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Abstract

Program debugging is a trial and error process of finding and eliminating bugs or

defects in a computer program, and thus making it behave as expected. As software

and hardware systems grow in complexity, debugging techniques for ensuring their

correctness are increasingly important. Manual debugging is tedious, time-consuming

and error-prone. Thus, making debugging automatically has been one of the major

research topics in automated software engineering. Automatic formal verification of

programs, such as the bounded model-checking (BMC) method, is useful for checking

if a program exhibits erroneous behavior or not. Identifying root causes, which are the

fundamental reasons for the occurrence of failing program executions, still involves

manual inspection and therefore needs a vast amount of human efforts. This calls for

a new method that performs fault localization automatically.

Automatic fault localization of imperative programs is a well-known problem and

has been studied from various approaches. Back in the early 1980’s, program slicing

was introduced. A few years later model-based debugging (MBD) was presented.

MBD combines the slicing method with the Reiter’s model-based diagnosis theory

framework. Thereafter, a work proposed to replace in MBD the algorithmic method

for calculating program slices by a method following the Boolean satisfiability prob-

lem. In hardware debugging, more specifically in very-large-scale integration (VLSI)

and system on chip (SoC) designs, an alternative method for localizing fault was

shown effective. The method uses a debugging formulation based on maximum sat-

isfiability (MaxSAT), which is a promising approach to the fault localization tool for

imperative programs.

This thesis introduces and studies a new automatic fault localization method,

which is formula-based fault localization for imperative programs written in ANSI C.
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Abstract iv

The presented method combines the MBD with MaxSAT, specifically with partial

maximum satisfiability. In contrast to other work on fault localization of imperative

programs, we focus in this thesis on the localization of faults in multi-fault programs.

Fault localization of multi-fault programs is a problem of great importance since real-

world programs often have more than one fault. We demonstrate in this thesis that

the fault localization of multi-fault programs requires further considerations to be

successful. Dealing with multi-fault programs implies that faults may be spread in

different program execution paths and that fault localization reports contain informa-

tion from different faults. Therefore, it is required to use many program failing inputs

in order to cover faults as much as possible. Since more than one failing execution

is considered, it implies that the complexity of the problem increases and thus it is

necessary to have an efficient method to localize all faults in an acceptable amount of

time. Moreover, generated fault localization reports have to be processed so that the

software engineers spend less time in a posteriori root causes inspection. Here are the

main contributions of this thesis. First, we reformulate the problem of formula-based

fault localization systematically from a theoretical viewpoint. Second, we introduce

new methods for encoding imperative programs into trace formulas. The way pro-

grams are encoded has a significant impact on the precision and efficiency of the root

causes identification procedure. Third, we present an efficient method to calculate

and combine root causes obtained from different failing executions. Fourth, all the

methods are implemented in a tool, SNIPER. Several experiments are conducted on

SNIPER to show the capabilities of the presented approach.

This thesis is organized as follows. Chapter 2 presents backgrounds of the fault

localization of imperative programs. Chapter 3 introduces a series of concepts and

terminologies that are needed to define the formula-based fault localization problem.

These concepts and terminologies are used in the other chapters. Chapter 4 details

the architecture of the tool SNIPER. The implementation of SNIPER, which is based

on the LLVM compiler infrastructure and the Yices 1 partial maximum satisfiability

solver, is detailed in Annex A. SNIPER is a basis on top of which we implement the

different trace formulas presented in Chapters 5 and 7 and the algorithm of Chapter 6.

In each of these chapters, we use SNIPER to empirically study the presented methods.
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Chapter 5 introduces a method for encoding programs, the full flow-sensitive trace

formula (FFTF), which is equivalent to the control flow graph of the target program.

The FFTF with appropriate algorithms is successful in localizing root causes in multi-

fault programs for at least two of the benchmarks we used. However, although the

FFTF is expressive, it is not efficient in view of computing time. In the Chapters

6 and 7 we present methods to deal with this problem. Chapter 6 presents a fault

localization algorithm, which enumerates minimal correction subsets (MCS) in an

incremental fashion. We show on a benchmark that the computing time can be

reduced with this algorithm. Chapter 7 introduces an alternative method for encoding

programs, the hardened flow-sensitive trace formula (HFTF). We empirically show

on two benchmarks that the use of the HFTF, as compared to the FFTF, makes

the fault localization algorithm produce less spurious root causes and perform faster.

The HFTF is shown to be as expressive as the FFTF for most programs. Finally,

Chapter 8 summarizes the contributions of this thesis and presents a list of future

work on formula-based fault localization of imperative programs.
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Chapter 1

Introduction

As software-intensive systems constitute the social infrastructure to support our

daily life, achieving the required reliability levels is a major concern in software en-

gineering. In 1972, E.W. Dijkstra [27] discussed in his Turing awards lecture the

importance of the correct by construction (CbyC) style development of programs.

The presentation is a driving force of a wide variety of work in formal methods, espe-

cially in the European research community. The idea is to construct correct programs

from their initial formal specifications in a stepwise refinement manner. Correctness

of the refinement is ensured in each step, and thus the resultant programs are correct.

E.W. Dijkstra, actually, had a negative opinion on the effectiveness of a posteriori

verification of programs. Although the idea of CbyC is scientifically sound, it is not

adapted in practice. Constructing programs or programming is more or less a human

process, requiring much experience and insight. The reliability of programs is also a

matter of human activities.

Introducing some form of automation to a posteriori verification of programs is

an alternative approach for achieving the required reliability levels. These methods

adapt mathematical logic as their scientific bases. Software artifacts such as de-

sign specifications or programs have their representations encoded as logic formulas.

Correctness of programs with respect to the given specifications is a process of math-

ematical reasoning. This can be automated when formulas are in decidable fragments

of first-order theory. In particular, with the advent of the efficient Boolean satisfia-

1



Chapter 1: Introduction 2

bility (SAT) technology [74], SAT-based methods occupy one of the central themes

in automated software engineering. These are applying SAT to automatic test-case

generations or bounded model checking of programs [20, 21, 41, 51, 66]. They are

effective in checking whether the target program is faulty or not. Identifying root

causes of the faulty behavior still needs a vast amount of human efforts. Localizing

root causes automatically is now an important research challenge.

Automatic fault localization is formulated as a problem of mathematical logic.

R. Reiter [77] introduced the model based diagnosis (MBD) theory. In the MBD

theory, the model of the artifact is encoded in a formula of some suitable logic. The

model together with a given specification is unsatisfiable if the artifact is faulty.

The problem is to find a set of clauses in the artifact model that are responsible

for this unsatisfiability. If the formula is encoded in Boolean, it is exactly an in-

stance of Boolean unsatisfiability problem (UNSAT). As the complexity of UNSAT

is coNP-complete, M.H. Liffiton et al. [59] turns it into a dual problem of maximum

satisfiability (MaxSAT) whose complexity is NP-complete [12]. R. Reiter’s framework

and M.H. Liffiton’s work are successful in the fault localization of VLSI circuit de-

signs [80] together with efficient MaxSAT algorithms. Similar methods are employed

in the fault localization of imperative programs, but they are limited to programs

with a single fault in them [47, 95]. There is a need for a new method to identify

multiple faults in a program.

This thesis presents a new automatic fault localization method for programs that

have multiple faults in them. The method adapts a modest assumption on the failure

model of imperative ANSI C programs. The key observation is the way to encode all

the potential failing execution paths in a logic formula, called trace formula (TF).

The TF encodes the failure model as well as those potential failing execution paths,

and thus has much impact on the preciseness and efficiency of localizing faults. The

proposed method is implemented in a tool, SNIPER. In some experiments on typical

benchmark problems, SNIPER successfully identifies all the injected, both single and

multiple faults. These experiments show that the assumption of the failure model

is adequate at least for the benchmark problems used, and the fault localization is

efficient.
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The organization of the thesis is as follows. Chapter 2 presents backgrounds of

the fault localization of imperative programs. Chapter 3 introduces a series of con-

cepts and terminologies that are needed to define the formula-based fault localization

problem. These concepts and terminologies are used in the other chapters. Chap-

ter 4 details the architecture of the tool SNIPER. The implementation of SNIPER,

which is based on the LLVM compiler infrastructure and the Yices 1 partial maximum

satisfiability solver, is detailed in Annex A. SNIPER is a basis on top of which we

implement the different trace formulas presented in Chapter 5 and 7 and the algo-

rithm of Chapter 6. In each of these chapters, we use SNIPER to empirically study

the presented methods. Chapter 5 introduces a method for encoding programs, the

full flow-sensitive trace formula (FFTF), which is equivalent to the program’s control

flow graph. The FFTF with appropriated algorithms is successful in localizing root

causes in multi-fault programs for at least two of the benchmarks we used. However,

because the FFTF is expressive, it is not efficient in view of computing time. In the

Chapter 6 and 7 we present methods to deal with this problem. Chapter 6 presents

a fault localization algorithm, which enumerates minimal correction subsets (MCS)

in an incremental fashion. We show on a benchmark that the computing time can

be reduced with this algorithm. Chapter 7 introduces an alternative method for en-

coding programs, the hardened flow-sensitive trace formula (HFTF). We empirically

show on two benchmarks that the use of the HFTF, as compared to the FFTF, makes

the fault localization algorithm produce less spurious root causes and perform faster.

Finally, Chapter 8 summarizes the contributions of this thesis and presents a list of

future work on formula-based fault localization of imperative programs.



Chapter 2

Backgrounds

This chapter introduces backgrounds of the automatic fault localization of imper-

ative programs, and summarizes related work.

2.1 Introduction

In the world of software development, software reliability [73] is of a great im-

portance, however, it is rather immature in general. “Software reliability is the

probability of failure-free operation of a computer program for a specified time in

a specified environment [71]”. E.W. Dijkstra believed that program reliability would

be achieved by finding a way to avoid writing programs with bugs from the very

beginning [27]. Such a way would make the programming process cost effective since

software engineers would not waste their time in debugging programs. Correct by

construction (CbyC) style development is one such approach. For example, the ver-

ification method [64] helps in assisting the development of software and hardware

systems. The program is refined in a stepwise manner, starting from its formal spec-

ification, and ending with actual code. Therefore, the correctness at each refinement

step is preserved. However, formal specifications are difficult to apply in practice

because of their very limited expressiveness compared to the Natural language. It

requires a big effort to use and understand the notation for software engineers.

Even though the idea of CbyC was attracting, posteriori verification became a

4
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standard in recent years. The focus changed from product over process and the goal

is now to detect faults after the code is developed. Thus was born the activity of

program debugging, which aims at improving software reliability.

2.2 Program Debugging

Figure 2.1: A typical debugging process

Program debugging is a complex activity that involves several tasks. As illustrated

in Figure 2.1, debugging starts by testing a target program to see if it is faulty or not.

Testing can be done manually or automatically. There exist various automatic tech-

niques, including program testing or automatic formal verification. Once the testing

phase is finished and in the case the target program exhibits inappropriate behavior

(i.e., failures), the next task consists of identifying the reasons of the failures. This

task is called fault localization. Fault localization can be time-consuming and difficult

especially when done manually. Once the reasons of the failures are successfully iden-

tified and their root causes are localized, they need to be corrected. Fault repair aims

at repairing the faults previously identified. The process of debugging ends when the

target program behaves as expected.

Three of the debugging tasks are closely related and can strongly influence each

other. A good testing result is important for making the fault localization task easy

to perform. Similarly, fault reports generated by the fault localization task must

contain enough information to facilitate and speed up the fault repair task.

In the present thesis, we focus on the task of automatic fault localization. In

the following sections, we present existing approaches to tackle the problem of fault
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localization in imperative programs.

2.3 Program Slicing

Program slicing [88, 89, 90] is a technique for analyzing imperative programs,

which can be used in debugging to locate root causes of errors. Program slicing

consists of finding the instructions of a program that can affect a variable v at a line

l, a slicing criterion. The subset of instructions obtained from the whole program

is called a slice. A slice is defined with respect to a slicing criterion. If the slicing

criterion refers to a violation of an assertion, then the obtained slice is a subset

of program statements that directly affect the assertion violation. Thus, the slice

contains root causes. Further, we sometimes say a failing slicing when a slice of code

contains faults. Similarly, a slice of code that does not contain faults is called a

successful slice.

Program slicing for localizing faults was empirically shown effective [52]. The

average code size reduction (CSR) of program slices is around 30% [13]; such amount

of program code needs to be inspected manually to find real root causes.

2.3.1 Static Slicing

According to the original definition of slicing [89], a static slice of a program P

is all statements of P that may affect the value taken by a variable v at a point p

of the program. This slice is defined for a slicing criterion C = (s, V ), where s is a

statement of the program P and V is a subset of variables in P . Computing a static

slice consists of finding successive sets of statements that are indirectly pertinent, in

accordance with data and control dependencies.

2.3.2 Dynamic Slicing

Dynamic slicing is similar to static slicing but instead it uses information obtained

at execution time. A dynamic slice contains all statements that actually affect the

value of a variable at a program point for a particular program execution. A static
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slice would contain all statements that may have affected the value of a variable at a

program point for any program execution.

With dynamic slicing the produced slices are usually smaller than with static

slicing. This is because static slicing methods do not make any assumptions regarding

program inputs. Whereas a dynamic slice contains only the program statements that

are dependent on specific program inputs.

2.4 Coverage-based Fault Localization

Coverage-based or spectrum-based debugging [45, 46, 78, 91] calculates ranking

orders between program statements or spectrums to show that a particular fragment

of code is more suspicious than the others. The method needs many successful and

failing executions to calculate the statistical measures. The method basically relies on

program testing technique, and needs input-output test data. Generating unbiased

test data set is a major challenge.

The method consists of collecting data while executing the program in order to

determine the potential root cause locations. The data can be collected at different

spectrum, such as: line, block, function, class, or packet.

Example

Test 1 Test 2 Test 3 Test 4 ef ep nf np

Line 1 Executed Executed Executed 2 1 0 1

Line 2 Executed Executed Executed 1 2 1 0

Line 3 Executed Executed 1 1 1 1

...

Test Results Success Success Failed Failed

Table 2.1: An example of data collected in coverage-based methods

In the example of Table 2.1, the Line 1 is executed by the Tests 1, 3, and 4. Two

of these tests failed (ef ) and one succeeded (ep). All the failed tests were executed
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on this line (nf ) and one successful test does not execute this line (np). The Line 2 is

executed by Tests 1, 2, and 4. One of these tests failed (ef ) and two succeeded (ep).

One failed test does not execute this line (nf ) and all the successful tests execute this

line (np).

Metrics

Metrics allow to calculate a Hamming distance between code entities (line, block,

function, class) and a bug. There exists many different metrics. The entities can be

sorted depending on the distance, the nearest ones from the bug contain the most

probable the bug, and the farthest ones are probably not causing the bug. Based on

this sorting, software engineers can find faster the source of the error than a manual

search.

Tarantula

Tarantula is a metric but also a tool introduced by Jones et al. [45]. Tarantula is

representative of the coverage-based approach. It was developed in order to provide

a standalone tool for the visualization of program lines of code. The studied lines of

code are colored depending on their suspiciousness. In addition to the color, varying

from green for not suspected lines to red for suspected lines, a shade shows the number

of time the lines where effectively executed by the test suite. These two information

are combined in order to produce a display that shows the degree of suspiciousness

associated to each line.

Tarantula can be greatly affected by the test data used, and this is also true for

all methods following the coverage-based approach. In the experiment sections of

Chapter 5 and Chapter 7 we show two cases on which Tarantula is unable to find

the faults. The reason is that Tarantula is using statistics to compute the root cause

locations. Depending on the provided test data (test-cases) but also the types of

faults in the target program, the method may or may not find the faults. We discuss

the types of faults in more details in Section 2.8.
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2.5 Counterexample Minimization

Model checking methods are used to automatically check whether a target artifact

is faulty or not. When the target artifact is shown to be faulty, a model checking

methods outputs a counterexample. It requires a great amount of manual efforts

to identify root causes by studying the generated counterexamples. Counterexample

minimization [6, 16, 37, 38] is introduced to help this task.

Counterexample minimization methods are used together with logic model check-

ing. Fault localization methods based on counterexample minimization attempts to

reduce the number of irrelevant part of a counterexample. Informally, the error lo-

calization is a problem of finding fragments of the program that appear in the error

traces, but not in the successful executions. This observation leads to the auto-

mated methods to calculate how the error traces are different from the successful

ones [6, 16, 37, 38]. Alternatively, some work views the problem as minimizing the

error traces, namely to find a set of minimal lengths in the traces to result in the

failing executions [17, 47].

2.6 Model-based Diagnosis

The model-based diagnosis (MBD) theory [36, 77] establishes a logical formalism

of the fault localization problem. The model is presented as a formula expressed

in suitable logic. The formula is unsatisfiable if it represents both an artifact and

a correctness criteria, with the former violating the latter. The MBD theory dis-

tinguishes conflicts and diagnoses. Conflicts are the erroneous situations similar to

failing static slicing (see Section 2.3.1), and are represented by minimal unsatisfiable

subsets (MUSes) of the unsatisfiable formula. Diagnoses are the fault locations to

be identified and are minimal correction subsets (MCSes). The MBD theory states

that MUSes and MCSes are connected by the hitting set relationship. Therefore, the

problem is to enumerate either all MUSes or all MCSes. Such sets can be calculated

automatically if the formula is represented in decidable fragments of first-order theory,

for example, as a Boolean formula. If the formula is encoded in Boolean, the problem
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becomes a Boolean unsatisfiability problem (UNSAT). Note that the complexity of

UNSAT is coNP-complete [12].

The MBD methods, including the model-based debugging [95], first calculate

MUSes and then obtain MCSes. There are several ways to calculate the information

equivalent to MUSes. An early work [93] used graph-based algorithms to compute a

static slice of programs in order to obtain MUSes. Later, MUSes were obtained by

calculating irreducible infeasible subsets of constraints [95].

2.7 Formula-based Fault Localization

Formula-based fault localization method combines the SAT-based formal verifica-

tion techniques [74] with the model-based diagnosis (MBD) theory [77]. This method

was first employed in the fault localization of VLSI circuits [80] as an alternative

approach to obtaining the minimal correction subset (MCSes). The method reduces

the fault localization problem to maximum satisfiability of unsatisfiable formulas in

propositional logic and calculates maximal satisfiable subsets (MSSes). An MCS is

the complement of MSS [60]. Therefore, the problem is turned into a dual problem

of maximum satisfiability (MaxSAT) whose complexity is NP-complete [12].

This idea was applied to the fault localization problem of imperative programs [47]

and implemented in a tool, BugAssist. The algorithm of BugAssist, however, does

not guarantee the enumeration of all the MSSes. It may miss some faults, especially

in programs with multiple-faults.

In summary, the formula-based approach is more systematic than the methods

that use program slices (Section 2.3) or the statistical coverages (Section 2.4). It has

its logical foundation developed in the MBD theory (Section 2.6).

2.8 Program Fault Types

In this section we explain the notion of faults in imperative programs. We provide

insights on the different types of faults and on their characteristics.
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In debugging of imperative programs, bugs or defects can be divided into the

following categories.

1. Syntax: invalid sequence of characters or tokens,

2. Data Size: arithmetic overflow or underflow,

3. Sanity: buffer overflow, null pointer, division by zero,

4. Application Features .

The formula-based fault localization focuses on faults related to (4) application

features. Other categories of defects are not considered here. Application features

are usually specified by assertions in the code, or by a design-by-contract (DbC) style

specification [41, 67, 68, 69] (pre- and post-conditions, and invariants).

Application feature faults can be further divided into two categories. The first

category refers to faults in the calculations. Typically, these faults occur when the

software engineer makes a mistake in using a comparison/arithmetic operator. The

second category refers to faults in the structure of the program. The structure, also

called skeleton, is usually defined by the way program basic blocks are interconnected

to each other. In some situations, this skeleton is incorrect and thus making the

program not behave as expected. Automatic fault localization methods, introduced

so far (Section 2.2 to 2.6), consider calculation faults only. Herein we also assume that

the structure or skeleton of the target program is correct, and we focus on calculation

faults.

Some faults are seeded in existing lines of code that were not properly written.

Other faults are caused by missing fragments of code (omissions). The latter is

especially difficult to deal with because we have to localize a part of non-existing

code fragments. In this thesis we focus on the former and do not consider fault due

to omissions.

Now, we will discuss in what kind of programs our method will look for root

causes of faults. The classification of imperative programs is made according to the

number of faults they are infected with. The following two sections details the types

of programs to be considered.
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2.8.1 Single-fault Programs

A single-fault program is a program that contains only one fault. The fault is either

a wrong comparison operator, for example in an if-statement, or a wrong operator in

an arithmetic operation.

Usually, to debug a single-fault program, a single error-inducing input is enough

to find out root causes of the fault. This error-inducing input triggers a failing path

on which the fault is executed. All the fault localization methods, mentioned in

Section 2.3 to 2.7, are effective for such single fault-programs. However, usually, we

may have many different error-inducing inputs. Imagine that we have a test suite

consisting of many test cases and a target program that has a single fault. There are

some cases where some of the test cases fail on the program. The other test cases

are passed. This happens if the particular fault can be reached in many different

execution paths. The coverage-based fault localization methods, in particular, rely

on the existence of such test cases.

Example

We illustrate the problem of fault localization on single-fault programs with an

example in Listing 2.1. This program is supposed to compute two values to operate

a motor. The first value (d) is meant for giving the order to torque, turn right, or

turn left to the motor. The second value is a positive or null number representing the

rotation degree. However, there is an error in this program, which is located in line

11. The comparison (d==1) should be (d==2). Because of this error, when putting

as argument to the procedure rotate a non-null number, the assert in line 16 fails

because the value of r is negative. Hence, an error-inducing input equal to 1 or −1

can be used to trigger a failing execution.
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1 void r o t a t e ( int degree ) {
2 int d ;

3 i f ( degree==0) {
4 d = 0 ; // torque

5 } else i f ( degree >0) {
6 d = 1 ; // r o t a t e r i g h t

7 } else {
8 d = 2 ; // r o t a t e l e f t

9 }
10 int r ;

11 i f (d==1) {
12 r = degree ∗ −1;

13 } else {
14 r = degree ;

15 }
16 a s s e r t (0 <= d <= 2 && r >= 0) ;

17 opMotor ( r , d ) ;

18 }

Listing 2.1: A single-fault program

2.8.2 Multi-fault Programs

Dealing with programs with multiple faults is one of the important issues in au-

tomated fault localization methods. As mentioned before, most of the current fault

localization approaches focus on single-fault programs and are not effective for multi-

fault programs. We, here, focus on the coverage-based methods. Coverage-based

debugging methods are unable to locate multiple faults simultaneously. This was

empirically studied by DiGiuseppe et al. [26]. They showed that the presence of

multiple faults caused interferences, which inhibits the effectiveness of the method.

It is, however, true that at least one fault can be localized. Denmat et al. state

that the coverage-based technique Tarantula [46] makes implicit hypotheses requir-

ing independence of multiple faults (every failure is caused exclusively by a single

fault) and when these hypotheses do not hold, the technique does not provide “good
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result” [25]. Zheng et al. assert that traditional coverage-based technique “cannot

distinguish between useful bug predictor and predicates that are secondary manifes-

tations of bugs” [99].

The MBD theory [77] generally considers the multiple fault cases. For simplicity,

consider a case where a set M of MUSes is extracted from an unsatisfiable formula

and each MUS in M refers to a particular error, a single fault. Then, M may contain,

in principle, many conflicts because many elements (clauses) are included. MCSes,

calculated using the minimal hitting set of MUSes, contain elements (clauses) repre-

senting multiple faults.

In order to study the characteristics of multiple faults in detail, we classify the

types of faults that can be found in multi-fault programs in three categories:

• Data flow-dependent faults

• Control-dependent faults

• Independent faults

Figure 2.2 depicts an example of control flow graph (CFG) for each of the above

types of faults. Informally, a faulty statement Y is data flow-dependent on a faulty

statement X if the result of Y is dependent on X. A faulty statement Y is control-

dependent on a faulty branch condition X of a conditional branch statement if the

outcome of X determines whether Y should be executed or not. In a special case of

the control-dependent faults, the fault X may hide the fault Y , which means that

it is impossible to generate a test case that executes the fault Y and detects the

existence of Y . We call such special case, nested faults. Lastly, a faulty statement Y

is independent of a faulty statement X if Y and X are neither control-dependent nor

data flow-dependent.

In some cases, multiple faults can lie in one program path. In such a situation,

a single test input is enough to localize all the faults. In some cases of data flow-

dependent faults or control-dependent faults, the use of full flow-sensitive TF can

sometimes locate different faults with a single test input. We will discuss this later

in regard to the Bekkouche’s Benchmark (Section 5.6.1).
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Figure 2.2: Fault types found in imperative programs

When faults are independent, it usually requires to have multiple test inputs in

order to successfully identify all faults. Additionally, if faults are localized in different

failing paths, a method to combine the results obtained from these paths is needed

in order to show to the programmers that there are more than one fault to look at in

the faulty programs. A basic MCS enumeration method that uses a single failing test

case only is not sufficient when dealing with multi-fault programs whose faults are

spread in different program paths or execution paths. In Chapter 4 we introduce an

MCS enumeration method and a combination method that are, when used together,

suited to tackle this special case of multi-fault programs.

Example

We illustrate the problem of multi-fault program with an example shown in List-

ing 2.2. This program contains two faults. In line 4 the variable y should be set to

42 and in line 6 it should be set to 0. We can find two failing paths, one that goes

through the line 4 with the value 1 as argument, and the other that goes through the

line 6 with the value 0 as argument. We are faced with two problems with this kind

of program. First, we need to take into account both failing paths to localize all the

faults. Considering only one path is not sufficient. Second, the quantity of faults in

the program may affect the precision of the fault localization because the cause of an

erroneous situation can be due to one or many faults acting together. An accurate

localization implies an high complexity of analysis.
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1 void foo1 ( int x ) {
2 int y ;

3 i f (x>0) {
4 y = 1 ; // Faul t X

5 } else {
6 y = 42 ; // Faul t Y

7 }
8 a s s e r t ( ( x<=0 && y==0) | | (x>0 && y==42)) ;

9 }

Listing 2.2: A multi-fault program infected by independent faults
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Preliminaries

This chapter introduces a series of concepts and terminologies, which are manda-

tory for understanding the remaining part.

3.1 Boolean Satisfiability Problem

Boolean satisfiability problem (SAT problem) is a decision problem defined with

logic formulas. It is, given a formula in propositional logic, to decide if this formula

has a model, meaning that if there exists an assignment of the propositional variables

making the formula true.

3.1.1 Basic Definitions

Clause

A clause is a disjunction of literals. In propositional logic, a clause takes the form

(l1 ∨ ... ∨ ln)

where li are literals; an atomic proposition (p) or a negation of an atomic proposition

(¬p).

17
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Conjunctive Normal Form

A formula in conjunctive normal form (CNF) is a normalization of a logical ex-

pression, which is a conjunction of clauses.

3.1.2 Satisfiability and Unsatisfiability

Satisfiability and validity are elementary concepts of semantics. A formula is

satisfiable if it is possible to find an interpretation (model) that makes the formula

true. A formula is valid if for all interpretations the formula is true. Dual concepts

are the unsatisfiability and the non-validity. A formula is unsatisfiable if none of its

interpretations makes the formula true, and non-valid if it exists an interpretation

that makes the formula false.

The four concepts can be applied to theories. A theory is a set of sentences in

a formal language. For example, a first-order theory is a set of first-order sentences.

A theory is satisfiable (valid) if one (or all) interpretations make each axiom of the

theory true, and the theory is unsatisfiable (non-valid) if all (one) interpretation make

each axiom of the theory false.

It is also possible to consider only interpretations that make all of the axioms

of another theory true. This generalization is commonly called satisfiability modulo

theories (see Section 3.2 for details).

The question whether a sentence in propositional logic is satisfiable is a decid-

able problem, which is a question in some formal system with a yes-or-no answer,

depending on the values of some input parameters. In general, the question whether

sentences in first-order logic are satisfiable is not decidable.

3.1.3 Maximum Satisfiability

The maximum satisfiability (MaxSAT) problem is the problem of determining

the maximum number of clauses, of a given Boolean formula in CNF, that can be

made true by an assignment of truth values to the variables of the formula. It is a

generalization of the Boolean satisfiability problem, which asks whether there exists
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a truth assignment that makes all clauses true.

For example, the CNF formula

ϕ = (a ∨ b) ∧ (a ∨ ¬b) ∧ (¬a ∨ b) ∧ (¬a ∨ ¬b)

is not satisfiable, which means that no matter which truth values are assigned to its

two propositional variables, at least one of its four clauses will be false. However, it

is possible to assign truth values in such a way as to make three out of four clauses

true; indeed, every truth assignment will do this. Therefore, if this formula is given

as an instance of the MaxSAT problem, the solution to the problem contains three

clauses.

3.1.4 Partial Maximum Satisfiability

In the partial maximum satisfiability (pMaxSAT) problem for a CNF formula,

some clauses are declared to be soft, or relaxable, and the rest are declared to be

hard, or non-relaxable. The problem is to find an assignment that satisfies all the

hard clauses and the maximum number of soft clauses.

For example, consider again the example CNF formula in the previous section,

but this time with its clauses assigned as soft or hard:

ϕpartial = (a ∨ b) ∧ (a ∨ ¬b) ∧ (¬a ∨ b)︸ ︷︷ ︸
soft

∧ (¬a ∨ ¬b)︸ ︷︷ ︸
hard

One solution is to retract the clause (a∨b). We then obtain the following assignment:

a = true and b = false.

3.2 Satisfiability Modulo Theories

The satisfiability modulo theories (SMT) [29] problem is a decision problem for

logical formulas, with respect to combinations of background theories expressed in

decidable subclass of first-order logic with equality. It is a generalization of a Boolean

SAT instance in which various sets of variables are replaced by predicates from a
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variety of underlying theories. Examples of theories are the theory of real numbers,

the theory of integers, and the theories of various data structures such as lists, arrays,

or, bit vectors.

3.3 Bounded Model Checking

Model checking [18, 75] is a set of techniques for automatic verification of systems.

The principle is to algorithmically check if a given model, which can be the given

system or an abstraction of the system, satisfies a specification often formulated in

terms of temporal logic.

Model checking tools face a combinatorial blow up of the state-space, commonly

known as the state explosion problem, that must be addressed to solve in cases of real-

world problems. Bounded model checking (BMC) [9, 10, 11] is one of the approaches

to combatting this problem. BMC algorithms [21, 20, 66] unroll the finite state

machine to a fixed number of steps k and check whether a property violation can

occur in k or fewer steps. This typically involves encoding the restricted model as

an instance of SAT problem. The process can, in principle, be repeated with large

values of k until all possible violations have been ruled out.

3.4 Formula-based Fault Localization

This section provides basic definitions on formula-based automatic localization

method. Definitions of the basic concepts such as MUS, MCS, MSS, and hitting set,

are found in the literature (cf. [60]).

3.4.1 MUS, MCS, Hitting Set, and MSS

In the following definitions, C is a set of clauses, which constitutes a CNF for-

mula ϕ. We use C and ϕ interchangeably. Note that in this thesis we sometimes

present a set of clauses as a set of line numbers. These line numbers refer to program

statements (instructions) in the target source code. Since in our work clauses are
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encoded from instructions, for sake of clarity we show the line numbers instead of the

associated clauses.

Definition 1 (Minimal Unsatisfiable Subset) M ⊆ C is a Minimal Unsatisfi-

able Subset (MUS) iff M is unsatisfiable and ∀c∈M :M\{c} is satisfiable.

Definition 2 (Minimal Correction Subset) M ⊆ C is a Minimal Correction

Subset (MCS) iff C\M is satisfiable and ∀c ∈M : (C\M) ∪ {c} is unsatisfiable.

An MCS is a set of clauses such that C can be corrected by removing an MCS from

C. Therefore, an MCS is considered to represent a root cause.

Definition 3 (Hitting Set) H is a hitting set of Ω iff H ⊆ D and ∀S ∈ Ω :

H ∩ S 6= ∅.

Let Ω be a collection of sets from some finite domain D, a hitting set of Ω is a set

of elements from D that covers (hits) every set in Ω by having at least one element

in common with it. A minimal hitting set is a hitting set from which no element can

be removed without losing the hitting set property. There exist many algorithms to

compute the hitting set, such as those presented in [36, 77] or in [81, 82]. We show

one algorithm for computing the minimal hitting set in Section 4.5.2.

Definition 4 (Maximal Satisfiable Subset) M ⊆ C is a Maximal Satisfiable Sub-

set (MSS) iff M is satisfiable and ∀c ∈ C\M : M ∪ {c} is unsatisfiable.

By definition, an MCS is the complement of an MSS (MSS {) [60].

Any solution to MaxSAT problem is also an MSS. However, every MSS is not

necessarily a solution to MaxSAT [70].

We illustrate the above definitions with an example taken from [59]. Below, a

CNF formula and its MSSes, MCSes and MUSes.

ϕ =
W

(a) ∧
X

(¬a) ∧
Y

(¬a ∨ b) ∧
Z

(¬b)

MSSes(ϕ) = {{X, Y, Z}, {W,Z}, {W,Y }}

MCSes(ϕ) = {{W}, {X, Y }, {X,Z}}

MUSes(ϕ) = {{W,X}, {W,Y, Z}}

To calculate the MSSes of ϕAL we use partial maximum satisfiability method.
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3.4.2 Root Causes

In fault localization, the faults are identified by localizing their root causes. A root

cause is the fundamental reason for the occurrence of a failing program execution. In

the MBD theory, a root cause is represented by an MCS, and multiple root causes

by MCSes. In practice, root causes help the programmers fix buggy programs. We

conceptually distinguish real root causes and spurious root causes. Real root causes

are program fragments that correct the program completely or partially when they are

appropriately modified. In contrast, spurious root causes are program statements that

when modified or removed do not fix the program with regard to the programmer’s

intention. In this thesis, we sometimes refer to either real root causes or spurious

ones, but such distinction is concerned with the so-called high-level design decision

of programmers. They are not distinct in view of the fault localization algorithm. In

particular, the injected faults in the benchmark problems (Sections 5.5, 5.6, 7.4 and

7.3) are considered real root causes.

3.4.3 Code Size Reduction

Code size reduction (CSR) is the ratio of fault locations in an MUS (a program

slice) to the total number of lines of code. The CSR is calculated as follows:

csr(MUS ) =
|MUS |

total number of lines

For example, in Listing 3.1 if we obtain the MUS M = {3, 4} with its elements being

line numbers. The CSR for M is as follows:

csr(M) =
|M | ∗ 100

total number of line
=

2 ∗ 100

10
= 20%

Note that using static slicing results in CSR to be around 30% [52]. Another

common terminology for quantifying the ratio of fault locations is the average CSR

(ACSR), which represents the CSR for a set of MUS. For a given set S of MUSes,

the ACSR is calculated as follows:

acsr(S) =

∑
i csr(Si)

|S|
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1 int getAt ( int ∗a , int x ) {
2 int y ;

3 i f (x>=0) {
4 y = a [ x ] ;

5 } else {
6 y = 0 ;

7 }
8 a s s e r t (y>=0) ;

9 return y ;

10 }

Listing 3.1: A function that returns a positive value at a given index, or zero if

the index is negative

3.4.4 Failing Program Paths

Let ϕAL be a formula in conjunctive normal form (CNF) such that

ϕAL = ϕTI ∧ ϕTF ∧ ϕAS

where ϕTI is a formula that encodes the test inputs, ϕTF is a trace formula that

encodes all the possible program execution paths up to a certain depth, and ϕAS is

a formula that encodes the assertion that the program must satisfy. The detailed

representation of TF is irrelevant here, and will be introduced in Chapter 5 and 7.

The formula ϕAS can be the post-condition or test oracle. When program paths are

failing, ϕTI represents the input arguments that take certain particular values, making

ϕTF violate ϕAS . We call such ϕTI error-inducing (EI). There are several approaches

to generating such failing test inputs. Bounded model checking (BMC) [21] is one such

approach, which generates a counterexample from which a single failing test input

can be extracted. Test case generation methods, such as concolic execution [33, 84],

can generate more than one test case for a given program. Generated test data, that

result in failing execution, constitute such EI.



Chapter 3: Preliminaries 24

Example

We introduce a simple program in Listing 3.2 and its CFG in Figure 3.1. List-

ing 3.2 shows a function that takes two arguments. This program contains two faults.

In line 4 the variable z should be set to 42 and in line 6 it should be set to 0. These

two statements are called root causes.

1 int f oo ( int x , int y ) {
2 int z ;

3 i f (x>y ) {
4 z = 1 ;

5 } else {
6 z = 42 ;

7 }
8 // a s s e r t ( x<=y and z==0)

9 // or ( x>y and z==42)

10 return z ;

11 }

Listing 3.2: A multi-fault program

infected by two faults

x1 > y1 ?

bb0

truefalse

z2 = 42

bb1

z1 = 1

bb2

z3 = phi z1, z2

return z3

bb3

Figure 3.1: Control flow graph of

function foo

For program of Listing 3.2, we obtained the two failing test cases (error-inducing

inputs) below.

ϕfoo
TI 1

= (x1 = 1) ∧ (y1 = 0)

ϕfoo
TI 2

= (x1 = 0) ∧ (y1 = 1)

The post-condition of the function foo is encoded from the assertion of line 8 and

takes the following form:

ϕfoo
AS = ((x1 ≤ y1) ∧ (z3 = 0)) ∨ ((x1 > y1) ∧ (z3 = 42))

The trace formula is encoded from lines 2 to 7. Its encoding is shown later in Sec-

tion 5.3.
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3.4.5 Fault Localization Problem

Since ϕAL encodes failing program paths with EI , the formula ϕAL is unsatisfi-

able. By definition, EI and AS are supposed to be satisfied. The trace formula TF is

responsible for the unsatisfiability. It is exactly the situation that the program con-

tains faults. The fault localization problem is to find a set of clauses in TF that are

responsible for the unsatisfiability. Such clauses are found in minimal unsatisfiable

subsets (MUSes) of ϕAL. MUSes of the unsatisfiable formula are erroneous situations

(conflicts) similar to failing static slicing (see Section 2.3). However, finding root

causes in lengthy slices is difficult because many statements are included. According

to the MBD theory [77], such root causes are diagnoses and are represented as MCSes.

An important point in the fault localization problem is the number of test cases

being used. Usually, one test case may be enough to identify an erroneous situation

caused by a single fault. Lots of test cases are needed to show the existence of all

multiple faults. It implies that we check the unsatisfiability of ϕAL(EI i) with many

different EI i. A single counterexample approach does not work well for a general case

of programs with multiple faults.

The fault localization problem is to find MCSes of ϕAL. The formula-based method

adapted in herein [53] first calculates MSSes of ϕAL and then obtain MCSes by taking

the complements of MSSes. Enumerating all the MCSes is mandatory to cover all

the root causes.

3.4.6 Example

We explain the above concepts on the program of Listing 3.3. In line 6, there is

an error in the computation of the absolute value of x in abs. The variable abs is

equal to x*1 when x is negative, which violates the assertion at line 8 which expects

abs to be greater or equal to zero.
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1 int absValue ( int x ) {
2 int abs ;

3 i f (x>=0) {
4 abs = x ;

5 } else {
6 abs = x ∗ 1 ; // shou ld be : abs=x∗−1;
7 }
8 a s s e r t ( abs>=0) ;

9 return abs ;

10 }

Listing 3.3: A function that computes an absolute value

A failing trace can be obtained with an input value equal to -1. The error-inducing

input extracted from the failing trace is encoded in EI and takes the following form:

EI = (x0 = −1). The static single assignment (SSA) form of the function body

(lines 2 to 7) is encoded in TF , as shown below. For recall, SSA form is a relation

on program variables, which requires that each variable is assigned exactly once, and

every variable is defined before it is used. Further details on the SSA form can be

found in Section 3.5. See Section 5.3.4 concerning the mapping of clauses in TF to

the original program statements. The assertion in line 8 is encoded in AS as follows:

AS = (abs3 ≥ 0).

TF = (guard0 = (x0 ≥ 0))︸ ︷︷ ︸
line 3

∧ (abs1 = x0)︸ ︷︷ ︸
line 4

∧ (abs2 = x0 × 1)︸ ︷︷ ︸
line 6

∧

((guard0 ∧ (abs3 = abs1)) ∨ (¬guard0 ∧ (abs3 = abs2)))︸ ︷︷ ︸
line 3

We obtain two MSSes and two MCSes, as shown below. The set elements represent

the line numbers of the program in Listing 3.3. We create a set containing the two

MCSes. The minimal hitting set of the resulting set gives us a set containing two

MUSes, which are the conflicts:

MSS 0 = {6} MCS 0 = MSS {0 = {3, 4}
MSS 1 = {3, 4} MCS 1 = MSS {1 = {6}
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MCSes = {MCS 0,MCS 1} = {{3, 4}, {6}}
MUSes = MCSesMHS = {{4, 6}, {3, 6}}

We here obtained two diagnoses; one with the line numbers 3 and 4, another with

6. The diagnosis {3, 4} indicates that both lines 3 and 4 should be corrected at a

time. For example, if we change the statement in line 3 to be x<0 and the statement

in line 4 to be abs=-x then, for the input x=-1, the program becomes correct. The

diagnosis {6} indicates that line 6 only has to be modified to correct the program for

the input x=-1. Software engineers are free to choose between these two diagnoses.

From the diagnoses, we obtain two conflicts; one with the line numbers 4 and 6,

another with 3 and 6. If we only need a set of potential root causes, we may extract

the line numbers from either MCSes or MUSes to have a set, for example, {3, 4, 6}.
The results are the same regardless of using MCSes or MUSes since only the line

numbers are significant. It is what BugAssist [47] does to calculate the CSR. Note

that with such a combination method, it is difficult, especially in the case of multi-

fault programs, to know how many elements of the set have to be considered to fix

the entire program.

3.5 Static Single Assignment Form

Static single assignment (SSA) form [22, 23] is an intermediate representation

(IR) of a program source code, which requires that each variable is assigned once

and exactly once, and every variable is defined (namely, assigned a value) before it is

used. The variables living in the base representation are divided in “versions”, new

variables take their original name with an extension version number. The SSA form

makes easy the conversion into propositional formulas. For example, the following

code:

1 y = 1 ;

2 y = 2 ;

3 x = y ;



Chapter 3: Preliminaries 28

Humans can see that the first assignment is not necessary, because the value of

y used in the third line comes from the second assignment of y. A program should

analyze how to reach variable definitions to determine the latter. But if the program

is in SSA form, then this is straightforward; in the next version, this is obvious that

y1 is not used:

1 y1 = 1 ;

2 y2 = 2 ;

3 x1 = y2 ;

Converting an ordinary code to an SSA representation is a simple problem. It re-

quires to replace each variable assignment by a new “versioned” variable (the variable

x is renamed in x1, x2, x3, ... during the successive assignments). Finally, at each

usage of a variable, we use the version corresponding to the position in the code. For

example, from the following control flow graph:

x← 5

x← x− 3

x < 3?

y ← x× 2

w ← y

y ← x− 3

w ← x− y
z ← x+ y

We notice that at the step “x ← x − 3”, it is possible to replace in the left part

of the expression the variable x by a new variable without changing the program

computation. We use this in SSA by making two new variables: x1 and x2, each

assigned a single time. Equivalently, we treat the other variables, which gives us the

following graph:

It is possible to define from which variable versions we are referring to, except for
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x1 ← 5

x2 ← x1 − 3

x2 < 3?

y1 ← x2 × 2

w1 ← y1

y2 ← x2 − 3

w2 ← x2 − y?
z1 ← x2 + y?

one case: the variable reference of y in the last block may also refers to y1 or to y2

depending on the flow it comes from. In order to know which variable we should use,

we use a special declaration, called Φ (Phi), which is written at the beginning of the

block. This function will generate a new version of y, y3 that will have to be chosen

between y1 and y2, depending on the block it comes from:

x1 ← 5

x2 ← x1 − 3

x2 < 3?

y1 ← x2 × 2

w1 ← y1

y2 ← x2 − 3

y3 ← Φ(y1, y2)

w2 ← x2 − y3
z1 ← x2 + y3

Now, using the variable y in the last block means using y3. Note that it is not

necessary to use a Φ function for x because a single version of x, called x2, reaches

this position. Hence, there is no ambiguity.
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3.6 Program Dependence Graph

In a control flow graph (CFG), dependences can be represented by a program

dependence graph (PDG). “A PDG makes explicit both the data and control depen-

dences for each operation in a program” [31]. We will see in this thesis, particularly

in Chapter 5, that dependences within a program must be considered when trying to

localize faults, especially multiple faults.

A PDG is a graph whose nodes roughly correspond to program statements and

whose edges represent dependences in the program. Assume that the program P is

a single function program whose PDG is represented as the graph Gp. There is a

directed edge between nodes v1 and v2 in Gp if there are dependences between v1 and

v2. Dependences between program statements can be classified as either control or

data dependences. A control edge between nodes v1 and v2 is represented as v1 →c v2.

These edges are labeled true or false. A control dependence exists between nodes

v1 and v2 iff:

1. The node v1 is an entry vertex and v2 is a statement within P that is not nested

within any loop or conditional. This edge is labeled true.

2. The node v1 is a control predicate (the test of a if-statement, while-statement, or

for-statement block), and v2 is immediately nested within the block predicated

by v1. If v1 predicates a while loop, then the edge v1 →c v2 is labeled true. If

v1 is a predicate for a if-statement then the edge v1 →c v2 is labeled true or

false depending of whether v2 is on the then or else path.

For example, in Listing 3.2, s2 is control dependent on s1 because the execution of s2

is conditionally guarded by s1.

1 i f ( x==0) { // s1

2 y = 42 ; // s2

3 }

trues1 s2

Figure 3.2: The statement s2 is control-dependent on the statement s1
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A data dependence between statements s1 and s2 indicates that the semantics of

the program may be changed if the relative ordering of v1 and v2 are changed. A

PDG contains edges for flow dependences and def-order dependences. Note that in

SSA form these dependences are explicit because all variables are unique. There is a

flow dependence edge v1 →f v2 iff there is a def-use [3] edge from v1 to v2. There is

a def-order dependence between statements v1 and v2 iff:

1. The nodes v1 and v2 both define the same variable.

2. The nodes v1 and v2 are in the same branch of any conditional statement that

encloses both of them.

3. There exists a program component v3 such that v1 →f v3 and v2 →f v3.

4. v1 occurs to the left of v2 in the program’s abstract syntax tree.

For example, in Listing 3.3, s2 depends on s1 because executing s2 before s1 would

result in s2 using an incorrect value for x. Figure 3.4 shows an example of PDG.

Nodes are labeled with line numbers of the function foo’s listing.

1 x = 21 ; // s1

2 y = x ∗ 2 ; // s2
s1 s2

Figure 3.3: The statement s2 is data-dependent on the statement s1
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1 int f oo ( int x ) {
2 int a = x ∗ 2 ;

3 int b = x ∗ 4 ;

4 int c = x ∗ 8

5 int d = 0 ;

6 i f ( a < 100) {
7 d = d − b ;

8 }
9 i f (b >= 42) {

10 d = d + c ;

11 }
12 i f ( c == 8) {
13 d = d ∗ a ;

14 } else {
15 d = 0 ;

16 }
17 return d ;

18 }

tru
e

false

tru
e

tru
e

2 3 4

6 9 12

7 10 13

1

15

Figure 3.4: A function and its PDG
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Proposed Tool Architecture

4.1 Overview
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Figure 4.1: SNIPER tool flow

We implemented our formula-based fault localization method in a tool called

SNIPER [53, 56] (SNIPER is Not an Imperative Program Errors Repairer). We

will present in details the proposed method in Chapter 5 to 7. We now focus on the

architecture of SNIPER. Figure 4.1 depicts the tool flow within SNIPER.

The goal of SNIPER is to provide a tool to software engineers for automatically

localizing in an efficient manner root causes in faulty imperative programs. The

architecture of SNIPER is based on the LLVM compiler infrastructure [57, 58] (see

Section A.1 for details) to facilitate the handling of programs to be analyzed. SNIPER

uses Yices 1 [28, 29, 30] as an internal solver to implement the different algorithms

33
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that use decision procedures (SAT, MaxSAT, and pMaxtSAT). Yices 1 has some

features that enable incremental solving. We exploit these capabilities in some of

these algorithms. From a tool development viewpoint, Yices 1 is used flexibly because

it provides an API for interacting with the solver. Hence, SNIPER uses Yices 1 as

an internal solver rather than as a backend solver in a separate process. Because

SNIPER includes in itself the LLVM and Yices 1 libraries, the tool can be considered

as standalone. The advantage of a standalone tool is that we have full control at each

stage. The control can be on the manipulation of the LLVM’s IR (see Section A.3) or

on the manipulation of the Yices’ context (see Section A.2). This makes it possible

for SNIPER to collect several information leading the fault localization to be precise

and extensive.

The input of SNIPER is an LLVM intermediate representation (IR) of an im-

perative program1. The version of SNIPER presented herein specifically targets C

code that follow the ANSI C2 standard, but thanks to the language-agnostic design

of LLVM, the basic architecture of SNIPER can, in principle, be used for automatic

fault localization of imperative programs written in languages other than C. The input

program has to be processed so that it can be later represented in a finite number of

states. This is important for the next step, which is the encoding of the program in

a trace formula (see Section 3.4.4). Most of the processing operations are standard

in the bounded model-checking (BMC) of imperative programs (cf. [20, 21, 51, 66]).

LLVM provides features to manipulate the intermediate representation. Thanks to

this, transforming the IR is doable without much efforts. From the processed IR,

SNIPER constructs a trace formula (TF in Figure 4.1) in the language of Yices 1.

This formula represents all the potential executions of the input program within the

specified scope bound.

In addition to the IR, SNIPER takes as input a correctness specification for the

program. The specification describes what the program is expected to do. The

1The input IR has to contain debug information (line number), which can be generated by Clang

(see Section A.1.1 for details.)

2The version of SNIPER used herein supports a subset of ANSI C only.
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specification can be under the form of assertions in the source code, pre- and post-

condition, or an oracle on program outputs. This specification is encoded in a formula

(AS in Figure 4.1) in the language of Yices 1 and used in the next steps.

As presented in Section 3.4, the fault localization problem requires a formula to

represent a pre-state to induce a failing execution. Such formulas are constructed

from particular program inputs, the ones that trigger failing executions. SNIPER

implements various techniques to automatically generate such program inputs. Even

though test case generation is independent of localizing faults, we think that it is

important to implement such testing techniques in SNIPER. It is because testing is

one practical method to detect the existence of bugs in programs, which is mandatory

before applying any fault localization methods. Additionally, this makes SNIPER

have a certain control over the number of test cases generated, and their nature

(failing test case or successful test case). Once a set of test cases is available, SNIPER

encodes them in error-inducing input formulas in the language of Yices 1.

As depicted in Figure 4.1, from the trace formula (TF), the specification formula

(AS), and the error-inducing input formulas (EIs), SNIPER computes a set of MCSes,

which are diagnoses. The MCSes are obtained from different failing executions and

each of them refers to a particular erroneous situation, a particular failing execution.

In the case of multi-fault programs, there might be more than one erroneous situation

due to the presence of different faults (see Section 2.8). We want to have a total

diagnosis that takes into account all the erroneous situations in each of them, so that

the software engineers can carefully choose which diagnoses are the most suitable

for repairing all the faults in the program. To answer this problem, we introduce

a method for combining the diagnoses. After the diagnoses have been combined,

SNIPER outputs them to the user as source code lines marked with potential root

causes.

In the following, we detail the internal architecture of SNIPER.
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4.2 Program Encoding

The processed IR is transformed into an SMT formula, a trace formula. The

formula is constructed in SNIPER with the Yices library, which provides an API in

C language to interact with the solver (see Section A.2).

SNIPER implements two types of encodings: the full flow-sensitive trace formula

(FFTF) [53, 55] and the hardened flow-sensitive trace formula (HFTF) [54]. The

FFTF enables the systematic localization of single and multiple faults. However, this

encoding produces large and complex formulas, which means that the localization

algorithm with the FFTF can be computationally expensive. The HFTF is equivalent

to the FFTF but some parts of the formula are set as hard (non-relaxable) making

the number of soft (relaxable) clauses smaller. The localization algorithm with the

HFTF is efficient in term of computation time but may miss some faults in case there

are missing test inputs. Both encodings have their advantages and disadvantages. A

complete description of these encodings can be found in Chapter 5 for the FFTF and

in Chapter 7 for the HFTF.

4.3 Test Cases Generation

As explained in the introduction section of Chapter 2, software engineers start by

testing the target program to see if it is faulty or not. In case the program is faulty,

the engineers usually generate some failing inputs to exhibit incorrect behavior of the

faulty program. These failing inputs are mandatory to localize faults.

Although our work focuses on automatic fault localization, we also consider such

a testing phase because it has a non-negligible impact on the efficiency of the fault

localization method. The user can either provide a set of test cases, or let SNIPER

automatically generate one. SNIPER implements three different test case generation

methods, which are described in the following sections.
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4.3.1 BMC Module

SNIPER implements a classic BMC-based method that can generate a single fail-

ing trace. BMC (see Section 3.3 for details) with Boolean satisfiability is performed

by the satisfiability checking of the formula ϕbmc.

ϕbmc = ¬(PRE ∧ TF ⇒ AS ) = PRE ∧ TF ∧ ¬AS

If ϕbmc is satisfiable, the corresponding assignment represents a counterexample that

illustrates a faulty program execution. We extract from the counterexample the values

for the input arguments of the procedure that result in the failing execution, namely

the error-inducing input values. Let EI be a formula expressing that those arguments

take such values, which constitutes the pre-state of the program that will violate the

post-condition.

Algorithm 1 describes in detail the BMC-based procedure. The algorithm takes as

input a program, a specification the program must satisfy, and a maximal bound k. In

line 3, the program is unrolled i times, the unrolled version of the program is encoded

in a trace formula in CNF. In line 4, the algorithm checks the satisfiability of the

conjunction of the trace formula and the negated assertions. If it is satisfiable, the

corresponding assignment is returned. This assignment is a counterexample. In case

it is unsatisfiable, the process may be repeated with a greater bound. The algorithm

stops when a counterexample is found, or when the number of steps exceeds k.

Algorithm 1 BMCProcedure
Input: a program P , a formula AS that encodes the assertions the program must satisfy, and a bound k.

Output: a counterexample, or ∅.
1: i← 0

2: while i ≤ k do

3: TF i ← encode(P , i)

4: (st,A)← SAT(TF i ∧ ¬AS) . “A” is a satisfying assignment if st is true

5: if st = true then

6: return A
7: end if

8: i← i + 1

9: end while

10: return ∅
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4.3.2 Concolic Module

SNIPER needs at least one failing test case to enumerate the diagnoses (see Sec-

tion 4.4 for details). The BMC-based method presented above can provide such a

failing test case. However, when dealing with programs that contain multiple faults

spread in different execution paths, it is strongly recommended to use more than one

failing test case not to miss any faults. SNIPER implements a concolic execution

method [84] that can generate many failing test cases. Concolic execution allows us

to generate failing executions with a high code coverage.

Standard Concolic Execution

Concolic execution [33, 84] was proposed as a dynamic testing method that si-

multaneously performs symbolic and concrete execution. This method provides a

high code coverage for program testing. We follow the approach of CUTE [84]. The

algorithm first executes the program on some random input values. The method

keeps track of a path constraint (PC) to collect symbolic predicate expressions from

branching points. The conjunction of the predicates in PC holds for the execution

path. The CUTE algorithm checks whether the PC with the last constraint negated

is satisfiable. If so, new input values are generated allowing each test run to exercise

different program paths. The algorithm stops when either no more new inputs can

be generated or a given time-out is reached.

This module benefits from the JIT capabilities of LLVM [57] to run the program

in an efficient manner. It implies that concolic test generation can be efficient by

consuming less time to terminate.

4.3.3 Runner Module

In case the user has already a set of test cases, we implemented a module to

parse the test cases in the format used by SNIPER. This module is called the runner

module. It uses the same implementation of the concolic module but with the symbolic

execution disabled. The module executes the test cases on the input program and
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checks whether or not the obtained output satisfies the post-condition in order to

know if the test case is a failing or successful one. As in the concolic module, this

module also benefits from the JIT capabilities of LLVM.

4.4 Diagnosis Enumeration

The diagnoses enumeration consists of enumerating all the MCSes (minimal cor-

rection subsets) of the input program formula for each failing test input (error-

inducing input). In the next section we start by describing a classic MCS enumeration

algorithm. Based on this algorithm, we describe a basic algorithm for enumerating

MCSes for the case of formula-based fault localization of imperative programs.

4.4.1 Classic MCS Enumeration

Given an unsatisfiable formula in CNF, the problem of enumerating all MCSes is

defined in Definition 5.

Definition 5 (AllMinMCS [70]) Given a constraint system ϕ, the AllMinMCS

problem consists of finding all the minimum size MCSes of ϕ. The AllMCS prob-

lem consists of finding all MCSes of ϕ (independent of their size).

We start by explaining the concept of blocking, which is necessary for enumerating

MCSes. We then explain how a set of minimum size MCSes can be computed with

partial maximum satisfiability.

MCS Blocking Technique

A blocking technique is used to prevent a particular MCS from reappearing while

enumerating MCSes. This is done by adding a blocking constraint to the working

formula. We use a technique introduced by [70] for blocking MCSes. This tech-

nique called blocking by using auxiliary variables can be efficiently implemented with

Yices 1 [28]. This technique has the advantage of not using relaxation variables to

block MCSes. A relaxation variable is a Boolean variable that is added to clauses
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in the formula to block some clauses. Blocked clauses cannot be relaxed anymore,

forcing the solver to find alternative solutions. When using relaxation variables it is

require to check if the found MCSes are not supersets of previously found MCSes.

This check increases the algorithm’s complexity. The method of blocking by using

auxiliary variables does not need to perform this checking. Blocking by using aux-

iliary variables consists of initially transforming each soft clause into a hard clause

after adding a new Boolean variable called an auxiliary variable. Additionally, a set of

unit soft clauses is added that corresponds to the negation of each auxiliary variable.

Algorithm 2 shows how this is done.

For example, consider the SMT formula below and suppose that blocking by using

auxiliary variables is used.

ϕ = {(x ≥ 1), (x < 1), ((x < 1) ∨ (y < 1)), (y < 1), (y ≥ 1)}

Then the formula given to the pMaxSMT solver is the formula containing the set of

soft clauses:

ϕsoft = {(¬a1), (¬a2), (¬a3), (¬a4), (¬a5)}

and the set of hard clauses:

ϕhard = {((x ≥ 1) ∨ a1), ((x < 1) ∨ a2), ((x < 1) ∨ (y < 1) ∨ a3),

((y < 1) ∨ a4), ((y ≥ 1) ∨ a5)}

The input of pMaxSMT is a CNF SMT formula ϕ, which is a conjunction of clauses.

The output of pMaxSMT is an assignment A (consistent with a background theory

T ) that minimize the number of falsified soft clauses of ϕ. When the pMaxSMT solver

blocks an MCS, then the blocking constraint to be added to the working formula is

as in the formula below, where ai are auxiliary variables.

ϕW ← ϕW ∪ {(
∨

A(ai)=true

¬ai)}

The A(ai) = true means that the variable ai has the value true in the assignment A,

which was perviously returned by the pMaxSMT solver.
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Algorithm 2 AddAuxVars (based on [70])

Input: a CNF formula ϕ.

Output: a CNF formula ϕ′ with auxiliary variables ai, or ∅.
1: ϕW ← ϕ . ϕW is the working formula

2: AV ← ∅ . AV is a set of auxiliary variables (Boolean variables)

3: ϕsoft ← ∅
4: � Create a set of unit soft clauses

5: for each w ∈ ϕW , w tagged as soft do

6: AV ← AV ∪ {ai} . ai is a new auxiliary variable created

7: ϕsoft ← ϕsoft ∪ {(¬ai)}
8: wA ← (w ∨ ai)

9: ϕW ← ϕW \ {w} ∪ {(wA)HARD} . Remove w and add wA as hard

10: end for

11: if AV = ∅ then
12: return ∅ . No possible pMaxSMT solution

13: end if

14: ϕ′ ← ϕW ∧ ϕsoft

15: return ϕ′

Algorithm 3 AllMinMCS (based on [70])

Input: an SMT CNF formula ϕ with auxiliary variables ai.

Output: a set M containing all the minimum size MCSes of ϕ.

1: ϕW ← ϕ . ϕW is the working formula

2: M ← ∅
3: while true do

4: (st, ϕMSS ,A)← pMaxSMT(ϕW ) . Solve the working formula

5: � “ϕMSS” is an MSS if st is true

6: � “A” is a maximal satisfying assignment if st is true

7: if st = true then

8: ϕMCS ← CoMSS(ϕMSS) . The complement of an MSS is an MCS

9: M ←M ∪ {ϕMCS}
10: ϕW ← ϕW ∪ {(

∨
A(ai)=true ¬ai)} . Add the blocking constraint

11: else

12: break . No more new minimum size MCS solution

13: end if

14: end while

15: return M

AllMinMCS Algorithm

We describe a classic algorithm for enumerating all minimum size MCSes of a given

formula. Algorithm 3 takes as input a CNF formula ϕ with auxiliary variables ai.

An MSS can be computed using a pMaxSAT procedure (line 4). The MCS can be

obtained by taking the complement of the MSS (line 8). The algorithm blocks MCSes
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by using auxiliary variables (line 10). In the previous section, we explained how we

add auxiliary variables to a CNF formula. The algorithm stops when all minimum

size MCSes are blocked.

Note that this algorithm fully enumerates MCSes for each error-inducing inputs, as

opposed to the algorithm of BugAssist [47] that enumerates MCSes in an incomplete

manner.

For program of Listing 3.2 (Section 3.4.4) and for a set of error-inducing inputs

Efoo = {ϕfoo
TI 1

, ϕfoo
TI 2
}, if we run Algorithm 4 as AllDiagnoses(ϕfoo

FFTF , E
foo, ϕfoo

AS ) = Dfoo

we obtain the following MSSes and MCSes:

MSSes(ϕ1) = {{W,X,Z}, {Y, Z}}

MCSes(ϕ1) = {{Y }, {W,X}}

MSSes(ϕ2) = {{X, Y, Z}, {W,Y, Z}}

MCSes(ϕ2) = {{W}, {X}}

Dfoo = {MCSes(ϕ1),MCSes(ϕ2)}

4.4.2 Basic Diagnosis Enumeration for Imperative Programs

Algorithm 4 describes the computation of the diagnoses for imperative programs.

The algorithm takes as input a set of error-inducing inputs, a trace formula, and a

formula that encodes the assertions the program must satisfy. For each error-inducing

input (lines 3 through 9), a set of MCSes is computed using AllMinMCS (line 5) with

the clauses of ϕTF set as soft, and the clauses of ϕe and ϕAS set as hard. Finally,

a set of diagnoses D is obtained, which contains root causes of the faulty program.

The obtained diagnoses in this set must be combined before the user can use them

for effectively locating faults in the program. Section 4.5 presents some diagnosis

combination techniques.

4.4.3 Discussions

BugAssist [47] uses a MaxSAT-based method for computing MCSes . The method

does not enumerate all minimum size MCSes, which means that the method does
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Algorithm 4 AllDiagnoses
Input: a set of error-inducing inputs E, a trace formula ϕTF , and a formula ϕAS that encodes the assertions

the program must satisfy.

Output: D a set of diagnoses (MCSes).

1: M ← ∅
2: D ← ∅
3: for each e ∈ E do

4: ϕe ←Encode(e)

5: M ←AllMinMCS(ϕhard
e ∧ ϕsoft

TF ∧ ϕhard
AS ) . Enumerate all minimum size MCSes

6: if M 6= ∅ then
7: D ← D ∪ {M}
8: end if

9: end for

10: return D

not guarantee to cover all the root causes. Wotawa et al. [95] uses a method that

enumerates MCSes up to a certain size. The advantage of such method is that the

enumeration is faster as compared to enumerating all minimum size MCSes because

there are fewer MCSes to enumerate. However, the completeness of the method may

not be achieved if the MCSes’ sizes are too small. If some MCSes are not covered,

root causes may be missed. The latter is especially true in the case of multi-fault

programs because MCSes in such programs tend to include many elements, each

one corresponding to a particular fault. As opposed to BugAssist and Wotawa’s

approaches, we enumerate all minimum size MCSes, and hence our method covers all

root causes, at least for the error-inducing inputs used.

4.5 Diagnosis Combination

Algorithm 8 provides a function that returns a set of diagnoses (MCSes) for each

error-inducing input given as arguments. Each of these sets contains root cause

candidates for one failing execution, which is triggered by the error-inducing input

associated to the set. The problem of combining diagnoses is to generate sets of fault

locations that can be used to potentially fix all the failing executions induced by the

provided error-inducing inputs, meaning that the user can use one of the sets to fix

all the faults in the program. As discussed in Section 2.8.2, independent multiple

faults need more than one failing execution. We call such gathering of sets a complete
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diagnosis.

Definition 6 (Complete Diagnosis) Given a formal representation TF of a pro-

gram P , a formula AS that encodes the assertion the program P must satisfy, and a

set of error-inducing inputs E, a complete diagnosis ∆ is a set of clauses of TF such

that ∀e ∈ E | ({e} ∪ (TF \∆) ∪ AS ) is satisfiable.

SNIPER implements three combination techniques: a flattening-based combina-

tion, a hitting-set-based combination and a pair-wise-based combination. The follow-

ing sections describe these combination techniques.

4.5.1 Flattening-based Combination

The flattening-based combination technique is a simple method to combine di-

agnosis. The method is described in Algorithm 5. The algorithm takes as input a

set of MCSes and output a set of elements, which are root causes (lines of code for

example).

This combination method is essentially the same as the one used in the tool

BugAssist [47]. This method is not computationally costly as compared with other

advanced methods, however, it produces little information regarding the relations

between the root causes. Indeed, all the root causes are in a single set and this can

be a problem when dealing with multi-fault programs because the engineer does not

know if she has to take into account one or more than one root cause of this set to

correct the faulty program.

In the following two sections we introduce combination methods being able to face

the problem introduced by multi-fault programs.

4.5.2 Hitting-set-based Combination

One way to combine MCSes (diagnoses) is to use the minimal hitting set formu-

lation, which was defined in Section 3.4.1. Suppose that we have a set Ω of MCSes,

then if we compute the minimal hitting set of Ω we obtain a set of sets H, which
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Algorithm 5 DiagCombineFLA

Input: D a set of diagnoses (MCSes).

Output: C a combined diagnosis (MCS).

1: C ← ∅
2: for each xi ∈ D do . xi = {{...}, ...}
3: for each yj ∈ xi do . yj = {...}
4: C ← C ∪ zk

5: end for

6: end for

7: return C

contains complete diagnoses because H is a set of elements that covers every set in

Ω by having at least one element in common with it.

SNIPER adapts a MaxSAT-based hitting set calculation algorithm. It is an exact

algorithm meaning that we do not use any approximation and always obtain sets

of minimal cardinality. Algorithm 6 describes our approach for computing minimal

hitting sets. The idea behind our algorithm is to iteratively call a MaxSAT solver

and use blocking variables (see Section 4.4.1 for details) to block the solution after

each call.

We are able to obtain minimal sets because the solver always maximizes the num-

ber of variables xi equal to false, which is equivalent to minimizing the number of xi

equal to true. The xis equal to true are the resultant hitting set.

4.5.3 Union Pair-wise-based Combination

SNIPER implements a combination technique [53] based on a pair-wise union.

This technique ensures that if no fault is missed by the diagnoses generation algorithm

of SNIPER, then no fault is missed after the combination.

A set C of complete diagnoses can be calculated using a n-ary pairwise union as

defined in Definition 7. Given a n-tuple R we denote Ri the ith component of R. Let

us denote
∏n

j=1Dj the cartesian product of D1, ..., Dn, which produces the set of all

ordered n-tuples 〈a1, ..., an〉, where ai ∈ Di for all i, 1 ≤ i ≤ n. When D is a set of

sets of MCSes, each set of C is a complete diagnosis.
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Algorithm 6 DiagCombineMHS
Input: Collection Ω of subsets of a finite set D.

Output: A hitting set for Ω, i.e., a subset H ⊆ D such that H contains at least one element from each

subset in Ω.

1: ϕhard ← ∅ . Formula for the hard clauses

2: ϕsoft ← ∅ . Formula for the soft clauses

3: for each xi ∈ D do

4: ϕsoft ← ϕsoft ∪ {(¬xi)}
5: end for

6: for each ci ∈ Ω do

7: ϕhard ← ϕhard ∪ {(
∨
∀xi∈ci xi)}

8: end for

9: while true do

10: (st, ϕMSS ,A)← pMaxSMT(ϕhard ∪ ϕsoft)

11: � “ϕMSS” is a maximal satisfiable subset (MSS) if st is true

12: � “A” is a maximal satisfying assignment if st is true

13: if st = true then

14: � Add the blocking constraints

15: ϕhard ← ϕhard ∪ {(
∨
A(xi)=true ¬xi)}

16: N ← N ∪ {
⋃
A(xi)=true xi}

17: else

18: return H

19: end if

20: H ← H ∪N

21: end while

Definition 7 (SetCombine) Let D1, ..., Dn be n sets. Then the SetCombine C for

D is defined as follows:

C =

{
n⋃

i=1

ai | a ∈
n∏

j=1

Dj

}

The potential effectiveness of complete diagnoses generated from the SetCombine op-

erator is demonstrated empirically with the experiments of Section 5.5 and Section 5.6.

Nevertheless, we show below a property that directly follows Definition 7. This prop-

erty aims at showing that the SetCombine operator is sound.

Property 1 shows that the SetCombine operator does not delete any elements

(clauses) from the MCSes output by Algorithm 8, and does not add extra elements

(clauses) to the complete diagnoses.
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Property 1 ⋃
Ck∈C

Ck =
⋃

Dj∈D

⋃
ds∈Dj

ds

Proof: For sake of clarity, let us denote C ′ =
⋃

Ck∈C Ck (the left part of the equation)

and D′ =
⋃

Dj∈D
⋃

ds∈Dj
ds (its right part). We must show that C ′ = D′. Let us show

that x ∈ C ′ iff x ∈ D′. x ∈ C ′ iff x ∈
⋃

Ck∈C Ck iff there is a Ck ∈ C such that

x ∈ Ck iff there exist a ∈
∏n

j=1Dj such that x ∈
⋃n

i=1 a
i (using Definition 7), i.e.,

∃i such that x ∈ ai, iff there exists Dj ∈ D such that ds ∈ Dj such that x ∈ ds iff

x ∈
⋃

Dj∈D
⋃

ds∈Dj
ds, i.e., x ∈ D′. Therefore, C ′ = D′. �

Algorithm 7 DiagCombinePWU

Input: D a set of diagnoses (MCSes).

Output: C a set of combined diagnoses (MCSes).

1: n← |D|
2: ai ← 0 ∀i ∈ {0, 1, ..., n− 1}
3: repeat

4: S ← {∅}
5: for i← 0 to i < n do . Union for the current indexes in a

6: j ← ai

7: A← Di . A is a set of MCSes

8: B ← Aj . B is an MCS

9: S ← S ∪B

10: end for

11: C ← C ∪ {S}
12: a0 ← a0 + 1

13: for i← 0 to i < n− 1 do . Update indexes in a

14: if ai ≥ |Di| then
15: ai ← 0

16: ai+1 ← ai+1 + 1

17: end if

18: end for

19: until an−1 ≥ |Dn−1|
20: return C
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Let us illustrate this with the following example.

Example When running Algorithm 8 on the TF of multi-fault program in Listing 2.2

(see Section 2.8.2) with the following error-inducing inputs: x=0 and x=1, we obtain

a set of MCSes and D below.

MCSesa = {{3, 4}, {6}}, MCSesb = {{3}, {4}},
D = {MCSesa,MCSesb}

The root cause locations in MCSesa are related to the failing path triggered by x=0,

and those in MCSesb are related to the failing path triggered by x=1. The combination

of MCSes of D gives us the following complete diagnoses :

SetCombine(D) = {{3, 4} ∪ {3}, {3, 4} ∪ {4}, {6} ∪ {3}, {6} ∪ {4}}
= {{3, 4}, {3, 6}, {4, 6}}

A set of fault locations to check is needed to fix all faults in the program. For

example, the set {4, 6} provides information to fix the program since it combines root

causes from the two failing paths.

In some cases, multiple faults can lie in one program path. In such situation, a

single error-inducing input is enough to localize all the faults. In other cases, if two

faults are in different paths or triggered by different error-inducing inputs it requires

more than one error-inducing inputs that trigger different failing paths. For the pro-

gram in Listing 2.8.2, we need at least two error-inducing inputs to trigger both failing

paths. In summary, a basic MCS enumeration method that only uses a single failing

test case is not sufficient when dealing with multi-fault program whose faults are

spread in different program paths or execution paths. The association of Algorithm 8

and the combination method of Definition 6 allow the efficient combination of MCSes

(root causes), each obtained from different failing paths.

4.5.4 Discussion and Related Work

Wotawa et. al. [95] does not use any combination method. This means that the

method returns the original enumerated MCSes, which is the set D in the example of
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the previous section. The software engineer has to sort MCSes by hand, and it can

be difficult when the number of MCSes is large.

The approach of BugAssist [47] is to combine MCSes by putting all its atomic

elements (clauses) in a single set. The clauses (representing fault locations) in this set

are later ordered by a ranking mechanism. For example, if we apply the BugAssist’s

method to the example of the previous section, we obtain the following set of MCSes:

BugAssistCombine(D) = {3, 4, 6}

The resulting set contains elements from different failing paths. With such set, it

is difficult to see how many elements we have to consider to fix all faults in the

program. As opposed to BugAssist’s approach, the pair-wise union method or the

minimal hitting set method generates different sets, each set containing potential root

causes for fixing all the faults in the program. For example, with the pair-wise union

method on the example of the previous section we obtain the following set of MCSes:

DiagCombinePWU(D) = {{3, 4}, {3, 6}, {4, 6}}



Chapter 5

Full Flow-sensitive Trace Formula

5.1 Introduction

In formula-based fault localization methods, potential execution paths of a pro-

gram are encoded in a trace formula (TF). The efficiency and precision of the fault

localization algorithm are highly dependent on the way this formula is encoded. De-

pending on both the multi-fault type and the way the faulty program is encoded,

the faults may or may not be localized. Table 5.1 and 5.2 summarize the encoding

methods in existing work and our proposal. The following sections give further details

on each encoding method.

Trace Formula Type
Single Fault Types

Calculation Branching Condition

Flow-insensitive [47] �X �

Flow-sensitive [17] �X �X

Full Flow-sensitive �X �X

Spectrum-based [45, 46] �X �X

Table 5.1: The types of trace formula used in formula-based fault localization and

their specificities (1/2)

50
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Trace Formula
Multi-fault Types

Type Data Variable Control Variable Independent

Dependent Dependent

Flow-insensitive [47] �X � �X

Flow-sensitive [17] �X � �X

Full Flow-sensitive �X �X �X

Spectrum-based [45, 46] � � �

Table 5.2: The types of trace formula used in formula-based fault localization and

their specificities (2/2)

5.2 Trace Formula Encodings

A simple approach [47] consists of encoding a TF from a counterexample ob-

tained using bounded model-checking (BMC) methods. We call this encoding flow-

insensitive TF. Since it represents a straight-line program fragment that contains

faults, it does not reconstruct information related to the control flow of the original

program. Thus, the formula is small, which makes the localization efficient. However,

because of this lack of information, potential root causes in the program control flow

cannot be localized, which means that control-dependent faults cannot be localized

either. For the case of independent faults, it is mandatory to repeat the process of

counterexample generation in order to localize all faults because a counterexample

represents a single program path containing one of the independent faults only.

In order to overcome the lack of control flow information in flow-insensitive TF, a

flow-sensitive TF was proposed [17]. Basically, a flow-sensitive TF is similar to flow-

insensitive TF with the exception that flow-sensitive TF includes some control flow

information, such as values of variables that determine conditional branches, along

the failing program path. This makes possible the localization of faults that lie in the

control flow. Since a flow-sensitive TF represents itself more information, it is larger

and more complex than a flow-insensitive TF. Furthermore, as in flow-insensitive TF,
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it is necessary to construct many TF in order to deal with independent faults because

the flow-sensitive TF does not encode all execution paths [83]. Concerning data flow-

dependent faults, they can be identified with both flow-insensitive and flow-sensitive

TF. This is because these trace formulas encode data flow information of the target

failing path, which includes the faults.

For multi-fault programs with nested faults (for recall, a special case of control-

dependent faults), both flow-insensitive and flow-sensitive TF cannot be successful to

identify them. This is essentially because flow-insensitive and flow-sensitive TF do

not encode full control-dependencies.

5.3 Full Flow-sensitive Trace Formula

In this thesis we introduce a new trace formula encoding called full flow-sensitive

TF, which is essentially equivalent to the program’s CFG. The data flow and control

flow of the input program are fully encoded in the formula. In order to faithfully

represent all potentially possible executions of the input program, both of these flows

must be encoded. When both flows are properly encoded, multi-faults as described

in Section 2.8.2, including nested faults, can be localized by our method. The dis-

advantage is that full flow-sensitive TF is large and complex because it represents

the whole program. Hence, we introduce in Chapter 6 an efficient algorithm for

computing diagnoses with full flow-sensitive TF.

We will describe below how we translate a pre-processed LLVM IR to a partial

SMT formula1.

We construct the full flow-sensitive trace formula (FFTF) [53] from the control

flow graph (CFG) representation of the preprocessed program. The CFG is in static

single assignment (SSA) form [22, 23]. A CFG is a directed graph of the form P =

(B, l, e, T ), where B is the set of all basic blocks (nodes), l ∈ B is the initial basic

block executed on the entrance, e ∈ B is the exit basic block, and T ⊆ B × B is the

set of all transitions between basic blocks (directed edges). Each basic block consists

1For sake of simplicity we omit some details about the IR [57].
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of a labeled entry point, a series of phi nodes, a list of instructions, and ends with a

terminator instruction, such as a branch or function return.

5.3.1 Encoding of the Data Computation

The arithmetic and comparison instructions in LLVM take two arguments and

return one result. We restrict the type of variables to integers and booleans. Let OP

be a set of operators. The arithmetic and comparison instructions are encoded in

equality constraints as follows:

r = (x ∆ y) ∆ ∈ OP

where r is the result of the computation of the variables x and y. In the case of

comparison operators, the result r is a boolean variable, called a guard, that will be

used in the representation of the control-flow.

5.3.2 Encoding of the Control-Flow

A function definition contains a list of basic blocks, forming the control flow graph

(CFG) of the function body. Each basic block consists of a labeled entry point, a

series of φ nodes, a list of instructions, and ends with a terminator instruction such

as a branch or function return.

Let BB be the set of all basic blocks. Let T ⊆ BB × BB be a subset of all

transitions between the basic blocks. For each transition (bbi, bbj) ∈ T with bbi, bbj ∈
BB , we have a Boolean variable tij that is true iff the control flow goes from bbi to

bbj. The set of predecessors of a basic block bbj is equal to:

pred(bbj) = {bbi ∈ BB | (bbi, bbj) ∈ T}

Let on(bbi) with bbi ∈ BB be the enabling condition that is true iff the basic block

bbi is executed. The value of on(bbi) is computed as:

on(bbi) =
∨

bbj∈pred(bbi)
on(bbj) ∧ tji
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Unconditional branches between basic blocks are encoded by setting the transition

variable to the value of the enabling condition of the basic block where the branch

occurs:

on(bbi) = tij

Conditional branches make the control flow jump from a basic block bbi to either a

basic block bbj if the guard g is true, or to a basic block bbk otherwise:

(tij = g) ∧ (tik = ¬g)

As is usual in SSA representation, φ nodes join together values from a list of its

predecessor basic blocks. Each φ node takes a list of (value, label) pairs to indicate

the value chosen when the control flow transfers from a predecessor basic block with

the associated label. Below, the encoding of a φ node, where the new symbol xi refers

to the variable x in bbi.

∨
xj∈pred(bbi)

(xi = xj) ∧ tji

The CFG takes the formula below. The entry basic block in a function is imme-

diately executed on entrance to the function and has no predecessor basic blocks.

Its enabling condition on(entry) is always true. ϕon is the formula that encodes the

enabling conditions for all basic blocks, ϕuncond is the conjunction of all constraints

on unconditional branches, ϕcond is the conjunction of all constraints on conditional

branches, and ϕphi is the conjunction of the constraints encoding the φ nodes.

ϕCFG ≡ on(entry) ∧ ϕon ∧ ϕuncond ∧ ϕcond ∧ ϕphi

5.3.3 Whole Trace Formula

The whole trace formula for the IR, TF , takes the form below. ϕCFG is the formula

that encodes the control flow of the program and ϕarith/comp is the conjunction of the

constraints encoding the arithmetic and comparison instructions.
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TF = ϕCFG︸ ︷︷ ︸
hard

∧ϕarith/comp︸ ︷︷ ︸
soft

The clauses that encode the CFG of the program are marked as hard because they

represent the skeleton of the program and we do not want the solver to relax these

clauses. The rest of the clauses are set as soft (relaxable) because they contribute to

the computations of the program, and are then susceptible to be root cause candi-

dates. Note that with our encoding we can identify root causes related to the control

flow. For recall, the control flow of an imperative programs refers to the order in

which the individual instructions are executed or evaluated. This order is controlled

by branch instructions within the program. The outcome of a branch is made upon its

condition’s value, which is calculated by a comparison instruction. The trace formula

presented herein encodes each comparison instruction as soft. Hence, in situation in

which the obtained trace formula encodes a faulty control flow, when enumerating

MCSes (see Section 6.2 for details), the solver can relax some clauses related to com-

parison instructions. When relaxing one of such clauses, the outcome of the branch

using the result of this comparison instruction can be inverted (for example, taking

the true edge instead of the false edge). In other words, the solver can manipulate the

control flow so that it becomes correct in view of the provided program specification.

Example

For example, below a simplified version of the FFTF for the CFG of function foo

(see Figure 3.1).

ϕfoo
FFTF =

W

(g1 = (x1 > y1)) ∧
X

(z1 = 1) ∧
Y

(z2 = 42)︸ ︷︷ ︸
soft

∧
Z

(z3 = (ITE g1 z1 z2))︸ ︷︷ ︸
hard

5.3.4 Formula Granularity Level

In the final encoding of the TF shown in the previous section, the formula ϕcal

contains all the soft clauses to be potentially relaxed by the pMaxSAT solver. The
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complexity of the problem is related to the way these clauses are grouped together.

For the case of our encoding, we study the following three granularity levels:

• Instruction-level

• Line-level

• Block-level

With the instruction level granularity, each LLVM instruction is encoded in a single

clause. With the line level granularity all instructions belonging to the same state-

ment line in the original source are grouped in a single clause. With the block level

granularity, all instructions belonging to the same LLVM basic block are grouped in

a single clause.

A trace formula, with an instruction-level granularity, contains the same number

or more soft clauses than a trace formula with a line-level granularity or a block-level

granularity. The comparison between a trace formula with a line-level granularity

to a formula with a block-level granularity depends on the way the source code is

arranged. Usually, however, there are more instructions in a line than in a basic

blocks. We show in the experiment section (Section 5.5.4) the difference obtained in

term of computing time depending on the granularity level used for constructing the

trace formula. Note that the granularity level also has an impact on the precision of

the fault localization algorithm.

Example

Let cil,bj be a clause that encodes an LLVM instruction i of a basic block bj defined

at a line l in the original source code. Below, a set of clauses encoded from a program

P .

c11,b1 , c21,b1 , c32,b1 , c42,b1 , c53,b2 , c63,b2

Consider below the trace formulas encoding P constructed with different granularity

levels.

ϕinst
TF = {(c11,b1), (c21,b1), (c32,b1), (c42,b1), (c53,b2), (c63,b2)}
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ϕline
TF = {(c11,b1 ∧ c

2
1,b1

), (c32,b1 ∧ c
4
2,b1

), (c53,b2 ∧ c
6
3,b2

)}

ϕblock
TF = {(c11,b1 ∧ c

2
1,b1
∧ c32,b1 ∧ c

4
2,b1

), (c53,b2 ∧ c
6
3,b2

)}

The trace formula ϕinst
TF contains 6 groups of clauses, each group made of a single

clause. The trace formula ϕline
TF contains 3 groups of clauses. The trace formula ϕblock

TF

contains 2 groups of clauses.

5.4 Fault Localization with FFTF

and AllDiagnoses Algorithm

In this section we explain how root causes are localized using the FFTF together

with the AllDiagnoses algorithm, which was presented in Section 4.4.

The FFTF is essentially equivalent to the CFG of the target program. In order to

explain the modus operandi of the AllDiagnoses algorithm with a FFTF as input we

transpose the concept of program dependence graph (PDG) to FFTF. A definition

of the PDG can be found in Section 3.6.

Definition 8 transposes the concept of PDG to FFTF. Since a FFTF is equiva-

lent to the target program’s CFG, transposing dependences is straightforward. Note

that in our case PDG are always constructed from loop-free and function call-free

programs.

Definition 8 (Trace Formula Dependence Graph) Given a full flow-sensitive

trace formula TF of a loop-free single-function program P , a trace formula depen-

dence graph (TFDG) GTF is the PDG Gp of P where all node vi are replaced by

clauses ci with ci ∈ TF such that ci is the encoding of vi.

In the FFTF, the control predicates are guard variables appearing in icmp in-

structions. Depending on the values of these guards, a decision is made, which has

the effect of enabling or disabling clauses in the trace formula. We define the concept

of clause enabling/disabling in Definition 9.
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c1

c2

c3c4

Figure 5.1: Clause Enabling/Disabling

Definition 9 (Clause Enabling/Disabling) Given a full flow-sensitive trace for-

mula TF of a program P , a TFDG GTF of TF , and an assignment A of TF , a

clause c1 is enabled iff there exists a path C in GTF between the entry node and c1,

such that all guard variables appearing in the clauses of C are evaluated in A such

that c1 is reachable. A clause c1 is disabled iff c1 is not enabled.

In other words, a clause is enabled when the formula assignment makes the control

flow cover (traverse) the clause. A clause is disabled when the formula assignment

makes the control flow not cover (not traverse) the clause. We illustrate clause en-

abling/disabling in Figure 5.1 where c1, c2, c3 and c4 are clauses and c2 is a control

predicate. The current assignment of the variables in these clauses makes the control

flow traverse c1, c2 and c4 (plain line) but not c3 (dashed line). We say that c1, c2

and c4 are enabled and c3 is disabled.

When clauses are disabled they do not need to be satisfied because they do not

contribute to the calculation of the program output, and hence have no effect of the

program’s post condition (specification).

The solver used in AllDiagnoses algorithm can choose outcomes of control pred-

icate by finding appropriate variable assignments. Therefore, the solver can enable

or disable some clauses depending on these assignments. In a way, and only for the

case of full flow-sensitive trace formula, the solver can virtually relax clauses just by

changing control predicate values. The latter is possible because the FFTF encodes

all potential program paths. Therefore, the solver can explore paths in the trace

formula.
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When extending the FFTF with an error-inducing input formula and a specifica-

tion formula, it become unsatisfiable. The path induced by the error-inducing input

is enabling clauses, which are together inconsistent with the specification formula.

In order to restore the consistency, the solver has to relax clauses of the formula.

There are two possible situations when the solver relaxes clauses. (1) Some clauses

are relaxed and the path stays the same. (2) Some clauses are relaxed and the path

is deviated.

We saw how the solver used in the AllDiagnoses algorithm could enable and disable

clauses, and deviate the control flow thanks to the encoding of program dependences

in the FFTF. This is the representation of the program dependences in the FFTF

that makes possible the localization of the data variable dependent faults, control

variable dependent faults, and independent faults.

5.5 Experiments on the TCAS Benchmark

In this section we show the capabilities of SNIPER with the FFTF with some

experiments made on the Siemens Test Suite.

5.5.1 TCAS Benchmark

One of the Siemens Test Suite tasks is the TCAS (aircraft collision avoidance

system), which is sometimes used in program testing research [43, 79]. The authors

of the suite created, in addition to a correct program, 41 versions of the program and

in each of these versions one or more faults were injected. The TCAS task comes

with a set of 1578 test cases. However, no specification is given.

5.5.2 Experimental Setup

We used the same experimental setup as described in [47]. We first ran the original

program on the test cases in order to get the correct output values for each test case.

These values constitute the test oracles for the program. As explained in Section 4.5

we use many error-inducing inputs (failing test cases) in order to deal with multi-fault
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programs. For the purpose of this experiment on the TCAS benchmark, we ran all

test cases on each faulty version to obtain the failing test cases. These are the test

cases that give an output different from the correct output.

All the experiments were carried out using an Intel Core 2 Duo 2.4 GHz with 4

GB of RAM on the operating system Mac OS X 10.6 Snow Leopard.

5.5.3 Results for Single and Multiple Faults

Table 5.3 reports the results of running SNIPER with the FFTF on each version

of the TCAS. The first column of the table shows the version of the program. The

column #Err shows the number of injected fault in this version. The column Error

Type shows the type of bug injected, which is explained in Table 5.4, which comes

from [47]. The column #FTC shows the number of failing test cases included in

the TCAS benchmark set. The right part of Table 5.3 shows the results of SNIPER

and BugAssist. The results of BugAssist were taken from [47]. Each column shows

the number of time the tools were able to detect at least one of the injected fault

locations.

In total, BugAssist pin-pointed 1364 times the injected fault location out of the

1437 runs (73 misses). SNIPER pin-pointed the injected fault location 1435 times

out of the 1437 runs (2 misses). The average ACSR (Average Code Size Reduction),

which is the percentage of code given by the tool on average to locate the faults, of

all the versions is 11.00%. For recall, CSR (Code Size Reduction) is the ratio of fault

locations in a MUS (program slice) to the total number of lines of code (Section 3.4.3).

We obtain a minimum of 2.31% for the version no. 14 and a maximum of 14.01% for

the version no. 10. SNIPER was able to identify the exact bug location of all the

single fault programs.

Concerning the multi-fault programs, all the faults that were able to be found

with the given test cases were successfully localized. In the version no. 31, the TCAS

test cases cover one of the two buggy statements only. Thereby, the uncovered buggy

statement cannot be in the root causes. This shows that the coverage of the test

input is an important factor in fault localization.
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5.5.4 Results with Different Formula Granularity Levels

As explained in Section 5.3.4, depending on the trace formula granularity level,

the computing time can greatly vary, as well as the precision of the localization.

Figure 5.2 reports the computation times of SNIPER on the TCAS benchmark with

the FFTF constructed in different granularity levels. The histograms are separated

in two parts for readability. The bars in black represent the times with the block-level

granularity, the bars in gray represent the times with the line-level granularity, and

the bars in white represent the times with the instruction-level granularity.

We can see that the computation time is the best with the block granularity level.

The worst computing time is obtained with the instruction granularity level, which

is the most fine-grained. We see in this experiment that a coarse-grained granularity

enables the localization algorithm to compute diagnoses fast. Oppositely, with a

finer-grain granularity level it takes a longer time to complete. This is because the

execution time is more or less dependent on the number of clauses to enumerate.

There is a compromise to decide which granularity level is appropriate in view of

the execution time and precision. Of course, running the localization algorithm on a

trace formula with a fine-grained granularity level results in more precise diagnoses

as compared with a trace formula with a coarse-grained granularity level.

To understand why a coarse-grained granularity enables a faster enumeration of

MCSes than with a fine-grained granularity, let us consider again the example of

Section 5.3.4 and assume that each clause cil,bj is an MCS. Running AllMinMCS(ϕinst
TF )

requires 7 calls to the pMaxSMT solver. At each of these calls, one clause is relaxed

by the solver and then blocked until no more clauses can be relaxed (see Section 4.4

for details). Running AllMinMCS(ϕline
TF ) requires 4 calls to the pMaxSMT solver. And

running AllMinMCS(ϕblock
TF ) requires 3 calls to the pMaxSMT solver. Since the total

running time of our fault localization method is strongly correlated with the number

of calls to the pMaxSMT solver, the more calls to the solver, the more time it takes

to localize faults.
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5.6 Experiments on the Bekkouche’s Benchmark

In the previous section we showed some experiment on the TCAS benchmark.

The TCAS program is mostly composed of comparisons. All programs are the same

except that the injected faults are different. Since a fault localization performs dif-

ferently depending on the program natures, we would like to experiment our method

on different kind of programs. In this section we show how SNIPER with the FFTF

performs on different kind of programs. We made some experiments on a bench-

mark provided by Bekkouche [7, 8]. We chose the Bekkouche benchmark because it

is composed of various kinds and sizes of programs. Furthermore, it includes pro-

grams with arithmetics, and the faults in these programs were injected specifically

for experimenting automatic fault localization methods, as opposed to TCAS that

was originally designed for the research on program testing methods.

The version of SNIPER used herein uses LLVM version 3.3 and Yices version

1.0.39. All the experiments were carried out using an Intel Core 2 Duo 2.4 GHz with

4 GB of RAM on the operating system Mac OS X 10.6 Snow Leopard.

5.6.1 Bekkouche’s Benchmark

The Bekkouche’s benchmark [7, 8] consists of several C programs of 15 to 180

lines of code. They contained only pre- and post-conditions on inputs and outputs

with constant values. We modified the programs by removing these pre- and post-

conditions and adding complete specifications under the form of post-conditions on

program outputs.

5.6.2 Results for Single and Multiple Faults

Table 5.5 lists the results obtained by running SNIPER with the FFTF on each

benchmark program [7, 8]. The first column of the table shows the program name.

The column #EI shows the number of error-inducing inputs generated by a concolic

unit testing engine implemented in SNIPER. The Found column lists the number of

faults that SNIPER was able to localize versus the total number of faults injected in
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the program. The Time column lists the total running time of SNIPER in millisec-

onds, including the bitcode loading time and bitcode preprocessing time of LLVM,

the concolic execution time, the formula encoding time, and the solving time.

For all programs, SNIPER with the FFTF was able to localize all faults. The

multi-fault program Maxmin6varKO3 contains a nested fault, which is a fault that is

masked by other fault. This type of fault (control-dependent faults in Figure 2.2)

are especially difficult to deal with because it is impossible to generate a test case

that covers the masked fault. Coverage-based or spectrum-based debugging meth-

ods, such as Tarantula [46], are unable to locate the second fault in the program

Maxmin6varKO3. In addition, the formula-based approach with other encodings than

the full flow-sensitive TF cannot identify the masked fault either. Below, we discuss

how the full flow-sensitive TF can successfully deal with such faults.

1 [...]

2 i f ( ( a>b) && ( a>c ) && (b>d) && ( a>e ) && ( a>f ) ) {
3 max = a ;

4 i f ( ( b<c ) && (c<d) && (b<e ) && (b<f ) ) {
5 min = b ;

6 } [...]

7 } [...]

Listing 5.1: Code fragment from program Maxmin6varKO3 showing the two

faults (underlined)

Listing 5.1 shows a code fragment of program Maxmin6varKO3 showing both faults.

The underlined condition in line 2 should be (a>d) and the underlined condition in

line 4 should be (b<d). Because of the fault in line 2, no failing executions can pass

through the fault in line 4.

From a practical point of view, the masked fault does not exist (it does not corrupt

the program) when the masking fault exists. By fixing the masking fault, we activate

the masked fault. In a sense, we introduce indirectly and unintentionally a new fault

in the program.

From a view point of MCS enumeration with pMaxSAT (see Chapter 6 for details),

the algorithm explores for each test input the search space by relaxing minimal sets
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of clauses. Given a test input T , if the algorithm finds and relaxes clauses related to

the fault in line 2 for T , it is equivalent to say that the fault in line 2 was temporally

removed. Therefore, in the next steps of the exploration the algorithm can find clauses

related to the fault in line 4 for the same test input T because it is now not hidden

anymore by the fault in line 2.

Note that the search is only possible with full flow-sensitive TF, which is equiva-

lent to the program CFG in our encoding method (see Section 5.3), because it encodes

alternative paths for failing executions, which means that the solver (used in Algo-

rithm 8) can relax clauses to force the control flow to take an alternative path that

covers both faults.

5.6.3 SNIPER vs. BugAssist

In this experiment, we used the original pre- and post-condition provided in the

benchmark [8].

All the experiments were carried out on a virtual machine KVM/QEMU using 4

QEMU Virtual CPUs with 4 cores running at 2.6 GHz with 4 GB of RAM on Linux

CentOS release 6.4.

The version of SNIPER used herein uses LLVM version 3.4 and Yices version

1.0.39. We used Clang version 3.4 as a frontend for generating IRs from the C

programs. We used BugAssist [47] version 0.1 with MSUnCore2 version 0.5 as a

backend solver as suggested on the BugAssist’s website.

For this experiment, the error-inducing inputs in SNIPER are computed with

the BMC module. Note that both SNIPER and BugAssist here use the same error-

inducing inputs since all programs have pre-conditions that require the inputs to be

equal to particular constant values (input values that trigger a failing execution).

Table 5.6 lists the results of running SNIPER and BugAssist on the Bekkouche’s

benchmark [7, 8]. The first column of the table shows the program name. The Found

column lists the number of faults that the tools were able to localize versus the total

number of faults injected in the program. The Time column lists the total running

time in seconds. The times for SNIPER also include the execution time of Clang.
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The average computing time is 0.184 seconds with SNIPER and 1.292 seconds

with BugAssist. SNIPER pin-pointed all the injected fault location for both single

fault and multi-fault programs. BugAssist missed 7 fault locations out of the 22

faults.

Concerning programs with multiple faults, because BugAssist outputs only a flat

list of fault locations, it is difficult for the user to find in the program more than one

fault. Thanks to a diagnoses combination method, programs with multiple faults are

handled by SNIPER in a way that it is easy for the user to read and use the result.

For example, in the program Maxmin6varKO3 there are two faults located in lines 24

and 26. On this program, SNIPER outputs the set {{24, 26}, ...} and BugAssist

outputs the set {..., 24, 26, ...}.

5.7 Discussion

We are going to present the characteristics of FFTF in view of the failure model

we assume. First, as explained in Section 2.8, we are focusing herein on faults in the

program’s calculations. Second, the program structure is assumed correct.

In our case, the structure of the IR is made of edges connecting all basic blocks

together. These edges are in fact unconditional branching instructions, conditional

branching instructions, and phi instructions. In the construction of the FFTF, these

instructions are all encoded as hard (non-relaxable), which follows our assumption in

that these instructions are absolutely correct. As for the calculation part of the IR,

it is made of comparison instructions (icmp) and binary instructions (add, sub, ...).

These instruction, which calculates new data values, are encoded as soft (relaxable)

in the FFTF. These are the locations in which we look for a possible potential fault.

SNIPER looks for potential bugs in these locations marked as soft.

In the following, we discuss the ability of the FFTF to localize multiple faults in a

program. In formula-based fault localization, root causes are identified by determining

the clauses of the formula, which when relaxed, will explain the discrepancy between

the observed and correct program behavior.

SNIPER with the FFTF is able to localize multiple faults in a program thanks to
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Figure 5.3: A failing execution

path

A
B

C D

relax

Figure 5.4: Execution path after the

clause B was relaxed

the following points:

1. It uses a fault localization algorithm that works on many error-induction inputs,

which may exhibit different erroneous situations of the program.

2. SNIPER uses a full diagnoses enumeration algorithm. In some work, for exam-

ple [47], fault localization is done with a partial enumeration algorithm because

of high computation costs. Another approach is to enumerate MCSes up to a

certain size [95]. These methods are not exploring all the search process.

3. As explained in Section 5.4, FFTF encodes alternative paths to the failing

path. In some situation, the relaxation of some clauses makes the control flow

deviate and take those alternative paths. The solver can also relax clauses in

these alternative paths. Hence, in case of control variable dependent faults or

independent faults, the solver is able to relax a faulty clause, which is not on

the target failing path. Figure 5.3 and 5.4 illustrate the deviation of the control

flow when a clause is removed.

In the debugging of VLSI designs, Safarpour et al.. [80] discussed the concept of

error group cardinality. By grouping clauses related to the same gate, they reduce

the complexity of the debugging problem, while maintaining completeness. We apply

this concept (Section 5.3.4 and 5.5.4) to reduce the complexity of enumerating root

causes. Grouping all clauses derived from the same basic block/line together allows
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the pMaxSAT solver to block all of those clauses simultaneously. In effect, this gives

the solver the ability to treat each basic block/line as a single high-level constraint,

leading to solutions (MCSes) found directly in terms of the basic block/line.

The main difference between the formula-based fault localization of VLSI designs

and the formula-based fault localization of imperative program is the number of exe-

cution paths. We define an execution as a run of a program/circuit with a particular

input. An execution path is an execution with a particular series of branching deci-

sions. A VLSI design does not contain any branches, so we can say that there is only

a single execution path possible and many possible executions (in term of valuation

of variables). A typical imperative program contains many statements that make the

control flow jump. Such statements are if-then-else, switch-case, goto, and return.

Depending on the program input values, the control flow takes different execution

paths. In trace formulas, it is important to encode this behavior, especially in the

case of faults in the control variables. When alternative paths to the failing path are

not encoded, faults in the control variables cannot be identified.

Characteristics of the different trace formula encodings are summarized in Ta-

ble 5.7. Despite the fact that flow-insensitive and flow-sensitive trace formulas are

small in size and thus can be efficient from a computing time viewpoint, they are not

appropriate when dealing with multi-fault programs. We saw in this chapter that for

at least two of the benchmarks we used, the full flow-sensitive trace formula could

be used for localizing root causes in multi-fault programs. This is because the full

flow-sensitive trace formula encoded the CFG in SSA form of the target programs.

5.8 Summary

In this chapter we introduced the full flow-sensitive trace formula whose encoding

is equivalent to the control flow graph of the faulty program. This trace formula

together with a complete enumeration algorithm can localize root causes in multi-fault

programs, at least for the benchmark programs used in our experiments. However,

in terms of computation time, the full flow-sensitive trace formula is not appropriate.

This is because it is very expressive and therefore, complex. To deal with this, in
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the next chapter we propose an optimized algorithm for localizing the root causes.

Additionally, in Chapter 7 we propose a new trace formula more adequate in view of

computation time.
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Ver #Err Error Type #FTC SNIPER BugAssist

v1 1 op 131 131 131

v2 1 const 69 69 69

v3 1 op 23 23 13

v4 1 op 25 24 25

v5 1 assign 10 10 10

v6 1 op 12 12 12

v7 1 const 36 36 36

v8 1 const 1 1 1

v9 1 op 9 9 9

v10 2 op 14 14 14

v11 2 op 14 14 14

v12 1 op 70 70 48

v13 1 const 4 4 4

v14 1 const 50 50 50

v15 3 const 10 10 10

v16 1 init 70 70 70

v17 1 init 35 35 35

v18 1 init 29 29 29

v19 1 init 19 19 19

v20 1 op 18 18 18

v21 1 op 16 16 16

v22 1 code 11 11 11

v23 1 code 42 42 41

v24 1 op 7 7 7

v25 1 code 3 3 3

v26 1 addcode 11 11 11

v27 1 addcode 10 10 10

v28 1 branch 76 76 58

v29 1 code 18 18 14

v30 1 code 58 58 58

v31 2 addcode 14 14 14

v32 2 addcode 2 2 2

v34 1 op 77 77 77

v35 1 code 76 76 58

v36 1 op 126 126 126

v37 1 index 92 92 92

v39 1 op 3 3 3

v40 2 assign 126 126 126

v41 1 assign 20 19 20

Table 5.3: Results of SNIPER with the FFTF and BugAssist on the TCAS. Versions no. 33 and

no. 38 are omitted from the table in order to compare the results with BugAssist [47], which does

not have entries for them. For versions no. 4 and no. 41, a new option of SNIPER that checks the

array index overflow/underflow can detect the missing fault.
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Error Type Explanation of the Error

macro Wrong value in a macro definition

op Wrong operator usage.

code Logical coding bug.

assign Wrong assignment expression.

addcode Error due to extra code fragments.

const Wrong constant value supplied.

init Wrong value initialization of a variable.

index Use of Wrong array index.

branch Error in branching due to negation of

branching condition.

Table 5.4: Types of Error in the TCAS programs
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Programs #EI Found Time (ms)

MinmaxKO 2 1/1 35

AbsMinusKO 1 1/1 27

AbsMinusKO2 3 1/1 38

AbsMinusKO3 1 1/1 22

TritypeKO 1 1/1 373

TritypeKO2 2 1/1 380

TritypeKO2V2 2 1/1 367

TritypeKO3 2 1/1 542

TritypeKO4 1 1/1 236

TritypeKO5 8 2/2 622

TriPerimetreKO 1 1/1 430

TriPerimetreKOV2 1 1/1 583

TriPerimetreKO2 1 1/1 332

TriPerimetreKO3 2 1/1 656

Maxmin6varKO 37 1/1 30872

Maxmin6varKO2 56 1/1 24365

Maxmin6varKO3 56 2/2 26731

Maxmin6varKO4 61 3/3 32592

Table 5.5: Results of running SNIPER on the Bekkouche’s benchmark.
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SNIPER BugAssist

Programs Found Time(s) Found Time(s)

MinmaxKO 1/1 0.036 1/1 0.146

AbsMinusKO 1/1 0.034 1/1 0.065

AbsMinusKO2 1/1 0.034 0/1 0.118

AbsMinusKO3 1/1 0.033 0/1 0.109

TritypeKO 1/1 0.122 0/1 0.607

TritypeKO2 1/1 0.078 1/1 1.186

TritypeKO2V2 1/1 0.057 1/1 1.184

TritypeKO3 1/1 0.072 1/1 1.118

TritypeKO4 1/1 0.091 1/1 0.533

TritypeKO5 2/2 0.069 1/2 0.521

TriPerimetreKO 1/1 0.143 0/1 1.349

TriPerimetreKOV2 1/1 0.223 1/1 2.468

TriPerimetreKO2 1/1 0.095 1/1 4.060

TriPerimetreKO3 1/1 0.090 1/1 2.278

Maxmin6varKO 1/1 0.428 1/1 2.115

Maxmin6varKO2 1/1 0.416 1/1 1.379

Maxmin6varKO3 2/2 0.642 2/2 2.457

Maxmin6varKO4 3/3 0.644 1/3 1.554

Table 5.6: Results on the Bekkouche’s benchmark
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Chapter 6

Incremental Diagnosis

Enumeration

6.1 Introduction

Diagnoses computation is a key point in the formula-based fault localization

method for imperative programs. A diagnosis is an MCS that represents a root

cause of the faulty program (see Section 3.4.1 for details). Software engineers use

these root causes to repair faulty programs.

A set of diagnoses is computed from a trace formula extended with a formula

representing the error-inducing input and a formula representing the program spec-

ification. Expressive trace formula, such as the full flow-sensitive trace formula (see

Chapter 5 for details), contains a large number of clauses and are complex. This is

leading most of the time to large computation times when computing diagnoses. For

the case of imperative programs, we have many different trace formulas on which we

want to enumerate MCSes. Each of these formulas refers to a particular erroneous

situation, which are triggered by an error-inducing input. When dealing with multi-

fault programs, the number of formulas can be large because there is a large number

of failing executions. Not considering one of the failing execution can be a reason for

missing faults. Using many failing test cases is more appropriate. We presented in

Section 4.3 some methods to generate such test cases. A classic diagnoses enumer-
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ation algorithm, such as the one presented in Section 4.4, is not efficient in view of

computation time. This calls for a new method that efficiently enumerates MCSes

from many error-inducing inputs.

In this chapter we present a method that computes diagnoses in an incremental

fashion. We show how the method performs in an experiment on the TCAS bench-

mark.

6.2 Proposed Approach

In this section we describe our approach to efficiently compute diagnoses incre-

mentally in the context of formula-based fault localization of imperative programs.

Algorithm 8 AllDiagnoses
Input: a set of error-inducing input formulas E, a trace formula ϕTF and a formula ϕAS that encodes the

assertions the program must satisfy.

Output: D a set of diagnoses (MCSes), or ∅.
1: ϕ′TF ← AddAuxVars(ϕTF)

2: if ϕ′TF = ∅ then
3: return ∅ . No pMaxSMT solution

4: end if

5: D ← ∅
6: C ← ϕ′TF ∪ (ϕAS )HARD . Add the base formulas in the context

7: for each ϕei ∈ E do

8: push(C) . Save the context

9: C ← C ∪ (ϕei)
HARD . Add the error-inducing input formula in the context

10: M ← AllMinMCS(C) . Enumerate all minimum size MCSes for the context C

11: if M 6= ∅ then
12: D ← D ∪ {M}
13: end if

14: pop(C) . Restore the context (pushed in line 8)

15: end for

16: return D

Algorithm 8 describes the enumeration of all the minimum size MCSes for a given

trace formula and a set of error-inducing inputs. The MCSes are to be enumerated for

all error-inducing inputs. This algorithm makes use of the push & pop mechanism of

Yices 1 [28] (see Section A.2). The push operation saves the current logical context

on the stack. The pop operation restores the context from the top of the stack,

and pops it off the stack. Any changes to the logical context (adding or retracting
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assertions) between the matching push and pop operators are flushed, and the context

is completely restored to what it was right before the push operation. This mechanism

is useful in our method because we apply many small modifications (lines 19 and 30)

to the context C. It does not need to create a completely new context between the

calls to the solver. We can just flush the local modifications and reuse the same

context basis many times.

6.3 Experiments on the TCAS Benchmark

In this section we show with some experiments on the Siemens Test Suite the

performance gain obtained with our incremental diagnosis enumeration method. We

used the same experimental setup described in Section 5.5.2.

6.3.1 Results

Figure 6.1 reports the computation times of Algorithm 8 on the TCAS benchmark

with and without the push & pop optimization, which was explained in Section 6.2.

The histograms are separated in two parts for readability. The bars in gray represent

the times with the optimization disabled, which correspond to the basic algorithm

presented in Section 4.4, and the bars in black represent the times with the optimiza-

tion activated, which correspond to the algorithm presented in this chapter.

We can see that the computation time is reduced when using the optimization

technique. The percentage decrease of the average computation time is 49%. The

large difference can be explained by the fact that the same formula is solved many

times with only small modifications between the calls to the solver. The benefits of

the optimization are particularly noticeable when the number of error-inducing inputs

is large. This is explained by the fact that the number of context modifications is

directly impacted by to the number of error-inducing inputs used.
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6.4 Summary

This chapter presented an efficient algorithm for enumerating diagnoses in the

context of formula-based fault localization of imperative programs. The algorithm

uses an incremental solving optimization technique. We implemented the algorithm

in SNIPER, and have shown a significant efficiency gain on the TCAS benchmark.

We note that for the case of multi-fault programs, the generated MCSes are corre-

sponding to many faults, and thus have to be combined to have sets that includes root

causes of all faults. We, indeed, proposed some combination methods in Section 4.5

to answer this problem.

Another problem we would like to highlight is that even if the algorithm presented

in this chapter could reduce the computation time, it is still costly to compute di-

agnoses. In the next chapter we present a new trace formula that aim at reducing

further the computation time of our fault localization method.



Chapter 7

Hardened Flow-sensitive Trace

Formula

7.1 Introduction

In Chapter 5, the full flow-sensitive TF was introduced. The full flow-sensitive TF

is equivalent to the control flow graph (CFG) of the entire program. It is composed

of clauses, which are marked as soft (relaxable) or hard (non-relaxable). All program

statements in the full flow-sensitive TF are encoded as soft, which means that all

these statements (values computation) are suspicious. As of the program skeleton,

it is encoded as hard because it is assumed to be correct. The full flow-sensitive

TF, together with a complete enumeration algorithm of potential root causes, can

identify faults in the multi-fault programs of the TCAS benchmark [43, 79]. The full

flow-sensitive TF, however, tends to be large and is less adequate in view of efficiency

of the localization algorithm.

In this chapter, we propose a new representation of the TF, called a hardened

flow-sensitive trace formula (HFTF). We introduce a modest assumption that, for

each error cause in a multi-fault program, there exists at least one test input (an

error-inducing input) to result in such faulty behavior. These test inputs may be

obtained efficiently by bounded model-checking or program testing methods. The

HFTF is similar to the full flow-sensitive TF, but reduces the number of soft clauses
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in the formula by marking as hard clauses related to instructions that are not in

a multi-execution dice. An execution dice [2] is a set difference between a single

failing execution slice and a single successful execution slice. A multi-execution dice

(MED), proposed in this thesis, is constructed from a set of failing execution slices

and successful execution slices. An MED is more adequate for multi-fault programs

because it takes into account many failing executions, each of which referring to a

particular fault. Since the root causes are considered to lie in the MED, we can

still localize such potential root causes. Reducing the number of soft clauses in the

formula can improve the efficiency of the localization algorithm without losing the

essential CFG information required for localizing faults. Indeed, the less soft clauses

to enumerate, the faster is the localization algorithm. The decision procedure for

hard -marking clauses of the HFTF uses the coverage information obtained using a

concolic (CONCrete and symbOLIC) execution method [84].

The remainder of this chapter is organized as follows. Section 7.2 presents our

approach. Sections 7.3 and 7.4 report some experiments and discussion. The last

section contains a critical analysis of the proposed encoding and a comparison to

other approaches.

7.2 Proposed Approach

This section describes in detail the proposed approach to formula-based fault

localization using the hardened flow-sensitive trace formula.

7.2.1 Hardened Flow-sensitive Trace Formula

We introduce the hardened flow-sensitive trace formula (HFTF), which is con-

structed from the CFG P = (B, l, e, T ) of a preprocessed program in SSA form [22].

The construction is based on information collected from executions of the target pro-

gram. Section 7.2.2 details how we obtain these executions.
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Definition 10 (Execution Slice) An execution slice of a program P is a tuple

s = (π, F, o) where π are program input values that trigger s, F is a finite directed

path F = (b1, b2, . . . , bn) ∈ B × B × . . . × B such that (bi, bi+1) ∈ T with b1 = l and

bn = e for 1 ≤ i < n, and o ∈ {PASS,FAIL} is the post-condition outcome. If o is

PASS, s is a successful execution slice. Otherwise, s is a failing execution slice.

The concept of execution slice was originally introduced in [1]. As in Definition 10

an execution slice is a set of basic blocks executed by a test input. We make a

distinction between failing execution slices and successful execution slices depending

on the post-condition outcome.

Agrawal et al. [2] states that a fault lies in the execution slice of a test case that

fails on execution. The rest of the program can thus be ignored while searching for

the fault associated to this test case, only the statements in the failing execution

slice are worth considering. Then, the work of Agrawal [2] proposes a method to

further narrow down the search by focusing on the execution dice. An execution

dice is referred as a set of basic blocks in one failing execution slice that does not

appear in a successful execution slice. In this thesis, we extend the notion of dice by

considering many failing executions instead of just one, which we call multi-execution

dice (MED). The following defines operationally an MED for a given program P and

a given set of execution slices.

Given a set S = {sj} of m execution slices with 0 ≤ j < m, we partition executed

basic blocks into two sets. Fj refers to a sequence of basic block executed in j-th test

run. The set of basic blocks that are executed at least once in a successful execution

is

SB = {b | b ∈ Fj ∧ (oj = PASS) ∧ ∃j ∈ Z : 0 ≤ j < m}

The set of basic blocks that are executed at least once in a failing execution is

FB = {b | b ∈ Fj ∧ (oj = FAIL) ∧ ∃j ∈ Z : 0 ≤ j < m}

Basic blocks of P are marked as either correct basic blocks (CB) or potentially in-

fected basic blocks (PB). The set PB of potentially infected basic blocks is an MED.



Chapter 7: Hardened Flow-sensitive Trace Formula 83

A correct basic block is a basic block that is executed only in successful program

executions. The set CB is calculated as follows:

CB = SB \ FB

A potentially infected basic block is a basic block that is not a correct basic block,

meaning that it is executed at least once in a failing execution or is never executed

at all. The set PB is calculated as follows:

PB = B \ CB

We assume that basic blocks in CB are free from faults because none of the failing

executions go through these basic blocks. Therefore, the instructions in the basic

blocks of CB do not need to be root cause candidates in the HFTF. As explained

in Section 3.1.4, in pMaxSAT, the clauses of the formula to be solved are either set

as hard (non-relaxable) or soft (relaxable). For the case of the HFTF, we use the

same setting as the FFTF, except for the basic blocks in CB . We set the constraints

related to the instructions in the basic blocks of CB as hard because the instructions

related to this part are assumed not to be suspicious. As compared with the FFTF,

this encoding reduces the number of soft clauses, which means that there are fewer

MCSes to enumerate1. In an extreme case, however, all instructions are executed in

the failing executions, which means that no simplification is possible and that the

HFTF is the same as the FFTF.

Given a program P , a set of potentially infected basic blocks PB of P , and a set

of correct basic blocks CB of P , the complete HFTF encoding is defined as follows:

ϕHFTF = ϕFFTF (PB)︸ ︷︷ ︸
soft/hard

∧ϕFFTF (CB)︸ ︷︷ ︸
hard

where ϕFFTF (PB) is a full flow-sensitive TF of the basic blocks marked as potentially

infected basic blocks, and ϕFFTF (CB) is a full flow-sensitive TF of the basic blocks

marked as correct basic blocks. The formula ϕHFTF is equivalent to ϕFFTF (Section 5.3)

except that the clauses in ϕFFTF (CB) are now all set to be hard (non-relaxable).

1The missing MCSes are believed to be corresponding to spurious root causes.
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7.2.2 Calculating Hardened Flow-sensitive Trace Formula

As discussed in Section 7.2, the HFTF is constructed from executions of the

target program. These executions are used for deciding which parts of the HFTF

should be set as hard. In Section 4.3 we presented different methods to automatically

generate test cases. One of them, concolic execution, allows the automatic generation

of successful and failing executions with a high code coverage. In this section we

explains how we calculate the HFTF using concolic execution.

Concolic Execution for Calculating the HFTF

We can generate both failing and successful executions by augmenting the path

constraint PC with the program post-condition (ϕAS ). If it is satisfiable, the obtained

input values will trigger a successful execution. Similarly, failing executions are ob-

tained by augmenting PC with the negation of the program post-condition (¬ϕAS ).

Note that it is not always possible to choose the post-condition outcome of the execu-

tion in advance. If a variable present in ϕAS does not appear as a symbolic variable in

PC, then there is no connection between the program inputs and the post-condition.

In this case, we solve the PC alone, execute the program, and, at the end of the

execution, check whether the output value of the program satisfies ϕAS .

In order to calculate the correct basic blocks and the potentially infected basic blocks

we need to profile basic blocks, namely monitoring executions of basic blocks. While

executing the program (or after the execution) in the concolic execution method, we

mark basic blocks as failing and/or successful. Basic blocks marked as failing are the

blocks executed at least once in failing executions. Basic blocks marked as successful

are the blocks executed at least once in successful executions.

Since a program may have a large number of paths, we cannot generate all possible

paths in general. In order to tackle this problem, we use the bounded depth-first search

strategy as introduced in [84]. The strategy prevents an exhaustive search of the

entire program by restricting the symbolic execution up to a certain program depth.

For cases in which not all of the paths are covered, the number of soft clauses in the

resultant HFTF is not minimum because some successful paths are not covered. Even
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if only some successful paths are covered, the number of soft clauses in the HFTF

can be smaller than the ones in the FFTF because these paths may traverse some

basic blocks not covered by failing executions. We discuss in more details the impact

of the search strategy on the HFTF in Section 7.5.

7.2.3 Fault Localization with Hardened Flow-sensitive Trace

Formula

Algorithm of Fault Localization using HFTF

Algorithm 9 shows the main algorithm for fault localization using the HFTF. The

algorithm first preprocesses the program (line 1) as explained in Section A.3. In

line 2, the concolic execution method generates a set of error-inducing inputs (E)

and a profile of the program (R). The profile holds basic blocks information (marks)

for later simplifying the trace formula. From the preprocessed program and the

profile, the HFTF is constructed (line 3). In line 4, the diagnosis is computed using

Algorithm 4 (Section 4.4.2). Finally, the diagnosis is processed to be displayed to the

user.

Algorithm 9 LocFaults
Input: a program P , and a formula that encodes the post-condition ϕAS .

1: P ′ ← PreProcess(P)

2: {E, R} ← ConcolicExecution(P ′, ϕAS)

3: ϕHFTF ← Encode(P ′, R)

4: D ← AllDiagnoses(E, ϕHFTF , ϕAS)

5: Display(D)

7.2.4 Example

We illustrate our approach with the failing program presented in Section 2.8.1

(Listing 2.1). We show its CFG in Figure 7.1 (the assert statement and the call to

function opMotor are not represented in the CFG). An error-inducing equal to −1

can be used to trigger a failing execution. A successful execution can be triggered

with an input value equal to 1.
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degree ≥ 0 ?

bb0

truefalse

d2 = 2

bb1

d1 = 1

bb2

d3 = phi d1, d2

d3 = 1 ?

bb3

truefalse

r2 = degree× 1

bb4

r1 = degree

bb5

r3 = phi r1, r2

bb6

Figure 7.1: Control flow graph of function rotate (Listing 2.1)

From the two executions, we obtain the basic block profile below.

SB = {bb0, bb2, bb3, bb5, bb6}

FB = {bb0, bb1, bb3, bb4, bb6}

From the profile, we calculate an MED (PB):

CB = SB \ FB = {bb2, bb5}

PB = B \ CB = {bb0, bb1, bb3, bb4, bb6}

Below, the HFTF for the function rotate using the MED calculated above.

ϕrotate
HFTF = (g1 = (degree ≥ 0)) ∧ (d2 = 2) ∧ (g2 = (d3 = 1)) ∧ (r2 = degree× 1)︸ ︷︷ ︸

soft

∧ (d3 = (ITE g1 d1 d2)) ∧ (r3 = (ITE g2 r1 r2)) ∧ (d1 = 1) ∧ (r1 = degree)︸ ︷︷ ︸
hard

We see that thanks to our approach, two out of six soft clauses could be hardened

in the trace formula. When running Algorithm 4 on the above formula, we obtain
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an MCSes of {{13}}. As a comparison, with the FFTF we would obtain a large

MCSes of {{3, 11}, {7, 11}, {10, 11}, {13}}. Therefore, we can obtain more precise

MCSes with HFTF than with FFTF. Performance improvement will be discussed

with elaborated examples in the next section.

7.3 Experiments on the Bekkouche’s Benchmark

In this section we show some experiments made on a benchmark provided by

Bekkouche [8]. All of the experiments were carried out using a 2.6 GHz Intel Core i5

with 8 GB of RAM on Mac OS X 10.9 Mavericks. We herein use LLVM version 3.3

and Yices 1 version 1.0.39.

In this experiment, we focus on the comparison of the results obtained with the

HFTF and with the FFTF. A detailed study of the FFTF, including a comparison

with related work, was presented in Chapter 5, which showed that fault localization

with the FFTF was superior to existing tools such as [47] and [95]. Therefore, the

HFTF is superior to these related tools as well.

7.3.1 Full Flow-sensitive TF vs. Hardened Flow-sensitive TF

Table 7.2 lists the results on each benchmark program and for both types of TF

encodings. The first column of the table shows the program name. The column #EI

shows the number of error-inducing inputs found by the SNIPER concolic module.

The #H and #S columns list the number of hard (non-relaxable) clauses and soft

(relaxable) clauses in the formula respectively. The Found column lists the number

of faults that SNIPER was able to localize versus the total number of faults injected

in the program. The ACSR column lists the average code size reduction, which is

the percentage of code given by the tool on average to locate the faults. The Time

column lists the total running time in milliseconds, including the bitcode loading and

preprocessing time of LLVM, the concolic execution time, the formula encoding time,

and the solving time.
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The average ACSR of all programs is 12.61% with the FFTF and 8.42% with the

HFTF. Since the soft part of the HFTF is in average smaller than the soft part of the

FFTF, there are less root causes to enumerate, which explains the difference between

the ACSRes obtained with each encoding.

The total running time is 628 sec with the FFTF and 65 sec with the HFTF.

The total running time with the HFTF is about 10.14% of the case with the FFTF,

which shows a good performance gain. For most programs, the computing times

could be reduced. This is because some part of the formula could be hardened in

the HFTF making the number of soft clauses in the HFTF smaller than the number

of soft clauses in the FFTF. The smaller the number of soft clauses, the faster the

computing is. For programs AbsMinusKO2 and AbsMinusKO3, the HFTF is the same

as with the FFTF, which means nothing was simplified. However, the computing

time shows that the overhead of constructing the HFTF is negligible.

All faults could successfully be detected with the HFTF except in the program

Maxmin6varKO32. The program Maxmin6varKO3 has one of its faults masking another

fault. Listing 5.1 (Section 5.6.2) shows a code fragment of program Maxmin6varKO3

showing both faults. The underlined condition in line 24 should be (a>d) and the

underlined condition in line 26 should be (b<d). Because of the fault in line 24,

no failing executions can pass through the fault in line 26. Since some successful

executions go through the second fault, the related instructions were encoded as hard

in the HFTF. Thus, SNIPER with the HFTF cannot localize both faults. In a sense,

the masked fault does not exist as long as the first fault is present in the program.

After the first fault is corrected, the second fault becomes active.

In the case of the FFTF, all arithmetic and comparison instructions are encoded

as soft, which means that the solver (used in Algorithm 4) can retract clauses to force

the control flow to take a path that covers both faults. Note that the flow-sensitive

TF [17] is unable to localize both faults simultaneously because it does not encode

all paths [83]. This was discussed in Section 5.6.2.

2Section 5.6.2 also discussed this benchmark program.
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7.4 Experiments on the TCAS Benchmark

In this section we show some experiments made on on the TCAS task of the

Siemens test suite [43, 79].

This experiment aims to show how the proposed method with the HFTF behaves

when a set of test suites is available in advance. Since the test suite of TCAS is not

complete, these test cases may have an impact on the quality of the fault localization.

Furthermore, using the provided test cases makes the comparison with existing tools

clear.

7.4.1 Experimental Setup

For the purpose of this experiment on the TCAS task, since we already have a set of

test cases, we deactivated the symbolic execution of the concolic execution module of

SNIPER. This modified concolic execution module runs concretely the faulty program

on each test case and check if the program output is different from the correct output

(test oracle). For the case of HFTF, this modified concolic execution module also

includes program profiling operations required for the construction of the HFTF, as

in the original concolic execution module.

7.4.2 Full Flow-sensitive TF vs. Hardened Flow-sensitive TF

Table 7.4 reports the results on each version of the TCAS and for both encodings.

The first column of the table shows the version of the program. The column #STC

shows the number of successful test cases used. The column #FTC shows the number

of failing test cases used. The #H and #S columns list the number of hard (non-

relaxable) clauses and soft (relaxable) clauses in the formula respectively. The Found

column lists the number of faults that SNIPER was able to localize versus the total

number of faults injected in the program. The ACSR column lists the average code

size reduction. The Time column lists the total running time of SNIPER in seconds,

including the bitcode loading and preprocessing time of LLVM, the modified concolic

execution module time, the formula encoding time, and the solving time.
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The average ACSR of all program versions is 10.87% with the FFTF and 10.17%

with the HFTF. Since the size of the soft part of the HFTF is in average smaller than

the one of the FFTF, there are slightly less root causes to enumerate in the HFTF

cases, which explain the small difference between the ACSRes obtained with each

encoding.

The total running time is 5360 sec with the FFTF and 2541 sec with the HFTF.

The total running time with the HFTF is about 47.4% of the case with the FFTF,

which shows a good performance gain. For the versions no. 2, 4, 6-9, 13, 14, 16, 18,

20-25, 27, 29-32, 36 and 38-41 the computing times are better with the HFTF. This is

because some part of the formula could be hardened in the HFTF making the number

of soft clauses smaller than in the FFTF. For the versions no. 1, 3, 5, 10-12, 15, 17,

19, 26, 28, and 33-35 the number of soft clauses of the HFTF is almost the same as

with the FFTF, which means very few or no clauses were hardened. The computing

time shows that the overhead of constructing the HFTF is negligible for those cases

where the number of soft clauses are almost the same. We see that version no. 37 is an

exception in that the ACSR is better, but the computing time is larger for the HFTF

than the FFTF. This version shows different behavior than others. Our conjecture is

that such difference comes from the way we encode the formula in the Yices 1 solver.

All faults could successfully be detected with the HFTF except in the version

no. 40. In this version, one of the two buggy statements is not covered by the failing

test cases of the TCAS benchmark. However, it is covered by some of the successful

test cases. Thereby, the missed buggy statement was encoded as hard in the HFTF.

Namely, the version no. 40 does not satisfy the assumption (see Section 7.1) of the

existence of failing test inputs. Apparently, the method using the notion of dice [2]

is not able to detect this missing fault.

As shown above, the program coverage of test inputs is an important factor in

fault localization. The HFTF as well as coverage-based or spectrum-based methods,

or program slicing methods [1, 2] are all affected strongly by the coverage of the test

inputs. Note that coverage-based or spectrum-based methods, such as Tarantula [46],

are unable to locate the missed fault in the version no. 40 with the provided test cases.

With the FFTF it is possible to locate the fault missed in version no. 40 because the
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FFTF encodes both buggy statements as soft [53] (See the discussion in Section 5.6).

7.5 Discussion and Related Work

Static program slicing [90] was introduced for localizing faults in programs, and

was empirically shown effective [52]. Program dicing is built upon program slicing

and was first introduced by Lyle et al. [62]. Thereafter, the concept of execution

slice was proposed by Agrawal et al. [1] as an alternative to static program slicing.

Agrawal et al. further explored the concept of execution slice with execution dice [2].

Coverage-based or spectrum-based (cf. [46]) calculates ranking orders between pro-

gram statements or spectrums to show that a particular fragment of code is more

suspicious than the others. Coverage-based and slicing-based methods are based on

statistical measures. On the other hand, our approach does not rely on such mea-

sures to localize the faults, but uses the successful and failing executions to reduce the

complexity of the fault localization algorithm. A more detailed comparison between

the formula-based method and coverage-based or spectrum-based method, such as

Tarantula [46], can be found in Chapter 2.

Concerning the HFTF, its relative effectiveness depends on the MED from which

it was constructed. The effectiveness of an MED is dependent on the testing search

strategy. Covering too much failing paths makes MEDs large and covering a lot of

successful paths makes MEDs small. At the opposite, covering too few failing paths

makes MEDs small but increases the probability of missing a bug. Covering too few

successful paths leads to large MEDs. For the case in which some paths are not

covered at all, MEDs become large and the HFTF may not be different from the full

flow-sensitive TF because few or no simplifications are possible, which means that

the HFTF is conservative. We assume that a search strategy of choice would:

• cover all bugs with a minimal number of failing paths,

• cover as much as possible successful paths,

• not leave paths uncovered.
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We used concolic execution, which is able to effectively generate test cases with a

high code coverage [96]. Up to this point, we have assumed that a sufficient number

of failing and successful paths could be obtained by concolic execution. However,

in practice, we cannot generate all such paths. In our case, we used a bounded

DFS strategy [84], which fits well with scope-bounded analysis methods, such as the

formula-based method. The bound used in the concolic search algorithm has to be

carefully chosen so that the formula encodes all paths that the concolic algorithm did

found.

Some work employs concolic execution in conjunction with formula-based fault

localization. Artzi et al. [4] use a concolic test generation method to generate good

test cases for a coverage-based fault localization technique. Konighofer et al. [50] use

a concolic test generation method to generate failing program inputs and to collect

repair symbols. BugAssist [47] uses a concolic execution method to reduce the size of

the formula by concretizing functions and loops. They do not provide further details

on their optimization technique.

Formula-based fault localization with formulas that encode several program paths,

such as in the present work, produces numerous root causes. The HFTF helps in the

sense that it encodes more clauses as hard than the FFTF, hence reducing the number

of spurious root causes.

7.6 Summary

We proposed a new way of representing programs for formula-based fault local-

ization methods. We showed that in most cases, the proposed encoding reduced the

number of soft clauses, which improved the fault localization algorithm performance

without decreasing the localization accuracy.

We now have an important open question regarding the use of concolic execution

with the HFTF. The heart of concolic execution is in its search strategy. There are

many of them (cf. [85]), for example: depth-first search (DFS) (and its variants, such

as bounded-DFS), breath-first search (BFS), random search, carfast, CFG-directed

search, generational search, and context-guided search. As discussed in Section 7.5,
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search strategies may have an impact on the calculation of MEDs, and thus on the

shape of HFTF. This calls for a study of these strategies in the context of fault

localization with the HFTF.



Chapter 8

Conclusion

8.1 Summary of the Thesis

The belief that formula-based fault localization of VLSI designs could be directly

and easily applied to the case of imperative programs was not adequate. The latter

requires deep considerations. In this thesis we demonstrated a new clue to amalga-

mating mathematical logic and software technology to provide a new fault-localization

method for imperative programs. Adapting both the computational model and the

failure model so that it is suited to imperative programs is the primary foundation

of this work. The encoding methods arising therefrom, namely the full flow-sensitive

trace formula and the hardened flow-sensitive trace formula, are the keys that enables

a better localization of root causes in multi-fault programs.

In this thesis, we note that our new formula-based fault localization method gener-

ates many spurious root causes. Furthermore, the computation time of the diagnoses

generation remains substantial. Concerning the input test cases, our method requires

an appropriate set of test cases for not missing faults. This is especially true in the

case of the hardened flow-sensitive trace formula, which is constructed from these test

cases. We meet the three central problems with suggestions for future work, which

are discussed in the next section.

97
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8.2 Future Work

In the following we provide some possible future work to improve the methods

presented in this thesis.

First, our work rises to an important open question regarding the filtering of root

causes. Formula-based fault localization with formulas that encode several program

paths, such as in the present work, produces numerous spurious root causes and

conflictual root causes. The latter are root causes that are mutually inconsistent

because they cannot be used together to correct multiple faults. This calls for a new

method to segregate spurious root causes from real root causes. This method should

also be able to deal with possible conflicts between the generated root causes to help

programmers use the results.

We showed a trace formula encoding, HFTF (see Chapter 7), that was able to

reduce the number of spurious root causes. Nevertheless, a large number of root

causes can be difficult to handle for the software engineers. Semi-automated methods

for filtering root causes exist [97].

Another point that deserves to be tackled concerns the number of root causes

generated by formula-based methods. A fully automated method to filter and rank

root causes depending on their probability of helping the engineers would be highly

beneficial.

Second, the enumeration of diagnoses (MCSes) is computationally costly and leads

most of the time to a slow fault localization, especially when considering multi-fault

programs. In this thesis, we introduced an incremental solving algorithm, which uses

the push & pop mechanism of the Yices solver. We showed that this algorithm could

reduce the computing time. Another way of enumerating the algorithm faster would

be to use a parallel algorithm [14] executing on many cores, CPUes, or even graphical

processor units. This algorithm can take advantage of the advancement made in solver

runtime prediction, as in portfolio solving [63] or in solver cost estimation [40]. The

development of such algorithm would likely significantly improve the fault localization

method.

Third, we have an open question about the generation of adequate test suites for
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fault localization. It calls for a new test case generation method particularly focusing

on exercising paths leading to assertion violations. Also, it is preferable that this set

of failing test cases is as small as possible while covering all faults. A large number

of failing test cases is not adequate in view of computation time.



Bibliography

[1] H. Agrawal. Toward Automatic Debugging of Computer Programs. PhD thesis,

Purdue University, 1991.

[2] H. Agrawal, J.R. Horgan, S. London, and W.E. Wong. Fault Localization using

Execution Slices and Dataflow Tests. In Proc. ISSRE’95, pages 143–151, 1995.

[3] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers Principles, Techniques, and

Tools. Addison-Wesley, 1986.

[4] S. Artzi, J. Dolby, F. Tip, and M. Pistoia. Directed Test Generation for Effective

Fault Localization. In Proc. ISSTA’10, pages 49–60, 2010.
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Appendix A

Tool Implementation

In the following sections we start by introducing the LLVM compiler infrastructure

on which SNIPER is based. This is followed by an introduction of the Yices 1 SMT

solver, which is used as the main solver of SNIPER. The last section details the

internal implementation of SNIPER. The source of SNIPER can be found in the Git

repository [56].

A.1 LLVM Compiler Infrastructure

Low Level Virtual Machine (LLVM) [57, 58] is a compiler infrastructure that

optimizes compilation, link, execution and “idle-time” of programs written in a wide

variety of programming languages. What LLVM calls idle-time optimization is an

approach that uses profiling information collected at runtime.

The LLVM infrastructure has been built around a dedicated code representation

(bitcode). This intermediate representation (IR) is an abstract RISC-like instruc-

tion set based on a language-independent type-system. It is composed of high-level

instructions while being low-level enough to represent any program. LLVM’s code

representation has many convenient features such as its SSA (static single assign-

ment) form [22, 23] that facilitates compilation optimization and analysis. LLVM is

actually a virtual machine, and it has run-time capabilities that operate on programs

during the execution giving several opportunities to improve performances. This last

109
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point is possible thanks to the Just-In-Time (JIT) compilation technique.

Many tools that perform program analysis are built upon LLVM. Tools such as

model checkers [66, 87], static checkers [5], and test case generators [15]. SNIPER is

a first fault localization tool on top of LLVM, and thus opens a new area of applying

LLVM.

A.1.1 Intermediate Representation Compilation

Frontend

LLVM
Intermediate 

Representation
C

C++

Objective-C

Ada

Fortran

(Clang, ...)

Figure A.1: Frontend for LLVM

As depicted in Figure A.1, IRs are obtained by compiling the source code of a

program with an appropriate frontend. There exist a wide variety of frontends for

LLVM. For example, it is possible to compile a C program into an IR using the

command clang with the option -emit-llvm. For our purpose, we additionally use

the option -O0 not to optimize the code.

Because we work at the bytecode level, we need to go back to the original source

code after identifying root causes. Basically, we want to know the line number (in

original source code) for a given bytecode instruction. To do that we add debugging

options using the -g command-line option with the command clang. We can now

retrieve the corresponding line number of any bytecode instruction. For our pur-

pose, we need only line number information, we then use the more restrictive option

-gline-tables-only.
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A.2 Yices SMT Solver

Yices 1 [28, 29, 30] is an efficient SMT solver that checks the satisfiability of

formulas containing uninterpreted function symbols with equality, linear real and in-

teger arithmetic, bitvectors, scalar types, and tuples. Yices 1 also does MaxSMT/p-

MaxSMT (and, dually, unsat cores) and is competitive as an ordinary SAT and

MaxSAT solver. Below, we explain features of Yices that are relevant to understand

SNIPER.

A.2.1 Application Programming Interface

Yices can be used through its library to work with programs that require close

interaction with an SMT solver via an application programming interface (API). The

Yices API can be used with C and C++ languages. The API provides access to the

basic functionalities of Yices.

To construct a formula with the Yices API we first create a logical context, which

stores a collection of declarations and assertions. We add to this context the data

types that will be used. Yices provides the following builtin types: number real, int,

nat, and bool. It is also possible to create composed types. Once some types are

added to the context, we can add variable declarations. A declaration consists of a

name and a type (such as x::bool). An instance of the declaration represents a term

(x).

Using the variable instances, we can make expressions, which are represented by

abstract syntax trees in Yices. The expressions are then asserted, meaning that we

add constraints into the logical context. The constraints can be weighted (relaxable)

or not (non-relaxable). All the constraints in the context represents the formula.

We can check with Yices if the the logical context (formula) is satisfiable. If it is

satisfiable, a model can be obtained. A model assigns constant values to variables

defined in the context. The context must be consistent for a model to be available.

Alternatively to a check, we can compute the maximal satisfying assignments for the

asserted weighted constraints. If a maximal satisfying assignment is found, then we
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can obtain a model.

1 #include<s t d i o . h>

2 #include” y i c e s c . h”

3

4 int main ( ) {
5 y i c e s c o n t e x t ctx = yice s mk context ( ) ;

6 y i c e s t y p e i n t t = yices mk type ( ctx , ” i n t ” ) ;

7 y i c e s v a r d e c l x d e c l = y i c e s m k v a r d e c l ( ctx , ”x” , i n t t ) ;

8 y i c e s v a r d e c l y d e c l = y i c e s m k v a r d e c l ( ctx , ”y” , i n t t ) ;

9 y i c e s e x p r x var = y i c e s mk var f r om dec l ( ctx , x d e c l ) ;

10 y i c e s e x p r y var = y i c e s mk var f r om dec l ( ctx , y d e c l ) ;

11 y i c e s e x p r eq expr = yices mk eq ( ctx , x var , y var ) ;

12 y i c e s a s s e r t ( ctx , eq expr ) ;

13 switch ( y i c e s c h e c k ( ctx ) ) {
14 case l t r u e :

15 p r i n t f ( ” s a t i s f i a b l e \n” ) ;

16 y i ce s mode l m = y i c e s g e t m o d e l ( ctx ) ;

17 int x = y i c e s g e t v a l u e (m, x d e c l ) ;

18 int y = y i c e s g e t v a l u e (m, y d e c l ) ;

19 p r i n t f ( ”x = %d\n” , x ) ;

20 p r i n t f ( ”y = %d\n” , y ) ;

21 break ;

22 case l f a l s e :

23 p r i n t f ( ” u n s a t i s f i a b l e \n” ) ;

24 break ;

25 case l u n d e f :

26 p r i n t f ( ”unknown\n” ) ;

27 break ;

28 }
29 y i c e s d e l c o n t e x t ( ctx ) ;

30 return 0 ;

31 }

Listing A.1: Example of using the Yices API

Listing A.1 is an example that illustrates the use of the Yices API. In this example,
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we create two variables (lines 7-10) and add a constraint (x = y) into the context

(lines 11-12). From line 12 through 28, we check if the context is satisfiable. If it is

the case, we extract the values of the variables x and y and display them. Finally, we

delete the context before leaving the function.

A.2.2 Incremental Assertions

Yices implements incremental solving. The original definition [42] of “incremental

solving” is shown in Definition 11.

Definition 11 (Incremental Solving) Given that a set S of propositional clauses

is satisfiable, check whether S ∪ {C} is satisfiable for a given clause C.

The logical context of Yices can be viewed as a stack of contexts. The stack of

contexts is simulated using trail (undo) stacks. It is possible to create a backtracking

point with the procedure yices push. The procedure yices pop restores the context

from the top of the stack, and pops it off the stack. Any changes to the logical

context (by yices assert or other functions) between the matching yices push and

yices pop operators are flushed (popped out), and the context is completely restored

to what it was right before the yices push.

A.3 Program Parsing and Pre-processing

Before the IR is encoded into a trace formula (TF), it must be parsed and pre-

processed. Most of the transformations involved in this pre-processing stage are

common to bounded model-checking (BMC) of imperative programs (cf. [21, 20, 51,

66]). Basically, we have to unroll the program and put it in SSA form. In SNIPER

we use the compiler passes provided by LLVM to transform the IR. The following

sections details these transformations.
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A.3.1 Intermediate Representation Parsing

Listing A.2 shows how SNIPER implements the loading and parsing of the input

IR. LLVM library provides the function ParseIRFile, which loads and parses a file

that contains a bitcode image or LLVM Assembly code and returns a LLVM module

for it. All the processing involved in SNIPER is done on the previously returned

LLVM module llvmMod.

1 #inc lude ” llvm /IR/LLVMContext . h”

2 #inc lude ” llvm /IR/Module . h”

3 #inc lude ” llvm /IRReader/IRReader . h”

4 . . .

5 LLVMContext &Context = getGlobalContext ( ) ;

6 SMDiagnostic Err ;

7 Module ∗ llvmMod = ParseIRFi le ( inputIRFilename , Err , Context ) ;

8 i f ( ! llvmMod ) {
9 Err . p r i n t ( argv [ 0 ] , e r r s ( ) ) ;

10 return 1 ;

11 }

Listing A.2: Loading and parsing of the input LLVM IR bitcode

A.3.2 Function Inlining

In order to expand function calls present in the IR, we use a LLVM pass that im-

plements inlining. Inlining or inline expansion is a technique that replaces a function

call instruction by the body of the callee function. The LLVM function inlining pass

performs a bottom-up inlining of functions into callees.

In SNIPER, we force the inlining of function calls by processing functions before

running the LLVM inlining pass. This is done by adding, with the LLVM library, a

special attribute AlwaysInline to functions in the IR as shown in Listing A.3.
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1 bool Fu l lFunc t i on In l i n ingPas s : : runOnFunction ( Function &F) {
2 F . addFnAttr ( Att r ibute : : AlwaysIn l ine ) ;

3 p r o c e s s C a l l s (F) ;

4 return true ;

5 }

Listing A.3: Forcing function inlining.

The next required processing step is to prevent the propagation of variables into

other instructions while inlining the calls. Listing A.5 and A.6 show some LLVM

bitecode to illustrate the problem. In Listing A.5 there is a call to the function foo,

which is defined in Listing A.4. After inlining (see Listing A.6), the call instruction

is replaced by the body of the foo function. The variable a appearing in function

foo was propagated in the mul instruction, and the information (for example, the

line number) about the ret instruction of function foo is lost. We want to keep this

information in case there is a fault in the ret instruction.

1 d e f i n e i 32 foo ( i 32 %a ) {
2 entry :

3 r e t i 32 %a

4 }

Listing A.4: Function foo

1 %r e t = ca l l i 32 @foo(%arg )

2 %x = mul i 32 %ret , 42

Listing A.5: Before Inlining

1 %x = mul i 32 %arg , 42

Listing A.6: After Inlining

To prevent the variable propagation, we modify each call instruction in each func-

tion of the IR by inserting a dummy add instruction after each call. Listing A.7 shows

an example with a call before it is processed and Listing A.8 shows the call after being

processed.

After the two processing stages explained above, we run the inlining pass of LLVM.
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1 %r e t = ca l l i 32 @foo(%arg )

2 %x = mul i 32 %ret , 42

Listing A.7: Before processing.

1 %r e t = add i 32 %arg , 0

2 %x = mul i 32 %ret , 42

Listing A.8: After processing.

Listing A.9 shows how the whole inlining process is implemented in SNIPER.

1 void Backend : : i n l i n e C a l l s ( Module ∗ llvmMod ) {
2 DataLayout ∗DL = new DataLayout ( llvmMod ) ;

3 PassManager ∗PM = new PassManager ( ) ;

4 PM−>add(DL) ;

5 PM−>add(new Fu l lFunc t i on In l i n ingPas s ( ) ) ; // SNIPER pass

6 PM−>add( c r ea t eFunc t i on In l i n i ngPas s ( ) ) ; // LLVM pass

7 PM−>run (∗ llvmMod ) ;

8 d e l e t e PM;

9 }

Listing A.9: SNIPER inlining procedure.

A.3.3 Local Variables Processing

While putting the IR into SSA form, LLVM automatically propagates constant

values. This is something we want to avoid because we loose information and may

encounter difficulties when mapping back the IR’s instructions to the original source

code. Listings A.10 and A.11 show what happen after putting the IR into SSA form.

Listing A.10 shows the original IR. It uses registers to handle local variables

through load/store instructions. The optimization pass that puts the IR in SSA

form gets rid of all load/store instructions and propagates the constant values of

variables if it is possible. The Listing A.11 shows the IR after running the optimization

pass. The variables x and y are now replaced by their actual constant values in the

add instruction. To avoid this we pre-proccess the IR before putting it in SSA form.

For each instruction we save the name of the used variables. Then, in the IR in SSA

form, for each instruction containing a constant value, we check if the constant value

refers to a variable. If this is the case, we replace the constant value by its variable
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1 %x = alloca i 32

2 %y = alloca i 32

3 store 42 , %x ,

4 store 8 , %y

5 %1 = load %x

6 %2 = load %y

7 %tmp = add %1, %2

Listing A.10: Original

Intermediate Representation

1 %tmp1 = add 42 , 8

Listing A.11: Intermediate

Representation in SSA form

name. We also assign these variables with the appropriate values.

A.3.4 Static Single Assignment Form Transformation

SNIPER uses the memory to register pass of LLVM to transform the input IR to

SSA form. The pass implements a standard SSA construction algorithm to construct

“pruned” SSA form (see Section 3.5 for details).

1 void Backend : : putInSSAForm ( Module ∗ llvmMod , Function ∗ targetFun ) {
2 FunctionPassManager ∗FPM = new FunctionPassManager ( llvmMod ) ;

3 FPM−>add( createPromoteMemoryToRegisterPass ( ) ) ;

4 FPM−>d o I n i t i a l i z a t i o n ( ) ;

5 FPM−>run (∗ targetFun ) ;

6 d e l e t e FPM;

7 }

Listing A.12: Transform a LLVM function into SSA form

A.3.5 Loops Processing

This stage consists of unrolling all loops to a certain bound. The bound is provided

by the user. If the bound is too small, SNIPER stops and return an error: unwinding

assertion failed. When such situations happen, the user have to run SNIPER again
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with a greater bound than the one used in the previous run.

SNIPER uses LLVM compiler passes to unroll loops in the input program. In a

classic compilation environment, the goal of the compiler when unrolling loops is to

find a compromise between the program execution speed and the size of the program

binary. Therefore, the compiler may not always unroll loops. In the case of SNIPER,

it is mandatory to systematically unroll program’s loops to a given bound. The fol-

lowing sections describe how SNIPER uses the LLVM compiler passes to achieve the

systematic unrolling of loops.

1 void Backend : : unro l lLoops ( Module ∗ llvmMod , Function ∗ targetFun ,

int unrol lCount ) {
2 FunctionPassManager ∗FPM = new FunctionPassManager ( llvmMod ) ;

3 FPM−>add( c reateLoopSimpl i fyPass ( ) ) ;

4 FPM−>add( createLoopRotatePass ( ) ) ;

5 FPM−>add( createLCSSAPass ( ) ) ;

6 int th r e sho ld = UINT MAX; // (1)

7 int a l l o w P a r t i a l = 1 ; // t rue

8 FPM−>add( createLoopUnro l lPass ( thresho ld , unrol lCount , a l l o w P a r t i a l )

) ;

9 FPM−>d o I n i t i a l i z a t i o n ( ) ;

10 FPM−>run (∗ targetFun ) ;

11 d e l e t e FPM;

12 }

Listing A.13: Unroll to a given bound all loops present in the target function

Loop Simplify Pass

In line 3 of Listing A.13, the loop simplify pass is run as a preliminary step to

canonicalize all loops. In this context, canonicalization is the process of putting a

natural loop in a normal form (simpler form). This makes subsequent analyses and

transformations simpler and effective. In general, a natural loop has one entry block

(header) and possibly several back edges (latches) leading to the header from the

inside of the loop. As shown in Figure A.2, canonicalization ensures that there is a
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single entry point and only one back edge. We take advantage of this fact later in the

formula encoding.

Preheader

Header

Exit

Exit

Latch

Ba
ck
ed
ge

Figure A.2: A loop CFG in normal form

Loop Rotate Pass

In line 4 of Listing A.13, the loop rotate pass performs a loop rotation transforma-

tion, which moves loop conditionals at the end of the loop. If the transformed loop

executes more than once, this optimization eliminates the initial test. This pass is

used to facilitates the unrolling of loop in LLVM.

Listings A.14, A.15, and A.16 show the different forms taken by a loop while being

rotated by the loop rotate pass.

1 for ( i = 0 ; i < n ; ++i ) {
2 . . .

3 }

Listing A.14: Loop before rotation
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1 i = 0 ;

2 while ( true ) {
3 i f ( i >= n)

4 break ;

5 . . .

6 ++i ;

7 }

Listing A.15: Loop after lowering

1 i = n ;

2 i f ( i > 0) {
3 do {
4 . . .

5 ++i ;

6 } while ( i < n) ;

7 }

Listing A.16: Loop after rotation

Loop-Closed SSA Form Pass

In line 5 of Listing A.13, the LCSSA pass transforms loops in loop-closed SSA

form. Basically, this form requires that all Φ nodes are placed at the end of the loops

for all values that are live across the loop boundary. As is usual in SSA representation,

a Φ node is an instruction used to select a value depending on the predecessor of the

current block. More details about the SSA representation can be found in Section 3.5.

Loop Unroll Pass

Now we have a loop in a normal form we can unroll it (line 8 of Listing A.13). In

Figure A.3 the three main steps are shown from left to right.

(1) The first step is the duplication of the loop body. This is done by LLVM. The

number of times the body is duplicated depends on the number of times the user

wants to unroll loops (bound given as argument). When it is possible, this number

can also be automatically calculated by LLVM to fully unroll loops.

(2) The second stage replaces the latch block (end block when the loop has been

fully traversed) by an assert(false). This ensures the program never does more

iterations. In the case where this assert is reached, we can conclude that this loop

should be unrolled further.

(3) The last step simply removes the back edge. As the back edge is the only way to

go back to the header, its removal completely cuts the loop.
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Preheader
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Exit
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Preheader
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Preheader

Header

Exit

assert false

...

Figure A.3: From left to right, the steps to unroll a loop

A.3.6 Finalization

After applying all the above passes to the IR, we obtain a single function in SSA

form with all loops unrolled to a certain bound. At this point the IR contains arith-

metic, comparison, φ (join), and branching instructions only. Some of these instruc-

tions may not have a name assigned to them. Therefore, as shown in Listing A.17,

SNIPER additionally run the instruction namer pass of LLVM, which simply assigns

names to anonymous instructions. This pass is used to assign names to variables

while encoding the IR into a formula.

1 void Backend : : f i n a l i z e ( Module ∗ llvmMod , Function ∗ targetFun ) {
2 FunctionPassManager ∗FPM = new FunctionPassManager ( llvmMod ) ;

3 FPM−>add( c reate Inst ruct ionNamerPass ( ) ) ;

4 FPM−>d o I n i t i a l i z a t i o n ( ) ;

5 FPM−>run (∗ targetFun ) ;

6 d e l e t e FPM;

7 }

Listing A.17: Assigning names to anonymous instructions
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