
Empirical representations of probability

distributions via kernel mean embeddings

Motonobu Kanagawa

Doctor of Philosophy

Department of Statistical Science

School of Multidisciplinary Sciences

SOKENDAI (The Graduate University for

Advanced Studies)

Empirical representations of probability distributions via

kernel mean embeddings

a dissertation
submitted to the faculty of

the school of multidisciplinary sciences
the department of statistical science

the graduate university for advanced studies
by

Motonobu Kanagawa

in partial fulfillment of the requirements
for the degree of

doctor of philosophy

Kenji Fukumizu, Advisor

March 2016

c⃝ Motonobu Kanagawa 2016

Acknowledgements

I am grateful to all people whose have supported me in the process of my Ph.D.
course. First and foremost, I would like to express my gratitude to Prof. Kenji Fuku-
mizu for being my supervisor since I came to the Institute of Statistical Mathematics
as an intern. I would like to thank Prof. Satoshi Kuriki, Prof. Daichi Mochihashi,
Prof. Ryo Yoshida, and Prof. Taiji Suzuki for being committee members and for
their helpful comments, and Prof. Arthur Gretton and Prof. Yu Nishiyama for being
collaborators on the works that become a basis of this thesis. I am also grateful
to the members of the Fukumizu laboratory and the SML center, and students and
professors of ISM.

Finally, I would like to thank my family for their warm supports.

i

Abstract

How to represent probability distributions is a fundamental issue in statistical meth-
ods, as this determines all the subsequent estimation procedures. In this thesis, we
focus on the approach using positive definite kernels and reproducing kernel Hilbert
spaces (RKHS), namely the framework of kernel mean embeddings. In this frame-
work, any probability distribution is represented as an element in an RKHS, which
is called the kernel mean. Since each kernel mean contains all the information about
the embedded distribution, statistical inference can be conducted by estimating the
kernel means of distributions which one is interested in. In general, a finite sample
estimate of a kernel mean is given as a weighted sum of feature vectors. Therefore an
empirical kernel mean is expressed by a weighted sample, and thus it is similar to an
empirical distribution.

In this thesis, we investigate this similarity between empirical kernel means and
empirical distributions, and show that empirical kernel means can be treated as em-
pirical distributions; this enables us to incorporate Monte Carlo methods into the
framework of kernel mean embeddings. We first prove that a sampling method can
be applied to empirical kernel means, as is commonly done to empirical distributions
in the field of Monte Carlo methods. Based on this theoretical result, we develop
a novel method for filtering in a state-space model, which effectively combines the
sampling method and a nonparametric learning approach of kernel mean embeddings.
We also prove that empirical kernel means can be used for estimating expectations
of functions of a broad class, similarly to empirical distributions.

ii

Contents

List of Tables v

List of Figures vi

1 Introduction 1
1.1 Representations of probability distributions 1
1.2 Kernel mean embeddings of distributions 3
1.3 Empirical distributions and Monte Carlo methods 5
1.4 Contributions . 6

2 Kernel mean embeddings of distributions 10
2.1 Positive definite kernels and reproducing kernel Hilbert spaces 10
2.2 Kernel means . 12
2.3 Characteristic kernels and metrics on distributions 13
2.4 Estimation of kernel means . 14
2.5 Kernel mean embeddings of conditional distributions 15

2.5.1 Conditional mean embeddings 15
2.5.2 Kernel Bayes’ Rule (KBR) . 16

2.6 Properties of weight sample estimators 17
2.7 Kernel Herding . 18

3 Sampling and resampling with kernel mean embeddings 20
3.1 Sampling algorithm . 21
3.2 Resampling algorithm . 23
3.3 Role of resampling . 24
3.4 Convergence rates for resampling . 26
3.5 Experiments . 29
3.6 Proofs . 35

3.6.1 Proof of Theorem 1 . 35
3.6.2 Proof of Theorem 2 . 38

iii

Contents iv

4 Kernel Monte Carlo Filter 44
4.1 Related work . 46
4.2 Proposed method . 47

4.2.1 Notation and problem setup 47
4.2.2 Algorithm . 48
4.2.3 Discussion . 51
4.2.4 Estimation of posterior statistics 53

4.3 Acceleration methods . 56
4.3.1 Low rank approximation of kernel matrices 56
4.3.2 Data reduction with Kernel Herding 57

4.4 Theoretical analysis . 60
4.5 Experiments . 61

4.5.1 Filtering with synthetic state-space models 62
4.5.2 Vision-based mobile robot localization 67

5 Decoding distributions from empirical kernel means 74
5.1 Related work . 76
5.2 Function spaces . 78

5.2.1 Sobolev spaces . 79
5.2.2 Besov spaces . 79
5.2.3 Gaussian reproducing kenrel Hilbert spaces 81

5.3 Main theorem . 82
5.3.1 Expectations of infinitely differentiable functions 85
5.3.2 Expectations of indicator functions on cubes 86

5.4 Decoding density functions . 87
5.5 Numerical experiments . 89
5.6 Proofs . 92

5.6.1 Proof of Theorem 4 . 92
5.6.2 Proof of Proposition 1 . 95
5.6.3 Proof of Corollary 6 . 95
5.6.4 Proof of Theorem 5 . 96

6 Conclusions and future work 99

References 101

List of Tables

4.1 Notation . 48
4.2 State-space models (SSM) for synthetic experiments 63

5.1 Test functions . 90

v

List of Figures

3.1 An illustration of the sampling procedure 25
3.2 Results of the experiments from Section 3.5 33
3.3 Results of synthetic experiments for the sampling and resampling pro-

cedure in Section 3.5 . 34

4.1 Graphical representation of a state-space model 45
4.2 One iteration of KMCF . 55
4.3 RMSE of the synthetic experiments in Section 4.5.1 65
4.4 RMSE of synthetic experiments in Section 4.5.1 66
4.5 Computation time of synthetic experiments in Section 4.5.1 67
4.6 Demonstration results. 70
4.7 Demonstration results . 71
4.8 RMSE of the robot localization experiments in Section 4.5.2 72
4.9 Computation time of the localization experiments in Section 4.5.2 . . 73

5.1 Simulation results for function value expectations with infinitely dif-
ferentiable functions. 91

5.2 Simulation results for function value expectations with indicator func-
tions. 91

5.3 Simulation results for function value expectations with polynomial
functions. 92

vi

Chapter 1

Introduction

Knowing distributions of samples is the ultimate goal of statistical science. This
means that many statistical problems may be cast as the problem of estimating
unknown distributions.

For instance, let us consider the two sample problem, where one is given inde-
pendent samples from two distributions, and the task is to test the homogeneity of
these distributions. This can be done by first estimating the two distributions, and
then comparing the resulting distribution estimates. Similarly, the problem of mea-
suring and testing dependency between two random variables can be seen as that of
distribution estimation. This is because statistical dependency is measured by the
discrepancy between the joint distribution of the two random variables and the prod-
uct distribution of their marginals. Therefore the dependency can be estimated by
estimating and comparing these two distributions.

Problems of prediction, rather than those of inference as above, can be also formu-
lated as the estimation of unknown distributions. The simplest example is regression,
which is essentially the task of estimating the conditional distribution of a response
given covariates. Another typical example is the prediction of future observations in
time-series data analysis; this is the problem of estimating the distribution of future
observations.

1.1 Representations of probability distributions

What is the meaning of “the estimation of probability distributions”? Probability
distributions are measures, so one might think of it as the estimation of measures
themselves. However, the estimation of measures is not straightforward in practice
and may be infeasible. Alternatively, we can consider distribution estimation as the
problem of estimating some quantities which are uniquely associated to the distribu-
tions of interest; we will call such quantities representations of probability distributions

1

1.1. Representations of probability distributions 2

in this thesis. The following are examples what we consider as probability represen-
tations:

Example 1 (Parameters of a parametric family of distributions). Suppose one is
interested in distributions belonging to a parametric family of distributions {Pθ : θ ∈
Θ} indexed by finite dimensional vectors θ in a certain set Θ. Since each parameter
vector θ is uniquely associated to some distribution Pθ, one can consider these vectors
as representations of distributions in the parametric family. Therefore estimating a
parameter vector θ amounts to estimating the corresponding distribution Pθ.

Example 2 (Density functions in nonparametric models). Suppose one is interested
in a class of distributions that admit density functions of a certain degree of smooth-
ness, i.e., a nonparametric density model. In this case, the density functions can
be seen as representations of the distributions, since they identify the corresponding
distributions in the model.

Example 3 (Characteristic functions). Suppose one is interested in all probability
distributions on the Euclidian space Rd. For any distribution P , the characteristic
function is defined as the (inverse) Fourier transform of P :

ϕP (w) :=

∫
Rd

e
√
−1xTwdP (x), w ∈ Rd. (1.1)

Characteristic functions and distributions are one-to-one (Dudley, 2002, Section 9.5),
so one can think of characteristic functions as representations of all distributions on
Rd.

For example, consider again the two-sample problem, and suppose there exist
some representations of the two distributions. Then testing whether these represen-
tations are equal or not yields a solution of the two sample problem, since they are
uniquely associated to the two distributions under consideration. Therefore it suffices
to estimate those quantities that represent the two distributions.

To make use of such representations in practice, however, one must consider how
to estimate them given samples. For parametric models, there are several methods
for parameter estimation, ranging from maximum likelihood estimation to Bayesian
methods. On the other hand, density functions can be estimated nonparametri-
cally, using smoothing methods such as kernel density estimation (Silverman, 1986).
Characteristic functions may be estimated as empirical averages of the exponential
functions (Feuerverger and Mureika, 1977).

In the estimation of probability representations, there is a tradeoff between the
richness of representations and convergence rates. This is the so-called bias-variance
tradeoff. For example, parametric models only cover distributions of a finite number

1.2. Kernel mean embeddings of distributions 3

of degrees of freedom, so they are more restrictive than nonparametric models. How-
ever, convergence rates are fast and independent of the dimensionality of data. On
the other hand, nonparametric models can deal with a wider class of distributions
than parametric models, but convergence rates are slow due to the so-called curse of
dimensionality: to achieve a certain level of accuracy, the number of samples needs
to be exponential to the dimensionality of data (Silverman, 1986).

Characteristic functions enjoy the merits of both parametric and nonparametric
approaches: (a) they can represent all distributions on Rd; (b) estimation with an
i.i.d. sample can achieve the same convergence rate as those of parametric models
(Feuerverger and Mureika, 1977). Nonetheless, the use of empirical characteristic
functions in statistical inference and prediction may not be straightforward. For
example, comparison of two characteristic functions may be possible by defining dis-
tance between them, such as the L2 distance. However, the L2 distance between
characteristic functions does not allow an analytic formula with respect to samples,
so the computation might require numerical integration1 (Yu, 2004).

1.2 Kernel mean embeddings of distributions

The focus of this thesis is on probability representations based on positive definite ker-
nels and associated reproducing kernel Hilbert spaces (RKHS) (Berlinet and Thomas-
Agnan, 2004, Chapter 4). This framework has been developed in the machine learning
community in the last decades (Smola et al., 2007; Sriperumbudur et al., 2010; Song
et al., 2013).

Let X be a measurable space, k : X ×X → R be a positive definite kernel and H
be the RKHS associated with k (definitions will be given in Chapter 2). The RKHS
is a function space consisting of functions on X , properties of which are determined
by the kernel k. Then for any probability distribution P on X , its representation in
the RKHS H is defined as the expectation of the kernel function with respect to that
distribution:

mP := EX∼P [k(·, X)] =

∫
k(·, x)dP (x). (1.2)

This is called the kernel mean of the distribution P . For a rich enough RKHS, it can be
shown that probability distributions and kernel means is one-to-one (Sriperumbudur
et al., 2010): for any distributions P and Q, mP = mQ holds if and only if P = Q.
Therefore kernel means are valid as representations of probability distributions.

1While the L2 distance between empirical characteristic functions may not have an analytic
solution, a certain weighted L2 distance does; the resulting distance is known as the energy distance
(Székely and Rizzo, 2013, Proposition 1). The energy distance has a close relationship with kernel
mean embeddings discussed in this thesis, as shown by Sejdinovic et al. (2013b).

1.2. Kernel mean embeddings of distributions 4

This approach is akin to representations given by characteristic functions in the
following points: (i) the representation of a distribution is given as the expectation
of a certain function (i.e. kernel or exponential function) with respect to that dis-
tribution; (ii) distribution representations and distributions are one-to-one. In fact,
there is a close relationship between these two approaches; one can define a metric on
distributions as the RKHS distance between kernel means, and this metric may be
written as a weighted L2 distance between characteristic functions (Sriperumbudur
et al., 2010).

Compared to existing nonparametric approaches based on densities or character-
istic functions, however, kernel mean embeddings have the following advantages:

1. Computation of empirical quantities often allow analytic solutions via simple
linear algebraic operations. For instance, the RKHS distance between empirical
kernel means can be computed by evaluation of kernel values between samples,
which results in computation of kernel matrices. This comes from the so-called
the reproducing property of the RKHS.

2. As in other kernel methods in machine learning (Schölkopf and Smola, 2002),
empirical performance is not strongly affected by the superficial dimensionality
of data. For instance, given an i.i.d. sample of size n from a distribution, the
corresponding kernel mean is estimated at a convergence rate Op(n

−1/2), which
is independent of the dimensionality.

3. The domain of data can be arbitrary, as long as positive definite kernels are
defined on that space (e.g. structured data such as images, texts, and graphs).

Because of these merits, kernel mean embeddings have been used in a variety of
problems in statistics and machine learning. For instance, applications include hy-
pothesis testing such as two sample and independence testing (Gretton et al., 2012,
2008; Sejdinovic et al., 2013a), measures of dependency between random variables
(Fukumizu et al., 2004, 2009a; Gretton et al., 2005; Fukumizu et al., 2008), state-
space models (Song et al., 2009, 2010a; Fukumizu et al., 2013; Zhu et al., 2014; Kana-
gawa et al., 2014), belief propagation (Song et al., 2010b, 2011a), graphical model
learning (Song et al., 2011b; Song and Dai, 2013; Song et al., 2014), predictive state
representations (Boots et al., 2013, 2014), and reinforcement learning (Grünewälder
et al., 2012b; Nishiyama et al., 2012; van Hoof et al., 2015).

In these applications, a kernel mean mP is estimated as a weighted sum of kernel
functions with some weights w1, . . . , wn ∈ R and samples X1, . . . , Xn ∈ X :

m̂P :=
n∑

i=1

wik(·, Xi), (1.3)

1.3. Empirical distributions and Monte Carlo methods 5

These weights are typically obtained via linear algebraic operations on kernel matrices,
such as regularized matrix inversion (Song et al., 2009, 2013; Fukumizu et al., 2013),
singular value decomposition (Song et al., 2010a, 2011b), tensor decomposition (Song
et al., 2014), or their combinations. The weights are computed so as to make the
estimate (1.3) close to the kernel mean mP , so they can take negative values, and
their sum is not necessarily 1.

1.3 Empirical distributions and Monte Carlo meth-

ods

In this thesis, we are interested in the similarity of empirical kernel means (1.3) and
empirical distributions. An empirical distribution of a probability distribution P is
given as

P̂ =
n∑

i=1

wiδXi
(1.4)

with some samples X1, . . . , Xn ∈ X and weights w1, . . . , wn ≥ 0, where δx denotes the
Dirac measure at x. It is an approximation of the distribution P in that it provides
approximations of function value expectations with respect to P (Douc and Moulines,
2008). Namely, let F be a certain set of test functions (e.g. the set of all bounded
continuous functions). Then for any f ∈ F , the weighted average

∑n
i=1wif(Xi)

should be a good approximation of the expectation EX∼P [f(X)].
Empirical distributions are basis of Monte Carlo methods, as weighted samples are

useful for manipulating distributions by simulation. For example, in sequential Monte
Carlo (SMC) methods (Doucet et al., 2001), forward probabilities are computed by
simulating samples and propagating the associated weights. In Markov chain Monte
Carlo (MCMC) methods (Robert and Casella, 2004), new samples are generated
conditioned on previously generated samples. The focus of the Monte Carlo methods
is not on the estimation unknown distributions: distributions are assumed known in a
certain sense; in standard Monte Carlo integration, distributions are known entirely,
while in MCMC, distributions are known up to their normalization constants. These
methods aims to numerically approximate an intractable integral∫

f(x)dP (x) (1.5)

for a test function f of a certain class (e.g. polynomials that yield moments). This is
done by generating weighted samples {(wi, Xi)}, and computing the weighted sum of

1.4. Contributions 6

function values:
n∑

i=1

wif(Xi). (1.6)

How to generate the weighted samples depend on the method employed; for the
standard Monte Carlo and MCMC, the weights are defined as uniform, while for im-
portance sampling and SMC, non-uniform weights are used as each weight represents
importance of the associated sample (Liu, 2001).

As mentioned earlier, empirical kernel means (1.3) are similar to empirical distri-
butions, as both of them are represented by weighted samples {(wi, Xi)}; the differ-
ence is that kernels are used in place of Dirac measures, and the weights may take
negative values. Recall that (1.3) is an approximation of the kernel mean mP . From
this, it can be easily shown (see Chapter 2) that the weighted sum

∑n
i=1wif(Xi)

for any function f in the RKHS will be a good approximation of the expectation
EX∼P [f(X)] with respect to P . In this sense, the empirical kernel mean can also be
seen as an empirical distribution, with test functions being those in the RKHS.

1.4 Contributions

The aim of this thesis is to introduce the following perspective to the theory of kernel
mean embeddings: empirical kernel means can be treated as empirical distributions.
This is motivated by the similarity between empirical kernel means and empirical
distributions mentioned above. The further investigation of this similarity is impor-
tant, as it implies that Monte Carlo methods may be combined with empirical kernel
means.

Specifically, we ask the following questions, which we address in the chapters
written in parentheses:

1. Is it possible to treat empirical kernel means as if they were empirical distribu-
tions? More specifically, can we apply operations of Monte Carlo methods to
empirical kernel means, as for empirical distributions? (Chapter 3)

2. Can we combine techniques of Monte Carlo methods with learning and inference
methods based on kernel mean embeddings? (Chapter 4)

3. Are the test functions for empirical kernel means only restricted to those in the
RKHS? In other words, can we estimate expectations of functions outside the
RKHS, in the same way as for those in the RKHS? (Chapter 5)

Below we explain these questions along with the contributions of this thesis. After
reviewing the theory of kernel mean embeddings in Chapter 2, this thesis proceeds
as follows.

1.4. Contributions 7

Chapter 3. This chapter is devoted to theoretical analysis, and discusses applica-
bility of a sampling method with an empirical kernel mean. Specifically, we consider
a sampling procedure using a conditional distribution, which corresponds to that of
a particle filter for computing forward probabilities. We prove that such a sampling
method can in fact be used with an empirical kernel mean. More precisely, we prove
that this sampling method yields a consistent kernel mean estimator for a forward
probability, if the given empirical kernel mean is consistent.

Mainly there are three basic operations on empirical distributions used in Monte
Carlo or particle methods (Liu, 2001; Doucet et al., 2001; Doucet and Johansen,
2011):

1. Sampling: generating samples from a conditional distribution, conditioned on
samples of an empirical distribution.

2. Importance weighting: updating the weights, by multiplying the importance of
each sample to the associated weight.

3. Resampling: sampling from the empirical distribution without replacement, by
regarding it as a discrete distribution.

Our analysis reveals that the first operation (sampling) can also be employed with
empirical kernel means: this makes it possible to combine the sampling method with
existing learning and inference methods of kernel mean embeddings. On the other
hand, the other operations are not straightforward to realize with kernel mean embed-
dings. This is because these operations make use of the positiveness of the weights of
empirical distributions, while those of empirical kernel means can be negative. Our
analysis also reveals that resampling can be beneficial to improve the accuracy of
the sampling procedure, so it would be desirable to realize it with kernel mean em-
beddings. To this end, we propose a novel resampling algorithm based on the Kerne
Herding algorithm by Chen et al. (2010). We also provide detailed theoretical analysis
of this method, and explain its mechanism.

Chapter 4. In this chapter, we demonstrate how the above procedures can be
combined with existing methods of kernel mean embeddings. Specifically, we develop
a novel filtering method for state-space models, which we call Kernel Monte Carlo
Filter (KMCF).

The proposed method is a combination of the sampling and resampling meth-
ods in Chapter 3 and Kernel Bayes Rule by Fukumizu et al. (2013). This filtering
method focuses on the setting where the observation model is to be learned from
state-observation examples, while the state-transition model is known and sampling
is possible. We make use of the sampling and resampling procedures to handle the

1.4. Contributions 8

state-transition model, while using the Kernel Bayes’ Rule to learn the observation
model.

This setting is useful in applications where the state variable are defined quantities
that are very different from observations. We demonstrate our method in synthetic
and real data experiments, which include the challenging problem of vision-based
robot localization in robotics.

Chapter 5. In this chapter, we conduct theoretical analysis to investigate whether
the weighted sum (1.6) becomes a consistent estimator of the function value expec-
tation (1.5) when the test function does not belong to the RKHS. This question is
motivated by conceptual and practical reasons. Conceptually, a consistent kernel
mean estimator should provide all the information about the distribution P , since
the kernel mean mP uniquely identifies this distribution. The practical reason is
that RKHSs of widely used kernels (e.g. Gaussian) often do not contain important
functions for statistical inference. For example, polynomial functions and indicator
functions are not contained in the Gaussian RKHS: expectations of these provide
moments and confidence intervals, respectively. This means that it is not guaranteed
whether these quantities can be estimated by a consistent kernel mean estimator.

By technical reasons, we focus on kernel mean embeddings using the Gaussian
kernel and its RKHS. We prove that in this case, expectations of functions in the
Besov space can be estimated with a consistent kernel mean estimator. The Besov
space is a generalization of the Sobolev space, and consists of functions with a certain
degree of smoothness. It contains functions which are less smooth than those in the
Gaussian RKHS. Therefore our results guarantee that the weighted sum (1.6) can
be consistent for functions having a certain degree of smoothness, even when these
functions do not belong to the Gaussian RKHS. As a corollary, we show that the
moments and probably masses on cubes can be estimated with a consistent kernel
mean estimator. This result is practically important, as it shows that these important
quantities can in fact be estimated with kernel mean embeddings. Finally, we also
show that the density can be estimated from a consistent kernel mean estimator. This
result is useful in applications where the information of densities is important (e.g.,
MAP estimation in Bayesian inference).

Chapter 3 and Chapter 4 are based on the following journal and conference papers:

• Kanagawa, M., Nishiyama, Y., Gretton, A., and Fukumizu, K. (2016). Filter-
ing with State-Observation Examples via Kernel Monte Carlo Filter. Neural
Computation, volume 28, issue 2, pages 382–444.

• Kanagawa, M., Nishiyama, Y., Gretton, A., and Fukumizu, K. (2014). Monte
Carlo filtering using kernel embedding of distributions. In Proceedings of the

1.4. Contributions 9

28th AAAI Conference on Artificial Intelligence (AAAI-14), pages 1897–1903.

Chapter 5 is based on the following conference paper:

• Kanagawa, M. and Fukumizu, K. (2014). Recovering distributions from Gaus-
sian RKHS embeddings. In Proceedings of the 17th International Conference
on Artificial Intelligence and Statistics (AISTATS 2014), pages 457–465.

Chapter 2

Kernel mean embeddings of
distributions

In this chapter, we review the framework of kernel mean embeddings.

2.1 Positive definite kernels and reproducing ker-

nel Hilbert spaces

We begin by introducing positive definite kernels and reproducing kernel Hilbert
spaces (RKHS), details of which can be found in Schölkopf and Smola (2002); Berlinet
and Thomas-Agnan (2004); Steinwart and Christmann (2008).

Let X be a set, and k : X×X → R be a positive definite (p.d.) kernel: a symmetric
kernel k : X × X → R is called positive definite, if for all n ∈ N, c1, . . . , cn ∈ R, and
X1, . . . , Xn ∈ X , we have

n∑
i=1

n∑
j=1

cicjk(Xi, Xj) ≥ 0.

Any positive definite kernel is uniquely associated with a Reproducing Kernel Hilbert
Space (RKHS) (Aronszajn, 1950). Let H be the RKHS associated with k. The
RKHS H is a Hilbert space of functions on X , which satisfies the following important
properties:

1. (feature vector): k(·, x) ∈ H for all x ∈ X .

2. (reproducing property): f(x) = ⟨f, k(·, x)⟩H for all f ∈ H and x ∈ X ,

where ⟨·, ·⟩H denotes the inner product equipped with H, and k(·, x) is a function
with x fixed.

10

2.1. Positive definite kernels and reproducing kernel Hilbert spaces11

The reproducing property is why the Hilbert H is called the reproducing kernel
Hilbert space. Combined with the first property, it implies

k(x, x′) = ⟨k(·, x), k(·, x′)⟩H , ∀x, x′ ∈ X . (2.1)

Namely, k(x, x′) implicitly computes the inner product between the functions k(·, x)
and k(·, x′). Therefore k(·, x) can be seen as an implicit representation of x in H.
In fact, the RKHS is often high-dimensional (or even infinite dimensional), and thus
the function k(·, x) provides a high-dimensional representation of the data. Therefore
k(·, x) is called the feature vector of x, and H the feature space.

It is also well-known (Aronszajn, 1950) that the subspace spanned by the feature
vectors {k(·, x)|x ∈ X} is dense in H. This means that any function f in H can be
written as the limit of functions of the form fn :=

∑n
i=1 cik(·, Xi), where c1, . . . , cn ∈ R

and X1, . . . , Xn ∈ X .
For example, positive definite kernels on the Euclidian space X = Rd include Gaus-

sian kernel k(x, x′) = exp(−∥x− x′∥22/2σ2) and Laplace kernel k(x, x′) = exp(−∥x−
x∥1/σ), where σ > 0 and ∥ · ∥1 denotes the ℓ1 norm. Notably, kernel methods allow
X to be a set of structured data, such as images, texts or graphs. In fact, there exist
various positive definite kernels developed for such structured data (Hofmann et al.,
2008). Note that the notion of positive definite kernels is different from smoothing
kernels in kernel density estimation (Silverman, 1986): a smoothing kernel does not
necessarily define an RKHS.

In machine learning, positive definite kernels and RKHSs have been widely used for
constructing nonlinear learning methods from the corresponding linear ones (Schölkopf
and Smola, 2002; Hofmann et al., 2008). This can be done by representing each data
x ∈ X as a feature vector k(·, x) in the RKHS H, and defining a linear method in this
RKHS. Then the resulting learning methods will be nonlinear to the original data.
Significantly, such feature vectors, which can be infinite dimensional, need never be
computed explicitly. This is because (i) the constructed linear method in the RKHS
can be written in terms of the inner-product between feature vectors, and (ii) such
inner-products can be computed by just evaluating kernel values between samples,
thanks to the property (2.1). Popular examples of nonlinear methods constructed in
this way include support vector machines (Vapnik, 1998; Steinwart and Christmann,
2008), kernel PCA (Schölkopf et al., 1998), and kernel CCA (Akaho, 2001; Bach and
Jordan, 2002), among others; see also Schölkopf and Smola (2002); Hofmann et al.
(2008).

2.2. Kernel means 12

2.2 Kernel means

We now show how to represent probability distributions using positive definite kernels
and the associated RKHSs. Let X be a measurable space, k be a measurable kernel
on X that is bounded: supx∈X k(x, x) < ∞, and H be the RKHS of k. Let P be an
arbitrary probability distribution on X . Then the representation of P in the RKHS
is defined as the mean of the feature vector:

mP :=

∫
k(·, x)dP (x) ∈ H, (2.2)

which is called the kernel mean of P . This is a natural generalization of feature
vector representations of individual points to probability distributions (Berlinet and
Thomas-Agnan, 2004, Chapter 4). In fact, if the distribution P is the Dirac measure
δx at a point x ∈ X , then the kernel mean mP becomes the feature vector k(·, x).

Is the kernel mean mP uniquely associated with the distribution P? In other
words, does the kernel mean preserve all information of the embedded distribution?
This question is very important for kernel means to be valid representations of dis-
tributions. This holds if the kernel k is characteristic: a positive definite kernel k is
defined to be characteristic, if the mapping

P → mP ∈ H

is injective (Fukumizu et al., 2004, 2008; Sriperumbudur et al., 2010). This means that
the RKHS H is rich enough to distinguish among all distributions. For example, the
Gaussian and Laplace kernels defined on Rd are characteristic. We discuss conditions
for kernels being characteristic in Section 2.3.

An important property of the kernel mean (2.2) is the following: by the reproduc-
ing property, we have

⟨mP , f⟩H =

∫
f(x)dP (x) = EX∼P [f(X)], ∀f ∈ H. (2.3)

That is, the expectation of any function in the RKHS can be given by the inner
product between the kernel mean and that function.

We can construct learning methods for kernel means, as have been done for feature
vectors in standard kernel methods. This results in learning methods on probability
distributions (i.e., each input data itself is a probability distribution or an empirical
distribution), such as the support measure machines (Muandet et al., 2012) and
distribution regression methods (Szabó et al., 2015; Jitkrittum et al., 2015). These
methods have found applications in a variety of fields, such as astronomy (Muandet
and Schölkopf, 2013), ecological inference (Flaxman et al., 2015) and natural language

2.3. Characteristic kernels and metrics on distributions 13

processing (Yoshikawa et al., 2014).

2.3 Characteristic kernels and metrics on distribu-

tions

Conditions for kernels to be characteristic have been extensively studied in the litera-
ture (Fukumizu et al., 2008, 2009b; Sriperumbudur et al., 2010; Gretton et al., 2012).
Here we review these conditions, following Sriperumbudur et al. (2010).

Shift-invariant kernels on Rd. Let k be a shift-invariant kernel on Rd, that is,
there is a positive definite function ψ : Rd → R such that k(x, y) = ψ(x− y). In this
case, a necessary and sufficient condition for the kernel being characteristic is known.
Namely, the shift invariant kernel k is characteristic, if and only if the support of the
Fourier transform of the function ψ is entire Rd (Sriperumbudur et al., 2010, Theorem
9).

Integrally strictly positive definite kernels on general topological spaces.
Let X be a topological space. A measurable and bounded kernel on X is defined to
be integrally strictly positive definite, if for all finite non-zero signed Borel measure µ
on X , we have ∫ ∫

X
k(x, y)dµxdµ(y) > 0.

It is known that an integrally strictly positive definite kernel is characteristic (Sripe-
rumbudur et al., 2010, Theorem 7).

Metric on distributions. We can define a metric on distributions using a charac-
teristic kernel. That is, we can define the distance between any distributions P and
Q as the RKHS distance between their kernel means:

dk(P,Q) := ∥mP −mQ∥H, (2.4)

∥·∥H is the norm of the RKHS: ∥f∥H :=
√
⟨f, f⟩H for all f ∈ H. It can be easily shown

that this satisfies the conditions of a metric: (i) dk(P, P) = 0 for any distribution
P ; (ii) dk(P,Q) ≤ dk(P,R) + dk(R,Q) for any distributions P , Q and R; and (iii)
dk(P,Q) = 0 implies P = Q. The first and second conditions are consequences of
the use of the distance in a Hilbert space (i.e. the RKHS H). The third condition
is due to the characteristic property of the kernel. Relations to other metrics on
distributions have been also studied (Sriperumbudur et al., 2010).

2.4. Estimation of kernel means 14

The distance (2.4) is also called the maximum mean discrepancy (MMD) (Gretton
et al., 2012). This is because (2.4) can be written as

∥mP −mQ∥H = sup
f∈H:∥f∥H≤1

∫
f(x)dP (x)−

∫
f(x)dQ(x). (2.5)

Namely, by computing the kernel distance, we implicitly consider a witness function in
the unit ball of the RKHS such that the difference between function value expectations
with respect to the two distributions is maximized.

For the kernel distance, there is another characterization in terms of characteristic
functions, if the kernel is shift-invariant on Rd. Let ψ : Rd → R be a bounded,
continuous positive definite function, such that k(x, y) = ψ(x−y). Then by Bochner’s
theorem, there is a finite nonnegative measure Λ on Rd, such that ψ is given as the
Fourier transform of Λ:

ψ(x) =

∫
e−

√
−1xTwdΛ(w), x ∈ Rd. (2.6)

Then we have

∥mP −mQ∥H =

√∫
|ϕP (w)− ϕQ(w)|2dΛ(w), (2.7)

where ϕP and ϕQ denote the characteristic functions of P and Q, respectively (Sripe-
rumbudur et al., 2010, Corollary 4). In other words, the kernel distance can be writ-
ten as a weighted L2 distance between the characteristic functions, where the weight
function is given by the (inverse) Fourier transform the function ψ that induces the
kernel. This is very similar to the so-called the energy distance, which uses the weight
function defined as 1

∥w∥d+1 instead of Λ (Székely and Rizzo, 2013, Proposition 1).

2.4 Estimation of kernel means

In practice, we want to estimate kernel means from samples. Suppose we are given
an i.i.d. sample X1, . . . , Xn from a distribution P . Define an estimator of mP by the
empirical mean:

m̂P :=
1

n

n∑
i=1

k(·, Xi). (2.8)

If the kernel k is bounded, then this converges to mP at a rate ∥m̂P − mP∥H =
Op(n

−1/2) (Smola et al., 2007), where Op denotes the asymptotic order in probability.
Note that this rate is independent of the dimensionality of the space X .

2.5. Kernel mean embeddings of conditional distributions 15

This estimate (2.8) can be used to estimate the the kernel distance (2.4) on distri-
butions. Suppose we have another sample Y1, . . . , Yn from a distribution Q. Then we
can also define an estimate of the kernel mean mQ by m̂Q := 1

n

∑n
i=1 k(·, Yi), which

converges at a rate Op(n
−1/2). Then the kernel distance (2.4) can be estimated by

plugging these kernel mean estimates into (2.4). Thanks to the reproducing property
of the kernel, this plugin estimate can be analytically computed by just evaluating
the kernel values between the samples:

∥m̂P − m̂Q∥H =

√
1

n2

∑
i,j

k(Xi, Xj)−
2

mn

∑
i,j

k(Xi, Yj) +
1

m2

∑
i,j

k(Yi, Yj). (2.9)

This converges to the population quantity (2.4) at a rate O(n−1/2), since the ker-
nel mean estimates converge at this rate. For the kernel distance, there also exist
statistically or computationally more efficient estimators (Gretton et al., 2012).

2.5 Kernel mean embeddings of conditional distri-

butions

2.5.1 Conditional mean embeddings

We can also define kernel means for conditional distributions (Song et al., 2009;
Grünewälder et al., 2012a; Song et al., 2013). To show this, let X and Y be measurable
spaces, and (X1, Y1), . . . , (Xn, Yn) be an i.i.d. sample on X×Y with a joint distribution
p(x, y)1. Let kX and kY be bounded measurable kernels on X and Y , respectively.
Then the kernel mean of the conditional distribution p(y|x) is defined as

mY |x :=

∫
kY(·, y)p(y|x)dy. (2.10)

Different from the previous ones, the conditional kernel mean depends on the input
x ∈ X . Therefore it may be seen as a function-valued function. In fact, conditional
kernel means can be understood from the viewpoint of function-valued regression
(Grünewälder et al., 2012a).

As for the kernel distance, the conditional kernel mean (2.10) can be estimated
by simple linear algebraic operations using the joint sample {(Xi, Yi)} Let GX =
(kX (Xi, Xj)) ∈ Rn×n be the kernel matrix on the sample X1, . . . , Xn. Then we can

1For simplicity of notation, we use the density form to express the joint and conditional distri-
butions.

2.5. Kernel mean embeddings of conditional distributions 16

estimate conditional kernel mean (2.10) as

m̂Y |x :=
n∑

i=1

wikY(·, Yi). (2.11)

Here the weights w1, . . . , wn ∈ R are computed as

(w1, . . . , wn)
T = (GX + nλI)−1kX ∈ Rn,

where λ > 0 is a regularization constant and kX := (kX (x,X1), . . . , kX (x,Xn))
T ∈ Rn.

Note that the weights are a function of the input x ∈ X . To make this estimator
consistent, the regularization constant should be decayed to 0 as the sample size
increases. It is known that the estimator achieves min-max optimal convergence
rates under certain assumptions (Grünewälder et al., 2012a).

2.5.2 Kernel Bayes’ Rule (KBR)

As an extension of the conditional kernel means, we can consider kernel means for
posterior distributions, taking prior distributions into account. Estimators of such
posterior kernel means have been developed, known as the Kernel Bayes’ Rule (KBR).
We next explain these concepts.

Let p(x, y) be a joint probability on the product space X × Y that decomposes
as p(x, y) = p(y|x)p(x). Let π(x) be a prior distribution on X . Then the conditional
probability p(y|x) and the prior π(x) define the posterior distribution by Bayes’ rule;

pπ(x|y) ∝ p(y|x)π(x).

The assumption here is that the conditional probability p(y|x) is unknown. In-
stead, we are given an i.i.d. sample (X1, Y1), . . . , (Xn, Yn) from the joint probability
p(x, y). We wish to estimate the posterior pπ(x|y) using the sample. KBR achieves
this by estimating the kernel mean of pπ(x|y).

Define the kernel means of the prior π(x) and the posterior pπ(x|y):

mπ :=

∫
kX (·, x)π(x)dx, mπ

X|y :=

∫
kX (·, x)pπ(x|y)dx.

KBR also requires thatmπ be expressed as a weighted sample. Let m̂π :=
∑ℓ

j=1 γjkX (·, Uj)
be a sample expression of mπ, where ℓ ∈ N, γ1, . . . , γℓ ∈ R and U1, . . . , Uℓ ∈ X . For
example, suppose U1, . . . , Uℓ are i.i.d. drawn from π(x). Then γj = 1/ℓ suffices.

Given the joint sample {(Xi, Yi)}ni=1 and the empirical prior mean m̂π, KBR esti-

2.6. Properties of weight sample estimators 17

Algorithm 1 Kernel Bayes’ Rule

1: Input: kY ,mπ ∈ Rn, GX , GY ∈ Rn×n, ε, δ > 0.
2: Output: w := (w1, . . . , wn)

T ∈ Rn.

3: Λ← diag((GX + nεIn)
−1mπ) ∈ Rn×n.

4: w ← ΛGY ((ΛGY)
2 + δIn)

−1ΛkY ∈ Rn.

mates the kernel posterior mean mπ
X|y as a weighted sum of the feature vectors:

m̂π
X|y :=

n∑
i=1

wikX (·, Xi), (2.12)

where the weights w := (w1, . . . , wn)
T ∈ Rn are given by Algorithm 1. Here diag(v)

for v ∈ Rn denotes a diagonal matrix with diagonal entries v. It takes as input
(i) vectors kY = (kY(y, Y1), . . . , kY(y, Yn))

T , mπ = (m̂π(X1), . . . , m̂π(Xn))
T ∈ Rn,

where m̂π(Xi) =
∑ℓ

j=1 γjkX (Xi, Uj); (ii) kernel matrices GX = (kX (Xi, Xj)), GY =
(kY(Yi, Yj)) ∈ Rn×n; and (iii) regularization constants ε, δ > 0. The weight vector
w := (w1, . . . , wn)

T ∈ Rn is obtained by matrix computations involving two regular-
ized matrix inversions. Note that these weights can be negative.

Fukumizu et al. (2013) showed that KBR is a consistent estimator of the kernel
posterior mean under certain smoothness assumptions: the estimate (2.12) converges
to mπ

X|y, as the sample size goes to infinity n → ∞ and m̂π converges to mπ (with

ε, δ → 0 in appropriate speed). For details, see Fukumizu et al. (2013); Song et al.
(2013).

2.6 Properties of weight sample estimators

In general, as shown above, a kernel mean mP is estimated as a weighted sum of
feature vectors;

m̂P =
n∑

i=1

wik(·, Xi), (2.13)

with samples X1, . . . , Xn ∈ X and (possibly negative) weights w1, . . . , wn ∈ R. Sup-
pose m̂P is close to mP , i.e., ∥m̂P − mP∥H is small. Then m̂P is supposed to have
accurate information about P , as mP preserves all the information of P .

How can we decode the information of P from m̂P ? The empirical kernel mean
(2.13) has the following property, which is due to the reproducing property of the

2.7. Kernel Herding 18

kernel:

⟨m̂P , f⟩H =
n∑

i=1

wif(Xi), ∀f ∈ H. (2.14)

Namely, the weighted average of any function in the RKHS is equal to the inner
product between the empirical kernel mean and that function. This is analogous to
the property (2.3) of the population kernel mean mP . Let f be any function in H.
From these properties (2.3) (2.14), we have∣∣∣∣∣EX∼P [f(X)]−

n∑
i=1

wif(Xi)

∣∣∣∣∣ = |⟨mP − m̂P , f⟩H| ≤ ∥mP − m̂P∥H∥f∥H, (2.15)

where we used the Cauchy-Schwartz inequality. Therefore the left hand side will be
close to 0, if the error ∥mP − m̂P∥H is small. This shows that the expectation of
f can be estimated by the weighted average

∑n
i=1wif(Xi). Note that here f is a

function in the RKHS, but the same can also be shown for functions outside the
RKHS under certain assumptions when the kernel is Gaussian; this is what we will
show in Chapter 5. In this way, the estimator of the form (2.13) provides estimators
of moments, probability masses on sets and the density function (if this exists).

2.7 Kernel Herding

Finally, we explain the Kernel Herding algorithm (Chen et al., 2010). Different from
estimators discussed above, this algorithm assumes that a kernel mean mP is given.
It aims at approximating the kernel mean by a finite sample of possibly small size. In
other words, the aim is to generate samples x1, x2, . . . , xℓ ∈ X such that the empirical
mean m̌P := 1

ℓ

∑ℓ
i=1 k(·, xi) is close to the kernel mean mP in the RKHS, i.e., the

error ∥mP − m̌P∥H is small.
The samples generated in this way are useful for numerical integration: for any

function f in the RKHS, the empirical average 1
ℓ

∑ℓ
i=1 f(xi) gives an approximation

of the integral
∫
f(x)dP (x), with an error bounded by ∥f∥H∥mP − m̂P∥H. This

follows from (2.15). Approaches to generate such samples include Quasi Monte Carlo
methods; see (Dick et al., 2013).

Kernel Herding is one approach for this purpose. It generates samples x1, . . . , xℓ
deterministically and greedily, by solving the following optimization problems:

x1 = arg max
x∈X

mP (x), (2.16)

xℓ = arg max
x∈X

mP (x)−
1

ℓ

ℓ−1∑
i=1

k(x, xi), (ℓ ≥ 2) (2.17)

2.7. Kernel Herding 19

where mP (x) denotes the evaluation of mP at x (recall that mP is a function in H).
An intuitive interpretation of this procedure can be given if there is a constant

R > 0 such that k(x, x) = R for all x ∈ X (e.g., R = 1 if k is Gaussian). Suppose
that x1, . . . , xℓ−1 are already calculated. In this case, it can be shown that xℓ in (2.17)
is the minimizer of

Eℓ :=

∥∥∥∥∥mP −
1

ℓ

ℓ∑
i=1

k(·, xi)

∥∥∥∥∥
H

. (2.18)

Thus, Kernel Herding performs greedy minimization of the distance between mP and
the empirical kernel mean m̌P = 1

ℓ

∑ℓ
i=1 k(·, xi).

It can be shown that the error Eℓ of (2.18) decreases at a rate at least O(ℓ−1/2)
under the assumption that k is bounded (Bach et al., 2012). In other words, the
herding samples x1, . . . , xℓ provide a convergent approximation of mP . In this sense,
Kernel Herding can be seen as a (pseudo) sampling method. Note that mP itself can
be an empirical kernel mean of the form (2.13). These properties are important for
our resampling algorithm developed in Section 3.2.

It should be noted that Eℓ decreases at a faster rate O(ℓ−1) under a certain as-
sumption (Chen et al., 2010): this is much faster than the rate of ℓ i.i.d. samples
O(ℓ−1/2). Unfortunately, this assumption only holds when H is finite dimensional
(Bach et al., 2012), and therefore the fast rate of O(ℓ−1) has not been guaranteed for
infinite dimensional cases.

Chapter 3

Sampling and resampling with
kernel mean embeddings

In this chapter, we discuss the use of sampling with empirical kernel means. As we
saw in Chapter 2, in general an empirical kernel mean is given as a weighted sum
of feature vectors. This expression is similar to that of an empirical distribution,
which is given as a weighted sum of delta functions. In Monte Carlo methods, this
representation is combined with sampling methods to realize inference in graphical
models. One of the most successful applications is particle filters, where sampling
is employed to compute forward probabilities. In this chapter we investigate the
applicability of this sampling procedure to an empirical kernel mean. Algorithms
presented in this chapter serve as building blocks of the filtering method in Chapter
4.

In Section 3.1, we formulate this sampling procedure in terms of empirical kernel
means. We present a theoretical justification, and discuss factors that affect the
estimation accuracy of sampling. This reveals that the quantity called effective sample
size plays an important role. In Section 3.2, we present a resampling algorithm based
on Kernel Herding. This algorithm is motivated by the analysis in Section 3.1, and
is proposed for the purpose of improving the accuracy of the sampling procedure. In
Section 3.3, we explain in more detail the mechanism of resampling. In Section 3.4,
we theoretically analyze the proposed resampling algorithm. This analysis presents a
novel convergence result of Kernel Herding, which may be of independent interest. In
Section 3.5, we conduct toy experiments to empirically confirm the theoretical results.
All proofs are presented in Section 3.6.

20

3.1. Sampling algorithm 21

3.1 Sampling algorithm

We begin by introducing the notation. Let X be a measurable space, and P be a prob-
ability distribution on X . Let p(·|x) be a conditional distribution on X conditioned
on x ∈ X . Let Q be a marginal distribution on X defined by Q(B) =

∫
p(B|x)dP (x)

for all measurable B ⊂ X .1
Let kX be a positive definite kernel on X , and HX be the RKHS associated with

kX . Let mP =
∫
kX (·, x)dP (x) and mQ =

∫
kX (·, x)dQ(x) be the kernel means of P

and Q, respectively. Suppose that we are given an empirical estimate of mP as

m̂P :=
n∑

i=1

wikX (·, Xi), (3.1)

where w1, . . . , wn ∈ R and X1, . . . , Xn ∈ X . Based on this, we wish to estimate the
kernel mean mQ.

We consider the following sampling procedure with the conditional distribution:
for each sample Xi, we generate a new sample X ′

i with the conditional distribution
X ′

i ∼ p(·|Xi). Then we estimate mQ by

m̂Q :=
n∑

i=1

wikX (·, X ′
i). (3.2)

The following theorem provides an upper-bound on the error of (3.2), and reveals
properties of (3.1) that affect the error of the estimator (3.2). The proof is given in
Section 3.6.1.

Theorem 1. Let m̂P be a fixed estimate of mP given by (3.1). Define a function
θ on X × X by θ(x1, x2) =

∫ ∫
kX (x

′
1, x

′
2)dp(x

′
1|x1)dp(x′2|x2),∀x1, x2 ∈ X × X , and

assume that θ is included in the tensor RKHS HX ⊗ HX .
2 The estimator m̂Q (3.2)

1We can consider another measurable space Y for the output variable. Namely, p(·|x) can be a
conditional distribution on Y conditioned on x ∈ X , and Q can be the resulting marginal distribution
on Y. Here, however, we restrict ourselves to the setting X = Y for simplicity of notation. Note
also that this setting is sufficient for the application to state-space models in Chapter 4.

2The tensor RKHS HX ⊗ HX is the RKHS of a product kernel kX×X on X × X defined as
kX×X ((xa, xb), (xc, xd)) = kX (xa, xc)kX (xb, xd), ∀(xa, xb), (xc, xd) ∈ X × X . This space HX ⊗ HX
consists of smooth functions on X × X , if the kernel kX is smooth (e.g., if kX is Gaussian; see Sec.
4 of Steinwart and Christmann (2008)). In this case, we can interpret this assumption as requiring
that θ be smooth as a function on X × X .
The function θ can be written as the inner product between the kernel means of the conditional

distributions: θ(x1, x2) =
⟨
mp(·|x1),mp(·|x2)

⟩
HX

, where mp(·|x) :=
∫
kX (·, x′)dp(x′|x). Therefore the

assumption may be further seen as requiring that the map x→ mp(·|x) be smooth. Note that while
similar assumptions are common in the literature on kernel mean embeddings (e.g., Theorem 5 of

3.1. Sampling algorithm 22

then satisfies

EX′
1,...,X

′
n
[∥m̂Q −mQ∥2HX

]

≤
n∑

i=1

w2
i (EX′

i
[kX (X

′
i, X

′
i)]− EX′

i,X̃
′
i
[kX (X

′
i, X̃

′
i)]) (3.3)

+∥m̂P −mP∥2HX
∥θ∥HX⊗HX , (3.4)

where X ′
i ∼ p(·|Xi) and X̃

′
i is an independent copy of X ′

i.

From Theorem 1, we can make the following observations. First, the second term
(3.4) of the upper-bound shows that the error of the estimator (3.2) is likely to be
large if the given estimate (3.1) has large error ∥m̂P −mP∥2HX

, which is reasonable
to expect.

Second, the first term (3.3) shows that the error of (3.2) can be large if the
distribution ofX ′

i (i.e. p(·|Xi)) has large variance. For example, supposeX ′
i = f(Xi)+

εi, where f : X → X is some mapping and εi is a random variable with mean 0. Let
kX be the Gaussian kernel: kX (x, x

′) = exp(−∥x − x′∥/2α) for some α > 0. Then
EX′

i
[kX (X

′
i, X

′
i)]−EX′

i,X̃
′
i
[kX (X

′
i, X̃

′
i)] increases from 0 to 1, as the variance of εi (i.e.

the variance of X ′
i) increases from 0 to infinity. Therefore in this case (3.3) is upper-

bounded at worst by
∑n

i=1w
2
i . Note that EX′

i
[kX (X

′
i, X

′
i)] − EX′

i,X̃
′
i
[kX (X

′
i, X̃

′
i)] is

always non-negative.3

Weight variance and effective sample size. Now let us assume that the kernel
kX is bounded, i.e., there is a constant C > 0 such that supx∈X kX (x, x) < C. Then
the inequality of Theorem 1 can be further bounded as

EX′
1,...,X

′
n
[∥m̂Q −mQ∥2HX

] ≤ 2C
n∑

i=1

w2
i + ∥m̂P −mP∥2HX

∥θ∥HX⊗HX . (3.5)

This bound shows that two quantities are important in the estimate (3.1): (i) the sum
of squared weights

∑n
i=1w

2
i , and (ii) the error ∥m̂P − mP∥2HX

. In other words, the
error of (3.2) can be large if the quantity

∑n
i=1w

2
i is large, regardless of the accuracy

Fukumizu et al. (2013)), we may relax this assumption by using approximate arguments in learning
theory (e.g., Theorem 2.2 and 2.3 of Eberts and Steinwart (2013)). This analysis remains a topic
for future research.

3To show this, it is sufficient to prove that
∫ ∫

kX (x, x̃)dP (x)dP (x̃) ≤
∫
kX (x, x)dP (x)

for any probability P . This can be shown as follows.
∫ ∫

kX (x, x̃)dP (x)dP (x̃) =∫ ∫
⟨kX (·, x), kX (·, x̃)⟩HX

dP (x)dP (x̃) ≤
∫ ∫ √

kX (x, x)
√
kX (x̃, x̃)dP (x)dP (x̃) ≤

∫
kX (x, x)dP (x).

Here we used the reproducing property, the Cauchy-Schwartz inequality and Jensen’s inequality.

3.2. Resampling algorithm 23

Algorithm 2 Resampling with Kernel Herding

1: Input: {(wi, Xi)}ni=1.
2: Output: X̄1, . . . , X̄n ∈ {Xi}ni=1.
3: Requirement: kX : X × X → R.

4: X̄1 ← arg max
x∈{X1,...,Xn}

∑n
i=1wikX (x,Xi).

5: for p = 2 to n do
6: X̄p ← arg max

x∈{X1,...,Xn}

∑n
i=1wikX (x,Xi)− 1

p

∑p−1
j=1 kX (x, X̄j)

7: end for

of (3.1) as an estimator of mP . In fact, the estimator of the form (3.1) can have large∑n
i=1w

2
i even when ∥m̂P −mP∥2HX

is small, as shown in Section 3.5.
The quantity

∑n
i=1w

2
i essentially represents the variance of the weights w1, . . . , wn.

Therefore it takes a large value when the weight variance is large. This happens, for
example, when the mass of the weights concentrates on a few samples, and the rest
of them are close to 0. Figure 3.1 (left) describes such a situation.

In particle methods, this quantity
∑n

i=1w
2
i also plays an important role under the

name of Effective Sample Size (ESS) (see, e.g., Sec. 2.5.3 of Liu (2001) and Sec. 3.5 of
Doucet and Johansen (2011)). ESS is defined as 1/

∑n
i=1w

2
i , and represents an actual

number of samples that contribute the estimation of a probability. For example,
suppose that the weights are normalized, i.e.,

∑n
i=1wi = 1. Then ESS is n when the

weights are uniform, while it is small when the mass of the weights concentrate on a
few samples. Therefore the bound (3.5) can be interpreted as follows: to make (3.2)
a good estimator of mQ, we need to have (3.1) such that the ESS is large and the
error ∥m̂P −mP∥H is small.

3.2 Resampling algorithm

Here we introduce a resampling algorithm to improve the accuracy of the sampling
procedure. We discuss how it works in Section 3.3. The arguments in the previous
section suggests that the estimation accuracy of the sampling procedure can be im-
proved by increasing the effective sample size. Thus our resampling algorithm aims
to increase the effective sample size. The algorithm is based on Kernel Herding in
Section 2.7.

The procedure is summarized in Algorithm 2. Specifically, we generate each X̄i

by searching the solution of the optimization problem in (2.16) (2.17) from a finite
set of samples {X1, . . . , Xn} in (3.1). We allow repetitions in X̄1, . . . , X̄n. We can
expect that the resulting empirical kernel mean m̌P := 1

n

∑n
i=1 kX (·, X̄i) is close to

3.3. Role of resampling 24

mP in the RKHS if the samples X1, . . . , Xn cover the support of P sufficiently. This
is verified by the theoretical analysis of Section 3.4.

Here searching for the solutions from a finite set reduces the computational costs
of Kernel Herding. It is possible to search from the entire space X , if we have sufficient
time or if the sample size n is small enough; it depends on applications and available
computational resources. We also note that the size of the resampling samples is
not necessarily n; this depends on how accurately these samples approximate (3.1).
Thus a smaller number of samples may be sufficient. In this case we can reduce the
computational costs of resampling, as discussed in Section 3.3.

The aim of our resampling step is similar to that of the resampling step of a
particle filter (see, e.g., Doucet and Johansen (2011)). Intuitively, the aim is to
eliminate samples with very small weights, and replicate those with large weights
(see Figure 3.1). In particle methods, this is realized by generating samples from the
empirical distribution defined by a weighted sample (therefore this procedure is called
“resampling”). Our resampling step is a realization of such a procedure in terms of the
kernel mean embedding: we generate samples X̄1, . . . , X̄n from the empirical kernel
mean (3.1).

Note that the resampling algorithm of particle methods is not appropriate for use
with kernel mean embeddings. This is because it assumes that weights are positive,
but our weights in (3.1) can be negative, as this is a kernel mean estimator. One may
apply the resampling algorithm of particle methods by first truncating the samples
with negative weights. However, there is no guarantee that samples obtained by
this heuristic produce a good approximation of (3.1) as a kernel mean, as shown by
experiments in Section 3.5. In this sense, the use of Kernel Herding is more natural
since it generates samples that approximate a kernel mean.

3.3 Role of resampling

In this section, we discuss how the proposed resampling algorithm improves the esti-
mation accuracy of the sampling procedure. By applying Algorithm 2 to the empirical
kernel mean m̂P , we obtain new samples X̄1, . . . , X̄n. These samples then provide a
new estimate of mP with uniform weights;

m̌P =
1

n

n∑
i=1

kX (·, X̄i). (3.6)

3.3. Role of resampling 25

Figure 3.1: An illustration of the sampling procedure with (right) and without (left)
the resampling algorithm. The left figure corresponds to the kernel mean estimators
(3.1) (3.2) in Section 3.1, and the right one corresponds to those (3.6) (3.7) in Section
3.3

We apply the sampling procedure to this empirical kernel mean: we independently
generate a sample X̄ ′

i ∼ p(·|X̄i) for each X̄i (i = 1, . . . , n), and estimate mQ as

m̌Q =
1

n

n∑
i=1

kX (·, X̄ ′
i). (3.7)

Theorem 1 gives the following bound for this estimator that corresponds to (3.5):

EX̄′
1,...,X̄

′
n
[∥m̌Q −mQ∥2HX

] ≤ 2C

n
+ ∥m̌P −mP∥2H∥θ∥HX⊗HX . (3.8)

A comparison of the upper-bounds of (3.5) and (3.8) implies that the resampling
step is beneficial when (i)

∑n
i=1w

2
i is large (i.e., the ESS is small), and (ii) ∥m̌P −

m̂P∥HX is small. The condition on ∥m̌P − m̂P∥HX means that the loss by Kernel
Herding (in terms of the RKHS distance) is small. This implies ∥m̂P − mP∥HX ≈
∥m̌P−mP∥HX , so the second term of (3.8) is close to that of (3.5). On the other hand,
the first term of (3.8) will be much smaller than that of (3.5), if

∑n
i=1w

2
i ≫ 1/n. In

other words, the resampling algorithm improves the sampling procedure in accuracy
by reducing the variance of the weights (i.e., by increasing the ESS). This is illustrated
in Figure 3.1.

The above observations lead to the following procedures:

When to apply resampling. If
∑n

i=1w
2
i is not large, the gain by the resam-

pling step will be small. Therefore the resampling algorithm should be applied when

3.4. Convergence rates for resampling 26

Algorithm 3 Generalized version of Algorithm 2

1: Input: m̂P ∈ HX , {Z1, . . . , ZN} ⊂ X , ℓ ∈ N.
2: Output: X̄1, . . . , X̄ℓ ∈ {Z1, . . . , ZN}.

3: X̄1 ← arg max
x∈{Z1,...,ZN}

m̂P (x).

4: for p = 2 to ℓ do
5: X̄p ← arg max

x∈{Z1,...,ZN}
m̂P (x)− 1

p

∑p−1
j=1 kX (x, X̄j)

6: end for

∑n
i=1w

2
i is above a certain threshold, say 2/n. The same strategy has been commonly

used in particle methods (see, e.g., Doucet and Johansen (2011)).
Also, the bound (3.3) of Theorem 1 shows that resampling is not beneficial if the

variance of the conditional distribution p(·|x) is very small (i.e., if the conditional
distribution is nearly deterministic). In this case, the error of the sampling procedure
may increase due to the loss ∥m̌P − m̂P∥HX caused by Kernel Herding.

Reduction of computational cost. Algorithm 2 generates n samples X̄1, . . . , X̄n

with time complexityO(n3). Suppose that the first ℓ samples X̄1, . . . , X̄ℓ, where ℓ < n,
already approximate m̂P well: ∥1

ℓ

∑ℓ
i=1 kX (·, X̄i)− m̂P∥HX is small. We do not then

need to generate the rest of samples X̄ℓ+1, . . . , X̄n: we can make n samples by copying
the ℓ samples n/ℓ times (suppose n can be divided by ℓ for simplicity, say n = 2ℓ).
Let X̄1, . . . , X̄n denote these n samples. Then 1

ℓ

∑ℓ
i=1 kX (·, X̄i) = 1

n

∑n
i=1 kX (·, X̄i)

by definition, so ∥ 1
n

∑n
i=1 kX (·, X̄i) − m̂P∥HX is also small. This reduces the time

complexity of Algorithm 2 to O(n2ℓ).
One might think that it is unnecessary to copy n/ℓ times to make n samples.

This is not true, however. Suppose that we just use the first ℓ samples to define
m̌P = 1

ℓ

∑ℓ
i=1 kX (·, X̄i). Then the first term of (3.8) becomes 2C/ℓ, which is larger

than 2C/n of n samples. This difference involves sampling with the conditional
distribution: X̄ ′

i ∼ p(·|X̄i). If we just use the ℓ samples, sampling is done ℓ times. If
we use the copied n samples, sampling is done n times. Thus the benefit of making
n samples comes from sampling with the conditional distribution many times. This
matches the bound of Theorem 1, where the first term involves the variance of the
conditional distribution.

3.4 Convergence rates for resampling

Our resampling algorithm (Algorithm 2) is an approximate version of Kernel Herd-
ing in Section 2.7: Algorithm 2 searches for the solutions of the update equations

3.4. Convergence rates for resampling 27

(2.16) (2.17) from a finite set {X1, . . . , Xn} ⊂ X , not from the entire space X . There-
fore existing theoretical guarantees for Kernel Herding (Chen et al., 2010; Bach et al.,
2012) do not apply to Algorithm 2. Here we provide a theoretical justification.

Generalized version. We consider a slightly generalized version shown in Algo-
rithm 3: It takes as input (i) a kernel mean estimator m̂P of a kernel mean mP ,
(ii) candidate samples Z1, . . . , ZN , and (iii) the number ℓ of resampling; It then out-
puts resampling samples X̄1, . . . , X̄ℓ ∈ {Z1, . . . , ZN}, which form a new estimator
m̌P := 1

ℓ

∑ℓ
i=1 kX (·, X̄i). Here N is the number of the candidate samples.

Algorithm 3 searches for the solutions of the update equations (2.16) (2.17) from
the candidate set {Z1, . . . , ZN}. Note that here these samples Z1, . . . , ZN can be
different from those expressing the estimator m̂P . If they are the same, i.e., if the
estimator is expressed as m̂P =

∑n
i=1wt,ik(·, Xi) with n = N and Xi = Zi (i =

1, . . . , n), then Algorithm 3 reduces to Algorithm 2. In fact, Theorem 2 below allows
m̂P to be any element in the RKHS.

Convergence rates in terms of N and ℓ. Algorithm 3 gives the new estimator
m̌P of the kernel mean mP . The error of this new estimator ∥m̌P −mP∥HX should
be close to that of the given estimator, ∥m̂P −mP∥HX . Theorem 2 below guarantees
this. In particular, it provides convergence rates of ∥m̌P−mP∥HX approaching ∥m̂P−
mP∥HX , as N and ℓ go to infinity. This theorem follows from Theorem 3 in Section
3.6.2, which holds under weaker assumptions.

Theorem 2. Let mP be the kernel mean of a distribution P , and m̂P be any element
in the RKHS HX . Let Z1, . . . , ZN be an i.i.d. sample from a distribution with density
q. Assume that P has a density function p such that supx∈X p(x)/q(x) < ∞. Let
X̄1, . . . , X̄ℓ be samples given by Algorithm 3 applied to m̂P with candidate samples
{Z1, . . . , ZN}. Then for m̌P := 1

ℓ

∑ℓ
i=1 k(·, X̄i) we have

∥m̌P −mP∥2HX
=
(
∥m̂P −mP∥HX +Op(N

−1/2)
)2

+O

(
ln ℓ

ℓ

)
. (N, ℓ→∞) (3.9)

Our proof in Section 3.6.2 relies on the fact that Kernel Herding can be seen as the
Frank-Wolfe optimization method (Bach et al., 2012). Indeed, the error O(ln ℓ/ℓ) in
(3.9) comes from the optimization error of the Frank-Wolfe method after ℓ iterations
(Freund and Grigas, 2014, Bound 3.2). On the other hand, the error Op(N

−1/2) is
due to the approximation of the solution space by a finite set {Z1, . . . , ZN}. These
errors will be small if N and ℓ are large enough and the error of the given estimator
∥m̂P −mP∥HX is relatively large. This is formally stated in Corollary 1 below.

Theorem 2 assumes that the candidate samples are i.i.d. with a density q. The
assumption supx∈X p(x)/q(x) < ∞ requires that the support of q contains that of p.

3.4. Convergence rates for resampling 28

This is a formal characterization of the explanation in Section 3.2 that the samples
X1, . . . , XN should cover the support of P sufficiently. Note that the statement of
Theorem 2 also holds for non i.i.d. candidate samples, as shown in Theorem 3 of
Section 3.6.2.

Convergence rates as m̂P goes to mP . Theorem 2 provides convergence rates
when the estimator m̂P is fixed. In Corollary 1 below, we let m̂P approach mP , and
provide convergence rates for m̌P of Algorithm 3 approaching mP . This corollary
directly follows from Theorem 2, since the constant terms in Op(N

−1/2) and O(ln ℓ/ℓ)
in (3.9) do not depend on m̂P , which can be seen from the proof in Section 3.6.2.

Corollary 1. Assume that P and Z1, . . . , ZN satisfy the conditions in Theorem 2
for all N . Let m̂

(n)
P be an estimator of mP such that ∥m̂(n)

P −mP∥HX = Op(n
−b) as

n→∞ for some constant b > 0.4 Let N = ℓ = ⌈n2b⌉. Let X̄
(n)
1 , . . . , X̄

(n)
ℓ be samples

given by Algorithm 3 applied to m̂
(n)
P with candidate samples {Z1, . . . , ZN}. Then for

m̌
(n)
P := 1

ℓ

∑ℓ
i=1 kX (·, X̄

(n)
i), we have

∥m̌(n)
P −mP∥HX = Op(n

−b) (n→∞). (3.10)

Corollary 1 assumes that the estimator m̂
(n)
P converges to mP at a rate Op(n

−b)

for some constant b > 0. Then the resulting estimator m̌
(n)
P by Algorithm 3 also

converges to mP at the same rate O(n−b), if we set N = ℓ = ⌈n2b⌉. This implies
that if we use sufficiently large N and ℓ, the errors Op(N

−1/2) and O(ln ℓ/ℓ) in (3.9)
can be negligible, as stated earlier. Note that N = ℓ = ⌈n2b⌉ implies that N and ℓ
can be smaller than n, since typically we have b ≤ 1/2 (b = 1/2 corresponds to the
convergence rates of parametric models). This provides a support for the discussion
in Section 3.3 (reduction of computational cost).

Convergence rates of sampling after resampling. We can derive convergence
rates of the estimator m̌Q (3.7) in Section 3.3. Here we consider the following con-
struction of m̌Q as discussed in Section 3.3 (reduction of computational cost): (i)

First apply Algorithm 3 to m̂
(n)
P , and obtain resampling samples X̄

(n)
1 , . . . , X̄

(n)
ℓ ∈

{Z1, . . . , ZN}; (ii) Copy these samples ⌈n/ℓ⌉ times, and let X̄
(n)
1 , . . . , X̄

(n)
ℓ⌈n/ℓ⌉ be the

resulting ℓ × ⌈n/ℓ⌉ samples; (iii) Sample with the conditional distribution X̄
′(n)
i ∼

p(·|X̄i) (i = 1, . . . , ℓ⌈n/ℓ⌉), and define

m̌
(n)
Q :=

1

ℓ⌈n/ℓ⌉

ℓ⌈n/ℓ⌉∑
i=1

kX (·, X̄
′(n)
i). (3.11)

4Here the estimator m̂
(n)
P and the candidate samples Z1, . . . , ZN can be dependent.

3.5. Experiments 29

The following corollary is a consequence of Corollary 1, Theorem 1 and the bound
(3.8). Note that Theorem 1 obtains convergence in expectation, which implies con-
vergence in probability.

Corollary 2. Let θ be the function defined in Theorem 1 and assume θ ∈ HX ⊗HX .
Assume that P and Z1, . . . , ZN satisfy the conditions in Theorem 2 for all N . Let
m̂

(n)
P be an estimator of mP such that ∥m̂(n)

P −mP∥HX = Op(n
−b) as n→∞ for some

constant b > 0. Let N = ℓ = ⌈n2b⌉. Then for the estimator m̌
(n)
Q defined as (3.11),

we have

∥m̌(n)
Q −mQ∥HX = Op(n

−min(b,1/2)) (n→∞).

Suppose b ≤ 1/2, which holds with basically any nonparametric estimators.

Then Corollary 2 shows that the estimator m̂
(n)
Q achieves the same convergence

rate as the input estimator m̂
(n)
P . Note that without resampling, the rate becomes

Op(

√∑n
i=1(w

(n)
i)2+n−b), where the weights are given by the input estimator m̂

(n)
P :=∑n

i=1w
(n)
i kX (·, X(n)

i) (see the bound (3.5)). Thanks to resampling, (the square root of)

the sum of the squared weights in the case of Corollary 2 becomes 1/
√
ℓ⌈n/ℓ⌉ ≤ 1/

√
n,

which is usually smaller than

√∑n
i=1(w

(n)
i)2 and is faster than or equal to Op(n

−b).
This shows the merit of resampling in terms of convergence rates; see also the discus-
sions in Section 3.3.

3.5 Experiments

Here we conduct toy experiments to look at how the sampling and resampling proce-
dures work. Specifications of the problem are described below.

We consider the setting X = R. We will need to evaluate the errors ∥mP −m̂P∥HX

and ∥mQ − m̂Q∥HX , so we need to know the true kernel means mP and mQ. To this
end, we define the distributions and the kernel to be Gaussian: this allows us to
obtain analytic expressions for mP and mQ.

Distributions and kernel. More specifically, we define the marginal P and the
conditional distribution p(·|x) to be Gaussian: P = N(0, σ2

P) and p(·|x) = N(x, σ2
cond).

Then the resulting Q =
∫
p(·|x)dP (x) also becomes Gaussian: Q = N(0, σ2

P + σ2
cond).

We define kX to be the Gaussian kernel: kX (x, x
′) = exp(−(x − x′)2/2γ2). We set

σP = σcond = γ = 0.1.

Kernel means. Due to the convolution theorem of Gaussian functions, the kernel
means mP =

∫
kX (·, x)dP (x) and mQ =

∫
kX (·, x)dQ(x) can be analytically com-

3.5. Experiments 30

puted: mP (x) =
√

γ2

σ2+γ2 exp(− x2

2(γ2+σ2
P)
),mQ(x) =

√
γ2

(σ2+σ2
cond+γ2)

exp(− x2

2(σ2
P+σ2

cond+γ2)
).

Empirical estimates. We artificially defined an estimate m̂P =
∑n

i=1wikX (·, Xi)
as follows. First, we generated n = 100 samples X1, . . . , X100 from a uniform dis-
tribution on [−A,A] with some A > 0 (specified below). We computed the weights
w1, . . . , wn by solving an optimization problem

min
w∈Rn

∥
n∑

i=1

wikX (·, Xi)−mP∥2H + λ∥w∥2,

and then applied normalization so that
∑n

i=1wi = 1. Here λ > 0 is a regularization
constant, which allows us to control the tradeoff between the error ∥m̂P − mP∥2HX
and the quantity

∑n
i=1w

2
i = ∥w∥2. If λ is very small, the resulting m̂P becomes very

accurate, i.e., ∥m̂P −mP∥2HX
is small, but has large

∑n
i=1w

2
i . If λ is large, the error

∥m̂P −mP∥2HX
may not be very small, but

∑n
i=1w

2
i becomes small. This enables us

to see how the error ∥m̂Q −mQ∥2HX
changes as we vary these quantities.

Comparison. Given m̂P =
∑n

i=1wikX (·, Xi), we wish to estimate the kernel mean
mQ. We compare three estimators:

• woRes: Estimate mQ without resampling. Generate samples X ′
i ∼ p(·|Xi) to

produce the estimate m̂Q =
∑n

i=1wikX (·, X ′
i). This corresponds to the estimator

discussed in Section 3.1.

• Res-KH: First apply the resampling algorithm of Algorithm 2 to m̂P , yielding
X̄1, . . . , X̄n. Then generate X̄ ′

i ∼ p(·|X̄i) for each X̄i, giving the estimate m̂Q =
1
n

∑n
i=1 k(·, X̄ ′

i). This is the estimator discussed in Section 3.3.

• Res-Trunc: Instead of Algorithm 2, first truncate negative weights in w1, . . . , wn

to be 0, and apply normalization to make the sum of the weights to be 1. Then
apply the multinomial resampling algorithm of particle methods, and estimate
m̂Q as Res-KH.

Demonstration. Before starting quantitative comparisons, we demonstrate how
the above estimators work. Figure 3.2 shows demonstration results with A = 1.
First, note that for m̂P =

∑n
i=1wik(·, Xi), samples associated with large weights are

located around the mean of P , as the standard deviation of P is relatively small
σP = 0.1. Note also that some of the weights are negative. In this example, the error
of m̂P is very small ∥mP − m̂P∥2HX

= 8.49e− 10, while that of the estimate m̂Q given
by woRes is ∥m̂Q −mQ∥2HX

= 0.125. This shows that even if ∥mP − m̂P∥2HX
is very

3.5. Experiments 31

small, the resulting ∥m̂Q −mQ∥2HX
may not be small, as implied by Theorem 1 and

the bound (3.5).
We can observe the following. First, Algorithm 2 successfully discarded samples

associated with very small weights. Almost all the generated samples X̄1, . . . , X̄n

are located in [−2σP , 2σP], where σP is the standard deviation of P . The error is
∥m̌P −mP∥2HX

= 4.74e− 5, which is greater than ∥mP − m̂P∥2HX
. This is due to the

additional error caused by the resampling algorithm. Note that the resulting estimate
m̌Q is of the error ∥m̌Q −mQ∥2HX

= 0.00827. This is much smaller than the estimate
m̂Q by woRes, showing the merit of the resampling algorithm.

Res-Trunc first truncated the negative weights in w1, . . . , wn. Let us see the region
where the density of P is very small, i.e. the region outside [−2σP , 2σP]. We can
observe that the absolute values of weights are very small in this region. Note that
there exist positive and negative weights. These weights maintain balance such that
the amounts of positive and negative values are almost the same. Therefore the
truncation of the negative weights breaks this balance. As a result, the amount of the
positive weights surpasses the amount needed to represent the density of P . This can
be seen from the histogram for Res-Trunc: some of the samples X̄1, . . . , X̄n generated
by Res-Trunc are located in the region where the density of P is very small. Thus
the resulting error ∥m̌P −mP∥2HX

= 0.0538 is much larger than that of Res-KH. This
demonstrates why the resampling algorithm of particle methods is not appropriate
for kernel mean embeddings, as discussed in Section 3.2.

Effects of the sum of squared weights. The purpose here is to see how the
error ∥m̂Q−mQ∥2HX

changes as we vary the quantity
∑n

i=1w
2
i (recall that the bound

(3.5) indicates that ∥m̂Q −mQ∥2HX
increases as

∑n
i=1w

2
i increases). To this end, we

made m̂P =
∑n

i=1wikX (·, Xi) for several values of the regularization constant λ as
described above. For each λ, we constructed m̂P , and estimated mQ using each of the
three estimators above. We repeated this 20 times for each λ, and averaged the values
of ∥m̂P − mP∥2HX

,
∑n

i=1w
2
i and the errors ∥m̂Q − mQ∥2HX

by the three estimators.
Figure 3.3 shows these results, where the both axes are in the log scale. Here we used
A = 5 for the support of the uniform distribution.5 The results are summarized as
follows:

• The error of woRes (blue) increases proportionally to the amount of
∑n

i=1w
2
i .

This matches the bound (3.5).

• The error of Res-KH are not affected by
∑n

i=1w
2
i . Rather, it changes in parallel

with the error of m̂P . This is explained by the discussions in Section 3.3 on how
our resampling algorithm improves the accuracy of the sampling procedure.

5This enables us to maintain the values for ∥m̂P − mP ∥2HX
in almost the same amount, while

changing the values for
∑n

i=1 w
2
i .

3.5. Experiments 32

• Res-Trunc is worse than Res-KH, especially for large
∑n

i=1w
2
i . This is also

explained with the bound (3.8). Here m̌P is the one given by Res-Trunc, so
the error ∥m̌P −mP∥HX can be large due to the truncation of negative weights,
as shown in the demonstration results. This makes the resulting error ∥m̌Q −
mQ∥HX large.

Note that mP and mQ are different kernel means, so it can happen that the errors
∥mQ − m̌Q∥HX by Res-KH are less than ∥mp − m̂P∥HX , as in Figure 3.3.

3.5. Experiments 33

−1 −0.5 0 0.5 1
−0.5

0

0.5
Error on mP:8.4949e−10

X

w
ei

gh
t

−0.5 0 0.5 1
−0.5

0

0.5
Error on mQ:0.1254

Y

w
ei

gh
t

−1 −0.5 0 0.5 1
0

10

20

30
Error on mP:4.7413e−05

X (Resampling by Herding)

Fr
eq

ue
nc

y

−0.5 0 0.5 1
0

10

20

30
Error on mQ:0.0082728

Y

Fr
eq

ue
nc

y

−1 −0.5 0 0.5 1
0

10

20

30
Error on mP:0.053824

X (Resampling by Truncation)

Fr
eq

ue
nc

y

−0.5 0 0.5 1
0

5

10

15
Error on mQ:0.041056

Y

Fr
eq

ue
nc

y

Figure 3.2: Results of the experiments from Section 3.5. Top left and right: sample-
weight pairs of m̂P =

∑n
i=1wikX (·, Xi) and m̂Q =

∑n
i=1wik(·, X ′

i). Middle left and
right: histogram of samples X̄1, . . . , X̄n generated by Algorithm 2, and that of samples
X̄ ′

1, . . . , X̄
′
n from the conditional distribution. Bottom left and right: histogram of

samples generated with multinomial resampling after truncating negative weights,
and that of samples from the conditional distribution.

3.5. Experiments 34

10ï1 100 101 102 103 104 10510ï2

10ï1

100

101

102

103

104

105

Sum of squared weights of an input kernel mean estimate

Er
ro

r i
n

sq
ua

re
d

R
K

H
S

no
rm

input kernel mean estimate
w/o resampling
w/ resampling by truncation
w/ resampling by herding

Figure 3.3: Results of synthetic experiments for the sampling and resampling proce-
dure in Section 3.5. Vertical axis: errors in the squared RKHS norm. Horizontal axis:
values of

∑n
i=1w

2
i for different m̂P . Black: the error of m̂P (∥m̂P −mP∥2HX

). Blue,
Green and Red: the errors on mQ by woRes, Res-KH and Res-Trunc, respectively.

3.6. Proofs 35

3.6 Proofs

3.6.1 Proof of Theorem 1

Before going to the proof, we review some basic facts that will be needed. Let
mP =

∫
kX (·, x)dP (x) and m̂P =

∑n
i=1wikX (·, Xi). By the reproducing property of

the kernel kX , the following hold for any f ∈ HX :

⟨mP , f⟩HX
=

⟨∫
kX (·, x)dP (x), f

⟩
HX

=

∫
⟨kX (·, x), f⟩HX

dP (x)

=

∫
f(x)dP (x) = EX∼P [f(X)]. (3.12)

⟨m̂P , f⟩HX
=

⟨
n∑

i=1

wikX (·, Xi), f

⟩
HX

=
n∑

i=1

wif(Xi). (3.13)

For any f, g ∈ HX , we denote by f ⊗ g ∈ HX ⊗HX the tensor product of f and
g defined as

f ⊗ g(x1, x2) := f(x1)g(x2) ∀x1, x2 ∈ X . (3.14)

The inner product of the tensor RKHS HX ⊗HX satisfies

⟨f1 ⊗ g1, f2 ⊗ g2⟩HX⊗HX
= ⟨f1, f2⟩HX

⟨g1, g2⟩HX
∀f1, f2, g1, g2 ∈ HX . (3.15)

Let {ϕi}Is=1 ⊂ HX be complete orthonormal bases ofHX , where I ∈ N∪{∞}. Assume
θ ∈ HX ⊗HX (recall that this is an assumption of Theorem 1). Then θ is expressed
as

θ =
I∑

s,t=1

αs,tϕs ⊗ ϕt (3.16)

with
∑

s,t |αs,t|2 <∞ (see, e.g., Aronszajn (1950)).

Proof of Theorem 1. Recall that m̂Q =
∑n

i=1wikX (·, X ′
i), where X

′
i ∼ p(·|Xi) (i =

3.6. Proofs 36

1, . . . , n). Then

EX′
1,...,X

′
n
[∥m̂Q −mQ∥2HX

]

= EX′
1,...,X

′
n
[⟨m̂Q, m̂Q⟩HX

− 2 ⟨m̂Q,mQ⟩HX
+ ⟨mQ,mQ⟩HX

]

=
n∑

i,j=1

wiwjEX′
i,X

′
j
[kX (X

′
i, X

′
j)]

−2
n∑

i=1

wiEX′∼Q,X′
i
[kX (X

′, X ′
i)] + EX′,X̃′∼Q[kX (X

′, X̃ ′)]

=
∑
i̸=j

wiwjEX′
i,X

′
j
[kX (X

′
i, X

′
j)] +

n∑
i=1

w2
iEX′

i
[kX (X

′
i, X

′
i)]

−2
n∑

i=1

wiEX′∼Q,X′
i
[kX (X

′, X ′
i)] + EX′,X̃′∼Q[kX (X

′, X̃ ′)], (3.17)

where X̃ ′ denotes an independent copy of X ′.
Recall that Q =

∫
p(·|x)dP (x) and θ(x, x̃) :=

∫ ∫
kX (x

′, x̃′)dp(x′|x)dp(x̃′|x̃). We
can then rewrite terms in (3.17) as

EX′∼Q,X′
i
[kX (X

′, X ′
i)]

=

∫ (∫ ∫
kX (x

′, x′i)dp(x
′|x)dp(x′i|Xi)

)
dP (x)

=

∫
θ(x,Xi)dP (x) = EX∼P [θ(X,Xi)].

EX′,X̃′∼Q[kX (X
′, X̃ ′)]

=

∫ ∫ (∫ ∫
kX (x

′, x̃′)dp(x′|x)p(x̃′|x̃)
)
dP (x)dP (x̃)

=

∫ ∫
θ(x, x̃)dP (x)dP (x̃) = EX,X̃∼P [θ(X, X̃)].

Thus (3.17) is equal to

n∑
i=1

w2
i

(
EX′

i
[kX (X

′
i, X

′
i)]− EX′

i,X̃
′
i
[kX (X

′
i, X̃

′
i)]
)

+
n∑

i,j=1

wiwjθ(Xi, Xj)− 2
n∑

i=1

wiEX∼P [θ(X,Xi)] + EX,X̃∼P [θ(X, X̃)] (3.18)

We can rewrite terms in (3.18) as follows, using the facts (3.12) (3.13) (3.14) (3.15)

3.6. Proofs 37

(3.16): ∑
i,j

wiwjθ(Xi, Xj) =
∑
i,j

wiwj

∑
s,t

αs,tϕs(Xi)ϕt(Xj)

=
∑
s,t

αs,t

∑
i

wiϕs(Xi)
∑
j

wjϕt(Xj) =
∑
s,t

αs,t ⟨m̂P , ϕs⟩HX
⟨m̂P , ϕt⟩HX

=
∑
s,t

αs,t ⟨m̂P ⊗ m̂P , ϕs ⊗ ϕt⟩HX⊗HX
= ⟨m̂P ⊗ m̂P , θ⟩HX⊗HX

.∑
i

wiEX∼P [θ(X,Xi)] =
∑
i

wiEX∼P [
∑
s,t

αs,tϕs(X)ϕt(Xi)]

=
∑
s,t

αs,tEX∼P [ϕs(X)]
∑
i

wiϕt(Xi) =
∑
s,t

αs,t ⟨mP , ϕs⟩HX
⟨m̂P , ϕt⟩HX

=
∑
s,t

αs,t ⟨mP ⊗ m̂P , ϕs ⊗ ϕt⟩HX⊗HX
= ⟨mP ⊗ m̂P , θ⟩HX⊗HX

.

EX,X̃∼P [θ(X, X̃)] = EX,X̃∼P [
∑
s,t

αs,tϕs(X)ϕt(X̃)]

=
∑
s,t

αs,t ⟨mP , ϕs⟩HX
⟨mP , ϕt⟩HX

=
∑
s,t

αs,t ⟨mP ⊗mP , ϕs ⊗ ϕt⟩HX⊗HX

= ⟨mP ⊗mP , θ⟩HX⊗HX
.

Thus (3.18) is equal to

n∑
i=1

w2
i

(
EX′

i
[kX (X

′
i, X

′
i)]− EX′

i,X̃
′
i
[kX (X

′
i, X̃

′
i)]
)

+ ⟨m̂P ⊗ m̂P , θ⟩HX⊗HX
− 2 ⟨m̂P ⊗mP , θ⟩HX⊗HX

+ ⟨mP ⊗mP , θ⟩HX⊗HX

=
n∑

i=1

w2
i

(
EX′

i
[kX (X

′
i, X

′
i)]− EX′

i,X̃
′
i
[kX (X

′
i, X̃

′
i)]
)

+ ⟨(m̂P −mP)⊗ (m̂P −mP), θ⟩HX⊗HX
.

Finally, the Cauchy-Schwartz inequality gives

⟨(m̂P −mP)⊗ (m̂P −mP), θ⟩HX⊗HX
≤ ∥m̂P −mP∥2HX

∥θ∥HX⊗HX .

This completes the proof.

3.6. Proofs 38

3.6.2 Proof of Theorem 2

Theorem 2 provides convergence rates for the resampling algorithm (Algorithm 3).
This theorem assumes that the candidate samples Z1, . . . , ZN for resampling are i.i.d.
with a density q. Here we prove Theorem 2 by showing that the same statement holds
under weaker assumptions (Theorem 3 below).

We first describe assumptions. Let P be the distribution of the kernel mean mP ,
and L2(P) be the Hilbert space of square-integrable functions on X with respect to
P . For any f ∈ L2(P), we write its norm by ∥f∥L2(P) :=

∫
f 2(x)dP (x).

Assumption 1. The candidate samples Z1, . . . , ZN are independent. There are prob-
ability distributions Q1, . . . , QN on X , such that for any bounded measurable function
g : X → R, we have

E

[
1

N − 1

∑
j ̸=i

g(Zj)

]
= EX∼Qi

[g(X)] (i = 1, . . . , N). (3.19)

Assumption 2. The distributions Q1, . . . , QN have density functions q1, . . . , qN , re-
spectively. Define Q := 1

N

∑N
i=1Qi and q := 1

N

∑N
i=1 qi. There is a constant A > 0

that does not depend on N , such that∥∥∥∥qiq − 1

∥∥∥∥2
L2(P)

≤ A√
N

(i = 1, . . . , N). (3.20)

Assumption 3. The distribution P has a density function p such that supx∈X
p(x)
q(x)

<
∞. There is a constant σ > 0 such that

√
N

(
1

N

N∑
i=1

p(Zi)

q(Zi)
− 1

)
D−→ N (0, σ2), (3.21)

where
D−→ denotes convergence in distribution and N (0, σ2) the normal distribution

with mean 0 and variance σ2.

These assumptions are weaker than those in Theorem 2, which require Z1, . . . , ZN

be i.i.d. For example, Assumption 1 is clearly satisfied for the i.i.d. case, since in this
case we have Q = Q1,= · · · = QN . The inequality (3.20) in Assumption 2 requires
that the distributions Q1, . . . , QN get similar, as the sample size increases. This is also
satisfied under the i.i.d. assumption. Likewise, the convergence (3.21) in Assumption
3 is satisfied from the central limit theorem if Z1, . . . , ZN are i.i.d.

We will need the following lemma.

3.6. Proofs 39

Lemma 1. Let Z1, . . . , ZN be samples satisfying Assumption 1. Then the following
holds for any bounded measurable function g : X → R:

E

[
1

N

N∑
i=1

g(Zi)

]
=

∫
g(x)dQ(x).

Proof.

E

[
1

N

N∑
i=1

g(Zi)

]
= E

[
1

N(N − 1)

N∑
i=1

∑
j ̸=i

g(Zj)

]

=
1

N

N∑
i=1

E

[
1

N − 1

∑
j ̸=i

g(Zj)

]
=

1

N

N∑
i=1

∫
g(x)Qi(x) =

∫
g(x)dQ(x).

The following theorem shows the convergence rates of our resampling algorithm.
Note that it does not assume that the candidate samples Z1, . . . , ZN are identical to
those expressing the estimator m̂P .

Theorem 3. Let k be a bounded positive definite kernel, and H be the associated
RKHS. Let Z1, . . . , ZN be candidate samples satisfying Assumptions 1, 2 and 3. Let
P be a probability distribution satisfying Assumption 3, and let mP =

∫
k(·, x)dP (x)

be the kernel mean. Let m̂P ∈ H be any element in H. Suppose we apply Algorithm
3 to m̂P ∈ H with candidate samples Z1, . . . , ZN , and let X̄1, ..., X̄ℓ ∈ {Z1, . . . , ZN}
be the resulting samples. Then the following holds:∥∥∥∥∥mP −

1

ℓ

ℓ∑
i=1

k(·, X̄i)

∥∥∥∥∥
2

H

=
(
∥m̂P −mP∥HX +Op(N

−1/2)
)2

+O

(
ln ℓ

ℓ

)
.

Proof. Our proof is based on the fact (Bach et al., 2012) that Kernel Herding can
be seen as the Frank-Wolfe optimization method with step size 1/(ℓ+ 1) for the ℓ-th
iteration. For details of the Frank-Wolfe method, we refer to Jaggi (2013); Freund
and Grigas (2014) and references therein.

Fix the samples Z1, . . . , ZN . LetMN be the convex hull of the set {k(·, Z1), . . . , k(·, ZN)} ⊂
H. Define a loss function J : H → R by

J(g) =
1

2
∥g − m̂P∥2H, g ∈ H (3.22)

Then Algorithm 3 can be seen as the Frank-Wolfe method that iteratively minimizes

3.6. Proofs 40

this loss function over the convex hullMN :

inf
g∈MN

J(g).

More precisely, the Frank-Wolfe method solves this problem by the following itera-
tions:

s := arg min
g∈MN

⟨g,∇J(gℓ−1)⟩H

gℓ := (1− γ)gℓ−1 + γs (ℓ ≥ 1),

where γ is a step size defined as γ = 1/ℓ, and ∇J(gℓ−1) is the gradient of J at gℓ−1:
∇J(gℓ−1) = gℓ−1 − m̂P . Here the initial point is defined as g0 := 0. It can be easily
shown that gℓ =

1
ℓ

∑ℓ
i=1 k(·, X̄i), where X̄1, . . . , X̄ℓ are the samples given by Algorithm

3. For details, see Bach et al. (2012).
Let LJ,MN

> 0 be the Lipschitz constant of the gradient ∇J over MN , and
DiamMN > 0 be the diameter ofMN :

LJ,MN
:= sup

g1,g2∈MN

∥∇J(g1)−∇J(g2)∥H
∥g1 − g2∥H

= sup
g1,g2∈MN

∥g1 − g2∥H
∥g1 − g2∥H

= 1, (3.23)

DiamMN := sup
g1,g2∈MN

∥g1 − g2∥H

≤ sup
g1,g2∈MN

∥g1∥H + ∥g2∥H ≤ 2C, (3.24)

where C := supx∈X ∥k(·, x)∥H = supx∈X
√
k(x, x) <∞.

From Bound 3.2 and Eq. (8) of Freund and Grigas (2014), we then have

J(gℓ)− inf
g∈MN

J(g) ≤ LJ,MN
(DiamMN)

2(1 + ln ℓ)

2ℓ
(3.25)

≤ 2C2(1 + ln ℓ)

ℓ
, (3.26)

where the last inequality follows from (3.23) and (3.24).
Note that the upper-bound of (3.26) does not depend on the candidate sam-

ples Z1, . . . , ZN . Hence, combined with (3.22), the following holds for any choice of

3.6. Proofs 41

Z1, . . . , ZN : ∥∥∥∥∥m̂P −
1

ℓ

ℓ∑
i=1

k(·, X̄i)

∥∥∥∥∥
2

H

≤ inf
g∈MN

∥m̂P − g∥2H +
4C2(1 + ln ℓ)

ℓ
. (3.27)

Below we will focus on bounding the first term of (3.27). Recall here that

Z1, . . . , ZN are random samples. Define a random variable SN :=
∑N

i=1
p(Zi)
q(Zi)

. Since

MN is the convex hull of the {k(·, Z1), . . . , k(·, ZN)}, we have

inf
g∈MN

∥m̂P − g∥H

= inf
α∈RN , α≥0,

∑
i αi≤1

∥m̂P −
∑
i

αik(·, Zi)∥H

≤ ∥m̂P −
1

SN

∑
i

p(Zi)

q(Zi)
k(·, Zi)∥H

≤ ∥m̂P −mP∥H + ∥mP −
1

N

∑
i

p(Zi)

q(Zi)
k(·, Zi)∥H

+∥ 1
N

∑
i

p(Zi)

q(Zi)
k(·, Zi)−

1

SN

∑
i

p(Zi)

q(Zi)
k(·, Zi)∥H.

Therefore we have

∥m̂P −
1

ℓ

ℓ∑
i=1

k(·, X̄i)∥2H

≤ (∥m̂P −mP∥H + ∥mP −
1

N

∑
i

p(Zi)

q(Zi)
k(·, Zi)∥H

+∥ 1
N

∑
i

p(Zi)

q(Zi)
k(·, Zi)−

1

SN

∑
i

p(Zi)

q(Zi)
k(·, Zi)∥H)2 +O

(
ln ℓ

ℓ

)
. (3.28)

Below we derive rates of convergence for the second and third terms.

Second term. We derive a rate of convergence in expectation, which implies a rate
of convergence in probability. To this end, we use the following fact: Let f ∈ H be
any function in the RKHS. By the assumption supx∈X

p(x)
q(x)

<∞ and the boundedness

3.6. Proofs 42

of k, functions x→ p(x)
q(x)

f(x) and x→
(

p(x)
q(x)

)2
f(x) are bounded.

E[∥mP −
1

N

∑
i

p(Zi)

q(Zi)
k(·, Zi)∥2H]

= ∥mP∥2H − 2E[
1

N

∑
i

p(Zi)

q(Zi)
mP (Zi)] + E[

1

N2

∑
i

∑
j

p(Zi)

q(Zi)

p(Zj)

q(Zj)
k(Zi, Zj)]

= ∥mP∥2H − 2

∫
p(x)

q(x)
mP (x)q(x)dx+ E[

1

N2

∑
i

∑
j ̸=i

p(Zi)

q(Zi)

p(Zj)

q(Zj)
k(Zi, Zj)]

+E[
1

N2

∑
i

(
p(Zi)

q(Zi)

)2

k(Zi, Zi)]

= ∥mP∥2H − 2∥mP∥2H + E[
N − 1

N2

∑
i

p(Zi)

q(Zi)

∫
p(x)

q(x)
k(Zi, x)qi(x)dx]

+
1

N

∫ (
p(x)

q(x)

)2

k(x, x)q(x)dx

= −∥mP∥2H + E[
N − 1

N2

∑
i

p(Zi)

q(Zi)

∫
p(x)

q(x)
k(Zi, x)qi(x)dx] +

1

N

∫
p(x)

q(x)
k(x, x)dP (x).

We further rewrite the second term of the last equality as follows:

E[
N − 1

N2

∑
i

p(Zi)

q(Zi)

∫
p(x)

q(x)
k(Zi, x)qi(x)dx]

= E[
N − 1

N2

∑
i

p(Zi)

q(Zi)

∫
p(x)

q(x)
k(Zi, x)(qi(x)− q(x))dx]

+E[
N − 1

N2

∑
i

p(Zi)

q(Zi)

∫
p(x)

q(x)
k(Zi, x)q(x)dx]

= E[
N − 1

N2

∑
i

p(Zi)

q(Zi)

∫ √
p(x)k(Zi, x)

√
p(x)(

qi(x)

q(x)
− 1)dx] +

N − 1

N
∥mP∥2H

≤ E[
N − 1

N2

∑
i

p(Zi)

q(Zi)
∥k(Zi, ·)∥L2(P)∥

qi(x)

q(x)
− 1∥L2(P)] +

N − 1

N
∥mP∥2H

≤ E[
N − 1

N3

∑
i

p(Zi)

q(Zi)
C2A] +

N − 1

N
∥mP∥2H

=
C2A(N − 1)

N2
+
N − 1

N
∥mP∥2H,

3.6. Proofs 43

where the first inequality follows from Cauchy-Schwartz. Using this, we obtain

E[∥mP −
1

N

∑
i

p(Zi)

q(Zi)
k(·, Zi)∥2H

≤ 1

N

(∫
p(x)

q(x)
k(x, x)dP (x)− ∥mP∥2H

)
+
C2(N − 1)A

N2

= O(N−1).

Therefore we have

∥mP −
1

N

∑
i

p(Zi)

q(Zi)
k(·, Zi)∥H = Op(N

−1/2) (N →∞). (3.29)

Third term. We can bound the third term as follows:∥∥∥∥∥ 1

N

∑
i

p(Zi)

q(Zi)
k(·, Zi)−

1

SN

∑
i

p(Zi)

q(Zi)
k(·, Zi)

∥∥∥∥∥
H

=

∥∥∥∥∥ 1

N

∑
i

p(Zi)

q(Zi)
k(·, Zi)

(
1− N

SN

)∥∥∥∥∥
H

=

∣∣∣∣1− N

SN

∣∣∣∣
∥∥∥∥∥ 1

N

∑
i

p(Zi)

q(Zi)
k(·, Zi)

∥∥∥∥∥
H

≤
∣∣∣∣1− N

SN

∣∣∣∣C ∥p/q∥∞
=

∣∣∣∣∣1− 1
1
N

∑N
i=1 p(Zi)/q(Zi)

∣∣∣∣∣C ∥p/q∥∞,
where ∥p/q∥∞ := supx∈X

p(x)
q(x)

< ∞. Therefore the following holds by Assumption 3
and the Delta method:∥∥∥∥∥ 1

N

∑
i

p(Zi)

q(Zi)
k(·, Zi)−

1

SN

∑
i

p(Zi)

q(Zi)
k(·, Zi)

∥∥∥∥∥
H

= Op(N
−1/2). (3.30)

The assertion of the theorem follows from (3.28) (3.29) (3.30).

Chapter 4

Kernel Monte Carlo Filter

Time-series data are ubiquitous in science and engineering. We often wish to extract
useful information from such time-series data. State-space models have been one of the
most successful approaches for this purpose (see, e.g., Durbin and Koopman (2012)).
Suppose that we have a sequence of observations y1, . . . , yt, . . . , yT . A state-space
model assumes that for each observation yt, there is a hidden state xt that generates
yt, and that these states x1, . . . , xt, . . . , xT follow a Markov process (see Figure 4.1).
Therefore the state-space model is characterized by two components: (1) observation
model p(yt|xt), the conditional distribution of an observation given a state, and (2)
transition model p(xt|xt−1), the conditional distribution of a state given the previous
one.

This chapter addresses the problem of filtering, which has been a central topic in
the literature on state-space models. The task is to estimate a posterior distribution
of the state for each time t, based on observations up to that time:

p(xt|y1, . . . , yt), t = 1, 2, . . . , T. (4.1)

The estimation is to be done online (sequentially), as each yt is received. For example,
a tracking problem can be formulated as filtering, where xt is the position of an object
to be tracked, and yt is a noisy observation of xt (Ristic et al., 2004).

As an inference problem, the starting point of filtering is that the observation
model p(yt|xt) and the transition model p(xt|xt−1) are given in some form. The sim-
plest form is a liner-Gaussian state-space model, which enables analytic computation
of the posteriors; this is the principle of the classical Kalman filter (Kalman, 1960).
The filtering problem is more difficult if the observation and transition models involve
nonlinear-transformation and non-Gaussian noise. Standard solutions for such situ-
ations include Extended and Unscented Kalman filters (Anderson and Moore, 1979;
Julier and Uhlmann, 1997, 2004) and particle filters (Gordon et al., 1993; Doucet
et al., 2001; Doucet and Johansen, 2011). Particle filters in particular have wide

44

Chapter 4. Kernel Monte Carlo Filter 45

Figure 4.1: Graphical representation of a state-space model: y1, . . . , yT denote ob-
servations, and x1, . . . , xT denote states. The states are hidden, and to be estimated
from the observations.

applicability since they only require that (i) (unnormalized) density values of the
observation model are computable, and that (ii) sampling with the transition model
is possible. Thus particle methods are applicable to basically any nonlinear non-
Gaussian state-space models, and have been used in various fields such as computer
vision, robotics, computational biology, and so on (see, e.g., Doucet et al. (2001)).

However, it can even be restrictive to assume that the observation model p(yt|xt)
is given as a probabilistic model. An important point is that in practice, we may
define the states x1, . . . , xT arbitrarily as quantities that we wish to estimate from
available observations y1, . . . , yT . Thus if these quantities are very different from
the observations, the observation model may not admit a simple parametric form.
For example, in location estimation problems in robotics, states are locations in a
map, while observations are sensor data, such as camera images and signal strength
measurements of a wireless device (Vlassis et al., 2002; Wolf et al., 2005; Ferris et al.,
2006). In brain computer interface applications, states are defined as positions of a
device to be manipulated, while observations are brain signals (Pistohl et al., 2008;
Wang et al., 2011). In these applications, it is hard to define the observation model
as a probabilistic model in parametric form.

For such applications where the observation model is very complicated, informa-
tion about the relation between states and observations is rather given as examples of
state-observation pairs {(Xi, Yi)}; such examples are often available before conducting
filtering in test phase. For example, one can collect location-sensor examples for the
location estimation problems, by making use of more expensive sensors than those for
filtering (Quigley et al., 2010). The brain computer interface problems also allow us
to obtain training samples for the relation between device positions and brain signals
(Schalk et al., 2007). However, making use of such examples for learning the obser-
vation model is not straightforward. If one relies on a parametric approach, it would
require exhaustive efforts for designing a parametric model to fit the complicated
(true) observation model. Nonparametric methods such as kernel density estimation
(Silverman, 1986), on the other hand, suffer from the curse of dimensionality when

4.1. Related work 46

applied to high-dimensional observations. Moreover, observations may be suitable to
be represented as structured (non-vectorial) data, as for the cases of image and text.
Such situations are not straightforward for either approach, since they usually require
that data is given as real vectors.

We propose a filtering method that is focused on the above situations where
the information of the observation model p(yt|xt) is only given through the state-
observation examples {(Xi, Yi)}: we do not assume any parametric model for the
observation model. On the other hand, we assume that the transition model is known,
as for a standard particle filter: the probabilistic model can be arbitrarily nonlinear
and non-Gaussian.

We develop a filtering method for this setting based on kernel mean embeddings.
We call it Kernel Monte Carlo Filter (KMCF). As it is based on kernel mean em-
beddings, all the involved distributions are expressed as kernel means. The filter-
ing problem can then be cast as how to estiamte the kernel means of the posterior
distributions. Specifically, estimation of each posterior kernel mean is done by the
combination of Kernel Bayes’ Rule in Section 2.5.2 and the sampling and resampling
procedures developed in Chapter 3. More precisely, this estimation consists of three
steps of prediction, correction and resampling. Suppose that we already obtained an
estimate for the posterior of the previous time. In the prediction step, this previous
estimate is propagated forward by sampling with the transition model. The propa-
gated estimate is then used as a prior for the current state. In the correction step,
Kernel Bayes’ Rule is applied to obtain a posterior estimate, using the prior and the
state-observation examples {(Xi, Yi)}ni=1. Finally, in the resampling step, pseudo sam-
ples are obtained from the posterior estimate by applying the resampling algorithm.
These samples are then used in the prediction step of the next iteration. We show that
this algorithm is consistent: KMCF provide posterior estimates that approach to the
true posteriors, as the number of state-observation examples {(Xi, Yi)}ni=1 increases.

This chapter proceeds as follows. We first review related works in Section 4.1. We
then present the KMCF algorithm in Section 4.2, and show how it can be accelerated
in Section 4.3. We show consistency of KMCF in Section 4.4, and finally report
experimental results in Section 4.5.

4.1 Related work

As explained, we consider the following setting: (i) the observation model p(yt|xt)
is not known explicitly or even parametrically. Instead, state-observation examples
{(Xi, Yi)} are available before test phase; (ii) sampling from the transition model
p(xt|xt−1) is possible. Note that standard particle filters cannot be applied to this
setting directly, since they require that the observation model is given as a parametric
model.

4.2. Proposed method 47

As far as we know, there exist a few methods that can be applied to this setting
directly (Vlassis et al., 2002; Ferris et al., 2006). These methods learn the observation
model from state-observation examples nonparametrically, and then use it to run a
particle filter with a transition model. Vlassis et al. (2002) proposed to apply condi-
tional density estimation based on the k-nearest neighbors approach (Stone, 1977) for
learning the observation model. A problem here is that conditional density estimation
suffers from the curse of dimensionality if observations are high-dimensional (Silver-
man, 1986). Vlassis et al. (2002) avoided this problem by estimating the conditional
density function of the state given observation, and used it as an alternative for the
observation model. This heuristic may introduce bias in estimation, however. Ferris
et al. (2006) proposed to use Gaussian Process regression for leaning the observation
model. This method will perform well if the Gaussian noise assumption is satisfied,
but cannot be applied to structured observations.

4.2 Proposed method

In this section, we present our Kernel Monte Carlo Filter (KMCF). First, we define
notation and review the problem setting in Section 4.2.1. We then describe the
algorithm of KMCF in Section 4.2.2. We discuss implementation issues such as hyper-
parameter selection and computational cost in Section 4.2.3. We explain how to
decode the information on the posteriors from the estimated kernel means in Section
4.2.4.

4.2.1 Notation and problem setup

Here we formally define the problem. The notation is summarized in Table 4.1.
We consider a state-space model (see Figure 4.1). Let X and Y be measurable

spaces, which serve as a state space and an observation space, respectively. Let
x1, . . . , xt, . . . , xT ∈ X be a sequence of hidden states, which follow a Markov pro-
cess. Let p(xt|xt−1) denote a transition model that defines this Markov process. Let
y1, . . . , yt, . . . , yT ∈ Y be a sequence of observations. Each observation yt is assumed
to be generated from an observation model p(yt|xt) conditioned on the corresponding
state xt. We use the abbreviation y1:t := y1, . . . , yt.

We consider a filtering problem of estimating the posterior distribution p(xt|y1:t)
for each time t = 1, . . . , T . The estimation is to be done online, as each yt is given.
Specifically, we consider the following setting:

1. The observation model p(yt|xt) is not known explicitly, or even parametrically.
Instead, we are given examples of state-observation pairs {(Xi, Yi)}ni=1 ⊂ X ×Y
prior to the test phase. The observation model is also assumed time-invariant.

4.2. Proposed method 48

Table 4.1: Notation

X State space
Y Observation space
xt ∈ X State at time t
yt ∈ Y Observation at time t
p(yt|xt) Observation model
p(xt|xt−1) Transition model
{(Xi, Yi)}ni=1 State-observation examples
kX Positive definite kernel on X
kY Positive definite kernel on Y
HX RKHS associated with kX
HY RKHS associated with kY

2. Sampling from the transition model p(xt|xt−1) is possible. Its probabilistic
model can be an arbitrary nonlinear non-Gaussian distribution, as for standard
particle filters. It can further depend on time. For example, control input can
be included in the transition model as p(xt|xt−1) := p(xt|xt−1, ut), where ut
denotes control input provided by a user at time t.

Let kX : X ×X → R and kY : Y×Y → R be positive definite kernels on X and Y ,
respectively. Denote by HX and HY their respective RKHSs. We address the above
filtering problem by estimating the kernel means of the posteriors:

mxt|y1:t :=

∫
kX (·, xt)p(xt|y1:t)dxt ∈ HX (t = 1, . . . , T). (4.2)

These preserve all the information of the corresponding posteriors, if the kernels are
characteristic (see Section 2.2). Therefore the resulting estimates of these kernel
means provide us the information of the posteriors, as explained in Section 4.2.4

4.2.2 Algorithm

KMCF iterates three steps of prediction, correction and resampling for each time t.
Suppose that we have just finished the iteration at time t− 1. Then, as shown later,
the resampling step yields the following estimator of (4.2) at time t− 1:

m̌xt−1|y1:t−1 :=
1

n

n∑
i=1

kX (·, X̄t−1,i), (4.3)

4.2. Proposed method 49

where X̄t−1,1, . . . , X̄t−1,n ∈ X . Below we show one iteration of KMCF that estimates
the kernel mean (4.2) at time t (see also Figure 4.2).

1. Prediction step The prediction step is application of the sampling procedure
analyzed in Section 3.1. We generate a sample from the transition model for each
X̄t−1,i in (4.3);

Xt,i ∼ p(xt|xt−1 = X̄t−1,i), (i = 1, . . . , n). (4.4)

We then specify a new empirical kernel mean;

m̂xt|y1:t−1 :=
1

n

n∑
i=1

kX (·, Xt,i). (4.5)

This is an estimator of the following kernel mean of the prior;

mxt|y1:t−1 :=

∫
kX (·, xt)p(xt|y1:t−1)dxt ∈ HX , (4.6)

where

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

is the prior distribution of the current state xt. Thus (4.5) serves as a prior for the
subsequent posterior estimation.

2. Correction step This step estimates the kernel mean (4.2) of the posterior by
using Kernel Bayes’ Rule (Algorithm 1) in Section 2.5.2. This makes use of the new
observation yt, the state-observation examples {(Xi, Yi)}ni=1 and the estimate (4.5) of
the prior.

The input of Algorithm 1 consists of (i) vectors

kY = (kY(yt, Y1), . . . , kY(yt, Yn))
T ∈ Rn

mπ = (m̂xt|y1:t−1(X1), . . . , m̂xt|y1:t−1(Xn))
T

=

(
1

n

n∑
i=1

kX (Xq, Xt,i)

)n

q=1

∈ Rn,

which are interpreted as expressions of yt and m̂xt|y1:t−1 using the sample {(Xi, Yi)}ni=1,
(ii) kernel matrices GX = (kX (Xi, Xj)), GY = (kY(Yi, Yj)) ∈ Rn×n, and (iii) reg-
ularization constants ε, δ > 0. These constants ε, δ as well as kernels kX , kY are
hyper-parameters of KMCF; we will discuss how to choose these parameters later.

Algorithm 1 outputs a weight vector w := (w1, . . . , wn) ∈ Rn. Normalizing these

4.2. Proposed method 50

weights1 wt := w/
∑n

i=1wi, we obtain an estimator of (4.2) as

m̂xt|y1:t =
n∑

i=1

wt,ikX (·, Xi). (4.7)

The apparent difference from a particle filter is that the posterior (kernel mean)
estimator (4.7) is expressed in terms of the samples X1, . . . , Xn in the training sample
{(Xi, Yi)}ni=1, not with the samples from the prior (4.5). This requires that the training
samples X1, . . . , Xn cover the support of posterior p(xt|y1:t) sufficiently well. If this
does not hold, we cannot expect good performance for the posterior estimate. Note
that this is also true for any methods that deal with the setting of this chapter; poverty
of training samples in a certain region means that we do not have any information
about the observation model p(yt|xt) in that region.

3. Resampling step In this step, we apply the resampling algorithm (Algorithm
2) to the empirical kernel mean (4.7). Let X̄t,1, . . . , X̄t,n be the resulting pseudo
samples, and define a new empirical kernel mean

m̌xt|y1:t :=
1

n

n∑
i=1

kX (·, X̄t,i). (4.8)

This would be close to (4.7) in the RKHS, as proved by the theoretical analysis in
Section 3.4. Then this estimate and pseudo samples are used in the next prediction
step at time t + 1. The analysis in Chapter 3 shows that this procedure can reduce
the error of the prediction step.

Overall algorithm. We summarize the overall procedure of KMCF in Algorithm 4,
where pinit denotes a prior distribution for the initial state x1. For each time t, KMCF
takes as input an observation yt, and outputs a weight vector wt = (wt,1, . . . , wt,n)

T ∈
Rn. Combined with the samplesX1, . . . , Xn in the state-observation examples {(Xi, Yi)}ni=1,
these weights provide an estimator (4.7) of the kernel mean of posterior (4.2).

We first compute kernel matricesGX , GY (Line 4-5), which are used in Algorithm 1
of Kernel Bayes’ Rule (Line 15). For t = 1, we generate an i.i.d. sample X1,1, . . . , X1,n

from the initial distribution pinit (Line 8), which provides an estimator of the prior

1We found in our preliminary experiments that normalization of weights is beneficial to the
filtering performance. Such a normalization procedure may be justified with a theoretical analysis
by Kanagawa and Fukumizu (2014), which shows the following holds under some mild conditions:
Let m̂P =

∑n
i=1 wikX (·, Xi) be an estimator of a kernel mean mP . Then the sum of weights

∑n
i=1 wi

converges to 1, as the accuracy of the estimate m̂P increases, i.e., ∥m̂P −mP ∥HX → 0.

4.2. Proposed method 51

Algorithm 4 Kernel Monte Carlo Filter
1: Input: y1, . . . , yT ∈ Y .
2: Output: w1, . . . , wT ∈ Rn.
3: Requirement: kX , kY , ε, δ, {(Xi, Yi)}ni=1, p(xt|xt−1), pinit.

4: GX ← (kX (Xi, Xj)) ∈ Rn×n.
5: GY ← (kY(Yi, Yj)) ∈ Rn×n.
6: for t = 1 to T do
7: if t = 1 then
8: Sampling: X1,1, . . . , X1,n ∼ pinit i.i.d.
9: else
10: X̄t−1,1, . . . , X̄t−1,n ← Algorithm 2(wt−1, {Xi}ni=1).
11: Sampling: Xt,i ∼ p(xt|xt−1 = X̄t−1,i) (i = 1, . . . , n).
12: end if
13: mπ ← (1

n

∑n
i=1 kX (Xq, Xt,i))

n
q=1 ∈ Rn.

14: kY ← (kY(Yq, yt))
n
q=1 ∈ Rn.

15: wt ← Algorithm 1(kY ,mπ, GX , GY , ε, δ).
16: wt ← wt/

∑n
i=1wt,i.

17: end for

corresponding to (4.5). Line 10 is the resampling step at time t − 1, and Line 11 is
the prediction step at time t. Line 13-16 corresponds to the correction step.

4.2.3 Discussion

The estimation accuracy of KMCF can depend on several factors in practice, and
here we discuss them.

Training samples. We first note that training samples {(Xi, Yi)}ni=1 should provide
the information concerning the observation model p(yt|xt). For example, {(Xi, Yi)}ni=1

may be an i.i.d. sample from a joint distribution p(x, y) on X ×Y , which decomposes
as p(x, y) = p(y|x)p(x). Here p(y|x) is the observation model and p(x) is some
distribution on X . The support of p(x) should cover the region where states x1, . . . , xT
may pass in the test phase, as discussed in Section 4.2.2. For example, this is satisfied
when the state space X is compact, and the support of p(x) is the entire X .

Note that training samples {(Xi, Yi)}ni=1 can also be non-i.i.d in practice. For
example, we may deterministically select X1, . . . , Xn so that they cover the region
of interest. In location estimation problems in robotics, for instance, we may collect
location-sensor examples {(Xi, Yi)}ni=1 so that locations X1, . . . , Xn cover the region
where location estimation is to be conducted (Quigley et al., 2010).

4.2. Proposed method 52

Hyper-parameters. As in other kernel methods in general, the performance of
KMCF depends on the choice of its hyper-parameters, which are the kernels kX and
kY (or parameters in the kernels, e.g., the bandwidth of the Gaussian kernel) and
the regularization constants δ, ε > 0. We need to define these hyper-parameters
based on the joint sample {(Xi, Yi)}ni=1, before running the algorithm on the test
data y1, . . . , yT . This can be done by cross validation. Suppose that {(Xi, Yi)}ni=1 is
given as a sequence from the state-space model. We can then apply two-fold cross
validation, by dividing the sequence into two subsequences. If {(Xi, Yi)}ni=1 is not a
sequence, we can rely on the cross validation procedure for Kernel Bayes’ Rule (see
Section 4.2 of Fukumizu et al. (2013)).

Time complexity. For each time t, the naive implementation of Algorithm 4 re-
quires a time complexity of O(n3) for the size n of the joint sample {(Xi, Yi)}ni=1. This
comes from Algorithm 1 in Line 15 (Kernel Bayes’ Rule) and Algorithm 2 in Line 10
(resampling). The complexity O(n3) of Algorithm 1 is due to the matrix inversions.
Note that one of the inversions (GX+nεIn)

−1 can be computed before the test phase,
as it does not involve the test data. Algorithm 2 also has complexity of O(n3). In
Section 3.3, we explained how this cost can be reduced to O(n2ℓ) by generating only
ℓ < n samples by resampling.

Speeding up methods. In Section 4.3, we describe two methods for reducing the
computational costs of KMCF, both of which only need to be applied prior to the
test phase. (i) Low rank approximation of kernel matrices GX , GY , which reduces the
complexity to O(nr2), where r the rank of low rank matrices: Low rank approximation
works well in practice, since eigenvalues of a kernel matrix often decay very rapidly.
Indeed this has been theoretically shown for some cases; see Widom (1963, 1964) and
discussions in Bach and Jordan (2002). (ii) A data reduction method based on Kernel
Herding, which efficiently selects joint subsamples from the training set {(Xi, Yi)}ni=1:
Algorithm 4 is then applied based only on those subsamples. The resulting complexity
is thus O(r3), where r is the number of subsamples. This method is motivated by the
fast convergence rate of Kernel Herding (Chen et al., 2010).

Both methods require the number r to be chosen, which is either the rank for low
rank approximation, or the number of subsamples in data reduction. This determines
the tradeoff between the accuracy and computational time. In practice, there are
two ways of selecting the number r. (a) By regarding r as a hyper parameter of
KMCF, we can select it by cross validation. (b) We can choose r by comparing the
resulting approximation error; such error is measured in a matrix norm for low rank
approximation, and in an RKHS norm for the subsampling method. For details, see
Section 4.3.

4.2. Proposed method 53

Transfer leaning setting. We assumed that the observation model in the test
phase is the same as for the training samples. However, this might not hold in some
situations. For example, in the vision-based localization problem, the illumination
conditions for the test and training phases might be different (e.g., the test is done
at night, while the training samples are collected in the morning). Without taking
into account such a significant change in the observation model, KMCF would not
perform well in practice.

This problem could be addressed by exploiting the framework of transfer learn-
ing (Pan and Yang, 2010). This framework aims at situations where the probability
distribution that generates test data is different from that of training samples. The
main assumption is that there exist a small number of examples from the test distri-
bution. Transfer learning then provides a way of combining such test examples and
abundant training samples, thereby improving the test performance. The application
of transfer learning in our setting remains a topic for future research.

4.2.4 Estimation of posterior statistics

By Algorithm 4, we obtain the estimates of the kernel means of posteriors (4.2) as

m̂xt|y1:t =
n∑

i=1

wt,ikX (·, Xi) (t = 1, . . . , T). (4.9)

These contain the information on the posteriors p(xt|y1:t) (see Section 2.2). We now
show how to estimate statistics of the posteriors using these estimates (4.9). For ease
of presentation, we consider the case X = Rd. A theoretical background to justify
these operations is provided in Chapter 5.

Mean and covariance. Consider the posterior mean
∫
xtp(xt|y1:t)dxt ∈ Rd and

the posterior (uncentered) covariance
∫
xtx

T
t p(xt|y1:t)dxt ∈ Rd×d. These quantities

can be estimated as

n∑
i=1

wt,iXi (mean).
n∑

i=1

wt,iXiX
T
i (covariance).

Probability mass. Let A ⊂ X be a measurable set with smooth boundary. De-
fine the indicator function IA(x) by IA(x) = 1 for x ∈ A and IA(x) = 0 other-
wise. Consider the probability mass

∫
IA(x)p(xt|y1:t)dxt. This can be estimated as∑n

i=1wt,iIA(Xi).

4.2. Proposed method 54

Density. Suppose p(xt|y1:t) has a density function. Let J(x) be a smoothing kernel
satisfying

∫
J(x)dx = 1 and J(x) ≥ 0. Let h > 0 and define Jh(x) :=

1
hdJ

(
x
h

)
. Then

the density of p(xt|y1:t) can be estimated as

p̂(xt|y1:t) =
n∑

i=1

wt,iJh(xt −Xi), (4.10)

with an appropriate choice of h.

Mode. The mode may be obtained by finding a point that maximizes (4.10). How-
ever, this requires a careful choice of h. Instead, we may use Ximax with imax :=
argmaxiwt,i as a mode estimate: this is the point in {X1, . . . , Xn} that is associated
with the maximum weight in wt,1, . . . , wt,n. This point can be interpreted as the point
that maximizes (4.10) in the limit of h→ 0.

Other methods. Other ways of using (4.9) include the pre-image computation and
fitting of Gaussian mixtures. See, e.g., Song et al. (2009); Fukumizu et al. (2013);
McCalman et al. (2013).

4.2. Proposed method 55

Figure 4.2: One iteration of KMCF. Here X1, . . . , X8 and Y1, . . . , Y8 denote states
and observations, respectively, in the state-observation examples {(Xi, Yi)}ni=1 (sup-
pose n = 8). 1. Prediction step: The kernel mean of the prior (4.6) is estimated
by sampling with the transition model p(xt|xt−1). 2. Correction step:. The ker-
nel mean of the posterior (4.2) is estimated by applying Kernel Bayes’ Rule (Algo-
rithm 1). The estimation makes use of the information of the prior (expressed as
mπ := (m̂xt|y1:t−1(Xi)) ∈ R8) as well as that of a new observation yt (expressed as
kY := (kY(yt, Yi)) ∈ R8). The resulting estimate (4.7) is expressed as a weighted sam-
ple {(wt,i, Xi)}ni=1. Note that the weights may be negative. 3. Resampling step:
Samples associated with small weights are eliminated, and those with large weights
are replicated by applying Kernel Herding (Algorithm 2). The resulting samples
provide an empirical kernel mean (4.8), which will be used in the next iteration.

4.3. Acceleration methods 56

4.3 Acceleration methods

We have seen in Section 4.2.3 that the time complexity of KMCF in one time step
is O(n3), where n is the number of the state-observation examples {(Xi, Yi)}ni=1.
This can be costly if one wishes to use KMCF in real-time applications with a large
number of samples. Here we show two methods for reducing the costs: one based on
low rank approximation of kernel matrices, and one based on Kernel Herding. Note
that Kernel Herding is also used in the resampling step. The purpose here is different,
however: we make use of Kernel Herding for finding a reduced representation of the
data {(Xi, Yi)}ni=1.

4.3.1 Low rank approximation of kernel matrices

Our goal is to reduce the costs of Algorithm 1 of Kernel Bayes’ Rule. Algorithm 1
involves two matrix inversions: (GX + nεIn)

−1 in Line 3 and ((ΛGY)
2 + δIn)

−1 in
Line 4. Note that (GX + nεIn)

−1 does not involve the test data, so can be computed
before the test phase. On the other hand, ((ΛGY)

2 + δIn)
−1 depends on matrix

Λ. This matrix involves the vector mπ, which essentially represents the prior of the
current state (see Line 13 of Algorithm 4). Therefore ((ΛGY)

2 + δIn)
−1 needs to be

computed for each iteration in the test phase. This has complexity of O(n3). Note
that even if (GX +nεIn)

−1 can be computed in the training phase, the multiplication
(GX + nεIn)

−1mπ in Line 3 requires O(n2). Thus it can also be costly. Here we
consider methods to reduce both costs in Line 3 and 4.

Suppose that there exist low rank matrices U, V ∈ Rn×r, where r < n, that ap-
proximate the kernel matrices: GX ≈ UUT , GY ≈ V V T . Such low rank matrices
can be obtained by, for example, incomplete Cholesky decomposition with time com-
plexity O(nr2) (Fine and Scheinberg, 2001; Bach and Jordan, 2002). Note that the
computation of these matrices are only required once before the test phase. Therefore
their time complexities are not the problem here.

Derivation. First, we approximate (GX + nεIn)
−1mπ in Line 3 using GX ≈ UUT .

By the Woodbury identity, we have

(GX + nεIn)
−1mπ ≈ (UUT + nεIn)

−1mπ

=
1

nε
(In − U(nεIr + UTU)−1UT)mπ,

where Ir ∈ Rr×r denotes the identity. Note that (nεIr +U
TU)−1 does not involve the

test data, so can be computed in the training phase. Thus the above approximation
of µ can be computed with complexity O(nr2).

4.3. Acceleration methods 57

Algorithm 5 Low Rank Approximation of Kernel Bayes’ Rule

1: Input: kY ,mπ ∈ Rn, U, V ∈ Rn×r, ε, δ > 0.
2: Output: w := (w1, . . . , wn)

T ∈ Rn.

3: Λ← diag(1
nε
(In − U(nεIr + UTU)−1UT)m) ∈ Rn×n.

4: B ← ΛV ∈ Rn×r, C ← V TΛV ∈ Rr×r, D ← V T ∈ Rr×n.
5: w ← 1

δ
ΛV V T (In −B(δC−1 +DB)−1D)ΛkY ∈ Rn.

Next, we approximate w = ΛGY ((ΛGY)
2+ δI)−1ΛkY in Line 4 using GY ≈ V V T .

Define B = ΛV ∈ Rn×r, C = V TΛV ∈ Rr×r, and D = V T ∈ Rr×n. Then (ΛGY)
2 ≈

(ΛV V T)2 = BCD. By the Woodbury identity, we obtain

(δIn + (ΛGY)
2)−1 ≈ (δIn +BCD)−1

=
1

δ
(In −B(δC−1 +DB)−1D).

Thus w can be approximated as

w = ΛGY ((ΛGY)
2 + δI)−1ΛkY

≈ 1

δ
ΛV V T (In −B(δC−1 +DB)−1D)ΛkY .

The computation of this approximation requires O(nr2+r3) = O(nr2). Thus in total,
the complexity of Algorithm 1 can be reduced to O(nr2). We summarize the above
approximations in Algorithm 5.

How to select the rank. As discussed in Section 4.2.3, one way of selecting the
rank r is to use cross validation, by regarding r as a hyper parameter of KMCF.
Another way is to measure the approximation errors ∥GX −UUT∥ and ∥GY − V V T∥
with some matrix norm, such as the Frobenius norm. Indeed, we can compute the
smallest rank r such that these errors are below a prespecified threshold, and this can
be done efficiently with time complexity O(nr2) (Bach and Jordan, 2002).

4.3.2 Data reduction with Kernel Herding

Here we describe an approach to reduce the size of the representation of the state-
observation examples {(Xi, Yi)}ni=1 in an efficient way. By “efficient”, we mean that
the information contained in {(Xi, Yi)}ni=1 will be preserved even after the reduction.
Recall that {(Xi, Yi)}ni=1 contains the information of the observation model p(yt|xt)
(recall also that p(yt|xt) is assumed time-invariant; see Section 4.2.1). This infor-

4.3. Acceleration methods 58

mation is only used in Algorithm 1 of Kernel Bayes’ Rule (Line 15, Algorithm 4).
Therefore it suffices to consider how Kernel Bayes’ Rule accesses the information
contained in the joint sample {(Xi, Yi)}ni=1.

Representation of the joint sample. To this end, we need to show how the joint
sample {(Xi, Yi)}ni=1 can be represented with a kernel mean embedding. Recall that
(kX ,HX) and (kY ,HY) are kernels and the associated RKHSs on the state space X
and the observation space Y , respectively. Let X × Y be the product space of X
and Y . Then we can define a kernel kX×Y on X × Y as the product of kX and kY :
kX×Y((x, y), (x

′, y′)) = kX (x, x
′)kY(y, y

′) for all (x, y), (x′, y′) ∈ X × Y . This product
kernel kX×Y defines an RKHS of X × Y : let HX×Y denote this RKHS. As in Section
2, we can use kX×Y and HX×Y for a kernel mean embedding. In particular, the
empirical distribution 1

n

∑n
i=1 δ(Xi,Yi) of the joint sample {(Xi, Yi)}ni=1 ⊂ X × Y can

be represented as an empirical kernel mean in HX×Y :

m̂XY :=
1

n

n∑
i=1

kX×Y((·, ·), (Xi, Yi)) ∈ HX×Y . (4.11)

This is the representation of the joint sample {(Xi, Yi)}ni=1.
The information of {(Xi, Yi)}ni=1 is provided for Kernel Bayes’ Rule essentially

through this form (4.11) (Fukumizu et al., 2011, 2013). Recall that (4.11) is a point
in the RKHS HX×Y . Any point close to (4.11) in HX×Y would also contain infor-
mation close to that contained in (4.11). Therefore, we propose to find a subset
{(X̄1, Ȳ1), . . . (X̄r, X̄r)} ⊂ {(Xi, Yi)}ni=1, where r < n, such that its representation in
HX×Y

m̄XY :=
1

r

r∑
i=1

kX×Y((·, ·), (X̄i, Ȳi)) ∈ HX×Y (4.12)

is close to (4.11). Namely, we wish to find subsamples such that ∥m̄XY − m̂XY ∥HX×Y

is small. If the error ∥m̄XY − m̂XY ∥HX×Y is small enough, (4.12) would provide
information close to that given by (4.11) for Kernel Bayes’ Rule. Thus Kernel Bayes’
Rule based on such subsamples {(X̄i, Ȳi)}ri=1 would not perform much worse than the
one based on the entire set of samples {(Xi, Yi)}ni=1.

Subsampling method. To find such subsamples, we make use of Kernel Herding
in Section 2.7. Namely, we apply the update equations (2.16) (2.17) to approximate
(4.11), with kernel kX×Y and RKHS HX×Y . We greedily find subsamples D̄r :=

4.3. Acceleration methods 59

{(X̄1, Ȳ1), . . . , (X̄r, Ȳr)} as

(X̄r, Ȳr) = arg max
(x,y)∈D/D̄r−1

1

n

n∑
i=1

kX×Y ((x, y), (Xi, Yi))−
1

r

r−1∑
j=1

kX×Y
(
(x, r), (X̄i, Ȳi)

)
= arg max

(x,y)∈D/D̄r−1

1

n

n∑
i=1

kX (x,Xi)kY(y, Yi)−
1

r

r−1∑
j=1

kX (x, X̄j)kY(y, Ȳj).

The resulting algorithm is shown in Algorithm 6. The time complexity is O(n2r) for
selecting r subsamples. We propose to use this algorithm before going to the test
phase. Once we obtain the subsamples {(X̄i, Ȳi)}ri=1, we can apply Algorithm 4 with
these samples instead of the entire set of samples {(Xi, Yi)}ni=1. The time complexity
of Algorithm 4 for each iteration is then reduced to O(r3).

Discussion. Recall that Kernel Herding generates samples such that they approx-
imate a given kernel mean (see Section 2.7). Under certain assumptions, the error of
this approximation is of O(r−1) with r samples, which is faster than that of i.i.d. sam-
ples O(r−1/2). However, these assumptions only hold for finite dimensional RKHSs.
Gaussian kernels, which we often use in practice, define infinite dimensional RKHSs.
Therefore the fast rate is not guaranteed if we use Gaussian kernels. Nevertheless,
we can use Algorithm 6 as a heuristic for data reduction.

How to select the number of subsamples. The number r of subsamples deter-
mine the tradeoff between the accuracy and computational time of KMCF. It may
be selected by cross validation, or by measuring the approximation error ∥m̄XY −
m̂XY ∥HX×Y , as for the case of selecting the rank of low rank approximation in Ap-
pendix 4.3.1.

4.4. Theoretical analysis 60

Algorithm 6 Subsampling with Kernel Herding

1: Input: (i) D := {(Xi, Yi)}ni=1. (ii) size of subsamples r.
2: Output: subsamples D̄r := {(X̄1, Ȳ1), . . . , (X̄r, Ȳr)} ⊂ D.

3: Select (X̄1, Ȳ1) as follows and let D̄1 := {(X̄1, Ȳ1)}:

(X̄1, Ȳ1) = arg max
(x,y)∈D

1

n

n∑
i=1

kX (x,Xi)kY(y, Yi)

4: for N = 2 to r do
5: Select (X̄N , ȲN) as follows and let D̄N := D̄N−1 ∪ {(X̄N , ȲN)}:

(X̄N , ȲN) = arg max
(x,y)∈D/D̄N−1

1

n

n∑
i=1

kX (x,Xi)kY(u, Yi)−
1

N

N−1∑
j=1

kX (x, X̄j)kY(y, Ȳj)

6: end for

4.4 Theoretical analysis

Here we show the consistency of the overall filtering procedure of KMCF. This is
based on Corollary 2 in Section 3.4, which shows the consistency of the resampling
step followed by the prediction step, and on Theorem 5 of Fukumizu et al. (2013),
which guarantees the consistency of Kernel Bayes’ Rule in the correction step. Thus
we consider three steps in the following order: (i) resampling; (ii) prediction; (iii) cor-
rection. More specifically, we show consistency of the estimator (4.7) of the posterior
kernel mean at time t, given that the one at time t− 1 is consistent.

To state our assumptions, we will need the following functions θpos : Y × Y → R,
θobs : X × X → R, and θtra : X × X → R:

θpos(y, ỹ) :=

∫ ∫
kX (xt, x̃t)dp(xt|y1:t−1, yt = y)dp(x̃t|y1:t−1, yt = ỹ), (4.13)

θobs(x, x̃) :=

∫ ∫
kY(yt, ỹt)dp(yt|xt = x)dp(ỹt|xt = x̃), (4.14)

θtra(x, x̃) :=

∫ ∫
kX (xt, x̃t)dp(xt|xt−1 = x)dp(x̃t|xt−1 = x̃). (4.15)

These functions contain the information concerning the distributions involved. In
(4.13), the distribution p(xt|y1:t−1, yt = y) denotes the posterior of the state at time
t, given that the observation at time t is yt = y. Similarly p(x̃t|y1:t−1, yt = ỹ) is the
posterior at time t, given that the observation is yt = ỹt. In (4.14), the distributions

4.5. Experiments 61

p(yt|xt = x) and p(ỹt|xt = x̃) denote the observation model when the state is xt = x
or xt = x̃, respectively. In (4.15), the distributions p(xt|xt−1 = x) and p(x̃t|xt−1 = x̃)
denote the transition model with the previous state given by xt−1 = x or xt−1 = x̃,
respectively.

Below denote by F ⊗ G the tensor product space of two RKHSs F and G.
Corollary 3. Let (X1, Y1), . . . , (Xn, Yn) be an i.i.d. sample with a joint density p(x, y) :=
p(y|x)q(x), where p(y|x) is the observation model. Assume that the posterior p(xt|y1:t)
has a density p, and that supx∈X p(x)/q(x) <∞. Assume that the functions defined by
(4.13), (4.14) and (4.15) satisfy θpos ∈ HY⊗HY , θobs ∈ HX⊗HX and θtra ∈ HX⊗HX ,
respectively. Suppose that ∥m̂xt−1|y1:t−1−mxt−1|y1:t−1∥HX → 0 as n→∞ in probability.
Then for any sufficiently slow decay of regularization constants εn and δn of Algorithm
1, we have

∥m̂xt|y1:t −mxt|y1:t∥HX → 0 (n→∞)

in probability.

Corollary 3 follows from Theorem 5 of Fukumizu et al. (2013) and Corollary 2.
The assumptions θpos ∈ HY ⊗ HY and θobs ∈ HX ⊗ HX are due to Theorem 5 of
Fukumizu et al. (2013) for the correction step, while the assumption θtra ∈ HX ⊗HX
is due to Theorem 1 for the prediction step, from which Corollary 2 follows. As we
discussed in footnote 4 of Section 3.1, these essentially assume that the functions θpos,
θobs and θtra are smooth. Theorem 5 of Fukumizu et al. (2013) also requires that the
regularization constants εn, δn of Kernel Bayes’ Rule should decay sufficiently slowly,
as the sample size goes to infinity (εn, δn → 0 as n → ∞). For details, see Sections
5.2 and 6.2 in Fukumizu et al. (2013).

It would be more interesting to investigate the convergence rates of the overall
procedure. However, this requires a refined theoretical analysis of Kernel Bayes’
Rule, which is beyond the scope of this chapter. This is because currently there is
no theoretical result on convergence rates of Kernel Bayes’ Rule as an estimator of a
posterior kernel mean (existing convergence results are for the expectation of function
values; see Theorems 6 and 7 in Fukumizu et al. (2013)). This remains a topic for
future research.

4.5 Experiments

This section is devoted to experiments. In Section 4.5.1, the proposed KMCF (Al-
gorithm 4) is applied to synthetic state-space models. Comparisons are made with
existing methods applicable to the setting of the paper. In Section 4.5.2, we apply
KMCF to the real problem of vision-based robot localization.

In the following, N(µ, σ2) denotes the Gaussian distribution with mean µ ∈ R and
variance σ2 > 0.

4.5. Experiments 62

4.5.1 Filtering with synthetic state-space models

Here we apply KMCF to synthetic state-space models. Comparisons were made with
the following methods:

kNN-PF (Vlassis et al., 2002) This method uses k-NN-based conditional density
estimation Stone (1977) for learning the observation model. First, it estimates the
conditional density of the inverse direction p(x|y) from the training sample {(Xi, Yi)}.
The learned conditional density is then used as an alternative for the likelihood
p(yt|xt); this is a heuristic to deal with high-dimensional yt. Then it applies Particle
Filter (PF), based on the approximated observation model and the given transition
model p(xt|xt−1).

GP-PF (Ferris et al., 2006) This method learns p(yt|xt) from {(Xi, Yi)} with
Gaussian Process (GP) regression. Then Particle Filter is applied based on the learned
observation model and the transition model. We used the open-source code2 for GP-
regression in this experiment, so comparison in computational time is omitted for this
method.

KBR filter (Fukumizu et al., 2011, 2013) This method is also based on kernel
mean embeddings, as is KMCF. It applies Kernel Bayes’ Rule (KBR) in posterior
estimation using the joint sample {(Xi, Yi)}. This method assumes that there also
exist training samples for the transition model. Thus in the following experiments, we
additionally drew training samples for the transition model. It was shown (Fukumizu
et al., 2011, 2013) that this method outperforms Extended and Unscented Kalman
Filters, when a state-space model has strong nonlinearity (in that experiment, these
Kalman filters were given the full-knowledge of a state-space model). We use this
method as a baseline.

We used state-space models defined in Table 4.2, where SSM stands for State
Space Model. In Table 4.2, ut denotes a control input at time t; vt and wt denote
independent Gaussian noise: vt, wt ∼ N(0, 1); Wt denotes 10 dimensional Gaussian
noise: Wt ∼ N(0, I10). We generated each control ut randomly from the Gaussian
distribution N(0, 1).

The state and observation spaces for SSMs {1a, 1b, 2a, 2b, 4a, 4b} are defined
as X = Y = R; for SSMs {3a, 3b}, X = R,Y = R10. The models in SSMs {1a,
2a, 3a, 4a} and SSMs {1b, 2b, 3b, 4b} with the same number (e.g., 1a and 1b) are
almost the same; the difference is whether ut exists in the transition model. Prior
distributions for the initial state x1 for SSMs {1a, 1b, 2a, 2b, 3a, 3b} are defined as

2http://www.gaussianprocess.org/gpml/code/matlab/doc/

4.5. Experiments 63

pinit = N(0, 1/(1− 0.92)), and those for {4a, 4b} are defined as a uniform distribution
on [−3, 3].

Table 4.2: State-space models (SSM) for synthetic experiments

SSM transition model observation model

1a xt = 0.9xt−1 + vt yt = xt + wt

1b xt = 0.9xt−1 +
1√
2
(ut + vt) yt = xt + wt

2a xt = 0.9xt−1 + vt yt = 0.5 exp(xt/2)wt

2b xt = 0.9xt−1 +
1√
2
(ut + vt) yt = 0.5 exp(xt/2)wt

3a xt = 0.9xt−1 + vt yt = 0.5 exp(xt/2)Wt

3b xt = 0.9xt−1 +
1√
2
(ut + vt) yt = 0.5 exp(xt/2)Wt

4a at = xt−1 +
√
2vt bt = xt + wt

xt =

{
at (if |at| ≤ 3)

−3 (otherwise)
yt =

{
bt (if |bt| ≤ 3)

bt − 6bt/|bt| (otherwise)

4b at = xt−1 + ut + vt bt = xt + wt

xt =

{
at (if |at| ≤ 3)

−3 (otherwise)
yt =

{
bt (if |bt| ≤ 3)

bt − 6bt/|bt| (otherwise)

SSM 1a and 1b are linear Gaussian models. SSM 2a and 2b are the so-called
stochastic volatility models. Their transition models are the same as those of SSM 1a
and 1b. On the other hand, the observation model has strong nonlinearity and the
noise wt is multiplicative. SSM 3a and 3b are almost the same as SSM 2a and 2b.
The difference is that the observation yt is 10 dimensional, as Wt is 10 dimensional
Gaussian noise. SSM 4a and 4b are more complex than the other models. Both the
transition and observation models have strong nonlinearities: states and observations
located around the edges of the interval [−3, 3] may abruptly jump to distant places.

For each model, we generated the training samples {(Xi, Yi)}ni=1 by simulating
the model. Test data {(xt, yt)}Tt=1 was also generated by independent simulation
(recall that xt is hidden for each method). The length of the test sequence was set
as T = 100. We fixed the number of particles in kNN-PF and GP-PF to 5000; in
primary experiments, we did not observe any improvements even when more particles
were used. For the same reason, we fixed the size of transition examples for KBR filter
to 1000. Each method estimated the ground truth states x1, . . . , xT by estimating
the posterior means

∫
xtp(xt|y1:t)dxt (t = 1, . . . , T). The performance was evaluated

with RMSE (Root Mean Squared Errors) of the point estimates, defined as RMSE =√
1
T

∑T
t=1(x̂t − xt)2, where x̂t is the point estimate.

4.5. Experiments 64

For KMCF and KBR filter, we used Gaussian kernels for each of X and Y (and
also for controls in KBR filter). We determined the hyper-parameters of each method
by two-fold cross validation, by dividing the training data into two sequences. The
hyper-parameters in the GP-regressor for PF-GP were optimized by maximizing the
marginal likelihood of the training data. To reduce the costs of the resampling step of
KMCF, we used the method discussed in Section 3.3 with ℓ = 50. We also used the low
rank approximation method (Algorithm 5) and the subsampling method (Algorithm
6) in Appendix 4.3 to reduce the computational costs of KMCF. Specifically, we used
r = 10, 20 (rank of low rank matrices) for Algorithm 5 (described as KMCF-low10 and
KMCF-low20 in the results below); r = 50, 100 (number of subsamples) for Algorithm
6 (described as KMCF-sub50 and KMCF-sub100). We repeated experiments 20 times
for each of different training sample size n.

Figure 4.3 shows the results in RMSE for SSMs {1a, 2a, 3a, 4a}, and Figure 4.4
shows those for SSMs {1b, 2b, 3b, 4b}. Figure 4.5 describes the results in compu-
tational time for SSM 1a and 1b; the results for the other models are similar, so we
omit them. We do not show the results of KMCF-low10 in Figure 4.3 and 4.4, since
they were numerically unstable and gave very large RMSEs.

GP-PF performed the best for SSM 1a and 1b. This may be because these mod-
els fit the assumption of GP-regression, as their noise are additive Gaussian. For the
other models, however, GP-PF performed poorly; the observation models of these
models have strong nonlinearities and the noise are not additive Gaussian. For these
models, KMCF performed the best or competitively with the other methods. This in-
dicates that KMCF successfully exploits the state-observation examples {(Xi, Yi)}ni=1

in dealing with the complicated observation models. Recall that our focus has been on
situations where the relation between states and observations are so complicated that
the observation model is not known; the results indicate that KMCF is promising for
such situations. On the other hand, KBR filter performed worse than KMCF for the
most of the models. KBF filter also uses Kernel Bayes’ Rule as KMCF. The difference
is that KMCF makes use of the transition models directly by sampling, while KBR
filter must learn the transition models from training data for state transitions. This
indicates that the incorporation of the knowledge expressed in the transition model
is very important for the filtering performance. This can also be seen by comparing
Figure 4.3 and Figure 4.4. The performance of the methods other than KBR filter
improved for SSMs {1b, 2b, 3b, 4b}, compared to the performance for the corre-
sponding models in SSMs {1a, 2a, 3a, 4a}. Recall that SSMs {1b, 2b, 3b, 4b} include
control ut in their transition models. The information of control input is helpful for
filtering in general. Thus the improvements suggest that KMCF, kNN-PF and GP-
PF successfully incorporate the information of controls: they achieve this simply by
sampling with p(xt|xt−1, ut). On the other hand, KBF filter must learn the transition
model p(xt|xt−1, ut); this can be harder than learning the transition model p(xt|xt−1)

4.5. Experiments 65

50 100 150 200 250 300

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Training sample size

R
oo

t m
ea

n
sq

ua
re

 e
rro

rs

KMCF
KMCF−sub50
KMCF−sub100
KMCF−low20
KBR
kNN−PF
GP−PF

(a) RMSE (SSM 1a)

50 100 150 200 250 300

1

1.5

2

2.5

3

3.5

Training sample size

R
oo

t m
ea

n
sq

ua
re

 e
rro

rs

(b) RMSE (SSM 2a)

50 100 150 200 250 300
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Training sample size

R
oo

t m
ea

n
sq

ua
re

 e
rro

rs

(c) RMSE (SSM 3a)

50 100 150 200 250 300
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Training sample size

R
oo

t m
ea

n
sq

ua
re

 e
rro

rs

(d) RMSE (SSM 4a)

Figure 4.3: RMSE of the synthetic experiments in Section 4.5.1. The state-space
models of these figures have no control in their transition models.

that has no control input.
We next compare computation time (Figure 4.5). KMCF was competitive or

even slower than the KBR filter. This is due to the resampling step in KMCF.
The speeding up methods (KMCF-low10, KMCF-low20, KMCF-sub50 and KMCF-
sub100) successfully reduced the costs of KMCF. KMCF-low10 and KMCF-low20
scaled linearly to the sample size n; this matches the fact that Algorithm 5 reduces
the costs of Kernel Bayes’ Rule to O(nr2). On the other hand, the costs of KMCF-
sub50 and KMCF-sub100 remained almost the same amounts over the difference
sample sizes. This is because they reduce the sample size itself from n to r, so the
costs are reduced to O(r3) (see Algorithm 6). KMCF-sub50 and KMCF-sub100 are
competitive to kNN-PF, which is fast as it only needs kNN searches to deal with

4.5. Experiments 66

50 100 150 200 250 300
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Training sample size

R
oo

t m
ea

n
sq

ua
re

 e
rro

rs

KMCF
KMCF−sub50
KMCF−sub100
KMCF−low20
KBR
kNN−PF
GP−PF

(a) RMSE (SSM 1b)

50 100 150 200 250 300
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Training sample size

R
oo

t m
ea

n
sq

ua
re

 e
rro

rs

(b) RMSE (SSM 2b)

50 100 150 200 250 300
0.5

1

1.5

2

2.5

3

Training sample size

R
oo

t m
ea

n
sq

ua
re

 e
rro

rs

(c) RMSE (SSM 3b)

50 100 150 200 250 300
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Training sample size

R
oo

t m
ea

n
sq

ua
re

 e
rro

rs

(d) RMSE (SSM 4b)

Figure 4.4: RMSE of synthetic experiments in Section 4.5.1. The state-space models
of these figures include control ut in their transition models.

the training sample {(Xi, Yi)}ni=1. In Figure 4.3 and 4.4, KMCF-low20 and KMCF-
sub100 produced the results competitive to KMCF for SSMs {1a, 2a, 4a, 1b, 2b,
4b}. Thus for these models, such methods reduce the computational costs of KMCF
without loosing much accuracy. KMCF-sub50 was slightly worse than KMCF-100.
This indicates that the number of subsamples cannot be reduced to this extent if we
wish to maintain the accuracy. For SSM 3a and 3b, the performance of KMCF-low20
and KMCF-sub100 were worse than KMCF, in contrast to the performance for the
other models. The difference of SSM 3a and 3b from the other models is that the
observation space is 10-dimensional: Y = R10. This suggests that if the dimension is
high, r needs to be large to maintain the accuracy (recall that r is the rank of low
rank matrices in Algorithm 5, and the number of subsamples in Algorithm 6). This

4.5. Experiments 67

50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Training sample size

C
om

pu
ta

tio
n

tim
e

(s
ec

)

KMCF
KMCF−sub50
KMCF−sub100
KMCF−low10
KMCF−low20
KBR
kNN−PF

50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Training sample size

C
om

pu
ta

tio
n

tim
e

(s
ec

)

KMCF
KMCF−sub50
KMCF−sub100
KMCF−low10
KMCF−low20
KBR
kNN−PF

Figure 4.5: Computation time of synthetic experiments in Section 4.5.1. Left: SSM
1a. Right: SSM 1b.

is also implied by the experiments in the next subsection.

4.5.2 Vision-based mobile robot localization

We applied KMCF to the problem of vision-based mobile robot localization (Vlassis
et al., 2002; Wolf et al., 2005; Quigley et al., 2010). We consider a robot moving in a
building. The robot takes images with its vision camera as it moves. Thus the vision
images form a sequence of observations y1, . . . , yT in time series; each yt is an image.
On the other hand, the robot does not know its positions in the building; we define
state xt as the robot’s position at time t. The robot wishes to estimate its position xt
from the sequence of its vision images y1, . . . , yt. This can be done by filtering, i.e., by
estimating the posteriors p(xt|y1, . . . , yt) (t = 1, . . . , T). This is the robot localization
problem. It is fundamental in robotics, as a basis for more involved applications such
as navigation and reinforcement learning (Thrun et al., 2005).

The state-space model is defined as follows: the observation model p(yt|xt) is the
conditional distribution of images given position, which is very complicated and con-
sidered unknown. We need to assume position-image examples {(Xi, Yi)}ni=1; these
samples are given in the dataset described below. The transition model p(xt|xt−1) :=
p(xt|xt−1, ut) is the conditional distribution of the current position given the previous
one. This involves a control input ut that specifies the movement of the robot. In
the dataset we use, the control is given as odometry measurements. Thus we de-
fine p(xt|xt−1, ut) as the odometry motion model, which is fairly standard in robotics
(Thrun et al., 2005). Specifically, we used the algorithm described in Table 5.6 of
Thrun et al. (2005), with all of its parameters fixed to 0.1. The prior pinit of the
initial position x1 is defined as a uniform distribution over the samples X1, . . . , Xn in

4.5. Experiments 68

{(Xi, Yi)}ni=1.
As a kernel kY for observations (images), we used the Spatial Pyramid Matching

Kernel of Lazebnik et al. (2006). This is a positive definite kernel developed in
the computer vision community, and is also fairly standard. Specifically, we set the
parameters of this kernel as suggested in Lazebnik et al. (2006): this gives a 4200
dimensional histogram for each image. We defined the kernel kX for states (positions)
as Gaussian. Here the state space is the 4-dimensional space: X = R4: two dimensions
for location, and the rest for the orientation of the robot.3

The dataset we used is the COLD database (Pronobis and Caputo, 2009), which is
publicly available. Specifically, we used the dataset Freiburg, Part A, Path 1, cloudy.
This dataset consists of three similar trajectories of a robot moving in a building, each
of which provides position-image pairs {(xt, yt)}Tt=1. The length of each trajectory is
about 70 meters. We used two trajectories for training and validation, and the rest
for test. We made state-observation examples {(Xi, Yi)}ni=1 by randomly subsampling
the pairs in the trajectory for training. Note that the difficulty of localization may
depend on the time interval (i.e., the interval between t and t− 1 in sec.) Therefore
we made three test sets (and training samples for state transitions in KBR filter)
with different time intervals: 2.27 sec. (T = 168), 4.54 sec. (T = 84) and 6.81 sec.
(T = 56).

In these experiments, we compared KMCF with three methods: kNN-PF, KBR
filter, and the naive method (NAI) defined below. For KBR filter, we also defined the
Gaussian kernel on the control ut, i.e., on the difference of odometry measurements
at time t − 1 and t. The naive method (NAI) estimates the state xt as a point Xj

in the training set {(Xi, Yi)} such that the corresponding observation Yj is closest
to the observation yt. We performed this as a baseline. We also used the Spatial
Pyramid Matching Kernel for these methods (for kNN-PF and NAI, as a similarity
measure of the nearest neighbors search). We did not compare with GP-PF, since
it assumes that observations are real vectors and thus cannot be applied to this
problem straightforwardly. We determined the hyper-parameters in each method by
cross validation. To reduced the cost of the resampling step in KMCF, we used the
method discussed in Section 3.3 with ℓ = 100. The low rank approximation method
(Algorithm 5) and the subsampling method (Algorithm 6) were also applied to reduce
the computational costs of KMCF. Specifically, we set r = 50, 100 for Algorithm 5
(described as KMCF-low50 and KMCF-low100 in the results below), and r = 150, 300
for Algorithm 6 (KMCF-sub150 and KMCF-sub300).

Note that in this problem, the posteriors p(xt|y1:t) can be highly multimodal. This
is because similar images appear in distant locations. Therefore the posterior mean∫
xtp(xt|y1:t)dxt is not appropriate for point estimation of the ground-truth position

xt. Thus for KMCF and KBR filter, we employed the heuristic for mode estimation

3We projected the robot’s orientation in [0, 2π] onto the unit circle in R2.

4.5. Experiments 69

explained in Section 4.2.4. For kNN-PF, we used a particle with maximum weight
for the point estimation. We evaluated the performance of each method by RMSE of
location estimates. We ran each experiment 20 times for each training set of different
size.

Results. First, we demonstrate the behaviors of KMCF with this localization prob-
lem. Figures 4.6 and 4.7 show iterations of KMCF with n = 400, applied to the test
data with time interval 6.81 sec. The units of each axis are in meters. Figure 4.6
illustrates iterations that produced accurate estimates, while Figure 4.7 describes
situations where location estimation is difficult.

Figures 4.8 and 4.9 show the results in RMSE (in meters) and computational time,
respectively. For all the results KMCF and that with the computational reduction
methods (KMCF-low50, KMCF-low100, KMCF-sub150 and KMCF-300) performed
better than KBR filter. These results show the benefit of directly manipulating
the transition models with sampling. KMCF was competitive with kNN-PF for the
interval 2.27 sec.; note that kNN-PF was originally proposed for the robot localization
problem. For the results with the longer time intervals (4.54 sec. and 6.81 sec.), KMCF
outperformed kNN-PF.

We next investigate the effect on KMCF of the methods to reduce computational
cost. The performance of KMCF-low100 and KMCF-sub300 are competitive with
KMCF; those of KMCF-low50 and KMCF-sub150 degrade as the sample size in-
creases. Note that r = 50, 100 for Algorithm 5 are larger than those in Section 4.5.1,
though the values of the sample size n are larger than those in Section 4.5.1. Also note
that the performance of KMCF-sub150 is much worse than KMCF-sub300. These
results indicate that we may need large values for r to maintain the accuracy for this
localization problem. Recall that the Spatial Pyramid Matching Kernel gives essen-
tially a high-dimensional feature vector (histogram) for each observation. Thus the
observation space Y may be considered high-dimensional. This supports the hypoth-
esis in Section 4.5.1 that if the dimension is high, the computational cost reduction
methods may require larger r to maintain accuracy.

Finally, let us look at the results in computation time (Figure 4.9). The results
are similar to those in Section 4.5.1. Even though the values for r are relatively large,
Algorithm 5 and Algorithm 6 successfully reduced the computational costs of KMCF.

4.5. Experiments 70

(a) t = 29. ∥x̂t − xt∥ = 0.26378. (b) t = 43. ∥x̂t − xt∥ = 0.26315.

Figure 4.6: Demonstration results. Each column corresponds to one iteration of
KMCF. Top (prediction step): histogram of samples for prior. Middle (correction
step): weighted samples for posterior. The blue and red stems indicate positive and
negative weights, respectively. The yellow ball represents the ground-truth location
xt, and the green diamond the estimated one x̂t. Bottom (resampling step): histogram
of samples given by the resampling step.

4.5. Experiments 71

(a) t = 11. ∥x̂t − xt∥ = 2.3443. (b) t = 40. ∥x̂t − xt∥ = 0.3273.

Figure 4.7: Demonstration results (see also the caption of Figure 4.6). Here we show
time points where observed images are similar to those in distant places. Such a
situation often occurs at corners, and makes location estimation difficult. (a) The
prior estimate is reasonable, but the resulting posterior has modes in distant places.
This makes the location estimate (green diamond) far from the true location (yellow
ball). (b) While the location estimate is very accurate, modes also appear at distant
locations.

4.5. Experiments 72

100 200 300 400 500 600
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Training sample size

R
oo

t m
ea

n
sq

ua
re

 e
rr

or
s

Time inverval: 2.27 sec

KMCF
KMCFïsub150
KMCFïsub300
KMCFïlow100
KMCFïlow50
KNN
KBR
NAI

(a) RMSE (time interval: 2.27 sec; T = 168)

100 200 300 400 500 600
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Training sample size

Ro
ot

 m
ea

n
sq

ua
re

 e
rro

rs

Time interval: 4.54 sec

(b) RMSE (time interval 4.54 sec; T = 84)

100 200 300 400 500 600
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Training sample size

Ro
ot

 m
ea

n
sq

ua
re

 e
rro

rs

Time interval: 6.81 sec

(c) RMSE (time interval 6.81 sec; T = 56)

Figure 4.8: RMSE of the robot localization experiments in Section 4.5.2. (a), (b) and
(c) show the cases for time interval 2.27 sec. , 4.54 sec. and 6.81 sec., respectively.

4.5. Experiments 73

100 200 300 400 500 600
ï2

0

2

4

6

8

10

12

14

Training sample size

C
om

pu
ta

tio
n

tim
e

(s
ec

)

Time interval: 2.27 sec

KMCF
KMCFïsub150
KMCFïlow300
KMCFïlow100
KMCFïlow50
kNN
KBR

(a) Computation time (sec.) (T = 168)

100 200 300 400 500 600
0

1

2

3

4

5

6

7

Training sample size

Co
m

pu
ta

tio
n

tim
e

(s
ec

)

Time interval: 4.54 sec

(b) Computation time (sec.) (T = 84)

100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Training sample size

Co
m

pu
ta

tio
n

tim
e

(s
ec

)

Time interval: 6.81 sec

(c) Computation time (sec.) (T = 56)

Figure 4.9: Computation time of the localization experiments in Section 4.5.2. (a), (b)
and (c) show the cases for time interval 2.27 sec. , 4.54 sec. and 6.81 sec., respectively.
Note that the results show the run time of each method.

Chapter 5

Decoding distributions from
empirical kernel means

Let us consider a kernel mean mP :=
∫
k(·, x)dP (x) of a distribution P with k being

a characteristic kernel on a measurable space X . As we have seen, in general the
kernel mean is estimated in the form of a weighted sum of feature vectors:

m̂P :=
n∑

i=1

wik(·, Xi), (5.1)

with some weights w1, . . . , wn ∈ R and samples X1, . . . , Xn ∈ X . Suppose that this
estimate is accurate, i.e., the error ∥m̂P −mP∥H is small, where H denotes the RKHS
of the kernel k. Then the estimate (5.1) would provide accurate information about
the distribution P , since the kernel mean mP maintains all information about P .

The aim of this chapter is to investigate a way of decoding the information of the
distribution P from a kernel mean estimate m̂P . This is an important problem for the
theory and practice of kernel mean embeddings. For example, recall the application
of kernel mean embeddings to a state-space model discussed in Chapter 4. In this
application, the distribution P may be a posterior distribution of a state variable at
a certain time. Then the algorithm of Chapter 4 outputs an estimate for the kernel
mean mP of the posterior in the form of (5.1). However, just having the estimate m̂P

is not enough, since the goal of filtering is to estimate the posterior P itself. Therefore
we need a method for decoding the information of P from the kernel mean estimate
m̂P . The same problems also appears in other applications (Song et al., 2013).

Typical examples of the information of P to be decoded are its moments, such as
the mean and covariance. Assume that we would like to estimate the mean

∫
xdP (x).

How can we estimate this quantity using the empirical kernel mean (5.1)? By regard-
ing (5.1) as an empirical distribution, one might use the weighted average

∑n
i=1wiXi.

The question is whether this can be justified.

74

Chapter 5. Decoding distributions from empirical kernel means 75

It is known that this way of estimating the expectation of a function is valid if
the function belongs to the RKHS (see Chapter 2). That is, let f ∈ H be a function
in the RKHS, and suppose we are interested in the expectation:

EX∼P [f(X)] :=

∫
f(x)dP (x). (5.2)

Then this can be estimated by the weighed average:

ÊX∼P [f(X)] :=
n∑

i=1

wif(Xi) (5.3)

with weights w1, . . . , wn and samples X1, . . . , Xn being those of the empirical kernel
mean (5.1).

The question is whether this is also valid for functions f outside the RKHS H.
For example, polynomial functions, whose expectations yield the moments, are not
included in the Gaussian RKHS (Minh, 2010). Therefore if the kernel is Gaussian, the
consistency of the weighted average (5.3) is not guaranteed for a polynomial function
f . In other words, it is not justified the the moments of P can be estimated by the
form (5.3). The Gaussian RKHS also does not contain the indicator function on any
subset A ⊂ Rd, whose expectation (5.2) yields the probability measure P (A) on that
set. These facts are problematic, since the Gaussian kernel has been widely used in
the literature on kernel mean embeddings (see, e.g., Song et al. (2013)).

Note that this problem is meaningful when we do not have access to an i.i.d.
sample from P . If we have an i.i.d. sample from P , then the central limit theorem
guarantees that the estimator (5.3) with uniform weights w1 = · · · = wn = 1/n
converges to the expectation EX∼P [f(X)] at a rate Op(n

−1/2). Therefore we are
interested in situations where we do not have samples from P . These are situations
where estimation of conditional distributions involve, such as inference in graphical
models (Song et al., 2009; Fukumizu et al., 2013; Song et al., 2013) and reinforcement
learning (Grünewälder et al., 2012b; Nishiyama et al., 2012; van Hoof et al., 2015).

In this chapter, we address the following problem: given the consistent kernel
mean estimator (5.1), construct consistent estimators for quantities involved with
P . Examples of such quantities include the moments (e.g., mean and variance) of
P , the probability mass P (A) on some measurable set A ⊂ X , and density values
of P . These quantities are often of practical interest, since they can be used in
prediction. Therefore it is very important to discuss how to estimate such quantities
using the kernel mean estimator (5.1). Recall that (5.1) does not directly provide us
the information of the distribution P , since the kernel meanmP is not the distribution
itself, but its representation in the RKHS.

We address this problem by extending the theoretical guarantee of the estimator

5.1. Related work 76

(5.3) to functions f that lie outside the RKHS. Specifically, we focus on the case of the
Gaussian RKHS on X = Rd, and show that (5.3) can be consistent for functions in the
Besov space. The Besov space contains a broad class of functions including those in
the Gaussian RKHS. It is a generalization of the Sobolev space, and contains functions
with smoothness of a certain degree. Importantly, the polynomial and indicator
functions are contained in the Besov space under certain assumptions. Therefore we
can guarantee that the estimator (5.3) can be used to estimate the moments and
probability masses, even when the kernel is Gaussian.

We also prove that the estimator (5.3) can be used to estimate the density of P ,
if we replace f in (5.3) by a smoothing kernel. A smoothing kernel J : Rd → R is a
function satisfying the properties of a probability density: J(x) ≥ 0 and

∫
J(x)dx = 1.

It has been used in classical kernel density estimation, and is a concept different from
positive definite kernels. Let p(x) be the density value of P at x ∈ X . Then this can
be estimated as

p̂(x) :=
1

hd

n∑
i=1

wiJ

(
Xi − x
h

)
, (5.4)

where h > 0 is a bandwidth selected carefully. We prove that (5.4) converges to the
true density p(x), as the kernel mean estimates converge to the true kernel mean and
h goes to 0 at a appropriate rate. The proof is also based on the arguments using the
Besov space, since the smoothing kernel is not contained in the Gaussian RKHS in
general.

This chapter proceeds as follows. We review related works in Section 5.1. Here
in particular, we discuss the literature on kernel mean embeddings to which our
results can be applied. In Section 5.2, we introduce the Besov space and discuss its
relations to other function spaces such as the Sobolev space and the Gaussian RKHS.
We present our main result using the Besov space in Section 5.3, and the result on
density estimation in Section 5.4. Simulation results are presented in Section 5.5. We
collect all proofs in Section 5.6.

5.1 Related work

We first review existing methods that have been used for decoding the information
of distributions from kernel mean estimates.

Pre-image computation. A popular method is to compute the pre-image of the
kernel mean estimate m̂P : the pre-image is a point in the original space such that

xpre := arg min
x∈X

∥k(·, x)− m̂P∥H. (5.5)

5.1. Related work 77

Namely, the pre-image xpre is the point whose feature vector k(·, xpre) is closest to the
mean estimate m̂P . The pre-image may be interpreted as a point that represents the
distribution P , and has been widely used for the purpose of prediction (Song et al.,
2009, 2010a; Fukumizu et al., 2013; Song et al., 2013).

As pointed out by Song et al. (2009, 2010a), the pre-image may be regarded as the
mode of the density of P , when the kernel is Gaussian. This can be seen as follows.
The square of the objective function in (5.5) can be expanded as

arg min
x∈X

∥k(·, x)− m̂P∥2H = arg min
x∈X

k(x, x)− 2 ⟨k(·, x), m̂P ⟩H + ∥m̂P∥2H

= arg min
x∈X

k(x, x)− 2m̂P (x)

= arg max
x∈X

−k(x, x) + 2m̂P (x).

Therefore when k(x, x) = C for some C > 0 for all x ∈ X (e.g., when k is Gaussian),
the pre-image is

xpre = arg max
x∈X

m̂P (x).

Let k be the Gaussian kernel with bandwidth γ > 0: k(x, x′) := kγ(x, x
′) :=

exp(−∥x− x′∥2/γ2). Then

xpre = arg max
x∈X

n∑
i=1

wikγ(x,Xi).

Thus xpre may be seen as the maximum of a (weighted) kernel density estimator.
Note that in kernel density estimation, the bandwidth should decrease as the sample
size increases. On the other hand, the bandwidth in the positive definite kernel is
fixed regardless of the sample size. Therefore the above density estimator is biased,
in a sense that it does not decrease the bandwidth. Empirically, the pre-image have
been shown to work well in some applications. This would be because the bandwidth
of the Gaussian kernel as a positive definite kernel was set so that the above density
estimator performs well.

Density estimation. As discussed above, the kernel mean estimate m̂P (x) may
be seen as a biased estimate of the density of the distribution P , when the kernel
is Gaussian. Song and Dai (2013); Song et al. (2014) use this interpretation for the
purpose of density estimation. Later we will show that if we use a smoothing kernel
with degreasing bandwidths in the place of the Gaussian kernel, it will be a consistent
density estimator. This explains why these work well in practice.

5.2. Function spaces 78

Moments (mean). For the purpose of prediction, we often wish to estimate the
mean of the distribution P . In the works by Boots et al. (2013, 2014); Zhu et al.
(2014); Kanagawa et al. (2014), the mean is estimated using a kernel mean estimate.
The mean can be given as the expectations of the coordinate projection functions
fj(x) = xj (j = 1, . . . , d):

∫
xdP (x) = (EX∼P [fj(X)])dj=1. Therefore it can be esti-

mated with the kernel mean estimate m̂P as

n∑
i=1

wiXi = (
n∑

i=1

wifj(Xi))
d
j=1.

However, the coordinate projection functions may not be included in widely used
RKHSs such as the Gaussian RKHS. To alleviate this problem, Boots et al. (2013);
Zhu et al. (2014) proposed to approximate these functions by regression, so that the
resulting approximate functions are included in the RKHS.

Fitting Gaussian mixtures. There is another method for estimating the density
of P from a kernel mean estimate (Song et al., 2008; McCalman et al., 2013). This
method models the density as a Gaussian mixture, and then embeds it into the RKHS.
The parameters of the mixture is then learned, by minimizing the RKHS distance
between the embedded mixture and the kernel mean estimate.

Reinforcement learning. In applications to reinforcement learning (Grünewälder
et al., 2012b; Nishiyama et al., 2012; van Hoof et al., 2015), one needs to compute
the expectation of a value function. However, the value function may not be included
in an RKHS in general. Therefore our result may be beneficial to these works, as it
guarantees that the expectation can be computed even when the value function is not
included in the RKHS.

5.2 Function spaces

Here we review function spaces on the Euclidian space Rd and relations between them.
These serve as a basis for our analysis.

Notation. In this chapter we follow the notation of Eberts and Steinwart (2013).
For α ∈ R, we denote by ⌊α⌋ ∈ Z the greatest integer smaller or equal to α. For
a measure ν on Rd and a constant p ∈ (0,∞], Lp(ν) denotes the Banach space of
p-integrable functions with respect to ν. If ν is the Lebesgue measure on X ⊂ Rd, we
write Lp(X) := Lp(ν). We denote by µ the Lebesgue measure on X ⊂ Rd.

5.2. Function spaces 79

5.2.1 Sobolev spaces

Here we introduce Sobolev spaces (Adams and Fournier, 2003). These spaces have
close relation to Besov spaces defined in the next subsection, which are main tools
of our analysis. Our main motivation to introduce the Sobolev spaces is to provide
intuition about the Besov spaces.

Let Nd
0 denote the d dimensional space of non-negative integers, α := (α1, . . . , αd) ∈

Nd
0 be a multi-index, and |α| :=

∑n
i=1 αi. Denote by ∂(α)f the α-th weak derivative

of a function f .

Definition 1. Let m ∈ N and 1 ≤ p ≤ ∞ be constants, and ν be a measure on Rd.
Then the Sobolev of order m with respect to ν is defined by

Wm
p (ν) :=

{
f ∈ Lp(ν) : ∂

(α)f ∈ Lp(ν) exists for all α ∈ Nd
0 with |α| ≤ m

}
. (5.6)

Moreover, the norm is defined by

∥f∥Wm
p (ν) :=

∑
|α|≤m

∥∂(α)f∥pLp(ν)

1/p

. (5.7)

If ν is the Lebesgue measure on X ⊂ Rd, we define Wm
p (X) := Wm

p (ν).

The Sobolev space (5.6) consists of functions in Lp(ν) whose weak derivatives
up to order m exist and are contained in Lp(ν). Thus the order m quantifies the
smoothness of functions: functions in Wm

p (ν) get smoother as m increases. In fact,
from the definition, the following is immediate:

Wm′

p (ν) ⊂Wm
p (ν), m ≤ m′.

The Sobolev space is a Banach space with respect to the norm (5.7). For the case
p = 2, it becomes a Hilbert space with respect to the inner product that induces the
norm (5.7).

5.2.2 Besov spaces

We now introduce Besov spaces; for details, we refer to (Adams and Fournier, 2003,
Chapter 7) and (DeVore and Lorentz, 1993, Chapter 2). There are several ways to
define the Besov spaces. Following Eberts and Steinwart (2013), we define them via
the quantity called modulus of smoothness (DeVore and Lorentz, 1993, Chapter 2)
(Eberts and Steinwart, 2013, Definition 2.1.).

To this end, we first define the notion of higher order differences (DeVore and
Lorentz, 1993, p.44).

5.2. Function spaces 80

Definition 2 (Higher order differences). Let X ⊂ Rd be a subset with nonempty
interior, ν be a measure on X , and f ∈ Lp(ν) with p ∈ (0,∞]. Let r ∈ N and h ∈
[0,∞)d. Then the r-th difference of f with respect to h is a function ∆r

h(f, ·) : X → R
defined by

∆r
h(f, x) =

{∑r
j=0

(
r
j

)
(−1)r−jf(x+ jh) if x ∈ Xr,h

0 if x /∈ Xr,h

(5.8)

where Xr,h := {x ∈ X : x+ sh ∈ X , ∀s ∈ [0, r]}.

Alternatively, higher order differences may be defined by induction (DeVore and
Lorentz, 1993, p.44, Eq. (7.1)):

∆r
h(f, x) =

{
∆1

h(∆
r−1
h (f, ·), x) if x ∈ Xr,h

0 if x /∈ Xr,h

, r ≥ 2 (5.9)

with ∆1
h(f, x) = f(x+ h)− f(x).

We now introduce the modulus of smoothness.

Definition 3 (Modulus of smoothness). Let X ⊂ Rd be a subset with nonempty
interior, ν be a measure on X , and f ∈ Lp(ν) with p ∈ (0,∞]. For r ∈ N, the r-the
modulus of smoothness of f is a function ωr,Lp(ν)(f, ·) : [0,∞)→ [0,∞) defined by

ωr,Lp(ν)(f, t) = sup
∥h∥2≤t

∥∆r
h(f, ·)∥Lp(ν) (t ≥ 0), (5.10)

where ∆r
h(f, ·) is defined by (5.8).

Based on the modulus of smoothness, we now define the Besov space.

Definition 4 (Besov space). Let X ⊂ Rd be a subset with nonempty interior and ν
be a measure on X . Let p, q ∈ [1,∞], α ∈ (0,∞) and r := ⌊α⌋+ 1. The Besov space
Bα

p,q(ν) is a Banach space of functions given by

Bα
p,q(ν) := {f ∈ Lp(ν) : |f |Bα

p,q(ν) <∞}, (5.11)

where |f |Bα
p,q(ν) is the semi norm defined as

|f |Bα
p,q(ν) =

{(∫∞
0
(t−αωr,Lp(ν)(f, t))

q dt
t

)1/q
1 ≤ q <∞.

supt>0

(
t−αωr,Lp(ν)(f, t)

)
q =∞,

(5.12)

where ωr,Lp(ν)(f, ·) is given by (5.10). The norm is defined as

∥f∥Bα
p,q(ν) := ∥f∥Lp(ν) + |f |Bα

p,q(ν), ∀f ∈ Bα
p,q(ν).

5.2. Function spaces 81

If ν is the Lebesgue measure on X , we write Bα
p,q(X) := Bα

p,q(ν).

Relation to Sobolev spaces. The Besov spaces have close relation to the Sobolev
spaces introduced in Section 5.2.1. For example, consider the Besov space Bm

p,q(Rd)
with m ∈ N, p ∈ (1,∞), and max(p, 2) ≤ q ≤ ∞. Then this Besov space contains
the corresponding Sobolev space (Edmunds and Triebel, 1996, pp.25-27 and p.44):

Wm
p (Rd) ⊂ Bm

p,q(Rd). (5.13)

In particular, for the case p = q = 2, these spaces are equivalent:

Wm
2 (Rd) = Bm

2,2(Rd). (5.14)

The inclusion (5.13) implies that the Besov space Bm
p,q(Rd) contains the following

functions: (i) m-times continuously differentiable functions with compact supports;
(ii) Gaussian functions f(x) := A exp(−B∥x− µ∥2) with any A,B > 0 and µ ∈ Rd.

Useful inequality. Let f ∈ Bα
p,∞(ν) be any function in the Besov space. By the

definition of the semi norm (5.12) with q =∞, the following holds for all t > 0:

ωr,Lp(ν)(f, t) ≤ |f |Bα
p,∞(ν)t

α. (5.15)

We will use this inequality in our proofs in Section 5.6.

5.2.3 Gaussian reproducing kenrel Hilbert spaces

Finally, we review the properties of Gaussian RKHSs and their relation to the above
spaces. In particular, we focus on the relation to the Besov space Bα

2,∞(X) with
X ⊂ Rd, as this is the space we will use below.

Let X ⊂ Rd be an arbitrary nonempty set, γ > 0 be a constant, and kγ : X ×X →
R be the Gaussian kernel with bandwidth γ, defined as

kγ(x, x
′) := exp

(
−∥x− x

′∥2

γ2

)
. (5.16)

We denote by Hγ the RKHS associated with kγ. Let ⟨·, ·⟩Hγ
and ∥ · ∥Hγ denote the

inner-product and the norm of Hγ, respectively.
Properties of the Gaussian RKHS have been extensively studied (Steinwart and

Christmann, 2008, Section 4.4) (Minh, 2010). For example, functions in the Gaussian
RKHS on X = Rd can be characterized by their Fourier transforms (see e.g. Minh

5.3. Main theorem 82

(2010)):

Hγ =

{
f ∈ C0(Rd) ∩ L2(Rd) : ∥f∥2H =

∫
Rd exp(

γ2∥ξ∥2
4

)|f̂(ξ)|2dξ
(2π)d(γ

√
π)d

<∞

}
, (5.17)

where C0(Rd) denotes the space of continuous functions on Rd and f̂ the Fourier
transform of f . Namely, the Gaussian RKHS consists of functions whose frequency
spectrum decay exponentially fast. The characterization (5.17) follows from a general
result on shift-invariant kernels; see (Wendland, 2005, Theorem 10.12). There are also
characterizations based on explicit descriptions of orthonormal basis (Steinwart and
Christmann, 2008, Section 4.4) (Minh, 2010).

Let f ∈ L2(Rd) be a function, f̂ be its Fourier transform, and m ∈ N any positive
integer. It is well known (e.g. p. 252 of Adams and Fournier (2003)) that f is included
in the Sobolev space Wm

2 (Rd) if and only if the function um(ξ) := (1 + ξ)m/2f̂(ξ) is
included in L2(Rd). This property and (5.17) imply that the Gaussian RKHS is
contained in the Sobolev space of any order m ∈ N:

Hγ ⊂ Wm
2 (Rd), m ≥ 1. (5.18)

Therefore from (5.13), for any 2 ≤ q ≤ ∞, we have

Hγ ⊂ Bm
2,q(Rd), m ≥ 1. (5.19)

The characterization (5.17) also implies that as γ gets larger, functions in Hγ

becomes smoother. In fact, from (5.17) it is immediate that

Hγ ⊂ Hγ′ , 0 < γ′ < γ.

The Gaussian RKHSHγ consists of infinitely continuously differentiable functions,
since the Gaussian kernel is infinitely continuously differentiable. This follows from
Corollary 4.36 of Steinwart and Christmann (2008), which states that if a kernel is
m-times continuously differentiable with m ≥ 0, then RKHS functions are m-times
continuously differentiable. In other words, RKHS functions inherit the smoothness
of the kernel that defines the RKHS.

5.3 Main theorem

Let P be a probability distribution on Rd and mP :=
∫
kγ(·, x)dP (x) ∈ Hγ be the

kernel mean of P . Suppose that we are given a consistent estimator m̂P of the kernel

5.3. Main theorem 83

mean mP

m̂P :=
n∑

i=1

wikγ(·, Xi) (5.20)

such that
lim
n→∞

∥m̂P −mP∥Hγ = 0.

Here the samplesX1, . . . , Xn ∈ Rd are random variables, and the weights w1, . . . , wn ∈
R are assumed to be given by some algorithm based on these samples and other
random variables. Note that the samples X1, . . . , Xn and the weights w1, . . . , wn in
general depend on the sample size n, but we omit this dependency for notational
simplicity.

For example, in the case of conditional mean embeddings (Song et al., 2009, 2013),
the samples X1, . . . , Xn are those from joint samples (X1, Y1), . . . , (Xn, Yn), and the
weights w1, . . . , wn are computed by linear algebraic operations on kernel matrices
defined on these samples.

Let f : Rd → R be a function. In this section, we are interested in the estimation of
the expectation EX∼P [f(X)] =

∫
f(x)dP (x). Specifically, we analyze the convergence

behavior of the weighted sample estimator

Ê[f(X)] :=
n∑

i=1

wif(Xi)

where the weights w1 . . . , wn and the samples X1, . . . , Xn are those of the kernel mean
estimate (5.20). As mentioned, this is consistent if the function f belongs to RKHS
Hγ. Our aim is to show that it can be also consistent if f belongs to the Besov space
Bα

2,∞(Rd) for some α > 0. The following theorem provides a guarantee for this.

Theorem 4. Let f : Rd → R be a function satisfying f ∈ Bα
2,∞(Rd) ∩ L∞(Rd) for

some α > 0. Let P and Q be probability distributions on Rd and assume that P
and Q have density functions which belong to L∞(Rd). Let {(wi, Xi)}ni=1 be such that
supγ>0 E[∥m̂P −mP∥Hγ] = O(n−b) and E[

∑n
i=1w

2
i] = O(n−2c) as n → ∞ for some

b ∈ (0,∞) and c ∈ (0, 1/2]. Moreover, assume that X1, . . . , Xn in (5.20) are i.i.d.
with Q. Then we have

E

[∣∣∣∣∣
n∑

i=1

wif(Xi)− EX∼P [f(X)]

∣∣∣∣∣
]
= O

(
n− 2αb−d(1/2−c)

2α+d

)
(n→∞). (5.21)

The rate (5.21) depends on the constants α, b, c and d. We provide discussions
on the effects of these constants below:

Smoothness of the function α: The constant α quantifies the smoothness of the

5.3. Main theorem 84

function f ∈ Bα
2,∞(Rd). As α increases, the rate (5.21) becomes faster. For

example, suppose that the function f belongs to Bα
2,∞(Rd) for arbitrarily large

α > 0, that is, f is very smooth. Then the rate (5.21) becomes O(n−b+ξ) for
arbitrarily small ξ > 0. Namely in this case, (5.21) recovers the rate O(n−b) of
the case when f belongs to the RKHS. Specifically, if f ∈ Hγ, then f ∈ Bα

2,∞(Rd)
for any α > 0 and thus the rate (5.21) becomes O(n−b+ξ).

Rate of the kernel mean estimator b: The constant b comes from the conver-
gence rate of the kernel mean estimator O(n−b). It is reasonable to expect that
the rate (5.21) becomes faster as b increases.

Effective sample size c: The rate (5.21) gets faster as the constant c increases.
This constant comes from the assumption E[

∑n
i=1w

2
i] = O(n−2c) on the quan-

tity
∑n

i=1w
2
i . This quantity can be understood as representing (the inverse of)

the effective sample size (ESS) of the kernel mean estimator
∑n

i=1wikγ(·, Xi):
ESS is defined as ESS = 1/

∑n
i=1w

2
i , and roughly represents the number of sam-

ples that contribute to the estimation. Therefore the assumption E[
∑n

i=1w
2
i] =

O(n−2c) can be interpreted as requiring that the ESS increases as the sample
size increases. For example, if the weights are uniform w1, . . . , wn = 1/n, then
we have c = 1/2 and thus the ESS is n. This assumption excludes situations
where the weights are ill-behaved.

ESS is a notion common in the literature of particle methods (see e.g. Section
2.5.3 of Liu (2001) and Section 3.5 of Doucet and Johansen (2011)) and similar
assumptions have been used for convergence analysis; see Definitions 1 and 2 of
Douc and Moulines (2008).

Dimensionality d: The rate (5.21) gets slower as the dimensionality d grows. This
shows that even if the rate O(n−b) of the given kernel mean estimator m̂P

does not depend on the dimensionality, the rate of the resulting estimator∑n
i=1wif(Xi) does. Note that if f belongs to the RKHS, then the rate of∑n
i=1wif(Xi) becomes O(n−b) and thus independent of the dimensionality.

Therefore the dependence on the dimensionality comes from f being outside
of the RKHS.

We assumed that X1, . . . , Xn are i.i.d. with some distribution Q. This is satisfied
by various existing estimators (Song et al., 2013). For example, if m̂P is given by the
conditional embedding estimator (Song et al., 2009), then X1, . . . , Xn are those from
joint i.i.d. samples {(Xi, Yi)}. Therefore in this case, Q is the marginal distribution
of the joint distribution of {(Xi, Yi)}.

5.3. Main theorem 85

5.3.1 Expectations of infinitely differentiable functions

As a corollary of Theorem 4, we derive convergence rates for the expectations of
infinitely differentiable functions. Specifically, if we consider certain polynomial func-
tions, then their expectations yield the moments of the distribution P . Therefore the
result below provides guarantees for the estimation of moments. Recall that this is not
obvious beforehand, because polynomial functions are not included in the Gaussian
RKHS (Minh, 2010).

Note that just assuming a function f being infinitely differentiable is not sufficient
to apply Theorem 4. This is because in general f may not satisfy the assumption
f ∈ Bα

2,∞(Rd) ∩ L∞(Rd). That is, f may be neither square-integrable nor bounded
on Rd (recall that Bα

2,∞(Rd) is a subspace of L2(Rd)). Therefore we need additional
assumptions to obtain the result of Theorem 4 for infinitely differentiable functions.

Here we assume that the supports of the distributions P and Q are bounded.
Under this assumption, we can relax the assumption f ∈ Bα

2,∞(Rd) ∩ L∞(Rd) to

f ∈ Bα
2,∞(BR) ∩ L∞(BR), (5.22)

where BR = {x ∈ Rd : ∥x∥ < R} is an open ball with radius R > 0 that contains
the supports of P and Q. This is done by applying Stein’s extension theorem (Stein,
1970, pp.180-192) (Adams and Fournier, 2003, p.154 and p.230). We then have the
following proposition.

Proposition 1. Assume that P , Q, and {(wi, Xi)}ni=1 satisfy the conditions of Theo-
rem 4. Moreover, assume that the supports of P and Q are bounded. Let f : Rd → R
be an infinitely continuously differentiable function. Then for any ξ > 0, we have

E

[∣∣∣∣∣
n∑

i=1

wif(Xi)− EP [f(X)]

∣∣∣∣∣
]
= O

(
n−b+ξ

)
(n→∞).

Below we show some specific examples of Proposition 1. The first example is f
being a constant. More specifically, we consider the function f(x) = 1 for all x ∈ Rd.
This yields the following.

Corollary 4. Assume that P , Q, and {(wi, Xi)}ni=1 satisfy the conditions of Theorem
4. Moreover, assume that the supports of P and Q are bounded. Then for any ξ > 0,
we have

E

[∣∣∣∣∣
n∑

i=1

wi − 1

∣∣∣∣∣
]
= O

(
n−b+ξ

)
(n→∞).

Corollary 4 shows that the sum of the weights
∑n

i=1wi converges to 1 at a rate

5.3. Main theorem 86

arbitrarily close to the rate of the kernel mean estimator m̂P =
∑n

i=1wikγ(·, Xi). This
provides a theoretical background for the normalization procedure of the filtering
method in Chapter 4.

The next example is the mean of the distribution µ := EX∼P [f(X)] ∈ Rd. We
derive a convergence rate for the estimator µ̂ :=

∑n
i=1wiXi. To this end, we consider

the functions that output coordinates of an input variable: fi(x) := xi, (i = 1, . . . , d).
Then we have µi = EX∼P [fi(X)] and µ̂i =

∑n
i=1wifi(X), where µ = (µ1, . . . , µd)

T

and µ̂ = (µ̂1, . . . , µ̂d)
T . Observing that the functions fi are infinitely continuously

differentiable, we have the following.

Corollary 5. Assume that P , Q, and m̂P satisfy the conditions of Theorem 4. More-
over, assume that the supports of P and Q are bounded. Then for any ξ > 0, we have

E

[∥∥∥∥∥
n∑

i=1

wiXi − EX∼P [X]

∥∥∥∥∥
]
= O

(
n−b+ξ

)
(n→∞).

In a similar manner, we can derive convergence rates for the estimation of (un-
centered) moments.

5.3.2 Expectations of indicator functions on cubes

We next consider to estimate the probability measure P (Ω) of a measurable set Ω ⊂
Rd. To this end, note that P (Ω) can be written as the expectation of the indicator
function defined as

IΩ(x) =

{
1 (x ∈ Ω)

0 (x /∈ Ω)
. (5.23)

That is, we have P (Ω) = EX∼P [IΩ(X)]. Therefore we may define an estimator of
P (Ω) as

n∑
i=1

wiIΩ(Xi) =
∑

i:Xi∈Ω

wi. (5.24)

Obviously we need some regularity conditions on the set Ω. Here we consider the
specific case of a cube, that is

Ω := [a1, b1]× · · · [ad, bd] ⊂ Rd,

with −∞ < ai < bi < +∞ (i = 1, . . . , d). In this case, the measure P (Ω) could
be useful for constructing credible intervals in Bayesian inference (Fukumizu et al.,
2013). As we have IΩ ∈ Bα

2,∞(Rd) for any 0 < α < 1/2 in this case, we have the

5.4. Decoding density functions 87

following corollary.

Corollary 6. Assume that P , Q, and {(wi, Xi)}ni=1 satisfy the conditions in Theorem
4. Let Ω := [a1, b1] × · · · [ad, bd] with −∞ < ai < bi < +∞ (i = 1, . . . , d). Assume
that b− d(1/2− c) > 0. Then for arbitrary small ξ > 0, we have

E

[∣∣∣∣∣∑
Xi∈Ω

wi − P (Ω)

∣∣∣∣∣
]
= O

(
n− b−d(1/2−c)

1+d
+ξ
)
.

The condition b− d(1/2− c) > 0 of Corollary 6 is to guarantee that the exponent
of the rate (5.25) is positive. For example, if the weights satisfy E[supi∈{1,...,n} |wi|] =
O(n−1), the condition is always satisfied.

5.4 Decoding density functions

Let p be the density function of the distribution P . In this section, we show that
the density p can be estimated based on a consistent kernel mean estimator m̂P =∑n

i=1wikγ(·, Xi). Specifically, we consider the estimator described as follows. Let
J : Rd → R be a smoothing kernel satisfying the following conditions:

J(x) ≥ 0, ∀x ∈ Rd, (5.25)∫
J(x)dx = 1, (5.26)

J ∈ Bα
2,∞(Rd), ∀α > 0. (5.27)

For example, this is satisfied if we let J be the Gaussian density J(x) := 1
πd exp(−∥x∥2).

For a constant h > 0, we define a function Jh : Rd → R by

Jh(x) := J(x/h).

Then we define an estimator of the density p(x0) at any x0 ∈ Rd as

n∑
i=1

wiJh(Xi − x0), (5.28)

where the weights w1, . . . , wn and samples X1, . . . , Xn are those of the kernel mean
estimator m̂P =

∑n
i=1wikγ(·, Xi).

This estimator may be seen as a weighted variant of kernel density estimators
(Silverman, 1986). In fact, our analysis below requires the bandwidth h to be de-
creased as the sample size increases, as for kernel density estimation. This estimator

5.4. Decoding density functions 88

has been used in the literature on kernel mean embeddings (Song and Dai, 2013; Song
et al., 2014) without theoretical justifications. Our analysis below provides theoretical
guarantees for these works.

We can intuitively explain why the use of the smoothing kernel yields a density
estimator as follows. It is well known that the smoothing kernel Jh(· − x0) converges
to the delta function δx0 at x0 ∈ X in a certain sense, as the bandwidth h goes to
0. Thus the expectation EX∼P [Jh(X − x0)] of the smoothing kernel converges to
the expectation EX∼P [δx0(X)] of the delta function, which is the density p(x0) =∫
δx0(x)p(x)dx. Note that (5.28) is a consistent estimator of EX∼P [Jh(X − x0)] for a

fixed h, since Jh(·−x0) belongs to the Besov space Bα
2,∞(Rd) for any α > 0. Therefore

(5.28) would be a consistent estimator of the density p(x0), if h is decreased to 0 with
an appropriate speed. This is the reasoning used in our proof. Note that because we
take the limit α → ∞ in the proof, the constant α does not appear in the following
result.

Theorem 5. Assume that P , Q, and {(wi, Xi)}ni=1 satisfy the conditions in Theorem
4. Moreover, assume that P has a density function that is bounded and Lipschitz

continuous. Let ξ > 0 be an arbitrarily small constant, and define hn := n− b
d+1

+ξ.
Then for any x0 ∈ Rd, we have

E

[∣∣∣∣∣
n∑

i=1

wiJhn(Xi − x0)− p(x0)

∣∣∣∣∣
]
= O

(
n− b

d+1
+ξ
)

(n→∞). (5.29)

Theorem 5 shows that the estimator (5.28) is consistent, and converges to the
true density value p(x0) at a certain rate. This is shown under the assumption that
the density function is Lipschitz and bounded. These are standard assumptions used
in convergence analysis of kernel density estimation (Silverman, 1986). The schedule

of the bandwidth hn := n− b
d+1 is determined so as to balance the terms in an upper

bound of the error in (5.29).

The obtained rate O
(
n− b

d+1
+ξ
)

depends on the constant b, which comes from

the rate of the kernel mean estimator m̂P , and on the dimensionality d. Note that
this happens even if the rate of the kernel mean estimator does not depend on the
dimensionality. This matches the fact that any density estimator suffers from the
curse of dimensionality.

Consider the case where the samples X1, . . . , Xn are i.i.d. with the distribution
P and the weights are uniform w1 = · · · = wn = 1/n. In this case, the estimator
(5) reduces to that of kernel density estimation. The resulting rate of Theorem 5 is

O(n− 1
2+2d), as we have b = 1/2 in this case. This is slower than the known min-max

optimal rate O(n− 1
2+d) for the same assumption on the density (Stone, 1980). This

suggests that the rate of Theorem 5 might be suboptimal and could be improved.

5.5. Numerical experiments 89

Note that our density estimator (5) aims at situations different from that of kernel
density estimation. Namely, we consider situations where samples from the target
distribution P are not available. More precisely, we assume that the kernel mean mP

is estimated by some algorithm (such as the filtering method in Chapter 4), and the
density is to be decoded from the resulting kernel mean estimate m̂P . Therefore our
result guarantees that the estimator (5) can be used for this purpose.

5.5 Numerical experiments

We conduct numerical experiments to verify the theoretical results above. To this
end, we consider the following setting.

Let d = 1 and P be the normal distribution N(0, σ2
P) with mean 0 and variance

σ2
P = 0.01. We fix the bandwidth of the Gaussian kernel kγ(x, x

′) := exp(−(x −
x′)2/2γ2) to γ = 0.1. Letting P be the normal distribution allows us to obtain

an analytic expression for the kernel mean mP (x) =
√

γ2

σ2+γ2 exp(− x2

2(γ2+σ2
P)
). This

enables us to evaluate the error ∥mP − m̂P∥Hγ of a given kernel mean estimate m̂P .

Kernel mean estimates. For simplicity, we artificially generated an estimate
m̂P =

∑n
i=1wikγ(·, Xi) as follows, based on the true kernel mean mP . First, we gener-

ated n samples X1, . . . , Xn independently from a uniform distribution on [−1, 1]. We
then computed the weights w1, . . . , wn by solving the following optimization problem:

min
w∈Rn

∥
n∑

i=1

wikγ(·, Xi)−mP∥2Hγ
+ λ∥w∥2,

where λ > 0 is a regularization constant. This allows us to control the tradeoff
between the error ∥m̂P − mP∥2Hγ

for the estimate m̂P and the quantity
∑n

i=1w
2
i =

∥w∥2 defined by the weights. That is, if we let λ be very small, then the error
∥m̂P −mP∥2HX

will be small while the quantity
∑n

i=1w
2
i will be very large, and vice

versa. Recall that our theoretical results imply the following: convergence rates of
function value expectations may be affected not only by the rate of the kernel mean
estimate m̂P , but also by the rate of the quantity

∑n
i=1w

2
i decreasing to 0. Introducing

the regularization constant allows us to check whether this is true or not.

Test functions. We used the test functions described in Table 5.1 for our exper-
iments. All of these are not included in the Gaussian RKHS Hγ. For the func-
tion f(x) = cos(x), we computed the ground-truth value for its the expectation
EX∼P [f(X)] by numerical integration within precision 1e − 10.

5.5. Numerical experiments 90

Table 5.1: Test functions

Function f(x) Expectation EX∼P [f(X)] Properties

1 1 Constant
cos(x) 0.9950 Infinitely differentiable
I[−0.1,0.1](x) 0.6827 Indicator function
I[−∞,0](x) 0.5 Indicator function
x 0 Polynomial (mean)
x2 0.01 Polynomial (variance)

For each test function, we conducted the following experiments by varying the
sample size n (here we fixed the regularization constant as λ = 0.1). For each n, we
generated a kernel mean estimate m̂P =

∑n
i=1wikγ(·, Xi) and measured the absolute

error |
∑n

i=1wif(Xi) − EX∼P [f(X)]|: we repeated this 20 times and averaged the

results. We also computed the quantity
√∑n

i=1w
2
i in the same way.

The results are shown in Figures 5.1, 5.2 and 5.3. The black lines are the er-
rors of kernel mean estimates ∥m̂P − mP∥Hγ , the red ones are the values of the

quantity
√∑n

i=1w
2
i , and the blue ones are the errors of function value estimates

|
∑n

i=1wif(Xi)− EX∼P [f(X)]|.
Since the functions f(x) = 1 and f(x) = cos(x) are infinitely differentiable, the

errors with respect to these functions decrease in parallel to the errors of kernel
mean estimates. This confirms the statement of Proposition 1. For the polynomial
functions f(x) = x and f(x) = x2, the rates are even faster than those of kernel mean
estimates. On the other hand, as expected, the convergence rates for the indicator
functions f(x) = I[−0.1,0.1](x) and f(x) = I[−∞,0](x) are slower than those for the
infinitely differentiable functions. This would be because the indicator functions are
discontinuous at their boundaries. The slow rates may be explained by Corollary 6,
which only guarantees slower rates for the probability mass estimates.

5.5. Numerical experiments 91

Sample size
101 102 103 104

E
rr

or
s

10-5

10-4

10-3

10-2

10-1

100

b =1.1756, c =0.48819, ErrExponent =1.1848
 f(x) = Const 1, P = N(0,0.1), Q = uniform[-1,1]

RKHS error of input kernel mean estimate
Sqrt of sum of squared weights
Error of function value expectation

(a) f(x) = 1

Sample size
101 102 103 104

E
rr

or
s

10-5

10-4

10-3

10-2

10-1

100

b =1.1923, c =0.49612, ErrExponent =1.1975
 f(x) = cos(x), P = N(0,0.1), Q = uniform[-1,1]

RKHS error of input kernel mean estimate
Sqrt of sum of squared weights
Error of function value expectation

(b) f(x) = cos(x)

Figure 5.1: Simulation results for function value expectations with infinitely differen-
tiable functions.

Sample size
101 102 103 104

E
rr

or
s

10-4

10-3

10-2

10-1

100

b =1.1747, c =0.49003, ErrExponent =0.61693
 f(x) = Indicator[-0.1,0.1], P = N(0,0.1), Q = uniform[-1,1]

RKHS error of input kernel mean estimate
Sqrt of sum of squared weights
Error of function value expectation

(a) f(x) = I[−0.1,0.1](x)

Sample size
101 102 103 104

E
rr

or
s

10-4

10-3

10-2

10-1

100

b =1.1985, c =0.48842, ErrExponent =0.60055
 f(x) = Indicator[-Inf,0], P = N(0,0.1), Q = uniform[-1,1]

RKHS error of input kernel mean estimate
Sqrt of sum of squared weights
Error of function value expectation

(b) f(x) = I[−∞,0](x)

Figure 5.2: Simulation results for function value expectations with indicator functions.

5.6. Proofs 92

Sample size
101 102 103 104

E
rr

or
s

10-8

10-6

10-4

10-2

100

b =1.1777, c =0.49003, ErrExponent =1.7388
 f(x) = x, P = N(0,0.1), Q = uniform[-1,1]

RKHS error of input kernel mean estimate
Sqrt of sum of squared weights
Error of function value expectation

(a) f(x) = x

Sample size
101 102 103 104

E
rr

or
s

10-8

10-6

10-4

10-2

100

b =1.1851, c =0.47799, ErrExponent =1.6669
 f(x) = x2, P = N(0,0.1), Q = uniform[-1,1]

RKHS error of input kernel mean estimate
Sqrt of sum of squared weights
Error of function value expectation

(b) f(x) = x2

Figure 5.3: Simulation results for function value expectations with polynomial func-
tions.

5.6 Proofs

In the following, Lp(ν) for arbitrary measure ν and p ∈ (0,∞] denotes the Banach
space consisting of p-integrable functions with respect to ν. We will use the following
inequity in our proofs, which holds for arbitrary f ∈ Bα

2,∞(X):

ωr,L2(X)(f, t) ≤ |f |Bα
2,∞(X)t

α, t > 0 . (5.30)

5.6.1 Proof of Theorem 4

Our strategy in the proof of Theorem 4 is to approximate the function in the Besov
space by a sequence of functions in the RKHS. A recent study on learning theory has
yielded bounds for errors when approximating a Besov function with certain RKHS
functions and for their associated RKHS norms (Eberts and Steinwart, 2013, Theorem
2.2., Theorem 2.3). Some of the inequalities derived in our proof use these results.

Proof. Let γn = n−β, where β > 0 is a constant determined later. Let Hγn denote
the RKHS of the Gaussian kernel kγn .

First, we show some inequalities needed in the proof. Note that assumption f ∈
Bα

2,∞(Rd) implies f ∈ L2(Rd). We define kγ : Rd → R by kγ(x) = exp(−∥x∥2/γ2) for
γ > 0. Let r = ⌊α⌋+ 1 and define Kγ : Rd → R by

Kγ(x) :=
r∑

j=1

(
r

j

)
(−1)1−j 1

jd

(
2

γ2π

) d
2

kjγ/
√
2(x). (5.31)

5.6. Proofs 93

Let fn : Rd → R be the convolution of Kγn and f

fn(x) := (Kγn ∗ f)(x) :=
∫
Rd

Kγn(x− t)f(t)dt , x ∈ Rd.

Then by f ∈ L2(Rd) ∩ L∞(Rd), the following inequalities hold by (Eberts and Stein-
wart, 2013, Theorem 2.2.) and Eq. (5.30):

∥fn − f∥L2(P)

≤
(
Cr,1∥g1∥L∞(Rd)

)1/2
ωr,L2(Rd)(f, γn/2)

≤ Aγαn , (5.32)

∥fn − f∥L2(Q)

≤
(
Cr,2∥g2∥L∞(Rd)

)1/2
ωr,L2(Rd)(f, γn/2)

≤ Bγαn , (5.33)

where g1 and g2 denote the Lebesgue densities of P and Q, respectively, Cr,1 and Cr,2

are constants only depending on r, and A and B are constants independent of γn.
By f ∈ L2(Rd), (Eberts and Steinwart, 2013, Theorem 2.3.) yields fn ∈ Hγn and

∥fn∥Hγn
≤ Cγ−d/2

n , (5.34)

where C is a constant independent of γn.
We are now ready to prove the assertion. The triangle inequality yields the fol-

lowing inequality:

E

[∣∣∣∣∣
n∑

i=1

wif(Xi)− EX∼P [f(X)]

∣∣∣∣∣
]

≤ E

[∣∣∣∣∣
n∑

i=1

wif(Xi)−
n∑

i=1

wifn(Xi)

∣∣∣∣∣
]

(5.35)

+ E

[∣∣∣∣∣
n∑

i=1

wifn(Xi)− EX∼P [fn(X)]

∣∣∣∣∣
]

(5.36)

+ |EX∼P [fn(X)]− EX∼P [f(X)]| . (5.37)

5.6. Proofs 94

We first derive a rate of convergence for the first term Eq. (5.35):

E

[∣∣∣∣∣
n∑

i=1

wif(Xi)−
n∑

i=1

wifn(Xi)

∣∣∣∣∣
]

= E

[∣∣∣∣∣
n∑

i=1

wi(f(Xi)− fn(Xi))

∣∣∣∣∣
]

≤ E

(n∑
i=1

w2
i

)1/2(n∑
i=1

(f(Xi)− fn(Xi))
2

)1/2

≤

(
E

[
n∑

i=1

w2
i

])1/2

(
E

[
n

(
1

n

n∑
i=1

(f(Xi)− fn(Xi))
2

)])1/2

=

(
E

[
n∑

i=1

(wi)
2

])1/2

n1/2∥f − fn∥L2(Q),

where we used the Cauchy-Schwartz inequality in the first two inequalities. Note that
since the weights w1, . . . , wn depend on the random variables X1, . . . , Xn, the term

(
∑n

i=1w
2
i)

1/2
in the third line is not independent of the term (

∑n
i=1(f(Xi)− fn(Xi))

2)
1/2

.
By the assumption E [

∑n
i=1(wi)

2] = O(n−2c), Eq. (5.33), and γn = n−β, the rate of
the first term is O

(
n−c+1/2−αβ

)
.

We next show a convergence rate for the second term Eq. (5.36):

E

[∣∣∣∣∣
n∑

i=1

wifn(Xi)− EX∼P [fn(X)]

∣∣∣∣∣
]

= E
[
⟨m̂P −mP , fn⟩Hγn

]
≤ E

[
∥m̂P −mP∥Hγn

]
∥fn∥Hγn

,

where the equality follows from fn ∈ Hγn . By the assumption E
[
∥m̂P −mP∥Hγn

]
=

O(n−b), γn = n−β, and Eq. (5.34), the rate of the second term is O
(
n−b+βd/2

)
.

The third term Eq. (5.36) is bounded as

|EX∼P [fn(X)]− EX∼P [f(X)]| ≤ ∥fn − f∥L1(P)

≤ ∥fn − f∥L2(P) .

5.6. Proofs 95

The rate of this term is O(n−αβ), and this is faster than the first term since c ≤ 1/2.
Thus the overall rate is dominated by the first and second terms.

We chose β by balancing the first and second terms, and this yields β = b−c+1/2
α+d/2

.
The assertion is derived by substituting this value in the above terms.

5.6.2 Proof of Proposition 1

Proof. We use Stein’s extension theorem (Stein, 1970, pp.180-192) (Adams and Fournier,
2003, p.154 and p.230). Let X ⊂ Rd be a set with minimally smooth boundary (Stein,
1970, p.189). Stein’s extension theorem guarantees that for any f ∈ Bα

2,∞(X), there
exists E(f) ∈ Bα

2,∞(Rd) satisfying E(f)(x) = f(x) for all x ∈ X . Likewise, the the-
orem guarantees that for any f ∈ L∞(X), there exists E(f) ∈ L∞(Rd) satisfying
the same property. Extended function E(f) is defined in a way independent of the
function space on X to which f belongs (Stein, 1970, p.191).

Since BR has minimally smooth boundary (Stein, 1970, p.189), Stein’s extension
theorem guarantees that for f satisfying Eq. (5.22), there exists E(f) : Rd → R such
that E(f) ∈ L∞(Rd) ∩ Bα

2,∞(Rd) and E(f)(x) = f(x), ∀x ∈ BR. Then, applying
Theorem 4 to E(f), we obtain the rate (5.21) for E[|

∑n
i=1wiE(f)(Xi)−EP [E(f)(X)]|].

SinceBR contains the supports of P andQ, we haveE[|
∑n

i=1wiE(f)(Xi)−EP [E(f)(X)]|] =
E[|
∑n

i=1wif(Xi) − EP [f(X)]|]. Thus, it turns out that the obtained rate is for
E[|
∑n

i=1wif(Xi)− EP [f(X)]|].
Note that f satisfies Eq. (5.22) for arbitrarily large α > 0 since it is infinitely

continuously differentiable. Thus, Theorem 4 combined with the above arguments
prove the assertion.

5.6.3 Proof of Corollary 6

Proof. Let F(IΩ) denote the Fourier transform of IΩ. It can be easily shown that the
function (1 + ∥ · ∥2)α/2F(IΩ)(·) belongs to L2(Rd) for any α satisfying 0 < α < 1/2.
Therefore IΩ is included in the fractional order Sobolev space Wα

2 (Rd) (Adams and
Fournier, 2003, p.252). SinceWα

2 (Rd) ⊂ Bα
2,∞(Rd) holds (Edmunds and Triebel, 1996,

pp.26-27, p.44), we have IΩ ∈ Bα
2,∞(Rd).

For an arbitrary constant α satisfying 0 < α < 1/2 and 2αb − d(1/2 − c) > 0,

Theorem 4 then yields the rate of O
(
n− 2αb−d(1/2−c)

2α+d

)
for the lhs of the assertion. Let

α = 1/2− ζ, where 0 < ζ < 1/2. Then by the assumption b− d(1/2− c) > 0 we have

2αb− d(1/2− c) > 0 for sufficiently small ζ. It is not hard to check that 2αb−d(1/2−c)
2α+d

is monotonically decreasing as a function of ζ. Therefore in the limit of ζ → 0 we
have the supremum value b−d(1/2−c)

1+d
over ζ ∈ (0, 1/2). Since we can take an arbitrarily

small value for ζ, the assertion of the corollary follows.

5.6. Proofs 96

5.6.4 Proof of Theorem 5

First, we need the following lemmas.

Lemma 2. Let f : Rd → R be a Lipschitz function. Then there exists a constant
M > 0 such that for all x0 ∈ Rd and h > 0 we have∣∣∣∣∫ Jh(x− x0)f(x)dx− f(x0)

∣∣∣∣ ≤Mh . (5.38)

Lemma 3. Let f : Rd → R be a function satisfying f ∈ Bα
2,∞(Rd) for some α > 0.

Then for any h > 0, we have

|f(·/h)|Bα
2,∞(Rd) = h−α+d/2|f |Bα

2,∞(Rd) . (5.39)

We are now ready to prove Theorem 5.

Proof. Let γn = n−β and hn = n−τ , where β, τ > 0 are constants determined later.
Let α > 0 be an arbitrary positive constant. We define Jhn,x0 := h−d

n J1,x0(·/hn).
Since J1,x0 ∈ Bα

2,∞(Rd) holds, we then have by Lemma 3

|Jhn,x0 |Bα
2,∞(Rd) = h−α−d/2

n |J1,x0 |Bα
2,∞(Rd). (5.40)

Let r := ⌊α⌋ + 1 and define the function Kγ : Rd → R by Eq. (5.31). Then by
(Eberts and Steinwart, 2013, Theorem 2.2.) and Eqs. (5.30)(5.40) we have

∥Kγn ∗ Jhn,x0 − Jhn,x0∥L2(P)

≤ C1ωr,L2(Rd)(Jhn,x0 , γn/2)

≤ C ′
1|Jhn,x0 |Bα

2,∞(Rd)γ
α
n

≤ C ′
1|J1,x0 |Bα

2,∞(Rd)h
−α−d/2
n γαn , (5.41)

∥Kγn ∗ Jhn,x0 − Jhn,x0∥L2(Q)

≤ C2ωr,L2(Rd)(Jhn,x0 , γn/2)

≤ C ′
2|Jhn,x0 |Bα

2,∞(Rd)γ
α
n

≤ C ′
2|J1,x0 |Bα

2,∞(Rd)h
−α−d/2
n γαn , (5.42)

where C1, C
′
1, C2, and C

′
2 are constants independent of hn and γn.

By (Eberts and Steinwart, 2013, Theorem 2.3.) and Eq. (5.40), we have Kγn,r ∗

5.6. Proofs 97

Jhn,x0 ∈ Hγn and

∥Kγn ∗ Jhn,x0∥Hγn

≤ C3∥Jhn,x0∥L2(Rd)γ
−d/2
n

= C3∥J1,x0∥L2(Rd)h
−d/2
n γ−d/2

n , (5.43)

where C3 is a constant independent of hn and γn.
Similar arguments with the proof of Theorem 4 yields the following inequality:

E

[∣∣∣∣∣
n∑

i=1

wiJhn(Xi − x0)− EX∼P [Jhn(X − x0)]

∣∣∣∣∣
]

≤

(
E

[
n∑

i=1

w2
i

])1/2

n1/2

∥Kγn ∗ Jhn,x0 − Jhn,x0∥L2(Q)

+ E
[
∥m̂P −mP∥Hγn

]
∥Kγn ∗ Jhn,x0∥Hγn

+ ∥Kγn ∗ Jhn,x0 − Jhn,x0∥L2(P) .

By Eq. (5.42) and the assumption E [
∑n

i=1w
2
i] = O(n−c), the rate of the first term

is O(n−c+1/2−αβ+τ(α+d/2)). For the second term, Eq. (5.43) and the assumption
supγ>0 E

[
∥m̂P −mP∥Hγ

]
= O(n−b) yields the rate of O(n−b+βd/2+τd/2). By Eq.

(5.41), the rate of the third term is O(n−αβ+τ(α+d/2)), which is faster than that of
the first term.

We chose β by balancing the first and second terms, and this yields β = b−c+1/2+ατ
α+d/2

.
By substituting this into the above terms, the overall rate becomes

O

(
n− 2α(b−τd)−d(1/2−c)−d2τ/2

2α+d

)
. (5.44)

Since α can be arbitrarily large, we have for arbitrarily small ζ > 0

E

[∣∣∣∣∣
n∑

i=1

wiJhn(Xi − x0)− EX∼P [Jhn(X − x0)]

∣∣∣∣∣
]

= O
(
n−b+τd+ζ

)
. (5.45)

On the other hand, since

EX∼P [Jhn(X − x0)] =

∫
Jhn(x− x0)p(x)dx,

5.6. Proofs 98

Lemma 2 and the Lipschitz continuity of p yield

|EX∼P [Jhn(X − x0)]− p(x0)| ≤ Mhn =Mn−τ . (5.46)

We chose τ by balancing Eqs. (5.45) and (5.46), and obtain τ = b
d+1
− ζ

d+1
.

We therefore have E [|
∑n

i=1wiJhn(Xi − x0)− p(x0)|] = O
(
n− b

d+1
+ ζ

d+1

)
, and letting

ξ := ζ
d+1

yields the assertion of the theorem.

Chapter 6

Conclusions and future work

In this thesis, we have investigated kernel mean embeddings of distributions from the
viewpoint of empirical distributions. We have revealed that Monte Carlo methods
may be applied to empirical kernel means, as if they were empirical distributions.
Based on this theoretical result, we have developed a novel filtering algorithm for
state-space models, named Kernel Monte Carlo Filter. We have also conducted the-
oretical analysis of empirical kernel means: we proved that expectations of functions
outside the RKHS can be estimated, when the kernel is Gaussian.

The following are important topics for future work.

Combinations with other Monte Carlo methods. While this thesis has pro-
vided a framework for combing kernel mean embeddings with particle methods, there
are still other possibilities: for example, it would be interesting to consider a combi-
nation with MCMC methods.

Speed up of the resampling algorithm. While we have discussed how to reduce
the computational cost of the resampling algorithm, it is not satisfactory: the reduced
cost is still a quadratic order of the sample size. Further speed up may be possible
by employing acceleration methods for the Frank-Wolfe algorithm, as this method
subsumes Kernel Herding as a special case.

Parameter estimation with Kernel Monte Carlo Filter. One interesting di-
rection for extending Kernel Monte Carlo Filter would be parameter estimation for
the transition model. In this thesis we did not discuss this, and assumed that param-
eters are given and fixed, if they exist. If the state observation examples {(Xi, Yi)}ni=1

are given as a sequence from the state-space model, then we can use the state sam-
ples X1, . . . , Xn for estimating those parameters. Otherwise, we need to estimate the

99

Chapter 6. Conclusions and future work 100

parameters based on test data. This might be possible by exploiting approaches for
parameter estimation in particle methods (e.g., Section IV in Cappé et al. (2007)).

Transfer learning setting. Another important topic for the filtering problem is
on the situation where the observation model in the test and training phases are
different. As discussed in Section 4.2.3, this might be addressed by exploiting the
framework of transfer learning (Pan and Yang, 2010). This would require extension
of kernel mean embeddings to the setting of transfer learning, since there has been
no work in this direction. We consider that such extension is interesting in its own
right.

Kernels other than Gaussian for function value expectations. Regarding the
theory of Chapter 5, it would be desirable to extend the obtained results to kernels
other than Gaussian. This would be possible by using the approximation theory
based on interpolation spaces or fractional powers of integral operators (Smale and
Zhou, 2007).

References

Adams, R. A. and Fournier, J. J. F. (2003). Sobolev Spaces. Academic Press, New
York, 2nd edition.

Akaho, S. (2001). A kernel method for canonical correlation analysis. In Proceedings of
the International Meeting on Psychometric Society (IMPS2001). Springer-Verlag.

Anderson, B. and Moore, J. (1979). Optimal Filtering. Prentice Hall, Englewood
Cliffs.

Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American
Mathematical Society, 68(3), pages 337–404.

Bach, F. and Jordan, M. I. (2002). Kernel independent component analysis. Journal
of Machine Learning Research, 3:1–48.

Bach, F., Lacoste-Julien, S., and Obozinski, G. (2012). On the equivalence between
herding and conditional gradient algorithms. In Proceedings of the 29th Interna-
tional Conference on Machine Learning (ICML2012), pages 1359–1366.

Berlinet, A. and Thomas-Agnan, C. (2004). Reproducing kernel Hilbert spaces in
probability and statistics. Kluwer Academic Publisher.

Boots, B., Byravan, A., and Fox, D. (2014). Learning predictive models of a depth
camera and manipulator from raw execution traces. In Proceedings of the 2014
IEEE Conference on Robotics and Automation (ICRA-2014).

Boots, B., Gretton, A., and Gordon., G. J. (2013). Hilbert space embeddings of
predictive state representations. In Proceedings of Conference on Uncertainty in
Artificial Intelligence (UAI2013).

Cappé, O., Godsill, S. J., and Moulines, E. (2007). An overview of existing methods
and recent advances in sequential Monte Carlo. IEEE Proceedings, 95(5):899–924.

101

References 102

Chen, Y., Welling, M., and Smola, A. (2010). Supersamples from kernel-herding. In
Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence (UAI
2010), pages 109–116.

DeVore, R. A. and Lorentz, G. G. (1993). Constructive approximation. Springer-
Verlag, Berlin.

Dick, J., Kuo, F. Y., and Sloan, I. H. (2013). High dimensional numerical integration
- the quasi-monte carlo way. Acta Numerica, 22(133-288).

Douc, R. and Moulines, E. (2008). Limit theorems for weighted samples with appli-
cations to sequential monte carlo methods. Annals of Statistics, 36(5):2344–2376.

Doucet, A., Freitas, N. D., and Gordon, N. J., editors (2001). Sequential Monte Carlo
Methods in Practice. Springer.

Doucet, A. and Johansen, A. M. (2011). A tutorial on particle filtering and smoothing:
Fifteen years later. In Crisan, D. and Rozovskii, B., editors, The Oxford Handbook
of Nonlinear Filtering, pages 656–704. Oxford University Press.

Dudley, R. M. (2002). Real Analysis and Probability. Cambridge University Press.

Durbin, J. and Koopman, S. J. (2012). Time Series Analysis by State Space Methods
Second Edition. Oxford University Press.

Eberts, M. and Steinwart, I. (2013). Optimal regression rates for SVMs using Gaus-
sian kernels. Electronic Journal of Statistics, 7:1–42.

Edmunds, D. E. and Triebel, H. (1996). Function Spaces, Entropy Numbers, Differ-
ential Operators. Cambridge University Press, Cambridge.

Ferris, B., Hähnel, D., and Fox, D. (2006). Gaussian processes for signal strength-
based location estimation. In Proceedings of Robotics: Science and Systems.

Feuerverger, A. and Mureika, R. A. (1977). The empirical characteristic function and
its applications. Annals of Statistics, 5(1):88–98.

Fine, S. and Scheinberg, K. (2001). Efficient SVM training using low-rank kernel
representations. Jounal of Machine Learning Research, 2:243–264.

Flaxman, S., Wang, Y., and Smola, A. (2015). Who supported obama in 2012?
ecological inference through distribution regression. In Proceedings of the 21st ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD2015).

References 103

Freund, R. M. and Grigas, P. (2014). New analysis and results for the Frank–Wolfe
method. Mathematical Programming, DOI 10.1007/s10107-014-0841-6.

Fukumizu, K., Bach, F., and Jordan, M. I. (2004). Dimensionality reduction for
supervised learning with reproducing kernel Hilbert spaces. Jounal of Machine
Learning Research, 5:73–99.

Fukumizu, K., Bach, F., and Jordan, M. I. (2009a). Kernel dimension reduction in
regression. The Annals of Statistics, 37(4):1871–1905.

Fukumizu, K., Gretton, A., Sun, X., and Schölkopf, B. (2008). Kernel measures of
conditional dependence. In Advances in Neural Information Processing Systems
20, pages 489–496.

Fukumizu, K., Song, L., and Gretton, A. (2011). Kernel Bayes’ rule. In Advances in
Neural Information Processing Systems 24, pages 1737–1745.

Fukumizu, K., Song, L., and Gretton, A. (2013). Kernel Bayes’ rule: Bayesian infer-
ence with positive definite kernels. Journal of Machine Learning Research, 14:3753–
3783.

Fukumizu, K., Sriperumbudur, B., Gretton, A., and Scholkopf, B. (2009b). Char-
acteristic kernels on groups and semigroups. In Advances in Neural Information
Processing Systems 21, pages 473–480. MIT Press.

Gordon, N. J., Salmond, D. J., and Smith, A. F. M. (1993). Novel approach to
nonlinear/non-gaussian bayesian state estimation. IEE-Proceedings-F, 140:107–
113.

Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., and Smola, A. (2012). A kernel
two-sample test. Jounal of Machine Learning Research, 13:723–773.

Gretton, A., Bousquet, O., Smola, A., and Schölkopf, B. (2005). Measuring statistical
dependence with hilbert-schmidt norms. In Jain, S., Simon, H. U., and Tomita, E.,
editors, Algorithmic Learning Theory, volume 3734 of Lecture Notes in Computer
Science, pages 63–77, Berlin/Heidelberg. Springer-Verlag.

Gretton, A., Fukumizu, K., Teo, C., Song, L., Schoelkopf, B., and Smola, A. (2008).
A kernel statistical test of independence. In Advances in Neural Information Pro-
cessing Systems 20, pages 585–592.

Grünewälder, S., Lever, G., Baldassarre, L., Patterson, S., Gretton, A., and Pontil,
M. (2012a). Conditional mean embeddings as regressors. In Proceedings of the 29th
International Conference on Machine Learning (ICML2012), pages 1823–1830.

References 104

Grünewälder, S., Lever, G., Baldassarre, L., Pontil, M., and Gretton, A. (2012b).
Modeling transition dynamics in MDPs with RKHS embeddings. In Proceedings of
the 29th International Conference on Machine Learning (ICML2012), pages 1823–
1830.

Hofmann, T., Schölkopf, B., and Smola, A. J. (2008). Kernel methods in machine
learning. Annals of Statistics, 36(3):1171–1220.

Jaggi, M. (2013). Revisiting Frank-Wolfe: Projection-free sparse convex optimization.
In Proceedings of the 30 th International Conference on Machine Learning, pages
427–435.

Jitkrittum, W., Gretton, A., Heess, N., Eslami, S., Lakshminarayanan, B., Sejdinovic,
D., and Szabo, Z. (2015). Kernel-based just-in-time learning for passing expectation
propagation messages. In Proceedings of Conference on Uncertainty in Artificial
Intelligence (UAI2015).

Julier, S. J. and Uhlmann, J. K. (1997). A new extension of the Kalman filter to
nonlinear systems. In Proceedings of AeroSense: The 11th International Symposium
Aerospace/Defence Sensing, Simulation and Controls.

Julier, S. J. and Uhlmann, J. K. (2004). Unscented filtering and nonlinear estimation.
IEEE Review, 92:401–422.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.
Transactions of the ASME—Journal of Basic Engineering, 82:35–45.

Kanagawa, M. and Fukumizu, K. (2014). Recovering distributions from Gaussian
RKHS embeddings. In Proceedings of the 17th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS 2014), pages 457–465.

Kanagawa, M., Nishiyama, Y., Gretton, A., and Fukumizu, K. (2014). Monte Carlo
filtering using kernel embedding of distributions. In Proceedings of the 28th AAAI
Conference on Artificial Intelligence (AAAI-14), pages 1897–1903.

Lazebnik, S., Schmid, C., and Ponce, J. (2006). Beyond bags of features: spatial
pyramid matching for recognizing natural scene categories. In Proceedings of 2006
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
volume 2, pages 2169–2178.

Liu, J. S. (2001). Monte Carlo Strategies in Scientific Computing. Springer-Verlag,
New York.

References 105

McCalman, L., O’Callaghan, S., and Ramos, F. (2013). Multi-modal estimation
with kernel embeddings for learning motion models. In Proceedings of 2013 IEEE
International Conference on Robotics and Automation, pages 2845–2852.

Minh, H. Q. (2010). Some properties of Gaussian reproducing kernel Hilbert spaces
and their implications for function approximation and learning theory. Constructive
Approximation, 32(2):307–338.

Muandet, K., Fukumizu, K., and F. Dinuzzo, B. S. (2012). Learning from distribu-
tions via support measure machines. In Advances in Neural Information Processing
Systems 25 (NIPS2012), pages 10–18.

Muandet, K. and Schölkopf, B. (2013). One-class support measure machines for
group anomaly detection. In Proceeding of the 29th Conference on Uncertainty in
Artificial Intelligence (UAI 2013).

Nishiyama, Y., Boularias, A., Gretton, A., and Fukumizu, K. (2012). Hilbert space
embeddings of POMDPs. In Proceedings of Conference on Uncertainty in Artificial
Intelligence (UAI2012), pages 644–653.

Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. IEEE Transactions
on Knowledge and Data Engineering, 22(10):1345–1359.

Pistohl, T., Ball, T., Schulze-Bonhage, A., Aertsen, A., and Mehring, C. (2008).
Prediction of arm movement trajectories from ECoG-recordings in humans. Journal
of Neuroscience Methods, 167(1):105–114.

Pronobis, A. and Caputo, B. (2009). COLD: COsy Localization Database. The
International Journal of Robotics Research (IJRR), 28(5):588–594.

Quigley, M., Stavens, D., Coates, A., and Thrun, S. (2010). Sub-meter indoor lo-
calization in unmodified environments with inexpensive sensors. In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems 2010
(IROS10), volume 1, pages 2039–2046.

Ristic, B., Arulampalam, S., and Gordon, N. (2004). Beyond the Kalman Filter:
Particle Filters for Tracking Applications. Artech House.

Robert, C. and Casella, G. (2004). Monte Carlo Statistical Methods. Springer.

Schalk, G., Kubanek, J., Miller, K. J., Anderson, N. R., Leuthardt, E. C., Ojemann,
J. G., Limbrick, D., Moran, D., Gerhardt, L. A., and Wolpaw, J. R. (2007). De-
coding two-dimensional movement trajectories using electrocorticographic signals
in humans. Journal of Neural Engineering, 4(264):264–75.

References 106

Schölkopf, B., Smola, A., and Müller, K. (1998). Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10(5):1299–1319.

Schölkopf, B. and Smola, A. J. (2002). Learning with Kernels. MIT Press.

Sejdinovic, D., Gretton, A., and Bergsma, W. (2013a). A kernel test for three-variable
interactions. In Advances in Neural Information Processing Systems 26.

Sejdinovic, D., Sriperumbudur, B., Gretton, A., and Fukumizu, K. (2013b). Equiv-
alence of distance-based and rkhs-based statistics in hypothesis testing. Annals of
Statistics, 41(5):2263–2702.

Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. Chap-
man and Hall.

Smale, S. and Zhou, D. (2007). Learning theory estimates via integral operators and
their approximations. Constructive Approximation, 26:153–172.

Smola, A., Gretton, A., Song, L., and Schölkopf, B. (2007). A Hilbert space embed-
ding for distributions. In Proceedings of the International Conference on Algorith-
mic Learning Theory, volume 4754, pages 13–31. Springer.

Song, L., Anamdakumar, A., Dai, B., and Xie, B. (2014). Nonparametric estima-
tion of multi-view latent variable models. In Proceedings of the 31st International
Conference on Machine Learning (ICML2014), volume 640-648.

Song, L., Boots, B., Siddiqi, S., Gordon, G., and Smola, A. (2010a). Hilbert space
embeddings of hidden Markov models. In Proceedings of the 27th International
Conference on Machine Learning (ICML2010), pages 991–998.

Song, L. and Dai, B. (2013). Robust low rank kernel embeddings of multivariate
distributions. In Burges, C., Bottou, L., Welling, M., Ghahramani, Z., and Wein-
berger, K., editors, Advances in Neural Information Processing Systems 26, pages
3228–3236. Curran Associates, Inc.

Song, L., Fukumizu, K., and Gretton, A. (2013). Kernel embeddings of conditional
distributions: A unified kernel framework for nonparametric inference in graphical
models. IEEE Signal Processing Magazine, 30(4):98–111.

Song, L., Gretton, A., Bickson, D., Low, Y., and Guestrin, C. (2011a). Kernel
belief propagation. In Proceedings of the 14th International Conference on Artificial
Intelligence and Statistics (AISTATS2011), pages 707–715.

References 107

Song, L., Gretton, A., and Guestrin, C. (2010b). Nonparametric tree graphical models
via kernel embeddings. In Proceedings of the 13th International Conference on
Artificial Intelligence and Statistics (AISTATS2010), pages 765–772.

Song, L., Huang, J., Smola, A., and Fukumizu, K. (2009). Hilbert space embeddings
of conditional distributions with applications to dynamical systems. In Proceedings
of the 26th International Conference on Machine Learning (ICML2009), pages 961–
968.

Song, L., Parikh, A. P., and Xing, E. P. (2011b). Kernel embeddings of latent tree
graphical models. In Advances in Neural Information Processing Systems 25.

Song, L., Zhang, X., Smola, A., Gretton, A., and Schölkopf, B. (2008). Tailoring
density estimation via reproducing kernel moment matching. In Proceedings of the
25th International Conference on Machine Learning (ICML2008), pages 992–999.

Sriperumbudur, B. K., Gretton, A., Fukumizu, K., Schölkopf, B., and Lanckriet, G. R.
(2010). Hilbert space embeddings and metrics on probability measures. Jounal of
Machine Learning Research, 11:1517–1561.

Stein, E. M. (1970). Singular integrals and differentiability properties of functions.
Princeton University Press, Princeton, NJ.

Steinwart, I. and Christmann, A. (2008). Support Vector Machines. Springer.

Stone, C. J. (1977). Consistent nonparametric regression. The Annals of Statistics,
5(4):595–620.

Stone, C. J. (1980). Optimal rates of convergence for nonparametric estimators. The
Annals of Statistics, 8(6):1348–1360.

Szabó, Z., Gretton, A., Póczos, B., and Sriperumbudur, B. K. (2015). Two-stage
sampled learning theory on distributions. In Proceedings of the 18th International
Conference on Artificial Intelligence and Statistics (AISTATS2015), pages 948–957.

Székely, G. J. and Rizzo, M. L. (2013). Energy statistics: A class of statistics based
on distances. Journal of Statistical Planning and Inference, 143:1249–1272.

Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic Robotics. MIT Press.

van Hoof, H., Peters, J., and Neumann, G. (2015). Learning of non-parametric
control policies with high-dimensional state features. In Proceedings of the 18th
International Conference on Artificial Intelligence and Statistics (AISTATS), pages
995–1003.

References 108

Vapnik, V. N. (1998). Statistical Learning Theory. John Wiley & Sons.

Vlassis, N., Terwijn, B., and Kröse, B. (2002). Auxiliary particle filter robot localiza-
tion from high-dimensional sensor observations. In Proceedings of the International
Conference on Robotics and Automation (ICRA), pages 7–12.

Wang, Z., Ji, Q., Miller, K. J., and Schalk, G. (2011). Prior knowledge improves
decoding of finger flexion from electrocorticographic signals. Frontiers in Neuro-
science, 5:127.

Wendland, H. (2005). Scattered Data Approximation. Cambridge University Press,
Cambridge, UK.

Widom, H. (1963). Asymptotic behavior of the eigenvalues of certain integral equa-
tions. Transactions of the American Mathematical Society, 109:278–295.

Widom, H. (1964). Asymptotic behavior of the eigenvalues of certain integral equa-
tions ii. Archive for Rational Mechanics and Analysis, 17:215–229.

Wolf, J., Burgard, W., and Burkhardt, H. (2005). Robust vision-based localization by
combining an image retrieval system with monte carlo localization. IEEE Trans-
actions on Robotics, 21(2):208–216.

Yoshikawa, Y., Iwata, T., and Sawada, H. (2014). Latent support measure machines
for bag-of-words data classification. In Advances in Neural Information Processing
Systems 27.

Yu, J. (2004). Empirical characteristic function estimation and its applications.
Econometric Reviews, 23(2):93–123.

Zhu, P., Chen, B., and Pŕıncipe, J. C. (2014). Learning nonlinear generative models of
time series with a Kalman filter in RKHS. IEEE Transactions on Signal Processing,
62(1):141–155.

