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Abstract

Statins exert atheroprotective effects through the induction of specific transcriptional factors in multiple organs. In
endothelial cells, statin-dependent atheroprotective gene up-regulation is mediated by Kruppel-like factor (KLF) family
transcription factors. To dissect the mechanism of gene regulation, we sought to determine molecular targets by
performing microarray analyses of human umbilical vein endothelial cells (HUVECs) treated with pitavastatin, and KLF4 was
determined to be the most highly induced gene. In addition, it was revealed that the atheroprotective genes induced with
pitavastatin, such as nitric oxide synthase 3 (NOS3) and thrombomodulin (THBD), were suppressed by KLF4 knockdown.
Myocyte enhancer factor-2 (MEF2) family activation is reported to be involved in pitavastatin-dependent KLF4 induction. We
focused on MEF2C among the MEF2 family members and identified a novel functional MEF2C binding site 148 kb upstream
of the KLF4 gene by chromatin immunoprecipitation along with deep sequencing (ChIP-seq) followed by luciferase assay. By
applying whole genome and quantitative chromatin conformation analysis {chromatin interaction analysis with paired end
tag sequencing (ChIA-PET), and real time chromosome conformation capture (3C) assay}, we observed that the MEF2C-
bound enhancer and transcription start site (TSS) of KLF4 came into closer spatial proximity by pitavastatin treatment. 3D-
Fluorescence in situ hybridization (FISH) imaging supported the conformational change in individual cells. Taken together,
dynamic chromatin conformation change was shown to mediate pitavastatin-responsive gene induction in endothelial cells.
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Introduction

Since the discovery of the 3-hydroxy-3-methylglutaryl coen-

zyme A reductase inhibitors [1], commonly known as statins, they

have come to be widely-used cholesterol lowering drugs [2,3].

Multiple lines of evidence, including randomized clinical trials,

have suggested that statins also directly affect vascular cells, and

exert atheroprotective effects through a modification of gene

expression [4]. In endothelial cells (ECs), statins induce the mRNA

level of nitric oxide synthase 3 (NOS3) and thrombomodulin
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(THBD), and this effect is reported to be mediated by the

induction of the transcription factor krüppel-like factor 2 (KLF2)

acting through the myocyte enhancer factor 2 (MEF2) binding site

[5,6]. Small-interfering RNA (siRNA)-mediated knockdown of

KLF2 strongly attenuates the ability of statins to increase NOS3 and

THBD accumulation in ECs. Thus, statins are thought to exert

their atheroprotective effects through KLF2 to some extent.

Krüppel-like factors are zinc finger transcriptional factors that

have been implicated in blood vessel development and T

lymphocyte activation [7]. Previous studies suggested that KLF2

functions as a regulator of inflammation, and also participates in

vasodilatation and anti-coagulation [8,9]. In the context of ECs

subjected to shear stress, KLF2 reportedly mediates the expression

of a series of response genes [10,11]. KLF2 is of particular interest

in atherogenesis, because cholesterol accumulation and low shear

stress in the vascular wall are two major aspects of atherosclerotic

plaque formation, suggesting that the KLF family exerts important

biological effects on the cellular phenotype. Thus, we focused on

KLFs to investigate the molecular mechanism of gene regulation in

statin-treated vascular cells.

Human umbilical vein endothelial cells (HUVECs) are primary

cultivated endothelial cells widely used in vascular biology research

and provided a critical model for molecular mechanism of

atherosclerosis, because umbilical vein carries oxygenated blood

flow just as arteries [4,9,12,13]. To validate the contribution of

KLFs in HUVECs under statin treatment, we performed

transcriptome analysis using a microarray and statistically

identified the affected genes. Unexpectedly, KLF4 was induced

more than the others, including KLF2. Since the importance of

KLF4 in the regulation of other atheroprotective genes was thus

suggested, we focussed on the molecular mechanisms of pitavas-

tatin-dependent KLF4 induction.

Results

Pitavastatin induces atheroprotective genes through
KLF4 in both HUVECs and the aortic endothelium of ApoE
deficient mice

First, to evaluate the gene expression profiles of the KLF family

members, we performed microarray analysis of HUVECs treated

with pitavastatin for 4 hours. Based on the results of repeated

experiments, the most highly induced gene was KLF4, followed by

KLF2 (Table S1 in File S1). To confirm that KLF4 induction

participates in statin-dependent atheroprotective gene induction,

we performed further microarray analyses with a siRNA against

KLF4 following the procedure shown in Figure S1 in File S1. The

changes in gene expression in pitavastatin treatment/DMSO

treatment and siKLF4/siControl under pitavastatin were calculat-

ed. The genes that exhibited significant changes (fold change.

= 2.0 or , = 0.5) in either condition were selected for further study

(384 genes). Hierarchical clustering analysis was performed after

selecting the genes (Figure 1A). Figure 1B shows the cluster of

genes induced by pitavastatin treatment and suppressed by siKLF4.

In this cluster, 17 other genes were classified in addition to KLF4

and KLF2, among which NOS3 and THBD were present (Fig. 1B).

This result showed the statin-dependent induction of these

atheroprotective genes, an effect which was suppressed by KLF4

knockdown, suggesting KLF4 functions as a key regulator of these

genes in HUVECs. Figure 1C shows the cluster that includes genes

having the opposite expression pattern to that in Figure 1B, i.e.

suppressed by pitavastatin and enhanced by siKLF4. An inflam-

matory mediator, chemokine (C-C motif) ligand 2 (CCL2) was also

included in this cluster.

To further investigate the correlation between KLF4 and THBD

or NOS3, we performed quantitative real time PCR to determine

the time course profile of mRNA expression. A significant

induction of KLF4 was observable within 2 hours of pitavastatin

treatment, followed by THBD and NOS3 mRNA induction after

4 hours (Fig. S2A in File S1).

To test whether the induction of these genes by statins also

occurred in vivo, we collected mRNA after 12-week pitavastatin

treatment from the aortic tissue of ApoE deficient mice that had

developed advanced atherosclerotic lesions. As shown in Figure

S2B in File S1, the mRNA of Klf4, Thbd, and Nos3 was induced by

pitavastatin. Histological analysis furthermore showed that

pitavastatin treatment reduced the plaque (Fig. S3A in File S1)

in spite of the fact that the total cholesterol and triglyceride levels

were not significantly affected (Fig. S3B in File S1). Taking these

several lines of in vitro and in vivo evidence together, it appears that

KLF4 was indispensable for the endothelial transcriptional

activation induced by statins.

Whole genome profile of the MEF2C binding sites in
HUVECs

To dissect the molecular mechanism of transcriptional regula-

tion of KLF4, we set out to identify the key transcription factors

involved. In the case of KLF2, there are reports of a MEF2 binding

site in the KLF2 promoter [5,11], but in the KLF4 promoter

region, the location has not still been identified. Therefore, we

made new antibodies against MEF2A, MEF2C, KLF2 and KLF4

(Fig. S4 in File S1). Only by knocking down MEF2A, C and D was

a reduction of both KLF2 and KLF4 achieved, presumably due to

functional redundancy (Fig. S5 in File S1). However, based on our

transcriptome database on HUVECs (http://sbmdb.genome.

rcast.u-tokyo.ac.jp/refexa/advanced_search.jsp), we focused on

MEF2C, because it is expressed more potently than the two other

MEF2 family members in HUVECs. To identify the transcription

regulatory elements by which MEF2C contributes to the KLF4

induction under pitavastatin treatment, we made an effort to

identify the binding sites in a whole genome manner. A newly

established monoclonal antibody against MEF2C (Fig. S4D in File

S1) was used to perform chromatin immunoprecipitation followed

by deep sequencing (ChIP-seq). As shown in Figure S6A in File S1,

4,878 binding sites were detected in the control [pitavastatin (2)],

with 42% of the MEF2C binding sites located between the TSS

and the 39UTR of the genes, while the remaining 58% of the

MEF2C binding sites were in intergenic regions. Among all of the

MEF2C binding sites, 16.4% co-localized with H3K27ac (Figure

S6B in File S1), which is suggestive of an enhancer [14]. In

contrast, 13,030 binding sites were found in the statin-treated

HUVECs, with 40% of the MEF2C binding sites between the TSS

and the 39UTR, 60% in intergenic regions (Figure S6C in File S1).

There was no evident significant difference in the MEF2C binding

distribution profile between the untreated and statin-treated

HUVECs.

Statin-mediated induction of KLF4 involves the binding
of MEF2C to a distal kb –148 enhancer

In the KLF4 locus, two MEF2C binding regions were detected

after statin treatment (kb 298 and kb 2148, relative to the TSS)

(Fig. 2A). Sustained MEF2C binding was specifically enriched in

the kb 2148 kb region. Increased MEF2C binding at the two loci

was also qualified by ChIP-qPCR (Fig.S7 in File S1). Histone

modification of H3K27ac was observable in the 298 kb region,

but was more clearly evident in the 2148 kb region (Fig. 2A).

Chromatin Structure Change by Statin Induces KLF4
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To determine which MEF2C binding sites are functionally

active, we carried out a series of luciferase reporter assays in

HUVECs with constructs containing the human KLF4 promoter

(between bp 2994 and +594 bp) coupled to the MEF2C binding

region from kb 298 (255 bp), or kb 2148 (506 bp) (Fig. 2B). As

shown in Figure 2C, pitavastatin exhibited a 1.4 fold induction of

the KLF4 promoter construct, and once coupled to the kb 298

MEF2C binding region, a 1.9 fold induction was exhibited. Using

the construct containing both the promoter and the kb 2148

MEF2C binding region that was induced by pitavastatin, a more

potent induction of 3.2 fold was observed (Fig. 2C), suggesting that

the kb 2148 MEF2C binding region is the more important one in

pitavastatin-dependent KLF4 induction.

By consensus motif search, we found one MEF2 binding motif

in the kb 2148 enhancer region. Based on this sequence, we

generated the enhancer (2148 kb)-KLF4-luc containing a 6 base

mutation (GAGATAAAAATAACC to GAGATGGTAC-

CAACC) of the MEF2 binding site to determine the importance

of this motif for statin-mediated KLF4 promoter activation. As

shown in Figure 2D, the statin-mediated induction of promoter

activity was abolished by a mutation in the MEF2C binding site.

Taking these results together, statins increased the expression of

KLF4 in ECs by activating the MEF2C binding element in the 2

148 kb region.

The distal kb 2148 enhancer in the KLF4 gene directly
interacts with the promoter with the frequency of their
interactions increased by statins

To elucidate how this kb 2148 enhancer of KLF4 gene

functions, we sought to determine the localization of transcrip-

tionally active RNA polymerase II (Pol II). To perform ChIP-seq,

a monoclonal antibody was established against the C-terminal

domain (CTD) of the largest subunit of Pol II, in which the

tetramer repeats (Y1S2P3T4S5P6S7) contain two phosphorylation

sites at the second and fifth Serine (Methods, Fig. S8 in File S1).

Since this phosphorylation pattern of the CTD is regarded as a

mark of elongating Pol II, the localization of the binding signal at

both the TSS of KLF4 and the 2148 kb site suggested the

possibility that the two sites might be in spatial proximity of one

another.

As was reported previously [15], a target gene promoter is able

to come into a conformational proximity with an active enhancer,

Figure 1. Genes up- or down-regulated by pitavastatin treatment through KLF4 in HUVECs. Transcriptome data were derived from the
average of an array performed 5 times with 1 mM pitavastatin-treated HUVECs and the average of duplicate arrays using HUVECs transfected with
KLF4 siRNA or control (Ctl) siRNA, and treated with 1 mM pitavastatin for 4 hours. Fold induction is the representation of a log2 fold change to
standardize the induction rate. Whole clustering analysis (A) using 384 selected genes that had significant changes in expression compared to control
treatment were selected (See the details in Methods). The cluster shown in (B) contains the genes induced by pitavastatin and suppressed with siKLF4.
Note that NOS3 and THBD are included in addition to KLF4. These genes are indicated with red arrows. KLF2 is shown by black arrow. The cluster
shown in (C) includes the genes reduced pitavastatin treatment and induced with siKLF4. The sequences of the applied siRNA are shown in Table S2A
in File S1.
doi:10.1371/journal.pone.0096005.g001
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and the frequency with which this takes place is related to

transcriptional activity. To test whether this gain of interaction

between the newly identified enhancer 2148 kb upstream of KLF4

and the promoter region contributes to KLF4 induction by statins,

and to evaluate the relative conformational distance, we

performed two different kinds of chromosome conformation

capture (3C) based experiments. First, to test whether the distal

enhancer directly communicates with the promoter region, we

performed whole genome chromatin interaction analysis with

paired end tag sequencing (ChIA-PET) [16] using the same

elongating Pol II antibody shown in Figure 3A. As shown in

Figure 3B, direct interaction between the 2148 element and the

promoter region of KLF4 was detected in the serum-starved

control, suggesting this enhancer may co-exist with the promoter

in the Pol II rich transcription complex [17].

Next, to evaluate the effect of statins on the frequency of spatial

proximity between the kb 2148 enhancer and promoter, we

performed quantitative 3C experiments using TaqMan PCR

primers (Methods and Table S2E in File S1). In the DMSO

treated control, the 2148 kb distal element exhibited a higher

frequency than the other regions but a lower frequency than the 2

1 kb region (Fig. 3C, lower column, black arch). However, after

statin treatment, the frequency of spatial proximity between kb 2

148 and TSS increased a further 5 fold (Fig. 3C, lower column, red

arch). To validate the specificity of the assay, the generated PCR

products were all sequenced, and the direct connection between

the TSS of KLF4 and the 2148 kb element was confirmed (Fig. S9

in File S1). Considering these findings together, the KLF4 gene

locus takes a conformation in which the kb 2148 enhancer and

promoter are in close spatial proximity by virtue of Pol II. After

statin treatment, the distal enhancer and promoter come to be

situated close to each other more frequently due to changes in

chromatin conformation caused by the recruitment of more

MEF2C to the KLF4 locus.

3D-FISH confirms the proximity of the KLF4 and MEF2C
binding region that was detected by 3C

To validate chromatin conformation change over a span of

148 kb at the single cell level, two-color-3D-FISH experiments

were performed. As shown in Figure 4A, probes for the KLF4 gene

and the kb 2148 MEF2C binding region were used to visualize the

two regions. The two probes were validated, as shown in Figure

Figure 2. Binding of MEF2C at kb 2148 from the TSS of the KLF4 gene is essential to pitavastatin-mediated KLF4 induction. (A)
HUVECs were incubated with 1 mM pitavastatin for 4 hours. As described in Methods, Chromatin immunoprecipitation was performed followed by
deep sequencing. The localization and magnitude of MEF2C binding in the KLF4 transcription regulation region are illustrated. Two MEF2C binding
sites in the KLF4 locus (298 and 2148 kb, relative to the TSS) were detected by ChIP-seq analysis. The localization of H3K27ac obtained by ChIP-seq is
shown in the third lane. (B) Schematic structure of the transcriptional regulation region of the KLF4 gene. The sequences of the primers used are
shown in Table S2D in File S1. (C) HUVECs were transiently transfected with a KLF4-luc, (298 kb)-KLF4-luc and (2148 kb)-KLF4-luc plasmid together
with the Renilla luciferase plasmid, and were treated with 1 mM pitavastatin for 12 hours. Luciferase activity was measured as described in the
Methods section. Error bars indicate the S.D. (n = 3), *P,0.01 compared with pitavastatin (2), Student’s t test. (D) HUVECs were transiently transfected
with KLF4-luc, wild-type enhancer (2148 kb)-KLF4-luc and (enhancer 2148 kb)-KLF4-luc containing a point mutation in the MEF2 binding element.
Pitavastatin-mediated induction of promoter activity was abolished by mutation of the MEF2C binding site. Error bars indicate the S.D. (n = 3), *P,
0.01 compared with pitavastatin (2), Student’s t test. The Firefly luciferase activity value was normalized by Renilla luciferase activity.
doi:10.1371/journal.pone.0096005.g002
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S10 in File S1. Figure 4B indicates the representative images of

3D-FISH under the two conditions. In DMSO-treated cells, the

TSS and MEF2C bound 2148 kb site were distinguished as two

foci, but after statin treatment, two different kinds of foci were

apparently merged together, indicating that they are in spatial

proximity. In addition to these representational images, we

collected images from more than 70 nuclei in each condition

and statistically analyzed the 3D intergenic distance between the

two target regions to determine whether the proximity changed

with pitavastatin. As shown in Figure 4C, the distance between

TSS and kb 2148 became closer after statin treatment. This result

visually reinforced the finding of chromatin conformational

change caused by pitavastatin that was detected using the 3C

assay actually took place on an individual cell basis.

Discussion

HMG-CoA reductase inhibitors (statins) exert certain beneficial

effects, especially a reduction of the plasma cholesterol levels.

Various reports have also suggested that direct effect on vascular

wall activity might also contribute to the atheroprotectiveness of

the statins [4]. In this report, we focused on endothelial cells and

performed comprehensive gene expression analysis using pitavas-

tatin, one of the clinically used statins [3]. As shown in Figure 1A,

the transcription factor, KLF4 was the most highly induced gene.

KLF family members are reported to exert anti-atherogenic

effects in both in vivo and in vitro models [18] [19]. Among the

genes induced (Figure 1B), certain atheroprotective genes,

including NOS3, THBD and a disintegrin and metalloproteinase

with thrombospondin motif 1 (ADAMTS1), were identified [20]. In

addition, the genes specifically suppressed by pitavastatin were also

identified and the most reduced gene was the inflammatory

mediator chemokine (C–C motif) ligand 2 (CCL2) (Figure 1C).

These results are in accord with the previous notion that KLF4 is

beneficial to vascular cells due to both an induction of anti-

atherogenic genes and suppression of inflammatory mediators

[19].

The signaling cascade elicited by statin treatment that exerts an

effect on KLF4 induction is not well understood, although a few

critical pathways have been reported [6,11,21,22]. The MEK5/

ERK5/MEF2C pathway was shown to participate in the mainte-

nance of the vascular network [23,24,25] and some of the

regulatory elements in the induction of KLF4 have been reported

[5,11]. In general, and as was reported in HeLa cells [26], three of

four MEF2 family members, MEF2A, -2C and -2D, are expressed

in ECs. While there was no vascular phenotype reported for

MEF2D-deficient mice [27], the reported vascular insufficiency in

MEF2C-deficient mice suggests an essential role for MEF2C [25].

A mutation of MEF2A was also reported in an inherited disorder

with features of coronary artery disease [28], suggesting its

participation in endothelial function. While the importance of

Figure 3. The frequency of direct interaction between the kb 2148 enhancer and promoter in the KLF4 locus was affected by
pitavastatin treatment. HUVECs were harvested and cultivated as described in the Methods section. (A) The localization of active Pol II obtained by
ChIP-seq. The black arrow shows the MEF2C binding site identified by ChIP-seq. (B) A ChIA-PET library was constructed and sequenced. From the TSS
of KLF4, 15 PETs originated and 13 of them interacted with a locus 2148 kb upstream of the TSS, which result is identical with the MEF2C binding site
observed by ChIP-seq and validated by luciferase assay in Figure 2. The numbers in the middle indicate the location on chromosome 9 using the
hg19 build program. (C) Quantitative 3C assay. HUVECs were incubated with 1 mM pitavastatin for 4 hours. Primers were designed for analyzing the
crosslink frequency of the regions connected with the arches. The relative frequencies were compared between DMSO control (black arch) and statin
treatment (red arch). The sequences of the primers are shown in Table S2E in File S1. The data (mean 6 SD) is representative of three independent
experiments with similar results. Note that the interaction between the TSS and kb 2148 was increased by statin treatment.
doi:10.1371/journal.pone.0096005.g003
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MEF2C was demonstrated in this report, the relative importance

and the interactions of the MEF2 family members involved in

statin-dependent KLF4 induction await further elucidation.

MEF2C binding sites were identified in a whole genome manner

by ChIP-seq, and inducible MEF2C recruitment in the 298 and

2148 kb regions of KLF4 (Fig. 2A, and S7 in File S1) was

observed. By statin treatment, a 1.2-fold increased binding of

MEF2C compared with statin (2) was shown in the kb 2148

region, and there was a 2.0 fold increase compared with statin (2)

for the kb 298 region (Fig. S7 in File S1). The induction rate of 2

148 kb was lower than 298 kb, reporter assay using deletion

mutants showed that the distal binding site at 2148 kb contributes

more than the 298 kb binding site for statin dependent KLF4

induction (Fig. 2B, C), and the MEF2 binding motif in the kb 2148

region is essential (Fig. 2D). Further, considering the co-

localization of the epigenetic enhancer marker H3K27ac

(Fig. 2A), the kb 2148 binding site has a fundamental role as a

distal enhancer. Since MEF2C is reported to exert its activity by

the phosphorylation of Ser387 [29], constitutive binding of

MEF2C in the kb 2148 region might be explained by the

presence of an inactive form prior to pitavastatin treatment.

Further investigation with antibodies that can distinguish between

the phosphorylated and non-phosphorylated forms of MEF2C,

along with a proteomics approach, will ultimately elucidate the

detailed dynamics of pitavastatin-induced MEF2C modification

and binding in the KLF4 locus.

Active transcription is known to associate with chromatin

conformation dynamics, a process that brings enhancers and

promoters into proximity of one another [30]. The presence of the

modified histone, H3K27ac, and the observed changes in

chromatin structure using 3C indicates KLF4 is transcriptionally

regulated by this process. Comprehensive chromatin interaction

analysis by ChIA-PET [31] showed the spatial proximity of the kb

2148 enhancer with the KLF4 promoter (Fig. 3B), supporting the

notion that direct MEF2C binding to the distal enhancer

participates in chromatin loop formation. The effects on chroma-

tin conformation by statins were evaluated by TaqMan-3C assay

(Fig. 3C), and the spatial proximity of the promoter and kb 2148

enhancer was increased. This observation in millions of cells was

confirmed by 3D-FISH (Fig. 4B, and C) in single cells. Since the

induction of the loop formation has a relationship with transcrip-

tion complex recruitment efficiency [15], this conformational

change may mechanistically contribute to KLF4 induction.

Indirect binding of MEF2C to the kb 298 site might be explained

by an unidentified binding factor, such as a transcription factor or

histone modifier that is active after statin treatment, because there

was no MEF2C-binding motif in the region (Fig. 2A). However,

another possibility may be that the kb 298 region was brought

Figure 4. 3D-FISH confirms the proximity of KLF4 and the MEF2C binding region detected by 3C. HUVECs were incubated with 1 mM
pitavastatin for 4 hours. (A) Probe design for the two-color 3D-FISH analysis of the target region on human chromosome 9q31.2. The numbers in the
middle indicate the location on chromosome 9 using the hg19 build program. (B) Visualization of two-color 3D-FISH on structurally preserved HUVEC
nuclei and an image of the 3D distance. FISH with probes K (red) and M (green) showing the KLF4 gene and MEF2C binding region, respectively.
Nuclei were counterstained with TOPRO-3 (blue). 3D reconstruction was carried out on the captured image with Imaris software. The left panel shows
the representative image of HUVECs with DMSO and the right panel shows the representative image of HUVECs with statin treatment. Magnified
views of each probe sets are shown on top of the whole images. (C) The distance between the KLF4 gene and MEF2C binding region for each
condition. The distance was measured using the 3D image processing and analysis software CTMS (Chromosome Territory Measurement Software)
(Cybernet Co. Ltd.). 70 chromosomes were analyzed and all of the data are shown in this figure. The average distances between the KLF4 gene and
MEF2C binding region are 0.45 mm with DMSO and 0.38 mm with the statin. P,0.05 compared with pitavastatin (2), Wilcoxon rank-sum test.
doi:10.1371/journal.pone.0096005.g004
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adjacent to the promoter by the increased amount of MEF2C

bound to the 2148 kb enhancer (Fig. 2A and S7 in File S1).

Elucidation of the detailed mechanism of MEF2C binding to the 2

98 kb region will bring about a deeper understanding of statin-

related chromatin conformation dynamics.

In summary, a novel MEF2C binding site central to KLF4

induction was identified in the kb 2148 region, and this site

directly interacts with the promoter region of KLF4, despite the

long intervening distance in terms of genome sequence. Chroma-

tin interaction analysis and 3D-FISH showed that drug-responsive

chromatin conformation change was one of the mechanisms

involved in gene induction induced by statins. Further investiga-

tion involving a greater number of loci affected by statin treatment

through ChIA-PET analyses in combination with 3D-FISH would

help elucidate the role of chromatin dynamics in the response to

statins.

Methods

Cell culture
Human umbilical vein endothelial cells (HUVECs) (Lonza,

Basel, Switzerland) were cultured in EGM2MV medium (Lonza),

and cells were cultured at 37uC in 5% CO2. HUVECs were used

within the first 6 passages. For the experimental studies, HUVECs

were cultivated in EGM2MV medium containing pitavastatin at a

concentration of 1 mM.

Compounds
Pitavastatin was supplied by Nissan Chemical industries (Tokyo,

Japan).

Animal model
C57BL/6J ApoE2/2 mice were purchased from Jackson

Laboratory (Bar Harbor, ME). The animal room was controlled at

23 6 3uC and a relative humidity of 50 6 20%. Body weight was

measured at the time of drug administration. Eight-week-old

ApoE deficient mice (n = 12 for each group) were treated for 12

weeks with vehicle alone or pitavastatin at 3mg/kg/treatment with

a normal chow diet (CLEA Japan Inc., Tokyo, Japan). The mice

were fed twice a day with vehicle or pitavastatin. The mice were

anesthetized with an intraperitoneal injection of pentobarbital

sodium (50 mg/kg body wt; Kyoritsu Seiyaku,Tokyo, Japan) and

the aortae were isolated. All of the aortae were homogenized with

ISOGEN solution and the RNA extracted. Total RNA was

extracted with a commercially available RNA extraction kit. To

determine the levels of expression of Klf4, Thbd, Nos3 and b-actin,

real-time quantitative PCR was performed. Regarding Figure S3

in File S1, determination of the plasma cholesterol levels was

performed using a commercially available kit (Cholesterol E-Test

Wako; Wako Pure Chemical Industries, Osaka, Japan). For

histological analyses, after obtaining blood samples from each

apoE-KO mouse, 0.9% NaCl was perfused for 5 min through a

20-G injection needle inserted into the left ventricle at a perfusion

pressure of 120 cmH2O. The same procedure was repeated for

5 min with periodate-lysine-paraformaldehyde (PLP) fixative

solution. The heart and aorta were removed rapidly and fixed in

PLP fixative solution. Thereafter, the aortic sinus was dissected

and embedded in paraffin, and 3-mm cross sections were prepared

for Victoria blue-HE staining. The internal elastic lamina was

identified under light microscopy (BX50; Olympus, Tokyo, Japan)

after Victoria blue-HE staining, and quantification of the plaque

lesions was performed using image analysis (Win ROOF; Mitani

Co., Tokyo, Japan). All animal experiments were performed in the

KOWA company and they were approved by Animal Ethics

Committee of Kowa Company.

Measurement of the pitavastatin concentration in mouse
plasma (LC/MS/MS)

An Agilent 1100 system consisting of a degasser, a binary pump,

an ALS thermostat, a column compartment set at 30 uC (Agilent

Technologies, Santa Clara, CA, USA), an autosampler HTC-PAL

set at 20 uC (CTC Analytics, Zwingen, Switzerland) and a TSQ

Quantum triple quadrupole mass spectrometry (Thermo Fisher

Scientific, Waltham, MA, USA) were used for the LC/MS/MS

analysis. Data acquisition and quantification were performed using

LCquan (Ver 1.3, Thermo Fisher Scientific). Each mouse was

orally administrated pitavastatin once, and the serum average

Cmax concentration of 3 mg/kg pitavastatin was 0.26 mM. A

sample was extracted from mouse plasma and added to internal

standard solution (IS) [32] using liquid-liquid extraction. Pitavas-

tatin and IS were separated on a C8 column with a mobile phase

that consisted of acetic acid/methanol (4:6, v/v). Pitavastatin and

IS were detected by LC/MS/MS with positive electrospray

ionization (ESI). The mass spectrometer was operated in multiple

reaction monitoring (MRM) mode using the transition m/z 422–

290 for pitavastatin and m/z 406–318.1 for IS, respectively. The

standard curve was 6 points (2,200 ng/mL) and all samples were

included in a standard range.

Gene knock-down by siRNA
Life Technologies negative control siRNA were transfected with

lipofectamine 2000 RNAiMAX (Life Technologies/Thermo Fisher

Quantitative real-time PCR
RNA was isolated from cells using Isogen reagent (Wako,

Osaka, Japan) according to the manufacturer’s protocol. Real-time

quantitative PCR was performed on a CFX96 detection system

(Bio-Rad, Hercules, CA, USA) using TaqMan and SYBR green.

The sequences of the applied primers for Human KLF4, THBD,

NOS3 and cyclophilin are shown in Table S2B in File S1. The

TaqMan probes and primers for Mouse Klf4, Thbd and Nos3 were

purchased from Life Technologies/Thermo Fisher Scientific.

Western blotting
Protein samples were separated by 10% SDS-PAGE and

transferred electrophoretically onto nitrocellulose membranes

(Hybond-C; GE Healthcare UK Ltd., Buckinghamshire, En-

gland). Membranes were blocked with 5% (wt/vol) non-fat milk in

PBS containing 0.1% Tween for 1 hour, incubated with antibod-

ies for 1 hour and detected by chemiluminescence using West

Dura extended duration substrate (Thermo Fisher Scientific,

Waltham, MA, USA) according to the manufacturer’s protocol.

Antibodies
Antibodies recognizing b-actin and a-tubulin (Sigma, St. Louis,

MO, USA) as well as MEF2D and nucleoporin p-62 (BD, Franklin

Lakes, NJ, USA) were purchased products. Monoclonal antibodies

for human MEF2A, MEF2C, KLF2 and KLF4 were established

with a baculovirus expression system, as described previously [33].

Briefly, mouse IgG mouse monoclonal antibodies against amino

acids (aa) 318–404 of human MEF2A (IgG-Y0841), (aa) 161–248

of human MEF2C (IgG-Y1740), (aa) 2–34 of human KLF2 (IgG-

N2212) and (aa) 26–90 of human KLF4 (IgG-Y6929) were
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generated. The recognition of MEF2A by Y0841, MEF2C by

Y1740, KLF2 by N2212 or KLF4 by Y6929 was confirmed by

immunoblotting using HUVEC proteins. The specificity of these

antibodies was confirmed by the reduction of the protein levels

using siRNA (Fig. S4 and S5 in File S1). Mouse monoclonal

antibody (clone Pd75C9) directed against phosphorylated RNA

polymerase II was generated by immunizing mice using a synthetic

peptide [SY1S2P3T4 (phospho-S)5P6 (phospho-S)Y7SPTSP-

SYSPC] (Sigma-Genosys) coupled to keyhole limpet hemocyanin,

and the specificity was evaluated by ELISA and immunoblotting,

as described in Fig. S8A and B in File S1. [14]

Comprehensive gene expression analysis
HUVECs were incubated with 1 mM of pitavastatin or DMSO

for 4 hours. In this report, we identified genes consistently induced

by 4 hour pitavastatin treatment because pitavastatin increased

KLF4 starting at 2 hours and reached a plateau in 6 hours (Fig.

S2A in File S1). 4 hours of pitavastatin treatment suggested an

early phase statin reaction elicited by one of the clinically used

statins. The effect on KLF4 induction by pitavastatin was achieved

starting at 0.1 mM and the maximal effect was observed at 1 mM

(Fig. S11 in File S1). Therefore, we adopted this concentration in

the experiments. We performed the same experiments five times

independently for pitavastatin-treatment experiments to eliminate

batch-specific differences in drug responsiveness and two times

independently for the knockdown experiments. Microarray

analyses with siRNA against Control and KLF4 under 1 mM

pitavastatin treatment were performed twice independently. Total

cellular RNA was isolated using an RNeasy Micro kit (Qiagen).

Preparation of the cRNA and hybridization of the probe arrays

were performed according to the manufacturer’s instructions

(Affymetrix, Santa Clara, CA). Affymetrix GeneChip Human

Genome U133 plus 2.0 arrays containing 54,675 probe sets were

applied. The expression values for each mRNA were obtained by

the Robust Multi-array Analysis (RMA) method [34,35]. Then the

probe sets were classified on the basis of the expression (20.0–

100.0) percentile. The probe sets that were expressed at lower than

the 20th percentile in all the fourteen arrays were eliminated from

the analyses (49,463 probe sets). To analyze expression data based

on the gene-level, intensity signal values were summarized using

Entrez Gene ID and then averaged (30,344 probe sets). After

excluding probe sets which did not have gene symbols, the

remaining 20,756 genes were used for further analyses. To identify

the genes receiving treatment which had significant changes in

expression compared to control treatment, the following selection

procedures were performed. Gene expression under pitavastatin

treatment was compared with DMSO and gene expression with

siRNA against KLF4 was compared with siControl, then the genes

which had a fold change. = 2.0 or , = 0.5 in either comparison

were selected (384 genes) (Figure S1 in File S1). Hierarchical

clustering analysis was performed using the average linkage and

Pearson correlation as a measure of similarity for the selected

genes (Fig. 1). All analysis was performed with GeneSpring GX

12.5 (Agilent Technologies, Santa Clara, CA). Annotation of the

probe numbers and targeted sequences are shown on the

Affymetrix web page.

Chromatin Immunoprecipitation (ChIP)
The detailed experimental procedure for chromatin immuno-

precipitation followed by deep sequencing is described elsewhere

[15,36,37]. Briefly, 36106 HUVEC cells were plated on a 15 cm

culture plate and cultivated for 3 days. They were treated with

pitavastatin at a concentration of 1 mM for 4 hours and cells were

crosslinked for 10 min using 1% paraformaldehyde. After

neutralization using 0.2 M Glycine solution, cells were recollected

and resuspended in SDS lysis buffer (10 mM Tris-HCl (pH 8.0),

150 mM NaCl, 1% SDS, 1 mM EDTA). Cell suspensions,

including the DNA-protein complexes, were subjected to frag-

mentation using a Sonifier-250 (Branson) for 10 min. MEF2C-

bound chromatin was isolated from whole cell lysate using an

established mouse monoclonal antibody to MEF2C in combination

with magnetic beads (Life Technologies/Thermo Fisher 

DNA was quantified using Qubit

fluorometer (Life Technologies/Thermo Fisher Scientific) and

more than 10 ng of DNA were processed for ChIP-seq. The

remaining DNA was used for ChIP-quantitative PCR (qPCR).

Primer pairs for ChIP-PCR are shown in Table S2C in File S1.

ChIP sequencing
All of the protocols for Illumina/Solexa sequencing preparation,

sequencing and quality control were provided by Illumina (http://

www.illumina.com/pages.ilmn?ID = 203) [38].

Plasmids, transient transfections and luciferase assays
KLF4 promoter fragments were amplified by PCR using

genomic DNA from HEK293 as the template. For construction

of the KLF4-luc plasmid, the human KLF4 promoter was cloned

into a pGL3-basic vector (Promega, Madison, WI, USA). Primer

pairs for construction of KLF4 promoters are shown in Table S2D

in File S1. HUVECs were transiently transfected with plasmid

DNA using the Fugene HD reagent (Roche, Mannheim,

Germany) and luciferase activity was measured with a dual-

luciferase assay kit (Promega) according to the manufacturer’s

instructions.

Chromatin interaction analysis with paired-end tag
sequencing (ChIA-PET)

Briefly, HUVECs were cultivated and serum starved for 16 hrs.

The prepared cells in culture plates were crosslinked using

ethylene glycol bis (succinimidylsuccinate) (EGS) (Thermo, USA)

at a concentration of 10 mM in 50% glacial acetic acid for 45 min,

followed by crosslinking with 1% of paraformaldehyde (TAAB,

UK), then neutralized by 2.5 M glycine for 5 min. The harvested

cell suspension was sonicated with a Branson sonifier for 4 min

40 sec. Chromatin immunoprecipitation was performed using an

antibody for Pol II (Pd75C9) using magnetic beads (Life

Technologies/Thermo Fisher Scientifc). The detailed library

construction procedures and the sequences of the half-linkers were

previouslyreported[31].In brief,ChIP-DNAfragments immobilized

onmagneticbeadswere end-blunted, then ligated with biotinylated

half-linkers. After phosphate group addition to the 5 -ends, the9

chromatin complex was eluted from the beads, followed by

circularization. The circularizedproducts were reverse cross-linked

and purified, then digested with Mme I restriction enzyme, which

recognizes the half-linker embedded motif. The generated PET

products, which contain the full linker in the center and are

surrounded 20 base- specific nucleotides at both ends, were

immobilized on M-280 Streptavidin Dynabeads (Life Technologies

to the immobilized PET, and the PET products were amplified

as well as quality-controlled using PCR with the Solexa-454

primer [31], then processed by di-tag sequencing using GAII

(Illumina). The obtained sequence tags were processed as

described previously [16].

Chromosome Conformation Capture (3C) Assay
The assay was performed utilizing TaqMan 3C Chromosome

Conformation Kits (Hind III; cat. #4466152) (Life Technologies)

according to the manufacturer’s instructions with certain modifi-
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cations. Briefly, HUVECs were cross-linked with 1% paraformal-

dehyde for 10 min. The reaction was stopped by the addition of

125 mM glycine for 5 min. Nuclei were re-suspended with

restriction enzyme buffer. Samples were treated with 400 U of

Hind III at 37uC for 16 hours. After enzymatic digestion, the

samples were diluted with ligation buffer and treated with DNA

ligase at 16uC for 1 hour. Samples were finally reverse cross-linked

and purified. Two human bacterial artificial chromosome (BAC)

clones (RP11-150J11, RP11-359L14) were used to normalize the

levels of 3C products which may have been PCR-amplified with

different primer efficiencies, as mentioned previously [39].

Two-color 3D fluorescence in situ hybridization (3D-FISH)
and probe detection

Two BAC clones covering the target regions (the KLF4 gene and

the MEF2C binding enhancer) were selected based on a genome

database (The UCSC Genome Browser on Human Feb. 2009

(GRCh37/hg19) Assembly). The BAC clones were purchased

from Advanced GenoTechs Co. (Tsukuba, Japan) and used as

probes. Probe K includes the KLF4 gene (RP11-80F13) while

probe M includes the MEF2C binding region (RP11-359L14)

(Figs. 3A and S10A and L in File S1). Both of the Probes K and M

were labeled using a nick translation kit (Roche) with Dig-11-

dUTP and DNP-11-dUTP, respectively, according to the manu-

facturer’s protocol, to measure gene-to-gene distances on each

homologous chromosome 9. Approximately 0.125 mg of labeled

DNA from each probe was used for each hybridization. 3D-FISH

and probe detection were performed according to the protocols

described elsewhere with slight modifications [40,41]. The probe

labeled DNAs of the two target regions and Cot-1 DNA (which is

used to block repeating elements in order to prevent non-specific

hybridization) were mixed and subjected to ethanol precipitation,

and then resuspended in hybridization solution (50% formamide

and 10% dextran sulfate in 26Saline Sodium Citrate Buffer

(SSC)). The probes were pre-denatured at 80.5uC for 6 min and

placed on ice for 1 min. Denatured probes were applied to the

coverslips on which cells were fixed, covered with smaller

coverslips (18618 mm), and sealed. The coverslip specimens were

denatured at 74uC for 4 min, and hybridization was performed in

a moist chamber at 37uC for 3 days. After hybridization, the

specimens were washed twice in 26SSC at room temperature for

5 min, three times in 0.16 SSC at 60uC for 5 min each and

blocked with 5% BSA in 4xSSC with 0.2% Tween-20. Immuno-

fluorescence detection was then performed throughout the layers

with antibodies diluted to 1:200 (1st layer: mouse-anti-Dig and

rabbit-anti-DNP, 2nd layer: sheep-anti-mouse-Cy3 and goat-anti-

rabbit-Alexa488). Nuclear DNA was counterstained with TO-

PRO-3 (Molecular Probes) and the slides were mounted in

Vectashield Antifade (Vector).

Confocal microscopic Imaging
Nuclei were scanned with a three-channel laser-scanning

confocal microscope (LSM510META; Carl Zeiss Co., Ltd.)

equipped with a Plan-Apochromat 636/1.4 Oil DIC objective

lens. For each optical section, images were collected sequentially

for three fluorochromes (Alexa488, Cy3, and TOPRO-3) using

multi-argon (458/477/488/514 nm) and helium-neon (543/

633 nm) lasers. To improve the signal-to-noise ratio, each

sectional image obtained was an average of eight successive scans.

The z-step between sections was 0.2 mm. Stacks of 12-bit gray

scale two-dimensional images were obtained with 5126512 pixels

in each channel. Confocal image stacks were processed with

microscope operating software (LSM5; Carl ZeissMicroImaging

GmbH) and saved as LSM files. More than 50 nuclear images

were captured from each of the cellular materials. Nuclei from

cultured cells with singlet-singlet signals were adopted for

calculation as in the G1 phase of the cell cycle, but with

doublet-doublet or singlet-doublet signals for each probe, which

were suspected of being in the S or G2 phase, were not selected for

capture. The representative 3D-images shown in Figure 4B were

processed and reconstructed with Imaris 7.5 (Bitplane Scientific

Software).

Quantitative 3D evaluation
The image stacks were 3D-reconstructed using the program

AVS/Express version 7.2 and the reasonable thresholds for each

channel were determined by a 3D coordination of the whole

volume of the gene signals. The 3D coordinates of two target

regions in each cell were specified and the shortest distance

between the gravity center of each gene was calculated using 3D

image processing and analysis software CTMS (Chromosome

Territory Measurement Software) (Cybernet Co. Ltd.).

Statistical analysis
Values are reported as the mean 6 standard deviation (SD).

Student’s t-test, Dunnett’s test, or Wilcoxon rank-sum test was

used for comparisons between two groups. Differences were

considered statistically significant when the P-value was less than

0.05.

All of the microarray data files, ChIP-seq data files and ChIA-

PET data file are deposited. The GEO and accession numbers are:

GSE32547, GSE32644, GSE32693, GSE41553.

Supporting Information

File S1 Supporting Information. Figure S1. Flow chart
for microarray analysis. Affymetrix GeneChip Human

Genome U133 plus 2.0 arrays were applied for all analysis. The

analysis was performed with GeneSpring GX 12.5 following the

layout on this flow chart. The details are shown in the Methods

section. Insignificant or unannotated probe data was eliminated at

each step. The number on the right side shows the number of the

remaining probe sets or genes at each step. The 384 selected genes

were used for further analyses in Figure 1 and Table S1 in File S1.

Figure S2. Gene regulation by pitavastatin in HUVECs
and the aortae of Apo-E-deficient mice. (A) HUVECs were

treated with 1 mM pitavastatin for the indicated time. (B) ApoE

deficient mice were orally administered pitavastatin twice daily at

3 mg/kg/treatment for 12 weeks before sacrifice. Total RNA was

isolated and determined by real-time quantitative PCR, as

described in Methods. The sequences of applied primers are shown

in Table S2B in File S1. Vertical lines indicate the S.D. (n = 3 in A,

and n = 12 in B), * P,0.01, ** P,0.001, compared with the

control sample, Dunnett’s test in A and Student’s t test in B.

Figure S3. Histological examination of atherosclerotic
regions in the aortic sinus. Eight-week-old ApoE deficient

mice (n = 12 for each group) were treated twice daily for 12 weeks

with vehicle alone (-) or pitavastatin at 3 mg/kg/treatment (+).

The heart and aorta were removed rapidly and fixed and

embedded in paraffin for Victoria blue-HE staining as described

in Methods. Victoria blue-hematoxylin-eosin staining (A) revealed

the atherosclerotic lesions (arrow). (B) shows the total plasma

cholesterol and triglyceride levels. Note that pitavastatin reduced

the plaque area without changing the plasma cholesterol and

triglyceride levels. The vertical lines indicate the SEM (n = 12), *

P,0.001 compared with the control sample, Student’s t test. n.s.

indicates not significant. Figure S4. Identification of the
MEF2A, MEF2C, KLF2 and KLF4 antibodies. HUVECs
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were incubated with 1 mM pitavastatin for 4 hours. Before

pitavastatin treatment, as described in the Methods section, cells

were transfected with siRNA to KLF2 (A), KLF4 (B), MEF2A (C)

and MEF2C (D). (A, C, and D) The whole cell fraction was

prepared for the Western blotting experiment to detect KLF2,

MEF2A and MEF2C. Beta-actin was used as the internal control.

(B) HUVECs were incubated with 1 mM pitavastatin for 24 hours.

The nuclear extract fraction was prepared for further Western

blotting to detect KLF4. Nucleoporin p62 was used as an internal

control. NS; Non silencing for negative control. Note that loss of

band detection was observable only by treatment specific siRNA,

which demonstrates the specificity of new antibodies. N2212,

Y6929, Y0841, Y1740 are clone numbers for each antibody.

Figure S5. Triple knock down of MEF2A, C and D
reduces KLF2 and KLF4. HUVECs were incubated with 1 mM

pitavastatin for 4 hours. Before the treatment, as described in the

Methods section, cells were transfected with siRNA to MEF2A, -2C

and -2D. A whole cell fraction was prepared for a further Western

blotting experiment to detect KLF2, and a nuclear extract fraction

was prepared for KLF4. Alpha Tubulin and Nucleoporin p62 were

used as the internal controls for the whole cell lysate and nuclear

extract fractions, respectively. NS; Non silencing for negative

control. Figure S6. Localization of the MEF2C binding
sites in HUVECs. HUVECs were incubated with DMSO

[statin(-)]or 1 mM pitavastatin for 4 hours. (A) Chromatin

immunoprecipitation was performed using an MEF2C antibody,

followed by deep sequencing. 4,878 MEF2C binding sites were

detected in the control [pitavastatin (2)]. 42% of the MEF2C

binding sites were located between the TSS and 39UTR of the

genes, while the remaining of 58% were found in intergenic

regions. (B) Co-localization of MEF2C binding sites and H3K27ac

in control [pitavastatin (2)] HUVECs. 25,477 binding sites were

detected using anti-H3K27ac antibody ChIP-seq analysis in the

control [pitavastatin (2)] HUVECs. Among them, 798 binding

sites displayed co-localization of H3K27ac and MEF2C. (C)

Distribution of the MEF2C binding sites in the pitavastatin-treated

HUVECs. 13,030 MEF2C binding sites were detected in the

treated HUVECs; 40% of them were located between the TSS

and 39UTR of the genes, while 60% were located in intergenic

regions. Figure S7. ChIP-qPCR with an anti-MEF2C
antibody against the KLF4 gene. MEF2C Binding sites

detected in the KLF4 upstream region (Figure 2A) were

quantitatively evaluated by ChIP-qPCR. The Kb –147 KLF4

region was used as the negative control. The sequences of the

primers are shown in Table S2C in File S1. Vertical lines indicate

the S.D. (n = 3), *P,0.01, compared with the kb 2147 KLF4,

statin (2), {P,0.01 compared with the kb 298 or kb-148 KLF4,

statin (2), Student’s t test. Figure S8. The specificity of the
Pol II antibody. A newly-developed monoclonal antibody

(Pd75C9) was used to perform ELISA with RNA polymerase II

C-terminal domain peptides containing different phosphorylation

patterns. (A) The list of peptides used for ELISA. Phosphorylated

amino acids are indicated in red. C-terminal repeat of RNA

Polymerase II is comprises from 25 to 52 tandem copies of the

consensus repeat heptad Y1S2P3T4S5P6S7 (Also shown in the right

panel of figure A). And antibodies for a variety of phosphorylated

CTD were raised using 19 AA peptides including phosphorylated

Serine as is depicted. (B) ELISA. Microtiter plates coated with the

peptides (the sequence shown in A) were incubated with 3-fold

dilutions of the monoclonal antibody (starting from a 1:27 dilution

of a hybridoma culture supernatant). After incubation with a

peroxidase-conjugated secondary antibody and washing, the

colorimetric signal of tetramethylbenzidine was detected by

measuring the absorbance at 405 nm (Abs) using a plate reader.

Although Pd75C9 was generated using the Pd peptide to

immunize mice, this clone reacted with all of the phospho-serine

containing peptides, with preference for those containing phospho-

S5 and phosphor-S2, but reacted only slightly with the unpho-

sphorylated peptides. Figure S9. Sequence of the PCR
product generated in the quantitative 3C assay. To

validate the quantitative 3C assay, PCR products were directly

sequenced and identified. The chromatogram shows the sequence

of the target analysis (the fragments including KLF4 and 148 kb

upstream from the TSS of KLF4) under pitavastatin treatment. As

expected, the sequence of the TSS and that of the kb 2148

enhancer were directly connected by a Hind III recognition

sequence, and the measurement of the amount of this PCR

product stands for the frequency of chromatin interaction. Figure
S10. The sensitivity and specificity of the probes. To

validate the probes, BAC clone DNA (RP11-80F13 and RP11-

359L14) was tested for correct chromosomal location at 9q31.2

and the absence of other signals by 2D-FISH, respectively. The

following datafrom (A) to (K) is the detailed information on probe

K and (L) to (Q) is the detailed information of probe M. (A) Probe

design for the 2D-FISH analysis of the target region on human

Chr.9q31.2. The numbers in the middle indicate the location on

Chr.9 using the hg19 build program. Probe K includes the KLF4

gene. Three-color 2D-FISH was carried out by a combination of a

labeled Probe K and human Chr.9 arm-specific painting probes

(courtesy of Prof. Dr. T. Cremer, LMU, Munich). (B) The p arm

of Chr.9 is represented in purple. (C) The q arm of Chr.9

represented in green. (D) Probe K is represented in red. (E)

Nuclear DNA was counterstained with DAPI (49, 6-diamidino-2-

phenylindole) and is shown in blue. The merged image with all of

the colors is shown in (F). Probe K in the interphase is shown in

Figures G to K. All of the combinations of the labeled Probe K

and human Chr.9 p and q arm-specific painting probes were the

same as in B-F. The white arrows indicate the representative

signals of Probe K in the interphase (K). (L) Probe design for the

2D-FISH analysis of the target region on human Chr.9q31.2. The

numbers in the middle indicate the location on Chr.9 using the

hg19 build program. Probe M includes the MEF2C binding

region, which is located 148 kb upstream from the TSS of KLF4.

(M) The q arm of Chr.9 is represented in red. (N) The p arm of

Chr.9 is represented in purple. (O) Probe M is represented in

green. (P) Nuclear DNA was counterstained with DAPI (49, 6-

diamidino-2-phenylindole) and is represented in blue. The merged

image with all of the colors is shown in (Q). The white arrows

indicate the representative signals of Probe M in the metaphase.

The signals in the interphase are shown in the other nuclei. It was

confirmed that the signal of the BAC clone was clearly detected on

the Chr.9q region and absent from the other chromosomes.

Figure S11. Statin effect on KLF4 expression. HUVECs

were treated with pitavastatin at a concentration ranging from

0.01 to 10 mM for 12 hours. Total RNA was isolated and

determined by Real-time quantitative PCR, as described in the

Methods section. The vertical lines indicate the S.D. (n = 3), * P,

0.001, compared with the sample of 0 mM, Dunnett’s test. Table
S1. Table S2.

(PDF)
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