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Abstract

The purpose of this research project is to develop a modeling framework for forecasting
electricity load and analyzing the structure of the electricity-load behavior. The theme
“Electricity Load Forecasting: Ensemble Approach” was chosen to explore the applicability
of an ensemble-based data-assimilation technique for both load forecasting and structural
analysis.

The first chapter of the thesis introduces the historical background that explains why
utilities need structural analysis on electricity-load behavior and then discusses the prob-
lems concerning load forecasting. The second chapter shows data sources available for
forecasts of load, including photovoltaic power (PV). In the third chapter, existing state-of-
the-art forecasting techniques are reviewed. The fourth chapter illustrates the theoretical
background regarding state-space models (SSMs), ensemble filtering methods, and model
performance metrics. In the fifth chapter, SSMs for load forecasting are developed and com-
pared to existing methods. Shrinkage or multiple linear regression methods are introduced
to further enhance accuracy. In the sixth chapter, SSMs for PV generation are developed. In
the final chapter, a summary and some conclusions are provided. This thesis demonstrates
that the forecasting performance of the proposed models is significantly better than the per-
formance of existing models; therefore, the proposed modeling framework is a promising
technique.

The original contribution to knowledge is that the methodology of making ensemble-
based structural models suitable for load forecasting is developed for the first time, and the
effectiveness of using an ensemble-based method is clearly demonstrated through numer-
ical experiments. The developed framework opens the door to more flexible and accurate
modeling with the capability of load analysis, an advantage that existing methods do not
provide. The framework has the potential for remarkable economic impacts on utilities. It
helps solve emerging problems such as the low accuracy of load forecasts caused by the
rapid increase in PV generation; hence, it minimizes the generation cost of thermal units
and reduces imbalance charges for electric-power disparities between forecasts and their
physical deliveries.
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Chapter 1

Introduction

1.1 Motivations

1.1.1 Need for Structural Analysis on Electricity-Load Behavior

Following the Great East Japan Earthquake of 2011, most nuclear power plants in Japan
were shut down due to safety concerns. Consequently, this caused an unprecedented tight-
ening of the supply-demand balance for electricity. The earthquake also caused the public
to be more energy conscious, and this has accelerated the widespread use of energy-saving
appliances, such as light emitting diodes (LEDs). To obtain environmentally friendly power
supplies, several incentives have been introduced to facilitate the installation of renewable
energy supplies; hence, the number of these installations is growing rapidly. These changes
affect the electricity load on various timescales—days, weeks, and years. Under these cir-
cumstances, it becomes increasingly important for utilities to properly monitor changes in
the electricity load in order to secure a stable power supply and make a proper plan for
investing in power facilities. For covering peak loads with a limited power source, it is nec-
essary to accurately plan pumped-storage hydropower operations at least a week in advance,
and this requires accurate load forecasting. When accurate forecasts are needed, most utili-
ties [e.g., 40] use statistical methods, such as multiple linear regression (MLR) or artificial
neural networks (ANNs). However, these are not suitable for analyzing the load, since they
tend not to provide any insight into the cause of a structural change; for example, regression
coefficients estimated using highly correlated explanatory variables are usually very large
positive or negative values, and they offer no information on cause and effect.
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1.1.2 Emerging Problems Concerning Renewable Energy

Since 2012, electric utilities in Japan have been obligated to purchase excess renewable en-
ergies at a fixed price through a government-guaranteed period. Subsequently, the installed
capacity of photovoltaic (PV) generation has increased rapidly. Compared with other re-
newable energies, the feed-in-tariff rate for PV systems is relatively high (e.g., ¥42/kWh for
20 years). In addition, the installment cost and environmental requirements for the system
have been low in comparison. These advantages have led to a boom in investment in PV
systems. The wide variation of PV power generation, which is dependent on the weather,
necessitates short-term PV power forecasting in order to maintain supply-demand balance in
a power system. This balance is maintained by system operators through short-term electric-
ity load forecasting. However, the difficulty involved in hourly PV power estimation lowers
the accuracy of load forecasting. This problem is described in detail as follows. Figure
1.1 shows the relationship between electricity load and PV power. PV self-consumption,
which is power consumption within houses or firms of PV suppliers, is shown above the
load curve, which is indicated by the thick black line. Although PV self-consumption is not
a part of the load, on cloudy days, it decreases, and the load curve increases to compensate
for the electricity shortfall in houses. The remainder of the PV power, more than 85% of
the total PV power generated, is sold to a utility as a power source, which is shown as the
area just below the load curve. Thus, both sold and self-consumed PV power affect utilities,
and due to the influence of weather, PV power as a power source is virtually uncontrollable.
Since the target of load forecasting is a load that contains such PV power, it is also important
to accurately forecast PV power generation on an hourly basis.

Hourly PV power forecasting is not an easy task for major utilities, especially those with-
out a remote monitoring system for power-consumption, also referred to as a smart-meter
system.1 The difficulty in proper PV forecasting is that utilities without a smart-meter sys-
tem cannot measure both the hourly PV power generation, which inflows to the power grid,
and PV self-consumption. Instead, only reported monthly PV purchase volumes and hourly
weather information are available (observational and two-week-ahead forecasts). Therefore,
we must estimate hourly PV power generation based on these data. Major utilities in Japan
have used physics-based models for PV forecasting. Since these models do not have a pro-
cess of model-fitting to observational data, a severe bias problem arises that directly leads

1All households in Japan will be equipped with smart meters that are capable of reporting PV power by
2020 (earliest estimate).
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to a large imbalance charge.2

PV sold to utility

Fig. 1.1 Electric power supply from various power sources over the course of a typical
sunny day. The bold line indicates the intra-daily load curve. Note that nuclear power is not
included due to the forced shutdown of nuclear power plants following the Great East Japan
Earthquake of 2011 at the time of writing.

1.2 Objectives

To solve the above-mentioned problems, our goal is to develop a modeling framework that
can be used for both forecasts and analysis on the load including PV power. Utilities require
analytical frameworks that can be used to explain the physical or economic rationales behind
load changes or inaccurate forecasts to management or system supervisory organizations,
such as the Organization for the Cross-regional Coordination of Transmission Operators,
Japan. At the same time, the load forecasting should be accurate enough that it can be used

2Imbalance charges of 53.21 ¥/kWh (summer), 47.03 ¥/kWh (other seasons), and 28.84 ¥/kWh (at
night) ¥/kWh for forecasting errors greater than 3%, and 15.44 ¥/kWh for forecasting errors within 3%.
(http://www.tepco.co.jp/corporateinfo/provide/engineering/wsc/yakkan2604-j.pdf)
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in daily operations. Thus far, different methods have been used for each purpose, since
in most cases, they are incompatible. A typical load structural analysis is performed by
estimating the electricity consumption based on the penetration of electrical appliances, the
response to the weather, the stay-at-home rate, and other economic statistics. The models
used for the analysis are more focused on accountability than accuracy.

1.3 Outline of the Thesis

In this thesis, we proposed an hourly short-term load forecasting method and an hourly PV
physics-based model which effectively assimilates with monthly PV-purchase data.

The remainder of the thesis is structured as follows.
Chapter 2 describes data sources used for the forecasts of both electricity load and PV

power.
Chapter 3 reviews the literature and investigates existing state-of-the-art methods in the

forecasting research fields.
Chapter 4 provides the theoretical background for state-space models (SSMs) and en-

semble Kalman filter (EnKF), which will be used in the following two chapters.
Chapter 5 illustrates methods for the load forecasting and provides performance eval-

uation in comparison with the existing state-of-the-art methods. Our aim is to develop
SSMs with enough load forecasting accuracy to ensure that the accountability assigned by
the load analysis is correct. Compared with the current state-of-the-art methods, the pro-
posed method significantly improves the forecasting accuracy. For load structural analy-
sis, weather-response indicators which are needed for official reports and require additional
analyses (e.g., simple regression analysis) in existing methods are directly estimated in our
method; this was not discussed in any of the studies that we reviewed.

Chapter 6 illustrates methods for the PV power forecasting and provides a performance
evaluation as well. The proposed PV method solved the severe bias problem by drastically
reducing forecasting bias. Moreover, although the proposed model is simple, it outper-
formed the results of a benchmark model currently in operational use. PV system parame-
ters such as the coefficient and the factor of PV conversion can be directly estimated using
the proposed method.

The final chapter provides a summary and the conclusions of the thesis. We have suc-
cessfully developed a unique modeling framework that can be used for load forecasting and
analysis, and thus our goal has been achieved.



Chapter 2

Data Sources

2.1 Electricity Load

An electricity load model was developed using hourly load data available from the Tokyo
Electric Power Company (TEPCO), which covers metropolitan Tokyo and the surrounding
area. Load data are downloadable in the CSV (comma-separated values) file format from the
TEPCO website.1 Figure 2.1 shows the sources of electric power supplied over the course
of a typical day. The thick line shows the target load, which is also known as the intra-daily

load curve. The electricity demand in the service area includes PV self-consumption; this
appears at the top of the curve. Note that TEPCO’s actual load includes the pumping-up
load of hydropower. The load shows an overall trend, as well as intra-weekly and intra-
daily periodic variations. These features can be seen in Fig. 2.2: the load decreases at night
and increases during the day; a small dip usually occurs around lunch time (i.e., between
12:00 and 13:00); and there are marked drops on weekends (Sa and Su).

1TEPCO Electricity Forecast: http://www.tepco.co.jp/en/forecast/html/index-e.html
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2.2 Photovoltaic (PV) Power

The following data were used for the PV power forecast in Chapter 6. For confidentiality
reasons, in the following figures, we will use sequential numbers rather than real time stamps
for PV data.

2.2.1 PV Purchase Volume

There are two types of PV-supplier categorized by capacity: capacity less than 10 kW (type
I), and 10 kW or above (type II). Type-I suppliers can sell only excess power which equals
to the total generated power less self-consumption. On the other hand, type-II suppliers can
sell the whole generated power. Figure 2.3 shows monthly PV purchase volume of both
suppliers. The PV purchase volume from the type-II supplier has increased at by far faster
pace than that from the type-I supplier.

2.2.2 Installed PV Capacity

We used historical records of installed PV capacity of each type in the utility service area.
These records are routinely reported to utility companies every month. The installed PV
capacities of both suppliers are plotted in Fig. 2.4. The data can be downloaded in the CSV
file format from the Agency for Natural Resources and Energy. 2

Area Rate of Installed PV Capacity by Individual Supplier

The target PV power for forecasting is an aggregated power from large numbers of PV sys-
tems spread over the utility service area. Figures 2.5 and 2.6 show the area rates of installed
PV capacity of type-I and type-II suppliers, respectively. The two supplier types have very
different installation patterns. The majority of type-I suppliers are households. As such,
population-dense areas like Tokyo largely have type-I suppliers. In contrast, type-II suppli-
ers are primarily PV firms. Therefore, suburban areas have mostly type-II suppliers. This
suggests that separate estimation of PV power depending on supplier type be a reasonable
strategy.

2http://www.fit.go.jp/statistics/public_sp.html
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2.3 Weather and Calendar Information

For model fitting and evaluation, we used weather observations obtained from the website
of the Japan Meteorology Agency.3 Calendar information (such as day of the week and
holidays) was also used. There are nine geographically separated observatories located in
the utility service area as shown in Fig. 2.7. From the observatories, every 30 minutes,4 the
following observations were available for our study:

• Air temperature [°C]

• Relative humidity [%]

• Global solar radiation [MJ/(m2h)] or [W/m2]

• Wind speed [m/s]
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Fig. 2.7 Weather observatories in the utility service area. With a prefecture name, each dot
(•) shows a geographic location of a observatory.

3Japan Meteorological Agency, Past observation data: http://www.data.jma.go.jp/obd/stats/etrn/index.php
4At the time of this study, only hourly observations were provided.



Chapter 3

Literature Review

3.1 Electricity Load Forecasting

Internationally, there have been hundreds of studies about load forecasting, and these have
considered the use of many different statistical techniques. Although it is impractical to
list all of these techniques here, the following ones are those that are commonly used. The
most widely used technique for load forecasting is multiple liner regression (MLR) [10],
although machine learning techniques have gained in popularity in recent years; examples
include fuzzy inference [59], support vector machines [45], and particle swarm optimization
[6]. Singular value decomposition has been used for robust estimations and dimension re-
duction [39], and the Gaussian process has been used for nonlinear modeling [47]. A large
number of neural-network-based methods [e.g., 24] have been studied; their main purpose
is to handle nonlinearity in a system. State-space models (SSMs) and the Box-Jenkins au-
toregressive integrated moving average (ARIMA) [e.g., 50] have been used since the early
days of load-forecasting research.

For load analysis, structural time-series models are commonly used, and these are often
used to forecast yearly growth in the load [e.g., 73]. However, recent methods use both
weather and economic indicators in an attempt to create a forecast that is seamless from
the short term to the long term [57]. In this study, we consider a forecasting horizon of
one week, which is considered to be short-term load forecasting. We have thoroughly re-
viewed all the papers that propose methods for forecasts of up to several weeks. Harvey
and Koopman [27] used time-varying splines to model periodic changes in the load, and
they showed the necessity of incorporating an evolutionary process in a forecasting model.
Taylor [62] developed a scenario-based forecasting model that used 51 different weather
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ensemble members. Several exponential smoothing techniques using SSMs have been de-
veloped [e.g., 63]. SSMs have been developed for the national load in France [14] and
the regional load in the UK [53], and in Section 5.3.3, we use these results to evaluate the
accuracy of our SSMs. We note that one of the advantages of SSMs is that individually
created models (submodels or components) can easily be incorporated into a single model;
for example, a nonlinear model for temperature effects can be easily incorporated as a part
of the load model. Another advantage is that SSMs can be updated recursively, and this is
appropriate for modeling the natural evolution mechanism of the load components. SSMs
have a long history and have been extensively studied; however, thus far, only a few attempts
have been made to use them to model nonlinearity. For flexible nonlinear modeling, we use
the ensemble Kalman filter (EnKF) as the algorithm for estimating the SSMs. Generally
speaking, forecasts obtained from SSMs tends to be less accurate than those produced by
the black-box methods that are used by many utilities. The accuracy of our method was
improved by using a shrinkage method, the least absolute shrinkage and selection operator
(Lasso) [68], and MLR. In any method, for increasing the forecasting accuracy and stabil-
ity, it is important to select the proper explanatory variables; for example, using correlation
analysis to select input variables has been shown to increase forecasting accuracy [24]. We
used the Lasso to select the variables, since it has the additional advantage of reducing over-
fitting, as compared with the step-wise methods that are commonly used in practice.

3.2 Photovoltaic Power Forecasting

A thorough review of existing PV forecasting methods revealed that the problem mentioned
in Section 1.1.2. has not yet been considered in past research. Since the history of PV
forecasting research is very short compared with that of load forecasting, PV forecasting
techniques are less diverse.

In the following, we present an overview of PV forecasting technology. Satellite images
with cloud motion are commonly used for short-term (within several hours) forecasting [12],
whereas physics-based models are usually used for longer-term (more than six hours) fore-
casting. Most PV forecasting techniques preliminarily predict solar irradiance using widely
available numerical weather prediction [38]. For forecasting periods of more than one year,
classical seasonal decomposition models are used to decompose time series data into sea-
sonal components, trend components, and irregular components [56]. As an example, the
Kalman filter has been successfully used to remove the bias of solar irradiance forecasts [7].
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We herein focus on short-term forecasting, which is our primary interest. Artificial
intelligence (AI) methods, such as ANNs, have been most commonly used in hourly PV
forecasting. For example, several ANNs with distinct topologies have been used for PV
forecasting, and two solar modules produced by major manufacturers have been tested [48].
A recurrent neural network has been successfully applied to several hour-ahead PV power
forecasting [76]. For other AI methods, hybrid hourly forecasting using a genetic algorithm
to combine ARIMA and three artificial intelligence methods have been proposed [77]. The
hybrid model outperformed these four models, and solar radiation and empirical PV hourly
power data are the only input data for the model. Note that some studies have used actual
hourly PV power data as training data. However, these studies considered only a small
amount of aggregated power from experimental residential areas or from a few PV firms,
which is in contrast to the present study which considers the total PV power for an entire
utility service area.

Forecasting methods that do not require knowledge of PV systems are gaining in pop-
ularity. The hourly quantile regression model is used for one-day-ahead forecasting [2].
Forecasting techniques that do not consider solar radiation have been accessed, and ANNs
have been demonstrated to outperform ARIMA and k-nearest-neighbors algorithms [54]. A
reforecasting technique to remove systematic bias has also been developed [11]. Feature
extraction from solar irradiance and weather pattern recognition [74] and regularized lin-
ear/nonlinear models [1] have also been developed.

Two basic types of strategies are usually used for PV forecasting of total power: bottom-
up strategies, which aggregate locally forecasted PV power generation, and direct strategies,
which directly forecast the total PV power generation [78]. The mean absolute error (MAE)
has been reported to be reduced by more than 3% by using a bottom-up strategy, as com-
pared to a direct strategy. In addition to this accuracy advantage, only the bottom-up strategy
is capable of providing precise information about local PV power, which would contribute
to solving over-voltage problems that occur in power distribution networks. Therefore, we
adopted a bottom-up strategy; that is, we first forecast local PV power generation, followed
by the total PV power.
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3.3 Ensemble Methods

Most load forecasts that use structural time series models [e.g., 53] are based on the Kalman
filter (KF) [37], though the KF has a high computational cost and is not capable of im-
plementing nonlinear system dynamics [69]. To handle nonlinear modeling, the extended
KF which uses the Taylor series expansion for nonlinear terms was developed; however,
it also has a high computational cost when approximating the error covariance. Evensen
(initial work [19], comprehensive work [20]) developed the EnKF, which overcomes both
problems by using an ensemble representation for the error covariance. The EnKF adopts a
Monte Carlo approximation to the KF, and the result is that the sample mean and covariance
matrix are asymptotically the same as those of the KF. The EnKF consists of a linear obser-
vation model with Gaussian noise and a linear or nonlinear system model with any type of
noise distribution. The nonlinear formulation affords much greater flexibility than does the
KF, which can handle only linear models. In addition, the ensemble approximation tech-
nique drastically reduces the computational cost, and this allows us to assimilate data into
systems that are too large for previous methods. Since the revolutionary success of Evensen,
the EnKF as well as the four-dimensional variational data-assimilation algorithm (4D-Var)
have become the most widely used algorithms for the assimilation of meteorological or
oceanographic data. For example, the EnKF has been successfully applied to forecasting
ozone concentrations [16], assimilating snow [46] and land surface temperature [23], and
building a coupled atmosphere-ocean model [71]. Although the electricity load has a very
close relationship with meteorological phenomena, studies using either the EnKF or the 4D-
Var have been strangely neglected by scientists. We apply the EnKF to load forecasting and
demonstrate its effectiveness for the first time. Using EnKF, which can deal with a non-
linear model, it becomes possible to easily enhance an elaborate physics-based model by
incorporating observed data. Moreover, it is very easy to add uncertainty information, such
as quantiles, to the point estimate, since ensemble members obtained by EnKF represent
a prediction distribution. Most existing forecasting methods provide only point estimates
[18]. For unit commitment for thermal plants, utilities use the forecasted load curve, which
fluctuates with the PV power. Therefore, interval estimation of the load is more useful than
point estimates for system operators.

There are several variants of the EnKF, including the EnKF with perturbed observations
(EnKF/PO), which was the first to be introduced and is widely used in many practical appli-
cations. However, it is known that perturbed observations increase the forecasting error to
some extent. To reduce this error, the ensemble square-root filter (EnSRF) filter was devel-
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oped [75]; the EnSRF does not require perturbed observations. The ensemble transform KF
(ETKF) [9] and the ensemble adjustment KF (EAKF) [4] are also similar square-root filters.
Particle filter or Sequential Monte Carlo [25, 42] is another promising ensemble technique
which no longer requires linearity assumption for both the observation model and the system
model. In the present study, we use the EnSRF with Andrews’ matrix formulation [5] since
it is easily implemented and performs better than others. We will use the term “EnKF” to
refer to the EnSRF in this thesis. Major data-assimilation methods are summarized in Table
3.1.



16 Literature Review

Ta
bl

e
3.

1
Su

m
m

ar
y

ta
bl

e
of

th
e

m
aj

or
da

ta
-a

ss
im

ila
tio

n
m

et
ho

ds

M
et

ho
d

A
cr

on
ym

C
ita

tio
n

M
od

el
ty

pe
a

N
oi

se
ty

pe
b

E
xp

la
na

tio
n

c

O
bs

.
Sy

s.
O

bs
.

Sy
s.

K
al

m
an

Fi
lte

r
K

F
[3

7]
L

L
G

G
·
T

he
m

os
tf

un
da

m
en

ta
la

lg
or

ith
m

fo
rd

at
a-

as
si

m
ila

tio
n

·
C

om
pu

ta
tio

na
lly

ex
pe

ns
iv

e

Sq
ua

re
-R

oo
tF

ilt
er

SR
F

[6
6]

,[
8]

L
L

G
G

·
K

F
w

ith
de

co
m

po
se

d
st

at
e-

co
va

ri
an

ce
m

at
ri

x
·
R

ob
us

tf
or

ro
un

d-
off

er
ro

r
·
C

om
pu

ta
tio

na
lly

ex
pe

ns
iv

e

E
xt

en
de

d
K

F
E

K
F

[6
1]

,[
49

]
N

L
N

L
G

G
·
K

F
w

ith
Ta

yl
or

ap
pr

ox
im

at
io

n
of

a
no

nl
in

ea
rm

od
el

·
C

om
pu

ta
tio

na
lly

ex
pe

ns
iv

e

U
ns

ce
nt

ed
K

F
U

K
F

[3
6]

N
L

N
L

G
G

·
Si

gm
a

po
in

ts
ap

pr
ox

im
at

io
n

of
a

st
at

e
di

st
ri

bu
tio

n
·
T

he
po

in
ts

ar
e

se
le

ct
ed

w
ith

a
de

te
rm

in
is

tic
al

go
ri

th
m

E
ns

em
bl

e
K

F
E

nK
F/

PO
[1

9]
,[

20
]

L
N

L
G

N
G

·
E

ns
em

bl
e

ap
pr

oa
ch

;P
O

m
et

ho
d

w
ith

Pe
rt

ur
be

d
O

bs
er

va
tio

ns
·
N

ot
ro

bu
st

fo
rs

am
pl

in
g

er
ro

r

E
ns

em
bl

e
SR

F
E

nS
R

F
[7

5]
L

N
L

G
N

G
·
E

ns
em

bl
e

ap
pr

oa
ch

;S
R

F(
F)

-b
as

ed
m

et
ho

d
·
E

as
y

im
pl

em
en

ta
tio

n

E
ns

em
bl

e
K

F
E

nK
F/

SR
[2

1]
L

N
L

G
N

G
·
E

ns
em

bl
e

ap
pr

oa
ch

;S
R

F(
B

)-
ba

se
d

m
et

ho
d

w
ith

Sq
ua

re
-R

oo
tA

lg
or

ith
m

·
E

as
y

im
pl

em
en

ta
tio

n

E
ns

em
bl

e
A

dj
us

tm
en

tK
F

E
A

K
F

[4
]

L
N

L
G

N
G

·
E

ns
em

bl
e

ap
pr

oa
ch

;S
R

F(
F)

-b
as

ed
m

et
ho

d
·
C

om
pu

ta
tio

na
la

dv
an

ta
ge

w
he

n
N

m
>

N
kx

E
ns

em
bl

e
Tr

an
sf

or
m

K
F

E
T

K
F

[9
]

L
N

L
G

N
G

·
E

ns
em

bl
e

ap
pr

oa
ch

;S
R

F(
B

)-
ba

se
d

m
et

ho
d

·
C

om
pu

ta
tio

na
la

dv
an

ta
ge

w
he

n
N

m
<

N
kx

Pa
rt

ic
le

Fi
lte

r
PF

[4
3]

,[
25

]
N

L
N

L
N

G
N

G
·
E

ns
em

bl
e

ap
pr

oa
ch

·
E

as
y

im
pl

em
en

ta
tio

n;
Si

m
ila

ri
ty

to
ge

ne
tic

al
go

ri
th

m

Fo
ur

-D
im

en
si

on
al

V
ar

ia
tio

na
l

4D
-V

ar
[7

9]
N

L
N

L
N

G
N

G
·
V

ar
ia

tio
na

la
pp

ro
ac

h
D

at
a-

A
ss

im
ila

tio
n

·
D

iffi
cu

lt
im

pl
em

en
ta

tio
n

a
L

:L
in

ea
rm

od
el

,N
L

:N
on

lin
ea

rm
od

el
b

G
:G

au
ss

ia
n

no
is

e,
N

G
:N

on
-G

au
ss

ia
n

no
is

e
c

F:
Fo

rw
ar

d-
m

ul
tip

lic
at

io
n

ty
pe

,B
:B

ac
kw

ar
d-

m
ul

tip
lic

at
io

n
ty

pe
,N

kx
:N

um
be

ro
fs

ta
te

va
ri

ab
le

s,
N

m
:N

um
be

ro
fe

ns
em

bl
e

m
em

be
rs



Chapter 4

Theoretical Background

4.1 State-Space Models

Models for a time series or a controlling system in the form of Eqs. 4.1 and 4.2 are called
state-space models (SSMs) [28]. The state process is given by Eq. 4.1, and the observation
process is given by Eq. 4.2. Estimates can be obtained as a sum of the separate components
in a linear observation model, and thus, it is easy to modify the model. Another advantage
of using SSMs is that we can use a recursive algorithm such as the KF or its variants to
estimate the states. A long-term (more than one step) forecast can be obtained by repeating
a one-step-ahead prediction using Eqs. 4.1 and 4.2. These equations are as follows:

xt = ft(xt−1,vt) , (4.1)

yt = gt(Ht,xt,wt) , (4.2)

where xt is the state vector, yt is the observation vector, Ht is the observation matrix, wt

is the observation noise vector, vt is the system noise vector, ft(·) is the system model, and
gt(·) is the observation model.

4.2 Ensemble Filtering Methods for Data Assimilation

4.2.1 Common Notations

Notations which are commonly used in the following subsections are explained here.
First, by Eq. 4.3, we define the predicted state vector of size Nkx of the ith ensemble member.
Likewise, the filtered state vector by Eq. 4.4. Each entry is a realization drawn from the
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corresponding distribution (i.e., the prediction distribution or the filtering distribution).

x̂(i) :=
[
x̂(i)

1 , · · · , x̂
(i)
Nkx

]′
∈ RNkx×1 , (4.3)

x(i) :=
[
x(i)

1 , · · · , x
(i)
Nkx

]′
∈ RNkx×1 . (4.4)

Using x̂(i) and x(i), by Eq. 4.5, we define the predicted state matrix X̂ with Nm state vectors.
Likewise, the filtered state matrix X by Eq. 4.6.

X̂ :=
[
x̂(1), · · · , x̂(Nm)

]
∈ RNkx×Nm , (4.5)

X :=
[
x(1), · · · ,x(Nm)

]
∈ RNkx×Nm . (4.6)

Secondly, we define the mean matrices for X̂ and X by Eqs.4.7 and 4.8, respectively, then
the deviation matrix by Eq. 4.9.

X̂ := X̂1/Nm ∈ RNkx×Nm , (4.7)

X := X1/Nm ∈ RNkx×Nm , (4.8)

D̂ := X̂− X̂ ∈ RNkx×Nm , (4.9)

where 1 ∈ RNm×Nm is the matrix in which all elements are unity (i.e., 1.0). Note that the
elements of each row of X̂ or X have the same value (i.e., the ensemble mean).

Thirdly, using the observation matrix H ∈ RNy×Nkx , the prediction matrix Ŷ and its mean
matrix Ŷ are defined by the following equations:

Ŷ =HX̂ ∈ RNy×Nm , (4.10)

Ŷ =HX̂ ∈ RNy×Nm . (4.11)

Finally, we define R̃ := (Nm−1)R ∈ RNy×Ny for efficient matrix operations, where R is the
covariance matrix for observation noise W ∼ N(0,R) ∈ RNy×Nm .

In the following subsections, we will chronologically explain the procedures for various
types of ensemble filtering methods, based on Ueno’s formulations [70] which are modified
for efficient matrix operations.
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4.2.2 Ensemble Kalman Filter with Perturbed Observations (EnKF/PO)

The first ensemble Kalman filtering algorithm was introduced by Evensen [19][20]. Using
the same notations as defined previously, EnKF/PO is performed in the following procedure:

K = D̂D̂
′

H
′ (

HD̂D̂
′

H
′

+ R̃
)−1

∈ RNkx×Ny , (4.12)

X = X̂+K
(
Y+W− Ŷ

)
∈ RNkx×Nm , (4.13)

where K is a Kalman gain matrix.

4.2.3 Ensemble Adjustment Kalman Filter (EAKF)

Anderson developed an EnKF without perturbed observations, which significantly outper-
formed 4D-Var and EnKF/PO for the first time [4]. Calculation performance increases when
compact singular value decomposition is possible. EAKF is categorized as a square-root fil-
ter of the forward-multiplication type. It is computationally advantageous when Nm > Nkx.
Using the same notations as defined previously, EAKF is performed in the following pro-
cedure. With Eq. 4.14, compact singular value decomposition of RHS is performed. Also,
with Eq. 4.15, eigendecomposition of RHS is performed.

UGV
′

= D̂ ∈ RNkx×Nm , (4.14)

ZBZ
′

=
(
HUG

)′
R̃−1HUG ∈ RNr×Nr , (4.15)

K = UGZ
(
I+B

)−1Z
′(

HUG
)′

R̃−1 ∈ RNkx×Ny , (4.16)

X = X̂+K
(
Y− Ŷ

)
∈ RNkx×Nm , (4.17)

D = UGZ
(
I+B

)−1/2G+U
′

D̂ ∈ RNkx×Nm , (4.18)

X = X+D ∈ RNkx×Nm , (4.19)

where U and V are unitary matrices with left- and right-singular vectors for the correspond-
ing singular values, respectively. G+ is a Moor-Penrose pseudoinverse with an effective rank
of Nr ≤ min(Nkx,Nm). Z is an orthogonal matrix whose ith column is the ith eigenvector of
RHS. B is a diagonal matrix whose entries are the eigenvalues of RHS.

4.2.4 Ensemble Square-Root Filter (EnSRF)

Similar to EAKF, but with a much simpler implementation, Whitaker also developed an
EnKF without perturbed observations [75]. EnSRF is categorized as a square-root filter of
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the forward-multiplication type. Using the same notations as defined previously, EnSRF is
performed in the following procedure. With each Eq. 4.20 and 4.21, Cholesky decomposi-
tion of RHS is performed.

UU
′

= R̃+HD̂D̂
′

H
′

∈ RNy×Ny , (4.20)

VV
′

= R̃ ∈ RNy×Ny , (4.21)

Km = D̂D̂
′

H
′(

U
′)−1U−1 ∈ RNkx×Ny , (4.22)

Kd = D̂D̂
′

H
′(

U
′)−1
+

(
U+V

)−1
∈ RNkx×Ny , (4.23)

X = X̂+Km
(
Y− Ŷ

)
∈ RNkx×Nm , (4.24)

D =
(
I−KdH

)
D̂ ∈ RNkx×Nm , (4.25)

X = X+D ∈ RNkx×Nm , (4.26)

where U and V are upper triangular matrices with positive diagonal real entries, respectively.
Km and Kd are Kalman gains for the means and the deviations, respectively.

4.2.5 Ensemble Kalman Filter with Square-Root Algorithm (EnKF/SR)

Evensen developed another EnKF that is also based on the square-root filtering scheme of
the backward-multiplication type [21]. It is demonstrated that EnKF/SR effectively over-
comes the slow convergence of EnKF/PO, which is due to sampling errors introduced by
perturbed observations, and a significant reduction in computing time has been achieved.
Using the same notations as defined previously, EnKF/SR is performed in the following
procedure. With Eq. 4.27, eigendecomposition of RHS is performed. Also, with Eq. 4.28,
singular-value decomposition of RHS is performed.

ZBZ
′

= R̃+ ŶŶ
′

∈ RNy×Ny , (4.27)

UGV
′

=G−1/2Z
′

Ŷ ∈ RNy×Nm , (4.28)

Km = D̂D̂
′

H
′(

U
′)−1U−1 ∈ RNkx×Ny , (4.29)

X = X̂+Km
(
Y− Ŷ

)
∈ RNkx×Nm , (4.30)

D = D̂V
√

I−G′GV
′

∈ RNkx×Nm , (4.31)

X = X+D ∈ RNkx×Nm , (4.32)

where Z is an orthogonal matrix whose ith column is the ith eigenvector of RHS. B is a
diagonal matrix whose entries are the eigenvalues of RHS. U and V are unitary matrices
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with left- and right-singular vectors for the corresponding singular values, respectively.

4.2.6 Ensemble Transform Kalman Filter (ETKF)

Bishop developed an EnKF that is based on the square-root filtering algorithm, of the
backward-multiplication type [9]. It is computationally advantageous when Nm < Nkx. Us-
ing the same notations as defined previously, the ETKF is performed in the following pro-
cedure. In Eq. 4.33, eigendecomposition of RHS is performed.

ZBZ
′

= I+
(
HD̂

)′
R̃−1HD̂ ∈ RNm×Nm , (4.33)

Km = D̂ZB−1Z
′(

HD̂
)′

R̃−1 ∈ RNy×Nm , (4.34)

X = X̂+Km
(
Y− Ŷ

)
∈ RNkx×Nm , (4.35)

D = D̂ZB−1/2Z
′

∈ RNkx×Nm , (4.36)

X = X+D ∈ RNkx×Nm , (4.37)

where Z is an orthogonal matrix whose ith column is the ith eigenvector of RHS. B is a
diagonal matrix whose entries are the eigenvalues of RHS.

4.2.7 Particle Filter (PF)

Particle filter or Sequential Monte Carlo method was introduced by Kitagawa [42] and Gor-
don et al.[25] in the same year. Using the same notations as defined previously, PF is
performed in the following procedure. Several types of resampling techniques have been
developed intended to prevent degeneration of particles. Douc compared several resam-
pling techniques for PF [15]. A low variance resampling technique [67] is used for the
following procedure since it is computationally simple (O(Nm) for sampling Nm particles)
and its superior performance was reported.
For i = 1, . . . ,Nm, the ith particle weight or likelihood w(i) is calculated by Eq. 4.38, then it
is normalized to w̃(i) by Eq. 4.39.

w(i) = (2π)−Ny/2 |R|−1/2 exp
[
−

1
2

(
Y(i)− Ŷ(i)

)′
R−1

(
Y(i)− Ŷ(i)

)]
∈ R , (4.38)

w̃(i) =
w(i)∑Nm

j=1w
( j)

∈ R , (4.39)

Resample particle x̂(i) ∈ X̂ with the probability w̃(i), with replacement, to obtain x(i) ∈ X.
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4.2.8 EnSRF for Univariate Time Series Model

In the following chapters, we illustrate the filtering procedure of the EnSRF for electricity
load forecasting, which was specially modified for fast processing of a univariate time series.
Although the EnKF itself is an algorithm, in the following sections, we will use the term
EnKF in a broader context to refer to the use of SSMs with this EnSRF.

m := D̂D̂
′

H
′

∈ RNm×1 , (4.40)

u :=
√

Hm+ R̃ ∈ R , (4.41)

v :=
√

R̃ ∈ R , (4.42)

km =
m
u2 ∈ RNm×1 , (4.43)

kd =
m

u(u+ v)
∈ RNm×1 , (4.44)

X = X̂−km
(
Ŷ−Y

)
∈ RNkx×Nm , (4.45)

D = D̂−kdHD̂ ∈ RNkx×Nm , (4.46)

X = X+D ∈ RNkx×Nm . (4.47)
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4.3 Estimating Variance of Noise

For the electricity load model that is a univariate time series model, our procedure for esti-
mating the variances of the observation noise and the system noises was as follows. First,
we assumed the observation noise was {Wt} ∼ i.i.d. N(0, R), where R is the variance of the
observation noise, and we assumed the ith system noise was {v(i)t } ∼ i.i.d.N(0, R/Li), where
the Li is the trade-off parameter. A model with this setup is called a linear Gaussian state-
space model. The variances of the system noises were initialized to approximately zero;
this corresponds to setting the trade-off parameters large enough that the components are
stable. Once these variances were fixed, the variance R of the observation noise {Wt} was
estimated; it was based on the maximum-likelihood estimation whose likelihood function is
shown in Eq. 4.48. The estimate R̂ was obtained from a grid search with Eq. 4.49 [43, Eq.
6.45]. After that, we slightly adjusted the variance R̂/Li of the system noise {v(i)t } in order to
obtain a more accurate forecast over an evaluation term. These equations are as follows:

Lt(R) :=
1

Nm

Nm∑
i=1

1
√

2πR
exp

− (yi,t|t−1−yt)2

2R

 , (4.48)

R̂ = arg max
R

Nt∑
t=1

logLt(R) , (4.49)

where yt is the load, yi,t|t−1 is the one-step-ahead load predicted by the ith ensemble member,
Nm is the number of ensemble members, and Nt is the number of time steps predicted.
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4.4 Constraints for Component

There are many occasions where constraints (upper and lower limits) for components are
required, especially when models are designed based on physics. In order to obtain the
constrained components, a sigmoid function (Fig. 4.1) is commonly used [35]. A definition
of the function is given by Eq. 4.50. It maps η ∈ R : −∞ < η < +∞ onto ξ ∈ R : 0 < ξ < 1.
In the recursive calculation of the EnKF, provided that the constraint of a coefficient is
0 < ξ < 1, we use a state variable η whose relationship with ξ is described as Eq. 4.51.

ξ = S (η) :=
1

1+ exp(−η)
, (4.50)

η = S −1(S (η)) = log
S (η)

1−S (η)
= log

ξ

1− ξ
. (4.51)

We modified the above formula to a more generic form with the constraint a < ξ < b (a,b ∈
R), where η : −∞ < η < +∞ can be mapped onto ξ by applying one of the following three
cases:

(i) a < ξ < b

Define a map function T : η 7→ ξ : a < ξ < b by Eq. 4.52, then a state variable η can be
obtained by Eq. 4.53.

ξ = T (η) := (b−a)S (η)+a =
b+aexp(−η)
1+ exp(−η)

, (4.52)

η = T−1(T (η)) = log
T (η)−a
b−T (η)

= log
ξ−a
b− ξ

. (4.53)

(ii) 0 < ξ <∞
Define a map function U : η 7→ ξ : 0 < ξ <∞ by Eq. 4.54, then a state variable η can
be obtained by Eq. 4.55.

ξ = U(η) := exp(η) , (4.54)

η = log(ξ) . (4.55)

(iii) −∞ < ξ < 0
Define a map function U′ : η 7→ ξ : −∞ < ξ < 0 by Eq. 4.56, then a state variable η can
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be obtained by Eq. 4.57.

ξ = U′(η) := −exp(η) , (4.56)

η = log(−ξ) . (4.57)
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Fig. 4.1 Sigmoid function

4.5 Initial Ensembles

In order to capture unexpected structural changes of the load, initial ensemble members
representing an initial distribution of a component were generated in such a way that the
dispersion of the distribution was as wide as possible.

Based on the procedures explained in the preceding subsection, some components may
have their upper and/or lower limits. As an initial distribution of such a constrained com-
ponent, either the uniform distribution or the truncated normal distribution is supposed to
be most suitable among others. In this study, initial ensembles for a constrained component
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were generated so that the distribution of the component becomes a uniform distribution.

4.6 Simulation

To better understand the basic properties of structural time series modeling (e.g., SSMs), a
numerical simulation using true models is conducted in this section.

The first step of the simulation is to generate a time series for each latent component
using a true model. The true model should be as simple as possible without losing intrinsic
features of the latent phenomena. Then, the simulation data, which represent electricity load
observations in our case, are obtained by aggregating those components. The next step is
to propose models for the latent components and check if those models for the load and the
components properly converged to the simulated true time series.

The procedure stated above is sometimes referred to as the twin experiment in the data-
assimilation context [46]. There are two types of twin experiment: one is the identical-twin
experiment which uses the exact same model for both the true model and the proposed; and
the other is the fraternal-twin experiment which does not use the exact same model. For
flexible modeling intended for electricity load forecasting, we adopted the latter one; that is,
the proposed models are different from the true models.

4.6.1 True Models

The observation Yt is decomposed into the five latent components: TRENDt, INWKt,
INDAYt, ARt, and an irregular component which is observation noise Wt ∼ N(0,22), where
t = 1,2, · · · ,24× 7× 4 [h]. The latent components are explained in detail in the following
paragraphs.

Yt = TRENDt + INWKt + INDAYt +ARt +Wt . (4.58)

True Trend Component Model

The true trend component is a straight line with a slope which increases at the rate of 3
[GW/week] and the intercept is 35 [GW], mimicking an increasing trend of load during the
spring season in the metropolitan area in Japan.

TRENDt = 35+3t/(24×7) . (4.59)
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True Intra-Weekly Component Model

The true intra-weekly component is a sinusoidal curve with the amplitude of 4 [GW] and
the time period of a week (i.e., 24×7 [h]).

INWKt = 4sin(2πt/(24×7)) . (4.60)

True Intra-Daily Component Model

The true intra-daily component is also a sinusoidal curve with the amplitude of 4 [GW] and
the time period of a day (i.e., 24 [h]).

INDAYt = 4sin(2πt/24) . (4.61)

True Autoregressive Component Model

The true autoregressive component is the second-order autoregressive model, AR(2), whose
the first and the second coefficients are ϕ1 and ϕ2 respectively. We used ϕ2 = −1.0 which
causes a stationary oscillation, and θ = π/6 which is the intermediate parameter with the
time period of 12 [h](= 2π/θ). The relationship expressed in Eq. 4.63 will be explained in
the following section.

ARt = ϕ1 ARt−1+ϕ2 ARt−2 , (4.62)

ϕ1 = 2
√
−ϕ2 cos(θ) . (4.63)
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The true models which represent the electricity load structure, explained in the preceding
subsection, are drawn in Fig. 4.2.
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Fig. 4.2 Electricity load structure model (true models). Simulated load contains true com-
ponent models; that is, the load is the summation of those models. On the top panel, load
(magenta) and load without observation noise (green) are drawn. From the second panel,
TRENDt, INWKt, INDAYt and ARt are drawn, followed by Remainder (or innovation)
which is observation noise, then ARt paramters ϕ2 and θ.
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4.6.2 Proposed Models (Auto-projective Component Models)

System Noise

Most of the components in the following sections have a term for system noise, which is
denoted as v(·)t , where the superscript is the identification number of a particular component
or parameter. The system noise increases the uncertainty of prediction of each component.

Trend Component Model

The local trend model was used for modeling a trend of the simulated electricity load since,
as in the Holt-Winters method, it ensures that the slopes within a trend are very similar.

TRENDt = 2 TRENDt−1−TRENDt−2+ v
(1)
t . (4.64)

Intra-Weekly Component Model

The seasonal component model of Kitagawa [44] was used for the intra-weekly and intra-
daily components. It is referred to as the normalized seasonal model [31, Ch. 8] since it
requires that the average of the seasonal components is equal to zero:

Σ167
i=0 INWKt−i = v

(2)
t . (4.65)

Intra-Daily Component Model

The intra-daily component is defined in the same way as INWKt−i.

Σ23
i=0 INDAYt−i = v

(3)
t . (4.66)

Autoregressive Component Model

The autoregressive component, AR(2), given by Eqs. 4.67 and 4.68, represents a periodic
variation within 24 hours. With restricted coefficients of AR(2), a trigonometric curve (i.e.,
sine or cosine curve) can be expressed in the recursive equations. Another role of AR(2)
is to increase the accuracy of very short-term (e.g., 1–3 hours) forecasts, which is much
more common usage. The coefficients of AR(2), ϕ1,t and ϕ2,t, must satisfy the stationary
condition. In addition, an oscillatory condition is required to model the small fluctuations
that often occur when an intra-daily or intra-weekly component is apparently over-fitted. We
used Doménech’s method [13] to restrict the parameters of AR(2), and we formulated the
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conditions ( ϕ2
1,t+4ϕ2,t < 0 ∧ ϕ2,t >−1) in Eqs. 4.68–4.70, using the intermediate parameter

θt : 0 < θt < π. These equations are as follows:

ARt = ϕ1,t ARt−1+ϕ2,t ARt−2+ v
(4)
t , (4.67)

ϕ1,t = 2
√
−ϕ2,t cosθt , (4.68)

log
(
1+ϕ2,t

−ϕ2,t

)
= log

(
1+ϕ2,t−1

−ϕ2,t−1

)
+ v(5)

t , (4.69)

log
(
θt
π− θt

)
= log

(
θt−1

π− θt−1

)
+ v(6)

t . (4.70)
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Fig. 4.3 Stationary and oscillatory parameter space of AR(2) process

4.6.3 Data Assimilation Result of Proposed Models

Figure 4.4 shows the results of data assimilation with EnSRF. Only TRENDt successfully
converged to the true trajectories immediately after one week (168 hours). All the com-
ponents were stabilized; however, small fluctuations were observed in both INWKt and
INDAYt. This can be explained by smoothness, which is not assumed in these modelings.
AR component as well as its two parameters failed to converge to the true trajectory and
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values.
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Fig. 4.4 Twin experiment. Simulated load was decomposed by SSMs with EnSRF (ensem-
ble size is 300). The magenta line and the blue line in each panel denote a true componen-
t/parameter and an estimated one, respectively. The green line in the top panel shows the
true (simulated) load without observation noise. From the third week (504 hours), one-week
forecasts were performed.
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4.6.4 Enhancement of INWKt and INDAYt

The two-sided exponentially weighted smoother was used for both seasonal components,
INWKt and INDAYt, to subdue small fluctuations.

Smoothing for INWKt

In order to increase the quality of the data assimilation, we applied the two-sided exponen-
tially weighted smoother function s(·) with argument {xt | t = 0,1, · · · ,N; x− j = xN− j, xN+ j =

x j}, which is a periodic time series. It updates each state at each step rather than every 168
steps. The smoothed intra-weekly component is

{INWKS t−i}
167
i=0 = s

(
{INWKt−i}

167
i=0

)
, (4.71)

s(xt) =
(
Σ

p
j=−pλ

| j|xt+ j
)
/η , (4.72)

η = Σ
p
j=−pλ

| j| , (4.73)

where the notation {ai}
N
i=0 signifies {a0,a1, · · · ,aN}. N = 167 [h] is the time length, and p = 6

[h] is a one-side time length for smoothing weights. η is the normalization parameter that
ensures the total smoothing weight is equal to 1.0.

Smoothing for INDAYt

The intra-daily component model INDAYt is also smoothed by the following equation:

{INDAYS t−i}
23
i=0 = s

(
{INDAYt−i}

23
i=0

)
. (4.74)
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4.6.5 Results (Graphics) of Data Assimilation by Ensemble Approaches

In the following subsections, we will show the results of data assimilation performed by the
following ensemble approaches:

• Ensemble Square-Root Filter

• Ensemble Kalman Filter with Square-Root Algorithm

• Ensemble Transform Kalman Filter

• Ensemble Adjustment Kalman Filter

• Ensemble Kalman Filter with Perturbed Observations

• Particle Filter
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Ensemble Square-Root Filter (EnSRF)
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Fig. 4.5 Twin experiment with smoothing of INWK and INDAY . Simulated load was de-
composed by SSMs with EnSRF. ϕ2 and θ are parameters of the AR component. The ma-
genta line and the blue line in each panel denote a true component/parameter and an esti-
mated one, respectively. The green line in the top panel shows a true (simulated) load with
observation noise.



4.6 Simulation 35

Ensemble Kalman Filter with Square-Root Algorithm (EnKF/SR)
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Fig. 4.6 Ensemble Kalman Filter with Square-Root Algorithm (EnKF/SR)
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Ensemble Transform Kalman Filter (ETKF)
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Fig. 4.7 Ensemble Transform Kalman Filter (ETKF)
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Ensemble Adjustment Kalman Filter (EAKF)
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Fig. 4.8 Ensemble Adjustment Kalman Filter (EAKF)
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Ensemble Kalman Filter with Perturbed Observations (EnKF/PO)

30

40

50

60

L
o

a
d

 (
Y

)

Electricity Load Structural Analysis by EnKF/PO

SD_R= 2.0, Log(LK)=-0.61E+06, RMSE= 3.20, Nm= 300, Calc. time= 13.8 [sec]

Forecast

30

40

50

60

T
R

E
N

D

-10
-5
0
5

10

IN
W

K
S

-10
-5
0
5

10

IN
D

A
Y

S

-10
-5
0
5

10

A
R

-5

0

5

R
e

m
a

in
d

e
r

-0.98

-0.96

-0.94

-0.92

2

0 168 336 504 672

0.45
0.50
0.55
0.60
0.65

Estimated
Twin model
Twin model without noise

Fig. 4.9 Ensemble Kalman Filter with Perturbed Observations (EnKF/PO)
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Particle Filter (PF)
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4.6.6 Summary of Implemented Ensemble Approaches

Those filters below were implemented solely by the author (see Appendix A.1 for Fortran
sample code); therefore, it is not necessarily the case that performances of filters imple-
mented by others are exactly the same as the below mentioned.

Ensemble Square-Root Filter (Fig. 4.5) proves to be the most promising candidate for
data assimilation of electricity load forecasting. Immediately after the first week (168 h),
all components successfully converge to the true trajectories and the calculation speed was
excellent (16.9 s).

Ensemble Kalman Filter with Square-Root Algorithm (Fig. 4.6) produced very similar
results to EnSRF and the calculation speed was also excellent (17.6 s).

Ensemble Transform Kalman Filter (Fig. 4.7) produced very similar results to EnSRF
and the calculation speed was moderate (34.9 s).

Ensemble Adjustment Kalman Filter (Fig. 4.8) produced similar results to EnSRF;
however, small fluctuations appeared in INWKS t. The calculation was very time-consuming
(55.5 s).

Ensemble Kalman Filter with Perturbed Observations (Fig. 4.9) failed in data assim-
ilation of TRENDt and INWKS t. In addition, ARt along with its parameters ϕ2,t and θt
converged very slowly. The calculation speed was the fastest of all (13.8 s).

Particle Filter (Fig. 4.10) also failed in data assimilation of most of the components.
To avoid a well-known problem inherent to particle filter, the so-called degeneration of the
particles, we used ensemble members three times as large as used for other ensemble ap-
proaches. The calculation speed was (17.0 s) though this was not a like-for-like comparison
to others since the ensemble size was different. To properly assimilate the observations into
components, countermeasures such as random particle addition should be implemented in
this filter.

From the reasons mentioned above, we selected EnSRF as the filtering method for elec-
tricity load forecasting.



4.7 Model Performance Metrics 41

4.7 Model Performance Metrics

4.7.1 Measurement of Accuracy

The forecasting accuracy was measured in terms of the mean-absolute-error (MAE), the
mean-absolute-percentage-error (MAPE) and the root-mean-squared-error (RMS E). We
used the standard deviation (S D{PE}) of the percentage-error (PEt) to express variability
of the accuracy. RMS E tend to be similar to MAE; however, RMS E is more focused on
large errors. For comparison with a physics-based benchmark model that has the severe bias
problem, we used the mean-bias-error (MBE).

In context of load forecasting, MAPE is the most widely used accuracy measure, since it
is easy to understand, and an imbalance charge1 is assessed based on the absolute percentage
error (APE). Furthermore, the MAPE is scale independent, which enables us to compare
accuracy for different load levels.

Those accuracy measures are defined by the following equations:

et := ŷt −yt [GW] , (4.75)

MBE :=
1
N

N∑
t=1

et [GW] , (4.76)

MAE :=
1
N

N∑
t=1

|et| [GW] , (4.77)

RMS E :=

√√√
1
N

N∑
t=1

e2
t [GW] , (4.78)

PEt :=
et

yt
×100 [%] , (4.79)

MAPE :=
1
N

N∑
t=1

|PEt| [%] , (4.80)

S D{PE} :=

√√√
1
N

N∑
t=1

(PEt −PE)2 [%] , (4.81)

where et is the error at time t, yt is the observed value, ŷt is the estimate, and N is the number
of time steps in an evaluation term.

1This occurs when the power producer and supplier (PPS) is unable to maintain a balance between supply
and demand; for each collective 30-minute load that is unbalanced, the PPS must pay a penalty to the system
operator.
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4.7.2 Statistical Test for Significance of Accuracy

The Diebold-Mariano (DM) test is the most sophisticated statistical tool to compare the ac-
curacy of each set of two forecasts. In practice, tests for equality of variance, such as the
F-test, Levene’s test, Bartlett’s test, and the Brown-Forsythe test, are also used to compare
accuracy. Compared to those tests, however, the DM test requires fewer assumptions about
the forecasting errors; these tests are also known to have an inflation problem with the type-I
error, and this was not reported for the DM test. The null hypothesis of the DM test is that
the two forecasts have the same accuracy. Let us explain the test procedure.

First, let us denote two competing h time-step ahead forecasts from the present time t as
ŷ(1)

t+h|t and ŷ(2)
t+h|t, and the observation as yt+h (t = 1,2, · · · ,N). Then, the forecast errors from

the two models can be expressed by the following equations:

e(1)
t+h|t = ŷ

(1)
t+h|t −yt+h , (4.82)

e(2)
t+h|t = ŷ

(2)
t+h|t −yt+h . (4.83)

Secondly, we introduce loss functions from which forecasting accuracy can be measured.
The two types of loss function commonly used are:

Absolute-error loss function: L(e) := |e| , (4.84)

Squared-error loss function: L(e) := e2 , (4.85)

The absolute-error loss function L(e) := |e| was used in this study since the absolute value
of the load-forecasting error is usually evaluated. The DM test is performed based on the
following error loss differential:

dt = L
(
e(1)

t+h|t

)
−L

(
e(2)

t+h|t

)
. (4.86)

The null and alternative hypotheses for equal predictive accuracy are :

H0 : E[dt] = 0 ∀t , (4.87)

H1 : E[dt] , 0 . (4.88)

Thirdly, as a variance of the error loss differential dt, the spectral density at frequency 0 is
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used:

fd(0) :=
1

2π

(
Σ∞j=−∞γd( j)

)
, (4.89)

where γd( j) is the autocorrelation of the error loss differential at lag j. In real situations,
however, the length of forecasts is limited. The consistent estimator of fd(0) is used instead.

f̂d(0) :=
1

2π

{
ΣN−1

j=−(N−1)I
( j
h−1

)
γ̂d( j)

}
, (4.90)

γ̂d( j) :=
1
N
ΣN

t=| j|+1(dt − d̄)(dt−| j|− d̄) , (4.91)

I
( j
h−1

)
:=

1 for
∣∣∣∣ j
h−1

∣∣∣∣ ≤ 1

0 otherwise
, (4.92)

d̄ :=
1
N
ΣN

t=1dt . (4.93)

Finally, we obtain the DM statistic S :

S =
d̄√

2π f̂d(0)
N

∼ N(0,1) . (4.94)





Chapter 5

Electricity Load Forecasting

5.1 Method

5.1.1 Electricity Load Model

The electricity load pattern as shown in Fig. 2.2 includes the auto-projective components as
explained in the preceding chapter, and the load is certainly affected by weather conditions
such as temperature; thus, it also includes weather-related exogenous components. As a
result, our proposed model expressed by Eq. 5.1 contains those components and an irregular
component which is observation noise:

Yt = TRENDt + INWKS t + f (DAYt, INDAYS t)+ARt

+T Pt +RAt +HMt +WS t +PVt +Wt , (5.1)

where t is the elapsed time in hours, Yt is the load that was illustrated with the thick line
in Fig. 1.1 or Fig. 2.1, TRENDt is the trend component, INWKS t is the smoothed intra-
weekly (168-hour periodic) component, INDAYS t is the smoothed intra-daily (24-hour pe-
riodic) component, DAYt is the effect of a day of the week (day-effect component), ARt is
the autoregressive component, T Pt is the temperature effect, RAt is the solar radiation effect,
HMt is the humidity effect, WS t is the wind effect, PVt is the photovoltaic effect, Wt is the
irregular component (observation noise), and f (·) is a function that gives the relationship
between the smoothed intra-daily and the day effects. These components will be explained
in detail in the following sections.



46 Electricity Load Forecasting

Trend Component Model

Several models have been developed to represent a trend or seasonal variation of the load
[31]. Of these, the local trend model is one of the most commonly used; it is defined as
TRENDt = 2 TRENDt−1−TRENDt−2+ v

(1)
t . This was the model we used in the preceding

chapter; however, in a preliminary study, we found that when forecasting the load one week
or two in advance, the following trend model (without a slope) produced better results:

TRENDt = TRENDt−1+ v
(1)
t . (5.2)

Intra-Weekly Component Model

The recursive equation given by Eq. 5.3 represents the intra-weekly or 168-hour periodic
variation of the load; it is based on the load of industrial factories or offices that work on
an intra-weekly schedule. This component also plays a role as a combined intercept for the
exogenous components. To increase the accuracy of the forecast, we applied Friedman’s
variable-span smoother function [22], which is a smoother with a locally linear fitting. For
reducing the error, this smoother performs better than the two-sided exponentially weighted
smoother. The smoothed intra-weekly component is expressed in Eq. 5.4.

Σ167
i=0 INWKt−i = v

(2)
t , (5.3)

{INWKS t−i}
167
i=0 = s

(
{INWKt−i}

167
i=0

)
, (5.4)

where s(·) is Friedman’s variable-span smoother function. The notation {ai}
N
i=0 signifies

{a0,a1, · · · ,aN}.

Intra-Daily and Day-Effect Component Models

In the load, a pattern can be seen that is due to intra-daily routines, such as scheduled fac-
tory operations. There are also daily gaps during a week, as we observed in Fig. 2.2. These
variations are expressed in the combined formula given by Eq. 5.5. The recursive equations
given by Eqs. 5.8 and 5.9 represent the intra-daily load pattern and the smoothed, respec-
tively, denoted as INDAYt and INDAYS t. Equations 5.6 and 5.7 represent the daily gap
denoted as DAYt, j(t), which functions as a 24-hour constant coefficient for INDAYS t. For
modeling the load drops on holidays, we incorporated the empirical knowledge of TEPCO
forecasters in Eq. 5.6; that is, the intra-daily load level on a holiday is usually close to
the mean level of the nearest Saturday and Sunday. For parsimonious modeling, we sim-
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ply summed the Saturday and Sunday levels and divided it by two; however, this could be
replaced by a weighted mean if a new state variable were introduced for the weight. αt, j(t)

and MINt in Eqs. 5.10 and 5.11, respectively, were added to ensure the intra-daily load was
positive so that it did not decrease during the night. These equations are as follows:

f (DAYt, j(t), INDAYS t) = DAYt, j(t)× (INDAYS t−i− ᾱt, j(t)MINt) , (5.5)

DAYt, j(t) =

(DAYt−1,0+DAYt−1,6) / 2+ v(3)
t if datet is holiday

DAYt−1, j(t)+ v
(3)
t otherwise ,

(5.6)

j(t) =



0 if datet is Sunday

1 if datet is Monday
...

6 if datet is Saturday ,

(5.7)

Σ23
i=0 INDAYt−i = v

(4)
t , (5.8)

{INDAYS t−i}
23
i=0 = s

(
{INDAYt−i}

23
i=0

)
, (5.9)

αt, j(t) = αt−1, j(t)+ v
(5)
t , (5.10)

MINt =min{INDAYS t−i , i = 0,1, · · · ,23} , (5.11)

where datet is the calendar date of the elapsed time t. Both DAYt, j(t) and αt, j(t) are imposed
positive constraints (i.e., > 0).

Autoregressive Component Model

As explained in the preceding chapter, the autoregressive component model, AR(2) is given
by Eqs. 5.12 and 5.13, with the conditions ( ϕ2

1,t + 4ϕ2,t < 0 ∧ ϕ2,t > −1) in Eqs. 5.14 and
5.15, using the intermediate parameter θt : 0 < θt < π.

ARt = ϕ1,t ARt−1+ϕ2,t ARt−2+ v
(6)
t , (5.12)

ϕ1,t = 2
√
−ϕ2,t cosθt , (5.13)

log
(
1+ϕ2,t

−ϕ2,t

)
= log

(
1+ϕ2,t−1

−ϕ2,t−1

)
+ v(7)

t , (5.14)

log
(
θt
π− θt

)
= log

(
θt−1

π− θt−1

)
+ v(8)

t . (5.15)
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Temperature-Effect Component Model

Temperature is the most important exogenous variable, since it directly affects the use of
electric air conditioners. The relationship between temperature and load can be observed
in Fig. 5.1, which shows the daily maximum and minimum loads. People use coolers
in summer and heaters in winter, and they usually do not use either of these in spring or
autumn. Temperature affects the short-term (1–2 hours) load due to the automatic response
or manual control of air conditioners, and it affects the long-term (1–3 days) load due to the
cumulative cooling/heating effect on buildings. In general, people turn on air conditioners
when the temperature rises above a particular temperature Tt (e.g., 23 °C) in summer, and
they turn them off if it drops below this. On the other hand, in winter, people turn on heaters
when the temperature drops below a particular temperature T ′t (e.g., 15 °C), and they turn
them off if it rises above this. We will use the common notation S Tt for both the cooling
switch-off temperature Tt and the heating one T ′t .

The component model for temperature effect T Pt is given by the following equations:

T Pt = γt∆tpδt2,t +γ
′
t∆tp48,t , (5.16)

∆tp2,t =

[tp2,t −S Tt]+ if datet ∈ {May 1–Oct. 15}

[S Tt − tp2,t]+ otherwise ,
(5.17)

∆tp48,t =

tp48,t −S Tt if datet ∈ {May 1–Oct. 15}

S Tt − tp48,t otherwise ,
(5.18)

γt = γt−1+ v
(9)
t , (5.19)

γ′t = γ
′
t−1+ v

(10)
t , (5.20)

δt = δt−1+ v
(11)
t , (5.21)

S Tt = S Tt−1+ v
(12)
t , (5.22)

where δt is the temperature-response factor, γt is the temperature-response indicator for
the short-term effect in the load, γ′t is the cumulative temperature-response indicator for
the long-term effect in the load, tp2,t and tp48,t are the 2- and 48-hour mean temperatures
[°C], respectively, and ∆tp2,t and ∆tp48,t are the difference between the temperature and S Tt

[°C] in the short and long term, respectively. The notation [x]+ means the hinge function:
max{0, x}. Note that the forms of Eqs. 5.17 and 5.18 depend on the season (the hot season
in Japan is May 1–October 15). All indicators, including S Tt, were subject to constraints as
explained in Section 4.4.
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Fig. 5.1 Daily maximum (peak) and minimum (valley) loads in 2012.

Other Weather-Effect Component Models

Other weather-effect components are introduced in the following subsections. In these sub-
sections, each component has an exogenous variable and a coefficient β(·)

t . β(·)
t is a weather

response indicator with the constraint a(·) < β(·)
t < b(·). We have changed the constraints a(·)

and b(·) for each calendar month. For instance, β(ws)
t , the coefficient of wind speed, should

be positive in winter, but it should be negative in summer, because of the cooling effect.

Solar-Radiation Effect Model Solar radiation causes direct heating and lighting effects
on buildings throughout the year. A component for the effect of solar radiation is given in
Eq. 5.23.

RAt = β
(ra)
t rat , (5.23)

where rat is the amount of global solar radiation [MJ/(m2· h)].

Humidity Effect Model Humidity interacts with temperature and affects the load from
June to September (the season with high temperatures and high humidity). Our model does
not use a dummy variable for rain, since nearly 100% humidity is assumed to indicate
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rainfall. A component for the effect of humidity is given in Eq. 5.24.

HMt = β
(hm)
t hmt , (5.24)

where hmt is the degree of relative humidity [%].

Wind Effect Model Wind causes direct cooling on buildings. A component for the effect
of wind is given in Eq. 5.25.

WS t = β
(ws)
t wst , (5.25)

where wst is the wind speed [m/s].

PV Power Component Model Beginning in May 2013, TEPCO has added hourly es-
timates of the PV power to the total supply; hence, it is necessary to incorporate a PV
component in our SSMs. A component for the effect of PV power is given in Eq. 5.26.

PVt = β
(pv)
t P̂t , (5.26)

where P̂t is the hourly estimates of PV power [GW] obtained using the method that will be
introduced in Chapter 6. Since P̂t is itself an estimate of load, we used β(pv)

t ≈ 1.0.

5.1.2 SSMs Representation for Electricity Load Model

We used nonlinear system models for ft(·) and a linear observation model for gt(·). Tech-
nically, the observation model can be nonlinear [20], and this could increase the accuracy
of the forecast; however, a linear model is more appropriate for load analysis, since the re-
ports on load structural analysis may go to nonspecialists, and thus, they should be easy to



5.1 Method 51

understand. The state vector xt in our model setup is as follows:

xt B



TRENDt

(INWKt, INWKt−1, · · · , INWKt−167)′

(INWKS t, INWKS t−1, · · · , INWKS t−167)′

(INDAYt, INDAYt−1, · · · , INDAYt−23)′

(INDAYS t, INDAYS t−1, · · · , INDAYS t−23)′

(DAYt,0,DAYt,1, · · · ,DAYt,6)′

f (DAYt, j(t), INDAYS t)
(ARt,ARt−1)′

(T Pt,RAt,HMt,WS t,PVt)′[
h(β1,a1,b1),h(β2,a2,b2), · · · ,h(β11,a11,b11)

]′



, (5.27)

h(x,a,b)B log
( x−a
b− x

)
, (5.28)

βB
(
αt, j(t), θt,ϕ2,t,γt,γ

′
t , δt,S Tt,β

(ra)
t ,β

(hm)
t ,β(ws)

t ,β
(pv)
t

)′
, (5.29)

where a and b are the lower and upper limits for a state variable x, respectively. The ith ele-
ment of β in Eq. 5.29 is denoted by βi in Eq. 5.27. Note that the elements INWKt−167, INWKS t−167,
INDAYt−23 and INDAYS t−23 are not required for a one-step-ahead prediction; however,
they are included for smoothing purposes (such as with the variable span smoother in Eq.
5.4).

5.1.3 Lasso

For further enhancement of the accuracy, we used data from past years as well from the
target year. In addition, we added several new variables which should be integrated into
SSMs in the future; for example, temperature-dependent polynomials were used to represent
rapid changes in the load, and dummy variables were used to represent weekdays with
unusual loads (such as a day following a holiday or weekend).

We used the Lasso and MLR. The Lasso is a regression method that simultaneously
shrinks the coefficients and selects the variables. We used it to reduce over-fitting and to
clarify the essential explanatory variables for further refining component models of SSMs.
The objective function of the Lasso that we used is given by Eq. 5.30. Note that the target of
the Lasso modeling is the innovation (i.e., yi − ŷi) which has been labeled as “Remainder”
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in the figures in Section 4.6.

Pλ(β) = ΣN
i=1w

(yr)
i w

(tp)
i (yi− ŷi−xiβ)2+λ Σ

p
j=1|β j| , (5.30)

where yi is the ith load in the training terms; ŷi is the estimate from the EnKF; xi = (1, xi,1, · · · , xi,p)
is the standardized design vector with p explanatory variables; N is the total time in hours; λ
is the regularization parameter; β = (β0,β1, · · · ,βp)′ is a vector of the regression coefficients;
w

(yr)
i is the ith regression weight which exponentially increases as the year of the ith record

gets closer to the target year; and w(tp)
i is the ith regression weight, which exponentially in-

creases as the ith temperature in the training term gets closer to the forecast temperature for
the target hour. The proper λ for each hour was chosen by a tenfold cross-validation with
the mean-squared-error criterion.

Enhanced model

Twenty-four hourly innovation models, each given by Eq. 5.31, were used for the enhanced
model, since the hourly models (i.e., 24 models) compared favorably to sequential time
series models in a preliminary study [e.g., 58]. The resulting model is:

yt − ŷt = tp1,t + tp2
1,t + tp3

1,t + tp6,t + tp12,t + tp24,t + tp48,t

+hmt + rat +wst + tp1,t ·hmt + tp1,t · rat

+ tut +wet + tht + f rt + sat + sut

+aht +hot (regression coefficients are abbreviated) , (5.31)

where yt is the load; ŷt is the estimate from the EnKF; tp1,t, tp6,t, tp12,t, tp24,t, and tp48,t are
the 1-, 6-, 12-, 24-, and 48-hour mean temperatures [°C], respectively; hmt is the relative
humidity [%]; rat is the amount of global solar radiation [MJ/(m2h)]; and wst is the wind
speed [m/s]. The following notation was used for the days of the week and those of special
significance: tut Tuesday, wet Wednesday, tht Thursday, f rt Friday, sat Saturday, sut Sun-
day, aht a day following a holiday or weekend, and hot a holiday; note that these are binary
variables.

Training terms

The forecasting accuracy was enhanced using training data from the target year (YR) and
the past five consecutive years (YR-1, ..., YR-5). The resulting terms are shown in Fig.
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5.2. Suppose we would like to obtain a one-week forecast in the YR. The training and
forecasting procedure would be as follows:

Step 1 Perform a one-week ensemble Kalman prediction for all terms of YR, YR-1, ...,
YR-5 without overlapping terms.

Step 2 Fit the Lasso/MLR with the data in the training terms of YR, YR-1, ..., YR-5.

Step 3 With the fitted Lasso/MLR, perform a one-week prediction for the forecasting term
of YR.

Time (weeks)

−5 −4 −3 −2 −1 0 1 2 3 4 5 6

YR − 2

YR − 1

YR

 . 
  .

   
.

 . 
  .

   
.
Training Terms
Forecasting Term

Fig. 5.2 Training terms used for enhancing the accuracy of a one-week forecast; the x-axis
shows the time in weeks, and the y-axis shows the year, where YR is the target year that
includes the one-week forecasting term, and YR-i is i years previous.



54 Electricity Load Forecasting

5.1.4 Flowchart of Proposed Ensemble Method

The flowchart of the proposed ensemble method illustrated in this section is shown in Fig.
5.3. The matrix Xt|t−1 expresses the prediction distributions of states at time t, given states
at time t−1. The subscript t | t−1 is used to notate the prediction distribution. Likewise, the
subscript t | t is used to notate the filtering distribution.

 
 

Parameter limits  

Read input data 

Start 
𝑡 = 1 

Generate initial 
ensembles 

𝑿0|0 

Filtering : 

𝑿𝑡|𝑡−1 → 𝑿𝑡|𝑡 

𝑦t|t = 𝑯𝑿𝑡|𝑡 

Calculate  
Likelihood : 

𝑦t , 𝑦t|t-1 → 𝓛t(𝑅) 

Input data 

Output data 

End 
𝑡 = T 

𝑥 𝑡|𝑡−1 , 𝑆𝐷{𝑥𝑡|𝑡−1} 

 𝑦 𝑡|𝑡−1 , 𝑆𝐷{𝑦𝑡|𝑡−1}  

𝑡 ≥  𝑇 

Yes 

No 

Prediction : 

𝑿𝑡−1|𝑡−1 → 𝑿𝑡|𝑡−1 

𝑦t|t-1 = 𝑯𝑿𝑡|𝑡−1 

 
 

Variances R, 𝐿i 

Observations 
𝑦𝑡 
, 𝑡𝑝𝑡  , 𝑟𝑎𝑡  

, ℎ𝑚𝑡  , ⋯ 

𝑡 <  𝑇𝑝𝑟 

Yes 

No Set :  

𝑿𝑡|𝑡 = 𝑿𝑡|𝑡−1 

Calculate 
Accuracy measures 

𝑃𝐸𝑡  
, 𝑆𝐷{𝑃𝐸}

𝑀𝐴𝑃𝐸 

𝑥 𝑡|𝑡 , 𝑆𝐷{𝑥𝑡|𝑡} 

 𝑦 𝑡|𝑡 , 𝑆𝐷{𝑦𝑡|𝑡}  

𝑡 = 𝑡 + 1 

𝓛t(𝑅) 

Notations 
 
𝑡        :  Time  
𝑇𝑝𝑟     :  Time to start prediction 

𝑇      :  Time to end calculation 
𝑥∙       :  Component  ∈ {𝑇𝑅𝐸𝑁𝐷∙, 𝐼𝑁𝑊𝐾∙, ⋯ } 
𝑥 ∙       :  Mean of ensemble  of 𝑥∙ 
𝑆𝐷{𝑥∙}:  Standard deviation of ensemble of 𝑥∙ 

Fig. 5.3 Flowchart of the proposed ensemble method. One-week ahead forecasts
({yt|Tpr−1}

T
t=Tpr

) can be obtained by repeating the one-step ahead prediction from the time

Tpr. Filtered components ({xt|t}
Tpr−1
t=1 ) are used for load analysis (see Section 5.3.4).
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5.2 Experiment

In this experiment, we used observations of the weather instead of forecasts to avoid possible
effects from forecasting errors. Weather forecasts are usually calculated by supercomputers,
and the major utilities in Japan purchase these forecasts. Therefore, a study of weather
forecasting lies beyond the scope of this thesis. The local observations were averaged using
weights that correspond to the ratio of the amount of local electricity sales; this was done
because the load arises from an area that is geographically diverse.

There were marked drops in the load on particular days, such as the end-of-the-year and
New Year holidays. Special treatments are usually required for forecasting those periods.
Therefore, we did not use the load data in those periods, nor did we use it for the month
following the 2011 earthquake.

In practice, load forecasting will be completed at hourly or half-hourly intervals, and
this requires large computational resources and time. Our estimates were calculated on a
rolling daily basis. For instance, if the first one-week forecast begins at 0:00 AM, then the
next forecast will begin at 0:00 AM on the following day. The target years were 2012 and
2013, since complete annual data were required, and at the time of writing, of the years
following the earthquake, those had the best available data.

We compared the performance of other six load forecasting models to that of our pro-
posed models: EnKF, EnKF+Lasso, and EnKF+MLR. Four models were actually imple-
mented and used to make forecasts; we used the same weather and load observations as
were used to evaluate our models. For two of the models, the performance was taken from
the literature. Figure 5.4 shows a schematic of the models used in this experiment; the
details of the models will be given in the following subsections.
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-

Fig. 5.4 Schematic of models implemented in the experiment. The scopes of the tables
presented in Section 5.3 are also shown.

5.2.1 Benchmark Models

Benchmarks were calculated to help other researchers compare the accuracy of their mod-
els to ours. In general, benchmarks should be calculated using a well-known and accurate
method that can be reproduced easily by anyone. From this perspective, we chose the fol-
lowing two benchmark models.

Weekly Random-Walk Model (RW) A random-walk model is the simplest and most
commonly used benchmark method for time series models. Although it is a very simple
model, a certain level of accuracy is achieved for a load forecast [64]. When using a hori-
zon of only a few weeks, the load is largely explained by the day of the week, so for this
study, we used a weekly random-walk model [14]. With this model (Eq. 5.32), each hourly
forecast is the same as the actual hourly load during the preceding week; it is sometimes
referred to as the naïve forecast.

Ŷt = Yt−168. (5.32)
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ARIMA with External Regressors (RegARIMA) The autoregressive integrated mov-
ing average with external regressors is one of the most commonly used statistical mod-
els for time series analysis. It is very easy to reproduce the same forecasts by using R, a
freely available statistical computing software package. The RegARIMA was calculated
by the auto.arima function of the R package forecast [31], with the following settings:
allowdri f t = F, stationary= T , max.P= 7, max.p= 24, max.Q= 7, max.q= 24, start.P= 7,
and start.Q = 7; other settings were set to the default values. Consecutive 10-week training
terms, which were longer than those of EnKF (five weeks), were used to boost the forecast-
ing accuracy, and the external regressors were the same as those used in our model.

5.2.2 Operational Models

TEPCO Model (Utility 1) Our method was compared with TEPCO’s load forecasting
model, which is the regression-based method that was primarily developed by Haida [26].
To compare like with like, we used an extended-time version of the model that is capable of
two-week forecasting and is more accurate than the one currently in operation. The model
was provided by TEPCO for the purpose of comparison under an obligation of confidential-
ity.

US Utility Model (Utility 2) For an additional comparison, we implemented a short-term
load-forecasting model [30] that has been deployed at a utility in the USA and has demon-
strated excellent performance. The model is defined as follows:

Yt = Trend+Day×Hour+Month (5.33)

+ (Month+Hour)×{T (t)+T (t)2+T (t)3 (5.34)

+T (t−1)+T (t−1)2+T (t−1)3 (5.35)

+T (t−2)+T (t−2)2+T (t−2)3 (5.36)

+T (t−3)+T (t−3)2+T (t−3)3 (5.37)

+T (t)w+T (t)2
w+T (t)3

w} (5.38)

(coefficients are abbreviated) ,

where Yt is the load at hour t; Trend is the yearly trend, which is equal to the year minus
2009 (e.g., the year 2010 is 1); Hour is a 24-class dummy that represents the hourly variation
in a day; Day is a seven-class dummy that represents the daily variation in a week; Month is
a 12-class dummy that represents the monthly variation in a year; and T (t) is the temperature
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at hour t. Tw(t) = Σ24
k=1α

k−1T (t − k)/Σ24
k=1α

k−1 and α (=0.9) is the smoothing factor. The
weighting factor for exponentially weighted least squares for a three-year training term is
1.00015. We used the same parameter values for the α and the weighting factor as those used
in the literature. When implemented, this model has 636 terms, including the intercept.

5.3 Results

5.3.1 Comparison by Type of Day

For each of the seven models, Table 5.1 shows the MAPE and S D{PE} compared by type of
day; the categories include all days, weekdays, weekends, and holidays. PEts were obtained
by repeating a one-week forecast with a rolling daily origin. The performance was best for
weekdays, followed in order by all days, weekends, and holidays; the mean performance
was obtained when using all days.

The EnKF reached our target MAPE level of 3.0% when using all days (3.05%) or
weekdays (2.72%); however, weekends (3.80%) and holidays (3.85%) did not reach the
target level. Nevertheless, the results outperformed those of the benchmarks (RW and Re-
gARIMA) more than 2 to 3 points for any type of comparison. The RW performed better
than expected for weekends (6.05%) in comparison with other type of day of the RW, while
other models performed significantly worse on weekends.

The enhanced model, EnKF+Lasso, and EnKF+MLR improved the accuracy of the
EnKF by 0.9 to 1.8 points, and they outperformed the Utility 2 MLR by 0.6 to 0.7 points;
however, they underperformed the Utility 1 MLR by 0.2 to 0.6 points. For the S D{PE}, the
performances were in almost the same order as for the MAPE; the best was Utility 1, fol-
lowed in order by the enhanced models, Utility 2, EnKF, RW, and RegARIMA.

Table 5.2 shows the DM statistics for 7 PM of the last (7th) forecast day in the one-week-
ahead forecast (164 hours from the forecasting origin).

The DM test is applicable to multiple-step-ahead forecasting, and we chose 7 PM of
the last day in the one-week-ahead forecasting, since it was the hour when peak loads most
frequently occurred during the years 2000–2013.

To counteract the multiple comparison problem, a significance-level correction (e.g., the
Bonferroni correction) should be used when determining if there is a significant difference
in the accuracy of different forecasts.

With the forecasts for 2012 and 2013, there was no significant difference between EnKF+Lasso
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and EnKF+MLR, nor was there a significant difference between the two benchmarks, RW
and RegARIMA. Otherwise, all comparisons showed significance.

5.3.2 Comparison by Calendar Month

Table 5.3 shows the monthly MAPE for each of the seven models. The EnKF has peaks (i.e.,
low accuracy) in March (3.33%), May (3.23%), October (3.26%), and November (3.52%).
The accuracy of the enhanced models, EnKF+Lasso and EnKF+MLR, was low (over 2.0%)
in April, May, and July; this was not true for the results obtained with the operational models
or the benchmark models.

5.3.3 Comparison of SSMs Found in the Literature

The performances of the SSMs of other researchers were compared with those of the EnKF.
The MAPEs of these models were derived from the literature of Dordonnat et al. [14]
and Pedregal and Trapero [53]. Dordonnat developed hourly periodic SSMs with KF (HP
models) for the French national electricity load, and Pedregal developed SSMs with the KF
and a fixed-interval smoother (UC models).
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5.3.4 Load Analysis

The load analysis can be done by using the filtered load components. Figure 5.5 shows a
snapshot of the load structure decomposed by the EnKF, and Fig. 5.6 shows the model pa-
rameters, which were estimated simultaneously. We can observe a gradual data-assimilation
process by the EnKF from June 15th to July 19th.

The load analysis provides us with the following information:

TREND : Seasonal trend level

INDAYS : Averaged intra-daily load curve

DAY : Relative load levels for Mondays, Tuesdays, ..., and holidays

T P : Temperature effect

HM : Humidity effect

RA : Solar radiation effect

PV : Photovoltaic effect

γ, δ : Instantaneous temperature response

γ′ : Cumulative temperature response

S T : Switch-off temperature for air conditioners

β(ra), β(hm), β(ws) : Weather responses which represent direct heating by

solar radiation, dehumidification, and direct cooling by wind

There are many applications for the information produced by the analysis. For example,
the seasonal trend level (TREND) can be used for the seasonal adjustment routine in the
planning division of a utility.

The averaged intra-daily load curve (INDAYS ) can be used to determine constant out-
puts of base-load units such as coal-fired thermal power plants and nuclear power plants.

The curve with relative load levels ( f (DAY, INDAYS )) can be used as a year-long dis-
patching curve for the scheduling of thermal power plants. With this curve, cost-saving fuel
procurement will be possible.

The instantaneous temperature-response indicators (γ and δ) are essential for letting sys-
tem operators know the amount of supplies to order; they can perform a quick forecast with
the indicators in case the loads are underestimated or the weather forecast was unreliable.

The cumulative temperature-response indicator (γ′) provides us with information about
the insulation efficiency of buildings.
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The switch-off temperature (S T ) can be used as a more sophisticated reference temper-
ature for calculating heating and cooling degree days.

Precise effect analysis regarding solar radiation is possible through the relationship of
components RA and PV as shown in Fig. 5.7.



66 Electricity Load Forecasting
2

0
4

0
6

0

Y

Electricity Load EnKF TREND

Forecast        

−
4

−
2

0
2

4

IN
W

K
S

0
2

4
6

8

f(
D

A
Y

,I
N

D
A

Y
S

)

f(DAY,INDAYS)     INDAYS

−
0

.3
0

.0
0

.2

A
R

−
5

5
1

5

T
P

−
4

−
2

0
2

4

R
A

, 
P

V

RA PV

−
5

0
5

1
0

H
M

HM WS

−
1

0
0

5
1

0

R
e

m
a

in
d

e
r

Ju
n

−
1

5
 S

a
 

Ju
n

−
1

6
 S

u
 

Ju
n

−
1

7
 M

o
 

Ju
n

−
1

8
 T

u
 

Ju
n

−
1

9
 W

e
 

Ju
n

−
2

0
 T

h
 

Ju
n

−
2

1
 F

r 

Ju
n

−
2

2
 S

a
 

Ju
n

−
2

3
 S

u
 

Ju
n

−
2

4
 M

o
 

Ju
n

−
2

5
 T

u
 

Ju
n

−
2

6
 W

e
 

Ju
n

−
2

7
 T

h
 

Ju
n

−
2

8
 F

r 

Ju
n

−
2

9
 S

a
 

Ju
n

−
3

0
 S

u
 

Ju
l−

0
1

 M
o

 

Ju
l−

0
2

 T
u

 

Ju
l−

0
3

 W
e

 

Ju
l−

0
4

 T
h

 

Ju
l−

0
5

 F
r 

Ju
l−

0
6

 S
a

 

Ju
l−

0
7

 S
u

 

Ju
l−

0
8

 M
o

 

Ju
l−

0
9

 T
u

 

Ju
l−

1
0

 W
e

 

Ju
l−

1
1

 T
h

 

Ju
l−

1
2

 F
r 

Ju
l−

1
3

 S
a

 

Ju
l−

1
4

 S
u

 

Ju
l−

1
5

 M
o

$

Ju
l−

1
6

 T
u

 

Ju
l−

1
7

 W
e

 

Ju
l−

1
8

 T
h

 

Ju
l−

1
9

 F
r 

Ju
l−

2
0

 S
a

 

Ju
l−

2
1

 S
u

 

Ju
l−

2
2

 M
o

 

Ju
l−

2
3

 T
u

 

Ju
l−

2
4

 W
e

 

Ju
l−

2
5

 T
h

 

Ju
l−

2
6

 F
r 

Year 2013 $: Holiday

(GW)

Fig. 5.5 Snapshot of the electricity load structure, as decomposed by the EnKF. The blue
line in each panel shows the ensemble mean, and the gray region surrounding each line
shows the domain that is within one standard deviation of the mean.
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Fig. 5.6 Model parameters simultaneously estimated in the filtering process of the EnKF
(cf. Fig. 5.5). The blue line in each panel shows the ensemble mean, the gray region
surrounding each line shows the domain that is within one standard deviation of the mean,
and the outer lines indicate the upper and lower limits of the ensembles. Note that Temp(2h)
and Temp(48h) in the top panel are observations added for indicating the position of S T
relative to those temperatures.
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Fig. 5.7 Relationship diagram of components RA and PV . When solar radiation increases,
both RA and PV increase in summer, and RA decreases while PV increases in winter. Note
that electricity load decreases when PV self-consumption increases
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5.4 Discussion

When comparing performance by type of day, the order is the same as that which is often
found in the load-forecasting literature. This can be explained by the amount of training
data available for each type of day; there is a large amount of training data for weekdays,
but only a limited amount for other types of days. For this reason, the intra-daily curve,
which is the base curve used for all days, is similar to that of weekdays. In our modeling,
the intra-daily curve was adjusted by using the daily coefficient to express each type of day.
As a result, weekdays tend to be the easiest to forecast.

Benchmarks were very useful for understanding the relative accuracy, and they also
helped us to locate the weak points of the proposed models. For weekdays, the EnKF
outperformed the benchmarks (RW and RegARIMA) by a large margin—over 3.0 points.
In contrast, for weekends, the EnKF obviously did not perform as well, since the accuracy
of the benchmark RW was almost the same for both weekdays and weekends.

There was no significant difference between the accuracies of the enhanced models
EnKF+Lasso and EnKF+MLR. Therefore, instead of using MLR, we recommend that util-
ities use the Lasso, which has additional useful functionalities, such as variable selection
and over-fitting prevention.

It is entirely fair to say that the accuracy of the enhanced models reached an operational
level, since they outperformed Utility 2, which has been reported to have excellent perfor-
mance in actual operation. Furthermore, the accuracy gap between Utility 1 and our model
was not very large, and it can be removed by fine tuning the parameters.

When comparing accuracy by calendar month, the EnKF showed marked drops (MAPE

over 3.0%) in March, May, October, and November. We determined that the drop in March
occurred due to the relatively high temperatures observed in 2013, and the drop in May
occurred due to the lack of sufficient filtering terms for the period immediately after a long
special term (the Golden Week holidays). We did not implement any remedial models
for special terms; hence, the special terms were skipped by repeating the one-step-ahead
prediction, and so those terms did not contribute to the data assimilation. The last two drops
occurred due to a change in the temperature effect component in the model (see Eqs. 5.17
and 5.18). We conclude that countermeasures should be developed to strengthen our models
for seasonal changes.

Compared with similar studies in the literature, our method can be distinguished from
those of [14] and [53], which also use SSMs, by the type of filter we used. Instead of a
KF, we used the EnKF, which can handle nonlinear models. It must be noted that the SSMs



70 Electricity Load Forecasting

used in the other studies were designed for operational use, while the EnKF is intended
for analytical use. However, our enhanced models for operational use greatly outperformed
those models.

Improving the accuracy of load forecasting is expected to reduce costs in the following
categories:

• Unit commitment (mainly, the start-up cost for a thermal unit)

• Imbalance charges

• Emergency power exchanges

• Outages

• Investment in power facilities

It is very difficult to directly measure all the costs that will be reduced by improving the
accuracy. However, in the literature, we found several attempts at estimating these costs. As
an example, the economic impact of load forecasting errors was assessed by using a Monte
Carlo approach to simulate the unit commitment for that forecast [72]. It was determined
that the imbalance charge1 for a power shortfall beyond 3% of the load is a few times higher
than the thermal generating cost.2 As an example of calculating the imbalance charge, note
that during a summer day, a 4% underestimation that lasts for three hours will result in
a loss of approximately ¥106 million. Moreover, emergency power-exchange charges are
much higher than imbalance charges; the charge is doubled if it is within 3%, and it is higher
by a factor of 3/2 if it is beyond 3%. Therefore, even a difference in accuracy of 0.1% can
make a big difference in the profit, especially for large utilities. In this respect, our method
apparently has large economic advantages over the existing state-of-the-art methods found
in the literature.

The EnKF in our method requires a relatively short training period (several weeks at
most), and this is favorable for capturing rapid changes in the load structure. On the other
hand, it tends to be less accurate than a method that uses longer training periods, especially
if it includes terms from past years. The year-long MAPE of the one-week forecast was

153.21 (summer), 47.03 (other seasons), and 28.84 (at night) [¥/kWh] for beyond 3%, and 15.44 [¥/kWh]
for within 3% [65]

210.2 [¥/kWh]: the mean thermal generation cost of 12 companies over five years [34]
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below 3.0%, though a few large MAPEs were observed; this shows that the model is suf-
ficiently accurate to perform a precise load analysis from which trustworthy indicators can
be obtained.

Planning divisions of utilities obtain the temperature-response indicator γt by using a
simple linear regression, and then use it for canceling the temperature effect for long-term
load forecasting. Also, the heating/cooling degree day is one of the most widely used ex-
planatory variables in economic methods for load analysis; it is used to express annual
energy consumption. It is a very rough estimation of the relationship between energy con-
sumption and temperature, and it is primarily derived from the use of air conditioners. We
expect that a more precise analysis will be possible by using our newly introduced response
indicators, γ′t and δt.

Since it is important to have an accurate load analysis in order to forecast the growth in
electricity demand and make proper investment plans for electric power facilities, a compre-
hensive load analysis is conducted in Japan every few years to estimate the future residential
electricity demand [51] and to determine its sensitivity to temperature [33]. Our results can
be used for such a long-term forecast as well as for a short-term one, which is our remark-
able achievement that cannot be found in any literature.

PV forecasting and load forecasting are conducted separately in most utilities. In our
method, PV power was incorporated into the SSMs as one of the load components; this
enables the simultaneous estimation of the model parameters, and avoids the problem of
inconsistent results due to separate estimations.

Ideally, the load forecast should be made solely by the EnKF, in order to ensure that the
accountability is accurate; this is because the enhanced models have redundant variables.
These redundant variables should be reduced primarily by directly enhancing existing com-
ponent models, or in the following way. One of the merits of using SSMs lies in their
capability to unify many separate time series models; thus, we expect that the Lasso and
MLR can be incorporated into SSMs relatively smoothly, compared to incorporating them
into existing methods. In the case of the Lasso, this would be achieved by using a Laplacian
prior [52] as the coefficient of an exogenous variable, since the EnKF produces a natural
Bayesian posterior.





Chapter 6

Photovoltaic Power Forecasting

6.1 Methods

6.1.1 Monthly Installed PV Capacity Model

Installed PV capacity is an essential exogenous variable to forecast PV power. In order to
estimate these hourly values, the monthly capacity for each type was modeled in advance,
using the following polynomial regression model:

Cm = [Xβ]+ , (6.1)

X =
(
1,m,m2,m3

)
, (6.2)

β = (β0,β1,β2,β3)′ , (6.3)

where Cm is the total capacity of the mth month, X is the design vector of variable m, and β
is the coefficient vector for X. Note that [·]+ is the hinge function.

6.1.2 Module Temperature Model

Operating temperature and module performance are closely related, and this relationship
has been extensively investigated [60]. Nominal operation cell temperature has been used
as an indicator of PV module temperature [3]. In the present study, since the local air
temperature and wind speed were available as input data, we adopted a more detailed model,
namely, Sandia’s module temperature model [41]. Since the typical temperature difference
between the cell and the module has been reported to be 2 to 3 °C for flat-plate modules
at an irradiance level of 1 kW/m2, we assumed that the module temperature T (module)

i,t was
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approximately the same as the cell temperature T (cell)
i,t . The proposed model is expressed by

the following equation:

T (cell)
i,t ≈ T (module)

i,t = T (air)
i,t + ri,t exp

(
βm+γmsi,t

)
, (6.4)

where subscripts t and m indicate data related to the elapsed time in hours and in months,
respectively, subscript i indicates data related to the ith observatory or its coverage area,
T (air)

i,t is the air temperature [°C], ri,t is the mean global solar radiation [W/m2], si,t is the
wind speed [m/s], and βm and γm are Sandia’s empirically determined coefficients, which
vary depending on module type.

6.1.3 Hourly PV Power Models

We made the model as simple as possible so that it could be easily understood by utility
practitioners without losing the essential features of the PV generation mechanism. In most
studies, conventional PV system parameters are treated as fixed values [e.g., 76] since the
PV data are obtained from a limited number of PV firms with uniform PV system specifica-
tions. However, in our case, it is natural to use PV system parameters which vary monthly
since the target PV power comes from various types of PV systems, and the proportions
coming from the various system types vary daily. The proposed hourly PV power models,
which consist of a local area model (Eq. 6.5) and a total area model (Eq. 6.6), are expressed
by the following equations:

pi,t = ηm (wi,m ct ri,t)δmκi,t , (6.5)

pt =

9∑
i=1

pi,t , (6.6)

where pi,t is the hourly PV power from the ith area, ct is the hourly total capacity obtained via
spline-interpolation with monthly total capacity Cm (see Section 6.1.1), wi,m is the weight
for the total capacity to make local capacities, and ηm and δm are the PV-conversion coef-
ficient and factor, respectively. The basic modeling concept is that the hourly PV power is
proportional (ηm) to the product of the installed PV capacity (wi,m · ct) and solar radiation
(ri,t), with a slight nonlinearity (δm ≈ 1).

In order to take into consideration efficiency drops caused by temperature and wind, we
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used the cell temperature factor [32]:

κi,t = 1+αm
(
T (cell)

i,t −25
)
/100 , (6.7)

where αm is the maximum-power temperature coefficient.

6.1.4 SSMs Representation for Monthly PV Purchase Volume Model

The hourly PV power models and their parameters, described in the previous subsections,
were incorporated in the following SSMs on a monthly basis. Using the EnKF, each state
variable of the SSMs was represented as a distribution by ensemble members (typically
50–1000 members). The prediction distribution or one-step-ahead forecast of each state
variable was calculated using the ensemble square-root filter (EnSRF) [75] as follows:

ym = Hxm+Wm , (6.8)

H = (1, · · · ,1︸  ︷︷  ︸
9

,0, · · · ,0) , (6.9)

xm = f (xm−1,c,r,s,T,vm) , (6.10)

xm =



(P1,m, · · · ,P9,m)′

h(w1,m,a(w1),b(w1))
...

h(w9,m,a(w9),b(w9))
h(ηm,a(η),b(η))
h(δm,a(δ),b(δ))
h(αm,a(α),b(α))
h(βm,a(β),b(β))
h(γm,a(γ),b(γ))



, (6.11)

h(x,a,b)B log
( x−a
b− x

)
, (6.12)

Pi,m =

tm+1−1∑
t=tm

pi,t , (6.13)

where ym is the observation which is the total monthly purchase volume [GWh], xm is the
state vector, H is the observation vector. f is the system model function which transforms
a filtering distribution to a prediction distribution with a first-order trend model (i.e., xm =

xm−1+ v; x· and v are a state variable and system noise, respectively). Moreover, c, r, s, and
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T are the hourly PV capacities, solar radiation, wind speed, and air temperature in the mth

month, respectively. The function h is the map function such that h : x ∈ (a,b) 7−→ (−∞,∞)
and a and b are the lower and the upper limits for a state variable x (i.e., a < x < b). The
term Wm is the observation noise such that {Wm} ∼ i.i.d. N(0, R), where R is the variance
of the observation noise. Also, vm is the system noise vector such that each element {v(i)m } ∼

i.i.d. N(0, R/Li), where Li is a trade-off parameter and i = 1, · · · ,Nv (size of vm).
Pi,m is the monthly purchase volume from the ith area, and tm denotes the first hour of

the mth month. This monthly volume is calculated by using hourly power pi,t :

pi,t = ηm (wi,m ct ri,t)δmκi,t (6.14)

= ηm (wi,m ct ri,t)δm
[
1+αm{T

(cell)
i,t −25}/100

]
(6.15)

= ηm (wi,m ct ri,t)δm
[
1+αm{T

(air)
i,t + ri,t exp

(
βm+γmsi,t

)
−25}/100

]
, (6.16)

where ct, ri,t, si,t and T (air)
i,t are elements of the hourly PV capacity vector c, the weather data

matrices r, s, and T, respectively.
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6.1.5 Flowchart of Proposed Ensemble Method

The proposed method is performed in accordance with the following calculation flow. This
process was performed individually for each type of supplier.

Monthly 
capacity 

Cm 

Monthly 
purchase vol. 

Pm 

Hourly 
weather obs. 
ri,t ,𝑠i,t,𝑇i,t 
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forecast & 
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Fig. 6.1 Flowchart of the proposed ensemble method immediately after the mth month. Here,
m and M are the month indicator and the maximum value of m, respectively. From this
process, we obtain the filtering (m|m) and prediction distributions (m+ 1|m) for all state
variables. Note that ·̂ expresses the estimated value.
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6.2 Experiment

We applied the proposed model to PV purchase volumes of both types. Thus, the PV system
parameters, namely, the local and the total powers, were estimated separately according to
the type. As for the limits for wi,m in Eq. 6.5, we used ±20% of the capacity rates (see Figs.
2.5 and 2.6). For the other parameters, 0.0 < ηm < 1.0, 0.0 < δm < 2.0, −0.5 < αm < −0.2,
−4.0 < βm < −2.0, and −0.2 < γm < 0.0. The limits for αm, βm, and γm were taken from
the literature [32, 41]. The target monthly PV purchase volume does not include PV self-
consumption which corresponds to about 13% of the total PV generated. Therefore, we
used relatively wider ranges for the limits to simulate PV systems that virtually output only
purchased PV power.

Table 6.1 shows the type of input data used to obtain a distribution of a state variable
(i.e., local and total PV powers and PV system parameters) in the experiment. For a filter-
ing distribution, given all the observations, the local and total PV powers, and the system
parameters were estimated. For a prediction distribution, all given data must be forecast.
However, weather observation was used to avoid weather forecasting error and precisely
assess the accuracy of the proposed model.
The prediction distribution is used to estimate the local and total PV powers intended for use
in utility PV forecasting operations. On the other hand, the filtering distribution, as well as
the smoothing distribution, is used for system-parameter estimation and structural analysis
for retrospective evaluation. Since filtered PV system parameters, as well as hourly powers,
have important analytical information, the filtering errors were also examined, as shown in
the tables in Section 6.3, in order to understand the quality of the analysis.

Table 6.1 Data types used in the experiment

State distribution Purchase volume Capacity Weather

Filtering Observation Observation Observation
Prediction – Forecast Observation a

a In actual operation, weather forecast will be used.

6.2.1 Benchmark Model

As a benchmark model for accuracy comparison, we used an hourly PV power model which
has been in operational use [29]. Forecasts were calculated with weather observations. The
model consists of three well-known models. The hourly PV power is estimated using the



6.2 Experiment 79

following procedure:
First, by using the Erbs model [17], the hourly global horizontal solar radiation is split into
its beam and diffuse components. Second, using the Perez diffuse irradiance model [55],
these components are combined into hourly irradiance on tilted planes. Finally, the hourly
irradiance is converted to PV power using a simple linear regression model.
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6.3 Results and Discussion

6.3.1 Hourly Interpolation of Monthly Installed PV Capacity

Figure 6.2 shows plots of monthly reported installed PV capacities and interpolated hourly
capacities. Each polynomial regression model fit the reported monthly PV capacities very
well, and thus, accurate forecasts were obtained.

0
50

0
10

00
15

00
20

00
25

00
30

00

Elapsed time [ month ]

In
st

al
le

d 
P

V
 c

ap
ac

ity
 [ 

M
W

 ]

● ● ●
●

●
● ●

●
●

● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ●

● ● ● ● ●

● ● ● ● ● ● ● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 3 6 9 12 15 18 21 24 27

●

●

Observation(I)
Observation(II)
Fitted Polynomial(I)
Fitted Polynomial(II)
Forecast(I)
Forecast(II)
Hourly interpolation

Fig. 6.2 Interpolated installed PV capacities. This figure shows data for an example of
fitting a polynomial regression model, with a one-step-ahead forecast of the last month,
for each supplier. Observations (circles) were monthly reported installed PV capacities.
Fitted values (solid lines) and forecast values (crosses) were calculated with the polynomial
regression. Hourly interpolations (dashed lines) were spline-interpolated values. Here, (I)
and (II) indicate type-I and type-II suppliers, respectively.

6.3.2 Data Assimilation of Monthly PV Purchase Volumes

Figures 6.3 and 6.4 show the data-assimilation results—the one-step-ahead forecasts of
states—for type-I and type-II suppliers, respectively. The area within one-standard devi-
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ation of the mean of the prediction distribution is shown in gray, and we can understand
how a state variable (i.e., any of local purchase volumes, weights, and parameters) con-
verges from its behavior. The convergence pattern of each state variable was similar for the
type-I and type-II suppliers. The PV conversion factor δm quickly converged after the sixth
month. Here, ηm slowly converged, changing its mean.

On the other hand, the other weather related parameters, namely, αm, βm, and γm, ex-
hibited poor convergence, though the parameters began to change when the PV investment
boom began at the 22nd month. The most likely explanation for this phenomenon is that
these parameters were well adjusted from the beginning, with the narrow limits obtained
from the literature and a preliminary study (see Section 6.2). Another explanation for this
phenomenon is that the effects of weather on the efficiency of a PV system are limited (10%
at most), which prevents the parameters from converging well. According to a previous
study [32], the cell temperature factor κi,m ranges from 91% to 94% in August, and 100% to
103% in February.

Moreover, the weights wi,m did not change significantly, in contrast to our expectations.
The PV system penetration rate might be approximately the same in each local area for the
period evaluated. Each local PV power can be affected by other local PV powers through
the weights wi,m. However, the straight lines representing the weights suggest that almost
no correlation exists. Further investigation of the weights is required.
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Fig. 6.3 One-step-ahead forecasts for type-I supplier. Each solid line shows the mean of
prediction ensemble members. The region (gray area) surrounding the line indicates the
area within one-standard deviation of the mean. UL and LL lines indicate the upper and the
lower limits, respectively. In the top panel, Pm shows the reported PV purchase volumes,
and

∑9
i=1 Pi,m shows the forecasts. The second panel shows the remainder which is Pm −∑9

i=1 Pi,m. The third panel shows the forecasts of the local PV purchase volumes. The fourth
panel shows the weights for the total capacity to make the local capacity. Since the graphic
space is limited, only the first four local volumes and corresponding weights are shown. The
following five panels show model parameters.
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Fig. 6.4 One-step-ahead forecasts for type-II supplier.
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6.3.3 PV Efficiency Indicators

It is natural to use the PV conversion coefficient ηm that is time-varying on a monthly basis
since the target PV power comes from a mixture of all types of PV systems, and the mixture
rate has been changing day by day. Using the PV-conversion factor δm, we expressed the
nonlinearity of PV power caused by efficiency change as mostly due to the variability of
photovoltaic cell temperatures; however, as another enhanced model, one can use the cell
temperature factor (1+ κ)(PCT −25) [32], where PCT is the photovoltaic cell temperature
and κ is a negative coefficient (−0.5 < κ < −0.2).

6.3.4 Hourly PV Power

Using the estimated PV system parameters (η̂m, δ̂m, α̂m, β̂m, and γ̂m) and weights (ŵi,m) along
with the exogenous variables (ct, ri,t, si,t, and T (air)

i,t ), the hourly PV power can be calculated
using the PV power models (see Eqs. 6.5 and 6.6). Figure 6.5 shows examples of hourly
PV power forecasts using the proposed model and the benchmark model for a fortnight in
May 2014. Although curve shapes of these forecasts were similar, the forecasts obtained
using the proposed model were smoother than those provided by the benchmark model. The
forecasts obtained using the proposed model for the type-I suppliers were relatively lower
than those of the benchmark model on these specific days.

Since no true curve of hourly PV power was available, we compared the curve for the
proposed model with that for the benchmark model, the shape of which was verified by
utility experts to be very similar to the true curve in a preliminary experiment. With this
visual curve-shape comparison, validation of the proposed model as an hourly PV power
model was performed.
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Fig. 6.5 Forecasts of hourly PV power. From top to bottom, the PV powers for type-I suppli-
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models.
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6.3.5 Accuracy Evaluation

As a target purchase volume for accuracy evaluation, we used the total purchase volume
of both types (i.e., type I + type II), since the total PV power is our primary interest in
terms of load forecasting. Figures 6.6, 6.7, and 6.8 show the forecasts, forecasting errors,
and percentage errors, respectively. Table 6.2 shows the MAPE and S D{PE}, and Table 6.3
shows the MAE, MBE, and RMS E. Table 6.4 shows statistical test results for accuracy
improvement based on the Diebold-Mariano test.
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Fig. 6.6 Forecasts of total PV purchase volumes for 2013 and 2014. “Observation” indicates
the reported PV purchase volumes (type I + type II), “Filtered” indicates the means of the
filtering distribution, and “Predicted” indicates the means of the prediction distribution.
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Fig. 6.7 Forecasting errors of total PV purchase volumes for 2013 and 2014
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Table 6.4 Diebold-Mariano statistics for 2013 and 2014

Pred. Bench.

Filt. -5.1 *** -4.0 ***
Pred. -1.7 .

Note. p-values based on the Diebold-Mariano test were coded with the significance codes: 0
’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
Power of the loss function = 1.0. An alternative hypothesis is that the column method is less
accurate than the row method.

Forecasting Accuracy and Bias

Regarding the overall accuracy (i.e., 2013 and 2014), the proposed model significantly out-
performed the benchmark model, with the exception of S D{PE}, as shown by the results in
Tables 6.2, 6.3, and 6.4. Compared with the benchmark model, the forecasts obtained using
the proposed model had high variability (S D{PE} = 12.27). On this point, there is room for
further improvement. In Table 6.3, the forecasting bias (MBE = −14.11) was drastically
reduced compared with that of the benchmark model (MBE = −39.46). Thus, the severe
bias problem was settled.

Regarding the filtering results, the proposed model had high accuracy (MAPE = 5.51),
low bias (MBE = −9.03), and low variability (S D{PE} = 6.12), which ensures that analyzed
PV system parameters and weights are reliable. Based on the filtering results, the precise
PV system parameters and weights can be obtained. Estimation of an entire utility service
area has not been possible until this time.

Error Sources for PV Forecasting

Let us consider sources of forecasting error. For physics-based error sources, we have to
consider the effects of solar irradiance, air temperature, wind speed, autoregressive com-
ponents of PV, cloud cover, atmospheric pressure, conversion efficiency, installation angles
and dust accumulation on PV panels [77]. In addition, the PV capacity forecasting errors,
and the difference between observatory locations and dense installation areas of PV sys-
tems, may be major error sources. For human-based error sources, the PV purchase volume
in a calendar month always includes the errors from two adjacent months. In other words,
the reported volumes were not true volumes for a calendar month. This happens because a
limited number of meter-reading staff members visit different areas in turn to measure the
amount of generated PV power at houses.
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Although it is very difficult to take into consideration all significant error sources in model-
ing, we have started to develop a more elaborate physics-based model by which to improve
forecasting accuracy and PV efficiency analysis.



Chapter 7

Summary and Conclusions

In this thesis, we have proposed a novel modeling framework for load forecasting and anal-
ysis. The forecasting accuracy of each of the proposed models was compared with those
of the existing state-of-the-art models. Two benchmarks and two utility operational models
were implemented, and their accuracies were calculated under the same conditions. Al-
though the proposed models are within the framework of SSMs, which usually underper-
form compared to black-box approaches, the proposed models significantly outperformed
one of the utility models (by 0.7 points for all days); this demonstrates that the proposed
models reached operational accuracy. Also, the proposed models were compared with the
two sets of SSMs whose results were taken from the literature. Superiority over the existing
SSMs was also demonstrated by the fact that the proposed models outperformed the existing
SSMs by more than 0.6, 0.3, and 2.1 points at 9 AM, 12 AM, and in every hour, respectively,
while providing more enriched load-analysis information than has been obtained with the
existing SSMs.

In order to solve the emerging problem caused by the recent PV investment boom, we
also proposed the PV power forecasting method in the same modeling framework as the load
forecasting. The proposed method can enhance the hourly PV power model by incorporat-
ing the monthly PV purchase volume, which contributed to directly solving the problem
confronting most utilities. The effectiveness of the proposed method was demonstrated ex-
perimentally. In fact, the proposed method significantly outperformed the physics-based
model that is currently in operational use. On these grounds, we have come to the con-
clusion that the proposed method is one of the most promising approaches for forecasting
short-term purchased PV power and PV efficiency analysis.
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The combination of SSMs and the EnKF provides us with new and precise information
about the load structure and the weather response. Therefore, it is no longer necessary for
a utility to perform a retrospective analysis of the load behavior; this reduces the operator’s
workload and provides rational explanations for the low accuracy that sometimes occurs in
practice. These sophisticated indicators will drastically reduce the cost when a utility must
purchase energy from other utilities or must use pumped-storage hydropower.

The EnKF has been proven to be one of the most successful techniques for modeling
meteorological and oceanographic phenomena. It is noteworthy that this is the first attempt
to use the EnKF for load forecasting and analysis. It was demonstrated that the EnKF holds
great promise in that area as well.

This thesis illustrated many modeling techniques that are based on the empirical knowl-
edge of utility professionals; hence, we hope that it will also be of great help to those who
are interested in load forecasting in academic fields. We expect that with our method, utility
practitioners will be able to efficiently analyze the load structure and perform accurate daily
forecasts.
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A.1 Fortran Sample Code

1 !--------------------------------------------------------------------------------------------

2 ! Ensemble Filters

3 !--------------------------------------------------------------------------------------------

4 ! Input

5 ! Xp : Prediction distribution matrix

6 ! H : Observation matrix

7 ! R : Observation noise covariance (assumed diagonal matrix)

8 ! y_t : Observations at time t

9 ! N_Y : Number of observed time series

10 ! N_KX : State vector size

11 ! N_M : Ensemble size

12 ! t : time t [hours] (used only for seeds of PF-resampling)

13 !

14 ! Output

15 ! Xf : Filtering distribution matrix

16 !--------------------------------------------------------------------------------------------

17 ! Copyright(C) 2016 Hisashi Takeda. All Rights Reserved.

18 !--------------------------------------------------------------------------------------------

19 ! NB: Use Intel@Math Kernel Library for matrix operations

20 ! NB: Use compiler’s automatic zero-initialization for all of variables, arrays and matrices

21

22 module Ensemble_Filters

23

24 use f95_precision, only: wp => dp

25 use blas95, only: gemm

26 use lapack95, only: potrf, potri, trtri, syevd, gesvd

27 use GenRVs_mo

28 implicit none

29 contains

30

31 !---------------------------------------------------------------

32 ! Ensemble Kalman Filter with Perturbed Observations (EnKF/PO)

33 !---------------------------------------------------------------

34 subroutine EnKF_PO (Xp, Xf, H, R, y_t, N_Y, N_KX, N_M)

35

36 integer, intent(in) :: N_Y, N_KX, N_M

37 real(wp), intent(in) :: Xp(N_KX, N_M), H(N_Y, N_KX), R(N_Y, N_Y), y_t(N_Y)

38 real(wp), intent(inout) :: Xf(N_KX, N_M)

39 real(wp), dimension (N_KX, N_M) :: mXp, dXp, K_INOV

40 real(wp), dimension (N_KX, N_KX) :: Vp

41 real(wp), dimension (N_KX, N_Y) :: VpHt, K

42 real(wp), dimension (N_M, N_M) :: A1

43 real(wp), dimension (N_Y, N_M) :: Y, Yp, W0, W

44 real(wp), dimension (N_Y, N_Y) :: HVpHt, U, Ainv

45 real(wp) :: Ninv, Ninv_ub

46 integer :: i_y

47

48 do i_y = 1, N_Y

49 Y(i_y, :) = y_t(i_y)

50 W0(i_y, :) = GenNorm (N_M, 0._wp, sqrt(R(i_y, i_y)), i_y)
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51 end do

52

53 Ninv = 1._wp / dble(N_M)

54 Ninv_ub = 1._wp / (dble(N_M) - 1._wp)

55

56 W = W0

57 call gemm (W0, A1, W, ’n’, ’n’, -Ninv, 1._wp) ! Mean adjusted W

58

59 A1 = 1._wp

60 call gemm (Xp, A1, mXp, ’n’, ’n’, Ninv, 0._wp) ! mXp = Xp * A1 / N_M

61

62 dXp = Xp - mXp

63

64 call gemm (dXp, dXp, Vp, ’n’, ’t’, Ninv_u, 0._wp) ! Vp = 1/(N-1) * dXp * dXp’

65 call gemm (Vp, H, VpHt, ’n’, ’t’) !

66 call gemm (H, VpHt, HVpHt, ’n’, ’n’) !

67

68 ! Cholesky decomposition, UU’ is positive definite

69 U = HVpHt + R ! = A = UU’

70 call potrf (U, ’U’)

71 Ainv = U

72 call potri (Ainv, ’U’) ! [HVpH’+R]^{-1}

73

74 call gemm (VpHt, Ainv, K, ’n’, ’n’) ! K = VpH’[HVpH’+R]^{-1}

75 call gemm (H, Xp, Yp, ’n’, ’n’) ! Yp = H * Xp

76 call gemm (K, Y + W - Yp, K_INOV, ’n’, ’n’) ! K_INOV = K * (Y + W - Yp)

77

78 Xf = Xp + K_INOV

79

80 end subroutine EnKF_PO

81

82 !--------------------------------------------------

83 ! Ensemble Adjustment Kalman Filter (EAKF)

84 !--------------------------------------------------

85 subroutine EAKF (Xp, Xf, H, R, y_t, N_Y, N_KX, N_M)

86

87 real(wp), parameter :: EPS = 1._wp-3

88 integer, intent(in) :: N_Y, N_KX, N_M

89 real(wp), intent(in) :: Xp(N_KX, N_M), H(N_Y, N_KX), R(N_Y, N_Y), y_t(N_Y)

90 real(wp), intent(inout) :: Xf(N_KX, N_M)

91 real(wp), dimension (N_KX, N_M) :: mXp, mXf, dXp, dXf, U0, UGVt

92 real(wp), dimension (N_M, N_M) :: A1

93 real(wp), dimension (N_Y, N_M) :: Y, mYp

94 real(wp), dimension (N_Y, N_Y) :: Rinv

95 real(wp), dimension (N_KX, N_Y) :: mK

96 real(wp), dimension (N_KX, N_KX) :: A

97 real(wp), allocatable, dimension(:, :) :: G, Ginv, GinvUt, U, UG, HUG

98 real(wp), allocatable, dimension(:, :) :: Z, UGZ, I_Binv, I_Binvsq

99 real(wp), allocatable, dimension(:, :) :: UGZ_I_Binv, UGZ_I_Binvsq, UGZ_I_Binv_Zt

100 real(wp), allocatable, dimension(:, :) :: GtUtHtRinv, ZBZt

101 real(wp), allocatable, dimension(:) :: sigma, lambda

102 real(wp) :: sigma_sum

103 integer :: i_m, i, n_min, N_R, i_N_R
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104

105 do concurrent (i_m = 1:N_M)

106 Y(:, i_m) = y_t

107 end do

108

109 A1 = 1._wp

110 call gemm (Xp, A1, mXp, ’n’, ’n’, 1._wp / dble(N_M), 0._wp) ! mXp = Xp * A1 / N_M

111

112 mXf = mXp

113 dXp = Xp - mXp

114

115 n_min = min(N_KX, N_M)

116 allocate ( sigma(n_min) )

117

118 UGVt = dXp

119 call gesvd (UGVt, sigma, U0) ! Singular value decomposition

120

121 sigma_sum = sum(sigma)

122 do i = 1, n_min

123 if (sigma(i) / sigma_sum > EPS) N_R = N_R + 1 ! To be compact SVD

124 end do

125

126 allocate( G(N_R, N_R), Ginv(N_R, N_R), U(N_KX, N_R), UG(N_KX, N_R), HUG(N_Y, N_R) )

127 allocate( GtUtHtRinv(N_R, N_Y), ZBZt(N_R, N_R), Z(N_R, N_R), lambda(N_R) )

128

129 U = U0(1:N_KX, 1:N_R)

130

131 do concurrent (i = 1:N_R)

132 G (i, i) = sigma(i) ! Diagonal matrix with singular value entries

133 Ginv(i, i) = 1._wp / sigma(i) ! Moor-Penrose pseudoinverse

134 end do

135

136 Rinv = 1._wp / ((dble(N_M) - 1._wp) * R) ! [(N-1)R]^{-1}

137 call gemm (U, G, UG, ’n’, ’n’) ! UG

138 call gemm (H, UG, HUG, ’n’, ’n’) ! HUG

139 call gemm (HUG, Rinv, GtUtHtRinv, ’t’, ’n’) ! (HUG)’[(N-1)R]^{-1}

140 call gemm (GtUtHtRinv, HUG, ZBZt, ’n’, ’n’) ! ZBZ’ = (HUG)’[(N-1)R]^{-1}HUG

141

142 ! Eigendecomposition

143 Z = ZBZt

144 call syevd (Z, lambda, ’V’)

145

146 allocate ( I_Binv(N_R, N_R), I_Binvsq(N_R, N_R) )

147

148 ! B: Diagonal matrix with eigenvalue entries(Lambda)

149 do concurrent (i_N_R = 1:N_R)

150 I_Binv (i_N_R, i_N_R) = 1._wp / (1._wp + lambda(i_N_R)) ! [I+B]^{-1}

151 I_Binvsq(i_N_R, i_N_R) = 1._wp / sqrt(1._wp + lambda(i_N_R)) ! [I+B]^{-1/2}

152 end do

153

154 allocate ( UGZ(N_KX, N_R), UGZ_I_Binv(N_KX, N_R), UGZ_I_Binvsq(N_KX, N_R), GinvUt(N_R, N_KX) )

155 allocate ( UGZ_I_Binv_Zt(N_KX, N_R) )

156
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157 call gemm (UG, Z, UGZ, ’n’, ’n’) ! UGZ

158 call gemm (UGZ, I_Binv, UGZ_I_Binv, ’n’, ’n’) ! UGZ[I+B]^{-1}

159 call gemm (UGZ_I_Binv, Z, UGZ_I_Binv_Zt, ’n’, ’t’) ! UGZ[I+B]^{-1}Z’

160 call gemm (UGZ_I_Binv_Zt, GtUtHtRinv, mK, ’n’, ’n’) ! mK

161 call gemm (UGZ, I_Binvsq, UGZ_I_Binvsq, ’n’, ’n’) ! UGZ[I+B]^{-1/2}

162 call gemm (Ginv, U, GinvUt, ’n’, ’t’) ! G^{+}U’

163 call gemm (UGZ_I_Binvsq, GinvUt, A, ’n’, ’n’) ! A

164 call gemm (H, mXp, mYp, ’n’, ’n’) ! mYp

165 call gemm (mK, Y - mYp, mXf, ’n’, ’n’, 1._wp, 1._wp) ! mXf

166 call gemm (A, dXp, dXf, ’n’, ’n’) ! dXf

167

168 Xf = mXf + dXf

169

170 end subroutine EAKF

171

172 !----------------------------------------------------------------

173 ! Ensemble Square-Root Filter (EnSRF)

174 !----------------------------------------------------------------

175 subroutine EnSRF (Xp, Xf, H, R, y_t, N_Y, N_KX, N_M)

176

177 integer, intent(in) :: N_Y, N_KX, N_M

178 real(wp), intent(in) :: Xp(N_KX, N_M), H(N_Y, N_KX), R(N_Y, N_Y), y_t(N_Y)

179 real(wp), intent(inout) :: Xf(N_KX, N_M)

180 real(wp), dimension (N_KX, N_M) :: mXp, mXf, dXp, dXf

181 real(wp), dimension (N_M, N_M) :: A1

182 real(wp), dimension (N_KX, N_KX) :: dK_H

183 real(wp), dimension (N_Y, N_M) :: mYp, Y

184 real(wp), dimension (N_M, N_Y) :: dXpt_Ht

185 real(wp), dimension (N_KX, N_Y) :: dXp_dXpt_Ht, dXp_dXpt_Ht_Utinv, mK, dK

186 real(wp), dimension (N_Y, N_Y) :: UUt, U, Uinv, Utinv, U_Vinv, V

187 integer i, j

188

189 do concurrent (j = 1:N_M)

190 Y(:, j) = y_t

191 end do

192

193 A1 = 1._wp

194 call gemm (Xp, A1, mXp, ’n’, ’n’, 1._wp / dble(N_M), 0._wp) ! mXp = Xp * A1 / Nm

195

196 dXp = Xp - mXp

197 mXf = mXp

198 dXf = dXp

199

200 call gemm (dXp, H, dXpt_Ht, ’t’, ’t’)

201 call gemm (dXp, dXpt_Ht, dXp_dXpt_Ht)

202

203 ! Cholesky decomposition for a diagonal matrix (N-1)R

204 do i = 1, N_Y

205 V(i, i) = sqrt(dble(N_M - 1) * R(i, i))

206 end do

207

208 UUt = dble(N_M - 1) * R

209 call gemm (H, dXp_dXpt_Ht, UUt, ’n’, ’n’, 1._wp, 1._wp)
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210

211 ! Cholesky decomposition, UU’ is positive definite

212 U = UUt

213 call potrf (U, ’U’)

214

215 ! Set 0 in the lower triangle

216 do j = 1, (N_Y - 1)

217 U((j + 1):N_Y, j) = 0._wp

218 end do

219

220 Utinv = transpose(U)

221 call trtri (Utinv, ’L’)! U’^{-1}

222

223 Uinv = U

224 call trtri (Uinv, ’U’)! U^{-1}

225

226 U_Vinv = U + V

227 call trtri (U_Vinv, ’U’) ! (U + V)^{-1}

228

229 call gemm (dXp_dXpt_Ht, Utinv, dXp_dXpt_Ht_Utinv)

230 call gemm (dXp_dXpt_Ht_Utinv, Uinv, mK) ! mK

231 call gemm (dXp_dXpt_Ht_Utinv, U_Vinv, dK) ! dK

232 call gemm (H, mXp, mYp) ! mYp = H * mXp

233 call gemm (mK, Y - mYp, mXf, ’n’, ’n’, 1._wp, 1._wp) ! mXf = mXp + mK * (Y - mYp)

234 call gemm (dK, H, dK_H) ! dK * H

235 call gemm (dK_H, dXp, dXf, ’n’, ’n’, -1._wp, 1._wp) ! dXf = dXp - dK * H * dXp

236

237 Xf = mXf + dXf

238

239 end subroutine EnSRF

240

241 !----------------------------------------------------------------

242 ! EnSRF for Univariate Time Series

243 !----------------------------------------------------------------

244 subroutine EnSRF_uni(Xp, Xf, H, R, y_t, N_K, N_M)

245

246 integer, intent(in) :: N_M, N_K

247 real(wp), intent(in) :: y_t, R

248 real(wp), intent(in), dimension ( 1, N_K) :: H

249 real(wp), intent(in), dimension (N_K, N_M) :: Xp

250 real(wp), intent(inout), dimension (N_K, N_M) :: Xf

251 real(wp), dimension (N_K, N_M) :: mXp, mXf, dXp, dXf

252 real(wp), dimension (N_M, N_M) :: A1

253 real(wp), dimension (N_K, N_K) :: dK_H

254 real(wp), dimension ( 1, N_M) :: mYp

255 real(wp), dimension (N_M, 1) :: dXpt_Ht

256 real(wp), dimension (N_K, 1) :: dXp_dXpt_Ht, mK, dK

257 real(wp), dimension ( 1, 1) :: UUt

258 real(wp) :: U, V

259

260 A1 = 1._wp

261 call gemm(Xp, A1, mXp, ’n’, ’n’, 1._wp / dble(N_M), 0._wp)

262
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263 dXp = Xp - mXp

264 mXf = mXp

265 dXf = dXp

266

267 call gemm(dXp, H, dXpt_Ht, ’t’, ’t’)

268 call gemm(dXp, dXpt_Ht, dXp_dXpt_Ht, ’n’, ’n’)

269

270 UUt = dble(N_M - 1) * R

271 call gemm(H, dXp_dXpt_Ht, UUt, ’n’, ’n’, 1._wp, 1._wp)

272

273 U = sqrt(UUt(1, 1))

274 V = sqrt(dble(N_M - 1) * R)

275

276 mK = dXp_dXpt_Ht / UUt(1, 1)

277 dK = dXp_dXpt_Ht / U / (U + V)

278

279 call gemm(H, mXp, mYp) ! mYp = H * mXp

280 call gemm(mK, y_t - mYp, mXf, ’n’, ’n’, 1._wp, 1._wp) ! mXf = mXp + mK * (y_t - mYp)

281 call gemm(dK, H, dK_H) ! dK_H = dK * H

282 call gemm(dK_H, dXp, dXf, ’n’, ’n’, -1._wp, 1._wp) ! dXf = dXp - dK * H * dXp

283

284 Xf = mXf + dXf

285

286 end subroutine EnSRF_uni

287

288 !-------------------------------------------------------------

289 ! Ensemble Kalman Filter with Square-Root Algorithm (EnKF/SR)

290 !-------------------------------------------------------------

291 subroutine EnKF_SR (Xp, Xf, H, R, y_t, N_Y, N_KX, N_M)

292

293 integer, intent(in) :: N_Y, N_KX, N_M

294 real(wp), intent(in) :: Xp(N_KX, N_M), H(N_Y, N_KX), R(N_Y, N_Y), y_t(N_Y)

295 real(wp), intent(inout) :: Xf(N_KX, N_M)

296 real(wp), dimension (N_KX, N_M) :: mXp, mXf, dXp, dXf

297 real(wp), dimension (N_M, N_M) :: A1, Vt, I_StS, I_StS_Vt, dT

298 real(wp), dimension (N_Y, N_M) :: Y, mYp, dYp, UGVt, G

299 real(wp), dimension (N_Y, N_Y) :: ZBZt, Z, Binv, Binv_Zt, Z_Binv_Zt, Binvsq, Binvsq_Zt, U

300 real(wp), dimension (N_KX, N_Y) :: mK, dXpdYpt

301 real(wp) :: sigma(N_KX), lambda(N_Y), sigma_sum

302 integer :: i_y, i_m, i, n_min

303

304 do concurrent (i_m = 1:N_M)

305 Y(:, i_m) = y_t

306 I_StS(i_m, i_m) = 1._wp ! Identity matrix

307 end do

308

309 A1 = 1._wp

310 call gemm (Xp, A1, mXp, ’n’, ’n’, 1._wp / dble(N_M), 0._wp) ! mXp = Xp * A1 / N_M

311

312 mXf = mXp

313 dXp = Xp - mXp

314

315 call gemm (H, dXp, dYp, ’n’, ’n’) ! dYp = HdXp
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316

317 ZBZt = (dble(N_M) - 1._wp) * R

318 call gemm (dYp, dYp, ZBZt, ’n’, ’t’, 1._wp, 1._wp) ! ZSZ’ : = dYpdYp’ + (N-1)R

319

320 Z = ZBZt

321 call syevd (Z, lambda, ’V’) ! Eigendecomposition

322

323 ! B: Diagonal matrix with eigenvalue entries(Lambda)

324 do i_y = 1, N_Y

325 Binv (i_y, i_y) = 1._wp / lambda(i_y) ! Lambda^{-1}

326 Binvsq(i_y, i_y) = 1._wp / sqrt(lambda(i_y)) ! Lambda^{-1/2}

327 end do

328

329 call gemm (Binv, Z, Binv_Zt, ’n’, ’t’) ! Lambda^{-1} * Z’

330 call gemm (Z, Binv_Zt, Z_Binv_Zt, ’n’, ’n’) ! Z * Lambda^{-1} * Z’

331 call gemm (Binvsq, Z, Binvsq_Zt, ’n’, ’t’) ! Lambda^{-1/2} * Z’

332 call gemm (Binvsq_Zt, dYp, UGVt, ’n’, ’n’) ! UGVt = Lambda^{-1/2} * Z’dYp

333

334 call gesvd (UGVt, sigma, U, Vt)! Singular value decomposition

335

336 n_min = min(N_Y, N_M)

337 sigma_sum = sum(sigma)

338 do concurrent (i = 1:n_min)

339 G(i, i) = sigma(i) ! Diagonal matrix with singular value entries

340 end do

341

342 call gemm (Xp, dYp, dXpdYpt, ’n’, ’t’) ! dXpdYp’

343 call gemm (dXpdYpt, Z_Binv_Zt, mK, ’n’, ’t’) ! mK = dXpdYp’Z*Lambda^{-1}*Z’

344 call gemm (H, mXp, mYp, ’n’, ’n’) ! mYp = H * mXp

345 call gemm (mK, Y - mYp, mXf, ’n’, ’n’, 1._wp, 1._wp) ! mXf = mXp + mK*(Y - mYp)

346 call gemm (G, G, I_StS, ’t’, ’n’, -1._wp, 1._wp) ! I - G’G

347 call gemm (sqrt(I_StS), Vt, I_StS_Vt, ’n’, ’n’) ! sqrt(I - G’G) * V’

348 call gemm (Vt, I_StS_Vt, dT, ’t’, ’n’) ! dT = V * sqrt(I - S’S) * V’

349 call gemm (dXp, dT, dXf, ’n’, ’n’) ! dXf = dXp * dT

350

351 Xf = mXf + dXf

352

353 end subroutine EnKF_SR

354

355 !--------------------------------------------------

356 ! Ensemble Transform Kalman Filter (ETKF)

357 !--------------------------------------------------

358 subroutine ETKF (Xp, Xf, H, R, y_t, N_Y, N_KX, N_M)

359

360 integer, intent(in) :: N_Y, N_KX, N_M

361 real(wp), intent(in) :: Xp(N_KX, N_M), H(N_Y, N_KX), R(N_Y, N_Y), y_t(N_Y)

362 real(wp), intent(inout) :: Xf(N_KX, N_M)

363 real(wp), dimension (N_KX, N_M) :: mXp, mXf, dXp, dXf, dXp_dS

364 real(wp), dimension (N_M, N_M) :: A1, I_MM, Z, Binv, Binvsq, Binv_Zt, Binvsq_Zt, dS, dT, ZBZt

365 real(wp), dimension (N_Y, N_M) :: Y, mYp, dYp

366 real(wp), dimension (N_M, N_Y) :: dYpt_Rinv

367 real(wp) :: Rinv(N_Y, N_Y), lambda(N_M), mK(N_KX, N_Y)

368 integer :: i_m
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369

370 do concurrent (i_m = 1:N_M)

371 Y(:, i_m) = y_t

372 I_MM(i_m, i_m) = 1._wp ! Identity matrix of rank N_M

373 end do

374

375 A1 = 1._wp

376 call gemm (Xp, A1, mXp, ’n’, ’n’, 1._wp / dble(N_M), 0._wp) ! mXp = Xp * A1 / N_M

377

378 mXf = mXp

379 dXp = Xp - mXp

380

381 Rinv = 1._wp / ((dble(N_M) - 1._wp) * R) ! [(N-1)R]^{-1}

382 call gemm (H, mXp, mYp, ’n’, ’n’) ! mYp = H * mXp

383 call gemm (H, dXp, dYp, ’n’, ’n’) ! dYp = H * dXp

384 call gemm (dYp, Rinv, dYpt_Rinv, ’t’, ’n’) ! dYp’*[(N-1)R]^{-1}

385

386 ZBZt = I_MM

387 call gemm (dYpt_Rinv, dYp, ZBZt, ’n’, ’n’, 1._wp, 1._wp)

388

389 ! Eigendecomposition

390 Z = ZBZt

391 call syevd (Z, lambda, ’v’)

392

393 ! B: Diagonal matrix with eigenvalue entries(Lambda)

394 do concurrent (i_m = 1:N_M)

395 Binv (i_m, i_m) = 1._wp / lambda(i_m) ! Lambda^{-1}

396 Binvsq(i_m, i_m) = 1._wp / sqrt(lambda(i_m)) ! Lambda^{-1/2}

397 end do

398

399 call gemm (Binv, Z, Binv_Zt, ’n’, ’t’) ! Lambda^{-1} * Z’

400 call gemm (Z, Binv_Zt, dS, ’n’, ’n’) ! Z * Lambda^{-1} * Z’

401 call gemm (Binvsq, Z, Binvsq_Zt, ’n’, ’t’) ! Lambda^{-1/2} * Z’

402 call gemm (Z, Binvsq_Zt, dT, ’n’, ’n’) ! Z * Lambda^{-1/2} * Z’

403 call gemm (dXp, dS, dXp_dS, ’n’, ’n’) ! dXp * Z * Lambda^{-1} * Z’

404 call gemm (dXp_dS, dYpt_Rinv, mK, ’n’, ’n’) ! dXp*Z*Lambda^{-1}*Z’*dYp’*[(N-1)R]^{-1}

405 call gemm (dXp, dT, dXf, ’n’, ’n’) ! dXf = dXp * dT

406 call gemm (mK, Y - mYp, mXf, ’n’, ’n’, 1._wp, 1._wp) ! mXf = mXp + mK*(Y - mYp)

407

408 Xf = mXf + dXf

409

410 end subroutine ETKF

411

412 !----------------------------------------------------------------

413 ! Particle Filter

414 !----------------------------------------------------------------

415 subroutine PF (Xp, Xf, H, R, Y, N_L, N_KX, N_M, t)

416

417 real(wp), parameter :: PI = 3.1415926535897323846264338327950288_wp

418 integer, intent(in) :: N_L, N_KX, N_M, t

419 real(wp), intent(in) :: Y(N_L), R(N_L, N_L), H(N_L, N_KX), Xp(N_KX, N_M)

420 real(wp), intent(inout) :: Xf(N_KX, N_M)

421 real(wp), dimension (N_M) :: loglike_mem, like, wgt
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422 real(wp) :: rv(1), c, Un, Ninv

423 integer :: i_m, i_w

424

425 ! Weights for resampling

426 call LogLikelihood (Xp, H, R, Y, loglike_mem)

427 like = exp(loglike_mem - maxval(loglike_mem))

428 wgt = like / sum(like)

429

430 ! Low-variance resampling

431 Ninv = 1._wp / dble(N_M)

432 rv = GenUnif (1, 0._wp, Ninv, t)

433

434 c = wgt(1)

435 i_w = 1

436 do i_m = 1, N_M

437 Un = rv(1) + (i_m - 1) * Ninv

438 do while (Un > c)

439 i_w = i_w + 1

440 c = c + wgt(i_w)

441 end do

442 Xf(:, i_m) = Xp(:, i_w)

443 end do

444

445 end subroutine PF

446

447 end module Ensemble_Filters

Listing A.1 Fortran Sample Code
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