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Abstract 17 

Culture can grow cumulatively if socially learned behaviors are improved by individual 18 

learning before being passed on to the next generation. Previous authors showed that 19 

this kind of learning strategy is unlikely to be evolutionarily stable in the presence of a 20 

trade-off between learning and reproduction. This is because culture is a public good 21 

that is freely exploited by any members of the population in their model (cultural social 22 

dilemma). In this paper, we investigate the effect of vertical transmission (transmission 23 

from parents to offspring), which decreases the publicness of culture, on the evolution 24 

of cumulative culture in both infinite and finite population models. In the infinite 25 

population model, we confirm that culture accumulates largely as long as transmission 26 

is purely vertical. It turns out, however, that introduction of even slight oblique 27 

transmission drastically reduces the equilibrium level of culture. Even more surprisingly, 28 

if the population size is finite, culture hardly accumulates even under purely vertical 29 

transmission. This occurs because stochastic extinction due to random genetic drift 30 

prevents a learning strategy from accumulating enough culture. Overall, our theoretical 31 

results suggest that introducing vertical transmission alone does not really help solve the 32 

cultural social dilemma problem.33 
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1. Introduction 34 

Rogers (1988) argued that the presence of culture per se does not imply improvement of 35 

population-level adaptability. This result, which contradicted the apparent advantages of 36 

culturally transmitted technologies in humans, was received with some astonishment by 37 

researchers of the day (Boyd and Richerson, 1995a). Nowadays, it is acknowledged that 38 

this “paradox” is a consequence of the specific structure of Rogers’ model and can be 39 

“resolved” by taking realistic properties of human culture into account (Enquist et al. 40 

2007; Aoki and Feldman, 2014). One of them, which may be the most relevant, is the 41 

cumulativeness of culture (Aoki et al. 2012). That is, human culture does not, as in 42 

Rogers’ model, have just two states (adaptive vs. maladaptive), but evolves gradually by 43 

accumulating modifications over many generations to finally yield complex artifacts 44 

that cannot be invented by a single individual (Richerson and Boyd, 2005). It is well 45 

known that chimpanzees socially learn how to crack nuts using stones and also to fish 46 

termites using sticks (Whiten et al., 1999), but such behavior is not cumulative culture, 47 

as it fall well within the inventive capacity of a single individual. It is not comparable 48 

with spacecraft, mobile phones, and quantum mechanics, which are clearly beyond the 49 

inventive capacity of a single individual. Even basic hunter-gatherer tools like a spear 50 

are products of cumulative cultural evolution, being composed of multiple parts that 51 
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cannot be made without some other tools like scrapers or wrenches, which may already 52 

be complex enough (Richerson and Boyd, 2005). On the other hand, ethnobotanical 53 

knowledge for food-gathering and processing can be cumulative in a more quantitative 54 

sense, built upon numerous trials and errors, which can never be exerted within the 55 

lifetime of a single individual. In this view, Rogers’ model is not a model of cumulative 56 

cultural evolution. 57 

While many animal species engage in social learning and hence have culture to 58 

varying degrees (Slater, 1986; Box and Gibson, 1999; Whiten et al., 1999; Krützen et al., 59 

2005), it is only humans that are known to have cumulative culture (Laland and Hoppitt, 60 

2003; Tennie et al. 2009; Mesoudi, 2011a; see also Mithen, 1999). Many researchers 61 

consider that cumulative cultural evolution is a major source of adaptation in modern 62 

humans (Tomasello, 1999; Richerson and Boyd, 2004). 63 

 More than two decades after Rogers’ study, another paradox, which is more 64 

relevant to human evolution, has emerged. Obviously, culture can accumulate over 65 

generations only if socially learned traits undergo improvements before or while being 66 

passed on to the next generation. Such improvements can be made through deliberate 67 

individual learning (Aoki et al., 2012) or inaccurate social learning combined with 68 

success-biased transmission (Henrich, 2004). In the latter case, positive cultural growth 69 
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is ensured in a sufficiently large, well connected population (Henrich, 2004; Powell et 70 

al., 2009; Mesoudi, 2011b; Kobayashi and Aoki, 2012). As to the former mechanism, 71 

recent models show that a learning schedule in which social learning occurs in an earlier 72 

life stage than individual learning is indeed favored by natural selection (Aoki et al. 73 

2012). The optimal learning schedule allows culture to accumulate largely as long as 74 

improvement of traits is the sole concern of each individual. Interestingly, however, 75 

such a learning schedule loses evolutionary stability as soon as a trade-off in terms of 76 

time between learning and reproductive effort is introduced (Wakano and Miura, 2014). 77 

It has been presumed that this occurs because of the publicness of culture; that is, a 78 

strategy that spends a lot of time to improve socially learned traits (and hence 79 

contributes to culture) allows invasion by selfish mutants that just scrounge the culture 80 

and spend the rest of time reproducing. Therefore, culture decays until finally the 81 

benefit of social learning is also lost. This results in a final state where individuals 82 

engage mainly in biological replication and little in learning (Lehmann et al. 2013; 83 

Wakano and Miura, 2014). This result contradicts the observation that modern humans 84 

possess highly cumulative, sophisticated technologies, which must have largely 85 

contributed to their current demographic success on the global scale. 86 

 Wakano and Miura (2014) recognized this theoretical problem as a social 87 
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dilemma, where temptation to cheat prevents the population from reaching an adaptive, 88 

cooperative state. They speculated that the dilemma would be overcome if cultural 89 

transmission occurs mainly between close relatives, preventing cheaters from accessing 90 

adaptive cultural products. For clarity, let us imagine an extreme hypothetical situation 91 

where reproduction is asexual and transmission of culture is purely “vertical” (i.e. from 92 

parents to their offspring (Cavalli-sforza and Feldman, 1981)). In this case, each genetic 93 

lineage can be seen as an isolated population, and hence a strategy that promotes 94 

accumulation of culture and is optimal from the population viewpoint should also be 95 

favored by natural selection. In fact, Lehmann et al.’s (2010) model, which treats only 96 

within-generation accumulation of culture, shows that culture can accumulate beyond 97 

the capacity of a single individual if culture is horizontally transmitted between close 98 

relatives in the same generation. However, no study tested the effect of kin transmission 99 

on the evolution of between-generation cumulative culture. 100 

Below, we investigate the effect of vertical transmission on the evolution of 101 

between-generation cumulative culture using infinite and finite population models. Our 102 

primary purpose is to test whether the privatization of culture through vertical 103 

transmission can function as a theoretical mechanism to solve the above-mentioned 104 

social dilemma problem. In the infinite population model, we first confirm that pure 105 
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vertical transmission indeed solves the above-mentioned cultural social dilemma and 106 

allows a large accumulation of culture. It turns out, however, that introduction of even 107 

slight “oblique” transmission (i.e. transmission from a non-parental adult in the parental 108 

generation (Cavalli-sforza and Feldman, 1981)) drastically reduces the equilibrium level 109 

of culture. Even more surprisingly, if the population size is finite, culture hardly 110 

accumulates even under pure vertical transmission. This occurs because stochastic 111 

extinction of learning strategies prevents culture from accumulating enough to exert its 112 

effect. In the Discussion, we will argue implications of our theoretical results for 113 

empirical research. 114 

 115 

2. Methods 116 

2.1. Model description 117 

We work on a simplified model to extract the essence of the problem while keeping 118 

analytical tractability. In particular, we ignore the effects of environmental fluctuation, 119 

which have been extensively studied by previous authors (e.g. Boyd and Richerson, 120 

1985; Feldman et al., 1996; Wakano et al., 2004; Wakano and Aoki, 2006). Notation 121 

used in this model is summarized in Table 1. We assume an asexually reproducing 122 

population in which generations are overlapping insofar as cultural transmission occurs. 123 
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The population size is constant but may be either infinite or finite. In the finite case we 124 

denote the population size by N. 125 

Within each generation, time passes continuously; we let  and t represent the 126 

generation and the within-generation time, respectively. We assume that each individual 127 

in the population is distinguished from others by a unique label i. We may say 128 

“individual (i,)” instead of saying “individual i in generation ” whenever it is 129 

convenient. Individuals engage in three activities in a sequential manner: they first learn 130 

socially, second learn individually, and finally exploit environments to reproduce. We 131 

may call the first two stages collectively the learning stage. We assume this order of the 132 

three activities and the discontinuous switching between activities (i.e. “bang-bang” 133 

control) because they were well established in previous studies by means of dynamic 134 

optimization theory (Aoki et al. 2012; Lehmann et al. 2013; Wakano and Miura, 2014). 135 

It must here be noted that by the term “individual learning” we refer to an effort to add 136 

to or improve knowledge or skills that an individual already possess, while “social 137 

learning” refers to copying others’ knowledge or skills. In this respect, we follow a 138 

series of previous theoretical models (Aoki et al., 2012; Lehmann et al., 2013; Wakano 139 

and Miura, 2014). We focus on the evolution of the length of time allocated to each 140 

activity, which determines the extent to which culture accumulates. Each individual (i, 141 
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allocates fractions vi,(1-xi,), vi,xi,, and 1-vi, of the total lifetime T to social learning, 142 

individual learning, and exploitation, respectively. Without loss of generality, we set 143 

T=1 throughout the paper; this means that we measure time in units of the lifetime of an 144 

individual. Evolving parameters are v and x, i.e. the fraction of time used for learning 145 

and the ratio of the time used for individual learning to the whole learning time. We 146 

assume that the strategy (x, v) is coded for by a single haploid locus. In the ESS analysis 147 

we assume that there are only two alleles, a wild-type allele and a mutant allele, on this 148 

locus. In computer simulations, on the other hand, we allow existence of multiple alleles 149 

on this locus. 150 

Following previous authors, we assume that the cultural state of each 151 

individual (i, at within-generation time t is represented by a positive real number zi,(t) 152 

(e.g. Henrich, 2004; Powell et al., 2009; Aoki et al. 2012; Kobayashi and Aoki, 2012; 153 

Lehmann et al. 2013; Wakano and Miura, 2014). The z-value zi,(t) of an individual (i,) 154 

may represent its degree of skillfulness (e.g., in making tools), the level of 155 

sophistication of knowledge (e.g. how to manufacture wild plants to extract nutrient or 156 

detract toxins as efficiently as possible), or the amount of knowledge in a certain 157 

category (e.g. a list of edible plants). For simplicity, we assume that zi,(0)=0 for 158 

newborns. The z-value of an individual grows during its lifetime through social and 159 
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individual learning. In the stage of social learning, each individual (i, chooses an 160 

individual in the parental generation -1 as a role model and absorbs its knowledge. We 161 

let ((i),-1) denote the role model of an individual (i,. Zarger (2002) shows that, in a 162 

Mayan farming village, the amount of ethnobotanical knowledge of a child grows 163 

roughly in a decelerating, saturating manner during the age period from 4-14 through 164 

social learning. In light of this, we assume that the z-value of individual (i, ) grows in 165 

the social learning stage as follows: 166 

 167 

))()(()( ,1),(, tzTztz
dt

d
iii  

   ,  ( )1(0 ,,  ii xvt  ),  (1) 168 

 169 

where  is the efficiency of knowledge absorption. This equation allows zi,(t) to grow 170 

in a decelerating manner, conforming with the empirical data (Zarger, 2002). Note that 171 

)(1),( Tz i 
 gives the z-value of individual ((i),-1) at the end of its lifetime, which we 172 

call the mature z-value of individual ((i),-1). The role model ((i),-1) is (i,)’s 173 

parent and a random adult chosen from generation -1 including the parent with 174 

probabilities q and 1-q, respectively. In other words, q and 1-q give the (backward) 175 

probabilities of vertical and random oblique transmission, respectively. We ignore the 176 

horizontal transmission in the present model to focus on between-generation 177 
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accumulation of culture. This simplification is acceptable as a first step toward more 178 

realistic modeling given that horizontal transmission is rare compared to vertical and 179 

oblique transmission in traditional societies (Hewlett and Cavalli-Sforza, 1986; 180 

Ohmagari and Berkes, 1997; Shennan and Steele, 1999; Reyes-Garcia et al., 2009). 181 

In the stage of individual learning, the zi,(t) grows as follows: 182 

 183 

 )(, tz
dt

d
i , (  ,,, )1( iii vtxv  )  (2) 184 

 185 

where  is the efficiency of individual learning. Throughout this paper, we set =1. This 186 

implies that the unit of the z-value is the mature z-value that a life-long individual 187 

learner could achieve. 188 

Note that zi,(t) grows in a decelerating manner in the social-learning stage 189 

while it grows at a constant rate in the individual-learning stage. This is a common 190 

feature of existing learning-schedule models and is essential for the evolution of a 191 

combined use of social and individual learning in a constant environment. By virtue of 192 

this feature, it is beneficial to engage in social learning first, and then switch to 193 

individual learning when the knowledge absorption rate in social learning drops to the 194 

same level as the efficiency of individual learning, i.e. when 195 
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))()(( ,1),( tzTz ii 
  ==1. In the stage of exploitation, the z-value stays at the mature 196 

value attained by the end of the learning stage, i.e. 197 

 198 

0)(, tz
dt

d
i  .  ( Ttvi  1, )  (3) 199 

 200 

Note that the mature z-value zi,(T) may be used as the target of social learning in the 201 

next generation by the offspring of the focal individual or some other members of the 202 

population. We assume that the efficiency of exploitation is proportional to this mature 203 

z-value. In addition, we assume that the fitness of an adult is proportional to the total 204 

resource income. This is a reasonable assumption, given that in humans energetic 205 

income by an adult is expended not only for its own survival and reproduction but also 206 

for children’s survival and growth (Kaplan et al. 2000). Thus, the fitness of individual 207 

(i,) is given by 208 

 209 

)1()( ,,,  iii vTzw  .  (4) 210 

 211 

Fig. 1 sketches what happens in the finite-population model on the 212 

between-generation time scale. We assume a so-called “Wright-Fisher”-type update for 213 
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the genetic state of the population; i.e. each adult in generation  is chosen as a parent of 214 

a newborn in generation +1 with a probability proportional to its fitness. Offspring 215 

inherit their parent’s strategy (x,v). Thus, the genetic state of the population changes 216 

from generation to generation due to natural selection and sampling drift (random 217 

genetic drift). In the infinite-population model we consider the limit of the 218 

finite-population model as the population size tends to infinity in such a way that 219 

sampling drift disappears. 220 

 Although the z-value for newborns is zi,(0)=0 by assumption, the mature 221 

z-value, i.e. zi,(T) may vary even in a genetically monomorphic population. This is 222 

because the mature z-value of an individual (i,) depends on the mature z-value of its 223 

role model ((i),-1), which in turn depends on the mature z-value of the role model’s 224 

role model (-1( (i)),-2), and so on. However, given that the population is genetically 225 

fixed for a strategy, say (x, v), zi,(T) reaches an equilibrium value, which is denoted by 226 

)(~ Tz . Therefore, the fitness also reaches an equilibrium value, which is denoted by w~  227 

(see Online Appendix A). 228 

 229 

2.2. Aim of analysis 230 

The aim of our analysis is to compare three solutions based on different optimality 231 
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criteria: (i) the coordinated optimal strategy (COS), (ii) the evolutionarily stable strategy 232 

(ESS) based on invasion growth rate in an infinite population model, and (iii) the ESS 233 

based on fixation probability in a finite population model. Key parameters are the 234 

vertical transmission rate and the population size, which have crucial effects on the 235 

behavior of the model, as revealed in the result section. 236 

The COS is defined as the strategy that maximizes the equilibrium value of 237 

fitness under the constraint that the population is genetically monomorphic (i.e. no 238 

mutants are allowed). It does not depend on whether the population size is infinite or 239 

finite. We use symbols x , v , and )(~ Tz   to denote the COS values of x, v, and 240 

)(~ Tz , respectively. The COS was previously referred to as the “Pareto-optimal” 241 

strategy (Wakano and Miura, 2014) but this is inappropriate given that these two 242 

concepts are not always equivalent. While the COS is an ideal strategy from the 243 

viewpoint of ultimate species success, there is no guarantee that it is favored by natural 244 

selection. We hence derive the evolutionarily stable strategy (ESS) both for an infinite 245 

population and for a finite population of size N and compare it with that under the COS. 246 

We use symbols *x , *v , and )(*~ Tz  to denote the ESS values of x, v, and )(~ Tz , 247 

respectively. 248 

The COS analysis requires only that we work on the cultural dynamics in a 249 



15 

 

genetically monomorphic population. The ESS analysis, on the other hand, requires that 250 

we track both the genetic and cultural states of each individual simultaneously. 251 

Specifically, we consider the fate of a mutant allele introduced into a resident population 252 

which is at equilibrium with respect to the z-value (Fig. 1). In the case of an infinite 253 

population, sampling drift is absent and the frequency of a mutant allele hence changes 254 

deterministically; therefore, as in traditional analysis, we may define an ESS as a 255 

strategy that does not allow any slightly deviant strategy to have a positive growth rate 256 

(Maynard Smith, 1982). In the finite case, however, the frequency of a mutant allele 257 

undergoes stochastic fluctuation due to sampling drift. We therefore use a definition of 258 

an ESS based on a fixation probability (e.g. Nowak et al., 2004). Let N be the 259 

population size. We say that a strategy (x*, v*) is evolutionarily stable if and only if the 260 

fixation probability of any slightly deviated strategy in the population of the resident 261 

strategy (x*, v*) is lower than 1/N, i.e. the fixation probability under neutrality. 262 

Unfortunately, we could not confirm analytically the second-order stability of 263 

the ESS’s we obtained. To confirm the evolutionary stability of the analytically derived 264 

formulae and the validity of the approximations, we conducted some individual-based 265 

simulations. See Online Appendices for all mathematical details.  266 

 267 
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3. Results 268 

3.1. Coordinated optimal strategy 269 

As shown in Online Appendix A, the equilibrium fitness in a genetically monomorphic 270 

population with strategy (x, v) is given by 271 

 272 

)1()1(~ xvxevvw   .  (5) 273 

 274 

The COS is the strategy (x, v) that maximizes eq. (5). It is easily shown that, if <2, the 275 

COS is given by 276 

 277 

1x , (6a) 278 

 279 

2

1
)(~  Tzv 

.  (6b) 280 

 281 

Thus, the COS involves no social learning when <2. On the other hand, if >2, the 282 

COS involves social learning and is given by 283 

 284 

1

1





x , (6c) 285 
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 286 



1
1v , (6d) 287 

 288 

21
)(~  


eTz  . (6e) 289 

 290 

One might wonder why =2 gives the threshold for the emergence of social 291 

learning. The absence of social learning requires <2 for the following reason. Note that 292 

from eq. (2) the absence of social learning (x=0) entails zi,(T) =v. Thus, the equilibrium 293 

mature z-value is also given by )(~ Tz = v. Therefore, the equilibrium fitness is given by 294 

)1()1()(~~ vvvTzw  , which is maximized at v=1/2. Thus, the COS without social 295 

learning, if possible, must satisfy that v = )(~ Tz  =1/2 in addition to x =1. However, 296 

since the COS by definition maximizes the fitness, the fitness must not increase by 297 

introducing social learning. This entails that the rate of social learning is lower than that 298 

of individual learning already at birth, i.e.  )(~ Tz 
<=1. Given that )(~ Tz 

=1/2, 299 

this condition reduces to <2. These arguments reveal that <2 is a necessary condition 300 

for the COS to satisfy x =1. 301 

Eq. (6) shows that the COS is solely determined by the efficiency of social 302 

learning . It also shows that reliance on individual learning ( x ) decreases with social 303 



18 

 

learning efficiency () while the learning time ( v ) and the equilibrium mature z-value 304 

( )(~ Tz  ) both increase. In particular, individuals should exert maximal effort for 305 

transmission of culture and minimal effort for individual learning and exploitation 306 

( v 1, x 0) when social learning is highly efficient (  ). The equilibrium 307 

mature z-value ( )(~ Tz  ) can take a huge value when social learning efficiency () is 308 

high (Fig. 2). This implies that a massive accumulation of culture is possible if the 309 

members of a society try to maximize future fitness in a coordinated manner. 310 

 311 

3.2. ESS in an infinite population 312 

In Online Appendix B, we derive an Euler-Lotka characteristic equation that gives the 313 

invasion growth rate of a rare mutant strategy in an infinite population. Using this 314 

equation, we can derive the ESS analytically under the assumption of small mutation 315 

size (i.e. the mutant strategy is sufficiently close to the resident one). If >2, an ESS 316 

with a positive investment in social learning (x*<1) exists and satisfies  317 

 318 

*

1
*

v
x


 ,  (7a) 319 

 320 

1*)1(*)1(  veqqv  ,  (7b) 321 
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 322 

1*1
)(*~  veTz 


.  (7c) 323 

 324 

If <2, the COS is also the ESS (eqs. (6a-b)). Eq. (7) shows that the ESS is unique and 325 

given as an implicit function of parameters  and q. When the cultural transmission is 326 

purely vertical (q=1), the ESS becomes equivalent to the COS (x*= x , v*= v ), as 327 

expected (see also Fig. 2). Close inspection of eq. (7) reveals that both learning time 328 

(v*) and the equilibrium mature z-value ( )(*~ Tz ) are monotonically increasing and 329 

reliance on individual learning (x*) is monotonically decreasing with respect to vertical 330 

transmission probability (q). Thus, the equilibrium mature z-value attained by the ESS is 331 

always lower than that attained by the COS. 332 

 The equilibrium mature z-value ( )(*~ Tz ) and reliance on individual learning 333 

(x*) are monotonically increasing and decreasing, respectively, with respect to social 334 

learning efficiency (). The learning time (v*) is, however, not monotonic unless 335 

transmission is purely vertical (q=1) (Fig. 2). The ESS for very high social learning 336 

efficiency (  ) differs qualitatively between when transmission is purely vertical 337 

(q=1) and when it is not (q<1). If transmission is purely vertical, the ESS is identical 338 

with the COS; hence individuals tend to exert maximal effort for transmission of culture 339 
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and the equilibrium mature z-value diverges (v*1, x*0 and )(*~ Tz   hold as 340 

 ) (Fig. 2). If transmission is partially oblique (q<1), on the other hand, we 341 

obtained the following approximate formula for large  342 

 343 

q

e
v




1
log

1
*




, (8a) 344 

 345 

q
Tz




1

1
)(*~ . (8b) 346 

 347 

This suggests that, when social learning efficiency () is large, introduction of rather 348 

weak oblique transmission can result in a drastic fall in the equilibrium mature z-value. 349 

For example, when =10, the COS attains )(~ Tz   298, while the ESS under q=0.99 350 

(q=0.9) attains only )(*~ Tz  24.9 ( )(*~ Tz  4.33). This drastic reduction in the 351 

equilibrium mature z-value ( )(*~ Tz ) in response to slight oblique transmission reflects a 352 

steep reduction in the learning time (v*). For example, when  =10 and q=0.99 (q=0.9), 353 

it holds that v* 0.652 (v* 0.477), which is much lower than v =0.9 (see also Fig. 2). 354 

Although the ESS invests more in reproduction than the COS, this is not enough to 355 

compensate for the reduction in the mature z-value; that is, the ESS generally attains a 356 

lower fitness at equilibrium than the COS. This is obvious because by definition no 357 



21 

 

strategy can attain a higher fitness at equilibrium than the COS in a monomorphic 358 

population. In fact, when =10 and q=0.99, the ESS attains the equilibrium fitness of 359 

about 8.67 ( )652.01(9.24*)1()(*~  vTz ), which is much lower than that of the 360 

COS, 29.8 ( )9.01(298)1()(~   vTz ). Thus, notable here is not the sign but the 361 

magnitude of the effect of the vertical transmission rate. 362 

 The drastic reduction of the equilibrium mature z-value in response to slight 363 

oblique transmission may be explained as follows. Let us consider the fate of a mutant 364 

strategy that increases investment in learning compared to the resident. Although the 365 

mutant can potentially reach a higher cultural level than the resident, culture needs to 366 

accumulate for several generations to compensate for the fitness loss caused by reduced 367 

investment in reproduction. For example, if 100 generations of accumulation is 368 

necessary to compensate for the fitness loss, the compensation occurs only with 369 

probability q
100

. Importantly, a single failure of vertical transmission (i.e., oblique 370 

transmission) would reset the cultural level, bringing all the increased learning efforts 371 

by ancestors to naught. This explains why the ESS and the mature z-value are so 372 

sensitive to the introduction of slight oblique transmission. We will give a more general 373 

(but technical) explanation in the Discussion section. 374 

 375 
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3.3. ESS in a finite population  376 

In Online Appendix C, we derive an approximate formula for the fixation probability of 377 

a mutant strategy in a finite population of size N for the special case of purely vertical 378 

transmission (q=1) using the method introduced by Rousset (2004). Using this formula, 379 

we can derive the ESS for q=1 analytically under the assumption of small mutation size. 380 

If >2, the ESS and the equilibrium mature z-value ( )(*~ Tz ) under purely vertical 381 

transmission satisfy eqs. (6a) and (6c) plus 382 

 383 

1*11
1*)1(  ve

NN
v  .  (9) 384 

 385 

If <2, the COS is again the ESS. For partially oblique transmission (q<1), we resort to 386 

individual-based simulations (see the next subsection). 387 

 Comparison of eqs. (7) and (9) reveals that the ESS for a finite population of 388 

size N under purely vertical transmission (q=1) is exactly equal to the ESS for an 389 

infinite population in which the vertical transmission rate is q=1-1/N. Therefore, 390 

decreasing the population size has essentially the same effect as decreasing (increasing) 391 

the vertical (oblique) transmission rate (see Fig. 2). In particular, when social learning 392 

efficiency () is large, the reciprocal of population size (1/N) has a huge impact, as 393 
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expected from the effect of vertical transmission rate (q) revealed in the 394 

infinite-population model. For very high social learning efficiency (  ), we obtain 395 

eq. (7a) plus the following: 396 

 397 




eNv log
1

*  , (10a) 398 

 399 

NTz )(*~ . (10b) 400 

 401 

Thus, the equilibrium mature z-value is asymptotically equal to the population size. 402 

 Eq. (10b) implies that a population of 100 people can accumulate valuable 403 

traits that account for about 100 generations. Although one might think this result 404 

convincing, the load potentially imposed by population-size finiteness should not be 405 

underestimated. For example, when =10, the COS reaches )(~ Tz   298 as already 406 

argued. On the other hand, the ESS under N=100 reaches only )(*~ Tz  24.9. Moreover, 407 

in reality there would be some oblique transmission, which should further drastically 408 

reduce the equilibrium mature z-value. In the next subsection, this effect is explored by 409 

means of computer simulations. 410 

 The finiteness of population size causes the drastic reduction in the ESS 411 
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cultural level because it creates room for stochastic extinction of rare alleles. As 412 

mentioned in the previous subsection, a mutant strategy that invests more in learning 413 

than the resident must endure for several generations before culture accumulates enough 414 

to compensate for the fitness loss caused by decreased investment in reproduction. In 415 

other words, such mutant strategy is far-sighted compared to the resident, investing in 416 

the future cultural quality at the expense of present reproduction. If the population size 417 

is infinite and transmission is purely vertical, this may be a good strategy; although the 418 

mutant population would initially decrease, it may eventually start increasing after 419 

culture enough accumulates. In a finite population, however, the mutant strategy is 420 

highly likely to go extinct in the initial stage where the mutant still has lower fitness 421 

than the resident. For this reason, near-sighted strategies (i.e. large investment in 422 

reproduction) tend to be favored over far-sighted ones (i.e. large investment in learning) 423 

in a small population. We will provide a more detailed explanation in the Discussion. 424 

 425 

3.4. Individual-based simulations 426 

In the simulations we explicitly tracked the changes in both genetic and cultural states 427 

of each of N individuals. We assumed that each of traits xi, and vi, of each individual 428 

can independently mutate in every generation with the same probability =0.001. If 429 
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mutation occurred to a trait, the new trait value was sampled from a Gaussian 430 

distribution centered around the original trait value with variance 
2
=0.001. If the 431 

sampled value turns out to be outside a boundary (0 or 1), the new trait value was set to 432 

the boundary value. As a result of recurrent mutation, many different strategies coexist 433 

at each snapshot, whereas in the analytical theory we assumed there were at most only 434 

two strategies (the mutant and the resident). All the other assumptions were unchanged 435 

from the description in section 2. 436 

 We first checked if the ESS for purely vertical transmission (q=1) predicted by 437 

eqs. (7a), (7c), and (9) is attained in individual-based simulations. Fig. 3 shows a typical 438 

time-series behavior of the population-averages of xi,, vi,, and zi,(T), which are denoted 439 

by x , v , and )(Tz , respectively. Clearly, these values all converge to the analytical 440 

ESS values (broken bold lines). In the simulation of Fig. 3, the initial trait values are set 441 

to the COS; i.e. =10, vi,=
v =0.9, xi,=

x =0.1 (see eqs. (6c) and (6d)). The role model’s 442 

z-value in the first generation was set to zero for all individuals. Thus, if there were no 443 

genetic evolution, the average mature z-value )(Tz  should increase to )(~ Tz 
  298 444 

according to eq. (6e). In fact, as Fig. 3b shows, )(Tz  initially increases up to about 445 

)(~ Tz 
 but subsequently decreases to )(*~ Tz  following the evolutionary changes in 446 

x  and v . 447 
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 Fig. 4 shows the effect of q on the equilibrium values of x , v , and )(Tz . 448 

The figure again shows that in general the analytical theory accurately predicts 449 

simulation results under purely vertical transmission except the equilibrium values of 450 

)(Tz  for some large  (Fig. 4c). This deviation occurred because the value of )(Tz  451 

fluctuates a lot when  is large. As expected from the result of the infinite-population 452 

model (Fig. 2), x  is not sensitive to change in q (Fig. 4a). On the other hand, v  453 

significantly decreases with decreasing q (Fig. 4b) and, as a result, )(Tz  sharply 454 

decreases (Fig. 4c). 455 

 456 

4. Discussion 457 

4.1. Summary of results 458 

Wakano and Miura (2014) argued that the public nature of culture prevents the 459 

evolution of between-generation cumulative culture. They proposed kin selection as a 460 

mechanism to avoid this cultural social dilemma problem. We have confirmed that in 461 

our simple infinite-population model cumulative culture can evolve if social 462 

transmission is purely vertical and hence the relatedness between the donor and the 463 

recipient of information is unity (R=1). However, as soon as a small probability of 464 

oblique transmission is introduced, the equilibrium level of culture drastically reduces. 465 
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Moreover, by analyzing a model of finite population, we have shown that the 466 

equilibrium mature z-value is largely limited by the population size even under pure 467 

vertical transmission. 468 

 469 

4.2. Effect of oblique transmission 470 

These surprising results illuminate another (i.e. other than being public) pitfall of 471 

between-generation cumulative culture, which was previously not perceived. Namely, it 472 

takes a number of generations before culture accumulates enough to compensate for the 473 

fitness loss caused by an increased investment in learning. Therefore, a mutant strategy 474 

that increases investment in learning compared to the resident must accumulate culture 475 

vertically for a number of generations without interruption by oblique transmission 476 

before it can enjoy increased fitness. Thus, the crucial determinant for the success of the 477 

mutant is the expected number of generations until a sequence of vertical transmission 478 

is terminated by oblique transmission, which is given by the reciprocal of the oblique 479 

transmission rate, i.e. 1/(1-q). This quantity is obviously very sensitive to q when q is 480 

close to unity and reduces to a very small value as soon as q gets away from unity. 481 

Interestingly, the equilibrium mature z-value under the ESS is also given by the 482 

reciprocal of the oblique transmission 1/(1-q) when  is very large (eq. (8b)). These 483 
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arguments reveal why the ESS and its equilibrium mature z-value are both very 484 

sensitive to the introduction of oblique transmission. Note that many authors 485 

investigated the effects of transmission modes on cultural evolution (e.g., Cavalli-Sforza 486 

and Feldman, 1981; Boyd and Richerson, 1985; Enquist et al., 2010; Aoki, et al., 2011; 487 

Kobayashi and Aoki, 2012), but we have first investigated the effects of transmission 488 

modes on the coevolutionary dynamics of learning and between-generation 489 

accumulation of culture from the viewpoint of kin selection and the cultural social 490 

dilemma. 491 

 492 

4.3. Effect of population size 493 

On the other hand, it may be more difficult to understand the large effect of population 494 

size on the evolution of cumulative culture, which is evident even under pure vertical 495 

transmission. To understand this effect, let us consider why a mutant with the COS 496 

cannot be successful in the population of the ESS. Suppose that the transmission is 497 

purely vertical and the COS is initially expressed by a single mutant individual. Since 498 

the COS invests less in reproduction than the ESS, the fitness of mutants is lower than 499 

residents in early generations. However, it gradually increases because of the 500 

cumulative effect of culture, eventually exceeding the resident fitness (Fig. 5). 501 
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Therefore, if the population size were infinite, mutants should first decrease but 502 

eventually start increasing, finally reaching fixation. In a finite population, however, 503 

mutants are highly likely to go extinct in the initial phase of reduced fitness before they 504 

can enjoy increased fitness (see Fig. 5). This is why the COS cannot invade the ESS in a 505 

finite population. Likewise, it is easy to show that the COS cannot resist against 506 

invasion by the ESS in a finite population. 507 

 These arguments are consistent with the result of Lehmann et al. (2010), who 508 

showed that culture can accumulate beyond the capacity of a single individual within a 509 

generation if horizontal transmission of culture occurs mainly between genetically 510 

related individuals, so that culture is essentially private. In their model, fitness reduction 511 

of an elaborate learner due to decreased time for reproduction is immediately 512 

compensated by beneficial information horizontally transmitted from its relatives. Thus, 513 

the delay effect revealed in our model is absent in their model of within-generation 514 

cumulative culture. Further arguments about this subject are given in section 4.5. 515 

 516 

4.4. Order of learning and reproduction 517 

In the current model, we assumed that each individual engages in social learning, 518 

individual learning, and exploitation of the environment in this order. Although this 519 
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assumption is based on the results of previous theoretical models, it would obviously be 520 

desirable to have some empirical evidence to support it. As to the assumption that 521 

learning occurs in an earlier stage than exploitation of the environment, it is known that 522 

in hunter-gatherer societies the energetic income by an individual during the childhood 523 

is typically negligible or very small but shows a steep increase from the adolescence to 524 

the early adulthood (Kaplan et al., 2000). On the other hand, most subsistence 525 

knowledge and skills are mastered by the early adulthood (e.g. Ohmagari and Berkes, 526 

1997; Zarger, 2002). Thus, our assumption that the learning stage precedes the 527 

exploitation stage may be acceptable (though learning often requires children to 528 

accompany adults on subsistence work for observation and hands-on practices, see e.g. 529 

Ohmagari and Berkes, 1997). 530 

Unfortunately, there is little empirical support for the assumption that 531 

individual learning occurs in a later stage of life than social learning. It is relatively well 532 

understood how social learning proceeds in the lifespan of an individual; for example, 533 

Zarger (2002) reports that children’s ethnobotanical knowledge (names and use of 534 

plants) grows rapidly during the age period of 4-7 years and then at a lower rate until 535 

finally it reaches the adult level during the age period of 10-14 years. On the other hand, 536 

it is largely unknown how and when individual learning takes place. 537 
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Importantly, however, the assumption that social learning precedes individual 538 

learning in the learning stage is not crucial to our analysis. In fact, even if each 539 

individual engages in individual learning with probability x and in social learning with 540 

probability 1-x at any moment in the learning stage, we can reach the same conclusion. 541 

To see this, let us interpret the skill level zi,(t) specifically as the amount of (e.g. 542 

ethnobotanical) knowledge individual (i,) has obtained through individual and social 543 

learning by time t. In addition, assume that the knowledge produced by individual 544 

learning does not overlap with that obtained by social learning. Then, as revealed in 545 

Online Appendix D, the final amount of knowledge (or the skill level) obtained by the 546 

end of the learning stage is given by exactly the same equation as in the original model. 547 

Thus, our results do not necessarily depend on the sequential occurrence of social and 548 

individual learning. 549 

 550 

4.5. Stacking versus gathering 551 

Perhaps it would be useful to conceptualize two kinds of cultural accumulation, which 552 

are on the two extremes of a continuum. The first is accumulation in a horizontal sense. 553 

In this type of accumulation, each individual reaches a high skill level by gathering 554 

various pieces of knowledge from peers in the same generation. Each generation 555 
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inherits little culture from earlier generations. The second is accumulation in a vertical 556 

sense. In this type, each individual reaches a high skill level by stacking the wisdom of 557 

ancestors. There is little communication between different lines of stacks except for 558 

sharing common cultural ancestors at certain points in the past. Lehmann et al. (2010) 559 

suggest that the former type of accumulation is favored by natural selection, while our 560 

study suggests that the latter is not. It is largely unknown to what extent intermediate 561 

types of accumulation are favored by natural selection. Further theoretical research is 562 

demanded. 563 

It is worth noting that horizontal transmission per se does not generate 564 

information inflow into a generation from outside. It just allows individuals of the same 565 

generation to exchange skills and knowledge, decreasing the variation between them 566 

(Cavalli-Sforza and Feldman, 1981). On the other hand, between-generation 567 

transmission allows information inflow into a generation from past generations. Our 568 

naïve intuition tells us that modern technologies are built upon a stack of knowledge 569 

accumulated over centuries or even millennia. However, the cultural social dilemma in 570 

this type of cumulative cultural evolution (i.e., the vertical sort of accumulation) turned 571 

out to be very difficult to avoid, at least by means of privatization of culture, compared 572 

to the same problem in the horizontal sort of knowledge accumulation. 573 
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 574 

4.6. Interpretation of empirical data in light of the theoretical results 575 

Empirical data from traditional societies apparently show that knowledge and skills are 576 

mostly transmitted vertically or obliquely, and rarely horizontally between peers of 577 

similar ages (Hewlett and Cavalli-Sforza, 1986; Ohmagari and Berkes, 1997; Shennan 578 

and Steele, 1999; Reyes-Garcia et al., 2009). For example, according to Hewlett and 579 

Cavalli-Sforza (1986), the vertical transmission rates of various skills in Aka pygmies, 580 

depending on skill categories, range from q=0.519 (for singing skills) to q=0.893 (for 581 

food acquisition skills) and is on average q=0.807. Reyes-Garcia et al. (2009), analyzing 582 

the relative contributions of vertical, oblique, and horizontal transmission for 583 

ethnobotanical knowledge in Tsimane’, an Amerindian gatherer-horticulturalist society, 584 

concluded that contribution of oblique transmission dominates over that of vertical 585 

transmission, suggesting that q<0.5. Eq. (8b) shows that the ESS mature z-value under 586 

q=0.5 never exceeds 2. The exact value of the ESS mature z-value depends on the 587 

efficiency of social learning . If 10% of the lifetime is required to learn a half of the 588 

role model’s knowledge, ( 6.93), the ESS mature skill level is )(*~ Tz  1, which 589 

equals the level that an individual would attain if he/she spends 100% of his/her lifetime 590 

in individual learning. On the other hand, the corresponding value for the COS under 591 
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the same value of  is )(~ Tz   20. Thus, in light of empirical data on vertical 592 

transmission rates, our model suggests that the privatization of culture by vertical 593 

transmission cannot provide a satisfactory explanation for the avoidance of the cultural 594 

social dilemma problem in human societies. 595 

Given that vertical transmission is not a promising mechanism to avoid the 596 

cultural social dilemma, we may hypothesize that culture is actually accumulating 597 

mainly in a horizontal fashion (see section 4.5). This hypothesis, however, again seems 598 

contradict data; i.e., horizontal transmission rates between peers in empirical data 599 

usually appear to be too low to explain cumulative culture (Hewlett and Cavalli-Sforza, 600 

1986; Ohmagari and Berkes, 1997; Reyes-Garcia et al., 2009). For example, 601 

Reyes-Garcia et al. “did not find any evidence of horizontal transmission of 602 

ethnobotanical knowledge” in the Tsimane’ (Reyes-Garcia et al., 2009). Shennan and 603 

Steele (1999), summarizing a range of ethnographic information concerning cultural 604 

transmission of craft skills, found that vertical transmission is the dominant mode in 605 

most cases and horizontal transmission is in contrast very rare with few exceptions. If 606 

culture is mostly transmitted between, not within, generations as suggested by data, how 607 

can the cultural social dilemma problem be solved? 608 

One possibility is that horizontal transmission rate is “effectively” much higher 609 
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than it appears to be (Zarger, 2002). Claidière and Andrè (2012) point out, reviewing a 610 

considerable number of studies, that the mode of cultural transmission typically depends 611 

(not only on the categories but also) on the contents of information transmitted. In 612 

particular, data suggest that novel skills are much more likely to be transmitted 613 

horizontally than well-established skills (Claidière and Andrè, 2012). Indeed, the skill 614 

for making a crossbow, which is relatively new, spread exceptionally through horizontal 615 

transmission in Aka pygmies (Hewlett and Cavalli-Sforza, 1986). This transmission 616 

mode is not exactly the same as the success-biased transmission mode typically 617 

assumed in mathematical models. In models, it is usually assumed that a social learner 618 

simply chooses the best among several potential role models (Boyd and Richerson, 619 

1985; Henrich, 2004). However, in the transmission mode under consideration, a social 620 

learner chooses a “default” role model (often the same-sex parent) unless he/she finds a 621 

remarkably successful role model. More empirical studies are demanded to confirm the 622 

ubiquity of such content-dependent switching between a default and temporary 623 

transmission mode. 624 

 625 

4.7. Lucky mistakes versus deliberate inventions 626 

It is worth noting again that in our terminology the term “individual learning” refers to 627 
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deliberate effort to add to or improve knowledge that one already bears, as opposed to 628 

absorbing knowledge that others bear. So far, all of our arguments stand upon the 629 

premise that such individual learning is a prerequisite for cumulative cultural evolution. 630 

We remark that this is not a widely accepted view. As briefly mentioned in the 631 

introduction, theory predicts that success-biased transmission can drive cumulative 632 

cultural evolution by filtering errors made in the process of social learning and selecting 633 

only adaptive ones (Enquist and Ghirlanda, 2007; Henrich, 2004). This mechanism is 634 

free from the cultural social dilemma problem, and therefore can be an alternative 635 

mechanism to explain observed cumulative culture in human societies. We remark that 636 

the essential difference between deliberate individual learning and copy error is whether 637 

it is a genetically heritable strategy or not. Heritable propensities toward increased 638 

errors, if any, would respond to natural selection, and therefore would suffer from a 639 

similar problem to that found in our model. 640 

 A relevant question would be then what are the relative contributions of 641 

deliberate individual learning versus copy errors in cumulative cultural evolution. 642 

Unfortunately, we do not know of any empirical data to answer this question. Although 643 

complex artifacts or knowledge such as spacecraft or quantum mechanics is probably 644 

not a mere collection of successful copy errors accumulated by scientists for decades, 645 
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we have to be careful in claiming this because Darwinian evolutionary processes, which 646 

are driven by copy errors filtered by natural selection, can shape much more 647 

complicated and well-functioning machineries than ever been made by humans 648 

(Dawkins, 1976). Empirical studies are strongly demanded to elucidate the relative 649 

contributions of individual learning and copy errors to human cumulative culture. 650 

 651 

4.8. Other hypotheses and remarks 652 

To be fair, we remark that the above-mentioned inconsistency between theory and data 653 

might possibly be an artifact. In particular, as previous authors already pointed out, 654 

learning and exploitation may not always be mutually exclusive (Wakano and Miura, 655 

2014). In reality, experiences gained through exploitation of environments may promote 656 

learning, for example, by increasing the probability of success in trial and error. It is 657 

also possible that our models correctly describe real human evolution and the paradox 658 

does not exist in this sense. This view entails that our culture is the result of the 659 

competition among selfish individuals (i.e., ESS), and our modern technologies can, 660 

contrary to our intuition, be accounted for by a few generations of individual learning. 661 

This in turn implies that, if we had tried our best in a more coordinated manner (i.e., 662 

COS), we might have achieved much higher technology; e.g., we might have already 663 
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colonized another solar system. 664 

Finally, yet another interesting interpretation of our counterintuitive result is 665 

that it is the very reason why cumulative culture is so rare in the biological world while 666 

culture itself is not (Boyd and Richerson, 1995b). That is, cumulative culture is in 667 

general disfavored, but only modern humans may have solved this problem. Then, how 668 

did they solve the problem? One possible answer is the cooperative nature of humans. 669 

There is evidence from paleoanthropology that evolution of human cooperativeness 670 

preceded emergence of behavioral modernity, suggesting that the former was a 671 

prerequisite for the latter (Dubreuil, 2010). For example, if role models are paid back 672 

from novices in some way, motivation to learn might overwhelm temptation to take a 673 

free ride on culture, promoting the evolution of cumulative culture. However, recent 674 

experiments suggest that information access costs may inhibit the evolution of 675 

cumulative culture by reducing the benefit of social learning (Mesoudi, 2008). On the 676 

other hand, another experiment shows the price of information depends on whether 677 

sellers and buyers share a common interest (Derex et al., 2014). Clearly, in future work 678 

we need to combine economic and evolutionary modeling to see how information 679 

trading within cooperatively breeding groups affects the evolution of cumulative 680 

culture.  681 
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Whatever interpretation we take, population size should have played a crucial 682 

role in the evolution of cumulative culture in modern humans (see eq. (8b)). Some 683 

researchers hypothesize that population size was a crucial determinant of the Upper 684 

Paleolithic revolution and the subsequent demographic expansion of modern humans 685 

(Powell et al., 2009). This hypothesis is based on the theoretical prediction that a larger 686 

population has a higher chance of yielding successful transmission errors, which can 687 

subsequently spread over the population through success-biased social learning 688 

(Henrich, 2004). The significance of population size on cumulative cultural evolution 689 

has also been confirmed by experiments (Derex et al. 2013; Kempe and Mesoudi, 2014). 690 

Our result supports the importance of demography, although the underlying mechanism 691 

is quite different from those proposed in previous studies. 692 

 693 
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Figure captions 841 

 842 

Fig. 1: A schematic diagram to illustrate the between-generation processes in the 843 

finite-population model. Circles and squares in each row represent resident and mutant 844 

individuals, respectively, in a specific generation, where the generation number 845 

increases downward. Solid and dotted arrows represent genetic and cultural 846 

transmission, respectively. Simultaneous occurrence of genetic and vertical cultural 847 

transmission is represented by a two-headed solid arrow. Each individual (i,) is given 848 

two numbers, the lower one of which represents the mature z-value )(, Tzi   of the 849 

individual and the upper one the mature z-value of the role model )(1),( Tz i 
 (for 850 

simplicity we omitted the subscript of ). The values of )(, Tzi   and )(1),( Tz i 
 in the 851 

diagram are not precise values obtained from theory but are artificial values for 852 

illustration. In generation 1, a single mutant is introduced in a resident population of 853 

size 5 which is at cultural equilibrium (the star represents the point where mutation 854 

occurred). The equilibrium z-value of the resident strategy is set as 5. It is assumed that 855 

the mutant strategy invests more time in individual and/or social learning than the 856 

resident, so that mutants tend to increase the mature z-value. The diagram shows a case 857 

where mutants go extinct in generation 4. Such extinction can be caused either by i) the 858 
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decrease in mutant's fitness due to increased learning time or ii) by random genetic drift 859 

even if mutant strategy has selective advantage.  860 

 861 

Fig. 2: Effect of  on (a) x*, (b) v*, and (c) )(*~ Tz  for different values of q in the 862 

infinite population model. The thick solid lines represent the COS (i.e., x , v , and 863 

)(~ Tz  ). The same graphs also represent the results for different population sizes in the 864 

finite population model with pure vertical transmission (corresponding population sizes 865 

are shown in parentheses). Note that the infinite population model and the finite 866 

population model with pure vertical transmission yield equivalent results when q=1-1/N. 867 

 868 

Fig. 3: A typical time-series behavior of (a) x , v , and (b) )(Tz  (all averaged over 869 

the population) obtained in the individual-based simulations. Parameter values are =10, 870 

q=1.0, and N=100. The thick dotted lines represent equilibrium values predicted by the 871 

analytical theory. The initial condition is x=0.1 and v=0.9 for all individuals. 872 

 873 

Fig. 4: The effect of  on the equilibrium values of (a) x , (b) v , and (c) )(Tz  (all 874 

averaged over the population) for three values of q (1.0, 0.99, and 0.9). Population size 875 

is N=100. The equilibrium values are computed by running a simulation for 10
7
 876 
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generations and then averaging the values over the last 5 10
6
 generations. 877 

 878 

Fig. 5: The dynamics of the mutant (thin solid line) and resident (thick solid line) 879 

fitnesses in the finite-population model when the mutant strategy is the COS and the 880 

resident strategy is the ESS. The dotted line represents the probability that mutants do 881 

not go extinct before a given generation under selective neutrality. Parameter values are 882 

=10, N=100, and q=1.0. 883 

 884 
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N Population size 

q Vertical transmission rate 

T Lifetime 

 Efficiency of social learning 

 Efficiency of individual learning 

,iv The fraction of the lifetime invested in learning by individual (i,) 

,ix
The fraction of the learning time invested in individual learning by 

individual (i,) 

)(, tzi  The z-value of individual (i,) at within-generation time t. 

)(~ Tz The equilibrium mature z-value in a genetically monomorphic population 

,iw The fitness of individual (i,) 

w~ The equilibrium fitness in a genetically monomorphic population 

v , 
x , )(~ Tz 

 The COS values of ,iv , ,ix , and )(~ Tz , respectively. 

*v , *x , )(*~ Tz  The ESS values of ,iv , ,ix , and )(~ Tz , respectively. 

v , x , )(Tz The population averages of ,iv , ,ix , and )(~ Tz , respectively. 

Table 1: Notation 

Tables
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Appendix A: Derivation of the COS1

To derive the COS, let us assume that the population is monomorphic for2

a learning strategy (x, v). Solving eq. (1) in the main text with respect to3

1



zi,τ (t) under the assumption that zi,τ (0) = 0 and (xi,τ , vi,τ ) = (x, v), we have4

zi,τ (t) = zρτ (i),τ−1(T )(1− e−βt). (11)

It follows that the z-value at the end of the social learning stage (t = v(1−x))5

is given by6

zi,τ (v(1− x)) = zρτ (i),τ−1(T )(1− e−βv(1−x)). (12)

Further, from eq. (2) in the main text, the value of zi,τ (t) at the end of the7

individual-learning stage (t = v) is given by8

zi,τ (v) = zi,τ (v(1− x)) + vx

= zρτ (i),τ−1(T )(1− e−βv(1−x)) + vx. (13)

Noting that zi,τ (v) = zi,τ (T ), we have9

zi,τ (T ) = zρτ (i),τ−1(T )(1− e−βv(1−x)) + vx. (14)

This equation gives the between-generation dynamics of zi,τ (T ). From10

eq. (14), the equilibrium value of zi,τ (T ), denoted by z̃(T ), is given by11

z̃(T ) = lim
τ→∞

zi,τ (T ) = vxeβv(1−x). (15)

2



The equilibrium fitness function, denoted by w̃, is therefore given by12

w̃ = lim
τ→∞

wi,τ = lim
τ→∞

zi,τ (T ) · (1− v)

= v(1− v)xeβv(1−x). (16)

The COS is the strategy (x, v) which maximizes eq. (16). It is easily shown13

that the strategy (x◦, v◦) given by eq. (6) in the main text maximizes eq.14

(16) and hence gives the COS.15

Appendix B: Derivation of the ESS in an infi-16

nite population17

We define an evolutionarily stable learning strategy in an infinite population18

as a learning strategy that is resistant against invasion by rare mutants with19

any slightly deviated strategy. We will derive eq. (7) in the main text, which20

an ESS must satisfy.21

Let (x, v) and (x′, v′) denote the resident and mutant strategies, respec-22

tively. We assume that the resident population is at cultural equilibrium, so23

that all residents have the z-value given by eq. (15) at the end of the learning24

stage. In order to derive the ESS, we classify individuals as follows. Residents25

are class 0. The mutants who socially learned from residents are class 1. The26

mutants who socially learned from class-1 individuals are class 2. Class-j27

individuals are defined recursively. Note that offspring of class-j mutants fall28

3



back to class 1 when their cultural role models are residents (oblique social29

learning). In this case, cultural accumulation over j generations by mutants30

is reset.31

From eq. (14), the mature z-value of an individual (i, τ) in class j ≥ 132

satisfies33

zi,τ (T ) = zρτ (i),τ−1(T )(1− e−βv′(1−x′)) + v′x′. (17)

Note that the above equation recursively applies, so that zρτ (i),τ−1(T ) is given34

as a function of zρτ−1(ρτ (i)),τ−2(T ), which is in turn given as a function of35

zρτ−2(ρτ−1(ρτ (i))),τ−3(T ), and so on. Given that individual (i, τ) belongs to36

class j, individual (ρτ−(j−1)(ρτ−(j−2)(. . . (ρτ−1(ρτ (i))) . . .)), τ − j) belongs to37

class 0 and is hence a resident. Noting this and eq.(15), eq. (17) can be38

solved to yield39

zi,τ (T ) = v′x′eβv
′(1−x′) + rCτ (i)(vxeβv(1−x) − v′x′eβv

′(1−x′)), (18)

where Cτ (i) denotes the class of individual (i, τ) and40

r = 1− e−βv′(1−x′). (19)

Note that eq. (18) does not depend on i and τ but only on the class Cτ (i) of41

individual (i,τ). This implies that the fitness of an individual also depends42

4



only on its class. Therefore, we let w′
j denote the fitness of class-j mutants:43

w′
Cτ (i) := zi,τ (T )(1− v′), (Cτ (i) ≥ 1) (20)

It is easily confirmed that mutants have the same fitness as residents irre-44

spective of classes (i.e. w′
j = w̃ = v(1 − v)xeβx(1−v) for arbitrary j ≥ 1) if45

they adopt the same strategy as residents ((x′, v′) = (x, v)).46

Let pj,τ denote the frequency of class-j mutants (j ≥ 1) in the population47

in generation τ . Since mutants are rare, we may assume that a mutant’s role48

model is a mutant only when vertical transmission occurs. The offspring of49

a class-j mutant hence belong to class-(j + 1) and class-1 with probabilities50

q and 1− q, respectively. Further, because of rarity of mutants, the average51

fitness of the population is approximated by the residents’ fitness w̃ given by52

eq. (16). From these arguments, it holds that53

p1,τ+1 =
∞∑
j=1

(1− q)
w′

j

w̃
pj,τ , (21)

54

pj+1,τ+1 = q
w′

j

w̃
pj,τ , (22)

where j ≥ 1.55

Note that the above equation is formally equivalent to the standard model56

of age structure. Substituting pj,τ+1 = λpj,τ into eqs. (21) and (22) and rear-57

ranging the resulting equations, it is easily shown that the leading eigenvalue58

λ, i.e. the asymptotic growth rate of mutants, should satisfy the following59

5



(Euler-Lotka) characteristic equation:60

1 =
∞∑
i=0

(1− q)qiλ−i−1
i+1∏
j=1

w′
j

w̃
. (23)

Note that, when mutants have the same fitness as residents (i.e. wj = w̃61

for all j’s), λ = 1 is the only solution of eq. (23). This implies that the62

frequency of mutants remains constant when they adopt the same strategy63

as residents.64

Differentiating eq. (23) with respect to a mutant strategic variable y′65

(y′ ∈ {x′, v′}) yields66

0 =
∞∑
i=0

(1− q)qi(−i− 1)λ−i−2 ∂λ

∂y′

i+1∏
j=1

w′
j

w̃
+

∞∑
i=0

(1− q)qiλ−i−1
i+1∑
k=1

w′−1
k

∂w′
k

∂y′

i+1∏
j=1

w′
j

w̃
. (24)

Substituting x′ = x, v′ = v, w′
j = w̃, and λ = 1 into eq. (24) and rearranging67

the resulting equation yield68

w̃
∂λ

∂y′

∣∣∣∣∣
x′=x,v′=v

=
∂w′

∂y′

∣∣∣∣∣
x′=x,v′=v

, (25)

where69

w′ =
∞∑
i=1

(1− q)qi−1w′
i. (26)

If the stationary growth rate of mutants is larger than one, mutants can70

invade. Therefore, for the resident strategy (x, v) to be evolutionarily stable,71

6



λ must be maximized at (x′, v′) = (x, v) as a function of the mutant strategy72

(x′, v′). However, this and eq. (25) together imply that w′ is maximized at73

(x′, v′) = (x, v). Thus, for our ESS analysis we may treat w′ like the mutant74

invasion fitness.75

In fact, w′ can be interpreted as the asymptotic average of the mutant76

invasion fitness, as follows. Note that the leading eigenvector of the system77

(21-22) is given by (1, q, q2, . . . , qi−1, . . .). This means that the fraction of78

class i among mutants asymptotically approaches (1− q)qi−1 when selection79

is absent ((x′, v′) = (x, v)). Thus, when selection is sufficiently weak, the80

average fitness of mutants is asymptotically given by
∑∞

i=1(1−q)qi−1w′
i = w′.81

Using eq. (18), (26) and (20), we find that82

w′ = (1− v′)v′x′eβv
′(1−x′)

+(1− v′)
r(1− q)

1− rq
(vxeβv(1−x) − v′x′eβv

′(1−x′)). (27)

For (x, v) to be the ESS, w′ as a function of (x′, v′) must be maximized at83

(x′, v′) = (x, v). Thus, the ESS (x∗, v∗) satisfies84

∂w′

∂x′

∣∣∣∣∣
x′=x=x∗,v′=v=v∗

= 0, (28)

85

∂w′

∂v′

∣∣∣∣∣
x′=x=x∗,v′=v=v∗

= 0. (29)

It is easily shown that these equations reduce to eqs. (7a) and (7b) in the86

main text. Finally, substituting eq. (7a) in the main text into eq. (15) yields87

7



eq. (7c).88

Appendix C: Derivation of the ESS in a finite89

population90

Here we derive the ESS in a finite population assuming pure vertical trans-91

mission (q = 1) (eq. (9) in the main text). More specifically, we show that92

the ESS for a finite population of size N under q = 1 is identical with the93

ESS for an inifinite population under q = 1 − 1/N . Thus, in terms of the94

ESS, decreasing the population size from ∞ to N under q = 1 has exactly95

the same effect as decreasing q by 1/N in an infinite population.96

To compute the ESS under q = 1, we need the fixation probability of a97

mutant strategy that is initially expressed by a single individual. For this98

purpose, we apply the method introduced by Rousset (2004) below.99

Imagine that a mutant strategy (x′, v′) is expressed by a single individual100

in the population of the resident strategy (x, v). For convenience sake, let us101

reuse the classification of individuals introduced in Appendix B. Then, the102

initial single mutant is obviously of class 1 because there is no mutant in the103

previous generation. Since q = 1 (pure vertical transmission), any mutant in104

any generation τ inherits culture from its own parent, which is a mutant in105

generation τ−1. This implies that all mutants in generation τ belong to class106

τ (Cτ (i) = τ for any mutant (i, τ)), given that the mutant was introduced107

in generation 1. Therefore, all mutants in generation τ have equal fitnesses108

8



given by w′
τ in eq. (20). It is important that the mutant fitness is not a109

stochastic variable but is determined by the number of generations passed110

since introduction of the initial mutant. By virtue of this property, we can111

treat this process as a Wright-Fisher process in which the selection coefficient112

depends deterministically on time (see below).113

Let Pτ denote the frequency of mutants in generation τ . Since all mutants114

in generation τ belong to class τ , it holds that Pτ =
∑

j pj,τ = pτ,τ in Ap-115

pendix B’s notation. Note that we assume a Wright-Fisher-type update for116

the genetic state of the population and also culture is transmitted between117

adjacent generations; thus, Pτ obeys a time-inhomogeneous Markov process118

with the initial state P1 = 1/N . Obviously, this stochastic process has only119

two absorbing states: Pτ = 1 (fixation) and Pτ = 0 (extinction). Let π120

denote the fixation probability of the mutant strategy. Then, the expected121

frequency of mutants in the infinitely distant future should be given by122

lim
τ→∞

E[Pτ ] = 1 · π + 0 · (1− π) = π, (30)

where E[·] denotes expectation. Below we use this relationship to compute123

π.124

Note that we can write125

Pτ = P1 +∆P1 +∆P2 + . . .+∆Pτ−1, (31)

where ∆Pτ = Pτ+1 − Pτ denotes the frequency change between generations126

9



τ and τ + 1 and is a stochastic variable itself. Substituting eq. (31) into eq.127

(30) yields128

π = E[P1 +
∞∑
τ=1

∆Pτ ]

=
1

N
+

∞∑
τ=1

E[∆Pτ ], (32)

where we used E[P1] = P1 = 1/N . From the standard theory of population129

genetics, the frequency change ∆Pτ is given by130

∆Pτ =
w′

τ − w̃

w̃ + Pτ (w′
τ − w̃)

Pτ (1− Pτ ), (33)

where w̃ is the equilibrium fitness of residents given by eq. (16). Let us131

define the selection coefficient sτ as132

sτ =
w′

τ − w̃

w̃
. (34)

Substituting (34) into eq. (33) yields133

∆Pτ =
sτ

1 + Pτsτ
Pτ (1− Pτ ) ≈ sτPτ (1− Pτ ), (35)

where the approximation holds for small sτ .134

Substituting eq. (35) into eq. (32) yields135

π ≈ 1

N
+

∞∑
t=1

sτE[Pτ (1− pτ )]. (36)

10



Note that the expectation E[Pτ (1−Pτ )] in the above equation is itself affected136

by selection coefficients of up to generation τ − 1 (i.e., s1, s2, s3, . . . , sτ−1).137

However, Rousset (2004) has shown that the expectation E[·] can be approx-138

imately replaced by the expectation under neutrality (i.e. s0 = s1 = . . . =139

st = . . . = 0) provided selection is sufficiently weak. We denote the expec-140

tation under neutrality by E◦[·] following Rousset (2004). Thus, it holds141

that142

π ≈ 1

N
+

∞∑
t=1

sτE
◦[Pτ (1− Pτ )]. (37)

Note that E◦[2Pτ (1 − Pτ )] can be interpreted as the probability that two143

individuals drawn at random with replacement from generation τ have dif-144

ferent genotypes under selective neutrality. Such two individuals can have145

different genotypes only if their ancestral lineages trace back to generation 1146

without coalescing and, in addition, only one of them hits the initial mutant.147

From the standard coalescent theory this probability is given by148

E◦[2Pτ (1− Pτ )] =
(
1− 1

N

)τ−1

· 2P1(1− P1)

= 2
1

N

(
1− 1

N

)τ

, (38)

where we used P1 = 1/N .149

Substituting eqs. (34) and (38) into eq. (37) yields150

π ≈ 1

N
+

1

N

∞∑
τ=1

(
w′

τ

w̃
− 1

)(
1− 1

N

)τ

11



=
1

N
+
(
1− 1

N

)(
w′

w̃
− 1

)
, (39)

where151

w′ =
∞∑
τ=1

w′
τ

1

N

(
1− 1

N

)τ−1

. (40)

Remember that for a finite population we define an ESS as the strategy152

that never allows a mutant strategy expressed by a single individual to have153

a fixation probability higher than 1/N (i.e. the fixation probability of the154

ESS itself). This implies that for our ESS analysis we can treat w′ like the155

mutant invasion fitness in the standard ESS analysis in an infinite-population156

model. Note that eq. (40) is formally identical with eq. (26) except that q is157

replaced by 1−1/N . This implies that the ESS for a finite population under158

pure vertical transmission (q = 1) is equivalent with the ESS for an infinite159

population with q = 1− 1/N .160

Appendix D: Probabilistic engagement in so-161

cial and individual learning162

In the main text, we assumed that social and individual learning occur in163

separate stages of life. In this Appendix, we instead assume that each in-164

dividual engages in individual and social learning with probabilities x and165

1− x, respectively, at any moment in the learning stage and derive eq. (14)166

under some additional assumptions. Thus, the results of the present paper167

12



all apply to this modified model.168

Suppose that zi,τ (t) represents the amount of knowledge that the indi-169

vidual (i, τ) acquires by time t through individual and social learning. Let170

zi,τ,IL(t) and zi,τ,SL(t) denote the amounts of knowledge acquired through171

individual and social learning, respectively, by time t. In addition, assume172

that the knowledge acquired through individual learning never overlaps with173

that acquired through social learning. This implies that any piece of knowl-174

edge produced by an individual through individual learning is always new175

to the role model of the focal individual as well as the focal individual it-176

self. Then, the total amount of knowledge individual (i, τ) bears is given by177

zi,τ (t) = zi,τ,SL(t) + zi,τ,IL(t).178

Note that each individual engages in social learning with probability 1−x179

at any moment in the learning stage. This implies that zi,τ,SL(t) grows in the180

learning stage as follows:181

d

dt
zi,τ,SL(t) = β(1− x)(zρτ (i),τ−1(T )− zi,τ,SL(t)). (0 ≤ t ≤ v) (41)

Likewise, zi,τ,IL(t) follows182

d

dt
zi,τ,IL(t) = αx = x. (0 ≤ t ≤ v) (42)

Integrating both equations yield183

zi,τ,SL(v) = zρτ (i),τ−1(T )(1− e−βv(1−x)). (43)
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zi,τ,IL(v) = xv. (44)

Summing up eqs. (43) and (44) yields184

zi,τ (v) = zi,τ,SL(v) + zi,τ,IL(v)

= zρτ (i),τ−1(T )(1− e−βv(1−x)) + xv. (45)

Since knowledge does not grow in the exploitation stage, we have zi,τ (T ) =185

zi,τ (v). Substituting this into eq. (45) yields eq. (14).186

Note that the above derivation requires to specify the interpretation of187

the z-value and the structure of knowledge. On the other hand, the separate-188

step framework of the original model incorporates a wider class of knowledge189

structure and allows more general interpretations of the results in this re-190

spect.191
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