(2)L × SU(2)R ×U(1)Z ,

and V (φ) is a potential that force φ to have a nonvanishing VEV. After φ gets a VEV,

SU(2)R × U(1)Z is broken to U(1)Y , and the corresponding zero-mode gauge field is ex-

pressed as

B̂Y
µ ≡ sin θZŴ

3
Rµ + cos θZB̂

Z
µ , (3.4.9)

where the mixing angle θZ is determined by tan θZ = gZ/(gA |αR|). The hypercharge

operator Y is identified as

Y = T 3
R +QZ =

αR ·H
|αR|2

+QZ . (3.4.10)

After W β
z have nonvanishing VEVs, SU(2)L × U(1)Y is broken to the electromagnetic

symmetry U(1)em. Since W β
z is U(1)Z neutral and only U(1)em neutral W β

z can have

nonvanishing VEVs, the root β must satisfy

αL · β
|αL|2

+
αR · β
|αR|2

= 0, (3.4.11)

if ⟨W β
z ⟩ ≠ 0. Thus the second condition in (3.4.7) is automatically satisfied. The roots

that satisfy (3.4.11) are ±e2 ∈ (2, 2) in SO(5), and ±
(
e1

2 − e2

2
√
3

)
∈ (2, 4) in G2. Then,

from the first condition in (3.4.7), we obtain a condition,

∣∣∣⟨W e2

z ⟩
∣∣∣ =

∣∣∣⟨W−e2

z ⟩
∣∣∣ , ⟨W β

z ⟩ = 0, (β ̸= ±e2) (3.4.12)

for SO(5), while no nonvanishing VEV is allowed for G2.
3Of course, we can assume that Lbd is localized at another fixed point.
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Rank three groups

Next consider the rank three groups. Since the unbroken gauge symmetry is SU(2)L ×
SU(2)R × U(1)X × U(1)Z by the orbifold conditions, let us first assume that φ in (3.4.8)

also has a nonzero U(1)X charge in order to obtain SU(2)L ×U(1)Y at low energies. Then

the U(1)Y gauge field BY
µ becomes a linear combination of W 3

Rµ, B
X
µ and BZ

µ , and the

hypercharge is identified as

Y = T 3
R +QX +QZ =

αR ·H
|αR|2

+ x ·H +QZ . (3.4.13)

Thus the condition (3.4.11) now becomes

αL · β
|αL|2

+
αR · β
|αR|2

+ x · β = 0. (3.4.14)

Then the second condition in (3.4.7) requires that both (3.4.11) and x · β = 0 must be

satisfied if ⟨W β
z ⟩ ̸= 0. This meas that scalar components have nonzero VEVs only if the

corresponding roots β satisfy both (3.4.11) and QX = 0. Such roots do not exist among

those satisfying the zero-modes listed up in Sec. 3.3.2. Therefore we introduce two complex

scalar fields φ1 and φ2 instead of φ on the fixed point,

Lbd =
{
−Dµφ

†
1Dµφ1 −Dµφ

†
2Dµφ2 − V (φ1,φ2)

}
δ(z), (3.4.15)

where φ1 and φ2 are complex scalars belonging to (1, 2)0,+1/2 and (1, 1)+1,0 respectively

under SU(2)L×SU(2)R×U(1)X ×U(1)Z , and V (φ1,φ2) is a potential for them. Since φ1 is

neutral for U(1)X , the U(1)Y gauge field BY
µ is independent of BX

µ . Hence the hypercharge

is now identified as (3.4.10). The U(1)X charges are no longer relevant to the U(1)Y

and U(1)em charges because U(1)X is completely broken by a VEV of another scalar φ2.

Thus the U(1)Y gauge field is given by (3.4.9). In this case, the U(1)em neutral condition

becomes (3.4.11), which is consistent with the second condition in (3.4.7). As a result,

possible nonvanishing VEVs are as follows.

∣∣∣⟨W±(e1−e3)
z ⟩

∣∣∣ =
∣∣∣⟨W±(e2−e4)

z ⟩
∣∣∣ ∈ (2, 2)±2, in SU(4)

∣∣∣⟨W±(e2+e3)
z ⟩

∣∣∣ =
∣∣∣⟨W±(−e2+e3)

z ⟩
∣∣∣ ∈ (2, 2)±1,

∣∣∣⟨W±e3

z ⟩
∣∣∣ ∈ (1, 1)±1 in SO(7) (I),

∣∣∣⟨W±(e1−e3)
z ⟩

∣∣∣ =
∣∣∣⟨W±(−e2+e3)

z ⟩
∣∣∣ ∈ (2, 2)±1 in Sp(6) (II), Sp(6) (III), (3.4.16)

where the double-signs correspond.
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In summary, fields that can have nonzero VEVs are the neutral components of a bidou-

blet (2, 2) or a singlet (1, 1). The above conditions indicate that a bidoublet Ha must

have a VEV:

⟨Ha⟩ =
(
va

va

)
, (3.4.17)

where va > 0, if we define a phase of each field component appropriately.

3.4.2 Weinberg angle and W and Z boson masses

In the approximation that the W and Z bosons have constant profiles over the extra

dimensions, the 4D SU(2)L and U(1)Y gauge coupling constants are read off from the

couplings to the matter zero-modes, and are identified as

g =
gA |αL|√

A
, g′ =

gAgZ |αR|√
A(g2A |αR|2 + g2Z)

. (3.4.18)

Thus the Weinberg angle is calculated as

tan2 θW ≡ g′2

g2
=

g2Z |αR|2

|αL|2 (g2A |αR|2 + g2Z)
. (3.4.19)

We can obtain the experimental value tan2 θW ≃ 0.30 by tuning the ratio gZ/gA.

Next we derive the expressions of the W and Z boson masses. From (3.4.5) and (3.4.9),

the expression (3.4.2) becomes

Aµ = W+
LµT

+
L +W−

LµT
−
L +W 3

LµT
3
L + sin θZB

Y
µ T

3
R + · · · , (3.4.20)

where BY
µ ≡ gA|αR|√

A B̂Y
µ , after the breaking SU(2)R × U(1)Z → U(1)Y . Then it follows that

[Aµ, ⟨Az⟩] =
∑

β

W β
z

{
W+

L,µ

NαL,β

|αL|
Eβ+αL +W−

Lµ

N−αL,β

|αL|
Eβ−αL

+

(
W 3

Lµ

αL · β
|αL|2

+BY
µ sin θZ

αR · β
|αR|2

)
Eβ

}
. (3.4.21)

From the results in the previous subsections, the only components that contribute to the

W and Z boson masses are the neutral components of bidoublets. Since the roots that

form a bidoublet are expressed as

⎛

⎜⎝
γa + αL

αR−→ γa + αL + αR

↑αL ↑αL

γa
αR−→ γa + αR

⎞

⎟⎠ , (3.4.22)
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where a labels bidoublets, (3.4.21) are rewritten as

[Aµ, ⟨Az⟩] =
∑

γa

[
⟨W γa+αL

z ⟩
{
eiζ√
2
W−

LµEγa +

(
1

2
W 3

Lµ −
sin θZ
2

BY
µ

)
Eγa+αL

}

+⟨W γa+αR
z ⟩

{
eiη√
2
W+

LµEγa+αL+αR −
(
1

2
W 3

Lµ −
sin θZ
2

BY
µ

)
Eγa+αR

}]
,

(3.4.23)

where γa runs over the T 3
L = T 3

R = −1
2 components of the zero-mode bidoublets. We

have used that |N−αL,γa+αL |
2 = |NαL,γa+αR |

2 = |αL|2
2 , and ζ ≡ arg(N−αL,γa+αL) and η ≡

arg(NαL,γa+αR). Thus the relevant terms in 6D Lagrangian are calculated as

L = − 1

4g2A
tr(F (A)MNF (A)

MN) + · · · = − 1

2g2Aπ
2R2

1

tr
(
[Aµ, ⟨Az⟩] [Aµ, ⟨Az⟩]†

)
+ · · ·

= −
∑

a

|⟨W γa+αL
z ⟩|2 + |⟨W γa+αR

z ⟩|2

2g2Aπ
2R2

1

{
1

2
W+µ

L W−
Lµ +

(
1

2
W 3

Lµ −
sin θZ
2

Bµ

)2
}

= −g2
∑

a v
2
a

A

{
Ŵ+µ

L Ŵ−
Lµ +

1

2

(
Ŵ 3

Lµ −
|αR| sin θZ

|αL|
B̂µ

)2
}
. (3.4.24)

At the last step, we have used that (3.4.5), and |⟨W γa+αL
z ⟩| = |⟨W γa+αR

z ⟩| ≡
√
2

|αL|gπR1va

(g: 4D SU(2)L gauge coupling), which follows from (3.4.12) or (3.4.16). We obtain the W

and the Z boson mass terms by integrating (3.4.24) over the extra dimensions, and their

masses are read off as

mW = g
∑

a

va,

mZ =

(
1 +

|αR|2 sin2 θZ

|αL|2

)1/2

mW =

(
1 +

g2Z |αR|2

|αL|2 (g2A |αR|2 + g2Z)

)1/2

mW . (3.4.25)

From these and (3.4.19), we find that ρ ≡ m2
W/(m2

Z cos2 θW ) = 1. This is expected

because we have assumed that only SU(2)L doublets and singlets have nonzero VEVs and

neglected the z-dependence of the mode functions for the W and the Z bosons. The

custodial symmetry plays a crucial role when such z-dependence is taken into account.

3.5 Matter field

We consider a case that quarks and leptons live in the bulk. This case is interesting

because the hierarchical structure of the Yukawa coupling constants can be realized by the
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wave function localization [36, 37], and the generation structure can also be obtained by

a background magnetic flux [39]. In the following, we focus on the quark sector, but a

similar argument is also applicable to the lepton sector.

3.5.1 Zero-mode conditions

A 6D Weyl fermion Ψχ6 with the 6D chirality χ6 = ± is decomposed as

Ψχ6 =
∑

χ4=±
Ψχ6,χ4 , (3.5.1)

where χ4 = ± is the 4D chirality. The orbifold boundary conditions for Ψχ6,χ4 are given

by [51]

Ψχ6,χ4(x, z + 1) = Ψχ6,χ4(x, z),

Ψχ6,χ4(x, z + τ) = Ψχ6,χ4(x, z),

Ψχ6,χ4(x,ωz) = ω−χ4χ6
2 eiϕωPΨχ6,χ4(x, z). (3.5.2)

A factor ω−χ4χ6
2 appears because a 6D spinor is charged under a rotation in the extra-

dimensional space. The phase ϕω satisfies (B.0.4).

As pointed out in Ref. [38], the generations and the hierarchy among the Yukawa

couplings can be obtained by introducing an extra gauge symmetry GF and assuming a

magnetic flux on T 2/ZN and the Wilson-line phases for it. The zero-modes are contained

in Ψχ6,χ4 as

Ψχ6,χ4(x, z) =
jmax∑

j=1

∑

µ

f (j)µ
χ6

(z)|µ⟩ψ(j)µ
χ4

(x) + · · · , (3.5.3)

where µ runs over the weights of the zero-mode states,4 and the ellipsis denotes the nonzero

KK modes. The number of the zero-modes jmax is determined by the magnetic flux [39].

The zero-mode functions f (j)µ
χ6 (z) are determined so that (3.5.3) satisfies the first two

conditions in (3.5.2). From the last condition in (3.5.2), we obtain

ψ(j)µ
χ4

(x) = ω−χ4χ6
2 eiϕωPψ(j)µ

χ4
(x). (3.5.4)

Namely, the zero-mode is an eigenvector of ω−χ4χ6
2 eiϕωP with an eigenvalue 1. Denote the

highest weight of a representation R that Ψχ4,χ6 belongs to as µmax. Then µ is expressed

as

µ = µmax −
∑

i

kiαi, (3.5.5)

4Do not confuse it with the 4D Lorentz index.
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where ki are non-negative integers. Since PN |µ⟩ = eiNp·µ|µ⟩ = eiNp·µmax |µ⟩,5 the phase ϕω

is determined by (B.0.4) as ϕω = π
N (2mω +1)−p ·µmax, where mω = 0, 1, · · · , N −1. Thus

we find that

ω−χ4χ6
2 eiϕωP |µ⟩ = e−

2πi
N ·χ4χ6

2 exp

(
(2mω + 1)πi

N
− ip · µmax

)
eip·µ|µ⟩

= exp

(
πi(2mω + 1− χ4χ6)

N
− i
∑

i

ki(p · αi)

)
|µ⟩. (3.5.6)

Namely, the zero-mode condition for the state |µ⟩ is

π(2mω + 1− χ4χ6)

N
−
∑

i

ki(p · αi) = 0. (mod 2π) (3.5.7)

3.5.2 Zb̄LbL coupling

When the quarks live in the bulk, the Zb̄LbL coupling can receive a large correction induced

by the diagrams exchanging of the KK gauge and fermion modes. The authors of Ref. [29]

pointed out that the custodial symmetry plays an important role to suppress the deviation

of this coupling from the standard model value. The Zb̄LbL coupling is protected if the

theory has a parity symmetry PLR that exchanges SU(2)L and SU(2)R, and bL is a com-

ponent of T 3
L = T 3

R = −1
2 in a bidoublet (2, 2) for SU(2)L × SU(2)R. Since the Higgs field

also belongs to (2, 2), the right-handed quarks should belong to (1, 1) or (1, 3) + (3, 1).

Cases in which the bosonic sector has the parity symmetry PLR and a scalar bidoublet

are SO(5), SU(4) and SO(7) (I) in Sec. 3.3. In Appendix C, we list the irreducible repre-

sentations of these groups whose dimensions are less than 30, and their decomposition into

the SU(2)L × SU(2)R(×U(1)X) multiplets. There is no (1, 3) + (3, 1) multiplets included

in the list. Hence the left-handed and the right-handed quarks should be embedded into

(2, 2) and (1, 1), respectively.

3.5.3 Yukawa coupling constants

General expression

The Yukawa couplings originate from the 6D minimal couplings in the kinetic term,

iΨ̄χ6Γ
MDMΨχ6 = − iχ6

πR1
Ψ̄χ6,χ4=χ6AzΨχ6,χ4=−χ6 + h.c. + · · · . The canonically normal-

ized Higgs zero-mode Hβ is contained in Az as Az =
∑

β

√
2

|αL|gπR1HβEβ + · · · , where g
5We have used (3.2.11) at the second equality.
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is the SU(2)L gauge coupling constant (see (3.6.5)). Then the Yukawa couplings in 4D

effective Lagrangian are expressed as

Lyukawa =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

i,j

(
∑

β,µL

yRHRLRR
(+)ij

(
Hβ
)∗
ψ̄(i)µL

L ψ(j)µL+β
R + h.c.

)
(χ6 = +)

∑

i,j

(
∑

β,µL

yRHRLRR
(−)ij Hβψ̄(i)µL

L ψ(j)µL−β
R + h.c.

)
(χ6 = −)

, (3.5.8)

whereRH , RL andRR are irreducible representations of SU(2)L×SU(2)R(×U(1)X)×U(1)Z

that |β⟩, |µL⟩ and |µR⟩ = |µL + χ6β⟩ belong to, and

yRHRLRR
(+)ij ≡ i

√
2g⟨µL|E−β|µL + β⟩

∫
d2z f (i)µL∗

+,0 (z)f (j)µL+β
+,0 (z),

yRHRLRR
(−)ij ≡ i

√
2g⟨µL|Eβ|µL − β⟩

∫
d2z f (i)µL∗

−,0 (z)f (j)µL−β
−,0 (z). (3.5.9)

Note that these coupling constants only depend on the representations {RH ,RL,RR}, and
take common values for β ∈ RH and µL ∈ RL.

Embedding of quarks

Exponentially small Yukawa couplings can be obtained by using the wave function local-

ization in the extra dimensions [36, 37].6 For the third generation, we assume that the

overlap integrals in (3.5.9) do not provide any suppression factors, i.e., equal one. Then

the Yukawa couplings is determined only by the group-theoretical factors. In the following,

we focus on the third generation quarks.

Consider a 6D Dirac fermions Ψ = Ψ++Ψ− that belongs to the representation R. The

theory is assumed to be symmetric under an exchange: Ψ+ ↔ −Ψ− so that a 6D mass

term MΨ(Ψ̄+Ψ− + Ψ̄−Ψ+) is prohibited. We also assume that Ψχ6,− and Ψχ6,+ have zero-

modes Q(χ6)
L ∈ (2, 2) and λ(χ6)

R ∈ (1, 1). The Higgs fields Hβ that couple to them form

bidoublets Ha. Then, from (3.5.8), the Yukawa couplings from i
∑

χ6=± Ψ̄χ6Γ
MDMΨχ6

before the breaking of SU(2)R × U(1)Z at the fixed point are expressed as

Lyukawa =
∑

a

{
y(+)
a tr

(
Q̄(+)

L H̃a

)
λ(+)
R + y(−)

a tr
(
Q̄(−)

L Ha

)
λ(−)
R + h.c.

}
, (3.5.10)

6This can be realized by the Wilson-line phases for the extra flavor gauge symmetry GF in the presence

of a magnetic flux [38].
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where H̃a ≡ σ2H∗
aσ2 and

y(+)
a = i

√
2g⟨µL|E−β|µL + β⟩ = i

√
2gN∗

β,µL
,

y(−)
a = i

√
2g⟨νL|Eβ|νL − β⟩ = i

√
2gN∗

−β,νL
. (3.5.11)

Here |µL⟩, |νL⟩ ∈ (2, 2), |µL+β⟩, |νL−β⟩ ∈ (1, 1), and a complex constant Nβ,µ is defined

below (A.0.3). Note that Q(+)
L and Q(−)

L (λ(+)
R and λ(−)

R ) belong to different (2, 2) ((1, 1))

in R because the same (2, 2) ((1, 1)) cannot satisfy (3.5.7) for χ6 = ± simultaneously.

We denote them as Q(χ6)
L ∈ (2, 2)χ6 and λ(χ6)

R ∈ (1, 1)χ6 . The Yukawa couplings depend

on how the quark fields are contained in Q(±)
L and λ(±)

R .

As we will see in Sec. 3.6, the Higgs potential at tree level only contains quartic terms.

The electroweak symmetry breaking occurs at one-loop level, and the top Yukawa coupling

provides a dominant contribution to the one-loop Higgs potential. In general, such one-loop

potential breaks SU(2)L × SU(2)R, and thus the Higgs VEVs are not aligned as (3.4.17).

Namely the custodial symmetry is broken. A simple way to avoid this difficulty is to assume

that the quark fields couple to the Higgs fields only through a combinationHa+H̃a. In order

to achieve this, the quark fields must be equally contained in both Ψ+ and Ψ−. Specifically

we introduce 4D fermions ζR ∈ (2, 2) and ηL ∈ (1, 1) localized at a fixed point, which

transform as ζR → −ζR and ηL → −ηL under Ψ± → −Ψ∓. Then combinations Q′
L ≡

(−Q(+)
L + Q(−)

L )/
√
2 and λ′R ≡ (−λ(+)

R + λ(−)
R )/

√
2 have masses with them at the fixed

point and are decoupled at low energies. Then we obtain the desired form of the Yukawa

couplings,7

Lyukawa =
yλ
2

∑

a

tr
{
Q̄L

(
Ha + H̃a

)}
λR + h.c.+ · · · , (3.5.12)

where yλ ≡ y(+)
a = y(−)

a , QL ≡ (Q(+)
L +Q(−)

L )/
√
2 and λR ≡ (λ(+)

R + λ(−)
R )/

√
2.

Now we will see how the quark fields should be embedded into 6D fields. For simplicity,

we consider a case that there is one Higgs bidoublet H as a zero-mode for a while. We

introduce two 6D Dirac fermions Ψ(2/3) = Ψ(2/3)
+ + Ψ(2/3)

− and Ψ(−1/3) = Ψ(−1/3)
+ + Ψ(−1/3)

− ,

whose U(1)Z charges are 2/3 and −1/3, respectively. Let us assume that Ψ(qZ) (qZ =

2/3,−1/3) contain Q(qZ)
L ∈ (2, 2) and λ(qZ)

R ∈ (1, 1) as zero-modes. The bidoublets are

decomposed as

Q(2/3)
L = (Q(1)

L , Q(2)
L ), Q(−1/3)

L = (Q(3)
L , Q(4)

L ), H = (H̃2, H1), (3.5.13)

7Notice that Q(∓)
R and λ(∓)

L also satisfy the zero-mode condition (3.5.7) when Q(±)
L and λ(±)

R are zero-

modes. So we need additional 4D localized fermions to decouple them.
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where H̃ i
2 ≡ ϵijH

j∗
1 , and {Q(1)

L , Q(3)
L , H̃2} and {Q(2)

L , Q(4)
L , H1} are SU(2)L doublets whose

T 3
R eigenvalues are −1/2 and 1/2, respectively. Then the Yukawa couplings in the form of

(3.5.12) are expressed as

Lyukawa =
yt
2
tr
{
Q(2/3)†

L

(
H + H̃

)}
tR +

yb
2
tr
{
Q(−1/3)†

L

(
H + H̃

)}
bR + h.c.

=
yt
2

{
Q(1)†

L

(
H̃2 + H̃1

)
+Q(2)†

L

(
H̃2 + H̃1

)}
tR

+
yb
2

{
Q(3)†

L (H1 +H2) +Q(4)†
L (H1 +H2)

}
bR + h.c., (3.5.14)

where yt and yb are calculated from (3.5.11). Only a combination H1 +H2 couples to the

quarks. Thus this combination obtains a tachyonic mass while the other combination H1−
H2 does not at one-loop level. Therefore the latter does not have a nonzero VEV, and

⟨H1⟩ = ⟨H2⟩ is realized. Namely, the alignment (3.4.17) is achieved. Since Q(1)
L and Q(4)

L

have the same quantum numbers for SU(2)L×U(1)Y , they are mixed with each other after

the breaking SU(2)R × U(1)Z → U(1)Y occurs at the fixed point. The left-handed quark

is identified as a linear combination,

qL = cos θqQ
(1)
L + sin θqQ

(4)
L , (3.5.15)

where θq is a mixing angle. The orthogonal combination and Q(2)
L and Q(3)

L are exotic fields

that must be decoupled at low energies. Hence we need to introduce 4D localized fermions

that couple with those exotic components. As a result, the following Yukawa couplings are

obtained at low energies.

LSU(2)L×U(1)Y
yukawa =

yt
2
cos θqq

†
L

(
H̃2 + H̃1

)
tR +

yb
2
sin θqq

†
L (H1 +H2) bR + h.c.. (3.5.16)

We can extend this to the two-Higgs-bidoublet case straightforwardly. When yt = yb,

the large ratio of the top quark mass mt to the bottom quark mass mb is obtained if

θq = O(mb/mt).8 In such a case, mt is calculated as

mt ≃

∣∣∣∣∣yt
∑

a

va

∣∣∣∣∣ =
√
2g |Nβ,µL|

∑

a

va =
√
2 |Nβ,µL |mW , (3.5.17)

where va is defined in (3.4.17). We have used that cos θq ≃ 1, (3.4.25) and (3.5.11).

Therefore, the observed top quark mass is obtained if |Nβ,µL | =
√
2.9

8In contrast to the mixing between Q(+)
L and Q(−)

L , the mixing angle θq can take arbitrary values

because there is no symmetry to fix it.
9A small deviation from the observed value of mt is expected to be explained by quantum correction.

(See Ref. [45].)
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Available representations for matter fermions

In summary, the quark multiplets should be embedded into two 6D Dirac fermions Ψ(2/3)

and Ψ(−1/3) whose U(1)Z charges are 2/3 and −1/3, respectively. Irreducible representa-

tions R which they belong to must satisfy the following conditions.

1. R includes two bidoublets and two singlets, which are denoted as (2, 2)± and (1, 1)±,

respectively.

2. There are weights that satisfy |µL⟩ ∈ (2, 2)+, |µL+β⟩ ∈ (1, 1)+, |νL⟩ ∈ (2, 2)− and

|νL − β⟩ ∈ (1, 1)−, and |Nβ,µL | = |N−β,νL | =
√
2.

3. All the states in (2, 2)± and (1, 1)± satisfy the zero-mode condition (3.5.7).

We will search for R that satisfies these conditions from the list in Appendix C.

SO(5)

There is no irreducible representation that satisfies the condition 1 among the list in

Appendix C.1.

SU(4)

Only 20′ satisfies the condition 1 among the list in Appendix C.2. The weights of

20′ that form (2, 2) and (1, 1) are

(2, 2)±2 :

⎛

⎜⎜⎝

e1−e2
√
2

± e3 αR−→ e1+e2
√
2

± e3

↑αL ↑αL

−e1−e2
√
2

± e3 αR−→ −e1+e2
√
2

± e3

⎞

⎟⎟⎠ ,

(1, 1)±4 : ±2e3, (1, 1)0 : 0. (3.5.18)

where the double-signs correspond. Notice that the weights that form bidoublets are

the same as the roots that form the Higgs bidoublets.

When the Higgs bidoublet (2, 2)±2 appears as a zero-mode, one example of (β, µL, νL)

is chosen as

(β, µL, νL) =

(
e1 − e2

√
2

± e3,
−e1 + e2

√
2

± e3,
e1 − e2

√
2

∓ e3

)
, (3.5.19)

where the double-signs correspond. Then {µL−β, µL, µL+β} and {νL+β, νL, νL+β}
are the weights, but µL ± 2β and νL ± 2β are not. Therefore, from (A.0.3), the

condition 2 is satisfied.
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Since (p1, p2, p3) = (0, 0, 2nPπ/3) and the simple roots are α1 =
√
2e1, α2 = −e1

√
2
−

e2
√
2
+ e3 and α3 =

√
2e2, the zero-mode condition (3.5.7) becomes

π(2mω + 1− χ4χ6)

N
− 2nPk2π

N
= 0, (mod 2π) (3.5.20)

where mω = 0, 1, 2. The decomposition of 20′ is given by (C.2.6), and

k2 = 0 : (1, 1)+4,

k2 = 1 : (2, 2)+2,

k2 = 2 : (3, 3)0, (1, 1)0,

k2 = 3 : (2, 2)−2,

k2 = 4 : (1, 1)−4. (3.5.21)

Thus the condition 3 is satisfied only when the model is compactified on T 2/Z3.

In fact, when (N, nP ,mω) = (3, 1, 0), the fermionic zero-modes from each 6D Dirac

fermion are

Q(+)
L ∈ (2, 2)+2, Q(+)

R ∈ (2, 2)−2, λ(+)
L ∈ (1, 1)−4, λ(+)

R ∈ (1, 1)+4,

Q(−)
L ∈ (2, 2)−2, Q(−)

R ∈ (2, 2)+2, λ(−)
L ∈ (1, 1)+4, λ(−)

R ∈ (1, 1)−4,

(3.5.22)

and when (N, nP ,mω) = (3, 2, 2), they are

Q(+)
L ∈ (2, 2)−2, Q(+)

R ∈ (2, 2)+2, λ(+)
L ∈ (1, 1)+4, λ(+)

R ∈ (1, 1)−4,

Q(−)
L ∈ (2, 2)+2, Q(−)

R ∈ (2, 2)−2, λ(−)
L ∈ (1, 1)−4, λ(−)

R ∈ (1, 1)+4.

(3.5.23)

By introducing 4D localized fermions with appropriate quantum numbers to decouple

unwanted zero-modes, the desired Yukawa coupling (3.5.12) are obtained. For the

other choices of (N, nP ,mω), we cannot obtain the necessary multiplets.

SO(7) (I)

The irreducible representations that satisfy the condition 1 among the list in Ap-

pendix C.3 are 21 and 27. These also satisfy the condition 2. However, they cannot

satisfy the condition 3 regardless of a choice of (N, nP ,mω).
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3.6 Higgs potential

In contrast to the 5D GHU models, we have quartic couplings of the Higgs fields at tree

level. The relevant terms in the 6D Lagrangian are

L = − 1

4g2A
tr
(
F (A)MNF (A)

MN

)
+ · · ·

= − 1

2g2A(πR1)2
tr
(
(∂µAz)

†∂µAz

)
− 1

8g2A(πR1)4
tr
(
[Az, Az̄]

2)+ · · · . (3.6.1)

In this section, we calculate the classical Higgs potential Vtree focusing on the Higgs bidou-

blets, which are relevant to the electroweak symmetry breaking. In the previous section, we

have shown that only a model of G =SU(4) compactified on T 2/Z3 has required zero-mode

spectrum for the quarks. For the sake of completeness, however, we will also calculate Vtree

in the other cases that have Higgs bidoublets. We have one Higgs bidoublet in the cases of

SO(5) on T 2/Z2, SU(4) on T 2/ZN (N = 3, 4, 6), SO(7) (I) on T 2/ZN (N = 4, 6), and Sp(6)

(II) or (III) on T 2/Z3, and we have two Higgs bidoublets in the case of SU(4) on T 2/Z2.

3.6.1 SO(5) case

First we consider the SO(5) case. In this case, the roots that form the bidoublet are
⎛

⎜⎝
e2 αR−→ e1

↑αL ↑αL

−e1 αR−→ −e2

⎞

⎟⎠ . (3.6.2)

From (3.6.1), the kinetic terms of the zero-modes W β
z in the 4D effective Lagrangian are

Leff = − A
2(gAπR1)2

∑

β

(∂µW β
z )

∗∂µW
β
z + · · · . (3.6.3)

We have used (A.0.4), and A is the area of T 2/ZN . Thus the canonically normalized Higgs

bidoublet is defined as

H =

(
H2∗

2 H1
1

−H1∗
2 H2

1

)
≡

√
A√

2gAπR1

(
W e2

z W e1
z

−W−e1
z W−e2

z

)
. (3.6.4)

Then it follows that

Az =

√
2gAπR1√

A
(
H1

1Ee1 +H2∗
2 Ee2 +H2

1E−e2 +H1∗
2 E−e1

)
,

[Az, Az̄] =
2(gAπR1)2

A

[(∣∣H1
1

∣∣2 −
∣∣H1

2

∣∣2
)
H1 +

(∣∣H2
2

∣∣2 −
∣∣H2

1

∣∣2
)
H2

+
{
Ne1,e2

(
H1

1H
2∗
1 −H1

2H
2∗
2

)
EαL

+Ne1,−e2
(
H1

1H
2
2 −H2

1H
1
2

)
EαR + h.c.

}]
, (3.6.5)
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where we have used (A.0.2). Hence, from (3.6.1), Vtree is calculated as

Vtree =
A

8g2A(πR1)4
tr
(
[Az, Az̄]

2)

=
g2A
2A

[(∣∣H1
1

∣∣2 −
∣∣H1

2

∣∣2
)2

+
(∣∣H2

2

∣∣2 −
∣∣H2

1

∣∣2
)2

+2 |Ne1,e2 |2
∣∣H1

1H
2∗
1 −H1

2H
2∗
2

∣∣2 + 2 |Ne1,−e2 |2
∣∣H1

1H
2
2 −H2

1H
1
2

∣∣2
]

=
g2

4

{(
H†

2H2 −H†
1H1

)2
+ 4

∣∣∣H̃†
2H1

∣∣∣
2
}

=
g2

4

[{
tr
(
H†H

)}2 − 4 det
(
H†H

)]
, (3.6.6)

where H2 ≡ (H1
2 , H

2
2 )

t and H1 ≡ (H1
1 , H

2
1 )

t are the SU(2)L doublets with the hyper-

charge Y = 1
2 , and H̃ i

2 ≡ ϵijH
j∗
2 . We have used that (3.4.18) with |αL|2 = 2, and

|Ne1,e2 |2 = |Ne1,−e2 |2 = 1. The above result agrees with Eq.(7) in Ref. [17]. The fi-

nal expression in (3.6.6) is manifestly invariant under the transformation: H → ULHU †
R

(UL ∈ SU(2)L and UR ∈ SU(2)R).

3.6.2 Cases of rank three groups

Next we consider the cases of the rank three groups. In these cases, the candidates for the

Higgs bidoublets consist of the following roots.

⎛

⎜⎝
γ + αL

αR−→ γ + αL + αR

↑αL ↑αL

γ
αR−→ γ + αR

⎞

⎟⎠ ,

⎛

⎜⎝
−γ − αR

αR−→ −γ
↑αL ↑αL

−γ − αL − αR
αR−→ −γ − αL

⎞

⎟⎠ , (3.6.7)

where γ = −e1
√
2
− e2

√
2
+ e3 for SU(4), γ = −e1 + e3 for SO(7) (I) and γ = −e2 − e3 for

Sp(6) (II) or (III). The canonically normalized Higgs bidoublets are defined as

H+ =

(
H2∗

2+ H1
1+

−H1∗
2+ H2

1+

)
≡

√
A√

2gAπR1

(
W γ+αL

z W γ+αL+αR
z

−W γ
z W γ+αR

z

)
,

H− =

(
H2∗

2− H1
1−

−H1∗
2− H2

1−

)
≡

√
A√

2gAπR1

(
W−γ−αR

z W−γ
z

−W−γ−αL−αR
z W−γ−αL

z

)
, (3.6.8)
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where the signs in the suffixes denote the signs of the U(1)X charges. Then it follows that

Az =

√
2gAπR1√

A
(
H1

1+EγLR +H2∗
2+EγL +H2

1+EγR +H1∗
2+Eγ

+H1
1−E−γ +H2∗

2−E−γR +H2
1−E−γL +H1∗

2−E−γLR

)
+ · · · ,

[Az, Az̄] =
2(gAπR1)2

A

[(∣∣H1
2+

∣∣2 −
∣∣H1

1−
∣∣
)
γ ·H +

(∣∣H2
2+

∣∣2 −
∣∣H2

1−
∣∣2
)
γL ·H

+
(∣∣H2

1+

∣∣2 −
∣∣H2

2−
∣∣2
)
γR ·H +

(∣∣H1
1+

∣∣2 −
∣∣H1

2−
∣∣2
)
γLR ·H

+
{
NγLR,−γR

(
−H1

1+H
2∗
1+ +H1

2−H
2∗
2−
)
EαL

+NγLR,−γL

(
−H1

1+H
2
2+ +H2

1−H
1
2−
)
EαR

+NγL,−γ

(
−H1

2+H
2∗
2+ +H1

1−H
2∗
1−
)
EαL

+NγR,−γ

(
−H2

1+H
1
2+ +H1

1−H
2
2−
)
EαR + h.c.

}]
+ · · · , (3.6.9)

where γL ≡ γ + αL, γR ≡ γ + αR and γLR ≡ γ + αL + αR, and the ellipses denote fields

belonging to other multiplets, if any. After some calculations, we obtain

Vtree =
g2

2

[(
|H1+|2 − |H2−|2

)2
+
(
|H2+|2 − |H1−|2

)2

+
∣∣∣H†

1+H̃2+

∣∣∣
2

+
∣∣∣H†

1+H̃2−

∣∣∣
2

+
∣∣∣H†

1−H̃2+

∣∣∣
2

+
∣∣∣H†

1−H̃2−

∣∣∣
2

−
∣∣∣H̃ t

2+H2−

∣∣∣
2

−
∣∣∣H̃ t

1+H1−

∣∣∣
2

+
∣∣∣H̃†

2+H1+ + H̃†
2−H1−

∣∣∣
2
]

=
g2

2

[{
tr
(
H†

+H+

)}2

+
{
tr
(
H†

−H−

)}2

− tr
(
H̃†

+H̃+H†
−H−

)

−tr
(
H†

−H̃+H̃†
+H−

)
− 2 det

(
H†

+H+

)
− 2 det

(
H†

−H−

)]
+ · · · , (3.6.10)

where H̃ i
1,2+ ≡ ϵijH

j∗
1,2+, and H̃± ≡ σ2H∗

±σ2 We have used that

γ · γLR = γL · γR = 0,

|γLR|2 = |γL|2 = |γR|2 = |γ|2 = 2,

γ · γL = γ · γR = γL · γLR = γR · γLR =
|γ|2

2
= 1,

|NγLR,−γL |
2 = |NγLR,−γR |

2 = |NγL,−γ|2 = |NγR,−γ|2 =
|γ|2

2
= 1,

NγL,−γ

NγLR,−γR

=
N∗

γ,αL

N∗
γR,αL

=
N∗

γ,αR

N∗
γL,αR

=
NγR,−γ

NγLR,−γL

, (3.6.11)

which are followed by (A.0.2), (A.0.3) and the fact that αL · αR = 0 and [EαL , EαR ] = 0.

We have also chosen the phases of the Higgs fields so that NγL,−γ/NγLR,−γR = −1.
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The final expression in (3.6.10) is manifestly invariant under the transformation: H± →
ULH±UR (UL ∈ SU(2)L and UR ∈ SU(2)R). Except for the case of SU(4) on T 2/Z2,

one of the bidoublets H± is absent due to the orbifold boundary conditions. In such

cases, the model becomes a two-Higgs-doublet model. In contrast to the SO(5) case, the

potential (3.6.10) with H+ = 0 or H− = 0 does not agree with (7) of Ref. [17]. This is

because they have assumed γ + αL + αR = −γ, which only holds in the SO(5) case.

Finally we comment on the Higgs mass. We consider a case of SU(4) on T 2/Z3. The

tree-level Higgs potential (3.6.10) becomes

Vtree =
g2

2

[{
tr
(
H†H

)}2 − 2 det
(
H†H

)]

=
g2

2

{(
H†

1H1

)2
+
(
H†

2H2

)2
+ 2

∣∣∣H̃†
2H1

∣∣∣
2
}
, (3.6.12)

where H = (H̃2, H1) is one of H±. Since only the U(1)em neutral components H2
1 and H2

2

can have nonzero VEVs, we focus on them. As discussed in Sec. 3.5.3, we expect that

h+ ≡ (H2
1 +H2

2 )/
√
2 has a tachyonic mass while h− ≡ (H2

1 −H2
2 )/

√
2 does not at one-loop

level. Including such mass terms, the potential becomes

V = −m2
+ |h+|2 +m2

− |h−|2 +
g2

4

(
|h+|2 + |h+|2

)2
+ · · · , (3.6.13)

where m2
± > 0, and the ellipsis denotes terms involving the charged components. By

minimizing this potential, we obtain

⟨h+⟩2 =
2m2

+

g2
, ⟨h−⟩ = 0. (3.6.14)

Therefore, the alignment (3.4.17) is actually achieved. The mass of the lightest neutral

Higgs boson is

mH =
g√
2
|⟨h+⟩| = gv = mW , (3.6.15)

where v is defined as ⟨H2
1 ⟩ = ⟨H2

2 ⟩ = v, and we have used (3.4.25) at the last equality.

This is lighter than the observed value mH ≃ 125 GeV, but we should note that there is a

sizable quantum correction just like in the supersymmetric models [46].

3.7 Discussion

We have investigated 6D GHU models compactified on T 2/ZN (N = 2, 3, 4, 6) that have

the custodial symmetry. The gauge group is assumed to be SU(3)C × G × U(1)Z , where
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G is a simple group. Since G includes SU(2)L × SU(2)R, its rank must be more than one.

The Higgs fields originate from the extra-dimensional components of the G gauge field. In

contrast to 5D models [19, 21, 22], we have at least two Higgs doublets. Thus their VEVs

need to be aligned as (3.4.17) to preserve the custodial symmetry. This severely constrains

the structure of models.

In order to select candidates for realistic models, we demanded the following require-

ments.

• The model has a scalar bidoublet zero-mode as the Higgs fields.

• The bosonic sector has a symmetry under a parity PLR that exchanges SU(2)L and

SU(2)R in order to protect the Zb̄LbL coupling against a large deviation induced by

mixing with the KK modes.

• The quark fields are embedded into 6D fermions so that they couple to the Higgs

bidoublet H only through a combination H + σ2H∗σ2.

• The representation R that the 6D fermions belong to provides a large group factor

to realize the top Yukawa coupling constant.

The third requirement is demanded in order for the Higgs VEVs to be aligned as (3.4.17).

The third and fourth requirements can be achieved if R satisfies the three conditions in

Sec. 3.5.3.

There is only one candidate that satisfies the above requirements if we restrict ourselves

to the cases that rankG ≤ 3 and dimR ≤ 30. It is the case of G =SU(4), N = 3 and

R = 20′. Namely, the model is 6D SU(3)C × U(4) gauge theory compactified on T 2/Z3,

and the top and the bottom quarks are embedded into the symmetric tensor of SO(6). Our

results are summarized in Table I. In the cases with blank, there is no choice of the orbifold

boundary conditions so that G is broken to SU(2)L × SU(2)R(×U(1)X). We have focused

on the third generation quarks to restrict G, N and R. Embeddings of other fermions are

much less constrained.

There are many issues that we have not discussed in this chapter. We have approxi-

mated the mode functions of the W and the Z bosons as constants. However, after the

electroweak symmetry is broken, they are no longer constant and depend on z. This z-

dependence causes the deviation of the ρ parameter and the Zb̄LbL coupling from the

standard model values. We have to check that the custodial symmetry actually suppresses
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SO(5) G2 SU(4) SO(7) Sp(6)

(I) (II), (III) (I) (II), (III)

T 2/Z2 1 (S) 0 2 (S)

T 2/Z3 1 (S) # 0 1

T 2/Z4 0 (S) 0 1 (S) 1 (S) 0 0 (S) 1

T 2/Z6 0 (S) 0 1 (S) 1 (S) 0 0 (S) 1

Table I: Summary of the results. The numbers denote those of the Higgs bidoublets. (I),

(II) and (III) represent three different ways of choosing the SU(2)L × SU(2)R subgroup in

Sec. 3.3.2. ”(S)” indicates that the spectrum is symmetric under SU(2)L ↔ SU(2)R. The

check mark is added to a case that there is an appropriate embedding of quarks into 6D

fermions.

these deviations by solving the mode equations in a specific model. We should also calcu-

late the one-loop effective potential to check that the vacuum alignment (3.4.17) is actually

achieved, and to evaluate the Higgs mass spectrum. The moduli stabilization in the gauge-

Higgs unification is also an important subject [47, 25]. These issues are left for future

works.
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Chapter 4

Generations and Yukawa hierarchy in

6D gauge-Higgs unification

In this chapter, we introduce constant magnetic fluxes as backgrounds of gauge field

strengths to realize the hierarchy of the Yukawa coupling constants among matter fla-

vors on 6D GHU models. The 4D effective Yukawa couplings on GHU models originate

from the higher dimensional gauge coupling, so the Yukawa couplings on respective flavors

need some mechanisms in order to have respective different values.

4.1 Introduction

In the previous chapter, we saw that the top Yulawa coupling is realized with the group

factor of a large representation, such as SU(4) 20′, in 6D GHU models with the custodial

symmetry. In GHU models, as mentioned above, the Yukawa couplings become flavor-

universal with the flat profile of the zero-mode wave functions of the fields that are relevant

to the Yukawa interactions. One concrete way to avoid such a situation is to change the

values of the overlap integrals of the Yukawa couplings by localizing the zero-mode wave

functions at the extra dimensions.

In 5D models, kink mass terms of the bulk fermions are introduced for controling the

Yukawa couplings. However, we cannot introduce them because of the double periodicity in

6D models. Instead of them, we introduce constant magnetic fluxes penetrating the extra

dimensions as backgrounds of gauge field strengths. At the extra dimensions, the zero-mode

wave functions are shifted by the constant parts of background gauge fields, the Wilson-

line phases (or Scherk-Schwarz phases), and the possible values of them are restricted by
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the orbifold compactifying the extra dimensions and the values of the magnetic fluxes that

respective fields feel. These wave functions are called “the Jacobi-theta functions”.

The zero-modes of the feilds feeling the mgnetic fluxes degenerate depending on the

values of fluxes and the ZN twist phases of the orbifold wave functions. This degeneration

can be regarded as an origin of the matter generations. We will see whether we can realize

the hierarchical Yukawa structure and the three generations of the matter fields in the SM

by the magnetic fluxes that cause desired symmetry breaking in 6D GHU models and the

Wilson-line phases. We’ll also check the effect for zero-modes of introducing the non-kink

mass terms of the bulk fermions.

4.2 Setup

4.2.1 Compactified space

The setup of spacetime is the same as Subsec. 3.2.1 .

4.2.2 Field content

We consider a 6D gauge group is SU(3)C × G × U(1)X , where G is a simple group that

has SU(2)L × U(1)Z subgroup. As is the same as Chapter 3, we don’t purpose to unify

SU(3)C , so it is irrelevant to the following discussion. The field content consists of the G

gauge field AM and the U(1)X gauge field BM , and 6D (8-component) Dirac fermion Ψf

(f=1, 2, · · · , nf ). We define the field strengths and covariant derivatives as

FMN ≡ ∂MAN − ∂NAM − i [AM , AN ] ,

BMN ≡ ∂MBN − ∂NBM ,

DMΨf ≡ (∂M − iAM − iqfBM)Ψf , (4.2.1)

where qf is the U(1)X charge of Ψf . Now, 6D Lagrangian is written as

L = − 1

2g2A
tr
(
FMNFMN

)
− 1

4g2B
BMNBMN

+
∑

f

(
iΨ̄fΓMDMΨf +Mf Ψ̄

fΨf
)
, (4.2.2)

where ΓM are 6D Gamma matrices and a real constant Mf is a 6D bulk mass parameter

of Ψf . gA and gB are 6D gauge couplings of G and U(1)X , respectively. The Lagrangian
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is invariant under the transformation:

AM → UAMU−1 + iU∂MU−1,

BM → BM + ∂Mχ,

Ψf → eiqfχUΨf , (4.2.3)

where U ∈ G and χ is a real function. The G gauge field is decomposed as

AM =
∑

i

Ci
MHi +

∑

α

Wα
MEα, (4.2.4)

where Hi and Eα are the generators inthe Cartan-Weyl basis. In the complex coordinate

(xµ, z), the wxtra components of the gauge fields are expressed as

Az = πR1(A4 − iA5), Az̄ = A†
z,

Bz = πR1(B4 − iB5), Bz̄ = B†
z. (4.2.5)

The fields satisfy the torus boundary conditions:

AM(x, z + s) = Us(z)AM(x, z)U−1
s (z) + i(Us∂MU−1

s )(z),

BM(x, z + s) = Us(z)BM(x, z)U−1
s (z) + i∂Mχs(z),

Ψf (x, z + s) = eiqfχs(z)Us(z)Ψ
f (x, z), (4.2.6)

(s = 1, τ)

and the orbifold boundary conditions:

Aµ(x,ωz) = PM(x, z)P−1, Aµ(x,ωz) = ω−1PM(x, z)P−1,

Bµ(x,ωz) = BM(x, z), Bµ(x,ωz) = ω−1BM(x, z),

Ψf (x,ωz) = ω−χ4χ6
2 eiqfϕωPΨf (x, z), (4.2.7)

where χ4, χ6 are the 4D, 6D chiralities, and ϕω, P ∈ G are a real constant, a unitary

constant matrix, respectively. We can choose always P as

P = exp(ip ·H), (4.2.8)

where p ·H = ΣipiH i and pi are real constants. Since (4.2.7) is ZN transformation, p and

α must satisfy

eip·α = exp

(
2nαπi

N

)
,

ω−χ4χ6
2 eiqfϕf eip·µ = exp

(
2nχ4χ6

µf

N

)
, (4.2.9)
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where nαπi and nχ4χ6
µf are integers.

P is chosen in such a way as to break G to SU(2)L × U(1)Z × U(1)r−2 (r: rank

of G). We assume that U(1)Z × U(1)X is broken to the hypercharge group U(1)Y by

some interactions localized at an orbifold fixed point. The generators of SU(2)L × U(1)Z

subgroups are expressed as

(T±
L , T 3

L) =

(
E±αL

|αL|
,
αL ·H
|αL|2

)
, (4.2.10)

QZ = ζ ·H, (4.2.11)

whereαL is a root ofG, and ζ is a constant real vector that satisfies ζ·αL = 0. Hypercharge

Y is expressed as

Y = QZ +QX , (4.2.12)

where QX is U(1)X generator.

4.2.3 Magnetic fluxes

We introduce constant magnetic fluxes penetrating the compact space as backgrounds of

gauge field strengths. For simplicity, we assume U(1)X gauge field and the Cartan compo-

nents of the G gauge field have nonvanishing backgrounds, and those of field strengths are

constants. The nonvanishing fluxes are

C ≡
∫

T 2/ZN

dx4dx5⟨C i
45⟩ = A⟨Ci

45⟩ = −2iImτ

N
⟨Ci

zz̄⟩ (4.2.13)

B ≡
∫

T 2/ZN

dx4dx5⟨B45⟩ = A⟨B45⟩ = −2iImτ

N
⟨Bzz̄⟩ (4.2.14)

where

Czz̄ ≡ ∂zC
i
z̄ − ∂z̄C

i
z (4.2.15)

Bzz̄ ≡ ∂zBz̄ − ∂z̄Bz (4.2.16)

A ≡ (2πR1)
2Imτ/N = 4π2R1R2 sin θ/N (4.2.17)

: the area of the fundamental region of T 2/ZN

Then, backgrounds values of vector potentials are

⟨Ci
z⟩ = − iN(Ciz̄ + c̄i)

4Imτ
,

⟨Bz⟩ = − iN(Bz̄ + b̄)

4Imτ
, (4.2.18)

60



where ci and b are complex constants, which we call “Wilson-line phases”. We can always

make these values absorbed into “Scherk-Schwarz phases” by redefinition of fields. From

the values of ⟨Ci
z⟩ and ⟨Bz⟩, we identify Us(z) and χs(z) (s = 1, τ) :

Us(z) = exp

{
i
∑

i

(
NCiIm(s̄z)

2Imτ
+ Φi

s

)
Hi

}
,

χs(z) =
NBIm(s̄z)

2Imτ
+ ϕs, (4.2.19)

where Φi
s and ϕs are real constants, the Scherk-Schwarz phases. These values take only

the discrete values when we compactify the extra dimensions on T 2/ZN as is shown at

Appendix E.

From substituting (4.2.19) for (4.2.6), and the single-valuedness of W α
z and Ψf , we get

the quantization conditions of the fluxes :

NC ·α = 2kαπ,

NC · µ+ qfNB = 2kµfπ, (4.2.20)

where α and µ a root and a weight of G, and kα, kµf ∈ Z. Using these conditions, the

background gauge fields are expressed as

⟨Cz ·α⟩ = − iπkα(z̄ + ζ̄α)

2Imτ
,

⟨Cz · µ+ qfBz⟩ = − iπkµf (z̄ + ζ̄µf )

2Imτ
. (4.2.21)

where

ζα ≡ c ·α
C ·α , ζµf ≡ c · µ+ qfb

C · µ+ qfB
. (4.2.22)

4.2.4 Equations of motion and KK expansion

We decompose the gauge fields into the background and the fluctuation parts:

AM = ⟨AM⟩+ ÃM , (4.2.23)

BM = ⟨BM⟩+ B̃M , (4.2.24)

and derive the linearized equations of ÃM and B̃M . We choose the gauge-fixing term as

Lgf = − 1

g2A
tr

{(
DM ÃM

)2}
− 1

2g2B

(
∂M B̃M

)2
, (4.2.25)
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where

DM ÃN ≡ ∂M − i
[
⟨AM⟩, ÃN

]
. (4.2.26)

The 6D Dirac fermion Ψf is decomposed into 2-component spinors as

Ψf =

(
Ψ̂f

+

Ψ̂f
−

)
, (4.2.27)

Ψ̂f
±α̂ =

(
ψf
±α

λ̄f α̇±

)
, (4.2.28)

where the signs are 6D chiralities. α̂ and (α, α̇) are the 4-component and the 2-component

spinor indices, respectively.

The Lagrangians are written as

L+ Lgf = − 1

g2A
tr
{
DM ÃNDM ÃN − i⟨FMN⟩

[
ÃM , ÃN

]}
− 1

2g2B
∂M B̃N∂M B̃N

+
∑

f

{
− iλf+σ

µDµλ̄
f
+ − iψ̄f

+σ̄
µDµψ

f
+ +

1

πR1

(
λ+Dz̄ψ

f
+ − ψ̄+Dz̄λ̄

f
+

)

− iλf−σ
µDµλ̄

f
− − iψ̄f

−σ̄
µDµψ

f
− +

1

πR1

(
λ−Dz̄ψ

f
− − ψ̄−Dz̄λ̄

f
−

)

−Mf

(
λf+ψ

f
− + λf−ψ

f
+ + h.c.

)}
+ · · · , (4.2.29)

where the ellipsis is higher order terms in the fluctuation fields, and

DMψ± ≡ (∂M − i⟨AM⟩ − iqf⟨BM⟩)ψf
±, (4.2.30)

DM λ̄± ≡ (∂M − i⟨AM⟩ − iqf⟨BM⟩)λ̄f±. (4.2.31)

We have dropped total derivative terms. From (4.2.29), we obtain the linearized equations

of motion for ÃM and Ψfas

DMDM ÃN − i
[
⟨FNM⟩, ÃM

]
+ · · · = 0, (4.2.32)

iΓMDMΨf +MfΨ
f + · · · = 0. (4.2.33)
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These are rewritten as

(
π2R2

1"4 + ∂z∂z̄
)
C̃ i

µ = 0,
(
π2R2

1"4 +Oα

)
W̃ α

µ = 0,
(
π2R2

1"4 + ∂z∂z̄
)
B̃µ = 0,

(
π2R2

1"4 + ∂z∂z̄
)
C̃ i

z = 0,
(
π2R2

1"4 +Oα + δOα

)
W̃ α

z = 0,
(
π2R2

1"4 + ∂z∂z̄
)
B̃z = 0,

− iσµ∂µλ̄
f
+ +

1

πR1
Dz̄ψ

f
+ −Mfψ

f
− = 0,

− iσµ∂µλ̄
f
− +

1

πR1
Dz̄ψ

f
− −Mfψ

f
+ = 0,

− iσµ∂µψ̄
f
+ +

1

πR1
Dz̄λ

f
+ −Mfλ

f
− = 0,

− iσµ∂µψ̄
f
− +

1

πR1
Dz̄λ

f
− −Mfλ

f
+ = 0, (4.2.34)

where

"4 ≡ ηµν∂µ∂ν , (4.2.35)

Oα ≡ {∂z̄ − i⟨Cz̄ ·α⟩} {∂z̄ − i⟨Cz ·α⟩}− Im⟨∂z̄Cz ·α⟩

= {∂z̄ − i⟨Cz ·α⟩} {∂z̄ − i⟨Cz̄ ·α⟩}+ Im⟨∂z̄Cz ·α⟩,

δOα ≡ − i

2
⟨∂zCz̄ − ∂z̄Cz⟩ ·α. (4.2.36)

The KK expansions are written as

Ci
µ(x, z) =

gA√
2πR1

∑

n

f i
n(z)C

i(n)
µ (x), Wα

µ =
gA√
2πR1

∑

n

fα
n (z)W

α(n)
µ (x),

Bµ(x, z) =
gA√
2πR1

∑

n

fB
n (z)B(n)

µ (x),

C̃i
z(x, z) = ⟨C i

z⟩(z) + gA
∑

n

gin(z)ϕ
i
n(x), W̃α

z = gA
∑

n

gαn (z)ϕ
α
n (x),

Bµ(x, z) = ⟨Bz⟩(z) + gB
∑

n

gBn (z)ϕ
B
n (x),

ψf
±(x, z) =

1√
2πR1

∑

n

∑

µ

h(±)µ
Rn (z)|µ⟩ψ(±)

n (x)

λf±(x, z) =
1√
2πR1

∑

n

∑

µ

h(±)µ
Rn (z)|µ⟩λ(±)

n (x), (4.2.37)

where |µ⟩ is a state of the weight vector µ of the G representation. All the mode functions

are dimensionless, and normalized as
∫

T 2/ZN

dzdz̄F ∗
n(z)Fm(z) = δnm, (4.2.38)
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where Fn(z) denotes the mode functions. The coefficients in the KK expansion are deter-

mined so that the 4D KK modes have canonically normalized kinetic terms1. The mode

equations are writen as

∂z∂z̄f
i
n = −m̃2

nf
i
n, Oαf

α
n = −m̃2

nf
α
n , ∂z∂z̄f

B
n = −m̃2

nf
B
n ,

∂z∂z̄g
i
n = −m̃2

ng
i
n, (Oα + δOα) g

α
n = −m̃2

ng
α
n , ∂z∂z̄g

B
n = −m̃2

ng
B
n ,

D(f)
z̄ h(+)µ

Rn − M̃fh
(−)µ
Rn = −m̃nh

(+)µ
Ln ,

D(f)
z̄ h(−)µ

Rn − M̃fh
(+)µ
Rn = −m̃nh

(−)µ
Ln ,

D(f)
z̄ h(+)µ

Rn + M̃fh
(−)µ
Rn = m̃∗

nh
(+)µ
Ln ,

D(f)
z̄ h(−)µ

Rn + M̃fh
(+)µ
Rn = m̃∗

nh
(−)µ
Ln , (4.2.39)

where M̃f ≡ πR1Mf , m̃n ≡ πR1mn and mn is the KK mass eigenvalue. The values of

m̃n are complex in general for fermions, while they are real for the bosons because the

differential operators of the bosons are hermite.

We can rewrite (4.2.36) using (4.2.21) as

Oα =

(
∂z̄ +

πkαz

2Imτ

)(
∂z −

kαπ

2Imτ

)
+

kαπ

2Imτ

=

(
∂z −

kαπ

2Imτ

)(
∂z̄ +

πkαz

2Imτ

)
− kαπ

2Imτ
(4.2.40)

δO =
kαπ

2Imτ
, (4.2.41)

Also we can write

D(f)
z = ∂z − i⟨Cz · µ⟩ − iqf⟨Bz⟩ = ∂z −

πkµf z̄

2Imτ
, (4.2.42)

D(f)
z̄ = ∂z̄ − i⟨Cz̄ · µ⟩ − iqf⟨Bz̄⟩ = ∂z̄ +

πkµfz

2Imτ
. (4.2.43)

1
∫
dx4dx5 = 2(πR1)

∫
dzdz̄.
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The torus boundary conditions (4.2.6) can be rewritten by (4.2.19) as

f i
n(z + s) = f i

n(z), fB
n (z + s) = fB

n (z),

fα
n (z + s) = exp

{
ikαπ

Imτ
Im(s̄z) + 2πiφα

s

}
fα
n ,

gin(z + s) = gin(z), gBn (z + s) = gBn (z),

gαn (z + s) = exp

{
ikαπ

Imτ
Im(s̄z) + 2πiφα

s

}
gαn ,

h(±)µ
Rn (z + s) = exp

{
ikµfπ

Imτ
Im(s̄z) + 2πiφµf

s

}
h(±)µ
Rn ,

h(±)µ
Ln (z + s) = exp

{
ikµfπ

Imτ
Im(s̄z) + 2πiφµf

s

}
h(±)µ
Ln (4.2.44)

where

φα
s ≡ Φs ·α

2π
, φµf

s ≡ Φs · µ+ qfϕs

2π
, (s = 1, τ) (4.2.45)

and the orbifold boundary condition (4.2.7) can be rewritten as

f i
n(ωz) = f i

n(z), fα
n (ωz) = eip·αfα

n fB
n (ωz) = fB

n (z),

gin(ωz) = ω−1gin(z), gαn (ωz) = ω−1eip·αgαn gBn (ωz) = ω−1gBn (z),

h(±)µ
Rn = ω∓ 1

2 e
iqfϕ

eip·µh(±)µ
Rn , h(±)µ

Ln = ω± 1
2 e

iqfϕ

eip·µh(±)µ
Ln (4.2.46)

4.3 Mode functions and KK masses

We derive the mode functions of relevant fields on T 2 and T 2/ZN , and the KK masses

accompanying with them from mode equations (4.2.39) as the solutions satisfying the

boundary conditions (4.2.44) and (4.2.46). The mode functions with the tilde mean the

T 2 wave functions, and we derive the T 2/ZN wave functions from T 2 ones. In this section,

we see the zero-mode conditions for magnetic fluxes from the KK masses.

4.3.1 T 2 wave functions

4D gauge sector

First, we derive f̃ i
n(z), the T 2 wave functions of Ci

µ, the Cartan components of the 4D G

gauge field. that satisfy (4.2.44) are

f̃ i
n,l(z) = N ci

n,l cos

{
2π

Imτ
(nImz + lIm(τ̄z))

}
+N si

n,l sin

{
2π

Imτ
(nImz + lIm(τ̄z))

}
,

(4.3.1)
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where N ci
n,l, N si

n,l are normalization factors of real constants, and the KK masses are

m̃n,l (= πR1mn,l) =
π |n+ lτ |

Imτ
. (4.3.2)

The functions f̃B
n,l(z), the KK mode wave functions of 4D U(1)X gauge field on T 2, have

the same forms as (4.3.1):

f̃B
n,l(z) = N cB

n,l cos

{
2π

Imτ
(nImz + lIm(τ̄z))

}
+N sB

n,l sin

{
2π

Imτ
(nImz + lIm(τ̄z))

}
, (4.3.3)

where N cB
n,l and N sB

n,l are real constants, and their KK masses are the same as f̃ i
n,l(z).

Then, we derive f̃α
n,l, the T 2 wave functions of Wα

µ . The mode equations of them in

(4.2.39) are rewritten as

D(α)
z̄ D(α)

z f̃α
n = −

(
m̃2

n +
πkα
2Imτ

)
f̃α
n (4.3.4)

(
D(α)

z D(α)
z̄ f̃α

n = −
(
m̃2

n −
πkα
2Imτ

)
f̃α
n

)
(4.3.5)

where

D(α)
z = ∂z − i⟨α · Cz⟩ = ∂z −

πkα
2Imτ

z̄ (4.3.6)

D(α)
z̄ = ∂z̄ − i⟨α · Cz⟩ = ∂z̄ +

πkα
2Imτ

z (4.3.7)

For these mode equations, the zero-mode solutions must satisfy

D(α)
z f̃α

0 = 0, (4.3.8)

or

D(α)
z̄ f̃α

0 = 0. (4.3.9)

(i) kα > 0

Only (4.3.9) has the zero-mode solution that satisfies (4.2.44).

f̃α
0 (z) ≡ Nα

0 exp

(
iπkαz

Imz

Imτ

)
ϑ

[
(j + φα

1 )/kα

−φα
τ

]
(kαz, kατ), (4.3.10)

where j = 1, 2, · · · , kα, and Nα
0 ≡ (2kαImτ)1/4 is the normalization factor. ϑ means

the Jacobi-theta function. The difinition is

ϑ

[
a

b

]
(kz, kτ) ≡

+∞∑

l=−∞

eiπ(l+a)2kτe2πi(l+a)(kz+b). (4.3.11)
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This solution has the mass eigenvalue from (4.3.5) = 0:

m̃2
0 =

πkα
2Imτ

. (4.3.12)

These wave functions satisfy
∫

T 2

d2z
{
f̃α(i)(z)

}∗
f̃α(j)(z) = δij (4.3.13)

Here, we define the two-dimensional Laplace operator ∆(α) as

∆(α) ≡ −1

2

(
D(α)

z D(α)
z̄ +D(α)

z̄ D(α)
z

)
, (4.3.14)

and these satisfy

[
D(α)

z , D(α)
z̄

]
=
πkα
Imτ

,
[
∆(α), D(α)

z

]
=
πkα
Imτ

D(α)
z ,

[
∆(α), D(α)

z̄

]
= −πkα

Imτ
D(α)

z̄ . (4.3.15)

This algebra is similar to the one-dimensional harmonic oscillator in quantum me-

chanics. These operators are rewritten as

∆(α) =
πkα
Imτ

(
N̂ (α) +

1

2

)
, N̂ (α) ≡ â(α)†â(α),

â(α)† ≡ i

√
Imτ

πkα
D(α)

z , â(α) ≡ i

√
Imτ

πkα
D(α)

z̄ ,
[
â(α), â(α)†] = 1. (4.3.16)

From (4.3.6) and (4.3.7), we get

∆(α)f̃α
n = m̃2

nf̃
α
n , (4.3.17)

and the KK excited modes are gained by operating D(α)
z on (4.3.10) as

f̃α(j)
n (z) ∝

(
D(α)

z

)n
f̃α(j)
0 (z), (4.3.18)

with the KK mass:

m̃2
n =

πkα
Imτ

(
n+

1

2

)
≥ π

2Imτ
> 0 (4.3.19)

This means there is no zero-mode in this case.

(ii) kα = 0

(4.3.6) ((4.3.7)) becomes

∂z̄∂zf̃
α
n,l = −m̃2

n,lf̃
α
n,l (4.3.20)
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Solutions that satisfy (4.2.44) are

f̃α
n,l(z) = Nα

n,l exp

{
2πi(n+ φα

τ )
Imz

Imτ
+ 2πi(l − φα

1 )
Im(τ̄z)

Imτ

}
, (4.3.21)

where Nα
n,l is a normalization factor and the KK masses are

m̃n,l =
π |(n+ φα

τ ) + (l − φα
1 )τ |

Imτ
. (4.3.22)

Nortice it have the zero-mode only when φα
1 , φ

α
τ = 0.

(iii) kα < 0

Only (4.3.8) has the zero-mode solutions that satisfy (4.2.44).

f̃α
0 (z) ≡ Nα

0 exp

(
iπkαz̄

Imz̄

Imτ̄

)
ϑ

[
(j + φα

1 )/kα

−φα
τ

]
(kαz̄, kατ̄), (4.3.23)

This solution has the mass eigenvalue from (4.3.4) = 0:

m̃2
0 =

π |kα|
2Imτ

. (4.3.24)

As well as the case (i), we can define the operators like the one-dimensional harmonic

oscillator in quantum mechanics by the Laplace operator:

∆(α) =
πkα
Imτ

(
N̂ (α) +

1

2

)
, N̂ (α) ≡ â(α)†â(α),

â(α)† ≡ i

√
Imτ

πkα
D(α)

z̄ , â(α) ≡ i

√
Imτ

πkα
D(α)

z ,
[
â(α), â(α)†] = 1. (4.3.25)

The KK excited modes are gained by operating D(α)
z̄ on (4.3.23) as

f̃α(j)
n (z) ∝

(
D(α)

z̄

)n
f̃α(j)
0 (z), (4.3.26)

with the KK mass:

m̃2
n =

πkα
Imτ

(
n+

1

2

)
≥ π

2Imτ
> 0 (4.3.27)

This means there is no zero-mode solution in this case.
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Higgs sector

Here, we derive the T 2 wave functions of the extra components of the 6D gauge fields.

The KK modes of Ci
z and Bz (gin(z) and gBn (z)) that satisfy (4.2.44) are the same as the

solutions of (4.3.1) and the KK mass eigenvalues are the same as (4.3.2). T 2 zero-mode

wave functions of C i
z and Bz are flat.

Next, we derive the KK modes of Wα
z (gαn (z)). The equation of gαn (z) in (4.2.39) is

rewritten as

D(α)
z̄ D(α)

z g̃αn = −
(
m̃2

n +
πkα
Imτ

)
g̃αn (4.3.28)

(
D(α)

z D(α)
z̄ g̃αn = −m̃2

ng̃
α
n

)
. (4.3.29)

For the zero-mode, the solutions of (4.3.28) or (4.3.29) must satisfy

D(α)
z g̃α0 = 0, (4.3.30)

or

D(α)
z̄ g̃α0 = 0. (4.3.31)

(i) kα > 0

Only (4.3.29)= 0 has a solution, and zero-mode wavefunction is

g̃α0 (z) ≡ Nα
0 exp

(
iπkαz

Imz

Imτ

)
ϑ

[
(j + φα

1 )/kα

−φα
τ

]
(kαz, kατ), (4.3.32)

where j = 1, 2, · · · , kα. This solution is gained from (4.3.31), so has massless mode:

m̃2
0 = 0, (4.3.33)

and KK mode functions are obtained by operating creation operator D(α)
z ((4.3.6))

on (4.3.32):

g̃α(j)
n (z) ∝ D(α)

z g̃α(j)
0 (z), (4.3.34)

and mass eigenvalue is

m̃2
n =

nπkα
Imτ

. (4.3.35)
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(ii) kα = 0

This case is the same as gauge sector, so KK wavefunction is (4.3.21) and KK mass

eigenvalue is (4.3.22). There is massless mode only when φα
1 ,φ

α
τ = 0.

(iii) kα < 0

Only (4.3.28)= 0 has a solution, and zero-mode wavefunction is

g̃α0 (z) ≡ Nα
0 exp

(
iπkαz̄

Imz̄

Imτ̄

)
ϑ

[
(j + φα

1 )/kα

−φα
τ̄

]
(kαz̄, kατ̄), (4.3.36)

where j = 1, 2, · · · , kα. This solution is gained from (4.3.30), so mass eigenvalue is

m̃2
0 = −πkα

Imτ
, (4.3.37)

so does not have massless mode. KK mode functions are obtained by operating D(α)
z̄

on (4.3.36):

g̃α(j)
n (z) ∝ D(α)

z̄ g̃α(j)
0 (z), (4.3.38)

and mass eigenvalue is

m̃2
n = −(n+ 1)πkα

Imτ
. (4.3.39)

Fermion sector

(
D(µf)

z D(µf)
z̄ − M̃2

f

)
h̃(+)µ
Rn = −

∣∣m̃2
n

∣∣ h̃(+)µ
Rn , (4.3.40)

(
D(µf)

z̄ D(µf)
z − M̃2

f

)
h̃(−)µ
Rn = −

∣∣m̃2
n

∣∣ h̃(−)µ
Rn , (4.3.41)

(
D(µf)

z̄ D(µf)
z − M̃2

f

)
h̃(+)µ
Ln = −

∣∣m̃2
n

∣∣ h̃(+)µ
Ln , (4.3.42)

(
D(µf)

z D(µf)
z̄ − M̃2

f

)
h̃(−)µ
Ln = −

∣∣m̃2
n

∣∣ h̃(−)µ
Ln . (4.3.43)

The first (second) and forth (third) conditions are the same with the same boundary

condition, so solutions satisfy

h̃(+)µ
Rn = eiδ1h̃(−)µ

Ln , (4.3.44)

h̃(−)µ
Rn = eiδ2h̃(+)µ

Ln (4.3.45)
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Where δ1, δ2 are phases of real constants. The zero-mode solutions of these equations must

satisfy

D(µf)
z̄ h̃(+)µ

R0 = 0, (4.3.46)

D(µf)
z h̃(−)µ

R0 = 0, (4.3.47)

D(µf)
z h̃(+)µ

L0 = 0, (4.3.48)

D(µf)
z̄ h̃(+)µ

L0 = 0, (4.3.49)

and corresponding mass eigenvalue is |m̃0| = M̃2
f . Thus, there is no zero-mode when

M2
f ̸= 0. So, I will not introduce fermion bulk mass term when discussing zero-modes.

(i) kµf > 0

(4.3.40) and (4.3.43) have solutions:

h̃(+)µ(j)
R0 (z) = eiδ1h̃(−)µ(j)

L0 (z)

= Nµf
0 exp

(
iπkµfz

Imz

Imτ

)
ϑ

[
(j + φµf

1 )/kµf

−φµf
τ

]
(kµfz, kµfτ),

(4.3.50)

where j = 1, 2, · · · , kµf , and Nµf
0 is a normalization factor.

KK excited modes are obtained by operating D(µf)
z ((4.2.42)) on (4.3.57):

h̃(+)µ(j)
Rn (z) = eiδ1h̃(−)µ(j)

Ln (z) ∝
(
D(µf)

z

)n
h̃(+)µ(j)
R0 (z), (4.3.51)

with the KK mass:

|m̃n|2 = M̃2
f +

nπkµf

Imτ
. (4.3.52)

From (4.2.39), we find

h̃(−)µ(j)
Rn (z) =

1

M̃f − e−iδ2m̃n

D(µf)
z̄ h̃(+)µ(j)

Rn (z)

=
1

−e−iδ2M̃f + m̃n

D(µf)
z̄ h̃(−)µ(j)

Ln (z). (4.3.53)

(ii) kµf = 0

In this case, tequations (4.3.40) ∼ (4.3.43) are same:

∂z̄∂zh̃n,l =
(
M̃2

n,l − |m̃n|2
)
, (4.3.54)

71



where h̃n,l = h̃(±)µ
R(L)n,l. The solutions that satisfy (4.2.44) are

h̃µf
n,l = Nµ

n,l exp

{
2πi(n+ φµf

τ )
Imz

Imτ
+ 2πi(l − φµf

1 )
Im(τ̄z)

Imτ

}
, (4.3.55)

where Nµ
n,l are normalization factors with the KK masses:

|m̃n,l|2 = M̃2
f

∣∣∣∣∣
π(n+ φµf

τ ) + π(l − φµf
1 )τ

Imτ

∣∣∣∣∣

2

. (4.3.56)

Nortice it have the zero-mode only when φµ
1 ,φ

µ
τ = 0.

(iii) kµf < 0

(4.3.41) and (4.3.42) have solutions:

h̃(−)µ(j)
R0 (z) = eiδ2h̃(+)µ(j)

L0 (z)

= Nµf
0 exp

(
iπkµf z̄

Imz̄

Imτ̄

)
ϑ

[
(j + φµf

1 )/kµf

−φµf
τ

]
(kµf z̄, kµf τ̄),

(4.3.57)

where j = 1, 2, · · · , kµf , and Nµf
0 is a normalization factor.

KK excited modes are obtained by operating D(µf)
z ((4.2.42)) on (4.3.57):

h̃(−)µ(j)
Rn (z) = eiδ1h̃(+)µ(j)

Ln (z) ∝
(
D(µf)

z̄

)n
h̃(−)µ(j)
R0 (z), (4.3.58)

with the KK mass:

|m̃n|2 = M̃2
f +

nπkµf

Imτ
. (4.3.59)

From (4.2.39), we find

h̃(+)µ(j)
Rn (z) =

1

M̃f − e−iδ1m̃n

D(µf)
z h̃(−)µ(j)

Rn (z)

=
1

−e−iδ1M̃f + m̃n

D(µf)
z h̃(+)µ(j)

Ln (z). (4.3.60)

4.3.2 T 2/ZN wave functions

In this theory, we compactify the extra dimensions by T 2/ZN , so we need to evaluate the

4D effective theory by the T 2/ZN orbifold wave functions. The orbifold wave functions

that satisfy the boundary conditions

F̂n(ωz) = η′F̂n(z), (4.3.61)
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can be obtained by the T 2 wave functions as

F̂n(z) =
1

N

N−1∑

k=0

η′−kF̃n(ω
kz), (4.3.62)

where F̃n(z) are T 2 wave functions. Now we introduce magnetic fluxes, so the zero-mode

wave functions are not always flat, and we can choose η′, the phase of ZN transformation,

for the zero-modes in the region: η′ = 1,ω,ω2, · · ·ωN−1 generally. This determines the

twisted boundary conditions of zero-modes. Zero-mode wave functions that satisfy the

boundary condition F̂0(ωz) = ηF̂0(z) (η = 1,ω, · · · ,ωN−1) are also expressed as

F̂0(z) =
1

N

N−1∑

k=0

η−kF̃0(ω
kz). (4.3.63)

Orbifold zero-mode wave functions are also expressed as a linear combination of torus

zero-mode wave functions:

F̂ (j)
0 (z) =

|K|∑

i=1

C(η)
ji F̃ (i)

0 (z), (4.3.64)

where i, j mean physical state indices of F̂0 or F̃0 that run from 1 to |K|, for example

correspond to flavors of fermions, and C(η) is a constant |K|× |K| matrix that mix |i⟩, |j⟩
states. The constants C(η)

ji are evaluated as

C(η)
ji =

∫

T 2

d2z
{
F̃ (j)
0 (z)

}∗
F̂ (i)
0 (z). (4.3.65)

F̃ (j)
0 (ωlz) is a solution of mode equations of F̃ (j)

0 (z) that satisfies T 2 boundary conditions

of F̃ (j)
0 (z), so it can be also expressed as a linear combination of F̃ (j)

0 (z):

F̃ (j)
0 (ωlz) =

|K|∑

i=1

D(ωl)
ji F̃ (i)

0 (z), (4.3.66)

where D(ωl)
ji are constants. Thus, C(η)

ji are expressed as

C(η)
ji ≡ 1

N

N−1∑

l=0

η−lD(ωl)
ji (4.3.67)

At a glance, |K| physical states of F̂0 seem to degenerate in (4.3.64), but not all of them are

independent. In fact, the matrix C(η) includes zero eigenvalues generally. The number of

physical states of F̂0 equals to the rank of C(η) that is evaluated analytically by the method
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of the quantum mechanics (described in detail by [40]2) or numerically. Numerlically, we

can check the number of nonzero eigenvalues of C(η) Here, the matrix C(η) is hermitian

because

C(η)† =
1

N

N−1∑

l=0

ηlD(ω̄l)† =
1

N

N−1∑

l=0

η−l′D(ωl′ ) = C(η), (4.3.68)

where l′ = −l Thus, we can diagonalize C(η) with a unitary matrix V (η) as

V (η)C(η)V (η)† = diag(λ1,λ2, · · · ,λr, 0, · · · , 0), (4.3.69)

where |λ1| ≥ |λ1| ≥ · · · |λr| ≥ 0 and r is the rank of C(η). Then, we find

|K|∑

i=1

V (η)
ji F̂ (i)

0 (z) =

⎧
⎨

⎩
λj
∑

i V
(η)
ji F̃ (i)

0 (z), (1 ≤ j ≤ r)

0. (r + 1 ≤ j ≤ |K|)
(4.3.70)

So it is convenient if we change the T 2/ZN wavefunction’s basis to those which is linearly

independent for all j:

F (j)
0 (z) ≡

√
N

|K|∑

i=1

V (η)
ji F̃ (j)

0 , (4.3.71)

where j = 1, 2, · · · , r. We find this basis satisfies the orthonormal condition:
∫

T 2/ZN

d2z
{
F (i)
0 (z)

}∗
F (j)
0 (z) =

1

N

∫

T 2

d2z
{
F (i)
0

}∗
F (j)
0

=

∫

T 2

d2z

{
∑

k

V (η)
ik F̃ (k)

0

}∗{∑

l

V (η)
jl F̃ (l)

n

}

=
∑

k,l

V (η)∗
ik V (η)

jl δkl = (V (η)V (η)†)ji = δij, (4.3.72)

if T 2 wave functions satisfy the orthonormal condition:
∫

T 2

d2z
{
F̃ (k)
0 (z)

}∗
F̃ (l)
0 (z) = δkl. (4.3.73)

The T 2/ZN wave functions of the KKmodes are obtained by operatingDz = D(α)
z , D(µf)

z

or Dz̄ = D(α)
z̄ , D(µf)

z̄ on F (j)
0 (z), in the same with those of T 2 wave functions. Here, the

first excited mode is expressed as

Dz

(
F̃ (j)
0 (ωlz)

)
= ωl

(
DzF̃

(j)
0

)
(ωlz) ∝ ωlF̃1(ω

lz), (for K > 0)

Dz̄

(
F̃ (j)
0 (ωlz)

)
= ω̄l

(
Dz̄F̃

(j)
0

)
(ωlz) ∝ ωlF̃1(ω̄

lz), (for K < 0) (4.3.74)

2Analytic forms of C(η) are derived using operator foamlism in [40].
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so the ZN twist phase η in C(η) changes into ηω−1 for K > 0, or ηω for K < 0. Therefore,

the n-th excited modes are expressed as

F (j)
n (z) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√
N

K∑

k=1

V (ηω−n)
ji F̃ (k)

n (z) (for K > 0)

√
N

|K|∑

k=1

V (ηωn)
ji F̃ (k)

n (z) (for K < 0)

. (4.3.75)

The number of mass eigenstates at the n-th KK level is the rank of C(ηω−n) for K > 0, or

the rank of C(ηωn) for K < 0.

The constants D(ωl)
ji are functions of K and ζ = 2

K (τφ1 − φτ ), and satisfy

D(ωl)
ji [−K, ζ] = D(ω̄l)

ij [K, ζ]. (4.3.76)

Thus, we find

C(η)
ji [−K, ζ] =

1

N

N−1∑

l=0

η̄lD(ωl)
ji [−K, ζ] =

1

N

N−1∑

l=0

η̄lD(ω̄l)
ij [K, ζ]

=
1

N

N−1∑

l′=0

η̄−l′D(ω−l′ )
ji [K, ζ] = C(η̄)

ij [K, ζ], (4.3.77)

where l′ ≡ −l. This indicates that the degeneration number of the zero-modes of a field

that feels the flux K < 0 and the ZN twist phase η are equal to that of a field that feels a

flux |K| and the ZN twist phase η̄.

In this section, we discuss the T 2/ZN wave functions of the zero-modes (masless) and

the KK modes (massive) for 4D gauge, Higgs, fermion, and the flux conditions for zero-

modes.

4D gauge sector

We discuss the zero-mode wave functions of the 4D gauge fields on T 2/ZN . The gauge

fields C i
µ, Bµ do not feel the magnetic fluxes and the zero-mode wave functions are flat, so

we can obtain their zero-mode wave functions f i
0,0(z) and fB

0,0(z) on T 2/ZN from (4.3.63):

f̂ i
0,0(z) =

1

N

N−1∑

l′=0

{
1−l′ · f̃ i

0,0(z)
}
= N ci

0,0,

f̂B
0,0(z) =

1

N

N−1∑

l′=0

{
1−l′ · f̃B

0,0(z)
}
= N cB

0,0 , (4.3.78)
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where f̃ i
0,0(z), f̃

B
0,0(z) is the n and l = 0 wave function in (4.3.1), respectively.

On the other hand, the gauge field Wα
µ may feel the magnetic fluxes. However, as we

have seen in (4.3.19) or (4.3.27), Wα
µ have no zero-mode solution if the values of the mag-

netic fluxes they feel are not zero (kα ̸= 0). Then, we must consider such the background

magnetic fluxes Ci and B that the fields WαL
µ do not feel in the following discussion for the

gauge symmetry breaking G → SU(2)L × U(1)Z , where αL is one of the G root vectors

corresponding to the generators (of the non-Cartan components) for the SU(2)L subgroup.

We can obtain the zero-mode wave functions from (4.3.63):

f̂α
0,0(z) =

1

N

N−1∑

l′=0

1−l′ · f̃α
0,0(z) = Nα

0,0, (4.3.79)

where f̃α
0,0(z) is the n and l = 0 wave function in (4.3.21).

Higgs sector

As we have seen in (4.2.46), η = ω−1 for the orbifold wave functions of Ci
z. T

2 zero-mode

functions of Ci
z is flat , so T 2/ZN zero-mode function of it is written as

gi0,0(z) = g̃i0,0

N−1∑

k=0

(ω−1)−k

= 0. (4.3.80)

Thus orbifold wave functions of Ci
z cannot have a zero-mode solution. The same is the

case with Bz.

The Higgs field is included in the zero-mode of Wα
z . Now, we see whether Wα

z has a

zero-mode when kα is positive, zero, or negative.

(i) kα > 0

The orbifold wavefunction (defined by (4.3.62) ) that satisfies (4.2.46) is written as

ĝα(j)
n (z) ≡ 1

N

N−1∑

k=0

(
ω−1eip·α

)−k
g̃α(j)
n (ωkz), (4.3.81)

where g̃α(j)
n (z) is defined by (4.3.34). When we rewrite ĝα(j)

n (z) as

ĝα(j)
n (z) =

kα∑

i=1

C(ηω−n)
ji g̃α(i)

n , (4.3.82)
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we can change to the independent basis

gα(j)
n ≡

√
N

kα∑

i=1

V (ηω−n)
ji g̃α(i)

n , (4.3.83)

where V (η) is the diagonalizing matrix of C(η). As we have seen, g̃α(j)
n satisfies the

orthonoramal condition:
∫

T 2

d2z
{
g̃α(k)
n

}∗
g̃α(l)
n = δkl, (4.3.84)

so gα(j)
n also satisfies the orthonormal condition from (4.3.72). The zero-mode wave-

function on T 2/ZN is rewritten as

gα(j)
0 (z) = Nα

0

√
N

kα∑

i=1

V (η)
ji exp

(
iπkαz

Imz

Imτ

)
ϑ

[
(i+ φα

1 )/kα

−φα
τ

]
(kαz, kατ).

(4.3.85)

(ii) kα = 0

In this case, we have seen g̃αn (z) have the zero-mode only when φα
1 , φ

α
τ = 0, and the

zero-mode wavefunction is a constant. The T 2/ZN zero-mode wave function is

ĝα0,0(z) =
Nα

0,0

N

N−1∑

k=0

(ω−1eip·α)−k

=
Nα

0,0

N

N−1∑

k=0

exp

{
2(1− nα)πi

N
k

}
. (4.3.86)

The value of this function become zero unless nα = 1 (mod N). Thus it has the

zero-mode only when nα = 1 (mod N):

ĝα0,0(z) = Nα
0,0. (4.3.87)

(iii) kα < 0

There is no zero-mode in this case.

77



Fermion sector

(i) kµf > 0

The zero-mode wavefunction is expressed as

ĥ(+)µ(j)
R0 = eiδ1ĥ(−)µ(j)

L0 (z)

≡ 1

N

N−1∑

k=0

(
ω− 1

2 eiqfϕωe
ip·µ
)−k

h̃(+)µ(j)
R0 (ωkz)

=
1

N

N−1∑

k=0

exp

(
−
2n+

µfπi

N
k

)
h̃(+)µ(j)
R0 (ωkz), (4.3.88)

where j = 1, 2, · · · , kµf and n+
µf is defined in (4.2.9).

We change the orthonormal basis:

h(+)µ(j)
R0 (z) = eiδ1h(−)µ(j)

L0 (z)

≡
√
N

kµf∑

i=1

V (η)
ji h̃(+)µ(i)

R0

= Nµ
0

√
N

kα∑

i=1

V (η)
ji exp

(
iπkµfz

Imz

Imτ

)
ϑ

[
(j + φµf

1 )/kµf

−φµf
τ

]
(kµfz, kµfτ).

(4.3.89)

where V (η) is the diagonlizing matrix of

C(η)
ij ≡

∫

T 2

d2z
{
h̃(+)µ(j)
R0 (z)

}∗
ĥ(+)µ(i)
R0 (z). (4.3.90)

j in (4.3.89) runs from 1 to r (rank of C(η)). The mass eigenvalue is |m̃0| =
∣∣∣M̃f

∣∣∣, so
there is the massless mode only when M̃f = 0.

(ii) kµf = 0

The zero-mode function satisfies

ĥ(±)µ
R0,0 (z), ĥ

∓α
L0,0(z) ∝

N−1∑

k=0

exp−
2n±

µfπi

N
k. (4.3.91)

This mode exists only when n±
µf = 0 (mod N).
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(iii) kµf < 0

The zero-mode function is expressed as

ĥ(+)µ(j)
L0 = e−iδ2ĥ(−)µ(j)

R0 (z)

≡ 1

N

N−1∑

k=0

(
ω− 1

2 eiqfϕωe
ip·µ
)−k

h̃(+)µ(j)
L0 (ωkz)

=
1

N

N−1∑

k=0

exp

(
−
2n−

µfπi

N
k

)
h̃(+)µ(j)
L0 (ωkz). (4.3.92)

where j = 1, 2, · · · , kµf and n−
µf is defined in (4.2.9).

We change the orthonormal basis:

h(+)µ(j)
L0 (z) = e−iδ2h(−)µ(j)

R0 (z)

≡
√
N

kµf∑

i=1

V (η)
ji h̃(+)µ(i)

L0 ,

= Nµ
0

√
N

kα∑

i=1

V (η)
ji exp

(
iπkµfz

Imz̄

Imτ̄

)
ϑ

[
(j + φµf

1 )/kµf

−φµf
τ

]
(kµf z̄, kµf τ̄),

(4.3.93)

where V (η) is the diagonlizing matrix of

C(η)
ij ≡

∫

T 2

d2z
{
h̃(+)µ(j)
L0 (z)

}∗
ĥ(+)µ(i)
L0 (z), (4.3.94)

j in (eq:posiferindbasis) runs from 1 to r (rank of C(η)). The mass eigenvalue is

|m̃0| =
∣∣∣M̃f

∣∣∣, so there is the massless mode only when M̃f = 0.

4.4 Yukawa coupling constants

In this section, we derive the expressions of the Yukawa coupling constants. As we have seen

in the previous section, the bulk fermion’s mass forbids the zero-mode solution as massless

mode. Then, instead of 6D Dirac fermions Ψf , we introduce only 6D Weyl fermions Ψf
±

defined as

Ψf
+ =

(
Ψ̂f

+

04

)
, Ψf

− =

(
04

Ψ̂f
−

)
. (4.4.1)

where Ψ̂± are 4-component spinors defined in (4.2.28).
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4.4.1 General expression

Now, the Yukawa couplings stem from the 6D gauge interaction:

S =

∫
dx6

⎛

⎝
∑

f+

iΨ̄f+
+ γMDMΨf+

+ +
∑

f−

iΨ̄−γ
MDMΨf−

−

⎞

⎠+ · · ·

=

∫
dx4

∫
d2z2πR1

⎛

⎝−
∑

f+

iψ̄f+
+ Azλ̄

f+
+ +

∑

f−

iλf−− Azψ
f−
−

⎞

⎠+ h.c.+ · · · , (4.4.2)

where d2z = dzdz̄. The 4D effective Lagrangian of the Yukawa interactions is expressed as

L4D
yukawa =

∑

µ

∑

f+

∑

i,j,k

y(+)µf+
ijk ψ̄(µ+α)f+(i)

+0 ϕα(k)
0 λ̄µf+(j)

+0 + h.c.

+
∑

µ

∑

f−

∑

i,j,k

y(−)µf−
ijk λµf−(j)

−0 ϕα(k)
0 ψ(µ+α)f−(i)

−0 + h.c., (4.4.3)

where

y(+)µf+
ijk ≡ − igA⟨µL +α|Eα|µL⟩

πR1

∫

T 2/ZN

d2z
{
h(+)(µL+α)f+(i)
R0 (z)

}∗
gα(k)
0 (z)h(+)µLf+(j)

L0 (z)

= −2ig4
√
Imτ

N
3
2

⟨µL +α|Eα|µL⟩
∫

T 2/ZN

d2z
{
h(+)(µL+α)f+(i)
R0 (z)

}∗
gα(k)
0 (z)h(+)µLf+(j)

L0 (z)

= −2ig4
√
Imτ⟨µL +α|Eα|µL⟩

|K1|∑

i′=1

|K2|∑

j′=1

|K3|∑

k′=1

V (η1)∗
ii′ V (η2)

jj′ V (η3)
kk′

×
∫

T 2

d2F (i′)∗(z;K1, ξ1)F (j′)(z;K2, ξ2)F (k′)(z;K3, ξ3), (4.4.4)

y(−)
ijk ≡ −2ig4

√
Imτ⟨µL +α|Eα|µL⟩

|K1|∑

i′=1

|K2|∑

j′=1

|K3|∑

k′=1

V (η1)
ii′ V (η2)∗

jj′ V (η3)
kk′

×
∫

T 2

d2F (i′)(z;K1, ξ1)F (j′)∗(z;K2, ξ2)F (k′)(z;K3, ξ3), (4.4.5)

where g4 ≡ gA√
A =

√
NgA

2πR1
√
Imτ

is the 4D gauge coupling constant, µL & α mean the weight

vector of the Left handed fermion and the root vector of the Higgs neutral component

respectively, K1 ≡ k(µL+α)f± , ξ1 ≡ ξ(µL+α)f± , K2 ≡ kµLf± , ξ2 ≡ ξµLf± , K3 ≡ kα, ξ3 ≡ ξα,

{η1, η2, η3} are the ZN transformation phases of {|µL +α⟩, |µL⟩, |α⟩} fields, the indices
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i, j, k run over the degenerate zero-modes, f± mean flavor indices, z ≡ w1 + τw2, and

F (j)(z;K, ξ) ≡

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2KImτ)
1
4 eKπi(z+ξ) Im(z+ξ)

Imτ ϑ

⎡

⎣
j
K

0

⎤

⎦ (K(z + ξ), Kτ), (K > 0)

(2 |K| Imτ) 1
4 eKπi(z̄+ξ̄) Im(z̄+ξ̄)

Imτ̄ ϑ

⎡

⎣
j
K

0

⎤

⎦ (K(z̄ + ξ̄), K τ̄). (K < 0)

(4.4.6)

4.4.2 Couplings to χ6 = + fermions

From the gauge symmetry of the Yukawa Lagrangian, the following relations are satisfied:

K1 = K2 +K3, K1ξ1 = K2ξ2 +K3ξ3, (4.4.7)

where K1, K2, K3 satisfies

K1 > 0, K2 < 0, K3 > 0, (4.4.8)

from the zero-mode conditions. We find that

F (i′)∗(z;K1, ξ1)F (j′)(z;K2, ξ2)

=
1√
K3

K3∑

m=1

F (i′−j′+K1m)∗(z;K3, ξ3)F (|K2|i′+K1j′+K1|K2|m)∗
(
0; |K1K2K3| ,

ξ1 − ξ2
K3

)
,

(4.4.9)

which comes from the relations:

ϑ

[
i′

K1

0

]
(K1(z + ξ1), K1τ) · ϑ

[
− j′

|K2|

0

]
(|K2| (z + ξ2), |K2| τ)

=
K1+|K2|∑

l=1

ϑ

[
i′−j′+K1l
K1+|K2|

0

](
(K1 + |K2|)

(
z +

K1ξ1 + |K2| ξ2
K1 + |K2|

)
, (K1 + |K2| τ)

)

× ϑ

[
|K2|i′+K1j′+K1|K2|l
K1|K2|(K1+|K2|)

0

]
(K1 |K2| (ξ1 − ξ2), K1 |K2| (K1 + |K2| τ)), (4.4.10)

F (j)∗(z;K, ξ) = F (−j)(z;−K, ξ), (4.4.11)

and (4.4.7). Then, from the orthonormal condition of F (j)(z;K, ξ)
∫

T 2

d2zF (j)∗(z;K, ξ)F (k)(z;K, ξ) = δjk, (4.4.12)
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we get
∫

T 2

d2zF (i′)∗(z;K1, ξ1)F (j′)(z;K2.ξ2)F (k′)(z;K3, ξ3)

=
1√
K3

K3∑

m=1

F (K2i′−K1j′+K1K2m)

(
0, K1K2K3,

ξ1 − ξ2
K3

)
δi′−j′+K1m,k′ , (4.4.13)

where

δi′−j′+K1m,k′ =

⎧
⎨

⎩
1 (i′ − j′ +K1m = k′ mod K3)

0 (other cases)
. (4.4.14)

Therefore, (4.4.4) becomes

y(+)
ijk =− 2ig4

√
Imτ√

K3

⟨µL +α|Eα|µL⟩
K1∑

i′=1

|K2|∑

j′=1

K3∑

k′=1

V (η1)∗
ii′ [K1, ζ1]V

(η2)
jj′ [K2, ζ2]V

(η3)
kk′ [K3, ζ3]

×
K3∑

m=1

F (K2i′−K1j′+K1K2m)

(
0, K1K2K3,

ζ1 − ζ2
K3

)
δi′−j′+K1m,k′ . (4.4.15)

The matrix V (η) depends on the flux and the Wilson-line phase. The indices i, j, k runs

from 1 to the rank of C(η1), C(η2), C(η3), respectively.

4.4.3 Couplings to χ6 = − fermions

As with the case of chi6 = +, Ka and ζa satisfy

K2 = K1 +K3, K2ζ2 = K1ζ1 +K3ζ3, (4.4.16)

where

K1 < 0, K2 > 0, K3 > 0. (4.4.17)

The yukawa coupling constants (4.4.5) are expressed as

y(−)
ijk =

2ig4
√
Imτ√

K3

⟨µL +α|Eα|µL⟩
|K1|∑

i′=1

K2∑

j′=1

K3∑

k′=1

V (η1)
ii′ [K1, ζ1]V

(η2)∗
jj′ [K2, ζ2]V

(η3)
kk′ [K3, ζ3]

×
K3∑

m=1

F (K1j′−K2i′+K1K2m)

(
0, K1K2K3,

ζ2 − ζ1
K3

)
δj′−i′+K1m,k′ . (4.4.18)
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4.5 Model

4.5.1 SU(3)× U(1) model on T 2/Z3

Now, we consider a specific model. We choose G = SU(3), N = 3, nf = 4, and the

matter fermions as two χ6 = χ3
6 spinors (Ψ1

χ3
6
,Ψ3

χ3
6
) that belong to 3 of SU(3) and two

χ6 = χ3̄
6 fermions (Ψ2

χ3̄
6
,Ψ4

χ3̄
6
) that belong to 3̄ of SU(3)3. The U(1)X charges are assigned

as (q1, q2, q3, q4) = (0, 1/3,−1/3,−2/3). The roots of SU(3) are

α1 =

(
1

2
,−

√
3

2

)
, α2 =

(
−1

2
,−

√
3

2

)
, α3 = α1 +α2 = (1, 0),

−α1,−α2,−α3. (4.5.1)

The weights of 3 are

µ1 =

(
1

2
,

1

2
√
3

)
,

µ2 = µ1 −α1 =

(
0,− 1√

3

)
,

µ3 = µ2 −α2 =

(
−1

2
,

1

2
√
3

)
. (4.5.2)

The weights of 3̄ are −µ1,−µ2,−µ3.

To break G to SU(2)L × U(1)Z , we choose the parameter of P matrix in (4.2.8) as

p =
2πnp

N

(
1,− 1√

3

)
, (np = 0, 1, 2) (4.5.3)

After symmetry breaking, SU(2)L root αL and the vector of U(1)X charge are identified

as

αL = α1, ζ =

(
1

2
,− 1

2
√
3

)
, (4.5.4)

respectively. When we assign the hypercharge±1/2 to the Higgs doublet, the normalization

for ζ is determined. From (4.2.9) and (4.5.3),

n±α1 = 0, n±α2 = n±α3 = ±np − 1.

(double signs correspond.)

3Unless we specify χ6 = + or − for Ψf
χ6
, we use the character Ψf as Ψf

χ6
(f = 1, 2, 3, 4) in the following

pages.
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Under the unbroken SU(2)L, the SU(3) adjoint representation is decomposed as

|−α1⟩, |0⟩T , |α1⟩ : triplet (qz = 0)

|α2⟩, |α3⟩ : doublet (qz = 1/2)

|−α2⟩, |−α3⟩ : doublet (qz = −1/2)

|0⟩S : (qz = 0) (4.5.5)

where qZ is the U(1)Z charge (the eigenvalue of QZ), and |0⟩S and |0⟩S are the states of

Cartan generators. These states do not have U(1)X charge, so each qZ in (4.5.5) equals to

the hypercharge Y . As you see, {|α2⟩, |α3⟩} or {|−α2⟩, |−α3⟩} corresponds to the Higgs

doublet.

Next, we discuss the quantum number of matter fields. We defined ζ in QZ as (4.5.4),

so the hypercharges of 3 are

(Y (µ1), Y (µ2), Y (µ3)) = (ζ · µ1, ζ · µ2, ζ · µ3) + (qf , qf , qf )

= (1/6 + qf , 1/6 + qf ,−1/3 + qf )

=

⎧
⎨

⎩
(1/6, 1/6,−1/3) (f = 1)

(−1/2,−1/2,−1) (f = 3)
, (4.5.6)

and the hypercharges of 3̄ are

(Y (−µ1), Y (−µ2), Y (−µ3)) = (ζ · µ1, ζ · µ2, ζ · µ3) + (qf , qf , qf )

= (−1/6 + qf ,−1/6 + qf , 1/3 + qf )

=

⎧
⎨

⎩
(1/6, 1/6, 2/3) (f = 2)

(−1/2,−1/2, 0) (f = 4)
, (4.5.7)

so SU(2)L doublets {|µ1⟩, |µ2⟩} & {|− µ1⟩, |− µ2⟩} are identified as the reft-handed dou-

blets, and |µ3⟩ & | − µ3⟩ are identified as the right-handed singlets in SM. Now, we can

assign one generation quarks and leptons to Ψf :

QL(21/6), dR(1−1/3), (Ψ1)

Q′
L(21/6), uR(12/3), (Ψ2)

LL(21/6), eR(1−1), (Ψ3)

L′
L(2−1/2), νR(10), (Ψ4) (4.5.8)
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where the 1 or 2 means the SU(2) representation, and the subscript of it means the U(1)Y

hypercharge.

We require the magnetic fluxes to break in the same way as the orbifold conditions do.

Then, the direction of G(= SU(3)) flux is determined as

(C1, C2) = C1

(
1,− 1√

3

)
. (4.5.9)

The C1 and B are determined by the quantization conditions (4.2.20) for all the fields. All

the conditions are discribed as

0 = 2k±α1π (SU(2)L gauge fields), ±NC1 = 2k±α2π = 2k±α3π (Higgs doublet),

NC1

3
= 2kµ11π = 2kµ21π (Ψ1

L), − 2NC1

3
= 2kµ31π (Ψ1

R),

N

(
−C1

3
+

B
3

)
= 2k−µ12π = 2k−µ22π (Ψ2

L), N

(
2C1

3
+

B
3

)
= 2k−µ32π (Ψ2

R),

N

(
−C1

3
− 2B

3

)
= 2kµ13π = 2k−µ23π (Ψ3

L), N

(
2C1

3
+

B
3

)
= 2kµ33π (Ψ3

R),

N

(
−C1

3
− B

3

)
= 2k−µ14π = 2k−µ24π (Ψ4

L), N

(
2C1

3
− B

3

)
= 2kµ34π (Ψ4

R). (4.5.10)

∴ k±α1 = 0, k±α2 = k±α3 = ±3k,

NC1 = 6kπ, NB = 6k′π,

kµ11 = kµ21 = k, kµ31 = −2k,

k−µ12 = k−µ22 = −k + k′, k−µ32 = −2k + k′,

kµ13 = kµ23 = k − 2k′, kµ33 = −2k − k′,

k−µ14 = k−µ24 = −k − k′, k−µ34 = 2k − k′, (4.5.11)

where Ψf
R,L means the right-, the left-handed fermion contained in Ψf respectively, and

k, k′ are integers.

We know η (the eigenvalue of ZN transformation) for the Higgs field as

ω−1 exp

(
2npπi

N

)
= ωnp−1, ({|α2⟩, |α3⟩} Higgs) (4.5.12)

ω−1 exp

(
−2npπi

N

)
= ω−(np+1). ({|−α2⟩, |−α3⟩} Higgs) (4.5.13)

η for matter fields are

ω−χ6
2 eiqfϕf eip·µR , (right-handed fermion) (4.5.14)

ω
χ6
2 eiqfϕf eip·µL . (left-handed fermion) (4.5.15)
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The ZN twist phases for the Yukawa terms must be always equal to 1. Then, when we

choose H = {|α2⟩, |α3⟩} ≡ H+ as the Higgs doublet, the following relations are satisfied:

• 3 representation
(
ω

χ6
2 eiqfφf eip·µL

)−1

· ωnp−1 · ω−χ6
2 eiqfϕf eip·µR = 1,

∴ χ6 = −. (4.5.16)

• 3̄ representation

ω
χ6
2 eiqfφf eip·µL · ωnp−1 ·

(
ω−χ6

2 eiqfϕf eip·µR

)−1

= 1,

∴ χ6 = +. (4.5.17)

When we choose H = {|−α2⟩, |−α3⟩} ≡ H− as the Higgs doublet,

• 3 representation

ω
χ6
2 eiqfφf eip·µL · ω−(np+1) ·

(
ω−χ6

2 eiqfϕf eip·µR

)−1

= 1,

∴ χ6 = +. (4.5.18)

• 3̄ representation
(
ω

χ6
2 eiqfφf eip·µL

)−1

· ω−(np+1) · ω−χ6
2 eiqfϕf eip·µR = 1,

∴ χ6 = −. (4.5.19)

4.5.2 Numbers of zero-modes

When we choose H = H+, we can assign χ6 to each Ψf as

(Ψ1,Ψ3) : −

(Ψ2,Ψ4) : + (4.5.20)

The ZN twist phases η for the fields feeling the magnetic fluxes are as follows:

η =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωnp−1, ({|α2⟩, |α3⟩} Higgs)

(χ6 = +)

⎧
⎨

⎩
ωnf+1, (left-handed fermion)

ωnf+np , (right-handed fermion)

(χ6 = −)

⎧
⎨

⎩
ωnf+np , (left-handed fermion)

ωnf+1, (right-handed fermion)

(4.5.21)
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where nf is an integer for each f . In the subsection 4.3, we saw the conditions for the

magnetic fluxes such that each field have zero-modes. All the matter fields in (4.5.8) and

the Higgs field have the zero-modes when the values of the magnetic fluxes satisfy

k, 2k + k′, k − 2k′, 2k − k′ ≥ 1,

−2k,−k + k′,−2k − 2k′,−k − k′ ≤ −1, (4.5.22)

∴ k ≥ 1, − k + 1 ≤ k′ ≤ k − 1

2
. (4.5.23)

On the other hand, when we choose H = H−, we can assign χ6 to each Ψf as

(Ψ1,Ψ3) : +

(Ψ2,Ψ4) : − (4.5.24)

In this case, η are as follows:

η =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω−(np+1), ({|−α2⟩, |−α3⟩} Higgs)

(χ6 = +)

⎧
⎨

⎩
ωnf+np , (left-handed fermion)

ωnf−1, (right-handed fermion)

(χ6 = −)

⎧
⎨

⎩
ωnf−1, (left-handed fermion)

ωnf+np . (right-handed fermion)

(4.5.25)

All the matter fields in (4.5.8) and the Higgs field have the zero-modes when the values of

the magnetic fluxes satisfy

k, 2k + k′, k − 2k′, 2k − k′ ≤ −1,

−2k,−k + k′,−2k − 2k′,−k − k′ ≥ 1, (4.5.26)

∴ k ≤ −1,
k + 1

2
≤ k′ ≤ −k − 1. (4.5.27)

Next, we discuss the Scherk-Schwarz phases. In the case of T 2/Z3 the possible Scherk-

Schwarz phases are

φα
1 = φα

τ =
lα
3

+
1

4

{
1− (−1)kα

}
,

φµf
1 = φµf

τ =
lµf

3
+

1

4

{
1− (−1)kµf

}
, (4.5.28)

where lα, lµf = 0, 1, 2 (See Appendix.E.). When SU(2)L is unbroken, φα1
s = 0. So the

Scherk-Schwarz phases Φi
s and ϕs in (4.2.19) should be

(Φ1
s,Φ

2
s) = 2πl

(
1,− 1√

3

)
, ϕs = πl′, (4.5.29)
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H QL dR Q′
L uR LL eR L′

L νR

K ±3k k −2k −k + k′ 2k + k′ k − 2k′ −2k − 2k′ −k − k′ 2k − k′

η : H = H+ ωnp−1 ωn1+np ωn1+1 ωn2+1 ωn2+np ωn3+np ωn3+1 ωn4+1 ωn4+np

η : H = H− ω−(np+1) ωn1+np ωn1−1 ωn2−1 ωn2+np ωn3+np ωn3−1 ωn4−1 ωn4+np

φ l l
3 −2l

3 −2l−l′

6
4l+l′

6
l−l′

3 −2l+l′

3 −2l+l′

6
4l−l′

6

Table I: The values of the magnetic fluxesK, ZN twist phases η, the Scherk-Schwarz phases

φ ≡ Kζ/2(τ − 1) (ζ: Wilson-line phase). The constant 2l (l′) is even for even k (k′), and

odd for odd k (k′). The K for the Higgs doublet = +3k corresponds to H+ ≡ {|α2⟩, |α3⟩},
and the K for the Higgs doublet = −3k corresponds to H− ≡ {|−α2⟩, |−α3⟩}.

where l, l′ are real constants. The Scherk-Schwarz phases that respective fields feel are

expressed as

φα1
s = 0, φα2

s = φα3
s = l,

φµ11
s = φµ21

s =
l

3
, φµ31

s =
2l

3
,

φ−µ12
s = φ−µ22

s =
l

3
+

l′

6
, φ−µ32

s =
2l

3
+

l′

6
,

φ−µ13
s = φ−µ23

s =
l

3
− l′

3
, φ−µ33

s = −2l

3
− l′

3
,

φ−µ14
s = φ−µ24

s = − l

3
+

l′

6
, φ−µ34

s =
2l

3
− l′

6
, (4.5.30)

where s = 1, τ . These phases φ = φα
s ,φ

µf
s are derined mod |kα|, |kµf |, respectively. We

find that 2l (l′) is even for even k k′, and odd for odd k (k′).

Then, the Yukawa sector of this model is determined by the nine integers: k, k′, l, l′, np,

and nf (nf = 1, 2, 3, 4). The numbers of the zero-modes of the fields feeling the magnetic

fluxes are determined by the values of the fluxes K, the ZN twist phases η, and the Wilson-

line phases ζ (or the Scherk-Schwarz phases φ) that each field feels. We surmmalized them

in Table I. The number of the zero-modes are read off from Table 4∼7 in [39]4. The detail

classification of the zero-mode number is explained by [42].

4The definition of η in [39] is different from ours when K < 0. In this paper, it should be described as

η̄.
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4.5.3 Realization of three generations

From Table 1∼4 in [39], the three generations are realized when k = 6 (H = H+), k′ =

0, np = 0, n1,3 = 0, n2,4 = 2, l = l′ = 05. In this case, the 4D effective Yukawa Lagrangian

in (4.4.3) becomes

L4D
yukawa = −

3∑

i,j=1

5∑

k=1

(
y(k)Dij Q̄j

LHkd
i
R + y(k)Uij ūi

RϵHkQ
′j
L

+y(k)Eij L̄j
LHke

i
R + y(k)EN

ij ν̄iRϵHkL
′j
L + h.c.

)
, (4.5.31)

where ϵHkQ′j ≡ ϵabHa
kQ

′jb
L and ϵHkL′j ≡ ϵabHa

kL
′jb
L (a, b = 1, 2 : SU(2)L indices), and

y(k)Dij = y(k)Eij =
ig4√
2 · 3 3

4

12∑

i′=1

6∑

j′=1

18∑

k′=1

V (ω)
ii′ [−12, 0]V (1)∗

jj′ [6, 0]V (ω2)
kk′ [18, 0]

×
18∑

m=1

F (−12j′−6i′−72m)(0,−1296, 0)δj′−i′+6m,k′ ,

y(k)Uij = y(k)Nij =
ig4√
2 · 3 3

4

12∑

i′=1

6∑

j′=1

18∑

k′=1

V (ω2)∗
ii′ [12, 0]V (1)

jj′ [−6, 0]V (ω2)
kk′ [18, 0]

×
18∑

m=1

F (−6i′−12j′−72m)(0,−1296, 0)δi′−j′+12m,k′ , (4.5.32)

where g4 ∼ 0.652 is the 4D SU(2)L gauge coupling. We have used

⟨µ1|Eα3 |µ3⟩ = ⟨µ2|Eα2 |µ3⟩ =
1√
2
,

⟨−µ3|Eα3 |− µ1⟩ = ⟨µ3|Eα2 |µ2⟩ = − 1√
2
. (4.5.33)

Now, the matter contents that appear as the zero-modes are

Qi
L, diR, Q′i

L, ui
R, Li

L, eiR, L′i
L, ν

i
R, (4.5.34)

where i = 1, 2, 3. In this case, we must remove extra SU(2)L doublets. Then, we introduce

the brane-localized mass terms:

Lbrane =
3∑

i=1

[
¯̃Qi
R(x)

{
ciQQ

i
L(x, z) + c′iQQ

′i
L(x, z)

}

+¯̃Li
R(x)

{
ciLL

i
L(x, z) + c′iLL

′i
L(x, z)

}
+ h.c.

]
δ(2)(z), (4.5.35)

5This realization of the three generaions occurs only when N = 3.
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where Q̃i
R and L̃i

R are brane localized 4D fermions, cQ, c′Q, cL, c
′
L are the brane mass pa-

rameters that are dimensionless constants, and QL,Q′
L,LL,L′

L are SU(2)L doublet com-

ponents of Ψ1
−,Ψ

2
+,Ψ

3
−,Ψ

4
+, respectively. Focusing on the zero-modes, (4.5.35) is rewritten

as

Lbrane =
3∑

i=1

[
¯̃Qj
R(x)

{
mij

Q0Q
i
L(x) +m′ij

Q0Q
′j
L(x)

}

+¯̃Li
R(x)

{
mij

L0L
i
L(x) +m′ij

L0L
′i
L(x)

}
+ h.c.+ · · ·

]
δ(2)(z), (4.5.36)

where the ellipsis means the terms including the massive KK modes, and

mij
Q0 ≡

ciQh
(−)µ11(j)
L0 (0)
√
2R1

, m′ij
Q0 ≡

c′iQh
(+)µ12(j)
L0 (0)
√
2R1

,

mij
L0 ≡

ciQh
(−)µ13(j)
L0 (0)
√
2R1

, m′ij
L0 ≡

c′iQh
(+)µ14(j)
L0 (0)
√
2R1

, (4.5.37)

are effective mass parameters. When these parameters are large enough, the following

linear combinations remain in the 4D effective theory:

qiL ≡ V i+3,j
Q Qj

L + V i+3,j+3
Q Q′j

L,

liL ≡ V i+3,j
L Lj

L + V i+3,j+3
Q L′j

L, (4.5.38)

where i = 1, 2, 3, and VQ and VL are 6× 6 matrices that satisfy

UQ(mQ0,m
′
Q0)V

−1
Q =

⎛

⎜⎝
λ1Q 0 0 0 0 0

0 λ2Q 0 0 0 0

0 0 λ3Q 0 0 0

⎞

⎟⎠ ,

UL(mL0,m
′
L0)V

−1
L =

⎛

⎜⎝
λ1L 0 0 0 0 0

0 λ2L 0 0 0 0

0 0 λ3L 0 0 0

⎞

⎟⎠ , (4.5.39)

with 3×3 unitary matrices UQ and UL. After the extra doublets decoupled, the Lagrangian

(4.5.31) is rewritten as

L4D
yukawa = −

3∑

i,j=1

5∑

k=1

(
ỹ(k)Dij q̄jLHkd

i
R + ỹ(k)Uij ūi

RϵHkq
j
L

+ỹ(k)Eij l̄jLHke
i
R + ỹ(k)EN

ij ν̄iRϵHkl
j
L + h.c.

)
, (4.5.40)
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where

ỹ(k)Dij ≡ y(k)Dij′ (V −1
Q )j

′,j+3, ỹ(k)Uij ≡ y(k)Uij′ (V −1
Q )j

′+3,j+3,

ỹ(k)Eij ≡ y(k)Eij′ (V −1
L )j

′,j+3, ỹ(k)Nij ≡ y(k)Nij′ (V −1
L )j

′+3,j+3. (4.5.41)

In order to avoid large flavor-changing process, only one-Higgs-doublet Hk0 get a nonvan-

ishing VEV⟨Hk0⟩ = v. Then, the fermion masses are eigen-values of the mass matrices:

MD
ij = ỹ(k0)Dij v, MU

ij = ỹ(k0)Uij v, ME
ij = ỹ(k0)Eij v, ME

ij = ỹ(k0)Eij v, (4.5.42)

The masse can be controled by tuning ciQ, c′iQ, ciL c′iL through the unitary matrices VQ

and VL. If VQ ∼ 16, we can realize the hierarchy between mt and mb. In this case, the

eigen-values of ỹ(k0)Uij approximate those of y(k0)Uij ,
∣∣∣λ(k0)Ui

∣∣∣ (i = 1, 2, 3) we calculated. We

found that we can realize the top quark Yukawa coupling, which is 0.921, 0.945 ∼ 1, when

k0 = 2, 5, respectively. This result means that an enhancement factor
√
2 for the Yukawa

couplings can be obtained with the background magnetic fluxes from the overlap integrals,

compared to the cases that the zero-mode wave functions have the flat profiles. However

we cannot realize large hierarchy among the Yukawa couplings.

Besides, in this case, the five zero-modes of the Higgs doublets degenerate. The situation

may be problematic because such large number of Higgs doublets seem difficult to be

discovered in the present experiment. These zero-modes originate from the same 6D gauge

field. So if they existed, they might well have similar masses. Therefore, we change our

focus to the case that only one zero-mode of Higgs doublet appears in the next subsection,

ignoring the realization of the matter generations by magnetic fluxes.

4.5.4 One-Higgs-doublet case

When we focus on one-Higgs-doublet, the possible choices of (k, np) = (1, 2) or (2, 0). We

choose the case (k, np) = (2, 0) because the Yukawa couplings are more restricted in the

other case. The possible values of k′ are −1 or 0 from (4.5.23). In these cases, each

component in (4.5.8) has at most one zero-mode.

(i) k′ = 0

yD = Y (−)

(
n1,

2l

3
,
l

3

)
, yU = Y (+)

(
n2,

4l + l′

6
,
2l − l′

6

)
,

yE = Y (−)

(
n3,−

2l + l′

3
,
l − l′

3

)
, yN = Y (+)

(
n4,

4l − l′

6
,−2l + l′

6

)
, (4.5.43)
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where l is an integer, l′ is an even number, and

Y (+) ≡ ig4√
2 · 3

4∑

i′=1

2∑

j′=1

6∑

k′=1

V (ωn)∗
1i′ [4,φ1]V

(ωn+1)
1j′ [−2,φ2]V

(ω−1)
1k′ [6,φ1 − φ2]

×
6∑

m=1

F (−2i′−4j′−8m)

(
0,−48,

(φ1 + φ2)(τ − 1)

12

)
δi′−j′+4m,k′

Y (+) ≡ ig4√
2 · 3

4∑

i′=1

2∑

j′=1

6∑

k′=1

V (ωn+1)
1i′ [−4,φ1]V

(ωn)∗
1j′ [2,φ2]V

(ω−1)
1k′ [6,φ2 − φ1]

×
6∑

m=1

F (−2i′−4j′−8m)

(
0,−48,

(φ1 + φ2)(τ − 1)

12

)
δi′−j′+4m,k′ , (4.5.44)

where φa (a = 1, 2) are defined by ζa = 2φa

Ka
(τ − 1) (We used them instead of ζa.).

The possible values of n,φ1,φ2 are

n = 0, 1, 2, (mod n = 3)

φ1 = φ2 − floor(φ2) + u, (mod n = 4)

φ2 = 0, 1/3, 2/3, 1, 4/3, 5/3, (mod n = 2) (4.5.45)

where u = 0, 1, 2, 3. The possible numerical values of the Yukawa couplings are

∣∣yD,U,E,N
∣∣ = 0.191, 0.270, 0.369, 0.522, 0.573, 0.811. (4.5.46)

(ii) k′ = 1

yD =Y (−)

(
n1,

2l

3
,
l

3

)
,

yU =
ig4√
2 · 3 1

4

3∑

i′=1

3∑

j′=1

6∑

k′=1

V (ωn2 )∗
1i′

[
3,

4l + l′

6

]
V (ωn2+1)
1j′

[
−3,

2l − l′

6

]
V (ω−1)
1k′ [6, l]

×
6∑

m=1

F (−3i′−3j′−9m)

(
0,−54,

2(l + l′)(τ − 1)

54

)
δi′−j′+3m,k′

yE =Y (+)

(
n3,

l − l′

3
,−2l + l′

3

)
,

yN =
ig4√
2 · 3 1

4

5∑

i′=1

6∑

k′=1

V (ωn4 )∗
1i′

[
5,

4l − l′

6

]
V (ωn4+1)
11

[
−1,−2l + l′

6

]
V (ω−1)
1k′ [6, l]

×
6∑

m=1

F (−i′−5−5m)

(
0,−30,−(l − l′)(τ − 1)

45

)
δi′−1+5m,k′ (4.5.47)
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The possible numerical values of the Yukawa couplings are

∣∣yD,E
∣∣ = 0.191, 0.270, 0.369, 0.522, 0.573, 0.811,

∣∣yU
∣∣ = 0.365, 0.430, 0.461, 0.667, 0.798,

∣∣yN
∣∣ = 0.101, 0.176, 0.188, 0.288, 0.533, 0.541, 0.559, 0.924. (4.5.48)

We found that the region of the numerical values of the Yukawa coupling constants is

[0.1, 1] in both the case with the three generations and the case with one-Higgs-doublet. So

we conclude that we cannot realize the Yukawa hierarchy only with the backgound mgnetic

fluxes and the Wilsn-line phases.

4.6 Discussion

We introduced the constant magnetic fluxes penetrating the compactified space as back-

gounds of gauge field strengths to realize the matter generations and the Yukawa hierarchy.

The overlap integrals of the Yukawa couplings deviate from the constant profile due to the

shifts for zero-mode wave functions (the Jacobi-theta functions), induced by the Wilson-line

phases (or the Scherk-Schwarz phases) they feel.

We considered the 6D GHU models whose gauge groups are G×U(1)X (G: simple Lie

group) and extra dimensions are compactified by T 2/ZN (N = 2, 3, 4, 6). Magnetic fluxes

are introduced for the U(1)X and the Cartan components of G. The zero-modes of the fields

feeling the magnetIc fluxes degenerate with the number depending on the values of fluxes

and the Wilson-line phases they feel, and the zero-mode orbifold boundary conditions.

These parameters are discrete and the available Wilson-line phases are constrained by the

values of N .

As a simplest example, we selected the SU(3)×U(1)X model with four 6DWeyl fermions

that belong to 3 or 3̄ of SU(3). In this model, the Yukawa sector is determined by nine

integers. From Refs.[39], the matter field content that appear in SM can be realized with

three generations only on T 2/Z3, also using the brane localized mass terms of 4D heavy

fermions to decople the extra SU(2)L doublet fermions. However, we faced a problem.

The signs of the flux values that the left- and the right-handed fermions in one 6D flavor

feel are reverse because the 6D chiralities for the left- and the right-handed fermions in

one gauge multiplet are the same, and they feel the common background magnetic fluxes.

Then, the absolute value of the flux that the Higgs doublet feel equals to the sum of the
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absolute values of the fluxes that the left- and the right-handed fermions coupling to the

Higgs field feel, for the gauge symmetry of the Yukawa terms, and the sum value is often

large. Therefore, in GHU models with magnetic fluxes, the degeneration number of the

zero-mode Higgs fields become large. We found at least five Higgs doublets are needed

to realize the three generations of the matter fields in the simplest example on T 2/Z3.

Therefore, we changed our focus to a case with only one-Higgs-doublet.

The numerical results for the values of the Yukawa couplings are as follows: We could

realize the large number such as 1. The result indicates that we can realize the top quark

mass without a large representation by magnetic fluxes in the case with the three gener-

ations of matter fields. However, we could not realize the values for the Yukawa coupling

constants of the matter fields other than the top quark because the smallest value is O(0.1)

in either case of three generation and one-Higgs-doublet case. The shifts of that zero-mode

wave functions on T 2/ZN with magnetic fluxes are restricted to some discrete values. The

mode functions on T 2/ZN (N = 3, 4, 6) are given by the mixtures of T 2 mode functions.

This fact makes the profiles of mode functions complicated. So we conclude that we cannot

realize the large Yukawa hierarchy only with magnetic fluxes and the Wilson-line phases.

I think the fact that the Wilson-line phases are not entirely free parameters on T 2/ZN

and the patterns of the shifts of the zero-mode wave functions are constrained by the

orbifold is desirable. However, this restriction also makes it too difficult to realize all the

Yukawa couplings for the matter fields other than the top quark. This problem can be

solved by compactifying with the other manifold such as T 2 since it enables to take the

Wilson-line phases entirely freely by hand, but we cannot consider the interactions localized

on the fixed points in this case.

We should check the effects of 4D localized mass terms to realize the Yukawa hierarchy

because these are expected to help the realization of the desirable values of the Yukawa

coupling constants by tuning their mass parameters. And we must check the effects of

KK mixing induced by the 4D localized terms, and the backgrounds of Wα
z . Such effects

are closely related to the deviations of 4D effective couplings from the values of SM. The

realization of mixing angles for matter fields by magnetic fluxes in GHU models is subject

to investigate, too. These issues are left for our future works.
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Chapter 5

Summary

6D GHU models are phenomenologocally attractive because the existence of Higgs quartic

couplings at tree level make it easier to reproduce the experimental value of the Higgs

mass and large KK masses above the experimental lower bound and background magnetic

fluxes can be introduced to realize the matter generations from a single bulk fermion. In

this paper, we have mainly discussed 6D GHU models on a T 2/ZN orbifold.

We selected the gauge groups, the orbifold compactifying the extra dimensions, and

the representation of the 6D fermion that the 3rd generation quarks are emmbeded into by

imposing the requirements for models to have the custodial symmetry and the experimental

value of the top quark mass. We find that the best candidate is a U(4) gauge theory on

T 2/Z3, and the 3rd generation quarks are emmbeded into SU(4) 20′.

I also discussed a case that the magnetic fluxes are present. In this case, there is a

possibility to realize the generations of matter fields from a single 6D fermion, and the

hierarchy among the Yukawa couplings. Especially we can realize the top quark Yukawa

coupling without introducing a large representation of the matter fields thanks to nontrivial

profiles of the zero-mode wave functions. However, we found that it is difficult to realize

a hierarchical structure of the Yukawa couplings in cases that the three generations of

matter fermions or one-Higgs-doublet are realized. This difficulty stems from the fact that

the profiles of the mode functions become complicated on T 2/ZN (N = 3, 4, 6) compared

with the cases of T 2 or T 2/Z2. The 4D localized mass terms may help to realize the Yukawa

hierarchy in the former case.

It is known that the realization of the Yukawa sector is one of challenging issues of

GHU models since all the Yukawa couplings originate from 6D gauge couplings and thus

95



become universal in the simplest setup. The background magnetic fluxes and the Wilson-

line phases can save these problems. We should check how the results of the Chapter 3

changes when they are introduced into the models. As I mentioned in the previous chapter,

we neglected the effects of background of the Higgs when we calculate the KK (zero-)mode

wave functions. Originally, we must consider the effects of the VEV of the Wilson-line

phase θH after the EW symmetry is broken. And we should consider the case that the

non-diagonal parts of the extra dimensional components in the G gauge field strength have

constant backgrounds. When we calculate the Yukawa couplings with the background of

the Higgs, we will get some different results about the Yukawa sector, I think. We must

also consider the one-loop effective potential of the Higgs with the magnetic fluxes and the

Wilson-line phases in 6D case in order to evaluate the Higgs mass spectrum exactly. I hope

these future attempts will help to construct realistic 6D GHU models.
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Appendix A

Cartan-Weyl basis

The generators of a simple group G whose rank is r in the Cartan-Weyl basis are Hi

(i = 1, · · · , r) and Eα, which satisfy

H†
i = Hi, E†

α = E−α,

[Hi, Hj] = 0, [Hi, Eα] = αiEα,

[Eα, Eβ] = Nα,βEα,β, [Eα, E−α] = α ·H, (A.0.1)

where α, β are the root vectors, and α ̸= β. A complex constant Nα,β is nonzero only when

α + β is a root, and satisfies the following equations.

Nα,β = −Nβ,α = −N∗
−α,−β = Nβ,−α−β = N−α−β,α. (A.0.2)

For a series of the weights {µ−qα, · · · , µ−α, µ, µ+α, · · · , µ+pα}, where neither µ−(q+1)α

nor µ+ (p+ 1)α is a weight, it follows that

2α · µ
|α|2

= q − p, |Nα,µ|2 =
p(q + 1) |α|2

2
, (A.0.3)

where a complex constant Nα,µ is defined as Eα|µ⟩ = Nα,µ|µ + α⟩. The generators are

normalized as

tr(HiHj) = δij, tr(HiEα) = 0, tr(EαEβ) = δα,−β. (A.0.4)
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Appendix B

T 2/ZN orbifold boundary conditions

The orbifold T 2/ZN is defined by identifying points of R2 by a discrete group Γ which is

generated by three descrete transformations O1: z → z+1, Oτ : z → z+τ and Oω: z → ωz.

Field values of a 6D field at Γ-equivalent points must be related to each other through gauge

transformations 1 in order for the Lagrangian to be single-valued on T 2/ZN . Thus the most

general orbifold boundary conditions are given by [51]

AM(x, z + 1) = T1AM(x, z)T−1
1 ,

BZ
µ (x, z + 1) = BZ

µ (x, z), BZ
z (x, z + 1) = BZ

z (x, z),

Ψχ6(x, z + 1) = eiϕ1T1Ψχ6(x, z), (B.0.1)

for the translation O1,

AM(x, z + τ) = TτAM(x, z)T−1
τ ,

BZ
µ (x, z + τ) = BZ

µ (x, z), BZ
z (x, z + τ) = BZ

z (x, z),

Ψχ6(x, z + τ) = eiϕτTτΨχ6(x, z), (B.0.2)

for the translation Oτ , and

Aµ(x,ωz) = PAµ(x, z)P
−1, Az(x,ωz) = ω−1PAz(x, z)P

−1,

BZ
µ (x,ωz) = BZ

µ (x, z), BZ
z (x,ωz) = ω−1BZ

z (x, z),

Ψχ4,χ6(x,ωz) = ω−χ4χ6
2 eiϕωPΨχ4,χ6 , (B.0.3)

1More properly, they are related through automorphisms of the Lie algebra of G. For simplicity, we do

not consider a case of outer automorphisms [34].
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for the ZN twist Oω. Matrices T1, Tτ and P are elements of G, and ϕ1 and ϕτ are the

Scherk-Schwarz phases. A factor ω−1 and ω−χ4χ6
2 in (B.0.3) appears because BZ

z and Ψχ4,χ6

are charged under the rotation in the extra-dimensional space. Since (ω−χ4χ6
2 )N = −1, the

phase ϕω is determined so that

eiNϕωPN = −1. (B.0.4)

The matrices T1, Tτ and P satisfy the relations,

[T1, Tτ ] = 0, PN = 1,

P−1T1P =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

T−1
1 (N = 2)

T−1
τ T−1

1 (N = 3)

T−1
τ (N = 4)

T−1
τ T1 (N = 6)

, P−1TτP =

⎧
⎨

⎩
T−1
τ (N = 2)

T1 (N = 3, 4, 6)
, (B.0.5)

which reflect the properties of O1, Oτ and Oω.

Here we perform a gauge transformation,

AM → UAMU−1 + iU∂MU−1, Ψ → UΨ, (B.0.6)

where

U(z) ≡ exp

{
−Im (τ z̄)

Im τ
lnT1 −

Im z

Im τ
lnTτ

}
, (B.0.7)

Using (B.0.5), we can show that

U(z + 1) = U(z)T−1
1 , U(z + τ) = U(z)T−1

τ ,

P−1U(ωz)P = U(z), P−1
(
iU∂zU

−1
)
P = ω−1

(
iU∂zU

−1
)
. (B.0.8)

Thus, the matrices T1 and Tτ in (B.0.1) and (B.0.2) can be absorbed by this gauge trans-

formation, while the conditions in (B.0.3) are unchanged. Since we need the fermionic

zero-modes, we assume that ϕ1 = ϕτ = 0 for the fermion that the quarks are embedded.

Then the orbifold boundary conditions are reexpressed as (3.2.8) and (3.5.2).
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Appendix C

Decomposition of representation of G

Here we list various representations of G =SO(5),SU(4),SO(7), and their irreducible de-

compositions to multiplets of the SU(2)L × SU(2)R(×U(1)X) subgroup.

Each representation is specified by the Dynkin coefficients mi (i = 1, · · · , r), and the

highest weight is expressed as µmax =
∑

i miµi, where µi are fundamental weights. The

dimension of the representation is calculated by the Weyl dimension formula:

dimR =
∏

l

∑
i(mi + 1)li |αi|2∑

i li |αi|2
, (C.0.1)

where αi are simple roots, and li are numbers such that
∑

i liαi are positive roots. We

consider irreducible representations whose dimensions are less than 30 in the following.1

C.1 SO(5)

The dimension formula (C.0.1) becomes

dimR =
1

6
(m1 + 1)(m2 + 1)(m1 +m2 + 2)(2m1 +m2 + 3). (C.1.1)

The decompositions to the irreducible representation of SU(2)L × SU(2)R are as follows.

[m1,m2] = [1, 0]

5 = (2, 2) + (1, 1). (C.1.2)

[m1,m2] = [0, 1]

4 = (2, 1) + (1, 2). (C.1.3)

1The irreducible decompositions of other representations and the weights of each representation are

easily obtained by using LieART [52].
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[m1,m2] = [2, 0]

14 = (3, 3) + (2, 2) + (1, 1). (C.1.4)

[m1,m2] = [1, 1]

16 = (3, 2) + (2, 3) + (2, 1) + (1, 2). (C.1.5)

[m1,m2] = [0, 2]

This is the adjoint representation and decomposed as (3.3.2).

[m1,m2] = [0, 3]

20 = (4, 1) + (3, 2) + (2, 3) + (1, 4). (C.1.6)

C.2 SU(4)

The dimension formula (C.0.1) becomes

dimR =
1

12
(m1 + 1)(m2 + 1)(m3 + 1)(m1 +m2 + 2)

×(m2 +m3 + 2)(m1 +m2 +m3 + 3). (C.2.1)

The decompositions to the irreducible representation of SU(2)L × SU(2)R × U(1)X are as

follows.

[m1,m2,m3] = [1, 0, 0]

4 = (2, 1)+1 + (1, 2)−1. (C.2.2)

[m1,m2,m3] = [0, 1, 0]

6 = (2, 2)0 + (1, 1)+2 + (1, 1)−2. (C.2.3)

[m1,m2,m3] = [0, 0, 1]

4̄ = (2, 1)−1 + (1, 2)+1. (C.2.4)

[m1,m2,m3] = [1, 0, 1]

This the adjoint representation and decomposed as (3.3.14).

[m1,m2,m3] = [0, 1, 1]

20 = (3, 2)−1 + (2, 3)+1 + (2, 1)+1 + (2, 1)−3 + (1, 2)+3 + (1, 2)−1. (C.2.5)
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[m1,m2,m3] = [0, 2, 0]

20′ = (3, 3)0 + (2, 2)+2 + (2, 2)−2 + (1, 1)+4 + (1, 1)−4 + (1, 1)0. (C.2.6)

[m1,m2,m3] = [1, 1, 0]

20 = (3, 2)+1 + (2, 3)−1 + (2, 1)+3 + (2, 1)−1 + (1, 2)+1 + (1, 2)−3. (C.2.7)

[m1,m2,m3] = [0, 0, 3]

20′′ = (4, 1)−3 + (3, 2)−1 + (2, 3)+1 + (1, 4)+3. (C.2.8)

[m1,m2,m3] = [3, 0, 0]

20
′′
= (4, 1)+3 + (3, 2)+1 + (2, 3)−1 + (1, 4)−3. (C.2.9)

C.3 SO(7)

The dimension formula (C.0.1) becomes

dimR =
1

720
(m1 + 1)(m2 + 1)(m3 + 1)(m1 +m2 + 2)(m2 +m3 + 2)(2m2 +m3 + 3)

×(m1 +m2 +m3 + 3)(m1 + 2m2 +m3 + 4)(2m1 + 2m2 +m3 + 5).

(C.3.1)

The SU(2)L × SU(2)R subgroup is chosen as (αL,αR) = (e1 + e2, e1 − e2). The decompo-

sitions to the irreducible representation of SU(2)L × SU(2)R × U(1)X are as follows.

[m1,m2,m3] = [1, 0, 0]

7 = (2, 2)0 + (1, 1)+1 + (1, 1)−1 + (1, 1)0. (C.3.2)

[m1,m2,m3] = [0, 1, 0] This is the adjoint representation and decomposed as (3.3.21).

[m1,m2,m3] = [0, 0, 1]

8 = (2, 1)+1/2 + (2, 1)−1/2 + (1, 2)+1/2 + (1, 2)−1/2. (C.3.3)

[m1,m2,m3] = [2, 0, 0]

27 = (3, 3)0 + (2, 2)+1 + (2, 2)−1 + (2, 2)0 + (1, 1)0

+(1, 1)+2 + (1, 1)+1 + (1, 1)0 + (1, 1)−1 + (1, 1)−2. (C.3.4)
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Appendix D

Absorption of Wilson-line phases

We show that “the Wilson-line phases” ci and b in (4.2.18) can be absorbed into “the

Scherk-Schwarz phases”. We redefine the field as

A′
M = V AMV −1 + iV ∂MV −1,

B′
M = BM + ∂MΛ,

Ψ′f = eiqfΛΨf , (D.0.1)

where

V ≡ exp

(
i
∑

i

Im(v̄iz)Hi

)
,

Λ ≡ Im(λ̄z), (D.0.2)

with complex constants vi and λ. (D.0.1) is rewritten as

C ′i
M = Ci

M − iv̄

2
δMz +

iv

2
δMz̄,

W ′α
M = exp

{
i
∑

i

Im(v̄iz)αiW
α
M

}
,

B′
M = BM − iλ̄

2
δMz +

iλ

2
δMz̄,

Ψ′f = exp

{
iqf

(
Im(λ̄z) +

∑

i

Im(v̄iz)Hi

)}
Ψf . (D.0.3)

The Lagrangian density is invariant under the field redefinition: (A,B,Ψ) → (A′, B′,Ψ′).

By this redefinition, the background values of the vector potential in (4.2.18) are shifted
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as

⟨C i
z⟩ →

〈
C i

z −
iv̄i

2

〉
= − iN(Ciz̄ + c̄i)

4Imτ
− ivi

2
,

⟨Bz⟩ →
〈
Bz −

iλ̄

2

〉
= − iN(Bz̄ + b)

4Imτ
− iλ

2
. (D.0.4)

Then, we can cancel ci and b if we choose V and Λ in (D.0.1) as

vi = − Nci

2Imτ
, λ = − Nb

2Imτ
. (D.0.5)

The torus boundary conditions (4.2.6) become

C ′i
M(x, z + s) = C ′i

M(x, z) +
NCi

4Imτ
(−is̄δMz + isδMz̄),

W ′α
M (x, z + s) = exp

{
i

(
NCIm(s̄z)

2Imτ
+ Φs + Im(v̄s)

)
·α
}
W ′α

M (x, z),

B′
M(x, z + s) = B′

M(x, z) +
NB
4Imτ

(−is̄δMz + isδMz̄),

Ψ′f (x, z + s) = eiqf (ϕs+Im(λ̄s)) exp {iφs + Im(v̄s) ·H}

× eiqfχs(z)Us(z)Ψ
′f (x, z), (D.0.6)

where s = 1, τ . This means the Scherk-Schwarz phases are shifted as

Φi
s → Φi

s − Im(s̄vi) = Φi
s + Im

(
s̄
Nci

2Imτ

)
,

ϕi
s → ϕi

s − Im(s̄λ) = ϕs + Im

(
s̄

Nb

2Imτ

)
. (D.0.7)

In this way, the Wilson-line phases are absorbed into the Scherk-Schwarz phases.
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Appendix E

Possible values of the Scherk-Schwarz

phases

As referred in [39], the Scherk-Schwarz phases (in the absence of the Wilson-line phases)

are restricted to the discrete values on T 2/ZN .

We define

Fω(x, z) ≡ F(x,ωz), (E.0.1)

where F = Ci
M ,Wα

M , BM , Ψ̂f . Fω satisfies the same boundary conditions as those of F(x, z)

from (4.2.7). Here, we express the torus boundary condition as

F(x, z + s) = Us(z)F(x, z), (E.0.2)

where s = 1, τ and Us(z) is an operator that acts on F(x, z). Then,

Fω(x, z + s) = Us(z)Fω(x, z) = Us(z)F(x,ωz) (s = 1, τ), (E.0.3)

Fω(x, z + 1) =

⎧
⎨

⎩
F(x,−z − 1) = U−1(−z − 1)F(x,−z) (N = 1)

F(x,ωz + τ) = Uτ (ωz)F(x,ωz) (N ̸= 2)
,

F(x, z + τ) = F(x,ωz + ωτ)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

U−1
τ (−z − τ)F(x,−z) (N = 2)

U−1
τ (ωz − 1− τ)U−1

1 (ωz − 1)F(x,ωz) (N = 3)

U−1
1 (ωz − 1)F(x,ωz) (N = 4)

Uτ (ωz − 1)U−1
1 (ωz − 1)F(x,ωz) (N = 6)

. (E.0.4)
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Here, we used the relation between ω and τ :

ωτ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−τ (N = 2)

−1− τ (N = 3)

−1 (N = 4)

−1 + τ (N = 6)

. (E.0.5)

From (E.0.3) and (E.0.4), we find

U1(z) =

⎧
⎨

⎩
U−1
1 (−z − 1) (N = 2)

Uτ (ωz) (N ̸= 2)
,

Uτ (z) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

U−1
τ (−z − τ) (N = 2)

U−1
τ (ωz − 1− τ)U−1

1 (ωz − 1) (N = 3)

U1(ωz − 1) (N = 4)

Uτ (ωz − 1)U−1
1 (ωz − 1) (N = 6)

. (E.0.6)

These conditions are rewritten with the Scherk-Schwarz phases in (4.2.45) as

φα
s = −φα

s , φµf
s = −φµf

s , (N = 2)

φα
1 = φα

τ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−kα/2− φα
τ − φα

1 (N = 3)

−φα
1 (N = 4)

kα/2 + φα
τ − φα

1 (N = 6)

,

φµf
1 = φµf

τ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−kµf/2− φµf
τ − φµf

1 (N = 3)

−φµf
1 (N = 4)

kµf/2 + φµf
τ − φµf

1 (N = 6)

, (E.0.7)

mode 1. Solving these equations, we find the possible values of the Scherk-Schwarz phases

are

(φα
1 ,φ

α
τ ), (φµf

1 ,φµf
τ ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, 0), (12 , 0), (0, 12), (12 ,
1
2) (N = 2)

(0, 0), (13 ,
1
3), (23 ,

2
3) (N = 3, k = even)

(16 ,
1
6), (12 ,

1
2), (56 ,

5
6) (N = 3, k = odd)

(0, 0), (12 ,
1
2) (N = 4)

(0, 0) (N = 6, k = even)

(12 ,
1
2) (N = 6, k = odd)

, (E.0.8)

mod 1. Here, k = kα for (φα
1 ,φ

α
τ ), and k = kµf for (φµf

1 ,φµf
τ ), respectively.
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