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Abstract

Gauge-Higgs unification models are studied as candidates for new physics beyond the
standard model, which give interesting suggestions about the origin of the Higgs field.
In these models, we identify extra components of higher dimensional gauge fields as Higgs
fields so that higher dimensional gauge symmetry protects the Higgs mass against quantum
corrections. I research 6-dimensional (6D) gauge-Higgs unification models especially.

First, I review the simple models of the gauge-Higgs unification. Then, I investigate the
6D models that have the custodial symmetry. We constrain gauge groups, orbifold com-
pactifying the extra dimensions, gauge group representations of matter fields by requiring
the theory to be realistic. Furthermore, I also investigate models that have the magnetic
fluxes penetrating the compactified space as a background to realize the three generations
of the matters and the hierarchical structure of the Yukawa couplings. Finally, I discuss
a possibility of building realistic 6D gauge-Higgs unification models from the results we

obtained.
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Chapter 1

Introduction

The standard model (SM) of the particle physics well-describes our world, but it still has
many theoretical or experimental problems. For example, we do not know the origins of
the Higgs boson, which causes the electro-weak (EW) symmetry breaking, nor the three
generations of the matter fields, nor the hierarchical Yukawa couplings. We need new
physics to solve these problems. In this chapter, I introduce the gauge-Higgs unification

models as candidates for new physics after giving a brief review of the SM.

1.1 Standard model

It is known that there are four fundamental interactions in our world: the electromagnetic,
the weak, the strong, and the gravitational interactions. Among them, the first three
are described in the SM. The gauge symmetry of SM is SU(3)¢c x SU(2), x U(1)y, and
SU(2)r, x U(1)y is spontaneously broken to U(1)gm by the Higgs mechanism.



The Lagrangian of SM is

1 v 1 v 1 v
£SM = —ZtrGW,G“ - ZtrF;Ll/F# - ZB:‘“’B#
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— (v @ Hdyy + yisipe Hal, + yS;l Hely + hc.)

. Oa 44 .9B 2
- ’(QL—lgA?A#—Z?BIJ H| — v, (1.1.1)

where

G =0,G, —0,G, —ige |G, G|,
F.,=0,A, —0,A,—igalA,, A,
B, =0,B, —-0,B,,

¢ = (“L> = <VL> , (i=1,2,3) (1.1.2)
dy, €r

and G, A, B, are the SU(3)¢c, SU(2).,U(1)y gauge fields, ga, ga, gp are the SU(3)¢,
SU(2)r, U(1)y gauge couplings, respectively. The coupling constants y;}, yldj, (1,7 =1,2,3)
are the up- and the down-type Yukawa couplings, A\,(a = 1,---,8) and o,(a = 1,2, 3) are
the Gell-Mann matrices and the Pauli matrices, respectively. H denotes the Higgs field
that is a complex scalar SU(2); doublet, eHqt = e, H%P® (a,b = 1,2 : SU(2);, indices),
and V(H) is the Higgs potential. The potential that is renormalisable and breaks the EW

symmetry dynamically is generally written as

V(H) = —p®H'H + A (H'H)?, (1.1.3)

H= (ZZ) : (1.1.4)

The components Hy and H, are U(1)gy neutral and positive-charged, respectively.

where
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1.2 Higgs mechanism

The Higgs mechanism is indispensable for describing how the gauge bosons and the matter
fermions get their masses through the EW symmetry breaking in SM. The EW symmetry
is broken when the potential in (1.1.3) has the VEV as

12

H'H ==, 1.2.1
=9 (1.2.1)

Using the SU(2), x U(1)y gauge symmetry, the VEV is always parameterized as

(H) = <0> . (1.2.2)

Including the fluctuation modes, the Higgs doublet H can be written as

H = exp (Zg%) (U i n) C(a=1,2,3) (1.2.3)

When we choose the unitary gauge, this becomes

0
(") s

The gauge bosons get the masses from the kinetic term of H in (1.1.1):
2 my,
‘Cmass = —My (W;W_M) - TZHZH’ (125)

where

1
—+ .
H/,LL = —\/§ (AL :F 'lAi) y
Z, = cos QWAi —sinfw B,,. (1.2.6)

Here, 6y is the Weinberg angle defined by
tan Oy = 22 (1.2.7)

ga

The orthogonal combination of Z,,, which has no mass term, is identified as the photon:

A) = sin Oy A2 4 cos Oy B, (1.2.8)



In this way, the longitudinal components of the gauge fields absorb the unphysical
degrees of freedom of 3 Nambu-Goldstone bosons £, and the gauge bosons corresponding
to the broken gauge symmetries get non-vanishing masses. At the same time, the Higgs

field also gets a mass, which comes from V' (H). The mass of the physical Higgs 7 is
m, = V2u = 2V, (1.2.9)

The matter fermions also get masses through the Yukawa interactions with the Higgs fields.
The Higgs boson was discovered in 2012 by the LHC experiments [58, 59]. The discovery
made the set of the particles that appear in SM complete. However, the origin of the Higgs

sector is still unknown.

1.3 Gauge-Higgs Unification

The gauge-Higgs unification (GHU) models [8, 9, 10, 11] are attractive candidates for
new physics beyond SM. We identify the extra dimensional components of the higher
dimensional gauge field as 4D Higgs fields. In this case, the Higgs field is ruled by the
gauge principle and the theories do not need any elementary scalar fields. Besides, the
higher dimensional gauge symmetry forbids the Higgs mass at tree-level, and protects the
Higgs mass against quantum corrections.! So they are expected to solve the gauge hierarchy

problem. The EW symmetry is broken dynamically by one-loop effect in GHU models.

1.3.1 Fairle and Manton’s model

In 1979, David Fairlie and Nicholas Manton extended the idea of Kalza-Klein theory [8, 9]
and suggested the 6D gauge theory on M* x S? where M* is the 4-dimensional (4D)
Minkowski spacetime and S? is 2-dimensional sphere. They decomposed the 6D gauge

field as
Au(z,y) = (Au(z,y), An(z,y)), (1.3.1)
where M = 0,1,2,3,4,5 is the 6D Lorentz index, z* (1 = 0,1,2,3) is the 4D coordinate

on M* and y™ (m = 4,5) is the extra dimensional coordinate on S?. Then, A,(x,y) can

be decomposed into the Kaluza-Klein (KK) modes as

Aue,y) = 32 AD (@) fanly). (1.3.2)

In 6D models on an orbifold, tree-level Higgs mass terms are allowed at a fixed point of the orbifold.
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where f4,(y) are called the KK mode functions for AEZL) (z). The zero-mode gauge field
AELO) is identified as the 4D gauge field that appears at low energies. In the same way, we

can decompose the extra components of the gauge field A,,(z,y) into the KK modes as
Z A () fon( (1.3.3)

This contains the zero-mode Ay (x). In their setup, the background field configuration of
A, (z,y) has the rotational symmetry SO(3) and there is a magnetic flux on S?. They
showed that scalar fields originating from A,,(x,y) play a role of the Higgs fields that break
the gauge symmetry SU(2);, x U(1)y, whichi is obtained from a larger gauge group in six
dimensions, to the electromagnetic symmetry U(1)gy. This is the first research of GHU
models.

They considered the simple Lie groups SU(3), SO(5), G5 as the larger gauge group
that is brokn to SU(2) x U(1)y. Their rank is 2 and the same as that of SU(2), x U(1)y.
They calculated the Weinberg angle 6y, and the mass spectrum for each gauge group.
They found that the most realistic value of 6y, is predicted in the case of G5, and all the
mass scales of the W, Z and the Higgs bosons and the first KK excited mode are given by
O(R™'). The latter result stems from the fact that the model has only a single scale R~

and all the masses are generated at tree-level.

1.3.2 Hosotani mechanism and 6D GHU models

In 1983, Hosotani proposed a mechanism that breaks the gauge symmetry by quantum
effect [10]. He indicated that the Aharanov-Bohm effect occurs when the extra dimensional
spaces are not simply connected and the Aharanov-Bohm phase (or the Wilson-line phase)
plays a role of the 4D Higgs field. The EW symmetry can be broken by this mechanism. In
such a case, we can generate a hierarchy between the Higgs mass and the KK mass scales
since the Higgs mass is suppressed by the loop factor.

The simplest models of GHU with the Hosotani mechanism are based on 5-dimensional
(5D) gauge theories whose gauge groups are U(3) in the flat spacetime [15, 18] and SO(5) x
U(1) in the warped spacetime [19, 21, 22]|. In these models, the EW symmetry is broken
dynamically by the VEV of the Wilson-line phase 6y = fc dy A,, where C is a non-

contractible cycle along the extra dimension and A, is the 5-th component of the gauge



field. According to Refs.[14], the W boson mass myy is expressed in terms of y as

[(011)]

onR in flat case L)
= e ) 0.
Isz:T; |sin(0)| in warped case

where R is a typical radius of the extra-dimensional space and k is the inverse AdS curvature

radius. The KK mass scale mggk is given by

R in flat case

wke R in warped case
Notice that this is independent of 8y in contrast to my,. Thus, we can realize the hierarchy
between my, and mygyk if the VEV of 6y is small enough. From the experimental bounds,
mgk must be larger than a few TeV.2 If mxx > 4 TeV, for example, we can see that
() < O(0.1) from (1.3.4) and (1.3.5).

The effective potential for 5 is induced at one-loop level. It has a form of

Vi(6rr) = lﬁ%méKf(eﬂ). (13.6)

where g = 12873 is the 6D loop factor, and f(fy) is a dimensionless periodic function of
0y with a period 2m. An explicit form of f(fy) is determined by matter contents of the
theory. Without any fine-tuning among the model parameters, we obtain (#y) = O(1)w
from the potential (1.3.6). The Higgs mass mpy can be estimated from (1.3.6) as

1
{]‘?”(GH)%}2 = in flat case

lgm R
mpyg =

, (1.3.7)

1
1" 3mg3 | 2 knRj. ,—kmR 3
{f (On) =" ke in warped case

where f"(0y) = %%H). In the flat case, my is typically estimated around O(10) GeV,
which is too light to be realistic. In the warped case, on the other hand, my can be heavy
enough to reproduce the observed value thanks to logarithm of the warped factor.

In each case, we have to realize a small value of (fy) in order to obtain the realistic
mass spectrum, which is difficult to achieve without any fine-tunings. This problem arises
from the fact that 5D GHU models have no Higgs potential at tree-level.

In 6D models, this problem can be solved because the Higgs quartic couplings exist at

tree-level that originate from tr ([A4, A5]2) in the 6D gauge kinetic term, while quadratic

terms are induced at one-loop level.

2According to Refs. [60, 61], mxx > 4.16 TeV in the flat case, and mxx > 2.68 TeV for the KK

graviton in the warped case.



In the flat spacetime, for example, the effective potential up to one-loop level has a

form of

g R? gt R

where ¢y, ¢4 = O(1) are numerical constants, g is the 4D SU(2), gauge coupling constant,

V() = ©20” ( On 2+c4g2 i 4+0(96) (1.3.8)
g R an

By minimizing this, we find that

gm/Co 0.024/cs
Op) ~ o~ <1,
< H> AV 2l604 \/C4

and the KK modes are estimated to be around a few TeV without tuning model parameters.

(1.3.9)

Besides, we can realize the observed Higgs mass more easily than 5D case. So 6D GHU
models are phenomenologically attractive. Another reason why 6D GHU models are well
worth researching is a possibility of realizing the generations of matter fermions and the
Yukawa hierarchy by introducing background magnetic fluxes. Such fluxes break the gauge
symmetry and realize chiral fermions in 4D effective theories. We evaluated the Yukawa
couplings with the magnetic fluxes that break the EW symmetry and realize the three
generations of the matter fermions or one-Higgs doublet case in 6D GHU models on 7%/ Zy
orbifold.

The structure of this thesis is as follows. In the Chapter 2, SU(3) GHU model in
the flat or warped metric is introduced as the simplest example of 5D GHU models. 1
explain the setup of the model and show how much Yukawa and weak gauge couplings
for the quarks and leptons deviate from the experimental values in 5D GHU models. In
the Chapter 3, I select the concrete 6D GHU models that have the custodial symmetry.
We constrained the 6D gauge groups and the orbifolds compactifying the extra dimensions
and the G representations that matter fields belong to by generalization of group theory.
In the Chapter 4, I introduce magnetic fluxes penetrating the extra dimensions to realize
the matter generations and the Yukawa hierarchy by overlap integrals of zero-mode wave
functions. In the Chapter 5, I summarize the results of model building, and tell the

problems and future prospects of 6D GHU models.

10



Chapter 2

Example of gauge-Higgs unification

As I told in the previous chapter, GHU approaches have been investigated as the model
of new physics beyond the SM. The EW symmetry is broken by the nonvanishing VEV
of the Wilson-line phase in these models. Some models have been constructed to explain
the origin of the Higgs field in the SM. In the simplest models, gauge group is often taken
as SU(3)c x SU(3)w in 5D flat metric, or SU(3)¢ x SO(5) x U(1) in 5D warped metric.
In this chapter, I show the simplest example of GHU models. We will evaluate the weak
gauge couplings and the Yukawa couplings for the matter fermions in the presence of the

bulk fermions’ mass terms and see whether they deviate from the experimental values.

2.1 SU(3)y model

The SU(3)w GHU models are considered because the gauge group is the minimum simple
group that contains SU(2), x U(1l)y subgroup and one SU(2); Higgs doublet as the
extra component of the gauge field. In these models, the symmetry breaking SU(3)y —
SU(2)r x U(1)y is caused by orbifold projection. In the simplest model the spacetime is
5D, and the 5th dimension is compactified with St/Zs.

From the next section, I calculate the zero-mode and the KK mode wavefunction of
each field and evaluate the Yukawa couplings and gauge couplings on the configuration of
SU(3)w GHU model in the case of flat or warped metric and mention the the mass of the
Higgs boson.

11



2.2 Field content

We think SU(3)w gauge theory. SU(3)y gauge field is expressed as Ay = A$,T* where

T is %xGell—Mann matrices. We can decompose A,; as

N v o1 Ad+ AN Ay A Ay — Ay
Ay =>_ Ay =5 | Al tidl, AL+ AN AN AL [ (22)
o=t Ay +idy,  AY+iAY, - AN

and 5D matter field that belongs to SU(3) fundamental representation is written as W/.
5D Lagrangian is
1 1 _ -
Lsp = — Str <F<A>MNF§;‘}V ~% fé) +iy {WTYDY U —iMe(y) TV}, (222)
f

FY = 0y Ay — Oy Ay — igalAwr, A,
Dy = Oy — igaA,

ga : gauge coupling of Ay,

" 1
Th — 7] (w=01,2,3), I°= ,
h 1

ot =(1,0") , o" = (=1,0"), (i =1,2,3)
U =¥ M : bulk mass parameter,

e : step function, (2.2.3)

and —% ng is the gauge fixing term.

2.3 Compactified space
We think 5D flat metric:
ds* = GyndzMda™ = n,, dr*dz” + (dy)?, (2.3.1)

where 7, = diag(—1,1,1,1) denotes 4D Minkowski metric (p,v = 0,1,2,3,M,N =
0,1,2,3,4) and compactify the 5th dimension y by S'/Z, orbifold.

12



2.3.1 S'/Z, orbifold

This is the one-dimensional orbifold of the interval. The compactified extra dimension y

by S? is identified as
y~y+2rR, (2.3.2)
where R is the radius of S!, and by Z, action, y is identified as

Yy~ —y. (2.3.3)

2.4 Orbifold boundary conditions

2.4.1 Gauge fields

S boundary conditions of Ay, are
Apr(a*,y + 27 R) = T Ay (2, y)T7. (2.4.1)

where T is a unitary matrix of the translation transformation on S*. If we define P, P,

as unitary matrices of Z, transformation on y = 0, 7R respectively, we can write
P, =TF,, (2.4.2)

S0 Z boundary conditions of A,; are written as

Aulat, —y) = PyAu (2", y) P,
Ay(a#, —y) = =Py Ay (2", y) P,
Au(z", 7R —y) = PyA, (2", 7R+ y) P,
Ay(z", 7R — y) = — P A, (2", 7R+ y) P}, (2.4.3)

where A, is the 5th component of A,;. As stated above, A, and A, must have an oppsosite
Z parity for gauge invariance. So when A, has a zero-mode, A, cannnot have. Zero-mode
fields on the flat profile must have Z, eigenvalues as (\g, \x) = (+,+) where \g, A, is an

eigenvalue of Z, transformation at y = 0, 7 respectively.

13



2.4.2 Matter fields

Next, I define boundary conditions for matter fields . If y; = 0, 7R, I can write as

Uz, y; —y) = B0 (2, y; +y), (2.4.4)

where I'® = 4% = i7%9142+3. For this boundary condition, components whose Z, eigenval-

ues are (Mg, \;) = (+,+) are restricted to one chirality. So we can realize chiral theory.

This can be rewritten as

\D(ZE, _y) = 770P0F5\IJ($a y)7
U(x, R +y) = 0. P, [°VU (2, 7R — y), (2.4.5)

where 19, 7, = £.

2.4.3 Zero-mode conditions

As stated above, zero-mode fields have constant profile on the flat metric and invariant for
Zy transformation. When symmetry breaking SU(3)y — SU(2), x U(1)y is caused by
orbifold boundary conditions, the components of A,; that should have zero-mode are as

follows:

A 4 a0 40 20

1
AP =3 AL il - A0 + LA , (2.4.6)
_ 2 480
V3iTH
A0 _ 450)
(0 _ 1 50 _ 4700)
AP =5 A —iAl0 ] (2.4.7)

A0 i A0 A0 AT

\IflL(O)
v = ;U = w0 (2.4.8)
3(0)
Yy
where WU = Ui I'®0; = —U;. In order that these components have zero-modes, the

Zy parity (Ao, Ar) should be as follows:

14



(+’+) (+7+) (_7_) <_7_) (_a_) (+’+)
A# = (+7+) (+7+) (_7_) ’ Ay = <_7_) (_7_) (+7+) ) (249)
(=) (=) ++) (++) ()| (=)
(= -) (+,+)
\I/R = -, —) , U, = (—l—, +) (2410)
(+7 +) (_7 _)
For example, if we take Py, P, as
-1
Py= P, = -1 , (2.4.11)

we can realize (2.4.9) and (2.4.10).

Here, in (2.4.7) we select (A; +iA7, AS+iA7) as the SU(2),, Higgs doublet whose VEV
breaks SU(2), x U(1)y to U(1)gum from the components of A, that have zero-modes, so
we identify (A, —iA), AS —iA7)" as the Hermite conjugate field of the Higgs doublet.

2.5 Mode functions and Mass eigenvalues

2.5.1 Gauge sector

In GHU models, the nonzero VEV of the Wilson-line phase breaks the EW symmetry.
Here, we decompose A, as
Ay = (Ay) + Ay, (2.5.1)

where (Ay/) is the background part and A, is the fluctuation part of Ay I select & = 1

and the function of the gauge-fixing term as
for = DM Ay, (2.5.2)

where

From (2.2.2), we can derive the linearized equation of motion of Ay, as

15



To derive the mode functions of gauge fields with the nonzero Wilson-line phase 6y, I

change the basis as

20) = exp {10 [ 0/04)0) | (256)

0

where Q(y) is the gauge transformation matrix. Due to this, Dy, changes into dy, and

(EFnar) vanishes | so (2.5.4) becomes

Moy Ay =0, (2.5.7)
MOy AY = 0. (2.5.8)

We substitute the KK expansion for A, on this equation:
Al (z,y) Zfa )AL (z (2.5.9)
Al(z,y) Z (2.5.10)

We apply the on-shell condition for A%, (z): (O — m2)A?,(z) = 0, where O = 0"0,, then

we obtain the eigenequations for m,, (KK mode equations):

05 fily) = —mi fr(y), (2.5.11)
0yGn(y) = —magn(y)- (2.5.12)

For m,, > 0, the solutions of these equations are

faly) = A2 cos(myy) + B2 sin(m,y), (2.5.13)
gn(y) = Cyy cos(myy) + Dy, sin(myy), (2.5.14)

where A% B2, C%, D¢ are y-independent constants.

n’»~n’

Now, we derive KK mode functions (containing zero-mode functions) and KK mass
eigenvalues of gauge sector. The boundary conditions for the zero-modes of each compo-

nents read from (2.4.9) are

0, A% ycorr =0 (a=1,2,3,8), A%, o,r=0 (a=4,56,7),
Allycorr=0 (a=1,2,3,8), 9,A%0-r=0 (a=4,56,7). (2.5.15)

16



We must rewrite these conditions by the new basis (2.5.5).

The non-zero Wilson-line phase breaks the symmetry SU(2), x U(1)y down to U(1)gm-
When the EW simmetry is broken, we can take the zero-mode of A, as A} = SATAT and
the classical solution of gauge field is (4,) = 3aA” (a: constant of mass dimension 1). So
the Wilson-line phase g can be written as

1 TR .
On = 59,4/ dyA,(y)
0

1
= §gA7rRa. (2.5.16)

This value is determined dynamically (not by hand) at one-loop level. Q(y) in (2.5.6) is

rewritten as

Q(y) = exp {—if(y) A"}

1
= cosd —sinf |, (2.5.17)
0 0
S 5 COS 5

where

Y
0=0(y) = %A /0 dy' A7 ()

9 Y

Y
= 2 0y. 2.5.18
R ( )

The gauge transformation induced by (y) preserves the boundary conditions (2.4.3) and
(2.4.5), but shifts 0y by 2nm. So the 0y is a variable by 2r. The EW symmetry is broken
dynamically when 0y has a nonzero VEV.

Then, A}, are mixed by 6 as

A1 1 ;
AM> cos ;0 —sin

sin %8 oS )
A2 1 L
A3, _ ([ cos 50 —sin g0
A5 | 1
A3, sinzf  cos 30

A%\ [cos® —sind
fl% ~ \sing cosf
A

" (2.5.19)



where

AN\ [ - A3,
(9)=(4 ) (%) -

For example, the boundary conditions for (A}, A%):(2.5.15) change to

wlgwp—t
™)

ok
l\)l»—A w

6
Oy fr =0, (cos — - f'4sin - f4> =0,
y=0,TR 2 y=0,TR
0
fi =— Sm f + cos = f4 = 0. (2.5.21)
y=0,7R 2 y=0,7R
We find f}ln(y) = Al cos(m,y), f An( ) = Blsin(m,y) quickly, so the condition (2.5.21)

1s rewritten as

B in . by 1
( cos(m,mR) sin sin(m, 7 R) cos ) (A ) _o (2.5.22)

my, sin(m,mR) cos %H My, cos(m,mR)sin %2 | \ B4

We obtain when det of the left hand side is 0:

tan?(m,7R) = tan? <H—H> :

2
= £y 1 (2.5.23)
" |72rR R o
From (2.5.22) and the ortho-normalization condition:
TR
| ar{ i)+ wiw ) = b 25.21)
0

Al and B} are determined.

- fi:

cos(my,y),

1
VTR
R 1 0 n
4 _ - _ H
i = —sin(m), (= |24

We find f2 = f!, f5 = f4. The other mode functions are
£13 1

n: an integer) (2.5.25)

= cos(my,y),
~ 1 4
0= Ny sin(m,y), <mn WZ ZL n: an integer) (2.5.26)

i = \/%sin(mny), (mn = ‘%( 0 #£0) (2.5.27)
= \/%COS(mny) (mn — ‘%D (2.5.28)
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Here, notice that d f;‘: /dy whose f? have the massless mode satisfies the mode function

of g% which does not have the masless mode. from (2.5.15). So

gy o< d fﬁ /dy is valid for

such a, and they have the same mass eigenvalue m,,. Similarly, dg%/dy whose g have the

massless mode satisfies the mode function of f;j which does not have the masless mode,

and ff; o< dgp /dy for such a. The mode functions of Aj are

HH n
N 27TR+E ’

n: an integer) .

(2.5.29)

(2.5.30)

(2.5.31)

(2.5.32)

When we assign the bosonic fields that appear in the SM to these mode functions, they

are expressed as

A

I
3
—~
<
N—

1
i

n=0
A =37 Ay W)
n=0

o
A

Ay =2 W,

n=0

A = Z £ @) Yun(2)

Zf4 Y)on(@
Zfﬁ Y)en(x

=> fyw,
= 3 F1 Wil

Zf6

Zf5 Y)n (2
Zf7 Y)en(x

(2.5.33)

where W, (%), Zun, Vun(x), @n(x) means the 4D sector for the KK mode of W boson, Z

boson, photon, the Higgs boson, respectively.
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2.5.2 Fermion sector
We can derive the equation of motion for ¥/ from (2.2.2):
iTN (On — iga(AN)) U — iMeU! = 0. (2.5.34)

We take € = 1 in the region 0 <y < 1.
By the gauge transformation with Q(y),

U = Q(y)0. (2.5.35)
(2.5.34) is rewritten as

V1, Wl — (9, + M) ¥
V0, W + (9, — M)

Y

0
0, (2.5.36)

>
T
Il

where 7 is the 4D ~ matrices, N = pu = 0,1,2,3 component of I'’V, and Up = 1+275\IJ,

Uy, = 1‘%@ (\il = Uy + \i/L, 'yg,\ifR = +\i/R, 75\1@ = +¢/L). We decompose U into the KK
modes, and substitute the on-shell conditions for \iff;(x), the 4D sector of the KK mode for
Ul (z,y): ("0, — my) 07 (2) = 0 into (2.5.36), the we obtain the mode equations for U/:

Di(M) = +0, + M, (2.5.37)

where the double signs correspond and +, — means R, L. When m,, > M, the solutions are
= ——{(MA] = \B]) cos(Oy) + (MB] + A Af) sin(Auy)}, (2.5.38)

where Al BJ are constants. The boundary conditions for h' are

D+\Iji — D+\I/i = D_\IJSR = U,
Vg =U% =07 =0, (aty=0,7R) (2.5.39)
Dy = D(M).
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The relation between U/ and ¥/ is

\Ijlzill
0 - 0 -
\Dzz{cos§~\lf2+sin§-\lf3},
3 SRS 0 &3
U = —51n§-\I! —|—cos§~\lf . (2.5.40)

The ortho-normalization conditions of h? are

TR
/0 dyht, (g)ht () = b

/OﬂRdy{hiw( It (®) + ()R )} = O, (2.5.41)

where y, means the 4D chirality. A/ B/ are determined from the conditions, so the

solutions are
hl = \/—2 sin(\,y) hi = \/—2 cos( Ay + )
R TR ndf); L TR nY ’

n2
R

when m,, > M, where cosa = 1;\1” sina = mﬁ Also,
n

)
n

my, =\ M? + Ay =

Y

==

N « A
h%{n = BZsin(\,y), hgpm =B} {Mn cos(\y) + sin(/\ny)} ,

ﬁin = B2 cos(\y + ), ﬁin = —%Bg sin(A,y),

An Oy
in(A,mR) = — - 2 — M2 2.5.42
sin(A\,7R) = mnsn(Q) m2 ( )
When 0 < m,, < M, the mode functions are
I (y) = Al + Ble™,
- 1
W (y) = —— {(M = A\) AL 4+ (M + \)Ble ™) (2.5.43)
mn

An = /M2 —m2.

. ) A
h%{n = Ai(e/\ny — €_>\ny)’ h3Rn = BE]‘(}\?I%MGATL:U + e—Any)7
; A o M
B () = =2 {(M =AM — (M4 A)e ™), R, = 2B (e — e )
my, N
2sin? fu
= o car M (= VM2 —m) (2.5.44)

cosh(2\,mR) + sin

“’E



When m,, = 0, the mode functions are
ﬁﬁo = A(J)ceMyv
hi, = Ble M. (2.5.45)

Then, the massless modes are

) : [
hio =0, hiy= PR Ve My,

B2o—0. 02— (0 # 0 mod 27)

0,
\/ —2we MY, (0 = 0 mod 27)

: 0 # 0 mod 2m)

( hi, = 0. (2.5.46)
\/ ke, (g = 0 mod 2m)

After obtaining the mode functions of fermions, we assign the fermions that appear in

c3
hRO_

the SM to them. The mass spectrums of fermions depend on the bulk mass M/, so we can
realize the mass of the fermions by specifying M/ for the lightest mode of each ¥/, From
the interaction between A%, and W/, we find the ratio of the hypercharge among SU(2),
doublet (¥}, ¥2) and Uy is 1 :1: —2. For example, we can assign (ug,dy,) and dg to them,

and can assign (vr,er,) and eg by an additional U(1) group.

2.6 Gauge couplings

Here, we derive the 4D effective gauge couplings of fermions from the 5D interaction be-

tween Ay, and U. The 5D gauge interaction is

P = / g W T Ay o/

TR _
= /d4x/ dyga {\Ilfy“AH\I/f + - } . (2.6.1)
0
Inserting (2.5.33) into this, we obtain

e
/2 LO7Y
where the ellipsis means the contribution of the KK modes of relevant fields. The 4D gauge

coupling is expressed as

TR
90) (07, M) = gA/ dy (hiofé + hiofé) hy. (2.6.3)
0
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For the limit 5 — 0, the EW symmetry is unbroken and the gauge coupling for all the

fermions become universal. The coupling is easily calculated as

TR
. 1 .
9(0)(0, M) = gA/O dy (hio Jh +0- 0> hio- (2.6.4)
Since il%o =4/ 1762_%6_]\@ = ilio,
TR
9 ; g
g0y (0, M) = == dy(hly)? = ——= (2.6.5)

vVrR Jo VTR o

where we used the normalization condition for hl,, and g4 means the 4D SU(2), gauge
coupling. This has no dependence on M. After the EW symmetry breaking, fy5 become
the nonzero value by quantum effect, and gy have dependence on M.

For simplicity, we consider the case that M = 0 and 0y # 0. In this case, the relevant

mode functions become

h? ! cos O h? ! si Ou
= —_— —_— = 11n
=R oawR’ ) T R\ oRY )
1 0 N 1 0
1 H 4 . H
— — p— 2' .
0= ¢ <2wRy) =R (szy) ’ (26.6)

SO g(0) 1s written as
O~ 7RV 7R 0 2R
2 1

= —— (1 — ) 2.6.
ga 7TR(9H( cos Op) (2.6.7)

So the deviation from g, is evaluated by the ratio:

90 _ V2 (1—cosfy). (2.6.8)

94 On
This becomes 1 when 6 ~ 2.3.
Now, we change our policy to the models with the warped spacetime. The mass spec-
trums and the couplings in the case of warped metric ds* = e?*p,, datdx” + dy? are

calculated in [21]. In this paper, the Bessel functions of the zero-mode fermion are approx-
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imated as

(a>1) hig(z) ~ hig(2) ~ v/2k(a —1)21*7,

hilg(2) ~ MO DO (2.6.9)
~ QH 2]{?(1 — (1/)
j2 N 2:4 1/2—a
(< 0) hiy(z) ~ |cos 5 I
“ 0 O \/2k(1 —
hio(z) ~ sgn (cos 7H> sin 7}1#21/2_&, (2.6.10)
2z

where z = €, k is the Ads curvature radius, 2, = ¢ and a = M/k + 1/2. The Bessel

functions of the A* zero-mode are approximated as

[T
V7R’
1 £4
M ~ cos® Q—H, M ~ sin O o5 1 (2.6.11)
o(1) 20 fi() 2 2

Using these mode functions, the 4D gauge coupling g is evaluated as

M 1

9(0) ?>§ ~ g4,
M 1

9(0) ?<—§ ~ g4

The zero-mode function of each fermion is characterized by M /k, and they evaluated the

Ou

COS —
2

. (2.6.12)

deviation of (2.6.12) from g4 of each flavor. They concluded the deviations are very small
and become larger for heavy fermions. Such deviations mean that the universality of the

weak interaction is slightly broken in the presence of the non-zero 6.

2.7 Yukawa couplings

As with the previous case, we derive the 4D effective Yukawa couplings. In GHU models,

the Yukawa couplings stem from the 5D gauge interaction. The corresponding term is

L3P = 94T A0 (2.7.1)
\i/l
N N = 1 R R
= ga (\Ifl, 02, \If3> F4§ —iAT | |02 ] . (2.7.2)
i AT 3
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The 4D Yukawa coupling is expressed as

‘Cyukawa ye¢OéLD€RO +heo---. (273)
From (2.7.2),
ga ™ lia s -
ve="50 | dyf§ (Rohiho — hiohls) (27.4)
0

In the flat case with the limit 65 — 0,

_9a ™ ﬂ L*My. L*My_o.()
2 0 2 1_6—2M7rR6 1_6—2M7rR€

M —M7mR
- gA\/szle—. (2.7.5)

This can realize the 4D Yukawa coupling by tuning M for each fermion.

After the EW symmetry breaking, y. has the dependence of (% 0). When M = 0,

- 1. O - 1 %
2 3
ko VTR St (27rR) » o TR €08 (27TR) (2.7.6)

/g{ o (5e) 7 ()

_ 94 2.7.
B On (2.7.7)

Then,

This is a decreasing function of #g from 6y = 0 to g ~ 4.5. Now, we define the Higgs

VEV v in the SM as

2mW
g4

~ 246 GeV. (2.7.8)

v =

The deviation of g, from the real 4D Yukawa coupling is evaluated by the ratio

_ Iyelv

= 2.79
r=t (27.9)
In the present case,this ratio is
2 in 6
r(M = 0) = V2 sin i (2.7.10)
Me QH

The deviation is small for e when 0y ~ 7.
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Next, we see the case with the warped metric. According to [21], the ratio r with M =0

is approximated as

2 0
r(M = 0) ~ — sin —, (2.7.11)
O 2
for —m < 0y < 7w with the Bessel functions.
For |[M|/k > 1/2,
On
r(|M|/k>1/2) ~ 0087 (2.7.12)

In the case, r is almost independent on M /k and vanishes as 0 approaches 7 for all quarks
and leptons. I conclude that it is difficult to realize the Yukawa coupling for each flavor,

so the Yukawa hierarchy by the mass terms of the bulk fermions in the present setup.

2.8 The mass of the Higgs boson

In the present case, the EW symmetry is broken by the VEV of the zero-mode of A;(z).
The Higgs potential is flat in the 5D GHU at the classical level, and the flat direction is
determined by 6y. This flatness is lifted at the one-loop level. Such potential Vg (0p)
determines (6y). Then, the Higgs field obtain a finite mass.

According to the [14], the general (flat or warped) form of the one-loop effective poten-

tial is expressed as

Veff(HH) = ZG%mil(Kf(eH) (281)

where f(0y) is a dimensionless periodic function of 8y with a 27 period. The Higgs mass
can be obtained by expanding Vig(0y) around the (fy) = 6%, that gives the global

minimum of Vog (6 ):

3mg? R(e?* R — 1)

63 L
S.myg = {f”(@}gin) 25?;3} \/@TTLKK
Ly 392 S knR my
=< f"(0y") } — (2.8.3)
{ 71282 2 sin 2"
kmR

in the warped case. In [13], the factor 5 ~ 19 and 0y = 7 gives my = 125 GeV with
7 (0)2 ~ 1.9,
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Chapter 3

6D gauge-Higgs Unification with

custodial symmetry

3.1 Motivations and purposes

In extra-dimensional models, coupling constants in 4D effective theories generally devi-
ate from the standard model values even at tree level due to the mixing with the KK
modes [26, 27, 28]. Unless mgg is very high, models need some mechanisms to suppress
such deviations. Especially a requirement that the rho parameter and the Zbb-coupling
do not deviate too much often imposes severe constraints on the model building. It is
known that the custodial symmetry can protect them against the corrections induced by
the mixing with the KK modes [19, 29]. Hence we focus on 6D GHU models that has the
custodial symmetry in this section.

The purpose of this chapter is to select candidates for realistic 6D GHU models by
making use of the group theoretical analysis. The analysis is useful to investigate the GHU
models because the Higgs sector is determined by the gauge group structure. There are
some works along this direction. 5D models are analyzed in Ref. [31], the tree-level Higgs
potentials in 6D models are calculated in Ref. [17], and models in arbitrary dimensions
are discussed in Ref. [32]. In these works, the custodial symmetry is not considered and
the electroweak gauge symmetry SU(2); x U(1), is embedded into a simple group. Thus
the Weinberg angle 6y is determined only by the group structure, and they found that
no simple group realizes the observed value of fy,. However, this assumption is not indis-
pensable because the color symmetry SU(3)¢ is not unified anyway. Besides, any brane

localized terms allowed by the symmetries are not introduced in those works. In fact,
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the realistic models constructed so far have allowed both an extra U(1) gauge symmetry,
which is relevant to the realization of the experimental value of fy,, and various terms and
fields localized at the fixed points of the orbifolds [15, 18, 22, 24]. Therefore, we include
both ingredients in our analysis. Since larger gauge groups contain more unwanted exotic
particles, we restrict the 6D gauge group to SU(3), x G x U(1),, where G is a simple group
whose rank is less than four.

This chapter is organized as follows. In the next section, we explain our setup and
derive conditions for zero-modes. In Sec. 3.3, we list the zero-modes in the bosonic sector
for all the rank-two and the rank-three groups. In Sec. 3.4, we find a condition to preserve
the custodial symmetry, and provide explicit expressions of the W and the Z boson masses.
In Sec. 3.5, we discuss embeddings of quarks into 6D fermions, and search for appropriate
representations of G that the 6D fermions should belong to. In Sec. 3.6, we calculate
the Higgs potential at tree level. We summarize at Sec. 5 . In Appendix A, we collect
formulae in the Cartan-Weyl basis of the gauge group generators. In Appendix B, general
forms of the orbifold boundary conditions are shown. In Appendix C, we list irreducible

decompositions of various G representations into the SU(2), x SU(2), multiplets.

3.2 Setup

3.2.1 Compactified space
The 6D spacetime is assumed to be flat, and the metric is given by
ds® = nynda™da™ = n,,detde” + (da)? + (da®)?, (3.2.1)

where M,N = 0,1,---,5, n,, = diag(—1,1,1,1) is the 4D Minkowski metric, and the

coordinates of the extra-dimensions (z?, 2°) are identified as

4 4 1 9
)~ ) wommR ) 4 2mmare (€7, (3.2.2)
T z 0 sin @

where n; and ny are integers, and Ry, Ry > 0 and 0 < ¢ < 7 are constants. In order

to obtain a chiral 4D theory at low energies, we compactify the extra space on a two-

dimensional orbifold. All possible orbifolds are T?/Zy (N = 2,3,4,6). It is convenient to
1

use a complex (dimensionless) coordinate 2 = 5 (¢ +iz°). Then, the orbifold obeys the

identification,

2~ Wz +ny+ neT, (3.2.3)
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2mi/N 32

where w = e and 7 = ® 133]. Note that an arbitrary value of 7 is allowed when
N = 2 while it must be equal to w when N # 2.

The orbifold T?/Zy has the following fixed points in the fundamental domain [35, 39].

Oa%a%aHTT ( T2/ZQ)
0,27 L2r oy T2/7
2= = o3 (onT/Z) (3.2.4)
0,47 (on 1T?/7,)
0 (on T?/Zg)

4D fields or interactions are allowed to be introduced on these fixed points.

3.2.2 Field content

We consider a 6D gauge theory whose gauge group is SU(3), x G x U(1),, where G
is a simple group. Since G must include SU(2); x SU(2)y, its rank r is greater than
one. In this paper, we investigate cases in which » = 2,3. In the following, we omit
SU(3) since it is irrelevant to the discussion. The 6D gauge fields for G and U(1), are
denoted as Ay and BZ,, and the field strengths and the covariant derivative are defined as

N = Oy AN—ONAn—i[An, AN, F N = Oy B4 —0nB%,, and Dy = Oy —iAy —iqz BZ,,

where ¢z is a U(1), charge. The 6D Lagrangian is expressed as

1 )
L= = tr (FOMNER) — — POMNER 43y WDy 0!

9z
7

+ 3 LE6A (2 — ), (3.2.5)

2f
where g4 and gz are the 6D gauge coupling constants for G and U(1),, I'M are the 6D
gamma matrices, and £*) are 4D Lagrangians localized at the fixed points z = 2.

The G gauge field A, is decomposed as
Ay = Z Ct H; + Z W B, (3.2.6)

where {H;, E,} are the generators in the Cartan-Weyl basis, i.e., H; (i = 1,--- ,r) are the
Cartan generators and « runs over all the roots of G. Since Ay is Hermitian, C’]’w are real
and W, = (Wg)*. In the complex coordinate (z*, z), the extra-dimensional components
are expressed as
A, =7Ry (A, —ids), A=Al
B? =nR, (B —iB?), BZ=BZ\ (3.2.7)
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3.2.3 Orbifold conditions for gauge fields

As shown in Appendix B, the general orbifold boundary conditions for the gauge fields can

be expressed as

AM(:EWZ + 1) = AM(xa Z)7
z z z z
B (z,2+1)=B;(z,2), B(r,z2+1)=B](z,2),

N

M(I’,Z—FT) = AM<:E>Z)7

Sy

J(x,z47) =B (z,2), Bl(x,z2+71)=DB(z,2),
u(r,wz) = PA,(2,2)P7', A (v,wz) =w 'PA,(x,2)P,
5(m,wz) = Bf(x, 2), Bf(z,wz) =w 'B(z,2), (3.2.8)

SO

where P are elements of G. The orbifold conditions for 6D fermions are provided in (3.5.2).

Since the zero-modes of the gauge fields have flat profiles over the extra dimensional
space, the condition for Aj; to have zero-modes are determined by the choice of the ma-
trix P in (3.2.8). It is always possible to choose the generators so that P is expressed in

terms of the Cartan generators as
P=exp(ip-H), (3.2.9)

where p- H = Y. p;H; and p; are real constants. Thus PH;P~' = H; and PE, P! =

e?*E,, and the relevant conditions in (3.2.8) are rewritten as

i _ i i _ i
Cl(r,wz) =C/(2,2), Clr,wz)=w Cz,2),
Wiz, wz) = eP W (z,2), W (r,wz) = ei(p'o‘_%)Wf(x, z). (3.2.10)

This indicates that C;, always have zero-modes while C? do not irrespective of the choice
of the matrix P. Therefore the orbifold boundary conditions cannot reduce the rank of
G as mentioned in Ref. [34]. Besides, B/ has a zero-mode while BZ does not. Namely
U(1), is unbroken by the orbifold conditions. In contrast, whether W and W have zero-
modes depend on the choice of P. Since (3.2.10) is the Zy transformation, p; must satisfy

e!NPe — 1. Thus possible values of p - o are

(3.2.11)
where n,, is an integer.
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From (3.2.10), the conditions for W and W to have zero-modes are expressed as

0, (for W)
p-o= (3.2.12)
2 (for W2)

where the equalities hold modulo 27.

Now we focus on P such that the orbifold bondary conditions break G to SU(2); x
SU(2)g x U(1)">. We denote the positive roots that specify SU(2), and SU(2)g as ay
and apg, respectively. Then they must satisfy oy - ag = 0, and o + ag is not a root, and

p; must satisfy

prap=p-ag=0, (mod 27)

p-fB= . (ng€Z, ngd¢NZ) (3.2.13)

where 3 is the root of G other than o and ag.

3.3 Zero-modes of gauge and Higgs fields

In this section, we investigate the field content of the zero-modes from the 6D gauge fields.

3.3.1 Rank two groups

First we consider a case that r = 2, i.e.;, G = SO(5),Go. In this case, the unbroken
gauge group by the orbifold conditions is SU(2); x SU(2) x U(1),. We do not consider
G =SU(3) because it does not contain SU(2); x SU(2)y as a subgroup. The roots of G

can be expressed as linear combinations of two-dimensional basis vectors e’ (i = 1,2).

SO(5)

The roots are {+e' + e/, +e'} (1 < i # j < 2). We can choose the unbroken sub-
group SU(2); x SU(2) as

(az,ar) = (e' + e e' —e?). (3.3.1)

! Then the adjoint rep-

The other possible choices are essentially equivalent to this case.
resentation of G' is decomposed into the irreducible representations of SU(2); x SU(2)g
as

10 = (3,1) + (1, 3) + (2, 2). (3.3.2)

'We cannot choose them as (ar,ar) = (€', e?) because ay, + ag is a root in such a case.
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The candidate for the Higgs scalars is a bidoublet (2, 2), which consists of +e! and +e.

The conditions in (3.2.13) are now expressed as

pr+p2=p1—p2=0, (mod 2m)
_ 2npm

p1 = N

(np S Z, np g NZ) (333)

It is enough to search the solution in a range 0 < py,ps < 27. The solution exists when
N # 3, and it is
(p1,p2) = (m,m), (3.3.4)
or
P =exp{in(H, + Hs)} . (3.3.5)
Therefore the zero-mode condition for (2, 2) is expressed as

2T
= —. 3.3.6
r= (33.6)

Namely, we have a bidoublet Higgs when N = 2, while no Higgs exists in the other cases.
Go

The roots are {+(e! + v/3e?)/2,+(e' + \/igeQ)/Zj:el,j:e?/\/g}. We can choose the
SU(2);, x SU(2)y subgroup as

(ap,ag) = (el, j—;) : (j—; el) : (3.3.7)

The other possible choices are essentially equivalent to these cases.
Let us first consider the case of (o, ag) = (e', €2/v/3). The irreducible decomposition

of the adjoint representation of G is
14 = (3,1) + (1,3) + (2,4). (3.3.8)

The candidate for the Higgs scalars is (2,4). The conditions in (3.2.13) are expressed as

pL = % =0, (mod 2m)
2
% % _ 7:}&\];% (np € Z, np ¢ NZ) (3.3.9)

It is enough to search the solution in a range 0 < pq, 5—% < 2. The solution exists when
N # 3, and it is
P = exp (2\/§m'H2> . (3.3.10)
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Therefore the zero-mode condition for (2,4) is expressed as

2T
= —. 3.3.11
m= (3:3.11)

Namely, we have a (2, 4) multiplet as the Higgs scalar zero-modes when N = 2, while no
Higgs exists in the other cases.

In the case of (az,ar) = (e2/V/3,el), the results are obtained by exchanging SU(2),
and SU(2) in the above resuts. Hence we do not have SU(2), -doublet Higgses.

3.3.2 Rank three groups

Next we consider a case that r = 3, i.e., G =SU(4),S0(7),Sp(6). In this case, the unbroken
gauge group by the orbifold conditions is SU(2); x SU(2) x U(1)y x U(1),,. The roots of G

can be expressed as linear combinations of three-dimensional basis vectors €' (i = 1,2, 3).

SU(4)

The roots are {v/2e!, v/2e?, i%i%+e3}.2 We can choose the SU(2); x SU(2)y subgroup

as

(ap, aR) = (V2e',V2e?). (3.3.12)

The other choices are essentially equivalent to this case. The U(1)x generator Qx is
identified as
QX = 263 -H = 2H3 (3313)

The irreducible decomposition of the adjoint representation of G is
]_5 - (3, 1)0 —I— (1, 3)0 + (2, 2)+2 + (2, 2)_2 —I— (1, 1)0, (3314)

where (3,1)o, (1,3)0 and (1,1)o correspond to SU(2);, SU(2)y and U(1), generators,
respectively. Thus the candidates for the Higgs scalars are two bidoublets. Independent

conditions in (3.2.13) are expressed as

V21 = V2py = 0, (mod 27)

&+ Do _ 2npm

vz TN

2Tt is sometimes convenient to embed these roots into a four-dimensional vector space. Then they are

expressed as el —¢’ (1<I#J<4), where é’ are the basis vectors of the embeded space. The original

. . 11 ~1 ~2 2 1 ~3 ~4 3 _ 1 ~1 ~2 ~3 ~
basis vectors are expressed as e _ﬁ(e —é%), e —ﬁ(e —é")ande’=;(é& +é& —é& —é).

(np €7, np Q/ NZ) (3315)
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The solution is

5 .
P = exp ( nem H3> , (3.3.16)
N
where np = 1,--- | N — 1. Therefore the zero-mode conditions for (2,2)yy are
2 2
%W = WW (mod 27) (3.3.17)

Therefore, the scalar zero-modes we have are

(2, 2)+2, (2, 2)_2 when N = 2)

(
(2,2)42: (when N =3,4,6 and np = 1)
(2,2)_2: (when N =3,4,6 and np = N — 1)
Nothing : (in the other cases) (3.3.18)

SO(7)
The roots are {+e' + e/, +e'} (1 < i # j < 3). Essentially inequivalent choices of the
SU(2);, x SU(2)y subgroup are

(ap,ar) = (e' +e? e —€?), (e'+e*e?), (e e +e?). (3.3.19)

(D) (ap,ar) = (et + e2,e! — e?)
The U(1)x generator is
Qx =€ - H = Hs. (3.3.20)

The irreducible decomposition of the adjoint representation of G is

21 =(3,1)0 + (1,3)0 + (2,2) 41 + (2,2)-1 + (2,2)0
+(1,1) 1 + (1,1) 1 + (1,1), (3.3.21)

where (3,1)0, (1,3)0 and (1, 1) correspond to SU(2);, SU(2)y and U(1)y genera-
tors, respectively. Thus the candidates for the scalar zero-modes are three bidoublets

and two singlets. Independent conditions in (3.2.13) are expressed as

pr+pr=p1—p2=0, (mod 2m)
2np7'('
N

p1+Dp3,p1,p3 = (np€Z, np¢gNZ) (3.3.22)
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It is enough to search the solution in a range 0 < py, pa, p3 < 27. The solution exists

only when N = 4,6, and it is

2
P = exp {m (H1 +Hy o+ %Hg) } , (3.3.23)
where np # 0, N/2. Therefore the zero-mode conditions for (2,2)+y, (2,2)¢ and
(1,1)4; are
2npm 27 2w 2npm 27
=T Teon = (3.3.24)

respectively. The double-signs correspond.

When N = 4, the scalar zero-modes we have are

(2,2)—1, (1,1)41: (when np =1)
(2,2)41, (1,1)_1 : (when np = 3) (3.3.25)

When N = 6, they are

(1,1)41: (when np =1)
(2,2)_1 : (when np = 2)
(2,2)41 : (when np = 4)
(1,1)—1 : (when np = 5) (3.3.26)
(I1) (ap,ar) = (e* + €2, e?)
The U(1)x generator is
Qx = (e' —e®)-H=H, — H,. (3.3.27)
The irreducible decomposition of the adjoint representation of G is
21 = (33 1)0 + (17 3)0 + (23 3)+1 + (27 3)—1
+(1,1)42+ (1,1)_2 4+ (1,1),. (3.3.28)

The candidates for the scalar zero-modes are (2,3)1; and (1,1)4;. Independent

conditions in (3.2.13) are expressed as

p1+p2=p3=0, (mod 2m)

P1+p3, P2+ p3,p1— P2 = (np €Z, np ¢ NZ) (3.3.29)
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It is enough to search the solution in a range 0 < py, pa, p3 < 27. The solution exists

when N = 3,46, and it is

- (H1 — Hz)} ; (3.3.30)

where np # 0, N/2. Therefore the zero-mode conditions for (2,3)4+; and (1,1)4;

are
2npm 2w Inpm 2w

+ = — + = — .3.31

N N N N (3.3.31)

respectively.

When N = 3, the scalar zero-modes we have are

(2, 3)+1, (]_, 1)_2 : (When np = 1)

(2,3)_1, (1,1)42: (when np =2) (3.3.32)
When N =4, they are

(2,3)41 : (when np = 1)
(2,3)_1: (when np = 3) (3.3.33)

When N = 6, they are

(2,3)41: (when np =1)
Nothing : (when np = 2,4)
(2,3)_1 : (when np =5) (3.3.34)

(I11) (ar,ar) = (e' + €2,¢e?)
The results are obtained by exchanging SU(2), and SU(2)y in the case (II). Hence
we do not have SU(2), -doublet Higgses.

Sp(6)

The roots are {+e’ + e/, +2e'} (1 < i # j < 3). Essentially inequivalent choices of the
SU(2);, x SU(2) are

(ar,ar) = (2€',2e?), (e' + €% 2¢e*), (2% e +e?). (3.3.35)

36



(D) (ar,ar) = (2e',2e?)
The U(1)x generator is
Qx =€’ H = Hs. (3.3.36)

The irreducible decomposition of the adjoint representation of G is

21 = (39 1)0 + (13 3)0 + (2, 2)0 + (29 1)+1 + (29 1)—1
+(1,2) 41+ (1,2) 1 4+ (1, D42 + (1,1) o + (1,1)0.  (3.3.37)

The candidates for the scalar zero-modes are four SU(2), -doublets and six SU(2), -

singlets. Independent conditions in (3.2.13) are expressed as

2p1 =2p, =0, (mod 27)

2nm
P1+ P2, P1 £ p3, p2 £ 3, 2p3 = N (n€Z, ng NZ) (3.3.38)

The solutions exist only when N = 4,6. They are

pY = exp {z'ﬂ (H2 + 2"”[—[3)}

P = ) (3.3.39)
PP = exp {m (H1 + 2"”]—[3)}
where n # 0, N/2.
When N = 4, the scalar zero-modes we have are
(2,1)41, (1,2)_;: (for PV or P?)
(2,1)_1, (1,2)41 : (for PV or P?) (3.3.40)
When N = 6, they are
(2,1)41 : (for P or P?)
(1,2)_q : (for P(l) or P )
(1,2) 41 : (for P(I) or P )
(2,1)_1 : (for PV or P?) (3.3.41)
(I1) (ar,ar) = (e* + €%, 2¢€?)
The U(1)x generator is
Qx = (e' —€*)-H = H, — H,. (3.3.42)
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The irreducible decomposition of the adjoint representation of G is

21=(3,1)0+ (1,3)0+ (3, 1)42 + (3, 1)—2 + (2,2) 41 + (2, 2)—1 + (1, 1)o.

(3.3.43)
The conditions in (3.2.13) are expressed as
p1+p2=2p3=0, (mod 27)
2nm
P1 +p37p2 +p3a 2p17 2p2 = T) (n € Za n € NZ) (3344)
where n # 0, N/2. The solutions exist only when N = 3,4,6. They are
PV = exp {225(H, — Hy)}
P=3 PRI = 1)} (3.3.45)
Py =exp {im (22~ (Hy — Hy) + H;) } .
When N = 3, the scalar zero-modes we have are
(3,1)_a, (2,2)41: (for PV or P?)
(3,1) 42, (2,2)_1: (for PV or P?) (3.3.46)
When N =4, they are
(2,2)41 : (for PY or P?)
(2,2)_1 : (for PV or P{?) (3.3.47)
When N = 6, they are
(2,2) 44 : (for Pl(l) or Pl(Z))
(2,2)_q : (for P5(1) or PéQ))
Nothing : (in the other cases) (3.3.48)

(I11) (ar,ar) = (2€%,e' + €?)
The results are obtained by exchanging SU(2); and SU(2)y in the case (II).
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3.4 Custodial symmetry and Weinberg angle

3.4.1 Custodial symmetry

Here we consider a condition that the custodial symmetry is preserved after the electroweak

symmetry is broken.

The SU(2)y, and SU(2)g generators are

E -H E -H
(Tf,TE) = <ﬂ aL_) ) (TEE?TI%) = < — aR_) ) (341)

oz fo|? o] " |agf?
respectively. Thus we can rewrite (3.2.6) as
Ay =WE T+ W Ty + W T+ Wi T+ Wy Ty + W3, Th

where

+ _ +a 3 —
WL/.L: |aL|W,LL L, WLu:aLO‘uy

W, = lag| WHer, Wi =ag-Cy, (3.4.3)

and Bff = X% is the U(1)  gauge field that does not exist when r = 2. The ellipses denote

— xP

components that do not have zero-modes. Since the generators in (3.4.1) are normalized

as
1 1
tr (T71;) =tr (17)°) = —5, & (TaTy) =tr ((T})°) = —, (3.4.4)
oL ||
the canonically normalized zero-mode gauge fields are
: VA : VA - A
W:I:,3 = W:ﬁ:,37 +,3 = VV:I:,37 BZ = —BZ, 345
W eV W = g e B B (3:45)

where A is the area of the fundamental domain of 72/Zy.

Since we have assumed that SU(2); x U(1), is unbroken by the orbifold boundary
conditions, we introduce some 4D scalar fields at one of the fixed points of T?/Zy in order
to break it to U(1),.. We demand that the custodial symmetry SU(2),, C SU(2); x SU(2)y
remains unbroken after the Higgs fields have VEVs. The generators of SU(2),, are

o Ey
TiETi—FTi: aL_|_ 04R7
VTR TR T o] ag]
-H -H
R B o R (R (3.4.6)
vz | g
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Thus the conditions for SU(2),, to be unbroken are

(77, (4] = > _(w) (N*”’BE“” + Ni“R’BE““R> =0,
B

|| |ag|
[T9,(A)] = > (WP (OIZLFB + T(’;?) Es =0, (3.4.7)
B

since C do not have zero-modes and thus (C?) = 0.

Rank two groups

Let us first consider the rank two groups. We introduce the following Lagrangian at z = 0.
La = {-Dus'D"¢ — V() } 8(2), (3.4.8)

where ¢ is a complex scalar field belonging to (1, 2) 41,2 under SU(2); x SU(2)g x U(1),,
and V(¢) is a potential that force ¢ to have a nonvanishing VEV. After ¢ gets a VEV,
SU(2)g x U(1), is broken to U(1),,, and the corresponding zero-mode gauge field is ex-
pressed as

BE{ = sin GZW}%H + cos GZBZ, (3.4.9)

where the mixing angle 07 is determined by tanf; = ¢z/(ga|ar|). The hypercharge

operator Y is identified as

OéR'H

Y =Tp +Qy = -+ Q2. (3.4.10)

|ovg|
After W# have nonvanishing VEVs, SU(2); x U(1), is broken to the electromagnetic

symmetry U(1) Since W’ is U(1), neutral and only U(1)en neutral W2 can have

em”

nonvanishing VEVs, the root 5 must satisty

op-b anb_, (3.4.11)
lorl*  Jag|”

if (W) # 0. Thus the second condition in (3.4.7) is automatically satisfied. The roots
that satisfy (3.4.11) are +e* € (2,2) in SO(5), and + (%1 — %) € (2,4) in Go. Then,

from the first condition in (3.4.7), we obtain a condition,

. (W) =0, (B#+e?) (3.4.12)

z

e

= W)

for SO(5), while no nonvanishing VEV is allowed for Gs.

30f course, we can assume that Lyq is localized at another fixed point.
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Rank three groups

Next consider the rank three groups. Since the unbroken gauge symmetry is SU(2); X
SU(2)g x U(1)y x U(1), by the orbifold conditions, let us first assume that ¢ in (3.4.8)
also has a nonzero U(1), charge in order to obtain SU(2); x U(1), at low energies. Then
the U(1), gauge field B} becomes a linear combination of W3, B and B, and the
hypercharge is identified as

-H
Y:T3+QX+QZ=O|‘R—|2+X.H+QZ. (3.4.13)
QR
Thus the condition (3.4.11) now becomes
Ll AN Y (3.4.14)
™ ax|

Then the second condition in (3.4.7) requires that both (3.4.11) and x - § = 0 must be
satisfied if (WF) # 0. This meas that scalar components have nonzero VEVs only if the
corresponding roots (3 satisfy both (3.4.11) and @Qx = 0. Such roots do not exist among
those satisfying the zero-modes listed up in Sec. 3.3.2. Therefore we introduce two complex

scalar fields ¢ and ¢ instead of ¢ on the fixed point,

Loa = {~Dud{ D61 — Dudi D — V(61,65) } 6(2), (3.4.15)

where ¢ and ¢, are complex scalars belonging to (1,2)o,+1/2 and (1, 1)41,0 respectively
under SU(2); x SU(2) x U(1)y x U(1),, and V(¢1, ¢2) is a potential for them. Since ¢, is
neutral for U(1) ., the U(1), gauge field B}: is independent of Bff . Hence the hypercharge
is now identified as (3.4.10). The U(1), charges are no longer relevant to the U(1)y
and U(1),,
Thus the U(1), gauge field is given by (3.4.9). In this case, the U(1),,, neutral condition

em

charges because U(1) is completely broken by a VEV of another scalar ¢,.

becomes (3.4.11), which is consistent with the second condition in (3.4.7). As a result,

possible nonvanishing VEVs are as follows.

(W) = (W) € (2,2)42,  in SUM)

€ (L, )41 inSO(7) (I),

z

<W;|:(e2+e3)> _ <W:|:(_82+63)>‘ c (2, 2):&17 ‘(WZ:|:63>

(WD) = [(WEC) € (2,2)00 in Sp(6) (D), Sp(6) (11D, (3.4.16)
where the double-signs correspond.
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In summary, fields that can have nonzero VEVs are the neutral components of a bidou-

blet (2,2) or a singlet (1,1). The above conditions indicate that a bidoublet H, must

have a VEV:
(Ha) = <”a ) , (3.4.17)
Vg

where v, > 0, if we define a phase of each field component appropriately.

3.4.2 Weinberg angle and W and Z boson masses

In the approximation that the W and Z bosons have constant profiles over the extra
dimensions, the 4D SU(2); and U(1l), gauge coupling constants are read off from the

couplings to the matter zero-modes, and are identified as

_galow) o gagzlonl (3.4.18)

VA VA |l + 62)

Thus the Weinberg angle is calculated as

12 2 2
tan? Oy = J__ 9z o] : (3.4.19)

9? |OZL|2(921 |CVR|2 + 9%)

We can obtain the experimental value tan? Oy ~ 0.30 by tuning the ratio gz/ga.
Next we derive the expressions of the W and Z boson masses. From (3.4.5) and (3.4.9),

the expression (3.4.2) becomes

Ay =W TH+ WL Ty + W, T} +sin0,B Th+ - - -, (3.4.20)
where B) = g%’*‘ég, after the breaking SU(2); x U(1),, — U(1),. Then it follows that
Ny N-oapp
[Aw Z Wﬁ{WL I3 |aL| Egra;, + WLH |aLL| Es o,
(WL# e + B) sin 6, o lfj) Eﬁ} (3.4.21)
QR

From the results in the previous subsections, the only components that contribute to the
W and Z boson masses are the neutral components of bidoublets. Since the roots that

form a bidoublet are expressed as

Ya + O, =5 Yo + O + QR
Tar Tar , (3.4.22)

Ya ﬂ} Ya + aR
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where a labels bidoublets, (3.4.21) are rewritten as

oy [€S 1 sin 6
A (4] =% [V2re) { Wb (503~ 2528 ) B |

Ya

N ein 1 sinf,
+<WZQ+ R> {\/EWE_ME%JraLJraR - <§W2M - 9 B}j) E'YaJrCYR} }’

(3.4.23)
where 7, runs over the T} = T3 = —% components of the zero-mode bidoublets. We
have used that |N_a, v tarl” = [Nagrwtan] = ‘O‘§| ,and ¢ = arg(N_o, rota,) and n =

arg(Na, yat+ar). Thus the relevant terms in 6D Lagrangian are calculated as

1 N 1
L= =gt (EONER) o= ot (4% (A0 [, (A1)
gamhy
[(Woatar) P [((Wyetery? 1 (1 . sinfy
Z 29 WQRQ §WLMWLM+ §WL,u_ 9 Bu
: 2
gy n lag|sinfy A
— L Lot {W MW = (WLM S (3.4.24)
At the last step, we have used that (3.4.5), and |[(W)etoL)| = |[(Wietor)| = o gleva

(g: 4D SU(2); gauge coupling), which follows from (3.4.12) or (3.4.16). We obtam the W
and the Z boson mass terms by integrating (3.4.24) over the extra dimensions, and their

masses are read off as

mw =gy v,
a

lag| sin? 0 e 9% lar|” v
my = (14 BTy = (1 T2 ) (34.25)
|| lan]” (94 larl™ + 9%)

From these and (3.4.19), we find that p = m¥,/(m%cos?0y) = 1. This is expected

because we have assumed that only SU(2); doublets and singlets have nonzero VEVs and
neglected the z-dependence of the mode functions for the W and the Z bosons. The

custodial symmetry plays a crucial role when such z-dependence is taken into account.

3.5 Matter field

We consider a case that quarks and leptons live in the bulk. This case is interesting

because the hierarchical structure of the Yukawa coupling constants can be realized by the
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wave function localization [36, 37|, and the generation structure can also be obtained by
a background magnetic flux [39]. In the following, we focus on the quark sector, but a

similar argument is also applicable to the lepton sector.

3.5.1 Zero-mode conditions

A 6D Weyl fermion ¥, , with the 6D chirality xs = =+ is decomposed as
Wy = Z Wexas (3.5.1)
X4==%
where x4 = =+ is the 4D chirality. The orbifold boundary conditions for ¥,, ,, are given
by [51]

‘I/xa,x4<xv z+ 1) = VUyexa <x7 Z)u
Uyexa (,2+7)= Uexa (,2),

Uy (,02) = w7 2 € P (2, 2). (3.5.2)

A factor w2 appears because a 6D spinor is charged under a rotation in the extra-
dimensional space. The phase ¢, satisfies (B.0.4).

As pointed out in Ref. [38], the generations and the hierarchy among the Yukawa
couplings can be obtained by introducing an extra gauge symmetry Gr and assuming a

magnetic flux on 7%/Zy and the Wilson-line phases for it. The zero-modes are contained

in Wy, .\, as
jmax
Uyona(®,2) = D ) fOR() )yl () + - - (3.5.3)
Jj=1 p

where 1 runs over the weights of the zero-mode states,* and the ellipsis denotes the nonzero
KK modes. The number of the zero-modes j.x is determined by the magnetic flux [39].
The zero-mode functions fg)“ (z) are determined so that (3.5.3) satisfies the first two
conditions in (3.5.2). From the last condition in (3.5.2), we obtain

¢(J)M(x) _ w_X42XG

X4

ew“PdJ)(gz“(x). (3.5.4)

Namely, the zero-mode is an eigenvector of w™ 2 e P with an eigenvalue 1. Denote the
highest weight of a representation R that ¥, , . belongs to as fimax. Then p is expressed

as
= fhmax — Z ki, (3.5.5)

4Do not confuse it with the 4D Lorentz index.
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where k; are non-negative integers. Since PV|u) = eNP#|y) = eNPrmax| ) 5 the phase @,
is determined by (B.0.4) as ¢, = %(2my, +1) = p- fimax, Where m,, = 0,1,--- , N —1. Thus
we find that

. T 3 2 w 1 ) . !
w X42X6 eu’p“’P’u> = 6727)(42)% exp (—( m ; )ﬂ-l —1p - ,Umax) elp'“’m

— exp (m’(Qmw —l—Nl — X4X6) ZZ ki(p - ai)> |0). (3.5.6)

Namely, the zero-mode condition for the state |u) is

m(2my, + 1 — XaXe
N

) _ > kilp- ;) =0.  (mod 27) (3.5.7)

3.5.2 Zbzb; coupling

When the quarks live in the bulk, the Zb; by, coupling can receive a large correction induced
by the diagrams exchanging of the KK gauge and fermion modes. The authors of Ref. [29]
pointed out that the custodial symmetry plays an important role to suppress the deviation
of this coupling from the standard model value. The Zb;b; coupling is protected if the
theory has a parity symmetry Ppgr that exchanges SU(2); and SU(2)g, and by, is a com-
ponent of T} = T = —1 in a bidoublet (2, 2) for SU(2); x SU(2)g. Since the Higgs field
also belongs to (2, 2), the right-handed quarks should belong to (1,1) or (1,3) + (3, 1).

Cases in which the bosonic sector has the parity symmetry Prr and a scalar bidoublet
are SO(5), SU(4) and SO(7) (I) in Sec. 3.3. In Appendix C, we list the irreducible repre-
sentations of these groups whose dimensions are less than 30, and their decomposition into
the SU(2); x SU(2)z(xU(1)) multiplets. There is no (1, 3) + (3, 1) multiplets included
in the list. Hence the left-handed and the right-handed quarks should be embedded into
(2,2) and (1, 1), respectively.

3.5.3 Yukawa coupling constants

General expression

The Yukawa couplings originate from the 6D minimal couplings in the kinetic term,
iV, MDDy = _;L}{i@xa,m:x«sAijm,m:—m + h.c. +---.  The canonically normal-

ized Higgs zero-mode HP? is contained in A, as A, = Z/B %gﬂRlHﬁEg + -+, where g

®We have used (3.2.11) at the second equality.
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is the SU(2); gauge coupling constant (see (3.6.5)). Then the Yukawa couplings in 4D

effective Lagrangian are expressed as

> (S i ) o=

Eyukawa = I P s (358)
Z Z y(_HijLRRHﬁw .“Llp(] pL—>B + h. c,) (Xﬁ _ _)
tj \B.pL

where Ry, R and Ry are irreducible representations of SU(2); xSU(2)g(xU(1) ) xU(1),
that |8), |ur) and |ugr) = |pur + xeB) belong to, and

v = i 2g(ur E-glu + B) /de FEp @ (=),
yRERERR = /39 | Bl s, — ) / &z [ @), (35.9)

Note that these coupling constants only depend on the representations {Ryg, R, Rr}, and

take common values for § € Ry and up € Rp.

Embedding of quarks

Exponentially small Yukawa couplings can be obtained by using the wave function local-
ization in the extra dimensions [36, 37].° For the third generation, we assume that the
overlap integrals in (3.5.9) do not provide any suppression factors, i.e., equal one. Then
the Yukawa couplings is determined only by the group-theoretical factors. In the following,
we focus on the third generation quarks.

Consider a 6D Dirac fermions ¥ = W, +W_ that belongs to the representation R. The
theory is assumed to be symmetric under an exchange: W, < —W_ so that a 6D mass
term Mg (¥, W_ + U_W,) is prohibited. We also assume that ¥, _ and ¥, , have zero-
modes Q(XG € (2,2) and )\%‘6) € (1,1). The Higgs fields H? that couple to them form

bidoublets H,. Then, from (3.5.8), the Yukawa couplings from 737 . W, YDy ¥,
before the breaking of SU(2); x U(1), at the fixed point are expressed as
Lyukawa = Z {yff)tr (Q Yy ) + yfb )ty (Q( Ha> )\S{) + h.c.} , (3.5.10)

a

6This can be realized by the Wilson-line phases for the extra flavor gauge symmetry G in the presence

of a magnetic flux [38].
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where H, = o9H 09 and

usH = iV2g(uL| Bl + B) = iV2gN3
yc(’i) — Z\/§g<VL’Eﬁ|I/L — ﬁ> = Z\/ﬁgNiﬁ,l/L (3511)

Here |pr), [vn) € (2,2), |pr+8), v — 5) € (1, 1), and a complex constant N, is defined
below (A.0.3). Note that Q(L+) and Q(L_) ()\g) and )\g{_)) belong to different (2,2) ((1,1))
in R because the same (2,2) ((1,1)) cannot satisfy (3.5.7) for x¢ = £ simultaneously.
We denote them as Q(LXG) € (2,2),, and )\%6) € (1,1),,. The Yukawa couplings depend
on how the quark fields are contained in Q(Li) and )\g[).

As we will see in Sec. 3.6, the Higgs potential at tree level only contains quartic terms.
The electroweak symmetry breaking occurs at one-loop level, and the top Yukawa coupling
provides a dominant contribution to the one-loop Higgs potential. In general, such one-loop
potential breaks SU(2); x SU(2)g, and thus the Higgs VEVs are not aligned as (3.4.17).
Namely the custodial symmetry is broken. A simple way to avoid this difficulty is to assume
that the quark fields couple to the Higgs fields only through a combination H,+H,. In order
to achieve this, the quark fields must be equally contained in both W, and ¥_. Specifically
we introduce 4D fermions (g € (2,2) and 7, € (1,1) localized at a fixed point, which
transform as (g — —(r and 7, — —n under ¥4 — —W_.. Then combinations Q) =
(—Q(L+) + Q(L_))/ﬂ and N = (—)\g) + Ag{))/\/ﬁ have masses with them at the fixed
point and are decoupled at low energies. Then we obtain the desired form of the Yukawa
couplings,”

Lyuiaa = % S {QL (% + 7—[) } Ap 4 b 4, (3.5.12)

where yy = yi” =47, 0, = (ngj) + Q(L_))/ﬂ and \p = ()\g) + )\g%_))/\/i

Now we will see how the quark fields should be embedded into 6D fields. For simplicity,
we consider a case that there is one Higgs bidoublet H as a zero-mode for a while. We
introduce two 6D Dirac fermions /3 = \Iff/?’) + 0 and w8 = \115:1/3) + ),
whose U(1), charges are 2/3 and —1/3, respectively. Let us assume that W42 (g, =
2/3,—1/3) contain Q%Z) € (2,2) and AE%Z) € (1,1) as zero-modes. The bidoublets are

decomposed as

2/3 1 2 —1/3 3 4 r g
QCM — (o Py, QY — (Q® QW) 9 = (Hy, Hy), (3.5.13)

"Notice that Qg) and )\(LJF) also satisfy the zero-mode condition (3.5.7) when Q(Li) and )\Sgi) are zero-

modes. So we need additional 4D localized fermions to decouple them.
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where Hi = e; HI*, and {Qg), (L?’),I:b} and {Q(LQ), %),Hl} are SU(2), doublets whose
T3 eigenvalues are —1/2 and 1/2, respectively. Then the Yukawa couplings in the form of

(3.5.12) are expressed as

o %tr { @/3)t (H + H) } tr+ %tr {Q(L‘l/?’” (H + H) } br + h.c.

_ 4 {Q(Ll” <ﬁ12 + Fh) + QW1 (FI2 + Efl) } th

5
n % {Q‘f’” (H, + Hy) + QW (i, + HQ)} b + hic.. (3.5.14)

where y; and y, are calculated from (3.5.11). Only a combination H; + Hy couples to the
quarks. Thus this combination obtains a tachyonic mass while the other combination H; —
Hy does not at one-loop level. Therefore the latter does not have a nonzero VEV, and
(Hy) = (Hs) is realized. Namely, the alignment (3.4.17) is achieved. Since Q(Ll) and Q(LA‘)
have the same quantum numbers for SU(2); x U(1),, they are mixed with each other after
the breaking SU(2)y x U(1),, — U(1), occurs at the fixed point. The left-handed quark

is identified as a linear combination,
qr = cos GQQ(LD + sin Hngl), (3.5.15)

where 0, is a mixing angle. The orthogonal combination and Q(Lz) and Q(L?’) are exotic fields
that must be decoupled at low energies. Hence we need to introduce 4D localized fermions
that couple with those exotic components. As a result, the following Yukawa couplings are

obtained at low energies.

yukawa

£58@xUWy % cos 0,q) ([55 + ﬁl) tr+ %sin 0,40 (Hy + Hy) by +hec..  (3.5.16)

We can extend this to the two-Higgs-bidoublet case straightforwardly. When y, = yp,
the large ratio of the top quark mass m; to the bottom quark mass m, is obtained if

60, = O(my/my).® In such a case, m, is calculated as

Yt Zva

a

where v, is defined in (3.4.17). We have used that cosf, ~ 1, (3.4.25) and (3.5.11).
Therefore, the observed top quark mass is obtained if |[Ng,, | = V2.0

my =~

= \/§g |N5,ML| Zva - \/§|N67NL| mw, (3.5.17)

8In contrast to the mixing between Q(L+) and Q(L_), the mixing angle 6, can take arbitrary values

because there is no symmetry to fix it.
9A small deviation from the observed value of m; is expected to be explained by quantum correction.

(See Ref. [45].)
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Available representations for matter fermions

In summary, the quark multiplets should be embedded into two 6D Dirac fermions W(®/3)

and W(=1/3) whose U(1), charges are 2/3 and —1/3, respectively. Irreducible representa-

tions R which they belong to must satisfy the following conditions.

1.

3.

R includes two bidoublets and two singlets, which are denoted as (2,2)+ and (1,1)4,

respectively.

. There are weights that satisfy |uz) € (2,2)4, |ur+8) € (1,1)4, |v) € (2,2)_ and

|VL _ﬁ> S (1> 1)—7 and |Nﬁ,ﬂL‘ = |N_/87VL| - \/§

All the states in (2,2)4 and (1, 1)+ satisfy the zero-mode condition (3.5.7).

We will search for R that satisfies these conditions from the list in Appendix C.

SO(5)

There is no irreducible representation that satisfies the condition 1 among the list in

Appendix C.1.

SU(4)

Only 20’ satisfies the condition 1 among the list in Appendix C.2. The weights of
20’ that form (2,2) and (1,1) are

1_e2 o 1 2
e eiezz R e +e :i:€3

V2 V2
(2’ 2):|:2 : TocL TocL ’

—e\l/%e2 + 3 2R —e\l/ge2 + 3
(1,1)44 : +2€*,  (1,1)¢ : O. (3.5.18)

where the double-signs correspond. Notice that the weights that form bidoublets are
the same as the roots that form the Higgs bidoublets.

When the Higgs bidoublet (2, 2) 12 appears as a zero-mode, one example of (5, i, vr)

is chosen as

(B, pr,ve) = ( (3.5.19)

el —e? —el +ée? el —e?
+ed ——— +é?, e3> ,
V2 V2 Vi
where the double-signs correspond. Then {ur— 05, ur, ur+ B} and {vp+ 8, v, v+ 3}
are the weights, but uyp £+ 26 and vy, + 25 are not. Therefore, from (A.0.3), the

condition 2 is satisfied.
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1

Since (py,p2,p3) = (0,0,2np7/3) and the simple roots are a; = v/2e!, ay = —% —

3—; + €® and a3 = v/2€?, the zero-mode condition (3.5.7) becomes

7(2my, + 1 — XaXe) B 2npkom
N N

=0, (mod 2m) (3.5.20)

where m,, = 0,1,2. The decomposition of 20’ is given by (C.2.6), and

ko =0:(1,1)14,

ko =1:(2,2)4,

ke =2:(3,3)0, (1,1)o0,

by =3:(2,2)_,

ky =4:(1,1)_4. (3.5.21)
Thus the condition 3 is satisfied only when the model is compactified on T?/Zs.

In fact, when (N,np,m,) = (3,1,0), the fermionic zero-modes from each 6D Dirac

fermion are

O € (2,2)42. QY €(2,2)2. AN e @)y AP e (1 1)1a,
Q&T) € (27 2)—27 Qg) € (2$ 2)+27 )\(lj) € (1’ 1)+47 Ag{) € (1’ 1)—47
(3.5.22)

and when (N,np,m,) = (3,2,2), they are

0/ € (2,2)s, QY €(2,2)42, AN e, 1)1, MG €(1,1)_4,
Q(L_) €(2,2) 42, Qﬁ{) €(2,2)_o, A(L_) € (1,1)-4, AE{) €(1,1)44
(3.5.23)

By introducing 4D localized fermions with appropriate quantum numbers to decouple
unwanted zero-modes, the desired Yukawa coupling (3.5.12) are obtained. For the

other choices of (N,np, m,,), we cannot obtain the necessary multiplets.

SO(7) (I)
The irreducible representations that satisfy the condition 1 among the list in Ap-
pendix C.3 are 21 and 27. These also satisfy the condition 2. However, they cannot

satisfy the condition 3 regardless of a choice of (N, np,m,,).
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3.6 Higgs potential

In contrast to the 5D GHU models, we have quartic couplings of the Higgs fields at tree

level. The relevant terms in the 6D Lagrangian are

1
- = (AYMN 1(A) .
L 4931tr (F FMN) +
1 1
= tr ((0"A)10,4,) — ———tr ([A,, A) +--- . 3.6.1
29,24(7731)2 r(( )0 ) 8931(7”“21)4 r([ | )+ ( )

In this section, we calculate the classical Higgs potential V.., focusing on the Higgs bidou-
blets, which are relevant to the electroweak symmetry breaking. In the previous section, we
have shown that only a model of G =SU(4) compactified on T%/Z3 has required zero-mode
spectrum for the quarks. For the sake of completeness, however, we will also calculate Ve
in the other cases that have Higgs bidoublets. We have one Higgs bidoublet in the cases of
SO(5) on T?/Zy, SU(4) on T?/Zx (N = 3,4,6), SO(7) (I) on T?/Zx (N = 4,6), and Sp(6)
(IT) or (IIT) on T?/Z3, and we have two Higgs bidoublets in the case of SU(4) on T?/Z,.

3.6.1 SO(5) case

First we consider the SO(5) case. In this case, the roots that form the bidoublet are

[0
e? 5 el

Ty, Tar | - (3.6.2)

QR
—e! = —e?

From (3.6.1), the kinetic terms of the zero-modes W’ in the 4D effective Lagrangian are

A
Lof = ————— MW WB + ... 3.6.3
ff 2(gamRy)? ;( =)0 ( )

We have used (A.0.4), and A is the area of T?/Zy. Thus the canonically normalized Higgs
bidoublet is defined as
H2 HI W62 Wel
H=| 2 o vA S b (3.6.4)
—H)* H? V2garRy \-W ¢ W;e

Then it follows that

A, = % (HllEel + H22*Ee2 + H12E—62 + H%*E—el) )
2
(A, Al] = % [(‘HH2 B \H21|2> H o+ (‘H§|2 _ |H12‘2> H,

+{No 2 (H HY* — HyH}") E,,
+Neoi _2 (H{H; — H{Hy) Eo,, +h.c.}], (3.6.5)
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where we have used (A.0.2). Hence, from (3.6.1), Vi, is calculated as

A
89124<7TR1)4

= B (- )+ (- )

+2|Na 2|* |H HY — HyHY

Viree = tr ([Aza A2]2)

P2 No ol | HHE — HEH|]

2 - 2
{(H;HQ—HITH1> + 4| ffm| }

_7
4
9

=& [{or (')} — ddet (HH)] | (3.6.6)

where Hy = (H;, H3)"! and Hy, = (H{, H})" are the SU(2); doublets with the hyper-
charge Y = 1, and Hi = €;H}*. We have used that (3.4.18) with |az|* = 2, and
|Not 2)* = |[Na_e2|> = 1. The above result agrees with Eq.(7) in Ref. [17]. The fi-
nal expression in (3.6.6) is manifestly invariant under the transformation: H — U L?—[U]‘.T;z
(U € SU(2);, and Ug € SU(2)).

3.6.2 Cases of rank three groups

Next we consider the cases of the rank three groups. In these cases, the candidates for the

Higgs bidoublets consist of the following roots.

T+aL =B y4ap+ag —7 — Qg — -
Tar Tar, , Tar, Tay . (36.7)
v S v+ —y—ar—ap B —y-—ag

where v = —% - 3—; + €3 for SU(4), v = —e' + €? for SO(7) (I) and v = —e* — &? for
Sp(6) (II) or (III). The canonically normalized Higgs bidoublets are defined as

G HEOHL) VAL (W e
T \=HY HE )T \V2gamR \ —Wr o woter )7

z

H2* Hl W -r—ar W=
Ho=| "2 Tl = VA : : : (3.6.8)
—H}* H? V2gam R, —Wrmer—er Y ovmor
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where the signs in the suffixes denote the signs of the U(1)x charges. Then it follows that

A, = % (HllJrEvLR + H22<*FE'7L + H12+E'7R + HzliEw
+H{ E_ +HYE_,,+H E_,, +Hy E_, )+,
R)
(e = 2B [ P ()t (23, 2 e

(2 = 1) e 1 (L = ) e
AN e (FHL HYL + Hy HY') B,
+ Ny, (—Hi Hy, + HY _Hy ) Eqy,

N,y (—Hy Hy + Hi_H{") Eo,

+N. (-Hi Hy, + H{_H} ) E,, +hc}]+--,(3.6.9)

YR,—Y

where v, = v+ ap, 7R = v+ ag and g = v + ar + ag, and the ellipses denote fields
belonging to other multiplets, if any. After some calculations, we obtain

2

2 2

Viree = % [(|H1+|2 - ’H2—|2) + (|H2+|2 - |H1—|2)
- P ]2 p e P2 P a2
i+ i+ o

2 ~
i |

A ﬁg_Hl_ﬂ
92 [{tr (%T m)} {tr (H*_H,) }2 —tr (ﬁmﬂii%,)
e (MUAALH ) — 2det (M3 ) — 2det (HEH )|+, (3.6.10)
where ﬁ]iﬂ = einf:k2+, and ﬂi = 09H’ 0y We have used that

Y-YLr =7 VR =0,

")’LR\2 = |7L’2 = ’7R’2 = ‘7’2 =2,
I
VUL =7 VR =L VLR =VRVLR = 5 =1,
| ’YLRa_'YL| - | LRv_'YR| - | 7L7—7| - | WR,—’Y| - T - 5
Noy—y _ Nap _ Niag — Noyg,—y (3.6.11)
N’YLRv_'YR N’¢R7OCL N;L,QR N’YLRv_'YL

which are followed by (A.0.2), (A.0.3) and the fact that oy - ag = 0 and [E,,, E,,] = 0.

ar,

We have also chosen the phases of the Higgs fields so that N,, _/N,, . —, = —1.
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The final expression in (3.6.10) is manifestly invariant under the transformation: H, —
UHiUr (Up € SU(2);, and Ugr € SU(2)z). Except for the case of SU(4) on T?/Z,,
one of the bidoublets H. is absent due to the orbifold boundary conditions. In such
cases, the model becomes a two-Higgs-doublet model. In contrast to the SO(5) case, the
potential (3.6.10) with H; = 0 or H_ = 0 does not agree with (7) of Ref. [17]. This is
because they have assumed 7 + ay, + ag = —7, which only holds in the SO(5) case.

Finally we comment on the Higgs mass. We consider a case of SU(4) on T?%/Z;. The
tree-level Higgs potential (3.6.10) becomes

Visee = %2 [{tr (H'H)}* — 2det (HTH)}

g " 2 t 2 =t 2
-Z <H1H1> +<H2H2> +2‘H2H1‘ , (3.6.12)

where # = (H,, H,) is one of H.. Since only the U(1),, neutral components H? and H3
can have nonzero VEVs, we focus on them. As discussed in Sec. 3.5.3, we expect that
hy = (H? + H2)/+/2 has a tachyonic mass while h_ = (H? — H2)/+/2 does not at one-loop

level. Including such mass terms, the potential becomes
2 2 2 2, 9 2 212
where m2 > 0, and the ellipsis denotes terms involving the charged components. By

minimizing this potential, we obtain

(hy)? = 2mi (h_) =0. (3.6.14)

g%’

Therefore, the alignment (3.4.17) is actually achieved. The mass of the lightest neutral
Higgs boson is

my = % ()| = gv = mu, (3.6.15)

where v is defined as (H?) = (H2) = v, and we have used (3.4.25) at the last equality.
This is lighter than the observed value mpy ~ 125 GeV, but we should note that there is a

sizable quantum correction just like in the supersymmetric models [46].

3.7 Discussion

We have investigated 6D GHU models compactified on T?/Zy (N = 2,3,4,6) that have
the custodial symmetry. The gauge group is assumed to be SU(3), x G x U(1),, where
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G is a simple group. Since G includes SU(2); x SU(2)y, its rank must be more than one.
The Higgs fields originate from the extra-dimensional components of the G gauge field. In
contrast to 5D models [19, 21, 22|, we have at least two Higgs doublets. Thus their VEVs
need to be aligned as (3.4.17) to preserve the custodial symmetry. This severely constrains
the structure of models.

In order to select candidates for realistic models, we demanded the following require-

ments.
e The model has a scalar bidoublet zero-mode as the Higgs fields.

e The bosonic sector has a symmetry under a parity Ppr that exchanges SU(2);, and
SU(2)g in order to protect the Zb.b;, coupling against a large deviation induced by
mixing with the KK modes.

e The quark fields are embedded into 6D fermions so that they couple to the Higgs
bidoublet H only through a combination H + ooH*05.

e The representation R that the 6D fermions belong to provides a large group factor

to realize the top Yukawa coupling constant.

The third requirement is demanded in order for the Higgs VEVs to be aligned as (3.4.17).
The third and fourth requirements can be achieved if R satisfies the three conditions in
Sec. 3.5.3.

There is only one candidate that satisfies the above requirements if we restrict ourselves
to the cases that rank G < 3 and dimR < 30. It is the case of G =SU(4), N = 3 and
R = 20’. Namely, the model is 6D SU(3), x U(4) gauge theory compactified on T?/Zs,
and the top and the bottom quarks are embedded into the symmetric tensor of SO(6). Our
results are summarized in Table I. In the cases with blank, there is no choice of the orbifold
boundary conditions so that G is broken to SU(2); x SU(2)(xU(1)). We have focused
on the third generation quarks to restrict G, N and R. Embeddings of other fermions are
much less constrained.

There are many issues that we have not discussed in this chapter. We have approxi-
mated the mode functions of the W and the Z bosons as constants. However, after the
electroweak symmetry is broken, they are no longer constant and depend on z. This z-
dependence causes the deviation of the p parameter and the Zbyb; coupling from the

standard model values. We have to check that the custodial symmetry actually suppresses
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SO(5) | Go | SUM4) SO(7) Sp(6)
(O | 1D, {1 | @O | (1), (HI)

T2/Z, | 1(S) | 0 | 2(9)

T2/, 1(S) v 0 1
72/Z, || 0 (S) 1(S) | 1(9) 0 (S) 1
T2/Z || 0 (S) 1(S) | 1(9) 0 (S) 1

Table I: Summary of the results. The numbers denote those of the Higgs bidoublets. (I),
(IT) and (III) represent three different ways of choosing the SU(2); x SU(2)y subgroup in
Sec. 3.3.2. 7(S)” indicates that the spectrum is symmetric under SU(2);, <» SU(2)g. The
check mark is added to a case that there is an appropriate embedding of quarks into 6D

fermions.

these deviations by solving the mode equations in a specific model. We should also calcu-
late the one-loop effective potential to check that the vacuum alignment (3.4.17) is actually
achieved, and to evaluate the Higgs mass spectrum. The moduli stabilization in the gauge-
Higgs unification is also an important subject [47, 25]. These issues are left for future

works.
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Chapter 4

Generations and Yukawa hierarchy in

6D gauge-Higgs unification

In this chapter, we introduce constant magnetic fluxes as backgrounds of gauge field
strengths to realize the hierarchy of the Yukawa coupling constants among matter fla-
vors on 6D GHU models. The 4D effective Yukawa couplings on GHU models originate
from the higher dimensional gauge coupling, so the Yukawa couplings on respective flavors

need some mechanisms in order to have respective different values.

4.1 Introduction

In the previous chapter, we saw that the top Yulawa coupling is realized with the group
factor of a large representation, such as SU(4) 20’, in 6D GHU models with the custodial
symmetry. In GHU models, as mentioned above, the Yukawa couplings become flavor-
universal with the flat profile of the zero-mode wave functions of the fields that are relevant
to the Yukawa interactions. One concrete way to avoid such a situation is to change the
values of the overlap integrals of the Yukawa couplings by localizing the zero-mode wave
functions at the extra dimensions.

In 5D models, kink mass terms of the bulk fermions are introduced for controling the
Yukawa couplings. However, we cannot introduce them because of the double periodicity in
6D models. Instead of them, we introduce constant magnetic fluxes penetrating the extra
dimensions as backgrounds of gauge field strengths. At the extra dimensions, the zero-mode
wave functions are shifted by the constant parts of background gauge fields, the Wilson-

line phases (or Scherk-Schwarz phases), and the possible values of them are restricted by
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the orbifold compactifying the extra dimensions and the values of the magnetic fluxes that
respective fields feel. These wave functions are called “the Jacobi-theta functions”.

The zero-modes of the feilds feeling the mgnetic fluxes degenerate depending on the
values of fluxes and the Zy twist phases of the orbifold wave functions. This degeneration
can be regarded as an origin of the matter generations. We will see whether we can realize
the hierarchical Yukawa structure and the three generations of the matter fields in the SM
by the magnetic fluxes that cause desired symmetry breaking in 6D GHU models and the
Wilson-line phases. We’ll also check the effect for zero-modes of introducing the non-kink

mass terms of the bulk fermions.

4.2 Setup

4.2.1 Compactified space

The setup of spacetime is the same as Subsec. 3.2.1 .

4.2.2 Field content

We consider a 6D gauge group is SU(3)c x G x U(1)x, where G is a simple group that
has SU(2);, x U(1)z subgroup. As is the same as Chapter 3, we don’t purpose to unify
SU(3)¢, so it is irrelevant to the following discussion. The field content consists of the G
gauge field Ay, and the U(1)x gauge field By, and 6D (8-component) Dirac fermion ¥/
(f=1,2,--- ,ny). We define the field strengths and covariant derivatives as

FMN = aMAN — GNAM — 1 [AM,AN] s
Byn = 0y By — OvBu,
Dy = 0y — 1Ay — iqBar) 7, (4.2.1)

where ¢; is the U(1)y charge of U/. Now, 6D Lagrangian is written as

1 1
L=——tr (FMFyy) - —B""B
2% 3 ) g% "
+ 3 (MDY 4 MO (4.2.2)
!

where 'V are 6D Gamma matrices and a real constant M; is a 6D bulk mass parameter

of ¥/, g4 and gp are 6D gauge couplings of G and U(1)y, respectively. The Lagrangian
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is invariant under the transformation:

Ay — UAU ™ U0 U,
BM — BM + 8Mx,
Ul — Xyt (4.2.3)

where U € G and x is a real function. The G gauge field is decomposed as

Ay => CiH;+> WEa, (4.2.4)

where H; and E, are the generators inthe Cartan-Weyl basis. In the complex coordinate

(x*, z), the wxtra components of the gauge fields are expressed as

Az = 7TR1(A4 — iA5), Ag = Al,
B, =nR(By, —iBs), B:=DBl. (4.2.5)

The fields satisfy the torus boundary conditions:

( )

By (z, 2+ 5) = Ug(2) Bar(, 2)U; H(2) 4+ 0 xs(2),

U (2,2 + 5) = G ()W (2, 2), (4.2.6)
(s=1,7)

and the orbifold boundary conditions:

Au(z,wz) = PM(z,2) P, A, (z,wz) =w 'PM(z,2)P",
B,(x,wz) = By(x,2), Bu(r,wz)=w"'Byl(z,2),

X4X6

U (2, w2) =w™ 2 U9 PO (2, 2), (4.2.7)

where Y4, Xx¢ are the 4D, 6D chiralities, and ¢,, P € G are a real constant, a unitary

constant matrix, respectively. We can choose always P as

where p- H = X;p'H® and p’ are real constants. Since (4.2.7) is Zy transformation, p and

« must satisfy

X4X6
x4 2n

w™ Rt MR e = exp <Lf> : (4.2.9)

N
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where ngmi and nyX¢ are integers.

P is chosen in such a way as to break G to SU(2); x U(1)z x U(1)"2 (r: rank
of G). We assume that U(1)z x U(1)x is broken to the hypercharge group U(1)y by
some interactions localized at an orbifold fixed point. The generators of SU(2), x U(1)z

subgroups are expressed as

Eia -H
(T, T?) = <_i L A2 ) (4.2.10)
[e73 ||
Qz=¢(" H, (4.2.11)

where oy, is a root of G, and ( is a constant real vector that satisfies (- = 0. Hypercharge
Y is expressed as
Y = Q, + Qx, (4.2.12)

where Qx is U(1)x generator.

4.2.3 Magnetic fluxes

We introduce constant magnetic fluxes penetrating the compact space as backgrounds of
gauge field strengths. For simplicity, we assume U(1) x gauge field and the Cartan compo-
nents of the G' gauge field have nonvanishing backgrounds, and those of field strengths are

constants. The nonvanishing fluxes are

C= / datda® (i) — A(CEYy — — 20T i (4.2.13)

T2/ZN N
B= / Ao da®(Bys) — A(Bys) — — 20T iy (4.2.14)

T2/ ZN N

where

C.. = 0,0 - 9.C! (4.2.15)
B.: = 0,B: — 0:B, (4.2.16)
A= (27R)’Im7/N = 47*R Ry sin /N (4.2.17)

. the area of the fundamental region of 7%/ Zy

Then, backgrounds values of vector potentials are

W IN([C'zZ+7)

(€)= - 4Imt

_ iIN(Bz+D)
(B:) = —— 0 (4.2.18)
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where ¢ and b are complex constants, which we call “Wilson-line phases”. We can always
make these values absorbed into “Scherk-Schwarz phases” by redefinition of fields. From

the values of (C?) and (B,), we identify U,(z) and x,(z) (s =1,7) :

Us(z) = exp {2 Z (M;II—T + @2) Hz} ,
_ NBIm(EZz)

Xs(2) Gy Ps (4.2.19)

where ®¢ and ¢, are real constants, the Scherk-Schwarz phases. These values take only
the discrete values when we compactify the extra dimensions on T?/Zy as is shown at
Appendix E.

From substituting (4.2.19) for (4.2.6), and the single-valuedness of W and ¥/, we get

the quantization conditions of the fluxes :

NC - a = 2kqm,
NC - p+ g NB = 2k, (4.2.20)

where o and p a root and a weight of G, and kq, k,r € Z. Using these conditions, the

background gauge fields are expressed as

imka(Z + Ca)
C, a)=——2= >
( o) 2ImT
ik (Z 4 Cur)
C. - B,) = ——*# uls 4221
< e arBe) 2ImT ( )
where
c« c-p+qpb
a= ) = 4.2.22
C=Car C-p+qB (42.22)
4.2.4 Equations of motion and KK expansion
We decompose the gauge fields into the background and the fluctuation parts:
Ay = (Ay) + Ay, (4.2.23)
By = (By) + B, (4.2.24)

and derive the linearized equations of A,; and Bj;. We choose the gauge-fixing term as

Lo = ——tr { (DMAM>2} - 2% ((’)MBM)Q, (4.2.25)



where

The 6D Dirac fermion ¥/ is decomposed into 2-component spinors as
o/
ol = (qjj) : (4.2.27)
Ny !
Via =135 |- (4.2.28)
T

where the signs are 6D chiralities. & and (o, &) are the 4-component and the 2-component
spinor indices, respectively.

The Lagrangians are written as

1 - - L 1 § 3
L + »Cgf - - —QtI' {DMANDMAN - Z<FMN> [AM,AN}} — 2—2(9MBN8MBN

ga 9B
. NN 1 SR
+> { —iMo" DM, —ipla" Dyl + — o (A+D2wi - erDg)\{;)
f
. S of s 1 S
—iM oD N — il 7D + . (A_Dw{ — D )
—M; (Aiwi + Xl + h.c.> } o (4.2.29)

where the ellipsis is higher order terms in the fluctuation fields, and

Darps = (Onr — i{An) — gy (Bar))¥L, (4.2.30)
Dyds = Oy — ilAn) — iqp(Bar)) AL (4.2.31)

We have dropped total derivative terms. From (4.2.29), we obtain the linearized equations

of motion for A v and Ulas

DMDy Ay —i [(FNM>, AM] b =0, (4.2.32)

M Dy + My 4. = 0. (4.2.33)
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These are rewritten as

(MRiO,+0.0:) €, =0,  (7*Ri0Oy+ Oq) W2 =0,
(7*R{04 + 0.0;) B, = 0,
(W?Ri0, +0,0;) CL =0,  (7*Ri0y+ Og + 004) W =0,
(7R304 + 0.0;) B. = 0,
1
—icto N + — Dl — Mo =
100 i Py sl =0
1
— oo\ + ?Dﬂﬂ{ M =0,
1
—ic"9, 0] + D M — MM =0,
1
— a9, + —D: AN M=o, (4.2.34)
1
where
Oy = 70,0, (4.2.35)

Oa =1{0: —i(C5 - )} {0;: — i(C, - @)} — Im(0:C, - o)
={0; —i(C, - a)} {0: —i(C; - a)} + Im(0:C, - ),

500 = —%@CE ~9.C.) - . (4.2.36)
The KK expansions are written as
gA

Cz z 'L n) wWe = « Wa(n) ’

(a.) \le >4t O BCLAD
B,(z, 5(

u(,2) \/_ﬂ'Rl Zn: o (
Ci(w,2) = (CI)(2) +9Azgi; (2)¢h(2), —gAZgn ool
B,“( ) + 9B Z gn n
(£)

%:(37 z) \/_7TR ZZhRn z) |, (x)
M.(z, 2) R ), 4.2.37

Lo = m 2 Z Ha) (4.2.37)

where |p) is a state of the weight vector p of the G representation. All the mode functions

are dimensionless, and normalized as

/ d=zdZF () Fon(2) = S, (4.2.38)
T2/Zy
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where F,,(z) denotes the mode functions. The coefficients in the KK expansion are deter-
mined so that the 4D KK modes have canonically normalized kinetic terms'. The mode

equations are writen as

0.0:f0 = —m2fi, Oaf® = —m2f> 0,0.fF = —m?f5,
0.0-g. = —n2g., (O +004)g* = —n2g®, 0.0:97 = —mig?,
DR — Meh =~ h R,

Dgf)h%—n)u - thg;;l)ll — _mnhé—n)ﬂj

Dgf)h("’)ﬂ_'_M h(—) h(;,; 7
DRI L N n I = i p M (4.2.39)

where M ¢ = My, m, = mRym, and m, is the KK mass eigenvalue. The values of
m, are complex in general for fermions, while they are real for the bosons because the
differential operators of the bosons are hermite.

We can rewrite (4.2.36) using (4.2.21) as

ka2 kom kom
Oa (8 ZImT) <8Z a ZImT) * 2ImTt

= — . — 4.2.4
(az QImT) (32 + 2Im7') 2ImTt ( 0)
kom
00 = == 4.2.41
0 2Im7’ ( )
Also we can write
Db — O ) — i _ 5 _ Thusz
0, —i(C, - p) —iqp(B,) = 0. T’ (4.2.42)
_ . . _ Thufz
=0; —i(Cs - pu) —iqp(Bz) = 0: + STy (4.2.43)

L[ dz*da® = 2(7Ry) [ dzdz.
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The torus boundary conditions (4.2.6) can be rewritten by (4.2.19) as
falz+s8) = fu(2), Fl(z+5) = £1(2),

Ko .
g2 e+ 5) = exp { T hm(s2) + 2o |t
Imr
1
WM (2 4 5) = exp {Z ”fﬂlm(§z) + 27ri¢g‘f} him
Imr
1
R (2 + 5) = exp {ZI W10 (52) + 2migh! } pEH (4.2.44)
m7
where
2o Oy - p gy
a _— S nf — s I¥s _
P =—F— = 5 , (s=1,7) (4.2.45)

and the orbifold boundary condition (4.2.7) can be rewritten as

fiwz) = fi(z), [fo(wz)=eP*fe [P(wz) = fP(2),
g(wz) =w gl (2), go(wz) =w TS gr(wz) =w gl (2),
i :w:F%eiqfweip'”h%“, p\Em :wi%eiqfweip'“h(i)” (4.2.46)

4.3 Mode functions and KK masses

We derive the mode functions of relevant fields on 7% and T7?/Zy, and the KK masses
accompanying with them from mode equations (4.2.39) as the solutions satisfying the
boundary conditions (4.2.44) and (4.2.46). The mode functions with the tilde mean the
T? wave functions, and we derive the T2 /Zy wave functions from T2 ones. In this section,

we see the zero-mode conditions for magnetic fluxes from the KK masses.

4.3.1 T? wave functions

4D gauge sector

First, we derive f;(z), the T? wave functions of C'ZL, the Cartan components of the 4D G
gauge field. that satisfy (4.2.44) are

. A 21 B . 27 _

n1(2) = N cos {E(nlmz + lIm(Tz))} + N, sin {E(nlmz + lIm(Tz))} :

(4.3.1)
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where N ‘”l are normalization factors of real constants, and the KK masses are

nl’

T |n + 7|
Imr

(4.3.2)

Thn,l (: 71-}%lrrnn,l) -

The functions ffl(z), the KK mode wave functions of 4D U(1)x gauge field on T2, have
the same forms as (4.3.1):

FB(2) = N§ COS{I2—7T

mrT

(nlmz + lIm(%z))} + N7 sin {IQ—W

m7

(nImz + lIm(T’z))} , (4.3.3)

where N7 and N7 are real constants, and their KK masses are the same as fi(z 1(2).
Then, we derive fml, the T2 wave functions of W The mode equations of them in

(4.2.39) are rewritten as

DD fa — — (2 + o 434
e f = - (i th)f (4.3.4)
DD fo — _ (12 o 4.3.
(D@D e =~ (12~ i) (4.35)
where
_ 0. —ila-C) =8, — e (4.3.6)
IRGEE ‘ 211117'2 o
k
DY — 9. —ila-C) = . 1 e 4.3.
P 0; —i{a-C,) 8Z+21m7-z (4.3.7)

For these mode equations, the zero-mode solutions must satisfy

D fo —, (4.3.8)
or
D fe = 0. (4.3.9)

(i) ka >0
Only (4.3.9) has the zero-mode solution that satisfies (4.2.44).

fo () = N exp (m %)0 ( + 6%) /e

] (kaz, kaT), (4.3.10)

—o7
where j = 1,2, , kg, and N& = (2koIm7)'/4 is the normalization factor. ¥ means
the Jacobi-theta function. The difinition is
a R
9 kz, kt) = 6i7r(l+a)2k7627ri(l+a)(kz+b). 4.3.11
em=5 o
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This solution has the mass eigenvalue from (4.3.5) = 0:

ke

. 4.3.12
2lmTt ( )

~92
mgy =

These wave functions satisfy

| e {F0e) o

0ij (4.3.13)
Here, we define the two-dimensional Laplace operator A(® as
A = % (Dg"‘)D;"‘) + Dg"“)Dga)) , (4.3.14)
and these satisfy

[ D D@} Tha

=072 ] It
[Am) D(a)] _ Tka o) [Am) D@] _ _Tka )
? z I z 7 ? z

mT

Im7

(4.3.15)

This algebra is similar to the one-dimensional harmonic oscillator in quantum me-
chanics. These operators are rewritten as

(4.3.17)
and the KK excited modes are gained by operating D\

> on (4.3.10) as
7O (2) o (Dga))"foa(j)(z), (4.3.18)
with the KK mass:

m2 Tha n+1 >
" TImr 2

> () 4.3.19
— 2ImT ( )
This means there is no zero-mode in this case.
(ii) ko =0
(4.3.6) ((4.3.7)) becomes
0:0.f& = —m? f2, (4.3.20)
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Solutions that satisfy (4.2.44) are

Im(72)

~;;fl(z) = ./\/ofl exp {2m'(n + qbf_‘)gln—lj + 2mi(l — ¢F) } , (4.3.21)

Imr

where N% is a normalization factor and the KK masses are

i+ o)+ (= o) .
ml Imr ' o

Nortice it have the zero-mode only when ¢, ¢ = 0.

(iii) ko < O
Only (4.3.8) has the zero-mode solutions that satisfy (4.2.44).

Js:(2) = Nt exp (Wkig) S+ fﬁ ko

mT

] (kaZ, kaT), (4.3.23)

This solution has the mass eigenvalue from (4.3.4) = 0:

T | ka

N2 = . 4.3.24
Mo 2ImTt ( 3 )

As well as the case (i), we can define the operators like the one-dimensional harmonic

oscillator in quantum mechanics by the Laplace operator:

Imr 2
Imr Im7
@t =5 [l pled  ale) = [T ple 5@ @] —q 439
A\ =4 D a'* =i o D [a'™), atT] . (4.3.25)

The KK excited modes are gained by operating D;a) on (4.3.23) as

Fe(z) o (D) fs9(), (4.3.26)

with the KK mass:

~ 9 Wka 1 ™
-« — > 4.3.2
T = Ty (n—l— 2) = 3w 0 (4:3.27)

This means there is no zero-mode solution in this case.
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Higgs sector

Here, we derive the T? wave functions of the extra components of the 6D gauge fields.
The KK modes of C? and B, (¢’ (2) and gZ(z)) that satisfy (4.2.44) are the same as the
solutions of (4.3.1) and the KK mass eigenvalues are the same as (4.3.2). T? zero-mode
wave functions of C* and B, are flat.
Next, we derive the KK modes of W (¢2(z)). The equation of ¢%(z) in (4.2.39) is

rewritten as

o ~ ~ ka ~Q
(Dga)pgl)gg — _migg) , (4.3.29)

For the zero-mode, the solutions of (4.3.28) or (4.3.29) must satisfy

D g — 0, (4.3.30)
or
D™ge = 0. (4.3.31)

(i) ka > 0

Only (4.3.29)= 0 has a solution, and zero-mode wavefunction is

I 4+ ¢F) [ ka
3 (z) = Ng¥exp (z’wk‘azﬂ) v +en)/ ] (kaz, kaT), (4.3.32)
Im7 —°
where j = 1,2, -+ | k. This solution is gained from (4.3.31), so has massless mode:
mg =0, (4.3.33)

and KK mode functions are obtained by operating creation operator D{*) ((4.3.6))

on (4.3.32):
Gn(2) o DPgg(2), (4.3.34)
and mass eigenvalue is
o NTkg
= , 4.3.35
T = Ty ( )
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(ii) ka = 0

This case is the same as gauge sector, so KK wavefunction is (4.3.21) and KK mass

eigenvalue is (4.3.22). There is massless mode only when ¢$, ¢ = 0.

(iii) ko < O

Only (4.3.28)= 0 has a solution, and zero-mode wavefunction is

o o . _Imz (J 4+ ¢%)/ka o
36 (z) = Ny¥exp (mkazﬁ) v —;? (kaZ, kaT), (4.3.36)
where j = 1,2, -+ | kq. This solution is gained from (4.3.30), so mass eigenvalue is
s kg,
S 4.3,
mg T (4.3.37)

so does not have massless mode. KK mode functions are obtained by operating Di—a)

on (4.3.36):

720 (2) Dé")g(‘)’(j)(z), (4.3.38)
and mass eigenvalue is
ke
2 =t Urka (4.3.39)
Im7

Fermion sector
( pWH ph) M)g) Rk 2| A, (4.3.40)
(DEDDE — 15) B = — | B (4341
( DU pls) M}g) R = — || R, (4.3.42)
( D) pled) MJ%) e A (4.3.43)

The first (second) and forth (third) conditions are the same with the same boundary

condition, so solutions satisfy

hGH = it p (R, (4.3.44)
R H = ezl tm (4.3.45)
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Where 61, 5 are phases of real constants. The zero-mode solutions of these equations must

satisfy
DHDpLIE — 0, (4.3.46)
DWHDRLI™ =0, (4.3.47)
DR — 0, (4.3.48)
DD — 0, (4.3.49)
and corresponding mass eigenvalue is |g| = M? 7. Thus, there is no zero-mode when

M]% # 0. So, I will not introduce fermion bulk mass term when discussing zero-modes.

(i) kur >0
(4.3.40) and (4.3.43) have solutions:
ibgo)u(j)@) _ eiélilig)“(j)<z)

I 4+ o) ke
:N“fexp (Zﬁkufz mz>ﬁ (J+ &) ks

] (B2, k),

Inr o
(4.3.50)
where j =1,2,---  k,y, and N} 7 is a normalization factor.
KK excited modes are obtained by operating D) ((4.2.42)) on (4.3.57):
B%{Z)M(J)(@ _ eiélﬁi;)p’(j)(z) x (D(Hf)) h%O)“(j)(z), (4.3.51)
with the KK mass:
~ 2 -0 | NTkyy
P | 4.3.52
From (4.2.39), we find
- , 1 N ,
ROm@) () = D;uf)h(ﬂu(]) 5
Rn ( ) Mf B €7i52mn Rn ( )
1 o
. — A AR ) (4.3.53)
—e~ 2 My +m,
(i) Ky = 0
In this case, tequations (4.3.40) ~ (4.3.43) are same:
0.0,y = <M2 —y~n12), (4.3.54)
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where h,,; = iz%i&’;nl The solutions that satisfy (4.2.44) are

= . Imz , Im(72)
Bi NP 175 i Y _uf
hn,l n,l exp {27”(” + ¢T )ImT + 27”([ ¢1 ) Im+ } ) (4355)

where Nf; , are normalization factors with the KK masses:

w(n+ obl) + (i — )7 |

~ 2 “ro
= \/i
|mn7l’ f I T

(4.3.56)

Nortice it have the zero-mode only when ¢4, ¥ = 0.

(iii) K,y < 0

(4.3.41) and (4.3.42) have solutions:
B%;O)M(J)(z) _ ei@ﬁfg)ﬂ(])(z)

Imz + o) ke
:./\/()“fexp (iﬂk“fzﬂ>19 U+ 1)y

] (kl‘f27 kﬂf%)v

Im7 — it
(4.3.57)
where j =1,2,---  k,y, and N is a normalization factor.
KK excited modes are obtained by operating D*/ ((4.2.42)) on (4.3.57):
B%{—n)ll»(j)(z) _ eiélflr(jl)“(j)(Z) . (Déltf)>nﬁ%—0)u(j)(z)’ (4.3.58)
with the KK mass:
— 2 e, MRug
WF =M : 4.3.59
72| Pt ImT ( )
From (4.2.39), we find
. . 1 v
RLOB@) () DwhH e,
Rn ( ) Mf —€_i61’ﬁln z Rn ( )
1 _ .
= pWHRIG) 4y, (4.3.60)
—e~ My +m,

4.3.2 T?/Zy wave functions

In this theory, we compactify the extra dimensions by 72/Zy, so we need to evaluate the

4D effective theory by the T?/Zy orbifold wave functions. The orbifold wave functions

that satisfy the boundary conditions

Fo(wz) =nE,(2), (4.3.61)
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can be obtained by the 72 wave functions as

Fu(2) = 0 E (WF), (4.3.62)
where F,(z) are T? wave functions. Now we introduce magnetic fluxes, so the zero-mode
wave functions are not always flat, and we can choose 7/, the phase of Zy transformation,
for the zero-modes in the region: 1 = 1,w,w?,---w¥~! generally. This determines the

twisted boundary conditions of zero-modes. Zero-mode wave functions that satisfy the

boundary condition ﬁo(wz) = nﬁo(z) (n=1,w, -+ ,w""!) are also expressed as
| V-
Fo(z2) = i nFEy(whz). (4.3.63)
k=0

Orbifold zero-mode wave functions are also expressed as a linear combination of torus

zero-mode wave functions:
|K|

ED (2 Z O\ Ey (4.3.64)

where 4,7 mean physical state indices of Fy or Fy that run from 1 to |K|, for example
correspond to flavors of fermions, and C™ is a constant |K| x | K| matrix that mix i), |5)

states. The constants C](?) are evaluated as
e = / & {F J)< >}* F(i)(z> (4.3.65)
]l T2 0 . . .

F, ki )(w z) is a solution of mode equations of F ( ) that satisfies T? boundary conditions

of Fég (z), so it can be also expressed as a linear combination of Féj )(z):

||
F('2) = Y DR (), (4.3.60)

=1

where Dj(-fl) are constants. Thus, Cj(-?) are expressed as

‘Z. = — NZ _ZD (4367)

At a glance, | K| physical states of Fy seem to degenerate in (4.3.64), but not all of them are
independent. In fact, the matrix C™ includes zero eigenvalues generally. The number of

physical states of Fy equals to the rank of C™ that is evaluated analytically by the method
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of the quantum mechanics (described in detail by [40]?) or numerically. Numerlically, we

can check the number of nonzero eigenvalues of C™ Here, the matrix C™ is hermitian

because
=, | V-l
)t — = Ip@t — = ' ) — o)
c *NZ”D *NZ” D) =, (4.3.68)
1=0 1=0
where I’ = —1 Thus, we can diagonalize C with a unitary matrix V™
VeMymi = diag(Ay, A, -, A, 0+ ,0), (4.3.69)

where |A\;| > |\i| > -+ |\] > 0 and 7 is the rank of C. Then, we find

K] () 700 -
(s Aj VP (2), 1<53<r

S VIR = 12 Vil Forz), (A=< (4.3.70)

=1

0. (r+1<j<IK|)
So it is convenient if we change the T?/Zy wavefunction’s basis to those which is linearly
independent for all j:

K|

\/_Z M ED, (4.3.71)

where j = 1,2,--- ,r. We find this basis satisfies the orthonormal condition:

/ dQZ{FO(z)(Z)} FO(J)(Z>:N/ dQZ{Fél)} Fé])
T2/ Z T2
- N
Z/Tdez{ZVii")Fé )} {ZVJ-(I")FS)}
k

_ Z V;Ef)*Vj(l")(Skl = (VY. =5, (4.3.72)

if T? wave functions satisfy the orthonormal condition:
/ a2z {ng><z>} FO(2) = 6. (4.3.73)
T2

The T2 /Z wave functions of the KK modes are obtained by operating D, = D\, D)
or D; = D' D) on F{P(2), in the same with those of 7% wave functions. Here, the

first excited mode is expressed as
D, (Féj)(wlz)> = (D [ ) (W'2) x wFy(w'z), (for K >0)

D: (Féj)(wlz)> =W (D F(])> (W2) x W' F(@'2),  (for K <0) (4.3.74)

2 Analytic forms of C) are derived using operator foamlism in [40].
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so the Zy twist phase 7 in C™ changes into nw=" for K > 0, or nw for K < 0. Therefore,

the n-th excited modes are expressed as

\/_Z v ER(2)  (for K > 0)
FO(z) = Tl : (4.3.75)
VN Z Ve B ( (for K < 0)

—n

The number of mass eigenstates at the n-th KK level is the rank of C™") for K > 0, or
the rank of C™") for K < 0.

The constants D](-;Jl) are functions of K and ( = %(Tgbl — ¢, ), and satisfy

(wh _ p@H
Thus, we find
1=,
G5l ZnDﬂ K.()=5 > 1D K.(]
1=0
=N Z 77" DY (KL () = O K (), (4.3.77)
where I = —[. This indicates that the degeneration number of the zero-modes of a field

that feels the flux K < 0 and the Zy twist phase n are equal to that of a field that feels a
flux |K| and the Zy twist phase 7.

In this section, we discuss the T?/Zy wave functions of the zero-modes (masless) and
the KK modes (massive) for 4D gauge, Higgs, fermion, and the flux conditions for zero-

modes.

4D gauge sector

We discuss the zero-mode wave functions of the 4D gauge fields on T%/Zy. The gauge
fields C’Z, B,, do not feel the magnetic fluxes and the zero-mode wave functions are flat, so

we can obtain their zero-mode wave functions f§o(z) and f§(z) on T?/Zy from (4.3.63):

1= i
foo Z{l : foo }: oc,loa
I'=0
R 1 N—-1 ~
fin) =5 {17 f@ | = Nk, (4.3.78)
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where fé,o(z), f(fo(z) is the n and | = 0 wave function in (4.3.1), respectively.

On the other hand, the gauge field W may feel the magnetic fluxes. However, as we
have seen in (4.3.19) or (4.3.27), W have no zero-mode solution if the values of the mag-
netic fluxes they feel are not zero (ko # 0). Then, we must consider such the background
magnetic fluxes C* and B that the fields W2 do not feel in the following discussion for the
gauge symmetry breaking G — SU(2);, x U(1)z, where a, is one of the G root vectors
corresponding to the generators (of the non-Cartan components) for the SU(2),, subgroup.

We can obtain the zero-mode wave functions from (4.3.63):

0,0 - N Z 1" foo 0.0 (4.3.79)

where fé’jo(z) is the n and | = 0 wave function in (4.3.21).

Higgs sector

As we have seen in (4.2.46), n = w™! for the orbifold wave functions of C?. T? zero-mode

functions of C? is flat , so T?/Zy zero-mode function of it is written as

N-1
96,0(Z> = %,0 (W_l)_k
k=0

= 0. (4.3.80)

Thus orbifold wave functions of C cannot have a zero-mode solution. The same is the
case with B,.
The Higgs field is included in the zero-mode of W¢*. Now, we see whether W has a

zero-mode when k,, is positive, zero, or negative.

(i) ko >0
The orbifold wavefunction (defined by (4.3.62) ) that satisfies (4.2.46) is written as
| N2
920 = 5 20 (@) g uta), (4.3.81)
k=0

where gﬁ‘(j)(z) is defined by (4.3.34). When we rewrite gﬁ“j)(z) as
a9 (2 Z o ga (4.3.82)
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we can change to the independent basis

g2v) »/_'EE:K/’“’n)QSZ , (4.3.83)

where V" is the diagonalizing matrix of C. As we have seen, §r U) satisfies the

orthonoramal condition:

(/ d*z {geWY" go® = &y, (4.3.84)
T2
SO gn () also satisfies the orthonormal condition from (4.3.72). The zero-mode wave-

function on T?/Zy is rewritten as

(i + 07)/ka

O)(2) No‘\/_z ) exp (mk zIm—Z) 0 4o

Im7

] (kaz, kaT).
(4.3.85)
(ii) ko = 0

In this case, we have seen §<(z) have the zero-mode only when ¢, ¢ = 0, and the

zero-mode wavefunction is a constant. The T?/Zy zero-mode wave function is

o N-1
() = 20 3 (e
k=0
N-1 .
0.0 2(1 — ng)mi
= — A 4.3.86
IR (4:3.80)

The value of this function become zero unless n, = 1 (mod N). Thus it has the

zero-mode only when n, = 1 (mod N):
f]&‘o(z) = Ngo- (4.3.87)

(iii) ko < 0

There is no zero-mode in this case.
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Fermion sector

(i) kup > 0

The zero-mode wavefunction is expressed as

u(j)<z>

. . —k . .
(wféezqf gowezp-u> hg('))ﬂ(]) (wkz>

REORG) _ it

If

== %
2 =2 =
AN =

=]~

ont . - )
() g, s
k=0

where j =1,2,---  k,y and an is defined in (4.2.9).
We change the orthonormal basis:
h%)“(j)(z) _ ez‘élh(L—O)u(j)(Z)
kg
_ 7 (+H)pli
=N Z Vj(in) hgm)u( )

. f
_Nu\/_z eXp (mkzulemz) 9 (G + ) kg

] (kﬂfz> kaT)'

Im7 — it
(4.3.89)

where V) is the diagonlizing matrix of

C’i(;]) = /T2 d*z {B%)“(j)(z)} ng)”(i)(z). (4.3.90)
4 in (4.3.89) runs from 1 to 7 (rank of C™). The mass eigenvalue is |1,| =
there is the massless mode only when M 5 =0.

(i) kpp = 0

The zero-mode function satisfies

QG ) e o 2 fm

hrop (2) hLO 0 Z exp ————Fk. (4.3.91)

This mode exists only when n/j;f =0 (mod N).
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(iii) kup <O
The zero-mode function is expressed as
ﬁgg)u(j) _ 6—1‘62%{—0)#(]')(2)

N-1 Tk
(w—%eiqf %Jeipﬂ) h&;) (])( 2)

2I:IH
(]

ol
o

=

==

2n, .mi o\ ~ .
exp (—“Tfk> REORO (h2), (4.3.92)

where j =1,2,---,k,y and n,; is defined in (4.2.9).

k=0

We change the orthonormal basis:
hé—g)“(j)(Z) _ e_i(;?h%_o)”(j)(Z)
N
_ 7 ()i
= VR Vi

(G + &) ks

I
N“\/_ZV exp (mk:ulem—z> 9 ol

] (kuf27 kﬂfi—)a
(4.3.93)
where V) is the diagonlizing matrix of
cy = /T = (RO ) EO), (4.3.94)

j in (eq:posiferindbasis) runs from 1 to r (rank of C'™). The mass eigenvalue is

|| = ‘]\Z/f’, so there is the massless mode only when M; = 0.

4.4 Yukawa coupling constants

In this section, we derive the expressions of the Yukawa coupling constants. As we have seen
in the previous section, the bulk fermion’s mass forbids the zero-mode solution as massless

mode. Then, instead of 6D Dirac fermions ¥/, we introduce only 6D Weyl fermions \I/i

defined as
04 ’ \ijf . o

where W, are 4-component spinors defined in (4.2.28).
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4.4.1 General expression
Now, the Yukawa couplings stem from the 6D gauge interaction:

S [t | S0l Dyl + 3 i Dyl |
I+ I

= / da’ / d22rRy | =Y AN Y i AT | fhe 4, (442)
I+ f-

where d?z = dzdz. The 4D effective Lagrangian of the Yukawa interactions is expressed as

yukawa Z Z Z yzjk Nerl/} (rere) 1+ (0 a(k)j\iéJr v + h.c.

B fyoigk

20D u N P T e, (4.4.3)

ro f- igk

where

yCOmPe = _igalpr + gl altr) / e { P Bt () (z)} GO () RLOmLIG) ()
wani TQ/ZN

2194V ImT

= —N* < L+ alby \ML)/ sz{h%)(“”"‘)ﬂ(i)(z)} gg(k)(z>h(L€)uLf+(j)(z)

2 T?/ZNn
[K1] |Ka2| |K3]
= —2ig,VIm7{py + o|Eq|pr) Zzzvm jj’ kl?’S)
i'=1j'=1k'=1
></ BPFO* (2 Ky, 6)FY9) (2 Ky, &) F*) (25 K3, &), (4.4.4)
T2
|K1] |K2| |K3)
yz(j_k)z_%g‘pq <HL+O‘|E |HL ZZZV”I V(’i2 kk/)
i'=1j'=1k'=1
X/ EF (z; K1,§1) (Z K27§2> (Z K3, &), (4.4.5)
T2

where g4 = 3—‘% = % is the 4D gauge coupling constant, pu; & a mean the weight

vector of the Left handed fermion and the root vector of the Higgs neutral component

respectively, Ky = k(HL+a)fi7 &1 = E(ILL"!‘O‘)fi’ Ky = kuppes &2 = uppe, K3 = kay §3 = &as
{m,ne,n3} are the Zy transformation phases of {|u. + @), |ur),|a)} fields, the indices
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1, ], k run over the degenerate zero-modes, fi mean flavor indices, z = w; + Tw,, and

)
Im (2+6)

J
(2KImr)1eKm O | K| (K (2 4 €), K1), (K > 0)
. 0
F9(z K, ¢€)

(4.4.6)
(2| K| Im7) 1eKmiE+O 71y (K(24€),K7). (K <0)

s A
Im(2+€) K =
0

4.4.2 Couplings to ys = + fermions

From the gauge symmetry of the Yukawa Lagrangian, the following relations are satisfied:
Ky =Ky + K;,  Ki&§ = K& + K383, (4.4.7)
where K, K5, K3 satisfies
K, >0, Ky<0, K3>0, (4.4.8)
from the zero-mode conditions. We find that

F* (2 Ky, 6)FU) (2 Ky, &)

K3

1 Y -7 -/ 51 - 52
— f(z 7+ K1im)x* K F(|K2\z +K1j+K1|K2|m)* 0: | K1 Ko K
\/Fgmz_l (27 37{3) 7| 142 3|7 K3 )
(4.4.9)
which comes from the relations:
i g
D)0 e+ &), Kar) -0 ) (1K (24 62), | Kal )
Ki+|Ka| [ —j/ 4Kl
K& + | Kl &
- 9 | Kitike (K+K<+1 (K + | K
2 JE D (24 S ) )
=1
|Kali'+ K15+ K1|Kall
x 1 [ K”KQ'(BQH&D ] (K [Ka| (&1 — &), Ku [Ka| (Ky + | K 7)), (4.4.10)
FO(2 K, €) = FU (2 — K, €), (4.4.11)
and (4.4.7). Then, from the orthonormal condition of FV)(z; K, &)
/ B2 FO* (2, K, &) F® (2 K, €) = 6, (4.4.12)
T2
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we get

/ B2 FO (2 Ky, &) FU) (2 Ky &) F*) (2 K3, &3)
T2

Ks

= \/F Z F(K2i’_K1j’+K1K2m) (07 KIKQK?)’ &K;gé?) 5i’—j’+K1m,k’7 (4413)
3

m=1

where

(7' — 7'+ Kym = k' mod K3)

Oir —jr+ Kymok! = (4.4.14)

1
0 (other cases)

Therefore, (4.4.4) becomes

2igi/Tmr RS
Wi == = ke alEalp) ZZZV;J“ K1, GV K, Gl Vi [ K, G
/ 1]1 1k/

K3

(Kzi/—Kl "+K1K2m) CI B CQ . .
X Z F J (0, KlKQKg, —K3 ) 51/—]’+K1m,k’- (4415)

m=1

The matrix V" depends on the flux and the Wilson-line phase. The indices i, j, k runs
from 1 to the rank of C) C2) C3) respectively.

4.4.3 Couplings to ys = — fermions

As with the case of “hig = 4+, K, and (, satisfy
Ky = K1+ K3,  Ky( = Ki(1 + K33, (4.4.16)

where

Ky <0, Ky>0, K3>0. (4.4.17)

The yukawa coupling constants (4.4.5) are expressed as

(-) _ 2igsvImt SO (r2)*
Yisw == (1L + a|Ea|pr) E E E V.V Ky, G Vm [K2,C2] e [K3,C3]
K i'=1j'=1k"'=1

K3
0§ T (0’ KKK, %) S Ko (4.4.18)
3

m=1
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4.5 Model

4.5.1 SU(3) x U(1) model on T?/Z3

Now, we consider a specific model. We choose G = SU(3), N = 3, ny = 4, and the
matter fermions as two xg = x& spinors (\If;g,, ‘Ifig) that belong to 3 of SU(3) and two
X6 = Xo fermions (‘Ilig, \Ilig) that belong to 3 of SU(3)3. The U(1)x charges are assigned
as (q1,42,q3,q1) = (0,1/3,—1/3,—2/3). The roots of SU(3) are

) = (1 —£> Qg = (—1 _\/_§) a3 =1+ ay = (1,0)

27 2

—O, — Oy, — Q3. (451)

The weights of 3 are
_(1 1)
M1 = 272\/§ )
1
M2:N1—01:<0,—ﬁ)7
L1 (4.5.2)
=y —0y=|—=,——=|. 5.
M3 M2 2 272\/5

The weights of 3 are — g1, — o, — 3.
To break G to SU(2), x U(1)z, we choose the parameter of P matrix in (4.2.8) as

2mny, 1
= 1, — =0,1,2 4.5.3
=2 (1) m=o012) (453)

After symmetry breaking, SU(2)., root o, and the vector of U(1)x charge are identified

as

a,=a;, (= <%, —%) , (4.5.4)

respectively. When we assign the hypercharge +1/2 to the Higgs doublet, the normalization
for ¢ is determined. From (4.2.9) and (4.5.3),
Nia, = 0, Niay = Ntay = :tnp — 1.

(double signs correspond.)

3Unless we specify yg = + or — for \II)JZG, we use the character U/ as \Ilg; (f =1,2,3,4) in the following
pages.
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Under the unbroken SU(2)y, the SU(3) adjoint representation is decomposed as

| — i), [0)r, |a) : triplet (¢. = 0)
|@s), |a3) : doublet (¢. = 1/2)
| = a3), | — as) : doublet (¢. = —1/2)
0)s : (¢:=0) (4.5.5)

where ¢y is the U(1)z charge (the eigenvalue of Qz), and |0)s and |0)g are the states of
Cartan generators. These states do not have U(1)x charge, so each gz in (4.5.5) equals to
the hypercharge Y. As you see, {|aw), |as3)} or {| — aw),| — a3)} corresponds to the Higgs
doublet.

Next, we discuss the quantum number of matter fields. We defined ¢ in Qy as (4.5.4),
so the hypercharges of 3 are

(Y (1), Y (122), Y (p23)) = (C- o1, C - a2, C - p3) + (a5, 45 4y)
(

= (1/6 +q7,1/6 + g7, —1/3 + q;)
(1/6,1/6,-1/3) (f=1)

= , (4.5.6)
(=1/2,-1/2,-1) (f=3)
and the hypercharges of 3 are
(Y (=p1), Y (=p2), Y (—p13)) = (¢ 1, G- a2, € - ) + (a5 4y, ar)
= (—1/6+Qf,—1/6+Qf,1/3+Qf)
_J(1/6,1/6,2/3)  (f=2) | (45.7)

(=1/2,-1/2,0) (f=4)

so SU(2)., doublets {|p1), |p2)} & {| — 1), | — p2)} are identified as the reft-handed dou-
blets, and |u3) & | — ps) are identified as the right-handed singlets in SM. Now, we can

assign one generation quarks and leptons to ¥/:

Qr(21/6), dr(1_13), (V')
1(21/6); ur(lys), (7
1(2176), er(1-1), (V%)
1(2-172), vr(lo), (¥%) (4.5.8)

oo
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where the 1 or 2 means the SU(2) representation, and the subscript of it means the U(1)y

hypercharge.

We require the magnetic fluxes to break in the same way as the orbifold conditions do.

Then, the direction of G(= SU(3)) flux is determined as

(c',c?) = (1,—%).

(4.5.9)

The C' and B are determined by the quantization conditions (4.2.20) for all the fields. All

the conditions are discribed as

0 = 2kiq, ™ (SU(2)L gauge fields), + NC' = 2kin,m = 2kiq,m (Higgs doublet),

NC1 2NC!

= Qkuslﬂ' (qj%{)v

- 2k#117T - Qkuzlﬂ- (\Iji), -

, 20t B ,
N | — + == 2]{,“1271' == 2]{,”2271' (\IJL), N|— + =] = 2]€,“‘327T (‘PR)7

3 3

3
V(-5
kia, =0, kig, = kia, = £3Fk,
NC!' = 6kn, NB = 6k'r,
kpii = kuot =k, kpj = —2k,
k_ppo =k ppo = —k+Ek, k_ppo=—-2k+F,
ks = kpys =k — 2K, ks = —2k — K,
byt = kgt = —k — K. ks =2k — K,

( 5
1 1
N < C— — %) = 2ku137T = 2k*#23ﬂ- (@?J)a N (g + §) = 2k#33ﬂ- (\II%{)’

— —> = 2k_pam = 2k_,um (97), N (— — —) = 2k am (VR). (4.5.10)

(4.5.11)

where \II{;L means the right-, the left-handed fermion contained in W/ respectively, and

k, k' are integers.

We know 7 (the eigenvalue of Zy transformation) for the Higgs field as

2N, 71 .
w‘leXP( N ) =w"" ({|az), |os)} Higgs)

_ —2n,mi —(n ,
wlexp( & ):ww”. ({] - aa), | — as)} Higes)

71 for matter fields are

X6 i : :
w2 WP ePER - (right-handed fermion)

w? eMres e (left-handed fermion)
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The Zy twist phases for the Yukawa terms must be always equal to 1. Then, when we

choose H = {|an), |a3)} = H, as the Higgs doublet, the following relations are satisfied:

e 3 representation

_X6
2

-1

ij A. _1 . A.
qfPf LD L n iqrpf PR

<w2effe ) ST w2 e Pe =1,

SoXe = —.
e 3 representation
X6 - . . 6 , -1
wjequ(bfelp'ﬂ']a . wnp_ . (w_Tezqfwf elp'u’R) e 17
U Xe = +-

When we choose H = {| — o), | — a3) } = H_ as the Higgs doublet,
e 3 representation
WE eiards pirpL | (nptl) (wéﬁeifIf@feip'HR>_l —1,
CoXe = T+
e 3 representation
(wxzf’@iqfweipm)_l o etl) | 7 gy iR 1

JoXe = —.

4.5.2 Numbers of zero-modes
When we choose H = H,, we can assign yg to each U/ as

(U o) —
(U2, 04 . +

The Zy twist phases 7 for the fields feeling the magnetic fluxes are as follows:

)
wnpilv ({|a2>7 |043>} Higgs)
Wttt (left-handed fermion)
(Xe = +)
n= w7 (right-handed fermion)
( wh e (left-handed fermion)
X6 = —
| wt (right-handed fermion)

86

(4.5.16)

(4.5.17)
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(4.5.20)
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where ny is an integer for each f. In the subsection 4.3, we saw the conditions for the
magnetic fluxes such that each field have zero-modes. All the matter fields in (4.5.8) and

the Higgs field have the zero-modes when the values of the magnetic fluxes satisty

ke 2k + Kk — 2K 2k — K > 1,

2%k, —k+ kK, —2k — 2k, —k — K < — (4.5.22)

1
Sk > —k+1<k’<T (4.5.23)

??‘

On the other hand, when we choose H = H_, we can assign x¢ to each ¥/ as
(U, W7) : +
(U2, 0y : — (4.5.24)

In this case, n are as follows:

w D ({] - o), | — @)} Higgs)
whrtme - (left-handed fermion)
(X6 = +) . .
n= w*~t (right-handed fermion) (4.5.25)
w1 (left-handed fermion)
(X6 =) . .
| w e (right-handed fermion)

All the matter fields in (4.5.8) and the Higgs field have the zero-modes when the values of

the magnetic fluxes satisfy

ke 2k + Kk — 2K 2k — K < —1,
Ok, —k 4K, —2k — 2k, —k— K > 1, (4.5.26)

k<1, 5 S <k <—-k-1 (4.5.27)

Next, we discuss the Scherk-Schwarz phases. In the case of T?/Z3 the possible Scherk-

Schwarz phases are
sr=go=lay] {1— (-1},

o = gl = ‘§+ {1 (—1)kur}, (4.5.28)

where Iy, {,r = 0,1,2 (See Appendix.E.). When SU(2), is unbroken, ¢ = 0. So the
Scherk-Schwarz phases % and ¢, in (4.2.19) should be

1
(®!, d2) = 27l (1, —— |, p,=nl, (4.5.29)
S S \/§
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/ /
H QL dR L UR LL ER LL VR
K +3k k 2k | —k+K | 2k+FK | k—=2K| -2k -2k | -k -k |2k -k
n H = H+ wnpfl wn1+np wn1+1 wnngl wnngnp wn3+np wn3+1 wn4+1 wn4+np
n: H=H_ w—(np—‘rl) wnﬁ—np wnl—l wng—l wng—i—np wng—i—np wng—l wn4—1 wn4+np
¢ l 1 _ 2 - 4+l - 24T 24V 41
3 3 6 6 3 3 6 6

Table I: The values of the magnetic fluxes K, Zy twist phases 7, the Scherk-Schwarz phases
¢ = K(/2(t — 1) (¢: Wilson-line phase). The constant 2[ (I') is even for even k (k'), and
odd for odd k (k). The K for the Higgs doublet = 43k corresponds to H, = {|as), |as)},
and the K for the Higgs doublet = —3k corresponds to H_ = {| — aa),| — as) }.

where [,1' are real constants. The Scherk-Schwarz phases that respective fields feel are

expressed as

6 =0, ¢ =g =1,
[ 2l
¢“11 = ¢ﬂ21 = o ¢“31 = 5
S S 3 s 3

¢_I»L12 _ ¢—N22 _ ! + !’ QS_IJ‘?’Q — 2l !

s - Vs - § 6’ s o g 6’
¢_I»L13 _ ¢—N23 _ l U ¢—N33 _ 2l !

s — ¥s - 3 3’ s - 3 3’

A 20 U

—pid _ p—ped 0 T —psd T L 4.5.30

R e b T s (45.:30)

where s = 1,7. These phases ¢ = ¢&, ¢p»/ are derined mod |kq|, |k,.y|, respectively. We
find that 2/ (I) is even for even k k', and odd for odd k (k).

Then, the Yukawa sector of this model is determined by the nine integers: k, k', [, ', n,,

and ny (ny = 1,2,3,4). The numbers of the zero-modes of the fields feeling the magnetic

fluxes are determined by the values of the fluxes K, the Zx twist phases 1, and the Wilson-

line phases (¢ (or the Scherk-Schwarz phases ¢) that each field feels. We surmmalized them
in Table I. The number of the zero-modes are read off from Table 4~7 in [39]*. The detail

classification of the zero-mode number is explained by [42].

4The definition of 1 in [39] is different from ours when K < 0. In this paper, it should be described as
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4.5.3 Realization of three generations

From Table 1~4 in [39], the three generations are realized when k =6 (H = Hy), k' =
0, n, =0, ny3=0, ngy =2, [ =10'=0° In this case, the 4D effective Yukawa Lagrangian

n (4.4.3) becomes

yukawa - Z Z (yzj Q] del + Z/U erQ/]['/

1,j=1 k=1

) UL Hyely + y ™ Ve H L' + he.), (4.5.31)

where eH,Q"” = e, HQ'? and eHyL" = e, H'L'? (a,b=1,2: SU(2), indices), and

k KE 294 1)%
yP =y = ZZZ —12,0]vV"[6, 0] [18, 0]

i'=1j'=1k'=1

% Z F(—125'=6i'~72m) (0, —1296,0)8; ' +6m. k'

Zg * w
Y = =SS S i, 06,0 1,0

=1 j/=1k'=1
X Z FOI12=T2m) (1296, 0)65_jr 4 12m 4 (4.5.32)
where g4 ~ 0.652 is the 4D SU(2), gauge coupling. We have used

(Ml\Ea3|M3> = <M2’Ea2|l£3> =

Y

=k

1
(=m3]Eay| — 1) = (13| Ea, | p2) = 7 (4.5.33)
Now, the matter contents that appear as the zero-modes are
b d, Q' uly, Ly, ey L'y, v, (4.5.34)

where ¢ = 1,2, 3. In this case, we must remove extra SU(2), doublets. Then, we introduce
the brane-localized mass terms:

3

Lirane = Zl [éﬁz(x) {ClQQZL(xa z) + C/iQ L(I z)}

VL () {cgv (z,2) + L L' (a, z)} + h.c} 5@(2), (4.5.35)

SThis realization of the three generaions occurs only when N = 3.
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where Qﬁ% and EZR are brane localized 4D fermions, cq, ¢y, cr, ¢}, are the brane mass pa-
rameters that are dimensionless constants, and Qr,Q’;, Ly, L'}, are SU(2); doublet com-
ponents of U, W2 W3 W1 respectively. Focusing on the zero-modes, (4.5.35) is rewritten
as

3

L = 3 | Qhlo) {mo Qi) + mh )}

=1

+L5(x) {mLOLZ( )+ ’iLjOL’iL(:c)} +he +-- -}5@)@), (4.5.36)

where the ellipsis means the terms including the massive KK modes, and

11(5 i 2(j
i CQh( Iy )(O) i _ C/Qhé—g)m (J)(O)
Q0 V2R, 7 A \/_Rl 7
i 7 (—)p3() ot +)p14(j)
cHh 0 h 0
mZLjO = QL0 ( ), m”LJO = ( ), (4.5.37)

V2R, \/ﬁRl

are effective mass parameters. When these parameters are large enough, the following

linear combinations remain in the 4D effective theory:

3, 3,543
(ZL = VH- JQ] VH- J+ /JL’

I, = ViR 4 VL (4.5.38)
where i = 1,2, 3, and Vy and V7, are 6 x 6 matrices that satisfy

Ay 00 0
Ug(mgo,m'qo)Vo =10 Xy 0 0
0 0 A o0
M0 0 0
Ur(mpo,m'to)Vyi'=10 A2 0 0
0 0 A 0

, (4.5.39)

o O o O O O
oS O o O O O

with 3 x 3 unitary matrices Ug and Uy,. After the extra doublets decoupled, the Lagrangian
(4.5.31) is rewritten as

3 5

~(k)D _j i ~(k)U —4 j

yukawa - Z Z <y’L(J) qJLdeR + y’L(J) U’REHin
j=1 k=1

+y” Pl Hyely + y(k)EN LeHl, + hee. > (4.5.40)
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where

~(k)D k)D —1N\j'q ~(K\U KU RN .

yl(j) = yl§j/) A 1743, yl(j) _ yl(jl) \ 1)

~(kE KE IR TN (k)N KN N .

yz(]) = y’L(j/) (VL l)j 7j+37 yfj) = yl(]/) (VL 1)] +3J+3- (4541)

In order to avoid large flavor-changing process, only one-Higgs-doublet Hy, get a nonvan-

ishing VEV(Hj,) = v. Then, the fermion masses are eigen-values of the mass matrices:

ME =g, MY =g, ME =g, ME =, (45.42)

17 17
The masse can be controled by tuning c’@, d 22, ct c’iL through the unitary matrices Vg
and Vi. If Vo ~ 1g, we can realize the hierarchy between m; and m;. In this case, the
) W (AkU (1 =1,2,3) we calculated. We

v approximate those of yfjko ;
found that we can realize the top quark Yukawa coupling, which is 0.921, 0.945 ~ 1, when

eigen-values of g]z(jko

Y

ko = 2,5, respectively. This result means that an enhancement factor v/2 for the Yukawa
couplings can be obtained with the background magnetic fluxes from the overlap integrals,
compared to the cases that the zero-mode wave functions have the flat profiles. However
we cannot realize large hierarchy among the Yukawa couplings.

Besides, in this case, the five zero-modes of the Higgs doublets degenerate. The situation
may be problematic because such large number of Higgs doublets seem difficult to be
discovered in the present experiment. These zero-modes originate from the same 6D gauge
field. So if they existed, they might well have similar masses. Therefore, we change our
focus to the case that only one zero-mode of Higgs doublet appears in the next subsection,

ignoring the realization of the matter generations by magnetic fluxes.

4.5.4 One-Higgs-doublet case

When we focus on one-Higgs-doublet, the possible choices of (k,n,) = (1,2) or (2,0). We
choose the case (k,n,) = (2,0) because the Yukawa couplings are more restricted in the
other case. The possible values of k' are —1 or 0 from (4.5.23). In these cases, each

component in (4.5.8) has at most one zero-mode.

(i) k' =

ol 1 A+l -1
yP =y (nh_ > WU =y <n27L, )

33 6 6
A+1 -1 Al—1 2410
e (n3,— ; = ) yN =y (M — - g ) (4.5.43)
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where [ is an integer, I’ is an even number, and

E zg4 ZZZVM [ 2¢2] Y )[6,¢1—¢2]

i'=1j/=1k'=1
X ;}"(—Qi'—‘iﬂ"—sm) (07 —48, (61 + ¢12§(T — 1)) Ot —j1 - dm
v =2 ZZ SOVE I 0V R 66— 61
i'=1j'=1k'=1
y mzl}—(—zi’—4j'—sm) (0’ 48, (1 + <Z512;(T — 1)) St (4.5.44)

where ¢, (a = 1,2) are defined by (, =

The possible values of n, ¢, o are

(7’ — 1) (We used them instead of (,.).

n=20,1 2, (modn=3)
¢1 = ¢o — floor(¢) +u, (mod n =4)
¢ =0, 1/3, 2/3, 1, 4/3, 5/3, (mod n = 2) (4.5.45)

where u = 0, 1,2, 3. The possible numerical values of the Yukawa couplings are

ly? PPN = 0.191, 0.270, 0.369, 0.522, 0.573, 0.811. (4.5.46)

(i) k' =

20 1
D _v ()
=Y
Y (nl’ 3’ 3)

g n 41+ wnatl 20 =1 w
PSS v [0 2 v

i'=1j'=1k=
y ;f(—?)z"—sf—m) (O, 54, 2(l + l:r))f - 1)) S s
=y (ng,l;l',_%;l/) |
) ZZV s v | -2 v e
X Zﬁ #=5-5m) (0, —30,—%) 8t 11 5m ke (4.5.47)

m=1
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The possible numerical values of the Yukawa couplings are

|yPF| = 0.191, 0.270, 0.369, 0.522, 0.573, 0.811,
5| = 0.365, 0.430, 0.461, 0.667, 0.798,
V| = 0.101, 0.176, 0.188, 0.288, 0.533, 0.541, 0.559, 0.924. (4.5.48)

We found that the region of the numerical values of the Yukawa coupling constants is
[0.1, 1] in both the case with the three generations and the case with one-Higgs-doublet. So
we conclude that we cannot realize the Yukawa hierarchy only with the backgound mgnetic

fluxes and the Wilsn-line phases.

4.6 Discussion

We introduced the constant magnetic fluxes penetrating the compactified space as back-
gounds of gauge field strengths to realize the matter generations and the Yukawa hierarchy.
The overlap integrals of the Yukawa couplings deviate from the constant profile due to the
shifts for zero-mode wave functions (the Jacobi-theta functions), induced by the Wilson-line
phases (or the Scherk-Schwarz phases) they feel.

We considered the 6D GHU models whose gauge groups are G x U(1)x (G: simple Lie
group) and extra dimensions are compactified by T?/Zy (N = 2,3,4,6). Magnetic fluxes
are introduced for the U(1) x and the Cartan components of G. The zero-modes of the fields
feeling the magnetlc fluxes degenerate with the number depending on the values of fluxes
and the Wilson-line phases they feel, and the zero-mode orbifold boundary conditions.
These parameters are discrete and the available Wilson-line phases are constrained by the
values of N.

As a simplest example, we selected the SU(3) xU (1) x model with four 6D Weyl fermions
that belong to 3 or 3 of SU(3). In this model, the Yukawa sector is determined by nine
integers. From Refs.[39], the matter field content that appear in SM can be realized with
three generations only on 17?/Zs, also using the brane localized mass terms of 4D heavy
fermions to decople the extra SU(2), doublet fermions. However, we faced a problem.

The signs of the flux values that the left- and the right-handed fermions in one 6D flavor
feel are reverse because the 6D chiralities for the left- and the right-handed fermions in
one gauge multiplet are the same, and they feel the common background magnetic fluxes.

Then, the absolute value of the flux that the Higgs doublet feel equals to the sum of the
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absolute values of the fluxes that the left- and the right-handed fermions coupling to the
Higgs field feel, for the gauge symmetry of the Yukawa terms, and the sum value is often
large. Therefore, in GHU models with magnetic fluxes, the degeneration number of the
zero-mode Higgs fields become large. We found at least five Higgs doublets are needed
to realize the three generations of the matter fields in the simplest example on T?/Z3.
Therefore, we changed our focus to a case with only one-Higgs-doublet.

The numerical results for the values of the Yukawa couplings are as follows: We could
realize the large number such as 1. The result indicates that we can realize the top quark
mass without a large representation by magnetic fluxes in the case with the three gener-
ations of matter fields. However, we could not realize the values for the Yukawa coupling
constants of the matter fields other than the top quark because the smallest value is O(0.1)
in either case of three generation and one-Higgs-doublet case. The shifts of that zero-mode
wave functions on T?/Zy with magnetic fluxes are restricted to some discrete values. The
mode functions on T%/Zy (N = 3,4,6) are given by the mixtures of 7% mode functions.
This fact makes the profiles of mode functions complicated. So we conclude that we cannot
realize the large Yukawa hierarchy only with magnetic fluxes and the Wilson-line phases.

I think the fact that the Wilson-line phases are not entirely free parameters on 172 /Zy
and the patterns of the shifts of the zero-mode wave functions are constrained by the
orbifold is desirable. However, this restriction also makes it too difficult to realize all the
Yukawa couplings for the matter fields other than the top quark. This problem can be
solved by compactifying with the other manifold such as 7% since it enables to take the
Wilson-line phases entirely freely by hand, but we cannot consider the interactions localized
on the fixed points in this case.

We should check the effects of 4D localized mass terms to realize the Yukawa hierarchy
because these are expected to help the realization of the desirable values of the Yukawa
coupling constants by tuning their mass parameters. And we must check the effects of
KK mixing induced by the 4D localized terms, and the backgrounds of W*. Such effects
are closely related to the deviations of 4D effective couplings from the values of SM. The
realization of mixing angles for matter fields by magnetic fluxes in GHU models is subject

to investigate, too. These issues are left for our future works.
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Chapter 5

Summary

6D GHU models are phenomenologocally attractive because the existence of Higgs quartic
couplings at tree level make it easier to reproduce the experimental value of the Higgs
mass and large KK masses above the experimental lower bound and background magnetic
fluxes can be introduced to realize the matter generations from a single bulk fermion. In
this paper, we have mainly discussed 6D GHU models on a T?/Zy orbifold.

We selected the gauge groups, the orbifold compactifying the extra dimensions, and
the representation of the 6D fermion that the 3rd generation quarks are emmbeded into by
imposing the requirements for models to have the custodial symmetry and the experimental
value of the top quark mass. We find that the best candidate is a U(4) gauge theory on
T?/Zs3, and the 3rd generation quarks are emmbeded into SU(4) 20'.

I also discussed a case that the magnetic fluxes are present. In this case, there is a
possibility to realize the generations of matter fields from a single 6D fermion, and the
hierarchy among the Yukawa couplings. Especially we can realize the top quark Yukawa
coupling without introducing a large representation of the matter fields thanks to nontrivial
profiles of the zero-mode wave functions. However, we found that it is difficult to realize
a hierarchical structure of the Yukawa couplings in cases that the three generations of
matter fermions or one-Higgs-doublet are realized. This difficulty stems from the fact that
the profiles of the mode functions become complicated on T?/Zy (N = 3,4,6) compared
with the cases of T2 or T?%/Z,. The 4D localized mass terms may help to realize the Yukawa
hierarchy in the former case.

It is known that the realization of the Yukawa sector is one of challenging issues of

GHU models since all the Yukawa couplings originate from 6D gauge couplings and thus
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become universal in the simplest setup. The background magnetic fluxes and the Wilson-
line phases can save these problems. We should check how the results of the Chapter 3
changes when they are introduced into the models. As I mentioned in the previous chapter,
we neglected the effects of background of the Higgs when we calculate the KK (zero-)mode
wave functions. Originally, we must consider the effects of the VEV of the Wilson-line
phase 0y after the EW symmetry is broken. And we should consider the case that the
non-diagonal parts of the extra dimensional components in the G gauge field strength have
constant backgrounds. When we calculate the Yukawa couplings with the background of
the Higgs, we will get some different results about the Yukawa sector, I think. We must
also consider the one-loop effective potential of the Higgs with the magnetic fluxes and the
Wilson-line phases in 6D case in order to evaluate the Higgs mass spectrum exactly. I hope

these future attempts will help to construct realistic 6D GHU models.
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Appendix A

Cartan-Weyl basis

The generators of a simple group G whose rank is r in the Cartan-Weyl basis are H;

(t=1,---,r)and E,, which satisfy

H =H,, E =FE_,

[Hi7 H]] = 07 [H“ Ea] - aiE )
[Ea, EB] = Noa7,BEa7,87 [Ea, E_a] = Q- H, (AOl)

where «, 5 are the root vectors, and a # 8. A complex constant N, g is nonzero only when

a + [ is a root, and satisfies the following equations.

Nop=—-Ngo=-N"), s=Ns 0 p3=N_apa- (A.0.2)

«

For a series of the weights {u—qa, - -+, u—a, p, p+a, - - -, u+pa}, where neither p—(g+1)a
nor p+ (p+ 1)a is a weight, it follows that

200 1 2
|oz‘2 =4q—Dp, |Na,,u‘ =

where a complex constant N, , is defined as E,|u) = Ny ,lp + «). The generators are

p(g+1)]al’
2 ]

(A.0.3)

normalized as

tr(HZH]) = 5ij7 tr(HZEa) = 0, tr(EaEﬁ) = 504,—,3' (AO4)
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Appendix B

T?/Zy orbifold boundary conditions

The orbifold T?/Zy is defined by identifying points of R? by a discrete group I' which is
generated by three descrete transformations Oy: 2 — 2+1, O,: z = z+7 and O, 2 — wz.
Field values of a 6D field at ['-equivalent points must be related to each other through gauge
transformations ! in order for the Lagrangian to be single-valued on 7?/Zy. Thus the most

general orbifold boundary conditions are given by [51]

AM(ma Z+ 1) = TlAM(xa Z)Tl_la
z z z _ pz
Bi(x,z+1) = Bj(z,2), Bl (r,z+1)= B (z,2),
U (z,2+1) =TV, (z,2), (B.0.1)

for the translation Oy,

Ay(z, 2z + 1) =T, Ay (z, Z)TT_I,

z _ pz z _ pz
B (z,z+71)=B/(v,2), Bl(v,2+7)=B](z,2),
V(2,24 7) =TV, (7, 2), (B.0.2)

for the translation O,, and

Au(r,wz) = PA, (2, 2)P7Y, A (z,w2) =w 'PA,(z,2)P",
Bf(m,wz) = Bf(x, z), BZ(r,wz) =w 'BZ(x,2),

‘IIX4,X6 (xv wz) = W7X42X6

e PU (B.0.3)

X4,X6)

!More properly, they are related through automorphisms of the Lie algebra of G. For simplicity, we do

not consider a case of outer automorphisms [34].
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for the Zy twist O,. Matrices T7, T, and P are elements of G, and ¢, and ¢, are the

Scherk-Schwarz phases. A factor w™! and w™ "2 in (B.0.3) appears because B and Ve

are charged under the rotation in the extra-dimensional space. Since (w’X42X6 )W = —1, the

phase ¢, is determined so that
eNew pN = 1. (B.0.4)

The matrices T, T, and P satisfy the relations,

(
Tl_l (N =2)
T\ (N=3 Tt (N=2
pinp={"""" ( ) ., PT.p={"" ( ) . (B.0.5)
T (V=4 T (N=34,06)
TT_lTl (N = 6)
which reflect the properties of O, O, and O,,.
Here we perform a gauge transformation,
Ay = UANU +iU0y U™, U = U, (B.0.6)
where
U(z) = ex _Im(72) InT; —Im—zlnT (B.0.7)
=P Im 7 Ym0 o
Using (B.0.5), we can show that
Uz+1)=URT"Y, Ul+7)=URT,
P'U(w2)P=U(z), P '(ULU ) P=w"(iUdU"). (B.0.8)

Thus, the matrices 77 and 7 in (B.0.1) and (B.0.2) can be absorbed by this gauge trans-
formation, while the conditions in (B.0.3) are unchanged. Since we need the fermionic
zero-modes, we assume that ¢; = ¢, = 0 for the fermion that the quarks are embedded.

Then the orbifold boundary conditions are reexpressed as (3.2.8) and (3.5.2).
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Appendix C

Decomposition of representation of GG

Here we list various representations of G =SO(5),SU(4),SO(7), and their irreducible de-
compositions to multiplets of the SU(2); x SU(2)g(xU(1) ) subgroup.

Each representation is specified by the Dynkin coefficients m; (i = 1,--- ,7), and the
highest weight is expressed as fimax = »_; Mift;, where p; are fundamental weights. The

dimension of the representation is calculated by the Weyl dimension formula:
(m; + D) oy
dimR=HZl(m Db Ja” (C.0.1)
l 2 lifaul

where «; are simple roots, and [; are numbers such that ). [;a; are positive roots. We

consider irreducible representations whose dimensions are less than 30 in the following.!

C.1 SO(5)

The dimension formula (C.0.1) becomes
1

The decompositions to the irreducible representation of SU(2); x SU(2)y are as follows.

[m1, my] = [1,0]

5=(2,2)+ (1,1). (C.1.2)

[my, my] = [0,1]
4=(2,1) 4+ (1,2). (C.1.3)

IThe irreducible decompositions of other representations and the weights of each representation are
easily obtained by using LieART [52].
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[my, my] = [2,0]

14 = (3,3) + (2,2) + (1, 1). (C.1.4)

[my, my] = [1,1]

16 = (3,2) + (2,3) + (2,1) + (1, 2). (C.1.5)

[m1, my] = [0, 2]

This is the adjoint representation and decomposed as (3.3.2).

[m1, my] = [0, 3]

20 = (4,1) + (3,2) + (2,3) + (1,4). (C.1.6)

C.2 SU®4)

The dimension formula (C.0.1) becomes

1

X(m2 + ms + 2)(m1 + mo +ms + 3) (021)

The decompositions to the irreducible representation of SU(2); x SU(2)i x U(1) are as

follows.

[mh may, m3] - [17 Oa 0]

4 = (2, 1)+1 + (1, 2)_1. (C.2.2)

[m17 ma, m3] = [09 1, 0]
6 = (2, 2)0 + (1, 1)+2 + (1, 1)_2. (0.2.3)

[mh ma, m3] = [03 0, 1]
A= (2,1)_1 + (1,2)41. (C.2.4)

[mla ma, m3] = [17 o, 1]

This the adjoint representation and decomposed as (3.3.14).

[mla may, m3] = [03 1, 1]

20 = (3,2) 1 4 (2,3) 1 + (2,1) 11 + (2,1) s + (1,2) 45 + (1,2)_1. (C.2.5)
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[mla ma, m3] = [0’ 2’ 0]

20’ = (3,3)0 + (2,2)42 + (2,2) 2 + (1, 1)4a + (1, 1)_g + (1,1)0. (C.2.6)

[mla may, m3] = [1, 1, 0]

20 = (3,2)41 +(2,3) -1 + (2, D43+ (2,1) -1 + (1, 2) 42 + (1,2) 5. (C.2.7)

[mla m27m3] - [070? 3]

20" = (4,1)_5 + (3,2)_1 + (2,3) 11 + (1,4) 3. (C.2.8)

[mla m27m3] = [3703 0]

20" = (4,1) 45+ (3,2) 41 + (2,3)_1 + (1,4)_3. (C.2.9)

C.3 SO(7)

The dimension formula (C.0.1) becomes

1
dimR = %(ml + 1)(mg + 1)(ms3 + 1)(my + mg + 2)(mg + ms + 2)(2my + msz + 3)
X(m1 + mo +ms3 + 3)(7711 + 27712 + ms +4)(2m1 -+ 2m2 +ms3 + 5)

(C.3.1)

The SU(2);, x SU(2) subgroup is chosen as (ar,ar) = (e' + €* e' — e?). The decompo-

sitions to the irreducible representation of SU(2); x SU(2)g x U(1) are as follows.

[mla m2,m3] - [1,0, 0]
7=(2,2)0+ (1,111 + (L, 1)1+ (1, Do (C.3.2)

[mq, ma, m3] = [0, 1,0] This is the adjoint representation and decomposed as (3.3.21).

[mla m2,m3] = [OaOa ]-]

8 =(2,1)11/2 + (2,1) 12 + (1,2) 4172 + (1,2) _1/2. (C.3.3)

[mla m2,m3] = [23()’ 0]
27=(3,3)0 + (2,2) 41 +(2,2) -1 + (2,2)0 + (1,1)0
+(1, )42+ (1,1) 41+ (1, 1)0+ (1,1) 1 + (1,1) 2. (C.3.4)
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Appendix D

Absorption of Wilson-line phases

We show that “the Wilson-line phases” ¢’ and b in (4.2.18) can be absorbed into “the
Scherk-Schwarz phases”. We redefine the field as

Ay = VAV +iVou vV,
B\, = By + Oy,
R 2 (D.0.1)

where
V =exp (z Z Im(viz)Hi> ,
A =1Im(\z), (D.0.2)

with complex constants v* and A. (D.0.1) is rewritten as

4 . 10 w
iy = Chy — Lo+ Loy,
M 5 Mz + 5 M
W7 = exp {z Z Im(@iz)aiwj\oj} :
P )
By = By — %5Mz + %5M27

U = exp {iqf (Im(S\z) + Z Im(@iz)Hi> } 28 (D.0.3)

The Lagrangian density is invariant under the field redefinition: (A, B, V) — (A’, B', V).
By this redefinition, the background values of the vector potential in (4.2.18) are shifted
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as

) ) 77t iN(Ciz 4 & s g
<C’;)—><C’;—ﬂ>:—l C'z+¢) w

2 AImr 2
i\ iN(BZ+b) i)
S O S LA D.0.4
<&>%<Bz 2> ATmr 2 (D.0.4)

Then, we can cancel ¢’ and b if we choose V and A in (D.0.1) as

. Né Nb
vi= - A=-— (D.0.5)

2Im7’ 2Im7’

The torus boundary conditions (4.2.6) become

)

Cli(x,z+8) = Cip(x, 2) +

(_Z§5MZ + 'l.S(;Mg),

4lmT
NCIm(s

W3 (x, 2z + s) = exp {z <C21L(Sz) + d, + Im(@s)) : a} Wit (x, 2),
mr

NB
/ _ B/ M . ~
By(z,z+s) vz, z) + 4Im7'( 18001, + 18005 ),
U (1,2 + 5) = (e mOD) oy i 4 Tm(Ts) - HY

x MG () () 2), (D.0.6)

where s = 1, 7. This means the Scherk-Schwarz phases are shifted as

. , . . N¢i
Q! — &) —Im(s50') = &% + Im (5 < ),

2lmT

, . Nb
oL = oL —Im(3)\) = ¢, + Im (5 ) : (D.0.7)

2Imr

In this way, the Wilson-line phases are absorbed into the Scherk-Schwarz phases.
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Appendix E

Possible values of the Scherk-Schwarz

phases

As referred in [39], the Scherk-Schwarz phases (in the absence of the Wilson-line phases)
are restricted to the discrete values on T?/Zy.

We define
F(x,z) = Flx,wz), (E.0.1)

where F = C%,, W, By, U/ F¥ satisfies the same boundary conditions as those of F(z, z)

from (4.2.7). Here, we express the torus boundary condition as
Flx,z+s) =Us(2)F(z, 2), (E.0.2)

where s = 1,7 and Us(z) is an operator that acts on F(x, z). Then,

(x, 24+ 5) =Us(2) F = U (2)F(x,wz) (s=1,7), (E.0.3)
) Fl,—z—1)=U(-z-1)F(z,—2) (N=1)
Flr,wz +7) = U (wz) F(z,w2) (N #2) ’

Fle,z+71) = F(x,wz +wr)

(U_l(—z —7)F(z,—2)

T

( 2

U N wz — 1 — 1)U Hwz — D F(z,wz) (N=3
(
(

U (wz — 1) F(z,wz)
kZ/lT(wz — DU N wz — 1) F(z,wz)

(E.0.4)
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Here, we used the relation between w and 7:

-7 (N =2)
—1—-7 (N=3)
wT = : (E.0.5)
-1 (N =4)
|—1+7 (N=6)
From (E.0.3) and (E.0.4), we find
—1/ _
o) - {ul (=) (N=2)
U (wz) (N #£2)
(UM (—z—7) (N =2)
T P S O _
U (2) = U (wz—1—7)U (wz—1) (N =3) ' (E.0.6)
Z/ﬁ(wz — 1) (N = 4)
\UT(wz — DU (wz —1) (N =6)
These conditions are rewritten with the Scherk-Schwarz phases in (4.2.45) as
¢S = —¢%, o =gk, (N =2)
—ka/2 - 6% — 6% (N =3)
Or = o = § —oF (N =4),
ka/2+ 07 —¢F (N =0)

—kup/2 = ¢t — ot (N =3
ol =orl = ot (N =4), (E.07)
Fup/2+ ot —of (N =6)

=
Il

mode 1. Solving these equations, we find the possible values of the Scherk-Schwarz phases

are
(0,0), (5,0, (0.3), (5.3) (N=2)
(070)7 (%’%)7 (§7§) (N:37 k:even)
a Lo (lal)’ (lvl)’ (§7§) (N:37 k:Odd)
(67, 07), (o, ghfy = ¢ ©707 227 260 . (E.0.8)
(070)7 (575) (N:4)
(0,0) (N =6, k= even)
\(%7%) (N =6, k=o0dd)
mod 1. Here, k = kq for (¢, ¢2), and k = k, for (¢‘1‘f, M), respectively.
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