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Abstract

In this thesis I study the dynamics of the space-time in the matrix models using

numerical simulations. Recent studies on the Lorentzian type IIB matrix model show that

(3+1)d space-time emerges dynamically from (9+1)d space-time predicted by superstring

theory, which indicates the birth of the (3+1)d universe in the string theory. In order to

investigate what happens at late times, I study the two simplified Lorentzian type IIB

matrix models. We find that the emergent space expands exponentially at early times,

which changes into a power-low behavior t1/2 with respect to time t at late times. This

is reminiscent of the expanding behavior in the inflation and the Friedmann-Robertson-

Walker universe in the radiation dominated era, respectively. Moreover, I investigate the

infrared cutoff dependence of the expanding behavior in these models. For the simplified

model, it turns out that the infrared cutoff effects disappear for a certain region of the

cutoff parameter in the infinite volume limit.

On the other hand, I investigate the dimensionality of emergent space by the toy model

of the Euclidean type IIB matrix model which has a spontaneous breaking of rotational

SO(4) symmetry. From the complex Langevin approach, I show that introducing extra

mass parameters in the Dirac operator extends the range of applicability of the method,

which enable us to observe the spontaneous breaking of SO(4) symmetry. Moreover, I

show that the result obtained by extrapolating the parameters to zero is consistent with

the one obtained by another method.
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1 Introduction

The Standard Model is extremely successful in understanding quantum field theory of fun-

damental interactions and it can explain the experimental observations except for a few

important remaining problems. In particular, lattice gauge theory has been established as

the non-perturbative approach for studying physics of the strong interaction. The numerical

study by the lattice gauge theory is actually the powerful approach to understanding the

physics in the strong coupling region where perturbative approach is not applicable. On the

other hand, describing the quantum gravity has not been achieved yet. However, the de-

scription of quantum gravity is necessary to understanding dynamics of the early universe in

which macroscopic description of gravity as general relativity breaks down due to the cosmic

singularity. As a most promising candidate of quantum gravity theory, the string theory has

been studied for a long time. However, superstring theory requires the space-time to be ten

dimensional whereas our universe is four dimensional.

In fact, one can obtain four-dimensional space-time by compactifying the extra dimen-

sions with various ways, which allows too many vacua giving four-dimensional low energy

effective field theories with various gauge symmetries. Nevertheless, there is no guiding prin-

ciple to pick up one vacuum from those vacua as far as one deals with superstring theory

perturbatively. It is therefore necessary to consider superstring theory non-perturbatively.

As a non-perturbative formulation of superstring/M theory, matrix models were proposed.

They can be obtained by dimensionally reducing the ten-dimensional N = 1 super Yang-Mills

theory to d = 0 [1], d = 1 [2] and d = 2 [3]. The matrix models can naturally describe the

many-body system of strings.

The type IIB matrix model [1] is one of these proposals corresponding to the d = 0 case

mentioned above, whose action can be derived from the Schild type world-sheet action of

type IIB superstring by the matrix regularization. The important feature of this model is

that the space-time does not exist a priori and is described dynamically as the eigenvalue

distribution of the ten bosonic matrices. In this context, the idea of emergent gravity has

been pursued [4–11] in the gauge theories on the non-commutative space which appear from

the type IIB matrix model for a particular class of backgrounds [12–15]. Until recently, this

model was studied after making a Wick rotation [16–29] because the partition function of the

Euclidean model obtained in this way was shown to be finite [30,31]. However, the Euclidean

model is not suitable for studying the real time dynamics because the time coordinate is

treated as purely imaginary. Moreover, it is known that the Wick rotation is more subtle in

quantum gravity theory than in quantum field theory at the non-perturbative level [32, 33].

Indeed a recent study using the Gaussian expansion method suggests that the emergent space-
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time in the Euclidean matrix model does not seems to be four-dimensional space-time [34].

On the other hand, the Lorentzian version of the type IIB matrix model has been studied

using Monte Carlo simulation for the first time in ref. [35]. Unlike the Euclidean case, one

has to introduce the infrared cutoffs in both the temporal and spatial directions in order to

make the partition function finite. Although such a subtlety remains (it will be discussed in

detail later), the Lorentzian matrix model is suitable for studying real-time dynamics. The

eigenvalue distribution of the matrix representing the time coordinate can extend to infinity

owing to the existence of supersymmetry, and dominant configurations of spatial matrices

obtained by Monte Carlo simulation have a very nontrivial structure. This structure enables

us to naturally extract the time evolution from the matrices. It turned out that the large-N

scaling behavior is observed, and surprisingly, the SO(9) rotational symmetry of the 9d space

is spontaneously broken down to SO(3) at some critical time, after which only three out

of nine spatial directions start to expand. This emergence of 3d space indicates the birth

of the three-dimensional universe in the string theory. It should be emphasized that the

dimensionality of the space-time is determined uniquely by the non-perturbative dynamics

of superstring theory in contrast to the perturbative superstring theory in which consistent

vacua can have various space-time dimensionality.

As another important property of the Lorentzian IIB matrix model, it is expected that

the classical approximation becomes valid at late times since each term in the action becomes

large as the expansion of the “universe” proceeds, which enables us to to investigate possible

behaviors at late times [36–40]. A general prescription to construct solutions to the classical

equations of motion was given in ref. [37]. One can actually construct classical solutions

corresponding to an expanding (3+1)d universe, which naturally solve the cosmological con-

stant problem [37]. As a closely related progress, it was found that matrix configurations

with intersecting fuzzy spheres in the extra dimensions can accommodate the standard model

fermions [41–47]. In fact, it is known that the classical equations of motion of the matrix

model have infinitely many solutions [37]. Therefore, in order to determine which classical so-

lution is actually realized at late times, we need to study the time-evolution of the “universe”

at least for a sufficiently long time by performing Monte Carlo simulation.

One can also study the qualitative behavior of the expanding 3d space in a long time

evolution using the simplified models of the Lorentzian type IIB matrix model [48–50]. These

models are obtained by using an approximation, which captures important properties of the

original model at early times and at late times. This simplification and the usage of a large-

scale parallel computer enable us to perform Monte Carlo simulation with much larger matrix

size.

The first simplified model describes the early time behaviors of the original model [49].
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With the matrix size N ≤ 256, we observed a clear exponentially expanding behavior, which

is reminiscent of the inflation. Monte Carlo studies of the original model with N = 24 [48]

yielded results consistent with this observation. The second simplified model describes the

late time behaviors of the original model, which is merely a bosonic model defined by omitting

the fermionic matrices [50]. Unlike in the case of the original model, it turns out that the

eigenvalue distribution of the temporal matrix has a finite extent without introducing an IR

cutoff in the temporal direction due to the absence of supersymmetry. In spite of this, we

find that the properties of the model changes drastically at the critical N = Nc, and one can

extract the meaningful time-evolution for N ≥ Nc. Moreover, the model suggests that the

exponential expansion terminates at some point in time and changes into the power-law t1/2

expansion which is consistent with the expanding behavior for the Friedmann-Robertson-

Walker universe in the radiation dominated era. These results indicate that the exponential

expansion of the space suggested in the original model actually ends at some point in time

and turns into a power law similarly to the bosonic model. This would imply that the number

of e-foldings is determined dynamically in the Lorentzian type IIB matrix model.

Let us recall that these interesting observations are obtained from the Lorentzian type

IIB matrix model, which is regularized by infrared cutoffs. However, unlike in quantum field

theories, it is not obvious that the effects of IR cutoffs disappear in the infinite volume limit

because the extent of space-time is given by the dynamics of the model. Therefore we consider

the IR cutoffs deformed with a parameter and study how it affects the expanding behavior in

the simplified model. We found that the expanding behavior becomes universal for a certain

range of the cutoff parameter. This suggests that the IR cutoff effects disappear for such a

parameter region. We also found that this suggestion are supported by the analysis using

the Schwinger-Dyson equation, in which the terms arising from the IR cutoffs decrease as N

is increased for the same range of the cutoff parameter.

In this thesis, we also discuss the Euclidean version of the type IIB matrix model. In

the Euclidean model the complex fermion determinant causes the sign problem which makes

numerical studies difficult. As we mentioned earlier, there are several proposals to overcome

this problem. Especially, the recent studies on the complex Langevin approach [51] and the

Lefschetz thimble approach solve the sign problem for several simple cases [53–59]. One of

the issues in the complex Langevin method we consider in this thesis is that the condition

for which the method works is not understood very well. However, recent studies revealed

certain criteria to justify the method, and in order to satisfy the criteria, one can consider an

improvement called by the “gauge cooling”. It is known that the complex Langevin method

(CLM) in fact becomes successful at some parameter region of QCD at finite density and the

related Random Matrix theory.
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In this thesis we consider a matrix model which is expected to undergo a spontaneous

breaking of the rotational SO(4) symmetry. This model is considered as a simplified model

of the Euclidean type IIB matrix model. In application of the complex Langevin approach to

this simplified matrix model, it turned out that the gauge cooling for justifying the method

does not work well enough. Therefore, in addition to the gauge cooling, we introduced the

mass parameter mf to the fermion action to improve the method further. After taking the

mf → 0 limit, we have shown that the SO(4) symmetry actually breaks spontaneously down

to SO(2).

The rest of this paper is organized as follows. In section 2 we review the definition of

the type IIB matrix model. In section 3 we briefly review the definition and some important

properties of the Lorentzian type IIB matrix model. In section 4 we define the simplified

models, and present results obtained by direct Monte Carlo studies. In section 5 we discuss

the dependence of the expanding behavior of space-time on the IR cutoffs in the simplified

model. In section 6 we study the Euclidean matrix model, in which we investigate the

spontaneous breaking of rotational symmetry in the simplified model using the complex

Langevin approach. Section 7 is devoted to a summary and discussions.

2 Review of the type IIB matrix model

I briefly introduce the type IIB matrix model we consider in this paper. The model was

proposed as a non-perturbative formulation of superstring theory, which is defined by dimen-

sional reducing the 10d N = 1 SYM theory to zero-dimension. On the other hand, one can

show that the model can be derived from the world-sheet action of the type IIB superstring

by applying the matrix regularization. Moreover, the model naturally seems to describe the

many-body system of strings by embedding them to matrix degrees of freedom. In what

follows, I show that the action of the type IIB matrix model can be derived from the Shild

type world-sheet action of the type IIB superstring.

The action of the type IIB matrix model is given by

S =
1

g2
Tr

(
[Aµ, Aν ] [A

µ, Aν ] +
1

2
Ψ̄Γµ [Aµ,Ψ]

)
, (2.1)

where Aµ (µ = 0, . . . , 9) are the N ×N Hermitian matrices. Γµ are the 10d gamma matrices

and Ψα (α = 1, . . . , 16) are the 10d Majorana-Weyl spinors which are also N ×N Hermitian

matrices. Therefore the action has the SO(9,1) symmetry.

Then, we show that the action (2.1) can be derived from the Green-Schwartz action for
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the type IIB superstring

SGS = −T
∫
d2σ

(√
−1

2
Σ2 + iϵab∂aX

µ
(
θ̄1Γµ∂bθ

1 + θ̄2Γµ∂bθ
2
)
+ ϵabθ̄1Γµ∂aθ

1θ̄2Γµ∂bθ
2

)
,

(2.2)

where T is the tension of a string and σa (a = 1, 2) is the world-sheet coordinate. θ1 and θ2

are the 10d Majorana-Weyl spinors which have the same chirality in 10d space-time since we

are considering the type IIB superstring. Σµν is defined by

Σµν = ϵabΠµ
αΠ

ν
b ,

Πµ
a = ∂aX

µ − iθ̄1Γµ∂aθ
1 + iθ̄2Γµ∂aθ

2 . (2.3)

Note that the action (2.1) is defined after taking the analytic continuation θ2 → iθ2.

One can show that the action (2.1) has the 10 dimensional N = 2 supersymmetry

δSUSY θ
1 = ϵ1 ,

δSUSY θ
2 = ϵ2 ,

δSUSYX
µ = iϵ̄1Γµθ1 − iϵ̄2Γµθ2 (2.4)

and the κ-symmetry

δκθ
1 = α1 ,

δκθ
2 = α2 ,

δκX
µ = iθ̄1Γµα1 − iθ̄2Γµα2 , (2.5)

where α1 and α2 are defined by

α1 =
(
1 + Γ̃

)
κ1 ,

α2 =
(
1− Γ̃

)
κ2 ,

Γ̃ =
1

2
√

−1
2Σ

2
ΣµνΓ

µν . (2.6)

κ1 and κ2 are local parameter of the Majorana-Weyl spinors depending on the world-sheet

coordinate σa. One can show that Γ̃2 = 1, from which it turns out that α1and α2 have only

a half degree of freedom of θ1 and θ2. Therefore by fixing the gauge of the κ-symmetry, one

can reduce the d. o. f. of θ1 and θ2 by half. Since the chirality of θ1 and θ2 are same, the

7



Lorentz symmetry is preserved even after the gauge fixing.

Now, let us choose the gauge of the κ symmetry so that

θ1 = θ2 = ψ . (2.7)

Then the action (2.1) becomes

S̃GS = −T
∫
d2σ

(√
−1

2
σµνσµν + 2iϵab∂aX

µψ̄Γµ∂bψ

)
, (2.8)

where

σµν = ϵab∂aX
µ∂bX

ν . (2.9)

One can see that the action (2.8) still has the N = 2 supersymmetry by defining a new

supersymmetric transformation so that the gauge fixing condition (2.7) is preserved as

δθ1 = (δSUSY + δκ) θ
1 ,

δθ2 = (δSUSY + δκ) θ
2 ,

δXµ = (δSUSY + δκ)X
µ , (2.10)

and in order to satisfy δθ1 = δθ2 we set κ1 and κ2 as

κ1 =
−ϵ1 + ϵ2

2
,

κ2 =
ϵ1 − ϵ2

2
. (2.11)

Then, by introducing new parameters ξ and ϵ as

ξ =
ϵ1 + ϵ2

2
,

ϵ =
ϵ1 − ϵ2

2
, (2.12)

we can rewrite the N=2 supersymmetry using ξ and ϵ as

δ(1)ψ = − 1

2
√

−1
2σ

2
σµναΓ

µνϵ ,

δ(1)Xµ = 4iϵ̄Γµψ , (2.13)
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and

δ(2)ψ = ξ ,

δ(2)Xµ = 0. (2.14)

Furthermore, we rewrite the Nambu-Goto type action (2.8) to the Schild type action. In

order to do this, we introduce the Poisson bracket

{X,Y } ≡ 1
√
g
ϵab∂aX∂bY, (2.15)

where
√
g is the world-sheet density defined by the metric gab on the world-sheet. Using the

Poisson bracket, the action (2.8) can be written as

SSchild =

∫
d2σ

[
√
gα

(
1

4
{Xµ, Xν}2 − i

2
ψ̄Γµ {Xµ, ψ}

)
+ β

√
g

]
. (2.16)

One can show that the above action is equivalent to the Nambu-Goto type action (2.8). In

fact, the equation of motion for
√
g is given by

− 1

4
α
1

g

(
ϵab∂aX

µ∂bX
ν
)2

+ β = 0 . (2.17)

Then one obtains
√
g =

1

2

√
α

β

√
(ϵab∂aXµ∂bXν)

2
. (2.18)

By substituting (2.18) to the Shild type action (2.16), one obtains the action as∫
d2σ

(√
αβ

√
(ϵab∂aXµ∂bXν)

2 − i

2
αϵab∂aX

µψ̄Γµ∂bψ

)
, (2.19)

which is equivalent to (2.8) up to the normalization.

Note that the N = 2 supersymmetry is realized for the Schild type action (2.16) as

δ(1)ψ = −1

2
{Xµ, Xν}Γµνϵ ,

δ(1)Xµ = iϵ̄Γµψ , (2.20)

and

δ(2)ψ = ξ ,

δ(2)Xµ = 0 . (2.21)
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Here, one can formally consider the quantization of the action (2.16) with the path integral

formalism as

Z =

∫
D√

gDXDψ eSSchild . (2.22)

In addition to the N = 2 SUSY, the action (2.16) has the diffeomorphism invariance for the

world-sheet such as

δdψ = ϵa∂aψ ,

δdX
µ = ϵa∂aX

µ ,

δd
√
g = ϵa∂a

√
g . (2.23)

Note that we assume here that the measure of the path integral (2.22) is invariant under the

transformation (2.23). For instance, one considers to fix the gauge for which
√
g is constant

all over the world-sheet. Therefore the infinitesimal transformation of
√
g in (2.23) becomes

δd
√
g = ϵa∂a

√
g = 0 . (2.24)

The solution of the above differential equation is given by

ϵa =
1
√
g
ϵab∂bρ (2.25)

using the arbitrary function ρ (σa). Then substituting (2.25) to (2.23) gives the “area pre-

serving diffeomorphism” as

δdψ = {ψ, ρ} ,

δdX
µ = {ψ,Xµ} ,

δd
√
g = 0 . (2.26)

In particular, it satisfies the w∞-algebra which is described by the Poisson bracket. One

considers to regularize the path integral (2.22), in which one regularizes the w∞-algebra with

the SU(n) algebra. When n is sufficiently large, one can approximate the Poisson bracket

and the integral with respect to the world-sheet coordinate by the commutator and the trace

of matrices

{ , } → −i [ , ] ,
1

2π

∫
d2σ → Tr . (2.27)
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In this context, the bosonic fields Xµ and fermionic fields ψ become n×n Hermitian matrices

and the properties for the Poisson bracket∫
d2σ

√
g {X,Y } =

∫
d2σ ∂a

(
ϵabX∂bY

)
= 0 ,∫

d2σ
√
gX {Y, Z} =

∫
d2σ

√
gZ {X,Y } (2.28)

are replaced by the relations

Tr ([X,Y ]) = 0 ,

Tr (X [Y, Z]) = Tr (Z [X,Y ]) . (2.29)

Therefore, by replacing the Poisson bracket and the integral in (2.16) and (2.22) by the

commutator and the trace, one obtains the action and partition function of the type IIB

matrix model as

SIKKT = α

(
−1

4
Tr [AµAν ]

2 − 1

2
Tr
(
ψ̄Γµ [Aµ, ψ]

))
+ 2πβTr1 , (2.30)

Z =
∞∑
n=0

∫
dAdψ e−SIKKT , (2.31)

where we denote the n × n Hermitian matrices by Aµ. The integral with respect to
√
g is

replaced by the summation over n which represents the area of the world-sheet. The measure

in the path integral (2.31) is the Haar measure which is defined as

dA =
∏
µ

(∏
i

d (Aµ)ii

)∏
i>j

dRe (Aµ)ij dIm (Aµ)ij

 ,

dψ =
∏
α

(∏
i

d (ψα)ii

)∏
i>j

dRe (ψα)ij dIm (ψα)ij

 . (2.32)

One can easily see that the action (2.30) also has the N = 2 supersymmetry. According to

the rule (2.27), the supersymmetry transformation for the type IIB matrix model is given as

δ(1)ψ =
i

2
[Aµ, Aν ] Γ

µνϵ ,

δ(1)Aµ = iϵ̄Γµψ , (2.33)
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and

δ(2)ψ = ξ ,

δ(2)Aµ = 0 . (2.34)

The type IIB matrix model can describe states including more than one string while the

Schild action represents the action for one string. In fact, by considering block diagonal

configurations, the action (2.30) can be decomposed with the direct sum of block matrices,

in which each block represents one string state described by the Schild type action. In that

case, off-diagonal blocks can be interpreted to represent interactions between corresponding

two strings. Thus, the matrix model is expected to describe the second quantization of string

theory.

Note that the term proportional to Tr1 in (2.30) and the summation over n in the path

integral (2.31) do not exist in the original action of the type IIB matrix model. This can be

interpreted that (2.30) is the effective action obtained by integrating out some sub-matrices.

Therefore when one regards βTr1 as a chemical potential for matrix size n, one can interpret

the partition function (2.31) as the micro canonical ensemble version of the type IIB matrix

model.

3 Lorentzian version of the type IIB matrix model

As was explained in section 2, the type IIB matrix model describes states of more than one

string or D-brane as the d.o.f. of matrices. The eigenvalues of matrices describe the positions

of D-branes and their distribution can be regarded as the extent of emergent space-time from

10d space-time. Thus, the type IIB matrix model would explain how 4d space-time emerges

from the 10d space-time required by superstring theory.

There are many studies on the type IIB matrix model, in which the model have been

studied after making the Wick rotation. In the Euclidean model, the partition function turns

out to be well-defined and one can deal with it numerically. In that case, the model has

SO(10) symmetry. However, it has not been shown how the dimensionality is chosen. In

particular, the study using the Gaussian expansion method suggests that the emergent space

is three-dimensional rather than four-dimensional.

On the other hand, the Lorentzian version of the type IIB matrix model has been studied

in ref. [35]. In the Lorentzian case, the time coordinate is treated as real and the model

is suitable for investigating real time dynamics. Although the action becomes imaginary, it

turned out that the imaginary action can be approximated by a delta function, which enables
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us to deal with the Lorentzian model numerically. One has to introduce IR cutoffs in practice

since the action is unbounded. As a result of numerical analysis, it turned out that the only

three out of nine spatial directions start to expand at some point in time-evolution. In what

follows, I will briefly review the definition of the Lorentzian type IIB matrix model and the

result mentioned above.

3.1 Brief review of the Lorentzian type IIB matrix model

The action of the Lorentzian type IIB matrix model is given by [1]

S = Sb + Sf , (3.1)

Sb =
1

4g2
Tr ([Aµ, Aν ] [A

µ, Aν ]) , (3.2)

Sf = − 1

2g2
Tr
(
Ψα (CΓµ)αβ [Aµ,Ψβ]

)
, (3.3)

where the bosonicN×N matricesAµ (µ = 0, . . . , 9) and the fermionic matrices Ψα (α = 1, . . . , 16)

are both traceless and Hermitian. Γµ are 10D gamma-matrices after the Weyl projection and

C is the charge conjugation matrix. The “coupling constant” g is merely a scale parameter

in this model since it can be absorbed by rescaling Aµ and Ψ appropriately. The indices µ

and ν are contracted using the Lorentzian metric ηµν = diag (−1, 1, . . . , 1). The Euclidean

version can be obtained by making the “Wick rotation” A0 = iA10, where A10 is supposed

to be Hermitian.

The partition function for the Lorentzian version is proposed in ref. [35] as

Z =

∫
dAdΨ eiS (3.4)

with the action (3.1). The “i” in front of the action is motivated from the fact that the string

world-sheet metric should also have a Lorentzian signature. By integrating out the fermionic

matrices, we obtain the Pfaffian ∫
dΨ eiSf = PfM (A) , (3.5)

which is real unlike in the Euclidean case [29]. Note also that the bosonic action (3.2) can

be written as

Sb =
1

4g2
Tr (FµνF

µν) =
1

4g2

{
−2Tr (F0i)

2 +Tr (Fij)
2
}
, (3.6)

where we have introduced the Hermitian matrices Fµν = i [Aµ, Aν ]. Since the two terms in

the last expression of eq. (3.6) are non-positive definite and have opposite signs, Sb is not
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positive semi-definite. Therefore it is not bounded from below.

In order to make the partition function (3.4) finite, one needs to introduce infrared cutoffs

in both the temporal and spatial directions, for instance, as

1

N
Tr (A0)

2 ≤ κ
1

N
Tr (Ai)

2 , (3.7)

1

N
Tr (Ai)

2 ≤ Λ2 . (3.8)

It is important to confirm that the IR cutoffs can be removed in the infinite volume limit,

which is discussed in Section (5).

In the present work, it is important to understand the reason why we need to introduce

the cutoff (3.7) in the temporal direction. Note first that one can use the SU (N) symmetry

of the model to bring the temporal matrix A0 into the diagonal form

A0 = diag (α1, . . . , αN ) , where α1 < · · · < αN . (3.9)

By “fixing the gauge” in this way, we can rewrite the partition function (3.4) as

Z =

∫ 9∏
i=1

dAi

N∏
k=1

dαk ∆(α)2PfM (A) eiSb ,∆(α) ≡
N∏
a>b

(αa − αb) , (3.10)

where ∆(α) is the van der Monde determinant. The factor ∆(α)2 in (3.10) appears from the

Fadeev-Popov procedure for the gauge fixing, and it acts as a repulsive potential between the

eigenvalues αk of A0. Here we consider a situation in which the eigenvalues of A0 are well

separated from each other. Then the action S = Sb + Sf can be expanded as

Sb = − 1

2g2
(αa − αb)

2|(Ai)ab|2 + · · · , (3.11)

Sf = − 1

2g2
(Ψα)ba(αa − αb) (CΓµ)αβ (Ψβ)ab + · · · , (3.12)

omitting the sub-leading terms for large |αa − αb|. Integrating out Ai at one loop neglecting

the zero modes corresponding to diagonal elements, we obtain ∆(α)−18 for the one-loop

potential of αk which acts as a attractive force between αk. On the other hand, integrating

out Ψα at one loop similarly, we obtain ∆(α)16. Thus we find that the potential between αi is

canceled exactly at the one-loop level. This is actually a consequence of supersymmetry [1] of

the model (3.4). Owing to this property, the eigenvalue distribution of A0 extends to infinity

even for finite N if the cutoff (3.7) were absent.

In fact, after some manipulation and rescaling of Aµ, we can rewrite the partition function
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(3.4) as

Z =

∫
dAPfM (A) δ

(
1

N
Tr (FµνF

µν)

)
δ

(
1

N
Tr (Ai)

2 − 1

)
θ

(
κ− 1

N
Tr (A0)

2

)
=

∫ N∏
a=1

dαa

d∏
i=1

dAi∆
2(α) PfM (A) δ

(
1

N
Tr (FµνF

µν)

)
×δ
(

1

N
Tr (Ai)

2 − 1

)
θ

(
κ− 1

N
Tr (A0)

2

)
, (3.13)

where θ (x) is the Heaviside step function. This form allows us to performing Monte Carlo

simulation of the Lorentzian model without the sign problem unlike the Euclidean model.1

Let us note first that the integrand of the partition function (3.4) involves a phase factor

eiSb . As is commonly done in integrating oscillating functions, we introduce a convergence

factor e−ϵ|Sb| and take the ϵ→ 0 limit after the integration.

Then the partition function can be rewritten as

Z =

∫
dA

∫ Λ2

0
dr δ

(
1

N
Tr (Ai)

2 − r

)
θ

(
κr − 1

N
Tr (A0)

2

)
eiSb−ϵ|Sb| PfM , (3.14)

where κ and Λ are the cutoff parameters introduced in (3.7) and (3.8), respectively. Rescaling

the variables Aµ → r1/2Aµ in the integrand, we get

Z =

∫
dAPfM(A) f(Sb) δ

(
1

N
Tr (Ai)

2 − 1

)
θ

(
κ− 1

N
Tr (A0)

2

)
, (3.15)

where the function f(Sb) is defined by

f(Sb) ≡
∫ Λ2

0
dr r9(N

2−1)−1er
2(iSb−ϵ|Sb|) . (3.16)

Note that f(Sb) is a complex-valued function with the property f(−Sb) = f(Sb)
∗. For

|Sb| ≪ 1
Λ4 , the function can be well approximated by

f(Sb) ≈
∫ Λ2

0
dr r9(N

2−1)−1

=
1

9(N2 − 1)
(Λ2)9(N

2−1) . (3.17)

For |Sb| ≳ 1
Λ4 , the phase of the integrand in (3.16) starts to oscillate violently in the region

1Strictly speaking, the Pfaffian PfM in (3.13) can change its sign, but it turned out that configurations
with positive Pfaffian dominate at large N .
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r ≳ 1/
√

|Sb|, and hence the integral decreases rapidly in magnitude for increasing |Sb|. In

particular, the asymptotic behavior of f(Sb) for |Sb| ≫ 1
Λ4 can be estimated as

f(Sb)

f(0)
∼ 1

2
Γ

(
9

2
(N2 − 1)

)
|Sb|−

9
2
(N2−1) · 9(N2 − 1)(Λ2)−9(N2−1)

= Γ

(
9

2
(N2 − 1) + 1

) (
1

Λ4|Sb|

) 9
2
(N2−1)

(3.18)

by deforming the integration contour in (3.16). Recalling eq. (3.2), the condition |Sb| ≪ 1
Λ4

for (3.17) can be rewritten as ∣∣∣∣ 1N Tr (FµνF
µν)

∣∣∣∣≪ 4g2

NΛ4
. (3.19)

Therefore, assuming that the right-hand side 4g2

NΛ4 of (3.19) becomes small at large N , we

may make a replacement

f(Sb) =⇒ δ

(
1

N
Tr (FµνF

µν)

)
(3.20)

up to a normalization constant. Rescaling the variables Aµ → Aµ/L, we arrive at eq. (3.13).

Within the above approximation, the parameter L simply sets the scale of the model, and

we may use L = 1 without loss of generality.

It turns out that one can extract a time-evolution from configurations generated by sim-

ulating (3.13). A crucial observation is that the spatial matrices Ai have a band-diagonal

structure in the SU(N) basis in which A0 has the diagonal form (3.9). More precisely, there

exists some integer n such that the elements of spatial matrices (Ai)ab for |a− b| > n are

much smaller than those for |a− b| ≤ n. Based on this observation, we may naturally consider

n× n matrices (
Āi

)
IJ

(t) ≡ (Ai)ν+I,ν+J , (3.21)

as representing the state of the universe at time t, where I, J = 1, . . . , n and ν = 0, 1, . . . , N−
n. The time t in (3.21) is defined by

t =
1

n

n∑
I=1

αν+I (3.22)

corresponding to the n × n matrices Āi. For example, we can define the extent of space at

time t as

R2 (t) =

⟨
1

n
tr
∑
i

(
Āi (t)

)2⟩
, (3.23)

16



where the symbol tr represents a trace over the n× n block. We also define the “moment of

inertia tensor”

Tij (t) =
1

n
tr
(
Āi (t) Āj (t)

)
, (3.24)

which is a 9× 9 real symmetric matrix. The eigenvalues of Tij (t), which we denote by λi (t)

with the order

λ1 (t) > λ2 (t) > · · · > λ9 (t) , (3.25)

represent the spatial extent in each of the nine directions at time t. Note first that the

appearance of the gap between ⟨λ3(t)⟩ and ⟨λ4(t)⟩ signals the spontaneous symmetry breaking

of SO(9) to SO(3). Let us therefore define the separations dj(t) = ⟨λj(t)⟩ − ⟨λj+1(t)⟩. Then
we find that the symmetric phase can be characterized by d1(t) > d2(t) > · · · > d8(t), while

in the broken phase we find d2(t) < d3(t). Therefore we may define the critical time tc by

the largest value of t′ such that d1(t) > d2(t) > · · · > d8(t) holds for t ≤ t′. Therefore the

expectation values ⟨λi (t)⟩ tend to be equal in the large-N limit if the SO(9) symmetry is

not spontaneously broken. This is the case at early times of the time-evolution. After a

critical time tc, however, we find that three largest eigenvalues ⟨λi (t)⟩ (i = 1, 2, 3) become

significantly larger than the others, which implies that the SO(9) symmetry is spontaneously

broken down to SO(3).

It would be interesting to study a long time-evolution of the model and see how the

expansion of space proceeds. This requires very large matrices, which makes the simulation

unfeasible. In the previous work [49], we studied a simplified model, in which the Pfaffian is

replaced by the one-loop contribution ∆(α)16 mentioned above. This replacement is expected

to be valid at early times, where the expansion of space has not proceeded much and the

leading term in (3.12) is indeed dominant. According to the argument below (3.12), the

potential between the eigenvalues of A0 is canceled at one loop and hence the cutoff (3.7)

in the temporal direction is needed in this simplified model as well as in the original model.

On the other hand, this simplified model can be simulated with much less effort than the

original model.2 In ref. [49] the (5+1)d version of the simplified model was studied with the

matrix size N ≤ 64, and the SO(5) symmetry was found to be broken spontaneously down

to SO(3) at some point in time similarly to the original model. Moreover, the expanding

behavior of the 3D space turned out to be exponential,3 and no tendencies of slowing down

were observed within the scaling region.

2In order to make one trajectory in the Hybrid Monte Carlo algorithm, the original model requires O(N5)
arithmetic operations, whereas the simplified model requires only O(N3) arithmetic operations. The reason
for this is that the number of iterations required for the convergence of the conjugate gradient method used
to implement the effects of fermions grows as O(N2).

3This behavior is also confirmed with smaller matrix size N ≤ 32 with the aid of a renormalization group
method developed in the same paper [49].
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Figure 4.1: The extent of 9d space R (t) normalized by R (tc) is plotted against time
(t− tc) /R (tc). The broken line is a fit to R (t) /R (tc) = a + (1− a) exp (bx) with x =
(t− tc) /R (tc).

As I will show in the next section, analogous behaviors are also confirmed for the (9+1)d

version of the simplified model. In the original model, on the other hand, the sub-leading term

in the fermionic action (3.12) becomes important at late times as the expansion proceeds,

and hence it can affect the expanding behavior.

4 Expanding behavior of the Universe

As I have explained in the previous section, the Lorentzian type IIB matrix model has the

interesting property such that the spontaneous symmetry breaking from SO(9) to SO(3).

Moreover, as shown in Fig. 4.1, it turned out that the emergent 3d space seems to expand

exponentially. However, that expanding behavior is unclear since the time-evolution we have

observed is too short to identify it while it is interesting to discuss relations to the inflation

if the exponential expansion can be confirmed. Therefore, we consider simplified models of

the original Lorentzian model in order to see qualitative expanding behavior in further time-

evolution. In this section, we define two simplified models which are expected to describe the

expanding behavior at early times and late times, and we discuss how the behaviors depend

on such the region in the time-evolution.
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4.1 The simplified model for early times

In the Lorentzian case, we have investigated the original type IIB matrix model only for

N ≤ 24 since it takes enormous time to evaluate the Pfaffian.

As an approach to enlarge the matrix size, we consider to deal with the simplified model.

We first consider a simplified model obtained by approximating the original model at early

period in the time evolution as I will explain below [49]. We focus on approximating the

fermion action to simplify the calculation of the Pfaffian. The fermion action (3.3) can be

decomposed into two terms as

Sf ∝ Tr
(
Ψ̄α

(
Γ0
)
αβ

[A0,Ψβ]
)
+Tr

(
Ψ̄α

(
Γi
)
αβ

[Ai,Ψβ]
)
. (4.1)

Since the emergent space is not so large at early times, it is expected that the components of

A0 are much larger than that of Ai. In such a situation, the contribution from the first term

in (4.1) becomes dominant compared to one from the second term. Then we may merely omit

the second term to obtain the simplified model for early times. After that, we can perform

explicitly the integration with respect to the fermion matrices, which gives the Pfaffian as

PfM (A) ≃ ∆16 (α) , (4.2)

where ∆ (α) ≡
∏

i>j (αi − αj) is the van der Monde determinant. Thus the partition function

of the simplified model for early times is given from (3.13) and (4.2) as

Z =

∫ 9∏
i=1

dAi

N∏
k=1

dαk ∆
18 (α) δ (Sb) δ

(
1

N
Tr
(
A2

i

)
− 1

)
θ

(
κ− 1

N
Tr
(
A2

0

))
, (4.3)

where the extra factor ∆2 (α) comes from the Fadeev-Popov procedure for the gauge fixing

(3.9).

In the original Lorentzian type IIB matrix model, we have investigated the time-evolution

of space-time with up to N = 24 [48], in which the exponential expansion of R (t) is not clear

because we can observed only so short time-evolution. Moreover we have studied the 6d

version of the simplified model with up to N = 64 [49], in which we have found that R (t)

actually grows exponentially.

In order to explain how to determine values of the block size n introduced in (3.21), we

plot the magnitude of the off-diagonal elements of Ai for N = 64, 128, 256 in Fig. 4.2. We find

that the magnitude decreases rapidly as one goes away from diagonal elements. Moreover, the

magnitude scales only for sufficiently large |αa − αb|. From these observations, we identify

the block size n as the number of points in the region where the off-diagonal elements do not
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Figure 4.2: The magnitude
∑

i |(Ai)ab|
2 of the off-diagonal elements of Ai is plotted against

the time separation αa −αb for N = 64, 128 and 256 with κ = 4, 8 and 16, respectively. The
scaling is observed only for sufficiently large |αa − αb|. For N = 64, we find 6 points in the
region in which the scaling behavior is violated. Analogous plots for N = 128, N = 256 are
shown in the other panels, where we find 10 points in the non-scaling region.
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extent of the space R2 (t) normalized by R2 (tc) is plotted against x = (t− tc) /R (tc) for the
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scale.

Once the block size n is determined in this way, we can obtain the time-evolution. We

show here results for the 10d version of the simplified model with up to N = 256. In Fig. 4.3

(Left), we plot the expectation values ⟨λi (t)⟩ of the nine eigenvalues of Tij (t) with N = 128,

from which we obtained the value of critical time as tc = −0.63108(7) for N = 128. Applying

the same procedure to another N , we find that the large-N scaling becomes less clear due to

the finite N effects. However, these finite N effects can be absorbed by adjusting the values

of tc slightly from the one determined by the above argument.

Using tc determined in this way, we plot the extent of space R (t) normalized by R (tc)

against t in Fig. 4.3 (Right), in which we find that the behavior of R2 (t) at t > tc can be

fitted well to an exponential function.

4.2 The simplified model for late times

In this subsection, we consider the second simplified model of the Lorentzian type IIB matrix

model, which can be expected to describe the expanding behavior at late times. The model

is defined as just a bosonic model in which the fermionic matrices are simply omitted. The

partition function is given by

Z =

∫
dA eiSb . (4.4)

In section 3.1 I reviewed an argument for the necessity of the temporal cutoff in the

original model and the simplified model for early times. In the present case of the bosonic
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model (4.4), the same argument implies that one does not have to introduce the temporal

cutoff (3.7), and that we only need the spatial cutoff (3.8). Corresponding to (3.13), we can

study the bosonic Lorentzian type IIB matrix model by simulating

Z =

∫
dA δ

(
1

N
Tr (FµνF

µν)

)
δ

(
1

N
Tr (Ai)

2 − 1

)
(4.5)

=

∫ d∏
i=1

dAi

N∏
k=1

dαk ∆
2(α) δ

(
1

N
Tr (FµνF

µν)

)
δ

(
1

N
Tr (Ai)

2 − 1

)
, (4.6)

which requires computational efforts comparable to the simplified model for early times re-

viewed in the previous section. We have used a large-scale parallel computer to simulate

the model (4.6) with the matrix size up to N = 512, which enables us to investigate a long

time-evolution. See Appendix A for the details of the simulation.

In order to show that there is no need to introduce temporal cutoffs in the bosonic

model, we measure the quantity ⟨ 1
NTr (A0)

2⟩, which represents the extent of the eigenvalue

distribution of A0. As we mentioned above, it turns out that this quantity keeps to be finite in

the model (4.6) although we do not introduce a cutoff in the temporal direction such as (3.7).

In Fig. 4.4 (Left) we plot the results against N . At small N , it is almost independent of N .

However, for N ≥ Nc = 112, it begins to increase linearly with N . At this time, the behavior

for the spatial direction also drastically changes. In order to see its N dependence, we plot

the expectation values ⟨λi (t)⟩ of the nine eigenvalues of Tij (t) evaluated at t = tpeak where

R2(t) becomes maximum in Figure 4.4 (Right)4. For small N , there is no significant gap

between the nine eigenvalues, whereas for N ≥ Nc, we observe a big gap between ⟨λ3 (tpeak)⟩
and ⟨λ4 (tpeak)⟩. As was explained in previous section, this significant implies the spontaneous

breaking of the rotational symmetry of the 9d space. We will see that the SO(9) symmetry

is broken down to SO(3) after a critical time similarly to the original Lorentzian type IIB

matrix model.

4.2.1 Properties of the bosonic model for N < Nc

In this sub-subsection we discuss the properties of the bosonic model for N < Nc. In order

to extract the time-evolution, we need to determine the block size n to be used in eq. (3.21).

In Fig. 4.5 (Left) we plot the magnitude of the off-diagonal elements of Ai against the time

separation αa−αb for N = 110. The origin in the horizontal axis corresponds to the diagonal

elements. We observe a nice scaling behavior for all the matrix elements. However, the

magnitude falls off rather smoothly as one goes in the off-diagonal direction, which means

4In order to define R2(t) and Tij (t), we have to specify the block size n to be used in eq. (3.21). See
sections 4.2.1 and 4.2.2 for the actual values of n used to obtain the results in Fig. 4.4 (Right).
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Figure 4.4: (Left) The extent ⟨ 1
NTr (A0)

2⟩ of the eigenvalue distribution of A0 is plotted
against N . (Right) The expectation values λi (t) of the nine eigenvalues of Tij (t) at t = tpeak
are plotted against N . For N < Nc = 112, the nine eigenvalues are close to each other,
whereas for N ≥ Nc, three out of the nine eigenvalues become much larger than the others.

that the dominant matrix configurations do not have a band-diagonal structure.

In this situation, we cannot naturally define the block matrices (3.21) representing the

state at each time and hence the notion of time-evolution becomes obscure. Indeed, we have

shown that the temporal direction does not extend with N increased. Let us nevertheless

try to extract the time-evolution using n = 14 as the block size, which is the value obtained

for N = Nc = 112 in the way described in the next section. In Fig. 4.5 (Right) we plot the

expectation values ⟨λi (t)⟩ for N = 110. It turns out that there is only little t-dependence,

and there is no clear gap between the eigenvalues for all t.

The situation for smaller N is similar to the N = 110 case. In Fig. 4.6 we plot the extent

of space R2(t) as a function of t for N = 64, 96 and 110 obtained with the same block size

n = 14. The dependence on N turns out to be modest.

4.2.2 Properties of the bosonic model for N ≥ Nc

In this sub-subsection we study the properties of the bosonic model for N ≥ Nc. In Fig. 4.7

(Left) we plot the magnitude of the off-diagonal elements of Ai for N = 128. We find that

the magnitude decreases rapidly as one goes away from diagonal elements. Moreover, the

magnitude scales only for sufficiently large |αa − αb|. From this observation, we identify the

block size n as the number of points in the region where the off-diagonal elements do not

scale. (In the present N = 128 case, we obtain n = 20. See below for more detail.)

Using the block size n determined in this way, we can obtain the time-evolution. In

Fig. 4.7 (Right) we plot the expectation values ⟨λi (t)⟩ for N = 128. In contrast to the

situation for N < Nc, we observe the spontaneous symmetry breaking from SO(9) to SO(3)
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at a critical time tc similarly to the original Lorentzian type IIB matrix model.5

In order to study the large-N scaling property, we perform simulation for N = 256, 384,

512 as well. In Fig. 4.8 (Top-Left) we zoom up the region near the origin in Fig. 4.7 (Left).

From this figure, we determine the block size for N = 128 to be n = 20. Similarly, from the

other figures in Fig. 4.8, we determine the block size for N = 256, N = 384 and 512 to be

n = 24, n = 28 and 32, respectively.

The definition of the critical time tc is ambiguous at finite N . See Fig. 4.9 (Left), where

we plot the expectation values ⟨λi (t)⟩ of the eigenvalues of Tij (t) against t for N = 512.

For instance, the critical time tc obtained in this way for N = 512 from Fig. 4.9 (Left) is

tc = −0.76559(7). Similarly we obtain tc = −0.76930(7) for N = 384. Applying the same

procedure to smaller N , we find that the large-N scaling behavior in Fig. 4.9 (Right) becomes

less clear due to finite N effects. We absorb these finite N effects by adjusting the value of tc

slightly6 from the one determined from the above procedure. As is proposed in the original

Lorentzian type IIB matrix model [35], we use the extent of space R(tc) at the critical time

to fix the scale. Explicit values of R(tc) are given in table 1 together with the block size n

and the critical time tc for each N .

In Fig. 4.9 (Right) the extent of space R2(t) is plotted against t. The large-N scaling

behavior is observed by shifting the time coordinate so that the critical time comes to the

origin and by plotting dimensionful quantities in units of R(tc). The observed large-N scaling

5The fact that the spatial dimensionality after the spontaneous symmetry breaking turned out to be the
same as in the original model is understandable from the view point of the mechanism suggested in ref. [35],
which involves only the boson part of the action.

6For N = 256, we shift by two data points and use tc = −0.82166(6) instead of tc = −0.76987(6). Similarly,
for N = 128, we shift by four data points and use tc = −0.89472(7) instead of tc = −0.75798(7).
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Figure 4.8: (Top-Left) The zoom up of the region near the origin in Fig. 4.7 (Left). We
find 20 points in the region in which the scaling behavior is violated. Analogous plots for
N = 256, N = 384, N = 512 are shown in the other panels, where we find 24, 28, 32 points
in the non-scaling region, respectively.
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Figure 4.9: (Left) The expectation values ⟨λi (t)⟩ of the nine eigenvalues of Tij (t) are
plotted against t for N = 512 with the block size n = 32. (Right) The extent of space R2 (t)
normalized by R2 (tc) is plotted against x = (t− tc) /R (tc) for N = 128, 256, 384 and 512.
See table 1 for the values of the block size n, the critical time tc and the extent of space R(tc)
at the critical time, which are used to make this plot. The solid line is a fit of the N = 512
data to R2 (t) /R2 (tc) = a + (1− a) exp (bx) for 1.0 ≤ x ≤ 1.85, which gives a = 0.9957(5)
and b = 4.03(7). The dashed line is a fit of the N = 512 data to R2 (t) /R2 (tc) = cx+ d for
1.85 ≤ x ≤ 2.5, which gives c = 34.3(6) and d = −55(1).

shows that the theory one obtains in the large-N limit is characterized by one scale parameter

R(tc) and it does not contain any dimensionless parameters.

It turns out that the behavior of R2(t) at t > tc can be fitted to an exponential function

only for a finite range. At later times, it can be fitted well by a straight line, which corresponds

to the power-law expansion

R (t) ∝ t1/2 . (4.7)

Note that this behavior is observed within the scaling region, which implies that the suggested

power law persists in the large-N limit at least for some time region. In Appendix B we present

the results for the (5+1)D version of the bosonic type IIB matrix model. While we observe

qualitatively the same behaviors, there are also some interesting quantitative differences.

In order to understand the observed large-N scaling further, we investigate how the

continuum limit and the infinite volume limit in the temporal direction are achieved in the

large-N limit. Here we restrict ourselves to N ≥ 256 since N = 128 is too close to the

critical value Nc = 112. As the “lattice spacing” in the temporal direction, we consider the

separation of data points in Fig. 4.9 (Right) in the horizontal direction. This quantity is

actually t-dependent, and it can be defined more explicitly as δt
R(tc)

, where δt is the difference

of (3.22) between adjacent blocks. In Fig. 4.10 (Left) we plot this t-dependent “lattice

spacing”, choosing the horizontal axis to be the same as in Fig. 4.9 (Right). We find clear

tendency that the “lattice spacing” at the same point on the horizontal axis decreases as N
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Figure 4.10: (Left) The “lattice spacing” δt
R(tc)

is plotted against (t− tc)/R(tc). (Right) The
average “lattice spacing” ε and the “volume” in the temporal direction ∆t is plotted against
N in the log scale. The straight lines represent fits to the power-law behaviors ε = aN−p,
where a = 0.20(1), p = 0.16(1) and ∆t = bN q, where b = 1.0(2), q = 0.18(3).

increases. As the “volume” in the temporal direction, we define

∆t ≡
tpeak − tc
R (tc)

. (4.8)

Using this quantity, we can also define an average “lattice spacing” ε = ∆t/ν, where ν is

the number of data points within the region [tc, tpeak]. The values of ε and ∆t obtained

for each N are given in table 1. We find that the average “lattice spacing” ε decreases and

the “volume” increases as N becomes large. In Fig. 4.10 (Right) we plot ε and ∆t against

N in the log scale. The straight lines represent fits to the power-law behaviors, although

the behaviors may be subject to a qualitative change at larger N . In particular, it is an

interesting dynamical question whether ∆t → ∞ or ∆t → const. in the large-N limit. In

the former case, the expansion of space continues forever, since the time tpeak at the peak

cannot be reached within a finite time. In the latter case, on the other hand, the space stops

expanding in a finite time and starts to shrink. By addressing this issue in the original model,

one can, in principle, predict the fate of our Universe.

5 The IR cutoff dependence of the expanding behavior

In section 4, we have shown that the emergent 3d space expands exponentially and the

behavior changes into the power-law expansion in the simplified models. However, let us

recall that we have to introduce IR cutoffs in the models since the partition function diverges

due to the unbounded action. Indeed, it turned out that each term in the boson action (3.6)

diverges without any IR cutoffs, which makes the path integral ill-defined. We can regularize
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N n tc R(tc) ε ∆t

128 20 -0.89472(7) 0.39270(2) — —

256 24 -0.82166(6) 0.30045(3) 0.08297(2) 2.7380(7)

384 28 -0.76930(7) 0.26580(3) 0.07823(2) 2.8943(6)

512 32 -0.76559(7) 0.24578(3) 0.07417(2) 3.1150(7)

Table 1: The block size n, the critical time tc and the extent of space R(tc) at the critical
time, which are used to make the plot in Fig. 4.9 (Right). We also present the explicit values
of the average “lattice spacing” ε and the “volume” ∆t in the temporal direction, which are
plotted in Fig. 4.10 (Right).

this divergence by restricting the extent of the eigenvalue distribution of Aµ. For instance,

one can consider the regularization such as Tr
(
A2

µ

)
≤ Λ2. However, since Tr

(
A2

µ

)
involves

positive and negative terms, it is reasonable to introduce IR cutoffs separately in Tr
(
A2

0

)
and Tr

(
A2

i

)
as in (3.7) and (3.8).

However, the results obtained in this way will involve some cutoff effects in a finite volume

and depend on ways to regularize the model. Since we have not yet taken the infinite volume

limit in obtaining the results shown in the previous section. it is considered that they are

affected by the IR cutoffs. Thus, it is important to study the IR cutoff dependence in the

infinite volume limit. Especially, because the extent of the eigenvalue distribution of matrices,

which corresponds to the volume, is determined dynamically in the matrix model, it is not

obvious that the cutoff effects disappear in the infinite volume limit. Hence, in this section,

we study the IR cutoff dependence of the expending behavior. To see this, we first generalize

the form of the IR cutoffs by introducing a parameter and then discuss the dependence on it

in the infinite volume limit.

5.1 Generalization of the form of the IR cutoffs

In this thesis, we have considered the IR cutoffs (3.7) and (3.8). However, it is not obvious

whether their effects disappear in the infinite volume limit. Note that the cutoffs (3.7) and

(3.8) affect all the components of Aµ, that appear not only near the boundaries but also

in the bulk of emergent space-time. Therefore, it is necessary for the effects in the bulk to

disappear in the infinite volume limit.

In order to investigate the IR cutoff dependence of R (t), we generalize the cutoffs (3.7)

and (3.8) as

1

N
Tr
(
A2

0

)p ≤
(
κL2

)p
, (5.1)

1

N
Tr
(
A2

i

)p ≤ L2p , (5.2)
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Figure 5.1: The extent of the space R2 (t) normalized by R2 (tc) is plotted against x =
(t− tc) /R (tc) with N = 256 and κ = 16 for p = 1.0, 1.1, 1.3 and 1.5. We have used the
block size n = 10 for p = 1.0 and n = 6 for p = 1.1, 1.3 and 1.5. The lines are fits to
R2 (t) /R2 (tc) = a+ (1− a) exp (bx). We present given values of a and b in table 2.

where the parameter p is real and p = 1 corresponds to the cutoff used so far. In particular,

for sufficiently large p, the above cutoffs can be approximated by

1

N
|αp

max| ≤
(
κL2

)p
,

1

N
|λpmax| ≤ L2p ,

where αmax and λmax are the maximum eigenvalues of A2
0 and

∑
iA

2
i . Therefore, the IR

cutoff effects come to localize at the boundary of the emergent space-time as p is increased,

and they will affect Aµ only at the boundary for sufficiently large p. We observe that the

IR cutoff effects indeed exist in the bulk for p = 1 even in the infinite volume limit. As a

result, it turns out that the expanding behavior depends on p. We will also show that this

dependence disappears as one increases p.

5.2 The p dependence of R (t)

In the previous section, we have shown the result obtained for p = 1 in the simplified model for

early times, and it is confirmed that the emergent 3d space continues to expand exponentially

with much larger N . In this subsection, we study how R (t) depends on p with sufficiently

large volume.

30



N κ p n tc R (tc) a b

256 16 1.0 10 -0.58208(7) 0.04669(07) 0.923(16) 3.77(15)

256 16 1.1 6 -0.39307(6) 0.03213(14) 0.956(20) 5.23(37)

256 16 1.3 6 -0.29213(8) 0.03055(11) 0.876(35) 7.10(37)

256 16 1.5 6 -0.23593(7) 0.02579(02) 0.952(07) 8.24(19)

Table 2: The block size n, the critical time tc and the extent of space R (tc) at critical time,
which is used to make the plot in figure 5.1. We also present the values of a and b, which
are given by fitting R2 (t) /R2 (tc) to f (x) = a+ (1− a) exp (bx) with x = (t− tc) /R (tc) for
each p.

In Fig. 5.1 we plot the extent of space R2 (t) /R (tc) against t for various values of p for

the simplified model for early times with N = 256. We find that the result depends on p,

although the qualitative behavior (exponential expansion) remains the same as p = 1.0.,We

also notice that the results for p = 1.3 and 1.5 are close to each other expect at large t.

Therefore, it is suggested that the IR cutoff effects disappear for sufficiently large p in the

infinite volume limit. This can be understood since the cutoffs come to affect R (t) only at

the boundary as p is increased. In fact, the behavior of R (t) for p = 1.3 and 1.5 are different

around the peak. From these considerations, we conclude that the values of p should be taken

sufficiently large that the expanding behavior of R (t) does not depend on p in the infinite

volume limit.

5.3 The Schwinger-Dyson equations in the simplified model

In order to get a better understanding of the above result, we try to see the IR cutoff effects

more directly by using the Schwinger-Dyson equations. Before we consider this, let us explain

how to deal with the constraints introduced in the Lorentzian type IIB matrix model. As

shown in section 3, the partition function of the model is given as

Z =

∫ N∏
k=1

dαk

9∏
i=1

dAi∆
2(α) PfM (A) δ

(
1

N
Tr (FµνF

µν)

)
×δ
(

1

N
Tr
[(
A2

i

)p]− 1

)
θ

(
κ− 1

N
Tr
[(
A2

0

)p])
, (5.3)

where the first delta function respects the effect of exp (iSb) and the second one comes from

the IR cutoff in the spatial direction. The step function represents the IR cutoff in the

temporal direction.

When one deals with this model numerically, it is convenient to replace these delta func-

tions and the step function by Gaussian potentials. We denote these potentials as StrF , StrAi
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and StrA0 , and they are given by

StrF =
γCN

2

2

(
1

N
trFµνF

µν

)2

, (5.4)

StrAi =
γLN

2

2

(
1

N
tr
[(
A2

i

)p]− 1

)2

, (5.5)

StrA0 =
γκN

2

2

(
1

N
tr
[(
A2

0

)p]− κp
)2

, (5.6)

where coefficients γC , γL and γκ are taken to be large enough for the potentials to constrain

the configuration well. Note that StrA0 becomes

StrA0 =
γκN

2

2

(
1

N

N∑
a=1

α2p
a − κp

)2

(5.7)

in the gauge (3.9). The Fadeev-Popov determinant and the Pfaffian in the partition function

gives rise to a term

SPf+g.f. = − ln
[
∆2 (α) PfM (A)

]
(5.8)

in the action. Using the terms7 (5.4), (5.5), (5.7) and (5.8), the partition function (5.3)

becomes

Z =

∫ N∏
a=1

dαa

9∏
i=1

dAi exp [−S] , (5.9)

S = StrF + StrAi + StrA0 + SPf+g.f.. (5.10)

In particular, when we consider the simplified model for early times, from (4.2) the term (5.8)

takes a simple form

SPf+g.f. = −18
∑
a>b

ln (αa − αb) . (5.11)

In what follows, we consider the simplified model for early times, in which the term involving

the Pfaffian (5.11) depends only on A0.

Then, let us study the IR cutoff effects in the model using the Schwinger-Dyson equations.

7In fact, we have also introduced another potential besides the above in order to stabilize a peak of R (t)
at the origin in simulations. Therefore, the Schwinger-Dyson equations in practice includes the term arising
from this potential. However, since its effect is negligibly small compared to the other terms, we here dropped
this term from the S-D eq. for simplicity.
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For the given action (5.10), we consider the S-D equations

1

Z

∫
dA

δ

δ (Aµ)kl

(
O (A) e−S[A]

)
= 0 . (5.12)

When one considers the case of O (A) = 1, we obtain⟨
δStrF
δ (Aµ)kl

⟩
+

⟨
δStrAi

δ (Aµ)kl

⟩
+

⟨
δStrA0

δ (Aµ)kl

⟩
+

⟨
δSPf+g.f.

δ (Aµ)kl

⟩
= 0 .

When the index µ takes a value corresponding to the spatial directions, however, each term in

the l.h.s of the above equation is explicitly zero due to the SO(9) rotational symmetry of the

model. Therefore, we consider O (A) = Aµ as the simplest case giving nontrivial relations.

By plugging in the action (5.10), we obtain the relations such as

⟨(
AI
)
KL

δStrF
δ (Ai)kl

⟩
+

⟨(
AI
)
KL

δStrAi

δ (Ai)kl

⟩
=

⟨
∂
(
AI
)
KL

∂ (Ai)kl

⟩
, (5.13)⟨

αK
δStrF
δαk

⟩
+

⟨
αK

δSPf+g.f.

δαk

⟩
+

⟨
αK

δStrA0

δαk

⟩
=

⟨
∂αK

∂αk

⟩
, (5.14)

where I = 1, . . . , 9 is an index for SO(9) and K,L = 1, . . . , N are indices for SU(N). The

upper equation is given for O (A) = Ai and the lower one is given for O (A) = A0. In order

for each term in eq. (5.13) to have a non-zero value, we need to contract the indices for SO(9)

and SU(N), which gives

9∑
i=1

N∑
l=L

(⟨(
Ai
)
KL

δStrF
δ (Ai)kl

⟩
+

⟨(
Ai
)
KL

δStrAi

δ (Ai)kl

⟩)
= 9N

(
1− 1

N2

)
δkK , (5.15)

⟨
αK

δStrF
δαk

⟩
+

⟨
αK

δSPf+g.f.

δαk

⟩
+

⟨
αK

δStrA0

δαk

⟩
= δkK − 1

N
. (5.16)

To calculate the derivative with respect to (Ai)kl, we used the generators ta
(
a = 1, . . . , N2 − 1

)
of SU(N) group with the normalization

tr
(
tatb
)
= δab

and the relation

taijt
a
kl = δilδjk −

1

N
δijδkl .
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The bosonic matrices are decomposed using these generators as

(Aµ)ij = taijA
a
µ .

Note that both sides of eq. (5.15) and (5.16) are N ×N matrices; namely, every component

in the matrices has to satisfy the relation. Therefore, one can confirm the consistency of the

simulation by evaluating the equation for each component.

In the context of the Schwinger-Dyson analysis, the IR cutoff effects can be read off from

the corresponding term. If the term arising from the cutoff is zero by itself, it does not

affect the other terms in the S-D equation. This means that such a cutoff does not influence

the physical quantities obtained from the simulation. However, the terms arising from the

cutoffs will have some non-zero values for finite N because there should be some effects of

regularizing the model. It is important that such effects disappear in an appropriate limit. In

our case, it is expected that the IR cutoff effects appear significantly at the boundaries of the

emergent space-time because its expansion is controlled by the cutoffs. Here, what we mean

by is the peak of R (t) and edges in the temporal direction. However, we have observed the

quantitative behavior of R (t) depends on p in the IR cutoffs. This observation indicates that

their effects appear even in the bulk of the emergent space-time and influence its expanding

behavior. On the other hand, for a certain values of p, R (t) seems to be independent of the

IR cutoffs, which indicates that their effects disappear in the bulk. In order to confirm these

statements, we then investigate the IR cutoff effects in the emergent space using the S-D

equations.

We explain how to read off the IR cutoff effects in the emergent space-time from the S-D

eq. (5.15) and (5.16). Let us denote each term in these equations by

1

9N

9∑
i=1

N∑
m=1

⟨(
Ai
)
jm

δStrF
δ (Ai)km

⟩
≡ C

(b)
jk ,

1

9N

9∑
i=1

N∑
m=1

⟨(
Ai
)
jm

δStrAi

δ (Ai)km

⟩
≡ C

(cutoff)
jk , (5.17)

⟨
αk
δStrF
δαk

⟩
= D

(b)
k ,

⟨
αk
δSPf+g.f.

δαk

⟩
≡ D

(f)
k ,

⟨
αk
δStrA0

δαk

⟩
≡ D

(cutoff)
k . (5.18)

Note that we have gauge fixed the SU(N) symmetry by requiring that A0 is diagonal and its

eigenvalues αk are ordered in time. Therefore, D
(cutoff)
k represents the temporal cutoff effect

at time αk. Similarly, taking into account the fact that Ai is band-diagonal in this basis, we

can think that the diagonal element of C
(cutoff)
kk represents the spatial cutoff effect at time αk.

For a given αk, we then denote the corresponding Ckk and Dk given for the same k by C (α)
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and D (α), respectively. Thus, for the diagonal part of these matrices, the S-D eq. (5.15) and

(5.16) become

C(b) (α) + C(cutoff) (α) = 1− 1

N2
, (5.19)

D(b) (α) +D(f) (α) +D(cutoff) (α) = 1− 1

N
. (5.20)

By evaluating the cutoff terms C(cutoff) (α) and D(cutoff) (α), we can investigate the IR cutoff

effects in the emergent space-time.

In Fig. 5.2, we plot C(b) (α), C(cutoff) (α) and their sum against αk ≤ 0 with the matrix

size N = 32 and κ = 6p for p = 0.5, 1.0 and 1.5. This figure shows that the sum of the

two terms actually satisfies the spatial S-D equation (5.19) at every αk. In this figure, the

boundary in the temporal direction corresponds to the smallest αk. On the other hand,

the boundary in the spatial directions exists at αk = 0, where R (t) has a peak. In other

words, the region going away from the peak corresponds to the bulk. Therefore, C(cutoff) (α)

becomes larger as one gets close to αk = 0. Also, it turns out that C(cutoff) (α) in the bulk

becomes small as p is increased. This observation shows that the IR cutoff effect in the bulk

is suppressed as p increases.

As for the temporal direction, we can calculate the explicit form of D(cutoff) (α) and obtain

D(cutoff) (α) ∼ cα2p
k , (5.21)

where the coefficient is

c = 2pγκN

 1

N

∑
j

α2p
j − κp

 .
In Fig. 5.3, we plot D(b) (α) , D(f) (α) , D(cutoff) (α) and their sum against α2p

k for αk ≥ 0 with

the matrix size N = 32 and κ = 6p for p = 0.5, 1.0 and 1.5. This figure also shows that the

sum of the three terms actually satisfies the temporal S-D equation (5.20) at every αk. In

this figure, the boundary in the temporal direction corresponds to the largest αk, at which

the D(cutoff) (α) becomes largest for each p. Especially, we find that D(cutoff) (α) is in fact

proportional to α2p
k as we find in (5.21), which means that one can suppress the temporal IR

cutoff effect in the bulk by increasing p as well as the spatial cutoff. For sufficiently large p,

it is expected that the effect comes to exist only around the boundary (αk)max.

The above observations are consistent with the results shown in Fig. 5.1, in which the

expanding behaviors of R (t) for p = 1.0 and 1.1 are different from the ones for p ≥ 1.3. The

results suggest that the IR cutoff effects remain in the bulk for p ≤ 1.1, while the ones for
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Figure 5.2: (Top-Left) C(b) (α) and C(cutoff) (α) in the spatial S-D eq. (5.19) are plotted
against αk ≤ 0 for p = 0.5 with N = 32 and κ = 6p, in which the boundary in the spatial
direction exist at αk = 0 which R (t) has a peak. We also plot the sum of C(b) (α) and
C(cutoff) (α) which becomes 1− 1

N2 for every αk. Similarly, C(b) (α) and C(cutoff) (α) and their
sum for p = 1.0 and 1.5 are plotted in the other panels.
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Figure 5.3: (Top-Left) D(b) (α) , D(f) (α) and D(cutoff) (α) in the temporal S-D eq. (5.20) are
plotted against αk ≥ 0 for p = 0.5 withN = 32 and κ = 6p, in which the right edge of αk is the
boundary in the temporal direction and αk ∼ 0 corresponds to the bowels of the bulk. One
can see that D(cutoff) (α) is proportional to αk. The sum of D(b) (α) , D(f) (α) and D(cutoff) (α)
is also plotted, which becomes 1− 1

N for every αk. Similarly, these terms for p = 1.0 and 1.5

are plotted against α2p
k in the other panels, where D(cutoff) (α) are proportional to α2p

k as well
as p = 0.5.
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N κ ε ∆t

64 4 0.28 4.19

96 8 0.27 4.96

Table 3: The explicit values of the lattice spacing ε and the volume ∆t corresponding to N
and κ for p = 0.5, which are used to make the plot in Fig. 5.5.

p ≥ 1.3 has already disappeared for N = 256 and κ = 16. However, even for p ≤ 1.1, it still

possible that the IR effects disappear in the infinite volume limit. We therefore investigate

the behavior of the IR cutoff effects in this limit.

Before we show our results, we recall the definition of the lattice spacing and the volume

in our model, which is explained for the bosonic model in the previous section. The lattice

spacing δt/R (tc) is a time-dependent value, and it is defined for each time t as the interval

between each adjacent points of t/R (tc) . The volume ∆t in the temporal direction is defined

as the interval from tc to the peak of R (t) as in (4.8). Since the lattice spacing turns out to

be almost constant, it is convenient to consider an averaged lattice spacing ε defined by

ε =
∆t

ν
, (5.22)

where ν is the number of data points within ∆t. The infinite volume limit corresponds to

increasing the volume ∆t with fixed ε, and the continuum limit corresponds to decreasing ε

with fixed ∆t. However, since these quantities are determined dynamically as a function of

N and κ, it is difficult in practical to fix ε or ∆t by adjusting N and κ. Therefore, we take

the infinite volume limit in the following analysis by using the sets of N and κ having almost

the same ε.

For p ≤ 1 case

In Fig. 5.4, we first present the extent of space R2 (t) /R2 (tc) for p = 0.5 with N = 64

and 96, in which the lattice spacing ε have values close to each other. In order to see the

behavior of the IR cutoff effects in the infinite volume limit, we focus on the effects after tc

and normalize αk by R (tc). In Fig. 5.5 (left), we plot the cutoff term D(cutoff) (α) in the S-D

eq. (5.20) against α′
k = (αk − tc) /R (tc) for p = 0.5 with N and κ chosen as in table 3. From

this figure, we find that D(cutoff) (α) increases as the volume ∆t becomes larger. Similarly, in

Fig. 5.5 (right), we plot C(cutoff) (α) in the S-D eq. (5.19) against α′
k = (αk − tc) /R (tc) for

p = 0.5 with the same N and κ , which shows that C(cutoff) (α) is independent of the volume.

These results indicate that the IR cutoff effects for p = 0.5 does not disappear in the infinite

volume limit.
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Figure 5.5: (Left) The cutoff term D(cutoff) (α) in the temporal S-D eq. (5.20) is plotted
against α′

k = (αk − tc) /R (tc) for p = 0.5, in which the volume ∆t takes various values while
the lattice spacing is fixed to be ε ∼ 0.28. These values and corresponding N, κ are listed in
table 3. (Right) The cutoff term C(cutoff) (α) in the spatial S-D eq. (5.19) is plotted against
α′
k = (αk − tc) /R (tc) for p = 0.5 with the same parameters for the left figure.
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N κ ε ∆t

96 4 0.20 1.85

128 8 0.23 2.37

256 16 0.22 2.44

N κ ε ∆t

64 6 0.38 2.28

96 10 0.35 2.48

Table 4: The values of matrix size N , the cutoff parameter κ, the lattice spacing ε and the
volume ∆t are listed for p = 1.0, which are used to make the plot in Fig. 5.6 and5.7.
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Figure 5.6: (Left) The cutoff term D(cutoff) (α) in the temporal S-D eq. (5.20) is plotted
against α′

k = (αk − tc) /R (tc) for p = 1.0, in which the volume ∆t takes various values while
the lattice spacing is fixed to be ε ∼ 0.22. These values and corresponding N, κ are listed in
the left side of table 4. (Right) Similarly, D(cutoff) (α) is plotted for p = 1.0 with ϵ ∼ 0.35.
The parameters in detail are as in the right side of table 4.

Similarly, in Fig. 5.6 (left), we plot the cutoff termD(cutoff) (α) against α′
k = (αk − tc) /R (tc)

for p = 1.0. We also plot the result for different lattice spacing in Fig. 5.6 (right). The val-

ues of N , κ, ε and ∆t are listed in table 4. From these figures, we find that D(cutoff) (α)

after tc is independent of the volume. In Fig. 5.7, we plot the cutoff term C(cutoff) (α) against

α′
k = (αk − tc) /R (tc) for p = 1.0 with the same parameters, and it turns out that C(cutoff) (α)

decreases as one increases the volume. These results imply that the cutoff effect in the tem-

poral direction remains in the infinite volume limit for p = 1 although the cutoff effect in the

spatial directions disappears in this limit. Thus, we have found that the cutoff effects remain

in the infinite volume limit for p ≤ 1, which means that R (t) and Tij (t) would depend on

the IR cutoffs even for sufficiently large volume.

For p > 1 case

For p = 1.5, we plot D(cutoff) (α) against α′
k = (αk − tc) /R (tc) for N = 64,96 and 128 in

Fig 5.8 (left), in which the lattice spacing takes values close to each other and the volume
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Figure 5.7: (Left) The cutoff term C(cutoff) (α) in the spatial S-D eq. (5.19) is plotted against
α′
k = (αk − tc) /R (tc) for p = 1.0, in which the volume ∆t takes various values while the

lattice spacing is fixed to be ε ∼ 0.22. These values and corresponding N, κ are listed in
table 3. (Right) Similarly, C(cutoff) (α) is plotted for p = 1.0 with ϵ ∼ 0.35. The parameters
in detail are as in the right side of table 4.

N κ ε ∆t

64 4 0.312 1.12

96 6 0.294 1.18

128 8 0.298 1.49

Table 5: The values of matrix size N , the cutoff parameter κ, the lattice spacing ε and the
volume ∆t are listed for p = 1.5, which are used to make the plot in Fig. 5.8.

takes various values as in table 5. From this figure, D(cutoff) (α) turns out to be nearly zero

after tc. Moreover, it seems to decrease as one increases ∆t. In Fig. 5.8 (Right), we also

plot C(cutoff) (α) against α′
k = (αk − tc) /R (tc) for p = 1.5 with the same parameters. This

figure shows that C(cutoff) (α) also decreases as the volume is increased. Therefore, we may

conclude that the IR cutoff effects in both the temporal and spatial direction disappear in

the infinite volume limit for p = 1.5.

Taking these results into account, we can interpret the IR cutoff dependence of R (t) shown

in Fig. 5.1. The observation that the behavior of D(cutoff) (α) changes at p = 1 indicates that

the IR cutoff effects disappear in the infinite volume limit if one choose p > 1. This is also

suggested from the observation that R (t) almost coincides for p = 1.3 and 1.5. Therefore, in

order to obtain results which are independent of the IR cutoffs, we may use 1 < p ≤ 1.5 with

sufficiently large volume.
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Figure 5.8: (Left) The cutoff term D(cutoff) (α) in the temporal S-D eq. (5.20) is plotted
against α′

k = (αk − tc) /R (tc) for p = 1.5, in which the volume ∆t takes various values while
the lattice spacing is fixed to be ε ∼ 0.30. These values and corresponding N, κ are listed in
table 5. (Right) The cutoff term C(cutoff) (α) in the spatial S-D eq. (5.19) is plotted against
α′
k = (αk − tc) /R (tc) for p = 1.5 with the same parameters for the left figure.

Short summary

We have studied the Lorentzian type IIB matrix model to investigate the time-evolution of

the 10d space-time. In section 4, in order to investigate further time-evolution, we have

considered the two simplified models which describe the expanding behavior at the early

times and the late times qualitatively.

The simplified model for the early times is obtained by appraximating the Pfaffian as

PfM (A) ∼ ∆2 (α) where we omit the term proportional to Ai in the fermion action. In this

model, it turned out that R (t) expands exponentially as well as the original model. Moreover,

we expect that this expansion continues for a long time. This result implies that the term

proportional to A0 is important for the emergent space to expand exponentially.

The simplified model for the late times is obtained by replacing the Pfaffian by PfM (A) = 1,

which corresponds to quench all fermions. Due to the absence of fermions, there is an at-

tractive force between the eigenvalues of A0. This fact makes the extent of their distribution

finite without any temporal cutoffs. We have found that the behavior of the model drasti-

cally changes at the critical matrix size Nc = 112. For N < Nc, the extent in the temporal

direction is independent of N , and one cannot extract a significant time-evolution. However,

for N ≥ Nc, the extent comes to grow linearly with N , and one can extract a significant

time-evolution. It also turned out that the SO(9) symmetry is spontaneously broken down to

SO(3) only for N ≥ Nc. We observed that R (t) deviates from the exponential expansion at

the late times where R (t) is proportional to t1/2. The growth of R(t) ∝ t1/2 at the late times
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is reminiscent of the behavior of the Friedmann-Robertson-Walker universe in the radiation

dominated era.

We found that the expanding behavior of R (t) in the long time-evolution is different

between the simplified model for the early times and the late times asthough the difference

between the action of these two models is only the power of the van der Monde determinant.

We discuss the relation between these differences in Appendix C.

Although the Lorentzian type IIB matrix model exhibits interesting properties such as

the spontaneous symmetry breaking of SO(9), one needs to introduce the IR cutoffs in the

model. In our models, it is not obvious whether the cutoff effects disappear in the infinite

volume limit. In section 5, we therefore studied the IR cutoff dependence of the behavior

of R (t). In order to do this, we generalized the form of the IR cutoffs by introducing the

parameter p and discuss the p dependence of R (t), where p = 1 corresponds to the IR cutoffs

used so far. For the simplified model for the early times, we have found that R (t) depends

on p although the qualitative behavior is the same as for p = 1. Interestingly, it has turned

out that the R (t) for p = 1.3 and 1.5 are close to each other except at large t, whereas the

results for p ≤ 1.1 are different from the ones for p ≥ 1.3. These results suggest that the IR

cutoff effects almost disappear for p = 1.3 and 1.5 for N = 256 and κ = 16.

In order to understand the above observations, we have also studied the IR cutoff effects

more directly using the Schwinger-Dyson equations. From this analysis, we have found that

the terms C(cutoff) (α) and D(cutoff) (α) arising from the IR cutoffs in the S-D eq. become

small in the bulk of the emergent space-time as p is increased. This result is consistent with

the result that R (t) for p ≤ 1.1 are different from the ones for p ≥ 1.3 with N = 256 and

κ = 16. However, it is possible that the IR cutoff effects for p < 1.1 disappear in the infinite

volume limit. Therefore, by studying the behavior of the IR cutoff effects in the infinite

volume limit, we have found that the temporal cutoff effect D(cutoff) (α) remains in this limit

for p ≤ 1.0. Similary, it turned out that C(cutoff) (α) decreases in the infinite volume limit at

least for p > 1.0.

These results indicate that p = 1 is a critical value for which the IR cutoff effects become

independent of the volume. Therefore, we expect that the IR cutoff effects disappear in the

infinite volume limit for p > 1.0, which implies that R (t) for p = 1.1 come to be close to the

ones for p ≥ 1.3 with sufficiently large volume.

6 The matrix model with SO(4) rotational symmetry

The numerical difficulty for studying the Euclidean type IIB matrix model comes from the

sign problem arising from the complex fermion determinant. In general, when an action S
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is complex, it is difficult to evaluate the path integral using usual Monte Carlo analysis and

the importance sampling does not work since the factor exp (−S) in the partition function

cannot be regarded as the Boltzmann weight factor.

In this thesis, we try to overcome the sign problem using the complex Langevin method

(CLM), which is the complex extension of the stochastic quantization with the Langevin

equation. According to this method, the path integral along the real axis is extended to the

integration over the whole complex space by complexifying dynamical variables. In recent

studies, the complex Langevin approach turned out to be successful in finite density QCD

at least at high temperature or with heavy quarks as well as in the Random matrix theory

at zero-temperature. Certain criteria to justify the method were suggested and the so-called

“gauge cooling” procedure plays a very important role in improving the method in these

studies.

The recent development on the complex Langevin method mentioned above motivates us

to study the Euclidean type IIB matrix model by this method. In this model, the Pfaffian

obtained by integrating out the fermions becomes complex. The Euclidean model has the

SO(10) symmetry and its spontaneous breaking has been studied by the factorization method

and the Gaussian expansion method. According to these studies, it is suggested that the

SO(10) symmetry is broken down to SO(3) rather than SO(4). However, these results are

obtained by assuming the pattern of the SSB. Therefore, it is important to confirm this result

from another approach.

In this section, we consider a simplified model of the Euclidean type IIB matrix model in

order to establish how to apply the complex Langevin method to the model. The simplified

model consists of the Gaussian type of action for the bosonic part and the fermion determi-

nant, which has the rotational SO(4) symmetry. In this model, it is not broken when the

fermions are absent. However, it is suggested that the symmetry is spontaneously broken

down to SO(2) in presence of the fermions [60, 61]. Therefore, the purpose in this section is

to confirm that this SSB actually occurs using the complex Langevin method.

6.1 The definition of the toy model of the Euclidean type IIB matrix model

The partition function of the simplified model of the Euclidean type IIB matrix model is

defined by

Z =

∫
dXdψ̄dψ e−(Sb+Sf), (6.1)

44



where the action is given by

Sb =
1

2
N

4∑
i=1

tr
(
X2

i

)
, (6.2)

Sf = −N
4∑

i=1

ψ̄f
α (Γi)αβ Xiψ

f
β . (6.3)

Xi (i = 1, . . . , 4) are N × N Hermitian matrices and ψf
α and ψ̄f

β (α, β = 1, 2, f = 1, . . . , Nf)

are Weyl fermions with Nf flavors. Γ
i are the 2×2 gamma matrices after the Weyl projection,

which are defined by

Γi =

iσi for i = 1 ∼ 3 ,

12×2 for i = 4 ,

where σi are Pauli matrices. The model has the rotational SO(4) symmetry under which Aµ

transforms as a vector, and ψf
α and ψ̄f

α transform as Weyl spinors. By integrating out the

fermions, the fermion action (6.3) becomes the determinant of the Dirac operator defined as

D =

4∑
i=1

Γi ⊗Xi . (6.4)

Therefore, the partition function becomes

Z =

∫
dX (detD)Nf e−Sb . (6.5)

It is suggested that the rotational SO(4) symmetry of the model is spontaneously broken

down to SO(2) in the presence of the fermions. Note that the fermion effect for fixed Nf is

suppressed in the large N limit because we now deal with fundamental fermions8. Therefore

we also have to take Nf to infinity with N in order for the fermion effect to remain in the

large N limit. Then, we define a ratio

r ≡ Nf

N

and take N → ∞ with fixed r, which is known as the Veneziano limit.

Since we are interested in the spontaneous symmetry breaking of the SO(4), we explain

8The degree of freedom for fundamental fermions with Nf flavors is ∼ NNf while d.o.f. of the boson field
is ∼ N2.
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how to observe the SSB in this model. We define “the moment of inertia tensor”

Tij =
1

N
tr (XiXj) (6.6)

as an order parameter of the SSB of SO(4). It is a 4× 4 real symmetric tensor, and its four

eigenvalues represent the extent in each direction of the four-dimensional space. We denote

the eigenvalues as λi (i = 1, . . . , 4) with specified order

λ1 ≥ λ2 ≥ λ3 ≥ λ4 . (6.7)

If the SO(4) symmetry remains in the large N limit, the expectation values of these eigen-

values become the same quantity

⟨λ1⟩ = ⟨λ2⟩ = ⟨λ3⟩ = ⟨λ4⟩ . (6.8)

On the other hand, If the symmetry is spontaneously broken down to SO(2), they will become

as

⟨λ1⟩ = ⟨λ2⟩ > ⟨λ3⟩ ≥ ⟨λ4⟩ . (6.9)

Thus, ⟨λi⟩ can be used as the order parameter of the SO(4) symmetry breaking. In this

simplified model, we can calculate analytically the sum of these expectation values as

4∑
i=1

⟨λi⟩ =
4∑

i=1

⟨
1

N
trX2

i

⟩
= 4 + 2r . (6.10)

In the case that there are no fermions, namely the r = 0 case, the model indeed has the

SO(4) symmetry at non-perturbative level, while the symmetry will be spontaneously broken

for the r > 0 case.

In order to see the spontaneous symmetry breaking with a finite N , we introduce an

external mass term in the action, which explicitly breaks the SO(4) symmetry. Then, we

first take the large N limit with the finite mass term, and then by extrapolating this term

to zero, we can identify whether the SSB occurs in the infinite volume limit. We therefore

introduce the mass term defined as

ϵN

2
mijtr (XiXj) (6.11)

in the boson action (6.2), where mij (i, j = 1, . . . , 4) is a mass parameter which is a real

symmetric matrix, and ϵ is infinitesimal parameter which is taken to zero later. One can

diagonalize the mass matrix mij using the SO(4) transformation. Let us denote its diagonal
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elements by mi. Then, the boson action becomes

Sb+ϵ =
N

2
(1 + ϵmi) tr

(
X2

i

)
. (6.12)

When all mi have the same values, the action still has the SO(4) symmetry because the

extra mass term can be absorbed by rescaling the Xi. Therefore, we should choose mi to be

different each other in order to break explicitly the SO(4) symmetry. For example, we have

chosen the mass parameter in this thesis as

mi = (1, 2, 4, 8) . (6.13)

Since we fixed the gauge of the SO(4) symmetry to diagonalize the mass matrix mij , it is not

appropriate to use the eigenvalues of (6.6) as the order parameter of the SSB of the SO(4).

Corresponding to the mass term introduced in (6.12), we instead adopt the order parameter

such as

⟨λ1⟩ϵ =
1

N
trX1X1 , ⟨λ2⟩ϵ =

1

N
trX2X2 ,

⟨λ3⟩ϵ =
1

N
trX3X3 , ⟨λ4⟩ϵ =

1

N
trX4X4 .

For a finite ϵ, these expectation values will obviously differ from each other due to the extra

mass term. For the mass parameter (6.13), their order is given as

⟨λ1⟩ϵ > ⟨λ2⟩ϵ > ⟨λ3⟩ϵ > ⟨λ4⟩ϵ . (6.14)

After extrapolating the mass term to zero, we can observe the pattern of symmetry breaking

according to the discussion in this section.

However, the complex fermion determinant makes the evaluation of the partition func-

tion difficult. Since the factor e−S can not be regarded as the Boltzmann weight and the

importance sampling with Monte Carlo method will fail. As an proposal to overcome the

sign problem, one can consider the factorization method for which one measures the expec-

tation value of observables with the phase quenched action and then one re-weights them

by the expectation value of the phase factor. This method works well at least in the case

that the fluctuation of the phase factor is mild. However, when the phase oscillates acutely,

the re-weighting with the phase factor becomes very sensitive and it is hard to estimate the

correct expectation values. The study using the factorization method for this model has

been performed in ref. [61]. On the other hand, one can consider the Gaussian expansion

method which has been applied to this model in ref. [60]. Although this method uses a cer-
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tain approximation, it turned out that the result obtained by the Gaussian expansion method

agrees with the one obtained by the factorization method. According to these methods, the

expectation values of λi for the r = 1 case become

⟨λ1⟩ = ⟨λ2⟩ ∼ 2.1 ,

⟨λ3⟩ ∼ 1.0, ⟨λ4⟩ ∼ 0.8 . (6.15)

In this thesis, we study this matrix model using the complex Langevin method. This

method is based on the stochastic quantization using the complex Langevin equation which

is a complex extension of the Langevin equation. One can calculate the partition function

without any approximations as long as one satisfies certain conditions to justify the method.

In the next section, we review the complex Langevin method and its recent developments.

6.2 Brief review of the complex Langevin approach

In this subsection, we briefly introduce the stochastic quantization using the Langevin equa-

tion. In the next subsection we explain the complex extension of the Langevin method. The

justification of the stochastic quantization is reviewed in Appendix D.

For a given action S, the Langevin equation is given as

d

dt
x(η) (t) = −∂S

∂x
+ η (t) , (6.16)

where η (t) is the probabilistic variable generated with the Gaussian distribution

exp

[
−1

4

∫
dt
[
η2 (t)

]]
and t is a fictitious time introduced in the stochastic process. We denote the dynamical

variable given in the stochastic process by x(η) (t). The probability distribution function so

that x(η) (t) = x at time t for a provided initial configuration x(η) (t0) = x0 is defined as

P (x; t) =
⟨
δ
(
x− x(η) (t)

)⟩
η
, (6.17)

where the expectation value ⟨· · · ⟩η is defined by

⟨O⟩η ≡
∫
DηOe−

1
4

∫
dt η2(t)∫

Dη e−
1
4

∫
dt η2(t)

.

With this definition, the expectation value of the correlation function for the probabilistic
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variable is given as ⟨
η (t) η

(
t′
)⟩

η
= 2δ

(
t− t′

)
.

The probability distribution function of x(η) (t) as the solution of the Langevin equation

satisfies the Focker-Planck equation

∂

∂t
P (x; t) =

∂

∂x

(
∂S

∂x
+

∂

∂x

)
P (x; t) .

One can show that P (x; t) satisfying the FP eq. converges to a time-independent function

for t→ ∞. More preciously, P (x; t) behaves as

lim
t→∞

P (x; t) = Peq (x) = e−S

up to the normalization. Thus, the expectation values of observables can be calculated as

lim
t→∞

⟨
O
(
x(η) (t)

)⟩
η

= lim
t→∞

∫
dxO (x)P (x; t)

=

∫
dxO (x)Peq (x)

=

∫
dxO (x) e−S∫
dx e−S

= ⟨O (x)⟩ ,

which exactly coincides with that defined by the path integral formalism.

6.3 The application to the complex action case

When a given action is complex, the right-hand side of the Langevin equation (6.16) also

becomes complex, which means that the dynamical variable x becomes complex even if one

starts with a real configuration x. Therefore we need to complexify x 7→ z = x + iy and

consider the complex extension of the Langevin equation

d

dt
z(η) (t) = −∂zS (z) + η (t) ,

where the action S (z) is considered as a holomorphic function of a complex variable z by the

analytic continuation. The probabilistic variable η (t) may also be complex

η (t) = ηR (t) + iηI (t)
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which is generated with the probability distribution

exp

[
−1

4

∫
dt

[
1

NR
η2R (t) +

1

NI
η2I (t)

]]
.

The probability distribution function of z (t) following the complex Langevin equation (6.16)

is defined as

P (x, y; t) =
⟨
δ
(
x− x(η) (t)

)
δ
(
y − y(η) (t)

)⟩
η
, (6.18)

where the expectation value ⟨· · · ⟩η is defined by

⟨O⟩η ≡
∫
DηOe−

1
4

∫
dt
[

1
NR

η2R(t)+ 1
NI

η2I (t)
]

∫
Dη e

− 1
4

∫
dt
[

1
NR

η2R(t)+ 1
NI

η2I (t)
] .

We can also calculate the aunt-correlation of η (t) as

⟨
ηR (t) ηR

(
t′
)⟩

η
= 2NRδ

(
t− t′

)
,⟨

ηI (t) ηI
(
t′
)⟩

η
= 2NIδ

(
t− t′

)
,⟨

ηR (t) ηI
(
t′
)⟩

η
= 0 .

As we will see later, it is convenient to assume that

NR −NI = 1 . (6.19)

One can show that the probability distribution defined in (6.18) satisfies the Focker-Planck

like equation

∂tP (x, y; t) = ∂x (NR∂x +Re [∂zS])P (x, y; t) + ∂y (NI∂y + Im [∂zS])P (x, y; t) . (6.20)

For a holomorphic observable O (x+ iy) defined as an analytic continuation of O (x), one

can show under certain conditions that there exists a complex valued probability distribution

ρ (x; t) that satisfies the relation∫
dx ρ (x; t)O (x) =

∫
dxdy P (x, y; t)O (x+ iy) (6.21)

and the equation
∂ρ

∂t
=

∂

∂x

(
∂S

∂x
+

∂

∂x

)
ρ . (6.22)
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The second relation is the Focker-Planck equation. Therefore, if the probability distribution

P (x, y; t) as the solution of the FP equation (6.20) converges to a finite function uniquely,

the relation (6.21) implies that one can calculate the expectation value of observables O (x)

using the real probability distribution P (x, y; t) and the holomorphic observable O (x+ iy)

given by the CLM as

⟨O⟩ =

∫
dxO (x) ρequiblium (x)

= lim
t→∞

∫
dxO (x) ρ (x; t)

= lim
t→∞

∫
dxdy O (x+ iy)P (x, y; t)

= lim
t→∞

⟨O (x+ iy)⟩η .

In the rest of this subsection, we review the derivation of the relation (6.21).

In order to verify the relation (6.21) ,we first assume at t = 0 that

P (x, y; 0) = ρ (x; 0) δ (y) , (6.23)

which satisfies the relation (6.21) trivially. In order to prove this relation for arbitrary t > 0,

we show that each side of the relation can be rewritten as∫
dxdy O (x+ iy)P (x, y; t) =

∫
dxdy O (x+ iy; t)P (x, y; 0) , (6.24)

∫
dxO (x) ρ (x; t) =

∫
dxO (x; t) ρ (x; 0) . (6.25)

We can immediately prove the relation (6.21) using (6.23), (6.24) and (6.25).

In the equation (6.24), we have introduced the time-dependent observables O (z; t) defined

as the solution of the differential equation

∂

∂t
O (z; t) = L̃O (z; t) , (6.26)

where the operator L̃ is defined by

L̃ =

(
∂

∂z
− ∂S

∂z

)
∂

∂z
. (6.27)
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In order to show (6.24), we consider the function

F (t, τ) =

∫
dxdy O (x+ iy; τ)P (x, y; t− τ)

interpolating each side of the equation (6.24) with 0 ≤ τ ≤ t. If this function is independent

of τ , we obtain the equation (6.24). Therefore, let us consider the derivative of F (t, τ) with

respect to τ , which gives

∂

∂τ
F (t, τ) =

∫
dxdy

∂

∂τ
O (x+ iy; τ)P (x, y; t− τ) +

∫
dxdy O (x+ iy; τ)

∂

∂τ
P (x, y; t− τ)

=

∫
dxdy L̃O (x+ iy; τ)P (x, y; t− τ)−

∫
dxdy O (x+ iy; τ)L⊤P (x, y; t− τ) ,

where we used (6.26). L⊤ represents the operator acting on P , which is defined in the right

hand side of the Focker-Planck like equation (6.20). As the result of partial integrations, we

get

∂

∂τ
F (t, τ) =

∫
dxdy L̃O (x+ iy; τ)P (x, y; t− τ)−

∫
dxdy LO (x+ iy; τ)P (x, y; t− τ) ,

(6.28)

where the operator L is given as

L = (NR∂x − Re [∂zS]) ∂x + (NI∂y − Im [∂zS]) ∂y (6.29)

and we have assumed that the boundary terms vanish, which is actually correct when the

integrand is a holomorphic function in the domain of integration and damps rapidly at the

boundary.

It turns out that the terms on right hand side of (6.28) cancel to each other. In order to

see this, let us act the operator L on a holomorphic function

f (z) = u (x, y) + iv (x, y) .

Then, we get

Lf (z) = (NR∂x − Re [∂zS]) ∂xf + (NI∂y − Im [∂zS]) ∂yf

= (NR∂z − Re [∂zS]) ∂zf + (iNI∂z − Im [∂zS]) (i∂zf)

= [−∂zS + (NR −NI) ∂z] ∂zf

= L̃f (z) , (6.30)
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where we have used the Caushy-Riemann relation

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x

and ∂z = 1
2 (∂x − i∂y). In the last step, we have used (6.19). Therefore it is necessary for

the observable to be holomorphic to satisfy the eq. (6.30). From (6.30), it turns out that the

right hand side of (6.28) vanishes, which implies that F (t, τ) is independent of τ , and the

relation (6.24) is satisfied for any t.

We can perform a similar argument to verify the eq. (6.25). Thus, we can show that the

relation (6.21).

6.4 Application of the complex Langevin method to the matrix model

The complex Langevin equation for the model (6.1) is given by

dXi

dt
= − ∂S

∂Xi
+ η (t) ,

where η (t) is a white noise which is an N ×N Hermitian matrix. The action S is given as

S = Sb+ϵ −Nf ln (detD) (6.31)

using the mass deformed bosonic action (6.12). The drift term in the complex Langevin

equation is given as
∂S

∂Xi
= N (1 + ϵmi)Xi −Nftrα

(
D−1Γi

)
, (6.32)

where the symbol trα represents a trace over spinor indices. To derive (6.32) we used the

equation
δ detD

δX i
=
δ detD

δDab

δDab

δX i
= detDD−1

ab,αβ

δDba,βα

δXi
.

Since the action and the drift term in (6.32) are complex, Xi are no longer Hermitian.

Therefore, we need to complexify the Xi to complex matrices in SL (N,C). By considering

a norm such as

NH =
1

dN

4∑
i=1

tr

[(
Xi −X†

i

)(
Xi −X†

i

)†]
, (6.33)

one can measure the degree of deviation from the Hermitian configuration space. It vanishes

when all Xi are Hermitian, while for non-Hermitian matrices, it will not vanish. In order to
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Figure 6.1: (Left) The hermiticity norm (6.33) for the r = 1 case are plotted against Langevin
time for ϵ = 0.5 andmi = (1, 2, 4, 8) withN = 16. The solid line is the norm obtained from the
simulation with the gauge cooling and the broken line is the one obtained from the simulation
without the gauge cooling. (Right) The expectation values of the order parameter ⟨λi⟩ϵ are
plotted against ϵ, in which the circle represents the result obtained from the simulation with
the gauge cooling, and the square represents the result obtained from the simulation without
the gauge cooling.

satisfy the criteria to justify the complex Langevin method, it is necessary to keep the norm

(6.33) small as possible, which can be improved by the so-called “gauge cooling”. In our case,

we consider the gauge transformation for the bosonic matrices Xi such as

Xi → Ω−1XiΩ, Ω = eiδaωa ∈ SL (N,C) ,

where ωa

(
a = 1, . . . , N2 − 1

)
are the generators of the SL (N,C) and δa are parameters of the

gauge cooling. One should choose δa so that the norm (6.33) decreases by the transformation.

We carry out this gauge transformation for each Langevin step to decrease the norm (6.33).

The result of the gauge cooling is illustrated in Fig. 6.1 (Left), in which we plot the norm

(6.33) against the Langevin time in the cases that the gauge cooling is applied or not. This

figure shows that the gauge cooling successfully keeps the hermiticity norm small. In Fig. 6.1

(Right), we plot the expectation values ⟨λi⟩ϵ against ϵ in the cases that the gauge cooling is

applied or not. From this figure, we find that ⟨λi⟩ϵ depends on the hermiticity norm and the

gauge cooling actually improve the method.

While we found that the hermiticity can be improved by the gauge cooling, there is another

issue to be taken into account in the CLM when the drift term in the complex Langevin

equation has poles. In this case, one cannot justify the method if the poles are involved in

the probability distribution of dynamical variables. In our case, the drift term (6.32) has a

pole at the values of Xi for which the Dirac operator has zero-eigenvalues. Therefore, when
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Xi given as the solution to the complex Langevin equation takes such values, the method

will not work. In Fig. 6.2 (Left) and (Right), we plot the the eigenvalue distribution of the

Dirac operator obtained by solving the complex Langevin equation for r = 1 with N = 48

and ϵ = 0.2, 0.6, in which the Dirac operator comes to have zero-eigenvalues frequently for

small ϵ. Therefore, we expect that the CLM does not work for such values of ϵ.

In this thesis, we propose a procedure to overcome this singular drift problem. In order

that the probability distribution function of Xi avoids this pole, we modify the model by

introducing a mass term to the fermions. As we will explain as follows , this modification

corresponds to shift the pole of the Dirac operator. For instance, let us consider the 4-

component vector fields xi instead of the bosonic matrices Xi. Then the Dirac operator is

given by

D = Γi ⊗ xi =

(
x4 + ix3 x2 + ix1

−x2 + ix1 x4 − ix3

)
,

from which the determinant of D becomes

detD =
∑
i

x2i .

Therefore, D−1 in the drift term has a pole at |xi| = 0. Note that⟨xi⟩ = 0 if the SO(4)

symmetry remains. Hence, the CLM does not work for small ϵ. In order to make xi to avoid

the pole, we add extra fermion mass terms −N
∑4

i=1 ψ̄
f
α (Γi)αβ αiψ

f
β to the action. Then the

mass deformed Dirac operator is given as

D(α) =

4∑
i=1

Γi ⊗ (xi + αi) ,

where αi (i = 1, . . . , 4) are real. Then, the drift term becomes

∂S

∂xi
= (1 + ϵmi)xi −Nftrα

(
D−1

(α)Γ
i
)
,

in which the pole of D−1
(α) shifts to xi = −αi. Therefore we expect that xi obtained as the

solution to the complex Langevin eq. avoids the pole of D−1
(α) even for small ϵ as far as one uses

sufficiently large |αi|. Note that these extra fermion masses can be absorbed by translating

the bosonic fields in our model. In fact, if one translates xi → xi − αi, the deformed Dirac

operator D(α) returns to D while the Gaussian potential 1
2x

2
i in the boson action becomes

1
2 (xi − αi)

2. In this case, the probability distribution function P (xi) also avoid the pole of

the drift term.
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Figure 6.2: (Left) The scattered plot of the eigenvalues of the Dirac operator (6.4) with
ϵ = 0.6 and N = 48 in the r = 1 case. The origin is the pole of the drift term (6.32). (Right)
The scattered plot of the eigenvalues of the Dirac operator with ϵ = 0.2 and N = 48 in the
r = 1 case.

Similarly, for boson matrices Xi, we can also shift the pole of the drift term by introducing

the mass terms to fermions. The Dirac operator (6.4) is deformed as

D → D(α) =
4∑

i=1

Γi ⊗ (Xi + αi1N×N ) (6.34)

Note that the extra fermion mass terms explicitly break the SO(4) symmetry at ϵ = 0.Therefore,

in order to remain the symmetry as possible, we introduce the fermion mass term to only

one out of four directions. Taking into account the order of λi for finite ϵ (6.14), we should

use the values of αi as

αi = (0, 0, 0,mf) , (6.35)

for which the SO(3) symmetry remains in the model at ϵ = 0. Therefore, we still can

investigate the pattern of the spontaneous symmetry breaking of SO(3). For the fermion

mass parameter (6.35), since the deformed Dirac operator becomes

D(α) =

3∑
i=1

Γi ⊗Xi + 12×2 ⊗ (X4 +mf) ,

it is expected that the pole of the drift term shifts along the real direction. In Fig. 6.3, we

plot the eigenvalue distribution of the mass deformed Dirac operator (6.34) with mf = 0.6

for ϵ = 0.6 and 0.2, in which the pole of the drift term exists at the origin. This figure shows

that the whole eigenvalue distribution actually shifts along the real direction. Moreover, it

turns out that the distribution avoids the pole at the origin even for ϵ = 0.2 in contrast to

the mf = 0 case. Therefore, we can extrapolate ϵ to zero using smaller values of ϵ for a finite

56



-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1  0  1  2  3  4

Im

Re

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1  0  1  2  3  4

Im

Re

Figure 6.3: (Left) The scattered plot of the eigenvalues of the mass deformed Dirac operator
(6.34) with mf = 0.6 and ϵ = 0.6 in the r = 1 case. The pole of the drift term is at the
origin. (Right) The scattered plot of the eigenvalues of the mass deformed Dirac operator
(6.34) with mf = 0.6 and ϵ = 0.2 in the r = 1 case.

mf .

In order to evaluate how far the eigenvalues deviate from the pole, it is convenient to

define the radial distribution function φ (R) as

φ (R) =
1

2πR

∑
i

∫
dX P

(
χ(i), t = ∞

)
δ
(∣∣∣χ(i)

∣∣∣−R
)
, (6.36)

where χ(i) (i = 1, . . . , 2N) are eigenvalues of the mass deformed Dirac operator D(α). The

φ (R) represents the eigenvalue distribution of χ(i), which is a function of the radius R that

is the distance from the pole. We plot φ (R) against R for mf = 0 in Fig. 6.4 (Left), in which

we find that the eigenvalues indeed distribute around the pole for small ϵ. We also plot φ (R)

against R for the mass parameter (6.35) with mf = 0.6 in Fig. 6.4 (Right). This figure shows

that eigenvalues distribution damps rapidly around the pole even for small ϵ.

Thus, the fermion mass term moves the eigenvalues of the Dirac operator to the real

direction, which improves the singular drift problem. On the other hand, we have also

taken care of the hermiticity norm (6.33) by performing the gauge cooling. We expect that

the complex Langevin method works in this model as far as both the singular drift and

hermiticity are controllable by the above procedures.

We recall that the action also has the boson mass term which explicitly breaks the SO(4)

symmetry. Therefore we first take the large-N limit with fixed ϵ, and then we extrapolate

ϵ to zero. We plot the expectation values of λi against 1/N for ϵ = 0.2 and mf = 0.6 in

Fig. 6.5, in which we take the large N limit. Similarly, we can take the large-N limit of λi
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Figure 6.4: (Left) The radial eigenvalue distribution function φ (R) for the Dirac operator is
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for every ϵ. Let us consider the ratio defined as

ρ(i)ϵ,mf
=

⟨λi⟩ϵ,mf∑4
i=1 ⟨λi⟩ϵ,mf

, (6.37)

where ⟨λi⟩ϵ,mf
is the expectation values after taking large-N limit for fixed ϵ andmf . Then, we

plot the expectation values (6.37) against ϵ for mf = 0.6 in Fig. 6.6, in which we extrapolated

ϵ to zero using only reliable data points of ϵ in terms of the radial distribution function. Let

us denote the expectation value of λi obtained by extrapolating ϵ to zero with fixed mf as

⟨λi⟩mf
= lim

ϵ→0
⟨λi⟩ϵ,mf

,

ρ(i)mf
= lim

ϵ→0
ρ(i)ϵ,mf

.

As a result, we find that ⟨λ1⟩mf
and ⟨λ2⟩mf

are close to each other while the other ⟨λi⟩mf
are

different from them. Since the action with the fermion mass (6.35) has SO(3) symmetry at

ϵ = 0, this observation can be interpreted as the SSB from SO(3) to SO(2). Note that the

exact values of ⟨λi⟩mf
depend on mf , and those values are different from the ones for mf = 0

as in (6.15). Therefore, in order to obtain the exact expectation values of λi for mf = 0,

we also have to extrapolate mf to zero. We plot the expectation values ρ
(1)
ϵ,mf against ϵ for

various mf in Fig. 6.7 (Top-Left). From this, we obtain ρ
(1)
mf for each mf . Similarly, we can

obtain ρ
(2)
mf , ρ

(3)
mf and ρ

(4)
mf for each mf from the other panels in Fig. 6.7.

We plot ρ
(i)
mf against mf in Fig. 6.8, in which it turns out that the SSB from SO(3) to
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Figure 6.7: (Top-left) The expectation values of the order parameter ⟨λ1⟩ϵ are plotted against
ϵ for various values of mf . The lines are fits of the data for each mf to a function f (ϵ) =
aϵ2 + bϵ+ c. The results for the other ⟨λi⟩ϵ are also plotted in the other panels.
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We obtained ρ(1) = 3.25(6) × 10−1, ρ(2) = 3.3(1) × 10−1, ρ(3) = 1.66(4) × 10−1 and ρ(4) =
1.14(6)× 10−1 by extrapolating mf to zero.

SO(2) can be observed for every mf . From this figure, we can extrapolate the fermion mass

mf to zero, which gives ρ(1) = 3.25(6)× 10−1, ρ(2) = 3.3(1)× 10−1, ρ(3) = 1.66(4)× 10−1 and

ρ(4) = 1.14(6)× 10−1, where ρ(i) is defined by

ρ(i) = lim
mf→0

ρ(i)mf

= lim
mf→0

⟨λi⟩mf∑4
i=1 ⟨λi⟩mf

=
⟨λi⟩

4 + 2r
. (6.38)

Note that the rotational SO(4) symmetry of the model restores in the mf → 0 limit. There-

fore, this indicates that the SO(4) symmetry is spontaneously broken down to SO(2). More-

over, we obtain ⟨λ1⟩ = 1.95(4), ⟨λ2⟩ = 1.99(8), ⟨λ3⟩ = 0.99(2) and ⟨λ4⟩ = 0.68(4) from the

relation (6.38) and find that these values are agree with the ones obtained for the previous

results (6.15). We should emphasize that we did not assume the pattern of the SSB of SO(4)

in this analysis in contrast to the previous approaches.

In this section, we have considered only the boson mass term as in (6.13) and the fermion

mass as in (6.35). We have also performed the same analysis with the fermion mass parameter

αi = (0, 0,mf , 0), from which we find that the SSB from SO(4) to SO(2) is also observed. See

appendix E in detail.
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Short summary

In section 6, we have studied the matrix model as a toy model of the type IIB matrix model.

The toy model is suffered from the sign problem due to the fermion determinant while it will

induce the spontaneous breaking of the rotational symmetry of the model. In this thesis, in

order to overcome the sign problem, we have used the complex Langevin method in which one

complexifies dynamical variables and considers a holomorphic extension of an given action.

The toy model has the rotational SO(4) symmetry which will be spontaneously broken

down to SO(2) in the presence of the fermions. In order to observe it for finite N , we have

introduced the boson mass in the model . By extrapolating the extra mass to zero, we can

investigate the pattern of the SSB. It is important to reduce the mass term close to zero as

possible. Since the drift term in the complex Langevin equation involves the inversion of the

Dirac operator, the drift term becomes singular when the Dirac operator has zero-eigenvalues.

We have shown that the eigenvalues keep away from the pole for ϵ ≥ 0.5, nevertheless the

Dirac operator comes to have eigenvalues around the pole frequently for ϵ ≤ 0.3. Therefore,

we cannot make ϵ sufficiently small because the CLM does not work for such ϵ.

In order to overcome this singular drift problem, we have introduced the fermion mass

term in the model. This mass term shifts the pole of the drift term, which enable the

eigenvalues of the deformed Dirac operator to avoid the pole even for small ϵ. Although the

mass deformation of the fermion action explicitly breaks the SO(4) symmetry of the model

to SO(3) in the ϵ → 0 limit, we are still able to investigate the pattern of the spontaneous

breaking of the SO(3) symmetry. We found that the SO(3) symmetry is spontaneously broken

down to SO(2) for several values of the fermion mass mf .

Also, by evaluating the order parameter after extrapolating the fermion mass mf , we are

able to investigate the pattern of the spontaneous breaking of the full SO(4) symmetry. As

a result, we found that the SO(4) symmetry breaks down to SO(2) in the mf → 0 limit.

Moreover, the exact values of the order parameters ⟨λi⟩ are consistent with the ones obtained

for the previous studies [60, 61]. In particular, we have confirmed the SSB from SO(4) to

SO(2) without any ansatz such that one assumes the pattern of the SSB as in the previous

studies.

7 Summary and discussion

In this thesis we have studied the dynamics of the space-time using matrix models by numer-

ical approach. In the first part, I have investigated the time evolution of the 10d space-time

predicted by the superstring theory using the Lorentzian type IIB matrix model. we have

also studied this subject using the toy model of the Euclidean version of type IIB matrix
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model.

In the Lorentzian type IIB matrix model, it turned out that emergent 3d space expands

exponentially for N ≤ 24. Furthermore, in order to investigate the expanding behavior of

the 3d space qualitatively, we defined the simplified model for early times and late times

by approximating the fermion determinant. These two models are expected to capture the

qualitative properties of the original model. The simplified model for early times indicates

that the exponential expansion observed for the original model continues for a long time.

On the other hand, the simplified model for late times has finite time extent without any

temporal cutoffs since the supersymmetry does not exist. For N < Nc, the dominant matrix

configurations do not allow extraction of a well-defined time-evolution. For N ≥ Nc, on

the other hand, we can extract a meaningful time-evolution, which shows that the SO(9)

rotational symmetry is broken spontaneously down to SO(3) symmetry at some point in

time similarly to the original model. With the matrix size N ≤ 512, we observed that

the exponential expanding behavior of 3d space continues for a while and it changes into a

power-law expansion at late times. Interestingly, it turned out that the power-law expanding

behavior observed in the simplified model is consistent with that of the Friedmann-Robertson-

Walker universe in the radiation dominated era.

Furthermore, using the simplified model of the Lorentzian type IIB matrix model, we have

confirmed that the effects of IR cutoff disappear in the infinite volume limit by modifying

the form of the cutoffs. The expanding behavior becomes universal in some range of p. In

the simplified model, we have concluded that p = 1 is the critical value below which the IR

cutoff effects remain even in the infinite volume limit by evaluating them directly using the

Schwinger-Dyson equation. Therefore, we need to choose p > 1 to obtain results which are

independent of the IR cutoffs.

On the other hand, as a toy model of the Euclidean type IIB matrix model, we studied

numerically the matrix model with spontaneous breaking of rotational SO(4) symmetry,

whose fermion determinant causes the sign problem. In order to overcome this problem,

we used the complex Langevin approach in this thesis. In order to observe the SSB, we

first introduced boson masses which break the SO(4) symmetry and then extrapolates them

to zero later. Moreover, in order to extend the region in which the method is applicable,

we also introduced an extra mass term to the fermion action, which improves the singular-

drift problem. As a result we were able to extrapolate the boson masses to smaller values.

Thus, we found that the SO(4) symmetry is actually spontaneously broken down to SO(2).

The expectation values obtained by the extrapolation is consistent with the one obtained by

the Gaussian expansion method [60] and the factorization method [61]. We would like to

emphasize here that we do not have to assume a concrete pattern of the SSB in advance in
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contrast to the other method.

Future direction

Considering that the argument on the disappearance of the cutoff effects does not depend on

the details of the model, we may naturally expect that the cutoff effects also disappear with

sufficiently large p in the original model. However, the critical value of p beyond which the

cutoff effects disappear in the infinite volume limit may depend on the model. It is therefore

important to determine the critical p by simulating the original model.

Let us recall that in the simplified model for early times, the growth of R(t) was observed

to be exponential [49]. In that model, only the first term in (3.12) was used to represent

the effect of fermionic matrices. We consider that the exponential expansion occurs also

in the original model at early times as is suggested by direct Monte Carlo studies up to

N ≤ 24 [48]. At late times, however, the sub-leading term in (3.12) becomes important due

to the expansion of space, and that would affect the expanding behavior. Note that the

repulsive potential for the eigenvalues of A0 is obtained from integrating out the fermionic

matrices without the sub-leading term. Therefore one of the effects of the sub-leading term

would be to make the repulsive potential less effective. Considering that the bosonic model

mimics such a situation, we speculate that the exponential expansion in the original model

changes into a power-law expansion at some point in time, where the sub-leading term in

(3.12) becomes important. According to this scenario, the number of e-foldings is determined

dynamically in the Lorentzian type IIB matrix model. It would be interesting to confirm

the transition directly by simulating the original model. An attempt in doing this with a

systematic approximation is in progress.

On the other hand, the success of the complex Langevin approach in the toy model with

SSB of SO(4) encourages us to extend the analysis to the type IIB matrix model which has

the SO(10) symmetry. We expect that the SO(10) symmetry is spontaneously broken down

to SO(4), which means that the 4d space emerges from the 10d space predicted by superstring

theory. By the Gaussian expansion method, it is indicated that the SO(10) seems to be broken

down to SO(3) rather than SO(4). However, as mentioned above, this analysis is based on

an ansatz and an approximation. Therefore, it is important to confirm this observation from

first principle calculation using the complex Langevin method.

The improvement using extra source terms in the action might be also helpful for other

systems such as the finite density QCD or the random matrix theory. In particular, it is known

that the complex Langevin method does not work in high density and low temperature region

due to the singular drift problem. We hope that the new technique we developed in this thesis

will useful also in this case.
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A Details of Monte Carlo simulation

In this section we give the details on how we perform Monte Carlo simulation of the bosonic

model (4.6).

First the delta functions in (4.6) are replaced by Gaussian potentials as

Vpot =
1

2
γC

(
1

N
Tr (FµνF

µν)

)2

+
1

2
γL

(
1

N
Tr (Ai)

2 − 1

)2

, (A.1)

where the coefficients γC and γL are taken large enough to fix each observable to the specified

value. The values used in actual simulation are given in table 6.

Another important issue we have to take care of is the spontaneous breaking of the shift

symmetry A0 7→ A0 + α1. For instance, let us consider calculating the expectation value

R2 (t) defined in (3.23). The peak of this quantity measured for each configuration fluctuates

considerably. This reflects the ambiguity in choosing the origin of the time coordinate, and

we should fix it before taking the ensemble average. Here we fix it by introducing a potential

Vsym =
1

2
γsym

(
1

N

[
Tr (Ai)

2
]
left

− 1

N

[
Tr (Ai)

2
]
right

)2

, (A.2)

[
Tr (Ai)

2
]
left

=

d∑
i=1

∑
a+b<N+1

|(Ai)ab|
2 , (A.3)

[
Tr (Ai)

2
]
right

=

d∑
i=1

∑
a+b>N+1

|(Ai)ab|
2 , (A.4)

where the values of the coefficient γsym used in our simulation are given in table 6.
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To summarize, the model we simulate is given by

Z =

∫ N∏
a=1

dαa

d∏
i=1

dAi e
−Seff ,

Seff = −2 log∆ (α) + Vpot + Vsym . (A.5)

The simulation of the model (A.5) can be performed by using the Hybrid Monte Carlo

(HMC) method. First we rewrite the model by introducing auxiliary variables pa and

(Xi)ab(a, b = 1, . . . , N) with the action

SHMC =
1

2

∑
a

(pa)
2 +

1

2
Tr (Xi)

2 + Seff [α,A] . (A.6)

Here pa are real variables, whereas Xi are traceless Hermitian matrices. We update all

the variables in the model (A.6) in the following way. First we regard pa as the conjugate

momenta of αa and Xi as the conjugate momenta of Ai. Then we regard SHMC in (A.6)

as the Hamiltonian H and solve the classical equations of motion obtained as the Hamilton

equations

dαa

dτ
=
∂H

∂pa
= pa,

dpa
dτ

= − ∂H

∂αa
= −∂Seff

∂αa
,

dAi

dτ
=
∂H

∂Xi
= X∗

i ,
dXi

dτ
= − ∂H

∂Ai
= −∂Seff

∂Ai
, (A.7)

for some fictitious time τ . This part of the algorithm is called the Molecular Dynamics.

In order to solve the Hamilton equations (A.7) numerically, we discretize them using the

so-called leap-frog discretization, which maintains reversibility with respect to τ . Starting

from the previous configuration at τ = 0, we obtain a new configuration at τ = τf by solving

(A.7) with the step size ∆τ so that τf = Nτ · ∆τ , where Nτ is the number of steps. We

accept the new configuration with the probability min (1, exp (−∆SHMC)), where ∆SHMC ≡
SHMC (τf) − SHMC (0), following the idea of the Metropolis algorithm to satisfy the detailed

balance. The important point here is that SHMC is nothing but the Hamiltonian H, which is

preserved in the classical dynamics if the equations (A.7) are solved exactly. In fact, ∆SHMC

becomes non-zero due to the discretization, but it is guaranteed to be a small quantity of

the order of (∆τ)2. By choosing sufficiently small ∆τ , the acceptance rate can be kept

reasonably high, which enables the system to move around efficiently in the configuration

space. Note also that the auxiliary variables pa and (Xi)ab appear only as the Gaussian

terms in (A.6). Therefore, we can update them independently by using normalized Gaussian

random numbers. This procedure of refreshing the conjugate momenta should be done each
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N γC/N
2 γL/N

2 γsym Nτ ∆τ trajectories

128 1 100 200 20 0.0015 2,000,000

256 1 100 200 10 0.0008 1,600,000

384 1 100 2,000 10 0.0004 1,000,000

512 1 100 6,000 10 0.00025 2,250,000

Table 6: The values of the parameters γC, γL and γsym in (A.5) used in our simulation.
We also give the values of the parameters in the HMC algorithm: the number of steps Nτ

in the Molecular Dynamics and its step size ∆τ . In the last column, we give the number
of “trajectories”, which represents how many times we solve the Molecular Dynamics after
thermalization to achieve the statistics of our data.

time we start a Molecular Dynamics procedure.

To summarize, the HMC algorithm as applied to our system can be described as follows.

1. Generate initial configurations of pa (0) andXi (0) with Gaussian distribution∝ e−
1
2

∑
a(pa)

2

and e−
1
2
Tr(Xi)

2

, respectively.

2. Evolve the fields pa (τ) , Xi (τ) , αa (τ) and Ai (τ) for fictitious time τf according to the

discretized Molecular Dynamics.

3. Accept the configuration of αa (τf) and Ai (τf) obtained at the end of Molecular Dy-

namics with the probability min
(
1, e−∆H

)
, where ∆H = H (τf)−H (0) .

In the HMC algorithm, there are two parameters9 ∆τ and τf . In the present work we choose

them as in table 6.

B Results for the (5+1)D version of the bosonic model

In this section we present our results10 for a bosonic model that can be obtained by omitting

fermionic matrices in the (5+1)D version of the type IIB matrix model. The latter model

is obtained formally by dimensional reducing the 6D N = 1 super Yang-Mills theory to a

point, and it consists of six bosonic matrices Aµ (µ = 1, . . . , 6) and four fermionic matrices

Ψα (α = 1, . . . , 4) representing four components of a 6D Weyl spinor. The form of the bosonic

part of the action is the same as that of the original type IIB matrix model, which is given

in (3.2).

9These parameters can be optimized as follows. For fixed τf , it is optimal to choose ∆τ so that ∆τ ×
(acceptance rate) is maximized. Then τf can be optimized to minimize the auto-correlation time in units of
one step in the Molecular Dynamics.

10Preliminary results shown in Fig. B.2 (Right) are published in the proceedings [48].
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Figure B.1: (Left) The extent ⟨ 1
NTr (A0)

2⟩ of the eigenvalue distribution of A0 is plotted
against N for the (5+1)D model. It starts to increase at N = Nc = 34. (Right) The
expectation values ⟨λi (t)⟩ of the five eigenvalues of Tij (t) at t = tpeak are plotted against N
for the (5+1)D model.

N γC/N
2 γL/N

2 γsym Nτ ∆τ trajectories

64 1 100 1,000 10 0.0015 200,000

96 1 100 1,000 10 0.001 400,000

128 1 100 2,000 10 0.001 2,400,000

Table 7: The values of the parameters γC, γL and γsym in (A.1) used in our simulation of the
(5+1)D model. We also give the values of parameters in the HMC algorithm, (See caption
of table 6 for explanation.)

In Fig. B.1 (Left), we plot the extent ⟨ 1
NTr (A0)

2⟩ of the eigenvalue distribution of A0

against N . In Fig. B.1 (Right), we plot the expectation values λi (t) of the five eigenvalues

of Tij (t) at t = tpeak against N . While the qualitative behaviors are the same as in the

(9+1)D case shown in Fig. 4.4, we find that the critical Nc is smaller and the slope of the

linearly increasing behavior of ⟨ 1
NTr (A0)

2⟩ for N ≥ Nc is larger. We can understand this

difference by considering the attractive potential between the eigenvalues of A0 discussed

below eq. (3.11). For general spatial dimensionality d, one obtains a factor ∆−2d (α) from

integrating out the spatial matrices Ai at one loop. This factor acts as an attractive potential

between the eigenvalues of A0, and it is stronger for larger d.

Below we discuss the properties of the (5+1)D model for N ≥ Nc. (The parameters used

in the simulation are listed in table 7.) We have determined the block size to be n = 8, 10,

12 for N = 64, 96, 128, respectively, from the fall-off of the off-diagonal elements of Ai as is

done for the (9+1)D case in section 4.2.2. In Fig. B.2 (Left) we plot the expectation values

⟨λi (t)⟩ of the five eigenvalues of Tij (t) for N = 128, which shows that the SO(5) symmetry

is broken spontaneously down to SO(3) after a critical time. From this kind of figures, we
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N n tc R(tc) ε ∆t

64 8 -0.7248(5) 0.1575(4) 0.2281(6) 1.825(5)

96 10 -0.7692(3) 0.1276(3) 0.2157(4) 2.157(4)

128 12 -0.8037(1) 0.1070(1) 0.2048(2) 2.457(2)

Table 8: The block size n, the critical time tc, the extent of space R(tc) at the critical time,
which are used in the (5+1)D model to make the plot in Fig. B.2 (Right). We also present
the explicit values of the average “lattice spacing” ε and the “volume” ∆t in the temporal
direction, which are plotted in Fig. B.3 (Right).
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Figure B.2: (Left) The expectation values ⟨λi (t)⟩ of the five eigenvalues of Tij (t) are plotted
against t for the (5+1)D model with N = 128. The critical time is determined as tc =
−0.8037 (1). (Right) The extent of space R2 (t) is plotted against x = (t− tc) /R (tc) for
N = 64, 96 and 128 in the (5+1)D model. The solid line represents a fit of the N = 128
data to R2 (t) /R2 (tc) = a+ (1− a) exp (bx) for 0.4 ≤ x ≤ 1.2, which gives a = 0.839(9) and
b = 2.91(6). The dashed line represents a fit of the N = 128 data to R2 (t) /R2 (tc) = cx+ d
for 1.2 ≤ x ≤ 2.0, which gives c = 15.6(5) and d = −13.0(8).

can determine the critical time tc for each N as described11 in section 4.2.2.

In Fig. B.2 (Right) we show the large-N scaling behavior of the extent of space R2 (t).

Explicit values of R(tc), together with the block size n and the critical time tc, which are

used to make this plot, are given in table 8. The power-law expansion (4.7) is observed at

late times similarly to the (9+1)D model.

In Fig. B.3 (Left) we plot the t-dependent “lattice spacing”, which shows how the con-

tinuum limit is achieved as N increases. The average “lattice spacing” ε and the “volume”

∆t in the temporal direction are given in table 8. In Fig. B.3 (Right) we plot them in the log

scale. The straight lines represent fits to the power-law behaviors.

11Unlike in the (9+1)D case, there was no need to adjust the value of tc to obtain the large-N scaling
behavior in Fig. B.2 (Right).
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fits to the power-law behaviors ε = aN−p, where a = 0.44(2), p = 0.16(1) and ∆t = bN q,
where b = 0.30(2), q = 0.43(1) using all the data.

C The differences between two simplified models

We have seen that the simplified model for the early times and for the late times exhibit

different expanding behaviors as space-time. In this section we discuss what causes this

difference.

In this Appendix, we refer to the simplified models for early times as the VDM model and

for the late times as the bosonic model, respectively. The partition functions are defined in

(4.3) for the VDM model and (4.6) for the bosonic model, where we find two differences. The

first one is the power of the van der Monde determinant, and the second one is the presence

or absence of the IR cutoffs in the temporal direction..

Let us recall that the van der Monde determinant ∆18 (α) in the VDM model comes from

two parts, the Faddeev-Popov determinant by the gauge fixing (3.9) and the Pfaffian for A0

(4.2). They act on the eigenvalues of A0 as a repulsive force between them, which cancels the

attractive force coming from the bosonic one-loop effective potential for A0. Because of this,

the eigenvalues of A0 can extend freely in the VDM model. However, this is not the case in

the bosonic model because there exists an attractive force between them due to the absence

of fermions. Therefore, one can expect that this difference affects the eigenvalue distribution

of A0. In Fig. C.1, we plot the expectation values of the eigenvalues αk (k = 1, . . . , N) of

A0 against k with N = 256, κ = 16 for the VDM model and with N = 256 for the bosonic

model. This figure shows that difference between two adjacent αk for the bosonic model is

slightly narrower than that for the VDM model for |αk| ≲ 2, while the difference becomes

wider than that for the VDM model for |αk| ≳ 2. Since the difference of αk appears in the
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κ = 16 for the VDM model and N = 256 for the bosonic model. The result of the VDM
model is rescaled by a parameter c so that the maximum value of αk coincides with the one
for the bosonic model.

bosonic action Sb as

Sb =
1

4g2

−2
N∑
a,b

(αa − αb)
2 |(Ai)ab|

2 +Tr
(
[Ai, Aj ]

2
) ,

the matrix components (Ai)ab close to the diagonal elements of Ai are strongly influenced

by the difference (αa − αb) for small |a− b|. How this influence appears in the behaviors of

R (t) is not obvious, though.

Let us also point out that the behavior of fluctuations of αk is different in the two models.

We define the fluctuation of αk by

δαk =
√⟨

α2
k

⟩
− ⟨αk⟩2, (C.1)

and plot it against k for the VDM model with N = 256, κ = 16 and for the bosonic model

with N = 256 in Fig. C.2. It turns out that the αk in the VDM model are almost frozen. On

the other hand, it turns out that the fluctuation of αk is larger in the bosonic model. This

can be understood because the eigenvalue distribution of αk in the bosonic model is easy

to contract due to the attractive force between αk. It is not clear whether this fluctuation

causes the difference of the expanding behavior of R (t).
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Figure C.2: The fluctuation of αk are plotted against k with N = 256 and κ = 16 for the
VDM model and N = 256 for the bosonic model. The result of the VDM model is rescaled
by the parameter c which is the same value as the one used in Fig. C.1.

D Review of stochastic quantization and the Langevin equa-

tion

In this Appendix, we review the stchastic quantization using the Langevin equation. This

review is based on the paper provided by P. H. Damgaard and H. Huffel [52].

Here, we consider the Brown motion as an example for the stochastic proccess. The

Langevin equation for the Brownian motion is given by

m
d

dt
v (t) = −αv (t) + η (t) , (D.1)

where m is a mass of a particle and v (t) is the velocity of the particle. α is the friction

coefficient of the fluid in which the particle moves. η (t) is a white noise generated with the

Gaussian distribution, which represents the force vector acting on the particle due to the

collision to molecules in the fluid. It follows from the Gaussian distribution that

⟨η (t)⟩η = 0,⟨
η (t) η

(
t′
)⟩

η
= 2δ

(
t− t′

)
,

where the ⟨· · · ⟩η is defined as

⟨O⟩η ≡
∫
DηOe−

1
4

∫
dt η2(t)∫

Dη e−
1
4

∫
dt η2(t)

.

In the statistical mechanics, it is known that the conditional probability distribution P (v, t|v0, t0) ≡
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P (v, t) satisfies the Focker-Planck (FP) equation. Here, P (v, t|v0, t0) represents the proba-

bility such that the particle’s velocity v0 at t0 becomes v at t. The probability distribution

given as the solution to the Langevin equation (D.1) also satisfies the FP equation in the

form of
∂

∂t
P (v, t) =

∂

∂v

(
v +

∂

∂v

)
P (v, t) , (D.2)

where we set m = α = 1. In what follows, we prove that the P (v, t) given from the Langevin

eq. satisfies the FP eq..

Firstly, let us consider the expectation value of an arbitrary function of v (t) defined as

⟨f (v (t))⟩ =
∫
dv f (v)P (v, t) , (D.3)

where P (v, t) is the probability distribution function of v(t) given as the solution to the eq.

(D.1). Taking the time derivative for the left hand side of the above equation,

d

dt
⟨f (v (t))⟩ =

⟨
δf

δv

dv

dt

⟩
=

⟨
δf

δv
(−v + η)

⟩
, (D.4)

where we used the Langevin eq. in the last step. Then, using the relation

⟨g (v (t)) η (t)⟩ =

⟨
δg

δv (t)

⟩
, (D.5)

we obtain

d

dt
⟨f (v (t))⟩ =

⟨
δf

δv
(−v + η)

⟩
=

⟨
−δf
δv
v +

δ

δv

δf

δv

⟩
.

Rewriting it with the integration form,⟨
−δf
δv
v +

δ

δv

δf

δv

⟩
=

∫
dv

(
−∂f
∂v
v +

∂2f

∂v2

)
P (v, t)

=

∫
dv f (v)

∂

∂v

(
v +

∂

∂v

)
P (v, t) + total derivative

Then, one can get the relation∫
dv f (v)

∂

∂v

(
v +

∂

∂v

)
P (v, t) =

∫
dv f (v)

d

dt
P (v, t) (D.6)
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which indicates the Focker-Planck equation.

We note that the relation (D.5) can be shown as follows.

⟨g (v (t)) η (t)⟩ =

∫
Dη gηe−

1
4

∫
η2(τ)dτ

= −2

∫
Dη g

δ

δη
e−

1
4

∫
η2(τ)dτ

= 2

∫
Dη

δg

δη
e−

1
4

∫
η2(τ)dτ

= 2

⟨
δg

δη

⟩
= 2

⟨
δg

δv

δv

δη

⟩
.

And we use the

v (t) =

∫ ∞

0
dτ θ (t− τ) e−(t−τ)η (τ) ,

from which we find
δv (t)

δη (t)
= θ (t− τ) e−(t−τ)

∣∣∣
τ=t

= θ (0) =
1

2
.

Thus, we obtain the relation (D.5).

The proof of the equivalence to the path integral quantization

In fact, the expectation value obtained for the stochastic quantization in the large fictitious

time limit is equivalent to the one defined in the path integral quantization.

The Focker-Planck equation for the system described by an action S is given as

d

dt
P (x, t) =

∂

∂x

(
∂

∂x
+
∂S

∂x

)
P (x, t) . (D.7)

Assuming that P (x, t) = ψ (x, t) e−S/2, we can rewrite the (D.7) into the Schrodinger type

equation
d

dt
ψ (x, t) = −2Hψ (x, t) , (D.8)

where

H =
1

2

(
− ∂

∂x
+

1

2

∂S

∂x

)(
∂

∂x
+

1

2

∂S

∂x

)
is a self-adjoint operator with semi-positive definite. When one denotes the eigenstate of H
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by ψn, the r.h.s. of the (D.8) can be written as

Hψn (x) = Enψn (x) ,

where En is n-th eigenvalue corresponding to the ψn. Therefore, one can represent ψ (x, t) as

ψ (x, t) =
∞∑
n=0

anψn (x) e
−Ent.

The eigenfunction with zero energy is

ψ0 (x) = e−
1
2
S (D.9)

up to the normalization. So, in the large time limit, the probability distribution function

follows as

lim
t→∞

P (x, t) = a0e
−S .

By fixing the normalization to be

lim
t→∞

∫
dxP (x, t) = 1,

one obtains the probability distribution function in the t→ ∞ limit as

Peq (x) = lim
t→∞

P (x, t) =
e−S∫
dx e−S

.

Then, one can show that the expectation value defined with Peq is equivalent to the one

defined in the path integral formalism as follows.

lim
t→∞

⟨
O
(
x(η) (t)

)⟩
η

= lim
t→∞

∫
DηO

(
x(η) (t)

)
e−

1
4

∫
dt η2(t)∫

Dη e−
1
4

∫
dt η2(t)

= lim
t→∞

∫
Dη
∫
dxO (x) δ

(
x− x(η) (t)

)
e−

1
4

∫
dt η2(t)∫

Dη e−
1
4

∫
dt η2(t)

= lim
t→∞

∫
dxO (x)

⟨
δ
(
x− x(η) (t)

)⟩
η

= lim
t→∞

∫
dxO (x)P (x)

=

∫
dxO (x) e−S∫
dx e−S

.

= ⟨O (x)⟩
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The discretized Langevin equation

In order to solve the Langevin equation numerically, we introduce the discretized version of

the Langevin equation. The expectation values in the original quantum theory are given from

the classical evolution in the fictitious time as we have shown above. In what follows, we

derive the discretized Langevin equation from the discretized Hamilton equation by regarding

the conjugate momentum as a noise term.

For a given classical action S[φ], the Hamiltonian is given as

H =

∫
ddx

1

2
π2 (x; t) + S [φ] ,

where φ (x; t) is a field depending on the space-time variable xµ and fictitious time t and

π (x; t) is the conjugate momentum of the field φ.

The expectation values of observables O (φ) are defined by

⟨O (φ)⟩ = Z−1

∫
DπDφO (φ) e−H[π,φ]

with the normalization

Z =

∫
DπDφe−H[π,φ].

Integrating out the conjugate momenta π reduces the path integral as

Z =

∫
Dφe−S[φ],

from which one can see that these are equivalent quantization. The classical dynamics of

the field φ and conjugate momenta π in the fictitious time t is described by the Hamilton

equation

∂φ (x; t)

∂t
=

δH

δπ (x; t)
= π (x; t) , (D.10)

∂π (x; t)

∂t
=

δH

δφ (x; t)
= − δS

δφ (x; t)
. (D.11)

Let us discretize the Hamilton equation (D.10) and (D.11) in the fictitious time direction by

introducing discretized time ∆t = tn+1 − tn. Then, the discretized version of eq. (D.10) up
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to second order of ∆t is given as

φ (x; tn +∆t) = φ (x; tn) +
∂φ (x; tn)

∂t
∆t+

1

2

∂2φ (x; tn)

∂t2
∆t2

φ (x; tn+1) = φ (x; tn) + π (x; tn)∆t−
1

2

δS [φ]

δφ (x; tn)
∆t2 (D.12)

Note that the conjugate momenta π (x) have the Gaussian distribution and these are inde-

pendent of the values of the field φ (x). Therefore, instead of solving the classical Hamilton

equation with initial given momenta, by refreshing the momenta randomly after every step,

we obtain the classical Langevin dynamics in fictitious time. Therefore, by rewriting the

conjugate momenta and the discretized time as

√
2π (x; tn) → η (t) ,

1

2
∆t2 → ϵ,

we obtain the discretized version of the Langevin equation

φ (x; tn+1) = φ (x; tn)− ϵ
∂S [φ]

∂φ (x)
+

√
ϵη (t) , (D.13)

where the η (x) obeys the probability distribution e−
1
4

∑
t η(t) and hence, we obtain

⟨
η (t) η

(
t′
)⟩

η
= 2δt,t′ .

With this discretized Langevin equation, we can also derive the Focker-Planck equation. To

do this, let us consider the expectation value of a function f (x) as

⟨f (φ (x; tn))⟩η =

∫
dx f (φ (x))P (x; tn) . (D.14)

The time differential of this expectation value is given by

⟨f (φ (x; tn+1))⟩η − ⟨f (φ (x; tn))⟩η =

⟨
f

(
φ (x; tn)− ϵ

∂S [φ]

∂φ (x)
+

√
ϵη (t)

)⟩
η

− ⟨f (φ (x; tn))⟩η

=

⟨
∂f

∂φ

(
−ϵ∂S
∂φ

)
+

1

2

∂2f

∂φ2

(√
ϵ
)2
η (t) η (t)

⟩
η

+O
(
ϵ2
)
,

(D.15)

where the terms proportional to
√
ϵ vanish because those terms always have odd number of
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η (t) whose expectation value should be zero. Therefore,

l.h.s. of eq. (D.15) =ϵ

∫
dx

(
−∂f
∂φ

∂S

∂φ
+
∂2f

∂φ2

)
P (x; tn) +O

(
ϵ2
)

=ϵ

∫
dx f (φ (x))

∂

∂φ

(
∂S

∂φ
+

∂

∂φ

)
P (x; tn) +O

(
ϵ2
)
. (D.16)

On the other hand, the left hand side of (D.15) can be given as

⟨f (φ (x; tn+1))⟩η − ⟨f (φ (x; tn))⟩η =

∫
dx f (x) (P (x; tn+1)− P (x; tn)) . (D.17)

Therefore, one obtains the relation

P (x; tn+1)− P (x; tn) = ϵ
∂

∂φ

(
∂S

∂φ
+

∂

∂φ

)
P (x; tn) +O

(
ϵ2
)
, (D.18)

from which the continuum version of the FP eq. is again derived by taking the ϵ→ 0 limit.

E The result for the another fermion mass term

In this Appendix, we show the result obtained by introducing the fermion mass only in the

3rd direction as

αi = (0, 0,mf , 0) . (E.1)

We again use the boson mass as in (6.13). Note that we have also taken care of the hermiticity

of Xi by using the gauge cooling with respect to the norm (6.33) for every step. We plot the

eigenvalue distribution of the mass deformed Dirac operator (6.34) for ϵ = 0.1 and mf = 0.5

in Fig. E.1, in which it turns out that the eigenvalues shift to not the real direction but

the imaginary direction. This can be understood since the fermion mass term α3 contracts

with iσ3. In Fig. E.2, we plot the radial eigenvalue distribution function (6.36) of the Dirac

operator against the distance R from the pole of the drift term for mf = 0.2 and 0.5. This

figure shows that the eigenvalue distributions damp rapidly around R = 0 even for small ϵ.

As a result, it turns out that we can take ϵ closer to zero than the case of the fermion mass

(6.35).

In Fig. E.3, we plot the expectation values of the order parameters ρ
(i)
ϵ,mf defined in (6.37)

against ϵ for mf = 0.3. By extrapolating ϵ to zero, we find that the values of ρ
(1)
mf and ρ

(2)
mf are

close to each other as well as in the case of the fermion mass (6.35). This result shows that

SO(2) symmetry remains for the fermion mass (E). However, we note that this fermion mass

explicitly breaks SO(4) symmetry down to SO(2) even in the ϵ → 0 limit since the order of
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Figure E.1: The scattered plot of the eigenvalues of the mass deformed Dirac operator for
ϵ = 0.1 with mf = 0.5 in the r = 1 case, where mf is now introduced in the only third
direction.
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Figure E.2: (Left) The radial distribution function φ (R) for the eigenvalues of the Dirac
operator is plotted against the distance R from the pole for the fermion mass (E.1) with
mf = 0.5. (Right) We also plot φ (R) against R with mf = 0.2.
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(i)
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mf = 0.3. The broken lines are fits of the data for each ρ
(i)
ϵ,mf to a function f (ϵ) = aϵ2+ bϵ+ c

for ϵ ≥ 0.22, which gives ρ
(1)
mf = 3.21(2)× 10−1, ρ

(2)
mf = 3.150(6)× 10−1, ρ

(3)
mf = 2.230(8)× 10−1

and ρ
(4)
mf = 1.57(2)× 10−1.

λi is now constrained as in (6.14). Therefore, we can not identify the spontaneous breaking

of SO(4) or SO(3) for αi = (0, 0,mf , 0).

Thus, in order to make sure that the SO(4) symmetry is spontaneously broken down to

SO(2), we have to extrapolate mf to zero. In Fig. E.4 (Top-Left), we plot the expectation

values of order parameter ρ
(1)
ϵ,mf against ϵ for various values of mf , in which the lines are fits

of data points for each mf to a function f (ϵ) = aϵ2 + bϵ+ c. We also plot the other ρ
(i)
ϵ,mf in

the other panels in Fig. E.4.

Then, we plot ρ
(i)
mf obtained in this way against mf in Fig. E.5. By extrapolating mf

to zero, we obtain ρ(1) = 3.5(2) × 10−1, ρ(2) = 3.54(9) × 10−1, ρ(3) = 1.74(5) × 10−1 and

ρ(4) = 1.07(8) × 10−1. From these, we obtain ⟨λ1⟩ = 2.1(1), ⟨λ2⟩ = 2.12(5), ⟨λ3⟩ = 1.04(3)

and ⟨λ4⟩ = 0.64(5), and we again find that the values of ⟨λ1⟩ and ⟨λ2⟩ are close to each other,

which implies that the SSB from SO(4) to SO(2) occurs for the fermion mass (E.1). Moreover,

these quantities are agree with the ones obtained by the Gaussian expansion method and the

factorization method. Thus, we can confirm that the result is independent of the way to

introduce mass terms to the fermions.
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for 0.2 ≤ mf ≤ 0.6 . We obtained ⟨λ1⟩ = 2.15(6), ⟨λ2⟩ = 2.15(7), ⟨λ3⟩ = 0.99(4) and
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