1 Title: A paradox of cumulative culture

3	Authors: Yutaka Kobayashi ^{a,b} , Joe Yuichiro Wakano ^c , Hisashi Ohtsuki ^d
4	Affiliations: ^a Research Center for Social Design Engineering, Kochi University of
5	Technology, Kochi 782-8502, Japan, ^b Department of Management, Kochi University of
6	Technology, Kochi 782-8502, Japan, ^c Meiji Institute for Advanced Study of
7	Mathematical Sciences, Nakano, Tokyo 164-8525, Japan, ^d The Graduate University for
8	Advanced Studies, Shonan Village, Hayama, Kanagawa 240-0193, Japan
9	Corresponding author: Yutaka Kobayashi, Department of Management, Kochi
10	University of Technology, Kochi 782-8502, Japan, Tel +81-887-57-2344, Email
11	kobayashi.yutaka@kochi-tech.ac.jp
12	
13	Keywords: social learning, cultural evolution, gene culture coevolution, dual inheritance
14	theory, cultural social dilemma
15	

17 Abstract

Culture can grow cumulatively if socially learned behaviors are improved by individual 18 19 learning before being passed on to the next generation. Previous authors showed that 20 this kind of learning strategy is unlikely to be evolutionarily stable in the presence of a trade-off between learning and reproduction. This is because culture is a public good 2122that is freely exploited by any members of the population in their model (cultural social 23dilemma). In this paper, we investigate the effect of vertical transmission (transmission from parents to offspring), which decreases the publicness of culture, on the evolution 2425of cumulative culture in both infinite and finite population models. In the infinite population model, we confirm that culture accumulates largely as long as transmission 26is purely vertical. It turns out, however, that introduction of even slight oblique 2728transmission drastically reduces the equilibrium level of culture. Even more surprisingly, if the population size is finite, culture hardly accumulates even under purely vertical 29transmission. This occurs because stochastic extinction due to random genetic drift 30 prevents a learning strategy from accumulating enough culture. Overall, our theoretical 31results suggest that introducing vertical transmission alone does not really help solve the 3233 cultural social dilemma problem.

 $\mathbf{2}$

34 **1. Introduction**

Rogers (1988) argued that the presence of culture per se does not imply improvement of 35 population-level adaptability. This result, which contradicted the apparent advantages of 36 37 culturally transmitted technologies in humans, was received with some astonishment by researchers of the day (Boyd and Richerson, 1995a). Nowadays, it is acknowledged that 38this "paradox" is a consequence of the specific structure of Rogers' model and can be 39 "resolved" by taking realistic properties of human culture into account (Enquist et al. 40 2007; Aoki and Feldman, 2014). One of them, which may be the most relevant, is the 41 42cumulativeness of culture (Aoki et al. 2012). That is, human culture does not, as in 43Rogers' model, have just two states (adaptive vs. maladaptive), but evolves gradually by 44accumulating modifications over many generations to finally yield complex artifacts 45that cannot be invented by a single individual (Richerson and Boyd, 2005). It is well known that chimpanzees socially learn how to crack nuts using stones and also to fish 46 termites using sticks (Whiten et al., 1999), but such behavior is not cumulative culture, 47as it fall well within the inventive capacity of a single individual. It is not comparable 48with spacecraft, mobile phones, and quantum mechanics, which are clearly beyond the 4950inventive capacity of a single individual. Even basic hunter-gatherer tools like a spear are products of cumulative cultural evolution, being composed of multiple parts that 51

52	cannot be made without some other tools like scrapers or wrenches, which may already
53	be complex enough (Richerson and Boyd, 2005). On the other hand, ethnobotanical
54	knowledge for food-gathering and processing can be cumulative in a more quantitative
55	sense, built upon numerous trials and errors, which can never be exerted within the
56	lifetime of a single individual. In this view, Rogers' model is not a model of cumulative
57	cultural evolution.
58	While many animal species engage in social learning and hence have culture to
59	varying degrees (Slater, 1986; Box and Gibson, 1999; Whiten et al., 1999; Krützen et al.,
60	2005), it is only humans that are known to have cumulative culture (Laland and Hoppitt,
61	2003; Tennie et al. 2009; Mesoudi, 2011a; see also Mithen, 1999). Many researchers
62	consider that cumulative cultural evolution is a major source of adaptation in modern
63	humans (Tomasello, 1999; Richerson and Boyd, 2004).
64	More than two decades after Rogers' study, another paradox, which is more
65	relevant to human evolution, has emerged. Obviously, culture can accumulate over
66	generations only if socially learned traits undergo improvements before or while being
67	passed on to the next generation. Such improvements can be made through deliberate
68	individual learning (Aoki et al., 2012) or inaccurate social learning combined with
69	success-biased transmission (Henrich, 2004). In the latter case, positive cultural growth

70	is ensured in a sufficiently large, well connected population (Henrich, 2004; Powell et
71	al., 2009; Mesoudi, 2011b; Kobayashi and Aoki, 2012). As to the former mechanism,
72	recent models show that a learning schedule in which social learning occurs in an earlier
73	life stage than individual learning is indeed favored by natural selection (Aoki et al.
74	2012). The optimal learning schedule allows culture to accumulate largely as long as
75	improvement of traits is the sole concern of each individual. Interestingly, however,
76	such a learning schedule loses evolutionary stability as soon as a trade-off in terms of
77	time between learning and reproductive effort is introduced (Wakano and Miura, 2014).
78	It has been presumed that this occurs because of the publicness of culture; that is, a
79	strategy that spends a lot of time to improve socially learned traits (and hence
80	contributes to culture) allows invasion by selfish mutants that just scrounge the culture
81	and spend the rest of time reproducing. Therefore, culture decays until finally the
82	benefit of social learning is also lost. This results in a final state where individuals
83	engage mainly in biological replication and little in learning (Lehmann et al. 2013;
84	Wakano and Miura, 2014). This result contradicts the observation that modern humans
85	possess highly cumulative, sophisticated technologies, which must have largely
86	contributed to their current demographic success on the global scale.
87	Wakano and Miura (2014) recognized this theoretical problem as a social

 $\mathbf{5}$

88	dilemma, where temptation to cheat prevents the population from reaching an adaptive,
89	cooperative state. They speculated that the dilemma would be overcome if cultural
90	transmission occurs mainly between close relatives, preventing cheaters from accessing
91	adaptive cultural products. For clarity, let us imagine an extreme hypothetical situation
92	where reproduction is asexual and transmission of culture is purely "vertical" (i.e. from
93	parents to their offspring (Cavalli-sforza and Feldman, 1981)). In this case, each genetic
94	lineage can be seen as an isolated population, and hence a strategy that promotes
95	accumulation of culture and is optimal from the population viewpoint should also be
96	favored by natural selection. In fact, Lehmann et al.'s (2010) model, which treats only
97	within-generation accumulation of culture, shows that culture can accumulate beyond
98	the capacity of a single individual if culture is horizontally transmitted between close
99	relatives in the same generation. However, no study tested the effect of kin transmission
100	on the evolution of between-generation cumulative culture.
101	Below, we investigate the effect of vertical transmission on the evolution of
102	between-generation cumulative culture using infinite and finite population models. Our
103	primary purpose is to test whether the privatization of culture through vertical
104	transmission can function as a theoretical mechanism to solve the above-mentioned
105	social dilemma problem. In the infinite population model, we first confirm that pure

106	vertical transmission indeed solves the above-mentioned cultural social dilemma and
107	allows a large accumulation of culture. It turns out, however, that introduction of even
108	slight "oblique" transmission (i.e. transmission from a non-parental adult in the parental
109	generation (Cavalli-sforza and Feldman, 1981)) drastically reduces the equilibrium level
110	of culture. Even more surprisingly, if the population size is finite, culture hardly
111	accumulates even under pure vertical transmission. This occurs because stochastic
112	extinction of learning strategies prevents culture from accumulating enough to exert its
113	effect. In the Discussion, we will argue implications of our theoretical results for
114	empirical research.

115

2. Methods 116

1172.1. Model description

We work on a simplified model to extract the essence of the problem while keeping 118119 analytical tractability. In particular, we ignore the effects of environmental fluctuation, which have been extensively studied by previous authors (e.g. Boyd and Richerson, 1201985; Feldman et al., 1996; Wakano et al., 2004; Wakano and Aoki, 2006). Notation 121122used in this model is summarized in Table 1. We assume an asexually reproducing population in which generations are overlapping insofar as cultural transmission occurs. 123

124 The population size is constant but may be either infinite or finite. In the finite case we125 denote the population size by *N*.

126	Within each generation, time passes continuously; we let τ and t represent the
127	generation and the within-generation time, respectively. We assume that each individual
128	in the population is distinguished from others by a unique label <i>i</i> . We may say
129	"individual (i, τ) " instead of saying "individual <i>i</i> in generation τ " whenever it is
130	convenient. Individuals engage in three activities in a sequential manner: they first learn
131	socially, second learn individually, and finally exploit environments to reproduce. We
132	may call the first two stages collectively the learning stage. We assume this order of the
133	three activities and the discontinuous switching between activities (i.e. "bang-bang"
134	control) because they were well established in previous studies by means of dynamic
135	optimization theory (Aoki et al. 2012; Lehmann et al. 2013; Wakano and Miura, 2014).
136	It must here be noted that by the term "individual learning" we refer to an effort to add
137	to or improve knowledge or skills that an individual already possess, while "social
138	learning" refers to copying others' knowledge or skills. In this respect, we follow a
139	series of previous theoretical models (Aoki et al., 2012; Lehmann et al., 2013; Wakano
140	and Miura, 2014). We focus on the evolution of the length of time allocated to each
141	activity, which determines the extent to which culture accumulates. Each individual (i, τ)

142	allocates fractions $v_{i,\tau}(1-x_{i,\tau})$, $v_{i,\tau}x_{i,\tau}$, and $1-v_{i,\tau}$ of the total lifetime <i>T</i> to social learning,
143	individual learning, and exploitation, respectively. Without loss of generality, we set
144	T=1 throughout the paper; this means that we measure time in units of the lifetime of an
145	individual. Evolving parameters are v and x , i.e. the fraction of time used for learning
146	and the ratio of the time used for individual learning to the whole learning time. We
147	assume that the strategy (x, v) is coded for by a single haploid locus. In the ESS analysis
148	we assume that there are only two alleles, a wild-type allele and a mutant allele, on this
149	locus. In computer simulations, on the other hand, we allow existence of multiple alleles
150	on this locus.
151	Following previous authors, we assume that the cultural state of each
152	individual (<i>i</i> , τ) at within-generation time <i>t</i> is represented by a positive real number $z_{i,\tau}(t)$
153	(e.g. Henrich, 2004; Powell et al., 2009; Aoki et al. 2012; Kobayashi and Aoki, 2012;
154	Lehmann et al. 2013; Wakano and Miura, 2014). The <i>z</i> -value $z_{i,\tau}(t)$ of an individual (i, τ)
155	may represent its degree of skillfulness (e.g., in making tools), the level of
156	sophistication of knowledge (e.g. how to manufacture wild plants to extract nutrient or
157	detract toxins as efficiently as possible), or the amount of knowledge in a certain
158	category (e.g. a list of edible plants). For simplicity, we assume that $z_{i,\tau}(0)=0$ for
159	nowhere The - value of an individual grows during its lifetime through social and

individual learning. In the stage of social learning, each individual (i, τ) chooses an individual in the parental generation τ -1 as a role model and absorbs its knowledge. We let $(\rho_{\tau}(i), \tau$ -1) denote the role model of an individual (i, τ) . Zarger (2002) shows that, in a Mayan farming village, the amount of ethnobotanical knowledge of a child grows roughly in a decelerating, saturating manner during the age period from 4-14 through social learning. In light of this, we assume that the *z*-value of individual (i, τ) grows in the social learning stage as follows:

167

168
$$\frac{d}{dt} z_{i,\tau}(t) = \beta(z_{\rho_{\tau}(i),\tau-1}(T) - z_{i,\tau}(t)), \quad (0 \le t \le v_{i,\tau}(1 - x_{i,\tau})), \quad (1)$$

169

where β is the efficiency of knowledge absorption. This equation allows $z_{i,t}(t)$ to grow 170171in a decelerating manner, conforming with the empirical data (Zarger, 2002). Note that $z_{\rho_{\tau}(i),\tau-1}(T)$ gives the z-value of individual ($\rho_{\tau}(i), \tau-1$) at the end of its lifetime, which we 172call the *mature z*-value of individual ($\rho_{\tau}(i), \tau$ -1). The role model ($\rho_{\tau}(i), \tau$ -1) is (i, τ) 's 173parent and a random adult chosen from generation τ -1 including the parent with 174probabilities q and 1-q, respectively. In other words, q and 1-q give the (backward) 175176probabilities of vertical and random oblique transmission, respectively. We ignore the horizontal transmission in the present model to focus on between-generation 177

178	accumulation of culture. This simplification is acceptable as a first step toward more
179	realistic modeling given that horizontal transmission is rare compared to vertical and
180	oblique transmission in traditional societies (Hewlett and Cavalli-Sforza, 1986;
181	Ohmagari and Berkes, 1997; Shennan and Steele, 1999; Reyes-Garcia et al., 2009).
182	In the stage of individual learning, the $z_{i,\tau}(t)$ grows as follows:
183	
184	$\frac{d}{dt}z_{i,\tau}(t) = \alpha , \qquad (v_{i,\tau}(1-x_{i,\tau}) \le t \le v_{i,\tau}) \qquad (2)$
185	
186	where α is the efficiency of individual learning. Throughout this paper, we set $\alpha=1$. This
187	implies that the unit of the <i>z</i> -value is the mature <i>z</i> -value that a life-long individual
188	learner could achieve.
189	Note that $z_{i,\tau}(t)$ grows in a decelerating manner in the social-learning stage
190	while it grows at a constant rate in the individual-learning stage. This is a common
191	feature of existing learning-schedule models and is essential for the evolution of a
192	combined use of social and individual learning in a constant environment. By virtue of
193	this feature, it is beneficial to engage in social learning first, and then switch to
194	individual learning when the knowledge absorption rate in social learning drops to the
195	same level as the efficiency of individual learning, i.e. when

196 $\beta(z_{\rho_r(i),\tau-1}(T) - z_{i,\tau}(t)) = \alpha = 1$. In the stage of exploitation, the *z*-value stays at the mature 197 value attained by the end of the learning stage, i.e.

198

199
$$\frac{d}{dt} z_{i,\tau}(t) = 0$$
. $(v_{i,\tau} \le t \le 1 = T)$ (3)

200

Note that the mature z-value $z_{i, t}(T)$ may be used as the target of social learning in the 201202next generation by the offspring of the focal individual or some other members of the 203population. We assume that the efficiency of exploitation is proportional to this mature 204*z*-value. In addition, we assume that the fitness of an adult is proportional to the total resource income. This is a reasonable assumption, given that in humans energetic 205income by an adult is expended not only for its own survival and reproduction but also 206for children's survival and growth (Kaplan et al. 2000). Thus, the fitness of individual 207 (i, τ) is given by 208209 $w_{i,\tau} = z_{i,\tau}(T) \cdot (1 - v_{i,\tau}) \cdot$ (4) 210

211

Fig. 1 sketches what happens in the *finite*-population model on the between-generation time scale. We assume a so-called "Wright-Fisher"-type update for

214	the genetic state of the population; i.e. each adult in generation τ is chosen as a parent of
215	a newborn in generation τ +1 with a probability proportional to its fitness. Offspring
216	inherit their parent's strategy (x, v) . Thus, the genetic state of the population changes
217	from generation to generation due to natural selection and sampling drift (random
218	genetic drift). In the infinite-population model we consider the limit of the
219	finite-population model as the population size tends to infinity in such a way that
220	sampling drift disappears.
221	Although the <i>z</i> -value for newborns is $z_{i, t}(0)=0$ by assumption, the mature
222	<i>z</i> -value, i.e. $z_{i,\tau}(T)$ may vary even in a genetically monomorphic population. This is
223	because the mature z-value of an individual (i, τ) depends on the mature z-value of its
224	role model ($\rho_{\tau}(i), \tau$ -1), which in turn depends on the mature <i>z</i> -value of the role model's
225	role model ($\rho_{\tau-1}(\rho_{\tau}(i)), \tau-2$), and so on. However, given that the population is genetically
226	fixed for a strategy, say (x, v) , $z_{i, t}(T)$ reaches an equilibrium value, which is denoted by
227	$\widetilde{z}(T)$. Therefore, the fitness also reaches an equilibrium value, which is denoted by \widetilde{w}
228	(see Online Appendix A).
229	
230	2.2. Aim of analysis

231 The aim of our analysis is to compare three solutions based on different optimality

232	criteria: (i) the coordinated optimal strategy (COS), (ii) the evolutionarily stable strategy
233	(ESS) based on invasion growth rate in an infinite population model, and (iii) the ESS
234	based on fixation probability in a finite population model. Key parameters are the
235	vertical transmission rate and the population size, which have crucial effects on the
236	behavior of the model, as revealed in the result section.
237	The COS is defined as the strategy that maximizes the equilibrium value of
238	fitness under the constraint that the population is genetically monomorphic (i.e. no
239	mutants are allowed). It does not depend on whether the population size is infinite or
240	finite. We use symbols x° , v° , and $\tilde{z}^{\circ}(T)$ to denote the COS values of x , v , and
241	$\tilde{z}(T)$, respectively. The COS was previously referred to as the "Pareto-optimal"
242	strategy (Wakano and Miura, 2014) but this is inappropriate given that these two
243	concepts are not always equivalent. While the COS is an ideal strategy from the
244	viewpoint of ultimate species success, there is no guarantee that it is favored by natural
245	selection. We hence derive the evolutionarily stable strategy (ESS) both for an infinite
246	population and for a finite population of size N and compare it with that under the COS.
247	We use symbols x^* , v^* , and $\tilde{z}^*(T)$ to denote the ESS values of x , v , and $\tilde{z}(T)$,
248	respectively.

The COS analysis requires only that we work on the cultural dynamics in a

250	genetically monomorphic population. The ESS analysis, on the other hand, requires that
251	we track both the genetic and cultural states of each individual simultaneously.
252	Specifically, we consider the fate of a mutant allele introduced into a resident population
253	which is at equilibrium with respect to the <i>z</i> -value (Fig. 1). In the case of an infinite
254	population, sampling drift is absent and the frequency of a mutant allele hence changes
255	deterministically; therefore, as in traditional analysis, we may define an ESS as a
256	strategy that does not allow any slightly deviant strategy to have a positive growth rate
257	(Maynard Smith, 1982). In the finite case, however, the frequency of a mutant allele
258	undergoes stochastic fluctuation due to sampling drift. We therefore use a definition of
259	an ESS based on a fixation probability (e.g. Nowak et al., 2004). Let N be the
260	population size. We say that a strategy (x^*, v^*) is evolutionarily stable if and only if the
261	fixation probability of any slightly deviated strategy in the population of the resident
262	strategy (x^* , v^*) is lower than $1/N$, i.e. the fixation probability under neutrality.
263	Unfortunately, we could not confirm analytically the second-order stability of
264	the ESS's we obtained. To confirm the evolutionary stability of the analytically derived
265	formulae and the validity of the approximations, we conducted some individual-based
266	simulations. See Online Appendices for all mathematical details.
267	

268	3. Results
269	3.1. Coordinated optimal strategy
270	As shown in Online Appendix A, the equilibrium fitness in a genetically monomorphic
271	population with strategy (x, v) is given by
272	
273	$\widetilde{w} = v(1-v)xe^{\beta v(1-x)}.$ (5)
274	
275	The COS is the strategy (<i>x</i> , <i>v</i>) that maximizes eq. (5). It is easily shown that, if $\beta < 2$, the
276	COS is given by
277	
278	$x^{\circ} = 1$, (6a)
279	
280	$v^{\circ} = \tilde{z}^{\circ}(T) = \frac{1}{2}.$ (6b)
281	
282	Thus, the COS involves no social learning when $\beta < 2$. On the other hand, if $\beta > 2$, the
283	COS involves social learning and is given by
284	
285	$x^{\circ} = \frac{1}{\beta - 1}, \qquad (6c)$

287
$$v^{\circ} = 1 - \frac{1}{\beta}$$
, (6d)

289
$$\widetilde{z}^{\circ}(T) = \frac{1}{\beta} e^{\beta - 2}$$
. (6e)

291	One might wonder why $\beta=2$ gives the threshold for the emergence of social
292	learning. The absence of social learning requires $\beta < 2$ for the following reason. Note that
293	from eq. (2) the absence of social learning (<i>x</i> =0) entails $z_{i,\tau}(T) = v$. Thus, the equilibrium
294	mature <i>z</i> -value is also given by $\tilde{z}(T) = v$. Therefore, the equilibrium fitness is given by
295	$\tilde{w} = \tilde{z}(T) \cdot (1-v) = v(1-v)$, which is maximized at $v=1/2$. Thus, the COS without social
296	learning, if possible, must satisfy that $v^{\circ} = \tilde{z}^{\circ}(T) = 1/2$ in addition to $x^{\circ} = 1$. However,
297	since the COS by definition maximizes the fitness, the fitness must not increase by
298	introducing social learning. This entails that the rate of social learning is lower than that
299	of individual learning already at birth, i.e. $\beta(\tilde{z}^{\circ}(T)-0) < \alpha = 1$. Given that $\tilde{z}^{\circ}(T) = 1/2$,
300	this condition reduces to $\beta < 2$. These arguments reveal that $\beta < 2$ is a necessary condition
301	for the COS to satisfy $x^{\circ} = 1$.
302	Eq. (6) shows that the COS is solely determined by the efficiency of social
303	learning β . It also shows that reliance on individual learning (x°) decreases with social

learning efficiency (β) while the learning time (v°) and the equilibrium mature z-value 304 305 $(\tilde{z}^{\circ}(T))$ both increase. In particular, individuals should exert maximal effort for transmission of culture and minimal effort for individual learning and exploitation 306 $(v^{\circ} \rightarrow 1, x^{\circ} \rightarrow 0)$ when social learning is highly efficient $(\beta \rightarrow \infty)$. The equilibrium 307 mature z-value ($\tilde{z}^{\circ}(T)$) can take a huge value when social learning efficiency (β) is 308 high (Fig. 2). This implies that a massive accumulation of culture is possible if the 309 310members of a society try to maximize future fitness in a coordinated manner. 311 3123.2. ESS in an infinite population In Online Appendix B, we derive an Euler-Lotka characteristic equation that gives the 313invasion growth rate of a rare mutant strategy in an infinite population. Using this 314315equation, we can derive the ESS analytically under the assumption of small mutation size (i.e. the mutant strategy is sufficiently close to the resident one). If $\beta > 2$, an ESS 316317 with a positive investment in social learning ($x^* < 1$) exists and satisfies

318

319
$$x^* = \frac{1}{\beta v^*},$$
 (7a)

321
$$\beta(1-v^*) - q = (1-q)e^{\beta_{v^*-1}},$$
 (7b)

323
$$\tilde{z}^{*}(T) = \frac{1}{\beta} e^{\beta v^{*}-1}$$
. (7c)

325	If β <2, the COS is also the ESS (eqs. (6a-b)). Eq. (7) shows that the ESS is unique and
326	given as an implicit function of parameters β and q . When the cultural transmission is
327	purely vertical (q=1), the ESS becomes equivalent to the COS ($x^*=x^\circ$, $v^*=v^\circ$), as
328	expected (see also Fig. 2). Close inspection of eq. (7) reveals that both learning time
329	(<i>v</i> *) and the equilibrium mature <i>z</i> -value (\tilde{z} *(<i>T</i>)) are monotonically increasing and
330	reliance on individual learning (x^*) is monotonically decreasing with respect to vertical
331	transmission probability (q) . Thus, the equilibrium mature z-value attained by the ESS is
332	always lower than that attained by the COS.
333	The equilibrium mature <i>z</i> -value ($\tilde{z}^*(T)$) and reliance on individual learning
334	(x^*) are monotonically increasing and decreasing, respectively, with respect to social
335	learning efficiency (β). The learning time (v^*) is, however, not monotonic unless
336	transmission is purely vertical $(q=1)$ (Fig. 2). The ESS for very high social learning
337	efficiency ($\beta \rightarrow \infty$) differs qualitatively between when transmission is purely vertical
338	(q=1) and when it is not $(q<1)$. If transmission is purely vertical, the ESS is identical
339	with the COS; hence individuals tend to exert maximal effort for transmission of culture

and the equilibrium mature *z*-value diverges $(v^* \rightarrow 1, x^* \rightarrow 0 \text{ and } \tilde{z}^*(T) \rightarrow \infty$ hold as $\beta \rightarrow \infty$) (Fig. 2). If transmission is partially oblique (*q*<1), on the other hand, we obtained the following approximate formula for large β

343

344
$$v^* \approx \frac{1}{\beta} \log \frac{\beta e}{1-q}$$
, (8a)

345

346
$$\widetilde{z}^*(T) \approx \frac{1}{1-q}$$
. (8b)

347

This suggests that, when social learning efficiency (β) is large, introduction of rather 348 weak oblique transmission can result in a drastic fall in the equilibrium mature *z*-value. 349350For example, when $\beta=10$, the COS attains $\tilde{z}^{\circ}(T) \approx 298$, while the ESS under q=0.99351(q=0.9) attains only $\tilde{z}^*(T) \approx 24.9$ ($\tilde{z}^*(T) \approx 4.33$). This drastic reduction in the equilibrium mature z-value ($\tilde{z}^*(T)$) in response to slight oblique transmission reflects a 352steep reduction in the learning time (v^*). For example, when $\beta = 10$ and q = 0.99 (q = 0.9), 353 it holds that $v^* \approx 0.652$ ($v^* \approx 0.477$), which is much lower than $v^\circ = 0.9$ (see also Fig. 2). 354Although the ESS invests more in reproduction than the COS, this is not enough to 355356compensate for the reduction in the mature z-value; that is, the ESS generally attains a lower fitness at equilibrium than the COS. This is obvious because by definition no 357

strategy can attain a higher fitness at equilibrium than the COS in a monomorphic population. In fact, when $\beta=10$ and q=0.99, the ESS attains the equilibrium fitness of about 8.67 ($\approx \tilde{z} * (T) \times (1-v^*) = 24.9 \times (1-0.652)$), which is much lower than that of the COS, 29.8 ($= \tilde{z}^{\circ}(T) \times (1-v^{\circ}) = 298 \times (1-0.9)$). Thus, notable here is not the sign but the magnitude of the effect of the vertical transmission rate.

363 The drastic reduction of the equilibrium mature z-value in response to slight 364 oblique transmission may be explained as follows. Let us consider the fate of a mutant strategy that increases investment in learning compared to the resident. Although the 365366 mutant can potentially reach a higher cultural level than the resident, culture needs to 367 accumulate for several generations to compensate for the fitness loss caused by reduced investment in reproduction. For example, if 100 generations of accumulation is 368 369 necessary to compensate for the fitness loss, the compensation occurs only with probability q^{100} . Importantly, a single failure of vertical transmission (i.e., oblique 370 371transmission) would reset the cultural level, bringing all the increased learning efforts by ancestors to naught. This explains why the ESS and the mature z-value are so 372sensitive to the introduction of slight oblique transmission. We will give a more general 373374(but technical) explanation in the Discussion section.

375

376 *3.3. ESS in a finite population*

In Online Appendix C, we derive an approximate formula for the fixation probability of a mutant strategy in a finite population of size *N* for the special case of purely vertical transmission (*q*=1) using the method introduced by Rousset (2004). Using this formula, we can derive the ESS for *q*=1 analytically under the assumption of small mutation size. If β >2, the ESS and the equilibrium mature *z*-value ($\tilde{z} * (T)$) under purely vertical transmission satisfy eqs. (6a) and (6c) plus

383

384
$$\beta(1-v^*) - 1 + \frac{1}{N} = \frac{1}{N}e^{\beta v^* - 1}$$
. (9)

385

386 If β <2, the COS is again the ESS. For partially oblique transmission (q<1), we resort to 387 individual-based simulations (see the next subsection).

394	expected from the effect of vertical transmission rate (q) revealed in the
395	infinite-population model. For very high social learning efficiency ($\beta \rightarrow \infty$), we obtain
396	eq. (7a) plus the following:
397	
398	$v^* \approx \frac{1}{\beta} \log eN\beta$, (10a)
399	
400	$\tilde{z}^*(T) \approx N$. (10b)
401	
402	Thus, the equilibrium mature <i>z</i> -value is asymptotically equal to the population size.
403	Eq. (10b) implies that a population of 100 people can accumulate valuable
404	traits that account for about 100 generations. Although one might think this result
405	convincing, the load potentially imposed by population-size finiteness should not be
406	underestimated. For example, when $\beta=10$, the COS reaches $\tilde{z}^{\circ}(T) \approx 298$ as already
407	argued. On the other hand, the ESS under <i>N</i> =100 reaches only $\tilde{z}^*(T) \approx 24.9$. Moreover,
408	in reality there would be some oblique transmission, which should further drastically
409	reduce the equilibrium mature z-value. In the next subsection, this effect is explored by
410	means of computer simulations.
411	The finiteness of population size causes the drastic reduction in the ESS

The finiteness of population size causes the drastic reduction in the ESS

412	cultural level because it creates room for stochastic extinction of rare alleles. As
413	mentioned in the previous subsection, a mutant strategy that invests more in learning
414	than the resident must endure for several generations before culture accumulates enough
415	to compensate for the fitness loss caused by decreased investment in reproduction. In
416	other words, such mutant strategy is far-sighted compared to the resident, investing in
417	the future cultural quality at the expense of present reproduction. If the population size
418	is infinite and transmission is purely vertical, this may be a good strategy; although the
419	mutant population would initially decrease, it may eventually start increasing after
420	culture enough accumulates. In a finite population, however, the mutant strategy is
421	highly likely to go extinct in the initial stage where the mutant still has lower fitness
422	than the resident. For this reason, near-sighted strategies (i.e. large investment in
423	reproduction) tend to be favored over far-sighted ones (i.e. large investment in learning)
424	in a small population. We will provide a more detailed explanation in the Discussion.
425	

426 *3.4. Individual-based simulations*

In the simulations we explicitly tracked the changes in both genetic and cultural states of each of *N* individuals. We assumed that each of traits $x_{i,\tau}$ and $v_{i,\tau}$ of each individual can independently mutate in every generation with the same probability μ =0.001. If

mutation occurred to a trait, the new trait value was sampled from a Gaussian 430 distribution centered around the original trait value with variance $\sigma^2 = 0.001$. If the 431sampled value turns out to be outside a boundary (0 or 1), the new trait value was set to 432433the boundary value. As a result of recurrent mutation, many different strategies coexist at each snapshot, whereas in the analytical theory we assumed there were at most only 434two strategies (the mutant and the resident). All the other assumptions were unchanged 435from the description in section 2. 436We first checked if the ESS for purely vertical transmission (q=1) predicted by 437438eqs. (7a), (7c), and (9) is attained in individual-based simulations. Fig. 3 shows a typical time-series behavior of the population-averages of $x_{i,\tau}$, $v_{i,\tau}$, and $z_{i,\tau}(T)$, which are denoted 439440 by \overline{x} , \overline{v} , and $\overline{z}(T)$, respectively. Clearly, these values all converge to the analytical 441 ESS values (broken bold lines). In the simulation of Fig. 3, the initial trait values are set to the COS; i.e. $\beta = 10$, $v_{i,\tau} = v^{\circ} = 0.9$, $x_{i,\tau} = x^{\circ} = 0.1$ (see eqs. (6c) and (6d)). The role model's 442z-value in the first generation was set to zero for all individuals. Thus, if there were no 443 genetic evolution, the average mature z-value $\overline{z}(T)$ should increase to $\widetilde{z}^{\circ}(T) \approx 298$ 444according to eq. (6e). In fact, as Fig. 3b shows, $\overline{z}(T)$ initially increases up to about 445446 $\tilde{z}^{\circ}(T)$ but subsequently decreases to $\tilde{z}^{*}(T)$ following the evolutionary changes in \overline{x} and \overline{v} . 447

448	Fig. 4 shows the effect of q on the equilibrium values of \overline{x} , \overline{v} , and $\overline{z}(T)$.
449	The figure again shows that in general the analytical theory accurately predicts
450	simulation results under purely vertical transmission except the equilibrium values of
451	$\overline{z}(T)$ for some large β (Fig. 4c). This deviation occurred because the value of $\overline{z}(T)$
452	fluctuates a lot when β is large. As expected from the result of the infinite-population
453	model (Fig. 2), \overline{x} is not sensitive to change in q (Fig. 4a). On the other hand, \overline{v}
454	significantly decreases with decreasing q (Fig. 4b) and, as a result, $\overline{z}(T)$ sharply
455	decreases (Fig. 4c).

457 **4. Discussion**

458 4.1. Summary of results

459	Wakano and Miura (2014) argued that the public nature of culture prevents the
460	evolution of between-generation cumulative culture. They proposed kin selection as a
461	mechanism to avoid this cultural social dilemma problem. We have confirmed that in
462	our simple infinite-population model cumulative culture can evolve if social
463	transmission is purely vertical and hence the relatedness between the donor and the
464	recipient of information is unity (R =1). However, as soon as a small probability of
465	oblique transmission is introduced, the equilibrium level of culture drastically reduces.

466	Moreover, by analyzing a model of finite population, we have shown that the
467	equilibrium mature z-value is largely limited by the population size even under pure
468	vertical transmission.
469	
470	4.2. Effect of oblique transmission
471	These surprising results illuminate another (i.e. other than being public) pitfall of
472	between-generation cumulative culture, which was previously not perceived. Namely, it
473	takes a number of generations before culture accumulates enough to compensate for the
474	fitness loss caused by an increased investment in learning. Therefore, a mutant strategy
475	that increases investment in learning compared to the resident must accumulate culture
476	vertically for a number of generations without interruption by oblique transmission
477	before it can enjoy increased fitness. Thus, the crucial determinant for the success of the
478	mutant is the expected number of generations until a sequence of vertical transmission
479	is terminated by oblique transmission, which is given by the reciprocal of the oblique
480	transmission rate, i.e. $1/(1-q)$. This quantity is obviously very sensitive to q when q is
481	close to unity and reduces to a very small value as soon as q gets away from unity.
482	Interestingly, the equilibrium mature <i>z</i> -value under the ESS is also given by the
483	reciprocal of the oblique transmission $1/(1-q)$ when β is very large (eq. (8b)). These

484	arguments reveal why the ESS and its equilibrium mature z-value are both very
485	sensitive to the introduction of oblique transmission. Note that many authors
486	investigated the effects of transmission modes on cultural evolution (e.g., Cavalli-Sforza
487	and Feldman, 1981; Boyd and Richerson, 1985; Enquist et al., 2010; Aoki, et al., 2011;
488	Kobayashi and Aoki, 2012), but we have first investigated the effects of transmission
489	modes on the coevolutionary dynamics of learning and between-generation
490	accumulation of culture from the viewpoint of kin selection and the cultural social
491	dilemma.
492	
493	4.3. Effect of population size
494	On the other hand, it may be more difficult to understand the large effect of population
495	size on the evolution of cumulative culture, which is evident even under pure vertical
496	transmission. To understand this effect, let us consider why a mutant with the COS
497	cannot be successful in the population of the ESS. Suppose that the transmission is
498	purely vertical and the COS is initially expressed by a single mutant individual. Since
499	the COS invests less in reproduction than the ESS, the fitness of mutants is lower than
500	noidents in contractions. However, it and wells, in an age because of the
	residents in early generations. However, it gradually increases because of the

502	Therefore, if the population size were <i>infinite</i> , mutants should first decrease but
503	eventually start increasing, finally reaching fixation. In a finite population, however,
504	mutants are highly likely to go extinct in the initial phase of reduced fitness before they
505	can enjoy increased fitness (see Fig. 5). This is why the COS cannot invade the ESS in a
506	finite population. Likewise, it is easy to show that the COS cannot resist against
507	invasion by the ESS in a finite population.
508	These arguments are consistent with the result of Lehmann et al. (2010), who
509	showed that culture can accumulate beyond the capacity of a single individual within a
510	generation if horizontal transmission of culture occurs mainly between genetically
511	related individuals, so that culture is essentially private. In their model, fitness reduction
512	of an elaborate learner due to decreased time for reproduction is immediately
513	compensated by beneficial information horizontally transmitted from its relatives. Thus,
514	the delay effect revealed in our model is absent in their model of within-generation
515	cumulative culture. Further arguments about this subject are given in section 4.5.
516	
517	4.4. Order of learning and reproduction
518	In the current model, we assumed that each individual engages in social learning,

519 individual learning, and exploitation of the environment in this order. Although this

520	assumption is based on the results of previous theoretical models, it would obviously be
521	desirable to have some empirical evidence to support it. As to the assumption that
522	learning occurs in an earlier stage than exploitation of the environment, it is known that
523	in hunter-gatherer societies the energetic income by an individual during the childhood
524	is typically negligible or very small but shows a steep increase from the adolescence to
525	the early adulthood (Kaplan et al., 2000). On the other hand, most subsistence
526	knowledge and skills are mastered by the early adulthood (e.g. Ohmagari and Berkes,
527	1997; Zarger, 2002). Thus, our assumption that the learning stage precedes the
528	exploitation stage may be acceptable (though learning often requires children to
529	accompany adults on subsistence work for observation and hands-on practices, see e.g.
530	Ohmagari and Berkes, 1997).
531	Unfortunately, there is little empirical support for the assumption that
532	individual learning occurs in a later stage of life than social learning. It is relatively well
533	understood how social learning proceeds in the lifespan of an individual; for example,
534	Zarger (2002) reports that children's ethnobotanical knowledge (names and use of
535	plants) grows rapidly during the age period of 4-7 years and then at a lower rate until
536	finally it reaches the adult level during the age period of 10-14 years. On the other hand,
537	it is largely unknown how and when individual learning takes place.

538	Importantly, however, the assumption that social learning precedes individual
539	learning in the learning stage is not crucial to our analysis. In fact, even if each
540	individual engages in individual learning with probability x and in social learning with
541	probability $1-x$ at any moment in the learning stage, we can reach the same conclusion.
542	To see this, let us interpret the skill level $z_{i,\tau}(t)$ specifically as the amount of (e.g.
543	ethnobotanical) knowledge individual (i, τ) has obtained through individual and social
544	learning by time <i>t</i> . In addition, assume that the knowledge produced by individual
545	learning does not overlap with that obtained by social learning. Then, as revealed in
546	Online Appendix D, the final amount of knowledge (or the skill level) obtained by the
547	end of the learning stage is given by exactly the same equation as in the original model.
548	Thus, our results do not necessarily depend on the sequential occurrence of social and
549	individual learning.

551 4.5. Stacking versus gathering

552 Perhaps it would be useful to conceptualize two kinds of cultural accumulation, which

are on the two extremes of a continuum. The first is accumulation in a horizontal sense.

- 554 In this type of accumulation, each individual reaches a high skill level by gathering
- various pieces of knowledge from peers in the same generation. Each generation

556	inherits little culture from earlier generations. The second is accumulation in a vertical
557	sense. In this type, each individual reaches a high skill level by stacking the wisdom of
558	ancestors. There is little communication between different lines of stacks except for
559	sharing common cultural ancestors at certain points in the past. Lehmann et al. (2010)
560	suggest that the former type of accumulation is favored by natural selection, while our
561	study suggests that the latter is not. It is largely unknown to what extent intermediate
562	types of accumulation are favored by natural selection. Further theoretical research is
563	demanded.
564	It is worth noting that horizontal transmission per se does not generate
565	information inflow into a generation from outside. It just allows individuals of the same
566	generation to exchange skills and knowledge, decreasing the variation between them
567	(Cavalli-Sforza and Feldman, 1981). On the other hand, between-generation
568	transmission allows information inflow into a generation from past generations. Our
569	naïve intuition tells us that modern technologies are built upon a stack of knowledge
570	accumulated over centuries or even millennia. However, the cultural social dilemma in
571	this type of cumulative cultural evolution (i.e., the vertical sort of accumulation) turned
572	out to be very difficult to avoid, at least by means of privatization of culture, compared
573	to the same problem in the horizontal sort of knowledge accumulation.

575 4.6. Interpretation of empirical data in light of the theoretical results

Empirical data from traditional societies apparently show that knowledge and skills are 576577mostly transmitted vertically or obliquely, and rarely horizontally between peers of similar ages (Hewlett and Cavalli-Sforza, 1986; Ohmagari and Berkes, 1997; Shennan 578and Steele, 1999; Reyes-Garcia et al., 2009). For example, according to Hewlett and 579Cavalli-Sforza (1986), the vertical transmission rates of various skills in Aka pygmies, 580depending on skill categories, range from q=0.519 (for singing skills) to q=0.893 (for 581582food acquisition skills) and is on average q=0.807. Reyes-Garcia et al. (2009), analyzing 583the relative contributions of vertical, oblique, and horizontal transmission for ethnobotanical knowledge in Tsimane', an Amerindian gatherer-horticulturalist society, 584585concluded that contribution of oblique transmission dominates over that of vertical transmission, suggesting that q < 0.5. Eq. (8b) shows that the ESS mature z-value under 586q=0.5 never exceeds 2. The exact value of the ESS mature z-value depends on the 587efficiency of social learning β . If 10% of the lifetime is required to learn a half of the 588role model's knowledge, ($\beta \approx 6.93$), the ESS mature skill level is $\tilde{z}^*(T) \approx 1$, which 589590equals the level that an individual would attain if he/she spends 100% of his/her lifetime in individual learning. On the other hand, the corresponding value for the COS under 591

592	the same value of β is $\tilde{z}^{\circ}(T) \approx 20$. Thus, in light of empirical data on vertical
593	transmission rates, our model suggests that the privatization of culture by vertical
594	transmission cannot provide a satisfactory explanation for the avoidance of the cultural
595	social dilemma problem in human societies.
596	Given that vertical transmission is not a promising mechanism to avoid the
597	cultural social dilemma, we may hypothesize that culture is actually accumulating
598	mainly in a horizontal fashion (see section 4.5). This hypothesis, however, again seems
599	contradict data; i.e., horizontal transmission rates between peers in empirical data
600	usually appear to be too low to explain cumulative culture (Hewlett and Cavalli-Sforza,
601	1986; Ohmagari and Berkes, 1997; Reyes-Garcia et al., 2009). For example,
602	Reyes-Garcia et al. "did not find any evidence of horizontal transmission of
603	ethnobotanical knowledge" in the Tsimane' (Reyes-Garcia et al., 2009). Shennan and
604	Steele (1999), summarizing a range of ethnographic information concerning cultural
605	transmission of craft skills, found that vertical transmission is the dominant mode in
606	most cases and horizontal transmission is in contrast very rare with few exceptions. If
607	culture is mostly transmitted between, not within, generations as suggested by data, how
608	can the cultural social dilemma problem be solved?
609	One possibility is that horizontal transmission rate is "effectively" much higher

610	than it appears to be (Zarger, 2002). Claidière and Andrè (2012) point out, reviewing a
611	considerable number of studies, that the mode of cultural transmission typically depends
612	(not only on the categories but also) on the contents of information transmitted. In
613	particular, data suggest that novel skills are much more likely to be transmitted
614	horizontally than well-established skills (Claidière and Andrè, 2012). Indeed, the skill
615	for making a crossbow, which is relatively new, spread exceptionally through horizontal
616	transmission in Aka pygmies (Hewlett and Cavalli-Sforza, 1986). This transmission
617	mode is not exactly the same as the success-biased transmission mode typically
618	assumed in mathematical models. In models, it is usually assumed that a social learner
619	simply chooses the best among several potential role models (Boyd and Richerson,
620	1985; Henrich, 2004). However, in the transmission mode under consideration, a social
621	learner chooses a "default" role model (often the same-sex parent) unless he/she finds a
622	remarkably successful role model. More empirical studies are demanded to confirm the
623	ubiquity of such content-dependent switching between a default and temporary
624	transmission mode.
625	

626 4.7. Lucky mistakes versus deliberate inventions

627 It is worth noting again that in our terminology the term "individual learning" refers to

628	deliberate effort to add to or improve knowledge that one already bears, as opposed to
629	absorbing knowledge that others bear. So far, all of our arguments stand upon the
630	premise that such individual learning is a prerequisite for cumulative cultural evolution.
631	We remark that this is not a widely accepted view. As briefly mentioned in the
632	introduction, theory predicts that success-biased transmission can drive cumulative
633	cultural evolution by filtering errors made in the process of social learning and selecting
634	only adaptive ones (Enquist and Ghirlanda, 2007; Henrich, 2004). This mechanism is
635	free from the cultural social dilemma problem, and therefore can be an alternative
636	mechanism to explain observed cumulative culture in human societies. We remark that
637	the essential difference between deliberate individual learning and copy error is whether
638	it is a genetically heritable strategy or not. Heritable propensities toward increased
639	errors, if any, would respond to natural selection, and therefore would suffer from a
640	similar problem to that found in our model.
641	A relevant question would be then what are the relative contributions of
642	deliberate individual learning versus copy errors in cumulative cultural evolution.
643	Unfortunately, we do not know of any empirical data to answer this question. Although
644	complex artifacts or knowledge such as spacecraft or quantum mechanics is probably
645	not a mere collection of successful copy errors accumulated by scientists for decades,

646	we have to be careful in claiming this because Darwinian evolutionary processes, which
647	are driven by copy errors filtered by natural selection, can shape much more
648	complicated and well-functioning machineries than ever been made by humans
649	(Dawkins, 1976). Empirical studies are strongly demanded to elucidate the relative
650	contributions of individual learning and copy errors to human cumulative culture.
651	
652	4.8. Other hypotheses and remarks
653	To be fair, we remark that the above-mentioned inconsistency between theory and data
654	might possibly be an artifact. In particular, as previous authors already pointed out,
655	learning and exploitation may not always be mutually exclusive (Wakano and Miura,
656	2014). In reality, experiences gained through exploitation of environments may promote
657	learning, for example, by increasing the probability of success in trial and error. It is
658	also possible that our models correctly describe real human evolution and the paradox
659	does not exist in this sense. This view entails that our culture is the result of the
660	competition among selfish individuals (i.e., ESS), and our modern technologies can,
661	contrary to our intuition, be accounted for by a few generations of individual learning.
662	This in turn implies that, if we had tried our best in a more coordinated manner (i.e.,
663	COS), we might have achieved much higher technology; e.g., we might have already

664 colonized another solar system.

665	Finally, yet another interesting interpretation of our counterintuitive result is
666	that it is the very reason why cumulative culture is so rare in the biological world while
667	culture itself is not (Boyd and Richerson, 1995b). That is, cumulative culture is in
668	general disfavored, but only modern humans may have solved this problem. Then, how
669	did they solve the problem? One possible answer is the cooperative nature of humans.
670	There is evidence from paleoanthropology that evolution of human cooperativeness
671	preceded emergence of behavioral modernity, suggesting that the former was a
672	prerequisite for the latter (Dubreuil, 2010). For example, if role models are paid back
673	from novices in some way, motivation to learn might overwhelm temptation to take a
674	free ride on culture, promoting the evolution of cumulative culture. However, recent
675	experiments suggest that information access costs may inhibit the evolution of
676	cumulative culture by reducing the benefit of social learning (Mesoudi, 2008). On the
677	other hand, another experiment shows the price of information depends on whether
678	sellers and buyers share a common interest (Derex et al., 2014). Clearly, in future work
679	we need to combine economic and evolutionary modeling to see how information
680	trading within cooperatively breeding groups affects the evolution of cumulative
681	culture.

682	Whatever interpretation we take, population size should have played a crucial
683	role in the evolution of cumulative culture in modern humans (see eq. (8b)). Some
684	researchers hypothesize that population size was a crucial determinant of the Upper
685	Paleolithic revolution and the subsequent demographic expansion of modern humans
686	(Powell et al., 2009). This hypothesis is based on the theoretical prediction that a larger
687	population has a higher chance of yielding successful transmission errors, which can
688	subsequently spread over the population through success-biased social learning
689	(Henrich, 2004). The significance of population size on cumulative cultural evolution
690	has also been confirmed by experiments (Derex et al. 2013; Kempe and Mesoudi, 2014).
691	Our result supports the importance of demography, although the underlying mechanism
692	is quite different from those proposed in previous studies.
693	
694	
695	Acknowledgments. We thank MW Feldman, the editor, and three anonymous reviewers
696	for valuable comments. This work is supported by Monbukagakusho grant 22101004 to
697	JYW and YK and Monbukagakusho grant 25101704 and 25118006 to HO.
698	

699

700 Literature Cited

701

702	Aoki, K.	Feldman,	M. W	7. 2014.	Evolution	of learning	ng strate	gies in	temporally	y and
	/ /	/ /					()	()		/

spatially variable environments: A review of theory. Theor. Popul. Biol. 91, 3-19.

704

- Aoki, K., Lehmann, L., Feldman, M. W., 2011. Rates of cultural change and patterns of
- cultural accumulation in stochastic models of social transmission. Theor. Popul. Biol. 79,
- 707 192-202.

708

- Aoki, K., Wakano, J. Y., Lehmann, L. 2012. Evolutionarily stable learning schedules
- and cumulative culture in discrete generation models. Theor. Popul. Biol. 81, 300-309.
- 711 Box, H. O., Gibson, K. R., 1999. Mammalian Social Learning. Cambridge University
- 712 Press, Cambridge.
- 713
- Boyd, R., Richerson, P. J. 1985. Culture and the evolutionary process. The University of
 Chicago Press, Chicago.

716

Boyd, R., Richerson, P. J. 1995a. Why does culture increase human adaptability? Ethol.

718 Sciobiol. 16, 125-143.

719

- Boyd, R., Richerson, P. J. 1995b. Why culture is common, but cultural evolution is rare.
- 721 Proc. Brit. Acad. 88, 73-93.

722

- 723 Cavalli-sforza, L. L., Feldman, M. W. 1981. Cultural transmission and evolution: A
- quantitative approach. Princeton University Press, Princeton.

725

- 726 Claidière, N., Andrè, J.-B., 2012. The transmission of genes and culture: a questionable
- 727 analogy. Evol. Biol. 39, 12-24.
- 728
- 729 Dawkins, R. 1976. The selfish gene. Oxford University Press, Oxford.

730

- 731 Derex, M., Beugin, M.-P. Godelle, B., Raymond, M. 2013. Experimental evidence for
- the influence of group size on cultural complexity. Nature 503, 389-391.

- Derex, M., Godelle, B., Raymond, M. 2014. How does competition affect the
- transmission of information? Evol. Hum. Behav. 35, 89-95.

737	Dubreuil, B. 2010. Paleolithic public goods games: why human culture and cooperation
738	did not evolve in one step. Biol. Philos. 25, 53-73.
739	
740	Enquist, M., Eriksson, K., Chirlanda, S. 2007. Critical social learning: A solution to
741	Rogers' paradox of nonadaptive culture. Am. Anthropol. 109, 727-734.
742	
743	Enquist, M., Strimling, P., Eriksson, K., Laland, K., Sjostrand, J., 2010. One cultural
744	parent makes no culture. Anim. Behav. 79, 1353-1362.
745	
746	Feldman, M. W., Aoki, K., Kumm, J. 1996. Individual versus social learning:
747	Evolutionary analysis in a fluctuating environment. Anthropol. Sci. 104: 209-232.
748	
749	Enquist, M., Ghirlanda, S., 2007. Evolution of social learning does not explain the
750	origin of human cumulative culture. J. Theor. Biol. 246, 129-135.
751	
752	Henrich, J. 2004. Demography and cultural evolution: how adaptive cultural processes
753	can produce maladaptive losses – the Tasmanian case. Am. Antiquity 64, 197-214.

- 755 Hewlett, B. S., Cavalli-Sforza, L. L., 1986. Cultural transmission among Aka pygmies.
- 756 Am. Anthropol. 88, 922-934.

757

Kaplan H., Hill, K., Lancaster, J. Hurtado, A. M., 2000. A theory of human life history

evolution: diet, intelligence, and longevity. Evol. Anthropol. 9, 156-185.

760

- Kobayashi, Y., Aoki, K., 2012. Innovativeness, population size, and cumulative cultural
 evolution. Theor. Popul. Biol. 82, 38-47.
- 763
- Krützen, M., Mann, J., Heithaus, M. R., Connor, R. C., Bejder, L., Sherwin, W. B., 2005.

765 Cultural transmission of tool use in bottlenose dolphins. Proc. Natl. Acad. Sci. USA 102,

766 **8939-8943**.

767

Laland, K. N., Hoppitt, W. 2003. Do animals have culture? Evol. Anthropol. 12,

769 150-159.

770

Lehmann, L., Feldman, M. W., and Kaeuffer, R. 2010. Cumulative cultural dynamics

772	and the coevolution of cultural innovation and transmission: an ESS model for
773	panmictic and structured populations. J. Evol. Biol. 23, 2356-69.
774	
775	Lehmann, L., Wakano, J. Y., and Aoki, K. 2013. On optimal learning schedules and the
776	marginal value of cumulative cultural evolution. Evolution, 67, 1435-1445.
777	
778	Maynard Smith, J. 1982. Evolution and the Theory of Games. Cambridge University
779	Press.
780	
781	Mesoudi, A. 2008. An experimental simulation of the "copy-successful-individuals"
782	cultural learning strategy: adaptive landscapes, producer-scrounger dynamics, and
783	informational access costs. Evol. Hum. Behav. 29, 350-363.
784	Mesoudi, A., 2011a. Cultural evolution. The University of Chicago Press, Chicago.
785	
786	Mesoudi, A., 2011b. Variable cultural acquisition costs constrain cumulative cultural
787	evolution. PLoS ONE, 6(3), e18239. doi:10.1371/journal.pone.0018239
788	
789	Nowak, M. A., Sasaki, A., Taylor, C. Fundenberg, D. 2004. Emergence of cooperation

and evolutionary stability in finite populations. Nature 428: 646-650.

791

792 Ohmagari, K., Berkes, F., 1997. Transmission of indigenous knowledge and bush skills

among the western James Bay Cree women of subarctic Canada. Hum. Ecol. 25,197-222.

795

Powell, A., Shennan, S., Thomas, M. G. 2009. Late Pleistocene demography and the

appearance of modern human behavior. Science 324: 1298-1301.

798

- 799 Reyes-Garcia, V., Broesch, J., Calvet-Mir, L., Fuentes-Peláez, N., McDade, T. W., Parsa,
- 800 S., Tanner, S., Huanca, T., Leonard, W. R., Martínez-Rodríguez, M. R., 2009. Cultural
- transmission of ethnobotanical knowledge and skills: an empirical analysis from an
- Amerindian society. Evol. Hum. Behav. 30, 274-285.
- 803
- Richerson, P. J., Boyd, R. 2004. Not by genes alone. The University of Chicago Press,

805 Chicago.

806

Rogers, A. R. 1988. Does biology constrain culture? Am. Anthropol. 90, 819-831.

809	Shennan, S. J., Steele, J., 1999. Cultural learning in hominids: a behavioural ecological
810	approach, in: Box, H. O., Gibson, K. R. (Eds.), Mammalian Social Learning. Cambridge
811	University Press, Cambridge, pp. 367-399.
812	
813	Slater, P. J. B., 1986. The cultural transmission of bird song. Trends Ecol. Evol. 1,
814	94-97.
815	
816	Tennie, C., Call, J., Tomasello, M. 2009. Ratcheting up the ratchet: on the evolution of
817	cumulative culture. Philos. Trans. R. Soc. B. 2009, 364, 2405-2415.
818	
819	Tomasello, M. The cultural origins of human cognition, Harvard University Press.
820	
821	Wakano, J. Y., Aoki., K. 2006. A mixed strategy model for the emergence and
822	intensification of social learning in a periodically changing natural environment. Theor.
823	Popul. Biol. 70:486-497.
824	
825	Wakano, J. Y., Aoki, K., Feldman, M. W. 2004. Evolution of social learning: a

- mathematical analysis. Theor. Popul. Biol. 66:249-258.
- 827
- 828 Wakano, J. Y., Miura, C. 2014. Trade-off between learning and exploitation: The
- 829 Pareto-optimal versus evolutionarily stable learning schedule in cumulative cultural
- evolution. Theor. Popul. Biol. 91, 37-43.
- 831
- 832 Whiten, A., Goodall, J., McGrew, W. C., Nishida, T., Reynolds, V., Sugiyama, Y., Tutin,

833 C. E. G., Wrangham, R W., Boesch. C. 1999. Cultures in chimpanzees. Nature 399,

- **682-685**.
- 835
- 836 Zarger, R. K., 2002. Acquisition and transmission of subsistence knowledge by Q'eqchi'
- 837 Maya in Belize, in: Stepp, J. R., Wyndham, F. S., Zarger, R. K. (Eds.), Ethnobiology and
- 838 Biocultural Diversity. University of Georgia Press, Athens, pp. 593-603.
- 839
- 840

841 Figure captions

Fig. 1: A schematic diagram to illustrate the between-generation processes in the 843 844 finite-population model. Circles and squares in each row represent resident and mutant individuals, respectively, in a specific generation, where the generation number 845 846 increases downward. Solid and dotted arrows represent genetic and cultural 847 transmission, respectively. Simultaneous occurrence of genetic and vertical cultural 848 transmission is represented by a two-headed solid arrow. Each individual (i, τ) is given two numbers, the lower one of which represents the mature z-value $z_{i,\tau}(T)$ of the 849 individual and the upper one the mature z-value of the role model $z_{\rho_r(i),\tau-1}(T)$ (for 850 simplicity we omitted the subscript of ρ). The values of $z_{i,\tau}(T)$ and $z_{\rho_{\tau}(i),\tau-1}(T)$ in the 851 852 diagram are not precise values obtained from theory but are artificial values for illustration. In generation 1, a single mutant is introduced in a resident population of 853 size 5 which is at cultural equilibrium (the star represents the point where mutation 854 occurred). The equilibrium z-value of the resident strategy is set as 5. It is assumed that 855the mutant strategy invests more time in individual and/or social learning than the 856 857 resident, so that mutants tend to increase the mature z-value. The diagram shows a case where mutants go extinct in generation 4. Such extinction can be caused either by i) the 858

decrease in mutant's fitness due to increased learning time or ii) by random genetic drift
even if mutant strategy has selective advantage.

861

Fig. 2: Effect of β on (a) x^* , (b) v^* , and (c) $\tilde{z}^*(T)$ for different values of q in the 862infinite population model. The thick solid lines represent the COS (i.e., x° , v° , and 863 $\tilde{z}^{\circ}(T)$). The same graphs also represent the results for different population sizes in the 864 finite population model with pure vertical transmission (corresponding population sizes 865 866 are shown in parentheses). Note that the infinite population model and the finite 867 population model with pure vertical transmission yield equivalent results when q=1-1/N. 868 **Fig. 3:** A typical time-series behavior of (a) \overline{x} , \overline{v} , and (b) $\overline{z}(T)$ (all averaged over 869 870 the population) obtained in the individual-based simulations. Parameter values are $\beta=10$, q=1.0, and N=100. The thick dotted lines represent equilibrium values predicted by the 871 872 analytical theory. The initial condition is x=0.1 and v=0.9 for all individuals. 873 **Fig. 4:** The effect of β on the equilibrium values of (a) \overline{x} , (b) \overline{v} , and (c) $\overline{z}(T)$ (all 874 875 averaged over the population) for three values of q (1.0, 0.99, and 0.9). Population size is N=100. The equilibrium values are computed by running a simulation for 10^7 876

877 generations and then averaging the values over the last 5×10^6 generations.

878

879	Fig. 5: The dynamics of the mutant (thin solid line) and resident (thick solid line)
880	fitnesses in the finite-population model when the mutant strategy is the COS and the
881	resident strategy is the ESS. The dotted line represents the probability that mutants do
882	not go extinct before a given generation under selective neutrality. Parameter values are
883	$\beta = 10, N = 100, \text{ and } q = 1.0.$

Efficiency of social learning β

Ν	Population size
9	Vertical transmission rate
Т	Lifetime
β	Efficiency of social learning
α	Efficiency of individual learning
$V_{i,\tau}$	The fraction of the lifetime invested in learning by individual (i, τ)
$X_{i, au}$	The fraction of the learning time invested in individual learning by
	individual (i, τ)
$z_{i,\tau}(t)$	The <i>z</i> -value of individual (i, τ) at within-generation time <i>t</i> .
$\tilde{z}(T)$	The equilibrium mature <i>z</i> -value in a genetically monomorphic population
$W_{i, au}$	The fitness of individual (i, τ)
\widetilde{w}	The equilibrium fitness in a genetically monomorphic population
$v^{\circ}, x^{\circ}, \tilde{z}^{\circ}(T)$	The COS values of $v_{i,\tau}$, $x_{i,\tau}$, and $\tilde{z}(T)$, respectively.
$v^*, x^*, \tilde{z}^*(T)$	The ESS values of $v_{i,\tau}$, $x_{i,\tau}$, and $\tilde{z}(T)$, respectively.
\overline{v} , \overline{x} , $\overline{z}(T)$	The population averages of $v_{i,\tau}$, $x_{i,\tau}$, and $\tilde{z}(T)$, respectively.

Table 1: Notation

Supporting information

A Paradox of Cumulative Culture

Yutaka Kobayashi $^{a,b},$ Joe Y. Wakano c, Hisashi Ohtsuki d

March 12, 2015

^aResearch Center for Social Design Engineering, Kochi University of Technology, Kochi 782-8502, Japan, ^bDepartment of Management, Kochi University of Technology, Kochi 782-8502, Japan, ^cMeiji Institute for Advanced Study of Mathematical Sciences, Nakano, Tokyo 164-8525, Japan, ^dThe Graduate University for Advanced Studies, Shonan Village, Hayama, Kanagawa 240-0193, Japan

Appendix A: Derivation of the COS

² To derive the COS, let us assume that the population is monomorphic for ³ a learning strategy (x, v). Solving eq. (1) in the main text with respect to 4 $z_{i,\tau}(t)$ under the assumption that $z_{i,\tau}(0) = 0$ and $(x_{i,\tau}, v_{i,\tau}) = (x, v)$, we have

$$z_{i,\tau}(t) = z_{\rho_{\tau}(i),\tau-1}(T)(1 - e^{-\beta t}).$$
(11)

5 It follows that the z-value at the end of the social learning stage (t = v(1-x))6 is given by

$$z_{i,\tau}(v(1-x)) = z_{\rho_{\tau}(i),\tau-1}(T)(1-e^{-\beta v(1-x)}).$$
(12)

⁷ Further, from eq. (2) in the main text, the value of $z_{i,\tau}(t)$ at the end of the ⁸ individual-learning stage (t = v) is given by

$$z_{i,\tau}(v) = z_{i,\tau}(v(1-x)) + vx$$

= $z_{\rho_{\tau}(i),\tau-1}(T)(1-e^{-\beta v(1-x)}) + vx.$ (13)

9 Noting that $z_{i,\tau}(v) = z_{i,\tau}(T)$, we have

$$z_{i,\tau}(T) = z_{\rho_{\tau}(i),\tau-1}(T)(1 - e^{-\beta v(1-x)}) + vx.$$
(14)

This equation gives the between-generation dynamics of $z_{i,\tau}(T)$. From eq. (14), the equilibrium value of $z_{i,\tau}(T)$, denoted by $\tilde{z}(T)$, is given by

$$\tilde{z}(T) = \lim_{\tau \to \infty} z_{i,\tau}(T) = v x e^{\beta v (1-x)}.$$
(15)

¹² The equilibrium fitness function, denoted by \tilde{w} , is therefore given by

$$\tilde{w} = \lim_{\tau \to \infty} w_{i,\tau} = \lim_{\tau \to \infty} z_{i,\tau}(T) \cdot (1-v)$$
$$= v(1-v)xe^{\beta v(1-x)}.$$
(16)

The COS is the strategy (x, v) which maximizes eq. (16). It is easily shown that the strategy (x°, v°) given by eq. (6) in the main text maximizes eq. (16) and hence gives the COS.

¹⁶ Appendix B: Derivation of the ESS in an infi ¹⁷ nite population

We define an evolutionarily stable learning strategy in an infinite population
as a learning strategy that is resistant against invasion by rare mutants with
any slightly deviated strategy. We will derive eq. (7) in the main text, which
an ESS must satisfy.

Let (x, v) and (x', v') denote the resident and mutant strategies, respectively. We assume that the resident population is at cultural equilibrium, so that all residents have the z-value given by eq. (15) at the end of the learning stage. In order to derive the ESS, we classify individuals as follows. Residents are class 0. The mutants who socially learned from residents are class 1. The mutants who socially learned from class-1 individuals are class 2. Class-*j* individuals are defined recursively. Note that offspring of class-*j* mutants fall ²⁹ back to class 1 when their cultural role models are residents (oblique social ³⁰ learning). In this case, cultural accumulation over j generations by mutants ³¹ is reset.

From eq. (14), the mature z-value of an individual (i, τ) in class $j \ge 1$ satisfies

$$z_{i,\tau}(T) = z_{\rho_{\tau}(i),\tau-1}(T)(1 - e^{-\beta v'(1-x')}) + v'x'.$$
(17)

Note that the above equation recursively applies, so that $z_{\rho_{\tau}(i),\tau-1}(T)$ is given as a function of $z_{\rho_{\tau-1}(\rho_{\tau}(i)),\tau-2}(T)$, which is in turn given as a function of $z_{\rho_{\tau-2}(\rho_{\tau-1}(\rho_{\tau}(i))),\tau-3}(T)$, and so on. Given that individual (i,τ) belongs to class j, individual $(\rho_{\tau-(j-1)}(\rho_{\tau-(j-2)}(\dots(\rho_{\tau-1}(\rho_{\tau}(i)))\dots)),\tau-j))$ belongs to class 0 and is hence a resident. Noting this and eq.(15), eq. (17) can be solved to yield

$$z_{i,\tau}(T) = v'x'e^{\beta v'(1-x')} + r^{C_{\tau}(i)}(vxe^{\beta v(1-x)} - v'x'e^{\beta v'(1-x')}),$$
(18)

40 where $C_{\tau}(i)$ denotes the class of individual (i, τ) and

$$r = 1 - e^{-\beta v'(1-x')}.$$
(19)

⁴¹ Note that eq. (18) does not depend on i and τ but only on the class $C_{\tau}(i)$ of ⁴² individual (i,τ) . This implies that the fitness of an individual also depends 43 only on its class. Therefore, we let w'_j denote the fitness of class-*j* mutants:

$$w'_{C_{\tau}(i)} := z_{i,\tau}(T)(1 - v'), \qquad (C_{\tau}(i) \ge 1)$$
(20)

It is easily confirmed that mutants have the same fitness as residents irrespective of classes (i.e. $w'_j = \tilde{w} = v(1-v)xe^{\beta x(1-v)}$ for arbitrary $j \ge 1$) if they adopt the same strategy as residents ((x', v') = (x, v)).

Let $p_{j,\tau}$ denote the frequency of class-*j* mutants $(j \ge 1)$ in the population in generation τ . Since mutants are rare, we may assume that a mutant's role model is a mutant only when vertical transmission occurs. The offspring of a class-*j* mutant hence belong to class-(j + 1) and class-1 with probabilities q and 1 - q, respectively. Further, because of rarity of mutants, the average fitness of the population is approximated by the residents' fitness \tilde{w} given by eq. (16). From these arguments, it holds that

$$p_{1,\tau+1} = \sum_{j=1}^{\infty} (1-q) \frac{w'_j}{\tilde{w}} p_{j,\tau},$$
(21)

54

$$p_{j+1,\tau+1} = q \frac{w'_j}{\tilde{w}} p_{j,\tau}, \qquad (22)$$

s where $j \ge 1$.

⁵⁶ Note that the above equation is formally equivalent to the standard model ⁵⁷ of age structure. Substituting $p_{j,\tau+1} = \lambda p_{j,\tau}$ into eqs. (21) and (22) and rear-⁵⁸ ranging the resulting equations, it is easily shown that the leading eigenvalue ⁵⁹ λ , i.e. the asymptotic growth rate of mutants, should satisfy the following 60 (Euler-Lotka) characteristic equation:

$$1 = \sum_{i=0}^{\infty} (1-q)q^i \lambda^{-i-1} \prod_{j=1}^{i+1} \frac{w'_j}{\tilde{w}}.$$
 (23)

Note that, when mutants have the same fitness as residents (i.e. $w_j = \tilde{w}$ for all j's), $\lambda = 1$ is the only solution of eq. (23). This implies that the frequency of mutants remains constant when they adopt the same strategy as residents.

Differentiating eq. (23) with respect to a mutant strategic variable y'66 $(y' \in \{x', v'\})$ yields

$$0 = \sum_{i=0}^{\infty} (1-q)q^{i}(-i-1)\lambda^{-i-2}\frac{\partial\lambda}{\partial y'}\prod_{j=1}^{i+1}\frac{w'_{j}}{\tilde{w}} + \sum_{i=0}^{\infty} (1-q)q^{i}\lambda^{-i-1}\sum_{k=1}^{i+1}w'_{k}\frac{\partial w'_{k}}{\partial y'}\prod_{j=1}^{i+1}\frac{w'_{j}}{\tilde{w}}.$$
(24)

Substituting x' = x, v' = v, $w'_j = \tilde{w}$, and $\lambda = 1$ into eq. (24) and rearranging the resulting equation yield

$$\tilde{w} \left. \frac{\partial \lambda}{\partial y'} \right|_{x'=x,v'=v} = \left. \frac{\partial w'}{\partial y'} \right|_{x'=x,v'=v},\tag{25}$$

⁶⁹ where

$$w' = \sum_{i=1}^{\infty} (1-q)q^{i-1}w'_i.$$
(26)

If the stationary growth rate of mutants is larger than one, mutants can invade. Therefore, for the resident strategy (x, v) to be evolutionarily stable, ⁷² λ must be maximized at (x', v') = (x, v) as a function of the mutant strategy ⁷³ (x', v'). However, this and eq. (25) together imply that w' is maximized at ⁷⁴ (x', v') = (x, v). Thus, for our ESS analysis we may treat w' like the mutant ⁷⁵ invasion fitness.

In fact, w' can be interpreted as the asymptotic average of the mutant invasion fitness, as follows. Note that the leading eigenvector of the system (21-22) is given by $(1, q, q^2, \ldots, q^{i-1}, \ldots)$. This means that the fraction of class *i* among mutants asymptotically approaches $(1-q)q^{i-1}$ when selection is absent ((x', v') = (x, v)). Thus, when selection is sufficiently weak, the average fitness of mutants is asymptotically given by $\sum_{i=1}^{\infty} (1-q)q^{i-1}w'_i = w'$. Using eq. (18), (26) and (20), we find that

$$w' = (1 - v')v'x'e^{\beta v'(1 - x')} + (1 - v')\frac{r(1 - q)}{1 - rq}(vxe^{\beta v(1 - x)} - v'x'e^{\beta v'(1 - x')}).$$
(27)

For (x, v) to be the ESS, w' as a function of (x', v') must be maximized at (x', v') = (x, v). Thus, the ESS (x^*, v^*) satisfies

$$\left. \frac{\partial w'}{\partial x'} \right|_{x'=x=x^*, v'=v=v^*} = 0, \tag{28}$$

85

$$\left. \frac{\partial w'}{\partial v'} \right|_{x'=x=x^*, v'=v=v^*} = 0.$$
⁽²⁹⁾

⁸⁶ It is easily shown that these equations reduce to eqs. (7a) and (7b) in the ⁸⁷ main text. Finally, substituting eq. (7a) in the main text into eq. (15) yields

Appendix C: Derivation of the ESS in a finite population

Here we derive the ESS in a finite population assuming pure vertical transmission (q = 1) (eq. (9) in the main text). More specifically, we show that the ESS for a finite population of size N under q = 1 is identical with the ESS for an inifinite population under q = 1 - 1/N. Thus, in terms of the ESS, decreasing the population size from ∞ to N under q = 1 has exactly the same effect as decreasing q by 1/N in an infinite population.

To compute the ESS under q = 1, we need the fixation probability of a mutant strategy that is initially expressed by a single individual. For this purpose, we apply the method introduced by Rousset (2004) below.

Imagine that a mutant strategy (x', v') is expressed by a single individual 100 in the population of the resident strategy (x, v). For convenience sake, let us 101 reuse the classification of individuals introduced in Appendix B. Then, the 102 initial single mutant is obviously of class 1 because there is no mutant in the 103 previous generation. Since q = 1 (pure vertical transmission), any mutant in 104 any generation τ inherits culture from its own parent, which is a mutant in 105 generation $\tau - 1$. This implies that all mutants in generation τ belong to class 106 τ ($C_{\tau}(i) = \tau$ for any mutant (i, τ)), given that the mutant was introduced 107 in generation 1. Therefore, all mutants in generation τ have equal fitnesses 108

given by w'_{τ} in eq. (20). It is important that the mutant fitness is not a stochastic variable but is determined by the number of generations passed since introduction of the initial mutant. By virtue of this property, we can treat this process as a Wright-Fisher process in which the selection coefficient depends deterministically on time (see below).

Let P_{τ} denote the frequency of mutants in generation τ . Since all mutants 114 in generation τ belong to class τ , it holds that $P_{\tau} = \sum_{j} p_{j,\tau} = p_{\tau,\tau}$ in Ap-115 pendix B's notation. Note that we assume a Wright-Fisher-type update for 116 the genetic state of the population and also culture is transmitted between 117 adjacent generations; thus, P_{τ} obeys a time-inhomogeneous Markov process 118 with the initial state $P_1 = 1/N$. Obviously, this stochastic process has only 119 two absorbing states: $P_{\tau} = 1$ (fixation) and $P_{\tau} = 0$ (extinction). Let π 120 denote the fixation probability of the mutant strategy. Then, the expected 121 frequency of mutants in the infinitely distant future should be given by 122

$$\lim_{\tau \to \infty} E[P_{\tau}] = 1 \cdot \pi + 0 \cdot (1 - \pi) = \pi,$$
(30)

where $E[\cdot]$ denotes expectation. Below we use this relationship to compute π .

¹²⁵ Note that we can write

$$P_{\tau} = P_1 + \Delta P_1 + \Delta P_2 + \ldots + \Delta P_{\tau-1}, \tag{31}$$

where $\Delta P_{\tau} = P_{\tau+1} - P_{\tau}$ denotes the frequency change between generations

¹²⁷ τ and τ + 1 and is a stochastic variable itself. Substituting eq. (31) into eq. ¹²⁸ (30) yields

$$\pi = E[P_1 + \sum_{\tau=1}^{\infty} \Delta P_{\tau}]$$
$$= \frac{1}{N} + \sum_{\tau=1}^{\infty} E[\Delta P_{\tau}], \qquad (32)$$

where we used $E[P_1] = P_1 = 1/N$. From the standard theory of population genetics, the frequency change ΔP_{τ} is given by

$$\Delta P_{\tau} = \frac{w_{\tau}' - \tilde{w}}{\tilde{w} + P_{\tau}(w_{\tau}' - \tilde{w})} P_{\tau}(1 - P_{\tau}), \qquad (33)$$

where \tilde{w} is the equilibrium fitness of residents given by eq. (16). Let us define the selection coefficient s_{τ} as

$$s_{\tau} = \frac{w_{\tau}' - \tilde{w}}{\tilde{w}}.$$
(34)

¹³³ Substituting (34) into eq. (33) yields

$$\Delta P_{\tau} = \frac{s_{\tau}}{1 + P_{\tau} s_{\tau}} P_{\tau} (1 - P_{\tau}) \approx s_{\tau} P_{\tau} (1 - P_{\tau}), \qquad (35)$$

¹³⁴ where the approximation holds for small s_{τ} .

Substituting eq. (35) into eq. (32) yields

$$\pi \approx \frac{1}{N} + \sum_{t=1}^{\infty} s_{\tau} E[P_{\tau}(1-p_{\tau})].$$
(36)

Note that the expectation $E[P_{\tau}(1-P_{\tau})]$ in the above equation is itself affected by selection coefficients of up to generation $\tau - 1$ (i.e., $s_1, s_2, s_3, \ldots, s_{\tau-1}$). However, Rousset (2004) has shown that the expectation $E[\cdot]$ can be approximately replaced by the expectation under neutrality (i.e. $s_0 = s_1 = \ldots =$ $s_t = \ldots = 0$) provided selection is sufficiently weak. We denote the expectation under neutrality by $E^{\circ}[\cdot]$ following Rousset (2004). Thus, it holds that

$$\pi \approx \frac{1}{N} + \sum_{t=1}^{\infty} s_{\tau} E^{\circ} [P_{\tau} (1 - P_{\tau})].$$
(37)

Note that $E^{\circ}[2P_{\tau}(1-P_{\tau})]$ can be interpreted as the probability that two individuals drawn at random with replacement from generation τ have different genotypes under selective neutrality. Such two individuals can have different genotypes only if their ancestral lineages trace back to generation 1 without coalescing and, in addition, only one of them hits the initial mutant. From the standard coalescent theory this probability is given by

$$E^{\circ}[2P_{\tau}(1-P_{\tau})] = \left(1-\frac{1}{N}\right)^{\tau-1} \cdot 2P_{1}(1-P_{1}) \\ = 2\frac{1}{N}\left(1-\frac{1}{N}\right)^{\tau},$$
(38)

¹⁴⁹ where we used $P_1 = 1/N$.

Substituting eqs. (34) and (38) into eq. (37) yields

$$\pi \approx \frac{1}{N} + \frac{1}{N} \sum_{\tau=1}^{\infty} \left(\frac{w_{\tau}'}{\tilde{w}} - 1\right) \left(1 - \frac{1}{N}\right)^{\tau}$$

$$= \frac{1}{N} + \left(1 - \frac{1}{N}\right) \left(\frac{w'}{\tilde{w}} - 1\right), \tag{39}$$

151 where

$$w' = \sum_{\tau=1}^{\infty} w'_{\tau} \frac{1}{N} \left(1 - \frac{1}{N} \right)^{\tau-1}.$$
 (40)

Remember that for a finite population we define an ESS as the strategy 152 that never allows a mutant strategy expressed by a single individual to have 153 a fixation probability higher than 1/N (i.e. the fixation probability of the 154 ESS itself). This implies that for our ESS analysis we can treat w' like the 155 mutant invasion fitness in the standard ESS analysis in an infinite-population 156 model. Note that eq. (40) is formally identical with eq. (26) except that q is 157 replaced by 1 - 1/N. This implies that the ESS for a finite population under 158 pure vertical transmission (q = 1) is equivalent with the ESS for an infinite 159 population with q = 1 - 1/N. 160

¹⁶¹ Appendix D: Probabilistic engagement in so-¹⁶² cial and individual learning

In the main text, we assumed that social and individual learning occur in separate stages of life. In this Appendix, we instead assume that each individual engages in individual and social learning with probabilities x and 1-x, respectively, at any moment in the learning stage and derive eq. (14) under some additional assumptions. Thus, the results of the present paper ¹⁶⁸ all apply to this modified model.

Suppose that $z_{i,\tau}(t)$ represents the amount of knowledge that the indi-169 vidual (i, τ) acquires by time t through individual and social learning. Let 170 $z_{i,\tau,IL}(t)$ and $z_{i,\tau,SL}(t)$ denote the amounts of knowledge acquired through 171 individual and social learning, respectively, by time t. In addition, assume 172 that the knowledge acquired through individual learning never overlaps with 173 that acquired through social learning. This implies that any piece of knowl-174 edge produced by an individual through individual learning is always new 175 to the role model of the focal individual as well as the focal individual it-176 self. Then, the total amount of knowledge individual (i, τ) bears is given by 177 $z_{i,\tau}(t) = z_{i,\tau,SL}(t) + z_{i,\tau,IL}(t).$ 178

¹⁷⁹ Note that each individual engages in social learning with probability 1-x¹⁸⁰ at any moment in the learning stage. This implies that $z_{i,\tau,SL}(t)$ grows in the ¹⁸¹ learning stage as follows:

$$\frac{d}{dt}z_{i,\tau,SL}(t) = \beta(1-x)(z_{\rho_{\tau}(i),\tau-1}(T) - z_{i,\tau,SL}(t)). \quad (0 \le t \le v) \quad (41)$$

¹⁸² Likewise, $z_{i,\tau,IL}(t)$ follows

$$\frac{d}{dt}z_{i,\tau,IL}(t) = \alpha x = x. \qquad (0 \le t \le v)$$
(42)

¹⁸³ Integrating both equations yield

$$z_{i,\tau,SL}(v) = z_{\rho_{\tau}(i),\tau-1}(T)(1 - e^{-\beta v(1-x)}).$$
(43)

$$z_{i,\tau,IL}(v) = xv. \tag{44}$$

¹⁸⁴ Summing up eqs. (43) and (44) yields

$$z_{i,\tau}(v) = z_{i,\tau,SL}(v) + z_{i,\tau,IL}(v)$$

= $z_{\rho_{\tau}(i),\tau-1}(T)(1 - e^{-\beta v(1-x)}) + xv.$ (45)

Since knowledge does not grow in the exploitation stage, we have $z_{i,\tau}(T) = z_{i,\tau}(v)$. Substituting this into eq. (45) yields eq. (14).

Note that the above derivation requires to specify the interpretation of the z-value and the structure of knowledge. On the other hand, the separatestep framework of the original model incorporates a wider class of knowledge structure and allows more general interpretations of the results in this respect.

¹⁹² Literature Cited

Rousset, F. 2004. Genetic structure and selection in subdivided populations. Princeton University Press.