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Abstract1

Understanding the processes that underlie the species diversity and abun-2

dance in a community is a fundamental issue in community ecology. While3

the species abundance distributions (SADs) of various natural communities4

may be well explained by Hubbell’s neutral model, it has been repeatedly5

pointed out that Hubbell’s SAD-fitting approach lacks power to detect the6

effects of non-neutral factors such as niche differentiation, but our under-7

standing on its quantitative effect is limited. Here, we conducted extensive8

simulations to quantitatively evaluate the performance of the SAD-fitting9

method and other recently developed tests. For the simulations, we devel-10

oped a new niche model that incorporates both random stochastic demog-11

raphy of individuals and non-random replacements of individuals, i.e. niche12

differentiation. It allows us to explore situations with various degrees of niche13

differentiation. We found that niche differentiation has strong effects on the14

SAD and the number of species in the community under this model. We15

then examined the performance of neutrality tests including Hubbell’s SAD-16

fitting method using the extensive simulations. It was demonstrated that all17

these tests have relatively poor performance except for the cases with very18

strong niche-structure, as has been pointed out by previous studies. This19

should be because two important parameters in Hubbell’s model are usu-20

ally unknown, and are commonly estimated from the data to be tested. To21

demonstrate this point, we showed that the precise estimation of the two22

parameters substantially improved the performance of these neutrality tests,23

indicating that poor performance of neutrality tests can be caused by over-24

fitting of Hubbell’s neutral model with unrealistic parameters. Our results25
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emphasize the importance of accurate parameter estimation, which should26

be estimated from data independent from the local community to be tested.27
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Exact test; Lognormal; Logseries; Model fitting; (#3-1)Neutral theory;29
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Introduction31

Ecological communities in nature comprise complex consortia of species32

with intricate structure; in a tropical forest, for instance, over a thousand33

tree species co-exist in one area (Condit et al., 2006). One of the major34

aims in community ecology is to understand the processes that underlie the35

species diversity and abundance in a community (Tilman, 1982; Lande et al.,36

2003). Community ecologists have developed a number of models to explore37

community structure, and the fit of these models to empirical community38

data have been examined. The species abundance distribution (SAD) is a39

basic metric to describe the relative abundance of species in a community, and40

observed SADs were often used for testing these theoretical models (Fisher41

et al., 1943; Preston, 1948; Tokeshi, 1990; Hubbell, 2001; Ulrich et al., 2010;42

Locey and White, 2013).43

Two major categories of theories have been developed to explain the data44

of community structure; the niche theory incorporates deterministic factors45

such as inter-species competition and niche differentiation while some models46

allow stochastic (random) process. The other is the neutral theory, which47

considers random drift as the major player in community composition with-48

out including any deterministic factor. Traditionally, deterministic factors49

have been considered to play a major role to shape the species composition50

and diversity in a community (Tilman, 1982; Tokeshi, 1990, 1992; Chesson,51

2000; Sugihara et al., 2003). Niche theories assume that each species in a com-52

munity would be specialized to particular combinations of resources through53

inter-species competition (Westoby et al., 2002). This competition involves54

a number of deterministic factors including tradeoffs, and as a consequence,55
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it drives interaction between species, thereby resulting in the co-existence of56

multiple species at equilibrium. Niche models are widely accepted because57

there are a number of field observations exhibiting clear evidence for niche58

differentiation (Wright, 2002). In addition, theories under niche models pre-59

dicts that SAD should be approximated by a lognormal distribution, and this60

prediction is consistent with many field observations (Tilman, 1982; Tokeshi,61

1990, 1992; Sugihara et al., 2003; Harpole and Tilman, 2006).62

On the other hand, the neutral theories have also been advocated in the63

last decade. Caswell (1976) firstly introduced three neutral models into ecol-64

ogy but they were not well accepted in the 20th century because they failed65

to provide a good fit to data from to natural communities. Hubbell’s neu-66

tral model (Hubbell, 2001) changed the situation; as the model was found to67

provide a good fit to a wide range of empirical observations. His model as-68

sumes that all individuals are ecologically or functionally equivalent, i.e., no69

difference in reproduction and mortality among individuals. Thus, the com-70

position of a local community is determined only by stochastic extinction,71

local birth and dispersal from the nested metacommunity with random speci-72

ation. (#3-4)This process is elegantly summarized by only three parameters,73

the fundamental diversity number (θ), the migration rate (m) from the meta-74

community to the local community and the number of individuals in the local75

community (J), and the shape of the expected SAD in the local community76

can be characterized by a function of θ, m and J . (#3-3) The distribution77

derived from the neutral model is so-called zero-sum multinomial distribu-78

tion. This very simple model can be considered to be one of the most strict79

forms of neutral models with a number of simplified assumptions.80
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Despite these strict assumptions, the fit of Hubbell’s neutral model to81

field data seems to be quite good; SADs from a wide range of communities82

were very well explained by Hubbell’s neutral model (e.g., tropical forests83

(Etienne, 2005; Volkov et al., 2007), fishes (Etienne and Olff, 2005), and84

birds (He, 2005)).85

This good performance of Hubbell’s neutral model is particularly surpris-86

ing because (i) it provides a good fit to data from tropical forests (Etienne,87

2005; Volkov et al., 2007), in which it has been believed that niche differen-88

tiation would be the major force to maintain high species diversity (Wright,89

2002), (ii) Hubbell’s neutral model sometimes shows a better fit (particu-90

larly in the abundance of rare species) than those predicted by deterministic91

models (Volkov et al., 2005; He, 2005).92

The historical reason behind the rise of Hubbell’s neutral model was93

partly because of the increase of sample size. When SAD was typically94

obtained from a small number of individuals from a community, such a SAD95

was well-fitted by a lognormal distribution (Preston, 1948) or even a logseries96

distribution (Fisher et al., 1943). Preston (1948, 1962) firstly predicted that97

if the sample size of a community was large enough, a SAD would be a sym-98

metric distribution, i.e., lognormal. However, the situation has changed when99

community data with a large sample size in a closed community became avail-100

able, e.g., 50-ha forest dynamics plots of Smithsonian tropical research insti-101

tute. It was found that such SADs are negatively skewed with a large excess102

of rare species over the prediction made by the lognormal model. Hubbell’s103

neutral model fitted to these rare species better and thus the model became104

popular even though assumptions of the underlying theory were difficult to105
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accept for some ecologists. His model has been used as a first null model106

to be tested, which was formally suggested in a recent review by Alonso107

et al. (2006) (but see Gotelli and McGill, 2006). Meanwhile, lognormal and108

logseries distributions became alternative SADs that represent some non-109

neutral process as already demonstrated by theoretical studies (May, 1975;110

Sugihara, 1980; Engen and Lande, 1996; Magurran, 2004).111

There has been a great deal of debate on the interpretation of the good-fit112

of Hubbell’s neutral model. As it is obvious that Hubbell’s neutral model113

cannot be the exclusive explanation, his neutral model has been challenged by114

a number of authors. Several studies demonstrated that non-neutral models115

fit to observed SADs better than Hubbell’s neutral model, e.g., in grass-116

land communities (Harpole and Tilman, 2006), coral reefs (Dornelas et al.,117

2006), tropical forests (Etienne, 2005), aphids (He, 2005) and fishes (He,118

2005). Technical problems in the interpretation of fitting Hubbell’s neutral119

model to field data have been debated so far. One is that Hubbell’s neutral120

model is so flexible that it can predict SADs that are generated by non-121

neutral models (Adler et al., 2007; Chave, 2004; Bell, 2005; Chisholm and122

Pacala, 2010). This is because Hubbell’s neutral model predicts the SAD in123

the local community of interest conditional on θ and m, which are usually124

unknown. Therefore, in the fitting process, θ and m are conventionally es-125

timated from the data of the “local” community to be tested. As these two126

estimated parameters are optimized to the local community, it is not sur-127

prising that Hubbell’s neutral model often fits the observed SAD. Consistent128

with this intuitive understanding, there are a number of theoretical reports129

demonstrating that non-neutral models can predict very similar patterns of130
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SAD and other summary statistics to those expected under Hubbell’s neutral131

model. For example, Chisholm and Pacala (2010) have recently presented132

an analytical framework to prove that niche-structure could predict a similar133

pattern of SADs of neutral communities (see also Purves and Pacala, 2005).134

Together with other demonstrations under various conditions, the consen-135

sus seems to be that niche and neutral models can generate similar patterns136

if parameters are adjusted (Adler et al., 2007; Chave, 2004; Volkov et al.,137

2005; Bell, 2005). It is therefore apparent that the major problem is that the138

SAD-fitting approach of Hubbell’s neutral model (2001) likely misses the sig-139

nature of non-neutral factors. Thus, it is clear that the SAD-fitting generally140

has low power to reject neutrality, as has been pointed out repeatedly (Adler141

et al., 2007; Chave, 2004; Bell, 2005; Chisholm and Pacala, 2010; Clark, 2012;142

Rosindell et al., 2012), but there has not been a systematic likelihood-based143

quantitative test of this. For example, Chave et al. (2002) visually compared144

SADs generated from neutral and niche models, but they did not provide145

statistical tests of the neutral model.146

Motivated by this problem in the SAD-fitting approach of Hubbell’s neu-147

tral model, other kinds of statistical methods have recently been developed.148

One is the “exact test” proposed by Etienne (2007). The idea is based on149

Fisher’s exact test, and similar tests150

hlare also introduced in population genetics by Slatkin (1994; 1996) (see also151

Innan et al., 2005). It should be noted that one cannot expect the “exact”152

performance of this test because it also requires estimated values of θ and153

m (Etienne, 2007), so that the same problem as the SAD-fitting still re-154

mains. Furthermore, because the “exact” computation of the probabilities of155

8



all possible patterns of species abundance is not computationally feasible, it156

employs approximate treatments using likelihood.157

Another approach to fit the neutral model is summary statistic-based158

tests similar to Watterson’s homozygosity test in population genetics. Shan-159

non’s index in ecology is essentially identical to homozygosity in population160

genetics. Jabot and Chave (2011) developed a statistical test, to examine if161

the observed Shannon’s index is consistent with a null distribution predicted162

by Hubbell’s neutral model conditional on the number of observed species.163

Again, it requires estimated values of θ and m. Because these tests are rela-164

tively new and their applications to real field data are still limited, it is also165

unclear how they perform under what conditions.166

The main aim of this work is to evaluate the performance of these neutral-167

ity tests quantitatively by extensive simulations. For this purpose, we first168

develop a simple niche model, which incorporates stochastic demography.169

The advantage of this model is that it has a parameter, p, which represents170

the degree of niche differentiation. p is given by the closed interval [0,1]; when171

p = 1, the model is identical to Hubbell’s neutral model, and as p decreases,172

the degree of niche differentiation becomes stronger. In the extreme case with173

p = 0, it is assumed that each niche can be occupied by only one particular174

species. This idea of niche differentiation is similar to some of the previous175

studies(Gravel et al., 2006; Tilman, 2004); their models consider a stochastic176

process of death and birth, in which each species is assumed to have a prefer-177

ence to a specific environment, i.e., niche. As with our model, these models178

have a parameter to determine the degree of niche overlap among species.179

Thus, with this type of neutral-niche model, we can quantitatively assess180
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the relationship between the degree of niche differentiation (i.e., p) and the181

performance of various neutrality tests.182

In this work, by performing extensive simulations with p changing from183

1 to 0, we explore the performance of various neutrality tests. We include184

Hubbell’s SAD-fitting approach (Hubbell, 2001), Etienne’s exact test (Eti-185

enne, 2007) and summary statistic-based tests, including those using Shan-186

non’s index (Jabot and Chave, 2011). In addition, we also develop similar187

tests using other summary statistics, and their performances are compared188

in various conditions. We also discuss the possibility of more powerful ap-189

proaches.190

191

Model192

(#3-2) Our model is spatially implicit and we focus on the species abun-193

dance in a local community, while the spatially explicit neutral SAD models194

have been developed recently (Rosindell et al., 2008; Matthews and Whit-195

taker, 2014). It is assumed that there is a metacommunity that provides196

a source of individuals for the local community. Let the metacommunity197

consist of JM individuals while there are J individuals in the local commu-198

nity constantly. It is usually assumed that the size of the metacommunity is199

several orders of magnitude larger than the size of the local community.200

Hubbell’s Neutral Model201

As our niche model is very similar to Hubbell’s neutral model (Hubbell,202

2001). except for one process, we first explain how a local community can203

be simulated under Hubbell’s neutral model (Hubbell, 2001). Here, assumed204

10



that we can count the number of individuals in a local community in the205

field, so we fix J . Thus, we consider that the neutral model has only two pa-206

rameters, θ and m. Each simulation run can be described with the following207

steps.208

209

(i) Create the metacommunity: The diversity and relative abundance of210

species in the metacommunity are pre-determined by the composite parame-211

ter θ that is referred as the "fundamental biodiversity number" (θ = v
1−v

(JM−212

1), where v is the probability of speciation per birth). The configuration of213

the metacommunity is governed by Ewens sampling formula (Ewens, 1972)214

and its SAD follows a logseries distribution (Hubbell, 2001). For theoretical215

details, see Etienne and Alonso (2007). Under a given value of θ, a random216

configuration of the metacommunity with JM individuals can be obtained by217

following Hubbell’s method (2001) (see Appendix for detailed algorithms).218

Let SM be the total number of species in the simulated metacommunity. This219

configuration of the metacommunity will be fixed in the following steps for220

simulating the local community.221

222

(ii) Create the initial local community: The initial state of the local223

community with J cells is randomly created. That is, all J cells are filled224

by randomly choosing individuals from the metacommunity. Conditional on225

this initial state, the dynamics of local community can be simulated forward226

in time.227

228
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(iii) Simulate the dynamics of the local community: Simulate the229

dynamics of the local community by randomly replacing individuals in the230

local community. The simulation can be performed by repeating a number231

of small time steps. At each time step, individuals die at a given mortality232

rate (all individuals have equal susceptibility to mortality). Empty cells due233

to deaths are randomly recolonized by immigrants from the metacommunity234

with probability m and by offspring of the remaining local community mem-235

bers with probability 1−m. Thus, there are no empty cells because a death236

is always replaced by either a birth or an immigrant (i.e., the "zero-sum dy-237

namics" are applied). This demographic stochasticity is called "ecological238

drift"(Hubbell, 2001). Another important assumption is ecological equiva-239

lence among species or individuals, i.e., all individuals have equal mortality240

rates, equal fecundities, and equal probabilities of their offspring taking over241

the cell on which they land, regardless of the previous occupant of the cell.242

243

(iv) Evaluate the configuration of the local community: The final244

simulation result of the local community is obtained by repeating 20,000245

time steps. Then, the diversity and relative abundance of species in the local246

community can be evaluated.247

248

Niche Model249

In our niche model, we modify steps (ii) and (iii) of Hubbell’s neutral250

model to incorporate the effect of niche differentiation in the local community.251

252
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(ii) Create the initial local community: It is assumed that there are253

N different niches in the local community. Each cell in the local community254

belongs to one of the N niches, and the number of cells in each niche is255

determined by a multinomial distribution with parameters ( 1
N
, 1
N
, 1
N
, . . . 1

N
).256

N is determined such that it does not exceed the total number of species in257

the metacommunity, SM , which was given in the previous step (i). qi,j is the258

parameter to specify the property of the ith niche (i = 1, 2, 3, . . . N), which259

is determined such that qi,j = 1 if the ith niche allows the jth species to260

occupy, otherwise qi,j = 0. Therefore, property of niche adaptation of of the261

entire local community is described by a N × SM matrix denoted by M :262

M =



q1,1 q1,2 q1,3 q1,4 q1,5 · · · q1,SM

q2,1 q2,2 q2,3 q2,4 q2,5 · · · q2,SM

q3,1 q3,2 q3,3 q3,4 q3,5 · · · q3,SM

q4,1 q4,2 q4,3 q4,4 q4,5 · · · q4,SM

q5,1 q5,2 q5,3 q5,4 q5,5 · · · q5,SM

...
...

...
...

...
...

...

qN,1 qN,2 qN,3 qN,4 qN,5 · · · qN,SM


(1)

We here introduce a parameter, p, which characterize the overall niche-263

specificity. Let us first consider the most strict niche differentiation case264

with p = 0, in which we assume that there is a one-by-one relationship be-265

tween niche and species. That is, the ith niche can be occupied only by the266
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ith species, so that the matrix is given by267

M|p=0 =



1 0 0 0 0 · · · 0 · · · 0

0 1 0 0 0 · · · 0 · · · 0

0 0 1 0 0 · · · 0 · · · 0

0 0 0 1 0 · · · 0 · · · 0

0 0 0 0 1 · · · 0 · · · 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 · · · 1 · · · 0


(2)

We here define qi,i = 1 (i = 1, 2, 3, . . . N) for convenience, so that the remain-268

ing species (from species N + 1 to SM) cannot survive in any niche in the269

local community.270

On the other hand, in the other extreme case with p = 1, it is assumed271

that all niches can be occupied by any of the SM species, so that M|p=1 is272

given by273

M|p=1 =



1 1 1 1 1 · · · 1

1 1 1 1 1 · · · 1

1 1 1 1 1 · · · 1

1 1 1 1 1 · · · 1

1 1 1 1 1 · · · 1
...

...
...

...
...

...
...

1 1 1 1 1 · · · 1


(3)

We here consider an intermediate case, where p represents the expected274

proportion of species that can occupy a niche. Let us define q̄i as the pro-275
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portion of species that be accepted in the ith niche:276

q̄i =

SM∑
j=1,i ̸=j

qi,j
SM − 1

. (4)

Then, M|p is given such that277

E(q̄i) = p (5)

holds for all rows.278

For a simulation given a specified value of p, we can construct a random279

matrix M|p by defining a certain function for q̄i. Any function should work,280

and we here use a beta function Beta(1, b), where b is adjusted so that the281

mean of Beta(1, b) is p (For example, b = 1 given if p = 0.5). A beta distri-282

bution provides a relatively wide range of values between 0 and 1, so that the283

local community can consist of variety of niches, from strong to weak niches,284

with an intermediate p. Let q′i be a random value from Beta(1, b). Then, Qi,285

the number of species that are able to survive in the ith niche, follows a bino-286

mial distribution, Binom(SM−1, q′i). With Qi, vector {qi,1, qi,2, qi,3, . . . qi,SM
}287

can be constructed as follows. First, qi,i = 1 is given as defined. Next, Qi288

columns are randomly chosen from the remaining SM columns. By using this289

method, all row of the matrix M can be determined.290

The initial state of the local community can be created once this matrix291

M is specified. Note that, as stated earlier, it is already determined which292

cells in the local community belong to which niches. With this setting, each293

of the J empty cells is filled by the following procedure. For a cell that294

belongs to the ith niche,295

I, Pick a random individual from the metacommunity. Let j be the species296

number of the chosen individual.297
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II, Fill the cell if qi,j = 1, otherwise go to [I]. Continue until this cell is298

filled.299

This initial setting is fixed through the following forward simulation of the300

local community. The configuration of the metacommunity is also fixed.301

(iii) Simulate the dynamics of the local community: Simulate the302

dynamics of the local community by randomly replacing individuals in the303

local community. At each time step, individuals die at a given mortality rate,304

and empty cells due to deaths are randomly recolonized by new individuals.305

This process is similar to that for constructing the initial local community.306

That is, if an empty cell belongs to the ith niche,307

I, Determine if the next individual to fill this cell is whether an immigrant308

from the metacommunity or a local birth within the local community.309

If the former case is chose with probability m, go to [II], otherwise go310

to [III].311

II, Pick a random individual from the metacommunity. Let j be the species312

number of the chosen individual. Fill the cell if qi,j = 1, otherwise313

repeat this step until the cell is filled.314

III, Pick a random individual from the local community. Let j be the315

species number of the chosen individual. Fill the cell if qi,j = 1, oth-316

erwise repeat this step until the cell is filled. It should be noted that317

although very rare, there could be situations where this procedure does318

not work because any of all other individuals in the local community319

cannot survive in this niche (i.e., qi,j = 0 for all individuals in the local320
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community). In such a case, the cell may be filled by an immigrant321

from the metacommunity. That is, go to [II].322

Simulations323

In our simulation, we assume J=10,000, and JM=10,000,000. A single324

run of simulation consists of 20,000 time steps with a mortality rate of 1%325

per step, which are based on previous studies of neutral models in tropi-326

cal forest (Condit et al., 2006). We set θ = 50 and m = 0.1, which are very327

close to the estimates in tropical forests under neutral model (Etienne, 2005).328

We consider five different numbers of niches, N = {1, 5, 10, 100, Nmax}, where329

Nmax is the potentially maximum number of niches, which is identical to SM .330

Note that SM is a variable that is determined by θ and JM . For example, if331

θ = 50 and JM=10,000,000 are given, SM would be an integer around 650.332

Suppose SM is randomly determined to be 652 in step (i), then we assumed333

Nmax = 652 when we analyzed the result of this replication. This treatment334

is commonly used in the previous neutral model simulation studies (Hubbell,335

2001). For p, we used four values, p = {0, 0.1, 0.5, 0.8}, in addition to the336

completely neutral case, p = 1. In this work, simulations were performed for337

all pairs of these values of p and N , except for (p,N) = (0, 1) because this338

is obviously a meaningless parameter set, i.e., the case where the community339

is composed of only one species with 10,000 individuals.340

Model selection341

A common approach to test Hubbell’s neutral model is to compare the342

goodness-of-fit between the neutral model and other alternative models, e.g.,343

by using AIC (Akaike’s Information Criterion Akaike (1973)). A lognormal344

distribution (Preston, 1948) and a logseries distribution (Fisher et al., 1943)345
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have been commonly used to represent non-neutral cases. We also include346

our niche model as an alternative, so that we select the best fit model among347

Hubbell’s neutral model v.s. the three non-neutral models, i.e., it represents348

lognormal, logseries and our niche models. We below explain how these four349

models are fit to an observed SAD, which is generated by simulations as350

described in the previous section. Note that AIC can be suitable for model351

selection among nested models (i.e., simpler cases are special cases of more352

complex models) although it is commonly used in ecology to compare non-353

nested models (Johnson and Omland, 2004). In this sense, our niche model354

is one of very few alternative models in which Hubbell’s neutral model is355

nested. Therefore, it is possible to statistically compare these two models356

with the AIC approach, or with more sophisticated likelihood-based methods357

(see the Discussion for more details). Nevertheless, in order to include all358

three alternative models, we here use the conventional AIC-based approach359

(i.e., non-nested cases).360

To evaluate the performance of this model selection approach, we simu-361

lated a large number of SADs under our niche model, and investigated which362

model is selected for each SAD. In practice, given a simulated SAD, the four363

models were fitted and the maximum log-likelihoods were computed. Al-364

though there are a number of methods and software to estimate the best-fit365

parameters, in this work, it was needed to modify them in order to make a366

statistically fair comparison of the likelihoods for the four models. Because367

it is not possible to obtain a reliable expected SAD under our niche model368

(particularly for very rare abundance due to a lack of analytical expression),369

we had to use a binned SAD (see below for details). Therefore, to be consis-370
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tent, the likelihoods for all four models were computed for a binned SAD. In371

practice, we employed Preston’s method (Preston’s octave)(Preston, 1948)372

for creating a log2-based binned SAD, and the log likelihood was computed373

as374

LL =
∑
r

{nrlog(
Er

S
)} (6)

where nr and Er are the observed number of species and the expected number375

of species in the rth abundance bin, respectively. S is the total number of376

species. The expected SAD can be computed either analytically or by a377

simulation using the estimated parameter in each model (see below for each378

model). We searched the parameter set that maximizes the likelihood for379

all four models. In the following, we detail this process for each of the four380

models.381

Hubbell’s neutral model: Under Hubbell’s neutral model, the expected382

binned SAD is given as a function of θ and m (J is assumed to be known here).383

Because there is no adequate analytical expressions of SAD (but see Volkov384

et al., 2003), for a pair of θ and m, the expected binned SAD was obtained385

by averaging over 100 independent artificial species-abundance configurations386

by using the program of Etienne (2007).387

The best-fit parameters were searched in wide parameter ranges: θ =388

{1, 2, 3, . . . , 300} and m = {0.05, 0.1, 0.15, . . . , 1} using the likelihood func-389

tion:390

LL′ =
∑
r

{nrlog(
Er

nr

)− [Er − nr]} (7)

(Kempton and Taylor, 1974; Hubbell, 2001). We confirmed that the best-fit391

19



θ and m are almost identical to their maximum likelihood estimates obtained392

by using the method based on the Ewens sampling formula implemented by393

Etienne (2005). Using the best-fit parameter set, the likelihood of the binned394

SAD was re-calculated by (6) for subsequent model selection.395

Niche model: This model has four parameters, θ, m, N and p. For a396

parameter set, the expected binned SAD was obtained by averaging over 100397

independently simulated SADs (20,000 time steps for each replication. see the398

Niche Model section for details), and the best-fit parameters set was searched399

by (7) in wide ranges of the four parameters: θ = {1, 2, 3, . . . , 300}, m =400

{0.05, 0.1, 0.15, . . . , 1}, N = {1, 5, 10, 100, Nmax} and p = {0(N ̸=1), 0.1, 0.5, 0.8}.401

Using the best-fit parameter set, the likelihood of the binned SAD was cal-402

culated by (6) for model selection.403

Lognormal function: It has traditionally been known that there are occa-404

sions in which SAD can be well approximated by a lognormal distribution,405

for example in a community under many ecological factors or a community406

with multidimensional resource utilization (May, 1975; Magurran, 2004). A407

lognormal distribution can be specified by with two parameters, the mean408

and variance. To fit a lognormal distribution to an observed SAD, it is needed409

to search for the best-fit parameters. To do so, it is common to use a SAD410

binned in Preston’s octave (O’Hara and Oksanen, 2003), to which a gener-411

alized linear regression model with a standard lognormal distribution or a412

Poisson lognormal distribution is fitted. (#3-5) Here, we employ a standard413

lognormal because it shows a better fit to our model than a Poisson lognor-414

mal. It is known that this method provides the identical estimates to the415

maximum likelihood method. After estimating the mean and variance of the416
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lognormal distribution, we computed the log-likelihood of the binned SAD417

by (6).418

Logseries function: A logseries distribution could approximate a typ-419

ical SAD in (i) a community where the dynamics is simply dominated by420

one/a few ecological factors, (ii) a community where dominant species pre-421

empt the major part of the limited resource or (iii) a community that is422

not in equilibrium (May, 1975; Magurran, 2004). It should be noted that423

a logseries distribution is usually applied to an open community, although424

Hubbell’s neutral SAD and lognormal distribution consider a fully-censused425

or closed community. Nevertheless, we here apply a logseries distribution to426

the “closed" local community because a closed community can be considered427

to be a special case of a subsampled or open community. Fitting a logseries428

distribution involves estimating two parameters, Fisher’s α and x (Fisher429

et al., 1943). For a pair of α and x, the expected binned SAD was numeri-430

cally obtained, and the log-likelihood of the binned SAD was computed by431

(6). The best-fit parameter pair was searched in wide ranges of α and x:432

α = {1.00, 1.01, 1.02, . . . , 200} and x = {0.9500, 0.9501, 0.9502, . . . , 1}.433

Performance of neutrality tests434

The performance of several neutrality tests are compared by applying435

them to simulated data. We consider Etienne’s exact test (Etienne, 2007;436

Etienne and Rosindell, 2011) and other summary statistic-based tests as437

summarized in Table 1. Etienne’s exact test can be considered as a summary438

statistic-based test because the likelihood of the configuration is treated as439

a summary statistic.440
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Given a set of simulated data, we computed the summary statistics in441

Table 1, and their P-values were evaluated. For this, we obtained the distri-442

butions of the summary statistics, which was created by randomly generating443

data (1,000 replications) conditional on the maximum likelihood estimates of444

θ̂ and m̂. We here define the P-value as the proportion of replications that445

rejected Hubbell’s neutral model conditional on θ̂ and m̂. This procedure446

is shared by all summary statistic-based tests in Table 1 as described below447

(also see Appendix Fig. A1).448

I, Simulate data to be tested. The data are denoted by D, which is449

the configuration of species abundance. Then, compute the summary450

statistic (SS) of interest for D, which is denoted by SSD.451

II, Determine the P-value for SS. First, estimate θ and m from D using452

the maximum likelihood method based on the Ewens sampling formula453

implemented in the PARI/gp program by Etienne (2005). Note that J454

is treated as known because we consider a closed local community, that455

is, we have data for all individuals in the community. The estimated456

parameters are denoted by θ̂ and m̂. Then, conditional on θ̂ and m̂, we457

independently generate 1,000 realizations of species-abundance config-458

uration under Hubbell’s neutral model according Etienne’s algorithms459

implemented in the PARI/gp program (Etienne, 2007, 2005). For each460

random configuration, we calculate various summary statistics (see Ta-461

ble 1).462

III, Determine the P-value. Etienne’s exact test is treated as a one-tailed463

test, while all the others are two-tailed tests. Let r be the proportion464
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of the simulation runs with SS (or likelihood) less than SSD. Then,465

the P-value for Etienne’s exact test is identical to r, while for the other466

two-tailed tests, the P-value is 2r if r < 0.5 otherwise 1− 2r.467

For computing SSD for Etienne’s exact test (i.e., log-likelihood), the program468

of Etienne (2007) is used, while the vegan package in R is useful for some469

of the other tests. (#3-6) We used it to calculate Shannon’s H , Simpson’s470

D , Fisher’s α and rarefaction in this study. Again, we emphasize that this471

P-value is conditional on θ̂ and m̂, which cannot be considered as the real472

P-value of parameter-free neutral model. Because it is extremely difficult473

to obtain the unconditional P-value, this ‘conditional’ one has been used474

so often since the introduction of Hubbell’s neutral model. Therefore, we475

follow this procedure, which may work at least for relative comparison of476

their performance, even when statistically incorrect.477

Results478

Our simulations clearly demonstrate that there is a strong effect of niche-479

preference on the pattern of species diversity (i.e., SAD and S) in the local480

community (Fig. 1. See also Fig. A2 for a plot of S). When p = 1 (complete481

neutral case), the average S is 197.8 ± 5.5 (± SD), which is consistent with482

the expectation under Hubbell’s neutral model. The other extreme case483

would be when p = 0 and N = 1, where all cells in the local community484

belong to one kind of niche and only one species is allowed to occupy the485

niche, so that there is only one species with abundance J = 10, 000. As the486

number of niches (N) increases (but p = 0 is fixed), the number of species487

(S) increases to the theoretical maximum (S = 650, which is approximate488
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number of species in the metacommunity when JM=10,000,000 and θ=50).489

As p increases (with N fixed), the SAD becomes close to the neutral one.490

Thus, our model enables us to explore situations with various degrees of niche491

differentiation.492

Our results demonstrate strong effects of niche differentiation on the SAD493

and the number of species. However, as mentioned in the Introduction, if we494

look at the SAD alone, the observed SAD is well fitted by Hubbell’s neutral495

model visually (blue line, Fig. 1). This is in good agreement with previous496

studies which showed good fit of Hubbell’s neutral model by eyes (Volkov497

et al., 2007; Chave et al., 2002; Hubbell, 2001). This good fit of Hubbell’s498

neutral model is simply due to the estimated θ and m that are far from the499

given values (θ̂= 50, m̂ = 0.1) (especially for a small p, e.g. (θ̂, m̂) = (5.8,500

0.2) for (N , p) = (1, 0.1) in Fig. 1; see also Fig. A3). It is found that a501

lognormal distribution also provides the best fit of observation for a wide502

range of p and N , while the fit of a logseries distribution is not very good.503

This result is consistent with previous studies (Adler et al., 2007; Chave,504

2004; Volkov et al., 2005; Bell, 2005) that pointed out that there would be505

no significant difference between the lognormal and Hubbell’s neutral model.506

The major purpose of this work is to quantitatively evaluate this problem507

in model selection. We performed a number of simulations, and the results508

are summarized in Fig. 2A. Under the complete neutral model (p = 1), the509

observed SADs in 98 of the 100 replications are best explained by Hubbell’s510

neutral model. The inferred parameters were θ̂∼50 and m̂∼0.1, which were511

close to the given parameters. The pattern is not very different when p = 0.8;512

the neutral model is best supported in >∼ 60% of replications, and the fit513
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of the lognormal distribution is the second best. When N ≥ 5 and p ≤ 0.5,514

either the lognormal or our niche model is best supported. The fit of our niche515

model is particularly good with very strong niche-structure (i.e., N ≥ 5 and516

p ≤ 0.1). Thus, when we use θ̂ and m̂ estimated from the local community517

itself, unless the degree of niche preference is very strong (i.e., small p and518

large N), it can be concluded that the fit of Hubbell’s neutral model is quite519

good, and the power to reject Hubbell’s neutral model is very limited. The520

major reason for this overfitting of Hubbell’s neutral model is that we do521

not know the precise values of θ and m. To demonstrate this, we performed522

the same analysis by assuming we know the given values (i.e, θ = 50 and523

m = 0.1). Then, we found that the power to reject Hubbell’s neutral model524

is substantially improved especially for intermediate values of p (Fig. 2B).525

Through this work, we used Preston’s octave classes (Preston, 1948),526

which are log2-based bins (i.e., {1, 2, 3 − 4, 5 − 8, 9 − 16, . . . }) with some527

adjustment at borders between adjacent bins. Although Preston’s octave528

classes are commonly used, our result might change if we use other bins.529

To check the effect of bin sizes, we repeated the same analysis with two530

additional bins, normal log2 and log10. As shown in Appendix Fig. A4 and531

A5, we obtained essentially identical results to those with Preston’s octave532

classes, except that the fit of our niche model is generally better.533

We also explore the performance of other neutrality tests, namely, Eti-534

enne’s exact test and the summary statistic-based tests summarized in Ta-535

ble 1. It should be noted that all these tests are usually performed with536

θ̂ and m̂ estimated from the local community to be tested, so that they537

share the same problem of the SAD-fitting approach, but the extent of the538
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sensitivity to this unknownness may differ depending on the test. Fig. 3A539

shows the P-values of all 10 tests when θ̂ and m̂ are used. It is found that540

Hubbell’s neutral model was rejected in almost all cases; when p ≥ 0.8 or541

N = 1, which is consistent with Hubbell’s SAD fitting approach. Etienne’s542

exact test, species richness, Fisher’s α and rarefactionJ*0.5 failed to reject543

Hubbell’s neutral model in the most cases (except for Etienne’s exact test544

when p = 0 and N = 100, 650). RarefactionJ*0.1 rejected Hubbell’s neutral545

model only when the niche structure is strong, that is, p is small and N546

is large. On the other hand, Shannon’s H, Simpson’s D, invN , invN2 and547

varianceNi performed better, suggesting that they are relatively sensitive to548

niche structure.549

We also investigated how the performance of these tests can be improved550

if we know the given values of θ and m. As expected, Fig. 3B shows that their551

performance is substantially improved in comparison with Fig. 3A. Thus, it552

is again demonstrated the fact that we do not know the true value of θ and553

m causes a reduction in the performance of the neutrality tests.554

Discussion555

It seems that there is a two-fold problem in testing neutrality in commu-556

nity ecology. First, there are a number of possible neutral models, but the557

best known one (i.e., Hubbell’s neutral model) has been so well accepted and558

used widely as a representative neutral model. Therefore, rejecting Hubbell’s559

neutral model does not necessarily mean that the neutrality is rejected. Sec-560

ond, in most cases, it is quite difficult to reject even the simplest neutral561

model with the current methods and data. The focus of this study is the sec-562

ond problem, the problem of current methods, because we cannot proceed563
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without solving this technical problem. The first one will be a challenging564

problem in a next step, which is beyond the scope of this work.565

In this study, we first developed a new niche model that incorporates566

stochastic demography of individuals together with the mechanism of niche567

differentiation as a deterministic factor. The model involves a pair of param-568

eters, p and N ; the former represents the degree of niche preference and the569

latter is the number of different niches in the local community. Our niche570

model has a nested-structure with Hubbell’s neutral model, which allows us571

to make a fair statistical comparison between two models and select the best572

model according to AIC. Furthermore, it is possible to use more statistically573

rigorous approaches, such as the likelihood ratio test. It should be noted that574

the AIC-based comparison of Hubbell’s neutral model and the lognormal and575

the logseries distributions is not statistically correct, although because this576

method is very frequently used, we followed it in order to investigate the577

performance.578

Another advantage of our model is that it allows one to explore various579

degrees of niche preference by changing p. When p = 1, the model is identical580

to Hubbell’s neutral model, while in the other extreme case with p = 0,581

all species have their specific niches. We demonstrated that strong niche582

preference influences the pattern of species abundance (i.e., small p), showing583

quite different SADs from that expected under Hubbell’s neutral model (i.e.,584

p = 1). S is affected by both p and N . As shown in Fig. 1, S decrease as p585

decreases. In the niche site, a dead individual is likely to be replaced by the586

species that are abundant in the same niche type or a generalist species. The587

preference of species in each niche would limit recruitment of rare species588
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or specialists and induce a reduction of S. In other words, the level of589

niche overlap among species directly affects the neutrality of the community,590

thereby reducing S. With increasing N , S increases (Fig. A2 ). When there591

are a large number of niches in the local community, even if each niche has592

strong species-preference, S is not reduced.593

Our niche model was used to evaluate the performance of various tests of594

neutrality (or Hubbell’s neutral model). We found that all neutrality tests595

we used here did not always perform very well (Figs. 2A and 3A). This is596

simply because the most important parameters (θ and m) to characterize the597

metacommunity that provides the basis of the local community are unknown,598

so that we have to estimate them from the local community to be tested.599

Such a conventional treatment likely causes an overfitting. This overfitting600

problem has been repeatedly pointed out for Hubbell’s SAD-fitting approach601

by many authors (Chave, 2004; Chisholm and Pacala, 2010; Volkov et al.,602

2005), but it should also apply to fitting other models (or distributions). We603

here investigated the effect of this problem on the performance of neutrality604

tests quantitatively. As we showed in Figs. 2B and 3B, the performance was605

substantially improved if we know the true values of θ and m, indicating the606

importance of having better estimates of θ and m.607

Thus, our results suggest that for improving the performance, we need608

(i) to develop new methods which are more robust to unknown θ and m,609

or (ii) to estimate θ and m from data that are independent from the local610

community to be tested. For (i), along the line of the model-fitting approach,611

we probably need more options for alternative distributions, in addition to612

the commonly used lognormal and logseries ones. We emphasize this because613
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occasionally these two distributions alone are not sufficient to reject the null614

neutral model but other mechanistic models can. Indeed, in our simulation,615

there are a number of replications where our niche model exhibited the best fit616

(Fig. 2A). It is suggested that if more alternative distributions were available,617

the performance to reject the null neutral model would be significantly better.618

For summary statistic-based tests, it is desired to develop new summary619

statistics for example, the one elegantly summarized all information of the620

species abundance such as species richness, evenness and abundance of rare621

species. Moreover, those that are robust to θ and m are preferred.622

It may be more powerful if we can solve problem (ii). Unfortunately, it623

would be extremely difficult to estimate θ and m from data that are inde-624

pendent from the local community to be tested. Ideally, θ and m should be625

estimated from the metacommunity, accurately delimiting and sampling the626

metacommunity is extremely difficult especially when its scale is unknown.627

It may also be very difficult to use other kinds of data, from which θ and m628

can be estimated (but see the work by Chisholm and Lichstein (2009), which629

estimated one of the parameters, m, from dispersal data in a local commu-630

nity). Then, what can we do when such independent estimates of θ and m are631

not available? A possibility is to use multiple data sets that should share the632

same (or at least similar) values of θ and m. For example, suppose here are633

multiple local communities that share a single metacommunity. This is not634

an unrealistic situation and was suggested by Etienne et al. (2007). Compar-635

ing these multiple local communities could provide much more information636

not only on θ and m in the shared metacommunity but also the mechanisms637

that shaped the observed species richness and abundance in each local com-638
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munity. It would be also very powerful to have data at multiple time points639

even in a single local community (Etienne et al., 2007; Tsai et al., 2014;640

Magurran, 2007; McGill et al., 2007). In addition, any kind of community641

dynamics data through field observations over multiple years would be infor-642

mative. Examples include information on which individual was replaced by643

which individual at what time point. Together with such multidimensional644

data, development of statistical methods to analyze them is needed.645

In summary, our niche model and simulation provided insight into how646

to understand the observed SADs and their fitting to models. We quantita-647

tively demonstrated that it is very difficult to reject Hubbell’s neutral model648

from SAD alone, and suggested several ideas to solve this problem (at least649

partially). hlWhile the assumptions of Hubbell ’s neutral model are too650

simplistic for some ecologists to accept intuitively, the neutral model can be651

used as null model as it is a good approximation to a neutral community652

structure (Rosindell et al., 2012). The important role of his neutral model653

should be as a null model to be tested, and its rejection indicates that some654

kind of non-neutral processes should be involved and that models incorpo-655

rating such processes could lead to a better understanding of the mechanisms656

shaping the configuration of the community. In this sense, we would like to657

again emphasize the importance of developing statistical methods with much658

higher power than those currently available.659
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Figure legends826

Fig. 1 — The expected SADs of the niche model with various pairs of p827

and N . The expected SAD was obtained by averaging over 100 replications828

of simulation. Error bars represent SD. Four models (Hubbell’s neutral,829

lognormal, logseries and our niche model) were fit to each average SAD. The830

estimated θ and m for fitting Hubbell’s neutral model are shown in blue,831

hllognormal in yellow, logseries in orange , and our niche model in red.832

833

Fig. 2 — Summary of the model selection by AIC. The proportions of sim-834

ulation runs that support neutral model, lognormal, logseries, and our niche835

model are shown in different colors. (A) Results when estimated θ and m are836

used. (B) Results when we know the actual parameter θ = 50 and m = 0.1.837

See text for details.838

839

Fig. 3 — Summary of the Etienne’s exact test (1) and neutrality tests based840

on nine summary statistics (2-10). The proportions of simulation runs that841

rejected Hubbell’s neutral mode are shown in orange, otherwise in blue. (A)842

Results when estimated θ and m are used. (B) Results when we know the843

actual parameter θ = 50 and m = 0.1.844

845
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