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Abstract

The Asian black bear Ursus thibetanus is widely distributed in Asia and is adapted to broad-
leaved deciduous forests, playing an important ecological role in the natural environment.
Several subspecies of U. thibetanus have been recognized, one of which, the Japanese
black bear, is distributed in the Japanese archipelago. Recent molecular phylogeographic
studies clarified that this subspecies is genetically distantly related to continental subspe-
cies, suggesting an earlier origin. However, the evolutionary relationship between the Japa-
nese and continental subspecies remained unclear. To understand the evolution of the
Asian black bear in relation to geological events such as climatic and transgression-regres-
sion cycles, a reliable time estimation is also essential. To address these issues, we deter-
mined and analyzed the mt-genome of the Japanese subspecies. This indicates that the
Japanese subspecies initially diverged from other Asian black bears in around 1.46Ma. The
Northern continental population (northeast China, Russia, Korean peninsula) subsequently
evolved, relatively recently, from the Southern continental population (southern China and
Southeast Asia). While the Japanese black bear has an early origin, the tMRCAs and the
dynamics of population sizes suggest that it dispersed relatively recently in the main Japa-
nese islands: during the late Middle and Late Pleistocene, probably during or soon after the
extinction of the brown bear in Honshu in the same period. Our estimation that the popula-
tion size of the Japanese subspecies increased rapidly during the Late Pleistocene is the
first evidential signal of a niche exchange between brown bears and black bears in the Jap-
anese main islands.

This interpretation seems plausible but was not corroborated by paleontological evi-
dence that fossil record of the Japanese subspecies limited after the Late Pleistocene. We
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also report here a new fossil record of the oldest Japanese black bear from the Middle Pleis-
tocene, and it supports our new evolutionary hypothesis of the Japanese black bear.

Introduction

The Asian black bear (Ursus thibetanus) is a middle-sized bear that is widely distributed in
Asia, from Japan in the east to Iran in the west. Fossil evidence suggests a broader distribution
area in the past, that extended to Southern Siberia (near Lake Baikal), East Europe (Moldova)
and West Europe (Germany and France) [1-3].

While U. thibetanus is adapted to broad-leaved deciduous forests [1,4], it is omnivorous,
and the Japanese population, in particular, depends more on vegetation than meat [1]. On the
other hand, these bears are more aggressive than the American black bear (U. americanus) and
the Old World brown bear (U. arctos), and they sometimes kill animals such as cattle, sheep,
ponies and occasionally humans [4]. In spite of their ecological importance, little is known
about the evolutionary history of U. thibetanus.

U. thibetanus is classified into several subspecies [2,5,6] and, according to Steinmetz and
Garshelis [7], can be divided into three extant populations. The first population occupies all
continental Southeast Asian countries except Malaysia, and is also found in patches in southern
China. This population also has narrow latitudinal distribution from southeastern Iran east-
ward through Central Asia (Pakistan and Afghanistan), and the foothills of the Himalayas. The
second population is distributed in northeastern China, the southern Russian Far East, and
into North Korea, as well as South Korea. The third population is found in the Japanese Islands
including Honshu, Shikoku and Kyushu, but the local population in Kyushu has probably gone
extinct [8]. We refer to these populations as the south continental population, the north conti-
nental population and the Japanese population, respectively.

Recent molecular phylogeographic analyses have clarified that the Japanese population is
genetically distant from the two continental populations, and suggested its earlier origin [8,9].
Subsequently, to evaluate the genetic diversity of the continental population, Kim et al. [10]
extensively collected samples both from the north and the south continental population (the
latter from Vietnam) and reconstructed a phylogenetic tree that included the Japanese popula-
tion. Their resulting tree indicated that the north continental population and the Japanese pop-
ulation evolved relatively recently from the south continental population.

Despite these studies, evolutionary time estimates for Asian black bear populations are still
controversial. For example, the divergence time between the Japanese and continental popula-
tion (both north and south) has been estimated as around 0.5 Ma (Mega annum) [9] and 1.4-
2.6 Ma [8]. Both studies used divergence times at the genus (Ursus) level as calibration points:
Yasukochi et al. [9] assumed that the split between U. arctos and U. spelaeus was 1.2 Ma based
on the estimate in a previous study [11] using D-loop sequences, while Ohnishi et al. [8]
assumed that the split between U. thibetanus and U. americanus occurred at 2.0 to 3.5 Ma,
based on fossil records [12]. However, as will be discussed later, the suitability of these calibra-
tions needs to be carefully examined.

To understand the evolution of the Asian black bear in relation to geological events such as
climatic and sea-level changes, with transgression-regression cycles, reliable dating is essential.
To address this issue, we determined and analyzed the mitochondrial genome sequence of an
Asian black bear from the Japanese population (Japanese black bear; Ursus thibetanus japoni-
cus). In previous studies, divergence times were estimated from cytochrome b [9] or D-loop
sequences [8]. However, time estimation on the basis of D-loop sequence is often difficult
because of the underestimation of internal branch lengths (particularly of those near the root)
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caused by multiple substitutions at the same sites, especially in hyper-variable regions [13]. In
addition, longer sequences provide a smaller standard error [14] and a more robust estimate
[15].

It is important to note that divergence times within the family Ursidae are still controversial.
For example, two studies [16,17] estimated divergence times on the assumption that the giant
panda (Ailuropoda melanoreuca) separated from the other bears around 12 Ma, based on fossil
evidence [18,19]. The estimates of divergence times among the genus Ursus were from the Late
Pliocene to the Pleistocene (2~3 Ma) [16, 17]. On the other hand, Arnason et al. [20] estimated
the divergence time between A. melanoreuca and the other ursids to be 30 Ma, and the diver-
gence times of the genus Ursus to be in the Late Miocene (6~8 Ma). These discrepancies must
come from a different choice of fossil records for the divergence time estimates, and depend on
the accuracy of the geological ages of such fossil records. Thus, a more reliable estimation of
divergence times among the Ursidae is needed. In this study, we first estimate the divergence
times of all Ursidae species, in the framework of the whole Carnivoran evolution, with reliable
fossil calibrations and superior molecular evolutionary models. We then estimate the coales-
cent times among U. thibetanus as well as the behavior of the population size over time,
through its history on a geological timescale.

Materials and Methods
2.1 Ethics statement

All of the experimental work involving animals in this study followed the guidelines of the Ani-
mal Experimental Ethics Committee of the School of Advanced Sciences, The Graduate Uni-
versity for Advanced Studies, Japan, and was approved by the Committee.

2.2 Sample and sequencing

A blood sample of Japanese black bear was provided by Asa Zoological Park (Hiroshima,
Japan). This individual was captured in Hiroshima Prefecture. The sample was stored at -20°C
until used. Genomic DNA was extracted by standard phenol-chloroform extraction [21]. The
complete mitochondrial genome sequence was determined using the procedures described by
Nikaido et al. [22]. The nucleotide sequence of the mitochondrial genome of Japanese black
bear determined in this study was deposited in the DDBJ (accession number: AB863014).

2.3 Phylogenetic analysis and divergence time estimation among
Carnivora

Complete mitochondrial genome (mt-genome) sequences of 71 species of Carnivora and one
species of Pholidota were downloaded from GenBank; accession numbers are listed in STA
Table. All 12 protein-coding genes in the heavy strand of mt-genomes were aligned separately
by using MUSCLE program and then concatenated. Start codons, stop codons and overlapping
regions (between ATP6 and ATP8, ND4 and ND4L, and ND5 and ND6) were removed, and the
resulting total sequence length was 10,704 bp. A phylogenetic tree was inferred by RAxML
7.2.8 [23,24] using the GTR+I'+I model [25-27]. The difference among the three codon posi-
tions was taken into account by a partition model.

After tree inference, divergence time was estimated based on the same dataset, using the
MCMCtree program of PAML 4.6 [28] with the codon substitution model [29]. Since the accu-
racy of the branch length estimates is directly related to the divergence time estimations, the
more realistic model was preferred for this analysis. Although the codon substitution model is
inappropriate for a heuristic tree search due to the huge computational burden, the superiority
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of this model compared with standard nucleotide substitution models (e.g., GTR model) and
amino acid substitution models were demonstrated by our previous studies [30, 31]. The selec-
tion of the fossil calibration method is also an important factor in divergence time estimation.
Although several studies simply apply the oldest fossil record of the Ursidae as a calibration
point, fossil records in general do not point to the true time of divergence because the first
stratigraphic appearances of taxa in the fossil records are subject to sporadic sedimentary hia-
tuses due to erosion or to a lack of sedimentation during regression and/or irregular sedimen-
tary processes. Because of these uncertainties, an assumed phylogeny implies such gaps if two
sister taxa have different times of first appearance or if a gap exists between the last appearance
of an inferred ancestor and the first appearance of its inferred descendant [30]. For this reason,
the use of multiple reliable fossil records is preferred for time estimation. The calibration points
derived from fossil records were the same as in our previous studies [30,31].

2.4 Phylogenetic analysis and coalescent time estimation within U.
thibetanus based on the mitochondrial genome

A new dataset, including eight complete mitochondrial genomes of Asian black bears, was used
in this analysis. Accession numbers are listed in S1B Table. The American black bear, brown
bear and sloth bear were used as out-groups. Methods for data preparation and phylogenetic
inference are the same as in Subsection 2.2 except that 12S rRNA and 16S rRNA were also
involved. The GENETREE program ver. 9.0 (http://www.stats.ox.ac.uk/~grift/software.html)
[32] was also used for the inference of genealogy and coalescent times. Since this method
assumes neutrality, only the 3™ codon positions, which are generally regarded as neutrally (or
nearly neutrally) evolving sites, were used. Among 3173 3™-codon position sites, 469 were vari-
able. To make this data set compatible with the infinite site model, sites with multiple substitu-
tions were excluded, and finally 438 sites remained. However, since the GENETREE program
did not work on this data set, probably due to an excessive number of sites, we separated the
data into six fragments and analyzed them one by one.

Hasegawa et al. [33] indicated a higher w ratio (non-synonymous substitution rate/synony-
mous substitution rate) in an intra-species comparison than in an inter-species comparison.
Ho et al. [34] demonstrated the time dependence of the evolutionary rate, and found a higher
evolutionary rate in the short term (<1~2 Myr) and a lower evolutionary rate in the long term
(>1~2 Myr). This is probably due to slightly deleterious mutations that were not completely
swept from the populations over a short evolutionary period. The coalescent times within
Asian black bear were estimated, using synonymous substitution sites that were regarded as
nearly neutral [35]. By applying the estimated divergence times among Carnivora as calibration
points, the coalescent times within Asian black bear were estimated using the MCMCtree pro-
gram with the GTR+I" model [25,26,28].

2.5 Demographic analysis of U. thibetanus based on D-loop data

We downloaded D-loop sequence data that had been determined in previous studies [8,10],
and aligned them together with the D-loop sequences of the mitochondrial genome data listed
in the S1B Table. It should be noted that since the D-loop sequence region of the U. thibetanus
mupinensis (DQ402478) is identified as that of American black bear (data not shown), we did
not use the D-loop sequence of this individual in the following analyses.

We first divided Asian black bears into two populations, namely a Japanese population and
a continental population. As mentioned above, the continental population was also divided
into two populations: the south continental population (Chinese and Vietnamese population)
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and the north Asian continental population (Russian and North Korean population) due to
their geographical distribution pattern [36].

The samples from the continental population comprise 44 individuals: the south continental
population (17 individuals) and the north continental population (26 individuals), and one
individual of unknown locality. The ‘all Asian black bear data set’ (64 individuals) consists of
44 individuals from continental populations and 20 individuals from the Japanese population.

Furthermore, we divided the Japanese population into three sub-populations: the western
sub-population, the eastern sub-population and the southern sub-population [8, 9]. The Japa-
nese population data set consisted of 133 individuals from a western sub-population (60 indi-
viduals), an eastern sub-population (60 individuals), and a southern sub-population (13
individuals).

Phylogenetic relationships were inferred using the ML (maximum likelihood) method and
the median joining (M]) network method [37]. The ML tree was inferred using the RAXML
program with the GTR+I+[" model. Since the D-loop sequences are short and possess homo-
plasy caused by their high substitution rate at limited hypervariable sites, tree inference based
on D-loop data only is not as reliable as inference based on the mt-genome. Therefore, the
binary-backbone was given a priori, as a constraint of the phylogenetic relationships, on the
basis of the result of the mt-genome analysis. The MJ network was inferred using the NET-
WORK program ver. 4.6.11 (http://www.fluxus-engineering.com/sharenet.htm).

Since the strict molecular clock model could not be rejected by a likelihood ratio test, we car-
ried out a new calculation of the evolutionary rate of the D-loop based on 61 Asian black bears
including individuals from the continental population and Japanese population, assuming the
split of U. t. formosanus and others (e.g., U.t. thibetanus, U.t. ussuricus) as 0.51 Ma (the esti-
mated coalescent time in this study, based on the mt-genome data). The evolutionary rate of
the D-loop was found to be 2.69x10™® per site per year. Using this evolutionary rate, the ances-
tral population sizes of Japanese and continental populations were estimated using the BEAST
program ver. 1.7.4 [38] with a Bayesian Skyline Plot method [39]. Watterson’s © [40], the © on
the basis of nucleotide diversity [41], and Tajima’s D [41] were estimated by the DNASP pro-
gram ver. 5.10.01 [42]. In this analysis, all sequence data used by Ohnishi et al. [8] were applied
for the Japanese population.

The reliability of the demographic analysis on the basis of D-loop data seemed to be ques-
tionable because of the short sequence length and homoplasy of the D-loop. With the aim of
addressing this issue, we examined the reliability of the D-loop data for the demographic analy-
sis on the basis of the real and simulated data, and confirmed that the results from the D-loops
and the complete mitochondrial protein coding genes showed essentially the same tendency
(see S1 Text and S1 Fig).

3. Results and Discussion
3.1 Divergence time within the family Ursidae

A ML tree inferred from the complete mitochondrial protein genes is shown in S2 Fig. This
tree topology is in general agreement with previous studies based on mitochondrial genomes
(for Musteloidea [30,43], Otarioidea [31], Phocidae [20,44,45] and Ursidae [42,46]). Diver-
gence times were estimated based on this tree topology except for the assumption of mono-
phyly of the Musteloidea-Pinnipedia [20], and the result is shown in Fig 1 (a magnified view of
the Ursidae is displayed).

The divergence time between Ursinae+Tremarctinae (bears) and Ailuropodinae (giant
panda) was estimated to be 19.6+1.6 Ma. The divergence time between the Ursinae (bears
other than spectacled bear) and Tremarctinae (spectacled bear) was estimated to be 15.0+1.3
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indicated by the shading. Extinct species are marked by a dagger ().
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Ma, and the basal split of the crown Ursinae (genus Ursus) was estimated to be 6.3+0.8 Ma.
These estimates are much younger than those of Arnason et al. [20] and much older than those
of Zhang and Ryder [16], but similar to those of Krause et al. [46].

Interestingly, although no fossil record within the Ursidae was used in the calibration of our
analyses, our estimates are compatible with the known fossil records of Ursidae (Fig 1). The
age of the basal split of the crown taxa should be older than the oldest known record (OKR) of
the crown taxa, and younger than the OKR of the stem taxa [30,47]. The OKR of the crown
Ursidae is Kretzoiarctos beatrix from the Middle Miocene [18] and the OKR of the stem Ursi-
dae is Ballusia elmensis from the Early Miocene (MN 3, 20.5-18.0 Ma [48]). Therefore, the age
of the basal split of the crown Ursidae (divergence time between Ursinae+Tremarctinae and
Ailuropodinae) should be between 12.9 Ma and 20.5 Ma. Our estimate is very close to the older
limit. The timing of the divergence of the genera Tremarctos and Arctodus (7.05 Ma) slightly
predates the first appearance of the OKR of these genera. Our time estimates as well as the
inconsistent pattern of gene tree topologies of the Ursidae [49] suggest that there were rapid
speciation events within the genus Ursus from the Late Miocene to the Pliocene (6.3~2.6 Ma,
this study). The OKR of this genus is also consistent with these timings (MN 14, 5.3-4.2 Ma,
Early Pliocene, [50]). These fossil records suggest that our estimates are reliable.

Krause et al. [46] used the youngest fossil record of the genus Ursavus, which was assumed
to be a direct ancestor of the genus Ursus, as the maximum age of the genus Ursus. However,
there is still room to reconsider this calibration because the phylogenetic position of the genus
Ursavus remains controversial. Ursavus is recognized as a stem taxon for the crown Ursidae,
and not a direct ancestor of the genus Ursus [18, 51]. Also, Ursavus is somewhat heterogeneous,
and recent studies suggest that several species within Ursavus should be transferred to other
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genera [48, 50, 52]. However, at least seven Ursavus species are recognized from Eurasia during
the Middle to Late Miocene [52], and the age of the youngest fossil record of Ursavus (MN 11,
8.7-8.0 Ma, Late Miocene [50]) and time of the basal node of Ursus (6.3+0.8 Ma, this study)
are seemingly concordant. This suggests that the extinction of Ursavus triggered successive spe-
ciations within the genus Ursus.

In addition, the timing of the successive speciations of Ursus (Late Miocene to Pliocene) is
in agreement with the global cooling event starting from the Late Miocene [53]. This suggests
that the spread of savanna and open scrubland [54], and fragmentation of the forests, resulted
in reductions of gene flow among the subpopulations of the common ancestral species of Ursus
and enhanced the rapid speciation of Ursus. As a result, Ursus species received a fundamental
shift of their ecological niches.

Indeed, other Carnivoran families such as Felidae, Mustelidae and Otariidae also show suc-
cessive speciation events during this period [30,31]. However, it is possible that the mecha-
nisms that enhanced the rapid speciation are different for each taxon. In the case of Felidae and
Mustelidae, environmental change may have enhanced their adaptive radiation to grassland
(coevolution with rodents) and acted as a driving force of the speciation as in response to suc-
cessive changes in the food web, which is relevant to the evolution of these families [30]. In the
case of Otariidae, changes in their distribution areas triggered the accidental transit of the bio-
logical barrier, and resulted in the reclamation of distribution areas [31]. In the case of the Ursi-
dae, fragmentation of forests seems to have played a role in vicariance, with the isolation of
each subpopulation resulting in rapid speciation. Inconsistency of the tree topologies among
individual gene loci [49] implies a large ancestral population and successive speciations.

3.2 Genealogy and coalescent times of Asian black bear based on the
mt-genome

The ML tree of eight Asian black bears, as inferred from the complete mitochondrial protein
genes and rRNAs, is shown in S3 Fig The time-calibrated tree is shown in Fig 2. American
black bear (U. americanus), brown bear (U. arctos) and sloth bear (U. ursinus) were used as
out-groups.

The Japanese sub-species (U. thibetanus japonicus) was recognized as the basal split among
the species U. thibetanus in this tree, indicating that the Japanese population is not a direct
descendant of the (extant) continental populations. The fossil record (e.g., the Early Pliocene
fossil from Moldova [3]) suggests that the initial population of Asian black bear dispersed
throughout the Eurasian continent, and it is possible that the Japanese population is a relic of
such an ancient population.

Subsequently, a population represented by the individual FM177759 [46] branched off. The
geographical origin of this individual is unknown. Black bears in the East Asian continent
(China, Korea, Russia) then diversified (the “East Asian continental clade,” which is constituted
from part of the “South continental population” and the entire “North continental population”;
Figs 2, 3 and 4). This species is also distributed in Taiwan (U. thibetanus formosanus). The
black bear from Taiwan is highly nested within the South continental population, but because
only one individual was involved in our analysis, our inclusion of the Taiwanese local popula-
tion as part of the south continental population is tentative. The Korean sub-species (U. thibe-
tanus ussuricus) is also highly nested in this East Asian continental clade, and can be
recognized as the most recently evolved group. Concerning the phylogenetic relationships
among black bears in the East Asian continent, there is an inconsistency between this study
and Choi et al. [55], even though the regions used to establish the nucleotide sequence data sets
in the two studies are almost identical. In our tree, the subspecies U. t. formosanus was placed
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doi:10.1371/journal.pone.0136398.g002

at the basal position of the East Asian continental clade; the Chinese continental sub-species
(U. t. thibetanus, U. t. mupiensis) successively diverged, and finally the Korean subspecies (U. t.
ussuricus) was separated from the former subspecies. In Choi et al.’s tree [55], in contrast, the
subspecies U. t. mupiensis diverged first and then the Korean subspecies (U. t. ussuricus)
evolved; the other Chinese continental subspecies then diversified. The Taiwanese subspecies
(U. t. formosanus) was recognized as the final split. These inconsistencies are probably due to a
rooting problem of the East Asian continental clade. Indeed, except for the position of the root,
our two tree toplogies are identical (if limited to the East Asian continental clade). In contrast
to Choi et al. [55], who used other species (e.g., the American black bear and the brown bear)
as out-groups of the East Asian continental clade, the Japanese subspecies and FM177759
(locality unknown) acted as an out-group in this study. Since an out-group that is closer to the
in-group is preferable, the position of the root in this study seems to be more appropriate.

The genealogy inferred by the coalescent method also shows an identical branching pattern
(Fig 3). Every fragment shows an identical genealogy. Although several nodes were recognized
as multifurcation, due to the lack of mutation sites in some fragments, every node seen in Fig 2
and S3 Fig was supported by at least four fragments out of the six. Since different methods for
the reconstruction of the geneaology (the phylogenetic method and the population genetic
method) support the identical topology, we conclude that the genealogy presented in this study
is robust and reliable.
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Fig 3. Genealogy of eight Asian black bears as inferred from the 3rd codon positions of the complete mitochondrial protein genes using the
GENETREE program. Since the program did not work on the whole data set, probably due to excessive numbers of mutation sites, the whole data set was
separated into six fragments. The dots on the branches indicate the number of mutation sites. The values of py_ (= 2xNefxy; p is the mutation rate per
sequence per generation) and tMRCAs were also estimated by GENETREE. The substitution rate of the 3rd codon positions of mitochondrial protein genes
of Asian black bear was estimated to be 3.03x10~®/site/year (data not shown), and the average mutation rate of each of the six fragments is 5.99x107°/
sequence/generation.

doi:10.1371/journal.pone.0136398.g003

Subsequently, a ML tree and a MJ network were also inferred based on the D-loop sequence
data, and are shown in Fig 4A and 4B, respectively. This analysis includes the individuals from
Southeast Asia. In contrast to Kim et al. [10], the basal position of the Japanese population
among Asian black bears was still supported (85%). Since the binary backbone was applied for
the tree inference, we were able to take advantage of the mitochondrial genome in our analysis.
Therefore, the tree with the Japanese population at its base seems to be more plausible. Individ-
uals from East Asia such as mainland China, Taiwan and Korea were highly nested and inter-
mingled with individuals from Southeast Asia within the East Asian continental clade. From
the criterion of parsimony, the ancestral distribution area of the continental population was
probably Southeast Asia, and groups of individuals from that population migrated into China
multiple times.

The coalescent times of the Asian black bear were estimated based on this tree topology
using synonymous substitution sites of protein-coding genes, and the results are shown in Fig
2 (a magnified view of U. thibetanus is displayed). Since the effect of multiple substitutions at
the synonymous sites was minor at the genus level (S4 Fig), the estimated divergence times
within the genus Ursus were applied as calibration points for coalescent time estimations. The
coalescent time between the Japanese population and the continental population was estimated
to be 1.48+0.67 Ma. GENETREE analysis also yielded a similar result (1.20-1.52 Ma; average,
1.34 Ma). Previous studies addressing coalescent times within the species U. thibetanus yielded
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Fig 4. Phylogenetic relationships among Asian black bears. (a) The ML tree as inferred from the D-loop sequence. Nodal numbers indicate bootstrap
probabilities (rapid bootstrap method with 1000 replications). The binary backbone structure was given a priori on the basis of the mitochondrial genome data
(the phylogenetic relationships on the basis of the mitochondrial genome data are shown in Fig 2). Branch lengths are proportional to the number of
nucleotide substitutions. (b) The median joining network. The circles indicate individual haplotypes, and their sizes are proportional to the frequency of the
haplotypes. The short thick bars on the branches indicate unobserved ancestral haplotypes. In both (a) and (b), individuals from the Japanese population, the
southern continental population (including Taiwan) and the northern continental population are colored yellow, red and light blue, respectively (branches are
colored in (a), and haplotypes in (b)). Since the geographical information of FM177759 is unknown, it is colored black.

doi:10.1371/journal.pone.0136398.g004

contradictory results [8,9]. Our estimate was slightly younger than Ohnishi et al.’s estimates
(2.57-1.42 Ma) [8], and substantially older than Yasukochi et al.'s estimates (0.48-0.67 Ma)
[9]. Ohnishi et al. [8] analyzed D-loop sequences to calculate the coalescent time between the
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Japanese and continental subspecies, using the U. arctos/U. thibetanus speciation as a calibra-
tion point. They assumed rapid speciation events within the genus Ursus at 3.5-2.0 Ma (Late
Pliocene to Early Pleistocene) based on the fossil record [12]. However, Kurtén and Anderson
[56] suggested that the species of this genus arose in the Early Pliocene (5.3-3.5 Ma) in the Old
World. Therefore, calibrations that [8] used were too young; nevertheless, our time estimation
is assuming the speciation within the genus Ursus at 6.3-3.9 Ma, but our estimate was younger
than [8]’s estimates. Since the substitution rate in the D-loop sequence is very high, the effect
of multiple substitutions becomes a serious problem in time estimation at the level of different
species (54 Fig). Accordingly, given that the U. arctos/U. thibetanus separation was used as a
calibration point, coalescent times among the subspecies of U. thibetanus based on D-loop
sequences should have resulted in a gross overestimation (i.e., older estimates) as was the case
in Ohnishi et al.'s analysis [8]. This is why our estimate is younger than [8]’s estimates even
though we used a much older time as a calibration point.

Yasukochi et al. [9] estimated coalescent times among U. thibetanus subspecies assuming a
divergence time between U. spelaeus (cave bear) and U. arctos at 1.2 Ma. This date was esti-
mated by Loreille et al. [11] based on D-loop sequences. However, they indirectly applied the
evolutionary rate of homologous genes in human. The evolutionary rate among different
orders of mammals is sometimes extremely different, and the substitution rate of mitochon-
drial genomes in Primates is high among mammals. Compared with Primates, the mitochon-
drial genomes of Carnivora evolve more slowly [57]. If the evolutionary rate of human
homologous genes is applied, divergence times within the genus Ursus will be underestimated.
In our analysis, the speciation of U. spelaeus and U. arctos was 2.6 Ma (95%CI: 3.39-1.96 Ma),
which was directly estimated in the framework of whole carnivoran evolution using reliable
fossil records. It is about 2.2 times older than [11]’s estimates. Since [9]’s estimation was based
on cytochrome b sequences, in which substitutions are not saturated within the genus Ursus, if
they had applied 2.6 Ma for the U. spelaeus/U. arctos speciation, their estimates would have
been very close to ours.

Moving to the paleontological evidence, the fossil record of the Asian black bear in the Early
Pleistocene is known only in Southeast Asia, but the geographical distribution of U. thibetanus
became much wider in the Middle Pleistocene [58]. The tMRCA (time of the Most Recent
Common Ancestor) of the continental population was estimated to be 0.98 Ma in this study.
The most basal lineage in the continental population was the individual whose mitochondrial
genome was sequenced by Krause et al. [46] (FM177759). Although geographical information
about the individual is unknown, the split of this individual from other subspecies was consid-
erably earlier. The coalescent times among continental subspecies in East Asian regions such as
China, Korea, and Russia (East Asian continental clade) were estimated to be mainly between
0.21-0.52 Ma (Middle Pleistocene), which indicates that within this time period rapid sub-spe-
ciation occurred (the mitochondrial genome of the Asiatic black bear sequenced by Yu et al.
[43] (NC009971) was from China; Dr. Li Yu, personal communication). This is consistent with
the paleogeographical distribution of this species as shown by [58]. In the Middle Pleistocene,
the distribution area of U. thibetanus became considerably more extensive than it is today, and
fossil records have been reported from Southern Siberia, South and North Europe, and the
middle Urals [2]. Successive splits of multiple mitochondrial lineages in this age seem to be cor-
related with the geographical expansion of this species.

3.3tMRCA and population size of the Asian black bear

The tMRCAs and the dynamics of population sizes of all Asian black bears, namely the conti-
nental populations and the Japanese population, were estimated on the basis of mitochondrial
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D-loop data using the BEAST program, and the results are shown in Fig 5. As mentioned
above, the Japanese population was divided into three sub-populations following [8]: Western
sub-population, Eastern sub-population and Southern sub-population. The tMRCAs and the
dynamics of population sizes of the three Japanese sub-populations were also estimated (S5
Fig). The y-axes of Fig 5 and S5 Fig are equal to Nef x t (the effective female population size
times the generation length in years). Female Japanese black bears attain physiological puberty
at 4 years [1]. Since the Nef x t of Japanese black bears was estimated to be about 370,000, the
effective population size of the current Japanese black bear population is 185,000, assuming
equal numbers of females and males. Although the actual size of the current Japanese black
bear population is unknown, it is roughly estimated to be 13,000~21,000 [59]. However, con-
sidering 1,500 to 2,500 Japanese black bears are killed every year [1], the estimate of
13,000~21,000 individuals should be considered as a minimal estimation.

The tMRCA of all Asian black bears was estimated to be 1.00 Ma (95% CI: 1.32-0.73Ma).
This is younger than the coalescent time of Asian black bears inferred from mitochondrial
genome data (1.48+0.67 Ma), probably due to an underestimation of the numbers of multiple
substitutions (especially transitions) of D-loop sequences in deep branches (data not shown).
The tMRCAs of continental populations were estimated to be 0.70 Ma (95%CI: 0.94-0.49Ma)
and that of the Japanese population was estimated to be 0.10 Ma (95%CI: 0.19-0.04 Ma).
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Fig 5. Dynamics of the population sizes and tMRCAs of all Asian black bears, the Japanese population and the continental population. (a)
Dynamics of the population sizes estimated by Bayesian Skyline Plot analysis. The y-axes indicates the effective population size x generation intervals, and
the x-axes indicate the time in years before present. (b) Posterior distributions of the tMRCAs. The times of formation of land bridges before the oldest record
of the Japanese black bear (337-330 Kilo annum) are indicated by shaded bars, following Dobson and Kawamura [60] and Rohling et al. [63] with
recalibrations by Lisiecki and Raymo [67]. The shading around the lines indicates 95% confidence interval of effective population size for each time point.

doi:10.1371/journal.pone.0136398.g005
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Notably, the tMRCA of the Japanese population is only 1/10 of the tMRCAs of all Asian black
bears. In addition, no fossil evidence of the Japanese population is known prior to the Late
Pleistocene [1,58,60] (although unpublished fossil data from N. Kohno are discussed below). It
is thus likely that although the Japanese population is placed as the basal lineage among all
other populations of U. thibetanus (Figs 2-4), the following two hypotheses are possible. (1)
The animals dispersed into the Japanese Archipelago relatively recently (i.e., during the Late
Pleistocene), or (2) they migrated earlier (the Early to Middle Pleistocene) and experienced
recent population growth.

Although we cannot exclude the possibility of a recent migration event (Late Pleistocene)
for the Japanese black bear, an old migration and recent population expansion may be a more
plausible hypothesis. A possible explanation of the discrepancy between their distinctive old
split from the continental population in the Early Pleistocene and their potential recent
tMRCA of the population in the Japanese main islands (i.e., Honshu, Shikoku and Kyushu)
after the late Middle Pleistocene may be the re-dispersal of a partially restricted population of
Japanese black bears into the newly emerged ecological empty space caused by the reduction
and extinction of the brown bear (U. arctos) population; an exotic larger species in the Pleisto-
cene of Honshu exploited the same resources in a similar manner. According to [61, 62], the
Pleistocene mammalian fauna of the Japanese main islands included the brown bear until the
Late Pleistocene. Their possible reduction in the late Middle Pleistocene and extinction in the
Late Pleistocene might have been the result of fragmentation of forests in Honshu, and might
have resulted in an abrupt emergence of an empty niche for the Japanese black bear after the
late Middle Pleistocene in the Japanese main islands. The population sizes of all Asian black
bears (comprising continental and Japanese populations) increased slightly after the last glacial
period. The Japanese population expanded considerably throughout the late Middle to the Late
Pleistocene (Fig 5, Table 1). This scenario also supports “the old migration and recent popula-
tion growth" hypothesis.

Although paleontological evidence does not show the bears' precise migratory history
[1,58, 60], phylogeographically there are at least three possible migration routes from the
Asian continent to the Japanese archipelago, and particularly Honshu. The first is the Sibe-
ria-Sakhalin-Hokkaido route via the Mamiya Strait (between Siberia and Sakhalin), the Soya
Strait (between Sakhalin and Hokkaido), and the Tsugaru Strait (between Hokkaido and
Honshu). The second possibility is the Ryukyu archipelago route, and the third is the Korean

Table 1. Summary Statistics for the demography.

population N om ow Tajima'sD*
All 64 0.02423 0.02354 0.037314
continent 44 0.02019 0.01981 -1.11146
Southern Continent 17 0.0202 0.01972 -0.63669
Northern Continent 26 0.00296 0.00296 -1.19211
Japan 760 0.00979 0.00957 -1.33351
Western Japan 130 0.00386 0.00386 0.77907
Eastern Japan 617 0.0068 0.00657 -1.39115
Southern Japan 13 0.0031 0.0031 0.71469

N: numbers of the samples

Om: Theta based on the nucleotide diversity

Ow: Waterson's theta

*All of them were not significant in this study (p-values> 0.1)

doi:10.1371/journal.pone.0136398.1001
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Fig 6. Middle Pleistocene black bear from Japan with a comparison of the left upper second molars (M2) among bears. 1, Middle Pleistocene (ca.
337-330 Kilo annum, MIS 9 [68]) black bear, Ursus thibetanus subsp. indet., from Aomori Prefecture, northern Japan (NMNS-PV 22666). 2, Extant Japanese
black bear, Ursus thibetanus japonicus, from Nagano Prefecture, central Japan (NMNS-PO 52). 3, Extant Tibetan black bear, Ursus thibetanus thibetanus,
from Thailand (NMNS-PO 207). 4, Extant Hokkaido brown bear, Ursus arctos yesoensis, from Hokkaido, northern Japan (NMNS-PO 208). The black bears
share a combination of M2 characters such as a relatively large metacone (as large as the paracone), a distinct constriction between the paracone and the
metacone, and a less developed posterior talon. In contrast, the brown bear has a smaller metacone relative to the paracone, a less distinct constriction
between the two cusps, and a well developed posterior talon in M2. These comparisons suggest that the tooth of Middle Pleistocene Japanese black bear is
closer in size and shape to the teeth of continental black bears than it is to extant Japanese black bears, but it is far from the brown bears.

doi:10.1371/journal.pone.0136398.g006

Peninsula to Honshu+Kyushu route via the Korean and Tsushima Straits. Since the Japanese
population of Asian black bears is distributed only in the Japanese main islands, and no
extant population or fossils have ever been found in Hokkaido or Ryukyu, the first and sec-
ond possible routes are unlikely. It is also known that the Tsugaru and Tsushima Straits did
not form land bridges during the Last Glacial Maximum (LGM) period in the Late Pleisto-
cene [63]. Therefore, the Korean Peninsula-Japanese main islands route also seems unlikely
for the migration of Japanese black bears during the LGM. This means that the Japanese
black bear appeared in the Japanese Islands before their population expansion during the late
Middle and Late Pleistocene. Taruno [64] and Takahashi [65] suggested the possibility that a
transient land bridge formed between the Asian continent and Japanese Archipelago during
the Early Pleistocene (1.2-1.0 Ma [66, 67]) and the Middle Pleistocene (0.678-0.621 Ma and
0.478-0.424 Ma [66, 67]). The timing of the occurrence of this land bridge in the Early Pleis-
tocene is consistent with the divergence time between the Japanese and continental subspe-
cies (the tMRCA of all Asian black bears).

Without fossil evidence of the existence of the Japanese black bear in the Japanese Archipel-
ago in the Early and Middle Pleistocene, it was difficult to claim that the ancient population of
the Japanese subspecies had lived there before the Late Pleistocene and that they migrated from
the continent during the late Early to the Middle Pleistocene, by passing such a land bridge.
However, the recent discovery of a Japanese black bear fossil from the late Middle Pleistocene
(MIS 9 or about 337 Kilo annum [68]) in Aomori Prefecture (Fig 6) demonstrated that the
Asian black bear lived at least in Honshu by the late Middle Pleistocene before the population
expansion of the Japanese black bear in the Late Pleistocene in the Japanese Islands. In this
regard, the existence of the brown bear [1,58,60] in Honshu might have confined the Japanese
black bear to restricted areas (e.g., mountains) in Honshu during the Middle Pleistocene. As
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mentioned above, the Japanese population depends more on vegetation than meat compared
with the continental population [1]. It is possible that the high dietary dependence on vegeta-
tion in the Japanese population was an adaptation to avoid competition with the brown bear.
After the reduction and extinction of the brown bear, which accords with the reduction and/or
fragmentation of forests and resultant extinction of large herbivores, the ecological niche of
brown bear in Honshu was evidently replaced by the Japanese black bear, whose population
subsequently expanded to the east and south in the Japanese main islands.

To date, Japanese-type mitochondrial haplotypes have not been reported from the continent
(e.g., [10]). After the ancestral population of the Japanese black bear migrated from the conti-
nent to the Japanese Archipelago, probably via the Korean Peninsula in the Early to the Middle
Pleistocene glacial period, they became extinct or were drastically reduced on the continent,
especially in Northern Asia. The Japanese Islands may therefore have been a refugium for the
ancestral Asian black bear. Any of the ancestral population remaining in North Asia may have
been replaced by the newly evolved subspecies ussuricus in the Middle Pleistocene. However,
since genetic data from the continental population are very limited (only 44 individuals from
four countries), more extensive analysis of the continental population, focusing both on geo-
graphical variation and on numbers of individuals, will shed further light on the enigmatic his-
tory of the Asian black bear.

Supporting Information

S1 Fig. Dynamics of the population of the protein coding genes (about 10 kbp) and D-loop
(about 500 bp) on the basis of real and simulated nucleotide sequence data. The dynamics
of the population sizes estimated by Bayesian Skyline Plot analysis are shown. Vertical axes
indicate the effective population size x generation intervals; horizontal axes indicate time in
years before present. The shading around the lines indicates 95% confidence interval of effec-
tive population size of each time point.

(PDEF)

S2 Fig. The ML tree of 71 Carnivora and 1 Pholidota as inferred from the complete mito-
chondrial protein genes. Numbers at nodes indicate bootstrap probability (BP) in % (1000
replications). Branch lengths are proportional to the number of nucleotide substitutions.
(PDF)

S3 Fig. The ML tree of eight Asian black bears as inferred from the complete mitochondrial
protein genes and rRNAs. Numbers at nodes indicate BP in % (1000 replications). Branch
lengths are proportional to the number of nucleotide substitutions.
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S4 Fig. Saturation plot analysis of the synonymous and non-synonymous sites of mitochon-
drial protein coding genes and D-loop sequence within Ursus thibetanus and among spe-
cies of the genus Ursus.

(PDF)

S5 Fig. Dynamics of the population sizes and tMRCAs of the Japanese population, and its
three constituent subpopulations (a) Dynamics of the population sizes estimated by Bayes-
ian Skyline Plot analysis. Vertical axis indicates the effective population size x generation
intervals. Horizontal axis indicates the time in years before present. (b) Posterior distributions
of the tMRCAs.
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