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Abstract

Studies on jet substructure have evolved significantly in recent years. We

show that in studies of light quark- and gluon-initiated jet discrimination,

it is important to include the information on softer reconstructed jets (as-

sociated jets) around a primary hard jet. This is particularly relevant while

adopting a small radius parameter for reconstructing hadronic jets. The prob-

ability of having an associated jet as a function of the primary jet transverse

momentum (pT ) and radius, the minimum associated jet pT and the associa-

tion radius is computed up to next-to-double logarithmic accuracy (NDLA),

and the predictions are compared with results from Herwig++, Pythia6 and

Pythia8 Monte Carlo event generators. We demonstrate the improvement

in quark-gluon discrimination on using the associated jet rate variable with

the help of a multivariate analysis. The associated jet rates are found to be

insensitive to the effects of initial state radiation and underlying event. In

addition, the number of kt subjets of an anti-kt jet can be an observable that

leads to a rather uniform prediction across different Monte Carlo generators,

broadly being in agreement with predictions in NDLA, as compared to the

often used number of charged tracks observable.

Predictions of jet substructure are usually different among Monte Carlo

event generators, and are mainly governed by the parton shower algorithm

implemented. For leading logarithmic parton shower, even though one of

the core variables is the evolution variable, its choice is not unique. We ex-

amine evolution variable dependence of the jet substructure by developing a

parton shower generator that interpolates between different evolution vari-

ables using a parameter α. Jet shape variables and associated jet rates for

quark and gluon jets are studied to demonstrate the α-dependence of the jet

substructure. We find angular ordered shower predicts wider jets, while rela-

tive transverse momentum (p⊥) ordered shower predicts narrower jets. This

is qualitatively in agreement with the fact that there is the missing phase

space in p⊥ ordered showers. Such difference can be reduced by tuning other

parameters of the showering algorithm, e.g., strong coupling constant, and

starting/hadronization scale, especially in the low energy region, while the

difference tends to increase for high energy jets.
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1 Introduction

Particle physics is a study to reveal what are elementally objects and how they

interact. Building blocks of the current standard model (SM) of particle phyiscs

are obtained in the sequence of the high energy physics interactions, and finally

the last particle of the SM, higgs boson is discovered at the Large Hadron collider

(LHC) at CERN. Now, we have great hopes that LHC Run II will bring a lots of

fantastic information to the particle physics yet to be obtained. LHC is a circular

type accelerator, and proton or heavy ion (lead) is used as beam. The beam was

operated at 7 and 8 TeV with integrated luminosity about 5 and 20 fb−1 in the

period between 2009 and 2013. The next operation Run II has been planed at 13-

14 TeV from 2015 to 2018 with integrated luminosity 150 fb−1. As a long-range

plan, the integrated luminosity will reach 3000 fb−1 throughout Run III and High

Luminosity LHC.

One of main purpose at LHC is search for the higgs boson and the understanding

the origin of electro-weak symmetry breaking. ATLAS and CMS reported that they

found a new particle around 125 GeV in 2012 [1]. Properties of the particle, e.g.,

spin, CP charge and the strength of the interaction, agree with those of Higgs boson

in the Standard Model (SM) within the range of experimental error.

Another target of the LHC is to find out physics beyond the Standard Model

(BSM). Although experimental results at LHC seem to be consistent with predictions

in SM, we have many question for the nature and theoretical frame work in SM. The

mass parameter of the Higgs potential receives the radiative correction propotinal

to the square of the cut off scale. Given the precision study of EW processes, it is

natural to consider the scale is much higher than 10TeV. This cause the fine tuning

problem in the Higgs sector. Moreover the four point interaction of Higgs potential

turns out to be negative around 1010GeV. While the current vacuum is metastable,

this cast the question how the current Universe is made after the inflation and

subsequent reheating. Moreover, we do not know how the Baryon asymmetry of the

Universe is formed, and how the dark matter is understood in the manner consistent

with the SM.

To explain the questions above, many models, such as dynamical symmetry

breaking models, supersymmetric models, and extra dimension models, are pro-

posed. These models predict new particles and new phenomena, which are the tar-

get of the future run of the LHC. To achieve the target, we need precise prediction

for both SM and BSM processes.

One of the difficulties in the calculation of high-energy hadron collision stem

from the fact that initial state proton is composite particle rather than elementary
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particle. Hadrons are composed by valence quarks which carry the quantum num-

ber of its hadron, and those quarks are confined by strong interactions mediated

by gluons. At the high energy collision of protons, only the fraction of energy can

be used, and probability that quark and gluon participate in the hadron collision,

which is called parton distribution function (PDF) must be determined from the

experimental data. Interaction between quark and gluon is described by Quantum

chromodynamics (QCD). The hard quark and gluon branch into quark and gluon,

leading many soft quarks and gluons in the final state, which is beyond the fixed

order calculation because of the infrared singularity of the QCD processes. Finally,

because quark and gluon must be confined in the hadrons, which cannot be calcu-

lated perturbatively. Hence we need good model for the calculation, which respects

quantum field theory and predict various observables well.

The calculation model for the hadron-hadron collider sketchily divided by fol-

lowing steps.

step 1: Quarks, anti-quarks or gluons in proton beams called as initial parton in-

teract in small spacetime, and exchange large momentum, then final partons

and/or other SM and BSM particles are produced. This interaction is called

as hard process, which occur in short distance. The hard process has an en-

ergy scale (hard scale), which is typically given by the order of invariant mass

square of initial partons or square of exchanged momentum.

step 2: The initial and final partons emit additional particles. These radiations are

described by mainly QCD. The radiations from initial and final particles are

called as initial state radiation (ISR) and final state radiation (FSR). Energy

scale for the initial partons increases with each ISR, and the scale may reach

up to the order of hard scale. Then energy scale for final parton decreases with

each FSR. The radiation continues until the scale reach an given scale called

as hadronization scale. The calculation model for the radiations is called as

parton shower.

step 3: When the emitted coloured partons and proton-beam remnants 1 take O(fm)

away for each other, QCD potential increase and quark pairs from QCD vac-

uum and gluon form non-coloured hadrons. This part is called as hadroniza-

tion.

1 When initial parton is up quark (u), proton-beam remnant formed ud diquark system which
have an anti-triplet colour charge. When initial parton is gluon, proton-beam remnant formed uud

system which can conveniently be subdivided into a colour triplet quark and a colour anti-triplet
diquark [38].
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In step 1, flavors of initial parton are decided in the probability of PDF. Factorization

theorem [2] justifies the division of the hard process part and the PDF part. Step

1 and 2 are carried by perturbation theory, especially perturbative QCD. QCD

is SU(3) non-abelian gauge theory, which describes an interaction between quarks

and gluons. Quarks and gluons are the fundamental and adjoint representation

of SU(3). Asymptotic freedom which is an property of QCD says the strength of

QCD interaction becomes smaller as energy scale of QCD interactions Q increases,

and vice versa. Experimentally, valid range of the perturbative QCD is Q >∼ 1GeV.

Hence an minimal hard scale in step 1 and an hadronization scale in step 2 should

set around 1GeV. In step 3, we need models describe physics in the non-perturbative

region. Sprays of hadrons calculated by above steps are called as jet. Four momenta

of hadrons and other particles are measured in detectors, and those are combined to

four momenta of jets. The jet momentum is one of the basic observables at LHC.
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Figure 1: Production cross sections for several representative processes at hadron colliders. The

discontinuity is due to the Tevatron being a proton-antiproton collider while the LHC is a proton-

proton collider. From Ref. [3].

Hadronic jets are the most abundant objects at LHC, therefore the hadronic

decay of new particle maybe easily missed. Production cross sections for several

representative processes at hadron colliders are shown in Fig. 1. The finding signa-

ture which only gives hadronic jets is very difficult to cope with large QCD back-
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grounds. For example, significances of the hadronic Higgs decays like H → bb̄ are

considered as low due to the large QCD background like pp → bb̄X. However, the

situation might be improved for boosted particles [4]. The authors use the informa-

tion of internal structure of jets, so-called jet substructure, namely the distribution

of four momenta of hadrons in jets. Quarks from the boosted Higgs boson and

top quark decay create the multiple centers in a jet, called as subjets. The mo-

mentum balance of the subjets and the ratio of the jet mass and subjet masses are

different between Higgs jets and QCD jets. By using the differences, it is demon-

strated that significance of H → bb̄ improves. After that, study of jet substructure

has also evolved significantly in recent times [5, 6, 7, 8]. Jet substructure tech-

niques are particularly useful in identifying the origin of jet(s) in the hard process

[4, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19], and also in removing contamination from

pile-up or underlying event [4, 20, 21, 22, 23, 24, 25].

Recently, there appear several studies concerning the identification of the origin

of QCD jets, namely, if they are originated from a quark or a gluon at the point where

they appear from the hard process. Although both quark and gluon subsequently

emit gluons in the parton shower, initial colour information is conserved in the

parton shower process because the splitting functions are different. Discrimination

of quark-initiated jets from gluon-initiated ones is also an important subject of jet

substructure, and has a lot of potential in improving the search for new physics.

Searching new particles predicted in supersymmetric (SUSY) models is one of the

main issue at LHC. One of the signals in the model is pair gluino production (pp →
g̃g̃). In the three body decay, g̃ → qq̄χ0

1, the initiated flavour of jets is dominantly

quark. On the other hands, the main background for the process is Z + jets in

which the gluon jet is dominant. The detection of two body decay, g̃ → gχ0
1, gives

a detailed information related to scenarios in which the scalar SUSY particles are

heavy [26]. The Higgs mass around 125 GeV implies a possibility of a large size

of the two body decay of the gluino. A hard gluon jet is produced via the decay,

on the other hands, the hardest jet in background Z + jets is basically the quark

jet. Being away from SUSY, jets in the background process for di-quark production

related with new particles are dominantly gluon jets. Therefore, better way to

distinguish the quark jet and the gluon jet can help the discovery of new particles

and the examination of properties of that, and different methods for quark-gluon

discrimination have been devised [27, 28, 29, 30, 31, 32, 33, 34], with corresponding

performance studies [35, 36, 37] for LHC.

In Sec. 2, I review the parton shower, definitions of jet, and the jet substructure

technique, especially the discrimination of quark-initiated jets from gluon-initiated.

In Sec. 4, a new variable concerned with associated jet to improve the performance
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of quark-gluon discrimination will be introduced. Associated jets are softer jets

which are nearby a harder jet. Previous researches for quark-gluon discrimination

have focused on the structure of harder jet only. We focus on not only the harder

one but also softer jets.

Theoretical estimates for the performance of such tagging algorithms are pri-

marily carried out with the help of Monte Carlo (MC) simulation tools, such as,

Pythia [38, 39], Herwig [40, 41] and Sherpa [42]. Even though qualitative features

are in agreement, differences in the predictions of the different MC generators have

been noted as far as quantitative estimates of the quark-gluon tagger performance

is concerned. The primary reason for this can be traced back to the fact that the

distribution of observables related to gluon jets varies significantly across the MC

generators, while those for the quark jet are largely similar. One possible cause of

such a feature might be that while tuning the parameters of the MC generators, the

precise jet data from the Large Electron-Positron Collider (LEP) have been crucial,

and at leading order in electron-positron collision, the jet data is dominantly from

quark-initiated processes. As far as the LEP data is concerned, the properly tuned

versions of the MC generators have been successful in achieving very good agreement

with the jet data and are also consistent among each other, even in the soft-collinear

and the non-perturbative regions.

Recent studies carried out by the ATLAS and CMS collaborations indicate that

the data on certain observables related to quark-gluon discrimination lies in between

the predictions of the two MC generators Pythia and Herwig [36, 43, 44]. Although

it might be difficult to pinpoint the reason for such differences in the jet substructure

observables predicted by different generators, understanding the difference between

the central components of the MC generators can be useful in developing more

precise simulation tools. To this end, at a first order, if we postpone the consideration

of the non-perturbative and underlying event effects for simplicity, the substructure

of a quark or a gluon jet is governed by the pattern of QCD radiation, which is

controlled by the parton shower algorithm. One of the core variables of a parton

shower is the evolution variable, different choices for which are made in different

MC generators.

In Sec. 5, our aim is to understand the effect of modifying the evolution variable

and access its impact on jet substructure observables. We also ask the question

whether certain choice of evolution variables can better reproduce the data on quark-

gluon discrimination observables, as discussed above.
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2 Parton shower

2.1 Parton shower algorithm

Parton shower algorithm is method to calculate high multiplicity final states in QCD

processes. The main concept of parton shower is to factorize soft-collinear radia-

tions from a hard process. When the quarks and gluons are soft and/or collinear,

the amplitudes for QCD process diverge. We need to regularize the singularity

appropriately.

First of all, I introduce Sudakov form factor, which plays an important role in

parton shower, and contain a dominant contribution of an all-order amplitude in the

soft-collinear phase space. The parton shower algorithm is based on the DGLAP

equation [45, 46], which describe an energy scale dependence of states, e.g., a parton

distribution function:

t
∂

∂t
f(x, t) =

∫ 1

0

dz

z

αS(t)

2π
P (z)f(

x

z
, t), (2.1)

where P (z) is a regularized splitting function and f(x, t) is a parton distribution

function which describe the probability that a flavour have a longitudinal momentum

fraction z and energy scale t. The energy scale is typically off-shellness (virtuality)

of intermediated partons. We will consider the scale in detail later. This P (z) is

related with (unpolarized) unregularized splitting function P̂ (z) as

P (z) = P̂ (z)+, (2.2)

where the symbol “ + ” means plus scription written by,∫ 1

0

dzP̂ (z)+F (z) =

∫ 1

0

dzP̂ (z)[F (z) − F (1)]. (2.3)

Eq. (2.1) can be written with unregularized splitting function by

t
∂

∂t
f(x, t) =

∫ 1

0

dz
αS(t)

2π
P̂ (z)

[
1

z
f(

x

z
, t) − f(x, t)

]
. (2.4)

Here I introduce the Sudakov form factor,

∆(t, t0) = exp

[
−
∫ t

t0

dt′

t′

∫ 1−ε

ε

dz
αS

2π
P̂ (z)

]
, (2.5)

where t0 is minimal scale in parton shower. A scale below t0 is dealed as non-

perturbative region. The splitting functions are proportional to branching proba-

bilities for each target process in soft-collinear region, which are summarized at the
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Figure 2: A schematic illustration of Sudakov weighting. A probability state f(x, t), which have

energy fraction x at scale t, is formed from f(x, t0) by a factor ∆(t, t0), and also f(x, t′) by a factor

∆(t, t′) and the emission probability (αS/2π)P̂ (z).

lowest order:

P̂ (z) =


CF

1+z2

1−z
(q → qg),

2CA[ z
1−z

+ 1−z
z

+ z(1 − z)] (g → gg),

TR[z2 + (1 − z)2] (g → qq̄),

(2.6)

where QCD colour factors are CF = 4/3 and CA = 3 for TR = 1/2. Eq. (2.4)

becomes

t
∂

∂t

f(x, t)

∆(t, t0)
=

1

∆(t, t0)

∫
dz

z

αS

2π
P̂ (z)f(

x

z
, t). (2.7)

We can solve this equation in integrating form as,

f(x, t) = ∆(t, t0)f(x, t0) +

∫ t

t0

dt′

t

∫
dz

z

αS(t′)

2π
P̂ (z)∆(t, t′)f(

x

z
, t′). (2.8)

This equation gives a physical interpretation on the Sudakov form factor. A prob-

ability state f(x, t), which have energy fraction x at scale t, is formed from f(x, t0)

by a factor ∆(t, t0), and also f(x, t′) by a factor ∆(t, t′) and the emission probabil-

ity (αS/2π)P̂ (z). Fig. 2 gives a pictorial representation of the fact. The phyaiscal

interpretation of the sudakov form factor will be explained below.

The Sudakov form factor can be written as

∆(t2, t1) = exp

[
−
∫ t2

t1

dt

t

∫ 1−zmin(t)

zmin(t)

dz
αS(t)

2π
P̂ (z)

]
, (2.9)

= exp

[
−
∫ t2

t1

P(t)dt

]
,

= lim
N→∞

N−1∏
i=0

[1 − P (t1 + idt̄) dt̄] , dt̄ =
t2 − t1

N
.
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Figure 3: A schematic illustration of sequential decays by the parton shower algorithm.

P(t)dt show a probability that an emission happen at t ∈ [t, t+dt], and the last line

in Eq. (2.9) is the product of differential non-emission probability in [t1, t2]. Hence

∆(t2, t1) is non-emission probability from t1 to t2. We now notice that states at a

given scale t depend only on the present state, not on its past (t′ < t) states. In

other words, the emission process is the Markov process2. We assume the energy

scale t as an ordering variable (evolution variable) in the Markov process of QCD

radiation.

We are now ready to construct parton shower algorithm. Let’s consider a e+e− →
qq̄ configuration in Fig. 3, and assume that the energy scale (evolution variable) is

virtuality of partons. Scale of the quark starts from t0 = s, where s = k2 is a

virtuality of γ/Z. A probability that the quark doesn’t emit gluons until a minimal

scale thad is ∆(t0, thad). This minimal scale is called as a hadronization scale, which

is a parameter in parton shower model. We often take the value to about 1GeV. A

decay may happen at t1, and the probability is given by

Q(t1) =
d

dt
[1 − ∆(t, thad)]|t=t1 . (2.11)

The starting scales of new partons q1 and g1 are t1.
3 A probability that the partons

both don’t emit more is ∆(t1, thad)
2. Decays may happen at t2(t3) from q1(g1) with

probability Q(t2)(Q(t3)). This sequential decay continue until all partons stop to

decay. Energy fractions z for each branching at the scale ti are determined with a

probability αS(ti)P̂ (z). The anti-quark also decay in the same manner.

2 One of the simplest ordering variables in nature is time, T . A well-known Markov process
is nuclei decays. The decay probability at T (P(T )) doesn’t depend on its past behaviour . A
probability that a nuclei produced at T1 doesn’t decay until T2 is written as

∆N (T2, T1) = exp

[
−
∫ T2

T1

P(T )dT

]
, (2.10)

which is the same form with Eq. (2.9).
3 The choice of starting scales will be modified in Sec. 5.1.2.
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The virtuality is used as evolution variable above, which is a traditional choice of

evolution variable. However, even if we use a variable tf = f(z)q2 as the evolution

variable, all equations in this subsection do not change. We can check that by a

relation,

dtf
tf

dz =
dq2

q2
dz. (2.12)

Therefore we can use the same parton shower formalism with tf . In this mean, the

choice of evolution variable is not unique. For example, a often-used parton shower

generator Herwig++ use f(z) = 1/z(1− z) to realize angular-ordered parton shower,

which will be explained next subsection. More detail of the choice of evolution is

discussed in Sec. 5.

I should give a comment for the minimal value of momentum fraction zmin(t) in

Eq. (2.9). We can see that the QCD radiating probability have IR singularity in

Eq. (2.6). The IR singularity should be cancelled at higher order [47, 48]. We often

introduce a finite gluon mass or cutoff of relative transverse momentum of emissions,

whose values are around thad, to remove the singularity.

A
B

C

D

2

M4
A
B

C

D

2

t1 t A
B

C

D

2

A� A�

2
�M3� =

A�

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
(a) (b) (c)

Figure 4: A schematic illustration of collinear factorization of an amplitude.

Next I want to explain that the parton shower algorithm using Sudakov form

factor gives a good prediction in collinear regions. Let’s consider an four body

amplitude as e+e− → ABCD in Fig. 4-(a). Though there are some tree diagrams

to contribute to this configuration, only a diagram Fig. 4-(b) is significant when an

angle between A and B are small. Because the virtuality of intermediate parton A′

becomes small as A and B become collinear, therefore, the propagator term of A′

enhance. The amplitude square (b) can be divided by A′CD and A′AB as Fig. 4-(c),
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which is written by,∫
z(B)

|M4|2dΦ4 ' |M3|2dΦ3 ×
dt

t

∫
dz

αS(t)

2π
P̂gq(z), (2.13)

= |M3|2dΦ3 × dtP(t), (2.14)

= dσ3 × dtP(t). (2.15)

We can neglect interference terms in the collinear region. In the parton shower

algorithm, the first branching A′ → AB at scale t is generated by the probability of

dσ3 × dt
d

dt
[1 − ∆(t1, t)] = dσ3 × ∆(t1, t)dtP(t). (2.16)

We can get a following relation by the Taylor expansion of Sudakov form factor,

∆(t1, t) =
dσ3

dσ3 + dσ3

∫ t1
t

dt′P(t′) + dσ3

∫ t1
t

dt2P(t2)
∫ t2

t
dt′P(t′) + ...

. (2.17)

The numerator in Eq. (2.17) is the 3-body cross section. The second and third

terms of denominator are the cross section for (3 + 1)-body and (3 + 2)-body cross

section in the collinear limit. This summation continues up to infinite term. So,

the Sudakov form factor is given by the ratio of non-emission event to whole event

at all-order and tree level. We can again interpret the Sudakov form factor ∆(t1, t)

as non-emission between scale t1 and t at all-order. This interpretation is valid

in collinear limit. In Fig. 4, Gluon C show the gluon which is separating widely

from other partons. It is inappropriate to generate such wide/hard radiations by

the parton shower algorithm. Therefore we generate such wide/hard radiations by

fixed order calculations and simulate soft/collinear radiations by the parton shower

algorithm. There are several schemes or generators to merge fixed order calculations

and parton shower algorithms. Well known methods to merge several leading order

matrix elements (ME) and showers are CKKW [49], CKKW-L [50, 51] and MLM

[52, 53]. Generators and methods to merge next-to leading order ME for basic

processes and showers are MC@NLO [54, 55, 56] and POWHEG [57].

2.2 Angular ordering

Here I introduce angular ordering [58, 59, 60, 61, 62] which is a property in partons

shower branching.

A state of n-body final state from colour singlet source like e+e− pair annihilation

is written by |1, ..., n〉 and colour-spin specified amplitude is given by

Mc1,...,cn;s1,...,sn
n (p1, ..., pn) = 〈c1, ..., cn|〈s1, ..., sn||1, ..., n〉, (2.18)
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where the bra-vectors show a basis in colour and spin subspace, ci and si are indices

for colour and spin of parton i, and pi is momentum of i. For a convenience, we

introduce a colour charge Tc
i which acts a parton i as:

Tc
i |c1, ..., ci, ..., cn〉 = T c

cic′i
|c1, ..., c

′
i, ..., cn, c〉, (2.19)

T c
c′ici

=


if c′icci (i = gluon),

tcc′ici
(i = quark),

−tccic′i
(i = antiquark),

(2.20)

The colour charge Tc
i is associated with the creation of a new colour state whose

index is labeled by c, and the colour is connecting to the colour of parton i. A

square (Tc
i)

2 = Tc
iT

c
i ≡ Ci is the Casimir operator (colour factor) CF for quark and

CA for gluon. An identity related with the colour conservation in state is shown in

Ref. [63] as

n∑
i=1

Tc
i |1, ..., n〉 = 0, (2.21)

or just
∑

i T
c
i = 0. Trivial relations are

〈c1, ..., ci, ..., cn, c|Tc
i |c′1, ..., c′i, ..., c′n〉 = δc1c′1

· · ·T c
cic′i

· · · δcnc′n . (2.22)

Next let us consider a factorized amplitude for i(pi + k, s′i, c
′
i) → i(pi, si, ci) +

g(k, s, c), where variables in parenthesis for partons show those momentum, spin

and colour. When parton i is quark, that is given by

ū(pi, si)ε
s∗
µ gsγ

µu(pi + k, s′i)
1

(pi + k)2
T c

cic′i
Mc1,...,c′i,...,cn;s1,...,s′i,...,sn

n (p1, ..., pi + k, ..., pn),

→ gsε
s∗
µ

pµ
i

pi · k
T c

cic′i
Mc1,...,c′i,...,cn;s1,...,si,...,sn

n (p1, ..., pi, ..., pn),

(2.23)

where εµ is polarization vector of emitted gluon. We used soft approximation (so

called eikonal approximation), namely kµ → 0. The factorized factor pµ
i /(pi · k)

is called as eikonal factor whose form is independent on the emitting flavour i.

Feynman rules in the eikonal approximation is summarized in Ref. [64]. The eikonal

factor take the form as

pµ
i

pi · k
=

pµ
i

Eiω(1 − cos θik)
, (2.24)

where Ei and ω are energies of parton i and emitted gluon, and θik is an opening

angle between pi and k. This factor has a soft singularity in ω → 0 and collinear

singularity in θik → 0.
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Figure 5: Diagrammatic representation of the external-leg insertion rule. The blobs denote the

tree-level matrix elements and their complex conjugate. The dots on the right-hand side stand for

non-singular terms both in the soft and collinear limits. From Ref. [63]

Amplitude square related to such emission from n-legs have a soft-enhance term

1/ω2. By neglecting contributions whose contributions to amplitude square are

weaker than 1/ω2, a (n + 1)-body amplitude is given by

Mc1,...,cn+1;s1,...,sn+1

n+1 (p1, ..., pn+1) (2.25)

' gsε
s∗
µ

n∑
i=1

pµ
i

pi · k
T c

cic′i
Mc1,...,c′i,...,cn;s1,...,sn

n (p1, ..., pn), (2.26)

= gsε
s∗
µ

n∑
i=1

pµ
i

pi · k
(δc1c′1

· · ·T c
cic′i

· · · δcnc′n)Mc′1,...,c′n;s1,...,sn
n (p1, ..., pn), (2.27)

= gsε
s∗
µ

n∑
i=1

pµ
i

pi · k
〈c1, ..., cn, c|Tc

i |c′1, ..., c′n〉〈c′1, ..., c′n|〈s1, ..., sn|1, ..., n〉, (2.28)

= 〈c1, ..., cn, c|〈s1, ..., sn|
n∑

i=1

gsε
s∗
µ

pµ
i

pi · k
Tc

i |1, ..., n〉. (2.29)

Therefore amplitude square in soft limit is given by

|Mn+1|2 ' −2g2
s

ω2

∑
i<j

Wij〈1, ..., n|Tc
iT

c
j|1, ..., n〉, (2.30)

Wij =
pi · pj

pi · k̂ pj · k̂
, k̂ ≡ k/ω (2.31)

A relation
∑

s εs
νε

s∗
µ → −gµν is used. Hereinafter Tc

i will be just written by Ti. Wij

is called as antenna function. Diagrammatic representation of the equation is shown

in Fig. 5

Let us consider n = 2 system, and a gluon is emitted from the system. By using

Eq. (2.21), non-Casimir operator product is written by

T1T2 = −C2
1 = −C2

2 ≡ −C12. (2.32)
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Then the amplitude square is given by

|M2+1|2 = −2g2
s

ω2
W12〈1, 2|T1T2|1, 2〉, (2.33)

=
2g2

s

ω2
C12W12|M2|2. (2.34)

We see that the colour part is factorized. The collinear singularities in Wij can be

disentangled by

Wij = W
[i]
ij + W

[j]
ij , (2.35)

where

W
[i]
ij =

1

2

(
Wij +

1

1 − cos θik

− 1

1 − cos θjk

)
. (2.36)

W
[i]
ij contain the collinear singularity by a emission along i only, and vise verse. This

function satisfy a relation as∫ 2π

0

dφik

2π
W

[i]
ij =

1

1 − cos θik

Θ(θij − θik) (2.37)

where the integral means that integration over an azimuthal angle of emitted gluon

along the direction of pi, and Θ is the Heaviside step function. Therefore azimuthal-

angle-averaged radiation along parton i is limited in the region θik < θij. Again

3-body amplitude square is written by

|M2+1|2 =
2g2

s

ω2
(C1W

[1]
12 + C2W

[2]
12 )|M2|2. (2.38)

Interpretation of the equation is that the opening angles of azimuthal-angle-averaged

radiation along parton i and j, θik and θjk are limited, which are smaller than the

opening angle between “parents” i and j. (In this case i = 1 and j = 2.) This

emission property is called as angular ordering. The pictorial representation is shown

in Fig. 6.

For n = 3, non-Casimir operator products are written by

T1T2 = C3 − C1 − C2 ≡ −C12, (2.39)

T1T3 = C2 − C3 − C1 ≡ −C13, (2.40)

T2T3 = C1 − C2 − C3 ≡ −C23. (2.41)

Therefore

|Mn+1|2 =
2g2

s

ω2

∑
i<j

CijWij|Mn|2. (2.42)
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Figure 6: From Ref. [65]. The pictorial representation of angular ordering: Opening angles of

azimuthal-angle-averaged radiation along parton i and j, i.e., θik and θjk are limited, which are

smaller than the opening angle between “parents” i and j.

We again see that the colour part is factorized. Now we assume a parton is soft

and collinear respect to another parton. When p3 is soft and collinear respect to p1,

colour and antenna term is written by∑
i<j

CijWij = C12W12 + C13W13 + C23W23 (2.43)

' C1W
[1]
13 + C3W

[3]
13 + C2W

[2]
1′2 + C1′W̃

[1′]
1′2 , (2.44)

where 1′ show the direction respect to p1 + p3 (' p1) and

C1′ = −(T1 + T3)
2, W̃

[1′]
1′2 ' W

[1′]
1′2 − W

[1′]
1′3 . (2.45)

After averaging over the azimuthal angle with respect to 1′:

W̃
[1′]
1′2 → 1

1 − cos θ1′k
[Θ(θ1′2 − θ1′k) − Θ(θ1′3 − θ1′k)], (2.46)

=

 1
1−cos θ1′k

for θ1′2 > θ1′k > θ1′3,

0 for others.
(2.47)

Therefore Eq. (2.44) has angular ordering property, and the pictorial representation

is shown in Fig. 7. Angular ordered emissions labeled by [I] in the figure correspond

to the I-th term in Eq. (2.44).

For n ≥ 4, non-Casimir operator products are not written by only Casimir

operators, so colour part is not factorized [63]. However if we neglect sub-leading

colour terms, colour part is factorized as in Eq. (2.42), and we can check angular

ordering in all order.
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Figure 7: Angular ordered emissions labeled by [I] in the figure correspond to the I-th term in

Eq. (2.44).

I summarize this section. By imposing angular ordering on parton shower

branchings which is generated by azimuthal-angle-averaged splitting functions like

Eq. (2.6), the shower history can contain correct colour correlations for each par-

tons in soft collinear approximation, but loosing sub-leading colour term which is

proportional to 1/Nc after fifth emission.

3 Jet and its substructure

3.1 Jet definition

While the partons from the hard process fragments into hadrons, the branching

of partons are mostly soft and/or collinear. By summing the momentum of the

hadrons in the same direction, one can extract the information of the hard process.

The procedure, called jet clustering is the key issue for the hadron collider physics.

Required property for jet clustering is infrared and collinear (IRC) safety. It means

that jet sets does not affect from soft and collinear emissions. In this section, we

introduce sequential recombination jet algorithms, which are IRC safe and used well

recently.

In e+e− collider, energy and angle between final state particles are used in the

definition of the jets. A basic variable for the clustering is Durham-kT , which is

defined as

k2
ij = min(E2

i , E
2
j )(1 − cos θij), (3.1)

where Ei is the energy of particle labeled i, and θij is angle between particle i and j.

When the number of final states is n, we calculate n(n − 1)/2 Durham-kT for each
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particle pair.4 When k2
IJ is smallest, we combine four momenta of I and J , and new

mock momentum pIJ is produced. This operation stop when all Durham-kT become

larger than a given value dcut. We call remaining four momenta in the list as jets.

Therefore, jets four momenta and number depend on the dimension-full variable

dcut. A dimension less notation ycut(= dcut/Q) is also used, where Q is total energy

of the e+e− system. This jet clustering algorithm is called as (exclusive) Durham

algorithm. QCD radiation has soft-collinear singularity, whose emission probability

for (ij) → i + j is given by

d2P ∝ dz

z

dθij

θij

∝ dz

min(Ei, Ej)

dθij

θij

∝ dzdθij

kij

, (3.2)

therefore emissions are enhanced as those kt are small. In Durham algorithm, a

particle pair which has the smallest kt is combined preferentially, which lead to IRC

safety of the algorithm.

A generalized kT algorithm exists [66], whose basic variables are written as,

d2
ij = min(E2p

i , E2p
j )

1 − cos θij

1 − cos R
, d2

i = min(E2p
i , E2p

j ) (3.3)

Left one is called as measure, and two additional parameter, p and R, are introduced.

We can calculate n(n−1)/2 measures and n of d2
i . When d2

IJ is smallest, we combine

four momenta of I and J , and new mock momentum pIJ is produced. This operation

stop when all measures become larger than all d2
i . We call remaining four momenta

in the list as jets. Jet properties are depend on the p and R, and R is called as a

jet radious parameter. This name stem from the fact that a pair of four momentum

whose opening angle is larger than R is never combined in the definition.

In hadron colliders, variables which are invariant with respect to boost of a

beam direction are used. A transverse momentum along with a beam direction

and a distance in rapidity-azimuthal plain are used rather than energy and opening

angle. A corresponding measure for the jet definition is described as

d2
ij = min(p2p

T,i, p
2p
T,j)

∆Rij

R
, d2

i = min(p2p
T,i, p

2p
T,j), (3.4)

where the distance are mainly defined as

∆Rij =
√

(ηi − ηj)2 + (φi − φj)2. (3.5)

The variables ηi,j and φi,j are the rapidity and azimuthal angle of particle i and j.

4 For searching minimal measure dij , we need computation time which is propotional to n(n−
1)/2. This increases rapidly as the number of final states n increases. FastJet program [66] for
jet clustering achieves expected N lnN timing for many sequential recombination algorithms, and
make it possible to utilize the modern jet algorithm for data analysis.
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Figure 8: An example event to understand that anti-kT jets are constructed by particles around

the core. These orange, red, blue points show the final states in η − φ − pT space. The orange

points have smaller pT , which are almost the same for each other. The red particle (core-1) have

largest pT , and blue one (core-2) have second pT .

Jet algorithms with different power factors p in Eqs. (3.3) and (3.4) are called

as:

p =


1 (kT algorithm [67]),

0 (Cambridge-Aachen algorithm [68, 69]),

−1 (anti-kT algorithm [70]).

(3.6)

A cluster pare which has the smallest kT (angle) is combined preferentially in kT

(Cambridge-Aachen algorithm) algorithm. While, the highest pT cluster tend to

be clustered in anti kT algorithm. In hadron collider, anti-kT algorithm is often

used since jets defined the algorithm is not easily affected by contamination of

underlying event compare to jets defined other algorithms. We can understand that

by clustering test events in Fig. 8. These orange, red, blue points show the final

states in η − φ − pT space. The orange points have smaller pT , which are almost

the same for each other. The red particle (core-1) have largest pT , and blue one

(core-2) have second pT . From the jet definition orange particles around red one

within R are absorbed by core-1 in the first stage of the clustering when we set as

p = −1. After that, orange particles around core-2 are absorbed by that and second

jet are constructed. Some orange particles which are far from the core are actually

contaminations from underlying and pile-up events. Anti-kT jets are constructed

by particles around the core, therefore, the contaminations effect in jets is minimal.

Jets defined by kT and Cambridge-Aachen algorithm can take the contaminations

in jets more.

3.2 Jet substructure

Jet substructure techniques are particularly useful in identifying (tagging) a jet

origin in hard processes. While original work of this thesis is on quark-gluon dis-
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Figure 9: Pictorial representation of the boosted Higgs tagging in Ref. [4]. See text for details.

crimination, I also review two-prong and three-prong tagging in this section.

3.2.1 Two-prong and three-prong tagging

Two-prong tagging is used for boosted Z, W and Higgs boson. These mother bosons

can decay to two daughter fermions, e.g., H → bb̄. When we neglect mass of daugh-

ters, mother mass m is described as

m2 = (p1 + p2)
2 ' E1E2θ

2
12 = z(1 − z)E2θ2

12, (3.7)

where p1,2 and E1,2 are four momenta and energies of daughter particles, θ12 is a

opening angle between daughters, E is the mother energy, and z is a energy fraction,

z = E1/E. When the mother is boosted enough, m/E � 1, the energies of daughters

are tend to be balanced, z ∼ 1/2. In this case, the typical opening angle is given as

θ12 ∼
2m

E
. (3.8)

The daughters are collimated as the mother is boosted. In hadron collider, transverse

momentum pT and distance ∆R12 rather than E and θ12 are used. Alternative

relation is

∆R12 ∼
2m

pT

. (3.9)

Therefore, bb̄-pairs from Higgs which have pT = 200 GeV would be inside of jet

defined by R ∼ 1.2. We call such large-radious jet which contains decay products

from a mother particle as fat jet. The four momentum of fat jet is similar with

that of a mother particle. So, the mass of fat jet is cloth to the mother mass. We

would see two subjets in the fat jet of signal, on the other hand, there is not such

substructure in the QCD fat jet typically, which is the main idea of 2-prong tagging.

Pictorial representation of the idea is shown in Fig. 9. Left figure shows the fat

jet, whose mass is around Higgs mass. Undoing the clustering, we again cluster

objects in the fat jet until the jet splits into two subjets, which is shown in center

figure. If the subjets come from the Higgs decay, we may observe two light subjets.
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On the other hand, if the subjets come from the QCD radiation, one of the subjet

is light since that stem from a soft radiation, however another one is heaver than it

typically.5 Likewise, the momenta of subjets from the Higgs decay may be balanced,

on the other hand, those from the QCD radiation is not balanced due to the soft

singularity. Continuing the clustering with a given radius parameter Rfilt, we look

for H → bb̄g configuration. The last operation shown in right figure is called as

filtering. Most of QCD radiations from Higgs which is colour singlet should go into

the three subjets due to the angular ordering. Neglecting objects outside the subjets,

we can filter away the contaminations of underlying event.

Another difference between boosted objects from the Higgs/weak boson and the

QCD jets is number of charged tracks in the jets. As the jet pT increases, the energy

scale of partons in the QCD jets become larger and the number of charged tracks

increases [71, 72]. On the other hand, the energy scales of boosted objects are limited

by their masses. So, the difference of number between signal and background would

be significant especially in the high-pT range.

For 3-prong tagging, idea is the same with 2-prong tagging. Three-prong tagging

is especially used as boosted top tagging. Hadronic top decay is mainly following as

t → W+b → qq̄′b. So, we would see three subjets in the fat jet of top quark.

3.2.2 Quark-gluon discrimination

The boosted Z, W and Higgs jet have 2-prong substructure in there fat jets, and

3-prong substructure for top fat jets. Quark- and gluon-initiated jets have both

1-prong substructure since QCD radiations are soft and collinear dominantly. We

review how the nature of the jets are predicted by QCD, emphasizing the difference

between the quark and gluon jets.

One of the observables is the two-point energy correlation function C
(β)
1 [33, 73],

which can be defined in the rest frame of a parton pair as

C
(β)
1 =

∑
i<j∈jet

zizj

(
2 sin

θij

2

)β

, zi =
Ei

Ejet

(3.10)

where Eiis the energy of the particles labeled by i in the jet, Ejet is the jet energy,

θij is the angle between i and j, and β is a power parameter. The sum runs over all

distinct pairs of particles in the jet. We set β > 0 since the C
(β)
1 with β ≤ 0 change

the value by collinear emissoins. The angularity is calculated by the summation of

weight zizjθ
β
ij. Since QCD radiation is soft and angular ordering suppresses diffuse

5 Probability that both subjets by QCD radiation are light is strongly suppressed by the Sudakov
form factor.
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sequential-branching, QCD jet contains one most energetic core parton (labeled by

0) and many soft partons (labeled by 1, .., n) which are close to the core parton.6 So,

the weights zizjθ
β
ij (i, j ≥ 1) are negligible. In this approximation, C

(β)
1 is described

as

C
(β)
1 '

n∑
i=1

ziθ
β
i , θi = θi0. (3.11)

We assume that a branching whose weight is largest in {ziθ
β
i } gives dominant con-

tribution to C
(β)
1 [74], and write C

(β)
1 as,

C
(β)
1 ' max(z1θ

β
1 , ..., znθβ

n), (3.12)

where we assume that this jet contain n times branching.

Then, let’s estimate C
(β)
1 distributions for quark jets and gluon jets analytically.

We use the general scale as evolution variable, ti = f(zi)q
2
i ' zif(zi)θ

2
i . Eq. (3.12)

is written as

C
(β)
1 ' max(w1, ..., wn), wi = ziθ

β
i = zi

(
ti

zif(zi)

)β/2

(3.13)

If a branching satisfy relation, max(w1, ..., wn) < x, C
(β)
1 for the jet is smaller than

a given value x. When the branching is associated with m-body hard process, the

cross section that C
(β)
1 is smaller than x is

dσm

∫
Ω

(2n)
x

d2PF (z1, t1) · · · d2PF (zn, tn), (3.14)

where dσm is the differential cross section of hard part, and

Ω(2n)
x = {(z1, t1, ..., zn, tn) ∈ R2n | θi < R, t1 > · · · > tn, max(w1, ..., wn) < x},

(3.15)

d2PX(z, t) =
dt

t
dz

αS(t)

2π
P̂F (z),

(3.16)

where R is jet radius. We don’t need to consider wider emissions (θ > R). X denote

flavors of the core parton, i.e., X = q (quark) or g (gluon), and explicitly

P̂q = CF
1 + z2

1 − z
, (3.17)

P̂g = 2CA(
z

1 − z
+

1 − z

z
+ z(1 − z)). (3.18)

6 This is clear difference between QCD jet substructure and boosted W,Z, H and top quark jet
substructure.
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We denote ΣX(x) as the probability that C
(β)
1 is smaller than a given value x. This

cumulative distribution function (CDF) is given by

ΣX(x) =
1

σX

∫ x

0

deβ
dσX

deβ

=

dσm +
∞∑

n=1

dσm

∫
Ω

(2n)
x

n∏
i=1

d2PX(zi, ti)

dσm +
∞∑

n=1

dσm

∫
Ω(2n)

n∏
i=1

d2PX(zi, ti)
, (3.19)

Ω(2n) = {(z1, t1, ..., zn, tn) ∈ R2n | θi < R, t1 > · · · > tn}. (3.20)

The denominator in Eq. (3.19) is the cross section for whole events, and the numer-

ator is the summation of cross section that C
(β)
1 is smaller than x at all order. By

using relations in appendix C, we can write as

ΣX(x) =
exp

[∫
Ω

(2)
x

d2PX(z, t)
]

exp
[∫

Ω(2) d2PX(z, t)
] , (z = z1, t = t1) (3.21)

= exp

[
−
∫

Ω(2)\Ω(2)
x

d2PX(z, t)

]
, (3.22)

= exp

[
−
∫

Ω(2)\Ω(2)
x

dt

t
dz

αS

2π
P̂X(z)

]
. (3.23)

We note that the right hand side in Eq. (3.23) is not depend on the choice of evolution

variable function f(z).

Let us calculate ΣX(x) in soft limit. In the limit, the splitting function become

P̂X =
2CX

z
, CX =

CF (X = q),

CA (X = g).
(3.24)

ln 1
R

1
�

ln 1
x

ln 1
x

ln 1
z

ln 1
�
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1 = x

Figure 10: Set difference Ω(2)\Ω(2)
x in ln 1

θ -ln 1
z plain.
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We choose as f(z) = 1/z for simplicity, then

ΣX(x) ' exp

[
−
∫

Ω(2)\Ω(2)
x

(
d ln

1

θ

)(
d ln

1

z

)
2αSCX

π

]
, (3.25)

Ω(2)
x = {(z, θ) ∈ R2 | θ < R, ω1 = zθβ < x}, (3.26)

Ω(2) = {(z, θ) ∈ R2 | θ < R}. (3.27)

Therefore the set difference Ω(2)\Ω(2)
x is represented by

Ω(2)\Ω(2)
x = {(z, θ) ∈ R2 | θ < R, ln

1

z
+ β ln

1

θ
≥ ln

1

x
}, (3.28)

which is the red region in Fig. 10. We get the CDF in soft limit as

ΣX(x) = exp

(
−αSCX

πβ
ln2 Rβ

x

)
. (3.29)

The difference between quark jet and gluon jet on the cumulative distribution func-

tion come from the difference of the colour factors. The probability distribution

function (PDF) for C
(β)
1 is given by the differential of CDF,

1

σX

dσX

dC
(β)
1

=
d

dC
(β)
1

ΣX(C
(β)
1 ), (3.30)

=
2αSCX

πβ

1

C
(β)
1

ln
Rβ

C
(β)
1

exp

(
−αSCX

πβ
ln2 Rβ

C
(β)
1

)
. (3.31)

The factor prior to exponential in Eq. (3.31) has a singularity at eβ = 0, and

actually correspond to the differential cross section for C
(β)
1 at lowest fixed order.

The singularity is suppressed by the exponential factor, which is called as Sudakov

suppression. The term of αS ln2(· · · ) is in the exponent, which is called as leading

logarithmic (LL) term. When we take into account finite terms in the splitting

functions, the running of αS, and so on, next-to-leading logarithmic (NLL) terms

appear, which has a form of αS ln(· · · ).
In Fig. 11, the red and blue curves show C

(β)
1 distribution for quark jets and

gluon jets in Eq. (3.31). We can see that C
(β)
1 for gluon jets is larger than that for

quark jets statistically. The colour factor for the gluon decay is larger that for the

quark’s one, therefore, branchings from gluon tend to happen at a higher scale. The

high scale branchings correspond to wide and/or hard emissions, so C
(β)
1 becomes

larger.

Let us assume that the quark jets are signal and gluon jets are background. We

can collect more quark jets than gluon jets by collecting jets whose C
(β)
1 are small.

The CDF Σq(x) and Σg(x) show the remaining probability (efficiency) with cut

C
(β)
1 < x (see in Eq. (3.19)). Therefore, larger value of CDF ratio like Σq(x)/Σg(x)
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or ln Σg(x)/ ln Σq(x) means that the performance of quark-gluon discrimination is

better. The ratio is given by

ln Σg

ln Σq

=


CA

CF
(LL),

CA

CF

[
1 + nF−CA

3CA

√
αSCF

πβ ln 1
Σq

+ nF−CA

CA

αS

36π
b0
β
(2 − β) + · · ·

]
(LL+NLL).

(3.32)

We can see that the ratio is not depend on β in LL approximation, however it

depends on β by taking into account NLL contributions. The first and second terms

come from the finite term of splitting function, and the running coupling constant.

We can see more details of the NLL terms in Ref. [33]. We note that the ratio become

larger as β increase, in other words, C
(β)
1 with smaller β more separate quark jets

from gluon jets.

In Fig. 12, the β dependence of the quark-gluon discrimination with C
(β)
1 by using

a Monte Carlo event generator Pythia8 is shown [33]. This is a quark efficiency

(Σq(x)) versus gluon efficiency (Σg(x)) plot. The curves are drawn by changing the

cut value of x. Larger quark efficiency and smaller gluon efficiency means better

discrimination, therefore we can see that the smaller choice of β give the better

discrimination. We use C
(β)
1 in the following studies.

3.3 Subjet rates: Generating function method

There are several methods to calculate jet observables. Here, we introduce generat-

ing function method, which is especially useful to calculate subjet rates Rf
n(Ej, tmax) [75,
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0.00

0.05

0.10
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dΣ

dC1

Quark

Gluon

Figure 11: The red and blue curves show C
(β)
1 distribution for quark jets and gluon jets in

Eq. (3.31). (R = 1.0, αS = 0.12.)
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Figure 12: From Ref. [33]. The β dependence of the quark-gluon discrimination with C
(β)
1

by using a Monte Carlo event generator Pythia8. This is a quark efficiency (Σq(x)) versus gluon

efficiency (Σg(x)) plot. The curves are drawn by changing the cut value of x. Larger quark

efficiency and smaller gluon efficiency means better discrimination, therefore we can see that the

smaller choice of β give the better discrimination.

76, 77, 78]. The subjet rates Rf
n(Ej, tmax) show the probability that a primary par-

ton whose flavour, energy and scale are f , Ej and tmax produces n jet(s). Using

these subjet rates, we define generating function as

φf (u,Ej, tmax) ≡
∞∑

n=1

unRf
n(Ej, tmax). (3.33)

We can recover n subjet rate by

Rf
n(Ej, tmax) =

1

n!

dnφf

dun

∣∣∣∣
u=0

. (3.34)

Let us consider a situation that there are N primary partons in a system. For

example, there are five primary partons in the situation in Fig. 13. Whole generating

function for a given system X is just defined by the product of each generating

functions:

ΦX ≡
N∏

i=1

φfi
(u,Ej,i, tmax,i), (3.35)

where fi, Ej,i and tmax,i are flavour, energy and appropriate starting scale of i-th

primary partons. For example, whole generating function for e+e− → qq̄ system

may be simply given by

Φe+e− = φq(u,
√

s/2, tmax)φq̄(u,
√

s/2, tmax), (3.36)
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Figure 13: An example of two associated jet event. The emissions 1 → 2, 3 and 2 → 4, 5 are

resolved emissions, and 4 → 6, 7 and 3 → 8, 9 are unresolved emissions.

where
√

s is center of mass energy of e+e− collision. tmax is depend on the choice of

evolution variable.7 In the definition, we get following relation:

Φe+e− = u2(Rq
1R

q̄
1) + u3(Rq

1R
q̄
2 + Rq

2R
q̄
1) + u4(Rq

1R
q̄
3 + Rq

2R
q̄
2 + Rq

3R
q̄
1) + · · · . (3.37)

The parenthesis of i-th term corresponds to the probability that the system has i

jets. Therefore we can again recover n jet rate in the whole system by

1

n!

dnΦe+e−

dun

∣∣∣∣
u=0

. (3.38)

Let us consider Rf
n(Ej, tmax) to deduce a basic equation for the generating func-

tion. In Fig. 13, we illustrate an example of three subjet event. The emissions

1 → 2, 3 and 2 → 4, 5 are resolved emissions, and 4 → 6, 7 and 3 → 8, 9 are unre-

solved emissions. The resolved emission mean that its emission angle is θ ∈ [R, Ra]

and energy fraction is z ∈ [Ea/Ej, 1 − Ea/Ej]. There are three resolved subjet in

the yellow region. Emitted particles generated by sequential decays can go inside

another subjet. For example, emitted gluon 5 can go inside subjet whose core is

gluon 3. In the case, number of subjet decrease from three to two. Such effect called

as non-global logarithms [79]. The order of non-global logarithms is at NLL, and we

neglect that in this thesis.

First, let us consider one subjet rate from a flavor i and whose energy and starting

scale are Ej and tmax, i.e., Rq
1(Ej, tmax). This correspond to the probability that any

emissions do not happen in resolved region. By recalling in Sec. 2.1 and 3.2.2, such

7 The maximal scale will be discussed in Sec. 5, which is given by Eq. (5.5) for a general
evolution variable defined by Eq. (5.1).
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probability is described by the inverse of the exponentiate of total cross section over

the resolved region, i.e.,

Ri
1(Ej, tmax) = ∆i(Ej, tmax), (3.39)

∆i(Ej, t) = exp

− ∫ t

tmin

dt′

t′

∫ 1−Ea
Ej

Ea
Ej

dz
αS(k2

t )

2π
P̂i(z) (3.40)

× Θ(θ(t, z) − R)Θ(Ra − θ(t, z))

]
,

where tmax and tmin are the maximal and minimum values of scale t. For example,

when we use the virtuality, t = q2 = 2z(1 − z)E2
j (1 − cos θ), as scale,

tmax =
E2

j

2
(1 − cos Ra), (3.41)

tmin = 2
Ea

Ej

(
1 − Ea

Ej

)
(1 − cos R). (3.42)

The differential three subjet rate for the configuration in Fig. 13 is described as

∆q(Ej, tmax)

∆q(Ej, t)
× dt

t
dz

αS(k2
t )

2π
P̂q(z) × Rq

2((1 − z)Ej, t)R
g
1(zEj, t). (3.43)

The ratio show the probability that any emissions do not happen between t and

tmax. Rq
2((1 − z)Ej, t) show the probability that a quark, whose energy is (1 − z)Ej

and starting scale is t, emits two resolved partons. Then, three subjet rate have the

form,

Rq
3(Ej, tmax) =

∫ tmax

tmin

dt

t

∫ 1−Ea
Ej

Ea
Ej

dz
∆q(Ej, tmax)

∆q(Ej, t)

αS(k2
t )

2π
P̂q(z) (3.44)

× [Rq
2((1 − z)Ej, t)R

g
1(zEj, t) + Rq

1((1 − z)Ej, t)R
g
2(zEj, t)].

For n(> 1) jet, we get easily as,

Rq
n(Ej, tmax) =

∑
k+m=n

∫ tmax

tmin

dt

t

∫ 1−Ea
Ej

Ea
Ej

dz
∆q(Ej, tmax)

∆q(Ej, t)

αS(k2
t )

2π
P̂q(z) (3.45)

× Rq
k((1 − z)Ej, t)R

g
m(zEj, t).

By using the generating function in Eq. (3.33), Eq. (3.39) and (3.45) are described

uniformly by

φq(u,Ej, tmax) = u∆q(Ej, tmax) +

∫ tmax

tmin

dt

t

∫ 1−Ea
Ej

Ea
Ej

dz (3.46)

× ∆q(Ej, tmax)

∆q(Ej, t)

αS(k2
t )

2π
P̂q(z)φq(u, (1 − z)Ej, t)φg(u, zEj, t).
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For brevity, we use angle function as scale, i.e., t = q2/[2z(1− z)E2
j ] = 1− cos θ = ξ.

In the soft limit (1 − z)Ej → Ej, the equations of generating functions for quark

and gluon are written by

φq(u,Ej, ξa) = u∆q(Ej, ξa) +

∫ ξa

ξj

dξ

ξ

∫ 1

Ea
Ej

dz
∆q(Ej, ξa)

∆q(Ej, ξ)
(3.47)

× αS(k2
t )

2π
P̂qg(z)φq(u,Ej, ξ)φg(u, zEj, ξ),

φg(u,Ej, ξa) = u∆g(Ej, ξa) +

∫ ξa

ξj

dξ

ξ

∫ 1

Ea
Ej

dz
∆g(Ej, ξa)

∆g(Ej, ξ)
(3.48)

× αS(k2
t )

2π
{P̂gg(z)φg(u,Ej, ξ)φg(u, zEj, ξ) + P̂gq(z)[φq(u, Ej, ξ)]

2},

where ξj = 1 − cos R, ξa = 1 − cos Ra, and P̂qg, P̂gg and P̂gq are splitting functions

for q → qg, g → gg and g → qq̄ in Eq. (2.6). We use a relation φq = φq̄. In the

choice of scale, Sudakov form factor in Eq. (3.40) is simply written by

∆q(Ej, ξ) = exp

−∫ ξ

ξj

dξ′

ξ′

∫ 1

Ea
Ej

dz
αS(k2

t )

2π
P̂qg(z)

 , (3.49)

∆g(Ej, ξ) = exp

−∫ ξ

ξj

dξ′

ξ′

∫ 1

Ea
Ej

dz
αS(k2

t )

2π
{P̂gg(z) + nf P̂gq(z)}

 , (3.50)

where nf is number of active flavors. We can eliminate Sudakov factors from the

equations as

Eq. (3.47)

⇔ φq(u,Ej, ξ)

∆q(Ej, ξ)
= u +

∫ ξ

ξj

dξ′

ξ′

∫ 1

Ea
Ej

dz
αS(k2

t )

2π
P̂qg(z)

φq(u,Ej, ξ
′)

∆q(Ej, ξ′)
φg(u, zEj, ξ

′),

⇒ d

dξ

(
φq(u,Ej, ξ)

∆q(Ej, ξ)

)
=

1

ξ

∫ 1

Ea
Ej

dz
αS(k2

t )

2π
P̂qg(z)

(
φq(u,Ej, ξ)

∆q(Ej, ξ)

)
φg(u, zEj, ξ),

⇒ ln
φq(u,Ej, ξa)

∆q(Ej, ξa)
− ln

φq(u, Ej, ξj)

∆q(Ej, ξj)
=

∫ ξa

ξj

dξ

ξ

∫ 1

Ea
Ej

dz
αS(k2

t )

2π
P̂qg(z)φg(u, zEj, ξ),

Then we get

φq(u,Ej, ξa) = u exp


∫ ξa

ξj

dξ

ξ

∫ 1

Ea
Ej

dz
αS(k2

t )

2π
P̂qg(z)[φg(u, zEj, ξ) − 1]

 , (3.51)

where we use a trivial relation φq(u,Ej, ξj) = u, which means that any primary

partons whose starting angular-scale is ξj never emit resolved emissions. Likewise,
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we get a following equation for the gluon generating function:

φg(u,Ej, ξa) = u exp


∫ ξa

ξj

dξ

ξ

∫ 1

Ea
Ej

dz
αS(k2

t )

2π

(
P̂gg(z)[φg(u, zEj, ξ) − 1]

+ P̂gq(z)[
φq(u, zEj, ξ)

2

φg(u, zEj, ξ)
− 1]

)}
. (3.52)

We can solve the gluon generating function by iteration, and then substitute in this

equation to get the complete solution.

3.3.1 Double logarithmic accuracy

In this subsection, we solve subjet rates at double logarithmic accuracy (DLA). DLA

means that we consider only terms which have the form αm
S ln2m(· · · ).

For brevity we define the following logarithms:

κ = ln(Ej/Ea), κ′ = ln(zEj/Ea), (3.53)

λ = ln(ξa/ξj), λ′ = ln(ξ/ξj), (3.54)

We set a reference relative transverse momentum kt
2 ≡ E2

j ξa, and strong coupling

constant by

αS ≡ αS(kt
2
)

π
=

1

b0 ln(E2
j ξa/Λ2)

. (3.55)

By using this, we expand coupling constant by

αS(k2
t = z2E2

j ξ)

π
=

1

b0 ln(z2E2
j ξ/Λ

2)
, (3.56)

' αS − b0α
2
S[2 ln z + ln(ξ/ξj)], (3.57)

= αS − b0α
2
S[2(κ′ − κ) + λ′]. (3.58)

In DLA, we neglect the non-singular terms of splitting functions, i.e., P̂qg,gg '
2Cq,g/z, P̂gq, and α2

S term in the coupling constant, where Cq,g = CF,A. Then,

from Eq. (3.47, 3.48),

φi(u, κ, λ) ≡ φi(u, Ej, ξa) (3.59)

' u exp

{∫ ξa

ξj

dξ

ξ

∫ 1

Ea/Ej

dz
αS

2

2Ci

z
[φg(u, zEj, ξ) − 1],

}
, (3.60)

= u e−aiκλefi , (3.61)
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where

ai = CiαS, fi = ai

∫ λ

0

dλ′
∫ κ

0

dκ′φg(u, κ′, λ′). (3.62)

We want to know the differentiate of generating functions. We write as:

f
(n)
i ≡ ∂n

∂un
fi, φ

(n)
i ≡ ∂n

∂un
φi, (3.63)

Then,

φ
(1)
i = e−aiκλ[1 + uf

(1)
i ]efi , (3.64)

φ
(2)
i = e−aiκλ[1 + uf

(1)
i ]efif

(1)
i + e−aiκλ[f

(1)
i + uf

(2)
i ]efi . (3.65)

Using trivial relations φi(u = 0, κ, λ) = 0 and fi|u=0 = 0,

φ
(1)
i |u=0 = e−aiκλ, (3.66)

φ
(2)
i |u=0 = 2e−aiκλf

(1)
i |u=0, (3.67)

where

f
(1)
i |u=0 = ai

∫ λ

0

dλ′
∫ κ

0

dκ′φ(1)
g (u, κ′, λ′)|u=0, (3.68)

= ai

∫ λ

0

dλ′
∫ κ

0

dκ′e−agκ′λ′
, (3.69)

=
ai

ag

Ein(agκλ), (3.70)

where Ein is the entire exponential integral function

Ein(z) =

∫ z

0

dt

t
(1 − e−t) = −

∞∑
k=1

(−z)k

k k!
. (3.71)

Therefore we get subjet rates for n = 1 and 2 at DLA:

Ri
1(Ej, ξa) = e−aiκλ, (3.72)

Ri
2(Ej, ξa) = e−aiκλ ai

ag

Ein(agκλ). (3.73)

3.3.2 Next-to-double logarithmic accuracy

In this subsection, we solve subjet rates at next-to-double logarithmic accuracy

(NDLA). NDLA means that we consider terms which have the form not only αm
S ln2m(· · · )

but also αm
S ln2m−1(· · · ).
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First we define three ΓX functions:

Γq(κ
′, λ′, κ, λ) ≡ αS(k2

t )

2π
zP̂qg(z), (3.74)

Γg(κ
′, λ′, κ, λ) ≡ αS(k2

t )

2π
zP̂gg(z), (3.75)

Γf (κ
′, κ) ≡ nf

αS(k2
t )

2π
zP̂gq(z). (3.76)

These have the following forms

Γq(κ
′, λ′, κ, λ) =

CF αS

2
[1 + (1 − z)2] − b0CF α2

S

2
[2 ln z + ln(ξ/ξa)][1 + (1 − z)2],

' CF αS[1 − eκ′−κ + e2(κ′−κ)/2] − CF b0α
2
S[2(κ′ − κ) + λ′ − λ], (3.77)

where we neglect the sub-leading term of splitting function in α2
S term, namely

1 − z → 1. Likewise,

Γg(κ
′, λ′, κ, λ) ' CAαS[1 − eκ′−κ + e2(κ′−κ)/2 − e3(κ′−κ)/2] (3.78)

− CAb0α
2
S[2(κ′ − κ) + λ′ − λ],

where we use

Pgg(z) =
1 − z

z
+

z

1 − z
+ z(1 − z), (3.79)

→ 2
1 − z

z
+ z(1 − z), (3.80)

to shift the singularity on second term to first term. Pgq doesn’t have singularity, so

Γf start from NLL term. Then we neglect α2
S term, and get

Γf (κ
′, κ) ' nf

4
αS[eκ′−κ − 2e2(κ′−κ) + 2e3(κ′−κ)]. (3.81)

Using ΓX , the Sudakov form factors in Eq. (3.49) and (3.50) are written by

∆q(κ, λ) = exp

{
−CF αSλ

[
κ − 3

4
+ e−κ − 1

4
e−2κ

]
− CF b0α

2
Sκλ

[
κ +

1

2
λ

]}
(3.82)

∆g(κ, λ) = exp

{
−CAαSλ

[
κ − 11

12
+ e−κ − 1

4
e−2κ +

1

6
e−3κ

]
− CAb0α

2
Sκλ

[
κ +

1

2
λ

]
−nf

4
αSλ[

2

3
− e−κ + e−2κ − 2

3
e−3κ]

}
. (3.83)

Using ΓX and Sudakov form factor, the generating function for quark in Eq. (3.51)

is written by

φq(u, κ, λ) = u∆q(κ, λ)eF , (3.84)

F =

∫ λ

0

dλ′
∫ κ

0

dκ′Γq(κ
′, λ′, κ, λ)φg(u, κ′, λ′). (3.85)
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The generating function for gluon in Eq. (3.52) is expanded by

φg(u, κ, λ) = u∆g(κ, λ) exp

[ ∫ λ

0

dλ′
∫ κ

0

dκ′
{

Γg(κ
′, λ′, κ, λ)φg(u, κ′, λ′)

+ Γf (κ
′, κ)

[φq(u, κ, λ′)]2

φg(u, κ, λ′)

}]
,

= u∆g(κ, λ)

[
1 +

∫ λ

0

dλ′
∫ κ

0

dκ′
{

Γg(κ
′, λ′, κ, λ)φg(u, κ′, λ′)

+ Γf (κ
′, κ)

[φq(u, κ, λ′)]2

φg(u, κ, λ′)

}
+ O(u2)

]
,

= u∆g(κ, λ)

[
1 +

∫ λ

0

dλ′
∫ κ

0

dκ′
{

Γg(κ
′, λ′, κ, λ)[u∆g(κ

′, λ′) + O(u2)]

+ Γf (κ
′, κ)

[u∆q(κ, λ′) + O(u2)]2

u∆g(κ, λ′) + O(u2)

}
+ O(u2)

]
,

= u∆g(κ, λ)

[
1 + u

∫ λ

0

dλ′
∫ κ

0

dκ′
{

Γg(κ
′, λ′, κ, λ)∆g(κ

′, λ′)

+ Γf (κ
′, κ)∆f (κ, λ′)

}
+ O(u2)

]
, (3.86)

where ∆f ≡ ∆2
g/∆q. Therefore we get subjet rates for n = 1 and 2 at NDLA:

Ri
1(κ, λ) = φ

(1)
i (u, κ, λ)|u=0 = ∆i(κ, λ), (3.87)

Rq
2(κ, λ) =

1

2!
φ(2)

q (u, κ, λ)|u=0, (3.88)

= ∆q(κ, λ)

∫ λ

0

dλ′
∫ κ

0

dκ′Γg(κ
′, λ′, κ, λ)∆g(κ

′, λ′),

Rg
2(κ, λ) =

1

2!
φ(2)

g (u, κ, λ)|u=0, (3.89)

= ∆q(κ, λ)

∫ λ

0

dλ′
∫ κ

0

dκ′[Γg(κ
′, λ′, κ, λ)∆g(κ

′, λ′) + Γg(κ
′, λ′, κ, λ)∆g(κ

′, λ′)],

For n ≥ 2, we need numerical integration.

3.3.3 Results: subjet rates

In Fig. 14, the analytical and numerical calculations of subjet rates at DLA (black

curves) and NDLA (red curves) are shown. We set R = 0.4, Ra = 0.8 and Ea = 20

GeV. The difference between DLA and NDLA is up to 5% in the energy range.

These results say that gluon emits much of jets compare to quark. This mainly

stems from the colour factor of gluon branching is larger than that of quark’s one.

In Sec. 4, we compare the results obtained by generating function methods and

those by Monte Carlo event generators, and demonstrate that the performance of
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Figure 14: The analytical and numerical calculations of subjet rates at DLA (black curves) and

NDLA (red curves) are shown. We set R = 0.4, Ra = 0.8 and Ea = 20 GeV. The difference

between DLA and NDLA is up to 5% in the energy range.

quark-gluon discrimination improves by using not only jet substructure variables

but also subjet information.
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4 Associated jet and subjet rates in light-quark

and gluon jet discrimination

In the LHC environment, in order to keep the contribution of the underlying event

and multiple proton-proton collisions at a minimum, for multijet processes the stan-

dard choice is an anti-kt algorithm with radius parameter R = 0.4. In addition, in

the ATLAS study mentioned above, jets are required to satisfy an isolation criterion:

a jet is considered isolated if there is no other reconstructed jet within a cone of

size ∆R < 0.7 (where ∆R =
√

(∆η)2 + (∆φ)2 is the standard distance measure in

the pseudorapidity-azimuthal angle plane). An optimum choice for the jet radius

parameter was discussed in Refs. [80, 81] for quark and gluon jets as a function

of their transverse momenta (pT ), and it was observed that one usually requires a

larger radius for a gluon jet in order for the parton pT to be close to the jet pT .

However, for experimental purposes it is advantageous to use a fixed and small ra-

dius parameter for the jets, for reasons mentioned above. Therefore, we propose

to recover the missed information on radiation from the parent parton outside the

chosen jet radius by including softer reconstructed jets that can be present (with a

calculable probability) around a certain radius of a primary hard jet. These softer

jets are referred to as “associated jets” in this study. It is important to note here

that imposing an isolation criterion as above while studying quark and gluon jet

properties might not be appropriate, since it leads to rejecting a fraction of the jet

candidates beforehand, and thus biasing the sample to ones where the initial quark

or gluon has not radiated outside the adopted jet radius.

We first define the associated jet rates and compare the analytical results with

those from different parton shower MC’s in Sec. 4.1. Using the information on the

presence (or absence) of associated jets can improve the discrimination of quarks and

gluons. We demonstrate this through a multivariate analysis in Sec. 4.2. Several

combinations of jet discrimination variables are tried out, and an attempt is made

to determine an optimum choice. Even though we include standard discrimination

variables like the number of charged tracks as inputs to our multivariate analysis, it

should be emphasized that they are subject to MC ambiguities stemming from par-

ton shower algorithms and their associated parameters, and tunings of hadronization

and underlying event (UE) models. However, in order to judge the improvement in

tagger performance on using the associated jet rates, we compare the performance

of different sets of variables within the same MC.

In Secs. 4.3 and 4.4 we study the use of the number of subjets of a jet (defined

with an exclusive kt algorithm) in place of the number of charged tracks, since the
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Figure 15: A schematic illustration of associated jets, and the relevant variables

which determine the associated jet rate (see text for details).

different MC prediction tend to be similar for the former observable. We compute

the subjet rates upto NDLA as well, and compare the NDLA results with predictions

from different MC generators. Our results on both associated jets and subjets are

summarized in Sec. 6. We discuss the 2-dimensional joint distributions of the three

discrimination variables used as inputs in the multivariate analysis in an App. A.

4.1 Associated jet rates

Once a primary jet j has been defined, say using the anti-kt algorithm with radius

parameter R, we define a nearby jet i with ptj > pti > pa and R < ∆Rij < Ra as an

associated jet. Thus the associated jet rates are functions of the primary jet pt = pj,

its radius R, the association radius Ra and the minimum associated jet pt = pa.

In Fig. 15 we illustrate the idea of an associated jet schematically, and show the

relevant variables that determine the associated jet rate.

In perturbative QCD, the rate of n-jet production from a primary object of type

i (i = q, g in this case), Ri
n, can be obtained from the associated generating function

as discussed in Sec. 3.3

φi(u) =
∑

n

Ri
nu

n . (4.1)

We can recover the jet rates by differentiating at u = 0,

Ri
n =

1

n!

dnφi

dun

∣∣∣∣
u=0

. (4.2)

The jet rates Ri
n = Ri

n(pj, ξ) are functions of the trigger jet transverse momentum

pj, and the evolution scale for parton showering, which, for hadron-hadron collisions

is taken as ξ = ∆R2/2. This is equivalent to the evolution scale for coherent parton

showering, ξ ≡ 1−cos θ, with θ being the emission angle (∆R2/2 ≈ θ2/2 ≈ 1−cos θ).
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To be resolved, an emission must have ξ > ξj = R2/2 and pt > pa. Since the jet

rates Ri
n include the trigger jet j, the probability of n associated jets for a jet of

type i with transverse momentum pj is

P i
n = Ri

n+1(pj, ξa) . (4.3)

Here, ξa = R2
a/2, with Ra being the association radius defined above. We have

already calculated the subjet rates in Sec. 3.3. The argument was energy rather

than transverse momentum. Recalling the calculation, the argument have been used

for the definition of fraction variable z, see Eq. (3.46), and scale of strong coupling

constant in Eq. (3.55). Energy and transverse momentum fraction are similar for

collinear emissions and scale of strong coupling constant is transverse momentum

rather than energy in hadron collisions. Therefore it is a good approximation to use

the subjet rates in Eqs. (3.87)-(3.89) by substituting Ej → pj in the case of hadron

collisions.

We are now in a position to compare the NDLA predictions for associated jet

rates discussed in the previous section with the results obtained using the Herwig++ [41]

and Pythia8 [39] event generators 8, where the quark- and gluon-initiated jets are

simulated using the Z + q and Z + g processes at leading order in QCD (with the Z

boson subsequently decayed to νν̄). The event samples were generated for proton-

proton collisions at the 13 TeV LHC, using the CTEQ6L1 [82] parton distribution

functions (PDF) for the Pythia generators and the default MRST LO∗∗ [83] PDF and

UE model for Herwig++. Subsequently, we used a modified version of DELPHES2 [84]

for including detector effects. For observables based on charged tracks to be dis-

cussed in the following, we use a minimum pT threshold of 1 GeV for each track.

All jets are reconstructed with an anti-kt algorithm [66, 70] with radius parameter

R = 0.4, and are required to have pT > 20 GeV. In addition, the leading jet is

required to be central with |η| < 2.

In Fig. 16 we show the probability of obtaining n associated jets Pn as a function

of the jet pT for n = 0, 1 and n > 1, for quark- and gluon-initiated jets, in the

left and right columns respectively. The association radius is set to be Ra = 0.8

and the minimum associated jet transverse momentum is pa = 20 GeV. In the MC

simulations, Pn has been computed as a function of pT (js), which is the vector sum

of the leading jet and associated jet pT ’s. The jet rates are studied as a function of

pT (js), as it is closer to the transverse momentum of the parton that initiates the

final state shower.

We see that the functional behaviour with respect to the jet pT in the MC compu-

8To be specific, we use Herwig++ 2.7.0 and Pythia 8.201 (tune 4C) for all our calculations.
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Figure 16: Comparison of the Herwig++ and Pythia8 MC predictions for associated

jet rates with the NDLA results, as a function of pT (js): for quark jets (left), and

gluon jets (right), with Ra = 0.8 and pa = 20 GeV. Here, pT (js) is the vector sum

of the leading jet and associated jet pT ’s.

tation 9 and the NDLA calculation are similar, although there are some differences

in the values of Pn. In particular, the MC prediction of P1 for quark and gluon jets

is higher than the NDLA result, especially at higher pT (js), with Herwig++ giving

rise to a slightly larger P1 compared to Pythia8. For a quark jet, the probability

of having at least one associated jet ranges from around 15% to 25% as we go from

pT (js) = 200 GeV to pT (js) = 500 GeV and at higher pT (js) the probability essen-

tially remains the same. For gluon jets, the corresponding probability ranges from

around 30% to 40% as we go from pT (js) = 200 GeV to pT (js) = 500 GeV. The

larger probability to have an associated jet around a gluon can thus be utilized to

better discriminate it from quarks, as we shall see in the next section.

The NDLA computation includes only the time-like showering of the final state

partons, and ignores some power-suppressed effects due to momentum conserva-

tion and hadronization. On the other hand, the MC results shown above include

momentum conservation and hadronization as well as the effects of initial state ra-

diation (ISR) and multiple interaction (MPI). In order to quantify the effect of ISR

and MPI, we compare the predictions for Pn with and without ISR and MPI in

Herwig++, Pythia8 as well as in Pythia6 [38] (we use the version Pythia 6.4.28

9For the associated jet rate calculations, we generated MC event samples with a statistics of
20,000 events each fixing the threshold for the minimum leading jet pT at 50 × (i + 1) GeV, for
i ∈ [0, 19]. Only events with the leading jet pT (js) above the generation threshold are used in the
analysis. This ensures uniform MC statistics in the whole range of pT (js).
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Figure 17: Comparison of the Herwig++, Pythia8 and Pythia6 predictions for as-

sociated jet rates with and without ISR and MPI, as a function of pT (js): for quark

jets (left), and gluon jets (right). Here, pT (js) is the vector sum of the leading jet

and associated jet pT ’s.

with the AUET2B-CT6L tune) in Fig. 17. It is clear from this figure that the impact

of ISR and MPI is rather small for our choice of the association radius Ra = 0.8,

thereby making the predictions stable against such effects. For this choice of Ra, we

can see that Pythia8 shows the highest variation against such effects, followed by
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Pythia6, while the effects are indeed negligible for the case of Herwig++ 10. Further-

more, the MC results become closer to the NDLA ones when ISR and MPI effects

are switched off.

We also investigated the effects of momentum conservation, by changing the

recombination scheme in the anti-kt jet algorithm from the default E-scheme to

the “winner-take-all” scheme introduced in [85], which is less sensitive to recoils in

the parton shower [73]. Such a change increases the MC associated jet rates very

slightly. We believe this is because the axis of the leading jet is moved away from

the overall momentum vector of the system. The effects are roughly proportional

for quark and gluon jets, so they would not affect discrimination significantly.

4.2 Quark-gluon separation: multivariate analysis

4.2.1 Variables for quark-gluon separation

A large number of variables have been surveyed in the context of quark-gluon dis-

crimination, constructed out of either track based observables or calorimeter based

ones [27, 28, 29, 33, 34]. While the former category has the practical advantage

of being more accurate due to better track momentum resolution as well as being

less prone to pile-up contamination, the latter category can be used for jets with

larger rapidities outside the tracker coverage. The most widely studied variables

include the number of charged tracks inside the jet cone (nch), the jet width [27]

and two-point energy correlation function [33]. The jet width is defined as

w =

∑
i pT,i × ∆R(i, jet)∑

i pT,i

(4.4)

where the sum goes over all the tracks associated to the jet. For hadron collider,

the two-point energy correlation function variable C
(β)
1 introduced in Sec. 3.2.2 can

be defined as

C
(β)
1 =

∑
i

∑
j pT,i × pT,j × (∆R(i, j))β

(
∑

i pT,i)2
. (4.5)

Here again the sum over i and j run over all the tracks associated to the jet with

j > i, while β is a tunable parameter. It has been demonstrated in Ref. [29, 33]

that smaller values of the exponent β leads to a better quark-gluon separation, and

β = 0.2 is found to be optimal from perturbative calculations and MC studies based

on Herwig++ and Pythia8 generators. We have compared the performance of the

jet width variable w and the variable C
(β=0.2)
1 in the multivariate analyses (MVA) to

10However, we have checked that if we take a larger association radius, Ra > 1.2, the ISR effects
become appreciable in Herwig++.
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be discussed below, and find that in all cases C
(β=0.2)
1 leads to a better separation of

gluons from quarks. Therefore, in the following, we only show results based on nch

(with each charged track having pT > 1 GeV) and C
(β=0.2)
1 . In addition, we shall

include the associated jet information as well as the jet mass variable and compare

the performance of the different MVA methods. As seen in the previous section,

for n = 1 or n > 1, the probability of finding n associated jets, Pn, is significantly

larger for gluon jets compared to quark-initiated ones across the whole pT range of

interest. Therefore, the presence (or absence) of an associated jet within a certain

distance Ra of a high-pT jet can be used to further improve the separation.

As the boundary between the signal and background regions in the hyper-surface

spanned by the variables is non-linear, it is beneficial to adopt a multivariate analysis

strategy as compared to a cut-based one. For this purpose, we employed a Boosted

Decision Tree (BDT) algorithm with the help of the TMVA-Toolkit [86] in the ROOT

framework. The training of the classifier was performed with Z+q−jet and Z+g−jet

samples, and we generated the above MC samples uniformly distributed in jet-pT
11.

The input variables for the two variable training are taken to be nch and C
(β=0.2)
1 ,

while for three-variable trainings we further include the variable mJ/pT,J , where

mJ is the jet mass and pT,J is the transverse momentum of the leading jet. The

information on the number of associated jets is included in the form of two categories

(n = 0 or n ≥ 1) in the MVA.

It should be emphasized that the MC prediction of the discrimination variables,

especially the number of charged tracks nch is quite sensitive not only to the parton

shower (PS) algorithm adopted and the related parameters, but also to the tuning

of the hadronization and underlying event models. This is expected, since nch is not

an infrared safe quantity, and only the ratio ngluon
ch /nquark

ch converges rather slowly to

the ratio of the colour factors CA/CF for high jet pT [87]. The disagreement between

different MC generators can therefore be reduced only by appropriate tuning at the

LHC energies. With this limitation of the MC predictions in view, in this study, we

compare the performance of different MVA methods within the same MC generator

to estimate the improvement in adding associated jet related observables. We also

show the quark-gluon separation as predicted by the different MC generators for

comparison. In App. A we present details of the distributions of the discrimination

variables and the differences between the MC predictions for them.

11The MC event samples for the training of the classifier were generated in the same manner as
for the associated jet rate computation in the previous section, but with a smaller step size of 10
GeV for the minimum pT (js) thresholds.
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4.2.2 Performance in MVA

Based on the BDT analysis, we obtain the efficiencies of tagging quark (εq) and gluon

jets (εg) as a function of the cut on the BDT score. It is more useful to compare the

ratio of the tagging efficiencies as a function of εq, in order to judge the separation

power of a ”quark-rich signal” from a ”gluon-rich” background. In Figs. 18-20 (left

column) we show the ratio of the quark and gluon tagging efficiencies, εq/εg as a

function of εq, for 400 < pT (js) < 500 GeV, with the event samples generated with

all the three MC codes. Four different MVA methods are shown corresponding to

different choices for the discrimination variables:

• Method-1: Two variables, nch and C1 with β = 0.2.

• Method-2: Two variables, nch and C1 with β = 0.2, with two categories

determined in terms the number of associated jets (n = 0 or n ≥ 1).

• Method-3: Three variables, nch, C1 with β = 0.2 and mJ/pT,J .

• Method-4: Three variables, nch, C1 with β = 0.2 and mJ/pT,J , with two

categories determined in terms the number of associated jets (n = 0 or n ≥ 1).

We can quantify the improvement in quark-gluon separation using εg(Method-

1)/εg(Method-{2,3,4}) as a function of εq, as shown in Figs. 18-20 (right). For e.g.,

for an operating point of εq = 0.4, we can obtain an improvement of around 10%, 15%

and 20% using Methods-2,3 and 4 respectively, when compared to Method-1. The

differences between the improvement factors obtained using the three MC generators

are found to be small.

In order to estimate the change in tagger performance as we consider lower pT

jets, we show in Fig. 21 the same results as in Fig. 18, but now with 150 < pT (js) <

200 GeV. The improvement on adding associated jet rates is still appreciable, al-

though it is somewhat reduced compared to the higher pT range. The fluctuations

in the εg ratio for lower values of εq in Fig. 21 are due to low MC statistics.

We can see in Figs. 18-20 that there is an improvement in going from a two

variable analysis to a three variable one by including the variable mJ/pT,J . This

can be understood as follows. The jet mass variable is related to C
(β=2)
1 , as can be

seen by writing both of them in terms of the z, θ variables for the hardest emission

inside the jet cone: m2
J ' z(1 − z)θ2p2

TJ . Furthermore, C
(β=2)
1 and C

(β=0.2)
1 are two

independent variables belonging to the C1 class which carry all the information on

this hardest emission, and including both of them improves the tagger performance.

For this reason, further addition of a third variable in the C1 class does not change

the performance appreciably, a fact that we explicitly checked by a separate MVA
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Figure 18: The ratio of the quark and gluon tagging efficiencies, εq/εg as a func-

tion of εq, for 400 < pT (js) < 500 GeV, as determined by MC simulations with

Herwig++ (left column). The different MVA methods, determined in terms of the

input variables are explained in the text. To quantify the improvement in quark

gluon separation as we go to Methods 2,3 and 4, we show εg(Method-1)/εg(Method-

{2,3,4}) as a function of εq as well (right column).
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Figure 19: Same as Fig. 18, with MC simulations using Pythia8.
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Figure 20: Same as Fig. 18, with MC simulations using Pythia6.
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Figure 21: Same as Fig. 18, for a lower range of jet pT , 150 < pT (js) < 200 GeV.

Results using only Herwig++ are shown.

analysis. There is a further improvement in the quark-gluon separation when the

number of associated jets information is included at the level of categories in both

the two and three variable MVA analyses. Since the associated jet rates carry the

additional information of radiation outside the jet cone, Methods 2 and 4 lead to

further improvements as compared to Methods 1 and 3, respectively.
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Method 4 leads to the best performance out of the four different MVA’s consid-

ered. In fact, we find that there is an alternative way to include the associated jet

rates information in Method 4 by using the modified jet mass variable m(js)/pT,J

in Method 3. Here, m(js) is the jet mass computed by adding the leading jet and

associated jet four momenta. Because of a larger associated jet rate, for the same

pT (js), m(js) is higher for a gluon jet compared to a quark, while pT,J is lower.

Therefore, using either associated jet rate categories and mJ/pT,J , or using only the

variable m(js)/pT,J leads to the same MVA performance, as shown in Fig. 22.
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Figure 22: Comparison of Method 4 which includes mJ/pT,J and the associated

jet rates as categories in the MVA, and the alternative method of including the

associated jet rate information by using the modified jet mass variable m(js)/pT,J .

Both methods lead to the same MVA performance.

4.3 Subjet rates in jets: analytical calculations

The number of charged tracks inside a jet cone, nch (with each track having trans-

verse momentum above a threshold, usually taken to be around 1 GeV) is often

used as a good discriminating variable. However, as mentioned earlier, the MC pre-

dictions for this observable are quite sensitive not only to the parton shower (PS)

algorithm and the related parameters, but also to the tuning of the hadronization

and underlying event models. On the otherhand, we find that the number of sub-

jets of a primary jet leads to a more uniform prediction across the MC generators,

and thus can be better suited in quark gluon separation studies. The number of
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subjets as a quark-gluon separation variable was considered earlier in Ref. [27]. In

this study, we compute the subjet rates to NDLA accuracy, and show a detailed

comparison with different MC generators.

We find the subjets of jet j with the exclusive kt algorithm, which applies the

dimensionless distance measure

yik = min{p2
ti, p

2
tk}

∆R2
ik

R2p2
j

, (4.6)

to its constituent objects and clusters them as discussed for a generalized kt algo-

rithm in Sec. 4.1, until the smallest yik is above ycut. Thus the subjet rates are

functions of the jet pt = pj, the jet radius R, and ycut.

In this section, we compute the subjet rates to NDLA, i.e. considering double

and next-to-double logarithms, αn
SL2n and αn

SL2n−1, where now L = ln(1/ycut). The

relevant generating functions in this case are those given in Refs. [67, 77]:

φq(u,Q) = u ∆q(Q) exp

(∫ Q

Q0

dq Γq(Q, q)φg(u, q)

)
, (4.7)

φg(u,Q) = u ∆g(Q) exp

(∫ Q

Q0

dq

[
Γg(Q, q)φg(u, q) + Γf (q)

φq(u, q)2

φg(u, q)

])
(4.8)

where Q = R pj is the jet scale, Q0 = R pj
√

y
cut

is the resolution scale,12

Γq(Q, q) =
2CF

π

αS(q
2)

q

(
ln

Q

q
− 3

4
+

q

Q
− 1

4

q2

Q2

)
, (4.9)

Γg(Q, q) =
2CA

π

αS(q
2)

q

(
ln

Q

q
− 11

12
+

q

Q
− 1

4

q2

Q2
+

1

6

q3

Q3

)
, (4.10)

Γf (q) =
nf

3π

αS(q
2)

q

(
1 − 3

2

Q0

q
+

3

2

Q2
0

q2
− Q3

0

q3

)
. (4.11)

The Sudakov factors for no resolvable emission are now

∆q(Q) = exp

(
−
∫ Q

Q0

dq Γq(Q, q)

)
, (4.12)

∆q(Q) = exp

(
−
∫ Q

Q0

dq [Γg(Q, q) + Γf (q)]

)
. (4.13)

Hence the rates for 1, 2 or 3 subjets in a quark jet are:

Rq
1 = ∆q(Q) ,

Rq
2 = ∆q(Q)

∫ Q

Q0

dq Γq(Q, q)∆g(q) ,

Rq
3 = ∆q(Q)

∫ Q

Q0

dq

∫ q

Q0

dq′ Γq(Q, q)∆g(q) ×

{[Γq(Q, q′) + Γg(q, q
′)] ∆g(q

′) + Γf (q
′)∆f (q

′)} , (4.14)
12Here again we keep power-suppressed corrections in order to satisfy boundary conditions.
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where ∆f = ∆2
q/∆g, and for a gluon jet we have

Rg
1 = ∆g(Q) ,

Rg
2 = ∆g(Q)

∫ Q

Q0

dq [Γg(Q, q)∆g(q) + Γf (q)∆f (q)] ,

Rg
3 = ∆g(Q)

∫ Q

Q0

dq

∫ q

Q0

dq′
[
Γg(Q, q)∆g(q) ×

{[Γg(Q, q′) + Γg(q, q
′)] ∆g(q

′) + Γf (q
′)∆f (q

′)} + Γf (q)∆f (q) ×

{[Γg(Q, q′) − Γg(q, q
′)] ∆g(q

′) + 2Γq(q, q
′)∆q(q

′)}
]

. (4.15)

4.4 Subjet rates in jets: comparison with Monte Carlo

We now compare the above results with Monte Carlo predictions. MC samples of

quark and gluon jets were prepared for the subjet analysis using the same setup as

in the associated jet study in Sec. 4.1, however, detector effects and minimum pT

cuts for the charged and neutral hadrons were not included for this analysis. In this

sense, our study of the subjet rates should be taken as illustrative, and we do not

include the subjet rates in an MVA analysis in this paper. As we shall see in the

following, one needs to go down to at least L = 4 to have some discrimination power.

This corresponds to going down to 0.1 for ∆R resolution, which is the typical size

of calorimeter cells, although the ∆R separation of subjets would be larger when

the subjet pT is smaller compared to the primary jet pT . Therefore, in a proper

analysis, combining track and calorimeter information is essential, and a detailed

experimental study is necessary, which is beyond the scope of this paper.

Figure 23 shows comparisons between the resummed results of Eqs. (4.14, 4.15)

and the MC results for jets with pT,J ∈ [500, 600] GeV and R = 0.4. For quark jets

the different MC generators agree quite well with each other and with the resummed

calculations, the MC predictions being somewhat below the resummed 1-subjet rate

for L > 4, and vice-versa for 2 subjets. Hadronization effects are small for L < 7,

after which the 1- and 2-subjet rates are suppressed and the higher subjet rates are

therefore enhanced. At this value of R pTj, L = 7 corresponds to resolving subjets

with min{pti, ptj}∆Rij ∼ 6 GeV.

For gluon jets the agreement between the resummed results and the Monte Carlos

is still quite close for 1 subjet. For 2 and 3 subjets the peak rates are in roughly the

same place but have higher values than the resummed ones, with the effect that the

rate for 4 or more subjets is substantially suppressed. Once again the hadronization

effects are small for L < 7, after which the 1- and 2-subjet rates are suppressed

and the higher subjet rates are enhanced, actually bringing the latter into close

agreement with the analytical calculations.
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Figure 23: Subjet rates Rn with n = 1, 2, 3 and n > 3 as a function of L = −ln(ycut),

for quark jets (black) and gluon jets (red), with pT,J ∈ [500, 600] GeV, R = 0.4.

Curves are Herwig++ (dashed), Pythia6 (dot-dashed), Pythia8 (dotted) and NDLA

resummed (solid).

In conclusion, the fairly good agreement between the Monte Carlos and the

resummed 1-, 2- and 3-subjet rates for R = 0.4 and L not too large (L < 5, subjet

resolution above about 15 GeV) suggests that in this range those subjet rates can

be used for quark-gluon discrimination. At larger jet radii, the agreement remains

similar, as we have checked using R = 0.8.
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5 Evolution variable dependence of jet substruc-

ture

Through the study in Sec. 4, we noticed that the predictions of QCD jet substructure

are different between Pythia and Herwig++. Main purpose of this section is to

consider the differences by focusing on the parton shower algorithm. With this goal

in mind, we simulate QCD jet substructure related observables with the following

generalized evolution variable:

Q2
α = [4z(1 − z)]αq2, (5.1)

where, α is treated as a free parameter. For final state radiation, the above variable

with α = 1 and −1 correspond to the evolution variables employed in Pythia8 and

Herwig++ respectively. In Sec. 5.1, we provide further details on the framework used

to implement this evolution variable in our parton shower program. In Sec. 5.2,

we show properties of QCD radiations generated by a given Qα, and discuss the

correlation pattern between such radiation properties and the resulting behaviour

of the jet shape variable, C
(β)
1 [33]. In Sec. 5.3, we show α-dependence of C

(β)
1

distributions and the associated jet rate observable [88] with tuned values of the

parton shower parameters. We summarize our findings in Sec. 6.

5.1 Modification of the parton shower formalism

The evolution variable for the final state radiation of light partons used in our

analysis is defined in Eq. (5.1), where z is the momentum fraction of one of the

daughter partons and q2 is the virtuality of the mother parton. The daughter partons

are taken to be on-shell. The variable Qα is parametrized by a continuous parameter

α, and we take the range as α ∈ [−1, 1] in this study. Qα with α = 1 and −1

correspond to Pythia8’s evolution variable (i.e., relative transverse momentum) and

Herwig++’s one respectively. QCD radiations are governed by the DGLAP equation

[45, 46]. When we use Qα as a scale variable, the evolution equation takes on a

equivalent form for each α due to the following relation,

dQ2
α

Q2
α

dz =
dq2

q2
dz. (5.2)

We implement the general evolution variable Qα for arbitrary α in a parton shower

program, and calculate jet substructure observables. Even though there are various

recent parton shower formalisms, e.g., dipole shower in Pythia8 [89] or dipole-

antenna shower in Vincia [90, 91], we use in this study a traditional formalism
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based on Refs. [41, 92], which is used in Herwig++. In the following subsection, we

describe the modification to the formalism in Refs [41, 92] required to have a parton

shower with arbitrary α.

5.1.1 Phase space

Consider an emission where a mother parton a branches off into light or massless

partons b and c (a → bc). We give an effective mass mqg to the daughter partons to

avoid singularities in the splitting functions. Then, upper and lower values of the

energy fraction of one daughter parton z+
E and z−E are given by

z±E =
1

2

1 ±

√
1 − q2

E2
a

√
1 −

4m2
qg

q2

 , (5.3)

where q2 is the virtuality of a when b and c are on-shell, and Ea is the energy of a.

This gives a condition for the allowed region on the energy fraction zE and Qα as

Q2
min

Q2
α

wα +
Q2

α

Q2
max

w−α ≤ w +
Q2

min

Q2
max

, w = 4zE(1 − zE), (5.4)

where Qmax and Qmin are the maximal and minimal values for Qα. These are inde-

pendent of α, and given as

Qmax = Ea, Qmin = 2mqg. (5.5)

Here, z describes not the energy fraction but the light-cone momentum fraction as

in Refs. [41, 92]. However, we have explicitly checked that these are approximately

the same. Hence we use Eq. (5.4) with a substitutions, zE → z in the generation of

Qα and z. The energy of the partons are known at the end of all branchings. So,

we set Qmax in Eq. (5.4) to the energy of the initial hard scattering process, i.e.,
√

s/2 for the first branching, and calculate by taking z as the energy fraction for

subsequent branchings. These choices ensure the required relation p2
⊥ = Q2

1−Q2
min ≥

0, where p⊥ is the spatial component of the relative transverse momentum for each

branchings, as defined in Ref. [41, 92].

The allowed phase spaces in the ln z−ln Qα plane for each choice of α is illustrated

in Fig. 24, where the parton energy Ea is fixed at 500 GeV. At leading order, the

parton branchings occur almost uniformly on this plane. The partons start from a

high scale and evolve to low scale in timelike branchings, and the smaller α is, the

larger the phase space becomes in the high scale region. So, when the evolution starts

from a high scale, initial emissions tend to choose a high scale and soft emission for

small α.
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Figure 24: The allowed phase space in the ln z − lnQα plane for each choice of α, with Ea fixed

at 500 GeV.

5.1.2 Starting scale

We consider final states of either a light quark pair (qq̄) or a gluon pair (gg), with a

center of mass energy of
√

s, and set the starting scale for the initial partons to their

energy in the rest frame of the final state, i.e.,
√

s/2. This is the maximal choice for

the starting scale, see Eq. (5.5).

Next, consider the sequential branchings a → bc and b → de, with the scales of

the branching given by Qα and Qα,b as;

Q2
α ' [4z(1 − z)]α × 2z(1 − z)E2

a(1 − cos θa), (5.6)

Q2
α,b ' [4zb(1 − zb)]

α × 2zb(1 − zb)E
2
b (1 − cos θb), (5.7)

where θa and θb are the angle between b and c, and d and e respectively. The

momentum fractions for the branchings a → bc and b → de are given by z and zb,

and the energy of a and b are Ea and Eb ' zbEa. By imposing the angular ordering

θa > θb, we get

Qα,b < Qαz

[
4z(1 − z)

4zb(1 − zb)

]−(α+1)/2

, (5.8)

≤ Qαz[4z(1 − z)]−(α+1)/2. (5.9)

The right-hand side in Eq. (5.9) can be greater than the previous scale Qα. To avoid

this wrong of ordering the scale, we set the starting scale of the daughter parton b

as

QS
α,b = Qαmin(1, z[4z(1 − z)]−(α+1)/2). (5.10)
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M

Qα

Figure 25: Red and blue regions satisfy the angular-ordered condition in Eq. (5.9) for α = 1

and −1, where previous scale and momentum fraction are set to Qα = 100 GeV and z = 0.8.

The region M is in red region and above Qα. Sequential emissions in M are prohibited since the

scale Qα,b does not ordered. Such missing phase space make the difference of emissions for each α

essentially.

The angular ordering is ensured by using this starting scale for α = −1. However,

angular ordered emission is not ensured for α 6= −1. Such emissions are vetoed by

hand as in Pythia6 [38].

In Fig. 25, red and blue regions satisfy the angular-ordered condition in Eq. (5.9)

for α = 1 and −1, where previous scale and momentum fraction are set to Qα = 100

GeV and z = 0.8. The region M is in red region and above Qα. Sequential emissions

in M are prohibited since the scale Qα,b does not ordered. Such missing phase space

make the difference of emissions for each α essentially.

5.1.3 Tunable parameters and other modifications

We use three parameters αS(mZ), mqg, and rcut in our parton shower program.

The first one is the strong coupling constant at the scale of the Z boson mass.

We use one loop running of αS in our code. The argument of αS is set to p⊥ =

2−α[z(1− z)](1−α)/2Qα thereby including the effects of subleading terms in the split-

ting functions. The value of αS is significant to the predictions of jet substructure.

Larger values of αS lead to high scale emissions, and jet shape distributions, e.g.,

the jet mass distribution shift to higher value regions. The value of αS(mZ) is set to

0.118 in Herwig++, and about 0.136− 0.139 for the final state radiation in Pyhtia8.
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The second variable mqg is the effective mass of the light partons and gluons to

avoid soft-collinear singularities, which was introduced in Sec. 5.1.1. The third one

is defined as

rcut =
Qcut

Qmin

=
Qcut

2mqg

, (5.11)

where Qcut is a given scale where the evolution terminates.

We note in passing that, in our analysis, we neglect g → qq̄ branchings for

simplicity, which affect distributions at the NLL order.

5.2 Emission property

Jet shape observables are important in examining the substructure of QCD jets.

One of the recently studied jet shape observable is the two-point energy correlation

function C
(β)
1 [33, 73], which can be defined in the rest frame of a parton pair as

C
(β)
1 =

∑
i<j∈jet

EiEj

E2
jet

(
2 sin

θij

2

)β

, (5.12)

where Ei and Ej are the energies of the particles labeled by i and j in the jet, Ejet is

the jet energy, and θij is the angle between i and j. The sum runs over all distinct

pairs of particles in the jet. The dominant contribution to this observable comes

from the hardest emission in the jet, which is also the first emission in the jet [74].

Neglecting all other emissions except for the hardest one, we get in the soft limit

ln C
(β)
1 ' ln z + β ln

(
2 sin

θ

2

)
, (5.13)

where z and θ are the smaller energy fraction and the angle of the hardest emission,

respectively. Evidently from the above equation, studying the properties of the first

emission in the jet on the z− θ plane will lead to an understanding of the behaviour

of this jet shape.

Figs. 26 and 27 show the emission probability on the ln z − ln(2 sin(θ/2)) plane

for quark and gluon jets respectively. The top, center and bottom rows show the

results for the first, second and third emissions. Here, the second and third emissions

refer to the emissions from the harder of the two partons produced by the first and

second emissions respectively. We find that the equal-probability curves for the first

emission plots are roughly given by the contours described by

Const. =
α + 1

2
ln z + ln

(
2 sin

θ

2

)
. (5.14)
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Figure 26: Emission probability in the ln z − ln(2 sin(θ/2)) plane for quark jets. The top, center

and bottom rows show the results for the first, second and third emissions, respectively. The second

and third emission refer to the emissions from the harder parton produced by the first and second

emissions respectively.

This is because, the evolution variable, in other words, the ordering variable, in

Eq. (5.1) can be written in the soft limit as

ln Qα =
α + 1

2
ln z + ln

(
2 sin

θ

2

)
+ Const. (5.15)

It should be mentioned that the small z regions are more favourable due to larger

values of the strong coupling constant, αS. In the case of α = −1, the evolution

variable is given by Q−1 ' E × 2 sin(θ/2), where E is the energy of the mother

parton. So, high scales also imply larger angles. As mentioned above, the emissions

tend to prefer high scales and soft emissions for smaller values of α. This is consistent
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Figure 27: Same as Fig. 26, for gluon jets.

with the results for the first emission with α = −1 in Figs. 26 and 27.

Clearly, for the jet shape observable in question, we are mostly interested here

in the first emission in a jet. When we set the jet radius to R = 0.4, such emissions

are distributed in the region described by ln(2 sin(θ/2)) < −0.9. The first emissions

often fall outside a narrow jet, especially for small α. Also, such emissions tend to be

vetoed out in the parton shower-matrix element matching algorithms. Therefore, it

is also important to look into the subsequent emissions. We find that the second and

the third emissions also have a different distribution for each value of α. This fact

indicates that parton shower algorithms implementing different evolution variables

would have different predictions for jet substructure. However, the results in Figs. 26

and 27 are obtained with the same set of inputs for the tunable parameters described
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in the previous section 13 for all values of α. In the next section, we employ a

procedure to fit the values of these parameters for each α separately, and show our

results with the fitted values of the parton shower parameters for completeness.

5.3 The α dependence

5.3.1 Jet shape distribution

Jet shape distributions depend on the parameters αS(mZ), mqg, and rcut introduced

in Sec. 5.1.3. These parameters are determined by performing a fit of the MC

predictions to experimental data on several jet observables, for which the e+e− → n

jets data from LEP are particularly useful. Performing such a fit to the experimental

data is, however, beyond the scope of the present study as this would require the

implementation of a hadronization model in our parton shower code. Since the

primary goal of this study is to examine between difference between parton shower

algorithms using different evolution variables, as an alternative to real data, we

utilize the e+e− → qq̄ events generated by Herwig++ with hadronization switched

off as our data 14.

The C
(0.5)
1 , C

(2.0)
1 and C

(3.0)
1 distributions have been used to tune the above pa-

rameters. As mentioned in Sec. 5.2, the first emission in the jet has a significant

effect on the jet shape, which can be parametrized by the momentum fraction z and

the angle θ. Therefore, two independent C
(β)
1 distributions contain the necessary

information about the jet shapes. Here, we use three variables in order to further

examine the β dependence of the QCD jet substructure.

Throughout this paper, jets are clustered using the generalized kt algorithm for

e+e− collisions using FastJet 3.1.1 [66], the distance measure for which is defined

as

dij = min(E2p
i , E2p

j )
1 − cos θij

1 − cos R
, (5.16)

where R is the jet radius parameter, and we use p = −1.

We firstly generate events using five choices for the evolution variable, Q1, Q0.5,

Q0, Q−0.5 and Q−1 at
√

s = 200GeV, where
√

s denotes the center of mass energy

in the e+e− collisions. We calculate ln C
(0.5)
1 , ln C

(2.0)
1 and ln C

(3.0)
1 distributions

with R = 0.4, and find the values of the parameters that minimize the χ2 variable

computed using our results and the mock data generated by Herwig++. Theoretical

13 The distributions in Figs. 26 and 27 are obtained with αS(mZ) = 0.12, mqg = 1GeV, and
rcut = 1.

14To be specific, we use Herwig++ 2.7.1 with default tune, for the uū and dd̄ parton level final
states.
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α αS(mZ) mqg[GeV] rcut

+1.0 0.132 0.94 1.00

+0.5 0.126 0.90 1.00

±0.0 0.121 0.84 1.05

−0.5 0.119 0.83 1.16

−1.0 0.119 0.85 1.25

Table 1: Tuned values of the parton shower parameters for each choice of α, obtained by fitting
the ln C

(0.5)
1 , ln C

(2.0)
1 and ln C

(3.0)
1 distributions for quark jets with R = 0.4 with an e+e− centre

of mass energy of
√

s = 200GeV. The reference distributions are calculated by using e+e− → qq̄

events generated by Herwig++

errors are assigned using a flat distribution for each bin. The best fit values of the

parameters are shown in Table 1. We see that the larger α is, the larger the tuned

value of αS(mZ) becomes. In other words, the Pythia8-like case with Q1 prefers a

higher value of αS(mZ) compared to the Herwig-like case with Q−1. This qualitative

behaviour is in agreement with the actual implementations found in Pythia8 and

Herwig++. It should be emphasized that the outcomes of this tuning procedure do

not entirely reflect the Monte Carlo difference between Pythia8 and Herwig++, as

the the parton shower algorithm implemented in Pythia8 is different from ours.

In Fig. 28, the top row shows the fitted results, and hence the distributions are in

good agreement with Herwig++ predictions. We also obtained the distributions for

a fat jet (with R = 1.2) and for gluon jets using the fitted values of the parameters

shown in Table 1. For the same energy, the gluon jet distributions with R = 0.4

are similar for each choice of the evolution variable. Small differences appear in the

shapes predicted by different choices of α for the fat quark and gluon jets (R = 1.2).

Fig. 29 shows the same distributions as in Fig. 28, with a higher value of the center

of mass energy,
√

s = 1000 GeV. As we can see, the α-dependence of the shapes is

found to be higher for higher energy jets.

5.3.2 Wideness of soft emissions in jets

The larger the parameter β in C
(β)
1 is, the larger the differences become in Fig. 29.

This implies that the wideness of the emissions, especially for the hardest emission

in the jets, is different for each α. This is because, the larger β is, the larger the

contribution to C
(β)
1 from the emission angle of the hardest emission becomes, which

is understood from Eq. (5.13).

Associated jet rates defined in Ref. [88] directly reveal the wideness of the emis-

sions in jets. Associated jets are jets nearby a hard jet, and are defined by two
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Figure 28: Distributions of lnC
(0.5)
1 , ln C

(2.0)
1 and ln C

(3.0)
1 for quark and gluon jets, with R = 0.4

and 1.2, at
√

s = 200 GeV, as obtained using the parameter values shown in Table 1.
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Figure 29: Same as Fig. 28, with a higher center of mass energy,
√

s = 1000 GeV.
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parameters, Ra and Ea. Here, Ra is the maximum allowed angle between the mo-

mentum directions of the hard jet and the associated jet, and Ea is the minimum

energy of the associated jets15. We set the value to Ea = 20 GeV in this study.

A high probability for having no associated jet implies that the probability of

wide emissions occurring around the hard jet is low. Such probabilities have been

obtained by using Pythia8, Pythia6, and Herwig++, and it has been found that the

no associated jet probability predicted by Pythia is higher than the one obtained

with Herwig++ [88].

The no associated jet probabilities calculated with Q1, Q0.5, Q0, Q−0.5 and Q−1

are shown in Fig. 30, where, the fitted values of the parameters in Table 1 have

been used. We can see that no associated jet probabilities are similar for each α

at the low energy range. This is expected as the parameters have been tuned at
√

s = 200 GeV. The α dependence is enhanced at the high energy range. The larger

α is, the larger the no associated jet probabilities become. Therefore, an angular

ordered shower (α = −1) predicts wider jets, while a p⊥ ordered shower (α = 1)

predicts narrower jets. This result is qualitatively in agreement with the missing

phase space of the p⊥ ordered shower [93]. The wideness of the emissions in the jets

are thus tunable by changing the parameter α in the evolution variable continuously.

Fig. 31 is similar to Fig. 30, with the tuning parameters obtained by fitting

ln C
(β)
1 distributions for quark jets in e+e− → qq̄ events at

√
s = 2000 GeV. The

no associated jet probabilities are similar for each α around
√

s = 2000 GeV for

the quark jets. The α dependence now appears at other energy ranges. The energy

scaling of the wideness seems to be inherent in the choice of the evolution variable

for the same modelling of the parton shower.

15 In Ref. [88], for studies in hadron collisions, the parameter pa has been used to define associated
jets instead of Ea, where pa is the minimum transverse momentum of the associated jets. However,
for the e+e− collisions studied in our paper, it is more suitable to use the energy variable.
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Figure 30: No associated jet probabilities for (R, Ra) = (0.2, 0.4) and (0.4, 0.8), computed with

the input parameters as in Table 1.
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Figure 31: Same as Fig. 30, with the input parameters obtained by fitting the lnC
(0.5)
1 , ln C

(2.0)
1

and lnC
(3.0)
1 distributions for quark jets in e+e− → qq̄ events at

√
s = 2000 GeV.
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6 Summary

To summarize our findings in Sec. 4, we show that in studies of light quark and

gluon jet discrimination at the LHC, it is important to include the information on

associated jet rates around a primary hard jet. Associated jet rates are defined as

the probability of finding at least one softer reconstructed jet around the primary

hard jet under consideration. This probability is found to be substantially higher

for a gluon-initiated jet compared to a quark-initiated one. Since commonly a small

jet radius parameter is adopted in LHC studies of hadronic jets, the associated jet

rates carry the information on the radiation outside the chosen jet radius.

We compute the associated jet rates up to NDLA accuracy in perturbative QCD,

as a function of the primary jet and minimum associated jet pT ’s, as well as the

jet radius and association radius parameters. The NDLA results are thereafter

compared with predictions from different parton shower MC generators. Since the

NDLA predictions include only the time-like showering of the final state partons,

we demonstrate the effects of ISR and MPI in the MC predictions as well, and it is

observed that the NDLA predictions are closer to the MC’s when ISR and MPI are

switched off. Overall, the associated jet rates are not very sensitive to these effects

as long as the association radius is not too large.

The probability of having at least one associated jet for a primary gluon jet is

roughly a factor of two larger than for a quark jet, with a small variation in this num-

ber as a function of the jet pT . This fact makes the presence or absence of associated

jets a good variable for quark-gluon discrimination studies. We demonstrate the im-

pact of including the associated jet rate information by including this variable in an

MVA analysis, along with the well-studied variables of number of charged tracks,

energy-energy-correlation angularities and jet mass. Comparing different two and

three variable MVA’s with and without the associated jet information, we find that

including the associated jets leads to an improvement of around 10% in rejecting

gluons, for a fixed quark selection efficiency of 0.4. We also show that using a three

variable MVA with associated jet categories leads to the best performance, with an

improvement of 20% in rejecting gluons, for the same quark efficiency as above.

Since for the number of charged tracks variable the MC predictions tend to differ,

and are dependent on the parton shower and underlying event parameter tunes, we

explore the number of kt subjets of an anti-kt jet as a quark-gluon discrimination

variable. We compute the number of subjets to NDLA accuracy, and compare the

resummed predictions with different MC’s. The different MC predictions are found

to be rather uniform, with the resummed predictions being broadly in agreement

with them. However, for gluon jets the peak rates for 2 and 3 subjets are found
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to be lower in the resummed computation, which might arise due to higher-order

effects that are in general bigger for gluons.

In Sec. 5, we have introduced a generalized evolution variable Qα which is a

function of the free parameter α taking continuous values. Although the evolution

equation governing the QCD radiation in jets takes an equivalent form for each α,

jet substructure depends on α even in the same parton shower formalism. We have

examined the α-dependence of C
(β)
1 distributions and the associated jet probability

for quark and gluon jets. This is motivated by the differences found in the prediction

for jet substructure observables between often-used Monte Carlo generators, and also

by the fact that recent LHC data related to QCD jet substructure lies between the

predictions of the MC generators. The angular-ordered parton shower formalism

used in this study is built upon the one implemented in Herwig++. We leave further

studies based on other recent parton shower formalisms to a future work.

We have studied the distributions of the first, second and third emissions in

the momentum fraction z and emission angle θ plane. These distributions are of

importance as the beginning emissions in the jets have a significant impact on C
(β)
1

and other jet shape observables. The distributions show a unique emission pattern

for each choice of α.

We have tuned the parameters in the parton shower to e+e− → qq̄ mock data

generated using Herwig++, with center of mass energies of
√

s = 200 GeV and 2000

GeV. Observables used in the tuning are ln C
(0.5)
1 , ln C

(2.0)
1 and ln C

(3.0)
1 distributions

with the jet cone angle R = 0.4. From this fit, we observe that larger values of the

strong coupling are preferred as we vary the values of α from −1 to 1. This is qual-

itatively in agreement with previous findings regarding the difference between the

parton shower phase-space covered by the p⊥ ordered and angular ordered showering

algorithms. Using the best fit parameters, we have calculated the ln C
(β)
1 distribu-

tions of the quark and gluon jets, with R = 0.4 and 1.2, for e+e− collisions at
√

s = 200 and 1000 GeV. As we move away from the setup used for the fits (namely,

quark jets, R = 0.4,
√

s = 200 GeV), the α-dependence becomes more apparent,

especially for larger values of β in C
(β)
1 .

The α-dependence for large β implies that wideness of the soft emissions, espe-

cially the first ones in a jet are different for each α. We can examine this wideness

directly by studying the associated jet probability. A high probability for having no

associated jet simply means that the probability of wide emissions occurring around

a hard jet is low. We have found that the larger α is, the larger the no associated

jet probability becomes. This gives us a qualitative understanding of the generator
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dependence of associated jet rates, especially between Pythia8 and Herwig++. Our

results open up the possibility that we might be able to reproduce the wideness

of jets observed in real data by varying the value of α in the evolution variable

continuously.

64



謝辞
私は、近代的な教育システムの発展、特に日本におけるそれに関わってこられた全ての方々
に感謝します。また、教育課程の終わりに位置する博士後期課程を KEKで過ごせた事は、
私にとって、物理研究の面だけでなく他の面から見ても非常にプラスとなりました。
指導教官である野尻美保子氏に感謝します。私は、KEKに来る前のM1の頃に本論文の

主題であるジェットに興味を持ちました。しかし、論文等の形にすることはできませんでし
た。KEKに移る際、当時在籍していた立教大学のポスドクの木村哲士氏に野尻さんを指導
教官にしたらいいのではないかと言われました。結果、ジェットに関する二つの仕事をする
事ができました。それぞれの仕事において、C

(β)
1 という物理量を用いましたが、野尻さんに

それに関する論文を読むよう進められたのがきっかけです。はじめ、読み進める事ができな
かったのですが、彼女がオーガナイザーの一人として関わった国際会議MC4BSM 2014に
おいて、その論文の著者の一人である Andrew J. Larkoski氏に偶然出くわし、かなり親切
な指導をして頂きました。一つ目の仕事に関して、私は熱心に、計算は、しましたが、主要
なアイデアの出所は、論文になるだいぶ前に野尻さんが gg課程における second jetの pT が
partonのものと随分違っている事に着目した事と、Zg課程の pT (js)は parton pT に近くな
る事に気付いた事あたりで尽きていると思います。また、本格的な collider解析を理論サイド
から日本に広めて頂いた事に感謝します。共同研究者である Satyanarayan Mukhopadhyay

氏、Bryan R. Webber氏と非常に有益な議論をすることができました。Satyaには二つ目の
論文のとても注意深い推敲もしてもらいました、ありがとうございます。

Bの物理に関しても四つの仕事をすることが出来ました。出発点は、2011年度原子核三
者若手夏の学校における吉永尊洸氏のショートレビューです。良いレビュー論文もいくつか
紹介して頂きました。当時 SG-Lの存在を知らなかった私ですが、第８回 Bファクトリー
物理勉強会の存在をネットのどこかで知りました。初の研究会参加で緊張していたのです
が、清裕一郎氏に B decayの form factorに関して丁寧に教えて頂き、KEK-FF 2012に参
加する事を奨めてもらいました。その研究会への参加は自分にとって大きな意味を持ちまし
た。そこで渡邉諒太郎氏に Bの semi-leptonic decayに関して教えてもらい、かなり詳しい
ノートも頂きました。そして、主にそれを参考にして初めての論文を書く事が出来ました。
そこで出会った Paul Posch氏に総研大への進学を勧めてもらいました。田中実氏、Andrey

Tayduganov氏、後藤亨氏からも Bの研究を通じて良い指導を受ける事ができました。
萩原薫氏には、Bの物理とジェットの両方に関して指導して頂きました、感謝します。萩

原さんの物理、またはそれ以外に対する考えは非常におもしろく、また勇気を与えてくれる
ものでした。
私は共同研究者、キーパーソン、KEKの人々との出会い、そして教育制度に恵まれま

した。それら全てに感謝します。

65



Acknowledgements

I am grateful to all people who have involved the development of the modern education

system, especially in japanese society. And I feel happy that I can visit KEK in doctor

course, which is the most last term of education system.

I am grateful to my adviser Mihoko. M. Nojiri. When I was in first degree of master

course in Rikkyo university, I had interested in jet physics, which is a central theme in this

thesis. But I could not write paper. When I moved to KEK, Dr. Tetsuji Kimura suggested

to me that I choose Mihoko as adviser. This choice lead to our two papers concerned with

jet physics. I used a variable C
(β)
1 for both paper. This cue is Mihoko. I met Dr. Andrew

J. Larkoski who is one of authors of C1’s paper at MC4BSM2014, and he taught many

things me very kindly. Although I calculated hardly in the first paper about jet, main

concept come from Mihoko’s past calculations and findings actually. Also I am grateful to

Dr. Satyanarayan Mukhopadhyay and Prof. Bryan R. Webber for many useful discussion.

Satya also read and correct the second paper about jet very carefully, thanks.

I could write four papers about B physics. The starting point is a short review about

B physics by Dr. Takahiro Yoshinaga at a meeting in Young Nuclear and Particle Physicist

Group of Japan in 2011. He taught me good references about B physics. Although I did

not know SG-L mailing list then, I found B factory workshop 8th somewhere in internet.

I met Prof. Yuichiro Kiyo at the meeting, and he taught me about form factor of B decay.

Also He recommend to attend KEK-FF 2012. The attendance in KEK-FF 2012 was very

good for me. I met Dr. Ryotarou Watanabe, and he taught me about semi-leptonic B

decay very carefully, and also gave me his note. By using the note, I wrote my first

paper. I met Dr. Paul Posch, and he recommended KEK and Sokendai. Prof. Minoro

Tanaka, Dr. Andrey Tayduganov, and Dr. Toru Goto also taught me many things through

B physics. Thank you very much.

I am grateful to Prof. Kaoru Hagiwara. I enjoyed discussion with him about jet and

B physics both. His convictions for not only Physics but also other things encourage me

so much.

I am blessed with my collaborators, the key person, encounters with people in KEK,

and the modern education system in Japan. I am very grateful to all of them.

66



A Distributions of discrimination variables

In Figs. 32-34 we show 2-dimensional plots of the joint distributions of the three

discrimination variables used in the MVA presented in Section 4.2, for the two

Monte Carlo event generators Herwig++ and Pythia8. The following features may

be observed:

• There are differences between the distributions predicted by the two Monte

Carlos, those of Pythia8 being somewhat narrower for quark jets and sub-

stantially narrower for gluon jets.

• The distributions of the infrared-unsafe variable nch show the greatest differ-

ences, with those of Pythia8 being larger at high nch. This could be due to

differences in tuning of the non-perturbative parameters of the generators.

• The above features are reflected in the likelihood plots, showing the proba-

bility ratio Pq/(Pq + Pg), and account for the higher discrimination efficiency

predicted by Pythia8 (Fig. 19 vs Fig. 18).

• The quark-gluon discrimination in the events with associated jets is weaker

than that for nAjet = 0. This is expected because the events are selected

according to pT (js), the sum of leading and associated jet pT ’s. Therefore

those with associated jets have leading jets with lower pT ’s, which have lower

discriminating power.

• Nevertheless the inclusion of the associated jet category improves the MVA

performance, because the probability of an associated jet is lower for quark

jets.
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Figure 32: Joint distributions of nch and C
(β=0.2)
1 in Herwig++ and Pythia8, for

quark and gluon jets with pT (js) ∈ [400, 500] GeV having nAjet = 0 and ≥ 1 associ-

ated jets.
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Figure 33: Joint distributions of nch and mJ/pT,J in Herwig++ and Pythia8, for

quark and gluon jets with pT (js) ∈ [400, 500] GeV having nAjet = 0 and ≥ 1 associ-

ated jets.
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Figure 34: Joint distributions of C
(β=0.2)
1 and mJ/pT,J in Herwig++ and Pythia8,

for quark and gluon jets with pT (js) ∈ [400, 500] GeV having nAjet = 0 and ≥ 1

associated jets.
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B Veto algorithm

Developers of simulation tools should employ several techniques for optimal simu-

lation, e.g., fast simulation. We introduce an useful technique to generate variables

in Markov chain, which is called as veto algorithm.

A function f(t)dt show a probability that something will happen (we call the

happening as “emission” later for brevity) from time (or a scale) t to t + dt. The

probability does not depend on what happened past. A probability that any emission

doesn’t happen from 0 to t is given as

∆(t) = exp

[
−
∫ t

0

f(t′)dt′
]

. (B.1)

A probability that an emission happen in [t, t + dt] for the first time is

P (t)dt = ∆(t) × f(t)dt. (B.2)

We can generate next time by solving an equation:

∆(t) = R, (B.3)

where R is random number which is generated flatly in [0, 1]. If the integral of f

(F ) and the inverse of integrant (F−1) are known, we can solve Eq. B.3:

t = F−1(F (0) − ln R). (B.4)

When we don’t know F and/or F−1, we may need to solve Eq. (B.3) numerically

for each emissions. More efficient way is as follow. First we look for f̃(t), which

satisfy f̃(t) ≥ f(t) for all t and integral F̃ and its inverse F̃−1 are known. By using

the function, next emission time t is generated tentatively by,

t = F̃−1(F̃ (0) − ln R). (B.5)

If f(t)/f̃(t) < R′ is true, t is accepted as next time, where R′ ∈ [0, 1] is other flat

random number. If it is false, t is rejected and the generation start from t. We

continue that until accepted time is found. The distribution of accepted time t by

the procedure (called as veto algorithm) is the same what we want, i.e., P (t).

We show that the probability that next time is accepted in t by veto algorithm,

P̃ (t), is equivalent to P (t). The probability is repented as

P̃ (t) =
∞∑

n=0

P̃n(t), (B.6)
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where P̃n(t) is the probability that an emission is accepted at t after emissions are

rejected n times. Evaluation of P̃0(t) is trivial:

P̃0(t) = exp

[
−
∫ t

0

f̃(t′)dt′
]

f̃(t) × f(t)

f̃(t)
, (B.7)

= exp

[
−
∫ t

0

f̃(t′)dt′
]

f(t). (B.8)

The ratio factor in Eq. (B.7) shows accepted probability at t. For n ≥ 1, it is written

as

P̃n(t) =

∫ t

0

dt1 · · ·
∫ t

tn−1

dtn exp

[
−
∫ t1

0

f̃(t′)dt′
]

f̃(t1)

(
1 − f(t1)

f̃(t1)

)
(B.9)

× · · ·× exp

[
−
∫ tn

tn−1

f̃(t′)dt′
]

f̃(tn)

(
1 − f(tn)

f̃(tn)

)
× exp

[
−
∫ t

tn

f̃(t′)dt′
]

f̃(t)
f(t)

f̃(t)
,

= exp

[
−
∫ t

0

f̃(t′)dt′
]

f(t)

∫ t

0

dt1 · · ·
∫ t

tn−1

dtn

n∏
i=1

[f̃(ti) − f(ti)], (B.10)

= P̃0(t)
1

n!

{∫ t

0

dt′[f̃(t′) − f(t′)]

}n

. (B.11)

The factors (1−f(ti)/f̃(ti)) show the rejected probability at ti. See Fig. 35 for your

understanding. We get relation which we wished,

P̃ (t) = P̃0(t)

∫ t

0

dt′ exp[f̃(t′) − f(t′)], (B.12)

= P (t). (B.13)
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The function f(t) sometime contain additional variable, e.g., it is the momentum

fraction z in the parton shower. A probability that any emission doesn’t happen

from 0 to t is given as

∆(t) = exp

[
−
∫ t

0

dt′f(t)

]
, f(t) =

∫ z+(t)

z−(t)

f(t, z)dz, (B.14)

where z−(t) and z+(t) show a minimal and maximal allowed region for z at t. We

generate z in probability of f(t, z)/f(t) after generating t. So, a probability that an

emission at t and z for the first time is written as

P (t, z) = ∆(t) × f(t) × f(t, z)

f(t)
, (B.15)

= ∆(t)f(t, z). (B.16)

Now we prepare a function f̃ which satisfies f̃(t, z) > f(t, z) for all t and z, and its

integral and inverse of integral are known, also defined as

f̃(t) =

∫ z̃+(t)

z̃−(t)

f̃(t, z′)dz′, z̃−(t) < z−(t) < z+(t) < z̃+(t). (B.17)

We get next time t tentatively by Eq. (B.5), and z by∫ z

z̃−(t)
dz′f̃(t, z′)

f̃(t)
= R′. (B.18)

If f(t, z)/f̃(t, z) < R′′ is true, t is accepted as next time, where R′′ ∈ [0, 1] is other

flat random number, and note that

f(t, z) = 0, for z̃−(t) < z < z−(t) or z+(t) < z < z̃+(t) (B.19)

If it is false, t is rejected and the generation start from t.

We show that the probability that next time is accepted in t by veto algorithm,

P̃ (t, z), is equivalent to P (t, z). The probability is repented as

P̃ (t, z) =
∞∑

n=0

P̃n(t, z), (B.20)

where P̃n(t, z) is the probability that an emission is accepted at (t, z) after emissions

are rejected n times. Accepted probability at t, z is

exp

[
−
∫ t

0

f̃(t′)dt′
]

f̃(t, z)
f(t, z)

f̃(t, z)
= exp

[
−
∫ t

0

f̃(t′)dt′
]

f(t, z), (B.21)
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Rejected probability at t, z is

exp

[
−
∫ t

0

f̃(t′)dt′
]

f̃(t, z)

(
1 − f(t, z)

f̃(t, z)

)
= exp

[
−
∫ t

0

f̃(t′)dt′
]

[f̃(t, z) − f(t, z)],

(B.22)

So, P̃n(t, z) is written as

P̃n(t, z) =

∫ t

0

dt1 · · ·
∫ t

tn−1

dtn exp

[
−
∫ t1

0

f̃(t′)dt′
]{∫ z̃+(t1)

z̃−(t1)

dz[f̃(t1, z) − f(t1, z)]

}

× · · ·× exp

[
−
∫ tn

tn−1

f̃(t′)dt′
]{∫ z̃+(tn)

z̃−(tn)

dz[f̃(tn, z) − f(tn, z)]

}

× exp

[
−
∫ t

tn

f̃(t′)dt′
]

f(t, z),

= exp

[
−
∫ t

0

f̃(t′)dt′
]

f(t, z)

∫ t

0

dt1 · · ·
∫ t

tn−1

dtn

n∏
i=1

[f̃(ti) − f(ti)], (B.23)

= P̃0(t, z)
1

n!

{∫ t

0

dt′[f̃(t′) − f(t′)]

}n

. (B.24)

We get relation which we wished,

P̃ (t, z) = P̃0(t, z)

∫ t

0

dt′ exp[f̃(t′) − f(t′)], (B.25)

= P (t, z). (B.26)

C n! factor

We define I as

I =

∫ 1

0

dx1

∫ 1

0

dx2 · · ·
∫ 1

0

dxnf(x1, x2, ..., xn), (C.1)

where f(..., xi, ..., xj, ...) = f(..., xj, ..., xi, ...). For example, f(..., xi, ..., xj, ...) =∏
i g(xi) satisfy the property. In this case ordering integral is given by∫ 1

0

dx1

∫ x1

0

dx2 · · ·
∫ xn−1

0

dxnf(x1, x2, ..., xn) =
I

n!
. (C.2)

since such ordering condition xi1 > xi2 > · · · > xin divide integral space into n!

regions.
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