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Abstract 

 

My research goal is to study the variation in global forces of evolution at the 

genomic level taking Drosophila as a model system. Although the global forces of 

genome evolution have largely been established, the variations in their strength within 

and between genomes are less understood. Patterns of base composition can reveal 

variation in evolutionary forces, such as selection for codon usage, mutation bias and 

biased gene conversion. The base composition of synonymous sites is known to 

evolve primarily under the affect of selection for translational efficiency and 

accuracy, mutation and drift. Most introns, on the other hand, evolve under much 

lesser selective constraint. Hence, variations in various evolutionary parameters 

within and between genomes can be studied using base composition of synonymous 

sites and introns. Base composition comparison among different nucleotide classes 

can also help in distinguishing the causes of base composition heterogeneity. I studied 

the variation in base composition (GC content) within and across genes in the D. 

melanogaster genome and across different lineages in the D. melanogaster subgroup.  

 

I found that base composition at synonymous sites and introns varies at a 

within-gene as well as genome-wide level. Within genes, GC content of small introns 

decreases from the 5′ end to the 3′ end. The GC gradient near the 5′ end is sensitive to 

the transcriptional level of the genes with highly transcribed genes having a steeper 

gradient. The intron divergence exhibits a positive gradient near the 5′ end, which is 

also steeper for genes with higher transcriptional level. The 5′ GC gradient in small 

introns is also observed in genes expressed at low levels in the germline, suggesting it 

to be under selection. On the other hand, GC content at synonymous sites shows a 
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sharp increase at the 5′ end and then declines towards the 3′ end. The base 

composition at the synonymous sites near the 5′ end seems to be under strong 

selection for low GC content, which might be functionally important for translation of 

mRNA since it is not observed in introns. 

 

At the genome-wide level, base composition is heterogeneous within as well 

as between chromosome arms. GC content at synonymous sites and introns shorter 

than 100 bp is significantly higher on the X chromosome compared to the autosomes. 

GC content at the synonymous sites is the most heterogeneous among all GC classes, 

suggesting that selection intensity might vary at a shorter scale than mutation in the D. 

melanogaster genome, since base composition of synonymous sites is thought to be 

evolving predominantly under the selection for codon usage whereas other nucleotide 

classes are mainly affected by mutation bias and biased gene conversion.  

 

To study the base composition variation across different genomes, I examined 

the changes in the synonymous base composition patterns in >5000 genes from the 7 

Drosophila melanogaster subgroup species. I used the existing genome data from five 

species and also added data of two more species in the D. melanogaster subgroup. 

Next-Generation RNA sequencing and Genome sequencing on the D. tessieri and D. 

orena transcriptomes and genomes was performed in the lab. I conducted a rigorous 

analysis of the RNA-seq and Genome-seq data and developed protocols for de novo 

gene and intron annotation. For this task, I used the available data from the sequenced 

Drosophila species. I developed several methods and also used some of the softwares 

that are already available for NGS data analysis. The substitutions occurred in each of 

the lineages were inferred using maximum likelihood approach. I found that all of the 
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lineages showed strong departures from the equilibrium states and in some lineages 

both effective population size and mutation bias seemed to have fluctuated. These 

findings suggest that magnitude of forces governing base composition at synonymous 

sites may have varied frequently in a lineage-specific manner. 
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CHAPTER 1 

Introduction 

 

1.1 Weak selection and genome evolution 

 

The central goal of my research is to understand the variation in global forces 

of evolution, both spatially and temporally, at the genomic level in multicellular 

eukaryotes taking Drosophila as a model system. Processes, such as mutation, genetic 

drift, natural selection, and recombination, act constantly within genomes and 

contribute to their long-term evolution. Although the global forces of genome 

evolution have largely been established, the variations in their strength within and 

between genomes are less understood. The strength of these forces can change with 

time or across genomic breadth due to the fluctuations in various evolutionary 

parameters, creating heterogeneous substitution patterns (Akashi et al. 2006). 

Irregularities in substitution patterns can create false signatures of adaptive evolution 

and affect the accuracy of ancestral inference and phylogenetic inference methods. 

Even though the variations in evolutionary forces can have a major impact on the 

interpretations of various molecular evolutionary analyses, they have not been given 

much attention.  

 

The nearly neutral theory of molecular evolution, proposed by Ohta (Ohta and 

Kimura 1971; Ohta 1972a; Ohta 1972b; Ohta 1973; Ohta 1974; Ohta 1976), assumes 

that fitness effects of new mutations form a continuous distribution around the fitness 

effect of neutral mutations that have a selection coefficient, s, of 0. The mutations at 



 2	
  

the ends of the distribution are either strongly deleterious or highly advantageous. The 

strongly deleterious mutations are quickly removed from the population whereas 

highly advantageous mutations can be fixed. A large fraction of mutations have fitness 

effects near that of neutral mutations and these are weakly selected. The fate of these 

mutations depends on the product of their selection coefficient and effective 

population sizes (Nes). In contrast with Nes of advantageous and deleterious 

mutations, Nes for weakly selected mutations is of the order of 1. Thus, changes in Ne 

as well as mutation rates and biases can greatly influence the efficacy of selection on 

such sites.  

 

1.2 Base composition as measure of to test fluctuations in evolutionary forces 

 

Patterns of base composition can reveal variation in evolutionary forces, such 

as selection for codon usage, mutation bias and biased gene conversion. The base 

composition of synonymous sites, which reflects codon usage bias, is known to 

evolve primarily under the affect of translational selection, mutation and drift (Li 

1987; Andersson and Kurland 1990; Bulmer 1991; Akashi 1994; Akashi 1997; 

Akashi 1998; Akashi et al. 1998; Stoletzki and Eyre-Walker 2006; Hershberg and 

Petrov 2008). The currently accepted model of codon usage bias, referred to as “major 

codon usage”, states that selection favors major codons whereas mutation bias and 

genetic drift allow minor codons to persist (Bulmer 1991). This balance of weak 

forces makes codon bias sensitive to changes in evolutionary forces. Major codons or 

preferred synonymous codons are usually the ones that are identified by abundant 

tRNA molecules. This association between major codons and tRNAs has been shown 

in bacteria, yeast and for a few amino acids in Drosophila (Bennetzen and Hall 1982; 
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Ikemura 1985; Yamao et al. 1991; Moriyama and Hartl 1993; Kanaya et al. 2001). 

Higher frequency of major codons results in quicker translation and lesser mis-

incorporation of incorrect amino acid (Akashi and Eyre-Walker 1998; Akashi et al. 

1998). 

 

 

However, since most of the major codons in Drosophila melanogaster end in 

G or C, codon usage bias can also be influenced by biased gene conversion (Galtier et 

al. 2001; Galtier 2003; MARAIS et al. 2003) and selection for other factors such as 

mRNA secondary structure and translational initiation (reviewed in (Hershberg and 

Petrov 2008)). Hence, comparison among different nucleotide classes should be used 

to identify the underlying process that governs base composition heterogeneity 

(Akashi et al. 2006; Ko et al. 2006).  

 

Most introns evolve under much lesser selective constraint (Halligan 2004; 

Haddrill et al. 2005). Also, since introns are transcribed but not translated, the base 

composition variation caused by processes related to transcription can be better-

studied using introns. Previous studies in Drosophila have shown that patterns of 

divergence and polymorphism is sensitive to the intron size (Parsch 2003). Introns 

shorted than 100 bp have high levels of both interspecific divergence and intraspecific 

polymorphism (Parsch 2003). Selective constraints might differ between small and 

long introns (Parsch 2003; Halligan 2004; Haddrill et al. 2005; Parsch et al. 2010)and 

hence they were analyzed separately. 
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1.3 Goal of the study 

 

 The goal of this dissertation is to study spatial and temporal fluctuations in 

evolutionary forces in the Drosophila melanogaster genome and subgroup. I studied 

the variation in base composition (GC content) within and across genes in the D. 

melanogaster genome and across different lineages in the D. melanogaster subgroup 

and test its causes. 

 

The spatial variations in evolutionary forces, such as mutation, drift, selection 

and biased gene conversion, shape the sequence and structure of genes and genomes. 

Evolutionary forces vary across genomes, based on functional constraints (Kimura 

1986; Liu et al. 2008; Rands et al. 2014), expression level (Pál et al. 2001; Krylov et 

al. 2003; Majewski 2003; Rocha 2003; Comeron 2004; Drummond 2005; Drummond 

et al. 2005; Cherry 2010)(reviewed in (Akashi 2001; Zhang and Yang 2015)), 

mutation rates and patterns (Wolfe et al. 1989; Singh 2005a; DURET 2009), and rates 

of recombination (Hill and Robertson 1966; Birky and Walsh 1988; Aguade et al. 

1989; Begun and Aquadro 1992; Kliman and Hey 1993; Charlesworth and Guttman 

1996; Hey and Kliman 2002). While studying base composition variation at a 

genome-wide scale can help in identifying regional differences in evolutionary forces, 

studying base composition variation within-genes can help in determining the 

biological processes underlying the heterogeneity in evolutionary forces.  

 

Evolutionary forces also vary temporally due to fluctuations in mutation rate 

and biases (Akashi 1996; Akashi et al. 2006), recombination rates (Takano-Shimizu 
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1999), effective population size (Akashi 1996; Akashi et al. 2006) and fitness effects 

of mutations (Clark et al. 2007; McBride 2007; McBride et al. 2007). Studying 

lineage-specific evolution of base composition can reveal the changes in evolutionary 

forces occurred in different lineages. 
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CHAPTER 2 

Within-gene heterogeneity in base composition 

in D. melanogaster: Association with 

transcription and translation 

 

2.0 Chapter Summary 

 

In this chapter, I study base composition variation within the genes of D. 

melanogaster. Studying base composition variation within gene can provide insights 

to the biological processes such as transcription and translation underlying the 

evolution of base composition. Within genes, GC content of small introns decreases 

from the 5′ end to the 3′ end. The GC gradient near the 5′ end is sensitive to the 

transcriptional level of the genes with highly transcribed genes having a steeper 

gradient. The intron divergence exhibits a positive gradient near the 5′ end, which is 

also steeper for genes with higher transcriptional level. The variation in within-gene 

base composition is also associated with RNA polymerase II binding levels. On the 

other hand, GC content at synonymous sites shows a sharp increase at the 5′ end and 

then declines towards the 3′ end. The base composition at the synonymous sites near 

the 5′ end seems to be under strong selection for low GC content, which might be 

functionally important for translation of mRNA since it is not observed in introns.  
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2.1 Introduction 

 

Sites within genes are subject to different selective constraints or mutational 

rates based on their function, such as protein coding or intronic (Haddrill et al. 2005), 

and position in the transcript (Majewski and Ott 2002; Eddy and Maizels 2007; Li et 

al. 2012; Park et al. 2014), mRNA ((Liljenström and Heijne 1987), reviewed in 

(Tuller and Zur 2015)) or intron (Halligan 2004). Intragenic base composition at 

synonymous sites is found to vary in a number of species across various taxa such as 

bacteria (Bulmer 1988; Hooper and Berg 2000; Qin et al. 2004; Bentele et al. 2013; 

Hockenberry, Sirer, Amaral, and Jewett 2014a)	
  (Clarke and Clark 2010), yeast (Qin et 

al. 2004)	
  (Shah et al. 2013) and Drosophila (Hey and Kliman 2002; Qin et al. 2004). 

Base composition heterogeneity at synonymous sites within genes is attributed to 

Hill-Robertson effect (Qin et al. 2004), selection for reduced ribosomal elongation 

speed in the beginning of genes (Zhang et al. 1994; Tuller et al. 2010; Hockenberry, 

Sirer, Amaral, and Jewett 2014b) and reduced mRNA folding for efficient translation 

initiation (Bentele et al. 2013; Hockenberry, Sirer, Amaral, and Jewett 2014a). 

 

The base composition of synonymous sites is known to evolve under the affect 

of translational selection, mutation and drift (Li 1987; Andersson and Kurland 1990; 

Bulmer 1991; Akashi 1994; Akashi 1997; Akashi 1998; Akashi et al. 1998; Stoletzki 

and Eyre-Walker 2006; Hershberg and Petrov 2008). However, it can also be 

influenced by biased gene conversion (Galtier et al. 2001; Galtier 2003; MARAIS et 

al. 2003) and selection for other factors such as mRNA secondary structure and 

translational initiation (reviewed in (Hershberg and Petrov 2008)). Hence, it is 

difficult to identify the underlying process that governs base composition 
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heterogeneity in synonymous sites. Most introns, on the other hand, evolve under 

much lesser selective constraint (Halligan 2004; Parsch et al. 2010). Also, since 

introns are transcribed but not translated, the base composition variation caused by 

processes related to transcription can be better-studied using introns. Kliman and 

Eyre-Walker analyzed the intron base composition within genes using 86 D. 

melanogaster genes and found that it varies along the genes (Kliman and Eyre-

Walker 1998). Base composition comparison among different nucleotide classes can 

also help in distinguishing the causes of base composition heterogeneity (Akashi et al. 

2006; Ko et al. 2006).  

 

I studied intragenic variations in base composition of small introns, long 

introns and synonymous sites. I found that in D. melanogaster genes, base 

composition varies within genes. The GC content within genes decreases with 

increase in distance from the TSS. I tested the association of base composition with 

RNA polymerase and compared the base composition variation between introns and 

synonymous sites to identify the underlying cause of base composition heterogeneity 

within genes. I found that base composition variation within genes reflects selection 

associated transcription and translation.  
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2.2 Materials and Methods 

 

2.2.1 Sequence data 

 

Sequence data and annotations for Drosophila melanogaster genome (Release 

5.28, June 4, 2010) (Adams et al. 2000), D. yakuba genome (Release 1.3) (Clark et al. 

2007) and D. erecta genome (Clark et al. 2007) were obtained from FlyBase 

(www.flybase.org). Only genes that were predicted to have single protein isoform 

were used for the analysis. Genes that had different transcription start sites (TSS) in 

different isoforms or were not expressed in any of tissues described in the Matsumoto 

et al, 2016 study (Matsumoto et al. 2016) were also excluded. Additional filters on the 

gene set were applied for some analyses. These filters are described in the later 

sections. 

 

2.2.2 Transcript abundance data 

 

The transcript abundance data for various Drosophila tissues used in this study 

were obtained from Matsomoto et al (Matsumoto et al. 2016). These data included 

transcript abundance data from different developmental stages such as adult flies 

(male and females), larva and embryo and various adult and larval tissues such as 

brain, central nervous system, salivary glands, midgut, hindgut and reproductive 

tissues such as testis, ovary, and accessory glands. The raw transcript abundance data 

used in Matsumoto et al study were from FlyAtlas (Chintapalli et al. 2007).  
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2.2.3 Codon bias and GC content measures 

 

Major codon usage (MCU) for 2-fold redundant codon families (except Asp) 

was used as a measure for codon bias. Most amino acids encoded by 2-fold redundant 

codon families, except Aspartic acid, show clear preference towards the G or C-

ending codon over the A or T-ending codon in highly transcribed genes (Akashi 

unpublished) and hence 2-fold redundant codons are a good measure of codon bias. 

MCU is defined as the percentage of major codons in a gene. Major codons 

classifications were obtained from a previous analysis (Akashi unpublished) for 904 

X-linked genes and 5330 autosomal genes.  

 

Introns with length less than 100 bp were classified as small introns and 

introns with length greater than 100 bp as long introns. Previous studies in Drosophila 

have shown that introns shorter than 100 bp have high levels of both interspecific 

divergence and intraspecific polymorphism(Parsch 2003). Selective constraints might 

differ between small and long introns (Parsch 2003; Halligan 2004; Haddrill et al. 

2005; Parsch et al. 2010)and hence they were analyzed separately. The first 10 and the 

last 30 bases of introns were removed while calculating the GC content in order to 

exclude potential sites required for splicing and polypyrimidine tract (Halligan 2006). 

 

 

 

 

 

 



 11	
  

2.2.4 RNA Pol II enrichment data 

 

RNA PolII enrichement in D. melanogaster determined by Gilchrist et al. 

(2010) was used in this study (Gilchrist et al. 2010). Data from S2 cells were obtained 

from NCBI Gene Expression Omnibus (GEO) (file: 

GSE20471_Pol_II_Average_Adelman.txt for RNA Pol II enrichment data).  

 

2.2.5 Within-gene GC content variation 

 

To examine the heterogeneity in evolutionary forces, I analyzed the variation 

in GC content within individual genes. For this task, I calculated GC content for short 

segments along each gene with gene length greater than 1500 bp (from the 

transcription start site to the end of the transcript). The genes that were not transcribed 

among the tissues described in the Matsumoto et al study (Matsumoto et al. 2016) 

were excluded. To test for selection on base composition near the TSS, I used the 

genes that were transcribed at very low levels in the tissues containing germline cells. 

Hence, genes that were transcribed at the bottom 25% percentile in both ovary and 

testis and top 75% percentile in at least one other tissue were used. For small and long 

introns, GC content was calculated for 150 bp segments staring from the transcription 

start site (TSS). A study by Matsumoto (unpublished data) showed that divergence of 

intronic sites is sensitive to their position within introns (Matsumoto and Akashi, 

unpublished). This is especially true for long introns. Since, my objective was to 

study the variation in GC content with respect to the TSS, I excluded parts of introns 

that were sensitive to their position within the introns. Hence, I used only 11-100 bp 

of long introns, which had the least amount of variation within introns in divergence. 
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Segments with the same relative position from the TSS across genes were 

grouped into bins. Average GC content was calculated for each bin. I also calculated 

scaled GC content for each nucleotide class to control for GC variation across genes. 

Scaled GC content was defined as the GC content of a segment in a gene each minus 

the GC of the whole gene for a particular nucleotide class. The average scaled GC 

content across genes was also calculated for each bin. The 95% confidence interval on 

the average GC content and average scaled GC content of each bin was calculated by 

resampling the genes present in that bin 1000 times. 

 

To study codon bias variation within genes, I used genes with protein 

sequence length greater than 300 amino acids. MCU was calculated for segments of 

50 codons and 150 bp to study the variation in codon bias with respect to the start 

codon and TSS, respectively. Segments with the same relative position from the start 

codon ot TSS were grouped into bins and average as well as scaled MCUs were 

calculated for each bin. Confidence intervals were calculated by resampling regions 

of genes present in a bin 1000 times.  

 

Spearman’s rank correlations were used to quantify intron GC gradients. To 

calculate the correlation coefficients between GC content and position of intronic sites 

along the genes, I divided each gene into segments of 750 bp starting from the TSS 

since I obtained different patterns in the first 750 bp and post-750 bp from the TSS. 

Only the segments that had at least 50 intronic sites and at least 200 sites between the 

first and the last intronic sites were included. Within each segment, each intronic site 

was assigned a value of either 1 or 0. If the nucleotide at a given site was G or C, it 
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was assigned 1 and vice versa. The dataset used to calculate the Spearman’s rank 

correlation coefficient (rs) consisted of the position of each intronic site within the 

segment and its GC content. rs values were calculated using “distancematrix” function 

of Bio.Cluster package in python 2.7.8. Segments with the same relative position 

from the TSS across genes were grouped into bins. Average rs values were calculated 

across genes for each bin. Bootstrap procedure was used to calculate 95% confidence 

interval on average rs value of each bin by resampling individual rs values in a bin 

1000 times. A similar approach was used for synonymous GC class as well. In case of 

2-fold synonymous sites, rs values were calculated for the first 50 codons and 

segments of 200 codons along the remaining part of intronless autosomal genes. The 

minimum number of 2-fold codons in a window was set to 10 for the first 50 codons 

and 30 for the rest of the gene. 

 

To test the relationship between intron GC content and transcript abundance, I 

distributed introns into 6 bins based on their transcript abundance in whole adult. The 

genes that were not transcribed in whole adult were excluded for this analysis. This 

was done for five intron classes: all introns, small introns, long introns and introns 

present in the 5′ and 3′ regions of the genes. 5′ region is defined as the region up to 

750 bp from the TSS and 3′ region is defined as the region from 751 bp to 1500 bp 

from the TSS. Introns belonging to the same gene were concatenated. Each bin 

contained roughly equal number of sites of a given intron class. First, the estimated 

number of intronic sites in each bin was calculated by dividing the total number of 

intronic sites of a given intron class by the total number of bins. Each intron belonged 

to a single bin entirely. If while adding an intron to a bin, the total number of sites per 

bin exceeded the estimated number, the number of extra nucleotides that need to be 
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accommodated into the bin were calculated. If the number of extra nucleotides was 

more than half of the intron length, the intron was added to that bin; otherwise it was 

left for the next bin. 

 

2.2.6 Within-gene RNA PolII enrichment  

 

To calculate the variation in RNAPollII enrichment, I calculated the positions 

of RNAPollII enrichment domains relative to the transcription start site (TSS) for 

each gene with length (including introns and UTRs) greater than 1500 bp. The 

average enrichment across X-linked and autosomal genes was calculated for 150 bp 

bins along the gene. The inclusion of a domain in a bin was decided using the 

midpoint of the domain. The 95% confidence interval on the average RNA Pol II 

enrichment of each bin was calculated by resampling the regions within the bin 1000 

times. 

 

To calculate the correlation between small intron GC content and RNA Pol II 

enrichment, I divided each gene into windows of 150 bp. Average RNA Pol II 

enrichment and small intron GC content was calculated for each window. All 

windows with at least 30 small intronic sites were pooled across genes and 

Spearman’s rank correlation coefficient between RNA Pol II enrichment and small 

intron GC content was calculated for X-linked and autosomal high and low transcript 

abundance genes separately.  

 

To test the relationship between RNA Pol II enrichment and transcript 

abundance for 5p750 and post-5p750 regions, I binned genes into 6 bins containing 
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roughly equal number of sites and calculated average RNA Pol II enrichment in the 1-

750 bp region and 751-1500 bp region for each bin. The procedure for binning was 

same as that used for intron GC vs. transcript abundance analysis. The inclusion of a 

domain in a bin was decided using the midpoint of the domain.  

 

2.3 Results 

 

2.3.1 Variation in small intron GC content with respect to the transcription start site 

 

Genes experience binding of RNA Polymerase during transcription and 

several kinds of chromatin modifications that differ along the length of the transcript 

(Bell et al. 2007; Schwaiger et al. 2009; Kharchenko et al. 2012). The processes 

related to transcription can cause variation in mutational and/or selective pressures 

within genes resulting in base composition variation (Datta and Jinks-Robertson 

1995; Polak and Arndt 2008). To study the variation in base composition within 

genes, I focused on the GC content of small introns (length up to 100 bp) since these 

introns have been suggested to evolve under lesser selective pressures than other 

classes of DNA within genes (Parsch 2003; Halligan 2004; Haddrill et al. 2005; 

Parsch et al. 2010).  

 

The GC content of small introns within genes decreased from the 5′ to the 3′ 

end (Figure 2.1 A). The relatively stronger decline in GC content near the 5′ end of 

the genes was observed for the first 750 bp from the TSS followed by a gradual 

decline. Significant negative correlation was observed between GC content and 

intronic positions for the first 750 bp from the TSS (Spearman’s r = -0.04, p < 10-3). 
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Hence, I defined the region between the TSS and 750 bp from the TSS as 5p750 

region, and the region between 751 bp from TSS to 1500 bp from TSS as 5p751-1500 

region. Since, all genes included in this analysis were at least 1500 bp long, the 

analysis was restricted to until 1500 bp from TSS. The magnitude of the correlation 

declined with distance from the TSS (Figure 2.2). To control for the GC variation 

among genes, GC content scaled to the gene averages was also studied. Scaled GC 

content also declined from 5′ to 3′ end (Figure 2.1 B). The GC content 11-100 bp of 

long introns also declined with increase in distance from the TSS. 

 

I examined the relationship between transcription patterns and GC content in 

5p750 regions. The GC content of small introns in the 5p750 region showed a 

stronger correlation with transcript abundance (Spearman’s r = 0.3, p < 10-4) than that 

of the small introns present in the 5p751-1500 region (Spearman’s r = 0.15, p = 

0.0004) (Figure 2.3). The difference in the GC content of small introns between genes 

with high and low transcript abundance was also observed only in the 5p750 region, 

suggesting that transcription-associated substitution biases might be stronger in the 

5p750 region than the post-5p750 region. 

 

2.3.2 Test for selection on base composition near the 5′ end 

 

The variation in the GC content within genes could be a result of variation in 

mutational patterns, natural selection, or biased gene conversion. Mutational variation 

can be caused by heterogeneity of DNA repair (Lujan et al. 2014; Li et al. 2015) or 

accessibility of DNA to damaging agents (Beletskii and Bhagwat 1996; Morey et al. 

2000) or both. Heterogeneity in the strength of natural selection to acquire distinct 
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chromatin marks (Dekker 2007; Alekseyenko et al. 2012; Wachter et al. 2014) or to 

form DNA or RNA secondary structures (Hoede et al. 2006) could also result in base 

composition variation. 

 

If 5′ GC gradient is a result of variation in transcription-associated mutation or 

biased gene conversion, the genes that are expressed in the germline are likely to have 

a stronger pattern since mutations occurring in the germline are likely to pass on to 

the future generations. On the other hand, if 5′ GC gradient is a result of variation in 

transcription-associated selection, even the genes that are not expressed or expressed 

at very low levels in the germline should have a strong pattern. Hence, to test if the 5′ 

GC gradient is caused by variation in natural selection or mutation patterns and/or 

biased gene conversion, I analyzed the GC gradient of genes that are transcribed at 

very low levels in ovary and testis but at moderate to high levels in other tissues. The 

genes that have low transcript abundance in ovary and testis and moderate to high 

transcript abundance in other tissues also show a strong 5′ GC gradient (Figure 2.4), 

suggesting that the high GC near the 5′ reflects transcription-associated selection.  

 

2.3.3 Association of intron GC gradient with RNA Pol II pausing  

 

Chromatin modifications associated with transcription are known to enrich 

differently along the genes (Kharchenko et al. 2012). Chromatin modifications such 

as H3K4me2 and H3K4me3 are enriched at the TSS, whereas H3K79me1 and H2B-

ub enrich in the middle of the gene bodies in active genes (Kharchenko et al. 2012). 

RNA Polymerase II is known to pause near the TSS in most genes (Gilmour and Lis 

1986; Wirbelauer et al. 2005; Bell et al. 2007; Schwaiger et al. 2009; Kharchenko et 
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al. 2012)	
  and its role in gene regulation has been suggested(Gilchrist et al. 

2010).Since the GC gradient within gene reflects transcription-associated selection, I 

tested if within-gene GC content associates with RNA Pol II binding.  

 

Within genes, RNA Pol II enrichment was high near the TSS and declined 

with increase in distance from the TSS, as shown in previous studies (Gilmour and 

Lis 1986; Muse et al. 2007; Zeitlinger et al. 2007; Schwaiger et al. 2009; Kharchenko 

et al. 2012)	
  (Gilchrist et al. 2010). The gradient of RNA Pol II enrichment was very 

similar to that of the GC gradient in autosomal as well as X-linked genes since it is 

steeper in the 5′ region and gradually flattens towards the 3′ end. However, the RNA 

Pol II gradient is around 200-250 bp closer to the TSS than the small intron GC 

gradient in both autosomal and X-linked genes (Figure 2.5 A, B). RNA Pol II 

enrichment was also correlated with the small intron GC content for genes with high 

as well as low transcript abundance (Table 2.1).  

 

Similar to GC content of small introns, RNA Pol II enrichment in the 5p750 

region also showed stronger correlation with transcript abundance (Spearman’s r = 

0.2, p < 10-2) than that in the post-5p750 region (Spearman’s r = 0.09, p = 0.0045) 

(Figure 2.6). This suggests that, similar to intron GC, the relationship between 

transcriptional level and RNA Pol II binding is more pronounced in the 5′ region.  
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2.3.3 Codon bias increases near the 5′ end 

 

I have found that intron GC declines near the 5′ end. Since, most major codons 

in D. melanogaster are GC-ending, codon bias should also be expected to decline near 

the 5′ end if the 5′ GC pattern reflects transcription-associated selection. However, it 

has been documented in various taxa such as bacteria (Bulmer 1988; Hooper and Berg 

2000; Qin et al. 2004; Clarke and Clark 2010; Bentele et al. 2013; Hockenberry, Sirer, 

Amaral, and Jewett 2014a), yeast (Qin et al. 2004; Shah et al. 2013), and Drosophila 

(Kliman and Eyre-Walker 1998; Qin et al. 2004) that codon bias increases near the 

start codon.  

 

Consistent with the previous studies (Kliman and Eyre-Walker 1998; Qin et 

al. 2004), I found that GC content at 2-fold synonymous sites (Major Codon Usage, 

MCU) and 4-fold synonymous sites showed a sharp increase near the start codon, 

followed by a gradual decline towards the 3′ end (Figure 2.7). A similar pattern was 

observed when MCU variation was studied from the transcription start site (TSS) 

(Figure 2.8). The differences in MCU among genes with different expression level 

were more pronounced at the 5′ end (Figure 2.9).  

 

To find the regions that show significant positive and negative MCU 

gradients, I calculated the correlation between MCU and codon positions along the 

genes. Autosomal genes that do not have any introns were used for this analysis to 

capture the gradient specific to coding regions. MCU is positively correlated with 

codon position for the first 50 codons (Spearman’s r = 0.07, p < 10-4) and negatively 

correlated with codon position for the next 200 codons (Spearman’s r = -0.03, p = 



 20	
  

0.002). From 300 codons onwards, the slope is not significantly different from 0.  

 

Previous studies have suggested that reduced codon bias near the beginning of 

the genes is under selection for reducing translational elongation speed (Tuller et al. 

2010; Hockenberry, Sirer, Amaral, and Jewett 2014a) or mRNA folding for 

translation(Bentele et al. 2013). The first 50 codons of genes also have lower dS than 

other codons of genes even after controlling for the distance from TSS in both low 

and highly transcribed genes (Matsumoto and Akashi, unpublished).  

 

To identify the underlying process that governs codon bias near the 5′ end, I 

compared scaled GC content with respect to the distance from TSS between 2-fold 

synonymous sites and small introns. Within the first 450 bp, the scaled GC content at 

2-fold synonymous sites increases as a function of distance from TSS even though the 

transcription-associated selection pressure, as indicated by the small intron scaled GC 

gradient seems to be in the opposite direction (Figure 2.8). These results suggest that 

the base composition of the synonymous sites near the 5′ end is under strong selection 

for low codon bias, which could be important for translation . The MCU gradient after 

the first 450 bp from TSS is similar to that of small introns (Figure 2.8), suggesting 

that evolutionary forces governing high GC content in small introns in the 5p750 

regions might also operate on synonymous sites.  

 

To differentiate between the effect of codon usage bias and transcription-

associated selection on synonymous sites, I compared the relationship between 

transcript abundance and MCU in the 5p750 and 5p750-1500 regions. Since, both 

codon usage selection and transcription-associated selection predict positive 
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correlation between MCU and expression level, 5p750 region should show a stronger 

correlation between MCU and transcript abundance than 5p751-1500 region. MCU 

was strongly positively correlated with transcript abundance in both 5p750 

(Spearman’s r = 0.27, p < 10-4) and 5p750-1500 regions (Spearman’s r = 0.26, p < 10-

4). The correlation between MCU and transcript abundance was only slightly higher in 

the 5p750 region and the difference in the MCU of 5p750 and 5p750-1500 regions 

was apparent only in genes with intermediate transcriptional level (Figure 2.9), unlike 

small introns. The high correlation between MCU of 5p750-1500 region and 

transcript abundance, even though the effect of transcription might be weaker on the 

5p750-1500 region suggests that translational selection is the major contributor of 

high GC in the 2-fold synonymous sites. 

 

2.4 Discussion 

 

In this chapter, I show that GC content of introns varies within the genes of D. 

melanogaster genomes and propose underlying causes of GC content heterogeneity. 

GC content of small introns decreases near the 5′ end of genes and the decline 

becomes less steep as the distance from the TSS increases. This finding is consistent 

with a previous study in Drosophila (Kliman and Eyre-Walker 1998) where the 

authors investigated the base composition heterogeneity within 117 genes. Here I 

have studied a much larger dataset, distinguished between small and long introns 

since they are known to evolve at different rates (Haddrill et al. 2005; Halligan 2006), 

and tested causes for base composition heterogeneity. My result is in contrast with the 

result for base composition at all sites that shows increase in GC from 5′ to 3′ end 

(Aerts et al. 2004). Negative gradients have also been observed for CG, TG and CA 
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dinucleotides in Drosophila introns (Tang et al. 2006). Compositional variations have 

been observed within genes in the yeast (Stoletzki 2011), C. elegans (Khuu et al. 

2007), human (Clay et al. 1996; Aerts et al. 2004; Khuu et al. 2007; Polak and Arndt 

2008) and plant genomes (Wong et al. 2002; Serres-Giardi et al. 2012; Glémin et al. 

2014; Ressayre et al. 2015). Transcription-related mutation or selection bias has been 

suggested as a potential cause of within-gene compositional gradients based on the 

correlation between coding and intron GC gradients (Wong et al. 2002), comparison 

between genes with different breadth of expression (Aerts et al. 2004), association 

with transcriptional activator binding sites (Khuu et al. 2007) and strand asymmetry in 

the complementary substitution rate (Polak and Arndt 2008). Some studies argue that 

compositional gradients reflect biased gene conversion based on correlation of GC 

content with recombination rate (Stoletzki 2011; Serres-Giardi et al. 2012; Glémin et 

al. 2014). We, on the other hand, did not find a positive correlation between 

recombination rate and GC content in the 5p750 region (see Chapter 3), which rules 

out the possibility of biased gene conversion causing high GC near the 5′ end.  

 

I also show that small intron GC content in the 5p750 region shows a stronger 

correlation with transcript abundance than that in the 5p751-1500 region. This pattern 

implies that transcription-related mutation or substitution biases are effecting the base 

composition of the 5p750 region of the genes, more so than the 5p751-1500 region. 

Experimental studies in yeast have shown that transcription increases mutation rate 

(Datta and Jinks-Robertson 1995; Morey et al. 2000; Lippert et al. 2011; Mischo et al. 

2011; Takahashi et al. 2011). During the formation for DNA-RNA hybrid during 

transcription, the non-transcribed strand is transiently single-stranded. The RNA 

polymerases pause near the 5′ end. Hence, the non-transcribed strand near the 5′ end 
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might remain single-stranded for longer time and be susceptible to lesions. This 

would result in the increase of mutation rate near the 5′ end. Even if the repair 

mechanisms are more efficient during transcription, the region near the 5′ end should 

have high substitution rates if base composition is not under selection. However, 

small intronic sites near the 5′ end of the genes have low divergence rates (Matsumoto 

and Akashi, unpublished). The divergence rate increases with the increase in distance 

from the TSS. This gradient is steeper for genes with higher transcript abundance. 

Since the divergence of 5p750 region is lower than that of 5p751-1500, either the base 

composition in the 5p750 region is under higher selective constraint or mutation rate 

is lower in that region.  

 

Patterns reflecting variation in mutation rate should be observed in genes that 

are expressed in the germline since mutation occurring in the germline are likely to be 

passed on to the future generations. I found that genes that are expressed at low levels 

in tissues containing germline cells but at moderate to high levels in other tissues also 

have increased GC near the 5′ end, suggesting that transcription-associated selection 

drives high GC near the 5′ end.  

 

Most of the earlier studies on within-gene variation in base composition have 

focused on synonymous sites and found that codon bias near the 5′ end is reduced 

(Bulmer 1988; Eyre-Walker and Bulmer 1993; Kliman and Eyre-Walker 1998; 

Hooper and Berg 2000; Qin et al. 2004; Bentele et al. 2013; Hockenberry, Sirer, 

Amaral, and Jewett 2014a). I also found a reduction in codon bias near the 5′ end, but 

the rest of the pattern shows a similar decline as intron GC. The synonymous sites in 

the first 50 codons of genes have lower divergence than synonymous sites present in 
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the rest of the codons, even after accounting for the distance from the TSS 

(Matsumoto and Akashi, unpublished). The first 50 codons of genes have low GC 

content even though the selection pressure for transcription prefers high GC. These 

findings suggest that strong selection for reducing GC content is operating in the first 

50 codons of genes and provide further evidence to previous studies that suggest that 

reduced GC content in the first few codons might be important at the mRNA level or 

during translation. 
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CHAPTER 3 

Genome-wide heterogeneity in base 

composition in Drosophila melanogaster 

 

 

3.0 Chapter Summary 

 

In the previous chapter, I established that base composition varies within the 

genes of D. melanogaster. At a genome-wide scale, evolutionary forces can vary 

based on functional constraints, mutation rates and patterns, recombination rates and 

chromatin states. Hence, to understand variations in evolutionary forces and their 

underlying causes, I studied base composition variation at a genomic scale.  

 

At the genome-wide level, base composition is heterogeneous within as well 

as between chromosome arms. GC content at synonymous sites and introns shorter 

than 100 bp is significantly higher on the X chromosome compared to the autosomes. 

GC content at the synonymous sites is the most heterogeneous among all nucleotide 

classes, suggesting that selection intensity might vary at a shorter scale than mutation 

in the D. melanogaster genome, since base composition of synonymous sites is 

thought to be evolving predominantly under the selection for codon usage whereas 

other nucleotide classes are mainly affected by mutation bias and biased gene 

conversion.  
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3.1 Introduction 

 

As discussed in the previous chapter, variation in base composition within 

genes could be governed by biological processes such as transcription and translation. 

However, the sites within a gene are expressed at similar levels, tightly linked and 

share the regional location within the genome. Hence, to study the affect of variation 

in expression level, recombination rate and genomic location, base composition 

variation at the genomic-scale must be studied.  

 

Base composition is known to vary at a genome wide-scale in many species 

(Sueoka 1962; Bernardi 1989; Gardiner et al. 1990; Carulli et al. 1993; Sharp and 

Lloyd 1993; Dujon et al. 1994; Feldmann et al. 1994; Deschavanne and Filipski 1995; 

Tang et al. 2006; Diaz-Castillo and Golic 2007; Jørgensen et al. 2007). The scale of 

heterogeneity varies among taxa, with the human genome having the highest 

heterogeneity (Tang et al. 2006). The GC content in the Drosophila melanogaster 

genome varies at a scale of more than 100kb (Carulli et al. 1993). To understand the 

causes of base composition heterogeneity, variation in base composition of different 

DNA classes needs to be studied. One of the striking patterns of genome-wide base 

composition heterogeneity in D. melanogaster genome is the difference in base 

composition between X chromosome and autosomes (Singh 2005b; Singh et al. 2008; 

Vicoso et al. 2008; Campos et al. 2013). The X chromosome has significantly higher 

GC content at the synonymous sites than autosomes. This pattern was independent of 

the gene expression level, gene length, recombination rate, gene density and gene 

identity and has been implicated as a consequence of more effective selection 

operating on the X chromosome (Singh 2005b; Singh et al. 2008; Vicoso et al. 2008; 
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Campos et al. 2013).  

 

In this chapter, I investigate the genome-wide variation in base composition of 

four nucleotide classes, small introns, long introns, 2-fold synonymous sites and 

intergenic sites in Drosophila melanogaster genome. I show that base composition 

varies at a genome-wide scale. The base composition of different functional classes of 

DNA show different patterns enabling me to determine the causes of base 

compositional heterogeneity. I identified certain regions of the genome that show 

higher heterogeneity than the rest of the genome. I also report that the higher GC on 

the X chromosome is only restricted to synonymous sites and small introns. 

 

3.2 Materials and Method 

 

3.2.1 Sequence data 

 

Sequence data and annotations for Drosophila melanogaster genome (Release 

5.28, June 4, 2010) (Adams et al. 2000) were obtained from FlyBase 

(www.flybase.org). Only genes that were predicted to have single protein isoforms 

were used for the analysis. 

 

3.2.2. Recombination rate estimates 

 

The D. melanogaster genome recombination rate estimates calculated by 

Fiston-Lavier et al (Fiston-Lavier et al. 2010) were used in this study. Recombination 

rate estimates assigned to the locations of single genes on the chromosome were used. 
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3.2.3 Codon bias and GC content measures 

 

Major codon usage (MCU) for 2-fold redundant codon families (except Asp) 

was used as a measure for codon bias. MCU is defined as the percentage of major 

codons in a gene. Major codons classifications were obtained from a previous analysis 

(Akashi unpublished) for 904 X-linked genes and 5330 autosomal genes.  

 

Introns with length less than 100 bp were classified as small introns and 

introns with length greater than 100 bp as long introns. The first 10 and the last 30 

bases of the small introns were removed while calculating GC content of small introns 

in order to exclude potential splice sites and polypyrimidine tract (Chapter 2). 

Nucleotides present in the 11-100 bp region of long introns were used for calculating 

GC content of long introns (Chapter 2). 

 

Intergenic DNA was defined as the regions that were not annotated as coding 

regions, introns or UTRs in the D. melanogaster genome (Release 5.28, June 4, 

2010). Conserved sharp changes in GC content are observed near the 5′ and 3′ ends of 

Drosophila genes (Zhang et al. 2004). To avoid such potential functional regions, 800 

bp around UTRs were also removed while calculating the GC content of intergenic 

regions.  
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3.2.4 GC comparison among chromosome arms 

 

GC content was compared among chromosome arms for various nucleotide 

classes using Mann-Whitney U test (with continuity correction) implemented in R 

version 3.2.3 (https://www.r-project.org/). Only genes that had more than 30 sites of a 

given nucleotide class were included in the analysis. All autosome data were pooled 

for comparison between X and autosomes. For comparison among autosomes, GC 

measures of each chromosome arm were compared to that of the remaining autosomal 

chromosome arms. Data from chromosome 4 were not included. Multiple-test 

correction was performed using Bonferroni-sequential method. Boxplots were 

generated using “boxplot” function implemented in R version 3.2.3 (https://www.r-

project.org/). 

 

3.2.5 Statistical analyses: Heterogeneity estimation 

 

Heterogeneity within a chromosome can be estimated by identifying the 

proportion of the chromosome that has high or low MCU/GC content relative to the 

rest of the chromosome. To identify such regions, G-statistic was calculated for each 

bin using the formula,  

𝐺 =   −2 𝑂 ∗ 𝑙𝑛(
𝐸
𝑂) 

 

where, O is the observed frequency and E is the expected frequency. To 

control for the difference in sample size among bins and nucleotide classes, G-statistic 

was calculated for bins with equal number of sites. Each chromosome was first 

divided into non-overlapping blocks of 200Kb nucleotides. Only the blocks that had 
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at least 500 sites of a given nucleotide class were used. To control for difference in the 

total number of sites among nucleotide classes, 500 sites for each nucleotide class 

were randomly selected from each block and the GC content of the randomly selected 

sites was used to represent GC content of the block. G-statistic was calculated for 

each block. The frequencies of GC and AT sites within each bin were used as the 

observed frequencies and those outside the bin in the chromosome arm were used as 

the expected frequencies. 

 

The G-statistic distributions were compared across nucleotide classes and 

chromosome arms. For the comparison among nucleotide classes, the data for all 

nucleotide classes across all chromosome arms were first pooled. The 0th, 25th, 50th, 

75th and 100th quantiles of the G-statistic of the pooled data were then calculated. The 

proportion of blocks having G-score between the 0th and 25th quantile, 25th and 50th 

quantile, 50th and 75th quantile, and 75th and 100th quantile in the individual nucleotide 

classes were calculated and compared among different nucleotide classes. A similar 

approach was used to compare G-statistic distributions among chromosome arms. In 

this case, data for single nucleotide classes across different chromosome arms were 

used. The distributions were compared using two-sample Kolmogorov-Smirnov test 

implemented in R version 3.2.3 (https://www.r-project.org/). 
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3.2.6 Correlation between recombination rate and GC measures 

 

Spearman’s Rank Correlation Coefficient was used to measure correlation 

between recombination rate and various GC measures using “distancematrix” 

function of Bio.Cluster package in python 2.7.8. Only the genes that had at least 30 

sites of a given nucleotide class were used to calculate the correlation between the GC 

content of various nucleotide classes. The statistical significance of the correlation 

was computed by conducting a bootstrap across genes. Genes in the original dataset 

were resampled to generate 100,000 bootstrap datasets. Correlation coefficients were 

calculated for each dataset and 95% confidence interval of the distribution of 

correlation coefficients was computed. Correlation coefficients were also calculated 

after removing regions of no recombination identified by Kliman and Hey (Kliman 

and Hey 1993).  

 

3.3 Results 

 

3.3.1 GC content comparison between X chromosome and Autosomes 

 

In the previous chapter, I established that base composition varies at a within-

gene scale in D. melanogaster. Previous studies have shown that base composition in 

Drosophila also varies at a genome-wide level (Carulli et al. 1993). It is well 

documented that codon bias is higher for the genes on the X chromosome than for 

those on the autosomes (Singh 2005b; Singh et al. 2008; Campos et al. 2013). This 

pattern has been implicated as consequences of more effective selection operating on 

the X chromosome than on the autosomes. Consistent with these reports, I found that 
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MCU is significantly higher on the X chromosome compared to autosomes (Table 

3.1, Figure 3.1). Among intron GC measures, small intron GC content is significantly 

higher on X, as reported earlier (Campos et al. 2013) (Table 3.1, Figure 3.1). 

However, I found that long introns and intergenic DNA have similar GC content on X 

and autosomes (Table 3.1, Figure 3.1). Intergenic GC content shows variability 

among autosomes. Right chromosome arms (2R, 3R) tend to have higher intergenic 

GC content than left chromosome arms (2L, 3L) (Figure 3.1). 

 

Since selection pressures might differ between the 5p750 and post-5p750 

regions of the genes, I compared the GC content of 5p750 and post-5p750 regions 

between X and autosomes separately. MCU and small intron GC content are higher 

on X compared to autosomes for both 5p750 and post-5p750 regions (Figure 3.2 A, B, 

Table 3.1). Long introns have similar GC content for both 5p750 and post-5p750 

regions on X and autosomes (Figure 3.2 A, B, Table 3.1). 

 

3.3.2 Regional heterogeneity in GC content in the D. melanogaster genome 

 

GC content for synonymous sites and small introns varies across chromosome 

arms, especially between X and autosomes. To test if the GC content also varies 

within chromosome arms, the chromosomal GC variation along the chromosome arms 

was studied.  

 

To estimate the heterogeneity in GC content within chromosome arms, the 

regions with significantly higher or lower GC content than the rest of the chromosome 

were identified. MCU varies at a regional-scale on both X chromosome and 
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autosomes (Figures 3.3). The sub-centromeric and sub-telomeric regions present at 

the ends of the chromosome arms tend to have high MCU. A region with strikingly 

low MCU is observed between 15-16Mb on the X chromosome. The synonymous GC 

content of this region is almost as low as that of intergenic regions. The variation in 

MCU is accompanied by that in small intron GC content, which has peaks and dips in 

similar regions as MCU (Figures 3.3). A very few regions have significantly different 

long intron GC content than that of the rest of the chromosome (Figures 3.3). 

Intergenic GC content, on the other hand, is variable in many regions (Figures 3.3). 

However, it should be noted that these departures are sensitive to the sample size and 

intergenic DNA class has larger sample size than any other nucleotide class. 

 

While comparing heterogeneity among nucleotide classes, classes that have 

larger sample size would have more statistical power than the ones that don’t. Hence, 

to control for the sample size, G-statistic was calculated for equal number of sites, 

which were randomly chosen from 200Kb non-overlapping blocks of chromosome, 

for each nucleotide class (see Methods). The distributions of G-statistic were 

compared among nucleotide classes. MCU was found to be the most heterogeneous 

GC measure, followed by long intron GC content (Table 3.2, Figure 3.4). Intergenic 

GC content was the least heterogeneous among all nucleotide classes (Table 3.2, 

Figure 3.4). Although the average G-statistic for X genes is higher than that for 

autosomal genes, the distributions of G-statistics on X and autosomes are not 

statistically different (Table 3.2).  
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3.2.3 Correlation of GC content with recombination rate 

 

Regional heterogeneity in base composition could be explained by variation in 

the strength of selection, mutation bias or biased gene conversion. Some previous 

studies have focused on recombination to explain the variation in codon bias 

(Comeron et al. 1999; Hey and Kliman 2002). Recombination is expected to increase 

the efficacy of selection by reducing the linkage between selected sites (Hill and 

Robertson 1966; Felsenstein 1974; Birky and Walsh 1988). Recombination is also 

known to associate with mutation bias and biased gene conversion (MARAIS et al. 

2003). Overall positive correlation between recombination rate and codon bias has 

been observed in Drosophila melanogaster genes (Comeron et al. 1999; Marais and 

Mouchiroud 2001; Hey and Kliman 2002; MARAIS and Piganeau 2002; MARAIS et 

al. 2003; Campos et al. 2013). However, some studies report that recombination rate 

and codon bias on X were negatively correlated (Singh et al. 2005; Campos et al. 

2013). This result is in contrast with the expected pattern and remained unexplained. 

 

Our results from the within-gene analysis indicated that the 5p750 region (up 

to 750 bp from TSS) and the post-5p750 region (from 751 bp to end of the gene) of 

the gene experience different mutational and/or selection pressures. Hence, their 

relationship with recombination rate might also be different. So, I tested the 

correlation between recombination rate and MCU and GC content for 5p750 and post-

5p750 regions separately. MCU of both 5p750 and post-5p750 regions is significantly 

negatively correlated with recombination rate on X but has no significant correlation 

with recombination rate on autosomes (Table 3.3). The negative correlation between 

MCU and recombination rate on X is higher in the 5p750 region than the post-5p750 
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region. After removing regions of no recombination, the relationship between 

recombination rate and MCU on X still persists (Table 3.4). Similar to codon bias, 

small intron GC content is also negatively correlated with recombination rate in the 

5p750 region but not in the post-5p750 region on X (Table 3.3). No significant 

correlation is detected between small intron GC content and recombination rate on 

autosomes (Table 3.3). In contrast to the small intron GC pattern, the GC content of 

long introns in post-5p750 region is significantly positively correlated with 

recombination rate on autosomes but no significant correlation is observed on the X 

chromosome (Table 3.3). After removing regions of no recombination, no significant 

correlation between recombination rate and long intron GC content is observed (Table 

3.4). 

 

In the previous section, I observed that the region between 15-16Mb on the X 

chromosome has unusually low codon bias. To test if this region contributes to the 

negative correlation between codon bias and recombination rate on the X 

chromosome, I calculated the correlation after excluding the genes present in this 

region. After removing the genes in this region, no negative correlation is observed 

between recombination rate and codon bias for either 5p750 or post-5p750 region of 

genes.  
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3.4 Discussion 

 

In this chapter, I show that base composition varies at a genome-wide scale in 

the D. melanogaster genome. I observe among as well as within chromosome 

heterogeneity in base composition, which cannot be explained by the differences in 

recombination rate. It is already known that codon bias and intron GC content is 

higher on the X chromosome, compared to the autosomes (Singh et al. 2005; Vicoso 

and Charlesworth 2006; Singh et al. 2008; Campos et al. 2013). Here, I show that this 

is only true for MCU and small intron GC content but not long intron GC content or 

intergenic GC content. I also show that MCU and small intron GC content are higher 

on X compared to autosomes for both 5p750 and post-5p750 regions. As suggested in 

previous reports, stronger efficacy of selection on X compared to autosomes could 

explain higher MCU on X compared to autosomes (Singh et al. 2008). The small 

intron base composition in the 5p750 region of genes might also be under 

transcription-associated selection (Chapter 2). Hence, stronger purifying selection 

could also explain higher 5p750 small intron GC content on X compared to 

autosomes. The higher post-5p750 small intron GC on X, however, remains to be 

explained.  

 

Eukaryotic genomes are highly variable in nucleotide composition (Bernardi 

2000; Nekrutenko and Li 2000; Tang et al. 2006; Frenkel et al. 2012). Among 

multicellular eukaryotes, yeast has the least heterogeneity at genomic scale in terms of 

base composition followed by plants (Nekrutenko and Li 2000). Among vertebrates, 

primates and ungulates have high composition heterogeneity compared to other 

vertebrates (Bernardi 2000; Frenkel et al. 2012). Fish have the least heterogeneity in 
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base composition among vertebrates (Frenkel et al. 2012). Human genome has 

exceptionally high heterogeneity compared to other eukaryotes (Bernardi 1989; 

Bernardi 1993; Bernardi 2000; Nekrutenko and Li 2000; Frenkel et al. 2012). 

Previous studies have identified heterogeneity in base composition in the Drosophila 

melanogaster genome as well(Carulli et al. 1993). When compared to other 

eukaryotes, GC content in Drosophila is found to be less heterogeneous than that in 

mammals but more heterogeneous than that in worms and yeast (Nekrutenko and Li 

2000; Tang et al. 2006). I found that among the different GC classes, MCU is the 

most heterogeneous GC measure and intergenic GC content is the least 

heterogeneous, suggesting that selective forces are vary at a shorter scale than 

mutational forces in D. melanogaster genome. This was true after accounting for the 

difference in the sample size of each nucleotide class. Vertebrates show 

interchromosomal heterogeneity in base composition (Frenkel et al. 2012). However, 

in D. melanogaster the difference in the base composition heterogeneity was not 

significant among chromosome for most GC classes.  

 

Correlation with recombination rate can help in determining the cause of base 

composition variation. If base composition variation is caused by variation in 

selection or biased gene conversion, GC content is expected to positively correlate 

with recombination rate (Hill and Robertson 1966; Felsenstein 1974; Birky and Walsh 

1988; MARAIS et al. 2003). Previous studies have reported a negative correlation of 

GC content at synonymous sites and introns with recombination rate on X 

chromosome and a positive correlation on autosomes (Singh et al. 2005; Campos et 

al. 2013). However, these studies did not distinguish sites by their position in the 

transcript and the length of the intron they belonged to. I found that recombination 
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rate was negatively correlated with GC content at synonymous sites on the X 

chromosome in both 5p750 and post-5p750 regions. The magnitude of correlation 

was higher in the 5p750 regions. Among other GC classes, recombination rate was 

negatively correlated with small intron GC content only in the 5p750 region. On the 

autosomes, no significant correlation between any GC class and recombination rate 

was observed. On the X chromosome as well, the negative correlation seems to be 

sensitive to certain outlier regions and might not be a meaningful pattern. Hence, 

recombination rate might not be a strong determinant of the efficacy of natural 

selection. Expression level, as discussed in the previous chapter, is a better predictor 

of natural selection at the synonymous sites. 
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CHAPTER 4 

Lineage-specific genome evolution in the 

Drosophila melanogaster subgroup 

 

4.0 Chapter summary 

 

To study the base composition variation across different genomes, I studied 

lineage-specific codon bias evolution in seven Drosophila melanogaster subgroup 

species. I used existing genome data for five species and added data for two of the D. 

melanogaster subgroup species through Next-Generation RNA sequencing of D. 

tessieri and D. orena transcriptomes. I described a protocol for gene annotation of the 

RNA-seq data using the available data from the sequenced species. Ancestral states 

were inferred using maximum likelihood approaches that account for both base 

composition bias and non-stationarity and assigned substitutions to 10 lineages. All 

lineages showed departures from equilibrium and in some cases multiple factors 

appeared to have fluctuated. These findings suggest that the magnitudes of forces 

governing base composition at synonymous sites may have varied frequently in a 

lineage-specific manner in the D. melanogaster subgroup and may need to be taken 

into account when testing evolutionary mechanisms at other classes of sites.   

 

Comparing classes of DNA evolving under different selective constraints can 

reveal the underlying evolutionary mechanisms of lineage-specific changes in base 

composition. Variability of base composition caused by changes in selection intensity 

would be higher for regions under stronger selection than for regions under weak or 
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no selection. The effect of mutation, however, would be similar for all DNA classes. 

We plan to examine the lineage-specific changes in base composition of small introns 

in seven Drosophila melanogaster subgroup species and compare them to that of 

synonymous sites.  

 

The genome data from five of the sequenced Drosophila melanogaster 

subgroup species will be employed for this study. In addition, we also sequenced the 

genomes of two more species in the subgroup, Drosophila tessieri and Drosophila 

orena, using Next-Generation sequencing techniques. We mapped the RNA-seq data 

from the two species, which we previously sequenced and analyzed, to their 

assembled genomes to identify exon-intron junctions. Using the positions of the exon-

intron junctions, the intron sequences were extracted from the genomes. We were able 

to annotate more than 15,000 introns for around 5000 genes from each of the species. 

We also analyzed sequencing data from 20 inbred lines of D. simulans and D. yakuba 

in order to obtain polymorphism data to study recent evolution. 
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4.1 Introduction 

 

Evolutionary parameters such as mutation rates and biases, recombination 

rates, effective population size and fitness effects of mutations influence the 

substitutions occurring in a lineage. If these evolutionary parameters change very 

slowly, they can cause heterogeneity in the substitution patters due to variation in 

evolutionary forces (Gillespie 1993; Gillespie 1994). Several studies in Drosophila 

provide evidence for lineage-specific evolution, suggesting temporal fluctuations in 

evolutionary forces. For instance, differences in rates of evolution have been observed 

in closely related species in Drosophila (Takano 1998; Akashi 1999; Akashi et al. 

2006; Nielsen et al. 2006). Some studies have also identified several genes evolving 

in a lineage-specific manner (Clark et al. 2007; McBride 2007; McBride et al. 2007). 

Lineage-specific base composition evolution have also been observed in coding and 

non-coding regions for small-scale data (Akashi et al. 2006; Singh et al. 2007) and 

some species (Kern 2004; Singh et al. 2009) in the D. melanogaster subgroup. 

 

I studied lineage-specific codon bias evolution in seven Drosophila 

melanogaster subgroup species to determine in the time-scale and magnitude of 

fluctuations in evolutionary forces at the genomic level. I examined the changes in the 

codon bias patterns in more than 5000 genes from seven D. melanogaster subgroup 

species. I employed existing genome data for five species (D. melanogaster, D. 

sechellia, D. simulans, D. yakuba and D. erecta) and added data for two more species 

in the subgroup (D. teissieri and D. orena) through Next Generation sequencing. 

Adding sequence data from the two species not only gives me a bigger number of 

lineages to study but also enables reliable ancestral inference at the internal nodes. All 
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these species show strong patterns of codon usage bias. These species have a well-

supported phylogeny and their branch lengths are short enough to make reliable 

ancestral inference. I inferred ancestral states at the interior nodes and assigned 

substitutions to ten lineages (seven terminal and three internal). All these lineages 

showed strong departures from the equilibrium states and in some cases multiple 

factors seemed to have fluctuated. 

 

4.2 Methods 

 

4.2.1 Coding Sequence Data 

 

In this study, I used available coding sequence data from Flybase 

(www.flybase.org) for D. melanogaster (Adams et al. 2000) (Release 5.28), D. 

sechellia (Release 1.3) (Clark et al. 2007), D. simulans (Release 1.3) (Clark et al. 

2007), D. yakuba (Release 1.3) (Clark et al. 2007) and D. erecta (Release 1.3) (Clark 

et al. 2007). In order to obtain the coding sequence data for D. teissieri and D. orena, 

Next-Generation RNA-sequencing of their transcriptomes at four developmental 

stages: Larva, Pupa, Adult male and Adult female, was performed in the Akashi lab. A 

paired-end library for each sample was created and sequenced using Illumina Hi-Seq. 

Two replicates of larval samples (larva rep1 and larva rep2) were sequenced to check 

for consistency. 

 

I filtered the RNA-seq reads for adapters, which are short nucleotide 

sequences ligated to both ends of the DNA fragment during library preparation, by 

using a publically available tool, cutadapt (Martin 2011). I trimmed the sequence at 
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the 3′ end of the reads that overlapped with the adapter sequences by even 1 bp. If a 

full or partial adapter was found at the 5′ end of a read, the whole read was discarded. 

The minimum overlap for the partial adapter in this case had to be 9 bp. Table 4.1 

shows the summary statistics of the adapter filtering.  

 

I trimmed low quality bases that had a Phred quality score of 25 or less from 

the reads using the DynamicTrim program of the SolexaQA software package (Cox et 

al. 2010). This program extracts the longest contiguous sequence in individual reads 

where all bases have a quality score higher than the threshold (Phred quality score of 

25 in my case). After trimming the low quality bases, the reads that had a length of 

less than 25 bp were discarded long with their paired reads using LengthSort, another 

program from the SolexaQA package.  

 

I also checked for rRNA contamination in the reads and removed the reads 

that map to rRNA sequences. I used Bowtie (parameters: default alignment 

parameters; reported alignments –k 3) (Ben Langmead 2012) to map reads to rRNA 

sequences from D. melanogaster, D. yakuba and D. erecta. The reads that mapped to 

at least one rRNA sequence were removed from the analysis. The summary of rRNA 

filtering of the reads is shown in Table 4.2. 

 

The filtered RNA-seq reads from individual tissue samples of the two species 

were assembled using a De novo transcriptome assembler, Trinity (Haas et al. 2013). 

Trinity assembles the reads into relatively longer DNA sequences called contigs. The 

summary of the transcriptome assembly is shown in Table 4.4. 
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4.2.2 Sequence ortholog assignment for the newly sequenced species 

 

The contigs from the newly sequenced species, pooled together across tissue 

samples, were matched to amino acid sequences from their closest species, D. yakuba 

and D. erecta using blastx (McGinnis and Madden 2004) to identify candidate 

ortholog sequences. Blastx matches of length greater than 33 amino acids and 

sequence identity more than 20.0% were used to assign candidate orthologs. To test 

for type II error (false negatives ), I matched D. erecta gene sequences to D. yakuba 

amino acid sequences using blastx. I then checked how many real orthologs were 

discarded by filtering out matches that had less than 20.0% identity or were less than 

33 amino acids in length. From this test, I obtained a false negative fraction of 0.06 

assuming one-to-one orthologs. 

 

Although D. teissieri is phylogenetically closer to D. yakuba than D. erecta 

and D. orena is phylogenetically closer to D. erecta than D. yakuba, the candidate 

orthologs for D. teissieri were searched from D. erecta sequences and that for D. 

orena were searched from D. yakuba sequences. This was done so that the expected 

pairwise amino acid distance between D. erecta - D.yakuba orthologs could be used 

as a cut off for filtering matches since the estimates for the expected pairwise distance 

between the D. orena and D. erecta sequences and that between D. teissieri and D. 

yakuba sequences are not available. D. orena contigs were aligned to their D. yakuba 

matches and D. teissieri contigs to their D. erecta matches using MUSCLE (Edgar 

2004). The pairwise distance for each amino acid alignment using GRANTHAM 

distance matrix (Grantham 1974). The GRANTHUM amino acid distance of 12.5, 

which is the 95% quantile of the distribution of the amino acid distance between D. 
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erecta - D.yakuba orthologs, was defined as a cut off to filter the matches.  

 

If the contigs still had multiple matches, the matches that had the highest 

conservation were assigned as candidate orthologs. This was done by bootstrapping 

the alignments between the contigs and their matches 1000 times by resampling the 

codons and calculating amino acid distance for each replicate. The matches were then 

ranked by their amino acid distance for each replicate. The match that had rank 1 at 

least 90% of the times was assigned as the ortholog match (Table 4.3). If the matches 

could not be resolved, the contig was excluded from the analysis. 

 

4.2.3 Ortholog sequence alignments 

 

The alignments of 8933 orthologous genes from the five already sequenced 

species (D. melanogaster, D. sechellia, D. simulans, D. yakuba and D. erecta) were 

obtained from Hiroshi Akashi. The orthologous contigs of those 8933 genes were 

identified in D. teissieri and D. orena. The amino acid alignments of the contigs and 

their orthologs were converted to nucleotide alignments and added to the five species 

alignment set after adjusting the gaps and unknown parts of the sequence. For the 

regions of the genes that mapped to more than one contig, each nucleotide of the 

overlapping contigs was checked for consistency and the conflicting ones were 

replaced by ‘N’. 

 

For the downstream analysis, the regions of the alignments (seven species 

alignment set) that had gaps or unknown nucleotides (Ns) were removed. The 

alignments that have stop codon within the sequences were trimmed until the stop 
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codon. The genes that had dN or dS values between any two species in the mcstyeo 

dataset greater than 1 or equal to -1 were also excluded from the analysis. The dN and 

dS values were calculated using the Nei-Gojobori method (Nei and Gojobori 1986) 

implemented in the PAML software (Yang 2007). 

 

4.2.4 Binning Data 

 

The genes in the alignments were distributed into bins by their MCU values 

(Major Codon Usage in D. melanogaster). This was done for three categories of 

codons: all codons, conserved 2-fold codons except Asp codons and conserved 4-fold 

codons. Before distributing the genes into bins, the genes that had same MCU values 

were concatenated and treated as a single gene. Each bin should have approximately 

equal number of codons. So, I first calculated the estimated number of codons in each 

bin by dividing the total number of codons by the total number of bins. If the number 

of codons in the bin exceeded the estimated number of codons per bin while adding a 

codon to the bin, the number of extra codons that need to be accommodated into the 

bin were calculated. If the number of extra codons was more than half of the codons 

of the gene, the codon was added to that bin; otherwise it was left for the next bin.  

 

4.2.5 Ancestral Inference 

 

A maximum likelihood approach was used to infer the ancestral states. For 

maximum likelihood, two types of substitution models implemented in the PAML 

software (Yang 2007) were used in my analysis: GTR-H and GTR-NHb (Tavare, 

1986) (Matsumoto et al. 2015). GTR substitution model defines transition 
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probabilities between two nucleotides as a function of substitution rate parameters and 

equilibrium nucleotide frequencies. Under the GTR-H model, the equilibrium 

nucleotide frequencies are same for all lineages since they do not change over time. 

The substitution rate parameters are also same for all the lineages. Under the GTR-

NHb model, both the base compositions and the substitution rate parameters change 

over time. I used the average of multiple reconstructions weighted by their posterior 

probabilities. The detailed description of ancestral inference methods can be found in 

Matsumoto et. al.(Matsumoto et al. 2015). 

 

4.2.6 Measure of departure from equilibrium 

 

Under the MCP model, synonymous substitutions could be advantageous 

(unpreferred to preferred) or slightly deleterious (preferred to unpreferred) (Akashi 

1995). In general GC-ending codons are preferred and AT-ending codons are 

unpreferred in Drosophila. I used a skew of the unpreferred to preferred changes 

(dup,pu), described in Akashi et al 2006, to measure the direction and magnitude of 

departures from equilibrium.  

𝑑!",!" =   
𝑢𝑝 − 𝑝𝑢
𝑢𝑝 + 𝑝𝑢 

where up is the number of unpreferred to preferred changes and pu is the 

number of preferred to unpreferred changes.  

 

Computer simulations have shown that the expected dup,pu changes when 

codon bias changes due to altered Nes or mutation pressure, where Nes is the product 

of effective population size and selection coefficient for a particular lineage (Akashi 

et al. 2007). 
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4.2.7 Genome Sequencing  

 

To obtain the non-coding sequence data for D. teissieri and D. orena, the 

genomes of these two species were sequenced using Next-Generation genome 

sequencing technique. Female flies from D. teissieri and D. orena were sequenced in 

the Akashi Lab by constructing Illumina paired-end libraries with peak insert sizes 

472 bp and 462 bp, respectively. The DNA fragments were sequenced using Illumina 

HiSeq 2000. I created the pipeline to analyse the genome sequence data using a 

combination of available softwares and custom-made codes. 

 

The reads were filtered for adapters using a publically available tool, cutadapt 

(Martin 2011). The sequence at the 3′ end of the reads that overlapped with the 

adapter sequences by even 1 bp was trimmed and the reads that had at least 9 bp 

overlap to the adapter sequence at the 5′ end were discarded. Less than 0.5% of the 

bases were discarded in this process (Table 4.4). Low quality bases with Phred quality 

score of less than 25 were trimmed (cut) using DynamicTrim program of the 

SolexaQA software package(Cox et al. 2010). After the filtering, the reads with 

lengths less than 63 bp were discarded along with their paired reads. The summary 

statistics of quality filtering are given in Table 4.5. 

 

The filtered reads were assembled into contigs using SOAPdenovo2(Luo et al. 

2012), a de novo genome assembler that uses a De Brujin graph approach, with 

average insert size setting of 346 and 351 for D. orena and D. teissieri reads, 

respectively. The minimum aligned length was set to 64 and maximum read length 
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and read length cutoff were set to 100 each. A total of 312,596 and 638,580 contigs 

(contigsG) were obtained for D. teisseiri and D. orena, respectively. The total length 

of D. teissieri and D. orena assemblies are 157,463,559 bp and 186,280,924 bp and 

their respective N50s are 15,822 bp and 8972 bp. The contigsG were assembled into 

scaffolds using a scaffolding tool, SSPACE (Boetzer et al. 2011) with expected insert 

size set to 400 and minimum allowed error rate set to 0.25. Several statistics were 

used to assess the quality of a genome assembly, such as contig or scaffold N50, total 

length of the assembly, amount of Ns in the assembly, etc (Table 4.6). These statistics 

were calculated using a genome assembly comparison tool, Quast (version 2.3) 

(Gurevich et al. 2013).  

 

Another key factor of a good assembly is that most genes should remain 

unbroken, that is, most genes should be present entirely on one scaffold. This would 

allow me to annotate introns more easily. Contigs annotated from an RNA-seq 

experiment (contigsR) were compared against the scaffolds using blastn to find the 

number of genes that match to only one scaffold. The summary statistics of the 

genome assembly are given in Table 4.6. The repeat sequences in the scaffolds were 

masked using RepeatMasker 

(http://ftp.genome.washington.edu/RM/RepeatMasker.html) by taking D. 

melanogaster repeat sequences (genome release 5, downloaded from 

http://hgdownload.cse.ucsc.edu/goldenPath/dm3/bigZips/chromTrf.tar.gz) as a 

reference. RepeatMasker also masks low complexity sequences along with 

interspersed repeats.  

 

Another way of assessing the assembly quality is to check large-scale synteny 
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of contigs and scaffolds. In Drosophila species, six chromosome arms, known as the 

Muller’s elements, are mostly common across species. To check if the Muller’s 

elements are conserved between D. teissieri and D. orena and other species of the D. 

melanogaster subgroup, I mapped the D. teissieri and D. orena contigsG and scaffolds 

to the D. melanogaster genome using MUMmer (nucmer algorithm with following 

parameters for scaffolds, --maxgap=500 --mincluster=100, and default parameters for 

contigs)(Delcher et al. 2002) to check how many of the matched contigsG and 

scaffolds match to only one chromosome arm. More than 90% of the matching 

contigsG matched to only one chromosome arm in both the species. At the scaffold 

level, the percent matching to only one chromosome arm was lower than that at the 

contig level. More than 80% of the scaffolds matched to one chromosome (Table 4.7). 

In order to get an estimate of the expected inter-chromosomal rearrangement, I also 

mapped the D. yakuba genome to D. melanogaster genome. 63% of D. yakuba 

chromosome arms matched to only one D. melanogaster chromosome arm (Table 

4.7).  

 

 

4.2.8 Intron identification 

 

I designed a strategy that makes use of the RNA-seq data to identify and 

annotate introns. To find introns in the scaffolds, I used TopHat2 (Kim et al. 2013), a 

read mapper that recognizes exon-intron junctions. The minimum length of introns 

specified was 50 bp, which might be small enough to include most introns. For 

reference, in D. melanogaster, only 282 out of 85191 introns (0.3%) are less than 50 

bp in length. TopHat2 outputs the position of the splice junctions along with their 
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flanking sequences. In order to map the introns to the genes, I used the flanking 

sequences to identify the contigsR that contain the splice junctions. This was done by 

matching the junction flanking sequences to annotated contigsR using blastn. Among 

the junctions reported by TopHat2, junctions associated with the flanking sequences 

that did not match to even one annotated contigR on the same strand with at least 98% 

identity were removed. The junctions that matched to multiple contigsR belonging to 

different genes were also filtered out. The summary statistics of the whole process are 

shown in Table 4.8. 

 

The junctions that are spanned by very low number of alignments might be 

unreliable. I address the number of alignments spanning a junction as the junction 

depth. To decide the cutoff for the junction depth, I used the same intron finding 

strategy to identify introns in D. erecta and D. yakuba using their respective larva 

RNA-seq data. Using the distribution of the junction depth of the introns that were 

present in the D. erecta and D. yakuba genomes (release 1.3) (annotated) and of the 

ones that were not (unannotated) (Figure 4.1), I chose the junction depth of 5 as the 

cutoff. After removing all introns that had junction depth of 5 or below, around 80% 

of the remaining introns were annotated introns.  

 

After filtering the intron junctions based on their junction depth, the introns 

were classified into ones that overlapped with other introns and ones that did not. 

Among the ones that did not overlap with any other introns, constitutive introns of 

multiple isoform genes were differentiated from the introns present in single isoform 

genes (Table 4.9).  
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4.2.9 Identifying orthologous intron sequences 

	
  

To identify the orthologs of the putative introns in their closest species, I 

compared the flanking sequences of the introns to the CDSs from the closest species 

using discontiguous megablast. Flanking sequences on both sides of each intron (left 

flanking sequence or LFS and right flanking sequence or RFS) were required to match 

to continuous segments of the same CDS (Single LFS and RFS connected match). If 

either of the flanking sequences matched to multiple continuous segments of the same 

CDS or no continuous segment of the CDS, the intron was discarded. If an intron was 

present between the segments of the CDS that match to the left and right flanking 

sequence, it was assigned as the ortholog to the given putative intron. Among the 

introns overlapping with each other (non-constitutive introns), only the intron that had 

single LFS and RFS connected matches was assigned ortholog. If multiple introns in a 

set of overlapping introns had single LFS and RFS connected matches, the whole set 

was discarded. In D. melanogaster, around 98% of the introns have canonical splice 

sites. I also checked how many putative introns in D. teissieri and D. orena have 

canonical splice sites. The summary of the process in described in the Table 4.10. 

 
 

4.2.10 Intron Alignment 
 
 
Introns identified in D. teissieri and D. orena were aligned to orthologous 

introns from five already sequenced species (D. melanogaster, D. sechellia, D. 

simulans, D. yakuba and D. erecta), obtained from a previous study (unpublished 

data) using MUSCLE (nucleotide alignment option) (Edgar 2004). The introns 

alignments were classified into small (<=100 bp) and long introns (>100 bp) based on 

the length of the intron in D. melanogaster. The number of introns in each size 
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category is listed in Table 4.11. 

 

The regions of the alignments that had gaps or unknown nucleotides (Ns) were 

removed. The pairwise percent identity for each intron alignment was calculated. The 

pairwise percent identity of small introns lies between 45% and 100%. For further 

analysis, the first two and the last two nucleotides of each intron (splice sites) were 

trimmed. 

 

4.2.11 Polymorphism data processing 

 

Sequencing reads from Illumina paired-end sequencing for 20 isofemale 

inbred lines of D. simlans and D. yakuba were obtained from a study by Rogers et al 

(Rogers, Cridland, et al. 2014). Adapter sequences that overlapped with the read by 

even 1 bp at the 3′ end were trimmed using cutadapt (Martin 2011). This resulted in 

trimming about 27% of R1 and about 35% R2 reads from all samples. The reads from 

D. simulans were mapped to two D. simulans reference genomes (Clark et al. 2007; 

Hu et al. 2013) and those from D. yakuba were mapped to one D. yakuba reference 

genome (Clark et al. 2007) using bwa version 0.5.9 (Li and Durbin 2009).  

 

The sam files obtained from bwa were converted into bam files using samtools 

version 0.1.18(Li et al. 2009). Picard tools (http://broadinstitute.github.io/picard) 

was used to group reads, identify and fix paired reads and mark duplicates. The 

processed alignments were then analyzed using GATK version 3.6 (McKenna et al. 

2010) for indel realignment and variant calling. Base recalibration was skipped 

because of the absence of database of SNPs for my species. So, I first called variants 
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using the HaplotypeCaller command of GATK and then used these variants to 

construct a SNP database for the species. After the first round of variant calling, 

variants with a quality score in the top 10% were extracted from each sample and a 

high quality variant database was constructed. This database was used for base 

recalibration and the recalibrated alignments were used to call variants again. 

 

 

4.3 Results 

 

4.3.1 Transcriptome sequencing and de novo gene annotation 

 

I analyzed the RNA-seq data obtained by sequencing the transcriptome from 

four developmental stages: larva, pupa, adult female and adult male of D. teissieri and 

D. orena using Illumina HiSeq. The RNA-seq reads were filtered for adapters, low 

quality bases (Phred score < Q25) and rRNA contamination. The filtered reads were 

assembled using Trinity(Haas et al. 2013). The de novo assembly obtained from 

Trinity comprised of a total of 346,023 and 349,581 contigs across the four 

developmental stages for D. teissieri and D. orena, respectively. The summary of the 

transcriptome assembly for each sample is shown in Table 4.12.  

 

I developed some methods and strategies to assign orthologs to the assembled 

RNA-seq contigs. The RNA-seq contigs from separate tissue samples were pooled 

together and annotated using the available data from other Drosophila species in the 

subgroup. The D. teissieri contig sequences were compared against transcript 

sequences from D. erecta and D. orena contig sequences were compared against those 
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from D. yakuba. I used the available estimate of the distance between D. yakuba and 

D. erecta sequences to filter the matches and assign candidate orthologs to the 

assembled reads (see Methods). Only the genes that had single isoform in D. 

melanogaster were used for comparisons. 

 

I assigned orthologs to 85,906 D. teissieri contigs and 85,399 D. orena contigs 

covering 8,050 and 7,732 genes from D. teissieri and D. orena, respectively. A total of 

5560 genes (2,007,995 codons) had orthologs in all seven D. melanogaster subgroup 

species, which were used to construct ortholog alignments and infer ancestral states.  

 

4.3.2 Lineage-specific departures from equilibrium 

 

A total number of 5026 genes were divided into bins containing roughly equal 

number of codons based on their MCU values,. The binning was done separately for 

2-fold codons and 4-fold codons. 2-fold and 4-fold codon families were analyzed 

separately because these two classes of codons might be under different selection for 

codon usage. Genes in each bin were aligned among the seven Drosophila species. 

The substitutions (both silent and replacement) were inferred for a seven terminal (D. 

melanogaster, D. sechellia, D. simulans, D. teissieri, D. yakuba, D. erecta, D. orena) 

and three internal lineages (D. sechellia – D. simulans, D. teissieri – D. yakuba, D. 

erecta – D. orena) using maximum likelihood under GTR-H and GTR-NHb models 

(see Methods). The phylogeny of the D. melanogaster subgroup is shown in Figure 

4.2. The silent substitutions were classified into preferred-to-unpreferred (pu) and 

unpreferred-to-preferred (up) changes. In general, GC-ending codons are preferred in 

Drosophila. A up skew (dup,pu) statistic was calculated for each bin (Akashi et al. 
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2006). 

 

The dup,pu statistic is expected to change as a function of MCU (major codon 

usage) when codon bias changes due to altered Nes or mutation pressure (Akashi et al. 

2007), where Ne is the effective population size and s is the selection coefficient. dup,pu 

for conserved 2-fold codon families (except Asp) decreased as a function of MCU in 

all the lineages, consistent with a decline in Nes (Figure 4.3). The non-zero dup,pu of 

the lowest MCU class reflects the change in mutation bias. Negative dup,pu of the 

lowest MCU indicates an overall increase in the mutation bias towards AT and vice 

versa. D. melanogaster, D. sechellia and D. simulans lineages show evidence for 

increase in mutation bias towards AT (Figure 4.3 a-c), whereas an increase in 

mutation bias towards GC was supported in D. teissieri, D. teissieri – D. yakuba, D. 

erecta and D. orena lineages (Figure 4.3 e, g, h, i). No evidence for change in 

mutation bias was observed in D. sechellia – D. simulans, D. yakuba and D. erecta – 

D. orena lineages (Figure 4.3 d, f, j). The patterns in most lineages can be explained 

by a single change in each of the two parameters, Nes and mutation bias (u/v, u and v 

are mutation rates from AT to GC and GC to AT, respectively), for the whole genome.  

 

The dup,pu statistic for conserved 4-fold codon families also decreased as a 

function of MCU in all lineages. The pattern obtained for 4-fold codons was generally 

similar to that for 2-fold codons. However, prominent differences in mutation bias, 

shown by the difference in the dup,pu values for the lowest MCU class, could be seen 

between 2-fold codons and 4-fold codons in D. erecta and D. orena lineages (Figure 

4.4 a, b). A possible contributing factor for this pattern could be that for the 2-fold 

codons the possible silent substitutions are only transitions (G <-> A, C<->T), 
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whereas the silent substitutions for 4-fold codons also include transversions. This, 

however, does not completely explain the difference. When dup,pu of 4-fold codons, 

taking into account only the transitions, was compared to that of the 2-fold codons, 

the difference for the lowest MCU class became smaller but was still present.  

 

4.3.3 Comparison between ancestral inference methods 

 

A simulations study conducted in my lab has shown that ancestral inference 

differs considerably among GTR-H model, GTR-NHb model and maximum 

parsimony (Matsumoto et al. 2015). According to the simulations study, for genome 

scale data, non-stationary model provides reliable ancestral inference for complex 

non-stationary scenario. Patterns obtained in my study using both GTR-H and GTR-

NHb models showed departures from equilibrium with GTR-NHb model showing a 

stronger departure (Figure 4.3). Although the total number of parameters under the 

GTR-NHb model is more than 100, the variance in most lineages is still small. 

 

4.3.4 Genome sequence assembly and intron annotation 

 

In order to obtain non-coding sections of the genome, I sequenced whole 

genomes of D. teissieri and D. orena using Illumina HiSeq 2000 and I analyzed the 

genome sequence data using a combination of available softwares and custom-made 

codes. The reads were filtered for adapters and low quality bases (Phred score < Q25). 

I assembled the reads into contigs using a de novo genome assembler, SOAPdenovo2 

(Luo et al. 2012). I obtained a total of 312,596 and 638,580 contigs for D. teisseiri 

and D. orena, respectively. The total length of D. teissieri and D. orena assemblies are 
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157,463,559 bp and 186,280,924 bp and their respective N50s are 15,822 bp and 8972 

bp. Scaffolds were constructed from those contigs using SSPACE (Boetzer and 

Pirovano 2014). The summary of the genome assembly is shown in Table 4.6. 

 

I designed a strategy that makes use of the RNA-seq data to identify and 

annotate introns. I mapped the reads from the RNA-seq experiment to the genome 

scaffolds using TopHat2 (Kim et al. 2013). The splice junctions reported by TopHat2 

were used to extract intron sequences from the genome scaffolds. The flanking 

sequences of the splice junctions were matched to the annotated RNA-seq contigs to 

identify the genes that contain the junctions (see Methods). I annotated 21,512 introns 

for 5,956 genes from D. teissieri and 20,609 introns for 5,657 genes from D. orena 

out of the 8,050 and 7,732 genes annotated from each of the species using the RNA-

seq data. Since the annotated RNA-seq contigs are orthologous to single isoform 

genes in D. melanogaster, I expect most of them to monocistronic as well. More than 

70% of the annotated RNA-seq contigs contained non-overlapping introns, suggesting 

they have only one isoform (Table 4.9).  

 

Orthologous introns among species were identified by comparing the flanking 

sequence of the introns of the newly sequences species to the flanking sequences of 

introns in the closest species (see Methods). Using this method, orthologs from the 

closest species were assigned to 13,134 D. teissieri introns and 12,386 D. orena 

introns, most of which had canonical splice sites. A total of 7,623 introns had 

orthologs in all seven species (Table 4.11). 

 

 



 59	
  

4.4 Discussion  

 

In this chapter, I described a protocol for identifying orthologs to known genes 

in D. melanogaster from RNA-seq data using available data from the sequenced 

species. The D. melanogaster orthologs of the genes annotated from D. teissieri and 

D. orena covered genes expressed in all developmental stages (Figure 4.5) and tissues 

(Figure 4.6). The number of genes was also not biased to any particular MCU class 

(Figure 4.7). Adding data from D. teissieri and D. orena enabled me to study the 

ancestral lineages leading to D. teissieri – D. yakuba and D. erecta – D. orena and to 

reliably infer ancestral states at these nodes.  

 

This study showed that codon bias in several lineages of D. melanogaster 

subgroup has strong departures from equilibrium. The direction and magnitude of the 

departures from equilibrium seem to vary among different lineages. Evolutionary 

forces governing base composition appear to vary frequently, and often strongly, on 

relatively short time scales. 

 

Similar to the previous study by Akashi et al (Akashi et al. 2006), I found that 

none of the lineages are at equilibrium. However, some patterns obtained after 

incorporating a larger dataset are different from the previous analysis. Based on the 22 

genes analyzed earlier, D. teissieri lineage showed evidence of increase in codon bias 

whereas D. simulans and D. erecta lineages did not show consistent departures from 

equilibrium. In this analysis for 5026 genes, I found that all three above-mentioned 

lineages show consistent departures from equilibrium and declines in codon bias 

(Figure 4.3 e, c, h).  
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The lineage leading to D. melanogaster showed the strongest departure from 

the equilibrium (Figure 4.3 a). Under the non-stationary model, the highest MCU 

class in this lineage has more than 15 unpreferred changes to 1 preferred change. The 

dup,pu pattern in this lineage is consistent with a scenario in which Nes decreases by 0.3 

fold and mutation bias increases by 2.3 fold. The strongest reduction in Nes is 

observed in D. orena lineage where there is a 0.12 fold reduction in Nes (Figure 4.3 i). 

This might be due to its small distribution within Africa (Lachaise et al, 1988), which 

might correlate to small population size.  

 

I also found that the magnitude of departure from equilibrium under GTR-H 

and GTR-NHb models is different. GTR-NHb model gives stronger departures from 

equilibrium in all lineages. This suggests that the choice of ancestral inference 

methods can have a major effect on molecular evolutionary analyses.  

 

Comparison among classes of DNA evolving under different selective 

constraints have been used to identify evolutionary mechanisms underlying lineage-

specific evolution (Akashi et al. 2006). Hence, comparison of base composition 

between synonymous sites and small introns can help to distinguish whether variation 

in translational selection or that in transcription-associated selection or biased gene 

conversion underlie lineage-specific evolution in D. melanogaster subgroup. Previous 

studies have also observed that non-coding regions in Drosophila are not at 

equilibrium in several lineages (Kern 2004; Akashi et al. 2006; Singh et al. 2009), 

which can also be tested in a broader species set by adding non-coding regions from 

the newly sequenced species in the analysis.  
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To examine the lineage-specific changes in base composition of small introns 

in seven D. melanogaster subgroup species, I expanded my dataset to include introns 

from the newly sequenced species. Hence, I sequenced the genomes of D. teissieri 

and D. orena through Next-Gen sequencing technique and identified orthologous 

introns in the seven species. Since, my primary objective is to study molecular 

evolution in genes and introns that have orthologs in all seven species, I only 

annotated introns that matched to at least one intron in the closest species. Although 

my method does not find lineage-specific genes, further gene modeling without using 

other reference species can be done to identify such genes.  

 

The ancestral states of introns will be inferred from the intron alignments 

using baseml with GTR-NHb model (Yang 2007; Matsumoto et al. 2015). Base 

composition changes between small introns in the 5p750 region and silent sites will 

be compared. Variation in transcription-associated selection or biased gene conversion 

would predict similar changes for small introns and silent sites. If the changes in 

codon bias indicate fluctuation in the intensity of translational selection, changes in 

the base composition of small introns should be smaller than that in codon bias 

(Akashi et al. 2006). 

 

The changes inferred from the data so far comprise of fixed as well as 

polymorphic changes. Since many polymorphic mutations could be slightly 

deleterious (Ohta 1992), they may not necessarily get fixed. Hence, the use of only 

single alleles from various species can result in overestimating slightly deleterious 

changes (preferred-to-unpreferred). In order to resolve these issues, data from other 
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DNA classes and polymorphism data from a few species needs to be incorporated. 

 

Incorporation of polymorphism data will enable me to study patterns of recent 

evolution and to distinguish between fixed and segregating changes. After 

successfully identifying variants from D. simulans and D. yakuba genomes, these 

variants would be annotated using available genome annotations. The sequences from 

different populations of D. simulans and D. yakuba along with available sequences 

from D. melanogaster populations (Pool et al. 2012) will be aligned to references 

sequences from D. melanogaster, D. simulans and D. yakuba genomes. The ancestral 

states will be inferred for polymorphic and fixed sites separately and patterns of 

polymorphic and fixed differences will be compared. The patterns of polymorphic 

differences will allow me to study recent fluctuations in evolutionary parameters 

whereas those of fixed differences will reflect long-term changes in evolutionary 

parameters. 

 

 

 

 

	
  
 

  



 63	
  

Final conclusions and Discussion 
 
 
I observed heterogeneity in base composition within and across genes in the 

D. melanogaster genome as well as temporal variations in base composition across 

different lineages in the D. melanogaster subgroup. My study showed that 

evolutionary forces vary in the genome at within-gene as well as genome-wide scale. 

Temporally, evolutionary forces have fluctuated within short time-scales in the D. 

melanogaster subgroup. 

 

The GC content of introns decreases in the direction of transcription. The 

decline in GC content was steeper near the TSS for the first 750 bp. The GC content 

of the first 750 bp of the genes was found to be sensitive to the level of transcription 

of the gene. The genes with higher transcript abundance had high GC content in the 

first 750 bp, suggesting that the base composition near the TSS is associated with the 

process of transcription. I tested for the underlying evolutionary forces and found that 

natural selection is a contributor to the elevated GC content near the TSS. The 

variation in the GC content of small introns associates with the RNA polymerase II 

enrichment, which suggests that the base composition near the TSS might play a role 

in RNA polymerase II pausing. In contrast to the GC content of small introns, the GC 

content of synonymous sites is reduced near the TSS. This is suggested to be under 

selection for efficient translation. The GC content of synonymous sites located at a 

distance of 50 codons or more from the start codon shows a similar pattern as of the 

introns, suggesting that transcription-associated selection also contributes to 

synonymous GC content.  
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At the genome-wide scale, I found that base composition varies within as well 

as between chromosomes. The X chromosome has higher codon bias and small intron 

GC content than the autosomes. I show that the high GC content on the X 

chromosome is restricted to synonymous sites and small introns only and long introns 

and intergenic regions have similar GC content on the X chromosome and autosomes. 

Within chromosomes, GC content heterogeneity differences among nucleotide 

classes. Synonymous GC content is the most heterogeneous among all nucleotide 

classes and intergenic GC content is the least heterogeneous. The heterogeneity in 

GC content within chromosomes is not explained by the difference in recombination 

rate. 

 

At the temporal scale, codon bias has decreased in all seven Drosophila 

lineages studied here. All lineages showed departures from equilibrium and in some 

cases multiple factors appeared to have fluctuated. The strongest departure from 

equilibrium was observed in the lineage leading to D. melanogaster. The pattern 

observed in the lineages leading to D. melanogaster, D. sechellia and D. erecta is 

consistent with an increase in mutation bias towards AT and decrease in Nes. The 

pattern observed in D. teissieri, D. teissieri – D. yakuba, D. erecta and D. orena 

lineages is consistent with decrease in mutation bias towards AT and Nes. The 

remaining lineages show evidence for decrease in Nes and no change in mutation 

bias. 

 

Fluctuations in evolutionary forces can cause bias while inferring 

phylogenetic relationships among species (Yang and Roberts 1995), estimating rates 

of evolution (Akashi 1996; Takano-Shimizu 1999), identifying evidence for adaptive 
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evolution (Halligan 2004) and inferring changes occurred in lineages (Akashi et al. 

2007). Most phylogenetic and evolutionary models assume stationary substitution 

models. This could lead to generating biased results. For instance, while constructing 

phylogenetic trees, species with similar substitutional rates (Lake 1994)and biases 

(Lockhart et al. 1992)or base composition (Galtier and Gouy 1995)can be grouped 

together, which might deviate from the true phylogeny. Rates of evolution also tend 

to increase in lineages that are not under equilibrium (Takano-Shimizu 1999). While 

inferring adaptive changes, synonymous sites or intronic sites are usually used as 

neutral measures. However, if the base composition of these sites is under selective 

constraint (Akashi 1995; Halligan 2004)or not in steady-state (Akashi et al. 2006), 

false signatures of adaptive evolution can be generated (Matsumoto et al. 2016). 

Possible solutions to the above-mentioned problems would include using substitution 

models that do not assume stationarity (Galtier and Gouy 1995; Yang and Roberts 

1995; Akashi et al. 2007; Matsumoto et al. 2015), accounting for functional 

constraints on introns and synonymous sites by filtering sites that could be under 

selection and using complex models that incorporate lineage-specific substitution 

biases (Matsumoto et al. 2016).  

 

I created a de novo genome assembly of D. teissieri and D. orena genomes. I 

used a combination of RNA-seq and Genome-seq data to identify intronic regions of 

the genomes. Using RNA-seq data to annotate introns enables to distinguish between 

coding and non-coding sequences more accurately. RNA-seq data is being used by 

other researchers as well to annotate gene models from sequenced genomes (Rogers, 

Shao, et al. 2014). Coding and non-coding data from D. teissieri and D. orena add an 

important resource for studying molecular evolution in Drosophila and will be 
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beneficial for the entire Drosophila evolutionary genetics community. 

 
  



 67	
  

References 
 
 
Adams MD, Celniker SE, Holt RA, Evans CA. 2000. The genome sequence of 

Drosophila melanogaster. 

Aerts S, Thijs G, Dabrowski M, Moreau Y, De Moor B. 2004. Comprehensive 
analysis of the base composition around the transcription start site in Metazoa. 
BMC Genomics 5:34. 

Aguade M, Miyashita N, Langley CH. 1989. Reduced variation in the yellow-achaete-
scute region in natural populations of Drosophila melanogaster. Genetics. 

Akashi H, Eyre-Walker A. 1998. Translational selection and molecular evolution. 
Current Opinion in Genetics & Development 8:688–693. 

Akashi H, Goel P, John A. 2007. Ancestral Inference and the Study of Codon Bias 
Evolution: Implications for Molecular Evolutionary Analyses of the Drosophila 
melanogaster Subgroup.Fay J, editor. PLoS ONE 2:e1065. 

Akashi H, Kliman RM, Eyre-Walker A. 1998. Mutation pressure, natural selection, 
and the evolution of base composition in Drosophila. Genetica 102-103:49–60. 

Akashi H, Ko W-Y, Piao S, John A, Goel P, Lin C-F, Vitins AP. 2006. Molecular 
evolution in the Drosophila melanogaster species subgroup: frequent parameter 
fluctuations on the timescale of molecular divergence. Genetics 172:1711–1726. 

Akashi H. 1994. Synonymous codon usage in Drosophila melanogaster: natural 
selection and translational accuracy. Genetics 136:927–935. 

Akashi H. 1995. Inferring weak selection from patterns of polymorphism and 
divergence at “silent” sites in Drosophila DNA. Genetics 139:1067–1076. 

Akashi H. 1996. Molecular evolution between drosophila melanogaster and D. 
simulans reduced codon bias, faster rates of amino acid substitution, and larger 
proteins in D. melanogaster. Genetics 144:1297–1307. 

Akashi H. 1997. Distinguishing the effects of mutational biases and natural selection 
on DNA sequence variation. Genetics 147:1989–1991. 

Akashi H. 1998. Inferring the fitness effects of DNA mutations from polymorphism 
and divergence data: statistical power to detect directional selection under 
stationarity and free recombination. Genetics 151:221–238. 

Akashi H. 1999. Within-and between-species DNA sequence variation and the 
“footprint”of natural selection. Gene 238:39–51. 

Akashi H. 2001. Gene expression and molecular evolution. :1–7. 

Alekseyenko AA, Ho JWK, Peng S, Gelbart M, Tolstorukov MY, Plachetka A, 
Kharchenko PV, Jung YL, Gorchakov AA, Larschan E, et al. 2012. Sequence-
Specific Targeting of Dosage Compensation in Drosophila Favors an Active 



 68	
  

Chromatin Context.Ferguson-Smith AC, editor. PLoS Genet 8:e1002646. 

Andersson SG, Kurland CG. 1990. Codon preferences in free-living microorganisms. 
Microbiol. Rev. 54:198–210. 

Begun DJ, Aquadro CF. 1992. Levels of naturally occurring DNA polymorphism 
correlate with recombination rates in D. melanogaster. 

Beletskii A, Bhagwat AS. 1996. Transcription-induced mutations: increase in C to T 
mutations in the nontranscribed strand during transcription in Escherichia coli. 
Proc. Natl. Acad. Sci. U.S.A. 93:13919–13924. 

Bell O, Wirbelauer C, Hild M, Scharf AND, Schwaiger M, MacAlpine DM, 
Zilbermann F, van Leeuwen F, Bell SP, Imhof A, et al. 2007. Localized H3K36 
methylation states define histone H4K16 acetylation during transcriptional 
elongation in Drosophila. EMBO J. 26:4974–4984. 

Ben Langmead CT. 2012. Bowtie.aligner Documentation. :1–6. 

Bennetzen JL, Hall BD. 1982. Codon selection in yeast. Journal of Biological 
Chemistry 257:3026–3031. 

Bentele K, Saffert P, Rauscher R, Ignatova Z, thgen NBU. 2013. Efficient translation 
initiation dictates codon usage at gene start. Molecular Systems Biology 9:1–10. 

Bernardi G. 1989. The Isochore Organization of the Human Genome. Annu. Rev. 
Genet. 23:637–659. 

Bernardi G. 1993. The vertebrate genome: isochores and chromosomal bands. In: 
Chromosomes Today. Dordrecht: Springer Netherlands. pp. 49–60. 

Bernardi G. 2000. Isochores and the evolutionary genomics of vertebrates. Gene 
241:3–17. 

Birky CW, Walsh JB. 1988. Effects of linkage on rates of molecular evolution. Proc. 
Natl. Acad. Sci. U.S.A. 85:6414–6418. 

Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. 2011. Scaffolding pre-
assembled contigs using SSPACE. 27:578–579. 

Boetzer M, Pirovano W. 2014. SSPACE-LongRead: scaffolding bacterial draft 
genomes using long read sequence information. 15:1–9. 

Bulmer M. 1988. Codon usage and intragenic position. J. Theor. Biol. 133:67–71. 

Bulmer M. 1991. The selection-mutation-drift theory of synonymous codon usage. 
Genetics. 

Campos JL, Zeng K, Parker DJ, Charlesworth B, Haddrill PR. 2013. Codon Usage 
Bias and Effective Population Sizes on the X Chromosome versus the Autosomes 
in Drosophila melanogaster. 30:811–823. 



 69	
  

Carulli JP, Krane DE, Hartl DL, Ochman H. 1993. Compositional heterogeneity and 
patterns of molecular evolution in the Drosophila genome. Genetics 134:837–845. 

Charlesworth B, Guttman DS. 1996. Reductions in genetic variation inDrosophila 
andE. coli caused by selection at linked sites. Journal of Genetics. 

Cherry JL. 2010. Expression Level, Evolutionary Rate, and the Cost of Expression. 
Genome Biology and Evolution 2:757–769. 

Chintapalli VR, Wang J, Dow JAT. 2007. Using FlyAtlas to identify better 
Drosophila melanogaster models of human disease. Nature Genetics 39:715–720. 

Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, Markow TA, Kaufman TC, 
Kellis M, Gelbart W, Iyer VN, et al. 2007. Evolution of genes and genomes on 
the Drosophila phylogeny. Nature 450:203–218. 

Clarke TF, Clark PL. 2010. Increased incidence of rare codon clusters at 5“and 
3”gene termini: implications for function. BMC Genomics. 

Clay O, Cacciò S, Zoubak S, Mouchiroud D, Bernardi G. 1996. Human coding and 
noncoding DNA: compositional correlations. Mol. Phylogenet. Evol. 5:2–12. 

Comeron JM, Kreitman M, Aguade M. 1999. Natural selection on synonymous sites 
is correlated with gene length and recombination in Drosophila. Genetics 
151:239–249. 

Comeron JM. 2004. Selective and Mutational Patterns Associated With Gene 
Expression in Humans: Influences on Synonymous Composition and Intron 
Presence. Genetics 167:1293–1304. 

Cox MP, Peterson DA, Biggs PJ. 2010. SolexaQA: At-a-glance quality assessment of 
Illumina second-generation sequencing data. BMC Bioinformatics 11:485. 

Datta A, Jinks-Robertson S. 1995. Association of increased spontaneous mutation 
rates with high levels of transcription in yeast. Science 268:1616–1619. 

Dekker J. 2007. GC- and AT-rich chromatin domains differ in conformation and 
histone modification status and are differentially modulated by Rpd3p. Genome 
Biol. 8:R116. 

Delcher AL, Phillippy A, Carlton J, Salzberg SL. 2002. Fast algorithms for large-
scale genome alignment and comparison. Nucleic Acids Research 30:2478–2483. 

Deschavanne P, Filipski J. 1995. Correlation of GC content with replication timing 
and repair mechanisms in weakly expressed E. coli genes. Nucleic Acids 
Research. 

Diaz-Castillo C, Golic KG. 2007. Evolution of Gene Sequence in Response to 
Chromosomal Location. Genetics 177:359–374. 

Drummond DA, Bloom JD, Adami C, Wilke CO, Arnold FH. 2005. Why highly 
expressed proteins evolve slowly. Proc. Natl. Acad. Sci. U.S.A. 102:14338–



 70	
  

14343. 

Drummond DA. 2005. A Single Determinant Dominates the Rate of Yeast Protein 
Evolution. Molecular Biology and Evolution 23:327–337. 

Dujon B, Alexandraki D, Andre B, Ansorge W, Baladron V, Ballesta JP, Banrevi A, 
Bolle PA, Bolotin-Fukuhara M, Bossier P. 1994. Complete DNA sequence of 
yeast chromosome XI. Nature 369:371–378. 

DURET L. 2009. Mutation patterns in the human genome: more variable than 
expected. Plos Biol 7:e1000028. 

Eddy J, Maizels N. 2007. Conserved elements with potential to form polymorphic G-
quadruplex structures in the first intron of human genes. Nucleic Acids Research 
36:1321–1333. 

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and 
high throughput. Nucleic Acids Research 32:1792–1797. 

Eyre-Walker A, Bulmer M. 1993. Reduced synonymous substitution rate at the start 
of enterobacterial genes. Nucleic Acids Research 21:4599–4603. 

Feldmann H, Aigle M, Aljinovic G, Andre B, Baclet MC, Barthe C, Baur A, Bécam 
AM, Biteau N, Boles E, et al. 1994. Complete DNA sequence of yeast 
chromosome II. EMBO J. 13:5795–5809. 

Felsenstein J. 1974. The evolutionary advantage of recombination. Genetics 78:737–
756. 

Fiston-Lavier A-S, Singh ND, Lipatov M, Petrov DA. 2010. Drosophila melanogaster 
recombination rate calculator. Gene 463:18–20. 

Frenkel S, Kirzhner V, Korol A. 2012. Organizational Heterogeneity of Vertebrate 
Genomes.Laudet V, editor. PLoS ONE 7:e32076–15. 

Galtier N, Piganeau G, Mouchiroud D, Duret L. 2001. GC-content evolution in 
mammalian genomes: the biased gene conversion hypothesis. Genetics 159:907–
911. 

Galtier N. 2003. Gene conversion drives GC content evolution in mammalian 
histones. Trends in Genetics 19:65–68. 

Gardiner K, Aissani B, Bernardi G. 1990. A compositional map of human 
chromosome 21. EMBO J. 9:1853–1858. 

Gilchrist DA, Santos Dos G, Fargo DC, Bin Xie, Gao Y, Li L, Adelman K. 2010. 
Pausing of RNA Polymerase II Disrupts DNA-Specified Nucleosome 
Organization to Enable Precise Gene Regulation. Cell 143:540–551. 

Gillespie JH. 1993. Substitution processes in molecular evolution. I. Uniform and 
clustered substitutions in a haploid model. Genetics 134:971–981. 



 71	
  

Gillespie JH. 1994. Substitution processes in molecular evolution. II. Exchangeable 
models from population genetics. Evolution:1101–1113. 

Gilmour DS, Lis JT. 1986. RNA polymerase II interacts with the promoter region of 
the noninduced hsp70 gene in Drosophila melanogaster cells. Molecular and 
Cellular Biology 6:3984–3989. 

Glémin S, Clément Y, David J, Ressayre A. 2014. GC content evolution in coding 
regions of angiosperm genomes: a unifying hypothesis. Trends Genet. 30:263–
270. 

Grantham R. 1974. Amino acid difference formula to help explain protein evolution. 
185:862–864. 

Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool 
for genome assemblies. 29:1072–1075. 

Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger 
MB, Eccles D, Li B, Lieber M, et al. 2013. De novo transcript sequence 
reconstruction from RNA-seq using the Trinity platform for reference generation 
and analysis. Nature Protocols 8:1494–1512. 

Haddrill PR, Charlesworth B, Halligan DL, Andolfatto P. 2005. Patterns of intron 
sequence evolution in Drosophila are dependent upon length and GC content. 
Genome Biol. 6:R67. 

Halligan DL. 2004. Patterns of Evolutionary Constraints in Intronic and Intergenic 
DNA of Drosophila. Genome Research 14:273–279. 

Halligan DL. 2006. Ubiquitous selective constraints in the Drosophila genome 
revealed by a genome-wide interspecies comparison. Genome Research 16:875–
884. 

Hershberg R, Petrov DA. 2008. Selection on Codon Bias. Annu. Rev. Genet. 42:287–
299. 

Hey J, Kliman RM. 2002. Interactions between natural selection, recombination and 
gene density in the genes of Drosophila. Genetics 160:595–608. 

Hill WG, Robertson A. 1966. The effect of linkage on limits to artificial selection. 
Genet. Res. 8:269–294. 

Hockenberry AJ, Sirer MI, Amaral LAN, Jewett MC. 2014a. Quantifying Position-
Dependent Codon Usage Bias. Molecular Biology and Evolution 31:1880–1893. 

Hoede C, Denamur E, Tenaillon O. 2006. Selection Acts on DNA Secondary 
Structures to Decrease Transcriptional Mutagenesis. PLoS Genet 2:e176. 

Hooper SD, Berg OG. 2000. Gradients in nucleotide and codon usage along 
Escherichia coli genes. Nucleic Acids Research 28:3517–3523. 

Hu TT, Eisen MB, Thornton KR, Andolfatto P. 2013. A second-generation assembly 



 72	
  

of the Drosophila simulans genome provides new insights into patterns of 
lineage-specific divergence. Genome Research 23:89–98. 

Ikemura T. 1985. Codon usage and tRNA content in unicellular and multicellular 
organisms. 2:13–34. 

Jørgensen FG, Schierup MH, Clark AG. 2007. Heterogeneity in regional GC content 
and differential usage of codons and amino acids in GC-poor and GC-rich regions 
of the genome of Apis mellifera. Molecular Biology and Evolution 24:611–619. 

Kanaya S, Yamada Y, Kinouchi M, Kudo Y, Ikemura T. 2001. Codon Usage and 
tRNA Genes in Eukaryotes: Correlation of Codon Usage Diversity with 
Translation Efficiency and with CG-Dinucleotide Usage as Assessed by 
Multivariate Analysis. J Mol Evol 53:290–298. 

Kern AD. 2004. Patterns of Polymorphism and Divergence from Noncoding 
Sequences of Drosophila melanogaster and D. simulans: Evidence for 
Nonequilibrium Processes. 22:51–62. 

Kharchenko PV, Alekseyenko AA, Schwartz YB, Minoda A, Riddle NC, Ernst J, 
Sabo PJ, Larschan E, Gorchakov AA, Gu T, et al. 2012. Comprehensive analysis 
of the chromatin landscape in Drosophila melanogaster. Nature 471:480–485. 

Khuu P, Sandor M, DeYoung J, Ho PS. 2007. Phylogenomic analysis of the 
emergence of GC-rich transcription elements. Proc. Natl. Acad. Sci. U.S.A. 
104:16528–16533. 

Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. 2013. TopHat2: 
accurate alignment of transcriptomes inthe presence of insertions, deletions and 
genefusions. Genome Biol. 14:R36. 

Kimura M. 1986. DNA and the neutral theory. Philos. Trans. R. Soc. Lond., B, Biol. 
Sci. 312:343–354. 

Kliman RM, Eyre-Walker A. 1998. Patterns of base composition within the genes of 
Drosophila melanogaster. J Mol Evol 46:534–541. 

Kliman RM, Hey J. 1993. Reduced natural selection associated with low 
recombination in Drosophila melanogaster. 10:1239–1258. 

Ko WY, Piao S, Akashi H. 2006. Strong Regional Heterogeneity in Base 
Composition Evolution on the Drosophila X Chromosome. Genetics 174:349–
362. 

Krylov DM, Wolf YI, Rogozin IB, Koonin EV. 2003. Gene loss, protein sequence 
divergence, gene dispensability, expression level, and interactivity are correlated 
in eukaryotic evolution. Genome Research 13:2229–2235. 

Li H, Chen D, Zhang J. 2012. Analysis of Intron Sequence Features Associated with 
Transcriptional Regulation in Human Genes.Nurminsky DI, editor. PLoS ONE 
7:e46784–e46789. 



 73	
  

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler 
transform. Bioinformatics 25:1754–1760. 

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, 
Durbin R, 1000 Genome Project Data Processing Subgroup. 2009. The Sequence 
Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079. 

Li WH. 1987. Models of nearly neutral mutations with particular implications for 
nonrandom usage of synonymous codons. J Mol Evol 24:337–345. 

Li X, Scanlon MJ, Yu J. 2015. Evolutionary patterns of DNA base composition and 
correlation to polymorphisms in DNA repair systems. Nucleic Acids Research 
43:3614–3625. 

Liljenström H, Heijne von G. 1987. Translation rate modification by preferential 
codon usage: intragenic position effects. J. Theor. Biol. 124:43–55. 

Lippert MJ, Kim N, Cho J-E, Larson RP, Schoenly NE, O'Shea SH, Jinks-Robertson 
S. 2011. Role for topoisomerase 1 in transcription-associated mutagenesis in 
yeast. Proc. Natl. Acad. Sci. U.S.A. 108:698–703. 

Liu J, Zhang Y, Lei X, Zhang Z. 2008. Natural selection of protein structural and 
functional properties: a single nucleotide polymorphism perspective. Genome 
Biol. 9:R69. 

Lujan SA, Clausen AR, Clark AB, MacAlpine HK, MacAlpine DM, Malc EP, 
Mieczkowski PA, Burkholder AB, Fargo DC, Gordenin DA, et al. 2014. 
Heterogeneous polymerase fidelity and mismatch repair bias genome variation 
and composition. Genome Research 24:1751–1764. 

Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, et al. 
2012. SOAPdenovo2: an empirically improved memory-efficient short-read de 
novo assembler. Gigascience 1:18. 

Majewski J, Ott J. 2002. Distribution and characterization of regulatory elements in 
the human genome. Genome Research 12:1827–1836. 

Majewski J. 2003. Dependence of mutational asymmetry on gene-expression levels in 
the human genome. The American Journal of Human Genetics 73:688–692. 

MARAIS G, MOUCHIROUD D, DURET L. 2003. Neutral effect of recombination 
on base composition in Drosophila. Genet. Res. 81:79–87. 

Marais G, Mouchiroud D. 2001. Does recombination improve selection on codon 
usage? Lessons from nematode and fly complete genomes. Proceedings of the … 

MARAIS G, Piganeau G. 2002. Hill-Robertson interference is a minor determinant of 
variations in codon bias across Drosophila melanogaster and Caenorhabditis 
elegans genomes. 19:1399–1406. 

Martin M. 2011. Cutadapt removes adapter sequences from high-throughput 
sequencing reads. EMBnet. journal 17:pp.10–pp.12. 



 74	
  

Matsumoto T, Akashi H, Yang Z. 2015. Evaluation of Ancestral Sequence 
Reconstruction Methods to Infer Nonstationary Patterns of Nucleotide 
Substitution. Genetics 200:873–890. 

Matsumoto T, John A, Baeza-Centurion P, Li B, Akashi H. 2016. Codon usage 
selection can bias estimation of the fraction of adaptive amino acid fixations. 
:msw027. 

McBride CS, Arguello JR, O'Meara BC. 2007. Five Drosophila Genomes Reveal 
Nonneutral Evolution and the Signature of Host Specialization in the 
Chemoreceptor Superfamily. Genetics 177:1395–1416. 

McBride CS. 2007. Rapid evolution of smell and taste receptor genes during host 
specialization in Drosophila sechellia. Proc. Natl. Acad. Sci. U.S.A. 104:4996–
5001. 

McGinnis S, Madden TL. 2004. BLAST: at the core of a powerful and diverse set of 
sequence analysis tools. Nucleic Acids Research 32:W20–W25. 

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella 
K, Altshuler D, Gabriel S, Daly M, et al. 2010. The Genome Analysis Toolkit: a 
MapReduce framework for analyzing next-generation DNA sequencing data. 
Genome Research 20:1297–1303. 

Mischo HE, Gómez-González B, Grzechnik P, Rondón AG, Wei W, Steinmetz L, 
Aguilera A, Proudfoot NJ. 2011. Yeast Sen1 helicase protects the genome from 
transcription-associated instability. Mol. Cell 41:21–32. 

Morey NJ, Greene CN, Jinks-Robertson S. 2000. Genetic analysis of transcription-
associated mutation in Saccharomyces cerevisiae. Genetics 154:109–120. 

Moriyama EN, Hartl DL. 1993. Codon usage bias and base composition of nuclear 
genes in Drosophila. Genetics 134:847–858. 

Muse GW, Gilchrist DA, Nechaev S, Shah R, Parker JS, Grissom SF, Zeitlinger J, 
Adelman K. 2007. RNA polymerase is poised for activation across the genome. 
Nature Publishing Group 39:1507–1511. 

Nei M, Gojobori T. 1986. Simple methods for estimating the numbers of synonymous 
and nonsynonymous nucleotide substitutions. 3:418–426. 

Nekrutenko A, Li WH. 2000. Assessment of compositional heterogeneity within and 
between eukaryotic genomes. Genome Research. 

Nielsen R, Bauer DuMont VL, Hubisz MJ, Aquadro CF. 2006. Maximum Likelihood 
Estimation of Ancestral Codon Usage Bias Parameters in Drosophila. 24:228–
235. 

Ohta T, Kimura M. 1971. On the constancy of the evolutionary rate of cistrons. J Mol 
Evol 1:18–25. 

Ohta T. 1972a. Evolutionary rate of cistrons and DNA divergence. J Mol Evol 1:150–



 75	
  

157. 

Ohta T. 1972b. Population size and rate of evolution. J Mol Evol 1:305–314. 

Ohta T. 1973. Slightly deleterious mutant substitutions in evolution. Nature 246:96–
98. 

Ohta T. 1974. Mutational pressure as the main cause of molecular evolution and 
polymorphism. Nature 252:351–354. 

Ohta T. 1976. Role of very slightly deleterious mutations in molecular evolution and 
polymorphism. Theoretical Population Biology 10:254–275. 

Ohta T. 1992. The nearly neutral theory of molecular evolution. Annual Review of 
Ecology and Systematics:263–286. 

Park S, Hannenhalli S, Choi S. 2014. Conservation in first introns is positively 
associated with the number of exons within genes and the presence of regulatory 
epigenetic signals. BMC Genomics 15:526–14. 

Parsch J, Novozhilov S, Saminadin-Peter SS, Wong KM, Andolfatto P. 2010. On the 
Utility of Short Intron Sequences as a Reference for the Detection of Positive and 
Negative Selection in Drosophila. 27:1226–1234. 

Parsch J. 2003. Selective constraints on intron evolution in Drosophila. Genetics 
165:1843–1851. 

Pál C, Papp B, Hurst LD. 2001. Highly expressed genes in yeast evolve slowly. 
Genetics 158:927–931. 

Polak P, Arndt PF. 2008. Transcription induces strand-specific mutations at the 5′ end 
of human genes. Genome Research 18:1216–1223. 

Pool JE, Corbett-Detig RB, Sugino RP, Stevens KA, Cardeno CM, Crepeau MW, 
Duchen P, Emerson JJ, Saelao P, Begun DJ, et al. 2012. Population Genomics of 
Sub-Saharan Drosophila melanogaster: African Diversity and Non-African 
Admixture.Malik HS, editor. PLoS Genet 8:e1003080. 

Qin H, Wu WB, Comeron JM, Kreitman M, Li W-H. 2004. Intragenic spatial patterns 
of codon usage bias in prokaryotic and eukaryotic genomes. Genetics 168:2245–
2260. 

Rands CM, Meader S, Ponting CP, Lunter G. 2014. 8.2% of the Human Genome Is 
Constrained: Variation in Rates of Turnover across Functional Element Classes in 
the Human Lineage.Schierup MH, editor. PLoS Genet 10:e1004525–12. 

Ressayre A, Glémin S, Montalent P, Serre-Giardi L, Dillmann C, Joets J. 2015. 
Introns Structure Patterns of Variation in Nucleotide Composition in Arabidopsis 
thalianaand Rice Protein-Coding Genes. Genome Biology and Evolution 7:2913–
2928. 

Rocha EPC. 2003. An Analysis of Determinants of Amino Acids Substitution Rates 



 76	
  

in Bacterial Proteins. Molecular Biology and Evolution 21:108–116. 

Rogers RL, Cridland JM, Shao L, Hu TT, Andolfatto P, Thornton KR. 2014. 
Landscape of Standing Variation for Tandem Duplications in Drosophila yakuba 
and Drosophila simulans. 31:1750–1766. 

Rogers RL, Shao L, Sanjak JS, Andolfatto P. 2014. Revised annotations, sex-biased 
expression, and lineage-specific genes in the Drosophila melanogaster group. G3: 
Genes| Genomes| …. 

Schwaiger M, Stadler MB, Bell O, Kohler H, Oakeley EJ, Schubeler D. 2009. 
Chromatin state marks cell-type- and gender-specific replication of the 
Drosophila genome. Genes & Development 23:589–601. 

Serres-Giardi L, Belkhir K, David J, Glémin S. 2012. Patterns and evolution of 
nucleotide landscapes in seed plants. Plant Cell 24:1379–1397. 

Shah P, Ding Y, Niemczyk M, Kudla G, Plotkin JB. 2013. Rate-Limiting Steps in 
Yeast Protein Translation. Cell 153:1589–1601. 

Sharp PM, Lloyd AT. 1993. Regional base composition variation along yeast 
chromosome III: evoluation of chormosome primary structure. Nucleic Acids 
Research 21:179–183. 

Singh ND, Arndt PF, Clark AG, Aquadro CF. 2009. Strong Evidence for Lineage and 
Sequence Specificity of Substitution Rates and Patterns in Drosophila. 26:1591–
1605. 

Singh ND, Bauer DuMont VL, Hubisz MJ, Nielsen R, Aquadro CF. 2007. Patterns of 
Mutation and Selection at Synonymous Sites in Drosophila. 24:2687–2697. 

Singh ND, Davis JC, Petrov DA. 2005. Codon Bias and Noncoding GC Content 
Correlate Negatively with Recombination Rate on the Drosophila X 
Chromosome. J Mol Evol 61:315–324. 

Singh ND, Larracuente AM, Clark AG. 2008. Contrasting the Efficacy of Selection 
on the X and Autosomes in Drosophila. 25:454–467. 

Singh ND. 2005a. Genomic Heterogeneity of Background Substitutional Patterns in 
Drosophila melanogaster. Genetics 169:709–722. 

Singh ND. 2005b. X-Linked Genes Evolve Higher Codon Bias in Drosophila and 
Caenorhabditis. Genetics 171:145–155. 

Stoletzki N, Eyre-Walker A. 2006. Synonymous Codon Usage in Escherichia coli: 
Selection for Translational Accuracy. 24:374–381. 

Stoletzki N. 2011. The surprising negative correlation of gene length and optimal 
codon use--disentangling translational selection from GC-biased gene conversion 
in yeast. BMC Evol Biol 11:93. 

Sueoka N. 1962. ON THE GENETIC BASIS OF VARIATION AND 



 77	
  

HETEROGENEITY OF DNA BASE COMPOSITION. Proc. Natl. Acad. Sci. 
U.S.A. 48:582–592. 

Takahashi T, Burguiere-Slezak G, Van der Kemp PA, Boiteux S. 2011. 
Topoisomerase 1 provokes the formation of short deletions in repeated sequences 
upon high transcription in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. 
U.S.A. 108:692–697. 

Takano TS. 1998. Rate variation of DNA sequence evolution in the Drosophila 
lineages. Genetics 149:959–970. 

Takano-Shimizu T. 1999. Local recombination and mutation effects on molecular 
evolution in Drosophila. Genetics 153:1285–1296. 

Tang CS, Zhao YZ, Smith DK, Epstein RJ. 2006. Intron length and accelerated 3′ 
gene evolution. Genomics 88:682–689. 

Tuller T, Carmi A, Vestsigian K, Navon S, Dorfan Y, Zaborske J, Pan T, Dahan O, 
Furman I, Pilpel Y. 2010. An Evolutionarily Conserved Mechanism for 
Controlling the Efficiency of Protein Translation. Cell 141:344–354. 

Tuller T, Zur H. 2015. Multiple roles of the coding sequence 5′ end in gene 
expression regulation. Nucleic Acids Research 43:13–28. 

Vicoso B, Charlesworth B. 2006. Evolution on the X chromosome: unusual patterns 
and processes. Nat Rev Genet 7:645–653. 

Vicoso B, Haddrill PR, Charlesworth B. 2008. A multispecies approach for 
comparing sequence evolution of X-linked and autosomal sites in Drosophila. 
Genet. Res. 90:421. 

Wachter E, Quante T, Merusi C, Arczewska A, Stewart F. 2014. Synthetic CpG 
islands reveal DNA sequence determinants of chromatin structure. eLife. 

Wirbelauer C, Bell O, Schübeler D. 2005. Variant histone H3.3 is deposited at sites of 
nucleosomal displacement throughout transcribed genes while active histone 
modifications show a promoter-proximal bias. Genes & Development 19:1761–
1766. 

Wolfe KH, Sharp PM, Li W-H. 1989. Mutation rates differ among regions of the 
mammalian genome. , Published online: 19 January 1989; | 
doi:10.1038/337283a0 337:283–285. 

Wong GK-S, Wang J, Tao L, Tan J, Zhang J, Passey DA, Yu J. 2002. Compositional 
Gradients in Gramineae Genes. Genome Research 12:851–856. 

Yamao F, Andachi Y, Muto A, Ikemura T, Osawa S. 1991. Levels of tRNAs in 
bacterial cells as affected by amino acid usage in proteins. Nucleic Acids 
Research 19:6119–6122. 

Yang Z. 2007. PAML 4: Phylogenetic Analysis by Maximum Likelihood. 24:1586–
1591. 



 78	
  

Zeitlinger J, Stark A, Kellis M, Hong J-W, Nechaev S, Adelman K, Levine M, Young 
RA. 2007. RNA polymerase stalling at developmental control genes in the 
Drosophila melanogaster embryo. Nature Genetics 39:1512–1516. 

Zeng K, Charlesworth B. 2009. Studying Patterns of Recent Evolution at 
Synonymous Sites and Intronic Sites in Drosophila melanogaster. J Mol Evol 
70:116–128. 

Zhang J, Yang J-R. 2015. Determinants of the rate of protein sequence evolution. Nat 
Rev Genet 16:409–420. 

Zhang L, Kasif S, Cantor CR, Broude NE. 2004. GC/AT-content spikes as genomic 
punctuation marks. Proc. Natl. Acad. Sci. U.S.A. 101:16855–16860. 

Zhang S, Goldman E, Zubay G. 1994. Clustering of low usage codons and ribosome 
movement. J. Theor. Biol. 170:339–354. 

 

  



 79	
  

Tables 

 
Table 2.1. Correlation between small intron GC content and RNA Pol II 

enrichment within autosomal genes  

Gene category X chromosome Autosomes 

Genes with low transcript abundance 0.41* 0.65** 

Genes with high transcript abundance 0.44* 0.68** 

* P<0.05 

** P<0.001 

*** P<0.0001 

Note: The correlation coefficients were between average small intron GC content and 

average RNA PolII enrichment across genes for 50 bp non-overlapping windows in 

the first 1500 bp from the TSS. 
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Table 3.1. GC content comparison between X and autosomes using Mann-

Whitney U test  

GC measure Gene region 
X 

mean 

Autosome 

mean 

U BS-corrected 

p-value 

MCU 

Whole gene 0.67 0.64 877190 5.97x10-15 

5p750  0.68 0.64 384880 4.42x10-6 

Post-5p750  0.67 0.64 868720 2.28x10-14 

Small intron 

GC 

Whole gene 0.38 0.34 357510 5.72x10-15 

5p750  0.41 0.38 29332 0.0224 

Post-5p750  0.37 0.32 219570 4.69x10-13 

Long intron 

GC 

Whole gene 0.38 0.36 202500 0.141 

5p750  0.39 0.38 61951 1 

Post-5p750  0.37 0.35 100670 1 

Intergenic GC - 0.41 0.41 748890 0.1 

BS-corrected p-values are p-values obtained after multiple test correction for tests 

comparing parameters between X and autosomes and among autosomes using 

Bonferroni sequential method. 

Note: 5p750 region is defined as the region up to 750 bp from TSS. The first 50 

codons are also removed for the calculation of MCU. Post-5p750 region is defined as 

the region from 751 bp from the TSS to the end of the gene. 
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Table 3.2. G-score comparisons between X and autosomes and among nucleotide 

classes using two-sample Kolmogorov-Smirnov test. 

Parameter 1 
Mean G of 

parameter 1 
Parameter 2 

Mean G of 

parameter 2 
D 

BS-corrected 

p-value 

X MCU 15.71 Autosome MCU 8.73 0.17 0.2479 

X siGC 6.09 Autosome siGC 3.79 0.30 0.8508 

X liGC 4.92 Autosome liGC 3.90 0.16 1 

X intergenic 

GC 
2.86 

Autosome 

intergenic GC 
2.08 0.06 0.8495 

MCU 9.93 siGC 4.05 0.18 0.010164 

MCU 9.93 liGC 4.10 0.23 3.1x10-06 

MCU 9.93 Intergenic GC 2.23 0.35 2.2x10-15 

siGC 4.05 liGC 4.10 0.09 0.8426 

siGC 4.05 Intergenic GC 2.23 0.19 0.0037264 

liGC 4.10 Intergenic GC 2.23 0.15 0.009198 

BS-corrected p-values are p-values obtained after multiple test correction for all tests 

listed here using Bonferroni sequential method. 
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Table 3.3. Spearman’s Rank Correlation coefficients between recombination rate 

and GC measures 

GC measure Gene region 
Rs on X 

chromosome 

Rs on autosomes 

MCU 
5p750 -0.217*** 0.019 

Post-5p750 -0.153* 0.051 

Small intron GC 
5p750 -0.315** -0.056 

Post-5p750 -0.176 -0.02 

Long intron GC 
5p750 -0.08 0.052 

Post-5p750 -0.011 0.117* 

* P<0.01 

** P<0.001 

*** P<0.0001 

Note: 5p750 region is defined as the region up to 750 bp from TSS. The first 50 

codons are also removed for the calculation of MCU. Post-5p750 region is defined as 

the region from 751 bp from the TSS to the end of the gene. P-values are corrected for 

all tests listed here using Bonferroni-sequential method. 

	
   	
  



 83	
  

Table 3.4. Spearman’s Rank Correlation coefficients between recombination rate 

and GC measures after removing regions with no recombination 

GC measure Gene region 
Rs on X 

chromosome 

Rs on autosomes 

MCU 
5p750 -0.229*** -0.011 

Post-5p750 -0.178** 0.011 

Small intron GC 
5p750 -0.302* -0.058 

Post-5p750 -0.207 -0.054 

Long intron GC 
5p750 -0.046 0.047 

Post-5p750 0.044 0.104 

* P<0.01 

** P<0.001 

*** P<0.0001 

Note: 5p750 region is defined as the region up to 750 bp from TSS. The first 50 

codons are also removed for the calculation of MCU. Post-5p750 region is defined as 

the region from 751 bp from the TSS to the end of the gene. P-values are corrected for 

all tests listed here using Bonferroni-sequential method. 
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Table 4.1. Summary of adapter filtering of RNA-seq reads 

 
	
  
	
   	
  

Species Tissue Sample Read # Processed 

reads 

% Reads containing 

adapters  

% Bases 

removed  

D. teissieri Larva rep 1  

 

R1 44,126,512 30.45 0.93 

R2 44,126,512 35.55 0.91 

Larva rep 2 

 

R1 48,648,371 28.86 0.45 

R2 48,648,371 34.09 0.50 

Pupa R1 46,673,378 29.44 0.45 

R2 46,673,378 33.99 0.50 

Female 

 

R1 47,014,797 28.47 0.42 

R2 47,014,797 33.23 0.47 

Male 

 

R1 53,347,300 30.25 0.44 

R2 53,347,300 33.50 0.46 

D. orena Larva rep 1  

 

R1 38,907,278 30.92 0.95 

R2 38,907,278 36.31 0.97 

Larva rep 2 

 

R1 40,763,583 28.02 0.41 

R2 40,763,583 33.39 0.48 

Pupa R1 45,457,493 28.58 0.44 

R2 45,457,493 33.98 0.50 

Female 

 

R1 38,153,929 28.69 0.42 

R2 38,153,929 32.81 0.46 

Male 

 

R1 44,019,572 29.73 0.43 

R2 44,019,572 33.14 0.46 
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Table 4.2. Summary of rRNA filtering of RNA-seq reads 

Species Sample Reads 

processed 

% reads with at 

least one rRNA 

match 

# reads with no rRNA 

match 

D. teissieri Larva rep 1  39,979,337 0.98 39,589,469 

Larva rep 2 40,493,773 2.37 39,535,566 

Pupa 38,846,581 2.31 37,947,840 

Female 40,203,297 1.02 39,792,056 

Male 45,692,128 2.48 44,556,905 

D. orena Larva rep 1  35,682,246 0.67 35,442,454 

Larva rep 2 33,851,517 1.51 33,338,685 

Pupa 37,761,137 1.26 37,285,715 

Female 32,463,589 1.12 32,099,584 

Male 37,715,928 1.52 37,141,664 
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Table 4.3. Summary of ortholog assignment of RNA-seq contigs 

Species Type of contig matches Total matches 

in rs2 

# contigs with rs1 

orthologs assigned 

D. teissieri Contigs with single match 177,815 153,933 

Contigs with multiple matches 22,529 8,801 

D. orena Contigs with single match 175,797 152,858 

Contigs with multiple matches 27,746 9,730 

v The contigs in each species are pooled across tissue samples. 
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Table 4.4. Summary of adapter filtering of genomic reads 

Sample Read # Processed 

reads 

% Reads containing 

adapters  

% Bases removed for 

adapters  

D. teissieri 

 

R1 172,225,062 27.107 0.397 

R2 172,225,062 35.567 0.474 

D. orena R1 176,570,473 26.607 0.397 

R2 176,570,473 35.548 0.476 

	
  
	
   	
  



 88	
  

Table 4.5. Length of genomic reads after quality filtering 

Sample Read Mean read 

length 

Mean read length after 

quality filtering  

Median read length after 

quality filtering  

D. teissieri 

 

R1 99.62 bp 82.2 bp 99 bp 

R2 99.53 bp 75.9 bp 98 bp 

D. orena R1 99.62 bp 80.7 bp 99 bp 

R2 99.53 bp 74.6 bp 96 bp 
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Table 4.6. Summary of genome assembly 

Assembly D. teissieri assembly D. orena assembly 

Total number of scaffolds 18,971 28,905 

Length of largest scaffold ( bp) 537,749 410,257 

Total length ( bp) 141,688,368 147,271,023 

N50 84,073 55,291 

#Ns per 100 k bp 2742.55 3534.96 

% genes matching to single scaffold 81% 76% 

v All statistics are based on scaffolds of size >= 200 bp, unless otherwise 

noted 
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Table 4.7. Summary of MUMmer analysis 

 D. teissieri assembly D. orena assembly D. yakuba genome 

ContigG Scaffold ContigG Scaffold Genome 

#Matching to single 

chromosome 
19,570 3,671 34,905 6,121 2,165 

#Matching to multiple 

chromosomes 
2,142 729 2,416 816 1,267 

%Matching to single 

chromosome 
90.13 83.43 93.53 88.23 63.08 
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Table 4.8. Summary of comparison between RNA-seq annotated transcripts and 

flanking sequences of junctions reported by TopHat2.  

 D. teissieri D. orena 

Total number of TopHat junctions in blastn matches 79693 78742 

Total number of junctions in blastn matches after filtering for 

length and identity  

78100 77193 

Total number of junctions with matches on same strand as 

contigR  

76133 74933 

Total number of junctions in blastn matches with both flanking 

sequences matching to same contigR  

54631 53928 

Total number of junctions in blastn matches to contigsR in the 

gene set from other Drosophila species  

30911 30862 

Total number of junctions in blastn matches after resolving 

multiple matches 

28847 28479 
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Table 4.9. Number of introns identified under each intron category 

 D. teissieri D. orena 

 #introns #genes #introns #genes 

Single isoform 10991 4259 10449 3996 

Constitutive 4721 1394 4627 1392 

Non-constitutive 5830 1697 5533 1661 
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Table 4.10. Summary of comparison between CDSs of closest species and 

flanking sequences of junctions reported by TopHat2.  

 

 D. teissieri introns D.orena introns 
 Single 

isoform 
Constit
utive 

Non-
constitutive 

Single 
isoform 

Constit
utive 

Non-
constitutive 

#Single LFS and 
RFS connected 
matches 

8995 3702 998 8400 3623 1014 

#Introns with 
orthologs assigned 

8588 3586 960 7962 3485 939 

#Small introns 
(<100 bp) with 
orthologs 

6212 2609 530 5724 2495 522 

#Medium introns 
(100-500 bp) with 
orthologs 

1556 628 228 1470 659 233 

#Long introns 
(>500 bp) with 
orthologs 

820 349 202 768 331 184 

#Introns having 
canonical splice 
sites (GT-AC) 
with orthologs 
assigned 

8533 3566 955 7919 3457 930 

#Introns with no 
orthologs assigned 

407 116 38 438 138 75 

v LFS: Left Flanking Sequence (5′) 
v RFS: Right Flanking Sequence (3′) 
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Table 4.11. Summary of intron alignments 

Intron category tyeo set mtyeo set mcstyeo set 

Small introns 7016 6943 5196 

Long introns 3038 3072 2427 

v tyeo set : Orthologous introns in D. teissieri, D. yakuba, D. erecta and D. 
orena  

v mtyeo set : Orthologous introns in D. melanogaster, D. teissieri, D. 
yakuba, D. erecta and D. orena  

v mcstyeo set: Orthologous introns in D. melanogaster, D. sechellia, D. 
simulans, D. teissieri, D. yakuba, D. erecta and D. orena 
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Table 4.12. Summary of transcriptome assemblies 

Species 
Tissue 

Sample 

Total 

number of 

contigs 

Length of 

largest 

contig ( bp) 

Total length of 

the assembly 

( bp) 

N50 ( bp) 

D. teissieri 

Larva 119,801 43,821 169,958,830 3065 

Pupa 65,921 22,745 92,177,790 2995 

Male 96,306 29,841 148,126,295 3130 

Female 64,015 39,340 92,149,341 2802 

D. orena 

Larva 115,283 28,104 146,602,500 2593 

Pupa 60,969 25,544 77,762,550 2502 

Male 102,904 38,905 152,579,757 2933 

Female 70,425 47,656 97,346,415 2630 

v The larva transcriptome in each of the species is a collection of 

transcriptomes from two RNA-seq experiments. 
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Figures 

 
 

 

Figure 2.1. Within gene variation in GC content of small introns. (A) GC content 

of small introns with respect to the distance from the TSS, averaged across 2488 

autosomal genes. (B) Scaled GC content of small introns with respect to the distance 

from the TSS, averaged across 2911 genes (autosomal and X-linked). Scaled GC for a 

given gene is the GC content of small introns in a bin minus the average GC content 

of small introns of the gene. GC contents and scaled GC contents were calculated for 

150 bp non-overlapping bins from the TSS. 10 bp from the 5′ end and 30 bp from the 

3′ end of introns are filtered. Error bars represent bootstrap 95% confidence interval 

on the bin averages calculated by resampling genes in each bin (1000 replicates). The 

average distance of each bin from the TSS is plotted on the x-axis and the average GC 

content in (A) and average scaled GC content in (B), along with the 95% confidence 

interval, of each bin are plotted on the y-axis.  
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Figure 2.2. Correlation between small intron GC content and position within the 

transcript. Spearman’s rank correlation coefficients between GC content and intron 

site positions in 750 bp bins across small introns of D. melanogaster (X and 

autosomal) genes. 10 bp from the 5′ end and 30 bp from the 3′ end of introns are 

filtered. Error bars represent bootstrap 95% confidence interval on average correlation 

coefficients calculated by resampling genes in each bin (1000 replicates). The average 

position of each bin with respect to the TSS is plotted on the x-axis and the average 

Spearman’s R along with 95% confidence intervals of each bin is plotted the y-axis. 
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Figure 2.3. Relationship between intron GC content and transcript abundance. 

The relationship between GC content of small introns present in the first 750 bp from 

TSS (open circles) and small introns present at the distance of 751-1500 bp from TSS 

(filled circles) with the transcript abundance of genes in whole adult. Only introns 

belonging to autosomal genes are used. 10 bp from the 5′ end and 30 bp from the 3′ 

end of introns are filtered. For each intron category, the introns are binned by 

transcript abundance into 6 bins with roughly equal number of intronic sites of the 

given category. Error bars in each graph represent bootstrap 95% confidence interval 

on the bin averages calculated by resampling genes in each bin (1000 replicates). The 

average transcript abundance of the genes in a bin is plotted on the x-axis. The 

average GC content of the introns of a given category present in the genes in a bin is 

plotted on the y-axis.  
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Figure 2.4. 5′ GC gradient of genes lowly expressed in tissues containing germline 

cells. GC content of small introns with respect to the distance from the TSS, averaged 

across genes expressed at the bottom 25% percentile in ovary and testis and top 75% 

percentile in at least one other tissue. GC contents were calculated for 300 bp non-

overlapping bins from the TSS. 10 bp from the 5′ end and 30 bp from the 3′ end of 

introns are filtered. Error bars represent bootstrap 95% confidence interval on the bin 

averages calculated by resampling genes in each bin (1000 replicates). The average 

distance of each bin from the TSS is plotted on the x-axis and the average GC content, 

along with the 95% confidence interval, of each bin is plotted on the y-axis.  
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Figure 2.5: Association of small intron GC variation with RNA PolII enrichment 

in autosomal genes. Average scaled GC content (filled circle) of small introns for 

150 bp non-overlapping bins plotted alongside average scaled RNA Pol II enrichment 

(grey line) of 150 bp non-overlapping bins of autosomal (A) and X-linked (B) genes. 

Error bars represent bootstrap 95% confidence interval on the average scaled GC 

content calculated by resampling the genes in a bin (1000 replicates). Light grey 

region around the line representing scaled RNA Pol II enrichment represents bootstrap 

95% confidence interval on the average scaled RNA Pol II enrichment calculated by 

resampling the genes in a bin (1000 replicates). RNA Pol II enrichment data is from 

S2 cells. X-axis denotes the average nucleotide distance of each bin from TSS in bp 

and y-axis denotes the scaled average enrichment (left axis) and average scaled GC 

content (right axis) of each bin. The scale of the y-axis for scaled GC is 1/10th of that 

for scaled RNA Pol II enrichment. The y=0 point coincides for both the y-axes. 
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Figure 2.6. Relationship between RNA Pol II and transcript abundance for 5p750 

and 5p751-1500 regions. RNA Pol II enrichment for 5p750 region of genes (open 

circles) and 5p751-1500 region of genes (filled circles) with transcript abundance of 

genes in whole adult. 5p750 region is defined as the region up to 750 bp from the TSS 

and 5p751-1500 region is defined as the region from 751 bp to 1500 bp from the TSS. 

Average RNA Pol II enrichment was calculated for 5p750 and 5p751-1500 regions of 

each autosomal gene. The genes were binned into 8 bins with roughly equal numbers 

of RNA Pol II bound sites. Error bars in each graph represent bootstrap 95% 

confidence interval on the bin averages calculated by resampling genes in each bin 

(1000 replicates). The average transcript abundance of the genes in a bin is plotted on 

the x-axis. The average RNA Pol II enrichment of sites in a bin is plotted on the y-

axis.  

	
   	
  

5p750 Pol2 
5p751-1500 Pol2 
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Figure 2.7. Comparison of GC gradients between 4-fold and 2-fold synonymous 

sites. Scaled GC content of 4-fold synonymous sites (open circle) and 2-fold 

synonymous sites (except Aspartic acid) (filled circle) up to 300 codons from the start 

codon (SC). Scaled GC contents of 4-fold and 2-fold synonymous sites are calculated 

for non-overlapping bins of 50 codons. Error bars represent bootstrap 95% confidence 

interval on the bin averages calculated by resampling genes in each bin (1000 

replicates). The average distance of each bin from the start codon is plotted on the x-

axis and the average scaled GC content, along with the 95% confidence interval, of 

each bin are plotted on the y-axis. The data points for 4-fold synonymous GC content 

are staggered by 5 codons to avoid overlapping error bars.  
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Figure 2.8. Comparison of GC gradients between introns and synonymous sites. 

Scaled GC content of small introns (open circle) and 2-fold synonymous sites (except 

Aspartic acid) (filled circle) up to 900 bp for the TSS. Scaled GC contents of small 

introns and synonymous sites are calculated for non-overlapping bins of 150 bp. Error 

bars represent bootstrap 95% confidence interval on the bin averages calculated by 

resampling genes in each bin (1000 replicates). The average distance of each bin from 

the TSS is plotted on the x-axis and the average scaled GC content, along with the 

95% confidence interval, of each bin are plotted on the y-axis. The data points for 

small intron GC content are staggered by 5 bp to avoid overlapping error bars.  
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Figure 2.9. Relationship between synonymous GC content and transcript 

abundance. The relationship between MCU at 2-fold synonymous sites present in the 

first 750 bp from TSS (open circles) and 2-fold synonymous sites present at the 

distance of 751-1500 bp from TSS (filled circles) with the transcript abundance of 

genes in whole adult. The first 50 codons of the genes are filtered. For each intron 

category, the codons are binned by transcript abundance into 8 bins with roughly 

equal number of codons of the given category. Error bars in each graph represent 

bootstrap 95% confidence interval on the bin averages calculated by resampling genes 

in each bin (1000 replicates). The average transcript abundance of the genes in a bin 

is plotted on the x-axis. The average MCU of the codons of a given category present 

in the genes in a bin are plotted on the y-axis.  
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Figure 3.1. GC content comparison between X and autosomes. Boxplots 

comparing MCU (white), small intron GC (right diagonal lines), long intron GC (11-

100 bp) (vertical lines) and intergenic GC content (left diagonal lines) among 

chromosome arms. The end of the error bars denote 1.5 times of the interquartile 

distance. The end of the boxes denote the first and third quartiles and the black lines 

within the box give the median of the data. Each boxplot shows that GC distribution 

for one chromosome arm, specified on the x-axis. The y-axis shows the GC content of 

synonymous sites (MCU), small introns (siGC), long introns (liGC) and intergenic 

GC. Only genes that had more than 30 sites of a given nucleotide class were included 

in the analysis. 10 bp from the 5′ end and 30 bp from the 3′ end of introns are filtered. 
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Figure 3.2. GC content comparison between X and autosomes for 5′ and 3′ 

regions separately. A) Boxplots comparing MCU (white), small intron GC (right 

diagonal lines) and long intron GC (11-100 bp) (vertical lines) of 5′ regions of genes 

among chromosome arms. B) Boxplots comparing MCU (white), small intron GC 

(right diagonal lines) and long intron GC (vertical lines) of 3′ regions of genes among 

chromosome arms. The end of the error bars denote 1.5 times of the interquartile 

distance. The end of the boxes denote the first and third quartiles and the black lines 

within the box give the median of the data. Each boxplot shows that GC distribution 

for one chromosome arm, specified on the x-axis. The y-axis shows the GC content of 

synonymous sites (MCU), small introns (siGC) and long introns (liGC). Only genes 

that had more than 30 sites of a given nucleotide class were included in the analysis. 

10 bp from the 5′ end and 30 bp from the 3′ end of introns are filtered. 
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Figure 3.3. Regional heterogeneity in the base composition in different 

chromosome arms. Sliding window plot for MCU (grey), small intron GC content 

(green), long intron GC content (blue) and intergenic GC content (pink) for genes and 

regions in X (A), 2L (B), 2R (C), 3L (D), 3R (E) chromosome arms. Each window 
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contains 30 genes (for MCU, siGC and liGC) or 500Kb blocks (for intergenic GC). 

Sliding width is 1 gene for MCU, siGC and liGC and 10Kb for intergenic GC. Darker 

points represent regions with stronger departure in GC content from the null 

distribution estimated by permutation. The value on the x-axis represent the midpoint 

of the chromosomal location of each bin and that on the y-axis represents the average 

MCU or GC content of each bin. 
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Figure 3.4. Chromosomal heterogeneity in the base composition of different 

nucleotide classes. Barplot showing the proportion of chromosomal blocks that have 

the G-score value in the given range. The data for chromosomes X, 2 and 3 are used 

and are partitioned into different nucleotide classes. The G-scores are calculated for 

non-overlapping chromosomal blocks after controlling for the sample sizes across 

blocks and nucleotide classes. The G-score ranges are defined by the 0th, 25th, 50th, 

75th and 100th quantiles of the combined data of all nucleotide classes and all 

chromosomes.  
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Figure 3.5. Comparison of heterogeneity in codon bias among chromosome arms. 

Barplot showing the proportion of chromosomal blocks that have the G-score value 

for MCU in the given range. The data are partitioned for chromosome arms. The G-

scores are calculated for non-overlapping chromosomal blocks after controlling for 

the sample sizes across blocks. The G-score ranges are defined by the 0th, 25th, 50th, 

75th and 100th quantiles of the combined data of all chromosomes. The first 50 codons 

of genes were filtered while calculating MCU. 
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Figure 4.1. Histogram of annotated and unannotated putative introns. Histogram 

of log10 junction depth of annotated and unannotated introns of D. yakuba. The red 

line denotes the junction depth of 5. The pie chart shows the number of annotated and 

unannotated introns left after removing all introns that had junction depth of 5 or 

below.  
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Figure 4.2. Phylogenetic tree of D. melanogaster subgroup. The tree has been 

constructed using maximum likelihood method. Branch lengths are the nucleotide 

distance across 5026 genes.  
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Figure 4.3. Lineage-specific departures from equilibrium in the D. melanogaster 

subgroup. Changes in dup,pu as a function of MCU (MCU=#major/(#major+#minor)) 

in a) D. melanogaster (m), b) D. sechellia (c), c) D. simulans (s), d) D. sechellia-D. 

simulans (cs), e) D. teissieri (t), f) D. yakuba (y), g) D. teissieri-D. yakuba (ty), h) D. 

erecta (e), i) D. orena (o), j) D. erecta-D. orena (eo) lineages. MCU values are 

calculated for D. melanogaster genes. Each dot represents one bin containing roughly 

40,000 2-fold codons. Error bars represent 95% confidence interval of 1000 bootstrap 

replicates by resampling genes in each bin. Parameters were re-estimated for each 

replicate. Eyeball estimates of changes in Nes and u/v are calculated under the GTR-

NHb model. 
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Figure 4.4. Difference between evolution of 2-fold and 4-fold codons. Changes in 

dup,pu under the GTR-NHb model as a function of MCU (MCU=#major 

codons/(#major codons+#minor codons)) for 2-fold (except Asp codons) and 4-fold 

codons in a) D. erecta (e), b) D. orena (o) lineages. Each point represents one bin 

containing roughly 40,000 2-fold and 4-fold codons. Error bars represent 95% 

confidence interval of 1000 bootstrap replicates by resampling genes in each bin. 

Parameters were re-estimated for each replicate.  
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Figure 4.5. Coverage of genes used in the analysis based on expression across 

developmental stages. Percentage of single isoform D. melanogaster genes having 

biased expression in the four developmental stages that had orthologs in all seven 

species. Stage bias is defined for D. melanogaster genes using microarray expression 

data from FlyAtlas (Chintapalli et al. 2007; Matsumoto et al. 2015).  
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Figure 4.6. Coverage of genes used in the analysis based on expression across 

different tissues. Percentage of single isoform D. melanogaster genes having biased 

expression in the 22 tissues that had orthologs in all seven species. Tissue bias is 

defined for D. melanogaster genes using microarray expression data from FlyAtlas 

(Chintapalli et al. 2007; Matsumoto et al. 2016). The tissue numbers stand for the 

following tissues: 

t1:Adult hindgut, t2:Adult midgut, t3:Adult male accessory gland, t4:Adult brain, 

t5:Adult crop, t9:Adult ovary, t10:Adult testis, t12:Adult Salivary gland, t13:Adult 

carcass, t15:Larval hindgut, t16:Larval midgut, t17:Larval Salivary gland, t20:Larval 

tubule, t21:Larval fat body, t22:Larval carcass, t23:Larval CNS, t24:Larval trachea, 

t26:Adult fat body, t27:Adult eye, t28:Adult heart, t29:Adult male ejaculatory duct, 

t39:Embryo 
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Figure 4.7. Coverage of genes used in the analysis based on their MCU values. 

Percentage of single isoform D. melanogaster genes with the given MCU values that 

had orthologs in all seven species. MCU is calculated for D. melanogaster genes 

 

	
  

 


