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Abstract
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Introduction:

Recently, increased development of clinical prediction models has been reported

in the medical literature. However, evidence synthesis methodologies for these

prediction models have not been sufficiently studied, especially for practical sit-

uations such as a meta-analyses where only aggregated summaries of important

predictors are available. Also, in general, the covariate sets involved in the pre-

diction models are not common across studies. As in ordinary model misspec-

ification problems, dropping relevant covariates would raise potentially serious

biases to the prediction models, and consequently to the synthesized results.

Methods:

We developed synthesizing methods for clinical prediction models with possibly

different sets of covariates. In order to aggregate the regression coefficient esti-

mates from different prediction models, we adopted a generalized least squares

approach with non-linear terms (a sort of generalization of multivariate meta-

analysis). Firstly, we evaluated omitted variable biases in this approach. Then,

under an assumption of homogeneity of studies, we developed bias-corrected esti-

mating procedures for regression coefficients of the synthesized prediction models.

Results:

Numerical evaluations with simulations showed that our approach resulted in

smaller biases and more precise estimates compared with conventional methods,

which use only studies with common covariates or which utilize a mean imputa-

tion method for omitted coefficients. These methods were also applied to several

read dataset such as a series of Japanese epidemiologic studies on the incidence

of a stroke.

Discussion:

Our proposed methods adequately correct the biases due to different sets of

covariates between studies, and would provide precise estimates compared with



iv

the conventional approach. If the assumption of homogeneity within studies is

plausible, this methodology would be useful for incorporating prior published

information into the construction of new prediction models.
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Chapter 1

Introduction

The Cochrane collaboration [1] defines ”meta-analysis” as follows:

The use of statistical techniques in a systematic review to integrate

the results of included studies. Sometimes misused as a synonym for

systematic reviews, where the review includes a meta-analysis

The level of evidence of a meta-analysis is the highest level (rank 1a) in the field

of evidence based medicine (EBM) [2].

Throughout the past several decades, meta-analysis has been widely ac-

cepted in many fields, including medicine, as a high-quality research methodol-

ogy that quantitatively synthesizes the results of studies reporting on the same

topic. In this chapter, I briefly outline and review the important meta-analysis

methods, focusing on medical research.

1.1 Brief history

Gene Glass of the American Research Association [3] coined the term meta-

analysis in 1976, to describe his basic quantitative method for synthesizing re-

sults. Meanwhile, Robert Rosenthal, John Hunter, and Frank Schmidt were

1
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working on the same model for synthesizing study results [4]. Although meta-

analysis was first discussed in the educational fields, its application has extended

beyond education, and especially into medicine and health. As EBM has be-

come increasingly relevant in the past 30 years, the demand and impact of

meta-analysis has increased, especially in the medical fields. The number of

meta-analysis publications in PubMed, provided by Suttton and Higgins [5], has

increased by seven times from 1990 to 2006. Among these, the number of statis-

tical papers published in the journal Statistics in Medicine has increased by five

times (approximately 10 papers within 2012). This trend is continuing or even

strengthening today [5, 4]. The Cochrane Collaboration endeavors to synthesize

high-quality global evidence (for example, the results from randomized controlled

trials (RCTs)) published in the Cochrane Database of Systematic Reviews. The

Cochrane Library is an online collection of databases concerning the effectiveness

of healthcare treatments and interventions. It contains over 2000 protocols and

5000 reviews on specific medical decisions.

1.2 What is meta-analysis from a statistical per-

spective?

In a meta-analysis, the results in each study i, (i = 1, 2, . . . , K) are evaluated

by an effect size θ̂i such as standardized mean difference, odds ratio or p-value,

which provides a common metric for each study [6, 7]. In addition, θ̂i is as-

sumed to be normally distributed, which is reasonable when the effect size is the

standardized mean difference transformed by the variance stabilizing procedure

(as proposed by Hedges and Olkin [6]), but is unsuitable for log-odds ratios and

crude correlation coefficients [6, 8].

The true effect size from the collection of studies can be estimated by the two

proposed statistical models; the fixed effects model or the random effects model.

The fixed effects model supposes that the studies are homogenous; therefore, the

effect sizes of each study are presumed as unknown constants to be estimated

[9, 8]. Conversely, in the random effects model, the effect sizes from individual
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studies are randomly sampled from a distribution, and the hyperparameters in

the distribution are estimated [8, 10].

1.2.1 Statistical inference in fixed-effects meta-analysis

When setting up a meta-analysis for survival data, we may reasonably assume

that the log hazard ratio θ̂i and its variance σ̂2
i are observable in study i (i =

1, . . . , K). In a pioneering study, Hedges and Olkin inferenced the true effect

size θ by calculating the weighted average of the effect sizes of individual studies,

where the weight was the inverse of the variance [6].

θ̂fix =

∑K
i=1wiθ̂i∑K
i=1wi

, (1.1)

where θ̂fix is a fixed-effect estimator and the weights are the reciprocals of the

reported variance:

wi =
1

σ̂2
i

. (1.2)

The variance of θ̂fix is calculated as

Var(θ̂fix) =
1∑K

i=1wi

(1.3)

Because the θ̂i are normally distributed, it follows that θ̂fix is also normally

distributed with mean θ and variance computed by Equation 1.3.

Intuitively, large-sample studies tend to have smaller variance than smaller

studies, and are therefore weighted more heavily. In this way, the weights defined

in Equation 1.2 control the variability of the estimated true effect size (i.e.,

variance of θ̂fix).

Note that this model is acceptable when the studies are reasonably homo-

geneous. Homogeneity can be statistically estimated by the following test, or

evaluated from other source information.
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1.2.2 Statistical inference in random-effects meta-analysis

The fixed effects model supposes that the effect size θ̂i is fixed and unknown

constant. Under this assumption, the variance of θ̂i is a single parameter, σ̂2
i . In

the random effects model, the effect size θ̂i is assumed as random with a certain

distribution, and θ̂i is commonly written as

θ̂i = θi + εi = θ + ξi + εi, (1.4)

that is, the reported effect sizes are decomposed into fixed and random compo-

nents. θ is the true effect, ξi is the random effect with mean 0 and unknown

variance τ 2, and εi is the error term with mean 0 and known variance σ̂2
i . In this

article, we adopt the commonly used terms within-study variance and between-

study variance for the variances σ̂2
i and τ 2, respectively.

In the other formulation of the random effects model, θ̂i is drawn from a

distribution with mean θi and σ̂2
i ; furthermore, each study-specific mean θi is

assumed to follow a distribution with mean θ and variance τ 2:

θ̂i|θi, σ̂2
i ∼ N(θi, σ̂

2
i )

θi|θ, τ 2 ∼ N(θ, τ 2),

where θ and τ 2 are generally called hyperparameters. The posterior distribution

of θi, conditional on the data and the hyperparameters θ and τ 2, is denoted as

θi|θ̂1, . . . , θ̂K , σ̂2
1, . . . , σ̂

2
K , θ, τ

2 ∼ N(Biθ + (1−Bi)θ̂i, σ̂
2
i (1−Bi)), (1.5)

where Bi = σ̂2
i /(σ̂

2
i + τ 2) is referred to as the shrinkage factor of the ith study

[11].

Assuming that ξi and εi follow normal distributions, Equation 1.4 can be

rewritten as

θ̂i ∼ N(θ, (σ̂2
i + τ 2)−1). (1.6)
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DerSimonian and Laird proposed an estimate that combines the reported

effect sizes under this setting [10]; namely,

θ̂ran =

∑K
i=1w

∗
i θ̂i∑K

i=1w
∗
i

, (1.7)

where

w∗
i =

1

σ̂2
i + τ 2

(1.8)

and the variance is given by

Var(θ̂ran) =
1∑K

i=1w
∗
i

(1.9)

Here, the main interest is to inference the key parameter τ 2 in the random effects

model. This is achieved by one of the four major methods: 1) the maximum

likelihood (ML) method, 2) the restricted maximum likelihood (REML) method,

3) full Bayesian method, and 4) the moment estimation method [12, 11].

Note that by comparing the maximum log-likelihoods of this model and the

fixed effects model described in the previous section, we can derive the likelihood

ratio test for homogeneity of studies. This statistical test is discussed in the

following section.

1.2.2.1 Maximum likelihood method

The log likelihood function of Equation 1.6 is given (up to a constant term) by

l(θ, τ 2)ML = −1

2

K∑
i=1

[
log(σ̂2

i + τ 2) +
(θ̂i − θ)2

σ̂2
i + τ 2

]
. (1.10)

In this subsection, the suffix ML represents the maximum likelihood method.

For a balanced model, σ̂i = σ̂1 = const, the log likelihood (Equation 1.10) can

be maximized in closed form with the following solutions:

θ̂ML =
1

K

K∑
i=1

θ̂i, τ̂ 2ML =
1

K

K∑
i=1

(θ̂i −
1

K

K∑
i=1

θ̂i)
2 − σ̂2

1. (1.11)
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If τ 2 is known, the maximum l(θ, τ 2)ML is expressed in the form of Equation 1.7.

If σ̂2
i 6= const, the solutions must be inferred by iterative methods such as the

Fisher scoring algorithm or the Newton-Raphson method. To apply an iterative

inference method, we require the first and second derivatives; that is

∂l

∂θ
=

K∑
i=1

θ̂i − θ

σ̂2
i + τ 2

,
∂l

∂τ 2
=

K∑
i=1

[
1

σ̂2
i + τ 2

− (θ̂i − θ)2

(σ̂2
i + τ 2)2

]
∂2l

∂θ2
= −

K∑
i=1

1

σ̂2
i + τ 2

,
∂2l

∂τ 4
=

1

2

K∑
i=1

[
1

(σ̂2
i + τ 2)2

− 2(θ̂i − θ)2

(σ̂2
i + τ 2)3

]
∂2l

∂θτ 2
= −

K∑
i=1

θ̂i − θ

(σ̂2
i + τ 2)2

.

Therefore, the Hessian matrix, H , for l is denoted as

H = −


∑K

i=1

1

σ̂2
i + τ 2

∑K
i=1

θ̂i − θ

(σ̂2
i + τ 2)2∑K

i=1

θ̂i − θ

(σ̂2
i + τ 2)2

−1

2

∑K
i=1

[
1

(σ̂2
i + τ 2)2

− 2(θ̂i − θ)2

(σ̂2
i + τ 2)3

]
 . (1.12)

Because the (2, 2) element in the matrix H may be positive, the matrix is not

negative semi definite. Therefore, the log likelihood function Equation 1.10 is not

a concave function, and the Newton-Raphson algorithm can fail by converging

to a local maximum.

The negative expected Hessian matrix, called the information matrix, I, is

given by

I = −E(H) =


∑K

i=1

1

σ̂2
i + τ 2

0

0
1

2

∑K
i=1

1

(σ̂2
i + τ 2)2

 . (1.13)

Unlike the Hessian matrixH , the information matrix I is always positive definite.

Consequently, the Fisher scoring algorithm is more stable than the Newton-

Raphson algorithm [12].

Regarding the maximum likelihood estimators (MLEs) of θ and τ 2, the

expected cross-derivative is 0, so the MLEs of θ and τ 2 are asymptotically inde-

pendent for large numbers of studies (i.e., large K). Therefore, the log likelihood
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functions of θ and τ 2 can be separately maximized in practice. Note that in the

meta-analysis setting, the asymptotic theory should generally be based on the

number of studies K, not the number of samples in each study.

Inverting the information matrix, I, yields the asymptotic covariance ma-

trix. The lower Cramer-Rao bounds for the asymptotic estimates of θ and τ 2 are

then written as

Var(θ̂2ML) =

(
K∑
i=1

1

(σ̂2
i + τ 2)

)−1

(1.14)

Var(τ̂ 2ML) = 2

(
K∑
i=1

1

(σ̂2
i + τ 2)2

)−1

. (1.15)

1.2.2.2 Restricted maximum likelihood method

As it is well known, the maximum likelihood estimation of the variance is biased

under finite sampling. Therefore, Laird and Ware proposed the REML method

for linear mixed models [13]. Under the meta-analysis setting of random effects,

the maximum likelihood function contains an additional term, −1

2
log
∑

(σ̂2
i +

τ 2)−1, as

l(θ, τ 2)REML = −1

2

K∑
i=1

[
log(σ̂2

i + τ 2) +
(θ̂i − θ)2

σ̂2
i + τ 2

+ log
K∑
i=1

1

σ̂2
i + τ 2

]
. (1.16)

In this subsection, the suffix, REML, represents the restricted maximum like-

lihood method. In a balanced model, σ̂2
i = σ̂2

1 = const, θ̂REML = K−1
∑K

i=1 θ̂i

and

τ̂ 2REML =
1

K − 1

K∑
i=1

(θ̂i −
1

K

K∑
i=1

θ̂i)
2 − σ̂2

1. (1.17)

Note that although the REML estimator of the variance is unbiased in the bal-

anced model (unlike the ML estimator Equation 1.11), the bias still remains in

an unbalanced model. On the other hand, the estimator of the true (population)
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mean (i.e., hyperparameter θ) in the unbalanced model can be calculated as

θ̂REML =

∑K
i=1wREML,iθ̂i∑K
i=1wREML,i

, (1.18)

where wREML,i =
1

σ̂2
i + τ̂ 2REML

. The estimator of θi is obtained by plugging the

REML estimator into Equation 1.5, yielding an approximation known as empiri-

cal Bayes. However, further consideration is needed because the empirical Bayes

approximation fixes the hyperparameters θ and τ 2, ignoring their uncertainties

[11].

1.2.2.3 Full Bayesian method

The full Bayesian method incorporates the uncertainty in the hyperparameters

θ and τ 2 [11, 14].

The inference of the true (population) mean θ (and the mean from each

study θi) can be calculated by integrating out the unknown parameters. For this

purpose, we define θ ∼ N(0, a2) and τ−2 ∼ gamma(c, d), and denote the joint

posterior distribution of θ, θ1, . . . , θK , τ
2 as [11];

p(θ, θ1, . . . , θK , τ
2|θ̂1, . . . , θ̂K , σ̂2

1, . . . , σ̂
2
K) ∝

K∏
i=1

p(θi|θ̂i, σ̂2
i )p(θi|θ, τ 2)p(θ)p(τ 2).

(1.19)

The inferences are made from this posterior distribution as

θ̂FB = E(θ|θ̂1, . . . , θ̂K , σ̂2
1, . . . , σ̂

2
K)

=

∫
θ

∫
θi

∫
τ2
θ p(θ, θ1, . . . , θK , τ

2|θ̂1, . . . , θ̂K , σ̂2
1, . . . , σ̂

2
K)dθidτ

2dθ.

(1.20)

The suffix, FB, represents the full Bayesian method. Typically, this calculation

cannot be written in closed form unless the prior distribution and the likelihood

are conjugate, but the posterior distribution can be inferred by Monte Carlo

method or some other methods [10, 15].
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1.2.2.4 Moment estimation method

To derive an estimator of τ 2, DerSimonian and Laird [10] applied a moment

estimation method using the statistics from a homogeneity test (Equation 1.29,

detailed in the next section), which is given by

τ 2MM = max

0,
Q− (K − 1)∑K

i=1wi −
∑K

i=1w
2
i∑K

i=1wi

 , (1.21)

where wi =
1

σ̂2
i

. The suffix, MM means the moment estimation method.

The estimator was then obtained as follows:

θ̂MM =

∑K
i=1wMM,iθ̂i∑K
i=1wMM,i

, (1.22)

where wMM,i =
1

σ̂2
i + τ̂ 2MM

.

1.2.3 Multivariate random effect meta-analysis

Recently, multivariate meta-analysis with fixed or random effects has received

much attention, despite being more complex than univariate meta-analysis. Mul-

tivariate meta-analysis can jointly analyze multiple and correlated outcomes. The

clinical applications of multivariate meta-analysis are detailed in Riley et al. [16].

Here I focus on the random effects multivariate meta-analysis model because of

its popularity among practitioners.

For simplicity, let us consider K studies (i = 1, . . . , K), each with two

outcomes of interest. In the ith study, denoted by θ̂ij and σ̂
2
ij the jth effect size

(j = 1, 2) and its associated variance, respectively. Both summary statistics, θ̂ij

and σ̂2
ij, are assumed to be known and θ̂ij is an estimate of the true effect size θij.

In addition, θij is assumed to independently follow a certain distribution with

overall (or mean) effect size θ∗j and between-study variance τ 2j (where both θ̂ij

and θij follow normal distributions) [17].
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Under these settings, the random effects meta-analysis model becomes

θ̂i =

θ̂i1
θ̂i2

 ∼ N

θi1
θi2

 ,

 σ̂2
i1 σ̂i1σ̂i2ρW,i

σ̂i1σ̂i2ρW,i σ̂2
i2

 (1.23)

θi =

θi1
θi2

 ∼ N

θ =

θ1
θ2

 ,

 τ 21 τ1τ2ρB

τ1τ2ρB τ 22

 , (1.24)

where Equation 1.23 and Equation 1.24 represent the within-study and between-

study structures, respectively, and ρWi and ρB are the respective within-study

and between-study correlations. Thus, by aggregating Equation 1.23 and Equa-

tion 1.24, we can use the marginal distribution of θ̂i1 and θ̂i2 for the inference on

θj and ρj, j = 1, 2 (note that σ̂2
ij is assumed as a known constant), that is

θ̂i1
θ̂i2

 ∼ N

θ1
θ2

 ,Vi =

 σ̂2
i1 + τ 21 σ̂i1σ̂i2ρW,i + τ1τ2ρB

σ̂i1σ̂i2ρW,i + τ1τ2ρB σ̂2
i2 + τ 22


(1.25)

The log restricted likelihood of θ1, θ2, τ
2
1 , τ

2
2 , ρB is given by

l(θ1, θ2, τ
2
1 , τ

2
2 , ρB)

= −1

2

[
log(|

K∑
i=1

V −1
i |) +

K∑
i=1

{
log |Vi|+ (θ̂i − θ)TV −1

i (θ̂i − θ)
}]

(1.26)

This likelihood can be maximized by the REML method as described in Van

Houwelingen et al. and others [18, 12, 16]. However, the REML method has

two major drawbacks [19, 16, 17, 20]: 1) knowledge about ρB [19, 20] is rarely

available and 2) the estimated covariance matrix may be singular, leading to

biased estimates of the standard errors and confidence intervals [17, 20].

1.2.3.1 Riley’s method

Riley et al. [20] proposed a new method that overcomes the above-mentioned

problems. This method requires no knowledge of the correlations among the
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outcomes ρWi, and probably avoids the convergence problem when the covariance

matrix is singular.

Instead of using τ 2i , ρWi, and ρB, Riley et al. [20] introduced a new cor-

relation parameter of synthesis ρS, which accounts for the marginal correlation

between θ̂i1 and θ̂i2. The method is given by

θ̂i =

θ̂i1
θ̂i2

 ∼ N

θ =

θ1
θ2

 ,Ψi =

 σ̂2
i1 + ψ2

1 ρS
√

(ψ2
1 + σ̂2

i1)(ψ
2
2 + σ̂2

i2)

ρS
√

(ψ2
1 + σ̂2

i1)(ψ
2
2 + σ̂2

i2) σ̂2
i2 + ψ2

2

 ,

(1.27)

where ψ2
j represents a new variation added to the within-study variation and ρS

is a correlation parameter for the marginal distribution (in general, ρS and the

between-study variance τ 2j are not equivalent). To infer θ1, θ2, ψ
2
1, ψ

2
2, and ρS,

they applied the restricted maximum likelihood method to the log likelihood,

defined as

l(θ1, θ2, ψ
2
1, ψ

2
2, ρS)

= −1

2

[
log(|

K∑
i=1

Ψ−1
i |) +

K∑
i=1

{
log |Ψi|+ (θ̂i − θ)TΨ−1

i (θ̂i − θ)
}]

.

(1.28)

1.2.4 Quantifying heterogeneity

The studies included in meta-analysis generally differ in their designs and im-

plementations as well as in their sample sizes, interventions and outcomes. Such

methodological heterogeneity leads to value discrepancies in the reported results

of collections of studies, a condition called heterogeneity [5, 21]. Heterogene-

ity in meta-analysis complicates the synthesis and its implication, impairing

researchers’ ability to draw overall conclusions. If significant variability is de-

tected, researchers should seek potential moderate variables and try to explain

this variability.

The consistency of the results from each study can be visualized by useful

tools: a forest plot or some other graphical method [21, 22, 23]. L’abbe plots
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can also help to detect unusual studies when each reported result is formatted as

a 2 × 2 table [24]. When the homogeneity assumption seems plausible (or fails

to reject the null hypothesis of homogeneity in the following statistical test for

heterogeneity), researchers usually apply a fixed-effects model because the dif-

ferences in the estimated effect sizes among the studies arise only from sampling

error. On the other hand, when the homogeneity assumption seems unrealistic,

a random effects model is more appropriate [25].

Traditionally, statistically significant heterogeneity among studies has been

determined by Cochran’s Q statistic [26, 27]. As a chi-squared test, the Q test is

easily computed by summing the squared deviations of the estimates, weighting

the contribution of each study by its inverse variance.

Q =
K∑
i=1

wi(θ̂i − θ̂meta)
2, (1.29)

where the weights wi are defined in Equation 1.2 and θ̂meta means the estimates

from meta-analysis by using methods explained above. Under the null hypothesis

of effect-size homogeneity, the Q statistics follow a chi-squared distribution with

K − 1 degrees of freedom (where K is the number of studies). Thus, if the Q

statistic exceeds the critical value for a given significance level α (ex. = 0.05 or

0.01), the null hypothesis is rejected and the heterogeneity among the studies

is concluded as statistically significant. However, several studies have reported

flaws in the Q statistic. Theoretical proofs have established that because its

statistical power depends on the number of studies, the Q statistic performs

poorly at detecting true heterogeneity when few studies are included in the meta-

analysis, and detects low heterogeneity among many studies [8, 28]. Second, the

Q test only informs us of heterogeneity among included studies, but does not

report the extent of such heterogeneity [25].

Heterogeneity among the studies in a meta-analysis can also be evaluated

by the H2, R2 and I2 measures, proposed by Higgins and Thompson [29]. Here,

I focus on I2 because this measure is popular among practitioners. The I2

index quantifies the degree of heterogeneity in included studies by dividing the

difference between the actual and expected Q values by the actual Q value (where
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the expected Q value is the number of degrees of freedom K − 1) [25]:

I2 =


Q− (K − 1)

Q
∗ 100 if Q ≥ K − 1

0 if Q < K − 1.

(1.30)

This index is easily interpreted as the proportion of the total variation that

can be explained by the between-studies variance:

I2 =
τ̂ 2

τ̂ 2 + σ̂2
. (1.31)

In other words, the I2 index is the percentage of the heterogeneity (between-

study variance) in the total variability. Higgins and Thompson proposed a clas-

sification criterion for I2 values, by which practitioners can easily interpret the

magnitude of the heterogeneity (25%, 50%, and 75% represent low, medium, and

high heterogeneity, respectively) [29]. They also theoretically derived the confi-

dence intervals by alternatively calculating the H2 index as H2 =
Q

K − 1
. The

H2 index and I2 indexes are closely related through

I2 =
H2 − 1

H2
. (1.32)

Therefore, we can calculate the confidence intervals of H2 instead of those

of I2. Higgins and Thompson [29] assumed that the natural logarithm of H has

a standard normal distribution; thus the confidence intervals are given by

exp
{
log(H)± ‖zα/2‖SE(log(H))

}
, (1.33)

where ‖zα/2‖ is the quantile of the standard normal distribution (which depends

on the significance level α) and SE means the standard errors. They also esti-

mated

SE(log(H)) =


1

2

log(Q)− log(K − 1)
√
2Q−

√
2K − 3

if Q > K

√
1

2(K − 2)
(1− 1

3(K − 2)2
) if Q ≤ K.

(1.34)
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The confidence interval of I2 is obtained by combining Equation 1.32, Equa-

tion 1.33 and Equation 1.34.

However, although the I2 index is widely recognized as an alternative Q

statistic, it performs with low power when the number of studies is small, as

demonstrated in Monte Carlo simulations [25].

1.3 Meta-analysis of regression results

Regression analyses, particularly multiple regressions, are fundamental statisti-

cal tools for understanding the associations between a variable of interest and

its outcome. For example, Elmore and Woehlke [30] showed that, from 1978 to

1987, approximately 20% of the articles published in several education journals

(Educational Researcher, American Educational Research Journal, and Review

of Educational Research) used a regression approach to associate the wages, ed-

ucational histories and quality of teachers and their test scores. This trend has

continued in recent years. Another example is the meta-analysis of clinical pre-

diction models in medicine. Clinical prediction models have been increasingly

used to assess various diseases. Systematic reviews have reported 102 risk pre-

diction models for cardiovascular disease [31] and 25 models for detecting the

risk factors of type 2 diabetes (including 11 logistic regression models) [32].

Almost all sophisticated research designs and statistical analyses estimate

the true effect size of interest by controlling or partitioning out the effects of other

variables. However, methodologies for synthesizing complex regression models

have not kept pace with the exploding supply of results and the increasing de-

mand for combined research [33]. In practice, most meta-analyses ignore such

studies and instead summarize the bivariate relationships, measured by indices

such as correlations and standardized mean differences. Consequently, many of

the articles reporting recent advances and efforts have been largely ignored.
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1.3.1 Methods for synthesizing regression results

Now I review some proposed methods for combining regression results. Es-

pecially, the method of Becker and Wu has motivated our extended synthesis

method [33].

In this subsection, I presume that K studies are involved in the meta-

analysis. For each study i, I define an estimated coefficients vector β̂i, (i =

1, . . . K) and its covariance matrix Cov(β̂i).

1.3.1.1 Summaries of t statistics

Walker and Saw [34] and Stanley and Jarel [35] newly proposed the t statistics

for synthesizing regression results. The t statistic, defined as the slope divided by

its standard error, is provided in most popular statistical packages. Presumably,

this metric avoids the problem of different scales of variables across candidate

studies. However, this method is not without problems [33]. Most seriously, the

t statistic includes not only the magnitude of the effect size, but also the sample

size and model precision. Therefore, the t statistic is vulnerable to changes in the

estimates and their standard errors, both of which easily occur under changes of

the sample size and/or residual variation of the regression.

When evaluating the impact of political advertisements, Lau et al. [36]

synthesized the t statistics to express the mean difference between groups. The

rationale for their approach was tackling the large discrepancy among the can-

didate models. They found that 1/4 of studies were based on ordinary least

squares methods or logistic regression. By using the t statistic, Lau et al.

could accommodate the different models across the studies. The t statistic is

also employed in Timm’s index; the so-called ubiquitous effect size [37]. Given

Y = (Y1, Y2, . . . , Yn)
T , an n×p design matrix X = (1,X2, . . . ,Xp−1) and a p×1

parameter vector β = (β0, β1, . . . , βp−1), we construct a linear model for Y as

Y = Xβ + e, where e ∼ N(0, σ2). Suppose that we are interested in the effect

size of the coefficient β1. In this case, we can write Cβ = (0 1 0 . . . 0)β = β1.

The Timm’s index incorporates this vector function into the hypothesis test
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H0 : Ψ = Cβ = ϕ0. The Timm’s index is written as

∆T =

{
(Ψ− ϕ0)

T (C(XTX)−1CT )−1(Ψ− ϕ0)
} 1

2

σ
√

(n− p) + q + 1
, (1.35)

where C is a q×p matrix consisting of linear combinations of β0 to βp−1, and q is

the rank ofC. This index relaxes the dependency of the t statistics on the sample

size by incorporating a multiplier that mitigates the influence of the sample size.

However, Timm provided no detailed method for combining the index.

1.3.1.2 Synthesis of dose response models

Greenland [38], Greenland and Longnecker [39], and Shi and Copas [40] con-

ducted a meta-analysis of the regression coefficients in dose-response models.

Mainly, they were interested in the positive associations between risks and expo-

sure levels (for example, between the number of cigarettes smoked per day and

the risk of lung cancer). The results of such studies are typically synthesized by

random effects modeling weighted by the within-study variance. The regression

models in various studies tend to have a common covariate (dose level), so the

regression coefficients are easily synthesized by multivariate meta-analysis. How-

ever, the exposure levels of the subjects are frequently grouped into categories

(such as high, middle, and low dose groups) or intervals rather than individually

recorded, which confounds the meta-analysis.

To tackle this problem, Shi and Copas [40] treated dose as a continuous vari-

able with observable intervals. They proposed a maximum likelihood method for

estimating the mean dose response relationship and the between-study variance

structure of the regression coefficients. They also proposed a homogeneity test

for the dose response curve based on likelihood ratios. They assumed that if

there exists a single covariate (a variable indicating the exposure level), every

available dose response model is a bivariate regression model. They argued that

their method approximates the adjusted odds ratio if the influence of the other

adjusted covariates is sufficiently small. However, they did not present an ex-

act methodology, which would synthesize such regression models without any

approximations.
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1.3.1.3 Synthesis with IPD

Multivariate meta-analysis can synthesize the correlated effects from multiple

outcomes. Such joint synthesis improves the efficiency of the meta-analysis, be-

cause the multivariate meta-analysis can borrow strength from other various

correlated outcomes [41]. Multivariate meta-analysis is frequently used to syn-

thesize regression coefficients because if the fitted models in several studies yield

the same regression outcomes, the coefficients of those models can be correlated

and the each regression result can be used to borrow its strength [41]. Unfortu-

nately, the within-study correlation [19, 42, 20, 43], which is required to fit the

multivariate meta-analysis model, is rarely reported. However, the within-study

correlation can be calculated from the IPD of each study (if available).

Multivariate meta-analysis based on IPD (IPD meta-analysis) is imple-

mented in two frameworks: 1) the familiar two-stage estimation framework

[44, 45], and 2) one-stage estimation [46, 47], a new inference method that con-

structs more exact likelihood functions, but which is limited to special cases.

I first explain the two-stage estimation method. In the first stage, each study

is separately analyzed by its IPD; in the second stage, the aggregated first-stage

results are subjected to a standard multivariate meta-analysis. The first stage of

IPD meta-analysis fits each regression result to a common model with a covariate

set available in every IPD. The fitted model should be carefully chosen by variable

selection methods and model building. After fitting the common model to each

IPD, the regression results of study i (estimated coefficients β̂i(i = 1, . . . K) and

their covariance matrix Cov(β̂i)) are stored for the second-stage analysis.

At the second stage of IPD meta-analysis, the multivariate meta-analysis

introduced in 1.2.2 is implemented. For example, assume that two covariates are

commonly available in each IPD, and that each IPD can be fitted to a common

linear model Yi = α0i + α1iXi1 + α2iXi2 + ei. The coefficients and covariate

distributions are assumed to differ among the models (indicated by the subscript

i in the coefficients). In these settings, the second-stage IPD meta-analysis of
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the regression coefficients (in the ordinary case) is given by

β̂i =


β̂i0

β̂i1

β̂i2

 ∼ N



βi0

βi1

βi2

 ,Cov(β̂i)

 (1.36)

βi =


β̂i0

β̂i1

β̂i2

 ∼ N



β0

β1

β2

 ,


τ 20 τ0τ1ρB01 τ0τ2ρB02

τ0τ1ρB01 τ 21 τ2τ3ρB12

τ0τ2ρB02 τ2τ3ρB12 τ 22


 . (1.37)

The ML or REML method easily infers the parameters of interest such as

the mean (global average) β0, β1, β2 and structure τ0, τ1, τ2, ρB01, ρB02, ρB12 of a

random effect. However, although the random effect model can incorporate study

heterogeneity, it obscures the objective of a meta-analysis of regression results

because it computes the global average effect, which may not be identical across

studies. Thus, what the average effect means in a practical setting requires

careful consideration [40]. Moreover, an IPD meta-analysis easily obtains the

within-study correlation (i.e., Cov(β̂i)), but in most cases, the IPD is unavail-

able and the covariance matrix of coefficients is not reported. Therefore, it is

necessary to impute or infer the missing elements of the unreported covariance

matrix of coefficients from the available information. The missing elements of the

covariance matrix are frequently the off-diagonal elements (i.e., the correlations

among the coefficients).

The second framework is the one-stage method for IPD meta-analysis, which

does not require the within-study correlations. Assuming that the outcomes are

mutually exclusive or have ”is subset of” relationship, Trikalions et al. [47] proved

that the number of events in a single study can be modeled using multinomial

distributions. They represented the heterogeneity among studies by random ef-

fects, and constructed the likelihood. They noted several advantages of this one-

stage estimation method; 1) it is available in several statistical software packages

[46, 48], 2) the multinomial distribution models the exact structure, avoiding

the need for a large-sample approximation to the normal likelihood (as in stan-

dard multivariate meta-analysis), and 3) it requires no prior knowledge of the

within-study correlation. However, this method is limited to meta-analyses of
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count data, and is inapplicable to regression coefficients because it assumes an

underlying multinomial distribution of the number of events [47]. Therefore, this

method is inappropriate for my present study.

1.3.1.4 Generalized least squares approach

Becker and Wu proposed a synthesis method based on generalized least squares

(GLS), which was first outlined by Raudenbush et al. for calculating standardized

mean differences [33, 49].

First, the K sets of coefficients reported in meta-analysis studies are stacked

β̂ = (β̂T
1 , . . . , β̂

T
K)

T and a blockwise diagonal matrix is constructed from the

reported covariance matrices of coefficients Σ =


Cov(β̂1) . . . 0

...
. . .

...

0 . . . Cov(β̂K)

.

Then, assuming that the K studies have a common set of P covariates and

that each slope vector β̂i estimates the true parameter β, the model is expressed

as

β̂ =



β̂10

β̂11
...

β̂1P
...

β̂KP


= Wβ + e =



1 0 . . . 0

0 1 . . . 0
...

...
...

...

0 0 . . . 1
...

...
...

...

1 0 . . . 0

0 1 . . . 0
...

...
...

...

0 0 . . . 1



∗


β0

β1
...

βP

+ e, (1.38)

where the design matrix W is a K-times piled identity matrix composed of 0s

and 1s, and e follows a normal distribution with mean zero and variance Σ. By

the GLS technique, β and its covariance are estimated as

β̂∗ = (W TΣ−1W )−1W TΣ−1β̂ (1.39)
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and

Cov(β̂∗) = (W TΣ−1W )−1, (1.40)

where β̂∗ represents the synthesized estimator.

The GLS approach seems theoretically appealing because it handles the un-

equal variances of effects in different-sized studies. In addition, by recognizing the

error term as the within-study variance, this approach formulates a multivariate

meta-analysis with fixed effects. Thus, we can acquire new insight using GLS-

based statistical tools, which have accumulated discussions on heteroscedasticity

and robust methods.

1.4 Motivation studies

In this section, I introduce two studies whose approaches have motivated my

study.

First, my study extends the work of Becker and Wu [33], which was men-

tioned in section 1.3.1.4. Their GLS-based approach to synthesizing regression

results is a variant of multivariate meta-analysis with fixed effect. However, this

approach is limited in practice for two reasons: 1) in practical situations, the

covariate sets should vary among studies and 2) the covariance matrices of co-

efficients are supposed to be reported, which is rarely the case. Regarding the

first problem (i.e., different sets of covariates), if the covariates in models are

imbalanced, their associated coefficients are difficult to synthesize because their

interpretation depends on which covariates are included in each regression model.

Previous attempts to solve this problem are discussed in the next section. The

second limitation of Becker and Wu’s study (unreported covariance matrices of

coefficients) is similar to the problem of unreported within-study correlations,

which is frequently discussed in researches of multivariate meta-analysis. Stan-

dard multivariate meta-analysis assumes that the within-study correlations are

known or can be deduced from the IPDs. Previous studies relevant to this issue

are discussed in section 2.5. In addition, although there are several methods for

recovering or inserting elements in the unknown covariance matrix of coefficients,
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there are no directly applicable techniques for recovering the exact values of un-

reported covariate correlations from the summary statistics; all such methods

require the IPD. The present study extends Becker and Wu’s method [33] by

recovering the correlation estimates. The recovering procedure is presented in

this thesis.

Second, my work was motivated by Debray et al.’s study [50]. These authors

newly conceptualized the synthesis of prediction models, and evaluated several

approaches to aggregating previously published prediction models with a new

IPD. Several different approaches were applied to 15 datasets of traumatic brain

injury, and to prediction models of deep venous thrombosis. They concluded

that synthesizing the prediction models improves the discrimination ability and

calibration of the final models under various scenarios. However, they did not

consider the imbalance of covariates in each model; that is, they gave identical

interpretations of the regression coefficients in different models, even when the

covariate sets differed among the models. In this case, the differences in the co-

variance sets must be incorporated as an additional term in the synthesis model.

That is, the interpretation of the coefficients depends on the covariates included

in the model.

1.5 Statistical methodologies for missing covari-

ates in meta-analysis

In the previous section, I mentioned that sets of covariates may vary across

candidate models. As in the ordinary misspecification problem, ignoring this

differences biases the synthesized results because the missing covariates might be

correlated. In this study, the bias is regarded as an omitted variable bias. For

example, let us assume 6 studies with different covariate sets having a nested

and monotone missing structure (i.e., studies 1 and 2 analyze the full model, and

the remaining studies analyze covariate subsets of the full model). As mentioned

elsewhere, if the full models (studies 1 and 2) represent the true model, the other

models are misspecified and their coefficients will differ from the true parameters
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of interest in the full model (i.e., α0, α1, α2, α3, α4).

Study 1 Y1 = α01 + α11X11 + α21X21 + α31X31 + α41X41 + e1

Study 2 Y2 = α02 + α12X12 + α22X22 + α32X32 + α42X42 + e2

Study 3 Y3 = β03 + β13X13 + β23X23 + β33X31 + e3

Study 4 Y4 = γ04 + γ14X14 + γ24X24 + e4

Study 5 Y5 = γ05 + γ15X15 + γ25X25 + e5

Study 6 Y6 = δ06 + δ16X16 + e5

In this example, most researchers would consider the full model (studies 1 and 2)

as the most powerful and informative model; thus, the full model can reasonably

be regarded as the true model.

As a more practical example, consider the following non-nested structure of

the covariate sets:

Study 1 Y1 = α01 + α11X11 + α21X21 + α31X31 + α41X41 + e1

Study 2 Y2 = α02 + α12X12 + α22X22 + α32X32 + α42X42 + e2

Study 3 Y3 = β03 + β23X23 + β33X33 + β43X41 + β53X51 + e3

Study 4 Y4 = γ04 + γ24X24 + γ44X44 + γ64X64 + e4

Study 5 Y5 = γ05 + γ25X25 + γ45X45 + γ64X64 + e4

Study 6 Y6 = δ06 + δ16X16 + e5

In both cases, it is necessary to determine the true model, and aggregate the

regression results into that model. Therefore, I strongly recommend determining

the most appropriate model as true model in advance. The rest of this section

focuses on meta-analyses of regression results with missing variables, as indicated

in the above examples.

A naive approach to this problem is a multivariate meta-analysis on studies

with common sets of covariates, excluding all other studies. In the Simulation

section, the naive method provides a comparison group for checking the perfor-

mance of the proposed method. Theoretically, the naive approach introduces
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no bias to the synthesized results, but its efficiency is degraded by ignoring the

indirect information from studies with different types of covariate sets.

The second simple approach was proposed by Debray et al. [50]. They

adopted a mean or zero imputation method with large variance (= 100) for miss-

ing coefficients. They compared this approach, which they called uninformative

regression coefficients, with the above naive method on studies with full sets of

covariates. However, unless the omitted covariates have little influence on the

remaining covariates or outcomes, this imputation method biases the synthesized

results. Note that a package mvmeta in both R and STATA include functions

treating this missing issue; inputna function replaces missing covariances with 0,

and missing variances with the largest observed variance. Under the assumption

of missing at random (MAR), Wu and Becker proposed the factored likelihood

method to calculate synthesized standardized slope by using sweep operator [51].

They put relatively strong assumption that their are only monotone missing

structure and that data rom each study are standardized with mean zero and

one standard deviation for each variables. But under the settings of fixed-effect

model and monotone missing structure, their method can be viewed as variant

of the zero imputation method which is frequently used in R and STATA like

above [51].

Here I present a linear regression, but when the meta-analysis synthesizes

models with nonlinear or GLM formulations, the omitted covariates should exert

a nonlinear influence [52, 53, 54, 55]. In this study, such cases are treated as

special examples of a logistic regression model.

The other approach are based on the use of IPD. Fibrinogen Studies Collabo-

ration (FSC) proposed a multivariate meta-analysis approach to borrow strength

from partially adjusted results based on IPD [56]. This approach was demon-

strated in practice by Riley et al. [44]. For simplicity, the FSC considers two

types of Cox regression models, given by

Full proportional hazard model λ(t) = λf exp(βf
1X1 + β2X2)

Partial proportional hazard model λ(t) = λp exp(βp
1X1),
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where λ is the hazard function and t indicates time [57]. In the full model, the

superscript f indicates quantities that are fully adjusted for X1 and X2, whereas

the superscript p indicates quantities that are partially adjusted without the

covariates X2. This notation emphasizes the differences in the coefficients of X1

(i.e., β1) and in the baseline hazard model. Both models are assumed to be fitted

to a cohort and to permit estimation of the coefficients. Lastly, assume that we

seek the influence of the covariate X1; that is, β1 is the parameter of interest.

For a given cohort, the FSC method assumes thatβ̂f
1

β̂p
1

 ∼ N

βf
1

βp
1

 ,

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 , (1.41)

where σ2
1, σ

2
2, and ρ are known parameters. This situation mirrors the usual

univariate meta-analysis, in which the within-study variance is assumed fixed

and known. However, as ρ is rarely reported, estimating its inference presents

an inherent difficulty. The FSC method estimates ρ by a Taylor’s expansion, as

described below.

Second, the FSC method assumes that βf
1 and βp

1 have underlying distribu-

tions (exerting a random effect on the parameters). Therefore, these parameters

should vary among cohorts asβf
1

βp
1

 ∼ N

βf
βp

 ,

 τ 21 κτ1τ2

κτ1τ2 τ 22

 . (1.42)

After calculating the marginal distribution by Equation 1.41 and Equa-

tion 1.42, we obtain the following standard bivariate meta-analysis model:β̂f
1

β̂p
1

 ∼ N

βf
βp

 ,

 σ2
1 + τ 21 ρσ1σ2 + κτ1τ2

ρσ1σ2 + κτ1τ2 σ2
2 + τ 22

 , (1.43)

The number of models K includes the numbers of full (i = 1, . . . , k∗) and partial

(i = k∗ + 1 . . . , K) models. Under these settings, the log likelihood function is
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obtained as

L(βf , βp, τ
2
1 , τ

2
2 , κ) =

k∗∑
i=1

log fi(β̂
f
1 , β̂

p
1) +

K∑
i=k∗+1

log fi(β̂
p
1), (1.44)

where fi(β̂
f
1 , β̂

p
1) and fi(β̂

p
1) are obtained from Equation 1.43. This calculation is

easily implemented in standard meta-analysis techniques such as REML.

The FSC study also proposed two inference methods for estimating the

unknown correlations in each cohort; 1) nonparametric bootstrapping and 2)

Taylor expansion. The first is the simplest and most intuitive approach, but

is slow. The bootstrap sample is taken from participants in the IPD, which

provides the information forX2 with replacement [58]. At each bootstrap sample,

the paired estimates β̂f∗
1 and β̂p∗

1 are stored and used to inference the bootstrap

estimates ρb. Inference by Taylor’s expansion is relatively analytical and yields

an approximation only. This procedure is essentially a variant of Steyerberg et

al.’s method [59, 60]. The FSC method assumes a linear relationship between β̂f
1

and β̂p
1 ; namely, β̂p

1 = β̂f
1 + β̂2γ̂, where γ̂ are the estimated regression coefficients

of X2 on X1. This linear relationship indicates that

Cov(β̂f
1 , β̂

p
1) = Cov(β̂f

1 , β̂
f
1 + β̂2γ̂) = Var(β̂f

1 ) + Cov(β̂f
1 , β̂2γ̂).

As the Y |X1, X2 andX2|X2 are independent, (β̂
f
1 and β̂2 are functions of Y |X1, X2

and γ̂ is a function of X2|X1), Cov(β̂
f
1 , β̂2γ̂) = Cov(β̂f

1 , β̂2E[γ̂]). Using the ap-

proximation E[γ̂] ≈ γ̂, the covariance of the coefficient between the full and

partial model is approximated as

Cov(β̂f
1 , β̂

p
1) ≈ Var(β̂f

1 ) + Cov(β̂f
1 , β̂2)γ̂,

where the term on the right-hand-side is obtained from the cohort with full

covariates sets (i.e., the information of the cohort with covariateX2). The within-

study correlation ρa is calculated as

ρa =
Cov(β̂f

1 , β̂
p
1){

Var(β̂f
1 )Var(β̂

p
1)
} 1

2

.
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As mentioned above, the FSC developed IPD-based synthesis of regression

results. Additionally, Resche-Rigon et al. [61] adopted a multiple imputation

method with IPD to correct the omitted variable bias (in studies of missing

imputation, this omission is called systematic missing). Multiple imputation is

an attractive approach for handling missing data [62, 63, 64]; thus, it might

also be applicable to meta-analyses of different covariate sets across studies.

Several multiple imputation methods have been proposed for sporadically missing

covariates; that is, when the covariates are incompletely observed in each cluster

(referred to as partially observed covariates in meta-analysis) [61]. The first and

simplest approach is to separately impute the missing covariates within each

study. Another approach is to impute the missing covariates among all studies

within a single scheme. However, the hierarchical data structure (multilevel

data) in the meta-analysis setting must be carefully preserved in the imputation

procedure. To resolve this difficulty, Schafer and Yucel proposed a Gibbs sampler

for multiple imputation using multivariate linear mixed models [65]. Van Buuren

introduced the multiple imputation by chained equation (MICE) technique for

such multilevel data, which is based on the variable-by-variable method [66].

They employed linear random effect models and developed a Gibbs sampler of

the posterior distribution of the missing data.

To cope with systematically missing covariates (i.e., varying covariate sets

across studies), Resche-Rigon et al. [61] employed multilevel random effects

models in an extended MICE approach. They considered the following Cox

model with random effects on the intercept and slope:

λi(t) = λ0(t) exp(
k∑

r=1

βrxir +
l∑

r=1

urxir + u0), (1.45)

where λi(t) denotes the hazard function at time t in study i = 1, . . . , K. Some

covariates are assumed as missing. The existing covariates are ordered under

the rule that their coefficients l ≤ k have underlying distributions (i.e., random

effects). The fixed coefficients are denoted βr, and ur and u0 are random effects

with u ∼MVN(0, τ) (where MVN denotes the multivariate normal distribution).

The rth covariate is assumed to be systematically missing the continuous variable

xir. Resche-Rigon et al. presumed heterogeneity in both the variable means and
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the associations between variables. Therefore, they rationalized that the linear

mixed-effect model was an appropriate imputation model. This mixed model

allows random intercepts and random effects on covariates; thereby, the imputed

values can be estimated from the distribution inferred from other studies.

Let xir be a ni × 1 vector in study i. The following linear relationship is

assumed:

xir = Wirγir + Zirbir + eir, (1.46)

whereWir is an ni×pmatrix representing the fixed effect of p covariates. Included

in Wir are other covariates xis(s 6= r) and the outcome functions. γir is a p × 1

vector of fixed-effect parameters, Zir is a ni × q matrix representing the random

effect, and bir ∼ N(0,Ψr) is a q × 1 vector of random effects (Ψr is a q × 1

covariance matrix embodying the normal distribution of the random effect), eir ∼

N(0, σrI) is a ni×1 vector of residuals, and σr is the residual variance parameter.

Under these settings and assuming that data are MAR, proper imputation is

performed in the following steps:

1. Calculate the MLEs of the parameters γ̂r, Ψ̂r, σ̂r in the imputation model,

using the information from studies including the covariate xir

2. Sample γ∗r from the distribution N(γ̂r,Var(γ̂r|Ψ̂r, σ̂r))

3. Sample Ψ∗
r, σ

∗
r from the distribution N((Ψ̂r, σ̂r),Var(Ψ̂r, σ̂r))

4. Sample b∗ir from the distributionN(0,Ψ∗
r) of study i, which is systematically

missing covariate xir

5. Sample x∗ir from the distribution e ∼ N(0, σ∗
r) and construct the equation

x∗ir = Wirγ
∗
ir + Zirb

∗
ir + e∗ir

for study i with systematically missing covariate xir.

The MAR assumption means that whether or not the xir are systematically

missing from a study is independent of xir itself, and conditional on the observed
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data in that study. More precisely, whether an xir is systematically missing is

not determined from the mean of that variable or its associations with other

variables in the study. For selecting Wir, the matrix should include all covariates

and outcomes [63, 67]. Especially, the outcome of the analysis model (the target

model of the research) should be included in the imputation model [68]. The

selection of Zir is more complicated. Resche-Rigon et al. [61] proposed the

following 3 models for inferring Zir:

• Model 1: No random effect model (i.e., Zir = 0)

• Model 2: A random intercept model (i.e., Zir includes only one constant

term)

• Model 3: Model 2 plus a random effect on some of the covariates

1.6 Statistical methodology for misspecified es-

timating functions

This subsection focuses on misspecified models and their influence on an esti-

mating function (for details, see [53]). Grace and Reid [53] extended the work of

White [55], who related misspecified models and maximum likelihood estimates

to Kullback-Leibler divergence. In this thesis, the regression coefficient synthesis

is based on the following theorems (1.6.1 and 1.6.2) and the techniques of [53].

Suppose that I wish to estimate a vector θ of interest from a sample y1, . . . ,yn (i =

1, . . . , n), drawn from the density {f(y; θ)}. The dimensions of yi and θ are d

and p, respectively. Given a p × 1 vector of estimating functions g(y; θ), θ̂n is

the root of the following equation:

Gn(θ̂n) =
1

n

n∑
i=1

g(yi; θ̂) = 0. (1.47)

Provided that the model conditions are regular and the estimating functions

are unbiased; that is, Eθ[g(yi); θ] = 0, θ̂n is consistent and asymptotically normal



Introduction 29

with an asymptotic covariance matrix. Such a matrix is known as the Godambe

information matrix as [69];

J−1(g) =

{
Eθ

[
∂g

∂θT

]}−1

EggT [gg
T ]

{
Eθ

[
∂gT

∂θ

]}−1

. (1.48)

Biased estimating functions (which are quite common) are denoted as h(y; θ)

(i.e., Eθ[h(yi); θ] 6= 0). The bias in h(y; θ) is most simply derived by modifying

the estimating function. To this end, Eθ[h(yi; θ)] is calculated as

Ĥn(θ) =
1

n

n∑
i=1

h(yi; θ)− Eθ[h(yi; θ)].

The calculation of Eθ[h(yi; θ)] poses the greatest difficulty. This term may

be approximated by methods such as bootstrapping [70] and the moment method

[71]. These methods are based on a theoretical result; namely that the unbiased-

ness of the estimating function relates to the conditional likelihood inference in

exponential families [71].

A more explicit inference method is illustrated in [53]. Instead, of Equa-

tion 1.47, let us assume that

Hn(θ) =
1

n

n∑
i=1

h(yi; θ) = 0, (1.49)

has a root θ̂∗n for any sample y1, . . . ,yn, and that

Eθ[h(y; θ
∗)] = 0 (1.50)

is satisfied for some θ∗. The root of Equation 1.50, θ̂∗n is a function of the true

parameter θ (i.e., θ̂∗n = k̂(θ)). If the inverse function

θ = k(θ∗) (1.51)

exists, a new estimator of θ can be constructed from Equation 1.51 as

ˆ̂
θn = k(θ̂∗n). (1.52)
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Next, I briefly explain the asymptotic results of this estimator; that is, the

consistency and asymptotic normality. Detailed proofs are provided in [53]. The

first theorem proves the convergence of the estimator θ̂∗n, which is derived from

estimating functions that may be biased. According to Grace and Reid [53],

Theorem 1.6.1.

Suppose h(y; θ) = {h1(y; θ), . . . , hp(y; θ)}T is a vector of functions such that

hj(y; θ)(j = 1, . . . , p) is a continuous function of θ for each y and a measurable

function of y for each θ. Also suppose that Θ is a convex and compact set and

that the true distribution of Y is F = F (y; θ0) with density function f(y; θ0)

for some θ0 ∈ Θ. Assume that mj() is an integrable function with respect to

F and that |hj(y; θ)| ≤ mj(y) for all y and θ. Let H(θ) = Eθ0 [h(Y ; θ)] and

Hn(θ) =
1

n

∑n
i=1 h(yi; θ). If H(θ) = 0 has a unique solution θ∗0 and Hn(θ) = 0

has a solution θ̂∗n, then

θ̂∗n
p−→ θ∗0 as n→ ∞

for almost every sequence Y1,Y2, . . . randomly sampled from F .

This theorem confirms the consistency property. The difference θ∗0 − θ0 can

be considered as the asymptotic bias sourced from the biased estimating functions

when estimating the true parameter θ. If the estimating function h(Y ; θ) is

unbiased, it is easily checked that θ∗0 = θ0 and that θ̂∗n is consistent for θ.

The next theorem relates to the asymptotic normality property. Under the

following settings

An(θ) =
1

n

n∑
i=1

∂{h(Yi; θ)}T

∂θ

A(θ) = Eθ0 [An(θ)]

Bn(θ) =
1

n

n∑
i=1

{h(Yi; θ)}{h(Yi; θ)}T

B(θ) = Eθ0 [Bn(θ)]

Cn(θ) = A−1
n (θ)Bn(θ)A

−T
n (θ)

C(θ) = A−1(θ)B(θ)A−T (θ),



Introduction 31

we can derive the following theorem (for a detailed proof, see [53]).

Theorem 1.6.2.

Assume that the conditions of the above theorem are satisfied and that hj(y; θ)

is a continuously differentiable function with respect to θ for each y. Further as-

suming that A(θ∗0) is nonsingular (i.e., A(θ∗0) is invertible), and imposing some

regularity conditions on hj(y; θ) and the model F , the following results are ob-

tained:

1.
√
n(θ̂∗0 − θ∗0)

d−→ N(0, C(θ∗0))

2. Cn(θ̂
∗
n)

p−→ C(θ∗0) and assume that k (defined in Equation 1.51), exists and

is differentiable with respect to θ,

√
n(θ̂0 − θ0)

d−→ N

(
0,

(
∂k(θ∗0)

T

∂θ

)
C(θ∗0)

(
∂k(θ∗0)

∂θT

))

Based on this theorem, we can construct the confidence intervals and hy-

pothetical test. The regulatory conditions in both of the above theorems are

similar to those of Van der Waart [72] (i.e., the first and second moments of h

and
∂h

∂θT
exist, the estimating functions are differentiable with respect to θ, and

the expectation and deviation are exchangeable). The compactness assumption

of Θ can be relaxed [53] as similarly described in Huber [73] and Walker [74].

1.7 Problems and Aims

Methods for summarizing simple indices such as correlations, proportions, and

mean differences have been studied and developed over the past 30 years. When

single indices adequately represent the study outcomes, the results are easily

synthesized by statistical packages. However, when combining the results of

regression models, especially multivariate regression models (which are generally

used to associate covariates with target outcomes of interest), methodologies for

synthesizing the results are insufficient and the results are not well understood.
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Considering increasing needs for statistical methodology of meta-analysis of

clinical prediction models, the development of such meta-analysis methodologies

is urgently needed. However, the regression settings present several difficulties.

In practice, each study commonly has various sets of covariates, because re-

searchers want to construct regression models on their own datasets with their

original covariates, and this leads to the case where the covariate sets will differ

among researches. Such variation causes differences in the estimable parameters

and their interpretations. Debray et al. [50] alleviated this problem by specifying

mean or zero imputation for the missing coefficients. However, their approach

biases the synthesized coefficients because the interpretation of the coefficients

depends on the covariates included in the models. On the other hand, con-

ventional meta-analysis generally excludes such studies from the synthesis, and

performs multivariate meta-analysis using only those studies with common co-

variates structures. However, such exclusion loses indirect information, degrading

the efficiency of the multivariate meta-analysis.

To resolve these difficulties, this study proposes a new meta-analysis method

for synthesizing regression coefficients. The method is designed for different sets

of covariates in a more general setting. The coefficients are synthesized by a

generalized non-linear least square (GNLS) method with bias correction terms.

The different sets of covariates among studies are considered as analogous to the

omitted variable bias (or the model misspecification problem). In this context,

the statistical handling of misspecified estimating functions (section 1.6) is a

suitable approach.



Chapter 2

Methods

In this chapter, firstly I describe the issue of omitted variable bias as a model

misspecification problem. Conceptually, omitted variable bias can be regarded

as an analogy of the issue of different covariates set in meta-analysis. Then,

I propose a new method for synthesis of coefficients using the derived omitted

variable bias formula. Lastly, I provide brief explanation about the properties of

our estimator such as a robustness and an asymptotic normality. To check our

methodology works, I provide several concrete examples such as a logistic model

and linear model.

2.1 Settings

I consider a similar situation as Debray et al. [50]; I can use reported summary

statistics from previous regression models with different sets of covariates and

at least one IPD from the publications or the authors themselves. Suppose that

each published prediction model has a subset of covariates in the IPD, and is

constructed for same prediction task. The number of published prediction models

is K (i = 1, . . . , K) and the ith article reports the estimated coefficients, θ̂i, and

the covariance matrix Σi = Cov(θ̂i) (at least its diagonal elements). Each θ̂i is a

column vector of possibly different length, θ̂i = (θ̂i1, . . . , θ̂ipi)
T , and pi represents

the differences of covariate sets among studies.

33
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To synthesize these regression coefficients, Debray et al. [50] utilize the mean

or zero imputation methods for omitted coefficients and apply the technique of

multivariate meta-analysis as described in the previous section. Another simple

approach is to apply multivariate meta-analysis using studies with common co-

variate sets [50]. However, the former approach leads to biased results and the

latter is not biased but leads to loss of efficiency by ignoring indirect informa-

tion from omitted studies. In order to improve these methods, I propose a new

method for synthesis of regression coefficients under different sets of covariates.

For simplicity, I assume the case where the true model has the full set of co-

variates in the IPD, which means the prior models have subsets of covariates and

are considered as under-specified models. Note that since the omitted variables

from the true models (full models) are correlated with the included variables,

the subset models are confounded and biased compared with true models. Our

method can be generalized to more complex cases where the previous models for

meta-analysis are a mixture of under- and over-specified models.

2.2 Omitted variable bias in GLM

According to the original work of GLM by Nelder and Wedderburn [75], the

outcome distribution is in an exponential family, such as the Gaussian, bino-

mial, Poisson, gamma, or inverse-Gaussian distributions. Subsequently, GLM

has been extended to multivariate exponential families (such as the multinomial

distribution) and non-exponential families (such as the two-parameter negative-

binomial distribution) [76]. This section will focus on the exponential family case

for simplicity, which can be written in general expression as

f(yi; θ) = exp

(
yiθ − κ(θ)

φ
+ c(yi, φ)

)
, (2.1)

where φ is the nuisance parameter (also called the dispersion parameter), θ is

the parameter of interest (called the natural parameter), c is the normalization

constant, and κ(θ) is the partition function. To convert from the mean parameter

(i.e., the expectation µ = E[Y ] of Y ) to the natural parameter (or the canonical



Methods 35

parameter), we can use a link function Ψ(),

θ = Ψ(µ),

which function is uniquely determined by the form of the exponential fam-

ily distribution. The term generalized linear model is used because covariates

X = (X1, . . . , Xm) (independent variables) are linearly connected to the linear

predictor η with the parameter of interest w = (w1, . . . , wm) as

η = Xw,

which w is the alternative parameter of interest, and η is connected through the

link function η = g(µ). When g = Ψ, it is called the canonical link function. For

example, the logistic regression case sets µi = g−1(ηi) = sigm(ηi), where sigm

represents the sigmoid function.

To derive the omitted variable bias, the unbiasedness condition of the es-

timating function can be employed [53] as briefly explained in the section 1.6,

whose approach is a generalized result of the landmark paper of White [55]. In

the meta-analysis framework, the idea of the omitted variable bias can work as

an analogy of different covariate sets, and due to this property it also works as a

representation of the incorporation of indirect information from prior models.

In the context of GLM, one of the candidate of estimating functions is

the score function. Firstly, here I introduce the score function for GLM. For

simplicity, I suppose the nuisance parameter φ is known and constant although

many theories remains true without this restriction. Based on the results on

Appendix B, I have

E[yi|xi, w, φ] = κ
′
(θ)

Var[yi|xi, w, φ] = κ
′′
(θ)φ,

where xi = (x1i, . . . , xmi) is a sample vector from the random vector X.
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The log-likelihood can be written as

L(β, φ) =
N∑
i=1

{
yiθi − η(θi)

φ
+ c(yi, φ)

}
=

N∑
i=1

li, (2.2)

where θ has a relationship to β through g(κ
′
(θi)) = ηi = xiw.

Therefore, by the chain rule for differentiation and using the above, I have

the score function as

li
wj

=
dli
dηi

∂ηi
∂wi

=
dli
dηi

∂ηi
∂θi

∂θi
∂wj

=
dli
dθi

dθi
dµi

dµi

dηi

∂ηi
∂wj

=
dli
dθi

(
dµi

dθi

)−1(
dηi
dµi

)−1
∂ηi
∂wj

=
yi − κ

′
(θi)

φ
(κ

′′
(θi))

−1(g
′
(µi))

−1xij

=
(yi − µi)xij

φVar(µi)g
′(µi)

=
(yi − g−1(xiw))xij

φVar(g−1(xiw))g′(µi)
,

where Var(µi) =
dµi

dθi
and this score function can be regarded as the estimating

function, and xij indicates the value of covariate at the i’th individual and the

j’th covariate.

Example 2.1. Normal yi with the mean µi = xiw

In this case, g(µi) = µi = xiw holds, thus I have g
′
(µi) =

dg(µi)

dµi

= 1,

Var(µi) = 1 and φ = σ2. Therefore, the log likelihood function can be reduced

into

1

σ2

N∑
i=1

(yi − xiw)xij = 0, (2.3)

which can be written in the matrix form such as the j’th element of the vector

XT (Y −Xw). Here, I define Y ,X as the outcome vector of yi and the design
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matrix of xi

Example 2.2. Poisson yi with the log link function

In this case, µi = log(xiw) (i.e., g(µi) = log(µi)) holds, thus I have g
′
(µi) =

dg(µi)

dµi

=
1

µi

, Var(µi) = Var(yi) = µi and φ = σ2. Therefore, the log likelihood

function can be reduced into

N∑
i=1

(yi − exp(xiw))xij = 0, (2.4)

where there are not explicit solution for w in general.

In general, score functions from misspecified models cannot satisfy the un-

biasedness condition of estimating functions (score functions). Suppose the data

generating process (DGP) can be formulated by the true model

η = Xα+Zβ, (2.5)

where α and β are the true parameters of interest, and also suppose the mis-

specified models is fitted without the covariate Z = (Z1, . . . , Zl) as follow;

η = Xα. (2.6)

The first and crucial step is to find the solution of the unbiasedness condition

of estimating function (the score functions) derived from the misspecified model

(Equation 2.6), i.e., find γ∗ = f(α, β, pXZ), which is the function of the true

parameters α, β and the joint distribution of covariates, pXZ ;

E

[
(yi − g−1(xiα))xij
φVar(g−1(xα))g′(µi)

]
= 0. (2.7)

This expectation should be calculate with respect to the true distribution.

The true distribution can be written as

pYXZ = exp

(
Y θ − η(Xα+Zβ)

φ
+ c(Y, φ)

)
. (2.8)



Methods 38

2.3 Nonlinear model for meta-analysis

Suppose there exist K reported models (i = 1, . . . , K) with their estimated

coefficients of α,β and γ and their covariance matrices, and when i = 1, . . . , k,

studies fit the true model (1) with a full set of covariates, X and Z, and when

i = k+1, . . . , K, studies mistakenly omit covariates Z. I assume the homogeneity

of studies (i.e., the distribution of covariates and outcomes are common across the

studies in the meta-analysis). Here I show only the case where Z is omitted, but

the case where X is omitted can be considered in the same manner, and further,

it is easy to generalize to various other omittance patterns. To synthesize the

estimated coefficients vectors from the GLM models, I apply a GNLS method to

incorporate the unequal variances of studies into meta-analysis.

Based on this setting, the nonlinear model for meta-analysis can be formu-

lated as follows;

θ̂i = gi(α,β, pXZ) + εi (i = 1, . . . , K), (2.9)

where

gi(α,β, pXZ) =

(αT ,βT )T (i = 1, . . . , k)

f(α,β, pXZ) (i = k + 1, . . . , K),
,


ε1
...

εK

 ∼ N(0,Σ), Σ =


Cov(θ̂1) . . . 0

...
. . .

...

0 . . . Cov(θ̂K)

 ,

and θ̂i is the column vector of reported coefficients in the ith study. The function

f() comes from the omitted variable bias formula introduced in the previous

section, whose formulation is reasonable if an assumption of homogeneity of

studies in meta-analysis is acceptable.

In a large sample, the estimated coefficients θ̂i are (approximately) normally

distributed with mean θi = gi(α,β, pXZ) and covariance Cov(θ̂i). This asymp-

totic normality of estimated coefficients leads to the justification of the GNLS

approach.
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Under the model, overall estimates of the regression coefficients α̂∗ and β̂∗

can be obtained by GNLS as follows:

(
α̂∗T , β̂∗T

)T
= argmin

α,β

∑{
θ̂i − gi(α,β, p̂XZ)

}T

Σ−1
{
θ̂i − gi(α,β, p̂XZ)

}
,

where p̂XZ is an estimate of pXZ from the IPD.

The diagonal of the covariance matrix Σ is typically reported in the lit-

erature but the off-diagonals are unknown, thus off-diagonal elements can be

imputed by using the IPD. I employ the same imputation method as Debray et

al. [50] based on the IPD as follows;

Cov(θ̂i,W ) = V̂
1
2
i RIPDV̂

1
2
i ,

where Cov(θ̂i,W ) is a working covariance matrix of the ith study which is applied

to one of the block diagonal elements of Σ, V̂i = diag(Cov(θ̂i)) is a diagonal

matrix whose diagonal elements are the estimated standard errors (SE) reported

from each study and RIPD is a working correlation matrix of coefficients calcu-

lated from the IPD. The covariance matrix can be calculated with a sandwich

estimator under the model misspecification assumption instead of the imputation

based on the IPD [53], but there computational complexity remains a problem

and little improvement is gained in simulations studies. Furthermore, even if the

covariance matrix is misspecified, the proposed estimator is still consistent and

asymptotically normally distributed with a sandwich covariance matrix. This ro-

bustness follows the asymptotic theory of the generalized estimating equations.

In this situation, let α̂W and β̂W denote our estimators with the working co-

variance matrix. The covariance matrix of these estimators can be estimated

by

(
D̂TΣ−1

W D̂
)−1

D̂TΣ−1
W Cov(θ̂I)Σ

−1
W D̂

(
D̂TΣ−1

W D̂
)−1

,

where D̂ = (D̂T
1 , . . . , D̂

T
N)

T , D̂i = ∂gi(α,β, p̂XZ)/∂(α
T ,βT )|(αT ,βT )=(α̂T

W ,β̂T
W ),

ΣW is a working covariance matrix, and Cov(θ̂I) = ({θ̂i−gi(α̂W , β̂W , p̂XZ)}{θ̂i−

gi(α̂W , β̂W , p̂XZ)
T}) [77, 78]. This idea essentially comes from Liu et al. [78]

and can be regarded as analogy of the result proposed by Chen et al. [17].
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In addition to the above, if the working covariance matrix is a good approx-

imation of the true covariance structure, the following relationship holds:

Avar(θ̂∗) ≤ Avar(θ̂M) ≤ Avar(θ̂S),

where Avar denotes an asymptotic covariance matrix, and θ̂∗, θ̂M and θ̂S are the

estimates of θ = (αT ,βT )T obtained from our proposed method, from multivari-

ate meta-analysis using only the studies with full covariates and from a single

study with full covariates, respectively, when the number of studies K goes to

infinity.

Here, I assume a fixed effect model which presumes that there is no het-

erogeneity in the distribution of covariates and in the values of the parameters

of interest. This assumption may sometimes be unrealistic. Therefore, I recom-

mend considering whether this assumption is reasonable based on background

knowledge or reported information. In addition, I can propose how to modify

this to a random effects model to incorporate the heterogeneity by assuming that

the parameters underlying studies and the parameters of distribution of covari-

ates follow some distribution. For example, considering the case that all omitted

variables are continuous (i.e., section 2.1), I can incorporate random effects by

assuming that α,β, ∆ and ΩZ|X in (4) follow distributions. Random effects in

α,β accommodate the heterogeneity of parameters and random effects in ∆ and

ΩZ|X accommodates that of distribution of covariates. This is further discussed

in the discussion section.

2.4 Special case of logistic regression

2.4.1 The omitted variable bias in the logistic regression

model

I introduce the omitted variable bias under one original logistic regression set-

ting, which can afterward be extended to the meta-analysis setting with the

assumption that the covariate sets differ among studies.
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Let X = (X1, . . . , Xm) and Z = (Z1, . . . , Zl) be vectors of covariates and

Y ∈ {0, 1} be a binary response variable. Suppose DGP can be formulated by

the true model:

logitP (Y = 1|X,Z) = Xα+Zβ, (2.10)

where α,β are the true parameters of interest and ”logit” means the logistic

function, logit(p) = log (p/(1− p)). The misspecified model is assumed to be

fitted, which omits relevant covariates Z from the true model Equation 2.10.

Specifically,

logitP (Y = 1|X) = Xγ. (2.11)

I investigate the degree to which the regression coefficient γ, estimated

under the misspecified model, differs from the true parameters α,β, and define

the differences as the omitted variable bias.

To derive the omitted variable bias, the unbiasedness condition of the esti-

mating function can be employed [53]. In general, score functions from misspec-

ified models cannot satisfy the unbiasedness condition of estimating functions.

Therefore, the first step is to find the solution of the unbiasedness condition of

estimating function Equation 2.12, i.e., find γ∗ = f(α,β, pXZ), which is the

function of the true parameters α,β and the joint distribution of covariates,

pXZ ;

E

[{
Y − 1

1 + exp(−Xγ∗)

}
XT

]
= 0. (2.12)

Here, the expectation is taken by the true joint distribution of Y , X and

Z defined from (1) and pXZ . Under some regularity conditions, the maximum

likelihood estimate of γ from the misspecified model Equation 2.11 is a consistent

estimate of γ∗.

Secondly, for assessing biases caused by dropping the important predictors,

I assume to have (at least) one IPD with the outcome and the full covariates X,
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Z. This assumption is considered reasonable for researchers who want to develop

a new prediction model on their own IPD, incorporating prior summary statistics

from regression results. Using the IPD, I can empirically solve Equation 2.12 and

derive the omitted variable bias.

Note that in the general case, the function f cannot be written in closed form

due to its nonlinearity, but in the following case where every omitted covariate

is a continuous variable it can be explicitly written.

2.4.2 Case : Omitted covariates, Z, are continuous vari-

ables

In general, the maximum likelihood estimate of γ in Equation 2.11 (consis-

tently) estimates γ∗ as the solution of Equation 2.12. In particular, for the

cases of normal continuous variables, the following analytical evaluation can

be adapted. Now I suppose Z|X follows the multivariate normal distribution,

N(µZ|X ,ΩZ|X). Based on the normality assumption of Z|X, I have

ZT = ∆XT + τ

where ∆ = (δ1, . . . , δl)
T is l ×m matrix and τ ∼ Nτ (0,ΩZ|X).

Applying the technique of Chao et al. [79] to our covariate structure and

using the probit approximation of logistic distribution, the expectation of Y

conditional on X can be expressed as follow:

E[Y |X] = P (Y = 1|X) =

∫
1

1 + exp (−Xα− (∆XT + τ )T β)
Nτ (0,ΩZ|X)dτ

≈ Φ

[
c

{
X(α+∆Tβ)√
1 + c2βTΩZ|Xβ

}]
,

where Φ is the cumulative distribution function of standard normal distribution

and c = 16(3)1/2/15π is the adjustment factor for probit approximation of the

logistic distribution proposed by Johnson et al. [80].
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In order to satisfy the unbiasedness condition of the estimating function,

Equation 2.12, I have

E

[
Φ

[
c

{
X(α+∆Tβ)√
1 + c2βTΩZ|Xβ

}]
XT − Φ {c(Xγ∗)}XT

]
= 0

Therefore, the function f should be denoted as

γ∗ = f(α,β, pXZ) ≈
α+∆Tβ√

1 + c2βTΩZ|Xβ
(2.13)

which is the generalization of the results of Chao et al. [79] and Cramer et al.

[81].

2.4.3 GLS for synthesis of logistic regression coefficients

As mentioned in the previous section, to synthesize the logistic regression coef-

ficients, the GNLS method can be applied here. The formulation of non-linear

model can be written by (which is same with Equation 2.9)

θ̂i = gi(α,β, pXZ) + εi (i = 1, . . . , K), (2.14)

where

gi(α,β, pXZ) =

(αT ,βT )T (i = 1, . . . , k)

f(α,β, pXZ) (i = n+ 1, . . . , K),
ε1
...

εK

 ∼ N(0,Σ), Σ =


Cov(θ̂1) . . . 0

...
. . .

...

0 . . . Cov(θ̂K)

 ,

and θ̂i is the column vector of reported coefficients in the ith study. The function

f() comes from the omitted variable bias formula introduced in the previous

section, whose formulation is reasonable if an assumption of homogeneity of

studies in meta-analysis is acceptable.
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By calculating this model by using the technique of GNLS, the synthesized

coefficients θ̂ can be obtained. More precisely, overall estimates of the regression

coefficients θ̂ (i.e., α̂∗ and β̂∗) can be obtained by finding the point which can

minimize the following function:

(
α̂∗T , β̂∗T

)T
= argmin

α,β

N∑
i=1

{
θ̂i − gi(α,β, p̂XZ)

}T

Σ−1
{
θ̂i − gi(α,β, p̂XZ)

}
,

where p̂XZ is an estimate of pXZ from the IPD.

2.5 Special case of linear regression

In this case, I can consider the special case where unreported correlation esti-

mates can be recovered only from reported summary statistics. As mentioned

in previous section, there are numerous inherent difficulties associated with the

individual studies applicable to this area, which include: 1) different sets of co-

variates exist for the various studies and 2) unreported correlations of covariates

exist, which are rarely available in published documentation. In response to the

first issue (i.e., different sets of covariates), Resche-Rigon et al. [61] proposed a

multiple imputation method for absent covariates with individual patient data

(IPD). In addition, the Fibrinogen Studies Collaboration [56] proposed a multi-

variate meta-analysis approach by using partial models with IPD data obtained

from individual studies. These methods have limitations, however, with issues

associated with IPD data availability; thus, instead of utilizing IPD, Debray et

al. [50] coped with the problem by using mean- or zero-imputation for absent

coefficients. However, a bias toward synthesized coefficients is created as the

coefficients themselves depend on which covariates are included in the models.

To address such a challenge, conventional meta-analysis generally performs mul-

tivariate meta-analysis using only studies with common covariate sets. However,

this exclusion leads to loss of efficiency because excluded studies may contain

indirect information.

The second noted difficulty (i.e., the unreported correlations of covariates) is

similar to the problem of within-study correlations in multivariate meta-analysis,
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which incorporates the within-study correlations for improving the precision of

each estimation compared to those of univariate meta-analyses [41]. Standard

multivariate meta-analysis assumes that the within-study correlations are known

or IPD are available to borrow estimates of the correlations themselves (for ex-

ample, applications of the multivariate meta-analysis of rheumatoid arthritis and

periodontal data [42]). In the cases where IPD are not available, there are some

studies describing the approach that the unknown within-study correlations are:

(1) imputed with plausible values per individual professional expertise [82, 83];

(2) imputed with empirical estimations of common Pearson correlations [84]; and

(3) imputed by using a Bayesian method assuming prior distributions of corre-

lations [85]. Wei and Higgins [41] provided detailed tables for approximating

the within-study correlations based on information regarding likely correlations.

However, there are other directly applicable techniques that may be alternatively

employed for recovering exact values of unreported covariate correlations from

only summary statistics without the use of IPD.

In this section, the synthesis methodology is proposed for regression results

under different covariate sets by using a GLS method that includes bias correction

terms. In addition, a method for recovering covariate correlations was likewise

developed, which is necessary for the implementation of the GLS method. Note

that while the synthesis of linear regression models is emphasised, this study can

be extended to more complex models, such as generalised linear models.

2.5.1 Setting for synthesis of linear regression results

Let Y denote a dependent variable that is related to independent variables

(X1, . . . , Xm, Z1, . . . , Zl) and a constant term. I consider a true model (data

generating process (DGP)) as follows;

Y = α0 + α1X1 + · · ·+ αmXm + β1Z1 + · · ·+ βlZl + ε, (2.15)
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where ε ∼ N(0, σ2
ε). The misspecified model assumes to omit relevant covariates

Z from the fitted model. Specifically,

Y = γ0 + γ1X1 + · · ·+ γmXm + τ, (2.16)

where τ ∼ N(0, σ2
τ ). I haveN sets of observations on Y and (X1, . . . , Xm, Z1, . . . , Zl),

which I represent as follows;

(Y ,X,Z) =


Y1 1 X11 . . . X1m Z11 . . . Z1l

...
...

...
...

YN 1 XN1 . . . XNm ZN1 . . . ZNl


where X includes 1 in the first column. Our first interest is to derive how much

the estimator of regression coefficient γ = (γ0, γ1, . . . , γm)
T differs from that of

true parameters α = (α0, α1, . . . , αm)
T , β = (β0, β1, . . . , βl)

T , and define the

differences as an omitted variable bias. In the context of the meta-analysis of

regression coefficients, the concept of omitted variable bias can be regarded anal-

ogous to different covariate sets among candidate models under an assumption

of homogeneity of studies. For simplicity, we consider the case where the model

with full-set covariates (full model) can be defined as a true model. This setting

indicates that the prior models are subsets of the full model with underspecified

covariate sets. However, this study’s method can be characterised into a more

general case such that prior models include those with larger sets of covariates

than true models.

2.5.2 Omitted variable bias formula in linear regression

This discussion topic is well known and has been assessed by Greene (2003) [77].

The estimator of regression coefficients in (2.16) is provided as the followings;

γ̂ = (XTX)−1XTY = α+ (XTX)−1XTZβ + (XTX)−1XTε,

where we define a sample vector as ε = (ε1, . . . , εN)
T . By taking the expectation,

we can check that unless XTZ = 0 or β = 0, γ̂ is biased. In this case, we can
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define the omitted variable bias formula:

E[γ̂] = α+ Pβ, (2.17)

where P = (XTX)−1XTZ.

Another proposed method for deriving this omitted variable bias formula

is to utilise the technique of unbiasedness conditions of estimating functions,

which can calculate the asymptotic bias for the omission of covariates. This

is a general approach and is easy to extend to another model, including gen-

eralised linear models. Score functions of misspecified models cannot generally

satisfy the unbiasedness conditions of estimating functions. Therefore, the direct

approach to calculate the bias is to find γ∗ = f(α,β, pXZ) as the solution of

the following condition (2.18). In this case, X and Z denote random variables;

X = (1 X1 . . . Xm) and Z = (Z1 . . . Zl). The solution can be written as the func-

tion of true parameters α,β and parameters from joint distribution of covariates,

pXZ ;

E

[
XT (Y −Xγ∗)

]
= 0, (2.18)

where the expectation is calculated with the true joint distribution of outcome

and covariates. The solution, γ∗, also leads to same omitted variable bias formula

(2.17) under the assumption that the joint distribution of covariates follows the

multivariate normal distribution, and this case is considered in this study.

2.5.3 GLS for synthesis of linear regression coefficients

Suppose there exist K reported regression models (j = 1, . . . , K) with reported

coefficients and their covariance matrices. When j = 1, . . . , k∗, studies fit the true

model with a full set of covariates (full model (1)) (X1, . . . , Xm), (Z1, . . . , Zl) and

a constant term, and when j = k∗ + 1, . . . , K, studies mistakenly fit the model

without the covariates (misspecified model (2)) (Z1, . . . , Zl). This study only

shows the case that (Z1, . . . , Zl) is omitted, but the (X1, . . . , Xm) omitted case

can be considered in the same manner. To synthesize the reported coefficient
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vectors, the study applied a GLS method to include unequal variances for meta-

analysis. This approach was first proposed by Becker and Wu (2007) [33] and

our method extends this approach to a more general case where different sets of

covariates exist among the candidate models.

Based on these settings, the GLS model for meta-analysis is proposed as

follows:

θ̂ =



α̂1

β̂1

...

α̂k∗

β̂k∗

γ̂k∗+1

...

γ̂K



=



I(m+l)×(m+l)

...

I(m+l)×(m+l)

Im×m E[(XTX)]−1E[XTZ]
...

...

Im×m E[(XTX)]−1E[XTZ]



 α

β

+ e

= Wθ + e (2.19)

and

e ∼ N(0,Σ), Σ =


Cov(θ̂1) . . . 0

...
. . .

...

0 . . . Cov(θ̂K)

 , (2.20)

Cov(θ̂j) =


σ̂ε,j

 XT
j Xj XT

j Zj

ZT
j Xj ZT

j Zj


−1

if j = 1, . . . , k∗

σ̂τ,j(X
T
j Xj)

−1 if j = k∗ + 1, . . . , K

(2.21)

where Xj and Zj are sample covariate matrices at single study j, and I(m+l)×(m+l)

and Im×m indicate (m+l)×(m+l) andm×m identity matrices, respectively. The

expectation of E[(XTX)]−1E[XTZ] can be calculated based on the information

obtained from the study fitting the full model with the largest samples. Under

the above model, the synthesized estimates of the regression coefficients, θ̂∗ =
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(α̂∗T , β̂∗T )T , and its covariance matrix can be obtained by the GLS method as

θ̂∗ = (W TΣ−1W )−1W TΣ−1θ̂ and Cov(θ̂∗) = (W TΣ−1W )−1.

To calculate these estimates, it is necessary to have several summary statis-

tics, such as the covariance matrices: (XT
j Xj, Z

T
j Zj and XT

j Zj). However, it is

common that although the diagonal elements of covariance matrices (variance of

covariates) are frequently reported in literatures, the off-diagonals (covariances)

are sometimes unknown. For such cases, it is possible to recover full covari-

ance estimates from only available summary statistics under certain settings, as

described in detail in next subsection.

2.5.4 Recover covariance matrix from summary statistics

Let us consider a simple case where there are at most three covariates in a full

model, which depicts a model having the highest number of covariates in the

meta-analysis can be denoted as:

Y = α0 + α1X1 + α2X2 + α3X3 + e, e ∼ N(0, σ2).

Under a meta-analysis setting, it is assumed that each study reports the

number of sample (nj, (j = 1, . . . , K)), mean and variance of each covariate (X̄js,

Var(Xjs), (s = 1, 2, 3)), an estimated constant term (α̂j0), estimated coefficients

and its variances (α̂j = (α̂j1, α̂j2, α̂j3)
T , Var(α̂j)) and an estimated standard error

of regression (σ̂2
j ). It is also assumed, however, that correlations among covariates

(ρ12, ρ13 and ρ23) are not reported. Here we illustrate a methodology to recover

these three correlation estimates only from available summary statistics.

To obtain estimates of correlation of covariates, the following formula for

the variance of estimated coefficients can be employed. This can be denoted as

follows:

Var(α̂js) =
σ̂2
j

njVar(Xjs)(1−R2
s)
, (2.22)
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where R2
s is a coefficient of determination of the regression model of Xjs on a

constant term and other covariates. In this equation, only R2
s is unknown and

this can be written as the function of the correlation parameters of covariates

(the left hand side is assumed to be reported). Since, we have three unknown R2
s

and three known Var(α̂j), it is possible to solve the equations (8) for R2
s. The

proof of this formulation is shown in Appendix D. Intuitively, in this example,

the matrix in Equation 2.21 can be denoted as

σ̂2
j (X

T
j Xj)

−1

=
σ̂2
j

nj


Var(Xj1) + X̄2

j1 Cov(Xj1, Xj2) + X̄j1X̄j2 Cov(Xj1, Xj3) + X̄j1X̄j3

Cov(Xj1, Xj2) + X̄j1X̄j2 Var(Xj2) + X̄2
j2 Cov(Xj2, Xj3) + X̄j2X̄j3

Cov(Xj1, Xj3) + X̄j1X̄j3 Cov(Xj2, Xj3) + X̄j2X̄j3 Var(Xj3) + X̄2
j3


−1

,

where Cov(Xjs, Xjs′) = ρss′
√

Var(Xjs)Var(Xjs′) is a covariance for the study

j. Since three elements in diagonal are assumed known and can be written as

the function of ρ12, ρ13 and ρ23, we can identify ρ12, ρ13 and ρ23 by solving the

associated equations derived from the diagonal elements.
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Simulations

3.1 Simulation for logistic regression case

3.1.1 Simulation setup for logistic regression case

In this section, I first describe a Monte Carlo simulation which was performed

to evaluate the performance of our proposed method for the case of logistic

regression. In the simulation, I empirically calculate the omitted variable bias

by using equation (3) instead of equation (4). The parameters which varied

in the simulation scenario are the true value of a parameter in a DGP model,

the number of predictors and the distribution of covariates (continuous/discrete

covariates). For simplicity, I examined the case where the number of predictors in

the models in this simulation was 1 or 2 (i.e., X1, X2 or both). The DGP model

was logitP (Y = 1|X1, X2) = α0 + α1X1 + α2X2. For checking the sensitivity for

the true value of the parameter in the DGP model, α1 varied from -2 to 1, and

true values of other parameters was set at 1 (i.e., α0 = α2 = 1).

I simulated N = 9, (i = 1, . . . , 9) independent studies with 100 samples in

each, and of these studies, 3 studies (i = 1, 2, 3) included a full set of covariates

(X1 and X2), 3 (i = 4, 5, 6) are supposed to omit X1 and 3 (i = 7, 8, 9) are

supposed to omit X2. One of the studies with the full set of covariates was used

as the IPD. As mentioned above, the off-diagonals of the covariance matrix are

51
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often unknown, thus I adopted the imputation by IPD proposed in the Methods

section. In this simulation, I compared the performance of this imputation with

the setting using a true covariance structure, which could be estimated from

simulation settings.

I classified the scenario into 2 cases according to the distribution of covari-

ates (continuous/discrete distribution). In Case 1, X1 and X2 are both continu-

ous and followed the multivariate normal distribution,X1, X2 ∼ N

2

2

 ,

1 r

r 1

.

The correlation, r, between X1 and X2 was set at 0 or 0.5. In this case, I checked

the performance of the approximation formula (4). Case 2 was the more practical

case in which continuous and discrete distributions are mixed (i.e., X1 was con-

tinuous and X2 was binary). X2 was binarized from the distribution in Case 1 by

a threshold value set at 2. Under these settings, 1000 Monte Carlo simulations

are implemented. If the models could not be fitted and converged, their results

are excluded from the calculation of bias and mean squared error (MSE).

Performance of the proposed method was evaluated by bias and MSE, com-

paring it with two ordinary methods. M1 was the multivariate meta-analysis

using only 3 studies with a full set of covariates. From a theoretical perspective,

the M1 strategy does not include any bias but is inferior in efficiency compared

with our proposed method, which can be checked using the results of MSE. M2

was the multivariate meta-analysis after mean imputation of missing coefficients,

whose method was proposed in Debray et al. [50]. For example, coefficients and

their estimated standard errors of X2 from 3 studies (i = 4, 5, 6) are imputed

by the means of the other 6 studies. I tried the zero imputation method, which

Debray et al. adopted [50] and called uninformative regression coefficients, but it

did not show notable results compared with the results from M2 (mean imputa-

tion). Therefore, I decided not to include the results of this method. Note that in

this setting, the zero imputation method corresponds to the factored likelihood

method proposed by Wu and Becker as explained in the Methods section [51].



Simulations 53

3.1.2 Simulation results for logistic regression case

The results of the simulation revealed that compared with the ordinary meta-

analysis, our proposed estimator generally produced more precise and less-biased

estimates for all simulation settings (Table 3.1 - 3.3). The bias of our estimator

ranged from -0.052 to 0.097 (mean: 0.021) for Case 1 and from -0.064 to 0.488

(mean: 0.040) for Case 2. The MSE of our estimator ranged from 0.021 to 0.803

(mean: 0.124) for Case 1 and from 0.012 to 0.486 (mean: 0.091) for Case 2.

Although the M2 strategy in Case 1 and r = 0 yielded somewhat biased results,

the greatest amount of variation seemed to arise from the biased estimates of α0

in the models from which X2 was omitted.

The relative efficiency (RE) of the estimates of M1 versus those of our

proposed method ranged from 1.023 to 9.913 (mean: 2.323) for Case 1 and from

1.098 to 10.047 (mean: 2.495) for Case 2. The RE of the estimates of M2 ranged

from 1.025 to 82.069 (mean: 20.043) for Case 1 and from 0.600 to 93.405 (mean:

123.760) for Case 2.

In terms of the RE of the estimates from the true covariance structure versus

the imputation method for unknown elements in the covariance structure, the

RE of the covariance structure imputed from the IPD versus the true covariance

structure ranged from 0.900 to 1.448 (mean: 1.126) for Case 1 and from 0.895 to

1.193 (mean: 1.065) for Case 2.

Comparing the MSE by correlation value (r = 0 versus 0.5), in Case 1 the

mean MSE of our proposed method was r = 0: 0.074 versus r = 0.5: 0.005. In

Case 2, the mean MSE of our proposed method was r = 0: 0.113 versus r = 0.5:

0.174.
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3.2 Simulation for linear regression case

3.2.1 Simulation setup for linear regression case

To farther our proposed method, a Monte Carlo simulation was conducted. A

case was established where the maximum number of covariates in the simulation’s

models was three (X1, X2 and X3). The DGP model was Y = α0+α1X1+α2X2+

α3X3 + ε, and the other misspecified models were model (1): Y = β0 + β1X1 +

β2X2 + τ , and model (2): Y = γ0 + γ1X1 + ν. The true value of α1 varied

from -3 to 3 for sensitivity, while other true values of parameters were fixed at 1

(i.e., α0 = α2 = α3 = 1). We made N = 9 (j = 1, . . . , 9) artificial studies with

100 samples for each, and of these studies, 3 studies (i = 1, 2, 3) were assumed

to fit the DGP model, 3 (i = 4, 5, 6) were assumed to fit the model (1), and 3

(i = 7, 8, 9) were assumed to fit the model (2). Each study was designed to report

only summary statistics (means and standard deviations) of covariates, estimates

of coefficients, standard errors of coefficients, and standard errors of regression).

As mentioned in the previous section, it was also assumed that correlation among

covariates was not reported (i.e., the off-diagonal elements of covariance matrices

for coefficients was to remain unknown). Therefore, a recovery method was

introduced to obtain estimates of covariate correlation, as well as the off-diagonal

elements for covariance matrices of estimated coefficients. X1, X2 andX3 followed

a multivariate normal distribution, X1, X2, X3 ∼ N



1

1

1

 ,


1 0.8 0.5

0.8 1 0.3

0.5 0.3 1


 .

Under these settings, 1000 separate Monte Carlo simulations were implemented.

In terms of bias and mean square error (MSE), performance of our proposed

method was compared with two conventional evaluation techniques: M1) the

multivariate meta-analysis with three studies applying the DGP model and M2)

the multivariate meta-analysis method using mean imputation for the absent

coefficients in model (1) and model (2). M2 is also applied in Debray et al. [50].
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3.2.2 Simulation results for linear regression case

Table 1 shows the results of the Monte Carlo simulation and reveals that our

proposed method is superior to previous conventional methods in terms of bias

and MSE. The bias of the proposed method ranges from -1.877 to 2.168 (mean:

-0.069). This result is significantly superior to the bias of M2 and similar to the

bias of M1. Note that M1 does not theoretically include any bias, but it rather

loses net efficiency because of the lack of available information due to absent

coefficients. This can be verified by performing a check against MSE.

Relative efficiency (RE) between the proposed method and M1 ranges from

1.007 to 2.067 (mean: 1.647), and the RE between the proposed method and M2

ranges from 813.643 to 5803.627 (mean: 3643.837). This result implies that the

proposed method can keep the moderate degree of bias comparable to M1, and

furthermore improve efficiencies, as compared with the aforementioned conven-

tional methods (M1 and M2). We checked the performance of our method in

several different settings, and we got similar results.
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Table 3.4: Comparison of performance between our proposed and conven-
tional methods on simulation data (Bias and MSE) for linear regression case

Bias α1

-3 -1 0 1 3
Proposed

α0 -0.012 -0.010 -0.010 -0.006 -0.002
α1 -0.015 -0.013 -0.012 -0.012 -0.014
α2 0.011 0.011 0.008 0.006 0.010
α3 0.015 0.013 0.013 0.013 0.011

M1) Full set only
α0 -0.008 0.002 -0.006 0.004 0.003
α1 -0.007 -0.009 -0.002 -0.005 -0.006
α2 0.007 0.007 0.004 0.003 0.006
α3 0.003 0.001 0.001 0.000 -0.002

M2) Mean imputation
α0 -1.290 -1.330 -1.348 -1.561 -1.746
α1 -1.848 -1.844 -1.877 -1.679 -1.578
α2 0.823 0.755 0.409 0.997 0.734
α3 1.544 1.635 2.168 1.314 1.593

MSE α1

-3 -1 0 1 3
Proposed

α0 0.106 0.106 0.104 0.108 0.107
α1 0.172 0.177 0.175 0.175 0.174
α2 0.133 0.137 0.134 0.135 0.134
α3 0.118 0.117 0.116 0.118 0.116

M1) Full set only
α0 0.213 0.216 0.213 0.217 0.222
α1 0.300 0.303 0.294 0.297 0.300
α2 0.247 0.249 0.243 0.248 0.245
α3 0.119 0.118 0.117 0.119 0.117

M2) Mean imputation
α0 528.634 490.720 546.136 438.223 528.150
α1 163.996 156.515 194.365 142.313 174.343
α2 484.841 435.885 447.087 431.122 525.674
α3 636.938 584.995 612.789 641.022 672.318



Chapter 4

Real Data Analysis

4.1 Application in risk prediction models for

occurrences of stroke

I applied the proposed methods for a series of epidemiologic studies that devel-

oped risk prediction models for occurrences of stroke. Stroke is one of the leading

causes of death or physical/cognitive impairment both in developed and develop-

ing countries and, therefore, numerous prediction model and clinical characteris-

tics have been modeled and identified as potential predictors [86, 87]. However,

overall relationship is still unclear with conflicting results from several literatures

[87].

4.2 Application setup

I obtained 10 IPDs conducted by the Japan Public Health Center-based Prospec-

tive Study (JPHC study). JPHC study is 30 year on-going prospective cohort

and covers 11 public health center areas (Area 1 - 11) across Japan. The JPHC

study was initiated by four cohorts and a check-up cohort (Cohort 1) in 1990

and Cohort 2 was included with seven cohorts in 1993. The detail of the location

60



Real Data Analysis 61

of study cohort is shown in Figure 4.1, which is adopted from [88] with small

revision.

Mito 
(Ibaraki) 

Chuo-higashi 
(Kochi) 

Kamigoto 
(Nagasaki) 

Miyako 
(Okinawa) 

Suita 
(Osaka) 

Cohort I 
since 1990 

Cohort II 
since 1993 

Nagaoka 

(Niigata) 

Yokote 
(Akita) 

Saku  
(Nagano) 

Chubu  
(Okinawa) 

Katsushika 
(Tokyo) 

Ninohe 
(Iwate) 

Figure 4.1: Map of JPHC cohorts

Total number of participants was 140, 420 and population of the study was

the residents who are 40 to 69 years old at the time of the baseline survey. The

brief time schedule of the JPHC study is shown in Figure 4.2 with small revision

from [88].

Details of study design are well documented in previous study [89]. The

outcome was confirmed according to the criteria provided by the National Survey

of Stroke, which required a constellation of neurological deficits of sudden or rapid

onset lasting at least 24 hours or until death [90, 91].
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I fitted a logistic regression model to each available IPD and explored the im-

portant covariates related to patient characteristics and metabolic syndrome such

as age (year), time since last meal (minutes), body mass index; BMI (kg/m2),

total cholesterol level (mg/dl), blood pressure (mmHg), cigarettes (per day), di-

abetes (yes/no), blood glucose (mg/dl), high-density lipoprotein; HDL (mg/dl),

serum triglycerides (mg/dl) (Table 2) [92, 93, 94]. The sets of available covariates

are different by region. For example, IPD from Area 1 cohort did not include

data of blood glucose, HDL, serum triglycerides since subjects in that cohort did

not take any blood test. To overcome this discrepancy among cohorts, which can

be typically found in such large scale cohort study collected for several outcomes,

was one of our motivation of this study.

Coefficients from each model are stored as the aggregated statistics, which

could be regarded as prior studies for meta-analysis. In terms of handling spo-

radically missing data (average missing rate was 2.8% and standard deviation

was 2.5%), complete case analysis was executed. One cohort (Area 9) remained

as IPD and one cohort (Area 11) was used as a test data for prediction. Next,

I compared our methodology with conventional multivariate meta-analysis using

only studies with a full set of covariates and with results from IPD data only.

Lastly, new prediction models are constructed by plugging the synthesized

coefficients into the model and check its performance in the test data.

The discriminant performance of the prediction models was measured by the

area under the receiver operator characteristic curve (AUC) and the Brier score

(BS) (multiplied by 100), which are one of indicators of accuracy of the prediction

model. Higher AUC means higher prediction accuracy and BS is vice versa [95].

In addition, the model’s calibration was examined by a Hosmer-Lemeshow’s chi-

squared-statistic [96].
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4.3 Application results

The result demonstrated that our approach provided considerably narrower con-

fidence intervals and slightly better prediction performance compared with con-

ventional multivariate meta-analysis (Table 4.1 and Table 4.2). Our estimator

reduced SE by 38%-53% and 56%-71% compared with SE from conventional

meta-analysis and from IPD, respectively.

According to the result of prediction performance, the prediction model

constructed from the synthesized coefficients showed the slight improvements,

particularly in BS. AUC and BS are increased by 1.1% and -1.0% on average

compared with conventional meta-analysis and decreased by -0.4% and 1.0% on

average compared with IPD. The improvements in prediction performance are

relatively small because the cohort of test data and other cohorts aggregated into

summary statistics as previously published studies are remarkably similar across

Japan.
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Chapter 5

Discussions

Along with increasing attention to prediction models, there has been higher de-

mand for approaches to the meta-analysis of regression coefficients. However

these methodologies are not well developed due to the many difficulties caused

by the different settings used by various studies, and further research is still

needed, particularly compared with conventional meta-analysis methods such as

synthesizing mean differences, correlation and so on [33]. This study demon-

strated a method to conduct the meta-analysis of regression coefficients with

different covariate sets under the assumption of homogeneity of studies (i.e., it

is applicable in cases where studies in the meta-analysis have similar distribu-

tions of covariates and outcomes). Although this study temporarily assumed the

models with a full set of covariates as a true model, our approach can be general-

ized to any formulation of previous models even if they are over-/under-specified

compared to a constructing model. We notice, however, that we need careful

arguments about what is an appropriate covariate set. Further, the assumption

that (at least) one IPD is available can be considered reasonable in the frequent

case in which a single researcher wants to construct a new prediction model on

his or her own IPD, incorporating prior regression results (but with such prior

results reported just in the form of summary statistics). The minimal use of IPD

(use of one IPD and other summary statistics) distinguishes our approach from

that of the Fibrinogen Studies Collaboration [56]. They assume that both full

and partial models are applied in each cohort by using its cohort IPD, and thus
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the estimation of the correlation of coefficients between full and partial models

is applicable. Regarding these discussions, this study can provide the following

guidelines for practitioners about how to analyze prior models with their own

IPD by recognizing the issue of omitted variable bias as the differences of sets of

predictors between their constructing models and prior models: 1) the first step

is to construct a new and temporal model on their own data set, and 2) the sec-

ond step is to apply our method to synthesize the previous regression coefficients

with their temporal model and then update the model and obtain more accurate

estimators.

Our method proved robust against the misspecification of the covariance

structure. Because of this property we can arbitrarily set the covariance matrix

of coefficients and thus it is possible to avoid the argument, often discussed with

methods such as that of Becker and Wu [33], on whether the full covariance

matrix of coefficients should be reported or not. This robustness property can

be considered as an analogical result provided by Liu et al. [78]. They provide

a framework of meta-analysis under heterogeneity by using a confidence density

function and reparametrization of the problem setting. Their approach utilizes

the reparameterization connecting each study-specific parameter to the common

parameter using the transformation function Mi, which is used as the omitted

variable bias formula in our setting. However, they assume that the omitted

covariates are fixed values and thus they can estimateMi without a consideration

of the distribution of covariates. In contrast, our approach provides more general

guidelines for treating missing covariates in the meta-analysis.

The simulation performed in this study illustrated that our method is un-

biased and has greater efficiency than a conventional meta-analysis approach as

well as the technique proposed by Debray et al. [50]. Although our estimator

was most efficient if the covariance structure was truly specified, it maintained its

efficiency even if we misspecified the covariance structure, with a loss of efficiency

by misspecification of only around 10%.

Finally, we demonstrated the practical use of our approach with medical

data on stroke prediction. Although the improvement of accuracy of the predic-

tion model was relatively small, the confidence intervals of synthesized coefficients
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were dramatically decreased because information from other studies helped im-

prove efficiency. This result can be considered as one of extension of prior results

related with methodological studies regarding multivariate meta-analysis. In the

context of multivariate meta-analysis, it is well known that we can gain precision

by borrowing strength from other partially reported results [82, 16, 19]. This

implies that our methodology can be applied not only to prediction models but

also to observational studies such as a case-control/cross-sectional study whose

main purpose is to identify causal effects.

5.1 Limitations

As a limitation of this study, our method was examined in only one practical

dataset. Although this data includes over 100,000 samples, the population was

Japanese only, and can thus be regarded as one group with small heterogeneity.

This situation may not be representative of an ordinary meta-analysis because

the majority of recent meta-analyses include several groups with large hetero-

geneity due to studies undertaken globally. We think, however, that we took this

heterogeneity into account by incorporating random effects, as mentioned in the

Methods section. We welcome the re-evaluation of our method in other practical

cases.

Another potential limitation is that we implicitly assumed that the distribu-

tions of covariates are (approximately) the same between studies. This assump-

tion can also be relaxed by incorporating random effects into parameters related

to the distribution, as discussed in the Methods section. However, a random

effect model obscures the objective of a meta-analysis because under this model,

a global average effect and the effect prevailing in particular circumstances are

not identical [40]. We need further research about how to incorporate random

effects and its interpretation.

Furthermore, an approach to recover correlation estimates in the case of

three covariates was presented in the section 2.5.4. The rationale behind the
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restricted number of covariates is that only three estimated variances of coef-

ficients are available to recover three correlations of covariates. If the number

of covariates are to be four, then we need to recover 4C2 = 6 correlation esti-

mates from four reported variances of coefficients, but this is an indeterminate

scenario. However, it should be noted that it is possible to recover over three

estimates of correlations by combining subset results under the assumption of

homogeneity for the distribution of covariates. For example, the correlations be-

tween X1, X2, X3 and X4 can be calculated under the assumption of homogeneity

of studies, if there are two subset models including X1, X2 and X1, X3. In such

a case, we can recover the correlations by using the combinations of reported

summary statistics from these studies.

5.2 Future studies

As the future studies, I am considering several extensions of this study and

comparisons with other similar techniques such as the synthesis methods using

IPD (i.e., IPD meta-analysis).

Firstly, as mentioned in the previous sections, this study assumes that there

are no heterogeneity among studies in meta-analysis, indicating that the model

is fitted as fixed effect meta-analysis model. For example to extend this fixed

effect model into random effect model, I can propose two extensions in the lo-

gistic regression case. First extension is related to the parameters of interest in

Equation 2.14. Equation 2.14 can be easily extended to random effect model as

θ̂i = gi(αi,βi, pXZ) + εi (i = 1, . . . , N)

θi =

αi

βi

 ∼ N

θ =

α

β

 ,V1

 ,

where V1 can be considered as the between study covariance matrix in the context

of multivariate meta-analysis and θ is of interest and the average global effect.

Second extension can be considered in the expectation operator in Equation 2.12.

This expectation is calculated with respect to the true distribution, implicating
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that there is one true distribution among studies even if studies were conducted

in different population. Therefore, one idea for the extension for the random

effect model makes the true distribution vary based on each study’s population.

For example, in the case of logistic regression and that the omitted covariates

are continuous, Equation 2.13 can be extended to include the random effect as

γ∗ = f(α,β, pi,XZ) ≈
α+∆T

i β√
1 + c2βTΩZi|Xi

β

∆i ∼ N(∆,V2)

ΩZi|Xi
∼ W (Ψ, v),

where W is a inverse Wishart distribution with the matrix of scale parameters

Ψ and the degree of freedom v.

Second future work is to compare the method proposed in this study with

the IPD meta-analysis method such as [56]. [56] tackled to the same problem I

considered in this study and they studied in the case where IPD from each study

are available. By comparison of my method to their method (which should

be most efficient because of the availability of IPD), the difference in efficiency

between my method and gold standard (IPD meta-analysis) would be clarified.

Finally, this study focused on the improvement of efficiency compared with

the ordinary methods, but in terms of predictive performance, it would be useful

to develop the methods for synthesizing prediction models to improve the pre-

diction compared with a single prediction model. For understand and further

development of this synthesis method, techniques and studies in the field of the

machine learning such as a transfer learning [97] (also called a multi-task learning

[98] or a learning to learn [99]) and boosting would be helpful.
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Conclusions

This study proposed a correction method for the omitted variable bias due to

different sets of covariates between literature models in meta-analysis and our

approach and nonlinear models for meta-analysis to borrow strength from mis-

specified models by using the omitted variable bias formula. By both simulation

and theory, it is proved that our method can attain the efficiency compared with

the conventional approach. Further, this study also provides a recover method

of correlations statistics without IPD for applying the GLS method to synthesize

the regression results. This study should be useful for practitioners who want to

develop their prediction model on their own dataset with incorporating the prior

regression results.
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Appendix A

Simulation codes

In this appendix, I provide some example code written in R language for a certain

simulation illustrated in simulation section.

zw

##########################

#This codes were written by Daisuke Yoneoke

#First revise: Sep 13 2013

#Last revise: Jan 17 2015

#########################

#########################

#General information

#Study 1~3 have

# 3 parameter (1 intercept and 2 slopes)

# 100 sample

#Study 4~6 have

# 2 parameter (1 intercept and 1 slope)

# 100 sample

#Study 7~9 have

# 2 parameter (1 intercept and 1 slope)

# 100 sample

#########################

library(MASS)

library(Matrix)

library(nlme)

library(glm2)

library(mvmeta)

library(nleqslv)
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#Set basic statics ################################

#latent data generating process

set.seed(123)

#Make true coefs

beta1<-c(-3,-1,0,1,3)

beta<-rep(1,2)

c<-16*sqrt(3)/15/pi

#Correlation

cor12<-0.5

#Variance

var1<-1

var2<-1

#mean

mu<-c(0,0)

#Make covariance matrix

Xdiag<-matrix(c(

var1, 0,

0,var2

),nrow=2)

R<-matrix(c(

1, cor12,

cor12,1

),nrow=2)

X<-Xdiag%*%R%*%Xdiag

sampling<-function(N,mu,X,j){

data<-mvrnorm(N,mu=mu,Sigma=X)

data[,2]<-ifelse(data[,2]>0,1,0)

data2<-as.data.frame(cbind(

Y=rbinom(N,1,1/(1+exp(-beta[1]-beta1[j]*data[,1]-beta[2]*

data[,2]))),

data

))

colnames(data2)<-c("Y","X1","X2")

return(data2)

}
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#Make sample studies

MakeSample<-function(N1,N2,N3,N4,N5,N6,N7,N8,N9,mu,X,j){

#Make sample population

sample1<-sampling(N1,mu,X,j)

sample2<-sampling(N2,mu,X,j)

sample3<-sampling(N3,mu,X,j)

sample4<-sampling(N4,mu,X,j)

sample5<-sampling(N5,mu,X,j)

sample6<-sampling(N6,mu,X,j)

sample7<-sampling(N7,mu,X,j)

sample8<-sampling(N8,mu,X,j)

sample9<-sampling(N9,mu,X,j)

#True models

result1<-glm2(sample1$Y~X1+X2,data=sample1,family=binomial

)

result2<-glm2(sample2$Y~X1+X2,data=sample2,family=binomial

)

result3<-glm2(sample3$Y~X1+X2,data=sample3,family=binomial

)

result4<-glm2(sample4$Y~X1,data=sample4,family=binomial)

result5<-glm2(sample5$Y~X1,data=sample5,family=binomial)

result6<-glm2(sample6$Y~X1,data=sample6,family=binomial)

result7<-glm2(sample7$Y~X2,data=sample7,family=binomial)

result8<-glm2(sample8$Y~X2,data=sample8,family=binomial)

result9<-glm2(sample9$Y~X2,data=sample9,family=binomial)

if(result1$converged==TRUE & result2$converged==TRUE &

result3$converged==TRUE & result4$converged==TRUE & result5$

converged==TRUE & result6$converged==TRUE & result7$converged==

TRUE & result8$converged==TRUE & result9$converged==TRUE ){

cov_b1<-vcov(result1)

delta1 <- row(cov_b1) - col(cov_b1)

cov_b2<-vcov(result2)

delta2 <- row(cov_b2) - col(cov_b2)

cov_b3<-vcov(result3)

delta3 <- row(cov_b3) - col(cov_b3)

cov_b4<-vcov(result4)

delta4 <- row(cov_b4) - col(cov_b4)

cov_b5<-vcov(result5)

delta5 <- row(cov_b5) - col(cov_b5)

cov_b6<-vcov(result6)
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delta6 <- row(cov_b6) - col(cov_b6)

cov_b7<-vcov(result7)

delta7 <- row(cov_b7) - col(cov_b7)

cov_b8<-vcov(result8)

delta8 <- row(cov_b8) - col(cov_b8)

cov_b9<-vcov(result9)

delta9 <- row(cov_b9) - col(cov_b9)

lsigma<-as.matrix(bdiag(cov_b1,cov_b2,cov_b3,cov_

b4,cov_b5,cov_b6,cov_b7,cov_b8,cov_b9))

return(list(c(result1$coefficients,result2$

coefficients,result3$coefficients,result4$coefficients,result5$

coefficients,result6$coefficients,result7$coefficients,result8$

coefficients,result9$coefficients),lsigma,sample1))

}else{

return(NA)

}

}

W<-as.data.frame(matrix(c(

1,0,0,0,0,0,0,

0,1,0,0,0,0,0,

0,0,1,0,0,0,0,

1,0,0,0,0,0,0,

0,1,0,0,0,0,0,

0,0,1,0,0,0,0,

1,0,0,0,0,0,0,

0,1,0,0,0,0,0,

0,0,1,0,0,0,0,

0,0,0,1,0,0,0,

0,0,0,0,1,0,0,

0,0,0,1,0,0,0,

0,0,0,0,1,0,0,

0,0,0,1,0,0,0,

0,0,0,0,1,0,0,
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0,0,0,0,0,1,0,

0,0,0,0,0,0,1,

0,0,0,0,0,1,0,

0,0,0,0,0,0,1,

0,0,0,0,0,1,0,

0,0,0,0,0,0,1

),ncol=7,byrow=T))

unbiasx<-function(par.a,par.b,sample){

a0<-par.a[1]

a1<-par.a[2]

a2<-par.a[3]

b0<-par.b[1]

b1<-par.b[2]

Ux<-mean(1/(1+exp(-a0-a1*sample[,2]-a2*sample[,3]))-1/(1+

exp(-b0-b1*sample[,2])))

Lx<-mean(sample[,2]*(1/(1+exp(-a0-a1*sample[,2]-a2*sample

[,3]))-1/(1+exp(-b0-b1*sample[,2]))))

return(c(Ux,Lx))

}

unbiasz<-function(par.a,par.b,sample){

a0<-par.a[1]

a1<-par.a[2]

a2<-par.a[3]

b0<-par.b[1]

b2<-par.b[2]

Uz<-mean(1/(1+exp(-a0-a1*sample[,2]-a2*sample[,3]))-1/(1+

exp(-b0-b2*sample[,3])))

Lz<-mean(sample[,3]*(1/(1+exp(-a0-a1*sample[,2]-a2*sample

[,3]))-1/(1+exp(-b0-b2*sample[,3]))))

return(c(Uz,Lz))

}
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res.unbiasx<-function(par.a){

res<-nleqslv(x=c(1,1),function(x) unbiasx(par.a=par.a,par.

b=x,sample=sample))

return(res)

}

res.unbiasz<-function(par.a){

res<-nleqslv(x=c(1,1),function(x) unbiasz(par.a=par.a,par.

b=x,sample=sample))

return(res)

}

resfun <- function(par.a){

yhat<-par.a[1]*W2$V1+par.a[2]*W2$V2+par.a[3]*W2$V3+

W2$V4*res.unbiasx(par.a)$x[1]+W2$V5*res.

unbiasx(par.a)$x[2]+

W2$V6*res.unbiasz(par.a)$x[1]+W2$V7*res.

unbiasz(par.a)$x[2]

return(t(as.vector(W2$coef-yhat))%*%solve(Sigma)%*%as.

vector((W2$coef-yhat)))

}

#Set the matrix to put the results

bias0<-matrix(0,1000,ncol=5)

bias1<-matrix(0,1000,ncol=5)

bias2<-matrix(0,1000,ncol=5)

bias0sub<-matrix(0,1000,ncol=5)

bias1sub<-matrix(0,1000,ncol=5)

bias2sub<-matrix(0,1000,ncol=5)

beta_t00<-matrix(0,1000,ncol=5)

beta_t01<-matrix(0,1000,ncol=5)

beta_t02<-matrix(0,1000,ncol=5)

beta_t10<-matrix(0,1000,ncol=5)

beta_t11<-matrix(0,1000,ncol=5)

beta_t12<-matrix(0,1000,ncol=5)

#Main loop

for (j in 1:5){

i<-1
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while (i <= 1000){

coefs<-MakeSample

(100,100,100,100,100,100,100,100,100,mu,X,j)

sample<-coefs[[3]]

cormat<-cov2cor(vcov(glm2(sample$Y~.,data=as.data.

frame(sample),family=binomial)))

if(is.na(coefs[1])==FALSE){

data<-as.data.frame(rbind(

coefs[[1]][1:3],

coefs[[1]][4:6],

coefs[[1]][7:9],

c(coefs[[1]][10:11],mean(coefs

[[1]][c(3,6,9,17,19,21)])),

c(coefs[[1]][12:13],mean(coefs

[[1]][c(3,6,9,17,19,21)])),

c(coefs[[1]][14:15],mean(coefs

[[1]][c(3,6,9,17,19,21)])),

c(coefs[[1]][16],mean(coefs[[1]][c

(2,5,8,11,13,15)]),coefs[[1]][17]),

c(coefs[[1]][18],mean(coefs[[1]][c

(2,5,8,11,13,15)]),coefs[[1]][19]),

c(coefs[[1]][20],mean(coefs[[1]][c

(2,5,8,11,13,15)]),coefs[[1]][21])

))

data1<-data[1:3,]

#Impute the off-diagonal of cov matrix of

coefficient in full sets

cov1<-matrix(0,ncol=3,nrow=3)

diag(cov1)<-sqrt(diag(coefs[[2]][c(1:3),c

(1:3)]))

cov1<-cov1%*%cormat%*%cov1

cov2<-matrix(0,ncol=3,nrow=3)

diag(cov2)<-sqrt(diag(coefs[[2]][c(4:6),c

(4:6)]))

cov2<-cov2%*%cormat%*%cov2

cov3<-matrix(0,ncol=3,nrow=3)

diag(cov3)<-sqrt(diag(coefs[[2]][c(7:9),c

(7:9)]))
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cov3<-cov3%*%cormat%*%cov3

#Impute the off-diagonal of cov matrix of

coefficient in omitted sets

cov4<-matrix(0,ncol=3,nrow=3)

diag(cov4)<-sqrt(c(diag(coefs[[2]][c

(10,11),c(10,11)]),0))

cov4[3,3]<-sqrt(mean(cov1[3,3],cov2[3,3],

cov3[3,3]))

cov4<-cov4%*%cormat%*%cov4

cov5<-matrix(0,ncol=3,nrow=3)

diag(cov5)<-sqrt(c(diag(coefs[[2]][c

(12,13),c(12,13)]),0))

cov5[3,3]<-sqrt(mean(cov1[3,3],cov2[3,3],

cov3[3,3]))

cov5<-cov5%*%cormat%*%cov5

cov6<-matrix(0,ncol=3,nrow=3)

diag(cov6)<-sqrt(c(diag(coefs[[2]][c

(14,15),c(14,15)]),0))

cov6[3,3]<-sqrt(mean(cov1[3,3],cov2[3,3],

cov3[3,3]))

cov6<-cov6%*%cormat%*%cov6

cov7<-matrix(0,ncol=3,nrow=3)

diag(cov7)<-sqrt(c(diag(coefs[[2]])[c(16)

],0,diag(coefs[[2]])[c(17)]))

cov7[2,2]<-sqrt(mean(cov1[2,2],cov2[2,2],

cov3[2,2]))

cov7<-cov7%*%cormat%*%cov7

cov8<-matrix(0,ncol=3,nrow=3)

diag(cov8)<-sqrt(c(diag(coefs[[2]])[c(18)

],0,diag(coefs[[2]])[c(19)]))

cov8[2,2]<-sqrt(mean(cov1[2,2],cov2[2,2],

cov3[2,2]))

cov8<-cov8%*%cormat%*%cov8

cov9<-matrix(0,ncol=3,nrow=3)

diag(cov9)<-sqrt(c(diag(coefs[[2]])[c(20)

],0,diag(coefs[[2]])[c(21)]))

cov9[2,2]<-sqrt(mean(cov1[2,2],cov2[2,2],

cov3[2,2]))

cov9<-cov9%*%cormat%*%cov9
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S<-list(cov1,cov2,cov3,cov4,cov5,cov6,cov7

,cov8,cov9)

S1<-S[1:3]

S2<-list(cov1,cov2,cov3,cov4[c(1,2),c(1,2)

],cov5[c(1,2),c(1,2)],cov6[c(1,2),c(1,2)],cov7[c(1,3),c(1,3)],

cov8[c(1,3),c(1,3)],cov9[c(1,3),c(1,3)])

Sigma<-as.matrix(bdiag(S2))

beta_t<-try(coef(mvmeta(formula=cbind(data

[,1],data[,2],data[,3])~1,S=S,method="fixed")),TRUE)

beta_t1<-try(coef(mvmeta(formula=cbind(

data1[,1],data1[,2],data1[,3])~1,S=S1,method="fixed")),TRUE)

if(inherits(beta_t,"try-error")==TRUE |

inherits(beta_t1,"try-error")==TRUE){

message(paste(i,",",j,"."),

appendLF=FALSE)

i<-i

}else{

W2<-cbind(W,coef=coefs[[1]])

result_1<-try(nlm(resfun,beta_t1)$

estimate,TRUE)

if(inherits(result_1,"try-error")

==TRUE ){

bias0[i,j]<-NA

bias1[i,j]<-NA

bias2[i,j]<-NA

beta_t00[i,j]<-NA

beta_t01[i,j]<-NA

beta_t02[i,j]<-NA

beta_t10[i,j]<-NA

beta_t11[i,j]<-NA

beta_t12[i,j]<-NA

i<-i+1

}else{

bias0[i,j]<-1-result_1[1]
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bias1[i,j]<-beta1[j]-

result_1[2]

bias2[i,j]<-1-result_1[3]

beta_t00[i,j]<-1-beta_t[1]

beta_t01[i,j]<-beta1[j]-

beta_t[2]

beta_t02[i,j]<-1-beta_t[3]

beta_t10[i,j]<-1-beta_t1

[1]

beta_t11[i,j]<-beta1[j]-

beta_t1[2]

beta_t12[i,j]<-1-beta_t1

[3]

i<-i+1

}

}

}else{

i<-i

}

}

}

r1<-apply(bias0,2,function(x) mean(x,na.rm=T))

r2<-apply(bias1,2,function(x) mean(x,na.rm=T))

r3<-apply(bias2,2,function(x) mean(x,na.rm=T))

r4<-apply(beta_t00,2,function(x) mean(x,na.rm=T))

r5<-apply(beta_t01,2,function(x) mean(x,na.rm=T))

r6<-apply(beta_t02,2,function(x) mean(x,na.rm=T))

r7<-apply(beta_t10,2,function(x) mean(x,na.rm=T))

r8<-apply(beta_t11,2,function(x) mean(x,na.rm=T))

r9<-apply(beta_t12,2,function(x) mean(x,na.rm=T))

rbind(r1,r2,r3,r7,r8,r9,r4,r5,r6)

m1<-apply(bias0,2,function(x) mean(x^2,na.rm=T))

m2<-apply(bias1,2,function(x) mean(x^2,na.rm=T))
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m3<-apply(bias2,2,function(x) mean(x^2,na.rm=T))

m4<-apply(beta_t00,2,function(x) mean(x^2,na.rm=T))

m5<-apply(beta_t01,2,function(x) mean(x^2,na.rm=T))

m6<-apply(beta_t02,2,function(x) mean(x^2,na.rm=T))

m7<-apply(beta_t10,2,function(x) mean(x^2,na.rm=T))

m8<-apply(beta_t11,2,function(x) mean(x^2,na.rm=T))

m9<-apply(beta_t12,2,function(x) mean(x^2,na.rm=T))

rbind(m1,m2,m3,m7,m8,m9,m4,m5,m6)



Appendix B

The exponential family and the

partition function

In general, define the probability density function p(x|θ), for x = (x1, . . . , xm) ∈

χm and θ ∈ Θ ⊆ Rd, and it is said to be exponential family if as follow;

p(x|θ) =
1

Z(θ)
h(x) exp(θφ(x))

= h(x) exp(θφ(x)− A(θ))

= h(x) exp(η(θT )φ(x)− A(η(θ)))

where

Z(θ) =

∫
χm

h(x) exp(θφ(x))

A(θ) = logZ(θ)

Here we call; θ is the natural parameter or the canonical parameter, φ(x)

is the sufficient statistic, Z(θ) is the partition function, A(θ) is the log partition

function or the cumulant function, h(x) is the scaling constant, often = 1, and

η(θ) is a mapping of θ to the canonical parameters. In addition, I note the

following;
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• If dim(θ) < dim(η(θ)), it is called a curved exponential family, that means

we have more sufficient statistics than parameters.

• If dim(θ) = dim(η(θ)), it is called a canonical form.

• If φ((x)) = x, it is called a natural exponential family.

An important property of the exponential family and the log partition func-

tion is that the log partition function can be used to derive the cumulants of

the sufficient statistics. That is why A(θ) is called the cumulant function. The

derivation is as follows;

dA(θ)

dθ
=

d

dθ

(
log

∫
exp(θφ(x))h(x)dx

)
=

∫
φ(x) exp(θφ(x))h(x)dx

exp(A(θ))

=

∫
φ(x) exp(θφ(x)− A(θ))h(x)dx

=

∫
φ(x)p(x)dx

= E[φ(x)] = Expectation of the sufficient statistics

d2A(θ)

dθ2
=

∫
φ(x) exp(θφ(x)− A(θ))h(x)(φ(x)− A

′
(θ))dx

=

∫
φ(x)p(x)(φ(x)− A

′
(θ))dx

=

∫
φ2(x)p(x)dx− A

′
(θ)

∫
φ(x)p(x)dx

= E[φ2(x)]− E[φ(x)]2

(∵ A
′
(θ) =

dA

dθ
= E[φ(x)])

= V ar[φ(x)] = Variance of the sufficient statistics

More detailed explanation can be found in elsewhere such as [100, 77, 76]
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Derivation of omitted variable

bias formula

SupposeX andZ follow multivariate normal distribution, N

 µT
X

µT
Z

 ,

 ΣXX ΣXZ

ΣZX ΣZZ

,

and the distribution of Z conditional on X can be denoted as Z|X ∼ N(µZ +

ΣZXΣ−1
XX(X − µX),ΣXX − ΣXZΣ

−1
ZZΣZX) [101]. Therefore, the conditional

expectation of Z can be expressed as Γ0+XΓ1, where Γ0 = µZ −ΣZXΣ−1
XXµX

and Γ1 = (ΣZXΣ−1
XX)T .

Then (5) becomes

E

[
XT (y −Xγ∗)

]
= E

[
XT (Xα+Zβ −Xγ∗)

]
= E

[
XT {Xα+ (Γ0 +XΓ1)β −Xγ∗}

]
=

∫ {
XTX(α+ Γ1β − γ∗) +XTΓ0β

}
pX1,...,XmdX1 . . . dXm = 0,

where pX1,...,Xm indicates the joint distribution of X1, . . . , Xm.

When µX = 0 and µZ = 0, this reduced toΣXX

{
α+ (ΣZXΣ−1

XX)Tβ − γ∗} =

0. Then, finally we get

γ∗ = α+ E[(XTX)−1XTZ]β,

86
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which is correspond to the result of Equation (2.17) in the main text.



Appendix D

Proof of the formula (2.22)

In general, we assume the following multiple regression model; Yi = α0+α1Xi1+

· · ·+ αsXis + ui, and also assume

X̄
n×s

=

(
x̄1
n×1

Z̄
n×(s−1)

)
,

where x̄1 is a deviation vector of Xi1 from the average and

Z̄
n×(s−1)

=


X12 − X̄2 . . . X1s − X̄s

...
. . .

...

Xn2 − X̄2 . . . Xns − X̄s

 .

Let us denote

(X̄TX̄)−1 =

x̄1
T x̄1 x̄T

1 Z̄

Z̄T x̄1 Z̄T Z̄

−1

=

B11 B12

B21 B22

 ,

thus we obtain Var(α̂1) = σ̂2B11. From the matrix inversion lemma, the following

equation can be calculated;

B11 =
(
x̄T
1 x̄1 − x̄T

1 Z̄(Z̄T Z̄)−1Z̄T x̄1

)−1

= (x̄1
T x̄1)

−1

(
1− x̄T

1 Z̄(Z̄T Z̄)−1Z̄T x̄1

x̄T
1 x̄1

)−1

,

88
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where (Z̄T Z̄)−1Z̄T x̄1 can be regarded as the estimates β̂ of coefficients β in

the regression model x̄1 = Z̄β + e. Therefore,
x̄T
1 Z̄(Z̄T Z̄)−1Z̄T x̄1

x̄T
1 x̄1

=
x̄T
1 Z̄β̂

x̄T
1 x̄1

describes the proportion of variability that is covered by the regression compared

with the total variability of x̄1 and this is same as the definition of a coefficient

of determination.

Thus, we can obtain

B11 =
1

nVar(X1)(1−R2
1)
,

where R2
1 indicates the coefficient of determination of regression of x̄1 on other

variables Z̄ and this is exactly same with the coefficient of determination of

regression of X1 on other variables X2, . . . , Xs.
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