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Abstract

Studies on jet substructure have evolved significantly in recent years. We
show that in studies of light quark- and gluon-initiated jet discrimination,
it is important to include the information on softer reconstructed jets (as-
sociated jets) around a primary hard jet. This is particularly relevant while
adopting a small radius parameter for reconstructing hadronic jets. The prob-
ability of having an associated jet as a function of the primary jet transverse
momentum (pr) and radius, the minimum associated jet pr and the associa-
tion radius is computed up to next-to-double logarithmic accuracy (NDLA),
and the predictions are compared with results from Herwig++, Pythia6 and
Pythia8 Monte Carlo event generators. We demonstrate the improvement
in quark-gluon discrimination on using the associated jet rate variable with
the help of a multivariate analysis. The associated jet rates are found to be
insensitive to the effects of initial state radiation and underlying event. In
addition, the number of k; subjets of an anti-k; jet can be an observable that
leads to a rather uniform prediction across different Monte Carlo generators,
broadly being in agreement with predictions in NDLA, as compared to the
often used number of charged tracks observable.

Predictions of jet substructure are usually different among Monte Carlo
event generators, and are mainly governed by the parton shower algorithm
implemented. For leading logarithmic parton shower, even though one of
the core variables is the evolution variable, its choice is not unique. We ex-
amine evolution variable dependence of the jet substructure by developing a
parton shower generator that interpolates between different evolution vari-
ables using a parameter «. Jet shape variables and associated jet rates for
quark and gluon jets are studied to demonstrate the a-dependence of the jet
substructure. We find angular ordered shower predicts wider jets, while rela-
tive transverse momentum (p, ) ordered shower predicts narrower jets. This
is qualitatively in agreement with the fact that there is the missing phase
space in p; ordered showers. Such difference can be reduced by tuning other
parameters of the showering algorithm, e.g., strong coupling constant, and
starting/hadronization scale, especially in the low energy region, while the

difference tends to increase for high energy jets.
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1 Introduction

Particle physics is a study to reveal what are elementally objects and how they
interact. Building blocks of the current standard model (SM) of particle phyiscs
are obtained in the sequence of the high energy physics interactions, and finally
the last particle of the SM, higgs boson is discovered at the Large Hadron collider
(LHC) at CERN. Now, we have great hopes that LHC Run II will bring a lots of
fantastic information to the particle physics yet to be obtained. LHC is a circular
type accelerator, and proton or heavy ion (lead) is used as beam. The beam was
operated at 7 and 8 TeV with integrated luminosity about 5 and 20 fb™! in the
period between 2009 and 2013. The next operation Run II has been planed at 13-
14 TeV from 2015 to 2018 with integrated luminosity 150 fb™*. As a long-range
plan, the integrated luminosity will reach 3000 fb™' throughout Run IIT and High
Luminosity LHC.

One of main purpose at LHC is search for the higgs boson and the understanding
the origin of electro-weak symmetry breaking. ATLAS and CMS reported that they
found a new particle around 125 GeV in 2012 [0]. Properties of the particle, e.g.,
spin, CP charge and the strength of the interaction, agree with those of Higgs boson
in the Standard Model (SM) within the range of experimental error.

Another target of the LHC is to find out physics beyond the Standard Model
(BSM). Although experimental results at LHC seem to be consistent with predictions
in SM, we have many question for the nature and theoretical frame work in SM. The
mass parameter of the Higgs potential receives the radiative correction propotinal
to the square of the cut off scale. Given the precision study of EW processes, it is
natural to consider the scale is much higher than 10TeV. This cause the fine tuning
problem in the Higgs sector. Moreover the four point interaction of Higgs potential
turns out to be negative around 10'°GeV. While the current vacuum is metastable,
this cast the question how the current Universe is made after the inflation and
subsequent reheating. Moreover, we do not know how the Baryon asymmetry of the
Universe is formed, and how the dark matter is understood in the manner consistent
with the SM.

To explain the questions above, many models, such as dynamical symmetry
breaking models, supersymmetric models, and extra dimension models, are pro-
posed. These models predict new particles and new phenomena, which are the tar-
get of the future run of the LHC. To achieve the target, we need precise prediction
for both SM and BSM processes.

One of the difficulties in the calculation of high-energy hadron collision stem

from the fact that initial state proton is composite particle rather than elementary



particle. Hadrons are composed by valence quarks which carry the quantum num-
ber of its hadron, and those quarks are confined by strong interactions mediated
by gluons. At the high energy collision of protons, only the fraction of energy can
be used, and probability that quark and gluon participate in the hadron collision,
which is called parton distribution function (PDF) must be determined from the
experimental data. Interaction between quark and gluon is described by Quantum
chromodynamics (QCD). The hard quark and gluon branch into quark and gluon,
leading many soft quarks and gluons in the final state, which is beyond the fixed
order calculation because of the infrared singularity of the QCD processes. Finally,
because quark and gluon must be confined in the hadrons, which cannot be calcu-
lated perturbatively. Hence we need good model for the calculation, which respects
quantum field theory and predict various observables well.

The calculation model for the hadron-hadron collider sketchily divided by fol-

lowing steps.

step 1: Quarks, anti-quarks or gluons in proton beams called as initial parton in-
teract in small spacetime, and exchange large momentum, then final partons
and/or other SM and BSM particles are produced. This interaction is called
as hard process, which occur in short distance. The hard process has an en-
ergy scale (hard scale), which is typically given by the order of invariant mass

square of initial partons or square of exchanged momentum.

step 2: The initial and final partons emit additional particles. These radiations are
described by mainly QCD. The radiations from initial and final particles are
called as initial state radiation (ISR) and final state radiation (FSR). Energy
scale for the initial partons increases with each ISR, and the scale may reach
up to the order of hard scale. Then energy scale for final parton decreases with
each FSR. The radiation continues until the scale reach an given scale called
as hadronization scale. The calculation model for the radiations is called as

parton shower.

step 3: When the emitted coloured partons and proton-beam remnants ® take O(fm)
away for each other, QCD potential increase and quark pairs from QCD vac-
uum and gluon form non-coloured hadrons. This part is called as hadroniza-

tion.

! When initial parton is up quark (u), proton-beam remnant formed ud diquark system which
have an anti-triplet colour charge. When initial parton is gluon, proton-beam remnant formed uud
system which can conveniently be subdivided into a colour triplet quark and a colour anti-triplet
diquark [B3)].



In step 1, flavors of initial parton are decided in the probability of PDF. Factorization
theorem [ justifies the division of the hard process part and the PDF part. Step
1 and 2 are carried by perturbation theory, especially perturbative QCD. QCD
is SU(3) non-abelian gauge theory, which describes an interaction between quarks
and gluons. Quarks and gluons are the fundamental and adjoint representation
of SU(3). Asymptotic freedom which is an property of QCD says the strength of
QCD interaction becomes smaller as energy scale of QCD interactions () increases,
and vice versa. Experimentally, valid range of the perturbative QCD is @) 2, 1GeV.
Hence an minimal hard scale in step 1 and an hadronization scale in step 2 should
set around 1GeV. In step 3, we need models describe physics in the non-perturbative
region. Sprays of hadrons calculated by above steps are called as jet. Four momenta
of hadrons and other particles are measured in detectors, and those are combined to
four momenta of jets. The jet momentum is one of the basic observables at LHC.

15 PP/pp cross sections
/-\10 % T \\\\\\‘ \eé\\\\‘

8" | =
;10 14; ,ggﬂ)_/—/ =
ol Otot
10 7 5 =
3 =
102k g <
E <P
10 1L H/ 4
1010 b

Gjet(Ef:' >s/20)
2t
10 3 GW
£ G,

6
10 = Jet
£ Ojy(E)'>100GeV)

O

35 3
10 ¢ _ E
G ]
102? ()'jet(Efr > \s/4)

10 3 O higgs Miy=150GeV) >< 1

f Oy (M=500GeV)
1f “Higes” W77 ) Ll
3

4
10 107 Vs (GeV)

Figure 1: Production cross sections for several representative processes at hadron colliders. The
discontinuity is due to the Tevatron being a proton-antiproton collider while the LHC is a proton-

proton collider. From Ref. [8].

Hadronic jets are the most abundant objects at LHC, therefore the hadronic
decay of new particle maybe easily missed. Production cross sections for several
representative processes at hadron colliders are shown in Fig. M. The finding signa-

ture which only gives hadronic jets is very difficult to cope with large QCD back-



grounds. For example, significances of the hadronic Higgs decays like H — bb are
considered as low due to the large QCD background like pp — bbX. However, the
situation might be improved for boosted particles [@]. The authors use the informa-
tion of internal structure of jets, so-called jet substructure, namely the distribution
of four momenta of hadrons in jets. Quarks from the boosted Higgs boson and
top quark decay create the multiple centers in a jet, called as subjets. The mo-
mentum balance of the subjets and the ratio of the jet mass and subjet masses are
different between Higgs jets and QCD jets. By using the differences, it is demon-
strated that significance of H — bb improves. After that, study of jet substructure
has also evolved significantly in recent times [B, O, @, B]. Jet substructure tech-
niques are particularly useful in identifying the origin of jet(s) in the hard process
(@, 8, @, [, [, [3, @, 3, [@, 7, ¥, [@], and also in removing contamination from
pile-up or underlying event (@, PO, 0, P2, P3, £4, P3).

Recently, there appear several studies concerning the identification of the origin
of QCD jets, namely, if they are originated from a quark or a gluon at the point where
they appear from the hard process. Although both quark and gluon subsequently
emit gluons in the parton shower, initial colour information is conserved in the
parton shower process because the splitting functions are different. Discrimination
of quark-initiated jets from gluon-initiated ones is also an important subject of jet
substructure, and has a lot of potential in improving the search for new physics.

Searching new particles predicted in supersymmetric (SUSY') models is one of the
main issue at LHC. One of the signals in the model is pair gluino production (pp —
Gg). In the three body decay, § — qgx!, the initiated flavour of jets is dominantly
quark. On the other hands, the main background for the process is Z + jets in
which the gluon jet is dominant. The detection of two body decay, g — gx?, gives
a detailed information related to scenarios in which the scalar SUSY particles are
heavy [E0]. The Higgs mass around 125 GeV implies a possibility of a large size
of the two body decay of the gluino. A hard gluon jet is produced via the decay,
on the other hands, the hardest jet in background Z + jets is basically the quark
jet. Being away from SUSY, jets in the background process for di-quark production
related with new particles are dominantly gluon jets. Therefore, better way to
distinguish the quark jet and the gluon jet can help the discovery of new particles
and the examination of properties of that, and different methods for quark-gluon
discrimination have been devised [E2, 8, E9, B0, B0, B2, B3, B4, with corresponding
performance studies [B3, BQ, B1] for LHC.

In Sec. B, I review the parton shower, definitions of jet, and the jet substructure
technique, especially the discrimination of quark-initiated jets from gluon-initiated.

In Sec. B, a new variable concerned with associated jet to improve the performance



of quark-gluon discrimination will be introduced. Associated jets are softer jets
which are nearby a harder jet. Previous researches for quark-gluon discrimination
have focused on the structure of harder jet only. We focus on not only the harder
one but also softer jets.

Theoretical estimates for the performance of such tagging algorithms are pri-
marily carried out with the help of Monte Carlo (MC) simulation tools, such as,
Pythia [BS, BY|, Herwig [0, 0] and Sherpa [IJ]. Even though qualitative features
are in agreement, differences in the predictions of the different MC generators have
been noted as far as quantitative estimates of the quark-gluon tagger performance
is concerned. The primary reason for this can be traced back to the fact that the
distribution of observables related to gluon jets varies significantly across the MC
generators, while those for the quark jet are largely similar. One possible cause of
such a feature might be that while tuning the parameters of the MC generators, the
precise jet data from the Large Electron-Positron Collider (LEP) have been crucial,
and at leading order in electron-positron collision, the jet data is dominantly from
quark-initiated processes. As far as the LEP data is concerned, the properly tuned
versions of the MC generators have been successful in achieving very good agreement
with the jet data and are also consistent among each other, even in the soft-collinear
and the non-perturbative regions.

Recent studies carried out by the ATLAS and CMS collaborations indicate that
the data on certain observables related to quark-gluon discrimination lies in between
the predictions of the two MC generators Pythia and Herwig [BO, E3, E4]. Although
it might be difficult to pinpoint the reason for such differences in the jet substructure
observables predicted by different generators, understanding the difference between
the central components of the MC generators can be useful in developing more
precise simulation tools. To this end, at a first order, if we postpone the consideration
of the non-perturbative and underlying event effects for simplicity, the substructure
of a quark or a gluon jet is governed by the pattern of QCD radiation, which is
controlled by the parton shower algorithm. Omne of the core variables of a parton
shower is the evolution variable, different choices for which are made in different
MC generators.

In Sec. B, our aim is to understand the effect of modifying the evolution variable
and access its impact on jet substructure observables. We also ask the question
whether certain choice of evolution variables can better reproduce the data on quark-

gluon discrimination observables, as discussed above.



2 Parton shower

2.1 Parton shower algorithm

Parton shower algorithm is method to calculate high multiplicity final states in QCD
processes. The main concept of parton shower is to factorize soft-collinear radia-
tions from a hard process. When the quarks and gluons are soft and/or collinear,
the amplitudes for QCD process diverge. We need to regularize the singularity
appropriately.

First of all, I introduce Sudakov form factor, which plays an important role in
parton shower, and contain a dominant contribution of an all-order amplitude in the
soft-collinear phase space. The parton shower algorithm is based on the DGLAP
equation [, €3], which describe an energy scale dependence of states, e.g., a parton

distribution function:

ot = [0 p ), 1)

where P(z) is a regularized splitting function and f(z,t) is a parton distribution
function which describe the probability that a flavour have a longitudinal momentum
fraction z and energy scale t. The energy scale is typically off-shellness (virtuality)
of intermediated partons. We will consider the scale in detail later. This P(z) is

related with (unpolarized) unregularized splitting function P(z) as
P(2) = P(2)s, (2:2)

where the symbol “ 47 means plus scription written by,

1 1
/ 2P (2), F(2) = / d=P(2)[F(2) — F(1)]. (2.3)
0 0
Eq. (E3) can be written with unregularized splitting function by

t% Flat) = /0 dza;f)ﬁ’(z) F f& 0~ f(:c,t)} | (2.4)

z

Here I introduce the Sudakov form factor,

At to) = exp {— / dr / 455 P } (2.5)

where ¢y is minimal scale in parton shower. A scale below ¢y is dealed as non-
perturbative region. The splitting functions are proportional to branching proba-

bilities for each target process in soft-collinear region, which are summarized at the



& 4
5 1| ,
qg xlz|- AL )|a P(z)
S
é xE A(t, t)
&
| 1 | >
g fo 1 t

energy scale
Figure 2: A schematic illustration of Sudakov weighting. A probability state f(z,t), which have

energy fraction x at scale t, is formed from f(x,tg) by a factor A(¢, ), and also f(x,t’) by a factor
A(t,t') and the emission probability (ag/27)P(2).

lowest order:

Cr = (¢ — q9),
P(2) = §2Caliz + 152 +2(1-2)) (9 99). (2.6)
Trlz" + (1 = 2)] (9 — qd),
where QCD colour factors are Cr = 4/3 and Cy = 3 for T = 1/2. Eq. (E3)

becomes

S P (L. (2.7)

z 2T z

0 f(g;j) B 1 dz g ~
Ot At to) At to) /

We can solve this equation in integrating form as,

Fla,t) = At to) f(z.to) / dt//dz as) pyae, t)f(g,t’). (2.8)

This equation gives a physical interpretation on the Sudakov form factor. A prob-
ability state f(z,t), which have energy fraction x at scale ¢, is formed from f(z, )
by a factor A(t,tp), and also f(z,t') by a factor A(t,t') and the emission probabil-
ity (ag/2m)P(z2). Fig. O gives a pictorial representation of the fact. The phyaiscal
interpretation of the sudakov form factor will be explained below.

The Sudakov form factor can be written as

tQ dt I—qujn(t) t R
A(tg, t1) = exp —/ —/ dzas( P(z)
t1 t Zmin(t) 27T

to
= exp [—/ P(t)dt} ,
t1
-ty —1

N-1
:]\}1mOOH[1—P(t1+idt_)dﬂ, df = =

1=0

: (2.9)
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Figure 3: A schematic illustration of sequential decays by the parton shower algorithm.

P(t)dt show a probability that an emission happen at ¢ € [t, ¢+ dt], and the last line
in Eq. (E39) is the product of differential non-emission probability in [t1,t5]. Hence
A(tg,t1) is non-emission probability from ¢; to to. We now notice that states at a
given scale t depend only on the present state, not on its past (¢ < t) states. In
other words, the emission process is the Markov process?. We assume the energy
scale ¢ as an ordering variable (evolution variable) in the Markov process of QCD
radiation.

We are now ready to construct parton shower algorithm. Let’s consider a ee™ —
qq configuration in Fig. B, and assume that the energy scale (evolution variable) is
virtuality of partons. Scale of the quark starts from t, = s, where s = k? is a
virtuality of v/Z. A probability that the quark doesn’t emit gluons until a minimal
scale thaq 18 A(to, thaq). This minimal scale is called as a hadronization scale, which
is a parameter in parton shower model. We often take the value to about 1GeV. A

decay may happen at ¢;, and the probability is given by

Qt) = 1= Altsthad) oo 2.11)

The starting scales of new partons ¢; and g; are t;.2 A probability that the partons
both don’t emit more is A(t, thaq)?. Decays may happen at t5(t3) from ¢;(g1) with
probability Q(t2)(Q(t3)). This sequential decay continue until all partons stop to
decay. Energy fractions z for each branching at the scale t; are determined with a

~

probability as(t;)P(z). The anti-quark also decay in the same manner.

2 One of the simplest ordering variables in nature is time, 7. A well-known Markov process

is nuclei decays. The decay probability at T (P(T)) doesn’t depend on its past behaviour . A
probability that a nuclei produced at 77 doesn’t decay until T5 is written as

Ts

AN(TQ,Tl) = exp [— P(T)dT s

T

(2.10)

which is the same form with Eq. (239).
3 The choice of starting scales will be modified in Sec. EI3.
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The virtuality is used as evolution variable above, which is a traditional choice of
evolution variable. However, even if we use a variable t; = f(2)q¢?® as the evolution
variable, all equations in this subsection do not change. We can check that by a

relation,

dy . _ 90

2.12
ty q? (2:12)

Therefore we can use the same parton shower formalism with ¢;. In this mean, the
choice of evolution variable is not unique. For example, a often-used parton shower
generator Herwig++ use f(z) = 1/z(1 — z) to realize angular-ordered parton shower,
which will be explained next subsection. More detail of the choice of evolution is
discussed in Sec. O.

I should give a comment for the minimal value of momentum fraction zy;,(t) in
Eq. (E9). We can see that the QCD radiating probability have IR singularity in
Eq. (Z3@). The IR singularity should be cancelled at higher order [, E3|. We often
introduce a finite gluon mass or cutoff of relative transverse momentum of emissions,

whose values are around t,q, to remove the singularity.

C 2 | ¢ 2 C 2

B
XA/ A

I
=

o) (b) (c)

Figure 4: A schematic illustration of collinear factorization of an amplitude.

Next I want to explain that the parton shower algorithm using Sudakov form
factor gives a good prediction in collinear regions. Let’s consider an four body
amplitude as e"e”™ — ABCD in Fig. B-(a). Though there are some tree diagrams
to contribute to this configuration, only a diagram Fig. B-(b) is significant when an
angle between A and B are small. Because the virtuality of intermediate parton A’
becomes small as A and B become collinear, therefore, the propagator term of A’
enhance. The amplitude square (b) can be divided by A’C'D and A’AB as Fig. 0-(c),

11



which is written by,

dt t)
/ IMyPd®y =~ |(M3|2dDs x — dzas( )qu(z), (2.13)
2(B) t 2T
= |M;|2d®s x dtP(t), (2.14)
= doy x dtP(t). (2.15)

We can neglect interference terms in the collinear region. In the parton shower

algorithm, the first branching A" — AB at scale t is generated by the probability of
d
d0'3 X dta[l — A(tl,t)] = dO’g X A(tl,t>dt73(t) (216)

We can get a following relation by the Taylor expansion of Sudakov form factor,

Aty 1) = t dUst t ‘ (2.17)
dos +dos [* dt'P(t') + dos [,* dtyP(ty) [, dt'P(t') + ...

The numerator in Eq. (EI3) is the 3-body cross section. The second and third
terms of denominator are the cross section for (3 4+ 1)-body and (3 4 2)-body cross
section in the collinear limit. This summation continues up to infinite term. So,
the Sudakov form factor is given by the ratio of non-emission event to whole event
at all-order and tree level. We can again interpret the Sudakov form factor A(ty,t)
as non-emission between scale t; and t at all-order. This interpretation is valid
in collinear limit. In Fig. B, Gluon C' show the gluon which is separating widely
from other partons. It is inappropriate to generate such wide/hard radiations by
the parton shower algorithm. Therefore we generate such wide/hard radiations by
fixed order calculations and simulate soft/collinear radiations by the parton shower
algorithm. There are several schemes or generators to merge fixed order calculations
and parton shower algorithms. Well known methods to merge several leading order
matrix elements (ME) and showers are CKKW [@@], CKKW-L [E0, BT} and MLM
B3, B3]. Generators and methods to merge next-to leading order ME for basic
processes and showers are MCONLO [B4l, B3, Bd] and POWHEG [E7].

2.2 Angular ordering

Here I introduce angular ordering [E8, B9, B0, B1, GJ] which is a property in partons
shower branching.
A state of n-body final state from colour singlet source like e*e™ pair annihilation

is written by |1,...,n) and colour-spin specified amplitude is given by

MELeniStesdn () o pn) = (€1 ooy Cu| (ST oy Sal|1, -y 0, (2.18)

12



where the bra-vectors show a basis in colour and spin subspace, ¢; and s; are indices
for colour and spin of parton ¢, and p; is momentum of 7. For a convenience, we

introduce a colour charge T¢ which acts a parton ¢ as:

Ti|ct, o Ciy ooy Cn) = TroglCr, oy €y oony s ), (2.19)
iféic (i = gluon),
Tge, = Q15 ‘e (i = quark), (2.20)

—teer (1 = antiquark),

The colour charge TY is associated with the creation of a new colour state whose
index is labeled by ¢, and the colour is connecting to the colour of parton i. A
square (T$)? = T¢T¢ = C; is the Casimir operator (colour factor) Cr for quark and
C4 for gluon. An identity related with the colour conservation in state is shown in
Ref. [E3] as

> T, n) =0, (2.21)
i=1
or just >, T¢ = 0. Trivial relations are

(CLy s Ciy ooy Cry ATy oy Gy o ) = Ocyer = T+ =+ Oy, - (2.22)

CiC,L-

Next let us consider a factorized amplitude for i(p; + k, s}, ;) — i(pi, si,¢i) +

g(k,s,c), where variables in parenthesis for partons show those momentum, spin

and colour. When parton ¢ is quark, that is given by

1 o
a(pzast)ffi*gs’Yﬂu(pz+k5,3;>(— C MCL ’1’ DL B (p17"‘7pi+k7"‘7pn)7

pi + k)? cics
5* pz c ClyeesChyensCn381 yeeesSiyenySm
Hgs k_TcZC 1 ' (p17"'7pi7"'7pn>7
(2.23)

where €, is polarization vector of emitted gluon. We used soft approximation (so
called eikonal approximation), namely k* — 0. The factorized factor p!'/(p; - k)
is called as eikonal factor whose form is independent on the emitting flavour i.
Feynman rules in the eikonal approximation is summarized in Ref. [B4]. The eikonal

factor take the form as

In "
pi-k  Ew(l—cosby)

where F; and w are energies of parton ¢ and emitted gluon, and 6;; is an opening
angle between p; and k. This factor has a soft singularity in w — 0 and collinear

singularity in #;; — 0.

13



| N+l w

N+

Figure 5: Diagrammatic representation of the external-leg insertion rule. The blobs denote the
tree-level matrix elements and their complex conjugate. The dots on the right-hand side stand for

non-singular terms both in the soft and collinear limits. From Ref. [E3]

Amplitude square related to such emission from n-legs have a soft-enhance term
1/w?. By neglecting contributions whose contributions to amplitude square are

weaker than 1/w? a (n + 1)-body amplitude is given by

M ) (2.25)
- gsez*Zp.—?mma---Téc; Gy Y M p(227)
i=1 "
Sk (] c| ./ / /
= gs€;, Zp- : k<01,---,Cn,C|Ti|01, ey Oy ey (81, ey S0 L, ey M), (2.28)
i=1 "
o <C - S* p? T¢1 2.29
= 1,...,cn,c|<sl,...,sn|ngeu P 1, ..., n). (2.29)

Therefore amplitude square in soft limit is given by

2
|'A/ln—|—1|2 gs ZVVZJ ,TL|T:T;’1,,?’L>, (230)
1<J
W = %, k=k/w (2.31)
pi-kp;j-k

A relation ) €} €, — —gu 1s used. Hereinafter T7 will be just written by T;. W;;
is called as antenna function. Diagrammatic representation of the equation is shown
in Fig. O

Let us consider n = 2 system, and a gluon is emitted from the system. By using

Eq. (E221), non-Casimir operator product is written by

T1T2 = —012 = —022 = —012. (232)
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Then the amplitude square is given by

2 2
Moy |2 = — wg; Wia(1, 2T, Ta|1, 2), (2.33)
2 2
_ u)g; ClaWis| My, (2.34)

We see that the colour part is factorized. The collinear singularities in W;; can be

disentangled by

_ il 5]
where
, 1 1 1
wli == (w;; _ . 2.36
w2 ( ]+1—coseik 1—cosﬁjk) (2.36)

WUZ] contain the collinear singularity by a emission along i only, and vise verse. This

function satisfy a relation as

21 . . 1
/ doik il 0(6;; — Oux) (2.37)
0

o Y1 —cosby

where the integral means that integration over an azimuthal angle of emitted gluon
along the direction of p;, and © is the Heaviside step function. Therefore azimuthal-
angle-averaged radiation along parton ¢ is limited in the region 6;; < 6;;. Again

3-body amplitude square is written by

2 2
Mol = 25
w

(Ol + CaW i Mo, (2.38)
Interpretation of the equation is that the opening angles of azimuthal-angle-averaged
radiation along parton ¢ and j, 0; and 0;; are limited, which are smaller than the
opening angle between “parents” i and j. (In this case i = 1 and j = 2.) This
emission property is called as angular ordering. The pictorial representation is shown
in Fig. B.

For n = 3, non-Casimir operator products are written by

TTy =C5—C, — Cy = —Ch, (2.39)
TiT3 =Cy, —C5 — Cy = —Ch3, (2.40)
TyT3 =C) — Cy — C3 = —Cos. (2.41)
Therefore
2 20 2
[(Mia]” = =3 > CyWi | M,[. (2.42)
i<j
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Figure 6: From Ref. [E3]. The pictorial representation of angular ordering: Opening angles of
azimuthal-angle-averaged radiation along parton i and j, i.e., 8;; and 6;; are limited, which are

smaller than the opening angle between “parents” ¢ and j.

We again see that the colour part is factorized. Now we assume a parton is soft
and collinear respect to another parton. When pj3 is soft and collinear respect to p1,

colour and antenna term is written by
Z CiiWi; = CioWig + C13Wis + CosWag (2.43)
i<j
~ O WH + Wl + oWl + e Wl (2.44)
where 1’ show the direction respect to p; + ps (=~ p;) and

After averaging over the azimuthal angle with respect to 1

~q7 1
Wl T [O(By — b1k) — OOy — Oy 2.46
12_>1—c0591/k[ (012 — O1i) — O (013 — by, (2.46)
_ m for 0115 > 011y, > O3, (2.47)
0 for others.

Therefore Eq. (E24) has angular ordering property, and the pictorial representation
is shown in Fig. @. Angular ordered emissions labeled by [I] in the figure correspond
to the I-th term in Eq. (EZZ4).

For n > 4, non-Casimir operator products are not written by only Casimir
operators, so colour part is not factorized [E3]. However if we neglect sub-leading
colour terms, colour part is factorized as in Eq. (E23), and we can check angular

ordering in all order.
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Figure 7: Angular ordered emissions labeled by [I] in the figure correspond to the I-th term in
Eq. (EZ3).

I summarize this section. By imposing angular ordering on parton shower
branchings which is generated by azimuthal-angle-averaged splitting functions like
Eq. (£3), the shower history can contain correct colour correlations for each par-
tons in soft collinear approximation, but loosing sub-leading colour term which is

proportional to 1/N, after fifth emission.

3 Jet and its substructure

3.1 Jet definition

While the partons from the hard process fragments into hadrons, the branching
of partons are mostly soft and/or collinear. By summing the momentum of the
hadrons in the same direction, one can extract the information of the hard process.
The procedure, called jet clustering is the key issue for the hadron collider physics.
Required property for jet clustering is infrared and collinear (IRC) safety. It means
that jet sets does not affect from soft and collinear emissions. In this section, we
introduce sequential recombination jet algorithms, which are IRC safe and used well
recently.

In ete™ collider, energy and angle between final state particles are used in the
definition of the jets. A basic variable for the clustering is Durham-kr, which is
defined as

k?, = min(E?, E7)(1 — cos 0;;), (3.1)

where E; is the energy of particle labeled 7, and 6;; is angle between particle ¢ and j.

When the number of final states is n, we calculate n(n — 1)/2 Durham-kr for each
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particle pair.? When £?; is smallest, we combine four momenta of I and .J, and new
mock momentum p;; is produced. This operation stop when all Durham-£; become
larger than a given value d.,;. We call remaining four momenta in the list as jets.
Therefore, jets four momenta and number depend on the dimension-full variable
deyt- A dimension less notation yeu (= deye/@) is also used, where @ is total energy
of the ete™ system. This jet clustering algorithm is called as (exclusive) Durham
algorithm. QCD radiation has soft-collinear singularity, whose emission probability
for (1j) — i + j is given by

dz db;; dz do;;  dzdb;;
X0y min(EL By 6 0 ky

AP (3.2)
therefore emissions are enhanced as those k; are small. In Durham algorithm, a
particle pair which has the smallest k; is combined preferentially, which lead to IRC
safety of the algorithm.

A generalized kr algorithm exists [E0], whose basic variables are written as,
1 — cost;;

A2 = min(E*. E*
K min(E", >1—COSR’

J

d? = min(E?, E2P) (3.3)

Left one is called as measure, and two additional parameter, p and R, are introduced.
We can calculate n(n—1)/2 measures and n of d?. When d7, is smallest, we combine
four momenta of I and J, and new mock momentum py; is produced. This operation
stop when all measures become larger than all d?. We call remaining four momenta
in the list as jets. Jet properties are depend on the p and R, and R is called as a
jet radious parameter. This name stem from the fact that a pair of four momentum
whose opening angle is larger than R is never combined in the definition.

In hadron colliders, variables which are invariant with respect to boost of a
beam direction are used. A transverse momentum along with a beam direction
and a distance in rapidity-azimuthal plain are used rather than energy and opening

angle. A corresponding measure for the jet definition is described as

ARU

d?j = min([)%}?ivpg{)j) R di = min(p??i’pg’ljj)? (3.4)
where the distance are mainly defined as
ARy = /(i — ;)2 + (6 — 6)°. (3.5)

The variables n; ; and ¢, ; are the rapidity and azimuthal angle of particle ¢ and j.

4 For searching minimal measure d;;, we need computation time which is propotional to n(n —
1)/2. This increases rapidly as the number of final states n increases. FastJet program [B0] for
jet clustering achieves expected N In N timing for many sequential recombination algorithms, and

make it possible to utilize the modern jet algorithm for data analysis.
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Figure 8: An example event to understand that anti-kr jets are constructed by particles around
the core. These orange, red, blue points show the final states in 7 — ¢ — pr space. The orange
points have smaller pr, which are almost the same for each other. The red particle (core-1) have

largest pr, and blue one (core-2) have second pr.

Jet algorithms with different power factors p in Eqgs. (B3) and (B3) are called

as:

1 (kr algorithm [E7)),
p=140  (Cambridge-Aachen algorithm [B3, G1]), (3.6)
—1 (anti-kr algorithm [[0]).

A cluster pare which has the smallest kr (angle) is combined preferentially in kr
(Cambridge-Aachen algorithm) algorithm. While, the highest pr cluster tend to
be clustered in anti ky algorithm. In hadron collider, anti-k; algorithm is often
used since jets defined the algorithm is not easily affected by contamination of
underlying event compare to jets defined other algorithms. We can understand that
by clustering test events in Fig. B. These orange, red, blue points show the final
states in 7 — ¢ — pr space. The orange points have smaller pr, which are almost
the same for each other. The red particle (core-1) have largest pr, and blue one
(core-2) have second pr. From the jet definition orange particles around red one
within R are absorbed by core-1 in the first stage of the clustering when we set as
p = —1. After that, orange particles around core-2 are absorbed by that and second
jet are constructed. Some orange particles which are far from the core are actually
contaminations from underlying and pile-up events. Anti-k; jets are constructed
by particles around the core, therefore, the contaminations effect in jets is minimal.
Jets defined by kr and Cambridge-Aachen algorithm can take the contaminations

in jets more.

3.2 Jet substructure

Jet substructure techniques are particularly useful in identifying (tagging) a jet

origin in hard processes. While original work of this thesis is on quark-gluon dis-
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mass drop

Figure 9: Pictorial representation of the boosted Higgs tagging in Ref. [O]. See text for details.

crimination, I also review two-prong and three-prong tagging in this section.

3.2.1 Two-prong and three-prong tagging

Two-prong tagging is used for boosted Z, W and Higgs boson. These mother bosons
can decay to two daughter fermions, e.g., H — bb. When we neglect mass of daugh-

ters, mother mass m is described as
m? = (p1 + p2)? ~ E1Fy07, = 2(1 — 2)E%03,, (3.7)

where p; o and E, o are four momenta and energies of daughter particles, ;5 is a
opening angle between daughters, E' is the mother energy, and z is a energy fraction,
z = F1/E. When the mother is boosted enough, m/FE < 1, the energies of daughters

are tend to be balanced, z ~ 1/2. In this case, the typical opening angle is given as

2m
912 ~ f (38)

The daughters are collimated as the mother is boosted. In hadron collider, transverse
momentum pr and distance ARj, rather than E and 65 are used. Alternative

relation is

2
ARy ~ 2. (3.9)

pr

Therefore, bb-pairs from Higgs which have py = 200 GeV would be inside of jet
defined by R ~ 1.2. We call such large-radious jet which contains decay products
from a mother particle as fat jet. The four momentum of fat jet is similar with
that of a mother particle. So, the mass of fat jet is cloth to the mother mass. We
would see two subjets in the fat jet of signal, on the other hand, there is not such
substructure in the QCD fat jet typically, which is the main idea of 2-prong tagging.

Pictorial representation of the idea is shown in Fig. O. Left figure shows the fat
jet, whose mass is around Higgs mass. Undoing the clustering, we again cluster
objects in the fat jet until the jet splits into two subjets, which is shown in center

figure. If the subjets come from the Higgs decay, we may observe two light subjets.
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On the other hand, if the subjets come from the QCD radiation, one of the subjet
is light since that stem from a soft radiation, however another one is heaver than it
typically.? Likewise, the momenta of subjets from the Higgs decay may be balanced,
on the other hand, those from the QCD radiation is not balanced due to the soft
singularity. Continuing the clustering with a given radius parameter Rgy, we look
for H — bbg configuration. The last operation shown in right figure is called as
filtering. Most of QCD radiations from Higgs which is colour singlet should go into
the three subjets due to the angular ordering. Neglecting objects outside the subjets,
we can filter away the contaminations of underlying event.

Another difference between boosted objects from the Higgs/weak boson and the
QCD jets is number of charged tracks in the jets. As the jet pr increases, the energy
scale of partons in the QCD jets become larger and the number of charged tracks
increases [0, [2]. On the other hand, the energy scales of boosted objects are limited
by their masses. So, the difference of number between signal and background would
be significant especially in the high-pr range.

For 3-prong tagging, idea is the same with 2-prong tagging. Three-prong tagging
is especially used as boosted top tagging. Hadronic top decay is mainly following as

t — Wb — q7'b. So, we would see three subjets in the fat jet of top quark.

3.2.2 Quark-gluon discrimination

The boosted Z, W and Higgs jet have 2-prong substructure in there fat jets, and
3-prong substructure for top fat jets. Quark- and gluon-initiated jets have both
1-prong substructure since QCD radiations are soft and collinear dominantly. We
review how the nature of the jets are predicted by QCD, emphasizing the difference
between the quark and gluon jets.

One of the observables is the two-point energy correlation function C? ) B3, 3],

which can be defined in the rest frame of a parton pair as

) AN E;
Cy = Z 2i%j 281117 , s=g (3.10)

i<j€jet Jet

where E;is the energy of the particles labeled by 7 in the jet, Ej is the jet energy,
0;; is the angle between ¢ and j, and 3 is a power parameter. The sum runs over all
distinct pairs of particles in the jet. We set 3 > 0 since the Cfﬂ ) with 6 < 0 change
the value by collinear emissoins. The angularity is calculated by the summation of

weight zizjﬁg. Since QCD radiation is soft and angular ordering suppresses diffuse

5 Probability that both subjets by QCD radiation are light is strongly suppressed by the Sudakov

form factor.
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sequential-branching, QCD jet contains one most energetic core parton (labeled by
0) and many soft partons (labeled by 1, ..,n) which are close to the core parton.? So,
the weights zizﬂiﬁj (i,j > 1) are negligible. In this approximation, C’l(ﬁ ) is described
as

i=1
We assume that a branching whose weight is largest in {26} gives dominant con-
tribution to C? ], and write C{” as,

) ~ max (2107, ..., 2,0°), (3.12)

where we assume that this jet contain n times branching.
Then, let’s estimate C’fﬂ ) distributions for quark jets and gluon jets analytically.
We use the general scale as evolution variable, t; = f(2;)q? ~ z;f(2;)0?. Eq. (E12)

18 written as

C ~ max n ), P = 19 = Z; - 3.13
1 (U]l, , W ) w ziU; z < ] ( l)) ( )

If a branching satisfy relation, max(wy, ..., w,) < z, C’fﬁ) for the jet is smaller than
a given value x. When the branching is associated with m-body hard process, the

cross section that C’fﬁ ) is smaller than z is
dO‘m /(2 ) dQPF(Zl, tl) te dQPF(Zn, tn), (314)
Q"
where do,, is the differential cross section of hard part, and

Q) — {(z1,t1, s 2n, 1) ER*™ | 0; < R, t1 > - > t,, max(wy,...,w,) < T},

(3.15)

@dz as(t)
t 2

PP (1) = Pr(2),

(3.16)

where R is jet radius. We don’t need to consider wider emissions (# > R). X denote

flavors of the core parton, i.e., X = q (quark) or g (gluon), and explicitly

A 1+ 22

P 1
. 1—

Pg:QC’A(liZ P (1 2). (3.18)

6 This is clear difference between QCD jet substructure and boosted W, Z, H and top quark jet

substructure.
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We denote ¥ x(z) as the probability that Cfﬁ ) is smaller than a given value x. This

cumulative distribution function (CDF) is given by

do, + Z do, fQ(Qn) H d*Px (2, ;)

1 (" d
Sx(e) = — / des d‘;X - , (3.19)
X Jo p dam + Z dam fQ 2n) dQPX(Zw z)

QP = {(21,t1, .., 2, t >eR2"|9 <Rt > >tn}- (3.20)

The denominator in Eq. (B21) is the cross section for whole events, and the numer-
ator is the summation of cross section that Cfﬂ ) is smaller than z at all order. By

using relations in appendix O, we can write as

» exp [fQ@)dPX Z t)] i 3.21)
Yx (@ _exp[fmz)dezt)] (z=2z1,t =1t) (3.
{ *Px (2, t)} : (3.22)
@\

dt
—exp | — L pe(2)] . 2
exp{ /Q@)\QSE) td 2m x(z )} (3.23)

We note that the right hand side in Eq. (B223) is not depend on the choice of evolution
variable function f(z).

Let us calculate Xy (x) in soft limit. In the limit, the splitting function become

(3.24)

In

Figure 10: Set difference Q\Q{? in In 4-In L plain.
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We choose as f(z) = 1/z for simplicity, then

1 1\ 2
S () ~ exp [— / <dln —) (dln —) O‘SCX} , (3.25)
e\ 0 2 T

QP ={(2,0) eR* |0 < R, wy = 20° < x}, (3.26)

T

Q% = {(2,0) e R? | § < R}. (3.27)

Therefore the set difference Q@)\QEE) is represented by
2N\O@ — 2 1 1 1
QEN\QY ={(2,0) e R° | 0 < R, ln—+ﬁln521n—}, (3.28)
z x

which is the red region in Fig. M. We get the CDF in soft limit as

—aSCX In? R—ﬁ
3 x )

The difference between quark jet and gluon jet on the cumulative distribution func-

Yx(x) =exp (— (3.29)

tion come from the difference of the colour factors. The probability distribution
function (PDF) for Cfﬂ ) is given by the differential of CDF,

1 dO’X d (B8)
— = Yx (CY), 3.30
ox dCf'B) dCfﬁ) X( 1 ) ( )

o 2(1/50)( 1 ! Rﬁ aSCXl 2 R’B
T @ e P\ T M @ )

1

(3.31)

The factor prior to exponential in Eq. (B30) has a singularity at eg = 0, and
actually correspond to the differential cross section for C’fﬂ ) at lowest fixed order.
The singularity is suppressed by the exponential factor, which is called as Sudakov
suppression. The term of agln®(---) is in the exponent, which is called as leading
logarithmic (LL) term. When we take into account finite terms in the splitting
functions, the running of ag, and so on, next-to-leading logarithmic (NLL) terms
appear, which has a form of agIn(---).

In Fig. 0, the red and blue curves show Cfﬁ ) distribution for quark jets and
gluon jets in Eq. (BZ31). We can see that Cfﬁ ) for gluon jets is larger than that for
quark jets statistically. The colour factor for the gluon decay is larger that for the
quark’s one, therefore, branchings from gluon tend to happen at a higher scale. The
high scale branchings correspond to wide and/or hard emissions, so C’l(ﬁ ) becomes
larger.

Let us assume that the quark jets are signal and gluon jets are background. We
can collect more quark jets than gluon jets by collecting jets whose Cfﬁ ) are small.
The CDF ¥,(x) and ¥,(z) show the remaining probability (efficiency) with cut
Cfﬁ) < z (see in Eq. (B13)). Therefore, larger value of CDF ratio like ¥,(z)/%,(z)
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or n¥,(z)/In¥,(z) means that the performance of quark-gluon discrimination is

better. The ratio is given by

Ca LL
].n Eg B CF ( )7
In 3, G |14 neCa /ﬂgff% +oeCass b —f)+---| (LL+NLL).

(3.32)

We can see that the ratio is not depend on [ in LL approximation, however it
depends on 3 by taking into account NLL contributions. The first and second terms
come from the finite term of splitting function, and the running coupling constant.
We can see more details of the NLL terms in Ref. [B3]. We note that the ratio become
larger as ( increase, in other words, Cfﬁ ) with smaller [ more separate quark jets
from gluon jets.

In Fig. [, the 8 dependence of the quark-gluon discrimination with C’fﬁ ) by using
a Monte Carlo event generator Pythia8 is shown [B3]. This is a quark efficiency
(X,(x)) versus gluon efficiency (X,(z)) plot. The curves are drawn by changing the
cut value of x. Larger quark efficiency and smaller gluon efficiency means better
discrimination, therefore we can see that the smaller choice of g give the better

discrimination. We use C’fﬁ ) in the following studies.

3.3 Subjet rates: Generating function method

There are several methods to calculate jet observables. Here, we introduce generat-

ing function method, which is especially useful to calculate subjet rates R (E}, tyay) [E3,

0.20-

0.15!

Cl do

o dC,; 0107

0.05|

0.00!

102 101 100
Ci(B=))

Figure 11: The red and blue curves show Cfﬁ ) distribution for quark jets and gluon jets in
Eq. (E30). (R = 1.0,as = 0.12.)
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Figure 12:  From Ref. [E3]. The 8 dependence of the quark-gluon discrimination with C{ﬁ )
by using a Monte Carlo event generator Pythia8. This is a quark efficiency (34(z)) versus gluon
efficiency (X,4(z)) plot. The curves are drawn by changing the cut value of x. Larger quark
efficiency and smaller gluon efficiency means better discrimination, therefore we can see that the

smaller choice of § give the better discrimination.

@, 2, 75]. The subjet rates R (F}, tymax) show the probability that a primary par-
ton whose flavour, energy and scale are f, E; and tyax produces n jet(s). Using

these subjet rates, we define generating function as

b1 (U, Ejy tnax) = Y " RY(Ej, ) (3.33)
n=1
We can recover n subjet rate by
1 d"¢y
RI(Ej tmax) = — —| . 3.34
1By tna) = Gl (3:34)

Let us consider a situation that there are N primary partons in a system. For
example, there are five primary partons in the situation in Fig. 3. Whole generating
function for a given system X is just defined by the product of each generating

functions:
N

(DX = H ¢fz (U, Ej,i; tmax,z’); (335)

i=1
where f;, E;; and tyax; are flavour, energy and appropriate starting scale of i-th
primary partons. For example, whole generating function for ete™ — ¢ system

may be simply given by
CI)@“'e— = (bq(ua \/§/27 tmax)‘bé(ua \/5/27 tmax), (336>
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Figure 13: An example of two associated jet event. The emissions 1 — 2,3 and 2 — 4,5 are

resolved emissions, and 4 — 6,7 and 3 — 8,9 are unresolved emissions.

where +/s is center of mass energy of e*e™ collision. ., is depend on the choice of

evolution variable.? In the definition, we get following relation:
P = u*(RIR]) + v*(RIR + RIRT) + u' (RIRS + RIRE + RIRY) + - . (3.37)

The parenthesis of i-th term corresponds to the probability that the system has i
jets. Therefore we can again recover n jet rate in the whole system by
1 d"® .-

il 3.38
n!  dum ( )

u=0

Let us consider R{(E;, tmax) to deduce a basic equation for the generating func-
tion. In Fig. 3, we illustrate an example of three subjet event. The emissions
1 — 2,3 and 2 — 4,5 are resolved emissions, and 4 — 6,7 and 3 — 8,9 are unre-
solved emissions. The resolved emission mean that its emission angle is 6 € [R, R,]
and energy fraction is z € [E,/E;,1 — E,/E;]. There are three resolved subjet in
the yellow region. Emitted particles generated by sequential decays can go inside
another subjet. For example, emitted gluon 5 can go inside subjet whose core is
gluon 3. In the case, number of subjet decrease from three to two. Such effect called
as non-global logarithms [[A]. The order of non-global logarithms is at NLL, and we
neglect that in this thesis.

First, let us consider one subjet rate from a flavor ¢ and whose energy and starting
scale are E; and tyax, 1.€., R{(E}, tmax). This correspond to the probability that any

emissions do not happen in resolved region. By recalling in Sec. 1 and BZZ32, such

" The maximal scale will be discussed in Sec. B, which is given by Eq. (E3) for a general

evolution variable defined by Eq. (E1).
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probability is described by the inverse of the exponentiate of total cross section over

the resolved region, i.e.,

RZ (E max) = Ai(Eja tmax): (339)

/ :
A;(E;,t) = exp / dt/

x O(0(t,z) — R)O(R, — 6(t, 2)) |,

15( ) (3.40)

where t,,,x and t,;, are the maximal and minimum values of scale t. For example,

when we use the virtuality, t = ¢* = 22(1 — 2) EZ(1 — cos ), as scale,

E?
tonax = 7](1 —cos R,), (3.41)
E, E,
n=2e (120 )1 — 42
tmin B, ( EJ) (1 —cosR). (3.42)

The differential three subjet rate for the configuration in Fig. 3 is described as

Dg(Ejy tmax) | as(k7)
Aq(Ej7t) t 27

P,(2) x RY((1 = 2)E;, t)R{(2E;, 1). (3.43)

The ratio show the probability that any emissions do not happen between ¢ and
tmax- R4((1 — 2)Ej;, t) show the probability that a quark, whose energy is (1 — z) £
and starting scale is ¢, emits two resolved partons. Then, three subjet rate have the

form,

fmax 1—* E  tmax) s (K2) ~
Rq ]a max / / E t) 27Tt Pq(2> (344)

RI((1 — z)E ORI (zE;,t) + RI((1 — 2)E;, t)R§(2E;, 1)].
For n(> 1) jet, we get easily as,

tmax dt t ) Oés(k.Q) .
q _ ]7 max P 4
R j) max Z / /;a Ej7 t) 27_(_ q(Z) <3 5)

k‘er n nnn

X RZ((l - Z)Eht)Rgz(ZEJ?t)

By using the generating function in Eq. (B333), Eq. (B239) and (BZ3) are described
uniformly by

tmax dt 1—*
qbq(“a Ej tmax) - UA ]7 Inax (346)

Aq(Eja trmax) aS(k )

g Ay (Ej,1) 2

CI( >¢q( 7( )Ejﬂt)¢g(u7ZEj7t)'
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For brevity, we use angle function as scale, i.e., t = ¢*/[2z(1 — z)EJZ] =1—cosf =¢.
In the soft limit (1 — 2)E; — Ej, the equations of generating functions for quark

and gluon are written by

onn £ = (160 + [ / iz ) (3.47)
O on(a, By, €164 (0, 2 €),

oo ) =) + [ / 1520 (3.48)
O (216 By, €004, €) + B2l 5, €,

where & =1 —cos R, & = 1 — cos R,, and P,,, P,, and P,, are splitting functions
for ¢ — qg, g — gg and g — ¢q in Eq. (E0). We use a relation ¢, = ¢;. In the
choice of scale, Sudakov form factor in Eq. (B20) is simply written by

& et pl 2\ .
Ag(E;€) = exp |~ /é | dg—% /E dzo‘sz(ff>qu(z) , (3.49)
— . /
Ag(E;,€) = exp / & / 3 p ) )| (350)

where ny is number of active flavors. We can eliminate Sudakov factors from the

equations as

Eq. (B22)
<:>¢Q( g) U+/ _5/ Z ( )p ()¢Q( j’gl)gzﬁg(u,zEj,f'),

Aq(E; 5) 2m Aq(Ej,€')
d ¢q(u7E'7£) o 1 a5<kt2> > ¢Q(uaE'7£)
3 ( Aq(Ejfﬁ) ) B E/’gj o Tule) ( Aq(Ejf@ )%(u’ZEj’g)’

¢q(uaE'7§a) ¢q(u7E'7€') o S df ! a5<kt2> >
= O]y S Aj % /dz Py (2)04 (1, 2B ),

Then we get

5ad 1 k2 .
o By ) =uwespd [ML [ a2 P ()l - 1) (351)

where we use a trivial relation ¢,(u, E;,§;) = w, which means that any primary

partons whose starting angular-scale is §; never emit resolved emissions. Likewise,
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we get a following equation for the gluon generating function:

€a 1 A
ol By ) = wesnd [TE [ a2 (Bl (w20 — 1

& § 2
- ¢q(u7 ZEj7£)2 .
+ qu(z)[—¢g(u’ 2B, €) 1]) } . (3.52)

We can solve the gluon generating function by iteration, and then substitute in this

equation to get the complete solution.

3.3.1 Double logarithmic accuracy

In this subsection, we solve subjet rates at double logarithmic accuracy (DLA). DLA
means that we consider only terms which have the form a2 In*"(---).

For brevity we define the following logarithms:

k=1W(E;/E,), K =(zE;/E,), (3.53)
A=Mmn(&/E), N =I(/&), (3.54)

, —2 .
We set a reference relative transverse momentum k;, = E?{a, and strong coupling

constant by

2

_as(k) 1

Qg = = . 3.55
s bo In(E2E,/A2) (8:55)
By using this, we expand coupling constant by
L P o0
T bo ln(z2E]2§/A2) ’ ’
~ a5 — byag[2In z + In(£/&5)], (3.57)
=g — boas[2(K — k) + N]. (3.58)

In DLA, we neglect the non-singular terms of splitting functions, i.e., P4 =~
2C,4/%, qu, and @% term in the coupling constant, where C,, = Cp4. Then,
from Eq. (B22, BZ3),

¢i(u7 R, )\) = ¢l(u7 E]7 ga) (359)
N S de (! as 2C;
= uexp {/5 ? Eu/E, dZ? Z [¢g(u> ZEJ7£) - 1]7 } ) (360>
= u e % eli, (3.61)
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where

A K
a; = Ciaig, fi= ai/ d)\'/ dr'¢g(u, k', N).
0 0

We want to know the differentiate of generating functions. We write as:

m_ 9" 9"
fi — 8unfl7 (bz — 8'1,(,”

(bia
Then,

¢(1) _ e—am)\[l + Uf(l)] f

¢(2) _ efam)\[l + uf ] f( ) + efam [fi(l) + ufi@)]ef

Using trivial relations ¢;(u = 0,k,\) = 0 and f;|,—0 = 0,
—a; KA

¢§ ’u:O =€ y

O |umg = 207N | g,

where

A K
fz(l)’uzo = ai/ d)\,/ d/ﬁ:/¢(l) (U, "1/7 )\/)‘u:07

/ d)\// dﬂ/efag/{)\

=Yg A),
0 in(azr\)

where Ein is the entire exponential integral function

, dt C
Em(z):/0 tl_e Zkk"

k=1
Therefore we get subjet rates for n =1 and 2 at DLA:
Ri (Ejv fa) = e_am)\>
Ry(E;.€,) = e “ Ein(agr)).

Qg

3.3.2 Next-to-double logarithmic accuracy

(3.62)

(3.63)

(3.68)

(3.69)

(3.70)

(3.71)

In this subsection, we solve subjet rates at next-to-double logarithmic accuracy

(NDLA). NDLA means that we consider terms which have the form not only /2 In*

but also a2 In*" (- --).
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First we define three I'y functions:

T, (K, N, k5, \) = as(ky), 5 0(2), (3.74)
T, (K, N, 1, ) = O‘S;f:f )b (o), (3.75)
Ty(, k) = ny 0‘52(7':'52 )b (o). (3.76)
These have the following forms
L (K, N, K, \) = CFfS [1+(1-2)%— wp Inz 4+ In(£/6)][1 + (1 — 2)3,

~ Cpag[l — e =% 4 2= /9] — Cpbya2[2(k' — k) + N — A, (3.77)

where we neglect the sub-leading term of splitting function in @% term, namely

1 —z — 1. Likewise,

Ty(5, N, Ky \) = Cqaig[l — e =% 4 271 /2 — o3'=H) /9] (3.78)
— Cyboaz[2(K — k) + N — )],

where we use
1—z+ z
z 1—=z2

L2 -, (3.80)

+2(1 - 2), (3.79)

— 2

z

to shift the singularity on second term to first term. P, doesn’t have singularity, so

I'; start from NLL term. Then we neglect a% term, and get

Le(K k) ~ %65[6“/_“ — 262 =R) 4 93K =R (3.81)

Using I'y, the Sudakov form factors in Eq. (B29) and (BX0) are written by

1 1
Ay(k,\) = exp {—CFaSA {/{ _3 +e " — Ze_%} — Crbyazk\ {/{ + 5)\} } (3.82)

4
B 1 1, 1 L 1
Ay(k,A) =expq —Catish |k — — +e " ——e 4 —e | — Cyabpagk [k + =
12 4 6 2
_E_ g _ ek —25 _ g -3k
1 ag)\[3 e " +e 3° ]} (3.83)

Using 'y and Sudakov form factor, the generating function for quark in Eq. (B=20)

is written by
dq(u, k, N) = ul (K, )\)eF, (3.84)

A K
F:/ d)\// de'Ty(K', N, 5y N)gg(u, &', X). (3.85)
0 0
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The generating function for gluon in Eq. (B532) is expanded by

bg(u, £, \) = uly(k, A) exp {/ d)\'/ d/@{ KON Ry N) g (u, KN

praa)

)
g(RyA) {1—1—/ d/\'/ K/{Fgl{ N, Ky N)gg(u, K N)

+mwwﬂi s I8+ o)

N)
K;A[1+/ dX/ dn{ K
[UAA Zi?)i%((uz))] }“9(“2)]’

/{)\{1+u/ d)\'/ dr’

+ Ty (', k) Af (K, X)} + O(UQ):| : (3.86)

+ T¢(K, k)

N M[udg (5, V) + O(u?)]

+ T¢(K, k)

"N R N)A (KN

where Ay = Ag/Aq. Therefore we get subjet rates for n = 1 and 2 at NDLA:

Ri(k,\) = ng ) (w, 5y Mo = Ak, A), (3.87)
Ry, 3) = 50 (w5, Mo, (358
=A A d\ RdT "N RN A (KN
q(/i, )/0 /0 K g(’liv 7’€7 ) g(’fv ))
R(r, ) = ;, 57 (u, 7y M)lu=o, (3.89)

A K
— A,k \) / q / ARy (5 N1 A () N) 4 Ty (1 N 1, AV A, (1 X)),
0 0
For n > 2, we need numerical integration.

3.3.3 Results: subjet rates

In Fig. [, the analytical and numerical calculations of subjet rates at DLA (black
curves) and NDLA (red curves) are shown. We set R = 0.4, R, = 0.8 and E, = 20
GeV. The difference between DLA and NDLA is up to 5% in the energy range.
These results say that gluon emits much of jets compare to quark. This mainly
stems from the colour factor of gluon branching is larger than that of quark’s one.

In Sec. O, we compare the results obtained by generating function methods and

those by Monte Carlo event generators, and demonstrate that the performance of
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Figure 14: The analytical and numerical calculations of subjet rates at DLA (black curves) and
NDLA (red curves) are shown. We set R = 0.4, R, = 0.8 and E, = 20 GeV. The difference
between DLA and NDLA is up to 5% in the energy range.

quark-gluon discrimination improves by using not only jet substructure variables

but also subjet information.

34



4 Associated jet and subjet rates in light-quark

and gluon jet discrimination

In the LHC environment, in order to keep the contribution of the underlying event
and multiple proton-proton collisions at a minimum, for multijet processes the stan-
dard choice is an anti-k; algorithm with radius parameter R = 0.4. In addition, in
the ATLAS study mentioned above, jets are required to satisfy an isolation criterion:
a jet is considered isolated if there is no other reconstructed jet within a cone of
size AR < 0.7 (where AR = \/(An)? + (A¢)? is the standard distance measure in

the pseudorapidity-azimuthal angle plane). An optimum choice for the jet radius

parameter was discussed in Refs. [BO, EI| for quark and gluon jets as a function
of their transverse momenta (pr), and it was observed that one usually requires a
larger radius for a gluon jet in order for the parton pr to be close to the jet pr.
However, for experimental purposes it is advantageous to use a fixed and small ra-
dius parameter for the jets, for reasons mentioned above. Therefore, we propose
to recover the missed information on radiation from the parent parton outside the
chosen jet radius by including softer reconstructed jets that can be present (with a
calculable probability) around a certain radius of a primary hard jet. These softer
jets are referred to as “associated jets” in this study. It is important to note here
that imposing an isolation criterion as above while studying quark and gluon jet
properties might not be appropriate, since it leads to rejecting a fraction of the jet
candidates beforehand, and thus biasing the sample to ones where the initial quark
or gluon has not radiated outside the adopted jet radius.

We first define the associated jet rates and compare the analytical results with
those from different parton shower MC’s in Sec. E. Using the information on the
presence (or absence) of associated jets can improve the discrimination of quarks and
gluons. We demonstrate this through a multivariate analysis in Sec. . Several
combinations of jet discrimination variables are tried out, and an attempt is made
to determine an optimum choice. Even though we include standard discrimination
variables like the number of charged tracks as inputs to our multivariate analysis, it
should be emphasized that they are subject to MC ambiguities stemming from par-
ton shower algorithms and their associated parameters, and tunings of hadronization
and underlying event (UE) models. However, in order to judge the improvement in
tagger performance on using the associated jet rates, we compare the performance
of different sets of variables within the same MC.

In Secs. B3 and E4 we study the use of the number of subjets of a jet (defined

with an exclusive k; algorithm) in place of the number of charged tracks, since the
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hard

process

Figure 15: A schematic illustration of associated jets, and the relevant variables

which determine the associated jet rate (see text for details).

different MC prediction tend to be similar for the former observable. We compute
the subjet rates upto NDLA as well, and compare the NDLA results with predictions
from different MC generators. Our results on both associated jets and subjets are
summarized in Sec. B. We discuss the 2-dimensional joint distributions of the three

discrimination variables used as inputs in the multivariate analysis in an App. [l

4.1 Associated jet rates

Once a primary jet j has been defined, say using the anti-k; algorithm with radius
parameter R, we define a nearby jet ¢ with p;; > py; > p, and R < AR;; < R, as an
assoctated jet. Thus the associated jet rates are functions of the primary jet p, = p;,
its radius R, the association radius R, and the minimum associated jet p; = p,.
In Fig. [0 we illustrate the idea of an associated jet schematically, and show the
relevant variables that determine the associated jet rate.

In perturbative QCD, the rate of n-jet production from a primary object of type
i (i = q, ¢ in this case), R!, can be obtained from the associated generating function

as discussed in Sec.

¢i(u) = Riu". (4.1)
We can recover the jet rates by differentiating at u = 0,

1 dg,
R = —
" oonl dur

. (4.2)

The jet rates R:, = R (p;, &) are functions of the trigger jet transverse momentum
p;, and the evolution scale for parton showering, which, for hadron-hadron collisions
is taken as € = AR?/2. This is equivalent to the evolution scale for coherent parton
showering, £ = 1—cos 6, with 6 being the emission angle (AR?/2 ~ 6?/2 ~ 1—cos6).
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To be resolved, an emission must have £ > & = R?/2 and p; > p,. Since the jet
rates R! include the trigger jet j, the probability of n associated jets for a jet of

type ¢ with transverse momentum p; is

Py=R,1(pj.&) - (4.3)

Here, {, = R?/2, with R, being the association radius defined above. We have
already calculated the subjet rates in Sec. BEZ3. The argument was energy rather
than transverse momentum. Recalling the calculation, the argument have been used
for the definition of fraction variable z, see Eq. (B20), and scale of strong coupling
constant in Eq. (B2d). Energy and transverse momentum fraction are similar for
collinear emissions and scale of strong coupling constant is transverse momentum
rather than energy in hadron collisions. Therefore it is a good approximation to use
the subjet rates in Eqs. (B2)-(B=1) by substituting F; — p; in the case of hadron
collisions.

We are now in a position to compare the NDLA predictions for associated jet
rates discussed in the previous section with the results obtained using the Herwig++ [I]]
and Pythia8 [BJ] event generators ¥ where the quark- and gluon-initiated jets are
simulated using the Z + ¢ and Z + g processes at leading order in QCD (with the Z
boson subsequently decayed to vv). The event samples were generated for proton-
proton collisions at the 13 TeV LHC, using the CTEQ6L1 [BZ] parton distribution
functions (PDF) for the Pythia generators and the default MRST LO** [E3] PDF and
UE model for Herwig++. Subsequently, we used a modified version of DELPHES2 [EZ]
for including detector effects. For observables based on charged tracks to be dis-
cussed in the following, we use a minimum pr threshold of 1 GeV for each track.
All jets are reconstructed with an anti-k; algorithm [EQ, ] with radius parameter
R = 0.4, and are required to have pr > 20 GeV. In addition, the leading jet is
required to be central with |n| < 2.

In Fig. [@ we show the probability of obtaining n associated jets P, as a function
of the jet pr for n = 0,1 and n > 1, for quark- and gluon-initiated jets, in the
left and right columns respectively. The association radius is set to be R, = 0.8
and the minimum associated jet transverse momentum is p, = 20 GeV. In the MC
simulations, P, has been computed as a function of py(j,), which is the vector sum
of the leading jet and associated jet pr’s. The jet rates are studied as a function of
pr(Jjs), as it is closer to the transverse momentum of the parton that initiates the
final state shower.

We see that the functional behaviour with respect to the jet pr in the MC compu-

8To be specific, we use Herwig++ 2.7.0 and Pythia 8.201 (tune 4C) for all our calculations.
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Figure 16: Comparison of the Herwig++ and Pythia8 MC predictions for associated
jet rates with the NDLA results, as a function of pr(j,): for quark jets (left), and
gluon jets (right), with R, = 0.8 and p, = 20 GeV. Here, pr(js) is the vector sum

of the leading jet and associated jet pr’s.

tation ¥ and the NDLA calculation are similar, although there are some differences
in the values of P,. In particular, the MC prediction of P, for quark and gluon jets
is higher than the NDLA result, especially at higher pr(js), with Herwig++ giving
rise to a slightly larger P, compared to Pythia8. For a quark jet, the probability
of having at least one associated jet ranges from around 15% to 25% as we go from
pr(js) = 200 GeV to pr(js) = 500 GeV and at higher pr(js) the probability essen-
tially remains the same. For gluon jets, the corresponding probability ranges from
around 30% to 40% as we go from pr(js) = 200 GeV to pr(js) = 500 GeV. The
larger probability to have an associated jet around a gluon can thus be utilized to
better discriminate it from quarks, as we shall see in the next section.

The NDLA computation includes only the time-like showering of the final state
partons, and ignores some power-suppressed effects due to momentum conserva-
tion and hadronization. On the other hand, the MC results shown above include
momentum conservation and hadronization as well as the effects of initial state ra-
diation (ISR) and multiple interaction (MPI). In order to quantify the effect of ISR
and MPI, we compare the predictions for P, with and without ISR and MPI in
Herwig++, Pythia8 as well as in Pythia6 [B3] (we use the version Pythia 6.4.28

9For the associated jet rate calculations, we generated MC event samples with a statistics of
20,000 events each fixing the threshold for the minimum leading jet pr at 50 x (i + 1) GeV, for
i € [0,19]. Only events with the leading jet pr(js) above the generation threshold are used in the

analysis. This ensures uniform MC statistics in the whole range of pr(js).
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Figure 17: Comparison of the Herwig++, Pythia8 and Pythia6 predictions for as-
sociated jet rates with and without ISR and MPI, as a function of pr(js): for quark
jets (left), and gluon jets (right). Here, pr(js) is the vector sum of the leading jet

and associated jet pr’s.

with the AUET2B-CT6L tune) in Fig. [A. It is clear from this figure that the impact
of ISR and MPI is rather small for our choice of the association radius R, = 0.8,
thereby making the predictions stable against such effects. For this choice of R,, we

can see that Pythia8 shows the highest variation against such effects, followed by
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Pythia6, while the effects are indeed negligible for the case of Herwig++ ™. Further-
more, the MC results become closer to the NDLA ones when ISR and MPT effects
are switched off.

We also investigated the effects of momentum conservation, by changing the
recombination scheme in the anti-k; jet algorithm from the default E-scheme to
the “winner-take-all” scheme introduced in [E3], which is less sensitive to recoils in
the parton shower [3]. Such a change increases the MC associated jet rates very
slightly. We believe this is because the axis of the leading jet is moved away from
the overall momentum vector of the system. The effects are roughly proportional

for quark and gluon jets, so they would not affect discrimination significantly.

4.2 Quark-gluon separation: multivariate analysis
4.2.1 Variables for quark-gluon separation

A large number of variables have been surveyed in the context of quark-gluon dis-
crimination, constructed out of either track based observables or calorimeter based
ones 2, I8, 09, B3, B4]. While the former category has the practical advantage
of being more accurate due to better track momentum resolution as well as being
less prone to pile-up contamination, the latter category can be used for jets with
larger rapidities outside the tracker coverage. The most widely studied variables
include the number of charged tracks inside the jet cone (nu,), the jet width [E7]

and two-point energy correlation function [B3]. The jet width is defined as

o ZipTﬂ; X AR(’L, Jet)
ZipT,z‘

where the sum goes over all the tracks associated to the jet. For hadron collider,

w (4.4)

the two-point energy correlation function variable C’{ﬁ ) introduced in Sec. EZ3 can

be defined as o

B) )DF Zj Pri X pPrj X (AR(i,5))°

Cl = B .
(2 pra)

Here again the sum over ¢ and j run over all the tracks associated to the jet with

j > i, while  is a tunable parameter. It has been demonstrated in Ref. [E4, B3]

(4.5)

that smaller values of the exponent 3 leads to a better quark-gluon separation, and
6 = 0.2 is found to be optimal from perturbative calculations and MC studies based

on Herwig++ and Pythia8 generators. We have compared the performance of the

$=0.2)

jet width variable w and the variable C’f in the multivariate analyses (MVA) to

0However, we have checked that if we take a larger association radius, R, > 1.2, the ISR effects

become appreciable in Herwig++.
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be discussed below, and find that in all cases C? =02 Jeads to a better separation of
gluons from quarks. Therefore, in the following, we only show results based on ng,
(with each charged track having pr > 1 GeV) and Cfﬁ =2 In addition, we shall
include the associated jet information as well as the jet mass variable and compare
the performance of the different MVA methods. As seen in the previous section,
for n =1 or n > 1, the probability of finding n associated jets, P,, is significantly
larger for gluon jets compared to quark-initiated ones across the whole pr range of
interest. Therefore, the presence (or absence) of an associated jet within a certain
distance R, of a high-pr jet can be used to further improve the separation.

As the boundary between the signal and background regions in the hyper-surface
spanned by the variables is non-linear, it is beneficial to adopt a multivariate analysis
strategy as compared to a cut-based one. For this purpose, we employed a Boosted
Decision Tree (BDT) algorithm with the help of the TMVA-Toolkit [EQ] in the ROOT
framework. The training of the classifier was performed with Z+4¢g—jet and Z+g—jet
samples, and we generated the above MC samples uniformly distributed in jet-py =.
The input variables for the two variable training are taken to be ng, and C’fﬂ :0'2),
while for three-variable trainings we further include the variable m;/pr s, where
my is the jet mass and pr s is the transverse momentum of the leading jet. The
information on the number of associated jets is included in the form of two categories
(n=0orn>1)in the MVA.

It should be emphasized that the MC prediction of the discrimination variables,
especially the number of charged tracks n., is quite sensitive not only to the parton
shower (PS) algorithm adopted and the related parameters, but also to the tuning
of the hadronization and underlying event models. This is expected, since n, is not
an infrared safe quantity, and only the ratio n&"*" /n&*™* converges rather slowly to
the ratio of the colour factors C'4/Cp for high jet pr [Ed]. The disagreement between
different MC generators can therefore be reduced only by appropriate tuning at the
LHC energies. With this limitation of the MC predictions in view, in this study, we
compare the performance of different MVA methods within the same MC generator
to estimate the improvement in adding associated jet related observables. We also
show the quark-gluon separation as predicted by the different MC generators for
comparison. In App. B we present details of the distributions of the discrimination

variables and the differences between the MC predictions for them.

HThe MC event samples for the training of the classifier were generated in the same manner as
for the associated jet rate computation in the previous section, but with a smaller step size of 10

GeV for the minimum pr(js) thresholds.
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4.2.2 Performance in MVA

Based on the BDT analysis, we obtain the efficiencies of tagging quark (¢,) and gluon
jets (e,) as a function of the cut on the BDT score. It is more useful to compare the
ratio of the tagging efficiencies as a function of ¢, in order to judge the separation
power of a ”quark-rich signal” from a ”gluon-rich” background. In Figs. [3-20 (left
column) we show the ratio of the quark and gluon tagging efficiencies, ¢,/¢, as a
function of €,, for 400 < pr(js) < 500 GeV, with the event samples generated with
all the three MC codes. Four different MVA methods are shown corresponding to

different choices for the discrimination variables:
e Method-1: Two variables, ng, and C; with 3 = 0.2.

e Method-2: Two variables, ng, and C; with § = 0.2, with two categories

determined in terms the number of associated jets (n =0 or n > 1).
e Method-3: Three variables, nq,, C; with = 0.2 and m;/pr, ;.

e Method-4: Three variables, ng,, C; with § = 0.2 and m,/pr.s, with two

categories determined in terms the number of associated jets (n =0 or n > 1).

We can quantify the improvement in quark-gluon separation using e,(Method-
1)/e;,(Method-{2,3,4}) as a function of €,, as shown in Figs. [3-Z0 (right). For e.g.,
for an operating point of ¢, = 0.4, we can obtain an improvement of around 10%, 15%
and 20% using Methods-2,3 and 4 respectively, when compared to Method-1. The
differences between the improvement factors obtained using the three MC generators
are found to be small.

In order to estimate the change in tagger performance as we consider lower pr
jets, we show in Fig. E1 the same results as in Fig. [3, but now with 150 < pr(js) <
200 GeV. The improvement on adding associated jet rates is still appreciable, al-
though it is somewhat reduced compared to the higher py range. The fluctuations
in the ¢, ratio for lower values of ¢, in Fig. E1 are due to low MC statistics.

We can see in Figs. [3-20 that there is an improvement in going from a two
variable analysis to a three variable one by including the variable m;/pr ;. This
can be understood as follows. The jet mass variable is related to C’l(ﬁ :2), as can be
seen by writing both of them in terms of the z, # variables for the hardest emission

2
) are two

inside the jet cone: m3% ~ z(1 — 2)62p2.,. Furthermore, C\"=* and "=
independent variables belonging to the C} class which carry all the information on
this hardest emission, and including both of them improves the tagger performance.
For this reason, further addition of a third variable in the C class does not change

the performance appreciably, a fact that we explicitly checked by a separate MVA
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input variables are explained in the text. To quantify the improvement in quark
gluon separation as we go to Methods 2,3 and 4, we show ¢,(Method-1)/e,(Method-
{2,3,4}) as a function of ¢, as well (right column).
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Figure 19: Same as Fig. ¥, with MC simulations using Pythia8.
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Figure 21: Same as Fig. 3, for a lower range of jet pr, 150 < pr(js) < 200 GeV.

Results using only Herwig++ are shown.

analysis. There is a further improvement in the quark-gluon separation when the
number of associated jets information is included at the level of categories in both
the two and three variable MVA analyses. Since the associated jet rates carry the
additional information of radiation outside the jet cone, Methods 2 and 4 lead to

further improvements as compared to Methods 1 and 3, respectively.
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Method 4 leads to the best performance out of the four different MVA’s consid-
ered. In fact, we find that there is an alternative way to include the associated jet
rates information in Method 4 by using the modified jet mass variable m(js)/pr.s
in Method 3. Here, m(js) is the jet mass computed by adding the leading jet and
associated jet four momenta. Because of a larger associated jet rate, for the same
pr(js), m(js) is higher for a gluon jet compared to a quark, while pr; is lower.
Therefore, using either associated jet rate categories and m/pr s, or using only the

variable m(js)/pr,s leads to the same MVA performance, as shown in Fig. E2.
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Figure 22:  Comparison of Method 4 which includes m;/pr; and the associated
jet rates as categories in the MVA, and the alternative method of including the
associated jet rate information by using the modified jet mass variable m(js)/pr,.
Both methods lead to the same MVA performance.

4.3 Subjet rates in jets: analytical calculations

The number of charged tracks inside a jet cone, nq, (with each track having trans-
verse momentum above a threshold, usually taken to be around 1 GeV) is often
used as a good discriminating variable. However, as mentioned earlier, the MC pre-
dictions for this observable are quite sensitive not only to the parton shower (PS)
algorithm and the related parameters, but also to the tuning of the hadronization
and underlying event models. On the otherhand, we find that the number of sub-
jets of a primary jet leads to a more uniform prediction across the MC generators,

and thus can be better suited in quark gluon separation studies. The number of
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subjets as a quark-gluon separation variable was considered earlier in Ref. [Z2]. In
this study, we compute the subjet rates to NDLA accuracy, and show a detailed
comparison with different MC generators.

We find the subjets of jet j with the exclusive k; algorithm, which applies the
dimensionless distance measure
Rp?’

to its constituent objects and clusters them as discussed for a generalized k; algo-

Yik = min{pfi, p?k} (4.6)

rithm in Sec. I, until the smallest y;. is above y... Thus the subjet rates are
functions of the jet p; = pj, the jet radius R, and yeyt.

In this section, we compute the subjet rates to NDLA, i.e. considering double
and next-to-double logarithms, a2 L** and o L*"~!, where now L = In(1/ycy;). The

relevant generating functions in this case are those given in Refs. [E2, [[7]:

Q
o) = un@eo ([ ar@onwo). (47)
Q 2
o) = usy(@eso ([ d[0Quaes() + 1y S D)
where () = Rp; is the jet scale, Qo = Rp;\/y_ . is the resolution scale,™
~ 20ras(¢®) (@ 3 g 1¢
[(Q.q) = o q (hlg—ZJF@—Z@) : (4.9)
204 0s5(q?) Q 11 ¢ 1¢4 1¢
FQ(Q,q) = T 7 (1HE_E+§_Z@+6@> s (410)
_ nyos(¢®) 3Qo  3Q5 Q%

The Sudakov factors for no resolvable emission are now

2,Q) = exp (— / qurq@,q)), (4.12)

2@ = e (- [ Qo). (113
Hence the rates for 1, 2 or 3 subjets in a quark jet are:
R = Ay(Q),
B = 8,0 [ ar@as,0),

o
Ry = AJQ) [ dg / dq' To(Q, 9)Ay(q) X

{[T4(@,¢) + Tl ) Ag(d) + T(d)Af(d)} (4.14)

12Here again we keep power-suppressed corrections in order to satisfy boundary conditions.
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where Ay = Ag /A,, and for a gluon jet we have
R‘i - AQ(Q)a
Q
R = 8,(Q) [l (@ 0, + 0]

R = A /Odq/Odq[ (Q.0)A4(0) %

{[4(Q,d') + Tg(a.4)] Ag(d') + T(q)Ar(q")} + T(a)As(q) X
{[Fg(Qa q/) - Fg(Qa q,)] Ag(q/> + QFQ((L q,)Aq(q/>} . (4.15)

4.4 Subjet rates in jets: comparison with Monte Carlo

We now compare the above results with Monte Carlo predictions. MC samples of
quark and gluon jets were prepared for the subjet analysis using the same setup as
in the associated jet study in Sec. I, however, detector effects and minimum pr
cuts for the charged and neutral hadrons were not included for this analysis. In this
sense, our study of the subjet rates should be taken as illustrative, and we do not
include the subjet rates in an MVA analysis in this paper. As we shall see in the
following, one needs to go down to at least L = 4 to have some discrimination power.
This corresponds to going down to 0.1 for AR resolution, which is the typical size
of calorimeter cells, although the AR separation of subjets would be larger when
the subjet pr is smaller compared to the primary jet pr. Therefore, in a proper
analysis, combining track and calorimeter information is essential, and a detailed
experimental study is necessary, which is beyond the scope of this paper.

Figure I3 shows comparisons between the resummed results of Eqs. (14, E13)
and the MC results for jets with py; € [500,600] GeV and R = 0.4. For quark jets
the different MC generators agree quite well with each other and with the resummed
calculations, the MC predictions being somewhat below the resummed 1-subjet rate
for L > 4, and vice-versa for 2 subjets. Hadronization effects are small for L < 7,
after which the 1- and 2-subjet rates are suppressed and the higher subjet rates are
therefore enhanced. At this value of Rpr;, L = 7 corresponds to resolving subjets
with min{py;, pi; }AR;; ~ 6 GeV.

For gluon jets the agreement between the resummed results and the Monte Carlos
is still quite close for 1 subjet. For 2 and 3 subjets the peak rates are in roughly the
same place but have higher values than the resummed ones, with the effect that the
rate for 4 or more subjets is substantially suppressed. Once again the hadronization
effects are small for L < 7, after which the 1- and 2-subjet rates are suppressed
and the higher subjet rates are enhanced, actually bringing the latter into close

agreement with the analytical calculations.
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Figure 23: Subjet rates R, withn = 1,2,3 and n > 3 as a function of L = —In(yey),
for quark jets (black) and gluon jets (red), with pr, € [500,600] GeV, R = 0.4.
Curves are Herwig++ (dashed), Pythia6 (dot-dashed), Pythia8 (dotted) and NDLA

resummed (solid).

In conclusion, the fairly good agreement between the Monte Carlos and the

resummed 1-, 2- and 3-subjet rates for R = 0.4 and L not too large (L < 5, subjet

resolution above about 15 GeV) suggests that in this range those subjet rates can

be used for quark-gluon discrimination. At larger jet radii, the agreement remains

similar, as we have checked using R = 0.8.



5 Evolution variable dependence of jet substruc-

ture

Through the study in Sec. O, we noticed that the predictions of QCD jet substructure
are different between Pythia and Herwig++. Main purpose of this section is to
consider the differences by focusing on the parton shower algorithm. With this goal
in mind, we simulate QCD jet substructure related observables with the following

generalized evolution variable:
Qa = [42(1 = 2)]°¢, (5.1)

where, « is treated as a free parameter. For final state radiation, the above variable
with @ = 1 and —1 correspond to the evolution variables employed in Pythia8 and
Herwig++ respectively. In Sec. BT, we provide further details on the framework used
to implement this evolution variable in our parton shower program. In Sec. B3,
we show properties of QCD radiations generated by a given (),, and discuss the
correlation pattern between such radiation properties and the resulting behaviour
of the jet shape variable, Cfﬁ ) [B3]. In Sec. B3, we show a-dependence of C’fﬂ )
distributions and the associated jet rate observable [ES] with tuned values of the

parton shower parameters. We summarize our findings in Sec. B.

5.1 Modification of the parton shower formalism

The evolution variable for the final state radiation of light partons used in our
analysis is defined in Eq. (E), where z is the momentum fraction of one of the
daughter partons and ¢? is the virtuality of the mother parton. The daughter partons
are taken to be on-shell. The variable @), is parametrized by a continuous parameter
a, and we take the range as o € [—1,1] in this study. @, with & = 1 and —1
correspond to Pythia8’s evolution variable (i.e., relative transverse momentum) and
Herwig++’s one respectively. QCD radiations are governed by the DGLAP equation
[[3, m@]. When we use (), as a scale variable, the evolution equation takes on a
equivalent form for each « due to the following relation,

%dz = dq_q; 2. (5.2)
We implement the general evolution variable (), for arbitrary « in a parton shower
program, and calculate jet substructure observables. Even though there are various
recent parton shower formalisms, e.g., dipole shower in Pythia8 [Ed| or dipole-

antenna shower in Vincia [E0, EI], we use in this study a traditional formalism
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based on Refs. [, B3], which is used in Herwig++. In the following subsection, we
describe the modification to the formalism in Refs [, B3] required to have a parton

shower with arbitrary a.

5.1.1 Phase space

Consider an emission where a mother parton a branches off into light or massless
partons b and ¢ (a — bc). We give an effective mass mq, to the daughter partons to
avoid singularities in the splitting functions. Then, upper and lower values of the

energy fraction of one daughter parton z7, and zy are given by

1 2 4m?
z§:§ 1+ 1—%\/1— q;‘g : (5.3)

where ¢? is the virtuality of @ when b and ¢ are on-shell, and E, is the energy of a.

This gives a condition for the allowed region on the energy fraction zg and @), as

2 2 2
rw + %a w* <w+ 0 w=4z2p(1 - 2p), (5.4)
Qa max max

where Qnax and Qumi, are the maximal and minimal values for (),. These are inde-

pendent of «, and given as

Qmax = Eaa Qmin = qug- (55)

Here, z describes not the energy fraction but the light-cone momentum fraction as
in Refs. [, @2]. However, we have explicitly checked that these are approximately
the same. Hence we use Eq. (E2) with a substitutions, zg — 2 in the generation of
Q. and z. The energy of the partons are known at the end of all branchings. So,
we set Qmax in Eq. (BE2) to the energy of the initial hard scattering process, i.e.,
\/s/2 for the first branching, and calculate by taking z as the energy fraction for
subsequent branchings. These choices ensure the required relation p? = Q?—Q?%. >
0, where p, is the spatial component of the relative transverse momentum for each
branchings, as defined in Ref. [0, (7).

The allowed phase spaces in the In z—In @), plane for each choice of « is illustrated
in Fig. B, where the parton energy F, is fixed at 500 GeV. At leading order, the
parton branchings occur almost uniformly on this plane. The partons start from a
high scale and evolve to low scale in timelike branchings, and the smaller « is, the
larger the phase space becomes in the high scale region. So, when the evolution starts
from a high scale, initial emissions tend to choose a high scale and soft emission for

small a.
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Figure 24: The allowed phase space in the In z — In Q,, plane for each choice of a, with E, fixed
at 500 GeV.

5.1.2 Starting scale

We consider final states of either a light quark pair (¢q) or a gluon pair (gg), with a
center of mass energy of 1/s, and set the starting scale for the initial partons to their
energy in the rest frame of the final state, i.e., v/s/2. This is the maximal choice for
the starting scale, see Eq. (BE3).

Next, consider the sequential branchings a — bc and b — de, with the scales of

the branching given by @), and Q. as;

Q% ~ [42(1 — 2)]* x 22(1 — 2) E*(1 — cosb,), (5.6)
Qi,b ~ [421,(1 — Zb)]a X 22(,(1 — Zb)Eg(l — COS 01,), (57)

where 0, and 6, are the angle between b and ¢, and d and e respectively. The
momentum fractions for the branchings a — bc and b — de are given by z and zy,
and the energy of a and b are E, and F}, ~ z,F,. By imposing the angular ordering
0, > 0,, we get

42(1 — 2) ~(atD)/2
Qap < Qaz [m] ; (5.8)
< Qaz[dz(1 — 2))7@tD/2, (5.9)

The right-hand side in Eq. (E53) can be greater than the previous scale Q. To avoid
this wrong of ordering the scale, we set the starting scale of the daughter parton b

as

55 = Qamin(1, 2[42(1 — 2)] 7/, (5.10)
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Figure 25: Red and blue regions satisfy the angular-ordered condition in Eq. (E9) for a = 1
and —1, where previous scale and momentum fraction are set to @, = 100 GeV and z = 0.8.
The region M is in red region and above @),. Sequential emissions in M are prohibited since the
scale Qo does not ordered. Such missing phase space make the difference of emissions for each «

essentially.

The angular ordering is ensured by using this starting scale for o = —1. However,
angular ordered emission is not ensured for o« # —1. Such emissions are vetoed by
hand as in Pythia6 [BJ].

In Fig. 3, red and blue regions satisfy the angular-ordered condition in Eq. (E9)
for « = 1 and —1, where previous scale and momentum fraction are set to @), = 100
GeV and z = 0.8. The region M is in red region and above (). Sequential emissions
in M are prohibited since the scale (), does not ordered. Such missing phase space

make the difference of emissions for each « essentially.

5.1.3 Tunable parameters and other modifications

We use three parameters ag(myz), Mqg, and rey in our parton shower program.
The first one is the strong coupling constant at the scale of the Z boson mass.
We use one loop running of ag in our code. The argument of ag is set to p; =
27%2(1 — 2)]*=/2Q,, thereby including the effects of subleading terms in the split-
ting functions. The value of ayg is significant to the predictions of jet substructure.
Larger values of ag lead to high scale emissions, and jet shape distributions, e.g.,
the jet mass distribution shift to higher value regions. The value of ag(my) is set to
0.118 in Herwig++, and about 0.136 — 0.139 for the final state radiation in Pyhtia8.
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The second variable mg, is the effective mass of the light partons and gluons to
avoid soft-collinear singularities, which was introduced in Sec. EZIT1. The third one

is defined as

cht . cht

Qmin B 2/rnqg7

(5.11)

Teut =

where Q.ut is a given scale where the evolution terminates.
We note in passing that, in our analysis, we neglect ¢ — ¢¢ branchings for

simplicity, which affect distributions at the NLL order.

5.2 Emission property

Jet shape observables are important in examining the substructure of QCD jets.
One of the recently studied jet shape observable is the two-point energy correlation

function C’fﬁ ) [B3, (3], which can be defined in the rest frame of a parton pair as

EE; (.. 60;\°
o =3 o <281n73) , (5.12)

i<jcjet ~ Jet

where E; and E; are the energies of the particles labeled by ¢ and j in the jet, Eje is
the jet energy, and 6;; is the angle between ¢ and j. The sum runs over all distinct
pairs of particles in the jet. The dominant contribution to this observable comes
from the hardest emission in the jet, which is also the first emission in the jet [[A].

Neglecting all other emissions except for the hardest one, we get in the soft limit
0
ImC¥ ~1nz+ B (QSin 5) ) (5.13)

where z and 6 are the smaller energy fraction and the angle of the hardest emission,
respectively. Evidently from the above equation, studying the properties of the first
emission in the jet on the z — # plane will lead to an understanding of the behaviour
of this jet shape.

Figs. I3 and E2 show the emission probability on the In z — In(2sin(6/2)) plane
for quark and gluon jets respectively. The top, center and bottom rows show the
results for the first, second and third emissions. Here, the second and third emissions
refer to the emissions from the harder of the two partons produced by the first and
second emissions respectively. We find that the equal-probability curves for the first

emission plots are roughly given by the contours described by

1 0
Const. = a—2|— Inz+In (2 sin 5) ) (5.14)
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Figure 26: Emission probability in the In z — In(2sin(#/2)) plane for quark jets. The top, center
and bottom rows show the results for the first, second and third emissions, respectively. The second
and third emission refer to the emissions from the harder parton produced by the first and second

emissions respectively.

This is because, the evolution variable, in other words, the ordering variable, in
Eq. (E0) can be written in the soft limit as

1 7
nQ, = oz—2k Inz+1In (2 sin 5) + Const. (5.15)

It should be mentioned that the small z regions are more favourable due to larger
values of the strong coupling constant, ag. In the case of @« = —1, the evolution
variable is given by Q_; ~ E x 2sin(f/2), where E is the energy of the mother
parton. So, high scales also imply larger angles. As mentioned above, the emissions

tend to prefer high scales and soft emissions for smaller values of «. This is consistent
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Figure 27: Same as Fig. I3, for gluon jets.

with the results for the first emission with o = —1 in Figs. and 2.

Clearly, for the jet shape observable in question, we are mostly interested here
in the first emission in a jet. When we set the jet radius to R = 0.4, such emissions
are distributed in the region described by In(2sin(6/2)) < —0.9. The first emissions
often fall outside a narrow jet, especially for small a. Also, such emissions tend to be
vetoed out in the parton shower-matrix element matching algorithms. Therefore, it
is also important to look into the subsequent emissions. We find that the second and
the third emissions also have a different distribution for each value of a. This fact
indicates that parton shower algorithms implementing different evolution variables
would have different predictions for jet substructure. However, the results in Figs.

and 2 are obtained with the same set of inputs for the tunable parameters described
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in the previous section & for all values of . In the next section, we employ a
procedure to fit the values of these parameters for each « separately, and show our

results with the fitted values of the parton shower parameters for completeness.

5.3 The a dependence
5.3.1 Jet shape distribution

Jet shape distributions depend on the parameters ag(mz), mqg, and rqy, introduced
in Sec. BT, These parameters are determined by performing a fit of the MC
predictions to experimental data on several jet observables, for which the ete™ — n
jets data from LEP are particularly useful. Performing such a fit to the experimental
data is, however, beyond the scope of the present study as this would require the
implementation of a hadronization model in our parton shower code. Since the
primary goal of this study is to examine between difference between parton shower
algorithms using different evolution variables, as an alternative to real data, we
utilize the ete™ — ¢7 events generated by Herwig++ with hadronization switched
off as our data ™.

The C£0’5), sz.o) and C’f?"o) distributions have been used to tune the above pa-
rameters. As mentioned in Sec. B3, the first emission in the jet has a significant
effect on the jet shape, which can be parametrized by the momentum fraction z and
the angle . Therefore, two independent C’fﬁ ) distributions contain the necessary
information about the jet shapes. Here, we use three variables in order to further
examine the # dependence of the QCD jet substructure.

Throughout this paper, jets are clustered using the generalized k; algorithm for

eTe collisions using FastJet 3.1.1 [B0], the distance measure for which is defined

as
di; — min(E2, 527 L= %80 (5.16)
“ *77 7 1—cosR’ '
where R is the jet radius parameter, and we use p = —1.

We firstly generate events using five choices for the evolution variable, @1, Qo s,
Qo, Q_o5 and Q_1 at /s = 200GeV, where /s denotes the center of mass energy
in the ete™ collisions. We calculate In C’fo"r’), In 052.0) and In C’F"O) distributions
with R = 0.4, and find the values of the parameters that minimize the x? variable

computed using our results and the mock data generated by Herwig++. Theoretical

13 The distributions in Figs. EO and E2 are obtained with ag(mz) = 0.12, mqe = 1GeV, and
Tcut = 1. B
1To be specific, we use Herwig++ 2.7.1 with default tune, for the uuz and dd parton level final

states.
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« as(myz) | mag[GeV] | Teut
+1.0 0.132 0.94 1.00
+0.5 0.126 0.90 1.00
0.0 0.121 0.84 1.05
—0.5 0.119 0.83 1.16
—1.0 0.119 0.85 1.25

Table 1: Tuned values of the parton shower parameters for each choice of a, obtained by fitting
the In C{O'S), In 01(2‘0) and In 01(3‘0) distributions for quark jets with R = 0.4 with an eTe™ centre
of mass energy of /s = 200GeV. The reference distributions are calculated by using ete™ — ¢q

events generated by Herwig++

errors are assigned using a flat distribution for each bin. The best fit values of the
parameters are shown in Table . We see that the larger « is, the larger the tuned
value of ag(mz) becomes. In other words, the Pythia8-like case with (); prefers a
higher value of cvg(m ) compared to the Herwig-like case with ¢)_;. This qualitative
behaviour is in agreement with the actual implementations found in Pythia8 and
Herwig++. It should be emphasized that the outcomes of this tuning procedure do
not entirely reflect the Monte Carlo difference between Pythia8 and Herwig++, as
the the parton shower algorithm implemented in Pythia8 is different from ours.

In Fig. E8, the top row shows the fitted results, and hence the distributions are in
good agreement with Herwig++ predictions. We also obtained the distributions for
a fat jet (with R = 1.2) and for gluon jets using the fitted values of the parameters
shown in Table M. For the same energy, the gluon jet distributions with R = 0.4
are similar for each choice of the evolution variable. Small differences appear in the
shapes predicted by different choices of « for the fat quark and gluon jets (R = 1.2).
Fig. I shows the same distributions as in Fig. P8, with a higher value of the center
of mass energy, /s = 1000 GeV. As we can see, the a-dependence of the shapes is
found to be higher for higher energy jets.

5.3.2 Wideness of soft emissions in jets

The larger the parameter 3 in Cfﬁ ) is, the larger the differences become in Fig. E9.
This implies that the wideness of the emissions, especially for the hardest emission
in the jets, is different for each «. This is because, the larger (3 is, the larger the
contribution to C’fﬁ ) from the emission angle of the hardest emission becomes, which
is understood from Eq. (E013).

Associated jet rates defined in Ref. [BF] directly reveal the wideness of the emis-

sions in jets. Associated jets are jets nearby a hard jet, and are defined by two
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Figure 28: Distributions of In C{Ob), In C’{Z'O) and In CF"O) for quark and gluon jets, with R = 0.4

and 1.2, at /s = 200 GeV, as obtained using the parameter values shown in Table 0.
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Figure 29: Same as Fig. I3, with a higher center of mass energy, /s = 1000 GeV.
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parameters, R, and E,. Here, R, is the maximum allowed angle between the mo-
mentum directions of the hard jet and the associated jet, and FE, is the minimum
energy of the associated jets™. We set the value to E, = 20 GeV in this study.

A high probability for having no associated jet implies that the probability of
wide emissions occurring around the hard jet is low. Such probabilities have been
obtained by using Pythia8, Pythia6, and Herwig++, and it has been found that the
no associated jet probability predicted by Pythia is higher than the one obtained
with Herwig++ [EJ].

The no associated jet probabilities calculated with @1, Qo.5, Qo, @_05 and Q_;
are shown in Fig. BO, where, the fitted values of the parameters in Table O have
been used. We can see that no associated jet probabilities are similar for each «
at the low energy range. This is expected as the parameters have been tuned at
Vs =200 GeV. The a dependence is enhanced at the high energy range. The larger
« is, the larger the no associated jet probabilities become. Therefore, an angular
ordered shower (o = —1) predicts wider jets, while a p, ordered shower (o = 1)
predicts narrower jets. This result is qualitatively in agreement with the missing
phase space of the p, ordered shower [E3]. The wideness of the emissions in the jets
are thus tunable by changing the parameter « in the evolution variable continuously.

Fig. BD is similar to Fig. BO, with the tuning parameters obtained by fitting
In C’%ﬁ) distributions for quark jets in eTe™ — ¢ events at /s = 2000 GeV. The
no associated jet probabilities are similar for each a around /s = 2000 GeV for
the quark jets. The o dependence now appears at other energy ranges. The energy
scaling of the wideness seems to be inherent in the choice of the evolution variable

for the same modelling of the parton shower.

15 In Ref. [E5], for studies in hadron collisions, the parameter p, has been used to define associated
jets instead of E,, where p, is the minimum transverse momentum of the associated jets. However,

for the eTe™ collisions studied in our paper, it is more suitable to use the energy variable.
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6 Summary

To summarize our findings in Sec. O, we show that in studies of light quark and
gluon jet discrimination at the LHC, it is important to include the information on
associated jet rates around a primary hard jet. Associated jet rates are defined as
the probability of finding at least one softer reconstructed jet around the primary
hard jet under consideration. This probability is found to be substantially higher
for a gluon-initiated jet compared to a quark-initiated one. Since commonly a small
jet radius parameter is adopted in LHC studies of hadronic jets, the associated jet
rates carry the information on the radiation outside the chosen jet radius.

We compute the associated jet rates up to NDLA accuracy in perturbative QCD,
as a function of the primary jet and minimum associated jet pr’s, as well as the
jet radius and association radius parameters. The NDLA results are thereafter
compared with predictions from different parton shower MC generators. Since the
NDLA predictions include only the time-like showering of the final state partons,
we demonstrate the effects of ISR and MPI in the MC predictions as well, and it is
observed that the NDLA predictions are closer to the MC’s when ISR and MPI are
switched off. Overall, the associated jet rates are not very sensitive to these effects
as long as the association radius is not too large.

The probability of having at least one associated jet for a primary gluon jet is
roughly a factor of two larger than for a quark jet, with a small variation in this num-
ber as a function of the jet pr. This fact makes the presence or absence of associated
jets a good variable for quark-gluon discrimination studies. We demonstrate the im-
pact of including the associated jet rate information by including this variable in an
MVA analysis, along with the well-studied variables of number of charged tracks,
energy-energy-correlation angularities and jet mass. Comparing different two and
three variable MVA’s with and without the associated jet information, we find that
including the associated jets leads to an improvement of around 10% in rejecting
gluons, for a fixed quark selection efficiency of 0.4. We also show that using a three
variable MVA with associated jet categories leads to the best performance, with an
improvement of 20% in rejecting gluons, for the same quark efficiency as above.

Since for the number of charged tracks variable the MC predictions tend to differ,
and are dependent on the parton shower and underlying event parameter tunes, we
explore the number of k; subjets of an anti-k; jet as a quark-gluon discrimination
variable. We compute the number of subjets to NDLA accuracy, and compare the
resummed predictions with different MC’s. The different MC predictions are found
to be rather uniform, with the resummed predictions being broadly in agreement

with them. However, for gluon jets the peak rates for 2 and 3 subjets are found
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to be lower in the resummed computation, which might arise due to higher-order

effects that are in general bigger for gluons.

In Sec. B, we have introduced a generalized evolution variable ), which is a
function of the free parameter « taking continuous values. Although the evolution
equation governing the QCD radiation in jets takes an equivalent form for each «,
jet substructure depends on « even in the same parton shower formalism. We have
examined the a-dependence of Cfﬁ ) distributions and the associated jet probability
for quark and gluon jets. This is motivated by the differences found in the prediction
for jet substructure observables between often-used Monte Carlo generators, and also
by the fact that recent LHC data related to QCD jet substructure lies between the
predictions of the MC generators. The angular-ordered parton shower formalism
used in this study is built upon the one implemented in Herwig++. We leave further
studies based on other recent parton shower formalisms to a future work.

We have studied the distributions of the first, second and third emissions in
the momentum fraction z and emission angle 6 plane. These distributions are of
importance as the beginning emissions in the jets have a significant impact on C’fﬁ )
and other jet shape observables. The distributions show a unique emission pattern
for each choice of a.

We have tuned the parameters in the parton shower to ete™ — ¢ mock data
generated using Herwig++, with center of mass energies of /s = 200 GeV and 2000
GeV. Observables used in the tuning are In 01(0'5), In 01(2'0) and In C§3'0) distributions
with the jet cone angle R = 0.4. From this fit, we observe that larger values of the
strong coupling are preferred as we vary the values of o from —1 to 1. This is qual-
itatively in agreement with previous findings regarding the difference between the
parton shower phase-space covered by the p, ordered and angular ordered showering
algorithms. Using the best fit parameters, we have calculated the In C’l(ﬁ ) distribu-
tions of the quark and gluon jets, with R = 0.4 and 1.2, for ete™ collisions at
/s =200 and 1000 GeV. As we move away from the setup used for the fits (namely,
quark jets, R = 0.4, v/s = 200 GeV), the a-dependence becomes more apparent,
especially for larger values of 3 in Cfﬂ ),

The a-dependence for large 3 implies that wideness of the soft emissions, espe-
cially the first ones in a jet are different for each . We can examine this wideness
directly by studying the associated jet probability. A high probability for having no
associated jet simply means that the probability of wide emissions occurring around
a hard jet is low. We have found that the larger « is, the larger the no associated

jet probability becomes. This gives us a qualitative understanding of the generator

63



dependence of associated jet rates, especially between Pythia8 and Herwig++. Our
results open up the possibility that we might be able to reproduce the wideness
of jets observed in real data by varying the value of a in the evolution variable

continuously.
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A Distributions of discrimination variables

In Figs. BB we show 2-dimensional plots of the joint distributions of the three
discrimination variables used in the MVA presented in Section I3, for the two
Monte Carlo event generators Herwig++ and Pythia8. The following features may

be observed:

e There are differences between the distributions predicted by the two Monte
Carlos, those of Pythia8 being somewhat narrower for quark jets and sub-

stantially narrower for gluon jets.

e The distributions of the infrared-unsafe variable ng, show the greatest differ-
ences, with those of Pythia8 being larger at high ng,. This could be due to

differences in tuning of the non-perturbative parameters of the generators.

e The above features are reflected in the likelihood plots, showing the proba-
bility ratio P,/(FP, + P,), and account for the higher discrimination efficiency
predicted by Pythia8 (Fig. [ vs Fig. [3).

e The quark-gluon discrimination in the events with associated jets is weaker
than that for najs = 0. This is expected because the events are selected
according to pr(js), the sum of leading and associated jet pr’s. Therefore
those with associated jets have leading jets with lower pr’s, which have lower

discriminating power.

e Nevertheless the inclusion of the associated jet category improves the MVA
performance, because the probability of an associated jet is lower for quark

jets.
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B Veto algorithm

Developers of simulation tools should employ several techniques for optimal simu-
lation, e.g., fast simulation. We introduce an useful technique to generate variables
in Markov chain, which is called as veto algorithm.

A function f(t)dt show a probability that something will happen (we call the
happening as “emission” later for brevity) from time (or a scale) t to t + dt. The
probability does not depend on what happened past. A probability that any emission

doesn’t happen from 0 to ¢ is given as

A(t) = exp {— /0 t f(t’)dt’] | (B.1)
A probability that an emission happen in [t, ¢ + dt] for the first time is
P(t)dt = A(t) x f(t)dt. (B.2)
We can generate next time by solving an equation:
A(t) = R, (B.3)

where R is random number which is generated flatly in [0, 1]. If the integral of f

(F) and the inverse of integrant (F~!) are known, we can solve Eq. B23:
t=F1(F(0)—InR). (B.4)

When we don’t know F and/or F~', we may need to solve Eq. (B3) numerically
for each emissions. More efficient way is as follow. First we look for f(t), which
satisfy f(t) > f(t) for all t and integral F' and its inverse F~' are known. By using

the function, next emission time ¢ is generated tentatively by,

t=F"YF(0)—InR). (B.5)
If f(t)/f(t) < R'is true, t is accepted as next time, where R’ € [0,1] is other flat
random number. If it is false, ¢ is rejected and the generation start from t. We
continue that until accepted time is found. The distribution of accepted time t by
the procedure (called as veto algorithm) is the same what we want, i.e., P(t).

We show that the probability that next time is accepted in ¢ by veto algorithm,
]5(15), is equivalent to P(t). The probability is repented as

P(t) = Pu(t), (B.6)
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where P,(t) is the probability that an emission is accepted at t after emissions are

rejected n times. Evaluation of Py(t) is trivial:
t ~ ~
At =exp |- [ frar] o < 20 (B.7)
0

= exp {— f(t’)dt’} f(t). (B.8)

as

/dt1 / dt,, exp /tl f(t’)dt’} fty) (1—%3) (B.9)
ol [ e (-
X exp | = / f(t’)dt’} Fin i

0l
ool [0 [ [

[f(t) = f(t)],  (B.10)

ﬁ<m{4ﬁvm m}. (B.11)

The factors (1— f(t;)/f(;)) show the rejected probability at ;. See Fig. B3 for your

understanding. We get relation which we wished,

1

?®=%@[WwWW%ﬂm, (B.12)
— P(1). (B.13)
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The function f(¢) sometime contain additional variable, e.g., it is the momentum
fraction z in the parton shower. A probability that any emission doesn’t happen

from 0 to ¢ is given as

A(t) = exp {— /O tdt’f(t)], £(t) = / ) (B.14)

_(t)

where z_(t) and z, () show a minimal and maximal allowed region for z at t. We
generate z in probability of f(t,z)/f(t) after generating ¢. So, a probability that an

emission at ¢ and z for the first time is written as

P(t.2) = A(t) x f(t) x L&) (B.15)
NI (B.16)

Now we prepare a function f which satisfies f(¢,2z) > f(t, z) for all t and z, and its

integral and inverse of integral are known, also defined as

- Zp(t)
f(t) :[ o f(t, 2d, Z(t) < z_(t) < z(t) < Z(1). (B.17)

We get next time ¢ tentatively by Eq. (B3), and z by

= A2 f(
S - 62 _ R (B.18)

f(t)

If f(t,2)/f(t,z) < R" is true, ¢ is accepted as next time, where R” € [0,1] is other

flat random number, and note that

f(t,z) =0, for Z_(t) <z<z_(t) or z4(t) <z < Z.(t) (B.19)

If it is false, t is rejected and the generation start from t¢.
We show that the probability that next time is accepted in ¢ by veto algorithm,

P(t, z), is equivalent to P(t, z). The probability is repented as
P(t,z) =Y Pt 2), (B.20)
n=0

where P,(t, z) is the probability that an emission is accepted at (¢, z) after emissions

are rejected n times. Accepted probability at ¢, z is

exp {— /O t f(t’)dt’} i, z)%z; — exp {— /0 t f(t’)dt’} F(t,2), (B.21)
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Rejected probability at t, z is

e [ [ Forae] oz (1- e i) — e[ [ Ja] ez - s,

(B.22)

So, P,(t, z) is written as

R t t 1 Z4(t1) 5
Pn(t,z):/o dtlm/t dt, exp —/0 f(t’)dt'} {/ . dz[f(tl,z)—f(tl,z)]}

tn Zy(tn) .
X o X exp —/t f(t’)dt'} {/ - dz[f(tn, 2) —f(tn,z)]}

% exp | — /t f(t’)dt’] (),

— o[- [ 0] st [ /dt Gt~ f) (B23)

= At { [ i) - ) (B.24)

We get relation which we wished,
P(t.2) = Folt.2) [ atexplf(e) = F(0)], (B.25)
= P(t, z). (B.26)

C n! factor

1 1 1
I:/ dxl/ dxg---/ dx, f(z1, T2, ..., Ty), (C.1)
0 0 0
) —

where f(...,z;,...,xj, ...

We define [ as

= f(...,xj,...,x;,...). For example, f(...,z;,...,xj,...) =

1, g(x;) satisfy the property. In this case ordering integral is given by

1 x1 Tp—1 [
/ da:l/ dﬂfg"'/ dr, f(x1,xe, ..., Tp) = —- (C.2)
0 0 0 n:

since such ordering condition x;, > x;, > --- > x; divide integral space into n!

regions.
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